]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
304710cae6536875acf176ad7130cecfea40d74c
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /*
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 *
50 */
51 enum {
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
55 };
56
57 /*
58 * Control how reservations are dealt with.
59 *
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * ENOSPC accounting
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 */
66 enum {
67 RESERVE_FREE = 0,
68 RESERVE_ALLOC = 1,
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
103
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 smp_mb();
108 return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 return (cache->flags & bits) == bits;
114 }
115
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 atomic_inc(&cache->count);
119 }
120
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
127 kfree(cache);
128 }
129 }
130
131 /*
132 * this adds the block group to the fs_info rb tree for the block group
133 * cache
134 */
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
137 {
138 struct rb_node **p;
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
141
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
144
145 while (*p) {
146 parent = *p;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 cache_node);
149 if (block_group->key.objectid < cache->key.objectid) {
150 p = &(*p)->rb_left;
151 } else if (block_group->key.objectid > cache->key.objectid) {
152 p = &(*p)->rb_right;
153 } else {
154 spin_unlock(&info->block_group_cache_lock);
155 return -EEXIST;
156 }
157 }
158
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
163
164 return 0;
165 }
166
167 /*
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
170 */
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 int contains)
174 {
175 struct btrfs_block_group_cache *cache, *ret = NULL;
176 struct rb_node *n;
177 u64 end, start;
178
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
181
182 while (n) {
183 cache = rb_entry(n, struct btrfs_block_group_cache,
184 cache_node);
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
187
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
190 ret = cache;
191 n = n->rb_left;
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
194 ret = cache;
195 break;
196 }
197 n = n->rb_right;
198 } else {
199 ret = cache;
200 break;
201 }
202 }
203 if (ret)
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
206
207 return ret;
208 }
209
210 static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
212 {
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 return 0;
219 }
220
221 static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
223 {
224 u64 start, end;
225
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
228
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234
235 static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
237 {
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
242
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
247 stripe_len);
248 BUG_ON(ret);
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret);
257
258 while (nr--) {
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
261 stripe_len);
262 BUG_ON(ret);
263 }
264
265 kfree(logical);
266 }
267 return 0;
268 }
269
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 struct btrfs_caching_control *ctl;
274
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
278 return NULL;
279 }
280
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
284 return NULL;
285 }
286
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
290 return ctl;
291 }
292
293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 if (atomic_dec_and_test(&ctl->count))
296 kfree(ctl);
297 }
298
299 /*
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
303 */
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 u64 extent_start, extent_end, size, total_added = 0;
308 int ret;
309
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
314 if (ret)
315 break;
316
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
321 total_added += size;
322 ret = btrfs_add_free_space(block_group, start,
323 size);
324 BUG_ON(ret);
325 start = extent_end + 1;
326 } else {
327 break;
328 }
329 }
330
331 if (start < end) {
332 size = end - start;
333 total_added += size;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret);
336 }
337
338 return total_added;
339 }
340
341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
350 u64 total_found = 0;
351 u64 last = 0;
352 u32 nritems;
353 int ret = 0;
354
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
359
360 path = btrfs_alloc_path();
361 if (!path)
362 goto out;
363
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365
366 /*
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
371 */
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
374 path->reada = 1;
375
376 key.objectid = last;
377 key.offset = 0;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
383
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 if (ret < 0)
386 goto err;
387
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
390
391 while (1) {
392 if (btrfs_fs_closing(fs_info) > 1) {
393 last = (u64)-1;
394 break;
395 }
396
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 } else {
400 ret = find_next_key(path, 0, &key);
401 if (ret)
402 break;
403
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
410 cond_resched();
411 goto again;
412 }
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
415 continue;
416 }
417
418 if (key.objectid < block_group->key.objectid) {
419 path->slots[0]++;
420 continue;
421 }
422
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
425 break;
426
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
429 fs_info, last,
430 key.objectid);
431 last = key.objectid + key.offset;
432
433 if (total_found > (1024 * 1024 * 2)) {
434 total_found = 0;
435 wake_up(&caching_ctl->wait);
436 }
437 }
438 path->slots[0]++;
439 }
440 ret = 0;
441
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
446
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
451
452 err:
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
455
456 free_excluded_extents(extent_root, block_group);
457
458 mutex_unlock(&caching_ctl->mutex);
459 out:
460 wake_up(&caching_ctl->wait);
461
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
464 }
465
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
469 int load_cache_only)
470 {
471 DEFINE_WAIT(wait);
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
474 int ret = 0;
475
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 BUG_ON(!caching_ctl);
478
479 INIT_LIST_HEAD(&caching_ctl->list);
480 mutex_init(&caching_ctl->mutex);
481 init_waitqueue_head(&caching_ctl->wait);
482 caching_ctl->block_group = cache;
483 caching_ctl->progress = cache->key.objectid;
484 atomic_set(&caching_ctl->count, 1);
485 caching_ctl->work.func = caching_thread;
486
487 spin_lock(&cache->lock);
488 /*
489 * This should be a rare occasion, but this could happen I think in the
490 * case where one thread starts to load the space cache info, and then
491 * some other thread starts a transaction commit which tries to do an
492 * allocation while the other thread is still loading the space cache
493 * info. The previous loop should have kept us from choosing this block
494 * group, but if we've moved to the state where we will wait on caching
495 * block groups we need to first check if we're doing a fast load here,
496 * so we can wait for it to finish, otherwise we could end up allocating
497 * from a block group who's cache gets evicted for one reason or
498 * another.
499 */
500 while (cache->cached == BTRFS_CACHE_FAST) {
501 struct btrfs_caching_control *ctl;
502
503 ctl = cache->caching_ctl;
504 atomic_inc(&ctl->count);
505 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
506 spin_unlock(&cache->lock);
507
508 schedule();
509
510 finish_wait(&ctl->wait, &wait);
511 put_caching_control(ctl);
512 spin_lock(&cache->lock);
513 }
514
515 if (cache->cached != BTRFS_CACHE_NO) {
516 spin_unlock(&cache->lock);
517 kfree(caching_ctl);
518 return 0;
519 }
520 WARN_ON(cache->caching_ctl);
521 cache->caching_ctl = caching_ctl;
522 cache->cached = BTRFS_CACHE_FAST;
523 spin_unlock(&cache->lock);
524
525 /*
526 * We can't do the read from on-disk cache during a commit since we need
527 * to have the normal tree locking. Also if we are currently trying to
528 * allocate blocks for the tree root we can't do the fast caching since
529 * we likely hold important locks.
530 */
531 if (trans && (!trans->transaction->in_commit) &&
532 (root && root != root->fs_info->tree_root) &&
533 btrfs_test_opt(root, SPACE_CACHE)) {
534 ret = load_free_space_cache(fs_info, cache);
535
536 spin_lock(&cache->lock);
537 if (ret == 1) {
538 cache->caching_ctl = NULL;
539 cache->cached = BTRFS_CACHE_FINISHED;
540 cache->last_byte_to_unpin = (u64)-1;
541 } else {
542 if (load_cache_only) {
543 cache->caching_ctl = NULL;
544 cache->cached = BTRFS_CACHE_NO;
545 } else {
546 cache->cached = BTRFS_CACHE_STARTED;
547 }
548 }
549 spin_unlock(&cache->lock);
550 wake_up(&caching_ctl->wait);
551 if (ret == 1) {
552 put_caching_control(caching_ctl);
553 free_excluded_extents(fs_info->extent_root, cache);
554 return 0;
555 }
556 } else {
557 /*
558 * We are not going to do the fast caching, set cached to the
559 * appropriate value and wakeup any waiters.
560 */
561 spin_lock(&cache->lock);
562 if (load_cache_only) {
563 cache->caching_ctl = NULL;
564 cache->cached = BTRFS_CACHE_NO;
565 } else {
566 cache->cached = BTRFS_CACHE_STARTED;
567 }
568 spin_unlock(&cache->lock);
569 wake_up(&caching_ctl->wait);
570 }
571
572 if (load_cache_only) {
573 put_caching_control(caching_ctl);
574 return 0;
575 }
576
577 down_write(&fs_info->extent_commit_sem);
578 atomic_inc(&caching_ctl->count);
579 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
580 up_write(&fs_info->extent_commit_sem);
581
582 btrfs_get_block_group(cache);
583
584 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
585
586 return ret;
587 }
588
589 /*
590 * return the block group that starts at or after bytenr
591 */
592 static struct btrfs_block_group_cache *
593 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 {
595 struct btrfs_block_group_cache *cache;
596
597 cache = block_group_cache_tree_search(info, bytenr, 0);
598
599 return cache;
600 }
601
602 /*
603 * return the block group that contains the given bytenr
604 */
605 struct btrfs_block_group_cache *btrfs_lookup_block_group(
606 struct btrfs_fs_info *info,
607 u64 bytenr)
608 {
609 struct btrfs_block_group_cache *cache;
610
611 cache = block_group_cache_tree_search(info, bytenr, 1);
612
613 return cache;
614 }
615
616 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
617 u64 flags)
618 {
619 struct list_head *head = &info->space_info;
620 struct btrfs_space_info *found;
621
622 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
623
624 rcu_read_lock();
625 list_for_each_entry_rcu(found, head, list) {
626 if (found->flags & flags) {
627 rcu_read_unlock();
628 return found;
629 }
630 }
631 rcu_read_unlock();
632 return NULL;
633 }
634
635 /*
636 * after adding space to the filesystem, we need to clear the full flags
637 * on all the space infos.
638 */
639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 {
641 struct list_head *head = &info->space_info;
642 struct btrfs_space_info *found;
643
644 rcu_read_lock();
645 list_for_each_entry_rcu(found, head, list)
646 found->full = 0;
647 rcu_read_unlock();
648 }
649
650 static u64 div_factor(u64 num, int factor)
651 {
652 if (factor == 10)
653 return num;
654 num *= factor;
655 do_div(num, 10);
656 return num;
657 }
658
659 static u64 div_factor_fine(u64 num, int factor)
660 {
661 if (factor == 100)
662 return num;
663 num *= factor;
664 do_div(num, 100);
665 return num;
666 }
667
668 u64 btrfs_find_block_group(struct btrfs_root *root,
669 u64 search_start, u64 search_hint, int owner)
670 {
671 struct btrfs_block_group_cache *cache;
672 u64 used;
673 u64 last = max(search_hint, search_start);
674 u64 group_start = 0;
675 int full_search = 0;
676 int factor = 9;
677 int wrapped = 0;
678 again:
679 while (1) {
680 cache = btrfs_lookup_first_block_group(root->fs_info, last);
681 if (!cache)
682 break;
683
684 spin_lock(&cache->lock);
685 last = cache->key.objectid + cache->key.offset;
686 used = btrfs_block_group_used(&cache->item);
687
688 if ((full_search || !cache->ro) &&
689 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
690 if (used + cache->pinned + cache->reserved <
691 div_factor(cache->key.offset, factor)) {
692 group_start = cache->key.objectid;
693 spin_unlock(&cache->lock);
694 btrfs_put_block_group(cache);
695 goto found;
696 }
697 }
698 spin_unlock(&cache->lock);
699 btrfs_put_block_group(cache);
700 cond_resched();
701 }
702 if (!wrapped) {
703 last = search_start;
704 wrapped = 1;
705 goto again;
706 }
707 if (!full_search && factor < 10) {
708 last = search_start;
709 full_search = 1;
710 factor = 10;
711 goto again;
712 }
713 found:
714 return group_start;
715 }
716
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
719 {
720 int ret;
721 struct btrfs_key key;
722 struct btrfs_path *path;
723
724 path = btrfs_alloc_path();
725 if (!path)
726 return -ENOMEM;
727
728 key.objectid = start;
729 key.offset = len;
730 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
731 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 0, 0);
733 btrfs_free_path(path);
734 return ret;
735 }
736
737 /*
738 * helper function to lookup reference count and flags of extent.
739 *
740 * the head node for delayed ref is used to store the sum of all the
741 * reference count modifications queued up in the rbtree. the head
742 * node may also store the extent flags to set. This way you can check
743 * to see what the reference count and extent flags would be if all of
744 * the delayed refs are not processed.
745 */
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, u64 bytenr,
748 u64 num_bytes, u64 *refs, u64 *flags)
749 {
750 struct btrfs_delayed_ref_head *head;
751 struct btrfs_delayed_ref_root *delayed_refs;
752 struct btrfs_path *path;
753 struct btrfs_extent_item *ei;
754 struct extent_buffer *leaf;
755 struct btrfs_key key;
756 u32 item_size;
757 u64 num_refs;
758 u64 extent_flags;
759 int ret;
760
761 path = btrfs_alloc_path();
762 if (!path)
763 return -ENOMEM;
764
765 key.objectid = bytenr;
766 key.type = BTRFS_EXTENT_ITEM_KEY;
767 key.offset = num_bytes;
768 if (!trans) {
769 path->skip_locking = 1;
770 path->search_commit_root = 1;
771 }
772 again:
773 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
774 &key, path, 0, 0);
775 if (ret < 0)
776 goto out_free;
777
778 if (ret == 0) {
779 leaf = path->nodes[0];
780 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
781 if (item_size >= sizeof(*ei)) {
782 ei = btrfs_item_ptr(leaf, path->slots[0],
783 struct btrfs_extent_item);
784 num_refs = btrfs_extent_refs(leaf, ei);
785 extent_flags = btrfs_extent_flags(leaf, ei);
786 } else {
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 struct btrfs_extent_item_v0 *ei0;
789 BUG_ON(item_size != sizeof(*ei0));
790 ei0 = btrfs_item_ptr(leaf, path->slots[0],
791 struct btrfs_extent_item_v0);
792 num_refs = btrfs_extent_refs_v0(leaf, ei0);
793 /* FIXME: this isn't correct for data */
794 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
795 #else
796 BUG();
797 #endif
798 }
799 BUG_ON(num_refs == 0);
800 } else {
801 num_refs = 0;
802 extent_flags = 0;
803 ret = 0;
804 }
805
806 if (!trans)
807 goto out;
808
809 delayed_refs = &trans->transaction->delayed_refs;
810 spin_lock(&delayed_refs->lock);
811 head = btrfs_find_delayed_ref_head(trans, bytenr);
812 if (head) {
813 if (!mutex_trylock(&head->mutex)) {
814 atomic_inc(&head->node.refs);
815 spin_unlock(&delayed_refs->lock);
816
817 btrfs_release_path(path);
818
819 /*
820 * Mutex was contended, block until it's released and try
821 * again
822 */
823 mutex_lock(&head->mutex);
824 mutex_unlock(&head->mutex);
825 btrfs_put_delayed_ref(&head->node);
826 goto again;
827 }
828 if (head->extent_op && head->extent_op->update_flags)
829 extent_flags |= head->extent_op->flags_to_set;
830 else
831 BUG_ON(num_refs == 0);
832
833 num_refs += head->node.ref_mod;
834 mutex_unlock(&head->mutex);
835 }
836 spin_unlock(&delayed_refs->lock);
837 out:
838 WARN_ON(num_refs == 0);
839 if (refs)
840 *refs = num_refs;
841 if (flags)
842 *flags = extent_flags;
843 out_free:
844 btrfs_free_path(path);
845 return ret;
846 }
847
848 /*
849 * Back reference rules. Back refs have three main goals:
850 *
851 * 1) differentiate between all holders of references to an extent so that
852 * when a reference is dropped we can make sure it was a valid reference
853 * before freeing the extent.
854 *
855 * 2) Provide enough information to quickly find the holders of an extent
856 * if we notice a given block is corrupted or bad.
857 *
858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859 * maintenance. This is actually the same as #2, but with a slightly
860 * different use case.
861 *
862 * There are two kinds of back refs. The implicit back refs is optimized
863 * for pointers in non-shared tree blocks. For a given pointer in a block,
864 * back refs of this kind provide information about the block's owner tree
865 * and the pointer's key. These information allow us to find the block by
866 * b-tree searching. The full back refs is for pointers in tree blocks not
867 * referenced by their owner trees. The location of tree block is recorded
868 * in the back refs. Actually the full back refs is generic, and can be
869 * used in all cases the implicit back refs is used. The major shortcoming
870 * of the full back refs is its overhead. Every time a tree block gets
871 * COWed, we have to update back refs entry for all pointers in it.
872 *
873 * For a newly allocated tree block, we use implicit back refs for
874 * pointers in it. This means most tree related operations only involve
875 * implicit back refs. For a tree block created in old transaction, the
876 * only way to drop a reference to it is COW it. So we can detect the
877 * event that tree block loses its owner tree's reference and do the
878 * back refs conversion.
879 *
880 * When a tree block is COW'd through a tree, there are four cases:
881 *
882 * The reference count of the block is one and the tree is the block's
883 * owner tree. Nothing to do in this case.
884 *
885 * The reference count of the block is one and the tree is not the
886 * block's owner tree. In this case, full back refs is used for pointers
887 * in the block. Remove these full back refs, add implicit back refs for
888 * every pointers in the new block.
889 *
890 * The reference count of the block is greater than one and the tree is
891 * the block's owner tree. In this case, implicit back refs is used for
892 * pointers in the block. Add full back refs for every pointers in the
893 * block, increase lower level extents' reference counts. The original
894 * implicit back refs are entailed to the new block.
895 *
896 * The reference count of the block is greater than one and the tree is
897 * not the block's owner tree. Add implicit back refs for every pointer in
898 * the new block, increase lower level extents' reference count.
899 *
900 * Back Reference Key composing:
901 *
902 * The key objectid corresponds to the first byte in the extent,
903 * The key type is used to differentiate between types of back refs.
904 * There are different meanings of the key offset for different types
905 * of back refs.
906 *
907 * File extents can be referenced by:
908 *
909 * - multiple snapshots, subvolumes, or different generations in one subvol
910 * - different files inside a single subvolume
911 * - different offsets inside a file (bookend extents in file.c)
912 *
913 * The extent ref structure for the implicit back refs has fields for:
914 *
915 * - Objectid of the subvolume root
916 * - objectid of the file holding the reference
917 * - original offset in the file
918 * - how many bookend extents
919 *
920 * The key offset for the implicit back refs is hash of the first
921 * three fields.
922 *
923 * The extent ref structure for the full back refs has field for:
924 *
925 * - number of pointers in the tree leaf
926 *
927 * The key offset for the implicit back refs is the first byte of
928 * the tree leaf
929 *
930 * When a file extent is allocated, The implicit back refs is used.
931 * the fields are filled in:
932 *
933 * (root_key.objectid, inode objectid, offset in file, 1)
934 *
935 * When a file extent is removed file truncation, we find the
936 * corresponding implicit back refs and check the following fields:
937 *
938 * (btrfs_header_owner(leaf), inode objectid, offset in file)
939 *
940 * Btree extents can be referenced by:
941 *
942 * - Different subvolumes
943 *
944 * Both the implicit back refs and the full back refs for tree blocks
945 * only consist of key. The key offset for the implicit back refs is
946 * objectid of block's owner tree. The key offset for the full back refs
947 * is the first byte of parent block.
948 *
949 * When implicit back refs is used, information about the lowest key and
950 * level of the tree block are required. These information are stored in
951 * tree block info structure.
952 */
953
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
956 struct btrfs_root *root,
957 struct btrfs_path *path,
958 u64 owner, u32 extra_size)
959 {
960 struct btrfs_extent_item *item;
961 struct btrfs_extent_item_v0 *ei0;
962 struct btrfs_extent_ref_v0 *ref0;
963 struct btrfs_tree_block_info *bi;
964 struct extent_buffer *leaf;
965 struct btrfs_key key;
966 struct btrfs_key found_key;
967 u32 new_size = sizeof(*item);
968 u64 refs;
969 int ret;
970
971 leaf = path->nodes[0];
972 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973
974 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
975 ei0 = btrfs_item_ptr(leaf, path->slots[0],
976 struct btrfs_extent_item_v0);
977 refs = btrfs_extent_refs_v0(leaf, ei0);
978
979 if (owner == (u64)-1) {
980 while (1) {
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 return ret;
985 BUG_ON(ret > 0);
986 leaf = path->nodes[0];
987 }
988 btrfs_item_key_to_cpu(leaf, &found_key,
989 path->slots[0]);
990 BUG_ON(key.objectid != found_key.objectid);
991 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
992 path->slots[0]++;
993 continue;
994 }
995 ref0 = btrfs_item_ptr(leaf, path->slots[0],
996 struct btrfs_extent_ref_v0);
997 owner = btrfs_ref_objectid_v0(leaf, ref0);
998 break;
999 }
1000 }
1001 btrfs_release_path(path);
1002
1003 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1004 new_size += sizeof(*bi);
1005
1006 new_size -= sizeof(*ei0);
1007 ret = btrfs_search_slot(trans, root, &key, path,
1008 new_size + extra_size, 1);
1009 if (ret < 0)
1010 return ret;
1011 BUG_ON(ret);
1012
1013 ret = btrfs_extend_item(trans, root, path, new_size);
1014
1015 leaf = path->nodes[0];
1016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 btrfs_set_extent_refs(leaf, item, refs);
1018 /* FIXME: get real generation */
1019 btrfs_set_extent_generation(leaf, item, 0);
1020 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1021 btrfs_set_extent_flags(leaf, item,
1022 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1023 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1024 bi = (struct btrfs_tree_block_info *)(item + 1);
1025 /* FIXME: get first key of the block */
1026 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1027 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 } else {
1029 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 }
1031 btrfs_mark_buffer_dirty(leaf);
1032 return 0;
1033 }
1034 #endif
1035
1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 {
1038 u32 high_crc = ~(u32)0;
1039 u32 low_crc = ~(u32)0;
1040 __le64 lenum;
1041
1042 lenum = cpu_to_le64(root_objectid);
1043 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1044 lenum = cpu_to_le64(owner);
1045 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1046 lenum = cpu_to_le64(offset);
1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048
1049 return ((u64)high_crc << 31) ^ (u64)low_crc;
1050 }
1051
1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1053 struct btrfs_extent_data_ref *ref)
1054 {
1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1056 btrfs_extent_data_ref_objectid(leaf, ref),
1057 btrfs_extent_data_ref_offset(leaf, ref));
1058 }
1059
1060 static int match_extent_data_ref(struct extent_buffer *leaf,
1061 struct btrfs_extent_data_ref *ref,
1062 u64 root_objectid, u64 owner, u64 offset)
1063 {
1064 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1065 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1066 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1067 return 0;
1068 return 1;
1069 }
1070
1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root,
1073 struct btrfs_path *path,
1074 u64 bytenr, u64 parent,
1075 u64 root_objectid,
1076 u64 owner, u64 offset)
1077 {
1078 struct btrfs_key key;
1079 struct btrfs_extent_data_ref *ref;
1080 struct extent_buffer *leaf;
1081 u32 nritems;
1082 int ret;
1083 int recow;
1084 int err = -ENOENT;
1085
1086 key.objectid = bytenr;
1087 if (parent) {
1088 key.type = BTRFS_SHARED_DATA_REF_KEY;
1089 key.offset = parent;
1090 } else {
1091 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1092 key.offset = hash_extent_data_ref(root_objectid,
1093 owner, offset);
1094 }
1095 again:
1096 recow = 0;
1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 if (ret < 0) {
1099 err = ret;
1100 goto fail;
1101 }
1102
1103 if (parent) {
1104 if (!ret)
1105 return 0;
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 key.type = BTRFS_EXTENT_REF_V0_KEY;
1108 btrfs_release_path(path);
1109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 if (ret < 0) {
1111 err = ret;
1112 goto fail;
1113 }
1114 if (!ret)
1115 return 0;
1116 #endif
1117 goto fail;
1118 }
1119
1120 leaf = path->nodes[0];
1121 nritems = btrfs_header_nritems(leaf);
1122 while (1) {
1123 if (path->slots[0] >= nritems) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret < 0)
1126 err = ret;
1127 if (ret)
1128 goto fail;
1129
1130 leaf = path->nodes[0];
1131 nritems = btrfs_header_nritems(leaf);
1132 recow = 1;
1133 }
1134
1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 if (key.objectid != bytenr ||
1137 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 goto fail;
1139
1140 ref = btrfs_item_ptr(leaf, path->slots[0],
1141 struct btrfs_extent_data_ref);
1142
1143 if (match_extent_data_ref(leaf, ref, root_objectid,
1144 owner, offset)) {
1145 if (recow) {
1146 btrfs_release_path(path);
1147 goto again;
1148 }
1149 err = 0;
1150 break;
1151 }
1152 path->slots[0]++;
1153 }
1154 fail:
1155 return err;
1156 }
1157
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid, u64 owner,
1163 u64 offset, int refs_to_add)
1164 {
1165 struct btrfs_key key;
1166 struct extent_buffer *leaf;
1167 u32 size;
1168 u32 num_refs;
1169 int ret;
1170
1171 key.objectid = bytenr;
1172 if (parent) {
1173 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 key.offset = parent;
1175 size = sizeof(struct btrfs_shared_data_ref);
1176 } else {
1177 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 key.offset = hash_extent_data_ref(root_objectid,
1179 owner, offset);
1180 size = sizeof(struct btrfs_extent_data_ref);
1181 }
1182
1183 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 if (ret && ret != -EEXIST)
1185 goto fail;
1186
1187 leaf = path->nodes[0];
1188 if (parent) {
1189 struct btrfs_shared_data_ref *ref;
1190 ref = btrfs_item_ptr(leaf, path->slots[0],
1191 struct btrfs_shared_data_ref);
1192 if (ret == 0) {
1193 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 } else {
1195 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 num_refs += refs_to_add;
1197 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1198 }
1199 } else {
1200 struct btrfs_extent_data_ref *ref;
1201 while (ret == -EEXIST) {
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (match_extent_data_ref(leaf, ref, root_objectid,
1205 owner, offset))
1206 break;
1207 btrfs_release_path(path);
1208 key.offset++;
1209 ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 size);
1211 if (ret && ret != -EEXIST)
1212 goto fail;
1213
1214 leaf = path->nodes[0];
1215 }
1216 ref = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_extent_data_ref);
1218 if (ret == 0) {
1219 btrfs_set_extent_data_ref_root(leaf, ref,
1220 root_objectid);
1221 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 } else {
1225 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 num_refs += refs_to_add;
1227 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1228 }
1229 }
1230 btrfs_mark_buffer_dirty(leaf);
1231 ret = 0;
1232 fail:
1233 btrfs_release_path(path);
1234 return ret;
1235 }
1236
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct btrfs_path *path,
1240 int refs_to_drop)
1241 {
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref1 = NULL;
1244 struct btrfs_shared_data_ref *ref2 = NULL;
1245 struct extent_buffer *leaf;
1246 u32 num_refs = 0;
1247 int ret = 0;
1248
1249 leaf = path->nodes[0];
1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251
1252 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_shared_data_ref);
1259 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1262 struct btrfs_extent_ref_v0 *ref0;
1263 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_extent_ref_v0);
1265 num_refs = btrfs_ref_count_v0(leaf, ref0);
1266 #endif
1267 } else {
1268 BUG();
1269 }
1270
1271 BUG_ON(num_refs < refs_to_drop);
1272 num_refs -= refs_to_drop;
1273
1274 if (num_refs == 0) {
1275 ret = btrfs_del_item(trans, root, path);
1276 } else {
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1278 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1279 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1280 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 else {
1283 struct btrfs_extent_ref_v0 *ref0;
1284 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_ref_v0);
1286 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1287 }
1288 #endif
1289 btrfs_mark_buffer_dirty(leaf);
1290 }
1291 return ret;
1292 }
1293
1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 struct btrfs_extent_inline_ref *iref)
1297 {
1298 struct btrfs_key key;
1299 struct extent_buffer *leaf;
1300 struct btrfs_extent_data_ref *ref1;
1301 struct btrfs_shared_data_ref *ref2;
1302 u32 num_refs = 0;
1303
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 if (iref) {
1307 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1308 BTRFS_EXTENT_DATA_REF_KEY) {
1309 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1310 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 } else {
1312 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1313 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 }
1315 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1316 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_data_ref);
1318 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1319 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1320 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1321 struct btrfs_shared_data_ref);
1322 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1325 struct btrfs_extent_ref_v0 *ref0;
1326 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1327 struct btrfs_extent_ref_v0);
1328 num_refs = btrfs_ref_count_v0(leaf, ref0);
1329 #endif
1330 } else {
1331 WARN_ON(1);
1332 }
1333 return num_refs;
1334 }
1335
1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 u64 bytenr, u64 parent,
1340 u64 root_objectid)
1341 {
1342 struct btrfs_key key;
1343 int ret;
1344
1345 key.objectid = bytenr;
1346 if (parent) {
1347 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1348 key.offset = parent;
1349 } else {
1350 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1351 key.offset = root_objectid;
1352 }
1353
1354 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1355 if (ret > 0)
1356 ret = -ENOENT;
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (ret == -ENOENT && parent) {
1359 btrfs_release_path(path);
1360 key.type = BTRFS_EXTENT_REF_V0_KEY;
1361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1362 if (ret > 0)
1363 ret = -ENOENT;
1364 }
1365 #endif
1366 return ret;
1367 }
1368
1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1388 btrfs_release_path(path);
1389 return ret;
1390 }
1391
1392 static inline int extent_ref_type(u64 parent, u64 owner)
1393 {
1394 int type;
1395 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 if (parent > 0)
1397 type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 else
1399 type = BTRFS_TREE_BLOCK_REF_KEY;
1400 } else {
1401 if (parent > 0)
1402 type = BTRFS_SHARED_DATA_REF_KEY;
1403 else
1404 type = BTRFS_EXTENT_DATA_REF_KEY;
1405 }
1406 return type;
1407 }
1408
1409 static int find_next_key(struct btrfs_path *path, int level,
1410 struct btrfs_key *key)
1411
1412 {
1413 for (; level < BTRFS_MAX_LEVEL; level++) {
1414 if (!path->nodes[level])
1415 break;
1416 if (path->slots[level] + 1 >=
1417 btrfs_header_nritems(path->nodes[level]))
1418 continue;
1419 if (level == 0)
1420 btrfs_item_key_to_cpu(path->nodes[level], key,
1421 path->slots[level] + 1);
1422 else
1423 btrfs_node_key_to_cpu(path->nodes[level], key,
1424 path->slots[level] + 1);
1425 return 0;
1426 }
1427 return 1;
1428 }
1429
1430 /*
1431 * look for inline back ref. if back ref is found, *ref_ret is set
1432 * to the address of inline back ref, and 0 is returned.
1433 *
1434 * if back ref isn't found, *ref_ret is set to the address where it
1435 * should be inserted, and -ENOENT is returned.
1436 *
1437 * if insert is true and there are too many inline back refs, the path
1438 * points to the extent item, and -EAGAIN is returned.
1439 *
1440 * NOTE: inline back refs are ordered in the same way that back ref
1441 * items in the tree are ordered.
1442 */
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root,
1446 struct btrfs_path *path,
1447 struct btrfs_extent_inline_ref **ref_ret,
1448 u64 bytenr, u64 num_bytes,
1449 u64 parent, u64 root_objectid,
1450 u64 owner, u64 offset, int insert)
1451 {
1452 struct btrfs_key key;
1453 struct extent_buffer *leaf;
1454 struct btrfs_extent_item *ei;
1455 struct btrfs_extent_inline_ref *iref;
1456 u64 flags;
1457 u64 item_size;
1458 unsigned long ptr;
1459 unsigned long end;
1460 int extra_size;
1461 int type;
1462 int want;
1463 int ret;
1464 int err = 0;
1465
1466 key.objectid = bytenr;
1467 key.type = BTRFS_EXTENT_ITEM_KEY;
1468 key.offset = num_bytes;
1469
1470 want = extent_ref_type(parent, owner);
1471 if (insert) {
1472 extra_size = btrfs_extent_inline_ref_size(want);
1473 path->keep_locks = 1;
1474 } else
1475 extra_size = -1;
1476 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1477 if (ret < 0) {
1478 err = ret;
1479 goto out;
1480 }
1481 BUG_ON(ret);
1482
1483 leaf = path->nodes[0];
1484 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 if (item_size < sizeof(*ei)) {
1487 if (!insert) {
1488 err = -ENOENT;
1489 goto out;
1490 }
1491 ret = convert_extent_item_v0(trans, root, path, owner,
1492 extra_size);
1493 if (ret < 0) {
1494 err = ret;
1495 goto out;
1496 }
1497 leaf = path->nodes[0];
1498 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1499 }
1500 #endif
1501 BUG_ON(item_size < sizeof(*ei));
1502
1503 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1504 flags = btrfs_extent_flags(leaf, ei);
1505
1506 ptr = (unsigned long)(ei + 1);
1507 end = (unsigned long)ei + item_size;
1508
1509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1510 ptr += sizeof(struct btrfs_tree_block_info);
1511 BUG_ON(ptr > end);
1512 } else {
1513 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1514 }
1515
1516 err = -ENOENT;
1517 while (1) {
1518 if (ptr >= end) {
1519 WARN_ON(ptr > end);
1520 break;
1521 }
1522 iref = (struct btrfs_extent_inline_ref *)ptr;
1523 type = btrfs_extent_inline_ref_type(leaf, iref);
1524 if (want < type)
1525 break;
1526 if (want > type) {
1527 ptr += btrfs_extent_inline_ref_size(type);
1528 continue;
1529 }
1530
1531 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1532 struct btrfs_extent_data_ref *dref;
1533 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1534 if (match_extent_data_ref(leaf, dref, root_objectid,
1535 owner, offset)) {
1536 err = 0;
1537 break;
1538 }
1539 if (hash_extent_data_ref_item(leaf, dref) <
1540 hash_extent_data_ref(root_objectid, owner, offset))
1541 break;
1542 } else {
1543 u64 ref_offset;
1544 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 if (parent > 0) {
1546 if (parent == ref_offset) {
1547 err = 0;
1548 break;
1549 }
1550 if (ref_offset < parent)
1551 break;
1552 } else {
1553 if (root_objectid == ref_offset) {
1554 err = 0;
1555 break;
1556 }
1557 if (ref_offset < root_objectid)
1558 break;
1559 }
1560 }
1561 ptr += btrfs_extent_inline_ref_size(type);
1562 }
1563 if (err == -ENOENT && insert) {
1564 if (item_size + extra_size >=
1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1566 err = -EAGAIN;
1567 goto out;
1568 }
1569 /*
1570 * To add new inline back ref, we have to make sure
1571 * there is no corresponding back ref item.
1572 * For simplicity, we just do not add new inline back
1573 * ref if there is any kind of item for this block
1574 */
1575 if (find_next_key(path, 0, &key) == 0 &&
1576 key.objectid == bytenr &&
1577 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1578 err = -EAGAIN;
1579 goto out;
1580 }
1581 }
1582 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1583 out:
1584 if (insert) {
1585 path->keep_locks = 0;
1586 btrfs_unlock_up_safe(path, 1);
1587 }
1588 return err;
1589 }
1590
1591 /*
1592 * helper to add new inline back ref
1593 */
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1596 struct btrfs_root *root,
1597 struct btrfs_path *path,
1598 struct btrfs_extent_inline_ref *iref,
1599 u64 parent, u64 root_objectid,
1600 u64 owner, u64 offset, int refs_to_add,
1601 struct btrfs_delayed_extent_op *extent_op)
1602 {
1603 struct extent_buffer *leaf;
1604 struct btrfs_extent_item *ei;
1605 unsigned long ptr;
1606 unsigned long end;
1607 unsigned long item_offset;
1608 u64 refs;
1609 int size;
1610 int type;
1611 int ret;
1612
1613 leaf = path->nodes[0];
1614 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 item_offset = (unsigned long)iref - (unsigned long)ei;
1616
1617 type = extent_ref_type(parent, owner);
1618 size = btrfs_extent_inline_ref_size(type);
1619
1620 ret = btrfs_extend_item(trans, root, path, size);
1621
1622 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1623 refs = btrfs_extent_refs(leaf, ei);
1624 refs += refs_to_add;
1625 btrfs_set_extent_refs(leaf, ei, refs);
1626 if (extent_op)
1627 __run_delayed_extent_op(extent_op, leaf, ei);
1628
1629 ptr = (unsigned long)ei + item_offset;
1630 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1631 if (ptr < end - size)
1632 memmove_extent_buffer(leaf, ptr + size, ptr,
1633 end - size - ptr);
1634
1635 iref = (struct btrfs_extent_inline_ref *)ptr;
1636 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1637 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1638 struct btrfs_extent_data_ref *dref;
1639 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1640 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1641 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1642 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1643 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 struct btrfs_shared_data_ref *sref;
1646 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1647 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1648 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1649 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1653 }
1654 btrfs_mark_buffer_dirty(leaf);
1655 return 0;
1656 }
1657
1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1659 struct btrfs_root *root,
1660 struct btrfs_path *path,
1661 struct btrfs_extent_inline_ref **ref_ret,
1662 u64 bytenr, u64 num_bytes, u64 parent,
1663 u64 root_objectid, u64 owner, u64 offset)
1664 {
1665 int ret;
1666
1667 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1668 bytenr, num_bytes, parent,
1669 root_objectid, owner, offset, 0);
1670 if (ret != -ENOENT)
1671 return ret;
1672
1673 btrfs_release_path(path);
1674 *ref_ret = NULL;
1675
1676 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1677 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1678 root_objectid);
1679 } else {
1680 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1681 root_objectid, owner, offset);
1682 }
1683 return ret;
1684 }
1685
1686 /*
1687 * helper to update/remove inline back ref
1688 */
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 struct btrfs_path *path,
1693 struct btrfs_extent_inline_ref *iref,
1694 int refs_to_mod,
1695 struct btrfs_delayed_extent_op *extent_op)
1696 {
1697 struct extent_buffer *leaf;
1698 struct btrfs_extent_item *ei;
1699 struct btrfs_extent_data_ref *dref = NULL;
1700 struct btrfs_shared_data_ref *sref = NULL;
1701 unsigned long ptr;
1702 unsigned long end;
1703 u32 item_size;
1704 int size;
1705 int type;
1706 int ret;
1707 u64 refs;
1708
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1717
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1719
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1729 }
1730
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1733
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1749 }
1750 btrfs_mark_buffer_dirty(leaf);
1751 return 0;
1752 }
1753
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 struct btrfs_path *path,
1758 u64 bytenr, u64 num_bytes, u64 parent,
1759 u64 root_objectid, u64 owner,
1760 u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 struct btrfs_extent_inline_ref *iref;
1764 int ret;
1765
1766 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1767 bytenr, num_bytes, parent,
1768 root_objectid, owner, offset, 1);
1769 if (ret == 0) {
1770 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1771 ret = update_inline_extent_backref(trans, root, path, iref,
1772 refs_to_add, extent_op);
1773 } else if (ret == -ENOENT) {
1774 ret = setup_inline_extent_backref(trans, root, path, iref,
1775 parent, root_objectid,
1776 owner, offset, refs_to_add,
1777 extent_op);
1778 }
1779 return ret;
1780 }
1781
1782 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_path *path,
1785 u64 bytenr, u64 parent, u64 root_objectid,
1786 u64 owner, u64 offset, int refs_to_add)
1787 {
1788 int ret;
1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 BUG_ON(refs_to_add != 1);
1791 ret = insert_tree_block_ref(trans, root, path, bytenr,
1792 parent, root_objectid);
1793 } else {
1794 ret = insert_extent_data_ref(trans, root, path, bytenr,
1795 parent, root_objectid,
1796 owner, offset, refs_to_add);
1797 }
1798 return ret;
1799 }
1800
1801 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_path *path,
1804 struct btrfs_extent_inline_ref *iref,
1805 int refs_to_drop, int is_data)
1806 {
1807 int ret;
1808
1809 BUG_ON(!is_data && refs_to_drop != 1);
1810 if (iref) {
1811 ret = update_inline_extent_backref(trans, root, path, iref,
1812 -refs_to_drop, NULL);
1813 } else if (is_data) {
1814 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 } else {
1816 ret = btrfs_del_item(trans, root, path);
1817 }
1818 return ret;
1819 }
1820
1821 static int btrfs_issue_discard(struct block_device *bdev,
1822 u64 start, u64 len)
1823 {
1824 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1825 }
1826
1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1828 u64 num_bytes, u64 *actual_bytes)
1829 {
1830 int ret;
1831 u64 discarded_bytes = 0;
1832 struct btrfs_bio *bbio = NULL;
1833
1834
1835 /* Tell the block device(s) that the sectors can be discarded */
1836 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1837 bytenr, &num_bytes, &bbio, 0);
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1841
1842
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1846
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break;
1854
1855 /*
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1859 */
1860 ret = 0;
1861 }
1862 kfree(bbio);
1863 }
1864
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1867
1868
1869 return ret;
1870 }
1871
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1873 struct btrfs_root *root,
1874 u64 bytenr, u64 num_bytes, u64 parent,
1875 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1876 {
1877 int ret;
1878 struct btrfs_fs_info *fs_info = root->fs_info;
1879
1880 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1881 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1882
1883 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1884 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1885 num_bytes,
1886 parent, root_objectid, (int)owner,
1887 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1888 } else {
1889 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1890 num_bytes,
1891 parent, root_objectid, owner, offset,
1892 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1893 }
1894 return ret;
1895 }
1896
1897 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root,
1899 u64 bytenr, u64 num_bytes,
1900 u64 parent, u64 root_objectid,
1901 u64 owner, u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 struct btrfs_path *path;
1905 struct extent_buffer *leaf;
1906 struct btrfs_extent_item *item;
1907 u64 refs;
1908 int ret;
1909 int err = 0;
1910
1911 path = btrfs_alloc_path();
1912 if (!path)
1913 return -ENOMEM;
1914
1915 path->reada = 1;
1916 path->leave_spinning = 1;
1917 /* this will setup the path even if it fails to insert the back ref */
1918 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1919 path, bytenr, num_bytes, parent,
1920 root_objectid, owner, offset,
1921 refs_to_add, extent_op);
1922 if (ret == 0)
1923 goto out;
1924
1925 if (ret != -EAGAIN) {
1926 err = ret;
1927 goto out;
1928 }
1929
1930 leaf = path->nodes[0];
1931 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1932 refs = btrfs_extent_refs(leaf, item);
1933 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1934 if (extent_op)
1935 __run_delayed_extent_op(extent_op, leaf, item);
1936
1937 btrfs_mark_buffer_dirty(leaf);
1938 btrfs_release_path(path);
1939
1940 path->reada = 1;
1941 path->leave_spinning = 1;
1942
1943 /* now insert the actual backref */
1944 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1945 path, bytenr, parent, root_objectid,
1946 owner, offset, refs_to_add);
1947 BUG_ON(ret);
1948 out:
1949 btrfs_free_path(path);
1950 return err;
1951 }
1952
1953 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1954 struct btrfs_root *root,
1955 struct btrfs_delayed_ref_node *node,
1956 struct btrfs_delayed_extent_op *extent_op,
1957 int insert_reserved)
1958 {
1959 int ret = 0;
1960 struct btrfs_delayed_data_ref *ref;
1961 struct btrfs_key ins;
1962 u64 parent = 0;
1963 u64 ref_root = 0;
1964 u64 flags = 0;
1965
1966 ins.objectid = node->bytenr;
1967 ins.offset = node->num_bytes;
1968 ins.type = BTRFS_EXTENT_ITEM_KEY;
1969
1970 ref = btrfs_delayed_node_to_data_ref(node);
1971 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1972 parent = ref->parent;
1973 else
1974 ref_root = ref->root;
1975
1976 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1977 if (extent_op) {
1978 BUG_ON(extent_op->update_key);
1979 flags |= extent_op->flags_to_set;
1980 }
1981 ret = alloc_reserved_file_extent(trans, root,
1982 parent, ref_root, flags,
1983 ref->objectid, ref->offset,
1984 &ins, node->ref_mod);
1985 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1986 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1987 node->num_bytes, parent,
1988 ref_root, ref->objectid,
1989 ref->offset, node->ref_mod,
1990 extent_op);
1991 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1992 ret = __btrfs_free_extent(trans, root, node->bytenr,
1993 node->num_bytes, parent,
1994 ref_root, ref->objectid,
1995 ref->offset, node->ref_mod,
1996 extent_op);
1997 } else {
1998 BUG();
1999 }
2000 return ret;
2001 }
2002
2003 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2004 struct extent_buffer *leaf,
2005 struct btrfs_extent_item *ei)
2006 {
2007 u64 flags = btrfs_extent_flags(leaf, ei);
2008 if (extent_op->update_flags) {
2009 flags |= extent_op->flags_to_set;
2010 btrfs_set_extent_flags(leaf, ei, flags);
2011 }
2012
2013 if (extent_op->update_key) {
2014 struct btrfs_tree_block_info *bi;
2015 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2016 bi = (struct btrfs_tree_block_info *)(ei + 1);
2017 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2018 }
2019 }
2020
2021 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2022 struct btrfs_root *root,
2023 struct btrfs_delayed_ref_node *node,
2024 struct btrfs_delayed_extent_op *extent_op)
2025 {
2026 struct btrfs_key key;
2027 struct btrfs_path *path;
2028 struct btrfs_extent_item *ei;
2029 struct extent_buffer *leaf;
2030 u32 item_size;
2031 int ret;
2032 int err = 0;
2033
2034 path = btrfs_alloc_path();
2035 if (!path)
2036 return -ENOMEM;
2037
2038 key.objectid = node->bytenr;
2039 key.type = BTRFS_EXTENT_ITEM_KEY;
2040 key.offset = node->num_bytes;
2041
2042 path->reada = 1;
2043 path->leave_spinning = 1;
2044 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2045 path, 0, 1);
2046 if (ret < 0) {
2047 err = ret;
2048 goto out;
2049 }
2050 if (ret > 0) {
2051 err = -EIO;
2052 goto out;
2053 }
2054
2055 leaf = path->nodes[0];
2056 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2058 if (item_size < sizeof(*ei)) {
2059 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2060 path, (u64)-1, 0);
2061 if (ret < 0) {
2062 err = ret;
2063 goto out;
2064 }
2065 leaf = path->nodes[0];
2066 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2067 }
2068 #endif
2069 BUG_ON(item_size < sizeof(*ei));
2070 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2071 __run_delayed_extent_op(extent_op, leaf, ei);
2072
2073 btrfs_mark_buffer_dirty(leaf);
2074 out:
2075 btrfs_free_path(path);
2076 return err;
2077 }
2078
2079 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2080 struct btrfs_root *root,
2081 struct btrfs_delayed_ref_node *node,
2082 struct btrfs_delayed_extent_op *extent_op,
2083 int insert_reserved)
2084 {
2085 int ret = 0;
2086 struct btrfs_delayed_tree_ref *ref;
2087 struct btrfs_key ins;
2088 u64 parent = 0;
2089 u64 ref_root = 0;
2090
2091 ins.objectid = node->bytenr;
2092 ins.offset = node->num_bytes;
2093 ins.type = BTRFS_EXTENT_ITEM_KEY;
2094
2095 ref = btrfs_delayed_node_to_tree_ref(node);
2096 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2097 parent = ref->parent;
2098 else
2099 ref_root = ref->root;
2100
2101 BUG_ON(node->ref_mod != 1);
2102 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2103 BUG_ON(!extent_op || !extent_op->update_flags ||
2104 !extent_op->update_key);
2105 ret = alloc_reserved_tree_block(trans, root,
2106 parent, ref_root,
2107 extent_op->flags_to_set,
2108 &extent_op->key,
2109 ref->level, &ins);
2110 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2111 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2112 node->num_bytes, parent, ref_root,
2113 ref->level, 0, 1, extent_op);
2114 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2115 ret = __btrfs_free_extent(trans, root, node->bytenr,
2116 node->num_bytes, parent, ref_root,
2117 ref->level, 0, 1, extent_op);
2118 } else {
2119 BUG();
2120 }
2121 return ret;
2122 }
2123
2124 /* helper function to actually process a single delayed ref entry */
2125 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op,
2129 int insert_reserved)
2130 {
2131 int ret;
2132 if (btrfs_delayed_ref_is_head(node)) {
2133 struct btrfs_delayed_ref_head *head;
2134 /*
2135 * we've hit the end of the chain and we were supposed
2136 * to insert this extent into the tree. But, it got
2137 * deleted before we ever needed to insert it, so all
2138 * we have to do is clean up the accounting
2139 */
2140 BUG_ON(extent_op);
2141 head = btrfs_delayed_node_to_head(node);
2142 if (insert_reserved) {
2143 btrfs_pin_extent(root, node->bytenr,
2144 node->num_bytes, 1);
2145 if (head->is_data) {
2146 ret = btrfs_del_csums(trans, root,
2147 node->bytenr,
2148 node->num_bytes);
2149 BUG_ON(ret);
2150 }
2151 }
2152 mutex_unlock(&head->mutex);
2153 return 0;
2154 }
2155
2156 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2157 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2158 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2159 insert_reserved);
2160 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2161 node->type == BTRFS_SHARED_DATA_REF_KEY)
2162 ret = run_delayed_data_ref(trans, root, node, extent_op,
2163 insert_reserved);
2164 else
2165 BUG();
2166 return ret;
2167 }
2168
2169 static noinline struct btrfs_delayed_ref_node *
2170 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2171 {
2172 struct rb_node *node;
2173 struct btrfs_delayed_ref_node *ref;
2174 int action = BTRFS_ADD_DELAYED_REF;
2175 again:
2176 /*
2177 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2178 * this prevents ref count from going down to zero when
2179 * there still are pending delayed ref.
2180 */
2181 node = rb_prev(&head->node.rb_node);
2182 while (1) {
2183 if (!node)
2184 break;
2185 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2186 rb_node);
2187 if (ref->bytenr != head->node.bytenr)
2188 break;
2189 if (ref->action == action)
2190 return ref;
2191 node = rb_prev(node);
2192 }
2193 if (action == BTRFS_ADD_DELAYED_REF) {
2194 action = BTRFS_DROP_DELAYED_REF;
2195 goto again;
2196 }
2197 return NULL;
2198 }
2199
2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct list_head *cluster)
2203 {
2204 struct btrfs_delayed_ref_root *delayed_refs;
2205 struct btrfs_delayed_ref_node *ref;
2206 struct btrfs_delayed_ref_head *locked_ref = NULL;
2207 struct btrfs_delayed_extent_op *extent_op;
2208 int ret;
2209 int count = 0;
2210 int must_insert_reserved = 0;
2211
2212 delayed_refs = &trans->transaction->delayed_refs;
2213 while (1) {
2214 if (!locked_ref) {
2215 /* pick a new head ref from the cluster list */
2216 if (list_empty(cluster))
2217 break;
2218
2219 locked_ref = list_entry(cluster->next,
2220 struct btrfs_delayed_ref_head, cluster);
2221
2222 /* grab the lock that says we are going to process
2223 * all the refs for this head */
2224 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2225
2226 /*
2227 * we may have dropped the spin lock to get the head
2228 * mutex lock, and that might have given someone else
2229 * time to free the head. If that's true, it has been
2230 * removed from our list and we can move on.
2231 */
2232 if (ret == -EAGAIN) {
2233 locked_ref = NULL;
2234 count++;
2235 continue;
2236 }
2237 }
2238
2239 /*
2240 * locked_ref is the head node, so we have to go one
2241 * node back for any delayed ref updates
2242 */
2243 ref = select_delayed_ref(locked_ref);
2244
2245 if (ref && ref->seq &&
2246 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2247 /*
2248 * there are still refs with lower seq numbers in the
2249 * process of being added. Don't run this ref yet.
2250 */
2251 list_del_init(&locked_ref->cluster);
2252 mutex_unlock(&locked_ref->mutex);
2253 locked_ref = NULL;
2254 delayed_refs->num_heads_ready++;
2255 spin_unlock(&delayed_refs->lock);
2256 cond_resched();
2257 spin_lock(&delayed_refs->lock);
2258 continue;
2259 }
2260
2261 /*
2262 * record the must insert reserved flag before we
2263 * drop the spin lock.
2264 */
2265 must_insert_reserved = locked_ref->must_insert_reserved;
2266 locked_ref->must_insert_reserved = 0;
2267
2268 extent_op = locked_ref->extent_op;
2269 locked_ref->extent_op = NULL;
2270
2271 if (!ref) {
2272 /* All delayed refs have been processed, Go ahead
2273 * and send the head node to run_one_delayed_ref,
2274 * so that any accounting fixes can happen
2275 */
2276 ref = &locked_ref->node;
2277
2278 if (extent_op && must_insert_reserved) {
2279 kfree(extent_op);
2280 extent_op = NULL;
2281 }
2282
2283 if (extent_op) {
2284 spin_unlock(&delayed_refs->lock);
2285
2286 ret = run_delayed_extent_op(trans, root,
2287 ref, extent_op);
2288 BUG_ON(ret);
2289 kfree(extent_op);
2290
2291 goto next;
2292 }
2293
2294 list_del_init(&locked_ref->cluster);
2295 locked_ref = NULL;
2296 }
2297
2298 ref->in_tree = 0;
2299 rb_erase(&ref->rb_node, &delayed_refs->root);
2300 delayed_refs->num_entries--;
2301 /*
2302 * we modified num_entries, but as we're currently running
2303 * delayed refs, skip
2304 * wake_up(&delayed_refs->seq_wait);
2305 * here.
2306 */
2307 spin_unlock(&delayed_refs->lock);
2308
2309 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2310 must_insert_reserved);
2311 BUG_ON(ret);
2312
2313 btrfs_put_delayed_ref(ref);
2314 kfree(extent_op);
2315 count++;
2316 next:
2317 do_chunk_alloc(trans, root->fs_info->extent_root,
2318 2 * 1024 * 1024,
2319 btrfs_get_alloc_profile(root, 0),
2320 CHUNK_ALLOC_NO_FORCE);
2321 cond_resched();
2322 spin_lock(&delayed_refs->lock);
2323 }
2324 return count;
2325 }
2326
2327
2328 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2329 unsigned long num_refs)
2330 {
2331 struct list_head *first_seq = delayed_refs->seq_head.next;
2332
2333 spin_unlock(&delayed_refs->lock);
2334 pr_debug("waiting for more refs (num %ld, first %p)\n",
2335 num_refs, first_seq);
2336 wait_event(delayed_refs->seq_wait,
2337 num_refs != delayed_refs->num_entries ||
2338 delayed_refs->seq_head.next != first_seq);
2339 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2340 delayed_refs->num_entries, delayed_refs->seq_head.next);
2341 spin_lock(&delayed_refs->lock);
2342 }
2343
2344 /*
2345 * this starts processing the delayed reference count updates and
2346 * extent insertions we have queued up so far. count can be
2347 * 0, which means to process everything in the tree at the start
2348 * of the run (but not newly added entries), or it can be some target
2349 * number you'd like to process.
2350 */
2351 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root, unsigned long count)
2353 {
2354 struct rb_node *node;
2355 struct btrfs_delayed_ref_root *delayed_refs;
2356 struct btrfs_delayed_ref_node *ref;
2357 struct list_head cluster;
2358 int ret;
2359 u64 delayed_start;
2360 int run_all = count == (unsigned long)-1;
2361 int run_most = 0;
2362 unsigned long num_refs = 0;
2363 int consider_waiting;
2364
2365 if (root == root->fs_info->extent_root)
2366 root = root->fs_info->tree_root;
2367
2368 do_chunk_alloc(trans, root->fs_info->extent_root,
2369 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2370 CHUNK_ALLOC_NO_FORCE);
2371
2372 delayed_refs = &trans->transaction->delayed_refs;
2373 INIT_LIST_HEAD(&cluster);
2374 again:
2375 consider_waiting = 0;
2376 spin_lock(&delayed_refs->lock);
2377 if (count == 0) {
2378 count = delayed_refs->num_entries * 2;
2379 run_most = 1;
2380 }
2381 while (1) {
2382 if (!(run_all || run_most) &&
2383 delayed_refs->num_heads_ready < 64)
2384 break;
2385
2386 /*
2387 * go find something we can process in the rbtree. We start at
2388 * the beginning of the tree, and then build a cluster
2389 * of refs to process starting at the first one we are able to
2390 * lock
2391 */
2392 delayed_start = delayed_refs->run_delayed_start;
2393 ret = btrfs_find_ref_cluster(trans, &cluster,
2394 delayed_refs->run_delayed_start);
2395 if (ret)
2396 break;
2397
2398 if (delayed_start >= delayed_refs->run_delayed_start) {
2399 if (consider_waiting == 0) {
2400 /*
2401 * btrfs_find_ref_cluster looped. let's do one
2402 * more cycle. if we don't run any delayed ref
2403 * during that cycle (because we can't because
2404 * all of them are blocked) and if the number of
2405 * refs doesn't change, we avoid busy waiting.
2406 */
2407 consider_waiting = 1;
2408 num_refs = delayed_refs->num_entries;
2409 } else {
2410 wait_for_more_refs(delayed_refs, num_refs);
2411 /*
2412 * after waiting, things have changed. we
2413 * dropped the lock and someone else might have
2414 * run some refs, built new clusters and so on.
2415 * therefore, we restart staleness detection.
2416 */
2417 consider_waiting = 0;
2418 }
2419 }
2420
2421 ret = run_clustered_refs(trans, root, &cluster);
2422 BUG_ON(ret < 0);
2423
2424 count -= min_t(unsigned long, ret, count);
2425
2426 if (count == 0)
2427 break;
2428
2429 if (ret || delayed_refs->run_delayed_start == 0) {
2430 /* refs were run, let's reset staleness detection */
2431 consider_waiting = 0;
2432 }
2433 }
2434
2435 if (run_all) {
2436 node = rb_first(&delayed_refs->root);
2437 if (!node)
2438 goto out;
2439 count = (unsigned long)-1;
2440
2441 while (node) {
2442 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2443 rb_node);
2444 if (btrfs_delayed_ref_is_head(ref)) {
2445 struct btrfs_delayed_ref_head *head;
2446
2447 head = btrfs_delayed_node_to_head(ref);
2448 atomic_inc(&ref->refs);
2449
2450 spin_unlock(&delayed_refs->lock);
2451 /*
2452 * Mutex was contended, block until it's
2453 * released and try again
2454 */
2455 mutex_lock(&head->mutex);
2456 mutex_unlock(&head->mutex);
2457
2458 btrfs_put_delayed_ref(ref);
2459 cond_resched();
2460 goto again;
2461 }
2462 node = rb_next(node);
2463 }
2464 spin_unlock(&delayed_refs->lock);
2465 schedule_timeout(1);
2466 goto again;
2467 }
2468 out:
2469 spin_unlock(&delayed_refs->lock);
2470 return 0;
2471 }
2472
2473 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2474 struct btrfs_root *root,
2475 u64 bytenr, u64 num_bytes, u64 flags,
2476 int is_data)
2477 {
2478 struct btrfs_delayed_extent_op *extent_op;
2479 int ret;
2480
2481 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2482 if (!extent_op)
2483 return -ENOMEM;
2484
2485 extent_op->flags_to_set = flags;
2486 extent_op->update_flags = 1;
2487 extent_op->update_key = 0;
2488 extent_op->is_data = is_data ? 1 : 0;
2489
2490 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2491 num_bytes, extent_op);
2492 if (ret)
2493 kfree(extent_op);
2494 return ret;
2495 }
2496
2497 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2498 struct btrfs_root *root,
2499 struct btrfs_path *path,
2500 u64 objectid, u64 offset, u64 bytenr)
2501 {
2502 struct btrfs_delayed_ref_head *head;
2503 struct btrfs_delayed_ref_node *ref;
2504 struct btrfs_delayed_data_ref *data_ref;
2505 struct btrfs_delayed_ref_root *delayed_refs;
2506 struct rb_node *node;
2507 int ret = 0;
2508
2509 ret = -ENOENT;
2510 delayed_refs = &trans->transaction->delayed_refs;
2511 spin_lock(&delayed_refs->lock);
2512 head = btrfs_find_delayed_ref_head(trans, bytenr);
2513 if (!head)
2514 goto out;
2515
2516 if (!mutex_trylock(&head->mutex)) {
2517 atomic_inc(&head->node.refs);
2518 spin_unlock(&delayed_refs->lock);
2519
2520 btrfs_release_path(path);
2521
2522 /*
2523 * Mutex was contended, block until it's released and let
2524 * caller try again
2525 */
2526 mutex_lock(&head->mutex);
2527 mutex_unlock(&head->mutex);
2528 btrfs_put_delayed_ref(&head->node);
2529 return -EAGAIN;
2530 }
2531
2532 node = rb_prev(&head->node.rb_node);
2533 if (!node)
2534 goto out_unlock;
2535
2536 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2537
2538 if (ref->bytenr != bytenr)
2539 goto out_unlock;
2540
2541 ret = 1;
2542 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2543 goto out_unlock;
2544
2545 data_ref = btrfs_delayed_node_to_data_ref(ref);
2546
2547 node = rb_prev(node);
2548 if (node) {
2549 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2550 if (ref->bytenr == bytenr)
2551 goto out_unlock;
2552 }
2553
2554 if (data_ref->root != root->root_key.objectid ||
2555 data_ref->objectid != objectid || data_ref->offset != offset)
2556 goto out_unlock;
2557
2558 ret = 0;
2559 out_unlock:
2560 mutex_unlock(&head->mutex);
2561 out:
2562 spin_unlock(&delayed_refs->lock);
2563 return ret;
2564 }
2565
2566 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2567 struct btrfs_root *root,
2568 struct btrfs_path *path,
2569 u64 objectid, u64 offset, u64 bytenr)
2570 {
2571 struct btrfs_root *extent_root = root->fs_info->extent_root;
2572 struct extent_buffer *leaf;
2573 struct btrfs_extent_data_ref *ref;
2574 struct btrfs_extent_inline_ref *iref;
2575 struct btrfs_extent_item *ei;
2576 struct btrfs_key key;
2577 u32 item_size;
2578 int ret;
2579
2580 key.objectid = bytenr;
2581 key.offset = (u64)-1;
2582 key.type = BTRFS_EXTENT_ITEM_KEY;
2583
2584 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2585 if (ret < 0)
2586 goto out;
2587 BUG_ON(ret == 0);
2588
2589 ret = -ENOENT;
2590 if (path->slots[0] == 0)
2591 goto out;
2592
2593 path->slots[0]--;
2594 leaf = path->nodes[0];
2595 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2596
2597 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2598 goto out;
2599
2600 ret = 1;
2601 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2603 if (item_size < sizeof(*ei)) {
2604 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2605 goto out;
2606 }
2607 #endif
2608 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2609
2610 if (item_size != sizeof(*ei) +
2611 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2612 goto out;
2613
2614 if (btrfs_extent_generation(leaf, ei) <=
2615 btrfs_root_last_snapshot(&root->root_item))
2616 goto out;
2617
2618 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2619 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2620 BTRFS_EXTENT_DATA_REF_KEY)
2621 goto out;
2622
2623 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2624 if (btrfs_extent_refs(leaf, ei) !=
2625 btrfs_extent_data_ref_count(leaf, ref) ||
2626 btrfs_extent_data_ref_root(leaf, ref) !=
2627 root->root_key.objectid ||
2628 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2629 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2630 goto out;
2631
2632 ret = 0;
2633 out:
2634 return ret;
2635 }
2636
2637 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root,
2639 u64 objectid, u64 offset, u64 bytenr)
2640 {
2641 struct btrfs_path *path;
2642 int ret;
2643 int ret2;
2644
2645 path = btrfs_alloc_path();
2646 if (!path)
2647 return -ENOENT;
2648
2649 do {
2650 ret = check_committed_ref(trans, root, path, objectid,
2651 offset, bytenr);
2652 if (ret && ret != -ENOENT)
2653 goto out;
2654
2655 ret2 = check_delayed_ref(trans, root, path, objectid,
2656 offset, bytenr);
2657 } while (ret2 == -EAGAIN);
2658
2659 if (ret2 && ret2 != -ENOENT) {
2660 ret = ret2;
2661 goto out;
2662 }
2663
2664 if (ret != -ENOENT || ret2 != -ENOENT)
2665 ret = 0;
2666 out:
2667 btrfs_free_path(path);
2668 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2669 WARN_ON(ret > 0);
2670 return ret;
2671 }
2672
2673 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2674 struct btrfs_root *root,
2675 struct extent_buffer *buf,
2676 int full_backref, int inc, int for_cow)
2677 {
2678 u64 bytenr;
2679 u64 num_bytes;
2680 u64 parent;
2681 u64 ref_root;
2682 u32 nritems;
2683 struct btrfs_key key;
2684 struct btrfs_file_extent_item *fi;
2685 int i;
2686 int level;
2687 int ret = 0;
2688 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2689 u64, u64, u64, u64, u64, u64, int);
2690
2691 ref_root = btrfs_header_owner(buf);
2692 nritems = btrfs_header_nritems(buf);
2693 level = btrfs_header_level(buf);
2694
2695 if (!root->ref_cows && level == 0)
2696 return 0;
2697
2698 if (inc)
2699 process_func = btrfs_inc_extent_ref;
2700 else
2701 process_func = btrfs_free_extent;
2702
2703 if (full_backref)
2704 parent = buf->start;
2705 else
2706 parent = 0;
2707
2708 for (i = 0; i < nritems; i++) {
2709 if (level == 0) {
2710 btrfs_item_key_to_cpu(buf, &key, i);
2711 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2712 continue;
2713 fi = btrfs_item_ptr(buf, i,
2714 struct btrfs_file_extent_item);
2715 if (btrfs_file_extent_type(buf, fi) ==
2716 BTRFS_FILE_EXTENT_INLINE)
2717 continue;
2718 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2719 if (bytenr == 0)
2720 continue;
2721
2722 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2723 key.offset -= btrfs_file_extent_offset(buf, fi);
2724 ret = process_func(trans, root, bytenr, num_bytes,
2725 parent, ref_root, key.objectid,
2726 key.offset, for_cow);
2727 if (ret)
2728 goto fail;
2729 } else {
2730 bytenr = btrfs_node_blockptr(buf, i);
2731 num_bytes = btrfs_level_size(root, level - 1);
2732 ret = process_func(trans, root, bytenr, num_bytes,
2733 parent, ref_root, level - 1, 0,
2734 for_cow);
2735 if (ret)
2736 goto fail;
2737 }
2738 }
2739 return 0;
2740 fail:
2741 BUG();
2742 return ret;
2743 }
2744
2745 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2746 struct extent_buffer *buf, int full_backref, int for_cow)
2747 {
2748 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2749 }
2750
2751 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2752 struct extent_buffer *buf, int full_backref, int for_cow)
2753 {
2754 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2755 }
2756
2757 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2758 struct btrfs_root *root,
2759 struct btrfs_path *path,
2760 struct btrfs_block_group_cache *cache)
2761 {
2762 int ret;
2763 struct btrfs_root *extent_root = root->fs_info->extent_root;
2764 unsigned long bi;
2765 struct extent_buffer *leaf;
2766
2767 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2768 if (ret < 0)
2769 goto fail;
2770 BUG_ON(ret);
2771
2772 leaf = path->nodes[0];
2773 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2774 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2775 btrfs_mark_buffer_dirty(leaf);
2776 btrfs_release_path(path);
2777 fail:
2778 if (ret)
2779 return ret;
2780 return 0;
2781
2782 }
2783
2784 static struct btrfs_block_group_cache *
2785 next_block_group(struct btrfs_root *root,
2786 struct btrfs_block_group_cache *cache)
2787 {
2788 struct rb_node *node;
2789 spin_lock(&root->fs_info->block_group_cache_lock);
2790 node = rb_next(&cache->cache_node);
2791 btrfs_put_block_group(cache);
2792 if (node) {
2793 cache = rb_entry(node, struct btrfs_block_group_cache,
2794 cache_node);
2795 btrfs_get_block_group(cache);
2796 } else
2797 cache = NULL;
2798 spin_unlock(&root->fs_info->block_group_cache_lock);
2799 return cache;
2800 }
2801
2802 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2803 struct btrfs_trans_handle *trans,
2804 struct btrfs_path *path)
2805 {
2806 struct btrfs_root *root = block_group->fs_info->tree_root;
2807 struct inode *inode = NULL;
2808 u64 alloc_hint = 0;
2809 int dcs = BTRFS_DC_ERROR;
2810 int num_pages = 0;
2811 int retries = 0;
2812 int ret = 0;
2813
2814 /*
2815 * If this block group is smaller than 100 megs don't bother caching the
2816 * block group.
2817 */
2818 if (block_group->key.offset < (100 * 1024 * 1024)) {
2819 spin_lock(&block_group->lock);
2820 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2821 spin_unlock(&block_group->lock);
2822 return 0;
2823 }
2824
2825 again:
2826 inode = lookup_free_space_inode(root, block_group, path);
2827 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2828 ret = PTR_ERR(inode);
2829 btrfs_release_path(path);
2830 goto out;
2831 }
2832
2833 if (IS_ERR(inode)) {
2834 BUG_ON(retries);
2835 retries++;
2836
2837 if (block_group->ro)
2838 goto out_free;
2839
2840 ret = create_free_space_inode(root, trans, block_group, path);
2841 if (ret)
2842 goto out_free;
2843 goto again;
2844 }
2845
2846 /* We've already setup this transaction, go ahead and exit */
2847 if (block_group->cache_generation == trans->transid &&
2848 i_size_read(inode)) {
2849 dcs = BTRFS_DC_SETUP;
2850 goto out_put;
2851 }
2852
2853 /*
2854 * We want to set the generation to 0, that way if anything goes wrong
2855 * from here on out we know not to trust this cache when we load up next
2856 * time.
2857 */
2858 BTRFS_I(inode)->generation = 0;
2859 ret = btrfs_update_inode(trans, root, inode);
2860 WARN_ON(ret);
2861
2862 if (i_size_read(inode) > 0) {
2863 ret = btrfs_truncate_free_space_cache(root, trans, path,
2864 inode);
2865 if (ret)
2866 goto out_put;
2867 }
2868
2869 spin_lock(&block_group->lock);
2870 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2871 /* We're not cached, don't bother trying to write stuff out */
2872 dcs = BTRFS_DC_WRITTEN;
2873 spin_unlock(&block_group->lock);
2874 goto out_put;
2875 }
2876 spin_unlock(&block_group->lock);
2877
2878 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2879 if (!num_pages)
2880 num_pages = 1;
2881
2882 /*
2883 * Just to make absolutely sure we have enough space, we're going to
2884 * preallocate 12 pages worth of space for each block group. In
2885 * practice we ought to use at most 8, but we need extra space so we can
2886 * add our header and have a terminator between the extents and the
2887 * bitmaps.
2888 */
2889 num_pages *= 16;
2890 num_pages *= PAGE_CACHE_SIZE;
2891
2892 ret = btrfs_check_data_free_space(inode, num_pages);
2893 if (ret)
2894 goto out_put;
2895
2896 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2897 num_pages, num_pages,
2898 &alloc_hint);
2899 if (!ret)
2900 dcs = BTRFS_DC_SETUP;
2901 btrfs_free_reserved_data_space(inode, num_pages);
2902
2903 out_put:
2904 iput(inode);
2905 out_free:
2906 btrfs_release_path(path);
2907 out:
2908 spin_lock(&block_group->lock);
2909 if (!ret && dcs == BTRFS_DC_SETUP)
2910 block_group->cache_generation = trans->transid;
2911 block_group->disk_cache_state = dcs;
2912 spin_unlock(&block_group->lock);
2913
2914 return ret;
2915 }
2916
2917 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2918 struct btrfs_root *root)
2919 {
2920 struct btrfs_block_group_cache *cache;
2921 int err = 0;
2922 struct btrfs_path *path;
2923 u64 last = 0;
2924
2925 path = btrfs_alloc_path();
2926 if (!path)
2927 return -ENOMEM;
2928
2929 again:
2930 while (1) {
2931 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2932 while (cache) {
2933 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2934 break;
2935 cache = next_block_group(root, cache);
2936 }
2937 if (!cache) {
2938 if (last == 0)
2939 break;
2940 last = 0;
2941 continue;
2942 }
2943 err = cache_save_setup(cache, trans, path);
2944 last = cache->key.objectid + cache->key.offset;
2945 btrfs_put_block_group(cache);
2946 }
2947
2948 while (1) {
2949 if (last == 0) {
2950 err = btrfs_run_delayed_refs(trans, root,
2951 (unsigned long)-1);
2952 BUG_ON(err);
2953 }
2954
2955 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2956 while (cache) {
2957 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2958 btrfs_put_block_group(cache);
2959 goto again;
2960 }
2961
2962 if (cache->dirty)
2963 break;
2964 cache = next_block_group(root, cache);
2965 }
2966 if (!cache) {
2967 if (last == 0)
2968 break;
2969 last = 0;
2970 continue;
2971 }
2972
2973 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2974 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2975 cache->dirty = 0;
2976 last = cache->key.objectid + cache->key.offset;
2977
2978 err = write_one_cache_group(trans, root, path, cache);
2979 BUG_ON(err);
2980 btrfs_put_block_group(cache);
2981 }
2982
2983 while (1) {
2984 /*
2985 * I don't think this is needed since we're just marking our
2986 * preallocated extent as written, but just in case it can't
2987 * hurt.
2988 */
2989 if (last == 0) {
2990 err = btrfs_run_delayed_refs(trans, root,
2991 (unsigned long)-1);
2992 BUG_ON(err);
2993 }
2994
2995 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2996 while (cache) {
2997 /*
2998 * Really this shouldn't happen, but it could if we
2999 * couldn't write the entire preallocated extent and
3000 * splitting the extent resulted in a new block.
3001 */
3002 if (cache->dirty) {
3003 btrfs_put_block_group(cache);
3004 goto again;
3005 }
3006 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3007 break;
3008 cache = next_block_group(root, cache);
3009 }
3010 if (!cache) {
3011 if (last == 0)
3012 break;
3013 last = 0;
3014 continue;
3015 }
3016
3017 btrfs_write_out_cache(root, trans, cache, path);
3018
3019 /*
3020 * If we didn't have an error then the cache state is still
3021 * NEED_WRITE, so we can set it to WRITTEN.
3022 */
3023 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3024 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3025 last = cache->key.objectid + cache->key.offset;
3026 btrfs_put_block_group(cache);
3027 }
3028
3029 btrfs_free_path(path);
3030 return 0;
3031 }
3032
3033 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3034 {
3035 struct btrfs_block_group_cache *block_group;
3036 int readonly = 0;
3037
3038 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3039 if (!block_group || block_group->ro)
3040 readonly = 1;
3041 if (block_group)
3042 btrfs_put_block_group(block_group);
3043 return readonly;
3044 }
3045
3046 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3047 u64 total_bytes, u64 bytes_used,
3048 struct btrfs_space_info **space_info)
3049 {
3050 struct btrfs_space_info *found;
3051 int i;
3052 int factor;
3053
3054 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3055 BTRFS_BLOCK_GROUP_RAID10))
3056 factor = 2;
3057 else
3058 factor = 1;
3059
3060 found = __find_space_info(info, flags);
3061 if (found) {
3062 spin_lock(&found->lock);
3063 found->total_bytes += total_bytes;
3064 found->disk_total += total_bytes * factor;
3065 found->bytes_used += bytes_used;
3066 found->disk_used += bytes_used * factor;
3067 found->full = 0;
3068 spin_unlock(&found->lock);
3069 *space_info = found;
3070 return 0;
3071 }
3072 found = kzalloc(sizeof(*found), GFP_NOFS);
3073 if (!found)
3074 return -ENOMEM;
3075
3076 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3077 INIT_LIST_HEAD(&found->block_groups[i]);
3078 init_rwsem(&found->groups_sem);
3079 spin_lock_init(&found->lock);
3080 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3081 found->total_bytes = total_bytes;
3082 found->disk_total = total_bytes * factor;
3083 found->bytes_used = bytes_used;
3084 found->disk_used = bytes_used * factor;
3085 found->bytes_pinned = 0;
3086 found->bytes_reserved = 0;
3087 found->bytes_readonly = 0;
3088 found->bytes_may_use = 0;
3089 found->full = 0;
3090 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3091 found->chunk_alloc = 0;
3092 found->flush = 0;
3093 init_waitqueue_head(&found->wait);
3094 *space_info = found;
3095 list_add_rcu(&found->list, &info->space_info);
3096 return 0;
3097 }
3098
3099 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3100 {
3101 u64 extra_flags = chunk_to_extended(flags) &
3102 BTRFS_EXTENDED_PROFILE_MASK;
3103
3104 if (flags & BTRFS_BLOCK_GROUP_DATA)
3105 fs_info->avail_data_alloc_bits |= extra_flags;
3106 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3107 fs_info->avail_metadata_alloc_bits |= extra_flags;
3108 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3109 fs_info->avail_system_alloc_bits |= extra_flags;
3110 }
3111
3112 /*
3113 * @flags: available profiles in extended format (see ctree.h)
3114 *
3115 * Returns reduced profile in chunk format. If profile changing is in
3116 * progress (either running or paused) picks the target profile (if it's
3117 * already available), otherwise falls back to plain reducing.
3118 */
3119 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3120 {
3121 /*
3122 * we add in the count of missing devices because we want
3123 * to make sure that any RAID levels on a degraded FS
3124 * continue to be honored.
3125 */
3126 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3127 root->fs_info->fs_devices->missing_devices;
3128
3129 /* pick restriper's target profile if it's available */
3130 spin_lock(&root->fs_info->balance_lock);
3131 if (root->fs_info->balance_ctl) {
3132 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3133 u64 tgt = 0;
3134
3135 if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3136 (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3137 (flags & bctl->data.target)) {
3138 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3139 } else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3140 (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3141 (flags & bctl->sys.target)) {
3142 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3143 } else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3144 (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3145 (flags & bctl->meta.target)) {
3146 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3147 }
3148
3149 if (tgt) {
3150 spin_unlock(&root->fs_info->balance_lock);
3151 flags = tgt;
3152 goto out;
3153 }
3154 }
3155 spin_unlock(&root->fs_info->balance_lock);
3156
3157 if (num_devices == 1)
3158 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3159 if (num_devices < 4)
3160 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3161
3162 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3163 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3164 BTRFS_BLOCK_GROUP_RAID10))) {
3165 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3166 }
3167
3168 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3169 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3170 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3171 }
3172
3173 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3174 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3175 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3176 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3177 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3178 }
3179
3180 out:
3181 return extended_to_chunk(flags);
3182 }
3183
3184 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3185 {
3186 if (flags & BTRFS_BLOCK_GROUP_DATA)
3187 flags |= root->fs_info->avail_data_alloc_bits;
3188 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3189 flags |= root->fs_info->avail_system_alloc_bits;
3190 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3191 flags |= root->fs_info->avail_metadata_alloc_bits;
3192
3193 return btrfs_reduce_alloc_profile(root, flags);
3194 }
3195
3196 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3197 {
3198 u64 flags;
3199
3200 if (data)
3201 flags = BTRFS_BLOCK_GROUP_DATA;
3202 else if (root == root->fs_info->chunk_root)
3203 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3204 else
3205 flags = BTRFS_BLOCK_GROUP_METADATA;
3206
3207 return get_alloc_profile(root, flags);
3208 }
3209
3210 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3211 {
3212 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3213 BTRFS_BLOCK_GROUP_DATA);
3214 }
3215
3216 /*
3217 * This will check the space that the inode allocates from to make sure we have
3218 * enough space for bytes.
3219 */
3220 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3221 {
3222 struct btrfs_space_info *data_sinfo;
3223 struct btrfs_root *root = BTRFS_I(inode)->root;
3224 u64 used;
3225 int ret = 0, committed = 0, alloc_chunk = 1;
3226
3227 /* make sure bytes are sectorsize aligned */
3228 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3229
3230 if (root == root->fs_info->tree_root ||
3231 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3232 alloc_chunk = 0;
3233 committed = 1;
3234 }
3235
3236 data_sinfo = BTRFS_I(inode)->space_info;
3237 if (!data_sinfo)
3238 goto alloc;
3239
3240 again:
3241 /* make sure we have enough space to handle the data first */
3242 spin_lock(&data_sinfo->lock);
3243 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3244 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3245 data_sinfo->bytes_may_use;
3246
3247 if (used + bytes > data_sinfo->total_bytes) {
3248 struct btrfs_trans_handle *trans;
3249
3250 /*
3251 * if we don't have enough free bytes in this space then we need
3252 * to alloc a new chunk.
3253 */
3254 if (!data_sinfo->full && alloc_chunk) {
3255 u64 alloc_target;
3256
3257 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3258 spin_unlock(&data_sinfo->lock);
3259 alloc:
3260 alloc_target = btrfs_get_alloc_profile(root, 1);
3261 trans = btrfs_join_transaction(root);
3262 if (IS_ERR(trans))
3263 return PTR_ERR(trans);
3264
3265 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3266 bytes + 2 * 1024 * 1024,
3267 alloc_target,
3268 CHUNK_ALLOC_NO_FORCE);
3269 btrfs_end_transaction(trans, root);
3270 if (ret < 0) {
3271 if (ret != -ENOSPC)
3272 return ret;
3273 else
3274 goto commit_trans;
3275 }
3276
3277 if (!data_sinfo) {
3278 btrfs_set_inode_space_info(root, inode);
3279 data_sinfo = BTRFS_I(inode)->space_info;
3280 }
3281 goto again;
3282 }
3283
3284 /*
3285 * If we have less pinned bytes than we want to allocate then
3286 * don't bother committing the transaction, it won't help us.
3287 */
3288 if (data_sinfo->bytes_pinned < bytes)
3289 committed = 1;
3290 spin_unlock(&data_sinfo->lock);
3291
3292 /* commit the current transaction and try again */
3293 commit_trans:
3294 if (!committed &&
3295 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3296 committed = 1;
3297 trans = btrfs_join_transaction(root);
3298 if (IS_ERR(trans))
3299 return PTR_ERR(trans);
3300 ret = btrfs_commit_transaction(trans, root);
3301 if (ret)
3302 return ret;
3303 goto again;
3304 }
3305
3306 return -ENOSPC;
3307 }
3308 data_sinfo->bytes_may_use += bytes;
3309 trace_btrfs_space_reservation(root->fs_info, "space_info",
3310 (u64)(unsigned long)data_sinfo,
3311 bytes, 1);
3312 spin_unlock(&data_sinfo->lock);
3313
3314 return 0;
3315 }
3316
3317 /*
3318 * Called if we need to clear a data reservation for this inode.
3319 */
3320 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3321 {
3322 struct btrfs_root *root = BTRFS_I(inode)->root;
3323 struct btrfs_space_info *data_sinfo;
3324
3325 /* make sure bytes are sectorsize aligned */
3326 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3327
3328 data_sinfo = BTRFS_I(inode)->space_info;
3329 spin_lock(&data_sinfo->lock);
3330 data_sinfo->bytes_may_use -= bytes;
3331 trace_btrfs_space_reservation(root->fs_info, "space_info",
3332 (u64)(unsigned long)data_sinfo,
3333 bytes, 0);
3334 spin_unlock(&data_sinfo->lock);
3335 }
3336
3337 static void force_metadata_allocation(struct btrfs_fs_info *info)
3338 {
3339 struct list_head *head = &info->space_info;
3340 struct btrfs_space_info *found;
3341
3342 rcu_read_lock();
3343 list_for_each_entry_rcu(found, head, list) {
3344 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3345 found->force_alloc = CHUNK_ALLOC_FORCE;
3346 }
3347 rcu_read_unlock();
3348 }
3349
3350 static int should_alloc_chunk(struct btrfs_root *root,
3351 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3352 int force)
3353 {
3354 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3355 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3356 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3357 u64 thresh;
3358
3359 if (force == CHUNK_ALLOC_FORCE)
3360 return 1;
3361
3362 /*
3363 * We need to take into account the global rsv because for all intents
3364 * and purposes it's used space. Don't worry about locking the
3365 * global_rsv, it doesn't change except when the transaction commits.
3366 */
3367 num_allocated += global_rsv->size;
3368
3369 /*
3370 * in limited mode, we want to have some free space up to
3371 * about 1% of the FS size.
3372 */
3373 if (force == CHUNK_ALLOC_LIMITED) {
3374 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3375 thresh = max_t(u64, 64 * 1024 * 1024,
3376 div_factor_fine(thresh, 1));
3377
3378 if (num_bytes - num_allocated < thresh)
3379 return 1;
3380 }
3381 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3382
3383 /* 256MB or 2% of the FS */
3384 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3385 /* system chunks need a much small threshold */
3386 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3387 thresh = 32 * 1024 * 1024;
3388
3389 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3390 return 0;
3391 return 1;
3392 }
3393
3394 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *extent_root, u64 alloc_bytes,
3396 u64 flags, int force)
3397 {
3398 struct btrfs_space_info *space_info;
3399 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3400 int wait_for_alloc = 0;
3401 int ret = 0;
3402
3403 space_info = __find_space_info(extent_root->fs_info, flags);
3404 if (!space_info) {
3405 ret = update_space_info(extent_root->fs_info, flags,
3406 0, 0, &space_info);
3407 BUG_ON(ret);
3408 }
3409 BUG_ON(!space_info);
3410
3411 again:
3412 spin_lock(&space_info->lock);
3413 if (force < space_info->force_alloc)
3414 force = space_info->force_alloc;
3415 if (space_info->full) {
3416 spin_unlock(&space_info->lock);
3417 return 0;
3418 }
3419
3420 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3421 spin_unlock(&space_info->lock);
3422 return 0;
3423 } else if (space_info->chunk_alloc) {
3424 wait_for_alloc = 1;
3425 } else {
3426 space_info->chunk_alloc = 1;
3427 }
3428
3429 spin_unlock(&space_info->lock);
3430
3431 mutex_lock(&fs_info->chunk_mutex);
3432
3433 /*
3434 * The chunk_mutex is held throughout the entirety of a chunk
3435 * allocation, so once we've acquired the chunk_mutex we know that the
3436 * other guy is done and we need to recheck and see if we should
3437 * allocate.
3438 */
3439 if (wait_for_alloc) {
3440 mutex_unlock(&fs_info->chunk_mutex);
3441 wait_for_alloc = 0;
3442 goto again;
3443 }
3444
3445 /*
3446 * If we have mixed data/metadata chunks we want to make sure we keep
3447 * allocating mixed chunks instead of individual chunks.
3448 */
3449 if (btrfs_mixed_space_info(space_info))
3450 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3451
3452 /*
3453 * if we're doing a data chunk, go ahead and make sure that
3454 * we keep a reasonable number of metadata chunks allocated in the
3455 * FS as well.
3456 */
3457 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3458 fs_info->data_chunk_allocations++;
3459 if (!(fs_info->data_chunk_allocations %
3460 fs_info->metadata_ratio))
3461 force_metadata_allocation(fs_info);
3462 }
3463
3464 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3465 if (ret < 0 && ret != -ENOSPC)
3466 goto out;
3467
3468 spin_lock(&space_info->lock);
3469 if (ret)
3470 space_info->full = 1;
3471 else
3472 ret = 1;
3473
3474 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3475 space_info->chunk_alloc = 0;
3476 spin_unlock(&space_info->lock);
3477 out:
3478 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3479 return ret;
3480 }
3481
3482 /*
3483 * shrink metadata reservation for delalloc
3484 */
3485 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3486 bool wait_ordered)
3487 {
3488 struct btrfs_block_rsv *block_rsv;
3489 struct btrfs_space_info *space_info;
3490 struct btrfs_trans_handle *trans;
3491 u64 reserved;
3492 u64 max_reclaim;
3493 u64 reclaimed = 0;
3494 long time_left;
3495 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3496 int loops = 0;
3497 unsigned long progress;
3498
3499 trans = (struct btrfs_trans_handle *)current->journal_info;
3500 block_rsv = &root->fs_info->delalloc_block_rsv;
3501 space_info = block_rsv->space_info;
3502
3503 smp_mb();
3504 reserved = space_info->bytes_may_use;
3505 progress = space_info->reservation_progress;
3506
3507 if (reserved == 0)
3508 return 0;
3509
3510 smp_mb();
3511 if (root->fs_info->delalloc_bytes == 0) {
3512 if (trans)
3513 return 0;
3514 btrfs_wait_ordered_extents(root, 0, 0);
3515 return 0;
3516 }
3517
3518 max_reclaim = min(reserved, to_reclaim);
3519 nr_pages = max_t(unsigned long, nr_pages,
3520 max_reclaim >> PAGE_CACHE_SHIFT);
3521 while (loops < 1024) {
3522 /* have the flusher threads jump in and do some IO */
3523 smp_mb();
3524 nr_pages = min_t(unsigned long, nr_pages,
3525 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3526 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3527 WB_REASON_FS_FREE_SPACE);
3528
3529 spin_lock(&space_info->lock);
3530 if (reserved > space_info->bytes_may_use)
3531 reclaimed += reserved - space_info->bytes_may_use;
3532 reserved = space_info->bytes_may_use;
3533 spin_unlock(&space_info->lock);
3534
3535 loops++;
3536
3537 if (reserved == 0 || reclaimed >= max_reclaim)
3538 break;
3539
3540 if (trans && trans->transaction->blocked)
3541 return -EAGAIN;
3542
3543 if (wait_ordered && !trans) {
3544 btrfs_wait_ordered_extents(root, 0, 0);
3545 } else {
3546 time_left = schedule_timeout_interruptible(1);
3547
3548 /* We were interrupted, exit */
3549 if (time_left)
3550 break;
3551 }
3552
3553 /* we've kicked the IO a few times, if anything has been freed,
3554 * exit. There is no sense in looping here for a long time
3555 * when we really need to commit the transaction, or there are
3556 * just too many writers without enough free space
3557 */
3558
3559 if (loops > 3) {
3560 smp_mb();
3561 if (progress != space_info->reservation_progress)
3562 break;
3563 }
3564
3565 }
3566
3567 return reclaimed >= to_reclaim;
3568 }
3569
3570 /**
3571 * maybe_commit_transaction - possibly commit the transaction if its ok to
3572 * @root - the root we're allocating for
3573 * @bytes - the number of bytes we want to reserve
3574 * @force - force the commit
3575 *
3576 * This will check to make sure that committing the transaction will actually
3577 * get us somewhere and then commit the transaction if it does. Otherwise it
3578 * will return -ENOSPC.
3579 */
3580 static int may_commit_transaction(struct btrfs_root *root,
3581 struct btrfs_space_info *space_info,
3582 u64 bytes, int force)
3583 {
3584 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3585 struct btrfs_trans_handle *trans;
3586
3587 trans = (struct btrfs_trans_handle *)current->journal_info;
3588 if (trans)
3589 return -EAGAIN;
3590
3591 if (force)
3592 goto commit;
3593
3594 /* See if there is enough pinned space to make this reservation */
3595 spin_lock(&space_info->lock);
3596 if (space_info->bytes_pinned >= bytes) {
3597 spin_unlock(&space_info->lock);
3598 goto commit;
3599 }
3600 spin_unlock(&space_info->lock);
3601
3602 /*
3603 * See if there is some space in the delayed insertion reservation for
3604 * this reservation.
3605 */
3606 if (space_info != delayed_rsv->space_info)
3607 return -ENOSPC;
3608
3609 spin_lock(&space_info->lock);
3610 spin_lock(&delayed_rsv->lock);
3611 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3612 spin_unlock(&delayed_rsv->lock);
3613 spin_unlock(&space_info->lock);
3614 return -ENOSPC;
3615 }
3616 spin_unlock(&delayed_rsv->lock);
3617 spin_unlock(&space_info->lock);
3618
3619 commit:
3620 trans = btrfs_join_transaction(root);
3621 if (IS_ERR(trans))
3622 return -ENOSPC;
3623
3624 return btrfs_commit_transaction(trans, root);
3625 }
3626
3627 /**
3628 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3629 * @root - the root we're allocating for
3630 * @block_rsv - the block_rsv we're allocating for
3631 * @orig_bytes - the number of bytes we want
3632 * @flush - wether or not we can flush to make our reservation
3633 *
3634 * This will reserve orgi_bytes number of bytes from the space info associated
3635 * with the block_rsv. If there is not enough space it will make an attempt to
3636 * flush out space to make room. It will do this by flushing delalloc if
3637 * possible or committing the transaction. If flush is 0 then no attempts to
3638 * regain reservations will be made and this will fail if there is not enough
3639 * space already.
3640 */
3641 static int reserve_metadata_bytes(struct btrfs_root *root,
3642 struct btrfs_block_rsv *block_rsv,
3643 u64 orig_bytes, int flush)
3644 {
3645 struct btrfs_space_info *space_info = block_rsv->space_info;
3646 u64 used;
3647 u64 num_bytes = orig_bytes;
3648 int retries = 0;
3649 int ret = 0;
3650 bool committed = false;
3651 bool flushing = false;
3652 bool wait_ordered = false;
3653
3654 again:
3655 ret = 0;
3656 spin_lock(&space_info->lock);
3657 /*
3658 * We only want to wait if somebody other than us is flushing and we are
3659 * actually alloed to flush.
3660 */
3661 while (flush && !flushing && space_info->flush) {
3662 spin_unlock(&space_info->lock);
3663 /*
3664 * If we have a trans handle we can't wait because the flusher
3665 * may have to commit the transaction, which would mean we would
3666 * deadlock since we are waiting for the flusher to finish, but
3667 * hold the current transaction open.
3668 */
3669 if (current->journal_info)
3670 return -EAGAIN;
3671 ret = wait_event_interruptible(space_info->wait,
3672 !space_info->flush);
3673 /* Must have been interrupted, return */
3674 if (ret)
3675 return -EINTR;
3676
3677 spin_lock(&space_info->lock);
3678 }
3679
3680 ret = -ENOSPC;
3681 used = space_info->bytes_used + space_info->bytes_reserved +
3682 space_info->bytes_pinned + space_info->bytes_readonly +
3683 space_info->bytes_may_use;
3684
3685 /*
3686 * The idea here is that we've not already over-reserved the block group
3687 * then we can go ahead and save our reservation first and then start
3688 * flushing if we need to. Otherwise if we've already overcommitted
3689 * lets start flushing stuff first and then come back and try to make
3690 * our reservation.
3691 */
3692 if (used <= space_info->total_bytes) {
3693 if (used + orig_bytes <= space_info->total_bytes) {
3694 space_info->bytes_may_use += orig_bytes;
3695 trace_btrfs_space_reservation(root->fs_info,
3696 "space_info",
3697 (u64)(unsigned long)space_info,
3698 orig_bytes, 1);
3699 ret = 0;
3700 } else {
3701 /*
3702 * Ok set num_bytes to orig_bytes since we aren't
3703 * overocmmitted, this way we only try and reclaim what
3704 * we need.
3705 */
3706 num_bytes = orig_bytes;
3707 }
3708 } else {
3709 /*
3710 * Ok we're over committed, set num_bytes to the overcommitted
3711 * amount plus the amount of bytes that we need for this
3712 * reservation.
3713 */
3714 wait_ordered = true;
3715 num_bytes = used - space_info->total_bytes +
3716 (orig_bytes * (retries + 1));
3717 }
3718
3719 if (ret) {
3720 u64 profile = btrfs_get_alloc_profile(root, 0);
3721 u64 avail;
3722
3723 /*
3724 * If we have a lot of space that's pinned, don't bother doing
3725 * the overcommit dance yet and just commit the transaction.
3726 */
3727 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3728 do_div(avail, 10);
3729 if (space_info->bytes_pinned >= avail && flush && !committed) {
3730 space_info->flush = 1;
3731 flushing = true;
3732 spin_unlock(&space_info->lock);
3733 ret = may_commit_transaction(root, space_info,
3734 orig_bytes, 1);
3735 if (ret)
3736 goto out;
3737 committed = true;
3738 goto again;
3739 }
3740
3741 spin_lock(&root->fs_info->free_chunk_lock);
3742 avail = root->fs_info->free_chunk_space;
3743
3744 /*
3745 * If we have dup, raid1 or raid10 then only half of the free
3746 * space is actually useable.
3747 */
3748 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3749 BTRFS_BLOCK_GROUP_RAID1 |
3750 BTRFS_BLOCK_GROUP_RAID10))
3751 avail >>= 1;
3752
3753 /*
3754 * If we aren't flushing don't let us overcommit too much, say
3755 * 1/8th of the space. If we can flush, let it overcommit up to
3756 * 1/2 of the space.
3757 */
3758 if (flush)
3759 avail >>= 3;
3760 else
3761 avail >>= 1;
3762 spin_unlock(&root->fs_info->free_chunk_lock);
3763
3764 if (used + num_bytes < space_info->total_bytes + avail) {
3765 space_info->bytes_may_use += orig_bytes;
3766 trace_btrfs_space_reservation(root->fs_info,
3767 "space_info",
3768 (u64)(unsigned long)space_info,
3769 orig_bytes, 1);
3770 ret = 0;
3771 } else {
3772 wait_ordered = true;
3773 }
3774 }
3775
3776 /*
3777 * Couldn't make our reservation, save our place so while we're trying
3778 * to reclaim space we can actually use it instead of somebody else
3779 * stealing it from us.
3780 */
3781 if (ret && flush) {
3782 flushing = true;
3783 space_info->flush = 1;
3784 }
3785
3786 spin_unlock(&space_info->lock);
3787
3788 if (!ret || !flush)
3789 goto out;
3790
3791 /*
3792 * We do synchronous shrinking since we don't actually unreserve
3793 * metadata until after the IO is completed.
3794 */
3795 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3796 if (ret < 0)
3797 goto out;
3798
3799 ret = 0;
3800
3801 /*
3802 * So if we were overcommitted it's possible that somebody else flushed
3803 * out enough space and we simply didn't have enough space to reclaim,
3804 * so go back around and try again.
3805 */
3806 if (retries < 2) {
3807 wait_ordered = true;
3808 retries++;
3809 goto again;
3810 }
3811
3812 ret = -ENOSPC;
3813 if (committed)
3814 goto out;
3815
3816 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3817 if (!ret) {
3818 committed = true;
3819 goto again;
3820 }
3821
3822 out:
3823 if (flushing) {
3824 spin_lock(&space_info->lock);
3825 space_info->flush = 0;
3826 wake_up_all(&space_info->wait);
3827 spin_unlock(&space_info->lock);
3828 }
3829 return ret;
3830 }
3831
3832 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3833 struct btrfs_root *root)
3834 {
3835 struct btrfs_block_rsv *block_rsv = NULL;
3836
3837 if (root->ref_cows || root == root->fs_info->csum_root)
3838 block_rsv = trans->block_rsv;
3839
3840 if (!block_rsv)
3841 block_rsv = root->block_rsv;
3842
3843 if (!block_rsv)
3844 block_rsv = &root->fs_info->empty_block_rsv;
3845
3846 return block_rsv;
3847 }
3848
3849 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3850 u64 num_bytes)
3851 {
3852 int ret = -ENOSPC;
3853 spin_lock(&block_rsv->lock);
3854 if (block_rsv->reserved >= num_bytes) {
3855 block_rsv->reserved -= num_bytes;
3856 if (block_rsv->reserved < block_rsv->size)
3857 block_rsv->full = 0;
3858 ret = 0;
3859 }
3860 spin_unlock(&block_rsv->lock);
3861 return ret;
3862 }
3863
3864 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3865 u64 num_bytes, int update_size)
3866 {
3867 spin_lock(&block_rsv->lock);
3868 block_rsv->reserved += num_bytes;
3869 if (update_size)
3870 block_rsv->size += num_bytes;
3871 else if (block_rsv->reserved >= block_rsv->size)
3872 block_rsv->full = 1;
3873 spin_unlock(&block_rsv->lock);
3874 }
3875
3876 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3877 struct btrfs_block_rsv *block_rsv,
3878 struct btrfs_block_rsv *dest, u64 num_bytes)
3879 {
3880 struct btrfs_space_info *space_info = block_rsv->space_info;
3881
3882 spin_lock(&block_rsv->lock);
3883 if (num_bytes == (u64)-1)
3884 num_bytes = block_rsv->size;
3885 block_rsv->size -= num_bytes;
3886 if (block_rsv->reserved >= block_rsv->size) {
3887 num_bytes = block_rsv->reserved - block_rsv->size;
3888 block_rsv->reserved = block_rsv->size;
3889 block_rsv->full = 1;
3890 } else {
3891 num_bytes = 0;
3892 }
3893 spin_unlock(&block_rsv->lock);
3894
3895 if (num_bytes > 0) {
3896 if (dest) {
3897 spin_lock(&dest->lock);
3898 if (!dest->full) {
3899 u64 bytes_to_add;
3900
3901 bytes_to_add = dest->size - dest->reserved;
3902 bytes_to_add = min(num_bytes, bytes_to_add);
3903 dest->reserved += bytes_to_add;
3904 if (dest->reserved >= dest->size)
3905 dest->full = 1;
3906 num_bytes -= bytes_to_add;
3907 }
3908 spin_unlock(&dest->lock);
3909 }
3910 if (num_bytes) {
3911 spin_lock(&space_info->lock);
3912 space_info->bytes_may_use -= num_bytes;
3913 trace_btrfs_space_reservation(fs_info, "space_info",
3914 (u64)(unsigned long)space_info,
3915 num_bytes, 0);
3916 space_info->reservation_progress++;
3917 spin_unlock(&space_info->lock);
3918 }
3919 }
3920 }
3921
3922 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3923 struct btrfs_block_rsv *dst, u64 num_bytes)
3924 {
3925 int ret;
3926
3927 ret = block_rsv_use_bytes(src, num_bytes);
3928 if (ret)
3929 return ret;
3930
3931 block_rsv_add_bytes(dst, num_bytes, 1);
3932 return 0;
3933 }
3934
3935 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3936 {
3937 memset(rsv, 0, sizeof(*rsv));
3938 spin_lock_init(&rsv->lock);
3939 }
3940
3941 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3942 {
3943 struct btrfs_block_rsv *block_rsv;
3944 struct btrfs_fs_info *fs_info = root->fs_info;
3945
3946 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3947 if (!block_rsv)
3948 return NULL;
3949
3950 btrfs_init_block_rsv(block_rsv);
3951 block_rsv->space_info = __find_space_info(fs_info,
3952 BTRFS_BLOCK_GROUP_METADATA);
3953 return block_rsv;
3954 }
3955
3956 void btrfs_free_block_rsv(struct btrfs_root *root,
3957 struct btrfs_block_rsv *rsv)
3958 {
3959 btrfs_block_rsv_release(root, rsv, (u64)-1);
3960 kfree(rsv);
3961 }
3962
3963 static inline int __block_rsv_add(struct btrfs_root *root,
3964 struct btrfs_block_rsv *block_rsv,
3965 u64 num_bytes, int flush)
3966 {
3967 int ret;
3968
3969 if (num_bytes == 0)
3970 return 0;
3971
3972 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3973 if (!ret) {
3974 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3975 return 0;
3976 }
3977
3978 return ret;
3979 }
3980
3981 int btrfs_block_rsv_add(struct btrfs_root *root,
3982 struct btrfs_block_rsv *block_rsv,
3983 u64 num_bytes)
3984 {
3985 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3986 }
3987
3988 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3989 struct btrfs_block_rsv *block_rsv,
3990 u64 num_bytes)
3991 {
3992 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3993 }
3994
3995 int btrfs_block_rsv_check(struct btrfs_root *root,
3996 struct btrfs_block_rsv *block_rsv, int min_factor)
3997 {
3998 u64 num_bytes = 0;
3999 int ret = -ENOSPC;
4000
4001 if (!block_rsv)
4002 return 0;
4003
4004 spin_lock(&block_rsv->lock);
4005 num_bytes = div_factor(block_rsv->size, min_factor);
4006 if (block_rsv->reserved >= num_bytes)
4007 ret = 0;
4008 spin_unlock(&block_rsv->lock);
4009
4010 return ret;
4011 }
4012
4013 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4014 struct btrfs_block_rsv *block_rsv,
4015 u64 min_reserved, int flush)
4016 {
4017 u64 num_bytes = 0;
4018 int ret = -ENOSPC;
4019
4020 if (!block_rsv)
4021 return 0;
4022
4023 spin_lock(&block_rsv->lock);
4024 num_bytes = min_reserved;
4025 if (block_rsv->reserved >= num_bytes)
4026 ret = 0;
4027 else
4028 num_bytes -= block_rsv->reserved;
4029 spin_unlock(&block_rsv->lock);
4030
4031 if (!ret)
4032 return 0;
4033
4034 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4035 if (!ret) {
4036 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4037 return 0;
4038 }
4039
4040 return ret;
4041 }
4042
4043 int btrfs_block_rsv_refill(struct btrfs_root *root,
4044 struct btrfs_block_rsv *block_rsv,
4045 u64 min_reserved)
4046 {
4047 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4048 }
4049
4050 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4051 struct btrfs_block_rsv *block_rsv,
4052 u64 min_reserved)
4053 {
4054 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4055 }
4056
4057 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4058 struct btrfs_block_rsv *dst_rsv,
4059 u64 num_bytes)
4060 {
4061 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4062 }
4063
4064 void btrfs_block_rsv_release(struct btrfs_root *root,
4065 struct btrfs_block_rsv *block_rsv,
4066 u64 num_bytes)
4067 {
4068 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4069 if (global_rsv->full || global_rsv == block_rsv ||
4070 block_rsv->space_info != global_rsv->space_info)
4071 global_rsv = NULL;
4072 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4073 num_bytes);
4074 }
4075
4076 /*
4077 * helper to calculate size of global block reservation.
4078 * the desired value is sum of space used by extent tree,
4079 * checksum tree and root tree
4080 */
4081 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4082 {
4083 struct btrfs_space_info *sinfo;
4084 u64 num_bytes;
4085 u64 meta_used;
4086 u64 data_used;
4087 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4088
4089 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4090 spin_lock(&sinfo->lock);
4091 data_used = sinfo->bytes_used;
4092 spin_unlock(&sinfo->lock);
4093
4094 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4095 spin_lock(&sinfo->lock);
4096 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4097 data_used = 0;
4098 meta_used = sinfo->bytes_used;
4099 spin_unlock(&sinfo->lock);
4100
4101 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4102 csum_size * 2;
4103 num_bytes += div64_u64(data_used + meta_used, 50);
4104
4105 if (num_bytes * 3 > meta_used)
4106 num_bytes = div64_u64(meta_used, 3) * 2;
4107
4108 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4109 }
4110
4111 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4112 {
4113 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4114 struct btrfs_space_info *sinfo = block_rsv->space_info;
4115 u64 num_bytes;
4116
4117 num_bytes = calc_global_metadata_size(fs_info);
4118
4119 spin_lock(&block_rsv->lock);
4120 spin_lock(&sinfo->lock);
4121
4122 block_rsv->size = num_bytes;
4123
4124 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4125 sinfo->bytes_reserved + sinfo->bytes_readonly +
4126 sinfo->bytes_may_use;
4127
4128 if (sinfo->total_bytes > num_bytes) {
4129 num_bytes = sinfo->total_bytes - num_bytes;
4130 block_rsv->reserved += num_bytes;
4131 sinfo->bytes_may_use += num_bytes;
4132 trace_btrfs_space_reservation(fs_info, "space_info",
4133 (u64)(unsigned long)sinfo, num_bytes, 1);
4134 }
4135
4136 if (block_rsv->reserved >= block_rsv->size) {
4137 num_bytes = block_rsv->reserved - block_rsv->size;
4138 sinfo->bytes_may_use -= num_bytes;
4139 trace_btrfs_space_reservation(fs_info, "space_info",
4140 (u64)(unsigned long)sinfo, num_bytes, 0);
4141 sinfo->reservation_progress++;
4142 block_rsv->reserved = block_rsv->size;
4143 block_rsv->full = 1;
4144 }
4145
4146 spin_unlock(&sinfo->lock);
4147 spin_unlock(&block_rsv->lock);
4148 }
4149
4150 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4151 {
4152 struct btrfs_space_info *space_info;
4153
4154 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4155 fs_info->chunk_block_rsv.space_info = space_info;
4156
4157 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4158 fs_info->global_block_rsv.space_info = space_info;
4159 fs_info->delalloc_block_rsv.space_info = space_info;
4160 fs_info->trans_block_rsv.space_info = space_info;
4161 fs_info->empty_block_rsv.space_info = space_info;
4162 fs_info->delayed_block_rsv.space_info = space_info;
4163
4164 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4165 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4166 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4167 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4168 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4169
4170 update_global_block_rsv(fs_info);
4171 }
4172
4173 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4174 {
4175 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4176 (u64)-1);
4177 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4178 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4179 WARN_ON(fs_info->trans_block_rsv.size > 0);
4180 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4181 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4182 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4183 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4184 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4185 }
4186
4187 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4188 struct btrfs_root *root)
4189 {
4190 if (!trans->bytes_reserved)
4191 return;
4192
4193 trace_btrfs_space_reservation(root->fs_info, "transaction",
4194 (u64)(unsigned long)trans,
4195 trans->bytes_reserved, 0);
4196 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4197 trans->bytes_reserved = 0;
4198 }
4199
4200 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4201 struct inode *inode)
4202 {
4203 struct btrfs_root *root = BTRFS_I(inode)->root;
4204 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4205 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4206
4207 /*
4208 * We need to hold space in order to delete our orphan item once we've
4209 * added it, so this takes the reservation so we can release it later
4210 * when we are truly done with the orphan item.
4211 */
4212 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4213 trace_btrfs_space_reservation(root->fs_info, "orphan",
4214 btrfs_ino(inode), num_bytes, 1);
4215 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4216 }
4217
4218 void btrfs_orphan_release_metadata(struct inode *inode)
4219 {
4220 struct btrfs_root *root = BTRFS_I(inode)->root;
4221 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4222 trace_btrfs_space_reservation(root->fs_info, "orphan",
4223 btrfs_ino(inode), num_bytes, 0);
4224 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4225 }
4226
4227 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4228 struct btrfs_pending_snapshot *pending)
4229 {
4230 struct btrfs_root *root = pending->root;
4231 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4232 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4233 /*
4234 * two for root back/forward refs, two for directory entries
4235 * and one for root of the snapshot.
4236 */
4237 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4238 dst_rsv->space_info = src_rsv->space_info;
4239 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4240 }
4241
4242 /**
4243 * drop_outstanding_extent - drop an outstanding extent
4244 * @inode: the inode we're dropping the extent for
4245 *
4246 * This is called when we are freeing up an outstanding extent, either called
4247 * after an error or after an extent is written. This will return the number of
4248 * reserved extents that need to be freed. This must be called with
4249 * BTRFS_I(inode)->lock held.
4250 */
4251 static unsigned drop_outstanding_extent(struct inode *inode)
4252 {
4253 unsigned drop_inode_space = 0;
4254 unsigned dropped_extents = 0;
4255
4256 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4257 BTRFS_I(inode)->outstanding_extents--;
4258
4259 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4260 BTRFS_I(inode)->delalloc_meta_reserved) {
4261 drop_inode_space = 1;
4262 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4263 }
4264
4265 /*
4266 * If we have more or the same amount of outsanding extents than we have
4267 * reserved then we need to leave the reserved extents count alone.
4268 */
4269 if (BTRFS_I(inode)->outstanding_extents >=
4270 BTRFS_I(inode)->reserved_extents)
4271 return drop_inode_space;
4272
4273 dropped_extents = BTRFS_I(inode)->reserved_extents -
4274 BTRFS_I(inode)->outstanding_extents;
4275 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4276 return dropped_extents + drop_inode_space;
4277 }
4278
4279 /**
4280 * calc_csum_metadata_size - return the amount of metada space that must be
4281 * reserved/free'd for the given bytes.
4282 * @inode: the inode we're manipulating
4283 * @num_bytes: the number of bytes in question
4284 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4285 *
4286 * This adjusts the number of csum_bytes in the inode and then returns the
4287 * correct amount of metadata that must either be reserved or freed. We
4288 * calculate how many checksums we can fit into one leaf and then divide the
4289 * number of bytes that will need to be checksumed by this value to figure out
4290 * how many checksums will be required. If we are adding bytes then the number
4291 * may go up and we will return the number of additional bytes that must be
4292 * reserved. If it is going down we will return the number of bytes that must
4293 * be freed.
4294 *
4295 * This must be called with BTRFS_I(inode)->lock held.
4296 */
4297 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4298 int reserve)
4299 {
4300 struct btrfs_root *root = BTRFS_I(inode)->root;
4301 u64 csum_size;
4302 int num_csums_per_leaf;
4303 int num_csums;
4304 int old_csums;
4305
4306 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4307 BTRFS_I(inode)->csum_bytes == 0)
4308 return 0;
4309
4310 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4311 if (reserve)
4312 BTRFS_I(inode)->csum_bytes += num_bytes;
4313 else
4314 BTRFS_I(inode)->csum_bytes -= num_bytes;
4315 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4316 num_csums_per_leaf = (int)div64_u64(csum_size,
4317 sizeof(struct btrfs_csum_item) +
4318 sizeof(struct btrfs_disk_key));
4319 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4320 num_csums = num_csums + num_csums_per_leaf - 1;
4321 num_csums = num_csums / num_csums_per_leaf;
4322
4323 old_csums = old_csums + num_csums_per_leaf - 1;
4324 old_csums = old_csums / num_csums_per_leaf;
4325
4326 /* No change, no need to reserve more */
4327 if (old_csums == num_csums)
4328 return 0;
4329
4330 if (reserve)
4331 return btrfs_calc_trans_metadata_size(root,
4332 num_csums - old_csums);
4333
4334 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4335 }
4336
4337 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4338 {
4339 struct btrfs_root *root = BTRFS_I(inode)->root;
4340 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4341 u64 to_reserve = 0;
4342 u64 csum_bytes;
4343 unsigned nr_extents = 0;
4344 int extra_reserve = 0;
4345 int flush = 1;
4346 int ret;
4347
4348 /* Need to be holding the i_mutex here if we aren't free space cache */
4349 if (btrfs_is_free_space_inode(root, inode))
4350 flush = 0;
4351
4352 if (flush && btrfs_transaction_in_commit(root->fs_info))
4353 schedule_timeout(1);
4354
4355 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4356 num_bytes = ALIGN(num_bytes, root->sectorsize);
4357
4358 spin_lock(&BTRFS_I(inode)->lock);
4359 BTRFS_I(inode)->outstanding_extents++;
4360
4361 if (BTRFS_I(inode)->outstanding_extents >
4362 BTRFS_I(inode)->reserved_extents)
4363 nr_extents = BTRFS_I(inode)->outstanding_extents -
4364 BTRFS_I(inode)->reserved_extents;
4365
4366 /*
4367 * Add an item to reserve for updating the inode when we complete the
4368 * delalloc io.
4369 */
4370 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4371 nr_extents++;
4372 extra_reserve = 1;
4373 }
4374
4375 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4376 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4377 csum_bytes = BTRFS_I(inode)->csum_bytes;
4378 spin_unlock(&BTRFS_I(inode)->lock);
4379
4380 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4381 if (ret) {
4382 u64 to_free = 0;
4383 unsigned dropped;
4384
4385 spin_lock(&BTRFS_I(inode)->lock);
4386 dropped = drop_outstanding_extent(inode);
4387 /*
4388 * If the inodes csum_bytes is the same as the original
4389 * csum_bytes then we know we haven't raced with any free()ers
4390 * so we can just reduce our inodes csum bytes and carry on.
4391 * Otherwise we have to do the normal free thing to account for
4392 * the case that the free side didn't free up its reserve
4393 * because of this outstanding reservation.
4394 */
4395 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4396 calc_csum_metadata_size(inode, num_bytes, 0);
4397 else
4398 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4399 spin_unlock(&BTRFS_I(inode)->lock);
4400 if (dropped)
4401 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4402
4403 if (to_free) {
4404 btrfs_block_rsv_release(root, block_rsv, to_free);
4405 trace_btrfs_space_reservation(root->fs_info,
4406 "delalloc",
4407 btrfs_ino(inode),
4408 to_free, 0);
4409 }
4410 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4411 return ret;
4412 }
4413
4414 spin_lock(&BTRFS_I(inode)->lock);
4415 if (extra_reserve) {
4416 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4417 nr_extents--;
4418 }
4419 BTRFS_I(inode)->reserved_extents += nr_extents;
4420 spin_unlock(&BTRFS_I(inode)->lock);
4421 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4422
4423 if (to_reserve)
4424 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4425 btrfs_ino(inode), to_reserve, 1);
4426 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4427
4428 return 0;
4429 }
4430
4431 /**
4432 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4433 * @inode: the inode to release the reservation for
4434 * @num_bytes: the number of bytes we're releasing
4435 *
4436 * This will release the metadata reservation for an inode. This can be called
4437 * once we complete IO for a given set of bytes to release their metadata
4438 * reservations.
4439 */
4440 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4441 {
4442 struct btrfs_root *root = BTRFS_I(inode)->root;
4443 u64 to_free = 0;
4444 unsigned dropped;
4445
4446 num_bytes = ALIGN(num_bytes, root->sectorsize);
4447 spin_lock(&BTRFS_I(inode)->lock);
4448 dropped = drop_outstanding_extent(inode);
4449
4450 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4451 spin_unlock(&BTRFS_I(inode)->lock);
4452 if (dropped > 0)
4453 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4454
4455 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4456 btrfs_ino(inode), to_free, 0);
4457 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4458 to_free);
4459 }
4460
4461 /**
4462 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4463 * @inode: inode we're writing to
4464 * @num_bytes: the number of bytes we want to allocate
4465 *
4466 * This will do the following things
4467 *
4468 * o reserve space in the data space info for num_bytes
4469 * o reserve space in the metadata space info based on number of outstanding
4470 * extents and how much csums will be needed
4471 * o add to the inodes ->delalloc_bytes
4472 * o add it to the fs_info's delalloc inodes list.
4473 *
4474 * This will return 0 for success and -ENOSPC if there is no space left.
4475 */
4476 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4477 {
4478 int ret;
4479
4480 ret = btrfs_check_data_free_space(inode, num_bytes);
4481 if (ret)
4482 return ret;
4483
4484 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4485 if (ret) {
4486 btrfs_free_reserved_data_space(inode, num_bytes);
4487 return ret;
4488 }
4489
4490 return 0;
4491 }
4492
4493 /**
4494 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4495 * @inode: inode we're releasing space for
4496 * @num_bytes: the number of bytes we want to free up
4497 *
4498 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4499 * called in the case that we don't need the metadata AND data reservations
4500 * anymore. So if there is an error or we insert an inline extent.
4501 *
4502 * This function will release the metadata space that was not used and will
4503 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4504 * list if there are no delalloc bytes left.
4505 */
4506 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4507 {
4508 btrfs_delalloc_release_metadata(inode, num_bytes);
4509 btrfs_free_reserved_data_space(inode, num_bytes);
4510 }
4511
4512 static int update_block_group(struct btrfs_trans_handle *trans,
4513 struct btrfs_root *root,
4514 u64 bytenr, u64 num_bytes, int alloc)
4515 {
4516 struct btrfs_block_group_cache *cache = NULL;
4517 struct btrfs_fs_info *info = root->fs_info;
4518 u64 total = num_bytes;
4519 u64 old_val;
4520 u64 byte_in_group;
4521 int factor;
4522
4523 /* block accounting for super block */
4524 spin_lock(&info->delalloc_lock);
4525 old_val = btrfs_super_bytes_used(info->super_copy);
4526 if (alloc)
4527 old_val += num_bytes;
4528 else
4529 old_val -= num_bytes;
4530 btrfs_set_super_bytes_used(info->super_copy, old_val);
4531 spin_unlock(&info->delalloc_lock);
4532
4533 while (total) {
4534 cache = btrfs_lookup_block_group(info, bytenr);
4535 if (!cache)
4536 return -1;
4537 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4538 BTRFS_BLOCK_GROUP_RAID1 |
4539 BTRFS_BLOCK_GROUP_RAID10))
4540 factor = 2;
4541 else
4542 factor = 1;
4543 /*
4544 * If this block group has free space cache written out, we
4545 * need to make sure to load it if we are removing space. This
4546 * is because we need the unpinning stage to actually add the
4547 * space back to the block group, otherwise we will leak space.
4548 */
4549 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4550 cache_block_group(cache, trans, NULL, 1);
4551
4552 byte_in_group = bytenr - cache->key.objectid;
4553 WARN_ON(byte_in_group > cache->key.offset);
4554
4555 spin_lock(&cache->space_info->lock);
4556 spin_lock(&cache->lock);
4557
4558 if (btrfs_test_opt(root, SPACE_CACHE) &&
4559 cache->disk_cache_state < BTRFS_DC_CLEAR)
4560 cache->disk_cache_state = BTRFS_DC_CLEAR;
4561
4562 cache->dirty = 1;
4563 old_val = btrfs_block_group_used(&cache->item);
4564 num_bytes = min(total, cache->key.offset - byte_in_group);
4565 if (alloc) {
4566 old_val += num_bytes;
4567 btrfs_set_block_group_used(&cache->item, old_val);
4568 cache->reserved -= num_bytes;
4569 cache->space_info->bytes_reserved -= num_bytes;
4570 cache->space_info->bytes_used += num_bytes;
4571 cache->space_info->disk_used += num_bytes * factor;
4572 spin_unlock(&cache->lock);
4573 spin_unlock(&cache->space_info->lock);
4574 } else {
4575 old_val -= num_bytes;
4576 btrfs_set_block_group_used(&cache->item, old_val);
4577 cache->pinned += num_bytes;
4578 cache->space_info->bytes_pinned += num_bytes;
4579 cache->space_info->bytes_used -= num_bytes;
4580 cache->space_info->disk_used -= num_bytes * factor;
4581 spin_unlock(&cache->lock);
4582 spin_unlock(&cache->space_info->lock);
4583
4584 set_extent_dirty(info->pinned_extents,
4585 bytenr, bytenr + num_bytes - 1,
4586 GFP_NOFS | __GFP_NOFAIL);
4587 }
4588 btrfs_put_block_group(cache);
4589 total -= num_bytes;
4590 bytenr += num_bytes;
4591 }
4592 return 0;
4593 }
4594
4595 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4596 {
4597 struct btrfs_block_group_cache *cache;
4598 u64 bytenr;
4599
4600 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4601 if (!cache)
4602 return 0;
4603
4604 bytenr = cache->key.objectid;
4605 btrfs_put_block_group(cache);
4606
4607 return bytenr;
4608 }
4609
4610 static int pin_down_extent(struct btrfs_root *root,
4611 struct btrfs_block_group_cache *cache,
4612 u64 bytenr, u64 num_bytes, int reserved)
4613 {
4614 spin_lock(&cache->space_info->lock);
4615 spin_lock(&cache->lock);
4616 cache->pinned += num_bytes;
4617 cache->space_info->bytes_pinned += num_bytes;
4618 if (reserved) {
4619 cache->reserved -= num_bytes;
4620 cache->space_info->bytes_reserved -= num_bytes;
4621 }
4622 spin_unlock(&cache->lock);
4623 spin_unlock(&cache->space_info->lock);
4624
4625 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4626 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4627 return 0;
4628 }
4629
4630 /*
4631 * this function must be called within transaction
4632 */
4633 int btrfs_pin_extent(struct btrfs_root *root,
4634 u64 bytenr, u64 num_bytes, int reserved)
4635 {
4636 struct btrfs_block_group_cache *cache;
4637
4638 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4639 BUG_ON(!cache);
4640
4641 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4642
4643 btrfs_put_block_group(cache);
4644 return 0;
4645 }
4646
4647 /*
4648 * this function must be called within transaction
4649 */
4650 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4651 struct btrfs_root *root,
4652 u64 bytenr, u64 num_bytes)
4653 {
4654 struct btrfs_block_group_cache *cache;
4655
4656 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4657 BUG_ON(!cache);
4658
4659 /*
4660 * pull in the free space cache (if any) so that our pin
4661 * removes the free space from the cache. We have load_only set
4662 * to one because the slow code to read in the free extents does check
4663 * the pinned extents.
4664 */
4665 cache_block_group(cache, trans, root, 1);
4666
4667 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4668
4669 /* remove us from the free space cache (if we're there at all) */
4670 btrfs_remove_free_space(cache, bytenr, num_bytes);
4671 btrfs_put_block_group(cache);
4672 return 0;
4673 }
4674
4675 /**
4676 * btrfs_update_reserved_bytes - update the block_group and space info counters
4677 * @cache: The cache we are manipulating
4678 * @num_bytes: The number of bytes in question
4679 * @reserve: One of the reservation enums
4680 *
4681 * This is called by the allocator when it reserves space, or by somebody who is
4682 * freeing space that was never actually used on disk. For example if you
4683 * reserve some space for a new leaf in transaction A and before transaction A
4684 * commits you free that leaf, you call this with reserve set to 0 in order to
4685 * clear the reservation.
4686 *
4687 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4688 * ENOSPC accounting. For data we handle the reservation through clearing the
4689 * delalloc bits in the io_tree. We have to do this since we could end up
4690 * allocating less disk space for the amount of data we have reserved in the
4691 * case of compression.
4692 *
4693 * If this is a reservation and the block group has become read only we cannot
4694 * make the reservation and return -EAGAIN, otherwise this function always
4695 * succeeds.
4696 */
4697 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4698 u64 num_bytes, int reserve)
4699 {
4700 struct btrfs_space_info *space_info = cache->space_info;
4701 int ret = 0;
4702 spin_lock(&space_info->lock);
4703 spin_lock(&cache->lock);
4704 if (reserve != RESERVE_FREE) {
4705 if (cache->ro) {
4706 ret = -EAGAIN;
4707 } else {
4708 cache->reserved += num_bytes;
4709 space_info->bytes_reserved += num_bytes;
4710 if (reserve == RESERVE_ALLOC) {
4711 trace_btrfs_space_reservation(cache->fs_info,
4712 "space_info",
4713 (u64)(unsigned long)space_info,
4714 num_bytes, 0);
4715 space_info->bytes_may_use -= num_bytes;
4716 }
4717 }
4718 } else {
4719 if (cache->ro)
4720 space_info->bytes_readonly += num_bytes;
4721 cache->reserved -= num_bytes;
4722 space_info->bytes_reserved -= num_bytes;
4723 space_info->reservation_progress++;
4724 }
4725 spin_unlock(&cache->lock);
4726 spin_unlock(&space_info->lock);
4727 return ret;
4728 }
4729
4730 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4731 struct btrfs_root *root)
4732 {
4733 struct btrfs_fs_info *fs_info = root->fs_info;
4734 struct btrfs_caching_control *next;
4735 struct btrfs_caching_control *caching_ctl;
4736 struct btrfs_block_group_cache *cache;
4737
4738 down_write(&fs_info->extent_commit_sem);
4739
4740 list_for_each_entry_safe(caching_ctl, next,
4741 &fs_info->caching_block_groups, list) {
4742 cache = caching_ctl->block_group;
4743 if (block_group_cache_done(cache)) {
4744 cache->last_byte_to_unpin = (u64)-1;
4745 list_del_init(&caching_ctl->list);
4746 put_caching_control(caching_ctl);
4747 } else {
4748 cache->last_byte_to_unpin = caching_ctl->progress;
4749 }
4750 }
4751
4752 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4753 fs_info->pinned_extents = &fs_info->freed_extents[1];
4754 else
4755 fs_info->pinned_extents = &fs_info->freed_extents[0];
4756
4757 up_write(&fs_info->extent_commit_sem);
4758
4759 update_global_block_rsv(fs_info);
4760 return 0;
4761 }
4762
4763 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4764 {
4765 struct btrfs_fs_info *fs_info = root->fs_info;
4766 struct btrfs_block_group_cache *cache = NULL;
4767 u64 len;
4768
4769 while (start <= end) {
4770 if (!cache ||
4771 start >= cache->key.objectid + cache->key.offset) {
4772 if (cache)
4773 btrfs_put_block_group(cache);
4774 cache = btrfs_lookup_block_group(fs_info, start);
4775 BUG_ON(!cache);
4776 }
4777
4778 len = cache->key.objectid + cache->key.offset - start;
4779 len = min(len, end + 1 - start);
4780
4781 if (start < cache->last_byte_to_unpin) {
4782 len = min(len, cache->last_byte_to_unpin - start);
4783 btrfs_add_free_space(cache, start, len);
4784 }
4785
4786 start += len;
4787
4788 spin_lock(&cache->space_info->lock);
4789 spin_lock(&cache->lock);
4790 cache->pinned -= len;
4791 cache->space_info->bytes_pinned -= len;
4792 if (cache->ro)
4793 cache->space_info->bytes_readonly += len;
4794 spin_unlock(&cache->lock);
4795 spin_unlock(&cache->space_info->lock);
4796 }
4797
4798 if (cache)
4799 btrfs_put_block_group(cache);
4800 return 0;
4801 }
4802
4803 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4804 struct btrfs_root *root)
4805 {
4806 struct btrfs_fs_info *fs_info = root->fs_info;
4807 struct extent_io_tree *unpin;
4808 u64 start;
4809 u64 end;
4810 int ret;
4811
4812 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4813 unpin = &fs_info->freed_extents[1];
4814 else
4815 unpin = &fs_info->freed_extents[0];
4816
4817 while (1) {
4818 ret = find_first_extent_bit(unpin, 0, &start, &end,
4819 EXTENT_DIRTY);
4820 if (ret)
4821 break;
4822
4823 if (btrfs_test_opt(root, DISCARD))
4824 ret = btrfs_discard_extent(root, start,
4825 end + 1 - start, NULL);
4826
4827 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4828 unpin_extent_range(root, start, end);
4829 cond_resched();
4830 }
4831
4832 return 0;
4833 }
4834
4835 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4836 struct btrfs_root *root,
4837 u64 bytenr, u64 num_bytes, u64 parent,
4838 u64 root_objectid, u64 owner_objectid,
4839 u64 owner_offset, int refs_to_drop,
4840 struct btrfs_delayed_extent_op *extent_op)
4841 {
4842 struct btrfs_key key;
4843 struct btrfs_path *path;
4844 struct btrfs_fs_info *info = root->fs_info;
4845 struct btrfs_root *extent_root = info->extent_root;
4846 struct extent_buffer *leaf;
4847 struct btrfs_extent_item *ei;
4848 struct btrfs_extent_inline_ref *iref;
4849 int ret;
4850 int is_data;
4851 int extent_slot = 0;
4852 int found_extent = 0;
4853 int num_to_del = 1;
4854 u32 item_size;
4855 u64 refs;
4856
4857 path = btrfs_alloc_path();
4858 if (!path)
4859 return -ENOMEM;
4860
4861 path->reada = 1;
4862 path->leave_spinning = 1;
4863
4864 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4865 BUG_ON(!is_data && refs_to_drop != 1);
4866
4867 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4868 bytenr, num_bytes, parent,
4869 root_objectid, owner_objectid,
4870 owner_offset);
4871 if (ret == 0) {
4872 extent_slot = path->slots[0];
4873 while (extent_slot >= 0) {
4874 btrfs_item_key_to_cpu(path->nodes[0], &key,
4875 extent_slot);
4876 if (key.objectid != bytenr)
4877 break;
4878 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4879 key.offset == num_bytes) {
4880 found_extent = 1;
4881 break;
4882 }
4883 if (path->slots[0] - extent_slot > 5)
4884 break;
4885 extent_slot--;
4886 }
4887 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4888 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4889 if (found_extent && item_size < sizeof(*ei))
4890 found_extent = 0;
4891 #endif
4892 if (!found_extent) {
4893 BUG_ON(iref);
4894 ret = remove_extent_backref(trans, extent_root, path,
4895 NULL, refs_to_drop,
4896 is_data);
4897 BUG_ON(ret);
4898 btrfs_release_path(path);
4899 path->leave_spinning = 1;
4900
4901 key.objectid = bytenr;
4902 key.type = BTRFS_EXTENT_ITEM_KEY;
4903 key.offset = num_bytes;
4904
4905 ret = btrfs_search_slot(trans, extent_root,
4906 &key, path, -1, 1);
4907 if (ret) {
4908 printk(KERN_ERR "umm, got %d back from search"
4909 ", was looking for %llu\n", ret,
4910 (unsigned long long)bytenr);
4911 if (ret > 0)
4912 btrfs_print_leaf(extent_root,
4913 path->nodes[0]);
4914 }
4915 BUG_ON(ret);
4916 extent_slot = path->slots[0];
4917 }
4918 } else {
4919 btrfs_print_leaf(extent_root, path->nodes[0]);
4920 WARN_ON(1);
4921 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4922 "parent %llu root %llu owner %llu offset %llu\n",
4923 (unsigned long long)bytenr,
4924 (unsigned long long)parent,
4925 (unsigned long long)root_objectid,
4926 (unsigned long long)owner_objectid,
4927 (unsigned long long)owner_offset);
4928 }
4929
4930 leaf = path->nodes[0];
4931 item_size = btrfs_item_size_nr(leaf, extent_slot);
4932 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4933 if (item_size < sizeof(*ei)) {
4934 BUG_ON(found_extent || extent_slot != path->slots[0]);
4935 ret = convert_extent_item_v0(trans, extent_root, path,
4936 owner_objectid, 0);
4937 BUG_ON(ret < 0);
4938
4939 btrfs_release_path(path);
4940 path->leave_spinning = 1;
4941
4942 key.objectid = bytenr;
4943 key.type = BTRFS_EXTENT_ITEM_KEY;
4944 key.offset = num_bytes;
4945
4946 ret = btrfs_search_slot(trans, extent_root, &key, path,
4947 -1, 1);
4948 if (ret) {
4949 printk(KERN_ERR "umm, got %d back from search"
4950 ", was looking for %llu\n", ret,
4951 (unsigned long long)bytenr);
4952 btrfs_print_leaf(extent_root, path->nodes[0]);
4953 }
4954 BUG_ON(ret);
4955 extent_slot = path->slots[0];
4956 leaf = path->nodes[0];
4957 item_size = btrfs_item_size_nr(leaf, extent_slot);
4958 }
4959 #endif
4960 BUG_ON(item_size < sizeof(*ei));
4961 ei = btrfs_item_ptr(leaf, extent_slot,
4962 struct btrfs_extent_item);
4963 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4964 struct btrfs_tree_block_info *bi;
4965 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4966 bi = (struct btrfs_tree_block_info *)(ei + 1);
4967 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4968 }
4969
4970 refs = btrfs_extent_refs(leaf, ei);
4971 BUG_ON(refs < refs_to_drop);
4972 refs -= refs_to_drop;
4973
4974 if (refs > 0) {
4975 if (extent_op)
4976 __run_delayed_extent_op(extent_op, leaf, ei);
4977 /*
4978 * In the case of inline back ref, reference count will
4979 * be updated by remove_extent_backref
4980 */
4981 if (iref) {
4982 BUG_ON(!found_extent);
4983 } else {
4984 btrfs_set_extent_refs(leaf, ei, refs);
4985 btrfs_mark_buffer_dirty(leaf);
4986 }
4987 if (found_extent) {
4988 ret = remove_extent_backref(trans, extent_root, path,
4989 iref, refs_to_drop,
4990 is_data);
4991 BUG_ON(ret);
4992 }
4993 } else {
4994 if (found_extent) {
4995 BUG_ON(is_data && refs_to_drop !=
4996 extent_data_ref_count(root, path, iref));
4997 if (iref) {
4998 BUG_ON(path->slots[0] != extent_slot);
4999 } else {
5000 BUG_ON(path->slots[0] != extent_slot + 1);
5001 path->slots[0] = extent_slot;
5002 num_to_del = 2;
5003 }
5004 }
5005
5006 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5007 num_to_del);
5008 BUG_ON(ret);
5009 btrfs_release_path(path);
5010
5011 if (is_data) {
5012 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5013 BUG_ON(ret);
5014 }
5015
5016 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5017 BUG_ON(ret);
5018 }
5019 btrfs_free_path(path);
5020 return ret;
5021 }
5022
5023 /*
5024 * when we free an block, it is possible (and likely) that we free the last
5025 * delayed ref for that extent as well. This searches the delayed ref tree for
5026 * a given extent, and if there are no other delayed refs to be processed, it
5027 * removes it from the tree.
5028 */
5029 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5030 struct btrfs_root *root, u64 bytenr)
5031 {
5032 struct btrfs_delayed_ref_head *head;
5033 struct btrfs_delayed_ref_root *delayed_refs;
5034 struct btrfs_delayed_ref_node *ref;
5035 struct rb_node *node;
5036 int ret = 0;
5037
5038 delayed_refs = &trans->transaction->delayed_refs;
5039 spin_lock(&delayed_refs->lock);
5040 head = btrfs_find_delayed_ref_head(trans, bytenr);
5041 if (!head)
5042 goto out;
5043
5044 node = rb_prev(&head->node.rb_node);
5045 if (!node)
5046 goto out;
5047
5048 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5049
5050 /* there are still entries for this ref, we can't drop it */
5051 if (ref->bytenr == bytenr)
5052 goto out;
5053
5054 if (head->extent_op) {
5055 if (!head->must_insert_reserved)
5056 goto out;
5057 kfree(head->extent_op);
5058 head->extent_op = NULL;
5059 }
5060
5061 /*
5062 * waiting for the lock here would deadlock. If someone else has it
5063 * locked they are already in the process of dropping it anyway
5064 */
5065 if (!mutex_trylock(&head->mutex))
5066 goto out;
5067
5068 /*
5069 * at this point we have a head with no other entries. Go
5070 * ahead and process it.
5071 */
5072 head->node.in_tree = 0;
5073 rb_erase(&head->node.rb_node, &delayed_refs->root);
5074
5075 delayed_refs->num_entries--;
5076 if (waitqueue_active(&delayed_refs->seq_wait))
5077 wake_up(&delayed_refs->seq_wait);
5078
5079 /*
5080 * we don't take a ref on the node because we're removing it from the
5081 * tree, so we just steal the ref the tree was holding.
5082 */
5083 delayed_refs->num_heads--;
5084 if (list_empty(&head->cluster))
5085 delayed_refs->num_heads_ready--;
5086
5087 list_del_init(&head->cluster);
5088 spin_unlock(&delayed_refs->lock);
5089
5090 BUG_ON(head->extent_op);
5091 if (head->must_insert_reserved)
5092 ret = 1;
5093
5094 mutex_unlock(&head->mutex);
5095 btrfs_put_delayed_ref(&head->node);
5096 return ret;
5097 out:
5098 spin_unlock(&delayed_refs->lock);
5099 return 0;
5100 }
5101
5102 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5103 struct btrfs_root *root,
5104 struct extent_buffer *buf,
5105 u64 parent, int last_ref, int for_cow)
5106 {
5107 struct btrfs_block_group_cache *cache = NULL;
5108 int ret;
5109
5110 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5111 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5112 buf->start, buf->len,
5113 parent, root->root_key.objectid,
5114 btrfs_header_level(buf),
5115 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5116 BUG_ON(ret);
5117 }
5118
5119 if (!last_ref)
5120 return;
5121
5122 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5123
5124 if (btrfs_header_generation(buf) == trans->transid) {
5125 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5126 ret = check_ref_cleanup(trans, root, buf->start);
5127 if (!ret)
5128 goto out;
5129 }
5130
5131 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5132 pin_down_extent(root, cache, buf->start, buf->len, 1);
5133 goto out;
5134 }
5135
5136 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5137
5138 btrfs_add_free_space(cache, buf->start, buf->len);
5139 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5140 }
5141 out:
5142 /*
5143 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5144 * anymore.
5145 */
5146 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5147 btrfs_put_block_group(cache);
5148 }
5149
5150 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5151 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5152 u64 owner, u64 offset, int for_cow)
5153 {
5154 int ret;
5155 struct btrfs_fs_info *fs_info = root->fs_info;
5156
5157 /*
5158 * tree log blocks never actually go into the extent allocation
5159 * tree, just update pinning info and exit early.
5160 */
5161 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5162 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5163 /* unlocks the pinned mutex */
5164 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5165 ret = 0;
5166 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5167 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5168 num_bytes,
5169 parent, root_objectid, (int)owner,
5170 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5171 BUG_ON(ret);
5172 } else {
5173 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5174 num_bytes,
5175 parent, root_objectid, owner,
5176 offset, BTRFS_DROP_DELAYED_REF,
5177 NULL, for_cow);
5178 BUG_ON(ret);
5179 }
5180 return ret;
5181 }
5182
5183 static u64 stripe_align(struct btrfs_root *root, u64 val)
5184 {
5185 u64 mask = ((u64)root->stripesize - 1);
5186 u64 ret = (val + mask) & ~mask;
5187 return ret;
5188 }
5189
5190 /*
5191 * when we wait for progress in the block group caching, its because
5192 * our allocation attempt failed at least once. So, we must sleep
5193 * and let some progress happen before we try again.
5194 *
5195 * This function will sleep at least once waiting for new free space to
5196 * show up, and then it will check the block group free space numbers
5197 * for our min num_bytes. Another option is to have it go ahead
5198 * and look in the rbtree for a free extent of a given size, but this
5199 * is a good start.
5200 */
5201 static noinline int
5202 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5203 u64 num_bytes)
5204 {
5205 struct btrfs_caching_control *caching_ctl;
5206 DEFINE_WAIT(wait);
5207
5208 caching_ctl = get_caching_control(cache);
5209 if (!caching_ctl)
5210 return 0;
5211
5212 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5213 (cache->free_space_ctl->free_space >= num_bytes));
5214
5215 put_caching_control(caching_ctl);
5216 return 0;
5217 }
5218
5219 static noinline int
5220 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5221 {
5222 struct btrfs_caching_control *caching_ctl;
5223 DEFINE_WAIT(wait);
5224
5225 caching_ctl = get_caching_control(cache);
5226 if (!caching_ctl)
5227 return 0;
5228
5229 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5230
5231 put_caching_control(caching_ctl);
5232 return 0;
5233 }
5234
5235 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5236 {
5237 int index;
5238 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5239 index = 0;
5240 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5241 index = 1;
5242 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5243 index = 2;
5244 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5245 index = 3;
5246 else
5247 index = 4;
5248 return index;
5249 }
5250
5251 enum btrfs_loop_type {
5252 LOOP_CACHING_NOWAIT = 0,
5253 LOOP_CACHING_WAIT = 1,
5254 LOOP_ALLOC_CHUNK = 2,
5255 LOOP_NO_EMPTY_SIZE = 3,
5256 };
5257
5258 /*
5259 * walks the btree of allocated extents and find a hole of a given size.
5260 * The key ins is changed to record the hole:
5261 * ins->objectid == block start
5262 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5263 * ins->offset == number of blocks
5264 * Any available blocks before search_start are skipped.
5265 */
5266 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5267 struct btrfs_root *orig_root,
5268 u64 num_bytes, u64 empty_size,
5269 u64 hint_byte, struct btrfs_key *ins,
5270 u64 data)
5271 {
5272 int ret = 0;
5273 struct btrfs_root *root = orig_root->fs_info->extent_root;
5274 struct btrfs_free_cluster *last_ptr = NULL;
5275 struct btrfs_block_group_cache *block_group = NULL;
5276 struct btrfs_block_group_cache *used_block_group;
5277 u64 search_start = 0;
5278 int empty_cluster = 2 * 1024 * 1024;
5279 int allowed_chunk_alloc = 0;
5280 int done_chunk_alloc = 0;
5281 struct btrfs_space_info *space_info;
5282 int loop = 0;
5283 int index = 0;
5284 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5285 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5286 bool found_uncached_bg = false;
5287 bool failed_cluster_refill = false;
5288 bool failed_alloc = false;
5289 bool use_cluster = true;
5290 bool have_caching_bg = false;
5291
5292 WARN_ON(num_bytes < root->sectorsize);
5293 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5294 ins->objectid = 0;
5295 ins->offset = 0;
5296
5297 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5298
5299 space_info = __find_space_info(root->fs_info, data);
5300 if (!space_info) {
5301 printk(KERN_ERR "No space info for %llu\n", data);
5302 return -ENOSPC;
5303 }
5304
5305 /*
5306 * If the space info is for both data and metadata it means we have a
5307 * small filesystem and we can't use the clustering stuff.
5308 */
5309 if (btrfs_mixed_space_info(space_info))
5310 use_cluster = false;
5311
5312 if (orig_root->ref_cows || empty_size)
5313 allowed_chunk_alloc = 1;
5314
5315 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5316 last_ptr = &root->fs_info->meta_alloc_cluster;
5317 if (!btrfs_test_opt(root, SSD))
5318 empty_cluster = 64 * 1024;
5319 }
5320
5321 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5322 btrfs_test_opt(root, SSD)) {
5323 last_ptr = &root->fs_info->data_alloc_cluster;
5324 }
5325
5326 if (last_ptr) {
5327 spin_lock(&last_ptr->lock);
5328 if (last_ptr->block_group)
5329 hint_byte = last_ptr->window_start;
5330 spin_unlock(&last_ptr->lock);
5331 }
5332
5333 search_start = max(search_start, first_logical_byte(root, 0));
5334 search_start = max(search_start, hint_byte);
5335
5336 if (!last_ptr)
5337 empty_cluster = 0;
5338
5339 if (search_start == hint_byte) {
5340 block_group = btrfs_lookup_block_group(root->fs_info,
5341 search_start);
5342 used_block_group = block_group;
5343 /*
5344 * we don't want to use the block group if it doesn't match our
5345 * allocation bits, or if its not cached.
5346 *
5347 * However if we are re-searching with an ideal block group
5348 * picked out then we don't care that the block group is cached.
5349 */
5350 if (block_group && block_group_bits(block_group, data) &&
5351 block_group->cached != BTRFS_CACHE_NO) {
5352 down_read(&space_info->groups_sem);
5353 if (list_empty(&block_group->list) ||
5354 block_group->ro) {
5355 /*
5356 * someone is removing this block group,
5357 * we can't jump into the have_block_group
5358 * target because our list pointers are not
5359 * valid
5360 */
5361 btrfs_put_block_group(block_group);
5362 up_read(&space_info->groups_sem);
5363 } else {
5364 index = get_block_group_index(block_group);
5365 goto have_block_group;
5366 }
5367 } else if (block_group) {
5368 btrfs_put_block_group(block_group);
5369 }
5370 }
5371 search:
5372 have_caching_bg = false;
5373 down_read(&space_info->groups_sem);
5374 list_for_each_entry(block_group, &space_info->block_groups[index],
5375 list) {
5376 u64 offset;
5377 int cached;
5378
5379 used_block_group = block_group;
5380 btrfs_get_block_group(block_group);
5381 search_start = block_group->key.objectid;
5382
5383 /*
5384 * this can happen if we end up cycling through all the
5385 * raid types, but we want to make sure we only allocate
5386 * for the proper type.
5387 */
5388 if (!block_group_bits(block_group, data)) {
5389 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5390 BTRFS_BLOCK_GROUP_RAID1 |
5391 BTRFS_BLOCK_GROUP_RAID10;
5392
5393 /*
5394 * if they asked for extra copies and this block group
5395 * doesn't provide them, bail. This does allow us to
5396 * fill raid0 from raid1.
5397 */
5398 if ((data & extra) && !(block_group->flags & extra))
5399 goto loop;
5400 }
5401
5402 have_block_group:
5403 cached = block_group_cache_done(block_group);
5404 if (unlikely(!cached)) {
5405 found_uncached_bg = true;
5406 ret = cache_block_group(block_group, trans,
5407 orig_root, 0);
5408 BUG_ON(ret);
5409 }
5410
5411 if (unlikely(block_group->ro))
5412 goto loop;
5413
5414 /*
5415 * Ok we want to try and use the cluster allocator, so
5416 * lets look there
5417 */
5418 if (last_ptr) {
5419 /*
5420 * the refill lock keeps out other
5421 * people trying to start a new cluster
5422 */
5423 spin_lock(&last_ptr->refill_lock);
5424 used_block_group = last_ptr->block_group;
5425 if (used_block_group != block_group &&
5426 (!used_block_group ||
5427 used_block_group->ro ||
5428 !block_group_bits(used_block_group, data))) {
5429 used_block_group = block_group;
5430 goto refill_cluster;
5431 }
5432
5433 if (used_block_group != block_group)
5434 btrfs_get_block_group(used_block_group);
5435
5436 offset = btrfs_alloc_from_cluster(used_block_group,
5437 last_ptr, num_bytes, used_block_group->key.objectid);
5438 if (offset) {
5439 /* we have a block, we're done */
5440 spin_unlock(&last_ptr->refill_lock);
5441 trace_btrfs_reserve_extent_cluster(root,
5442 block_group, search_start, num_bytes);
5443 goto checks;
5444 }
5445
5446 WARN_ON(last_ptr->block_group != used_block_group);
5447 if (used_block_group != block_group) {
5448 btrfs_put_block_group(used_block_group);
5449 used_block_group = block_group;
5450 }
5451 refill_cluster:
5452 BUG_ON(used_block_group != block_group);
5453 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5454 * set up a new clusters, so lets just skip it
5455 * and let the allocator find whatever block
5456 * it can find. If we reach this point, we
5457 * will have tried the cluster allocator
5458 * plenty of times and not have found
5459 * anything, so we are likely way too
5460 * fragmented for the clustering stuff to find
5461 * anything.
5462 *
5463 * However, if the cluster is taken from the
5464 * current block group, release the cluster
5465 * first, so that we stand a better chance of
5466 * succeeding in the unclustered
5467 * allocation. */
5468 if (loop >= LOOP_NO_EMPTY_SIZE &&
5469 last_ptr->block_group != block_group) {
5470 spin_unlock(&last_ptr->refill_lock);
5471 goto unclustered_alloc;
5472 }
5473
5474 /*
5475 * this cluster didn't work out, free it and
5476 * start over
5477 */
5478 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5479
5480 if (loop >= LOOP_NO_EMPTY_SIZE) {
5481 spin_unlock(&last_ptr->refill_lock);
5482 goto unclustered_alloc;
5483 }
5484
5485 /* allocate a cluster in this block group */
5486 ret = btrfs_find_space_cluster(trans, root,
5487 block_group, last_ptr,
5488 search_start, num_bytes,
5489 empty_cluster + empty_size);
5490 if (ret == 0) {
5491 /*
5492 * now pull our allocation out of this
5493 * cluster
5494 */
5495 offset = btrfs_alloc_from_cluster(block_group,
5496 last_ptr, num_bytes,
5497 search_start);
5498 if (offset) {
5499 /* we found one, proceed */
5500 spin_unlock(&last_ptr->refill_lock);
5501 trace_btrfs_reserve_extent_cluster(root,
5502 block_group, search_start,
5503 num_bytes);
5504 goto checks;
5505 }
5506 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5507 && !failed_cluster_refill) {
5508 spin_unlock(&last_ptr->refill_lock);
5509
5510 failed_cluster_refill = true;
5511 wait_block_group_cache_progress(block_group,
5512 num_bytes + empty_cluster + empty_size);
5513 goto have_block_group;
5514 }
5515
5516 /*
5517 * at this point we either didn't find a cluster
5518 * or we weren't able to allocate a block from our
5519 * cluster. Free the cluster we've been trying
5520 * to use, and go to the next block group
5521 */
5522 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5523 spin_unlock(&last_ptr->refill_lock);
5524 goto loop;
5525 }
5526
5527 unclustered_alloc:
5528 spin_lock(&block_group->free_space_ctl->tree_lock);
5529 if (cached &&
5530 block_group->free_space_ctl->free_space <
5531 num_bytes + empty_cluster + empty_size) {
5532 spin_unlock(&block_group->free_space_ctl->tree_lock);
5533 goto loop;
5534 }
5535 spin_unlock(&block_group->free_space_ctl->tree_lock);
5536
5537 offset = btrfs_find_space_for_alloc(block_group, search_start,
5538 num_bytes, empty_size);
5539 /*
5540 * If we didn't find a chunk, and we haven't failed on this
5541 * block group before, and this block group is in the middle of
5542 * caching and we are ok with waiting, then go ahead and wait
5543 * for progress to be made, and set failed_alloc to true.
5544 *
5545 * If failed_alloc is true then we've already waited on this
5546 * block group once and should move on to the next block group.
5547 */
5548 if (!offset && !failed_alloc && !cached &&
5549 loop > LOOP_CACHING_NOWAIT) {
5550 wait_block_group_cache_progress(block_group,
5551 num_bytes + empty_size);
5552 failed_alloc = true;
5553 goto have_block_group;
5554 } else if (!offset) {
5555 if (!cached)
5556 have_caching_bg = true;
5557 goto loop;
5558 }
5559 checks:
5560 search_start = stripe_align(root, offset);
5561
5562 /* move on to the next group */
5563 if (search_start + num_bytes >
5564 used_block_group->key.objectid + used_block_group->key.offset) {
5565 btrfs_add_free_space(used_block_group, offset, num_bytes);
5566 goto loop;
5567 }
5568
5569 if (offset < search_start)
5570 btrfs_add_free_space(used_block_group, offset,
5571 search_start - offset);
5572 BUG_ON(offset > search_start);
5573
5574 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5575 alloc_type);
5576 if (ret == -EAGAIN) {
5577 btrfs_add_free_space(used_block_group, offset, num_bytes);
5578 goto loop;
5579 }
5580
5581 /* we are all good, lets return */
5582 ins->objectid = search_start;
5583 ins->offset = num_bytes;
5584
5585 trace_btrfs_reserve_extent(orig_root, block_group,
5586 search_start, num_bytes);
5587 if (offset < search_start)
5588 btrfs_add_free_space(used_block_group, offset,
5589 search_start - offset);
5590 BUG_ON(offset > search_start);
5591 if (used_block_group != block_group)
5592 btrfs_put_block_group(used_block_group);
5593 btrfs_put_block_group(block_group);
5594 break;
5595 loop:
5596 failed_cluster_refill = false;
5597 failed_alloc = false;
5598 BUG_ON(index != get_block_group_index(block_group));
5599 if (used_block_group != block_group)
5600 btrfs_put_block_group(used_block_group);
5601 btrfs_put_block_group(block_group);
5602 }
5603 up_read(&space_info->groups_sem);
5604
5605 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5606 goto search;
5607
5608 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5609 goto search;
5610
5611 /*
5612 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5613 * caching kthreads as we move along
5614 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5615 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5616 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5617 * again
5618 */
5619 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5620 index = 0;
5621 loop++;
5622 if (loop == LOOP_ALLOC_CHUNK) {
5623 if (allowed_chunk_alloc) {
5624 ret = do_chunk_alloc(trans, root, num_bytes +
5625 2 * 1024 * 1024, data,
5626 CHUNK_ALLOC_LIMITED);
5627 allowed_chunk_alloc = 0;
5628 if (ret == 1)
5629 done_chunk_alloc = 1;
5630 } else if (!done_chunk_alloc &&
5631 space_info->force_alloc ==
5632 CHUNK_ALLOC_NO_FORCE) {
5633 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5634 }
5635
5636 /*
5637 * We didn't allocate a chunk, go ahead and drop the
5638 * empty size and loop again.
5639 */
5640 if (!done_chunk_alloc)
5641 loop = LOOP_NO_EMPTY_SIZE;
5642 }
5643
5644 if (loop == LOOP_NO_EMPTY_SIZE) {
5645 empty_size = 0;
5646 empty_cluster = 0;
5647 }
5648
5649 goto search;
5650 } else if (!ins->objectid) {
5651 ret = -ENOSPC;
5652 } else if (ins->objectid) {
5653 ret = 0;
5654 }
5655
5656 return ret;
5657 }
5658
5659 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5660 int dump_block_groups)
5661 {
5662 struct btrfs_block_group_cache *cache;
5663 int index = 0;
5664
5665 spin_lock(&info->lock);
5666 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5667 (unsigned long long)info->flags,
5668 (unsigned long long)(info->total_bytes - info->bytes_used -
5669 info->bytes_pinned - info->bytes_reserved -
5670 info->bytes_readonly),
5671 (info->full) ? "" : "not ");
5672 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5673 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5674 (unsigned long long)info->total_bytes,
5675 (unsigned long long)info->bytes_used,
5676 (unsigned long long)info->bytes_pinned,
5677 (unsigned long long)info->bytes_reserved,
5678 (unsigned long long)info->bytes_may_use,
5679 (unsigned long long)info->bytes_readonly);
5680 spin_unlock(&info->lock);
5681
5682 if (!dump_block_groups)
5683 return;
5684
5685 down_read(&info->groups_sem);
5686 again:
5687 list_for_each_entry(cache, &info->block_groups[index], list) {
5688 spin_lock(&cache->lock);
5689 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5690 "%llu pinned %llu reserved\n",
5691 (unsigned long long)cache->key.objectid,
5692 (unsigned long long)cache->key.offset,
5693 (unsigned long long)btrfs_block_group_used(&cache->item),
5694 (unsigned long long)cache->pinned,
5695 (unsigned long long)cache->reserved);
5696 btrfs_dump_free_space(cache, bytes);
5697 spin_unlock(&cache->lock);
5698 }
5699 if (++index < BTRFS_NR_RAID_TYPES)
5700 goto again;
5701 up_read(&info->groups_sem);
5702 }
5703
5704 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5705 struct btrfs_root *root,
5706 u64 num_bytes, u64 min_alloc_size,
5707 u64 empty_size, u64 hint_byte,
5708 struct btrfs_key *ins, u64 data)
5709 {
5710 bool final_tried = false;
5711 int ret;
5712
5713 data = btrfs_get_alloc_profile(root, data);
5714 again:
5715 /*
5716 * the only place that sets empty_size is btrfs_realloc_node, which
5717 * is not called recursively on allocations
5718 */
5719 if (empty_size || root->ref_cows)
5720 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5721 num_bytes + 2 * 1024 * 1024, data,
5722 CHUNK_ALLOC_NO_FORCE);
5723
5724 WARN_ON(num_bytes < root->sectorsize);
5725 ret = find_free_extent(trans, root, num_bytes, empty_size,
5726 hint_byte, ins, data);
5727
5728 if (ret == -ENOSPC) {
5729 if (!final_tried) {
5730 num_bytes = num_bytes >> 1;
5731 num_bytes = num_bytes & ~(root->sectorsize - 1);
5732 num_bytes = max(num_bytes, min_alloc_size);
5733 do_chunk_alloc(trans, root->fs_info->extent_root,
5734 num_bytes, data, CHUNK_ALLOC_FORCE);
5735 if (num_bytes == min_alloc_size)
5736 final_tried = true;
5737 goto again;
5738 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5739 struct btrfs_space_info *sinfo;
5740
5741 sinfo = __find_space_info(root->fs_info, data);
5742 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5743 "wanted %llu\n", (unsigned long long)data,
5744 (unsigned long long)num_bytes);
5745 dump_space_info(sinfo, num_bytes, 1);
5746 }
5747 }
5748
5749 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5750
5751 return ret;
5752 }
5753
5754 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5755 u64 start, u64 len, int pin)
5756 {
5757 struct btrfs_block_group_cache *cache;
5758 int ret = 0;
5759
5760 cache = btrfs_lookup_block_group(root->fs_info, start);
5761 if (!cache) {
5762 printk(KERN_ERR "Unable to find block group for %llu\n",
5763 (unsigned long long)start);
5764 return -ENOSPC;
5765 }
5766
5767 if (btrfs_test_opt(root, DISCARD))
5768 ret = btrfs_discard_extent(root, start, len, NULL);
5769
5770 if (pin)
5771 pin_down_extent(root, cache, start, len, 1);
5772 else {
5773 btrfs_add_free_space(cache, start, len);
5774 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5775 }
5776 btrfs_put_block_group(cache);
5777
5778 trace_btrfs_reserved_extent_free(root, start, len);
5779
5780 return ret;
5781 }
5782
5783 int btrfs_free_reserved_extent(struct btrfs_root *root,
5784 u64 start, u64 len)
5785 {
5786 return __btrfs_free_reserved_extent(root, start, len, 0);
5787 }
5788
5789 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5790 u64 start, u64 len)
5791 {
5792 return __btrfs_free_reserved_extent(root, start, len, 1);
5793 }
5794
5795 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5796 struct btrfs_root *root,
5797 u64 parent, u64 root_objectid,
5798 u64 flags, u64 owner, u64 offset,
5799 struct btrfs_key *ins, int ref_mod)
5800 {
5801 int ret;
5802 struct btrfs_fs_info *fs_info = root->fs_info;
5803 struct btrfs_extent_item *extent_item;
5804 struct btrfs_extent_inline_ref *iref;
5805 struct btrfs_path *path;
5806 struct extent_buffer *leaf;
5807 int type;
5808 u32 size;
5809
5810 if (parent > 0)
5811 type = BTRFS_SHARED_DATA_REF_KEY;
5812 else
5813 type = BTRFS_EXTENT_DATA_REF_KEY;
5814
5815 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5816
5817 path = btrfs_alloc_path();
5818 if (!path)
5819 return -ENOMEM;
5820
5821 path->leave_spinning = 1;
5822 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5823 ins, size);
5824 BUG_ON(ret);
5825
5826 leaf = path->nodes[0];
5827 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5828 struct btrfs_extent_item);
5829 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5830 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5831 btrfs_set_extent_flags(leaf, extent_item,
5832 flags | BTRFS_EXTENT_FLAG_DATA);
5833
5834 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5835 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5836 if (parent > 0) {
5837 struct btrfs_shared_data_ref *ref;
5838 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5839 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5840 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5841 } else {
5842 struct btrfs_extent_data_ref *ref;
5843 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5844 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5845 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5846 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5847 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5848 }
5849
5850 btrfs_mark_buffer_dirty(path->nodes[0]);
5851 btrfs_free_path(path);
5852
5853 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5854 if (ret) {
5855 printk(KERN_ERR "btrfs update block group failed for %llu "
5856 "%llu\n", (unsigned long long)ins->objectid,
5857 (unsigned long long)ins->offset);
5858 BUG();
5859 }
5860 return ret;
5861 }
5862
5863 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5864 struct btrfs_root *root,
5865 u64 parent, u64 root_objectid,
5866 u64 flags, struct btrfs_disk_key *key,
5867 int level, struct btrfs_key *ins)
5868 {
5869 int ret;
5870 struct btrfs_fs_info *fs_info = root->fs_info;
5871 struct btrfs_extent_item *extent_item;
5872 struct btrfs_tree_block_info *block_info;
5873 struct btrfs_extent_inline_ref *iref;
5874 struct btrfs_path *path;
5875 struct extent_buffer *leaf;
5876 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5877
5878 path = btrfs_alloc_path();
5879 if (!path)
5880 return -ENOMEM;
5881
5882 path->leave_spinning = 1;
5883 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5884 ins, size);
5885 BUG_ON(ret);
5886
5887 leaf = path->nodes[0];
5888 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5889 struct btrfs_extent_item);
5890 btrfs_set_extent_refs(leaf, extent_item, 1);
5891 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5892 btrfs_set_extent_flags(leaf, extent_item,
5893 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5894 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5895
5896 btrfs_set_tree_block_key(leaf, block_info, key);
5897 btrfs_set_tree_block_level(leaf, block_info, level);
5898
5899 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5900 if (parent > 0) {
5901 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5902 btrfs_set_extent_inline_ref_type(leaf, iref,
5903 BTRFS_SHARED_BLOCK_REF_KEY);
5904 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5905 } else {
5906 btrfs_set_extent_inline_ref_type(leaf, iref,
5907 BTRFS_TREE_BLOCK_REF_KEY);
5908 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5909 }
5910
5911 btrfs_mark_buffer_dirty(leaf);
5912 btrfs_free_path(path);
5913
5914 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5915 if (ret) {
5916 printk(KERN_ERR "btrfs update block group failed for %llu "
5917 "%llu\n", (unsigned long long)ins->objectid,
5918 (unsigned long long)ins->offset);
5919 BUG();
5920 }
5921 return ret;
5922 }
5923
5924 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5925 struct btrfs_root *root,
5926 u64 root_objectid, u64 owner,
5927 u64 offset, struct btrfs_key *ins)
5928 {
5929 int ret;
5930
5931 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5932
5933 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
5934 ins->offset, 0,
5935 root_objectid, owner, offset,
5936 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
5937 return ret;
5938 }
5939
5940 /*
5941 * this is used by the tree logging recovery code. It records that
5942 * an extent has been allocated and makes sure to clear the free
5943 * space cache bits as well
5944 */
5945 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5946 struct btrfs_root *root,
5947 u64 root_objectid, u64 owner, u64 offset,
5948 struct btrfs_key *ins)
5949 {
5950 int ret;
5951 struct btrfs_block_group_cache *block_group;
5952 struct btrfs_caching_control *caching_ctl;
5953 u64 start = ins->objectid;
5954 u64 num_bytes = ins->offset;
5955
5956 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5957 cache_block_group(block_group, trans, NULL, 0);
5958 caching_ctl = get_caching_control(block_group);
5959
5960 if (!caching_ctl) {
5961 BUG_ON(!block_group_cache_done(block_group));
5962 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5963 BUG_ON(ret);
5964 } else {
5965 mutex_lock(&caching_ctl->mutex);
5966
5967 if (start >= caching_ctl->progress) {
5968 ret = add_excluded_extent(root, start, num_bytes);
5969 BUG_ON(ret);
5970 } else if (start + num_bytes <= caching_ctl->progress) {
5971 ret = btrfs_remove_free_space(block_group,
5972 start, num_bytes);
5973 BUG_ON(ret);
5974 } else {
5975 num_bytes = caching_ctl->progress - start;
5976 ret = btrfs_remove_free_space(block_group,
5977 start, num_bytes);
5978 BUG_ON(ret);
5979
5980 start = caching_ctl->progress;
5981 num_bytes = ins->objectid + ins->offset -
5982 caching_ctl->progress;
5983 ret = add_excluded_extent(root, start, num_bytes);
5984 BUG_ON(ret);
5985 }
5986
5987 mutex_unlock(&caching_ctl->mutex);
5988 put_caching_control(caching_ctl);
5989 }
5990
5991 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5992 RESERVE_ALLOC_NO_ACCOUNT);
5993 BUG_ON(ret);
5994 btrfs_put_block_group(block_group);
5995 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5996 0, owner, offset, ins, 1);
5997 return ret;
5998 }
5999
6000 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6001 struct btrfs_root *root,
6002 u64 bytenr, u32 blocksize,
6003 int level)
6004 {
6005 struct extent_buffer *buf;
6006
6007 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6008 if (!buf)
6009 return ERR_PTR(-ENOMEM);
6010 btrfs_set_header_generation(buf, trans->transid);
6011 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6012 btrfs_tree_lock(buf);
6013 clean_tree_block(trans, root, buf);
6014 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6015
6016 btrfs_set_lock_blocking(buf);
6017 btrfs_set_buffer_uptodate(buf);
6018
6019 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6020 /*
6021 * we allow two log transactions at a time, use different
6022 * EXENT bit to differentiate dirty pages.
6023 */
6024 if (root->log_transid % 2 == 0)
6025 set_extent_dirty(&root->dirty_log_pages, buf->start,
6026 buf->start + buf->len - 1, GFP_NOFS);
6027 else
6028 set_extent_new(&root->dirty_log_pages, buf->start,
6029 buf->start + buf->len - 1, GFP_NOFS);
6030 } else {
6031 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6032 buf->start + buf->len - 1, GFP_NOFS);
6033 }
6034 trans->blocks_used++;
6035 /* this returns a buffer locked for blocking */
6036 return buf;
6037 }
6038
6039 static struct btrfs_block_rsv *
6040 use_block_rsv(struct btrfs_trans_handle *trans,
6041 struct btrfs_root *root, u32 blocksize)
6042 {
6043 struct btrfs_block_rsv *block_rsv;
6044 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6045 int ret;
6046
6047 block_rsv = get_block_rsv(trans, root);
6048
6049 if (block_rsv->size == 0) {
6050 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6051 /*
6052 * If we couldn't reserve metadata bytes try and use some from
6053 * the global reserve.
6054 */
6055 if (ret && block_rsv != global_rsv) {
6056 ret = block_rsv_use_bytes(global_rsv, blocksize);
6057 if (!ret)
6058 return global_rsv;
6059 return ERR_PTR(ret);
6060 } else if (ret) {
6061 return ERR_PTR(ret);
6062 }
6063 return block_rsv;
6064 }
6065
6066 ret = block_rsv_use_bytes(block_rsv, blocksize);
6067 if (!ret)
6068 return block_rsv;
6069 if (ret) {
6070 static DEFINE_RATELIMIT_STATE(_rs,
6071 DEFAULT_RATELIMIT_INTERVAL,
6072 /*DEFAULT_RATELIMIT_BURST*/ 2);
6073 if (__ratelimit(&_rs)) {
6074 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6075 WARN_ON(1);
6076 }
6077 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6078 if (!ret) {
6079 return block_rsv;
6080 } else if (ret && block_rsv != global_rsv) {
6081 ret = block_rsv_use_bytes(global_rsv, blocksize);
6082 if (!ret)
6083 return global_rsv;
6084 }
6085 }
6086
6087 return ERR_PTR(-ENOSPC);
6088 }
6089
6090 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6091 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6092 {
6093 block_rsv_add_bytes(block_rsv, blocksize, 0);
6094 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6095 }
6096
6097 /*
6098 * finds a free extent and does all the dirty work required for allocation
6099 * returns the key for the extent through ins, and a tree buffer for
6100 * the first block of the extent through buf.
6101 *
6102 * returns the tree buffer or NULL.
6103 */
6104 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6105 struct btrfs_root *root, u32 blocksize,
6106 u64 parent, u64 root_objectid,
6107 struct btrfs_disk_key *key, int level,
6108 u64 hint, u64 empty_size, int for_cow)
6109 {
6110 struct btrfs_key ins;
6111 struct btrfs_block_rsv *block_rsv;
6112 struct extent_buffer *buf;
6113 u64 flags = 0;
6114 int ret;
6115
6116
6117 block_rsv = use_block_rsv(trans, root, blocksize);
6118 if (IS_ERR(block_rsv))
6119 return ERR_CAST(block_rsv);
6120
6121 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6122 empty_size, hint, &ins, 0);
6123 if (ret) {
6124 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6125 return ERR_PTR(ret);
6126 }
6127
6128 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6129 blocksize, level);
6130 BUG_ON(IS_ERR(buf));
6131
6132 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6133 if (parent == 0)
6134 parent = ins.objectid;
6135 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6136 } else
6137 BUG_ON(parent > 0);
6138
6139 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6140 struct btrfs_delayed_extent_op *extent_op;
6141 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6142 BUG_ON(!extent_op);
6143 if (key)
6144 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6145 else
6146 memset(&extent_op->key, 0, sizeof(extent_op->key));
6147 extent_op->flags_to_set = flags;
6148 extent_op->update_key = 1;
6149 extent_op->update_flags = 1;
6150 extent_op->is_data = 0;
6151
6152 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6153 ins.objectid,
6154 ins.offset, parent, root_objectid,
6155 level, BTRFS_ADD_DELAYED_EXTENT,
6156 extent_op, for_cow);
6157 BUG_ON(ret);
6158 }
6159 return buf;
6160 }
6161
6162 struct walk_control {
6163 u64 refs[BTRFS_MAX_LEVEL];
6164 u64 flags[BTRFS_MAX_LEVEL];
6165 struct btrfs_key update_progress;
6166 int stage;
6167 int level;
6168 int shared_level;
6169 int update_ref;
6170 int keep_locks;
6171 int reada_slot;
6172 int reada_count;
6173 int for_reloc;
6174 };
6175
6176 #define DROP_REFERENCE 1
6177 #define UPDATE_BACKREF 2
6178
6179 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6180 struct btrfs_root *root,
6181 struct walk_control *wc,
6182 struct btrfs_path *path)
6183 {
6184 u64 bytenr;
6185 u64 generation;
6186 u64 refs;
6187 u64 flags;
6188 u32 nritems;
6189 u32 blocksize;
6190 struct btrfs_key key;
6191 struct extent_buffer *eb;
6192 int ret;
6193 int slot;
6194 int nread = 0;
6195
6196 if (path->slots[wc->level] < wc->reada_slot) {
6197 wc->reada_count = wc->reada_count * 2 / 3;
6198 wc->reada_count = max(wc->reada_count, 2);
6199 } else {
6200 wc->reada_count = wc->reada_count * 3 / 2;
6201 wc->reada_count = min_t(int, wc->reada_count,
6202 BTRFS_NODEPTRS_PER_BLOCK(root));
6203 }
6204
6205 eb = path->nodes[wc->level];
6206 nritems = btrfs_header_nritems(eb);
6207 blocksize = btrfs_level_size(root, wc->level - 1);
6208
6209 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6210 if (nread >= wc->reada_count)
6211 break;
6212
6213 cond_resched();
6214 bytenr = btrfs_node_blockptr(eb, slot);
6215 generation = btrfs_node_ptr_generation(eb, slot);
6216
6217 if (slot == path->slots[wc->level])
6218 goto reada;
6219
6220 if (wc->stage == UPDATE_BACKREF &&
6221 generation <= root->root_key.offset)
6222 continue;
6223
6224 /* We don't lock the tree block, it's OK to be racy here */
6225 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6226 &refs, &flags);
6227 BUG_ON(ret);
6228 BUG_ON(refs == 0);
6229
6230 if (wc->stage == DROP_REFERENCE) {
6231 if (refs == 1)
6232 goto reada;
6233
6234 if (wc->level == 1 &&
6235 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6236 continue;
6237 if (!wc->update_ref ||
6238 generation <= root->root_key.offset)
6239 continue;
6240 btrfs_node_key_to_cpu(eb, &key, slot);
6241 ret = btrfs_comp_cpu_keys(&key,
6242 &wc->update_progress);
6243 if (ret < 0)
6244 continue;
6245 } else {
6246 if (wc->level == 1 &&
6247 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6248 continue;
6249 }
6250 reada:
6251 ret = readahead_tree_block(root, bytenr, blocksize,
6252 generation);
6253 if (ret)
6254 break;
6255 nread++;
6256 }
6257 wc->reada_slot = slot;
6258 }
6259
6260 /*
6261 * hepler to process tree block while walking down the tree.
6262 *
6263 * when wc->stage == UPDATE_BACKREF, this function updates
6264 * back refs for pointers in the block.
6265 *
6266 * NOTE: return value 1 means we should stop walking down.
6267 */
6268 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6269 struct btrfs_root *root,
6270 struct btrfs_path *path,
6271 struct walk_control *wc, int lookup_info)
6272 {
6273 int level = wc->level;
6274 struct extent_buffer *eb = path->nodes[level];
6275 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6276 int ret;
6277
6278 if (wc->stage == UPDATE_BACKREF &&
6279 btrfs_header_owner(eb) != root->root_key.objectid)
6280 return 1;
6281
6282 /*
6283 * when reference count of tree block is 1, it won't increase
6284 * again. once full backref flag is set, we never clear it.
6285 */
6286 if (lookup_info &&
6287 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6288 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6289 BUG_ON(!path->locks[level]);
6290 ret = btrfs_lookup_extent_info(trans, root,
6291 eb->start, eb->len,
6292 &wc->refs[level],
6293 &wc->flags[level]);
6294 BUG_ON(ret);
6295 BUG_ON(wc->refs[level] == 0);
6296 }
6297
6298 if (wc->stage == DROP_REFERENCE) {
6299 if (wc->refs[level] > 1)
6300 return 1;
6301
6302 if (path->locks[level] && !wc->keep_locks) {
6303 btrfs_tree_unlock_rw(eb, path->locks[level]);
6304 path->locks[level] = 0;
6305 }
6306 return 0;
6307 }
6308
6309 /* wc->stage == UPDATE_BACKREF */
6310 if (!(wc->flags[level] & flag)) {
6311 BUG_ON(!path->locks[level]);
6312 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6313 BUG_ON(ret);
6314 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6315 BUG_ON(ret);
6316 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6317 eb->len, flag, 0);
6318 BUG_ON(ret);
6319 wc->flags[level] |= flag;
6320 }
6321
6322 /*
6323 * the block is shared by multiple trees, so it's not good to
6324 * keep the tree lock
6325 */
6326 if (path->locks[level] && level > 0) {
6327 btrfs_tree_unlock_rw(eb, path->locks[level]);
6328 path->locks[level] = 0;
6329 }
6330 return 0;
6331 }
6332
6333 /*
6334 * hepler to process tree block pointer.
6335 *
6336 * when wc->stage == DROP_REFERENCE, this function checks
6337 * reference count of the block pointed to. if the block
6338 * is shared and we need update back refs for the subtree
6339 * rooted at the block, this function changes wc->stage to
6340 * UPDATE_BACKREF. if the block is shared and there is no
6341 * need to update back, this function drops the reference
6342 * to the block.
6343 *
6344 * NOTE: return value 1 means we should stop walking down.
6345 */
6346 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6347 struct btrfs_root *root,
6348 struct btrfs_path *path,
6349 struct walk_control *wc, int *lookup_info)
6350 {
6351 u64 bytenr;
6352 u64 generation;
6353 u64 parent;
6354 u32 blocksize;
6355 struct btrfs_key key;
6356 struct extent_buffer *next;
6357 int level = wc->level;
6358 int reada = 0;
6359 int ret = 0;
6360
6361 generation = btrfs_node_ptr_generation(path->nodes[level],
6362 path->slots[level]);
6363 /*
6364 * if the lower level block was created before the snapshot
6365 * was created, we know there is no need to update back refs
6366 * for the subtree
6367 */
6368 if (wc->stage == UPDATE_BACKREF &&
6369 generation <= root->root_key.offset) {
6370 *lookup_info = 1;
6371 return 1;
6372 }
6373
6374 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6375 blocksize = btrfs_level_size(root, level - 1);
6376
6377 next = btrfs_find_tree_block(root, bytenr, blocksize);
6378 if (!next) {
6379 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6380 if (!next)
6381 return -ENOMEM;
6382 reada = 1;
6383 }
6384 btrfs_tree_lock(next);
6385 btrfs_set_lock_blocking(next);
6386
6387 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6388 &wc->refs[level - 1],
6389 &wc->flags[level - 1]);
6390 BUG_ON(ret);
6391 BUG_ON(wc->refs[level - 1] == 0);
6392 *lookup_info = 0;
6393
6394 if (wc->stage == DROP_REFERENCE) {
6395 if (wc->refs[level - 1] > 1) {
6396 if (level == 1 &&
6397 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6398 goto skip;
6399
6400 if (!wc->update_ref ||
6401 generation <= root->root_key.offset)
6402 goto skip;
6403
6404 btrfs_node_key_to_cpu(path->nodes[level], &key,
6405 path->slots[level]);
6406 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6407 if (ret < 0)
6408 goto skip;
6409
6410 wc->stage = UPDATE_BACKREF;
6411 wc->shared_level = level - 1;
6412 }
6413 } else {
6414 if (level == 1 &&
6415 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6416 goto skip;
6417 }
6418
6419 if (!btrfs_buffer_uptodate(next, generation)) {
6420 btrfs_tree_unlock(next);
6421 free_extent_buffer(next);
6422 next = NULL;
6423 *lookup_info = 1;
6424 }
6425
6426 if (!next) {
6427 if (reada && level == 1)
6428 reada_walk_down(trans, root, wc, path);
6429 next = read_tree_block(root, bytenr, blocksize, generation);
6430 if (!next)
6431 return -EIO;
6432 btrfs_tree_lock(next);
6433 btrfs_set_lock_blocking(next);
6434 }
6435
6436 level--;
6437 BUG_ON(level != btrfs_header_level(next));
6438 path->nodes[level] = next;
6439 path->slots[level] = 0;
6440 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6441 wc->level = level;
6442 if (wc->level == 1)
6443 wc->reada_slot = 0;
6444 return 0;
6445 skip:
6446 wc->refs[level - 1] = 0;
6447 wc->flags[level - 1] = 0;
6448 if (wc->stage == DROP_REFERENCE) {
6449 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6450 parent = path->nodes[level]->start;
6451 } else {
6452 BUG_ON(root->root_key.objectid !=
6453 btrfs_header_owner(path->nodes[level]));
6454 parent = 0;
6455 }
6456
6457 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6458 root->root_key.objectid, level - 1, 0, 0);
6459 BUG_ON(ret);
6460 }
6461 btrfs_tree_unlock(next);
6462 free_extent_buffer(next);
6463 *lookup_info = 1;
6464 return 1;
6465 }
6466
6467 /*
6468 * hepler to process tree block while walking up the tree.
6469 *
6470 * when wc->stage == DROP_REFERENCE, this function drops
6471 * reference count on the block.
6472 *
6473 * when wc->stage == UPDATE_BACKREF, this function changes
6474 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6475 * to UPDATE_BACKREF previously while processing the block.
6476 *
6477 * NOTE: return value 1 means we should stop walking up.
6478 */
6479 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6480 struct btrfs_root *root,
6481 struct btrfs_path *path,
6482 struct walk_control *wc)
6483 {
6484 int ret;
6485 int level = wc->level;
6486 struct extent_buffer *eb = path->nodes[level];
6487 u64 parent = 0;
6488
6489 if (wc->stage == UPDATE_BACKREF) {
6490 BUG_ON(wc->shared_level < level);
6491 if (level < wc->shared_level)
6492 goto out;
6493
6494 ret = find_next_key(path, level + 1, &wc->update_progress);
6495 if (ret > 0)
6496 wc->update_ref = 0;
6497
6498 wc->stage = DROP_REFERENCE;
6499 wc->shared_level = -1;
6500 path->slots[level] = 0;
6501
6502 /*
6503 * check reference count again if the block isn't locked.
6504 * we should start walking down the tree again if reference
6505 * count is one.
6506 */
6507 if (!path->locks[level]) {
6508 BUG_ON(level == 0);
6509 btrfs_tree_lock(eb);
6510 btrfs_set_lock_blocking(eb);
6511 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6512
6513 ret = btrfs_lookup_extent_info(trans, root,
6514 eb->start, eb->len,
6515 &wc->refs[level],
6516 &wc->flags[level]);
6517 BUG_ON(ret);
6518 BUG_ON(wc->refs[level] == 0);
6519 if (wc->refs[level] == 1) {
6520 btrfs_tree_unlock_rw(eb, path->locks[level]);
6521 return 1;
6522 }
6523 }
6524 }
6525
6526 /* wc->stage == DROP_REFERENCE */
6527 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6528
6529 if (wc->refs[level] == 1) {
6530 if (level == 0) {
6531 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6532 ret = btrfs_dec_ref(trans, root, eb, 1,
6533 wc->for_reloc);
6534 else
6535 ret = btrfs_dec_ref(trans, root, eb, 0,
6536 wc->for_reloc);
6537 BUG_ON(ret);
6538 }
6539 /* make block locked assertion in clean_tree_block happy */
6540 if (!path->locks[level] &&
6541 btrfs_header_generation(eb) == trans->transid) {
6542 btrfs_tree_lock(eb);
6543 btrfs_set_lock_blocking(eb);
6544 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6545 }
6546 clean_tree_block(trans, root, eb);
6547 }
6548
6549 if (eb == root->node) {
6550 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6551 parent = eb->start;
6552 else
6553 BUG_ON(root->root_key.objectid !=
6554 btrfs_header_owner(eb));
6555 } else {
6556 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6557 parent = path->nodes[level + 1]->start;
6558 else
6559 BUG_ON(root->root_key.objectid !=
6560 btrfs_header_owner(path->nodes[level + 1]));
6561 }
6562
6563 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6564 out:
6565 wc->refs[level] = 0;
6566 wc->flags[level] = 0;
6567 return 0;
6568 }
6569
6570 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6571 struct btrfs_root *root,
6572 struct btrfs_path *path,
6573 struct walk_control *wc)
6574 {
6575 int level = wc->level;
6576 int lookup_info = 1;
6577 int ret;
6578
6579 while (level >= 0) {
6580 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6581 if (ret > 0)
6582 break;
6583
6584 if (level == 0)
6585 break;
6586
6587 if (path->slots[level] >=
6588 btrfs_header_nritems(path->nodes[level]))
6589 break;
6590
6591 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6592 if (ret > 0) {
6593 path->slots[level]++;
6594 continue;
6595 } else if (ret < 0)
6596 return ret;
6597 level = wc->level;
6598 }
6599 return 0;
6600 }
6601
6602 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6603 struct btrfs_root *root,
6604 struct btrfs_path *path,
6605 struct walk_control *wc, int max_level)
6606 {
6607 int level = wc->level;
6608 int ret;
6609
6610 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6611 while (level < max_level && path->nodes[level]) {
6612 wc->level = level;
6613 if (path->slots[level] + 1 <
6614 btrfs_header_nritems(path->nodes[level])) {
6615 path->slots[level]++;
6616 return 0;
6617 } else {
6618 ret = walk_up_proc(trans, root, path, wc);
6619 if (ret > 0)
6620 return 0;
6621
6622 if (path->locks[level]) {
6623 btrfs_tree_unlock_rw(path->nodes[level],
6624 path->locks[level]);
6625 path->locks[level] = 0;
6626 }
6627 free_extent_buffer(path->nodes[level]);
6628 path->nodes[level] = NULL;
6629 level++;
6630 }
6631 }
6632 return 1;
6633 }
6634
6635 /*
6636 * drop a subvolume tree.
6637 *
6638 * this function traverses the tree freeing any blocks that only
6639 * referenced by the tree.
6640 *
6641 * when a shared tree block is found. this function decreases its
6642 * reference count by one. if update_ref is true, this function
6643 * also make sure backrefs for the shared block and all lower level
6644 * blocks are properly updated.
6645 */
6646 void btrfs_drop_snapshot(struct btrfs_root *root,
6647 struct btrfs_block_rsv *block_rsv, int update_ref,
6648 int for_reloc)
6649 {
6650 struct btrfs_path *path;
6651 struct btrfs_trans_handle *trans;
6652 struct btrfs_root *tree_root = root->fs_info->tree_root;
6653 struct btrfs_root_item *root_item = &root->root_item;
6654 struct walk_control *wc;
6655 struct btrfs_key key;
6656 int err = 0;
6657 int ret;
6658 int level;
6659
6660 path = btrfs_alloc_path();
6661 if (!path) {
6662 err = -ENOMEM;
6663 goto out;
6664 }
6665
6666 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6667 if (!wc) {
6668 btrfs_free_path(path);
6669 err = -ENOMEM;
6670 goto out;
6671 }
6672
6673 trans = btrfs_start_transaction(tree_root, 0);
6674 BUG_ON(IS_ERR(trans));
6675
6676 if (block_rsv)
6677 trans->block_rsv = block_rsv;
6678
6679 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6680 level = btrfs_header_level(root->node);
6681 path->nodes[level] = btrfs_lock_root_node(root);
6682 btrfs_set_lock_blocking(path->nodes[level]);
6683 path->slots[level] = 0;
6684 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6685 memset(&wc->update_progress, 0,
6686 sizeof(wc->update_progress));
6687 } else {
6688 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6689 memcpy(&wc->update_progress, &key,
6690 sizeof(wc->update_progress));
6691
6692 level = root_item->drop_level;
6693 BUG_ON(level == 0);
6694 path->lowest_level = level;
6695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6696 path->lowest_level = 0;
6697 if (ret < 0) {
6698 err = ret;
6699 goto out_free;
6700 }
6701 WARN_ON(ret > 0);
6702
6703 /*
6704 * unlock our path, this is safe because only this
6705 * function is allowed to delete this snapshot
6706 */
6707 btrfs_unlock_up_safe(path, 0);
6708
6709 level = btrfs_header_level(root->node);
6710 while (1) {
6711 btrfs_tree_lock(path->nodes[level]);
6712 btrfs_set_lock_blocking(path->nodes[level]);
6713
6714 ret = btrfs_lookup_extent_info(trans, root,
6715 path->nodes[level]->start,
6716 path->nodes[level]->len,
6717 &wc->refs[level],
6718 &wc->flags[level]);
6719 BUG_ON(ret);
6720 BUG_ON(wc->refs[level] == 0);
6721
6722 if (level == root_item->drop_level)
6723 break;
6724
6725 btrfs_tree_unlock(path->nodes[level]);
6726 WARN_ON(wc->refs[level] != 1);
6727 level--;
6728 }
6729 }
6730
6731 wc->level = level;
6732 wc->shared_level = -1;
6733 wc->stage = DROP_REFERENCE;
6734 wc->update_ref = update_ref;
6735 wc->keep_locks = 0;
6736 wc->for_reloc = for_reloc;
6737 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6738
6739 while (1) {
6740 ret = walk_down_tree(trans, root, path, wc);
6741 if (ret < 0) {
6742 err = ret;
6743 break;
6744 }
6745
6746 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6747 if (ret < 0) {
6748 err = ret;
6749 break;
6750 }
6751
6752 if (ret > 0) {
6753 BUG_ON(wc->stage != DROP_REFERENCE);
6754 break;
6755 }
6756
6757 if (wc->stage == DROP_REFERENCE) {
6758 level = wc->level;
6759 btrfs_node_key(path->nodes[level],
6760 &root_item->drop_progress,
6761 path->slots[level]);
6762 root_item->drop_level = level;
6763 }
6764
6765 BUG_ON(wc->level == 0);
6766 if (btrfs_should_end_transaction(trans, tree_root)) {
6767 ret = btrfs_update_root(trans, tree_root,
6768 &root->root_key,
6769 root_item);
6770 BUG_ON(ret);
6771
6772 btrfs_end_transaction_throttle(trans, tree_root);
6773 trans = btrfs_start_transaction(tree_root, 0);
6774 BUG_ON(IS_ERR(trans));
6775 if (block_rsv)
6776 trans->block_rsv = block_rsv;
6777 }
6778 }
6779 btrfs_release_path(path);
6780 BUG_ON(err);
6781
6782 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6783 BUG_ON(ret);
6784
6785 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6786 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6787 NULL, NULL);
6788 BUG_ON(ret < 0);
6789 if (ret > 0) {
6790 /* if we fail to delete the orphan item this time
6791 * around, it'll get picked up the next time.
6792 *
6793 * The most common failure here is just -ENOENT.
6794 */
6795 btrfs_del_orphan_item(trans, tree_root,
6796 root->root_key.objectid);
6797 }
6798 }
6799
6800 if (root->in_radix) {
6801 btrfs_free_fs_root(tree_root->fs_info, root);
6802 } else {
6803 free_extent_buffer(root->node);
6804 free_extent_buffer(root->commit_root);
6805 kfree(root);
6806 }
6807 out_free:
6808 btrfs_end_transaction_throttle(trans, tree_root);
6809 kfree(wc);
6810 btrfs_free_path(path);
6811 out:
6812 if (err)
6813 btrfs_std_error(root->fs_info, err);
6814 return;
6815 }
6816
6817 /*
6818 * drop subtree rooted at tree block 'node'.
6819 *
6820 * NOTE: this function will unlock and release tree block 'node'
6821 * only used by relocation code
6822 */
6823 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6824 struct btrfs_root *root,
6825 struct extent_buffer *node,
6826 struct extent_buffer *parent)
6827 {
6828 struct btrfs_path *path;
6829 struct walk_control *wc;
6830 int level;
6831 int parent_level;
6832 int ret = 0;
6833 int wret;
6834
6835 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6836
6837 path = btrfs_alloc_path();
6838 if (!path)
6839 return -ENOMEM;
6840
6841 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6842 if (!wc) {
6843 btrfs_free_path(path);
6844 return -ENOMEM;
6845 }
6846
6847 btrfs_assert_tree_locked(parent);
6848 parent_level = btrfs_header_level(parent);
6849 extent_buffer_get(parent);
6850 path->nodes[parent_level] = parent;
6851 path->slots[parent_level] = btrfs_header_nritems(parent);
6852
6853 btrfs_assert_tree_locked(node);
6854 level = btrfs_header_level(node);
6855 path->nodes[level] = node;
6856 path->slots[level] = 0;
6857 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6858
6859 wc->refs[parent_level] = 1;
6860 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6861 wc->level = level;
6862 wc->shared_level = -1;
6863 wc->stage = DROP_REFERENCE;
6864 wc->update_ref = 0;
6865 wc->keep_locks = 1;
6866 wc->for_reloc = 1;
6867 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6868
6869 while (1) {
6870 wret = walk_down_tree(trans, root, path, wc);
6871 if (wret < 0) {
6872 ret = wret;
6873 break;
6874 }
6875
6876 wret = walk_up_tree(trans, root, path, wc, parent_level);
6877 if (wret < 0)
6878 ret = wret;
6879 if (wret != 0)
6880 break;
6881 }
6882
6883 kfree(wc);
6884 btrfs_free_path(path);
6885 return ret;
6886 }
6887
6888 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6889 {
6890 u64 num_devices;
6891 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6892 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6893
6894 if (root->fs_info->balance_ctl) {
6895 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
6896 u64 tgt = 0;
6897
6898 /* pick restriper's target profile and return */
6899 if (flags & BTRFS_BLOCK_GROUP_DATA &&
6900 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6901 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
6902 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
6903 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6904 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
6905 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
6906 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6907 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
6908 }
6909
6910 if (tgt)
6911 return extended_to_chunk(tgt);
6912 }
6913
6914 /*
6915 * we add in the count of missing devices because we want
6916 * to make sure that any RAID levels on a degraded FS
6917 * continue to be honored.
6918 */
6919 num_devices = root->fs_info->fs_devices->rw_devices +
6920 root->fs_info->fs_devices->missing_devices;
6921
6922 if (num_devices == 1) {
6923 stripped |= BTRFS_BLOCK_GROUP_DUP;
6924 stripped = flags & ~stripped;
6925
6926 /* turn raid0 into single device chunks */
6927 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6928 return stripped;
6929
6930 /* turn mirroring into duplication */
6931 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6932 BTRFS_BLOCK_GROUP_RAID10))
6933 return stripped | BTRFS_BLOCK_GROUP_DUP;
6934 } else {
6935 /* they already had raid on here, just return */
6936 if (flags & stripped)
6937 return flags;
6938
6939 stripped |= BTRFS_BLOCK_GROUP_DUP;
6940 stripped = flags & ~stripped;
6941
6942 /* switch duplicated blocks with raid1 */
6943 if (flags & BTRFS_BLOCK_GROUP_DUP)
6944 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6945
6946 /* this is drive concat, leave it alone */
6947 }
6948
6949 return flags;
6950 }
6951
6952 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6953 {
6954 struct btrfs_space_info *sinfo = cache->space_info;
6955 u64 num_bytes;
6956 u64 min_allocable_bytes;
6957 int ret = -ENOSPC;
6958
6959
6960 /*
6961 * We need some metadata space and system metadata space for
6962 * allocating chunks in some corner cases until we force to set
6963 * it to be readonly.
6964 */
6965 if ((sinfo->flags &
6966 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6967 !force)
6968 min_allocable_bytes = 1 * 1024 * 1024;
6969 else
6970 min_allocable_bytes = 0;
6971
6972 spin_lock(&sinfo->lock);
6973 spin_lock(&cache->lock);
6974
6975 if (cache->ro) {
6976 ret = 0;
6977 goto out;
6978 }
6979
6980 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6981 cache->bytes_super - btrfs_block_group_used(&cache->item);
6982
6983 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6984 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6985 min_allocable_bytes <= sinfo->total_bytes) {
6986 sinfo->bytes_readonly += num_bytes;
6987 cache->ro = 1;
6988 ret = 0;
6989 }
6990 out:
6991 spin_unlock(&cache->lock);
6992 spin_unlock(&sinfo->lock);
6993 return ret;
6994 }
6995
6996 int btrfs_set_block_group_ro(struct btrfs_root *root,
6997 struct btrfs_block_group_cache *cache)
6998
6999 {
7000 struct btrfs_trans_handle *trans;
7001 u64 alloc_flags;
7002 int ret;
7003
7004 BUG_ON(cache->ro);
7005
7006 trans = btrfs_join_transaction(root);
7007 BUG_ON(IS_ERR(trans));
7008
7009 alloc_flags = update_block_group_flags(root, cache->flags);
7010 if (alloc_flags != cache->flags)
7011 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7012 CHUNK_ALLOC_FORCE);
7013
7014 ret = set_block_group_ro(cache, 0);
7015 if (!ret)
7016 goto out;
7017 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7018 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7019 CHUNK_ALLOC_FORCE);
7020 if (ret < 0)
7021 goto out;
7022 ret = set_block_group_ro(cache, 0);
7023 out:
7024 btrfs_end_transaction(trans, root);
7025 return ret;
7026 }
7027
7028 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7029 struct btrfs_root *root, u64 type)
7030 {
7031 u64 alloc_flags = get_alloc_profile(root, type);
7032 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7033 CHUNK_ALLOC_FORCE);
7034 }
7035
7036 /*
7037 * helper to account the unused space of all the readonly block group in the
7038 * list. takes mirrors into account.
7039 */
7040 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7041 {
7042 struct btrfs_block_group_cache *block_group;
7043 u64 free_bytes = 0;
7044 int factor;
7045
7046 list_for_each_entry(block_group, groups_list, list) {
7047 spin_lock(&block_group->lock);
7048
7049 if (!block_group->ro) {
7050 spin_unlock(&block_group->lock);
7051 continue;
7052 }
7053
7054 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7055 BTRFS_BLOCK_GROUP_RAID10 |
7056 BTRFS_BLOCK_GROUP_DUP))
7057 factor = 2;
7058 else
7059 factor = 1;
7060
7061 free_bytes += (block_group->key.offset -
7062 btrfs_block_group_used(&block_group->item)) *
7063 factor;
7064
7065 spin_unlock(&block_group->lock);
7066 }
7067
7068 return free_bytes;
7069 }
7070
7071 /*
7072 * helper to account the unused space of all the readonly block group in the
7073 * space_info. takes mirrors into account.
7074 */
7075 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7076 {
7077 int i;
7078 u64 free_bytes = 0;
7079
7080 spin_lock(&sinfo->lock);
7081
7082 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7083 if (!list_empty(&sinfo->block_groups[i]))
7084 free_bytes += __btrfs_get_ro_block_group_free_space(
7085 &sinfo->block_groups[i]);
7086
7087 spin_unlock(&sinfo->lock);
7088
7089 return free_bytes;
7090 }
7091
7092 int btrfs_set_block_group_rw(struct btrfs_root *root,
7093 struct btrfs_block_group_cache *cache)
7094 {
7095 struct btrfs_space_info *sinfo = cache->space_info;
7096 u64 num_bytes;
7097
7098 BUG_ON(!cache->ro);
7099
7100 spin_lock(&sinfo->lock);
7101 spin_lock(&cache->lock);
7102 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7103 cache->bytes_super - btrfs_block_group_used(&cache->item);
7104 sinfo->bytes_readonly -= num_bytes;
7105 cache->ro = 0;
7106 spin_unlock(&cache->lock);
7107 spin_unlock(&sinfo->lock);
7108 return 0;
7109 }
7110
7111 /*
7112 * checks to see if its even possible to relocate this block group.
7113 *
7114 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7115 * ok to go ahead and try.
7116 */
7117 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7118 {
7119 struct btrfs_block_group_cache *block_group;
7120 struct btrfs_space_info *space_info;
7121 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7122 struct btrfs_device *device;
7123 u64 min_free;
7124 u64 dev_min = 1;
7125 u64 dev_nr = 0;
7126 int index;
7127 int full = 0;
7128 int ret = 0;
7129
7130 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7131
7132 /* odd, couldn't find the block group, leave it alone */
7133 if (!block_group)
7134 return -1;
7135
7136 min_free = btrfs_block_group_used(&block_group->item);
7137
7138 /* no bytes used, we're good */
7139 if (!min_free)
7140 goto out;
7141
7142 space_info = block_group->space_info;
7143 spin_lock(&space_info->lock);
7144
7145 full = space_info->full;
7146
7147 /*
7148 * if this is the last block group we have in this space, we can't
7149 * relocate it unless we're able to allocate a new chunk below.
7150 *
7151 * Otherwise, we need to make sure we have room in the space to handle
7152 * all of the extents from this block group. If we can, we're good
7153 */
7154 if ((space_info->total_bytes != block_group->key.offset) &&
7155 (space_info->bytes_used + space_info->bytes_reserved +
7156 space_info->bytes_pinned + space_info->bytes_readonly +
7157 min_free < space_info->total_bytes)) {
7158 spin_unlock(&space_info->lock);
7159 goto out;
7160 }
7161 spin_unlock(&space_info->lock);
7162
7163 /*
7164 * ok we don't have enough space, but maybe we have free space on our
7165 * devices to allocate new chunks for relocation, so loop through our
7166 * alloc devices and guess if we have enough space. However, if we
7167 * were marked as full, then we know there aren't enough chunks, and we
7168 * can just return.
7169 */
7170 ret = -1;
7171 if (full)
7172 goto out;
7173
7174 /*
7175 * index:
7176 * 0: raid10
7177 * 1: raid1
7178 * 2: dup
7179 * 3: raid0
7180 * 4: single
7181 */
7182 index = get_block_group_index(block_group);
7183 if (index == 0) {
7184 dev_min = 4;
7185 /* Divide by 2 */
7186 min_free >>= 1;
7187 } else if (index == 1) {
7188 dev_min = 2;
7189 } else if (index == 2) {
7190 /* Multiply by 2 */
7191 min_free <<= 1;
7192 } else if (index == 3) {
7193 dev_min = fs_devices->rw_devices;
7194 do_div(min_free, dev_min);
7195 }
7196
7197 mutex_lock(&root->fs_info->chunk_mutex);
7198 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7199 u64 dev_offset;
7200
7201 /*
7202 * check to make sure we can actually find a chunk with enough
7203 * space to fit our block group in.
7204 */
7205 if (device->total_bytes > device->bytes_used + min_free) {
7206 ret = find_free_dev_extent(device, min_free,
7207 &dev_offset, NULL);
7208 if (!ret)
7209 dev_nr++;
7210
7211 if (dev_nr >= dev_min)
7212 break;
7213
7214 ret = -1;
7215 }
7216 }
7217 mutex_unlock(&root->fs_info->chunk_mutex);
7218 out:
7219 btrfs_put_block_group(block_group);
7220 return ret;
7221 }
7222
7223 static int find_first_block_group(struct btrfs_root *root,
7224 struct btrfs_path *path, struct btrfs_key *key)
7225 {
7226 int ret = 0;
7227 struct btrfs_key found_key;
7228 struct extent_buffer *leaf;
7229 int slot;
7230
7231 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7232 if (ret < 0)
7233 goto out;
7234
7235 while (1) {
7236 slot = path->slots[0];
7237 leaf = path->nodes[0];
7238 if (slot >= btrfs_header_nritems(leaf)) {
7239 ret = btrfs_next_leaf(root, path);
7240 if (ret == 0)
7241 continue;
7242 if (ret < 0)
7243 goto out;
7244 break;
7245 }
7246 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7247
7248 if (found_key.objectid >= key->objectid &&
7249 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7250 ret = 0;
7251 goto out;
7252 }
7253 path->slots[0]++;
7254 }
7255 out:
7256 return ret;
7257 }
7258
7259 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7260 {
7261 struct btrfs_block_group_cache *block_group;
7262 u64 last = 0;
7263
7264 while (1) {
7265 struct inode *inode;
7266
7267 block_group = btrfs_lookup_first_block_group(info, last);
7268 while (block_group) {
7269 spin_lock(&block_group->lock);
7270 if (block_group->iref)
7271 break;
7272 spin_unlock(&block_group->lock);
7273 block_group = next_block_group(info->tree_root,
7274 block_group);
7275 }
7276 if (!block_group) {
7277 if (last == 0)
7278 break;
7279 last = 0;
7280 continue;
7281 }
7282
7283 inode = block_group->inode;
7284 block_group->iref = 0;
7285 block_group->inode = NULL;
7286 spin_unlock(&block_group->lock);
7287 iput(inode);
7288 last = block_group->key.objectid + block_group->key.offset;
7289 btrfs_put_block_group(block_group);
7290 }
7291 }
7292
7293 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7294 {
7295 struct btrfs_block_group_cache *block_group;
7296 struct btrfs_space_info *space_info;
7297 struct btrfs_caching_control *caching_ctl;
7298 struct rb_node *n;
7299
7300 down_write(&info->extent_commit_sem);
7301 while (!list_empty(&info->caching_block_groups)) {
7302 caching_ctl = list_entry(info->caching_block_groups.next,
7303 struct btrfs_caching_control, list);
7304 list_del(&caching_ctl->list);
7305 put_caching_control(caching_ctl);
7306 }
7307 up_write(&info->extent_commit_sem);
7308
7309 spin_lock(&info->block_group_cache_lock);
7310 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7311 block_group = rb_entry(n, struct btrfs_block_group_cache,
7312 cache_node);
7313 rb_erase(&block_group->cache_node,
7314 &info->block_group_cache_tree);
7315 spin_unlock(&info->block_group_cache_lock);
7316
7317 down_write(&block_group->space_info->groups_sem);
7318 list_del(&block_group->list);
7319 up_write(&block_group->space_info->groups_sem);
7320
7321 if (block_group->cached == BTRFS_CACHE_STARTED)
7322 wait_block_group_cache_done(block_group);
7323
7324 /*
7325 * We haven't cached this block group, which means we could
7326 * possibly have excluded extents on this block group.
7327 */
7328 if (block_group->cached == BTRFS_CACHE_NO)
7329 free_excluded_extents(info->extent_root, block_group);
7330
7331 btrfs_remove_free_space_cache(block_group);
7332 btrfs_put_block_group(block_group);
7333
7334 spin_lock(&info->block_group_cache_lock);
7335 }
7336 spin_unlock(&info->block_group_cache_lock);
7337
7338 /* now that all the block groups are freed, go through and
7339 * free all the space_info structs. This is only called during
7340 * the final stages of unmount, and so we know nobody is
7341 * using them. We call synchronize_rcu() once before we start,
7342 * just to be on the safe side.
7343 */
7344 synchronize_rcu();
7345
7346 release_global_block_rsv(info);
7347
7348 while(!list_empty(&info->space_info)) {
7349 space_info = list_entry(info->space_info.next,
7350 struct btrfs_space_info,
7351 list);
7352 if (space_info->bytes_pinned > 0 ||
7353 space_info->bytes_reserved > 0 ||
7354 space_info->bytes_may_use > 0) {
7355 WARN_ON(1);
7356 dump_space_info(space_info, 0, 0);
7357 }
7358 list_del(&space_info->list);
7359 kfree(space_info);
7360 }
7361 return 0;
7362 }
7363
7364 static void __link_block_group(struct btrfs_space_info *space_info,
7365 struct btrfs_block_group_cache *cache)
7366 {
7367 int index = get_block_group_index(cache);
7368
7369 down_write(&space_info->groups_sem);
7370 list_add_tail(&cache->list, &space_info->block_groups[index]);
7371 up_write(&space_info->groups_sem);
7372 }
7373
7374 int btrfs_read_block_groups(struct btrfs_root *root)
7375 {
7376 struct btrfs_path *path;
7377 int ret;
7378 struct btrfs_block_group_cache *cache;
7379 struct btrfs_fs_info *info = root->fs_info;
7380 struct btrfs_space_info *space_info;
7381 struct btrfs_key key;
7382 struct btrfs_key found_key;
7383 struct extent_buffer *leaf;
7384 int need_clear = 0;
7385 u64 cache_gen;
7386
7387 root = info->extent_root;
7388 key.objectid = 0;
7389 key.offset = 0;
7390 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7391 path = btrfs_alloc_path();
7392 if (!path)
7393 return -ENOMEM;
7394 path->reada = 1;
7395
7396 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7397 if (btrfs_test_opt(root, SPACE_CACHE) &&
7398 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7399 need_clear = 1;
7400 if (btrfs_test_opt(root, CLEAR_CACHE))
7401 need_clear = 1;
7402
7403 while (1) {
7404 ret = find_first_block_group(root, path, &key);
7405 if (ret > 0)
7406 break;
7407 if (ret != 0)
7408 goto error;
7409 leaf = path->nodes[0];
7410 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7411 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7412 if (!cache) {
7413 ret = -ENOMEM;
7414 goto error;
7415 }
7416 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7417 GFP_NOFS);
7418 if (!cache->free_space_ctl) {
7419 kfree(cache);
7420 ret = -ENOMEM;
7421 goto error;
7422 }
7423
7424 atomic_set(&cache->count, 1);
7425 spin_lock_init(&cache->lock);
7426 cache->fs_info = info;
7427 INIT_LIST_HEAD(&cache->list);
7428 INIT_LIST_HEAD(&cache->cluster_list);
7429
7430 if (need_clear)
7431 cache->disk_cache_state = BTRFS_DC_CLEAR;
7432
7433 read_extent_buffer(leaf, &cache->item,
7434 btrfs_item_ptr_offset(leaf, path->slots[0]),
7435 sizeof(cache->item));
7436 memcpy(&cache->key, &found_key, sizeof(found_key));
7437
7438 key.objectid = found_key.objectid + found_key.offset;
7439 btrfs_release_path(path);
7440 cache->flags = btrfs_block_group_flags(&cache->item);
7441 cache->sectorsize = root->sectorsize;
7442
7443 btrfs_init_free_space_ctl(cache);
7444
7445 /*
7446 * We need to exclude the super stripes now so that the space
7447 * info has super bytes accounted for, otherwise we'll think
7448 * we have more space than we actually do.
7449 */
7450 exclude_super_stripes(root, cache);
7451
7452 /*
7453 * check for two cases, either we are full, and therefore
7454 * don't need to bother with the caching work since we won't
7455 * find any space, or we are empty, and we can just add all
7456 * the space in and be done with it. This saves us _alot_ of
7457 * time, particularly in the full case.
7458 */
7459 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7460 cache->last_byte_to_unpin = (u64)-1;
7461 cache->cached = BTRFS_CACHE_FINISHED;
7462 free_excluded_extents(root, cache);
7463 } else if (btrfs_block_group_used(&cache->item) == 0) {
7464 cache->last_byte_to_unpin = (u64)-1;
7465 cache->cached = BTRFS_CACHE_FINISHED;
7466 add_new_free_space(cache, root->fs_info,
7467 found_key.objectid,
7468 found_key.objectid +
7469 found_key.offset);
7470 free_excluded_extents(root, cache);
7471 }
7472
7473 ret = update_space_info(info, cache->flags, found_key.offset,
7474 btrfs_block_group_used(&cache->item),
7475 &space_info);
7476 BUG_ON(ret);
7477 cache->space_info = space_info;
7478 spin_lock(&cache->space_info->lock);
7479 cache->space_info->bytes_readonly += cache->bytes_super;
7480 spin_unlock(&cache->space_info->lock);
7481
7482 __link_block_group(space_info, cache);
7483
7484 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7485 BUG_ON(ret);
7486
7487 set_avail_alloc_bits(root->fs_info, cache->flags);
7488 if (btrfs_chunk_readonly(root, cache->key.objectid))
7489 set_block_group_ro(cache, 1);
7490 }
7491
7492 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7493 if (!(get_alloc_profile(root, space_info->flags) &
7494 (BTRFS_BLOCK_GROUP_RAID10 |
7495 BTRFS_BLOCK_GROUP_RAID1 |
7496 BTRFS_BLOCK_GROUP_DUP)))
7497 continue;
7498 /*
7499 * avoid allocating from un-mirrored block group if there are
7500 * mirrored block groups.
7501 */
7502 list_for_each_entry(cache, &space_info->block_groups[3], list)
7503 set_block_group_ro(cache, 1);
7504 list_for_each_entry(cache, &space_info->block_groups[4], list)
7505 set_block_group_ro(cache, 1);
7506 }
7507
7508 init_global_block_rsv(info);
7509 ret = 0;
7510 error:
7511 btrfs_free_path(path);
7512 return ret;
7513 }
7514
7515 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7516 struct btrfs_root *root, u64 bytes_used,
7517 u64 type, u64 chunk_objectid, u64 chunk_offset,
7518 u64 size)
7519 {
7520 int ret;
7521 struct btrfs_root *extent_root;
7522 struct btrfs_block_group_cache *cache;
7523
7524 extent_root = root->fs_info->extent_root;
7525
7526 root->fs_info->last_trans_log_full_commit = trans->transid;
7527
7528 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7529 if (!cache)
7530 return -ENOMEM;
7531 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7532 GFP_NOFS);
7533 if (!cache->free_space_ctl) {
7534 kfree(cache);
7535 return -ENOMEM;
7536 }
7537
7538 cache->key.objectid = chunk_offset;
7539 cache->key.offset = size;
7540 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7541 cache->sectorsize = root->sectorsize;
7542 cache->fs_info = root->fs_info;
7543
7544 atomic_set(&cache->count, 1);
7545 spin_lock_init(&cache->lock);
7546 INIT_LIST_HEAD(&cache->list);
7547 INIT_LIST_HEAD(&cache->cluster_list);
7548
7549 btrfs_init_free_space_ctl(cache);
7550
7551 btrfs_set_block_group_used(&cache->item, bytes_used);
7552 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7553 cache->flags = type;
7554 btrfs_set_block_group_flags(&cache->item, type);
7555
7556 cache->last_byte_to_unpin = (u64)-1;
7557 cache->cached = BTRFS_CACHE_FINISHED;
7558 exclude_super_stripes(root, cache);
7559
7560 add_new_free_space(cache, root->fs_info, chunk_offset,
7561 chunk_offset + size);
7562
7563 free_excluded_extents(root, cache);
7564
7565 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7566 &cache->space_info);
7567 BUG_ON(ret);
7568 update_global_block_rsv(root->fs_info);
7569
7570 spin_lock(&cache->space_info->lock);
7571 cache->space_info->bytes_readonly += cache->bytes_super;
7572 spin_unlock(&cache->space_info->lock);
7573
7574 __link_block_group(cache->space_info, cache);
7575
7576 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7577 BUG_ON(ret);
7578
7579 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7580 sizeof(cache->item));
7581 BUG_ON(ret);
7582
7583 set_avail_alloc_bits(extent_root->fs_info, type);
7584
7585 return 0;
7586 }
7587
7588 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7589 {
7590 u64 extra_flags = chunk_to_extended(flags) &
7591 BTRFS_EXTENDED_PROFILE_MASK;
7592
7593 if (flags & BTRFS_BLOCK_GROUP_DATA)
7594 fs_info->avail_data_alloc_bits &= ~extra_flags;
7595 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7596 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7597 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7598 fs_info->avail_system_alloc_bits &= ~extra_flags;
7599 }
7600
7601 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7602 struct btrfs_root *root, u64 group_start)
7603 {
7604 struct btrfs_path *path;
7605 struct btrfs_block_group_cache *block_group;
7606 struct btrfs_free_cluster *cluster;
7607 struct btrfs_root *tree_root = root->fs_info->tree_root;
7608 struct btrfs_key key;
7609 struct inode *inode;
7610 int ret;
7611 int index;
7612 int factor;
7613
7614 root = root->fs_info->extent_root;
7615
7616 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7617 BUG_ON(!block_group);
7618 BUG_ON(!block_group->ro);
7619
7620 /*
7621 * Free the reserved super bytes from this block group before
7622 * remove it.
7623 */
7624 free_excluded_extents(root, block_group);
7625
7626 memcpy(&key, &block_group->key, sizeof(key));
7627 index = get_block_group_index(block_group);
7628 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7629 BTRFS_BLOCK_GROUP_RAID1 |
7630 BTRFS_BLOCK_GROUP_RAID10))
7631 factor = 2;
7632 else
7633 factor = 1;
7634
7635 /* make sure this block group isn't part of an allocation cluster */
7636 cluster = &root->fs_info->data_alloc_cluster;
7637 spin_lock(&cluster->refill_lock);
7638 btrfs_return_cluster_to_free_space(block_group, cluster);
7639 spin_unlock(&cluster->refill_lock);
7640
7641 /*
7642 * make sure this block group isn't part of a metadata
7643 * allocation cluster
7644 */
7645 cluster = &root->fs_info->meta_alloc_cluster;
7646 spin_lock(&cluster->refill_lock);
7647 btrfs_return_cluster_to_free_space(block_group, cluster);
7648 spin_unlock(&cluster->refill_lock);
7649
7650 path = btrfs_alloc_path();
7651 if (!path) {
7652 ret = -ENOMEM;
7653 goto out;
7654 }
7655
7656 inode = lookup_free_space_inode(tree_root, block_group, path);
7657 if (!IS_ERR(inode)) {
7658 ret = btrfs_orphan_add(trans, inode);
7659 BUG_ON(ret);
7660 clear_nlink(inode);
7661 /* One for the block groups ref */
7662 spin_lock(&block_group->lock);
7663 if (block_group->iref) {
7664 block_group->iref = 0;
7665 block_group->inode = NULL;
7666 spin_unlock(&block_group->lock);
7667 iput(inode);
7668 } else {
7669 spin_unlock(&block_group->lock);
7670 }
7671 /* One for our lookup ref */
7672 btrfs_add_delayed_iput(inode);
7673 }
7674
7675 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7676 key.offset = block_group->key.objectid;
7677 key.type = 0;
7678
7679 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7680 if (ret < 0)
7681 goto out;
7682 if (ret > 0)
7683 btrfs_release_path(path);
7684 if (ret == 0) {
7685 ret = btrfs_del_item(trans, tree_root, path);
7686 if (ret)
7687 goto out;
7688 btrfs_release_path(path);
7689 }
7690
7691 spin_lock(&root->fs_info->block_group_cache_lock);
7692 rb_erase(&block_group->cache_node,
7693 &root->fs_info->block_group_cache_tree);
7694 spin_unlock(&root->fs_info->block_group_cache_lock);
7695
7696 down_write(&block_group->space_info->groups_sem);
7697 /*
7698 * we must use list_del_init so people can check to see if they
7699 * are still on the list after taking the semaphore
7700 */
7701 list_del_init(&block_group->list);
7702 if (list_empty(&block_group->space_info->block_groups[index]))
7703 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7704 up_write(&block_group->space_info->groups_sem);
7705
7706 if (block_group->cached == BTRFS_CACHE_STARTED)
7707 wait_block_group_cache_done(block_group);
7708
7709 btrfs_remove_free_space_cache(block_group);
7710
7711 spin_lock(&block_group->space_info->lock);
7712 block_group->space_info->total_bytes -= block_group->key.offset;
7713 block_group->space_info->bytes_readonly -= block_group->key.offset;
7714 block_group->space_info->disk_total -= block_group->key.offset * factor;
7715 spin_unlock(&block_group->space_info->lock);
7716
7717 memcpy(&key, &block_group->key, sizeof(key));
7718
7719 btrfs_clear_space_info_full(root->fs_info);
7720
7721 btrfs_put_block_group(block_group);
7722 btrfs_put_block_group(block_group);
7723
7724 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7725 if (ret > 0)
7726 ret = -EIO;
7727 if (ret < 0)
7728 goto out;
7729
7730 ret = btrfs_del_item(trans, root, path);
7731 out:
7732 btrfs_free_path(path);
7733 return ret;
7734 }
7735
7736 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7737 {
7738 struct btrfs_space_info *space_info;
7739 struct btrfs_super_block *disk_super;
7740 u64 features;
7741 u64 flags;
7742 int mixed = 0;
7743 int ret;
7744
7745 disk_super = fs_info->super_copy;
7746 if (!btrfs_super_root(disk_super))
7747 return 1;
7748
7749 features = btrfs_super_incompat_flags(disk_super);
7750 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7751 mixed = 1;
7752
7753 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7754 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7755 if (ret)
7756 goto out;
7757
7758 if (mixed) {
7759 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7760 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7761 } else {
7762 flags = BTRFS_BLOCK_GROUP_METADATA;
7763 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7764 if (ret)
7765 goto out;
7766
7767 flags = BTRFS_BLOCK_GROUP_DATA;
7768 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7769 }
7770 out:
7771 return ret;
7772 }
7773
7774 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7775 {
7776 return unpin_extent_range(root, start, end);
7777 }
7778
7779 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7780 u64 num_bytes, u64 *actual_bytes)
7781 {
7782 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7783 }
7784
7785 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7786 {
7787 struct btrfs_fs_info *fs_info = root->fs_info;
7788 struct btrfs_block_group_cache *cache = NULL;
7789 u64 group_trimmed;
7790 u64 start;
7791 u64 end;
7792 u64 trimmed = 0;
7793 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7794 int ret = 0;
7795
7796 /*
7797 * try to trim all FS space, our block group may start from non-zero.
7798 */
7799 if (range->len == total_bytes)
7800 cache = btrfs_lookup_first_block_group(fs_info, range->start);
7801 else
7802 cache = btrfs_lookup_block_group(fs_info, range->start);
7803
7804 while (cache) {
7805 if (cache->key.objectid >= (range->start + range->len)) {
7806 btrfs_put_block_group(cache);
7807 break;
7808 }
7809
7810 start = max(range->start, cache->key.objectid);
7811 end = min(range->start + range->len,
7812 cache->key.objectid + cache->key.offset);
7813
7814 if (end - start >= range->minlen) {
7815 if (!block_group_cache_done(cache)) {
7816 ret = cache_block_group(cache, NULL, root, 0);
7817 if (!ret)
7818 wait_block_group_cache_done(cache);
7819 }
7820 ret = btrfs_trim_block_group(cache,
7821 &group_trimmed,
7822 start,
7823 end,
7824 range->minlen);
7825
7826 trimmed += group_trimmed;
7827 if (ret) {
7828 btrfs_put_block_group(cache);
7829 break;
7830 }
7831 }
7832
7833 cache = next_block_group(fs_info->tree_root, cache);
7834 }
7835
7836 range->len = trimmed;
7837 return ret;
7838 }