]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'restriper' of git://github.com/idryomov/btrfs-unstable into integration
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
40 *
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 *
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
48 *
49 */
50 enum {
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
54 };
55
56 /*
57 * Control how reservations are dealt with.
58 *
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61 * ENOSPC accounting
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
64 */
65 enum {
66 RESERVE_FREE = 0,
67 RESERVE_ALLOC = 1,
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
69 };
70
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
102
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 smp_mb();
107 return cache->cached == BTRFS_CACHE_FINISHED;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 return (cache->flags & bits) == bits;
113 }
114
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
126 kfree(cache);
127 }
128 }
129
130 /*
131 * this adds the block group to the fs_info rb tree for the block group
132 * cache
133 */
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
136 {
137 struct rb_node **p;
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
140
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
143
144 while (*p) {
145 parent = *p;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
147 cache_node);
148 if (block_group->key.objectid < cache->key.objectid) {
149 p = &(*p)->rb_left;
150 } else if (block_group->key.objectid > cache->key.objectid) {
151 p = &(*p)->rb_right;
152 } else {
153 spin_unlock(&info->block_group_cache_lock);
154 return -EEXIST;
155 }
156 }
157
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164 }
165
166 /*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173 {
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
202 if (ret)
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 return 0;
218 }
219
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
222 {
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 }
233
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
236 {
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
246 stripe_len);
247 BUG_ON(ret);
248 }
249
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
255 BUG_ON(ret);
256
257 while (nr--) {
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
260 stripe_len);
261 BUG_ON(ret);
262 }
263
264 kfree(logical);
265 }
266 return 0;
267 }
268
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
271 {
272 struct btrfs_caching_control *ctl;
273
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
277 return NULL;
278 }
279
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
283 return NULL;
284 }
285
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
289 return ctl;
290 }
291
292 static void put_caching_control(struct btrfs_caching_control *ctl)
293 {
294 if (atomic_dec_and_test(&ctl->count))
295 kfree(ctl);
296 }
297
298 /*
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
302 */
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
305 {
306 u64 extent_start, extent_end, size, total_added = 0;
307 int ret;
308
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
313 if (ret)
314 break;
315
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
320 total_added += size;
321 ret = btrfs_add_free_space(block_group, start,
322 size);
323 BUG_ON(ret);
324 start = extent_end + 1;
325 } else {
326 break;
327 }
328 }
329
330 if (start < end) {
331 size = end - start;
332 total_added += size;
333 ret = btrfs_add_free_space(block_group, start, size);
334 BUG_ON(ret);
335 }
336
337 return total_added;
338 }
339
340 static noinline void caching_thread(struct btrfs_work *work)
341 {
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
349 u64 total_found = 0;
350 u64 last = 0;
351 u32 nritems;
352 int ret = 0;
353
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
358
359 path = btrfs_alloc_path();
360 if (!path)
361 goto out;
362
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
364
365 /*
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
370 */
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
373 path->reada = 1;
374
375 key.objectid = last;
376 key.offset = 0;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
382
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 if (ret < 0)
385 goto err;
386
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
389
390 while (1) {
391 if (btrfs_fs_closing(fs_info) > 1) {
392 last = (u64)-1;
393 break;
394 }
395
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 } else {
399 ret = find_next_key(path, 0, &key);
400 if (ret)
401 break;
402
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
409 cond_resched();
410 goto again;
411 }
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
414 continue;
415 }
416
417 if (key.objectid < block_group->key.objectid) {
418 path->slots[0]++;
419 continue;
420 }
421
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
424 break;
425
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
428 fs_info, last,
429 key.objectid);
430 last = key.objectid + key.offset;
431
432 if (total_found > (1024 * 1024 * 2)) {
433 total_found = 0;
434 wake_up(&caching_ctl->wait);
435 }
436 }
437 path->slots[0]++;
438 }
439 ret = 0;
440
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
445
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
450
451 err:
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
454
455 free_excluded_extents(extent_root, block_group);
456
457 mutex_unlock(&caching_ctl->mutex);
458 out:
459 wake_up(&caching_ctl->wait);
460
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
463 }
464
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
468 int load_cache_only)
469 {
470 DEFINE_WAIT(wait);
471 struct btrfs_fs_info *fs_info = cache->fs_info;
472 struct btrfs_caching_control *caching_ctl;
473 int ret = 0;
474
475 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
476 BUG_ON(!caching_ctl);
477
478 INIT_LIST_HEAD(&caching_ctl->list);
479 mutex_init(&caching_ctl->mutex);
480 init_waitqueue_head(&caching_ctl->wait);
481 caching_ctl->block_group = cache;
482 caching_ctl->progress = cache->key.objectid;
483 atomic_set(&caching_ctl->count, 1);
484 caching_ctl->work.func = caching_thread;
485
486 spin_lock(&cache->lock);
487 /*
488 * This should be a rare occasion, but this could happen I think in the
489 * case where one thread starts to load the space cache info, and then
490 * some other thread starts a transaction commit which tries to do an
491 * allocation while the other thread is still loading the space cache
492 * info. The previous loop should have kept us from choosing this block
493 * group, but if we've moved to the state where we will wait on caching
494 * block groups we need to first check if we're doing a fast load here,
495 * so we can wait for it to finish, otherwise we could end up allocating
496 * from a block group who's cache gets evicted for one reason or
497 * another.
498 */
499 while (cache->cached == BTRFS_CACHE_FAST) {
500 struct btrfs_caching_control *ctl;
501
502 ctl = cache->caching_ctl;
503 atomic_inc(&ctl->count);
504 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
505 spin_unlock(&cache->lock);
506
507 schedule();
508
509 finish_wait(&ctl->wait, &wait);
510 put_caching_control(ctl);
511 spin_lock(&cache->lock);
512 }
513
514 if (cache->cached != BTRFS_CACHE_NO) {
515 spin_unlock(&cache->lock);
516 kfree(caching_ctl);
517 return 0;
518 }
519 WARN_ON(cache->caching_ctl);
520 cache->caching_ctl = caching_ctl;
521 cache->cached = BTRFS_CACHE_FAST;
522 spin_unlock(&cache->lock);
523
524 /*
525 * We can't do the read from on-disk cache during a commit since we need
526 * to have the normal tree locking. Also if we are currently trying to
527 * allocate blocks for the tree root we can't do the fast caching since
528 * we likely hold important locks.
529 */
530 if (trans && (!trans->transaction->in_commit) &&
531 (root && root != root->fs_info->tree_root) &&
532 btrfs_test_opt(root, SPACE_CACHE)) {
533 ret = load_free_space_cache(fs_info, cache);
534
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
546 }
547 }
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
554 }
555 } else {
556 /*
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
559 */
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
566 }
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
569 }
570
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
574 }
575
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
580
581 btrfs_get_block_group(cache);
582
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
584
585 return ret;
586 }
587
588 /*
589 * return the block group that starts at or after bytenr
590 */
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
593 {
594 struct btrfs_block_group_cache *cache;
595
596 cache = block_group_cache_tree_search(info, bytenr, 0);
597
598 return cache;
599 }
600
601 /*
602 * return the block group that contains the given bytenr
603 */
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
607 {
608 struct btrfs_block_group_cache *cache;
609
610 cache = block_group_cache_tree_search(info, bytenr, 1);
611
612 return cache;
613 }
614
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
617 {
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
620
621 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
622
623 rcu_read_lock();
624 list_for_each_entry_rcu(found, head, list) {
625 if (found->flags & flags) {
626 rcu_read_unlock();
627 return found;
628 }
629 }
630 rcu_read_unlock();
631 return NULL;
632 }
633
634 /*
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
637 */
638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
639 {
640 struct list_head *head = &info->space_info;
641 struct btrfs_space_info *found;
642
643 rcu_read_lock();
644 list_for_each_entry_rcu(found, head, list)
645 found->full = 0;
646 rcu_read_unlock();
647 }
648
649 static u64 div_factor(u64 num, int factor)
650 {
651 if (factor == 10)
652 return num;
653 num *= factor;
654 do_div(num, 10);
655 return num;
656 }
657
658 static u64 div_factor_fine(u64 num, int factor)
659 {
660 if (factor == 100)
661 return num;
662 num *= factor;
663 do_div(num, 100);
664 return num;
665 }
666
667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 u64 search_start, u64 search_hint, int owner)
669 {
670 struct btrfs_block_group_cache *cache;
671 u64 used;
672 u64 last = max(search_hint, search_start);
673 u64 group_start = 0;
674 int full_search = 0;
675 int factor = 9;
676 int wrapped = 0;
677 again:
678 while (1) {
679 cache = btrfs_lookup_first_block_group(root->fs_info, last);
680 if (!cache)
681 break;
682
683 spin_lock(&cache->lock);
684 last = cache->key.objectid + cache->key.offset;
685 used = btrfs_block_group_used(&cache->item);
686
687 if ((full_search || !cache->ro) &&
688 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 if (used + cache->pinned + cache->reserved <
690 div_factor(cache->key.offset, factor)) {
691 group_start = cache->key.objectid;
692 spin_unlock(&cache->lock);
693 btrfs_put_block_group(cache);
694 goto found;
695 }
696 }
697 spin_unlock(&cache->lock);
698 btrfs_put_block_group(cache);
699 cond_resched();
700 }
701 if (!wrapped) {
702 last = search_start;
703 wrapped = 1;
704 goto again;
705 }
706 if (!full_search && factor < 10) {
707 last = search_start;
708 full_search = 1;
709 factor = 10;
710 goto again;
711 }
712 found:
713 return group_start;
714 }
715
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
718 {
719 int ret;
720 struct btrfs_key key;
721 struct btrfs_path *path;
722
723 path = btrfs_alloc_path();
724 if (!path)
725 return -ENOMEM;
726
727 key.objectid = start;
728 key.offset = len;
729 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
731 0, 0);
732 btrfs_free_path(path);
733 return ret;
734 }
735
736 /*
737 * helper function to lookup reference count and flags of extent.
738 *
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
744 */
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 struct btrfs_root *root, u64 bytenr,
747 u64 num_bytes, u64 *refs, u64 *flags)
748 {
749 struct btrfs_delayed_ref_head *head;
750 struct btrfs_delayed_ref_root *delayed_refs;
751 struct btrfs_path *path;
752 struct btrfs_extent_item *ei;
753 struct extent_buffer *leaf;
754 struct btrfs_key key;
755 u32 item_size;
756 u64 num_refs;
757 u64 extent_flags;
758 int ret;
759
760 path = btrfs_alloc_path();
761 if (!path)
762 return -ENOMEM;
763
764 key.objectid = bytenr;
765 key.type = BTRFS_EXTENT_ITEM_KEY;
766 key.offset = num_bytes;
767 if (!trans) {
768 path->skip_locking = 1;
769 path->search_commit_root = 1;
770 }
771 again:
772 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
773 &key, path, 0, 0);
774 if (ret < 0)
775 goto out_free;
776
777 if (ret == 0) {
778 leaf = path->nodes[0];
779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 if (item_size >= sizeof(*ei)) {
781 ei = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item);
783 num_refs = btrfs_extent_refs(leaf, ei);
784 extent_flags = btrfs_extent_flags(leaf, ei);
785 } else {
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0 *ei0;
788 BUG_ON(item_size != sizeof(*ei0));
789 ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 struct btrfs_extent_item_v0);
791 num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 /* FIXME: this isn't correct for data */
793 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
794 #else
795 BUG();
796 #endif
797 }
798 BUG_ON(num_refs == 0);
799 } else {
800 num_refs = 0;
801 extent_flags = 0;
802 ret = 0;
803 }
804
805 if (!trans)
806 goto out;
807
808 delayed_refs = &trans->transaction->delayed_refs;
809 spin_lock(&delayed_refs->lock);
810 head = btrfs_find_delayed_ref_head(trans, bytenr);
811 if (head) {
812 if (!mutex_trylock(&head->mutex)) {
813 atomic_inc(&head->node.refs);
814 spin_unlock(&delayed_refs->lock);
815
816 btrfs_release_path(path);
817
818 /*
819 * Mutex was contended, block until it's released and try
820 * again
821 */
822 mutex_lock(&head->mutex);
823 mutex_unlock(&head->mutex);
824 btrfs_put_delayed_ref(&head->node);
825 goto again;
826 }
827 if (head->extent_op && head->extent_op->update_flags)
828 extent_flags |= head->extent_op->flags_to_set;
829 else
830 BUG_ON(num_refs == 0);
831
832 num_refs += head->node.ref_mod;
833 mutex_unlock(&head->mutex);
834 }
835 spin_unlock(&delayed_refs->lock);
836 out:
837 WARN_ON(num_refs == 0);
838 if (refs)
839 *refs = num_refs;
840 if (flags)
841 *flags = extent_flags;
842 out_free:
843 btrfs_free_path(path);
844 return ret;
845 }
846
847 /*
848 * Back reference rules. Back refs have three main goals:
849 *
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
853 *
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
856 *
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
860 *
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
871 *
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
878 *
879 * When a tree block is COW'd through a tree, there are four cases:
880 *
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
883 *
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
888 *
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
894 *
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
898 *
899 * Back Reference Key composing:
900 *
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
904 * of back refs.
905 *
906 * File extents can be referenced by:
907 *
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
911 *
912 * The extent ref structure for the implicit back refs has fields for:
913 *
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
918 *
919 * The key offset for the implicit back refs is hash of the first
920 * three fields.
921 *
922 * The extent ref structure for the full back refs has field for:
923 *
924 * - number of pointers in the tree leaf
925 *
926 * The key offset for the implicit back refs is the first byte of
927 * the tree leaf
928 *
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
931 *
932 * (root_key.objectid, inode objectid, offset in file, 1)
933 *
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
936 *
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
938 *
939 * Btree extents can be referenced by:
940 *
941 * - Different subvolumes
942 *
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
947 *
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
951 */
952
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct btrfs_path *path,
957 u64 owner, u32 extra_size)
958 {
959 struct btrfs_extent_item *item;
960 struct btrfs_extent_item_v0 *ei0;
961 struct btrfs_extent_ref_v0 *ref0;
962 struct btrfs_tree_block_info *bi;
963 struct extent_buffer *leaf;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
966 u32 new_size = sizeof(*item);
967 u64 refs;
968 int ret;
969
970 leaf = path->nodes[0];
971 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
972
973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 struct btrfs_extent_item_v0);
976 refs = btrfs_extent_refs_v0(leaf, ei0);
977
978 if (owner == (u64)-1) {
979 while (1) {
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0)
983 return ret;
984 BUG_ON(ret > 0);
985 leaf = path->nodes[0];
986 }
987 btrfs_item_key_to_cpu(leaf, &found_key,
988 path->slots[0]);
989 BUG_ON(key.objectid != found_key.objectid);
990 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
991 path->slots[0]++;
992 continue;
993 }
994 ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_extent_ref_v0);
996 owner = btrfs_ref_objectid_v0(leaf, ref0);
997 break;
998 }
999 }
1000 btrfs_release_path(path);
1001
1002 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 new_size += sizeof(*bi);
1004
1005 new_size -= sizeof(*ei0);
1006 ret = btrfs_search_slot(trans, root, &key, path,
1007 new_size + extra_size, 1);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret);
1011
1012 ret = btrfs_extend_item(trans, root, path, new_size);
1013
1014 leaf = path->nodes[0];
1015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 btrfs_set_extent_refs(leaf, item, refs);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf, item, 0);
1019 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 btrfs_set_extent_flags(leaf, item,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 bi = (struct btrfs_tree_block_info *)(item + 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1027 } else {
1028 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1029 }
1030 btrfs_mark_buffer_dirty(leaf);
1031 return 0;
1032 }
1033 #endif
1034
1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1036 {
1037 u32 high_crc = ~(u32)0;
1038 u32 low_crc = ~(u32)0;
1039 __le64 lenum;
1040
1041 lenum = cpu_to_le64(root_objectid);
1042 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 lenum = cpu_to_le64(owner);
1044 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(offset);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047
1048 return ((u64)high_crc << 31) ^ (u64)low_crc;
1049 }
1050
1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref)
1053 {
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 btrfs_extent_data_ref_objectid(leaf, ref),
1056 btrfs_extent_data_ref_offset(leaf, ref));
1057 }
1058
1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 struct btrfs_extent_data_ref *ref,
1061 u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1066 return 0;
1067 return 1;
1068 }
1069
1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_path *path,
1073 u64 bytenr, u64 parent,
1074 u64 root_objectid,
1075 u64 owner, u64 offset)
1076 {
1077 struct btrfs_key key;
1078 struct btrfs_extent_data_ref *ref;
1079 struct extent_buffer *leaf;
1080 u32 nritems;
1081 int ret;
1082 int recow;
1083 int err = -ENOENT;
1084
1085 key.objectid = bytenr;
1086 if (parent) {
1087 key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 key.offset = parent;
1089 } else {
1090 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 key.offset = hash_extent_data_ref(root_objectid,
1092 owner, offset);
1093 }
1094 again:
1095 recow = 0;
1096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 if (ret < 0) {
1098 err = ret;
1099 goto fail;
1100 }
1101
1102 if (parent) {
1103 if (!ret)
1104 return 0;
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 btrfs_release_path(path);
1108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 if (ret < 0) {
1110 err = ret;
1111 goto fail;
1112 }
1113 if (!ret)
1114 return 0;
1115 #endif
1116 goto fail;
1117 }
1118
1119 leaf = path->nodes[0];
1120 nritems = btrfs_header_nritems(leaf);
1121 while (1) {
1122 if (path->slots[0] >= nritems) {
1123 ret = btrfs_next_leaf(root, path);
1124 if (ret < 0)
1125 err = ret;
1126 if (ret)
1127 goto fail;
1128
1129 leaf = path->nodes[0];
1130 nritems = btrfs_header_nritems(leaf);
1131 recow = 1;
1132 }
1133
1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 if (key.objectid != bytenr ||
1136 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1137 goto fail;
1138
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1141
1142 if (match_extent_data_ref(leaf, ref, root_objectid,
1143 owner, offset)) {
1144 if (recow) {
1145 btrfs_release_path(path);
1146 goto again;
1147 }
1148 err = 0;
1149 break;
1150 }
1151 path->slots[0]++;
1152 }
1153 fail:
1154 return err;
1155 }
1156
1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 u64 bytenr, u64 parent,
1161 u64 root_objectid, u64 owner,
1162 u64 offset, int refs_to_add)
1163 {
1164 struct btrfs_key key;
1165 struct extent_buffer *leaf;
1166 u32 size;
1167 u32 num_refs;
1168 int ret;
1169
1170 key.objectid = bytenr;
1171 if (parent) {
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 size = sizeof(struct btrfs_shared_data_ref);
1175 } else {
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1178 owner, offset);
1179 size = sizeof(struct btrfs_extent_data_ref);
1180 }
1181
1182 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 if (ret && ret != -EEXIST)
1184 goto fail;
1185
1186 leaf = path->nodes[0];
1187 if (parent) {
1188 struct btrfs_shared_data_ref *ref;
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_shared_data_ref);
1191 if (ret == 0) {
1192 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1193 } else {
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 num_refs += refs_to_add;
1196 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1197 }
1198 } else {
1199 struct btrfs_extent_data_ref *ref;
1200 while (ret == -EEXIST) {
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (match_extent_data_ref(leaf, ref, root_objectid,
1204 owner, offset))
1205 break;
1206 btrfs_release_path(path);
1207 key.offset++;
1208 ret = btrfs_insert_empty_item(trans, root, path, &key,
1209 size);
1210 if (ret && ret != -EEXIST)
1211 goto fail;
1212
1213 leaf = path->nodes[0];
1214 }
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_extent_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_extent_data_ref_root(leaf, ref,
1219 root_objectid);
1220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1223 } else {
1224 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 num_refs += refs_to_add;
1226 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1227 }
1228 }
1229 btrfs_mark_buffer_dirty(leaf);
1230 ret = 0;
1231 fail:
1232 btrfs_release_path(path);
1233 return ret;
1234 }
1235
1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct btrfs_path *path,
1239 int refs_to_drop)
1240 {
1241 struct btrfs_key key;
1242 struct btrfs_extent_data_ref *ref1 = NULL;
1243 struct btrfs_shared_data_ref *ref2 = NULL;
1244 struct extent_buffer *leaf;
1245 u32 num_refs = 0;
1246 int ret = 0;
1247
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1250
1251 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_extent_data_ref);
1254 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_shared_data_ref);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 struct btrfs_extent_ref_v0 *ref0;
1262 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_extent_ref_v0);
1264 num_refs = btrfs_ref_count_v0(leaf, ref0);
1265 #endif
1266 } else {
1267 BUG();
1268 }
1269
1270 BUG_ON(num_refs < refs_to_drop);
1271 num_refs -= refs_to_drop;
1272
1273 if (num_refs == 0) {
1274 ret = btrfs_del_item(trans, root, path);
1275 } else {
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 else {
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1286 }
1287 #endif
1288 btrfs_mark_buffer_dirty(leaf);
1289 }
1290 return ret;
1291 }
1292
1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct btrfs_extent_inline_ref *iref)
1296 {
1297 struct btrfs_key key;
1298 struct extent_buffer *leaf;
1299 struct btrfs_extent_data_ref *ref1;
1300 struct btrfs_shared_data_ref *ref2;
1301 u32 num_refs = 0;
1302
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1305 if (iref) {
1306 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 BTRFS_EXTENT_DATA_REF_KEY) {
1308 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 } else {
1311 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1313 }
1314 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_shared_data_ref);
1321 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 struct btrfs_extent_ref_v0 *ref0;
1325 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_extent_ref_v0);
1327 num_refs = btrfs_ref_count_v0(leaf, ref0);
1328 #endif
1329 } else {
1330 WARN_ON(1);
1331 }
1332 return num_refs;
1333 }
1334
1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root,
1337 struct btrfs_path *path,
1338 u64 bytenr, u64 parent,
1339 u64 root_objectid)
1340 {
1341 struct btrfs_key key;
1342 int ret;
1343
1344 key.objectid = bytenr;
1345 if (parent) {
1346 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 key.offset = parent;
1348 } else {
1349 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 key.offset = root_objectid;
1351 }
1352
1353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 if (ret > 0)
1355 ret = -ENOENT;
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret == -ENOENT && parent) {
1358 btrfs_release_path(path);
1359 key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1361 if (ret > 0)
1362 ret = -ENOENT;
1363 }
1364 #endif
1365 return ret;
1366 }
1367
1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1373 {
1374 struct btrfs_key key;
1375 int ret;
1376
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1384 }
1385
1386 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 btrfs_release_path(path);
1388 return ret;
1389 }
1390
1391 static inline int extent_ref_type(u64 parent, u64 owner)
1392 {
1393 int type;
1394 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1395 if (parent > 0)
1396 type = BTRFS_SHARED_BLOCK_REF_KEY;
1397 else
1398 type = BTRFS_TREE_BLOCK_REF_KEY;
1399 } else {
1400 if (parent > 0)
1401 type = BTRFS_SHARED_DATA_REF_KEY;
1402 else
1403 type = BTRFS_EXTENT_DATA_REF_KEY;
1404 }
1405 return type;
1406 }
1407
1408 static int find_next_key(struct btrfs_path *path, int level,
1409 struct btrfs_key *key)
1410
1411 {
1412 for (; level < BTRFS_MAX_LEVEL; level++) {
1413 if (!path->nodes[level])
1414 break;
1415 if (path->slots[level] + 1 >=
1416 btrfs_header_nritems(path->nodes[level]))
1417 continue;
1418 if (level == 0)
1419 btrfs_item_key_to_cpu(path->nodes[level], key,
1420 path->slots[level] + 1);
1421 else
1422 btrfs_node_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1424 return 0;
1425 }
1426 return 1;
1427 }
1428
1429 /*
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1432 *
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1435 *
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1438 *
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1441 */
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root,
1445 struct btrfs_path *path,
1446 struct btrfs_extent_inline_ref **ref_ret,
1447 u64 bytenr, u64 num_bytes,
1448 u64 parent, u64 root_objectid,
1449 u64 owner, u64 offset, int insert)
1450 {
1451 struct btrfs_key key;
1452 struct extent_buffer *leaf;
1453 struct btrfs_extent_item *ei;
1454 struct btrfs_extent_inline_ref *iref;
1455 u64 flags;
1456 u64 item_size;
1457 unsigned long ptr;
1458 unsigned long end;
1459 int extra_size;
1460 int type;
1461 int want;
1462 int ret;
1463 int err = 0;
1464
1465 key.objectid = bytenr;
1466 key.type = BTRFS_EXTENT_ITEM_KEY;
1467 key.offset = num_bytes;
1468
1469 want = extent_ref_type(parent, owner);
1470 if (insert) {
1471 extra_size = btrfs_extent_inline_ref_size(want);
1472 path->keep_locks = 1;
1473 } else
1474 extra_size = -1;
1475 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1476 if (ret < 0) {
1477 err = ret;
1478 goto out;
1479 }
1480 BUG_ON(ret);
1481
1482 leaf = path->nodes[0];
1483 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1484 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1485 if (item_size < sizeof(*ei)) {
1486 if (!insert) {
1487 err = -ENOENT;
1488 goto out;
1489 }
1490 ret = convert_extent_item_v0(trans, root, path, owner,
1491 extra_size);
1492 if (ret < 0) {
1493 err = ret;
1494 goto out;
1495 }
1496 leaf = path->nodes[0];
1497 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1498 }
1499 #endif
1500 BUG_ON(item_size < sizeof(*ei));
1501
1502 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1503 flags = btrfs_extent_flags(leaf, ei);
1504
1505 ptr = (unsigned long)(ei + 1);
1506 end = (unsigned long)ei + item_size;
1507
1508 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1509 ptr += sizeof(struct btrfs_tree_block_info);
1510 BUG_ON(ptr > end);
1511 } else {
1512 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1513 }
1514
1515 err = -ENOENT;
1516 while (1) {
1517 if (ptr >= end) {
1518 WARN_ON(ptr > end);
1519 break;
1520 }
1521 iref = (struct btrfs_extent_inline_ref *)ptr;
1522 type = btrfs_extent_inline_ref_type(leaf, iref);
1523 if (want < type)
1524 break;
1525 if (want > type) {
1526 ptr += btrfs_extent_inline_ref_size(type);
1527 continue;
1528 }
1529
1530 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1531 struct btrfs_extent_data_ref *dref;
1532 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1533 if (match_extent_data_ref(leaf, dref, root_objectid,
1534 owner, offset)) {
1535 err = 0;
1536 break;
1537 }
1538 if (hash_extent_data_ref_item(leaf, dref) <
1539 hash_extent_data_ref(root_objectid, owner, offset))
1540 break;
1541 } else {
1542 u64 ref_offset;
1543 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1544 if (parent > 0) {
1545 if (parent == ref_offset) {
1546 err = 0;
1547 break;
1548 }
1549 if (ref_offset < parent)
1550 break;
1551 } else {
1552 if (root_objectid == ref_offset) {
1553 err = 0;
1554 break;
1555 }
1556 if (ref_offset < root_objectid)
1557 break;
1558 }
1559 }
1560 ptr += btrfs_extent_inline_ref_size(type);
1561 }
1562 if (err == -ENOENT && insert) {
1563 if (item_size + extra_size >=
1564 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1565 err = -EAGAIN;
1566 goto out;
1567 }
1568 /*
1569 * To add new inline back ref, we have to make sure
1570 * there is no corresponding back ref item.
1571 * For simplicity, we just do not add new inline back
1572 * ref if there is any kind of item for this block
1573 */
1574 if (find_next_key(path, 0, &key) == 0 &&
1575 key.objectid == bytenr &&
1576 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1577 err = -EAGAIN;
1578 goto out;
1579 }
1580 }
1581 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1582 out:
1583 if (insert) {
1584 path->keep_locks = 0;
1585 btrfs_unlock_up_safe(path, 1);
1586 }
1587 return err;
1588 }
1589
1590 /*
1591 * helper to add new inline back ref
1592 */
1593 static noinline_for_stack
1594 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1595 struct btrfs_root *root,
1596 struct btrfs_path *path,
1597 struct btrfs_extent_inline_ref *iref,
1598 u64 parent, u64 root_objectid,
1599 u64 owner, u64 offset, int refs_to_add,
1600 struct btrfs_delayed_extent_op *extent_op)
1601 {
1602 struct extent_buffer *leaf;
1603 struct btrfs_extent_item *ei;
1604 unsigned long ptr;
1605 unsigned long end;
1606 unsigned long item_offset;
1607 u64 refs;
1608 int size;
1609 int type;
1610 int ret;
1611
1612 leaf = path->nodes[0];
1613 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1614 item_offset = (unsigned long)iref - (unsigned long)ei;
1615
1616 type = extent_ref_type(parent, owner);
1617 size = btrfs_extent_inline_ref_size(type);
1618
1619 ret = btrfs_extend_item(trans, root, path, size);
1620
1621 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1622 refs = btrfs_extent_refs(leaf, ei);
1623 refs += refs_to_add;
1624 btrfs_set_extent_refs(leaf, ei, refs);
1625 if (extent_op)
1626 __run_delayed_extent_op(extent_op, leaf, ei);
1627
1628 ptr = (unsigned long)ei + item_offset;
1629 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1630 if (ptr < end - size)
1631 memmove_extent_buffer(leaf, ptr + size, ptr,
1632 end - size - ptr);
1633
1634 iref = (struct btrfs_extent_inline_ref *)ptr;
1635 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1636 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1637 struct btrfs_extent_data_ref *dref;
1638 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1639 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1640 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1641 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1642 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1643 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1644 struct btrfs_shared_data_ref *sref;
1645 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1647 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1648 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1649 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1650 } else {
1651 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1652 }
1653 btrfs_mark_buffer_dirty(leaf);
1654 return 0;
1655 }
1656
1657 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1658 struct btrfs_root *root,
1659 struct btrfs_path *path,
1660 struct btrfs_extent_inline_ref **ref_ret,
1661 u64 bytenr, u64 num_bytes, u64 parent,
1662 u64 root_objectid, u64 owner, u64 offset)
1663 {
1664 int ret;
1665
1666 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1667 bytenr, num_bytes, parent,
1668 root_objectid, owner, offset, 0);
1669 if (ret != -ENOENT)
1670 return ret;
1671
1672 btrfs_release_path(path);
1673 *ref_ret = NULL;
1674
1675 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1676 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1677 root_objectid);
1678 } else {
1679 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1680 root_objectid, owner, offset);
1681 }
1682 return ret;
1683 }
1684
1685 /*
1686 * helper to update/remove inline back ref
1687 */
1688 static noinline_for_stack
1689 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1690 struct btrfs_root *root,
1691 struct btrfs_path *path,
1692 struct btrfs_extent_inline_ref *iref,
1693 int refs_to_mod,
1694 struct btrfs_delayed_extent_op *extent_op)
1695 {
1696 struct extent_buffer *leaf;
1697 struct btrfs_extent_item *ei;
1698 struct btrfs_extent_data_ref *dref = NULL;
1699 struct btrfs_shared_data_ref *sref = NULL;
1700 unsigned long ptr;
1701 unsigned long end;
1702 u32 item_size;
1703 int size;
1704 int type;
1705 int ret;
1706 u64 refs;
1707
1708 leaf = path->nodes[0];
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1712 refs += refs_to_mod;
1713 btrfs_set_extent_refs(leaf, ei, refs);
1714 if (extent_op)
1715 __run_delayed_extent_op(extent_op, leaf, ei);
1716
1717 type = btrfs_extent_inline_ref_type(leaf, iref);
1718
1719 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1720 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1721 refs = btrfs_extent_data_ref_count(leaf, dref);
1722 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1723 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1724 refs = btrfs_shared_data_ref_count(leaf, sref);
1725 } else {
1726 refs = 1;
1727 BUG_ON(refs_to_mod != -1);
1728 }
1729
1730 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1731 refs += refs_to_mod;
1732
1733 if (refs > 0) {
1734 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1735 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1736 else
1737 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1738 } else {
1739 size = btrfs_extent_inline_ref_size(type);
1740 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1741 ptr = (unsigned long)iref;
1742 end = (unsigned long)ei + item_size;
1743 if (ptr + size < end)
1744 memmove_extent_buffer(leaf, ptr, ptr + size,
1745 end - ptr - size);
1746 item_size -= size;
1747 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1748 }
1749 btrfs_mark_buffer_dirty(leaf);
1750 return 0;
1751 }
1752
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 u64 bytenr, u64 num_bytes, u64 parent,
1758 u64 root_objectid, u64 owner,
1759 u64 offset, int refs_to_add,
1760 struct btrfs_delayed_extent_op *extent_op)
1761 {
1762 struct btrfs_extent_inline_ref *iref;
1763 int ret;
1764
1765 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 bytenr, num_bytes, parent,
1767 root_objectid, owner, offset, 1);
1768 if (ret == 0) {
1769 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 ret = update_inline_extent_backref(trans, root, path, iref,
1771 refs_to_add, extent_op);
1772 } else if (ret == -ENOENT) {
1773 ret = setup_inline_extent_backref(trans, root, path, iref,
1774 parent, root_objectid,
1775 owner, offset, refs_to_add,
1776 extent_op);
1777 }
1778 return ret;
1779 }
1780
1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path,
1784 u64 bytenr, u64 parent, u64 root_objectid,
1785 u64 owner, u64 offset, int refs_to_add)
1786 {
1787 int ret;
1788 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 BUG_ON(refs_to_add != 1);
1790 ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 parent, root_objectid);
1792 } else {
1793 ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 parent, root_objectid,
1795 owner, offset, refs_to_add);
1796 }
1797 return ret;
1798 }
1799
1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref *iref,
1804 int refs_to_drop, int is_data)
1805 {
1806 int ret;
1807
1808 BUG_ON(!is_data && refs_to_drop != 1);
1809 if (iref) {
1810 ret = update_inline_extent_backref(trans, root, path, iref,
1811 -refs_to_drop, NULL);
1812 } else if (is_data) {
1813 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1814 } else {
1815 ret = btrfs_del_item(trans, root, path);
1816 }
1817 return ret;
1818 }
1819
1820 static int btrfs_issue_discard(struct block_device *bdev,
1821 u64 start, u64 len)
1822 {
1823 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1824 }
1825
1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 u64 num_bytes, u64 *actual_bytes)
1828 {
1829 int ret;
1830 u64 discarded_bytes = 0;
1831 struct btrfs_bio *bbio = NULL;
1832
1833
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 bytenr, &num_bytes, &bbio, 0);
1837 if (!ret) {
1838 struct btrfs_bio_stripe *stripe = bbio->stripes;
1839 int i;
1840
1841
1842 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1843 if (!stripe->dev->can_discard)
1844 continue;
1845
1846 ret = btrfs_issue_discard(stripe->dev->bdev,
1847 stripe->physical,
1848 stripe->length);
1849 if (!ret)
1850 discarded_bytes += stripe->length;
1851 else if (ret != -EOPNOTSUPP)
1852 break;
1853
1854 /*
1855 * Just in case we get back EOPNOTSUPP for some reason,
1856 * just ignore the return value so we don't screw up
1857 * people calling discard_extent.
1858 */
1859 ret = 0;
1860 }
1861 kfree(bbio);
1862 }
1863
1864 if (actual_bytes)
1865 *actual_bytes = discarded_bytes;
1866
1867
1868 return ret;
1869 }
1870
1871 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1872 struct btrfs_root *root,
1873 u64 bytenr, u64 num_bytes, u64 parent,
1874 u64 root_objectid, u64 owner, u64 offset)
1875 {
1876 int ret;
1877 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1878 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1879
1880 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1881 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1882 parent, root_objectid, (int)owner,
1883 BTRFS_ADD_DELAYED_REF, NULL);
1884 } else {
1885 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1886 parent, root_objectid, owner, offset,
1887 BTRFS_ADD_DELAYED_REF, NULL);
1888 }
1889 return ret;
1890 }
1891
1892 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 u64 bytenr, u64 num_bytes,
1895 u64 parent, u64 root_objectid,
1896 u64 owner, u64 offset, int refs_to_add,
1897 struct btrfs_delayed_extent_op *extent_op)
1898 {
1899 struct btrfs_path *path;
1900 struct extent_buffer *leaf;
1901 struct btrfs_extent_item *item;
1902 u64 refs;
1903 int ret;
1904 int err = 0;
1905
1906 path = btrfs_alloc_path();
1907 if (!path)
1908 return -ENOMEM;
1909
1910 path->reada = 1;
1911 path->leave_spinning = 1;
1912 /* this will setup the path even if it fails to insert the back ref */
1913 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1914 path, bytenr, num_bytes, parent,
1915 root_objectid, owner, offset,
1916 refs_to_add, extent_op);
1917 if (ret == 0)
1918 goto out;
1919
1920 if (ret != -EAGAIN) {
1921 err = ret;
1922 goto out;
1923 }
1924
1925 leaf = path->nodes[0];
1926 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1927 refs = btrfs_extent_refs(leaf, item);
1928 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1929 if (extent_op)
1930 __run_delayed_extent_op(extent_op, leaf, item);
1931
1932 btrfs_mark_buffer_dirty(leaf);
1933 btrfs_release_path(path);
1934
1935 path->reada = 1;
1936 path->leave_spinning = 1;
1937
1938 /* now insert the actual backref */
1939 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1940 path, bytenr, parent, root_objectid,
1941 owner, offset, refs_to_add);
1942 BUG_ON(ret);
1943 out:
1944 btrfs_free_path(path);
1945 return err;
1946 }
1947
1948 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1949 struct btrfs_root *root,
1950 struct btrfs_delayed_ref_node *node,
1951 struct btrfs_delayed_extent_op *extent_op,
1952 int insert_reserved)
1953 {
1954 int ret = 0;
1955 struct btrfs_delayed_data_ref *ref;
1956 struct btrfs_key ins;
1957 u64 parent = 0;
1958 u64 ref_root = 0;
1959 u64 flags = 0;
1960
1961 ins.objectid = node->bytenr;
1962 ins.offset = node->num_bytes;
1963 ins.type = BTRFS_EXTENT_ITEM_KEY;
1964
1965 ref = btrfs_delayed_node_to_data_ref(node);
1966 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1967 parent = ref->parent;
1968 else
1969 ref_root = ref->root;
1970
1971 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1972 if (extent_op) {
1973 BUG_ON(extent_op->update_key);
1974 flags |= extent_op->flags_to_set;
1975 }
1976 ret = alloc_reserved_file_extent(trans, root,
1977 parent, ref_root, flags,
1978 ref->objectid, ref->offset,
1979 &ins, node->ref_mod);
1980 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1981 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1982 node->num_bytes, parent,
1983 ref_root, ref->objectid,
1984 ref->offset, node->ref_mod,
1985 extent_op);
1986 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1987 ret = __btrfs_free_extent(trans, root, node->bytenr,
1988 node->num_bytes, parent,
1989 ref_root, ref->objectid,
1990 ref->offset, node->ref_mod,
1991 extent_op);
1992 } else {
1993 BUG();
1994 }
1995 return ret;
1996 }
1997
1998 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1999 struct extent_buffer *leaf,
2000 struct btrfs_extent_item *ei)
2001 {
2002 u64 flags = btrfs_extent_flags(leaf, ei);
2003 if (extent_op->update_flags) {
2004 flags |= extent_op->flags_to_set;
2005 btrfs_set_extent_flags(leaf, ei, flags);
2006 }
2007
2008 if (extent_op->update_key) {
2009 struct btrfs_tree_block_info *bi;
2010 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2011 bi = (struct btrfs_tree_block_info *)(ei + 1);
2012 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2013 }
2014 }
2015
2016 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2017 struct btrfs_root *root,
2018 struct btrfs_delayed_ref_node *node,
2019 struct btrfs_delayed_extent_op *extent_op)
2020 {
2021 struct btrfs_key key;
2022 struct btrfs_path *path;
2023 struct btrfs_extent_item *ei;
2024 struct extent_buffer *leaf;
2025 u32 item_size;
2026 int ret;
2027 int err = 0;
2028
2029 path = btrfs_alloc_path();
2030 if (!path)
2031 return -ENOMEM;
2032
2033 key.objectid = node->bytenr;
2034 key.type = BTRFS_EXTENT_ITEM_KEY;
2035 key.offset = node->num_bytes;
2036
2037 path->reada = 1;
2038 path->leave_spinning = 1;
2039 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2040 path, 0, 1);
2041 if (ret < 0) {
2042 err = ret;
2043 goto out;
2044 }
2045 if (ret > 0) {
2046 err = -EIO;
2047 goto out;
2048 }
2049
2050 leaf = path->nodes[0];
2051 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2052 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2053 if (item_size < sizeof(*ei)) {
2054 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2055 path, (u64)-1, 0);
2056 if (ret < 0) {
2057 err = ret;
2058 goto out;
2059 }
2060 leaf = path->nodes[0];
2061 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2062 }
2063 #endif
2064 BUG_ON(item_size < sizeof(*ei));
2065 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2066 __run_delayed_extent_op(extent_op, leaf, ei);
2067
2068 btrfs_mark_buffer_dirty(leaf);
2069 out:
2070 btrfs_free_path(path);
2071 return err;
2072 }
2073
2074 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2075 struct btrfs_root *root,
2076 struct btrfs_delayed_ref_node *node,
2077 struct btrfs_delayed_extent_op *extent_op,
2078 int insert_reserved)
2079 {
2080 int ret = 0;
2081 struct btrfs_delayed_tree_ref *ref;
2082 struct btrfs_key ins;
2083 u64 parent = 0;
2084 u64 ref_root = 0;
2085
2086 ins.objectid = node->bytenr;
2087 ins.offset = node->num_bytes;
2088 ins.type = BTRFS_EXTENT_ITEM_KEY;
2089
2090 ref = btrfs_delayed_node_to_tree_ref(node);
2091 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2092 parent = ref->parent;
2093 else
2094 ref_root = ref->root;
2095
2096 BUG_ON(node->ref_mod != 1);
2097 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2098 BUG_ON(!extent_op || !extent_op->update_flags ||
2099 !extent_op->update_key);
2100 ret = alloc_reserved_tree_block(trans, root,
2101 parent, ref_root,
2102 extent_op->flags_to_set,
2103 &extent_op->key,
2104 ref->level, &ins);
2105 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2106 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2107 node->num_bytes, parent, ref_root,
2108 ref->level, 0, 1, extent_op);
2109 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2110 ret = __btrfs_free_extent(trans, root, node->bytenr,
2111 node->num_bytes, parent, ref_root,
2112 ref->level, 0, 1, extent_op);
2113 } else {
2114 BUG();
2115 }
2116 return ret;
2117 }
2118
2119 /* helper function to actually process a single delayed ref entry */
2120 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2121 struct btrfs_root *root,
2122 struct btrfs_delayed_ref_node *node,
2123 struct btrfs_delayed_extent_op *extent_op,
2124 int insert_reserved)
2125 {
2126 int ret;
2127 if (btrfs_delayed_ref_is_head(node)) {
2128 struct btrfs_delayed_ref_head *head;
2129 /*
2130 * we've hit the end of the chain and we were supposed
2131 * to insert this extent into the tree. But, it got
2132 * deleted before we ever needed to insert it, so all
2133 * we have to do is clean up the accounting
2134 */
2135 BUG_ON(extent_op);
2136 head = btrfs_delayed_node_to_head(node);
2137 if (insert_reserved) {
2138 btrfs_pin_extent(root, node->bytenr,
2139 node->num_bytes, 1);
2140 if (head->is_data) {
2141 ret = btrfs_del_csums(trans, root,
2142 node->bytenr,
2143 node->num_bytes);
2144 BUG_ON(ret);
2145 }
2146 }
2147 mutex_unlock(&head->mutex);
2148 return 0;
2149 }
2150
2151 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2152 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2153 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2154 insert_reserved);
2155 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2156 node->type == BTRFS_SHARED_DATA_REF_KEY)
2157 ret = run_delayed_data_ref(trans, root, node, extent_op,
2158 insert_reserved);
2159 else
2160 BUG();
2161 return ret;
2162 }
2163
2164 static noinline struct btrfs_delayed_ref_node *
2165 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2166 {
2167 struct rb_node *node;
2168 struct btrfs_delayed_ref_node *ref;
2169 int action = BTRFS_ADD_DELAYED_REF;
2170 again:
2171 /*
2172 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2173 * this prevents ref count from going down to zero when
2174 * there still are pending delayed ref.
2175 */
2176 node = rb_prev(&head->node.rb_node);
2177 while (1) {
2178 if (!node)
2179 break;
2180 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2181 rb_node);
2182 if (ref->bytenr != head->node.bytenr)
2183 break;
2184 if (ref->action == action)
2185 return ref;
2186 node = rb_prev(node);
2187 }
2188 if (action == BTRFS_ADD_DELAYED_REF) {
2189 action = BTRFS_DROP_DELAYED_REF;
2190 goto again;
2191 }
2192 return NULL;
2193 }
2194
2195 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2196 struct btrfs_root *root,
2197 struct list_head *cluster)
2198 {
2199 struct btrfs_delayed_ref_root *delayed_refs;
2200 struct btrfs_delayed_ref_node *ref;
2201 struct btrfs_delayed_ref_head *locked_ref = NULL;
2202 struct btrfs_delayed_extent_op *extent_op;
2203 int ret;
2204 int count = 0;
2205 int must_insert_reserved = 0;
2206
2207 delayed_refs = &trans->transaction->delayed_refs;
2208 while (1) {
2209 if (!locked_ref) {
2210 /* pick a new head ref from the cluster list */
2211 if (list_empty(cluster))
2212 break;
2213
2214 locked_ref = list_entry(cluster->next,
2215 struct btrfs_delayed_ref_head, cluster);
2216
2217 /* grab the lock that says we are going to process
2218 * all the refs for this head */
2219 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2220
2221 /*
2222 * we may have dropped the spin lock to get the head
2223 * mutex lock, and that might have given someone else
2224 * time to free the head. If that's true, it has been
2225 * removed from our list and we can move on.
2226 */
2227 if (ret == -EAGAIN) {
2228 locked_ref = NULL;
2229 count++;
2230 continue;
2231 }
2232 }
2233
2234 /*
2235 * record the must insert reserved flag before we
2236 * drop the spin lock.
2237 */
2238 must_insert_reserved = locked_ref->must_insert_reserved;
2239 locked_ref->must_insert_reserved = 0;
2240
2241 extent_op = locked_ref->extent_op;
2242 locked_ref->extent_op = NULL;
2243
2244 /*
2245 * locked_ref is the head node, so we have to go one
2246 * node back for any delayed ref updates
2247 */
2248 ref = select_delayed_ref(locked_ref);
2249 if (!ref) {
2250 /* All delayed refs have been processed, Go ahead
2251 * and send the head node to run_one_delayed_ref,
2252 * so that any accounting fixes can happen
2253 */
2254 ref = &locked_ref->node;
2255
2256 if (extent_op && must_insert_reserved) {
2257 kfree(extent_op);
2258 extent_op = NULL;
2259 }
2260
2261 if (extent_op) {
2262 spin_unlock(&delayed_refs->lock);
2263
2264 ret = run_delayed_extent_op(trans, root,
2265 ref, extent_op);
2266 BUG_ON(ret);
2267 kfree(extent_op);
2268
2269 goto next;
2270 }
2271
2272 list_del_init(&locked_ref->cluster);
2273 locked_ref = NULL;
2274 }
2275
2276 ref->in_tree = 0;
2277 rb_erase(&ref->rb_node, &delayed_refs->root);
2278 delayed_refs->num_entries--;
2279
2280 spin_unlock(&delayed_refs->lock);
2281
2282 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2283 must_insert_reserved);
2284 BUG_ON(ret);
2285
2286 btrfs_put_delayed_ref(ref);
2287 kfree(extent_op);
2288 count++;
2289 next:
2290 do_chunk_alloc(trans, root->fs_info->extent_root,
2291 2 * 1024 * 1024,
2292 btrfs_get_alloc_profile(root, 0),
2293 CHUNK_ALLOC_NO_FORCE);
2294 cond_resched();
2295 spin_lock(&delayed_refs->lock);
2296 }
2297 return count;
2298 }
2299
2300 /*
2301 * this starts processing the delayed reference count updates and
2302 * extent insertions we have queued up so far. count can be
2303 * 0, which means to process everything in the tree at the start
2304 * of the run (but not newly added entries), or it can be some target
2305 * number you'd like to process.
2306 */
2307 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2308 struct btrfs_root *root, unsigned long count)
2309 {
2310 struct rb_node *node;
2311 struct btrfs_delayed_ref_root *delayed_refs;
2312 struct btrfs_delayed_ref_node *ref;
2313 struct list_head cluster;
2314 int ret;
2315 int run_all = count == (unsigned long)-1;
2316 int run_most = 0;
2317
2318 if (root == root->fs_info->extent_root)
2319 root = root->fs_info->tree_root;
2320
2321 do_chunk_alloc(trans, root->fs_info->extent_root,
2322 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2323 CHUNK_ALLOC_NO_FORCE);
2324
2325 delayed_refs = &trans->transaction->delayed_refs;
2326 INIT_LIST_HEAD(&cluster);
2327 again:
2328 spin_lock(&delayed_refs->lock);
2329 if (count == 0) {
2330 count = delayed_refs->num_entries * 2;
2331 run_most = 1;
2332 }
2333 while (1) {
2334 if (!(run_all || run_most) &&
2335 delayed_refs->num_heads_ready < 64)
2336 break;
2337
2338 /*
2339 * go find something we can process in the rbtree. We start at
2340 * the beginning of the tree, and then build a cluster
2341 * of refs to process starting at the first one we are able to
2342 * lock
2343 */
2344 ret = btrfs_find_ref_cluster(trans, &cluster,
2345 delayed_refs->run_delayed_start);
2346 if (ret)
2347 break;
2348
2349 ret = run_clustered_refs(trans, root, &cluster);
2350 BUG_ON(ret < 0);
2351
2352 count -= min_t(unsigned long, ret, count);
2353
2354 if (count == 0)
2355 break;
2356 }
2357
2358 if (run_all) {
2359 node = rb_first(&delayed_refs->root);
2360 if (!node)
2361 goto out;
2362 count = (unsigned long)-1;
2363
2364 while (node) {
2365 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2366 rb_node);
2367 if (btrfs_delayed_ref_is_head(ref)) {
2368 struct btrfs_delayed_ref_head *head;
2369
2370 head = btrfs_delayed_node_to_head(ref);
2371 atomic_inc(&ref->refs);
2372
2373 spin_unlock(&delayed_refs->lock);
2374 /*
2375 * Mutex was contended, block until it's
2376 * released and try again
2377 */
2378 mutex_lock(&head->mutex);
2379 mutex_unlock(&head->mutex);
2380
2381 btrfs_put_delayed_ref(ref);
2382 cond_resched();
2383 goto again;
2384 }
2385 node = rb_next(node);
2386 }
2387 spin_unlock(&delayed_refs->lock);
2388 schedule_timeout(1);
2389 goto again;
2390 }
2391 out:
2392 spin_unlock(&delayed_refs->lock);
2393 return 0;
2394 }
2395
2396 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root,
2398 u64 bytenr, u64 num_bytes, u64 flags,
2399 int is_data)
2400 {
2401 struct btrfs_delayed_extent_op *extent_op;
2402 int ret;
2403
2404 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2405 if (!extent_op)
2406 return -ENOMEM;
2407
2408 extent_op->flags_to_set = flags;
2409 extent_op->update_flags = 1;
2410 extent_op->update_key = 0;
2411 extent_op->is_data = is_data ? 1 : 0;
2412
2413 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2414 if (ret)
2415 kfree(extent_op);
2416 return ret;
2417 }
2418
2419 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2420 struct btrfs_root *root,
2421 struct btrfs_path *path,
2422 u64 objectid, u64 offset, u64 bytenr)
2423 {
2424 struct btrfs_delayed_ref_head *head;
2425 struct btrfs_delayed_ref_node *ref;
2426 struct btrfs_delayed_data_ref *data_ref;
2427 struct btrfs_delayed_ref_root *delayed_refs;
2428 struct rb_node *node;
2429 int ret = 0;
2430
2431 ret = -ENOENT;
2432 delayed_refs = &trans->transaction->delayed_refs;
2433 spin_lock(&delayed_refs->lock);
2434 head = btrfs_find_delayed_ref_head(trans, bytenr);
2435 if (!head)
2436 goto out;
2437
2438 if (!mutex_trylock(&head->mutex)) {
2439 atomic_inc(&head->node.refs);
2440 spin_unlock(&delayed_refs->lock);
2441
2442 btrfs_release_path(path);
2443
2444 /*
2445 * Mutex was contended, block until it's released and let
2446 * caller try again
2447 */
2448 mutex_lock(&head->mutex);
2449 mutex_unlock(&head->mutex);
2450 btrfs_put_delayed_ref(&head->node);
2451 return -EAGAIN;
2452 }
2453
2454 node = rb_prev(&head->node.rb_node);
2455 if (!node)
2456 goto out_unlock;
2457
2458 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2459
2460 if (ref->bytenr != bytenr)
2461 goto out_unlock;
2462
2463 ret = 1;
2464 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2465 goto out_unlock;
2466
2467 data_ref = btrfs_delayed_node_to_data_ref(ref);
2468
2469 node = rb_prev(node);
2470 if (node) {
2471 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2472 if (ref->bytenr == bytenr)
2473 goto out_unlock;
2474 }
2475
2476 if (data_ref->root != root->root_key.objectid ||
2477 data_ref->objectid != objectid || data_ref->offset != offset)
2478 goto out_unlock;
2479
2480 ret = 0;
2481 out_unlock:
2482 mutex_unlock(&head->mutex);
2483 out:
2484 spin_unlock(&delayed_refs->lock);
2485 return ret;
2486 }
2487
2488 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2489 struct btrfs_root *root,
2490 struct btrfs_path *path,
2491 u64 objectid, u64 offset, u64 bytenr)
2492 {
2493 struct btrfs_root *extent_root = root->fs_info->extent_root;
2494 struct extent_buffer *leaf;
2495 struct btrfs_extent_data_ref *ref;
2496 struct btrfs_extent_inline_ref *iref;
2497 struct btrfs_extent_item *ei;
2498 struct btrfs_key key;
2499 u32 item_size;
2500 int ret;
2501
2502 key.objectid = bytenr;
2503 key.offset = (u64)-1;
2504 key.type = BTRFS_EXTENT_ITEM_KEY;
2505
2506 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2507 if (ret < 0)
2508 goto out;
2509 BUG_ON(ret == 0);
2510
2511 ret = -ENOENT;
2512 if (path->slots[0] == 0)
2513 goto out;
2514
2515 path->slots[0]--;
2516 leaf = path->nodes[0];
2517 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2518
2519 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2520 goto out;
2521
2522 ret = 1;
2523 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2524 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2525 if (item_size < sizeof(*ei)) {
2526 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2527 goto out;
2528 }
2529 #endif
2530 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2531
2532 if (item_size != sizeof(*ei) +
2533 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2534 goto out;
2535
2536 if (btrfs_extent_generation(leaf, ei) <=
2537 btrfs_root_last_snapshot(&root->root_item))
2538 goto out;
2539
2540 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2541 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2542 BTRFS_EXTENT_DATA_REF_KEY)
2543 goto out;
2544
2545 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2546 if (btrfs_extent_refs(leaf, ei) !=
2547 btrfs_extent_data_ref_count(leaf, ref) ||
2548 btrfs_extent_data_ref_root(leaf, ref) !=
2549 root->root_key.objectid ||
2550 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2551 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2552 goto out;
2553
2554 ret = 0;
2555 out:
2556 return ret;
2557 }
2558
2559 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2560 struct btrfs_root *root,
2561 u64 objectid, u64 offset, u64 bytenr)
2562 {
2563 struct btrfs_path *path;
2564 int ret;
2565 int ret2;
2566
2567 path = btrfs_alloc_path();
2568 if (!path)
2569 return -ENOENT;
2570
2571 do {
2572 ret = check_committed_ref(trans, root, path, objectid,
2573 offset, bytenr);
2574 if (ret && ret != -ENOENT)
2575 goto out;
2576
2577 ret2 = check_delayed_ref(trans, root, path, objectid,
2578 offset, bytenr);
2579 } while (ret2 == -EAGAIN);
2580
2581 if (ret2 && ret2 != -ENOENT) {
2582 ret = ret2;
2583 goto out;
2584 }
2585
2586 if (ret != -ENOENT || ret2 != -ENOENT)
2587 ret = 0;
2588 out:
2589 btrfs_free_path(path);
2590 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2591 WARN_ON(ret > 0);
2592 return ret;
2593 }
2594
2595 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2596 struct btrfs_root *root,
2597 struct extent_buffer *buf,
2598 int full_backref, int inc)
2599 {
2600 u64 bytenr;
2601 u64 num_bytes;
2602 u64 parent;
2603 u64 ref_root;
2604 u32 nritems;
2605 struct btrfs_key key;
2606 struct btrfs_file_extent_item *fi;
2607 int i;
2608 int level;
2609 int ret = 0;
2610 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2611 u64, u64, u64, u64, u64, u64);
2612
2613 ref_root = btrfs_header_owner(buf);
2614 nritems = btrfs_header_nritems(buf);
2615 level = btrfs_header_level(buf);
2616
2617 if (!root->ref_cows && level == 0)
2618 return 0;
2619
2620 if (inc)
2621 process_func = btrfs_inc_extent_ref;
2622 else
2623 process_func = btrfs_free_extent;
2624
2625 if (full_backref)
2626 parent = buf->start;
2627 else
2628 parent = 0;
2629
2630 for (i = 0; i < nritems; i++) {
2631 if (level == 0) {
2632 btrfs_item_key_to_cpu(buf, &key, i);
2633 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2634 continue;
2635 fi = btrfs_item_ptr(buf, i,
2636 struct btrfs_file_extent_item);
2637 if (btrfs_file_extent_type(buf, fi) ==
2638 BTRFS_FILE_EXTENT_INLINE)
2639 continue;
2640 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2641 if (bytenr == 0)
2642 continue;
2643
2644 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2645 key.offset -= btrfs_file_extent_offset(buf, fi);
2646 ret = process_func(trans, root, bytenr, num_bytes,
2647 parent, ref_root, key.objectid,
2648 key.offset);
2649 if (ret)
2650 goto fail;
2651 } else {
2652 bytenr = btrfs_node_blockptr(buf, i);
2653 num_bytes = btrfs_level_size(root, level - 1);
2654 ret = process_func(trans, root, bytenr, num_bytes,
2655 parent, ref_root, level - 1, 0);
2656 if (ret)
2657 goto fail;
2658 }
2659 }
2660 return 0;
2661 fail:
2662 BUG();
2663 return ret;
2664 }
2665
2666 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2667 struct extent_buffer *buf, int full_backref)
2668 {
2669 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2670 }
2671
2672 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2673 struct extent_buffer *buf, int full_backref)
2674 {
2675 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2676 }
2677
2678 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2679 struct btrfs_root *root,
2680 struct btrfs_path *path,
2681 struct btrfs_block_group_cache *cache)
2682 {
2683 int ret;
2684 struct btrfs_root *extent_root = root->fs_info->extent_root;
2685 unsigned long bi;
2686 struct extent_buffer *leaf;
2687
2688 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2689 if (ret < 0)
2690 goto fail;
2691 BUG_ON(ret);
2692
2693 leaf = path->nodes[0];
2694 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2695 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2696 btrfs_mark_buffer_dirty(leaf);
2697 btrfs_release_path(path);
2698 fail:
2699 if (ret)
2700 return ret;
2701 return 0;
2702
2703 }
2704
2705 static struct btrfs_block_group_cache *
2706 next_block_group(struct btrfs_root *root,
2707 struct btrfs_block_group_cache *cache)
2708 {
2709 struct rb_node *node;
2710 spin_lock(&root->fs_info->block_group_cache_lock);
2711 node = rb_next(&cache->cache_node);
2712 btrfs_put_block_group(cache);
2713 if (node) {
2714 cache = rb_entry(node, struct btrfs_block_group_cache,
2715 cache_node);
2716 btrfs_get_block_group(cache);
2717 } else
2718 cache = NULL;
2719 spin_unlock(&root->fs_info->block_group_cache_lock);
2720 return cache;
2721 }
2722
2723 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2724 struct btrfs_trans_handle *trans,
2725 struct btrfs_path *path)
2726 {
2727 struct btrfs_root *root = block_group->fs_info->tree_root;
2728 struct inode *inode = NULL;
2729 u64 alloc_hint = 0;
2730 int dcs = BTRFS_DC_ERROR;
2731 int num_pages = 0;
2732 int retries = 0;
2733 int ret = 0;
2734
2735 /*
2736 * If this block group is smaller than 100 megs don't bother caching the
2737 * block group.
2738 */
2739 if (block_group->key.offset < (100 * 1024 * 1024)) {
2740 spin_lock(&block_group->lock);
2741 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2742 spin_unlock(&block_group->lock);
2743 return 0;
2744 }
2745
2746 again:
2747 inode = lookup_free_space_inode(root, block_group, path);
2748 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2749 ret = PTR_ERR(inode);
2750 btrfs_release_path(path);
2751 goto out;
2752 }
2753
2754 if (IS_ERR(inode)) {
2755 BUG_ON(retries);
2756 retries++;
2757
2758 if (block_group->ro)
2759 goto out_free;
2760
2761 ret = create_free_space_inode(root, trans, block_group, path);
2762 if (ret)
2763 goto out_free;
2764 goto again;
2765 }
2766
2767 /* We've already setup this transaction, go ahead and exit */
2768 if (block_group->cache_generation == trans->transid &&
2769 i_size_read(inode)) {
2770 dcs = BTRFS_DC_SETUP;
2771 goto out_put;
2772 }
2773
2774 /*
2775 * We want to set the generation to 0, that way if anything goes wrong
2776 * from here on out we know not to trust this cache when we load up next
2777 * time.
2778 */
2779 BTRFS_I(inode)->generation = 0;
2780 ret = btrfs_update_inode(trans, root, inode);
2781 WARN_ON(ret);
2782
2783 if (i_size_read(inode) > 0) {
2784 ret = btrfs_truncate_free_space_cache(root, trans, path,
2785 inode);
2786 if (ret)
2787 goto out_put;
2788 }
2789
2790 spin_lock(&block_group->lock);
2791 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2792 /* We're not cached, don't bother trying to write stuff out */
2793 dcs = BTRFS_DC_WRITTEN;
2794 spin_unlock(&block_group->lock);
2795 goto out_put;
2796 }
2797 spin_unlock(&block_group->lock);
2798
2799 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2800 if (!num_pages)
2801 num_pages = 1;
2802
2803 /*
2804 * Just to make absolutely sure we have enough space, we're going to
2805 * preallocate 12 pages worth of space for each block group. In
2806 * practice we ought to use at most 8, but we need extra space so we can
2807 * add our header and have a terminator between the extents and the
2808 * bitmaps.
2809 */
2810 num_pages *= 16;
2811 num_pages *= PAGE_CACHE_SIZE;
2812
2813 ret = btrfs_check_data_free_space(inode, num_pages);
2814 if (ret)
2815 goto out_put;
2816
2817 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2818 num_pages, num_pages,
2819 &alloc_hint);
2820 if (!ret)
2821 dcs = BTRFS_DC_SETUP;
2822 btrfs_free_reserved_data_space(inode, num_pages);
2823
2824 out_put:
2825 iput(inode);
2826 out_free:
2827 btrfs_release_path(path);
2828 out:
2829 spin_lock(&block_group->lock);
2830 if (!ret && dcs == BTRFS_DC_SETUP)
2831 block_group->cache_generation = trans->transid;
2832 block_group->disk_cache_state = dcs;
2833 spin_unlock(&block_group->lock);
2834
2835 return ret;
2836 }
2837
2838 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *root)
2840 {
2841 struct btrfs_block_group_cache *cache;
2842 int err = 0;
2843 struct btrfs_path *path;
2844 u64 last = 0;
2845
2846 path = btrfs_alloc_path();
2847 if (!path)
2848 return -ENOMEM;
2849
2850 again:
2851 while (1) {
2852 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2853 while (cache) {
2854 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2855 break;
2856 cache = next_block_group(root, cache);
2857 }
2858 if (!cache) {
2859 if (last == 0)
2860 break;
2861 last = 0;
2862 continue;
2863 }
2864 err = cache_save_setup(cache, trans, path);
2865 last = cache->key.objectid + cache->key.offset;
2866 btrfs_put_block_group(cache);
2867 }
2868
2869 while (1) {
2870 if (last == 0) {
2871 err = btrfs_run_delayed_refs(trans, root,
2872 (unsigned long)-1);
2873 BUG_ON(err);
2874 }
2875
2876 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2877 while (cache) {
2878 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2879 btrfs_put_block_group(cache);
2880 goto again;
2881 }
2882
2883 if (cache->dirty)
2884 break;
2885 cache = next_block_group(root, cache);
2886 }
2887 if (!cache) {
2888 if (last == 0)
2889 break;
2890 last = 0;
2891 continue;
2892 }
2893
2894 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2895 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2896 cache->dirty = 0;
2897 last = cache->key.objectid + cache->key.offset;
2898
2899 err = write_one_cache_group(trans, root, path, cache);
2900 BUG_ON(err);
2901 btrfs_put_block_group(cache);
2902 }
2903
2904 while (1) {
2905 /*
2906 * I don't think this is needed since we're just marking our
2907 * preallocated extent as written, but just in case it can't
2908 * hurt.
2909 */
2910 if (last == 0) {
2911 err = btrfs_run_delayed_refs(trans, root,
2912 (unsigned long)-1);
2913 BUG_ON(err);
2914 }
2915
2916 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2917 while (cache) {
2918 /*
2919 * Really this shouldn't happen, but it could if we
2920 * couldn't write the entire preallocated extent and
2921 * splitting the extent resulted in a new block.
2922 */
2923 if (cache->dirty) {
2924 btrfs_put_block_group(cache);
2925 goto again;
2926 }
2927 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2928 break;
2929 cache = next_block_group(root, cache);
2930 }
2931 if (!cache) {
2932 if (last == 0)
2933 break;
2934 last = 0;
2935 continue;
2936 }
2937
2938 btrfs_write_out_cache(root, trans, cache, path);
2939
2940 /*
2941 * If we didn't have an error then the cache state is still
2942 * NEED_WRITE, so we can set it to WRITTEN.
2943 */
2944 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2945 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2946 last = cache->key.objectid + cache->key.offset;
2947 btrfs_put_block_group(cache);
2948 }
2949
2950 btrfs_free_path(path);
2951 return 0;
2952 }
2953
2954 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2955 {
2956 struct btrfs_block_group_cache *block_group;
2957 int readonly = 0;
2958
2959 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2960 if (!block_group || block_group->ro)
2961 readonly = 1;
2962 if (block_group)
2963 btrfs_put_block_group(block_group);
2964 return readonly;
2965 }
2966
2967 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2968 u64 total_bytes, u64 bytes_used,
2969 struct btrfs_space_info **space_info)
2970 {
2971 struct btrfs_space_info *found;
2972 int i;
2973 int factor;
2974
2975 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2976 BTRFS_BLOCK_GROUP_RAID10))
2977 factor = 2;
2978 else
2979 factor = 1;
2980
2981 found = __find_space_info(info, flags);
2982 if (found) {
2983 spin_lock(&found->lock);
2984 found->total_bytes += total_bytes;
2985 found->disk_total += total_bytes * factor;
2986 found->bytes_used += bytes_used;
2987 found->disk_used += bytes_used * factor;
2988 found->full = 0;
2989 spin_unlock(&found->lock);
2990 *space_info = found;
2991 return 0;
2992 }
2993 found = kzalloc(sizeof(*found), GFP_NOFS);
2994 if (!found)
2995 return -ENOMEM;
2996
2997 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2998 INIT_LIST_HEAD(&found->block_groups[i]);
2999 init_rwsem(&found->groups_sem);
3000 spin_lock_init(&found->lock);
3001 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3002 found->total_bytes = total_bytes;
3003 found->disk_total = total_bytes * factor;
3004 found->bytes_used = bytes_used;
3005 found->disk_used = bytes_used * factor;
3006 found->bytes_pinned = 0;
3007 found->bytes_reserved = 0;
3008 found->bytes_readonly = 0;
3009 found->bytes_may_use = 0;
3010 found->full = 0;
3011 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3012 found->chunk_alloc = 0;
3013 found->flush = 0;
3014 init_waitqueue_head(&found->wait);
3015 *space_info = found;
3016 list_add_rcu(&found->list, &info->space_info);
3017 return 0;
3018 }
3019
3020 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3021 {
3022 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3023
3024 /* chunk -> extended profile */
3025 if (extra_flags == 0)
3026 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3027
3028 if (flags & BTRFS_BLOCK_GROUP_DATA)
3029 fs_info->avail_data_alloc_bits |= extra_flags;
3030 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3031 fs_info->avail_metadata_alloc_bits |= extra_flags;
3032 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3033 fs_info->avail_system_alloc_bits |= extra_flags;
3034 }
3035
3036 /*
3037 * @flags: available profiles in extended format (see ctree.h)
3038 *
3039 * Returns reduced profile in chunk format. If profile changing is in
3040 * progress (either running or paused) picks the target profile (if it's
3041 * already available), otherwise falls back to plain reducing.
3042 */
3043 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3044 {
3045 /*
3046 * we add in the count of missing devices because we want
3047 * to make sure that any RAID levels on a degraded FS
3048 * continue to be honored.
3049 */
3050 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3051 root->fs_info->fs_devices->missing_devices;
3052
3053 /* pick restriper's target profile if it's available */
3054 spin_lock(&root->fs_info->balance_lock);
3055 if (root->fs_info->balance_ctl) {
3056 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3057 u64 tgt = 0;
3058
3059 if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3060 (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3061 (flags & bctl->data.target)) {
3062 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3063 } else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3064 (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3065 (flags & bctl->sys.target)) {
3066 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3067 } else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3068 (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3069 (flags & bctl->meta.target)) {
3070 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3071 }
3072
3073 if (tgt) {
3074 spin_unlock(&root->fs_info->balance_lock);
3075 flags = tgt;
3076 goto out;
3077 }
3078 }
3079 spin_unlock(&root->fs_info->balance_lock);
3080
3081 if (num_devices == 1)
3082 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3083 if (num_devices < 4)
3084 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3085
3086 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3087 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3088 BTRFS_BLOCK_GROUP_RAID10))) {
3089 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3090 }
3091
3092 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3093 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3094 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3095 }
3096
3097 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3098 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3099 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3100 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3101 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3102 }
3103
3104 out:
3105 /* extended -> chunk profile */
3106 flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3107 return flags;
3108 }
3109
3110 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3111 {
3112 if (flags & BTRFS_BLOCK_GROUP_DATA)
3113 flags |= root->fs_info->avail_data_alloc_bits;
3114 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3115 flags |= root->fs_info->avail_system_alloc_bits;
3116 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3117 flags |= root->fs_info->avail_metadata_alloc_bits;
3118
3119 return btrfs_reduce_alloc_profile(root, flags);
3120 }
3121
3122 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3123 {
3124 u64 flags;
3125
3126 if (data)
3127 flags = BTRFS_BLOCK_GROUP_DATA;
3128 else if (root == root->fs_info->chunk_root)
3129 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3130 else
3131 flags = BTRFS_BLOCK_GROUP_METADATA;
3132
3133 return get_alloc_profile(root, flags);
3134 }
3135
3136 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3137 {
3138 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3139 BTRFS_BLOCK_GROUP_DATA);
3140 }
3141
3142 /*
3143 * This will check the space that the inode allocates from to make sure we have
3144 * enough space for bytes.
3145 */
3146 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3147 {
3148 struct btrfs_space_info *data_sinfo;
3149 struct btrfs_root *root = BTRFS_I(inode)->root;
3150 u64 used;
3151 int ret = 0, committed = 0, alloc_chunk = 1;
3152
3153 /* make sure bytes are sectorsize aligned */
3154 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3155
3156 if (root == root->fs_info->tree_root ||
3157 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3158 alloc_chunk = 0;
3159 committed = 1;
3160 }
3161
3162 data_sinfo = BTRFS_I(inode)->space_info;
3163 if (!data_sinfo)
3164 goto alloc;
3165
3166 again:
3167 /* make sure we have enough space to handle the data first */
3168 spin_lock(&data_sinfo->lock);
3169 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3170 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3171 data_sinfo->bytes_may_use;
3172
3173 if (used + bytes > data_sinfo->total_bytes) {
3174 struct btrfs_trans_handle *trans;
3175
3176 /*
3177 * if we don't have enough free bytes in this space then we need
3178 * to alloc a new chunk.
3179 */
3180 if (!data_sinfo->full && alloc_chunk) {
3181 u64 alloc_target;
3182
3183 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3184 spin_unlock(&data_sinfo->lock);
3185 alloc:
3186 alloc_target = btrfs_get_alloc_profile(root, 1);
3187 trans = btrfs_join_transaction(root);
3188 if (IS_ERR(trans))
3189 return PTR_ERR(trans);
3190
3191 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3192 bytes + 2 * 1024 * 1024,
3193 alloc_target,
3194 CHUNK_ALLOC_NO_FORCE);
3195 btrfs_end_transaction(trans, root);
3196 if (ret < 0) {
3197 if (ret != -ENOSPC)
3198 return ret;
3199 else
3200 goto commit_trans;
3201 }
3202
3203 if (!data_sinfo) {
3204 btrfs_set_inode_space_info(root, inode);
3205 data_sinfo = BTRFS_I(inode)->space_info;
3206 }
3207 goto again;
3208 }
3209
3210 /*
3211 * If we have less pinned bytes than we want to allocate then
3212 * don't bother committing the transaction, it won't help us.
3213 */
3214 if (data_sinfo->bytes_pinned < bytes)
3215 committed = 1;
3216 spin_unlock(&data_sinfo->lock);
3217
3218 /* commit the current transaction and try again */
3219 commit_trans:
3220 if (!committed &&
3221 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3222 committed = 1;
3223 trans = btrfs_join_transaction(root);
3224 if (IS_ERR(trans))
3225 return PTR_ERR(trans);
3226 ret = btrfs_commit_transaction(trans, root);
3227 if (ret)
3228 return ret;
3229 goto again;
3230 }
3231
3232 return -ENOSPC;
3233 }
3234 data_sinfo->bytes_may_use += bytes;
3235 spin_unlock(&data_sinfo->lock);
3236
3237 return 0;
3238 }
3239
3240 /*
3241 * Called if we need to clear a data reservation for this inode.
3242 */
3243 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3244 {
3245 struct btrfs_root *root = BTRFS_I(inode)->root;
3246 struct btrfs_space_info *data_sinfo;
3247
3248 /* make sure bytes are sectorsize aligned */
3249 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3250
3251 data_sinfo = BTRFS_I(inode)->space_info;
3252 spin_lock(&data_sinfo->lock);
3253 data_sinfo->bytes_may_use -= bytes;
3254 spin_unlock(&data_sinfo->lock);
3255 }
3256
3257 static void force_metadata_allocation(struct btrfs_fs_info *info)
3258 {
3259 struct list_head *head = &info->space_info;
3260 struct btrfs_space_info *found;
3261
3262 rcu_read_lock();
3263 list_for_each_entry_rcu(found, head, list) {
3264 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3265 found->force_alloc = CHUNK_ALLOC_FORCE;
3266 }
3267 rcu_read_unlock();
3268 }
3269
3270 static int should_alloc_chunk(struct btrfs_root *root,
3271 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3272 int force)
3273 {
3274 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3275 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3276 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3277 u64 thresh;
3278
3279 if (force == CHUNK_ALLOC_FORCE)
3280 return 1;
3281
3282 /*
3283 * We need to take into account the global rsv because for all intents
3284 * and purposes it's used space. Don't worry about locking the
3285 * global_rsv, it doesn't change except when the transaction commits.
3286 */
3287 num_allocated += global_rsv->size;
3288
3289 /*
3290 * in limited mode, we want to have some free space up to
3291 * about 1% of the FS size.
3292 */
3293 if (force == CHUNK_ALLOC_LIMITED) {
3294 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3295 thresh = max_t(u64, 64 * 1024 * 1024,
3296 div_factor_fine(thresh, 1));
3297
3298 if (num_bytes - num_allocated < thresh)
3299 return 1;
3300 }
3301 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3302
3303 /* 256MB or 2% of the FS */
3304 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3305
3306 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3307 return 0;
3308 return 1;
3309 }
3310
3311 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3312 struct btrfs_root *extent_root, u64 alloc_bytes,
3313 u64 flags, int force)
3314 {
3315 struct btrfs_space_info *space_info;
3316 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3317 int wait_for_alloc = 0;
3318 int ret = 0;
3319
3320 BUG_ON(!profile_is_valid(flags, 0));
3321
3322 space_info = __find_space_info(extent_root->fs_info, flags);
3323 if (!space_info) {
3324 ret = update_space_info(extent_root->fs_info, flags,
3325 0, 0, &space_info);
3326 BUG_ON(ret);
3327 }
3328 BUG_ON(!space_info);
3329
3330 again:
3331 spin_lock(&space_info->lock);
3332 if (space_info->force_alloc)
3333 force = space_info->force_alloc;
3334 if (space_info->full) {
3335 spin_unlock(&space_info->lock);
3336 return 0;
3337 }
3338
3339 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3340 spin_unlock(&space_info->lock);
3341 return 0;
3342 } else if (space_info->chunk_alloc) {
3343 wait_for_alloc = 1;
3344 } else {
3345 space_info->chunk_alloc = 1;
3346 }
3347
3348 spin_unlock(&space_info->lock);
3349
3350 mutex_lock(&fs_info->chunk_mutex);
3351
3352 /*
3353 * The chunk_mutex is held throughout the entirety of a chunk
3354 * allocation, so once we've acquired the chunk_mutex we know that the
3355 * other guy is done and we need to recheck and see if we should
3356 * allocate.
3357 */
3358 if (wait_for_alloc) {
3359 mutex_unlock(&fs_info->chunk_mutex);
3360 wait_for_alloc = 0;
3361 goto again;
3362 }
3363
3364 /*
3365 * If we have mixed data/metadata chunks we want to make sure we keep
3366 * allocating mixed chunks instead of individual chunks.
3367 */
3368 if (btrfs_mixed_space_info(space_info))
3369 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3370
3371 /*
3372 * if we're doing a data chunk, go ahead and make sure that
3373 * we keep a reasonable number of metadata chunks allocated in the
3374 * FS as well.
3375 */
3376 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3377 fs_info->data_chunk_allocations++;
3378 if (!(fs_info->data_chunk_allocations %
3379 fs_info->metadata_ratio))
3380 force_metadata_allocation(fs_info);
3381 }
3382
3383 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3384 if (ret < 0 && ret != -ENOSPC)
3385 goto out;
3386
3387 spin_lock(&space_info->lock);
3388 if (ret)
3389 space_info->full = 1;
3390 else
3391 ret = 1;
3392
3393 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3394 space_info->chunk_alloc = 0;
3395 spin_unlock(&space_info->lock);
3396 out:
3397 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3398 return ret;
3399 }
3400
3401 /*
3402 * shrink metadata reservation for delalloc
3403 */
3404 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3405 bool wait_ordered)
3406 {
3407 struct btrfs_block_rsv *block_rsv;
3408 struct btrfs_space_info *space_info;
3409 struct btrfs_trans_handle *trans;
3410 u64 reserved;
3411 u64 max_reclaim;
3412 u64 reclaimed = 0;
3413 long time_left;
3414 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3415 int loops = 0;
3416 unsigned long progress;
3417
3418 trans = (struct btrfs_trans_handle *)current->journal_info;
3419 block_rsv = &root->fs_info->delalloc_block_rsv;
3420 space_info = block_rsv->space_info;
3421
3422 smp_mb();
3423 reserved = space_info->bytes_may_use;
3424 progress = space_info->reservation_progress;
3425
3426 if (reserved == 0)
3427 return 0;
3428
3429 smp_mb();
3430 if (root->fs_info->delalloc_bytes == 0) {
3431 if (trans)
3432 return 0;
3433 btrfs_wait_ordered_extents(root, 0, 0);
3434 return 0;
3435 }
3436
3437 max_reclaim = min(reserved, to_reclaim);
3438 nr_pages = max_t(unsigned long, nr_pages,
3439 max_reclaim >> PAGE_CACHE_SHIFT);
3440 while (loops < 1024) {
3441 /* have the flusher threads jump in and do some IO */
3442 smp_mb();
3443 nr_pages = min_t(unsigned long, nr_pages,
3444 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3445 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3446 WB_REASON_FS_FREE_SPACE);
3447
3448 spin_lock(&space_info->lock);
3449 if (reserved > space_info->bytes_may_use)
3450 reclaimed += reserved - space_info->bytes_may_use;
3451 reserved = space_info->bytes_may_use;
3452 spin_unlock(&space_info->lock);
3453
3454 loops++;
3455
3456 if (reserved == 0 || reclaimed >= max_reclaim)
3457 break;
3458
3459 if (trans && trans->transaction->blocked)
3460 return -EAGAIN;
3461
3462 if (wait_ordered && !trans) {
3463 btrfs_wait_ordered_extents(root, 0, 0);
3464 } else {
3465 time_left = schedule_timeout_interruptible(1);
3466
3467 /* We were interrupted, exit */
3468 if (time_left)
3469 break;
3470 }
3471
3472 /* we've kicked the IO a few times, if anything has been freed,
3473 * exit. There is no sense in looping here for a long time
3474 * when we really need to commit the transaction, or there are
3475 * just too many writers without enough free space
3476 */
3477
3478 if (loops > 3) {
3479 smp_mb();
3480 if (progress != space_info->reservation_progress)
3481 break;
3482 }
3483
3484 }
3485
3486 return reclaimed >= to_reclaim;
3487 }
3488
3489 /**
3490 * maybe_commit_transaction - possibly commit the transaction if its ok to
3491 * @root - the root we're allocating for
3492 * @bytes - the number of bytes we want to reserve
3493 * @force - force the commit
3494 *
3495 * This will check to make sure that committing the transaction will actually
3496 * get us somewhere and then commit the transaction if it does. Otherwise it
3497 * will return -ENOSPC.
3498 */
3499 static int may_commit_transaction(struct btrfs_root *root,
3500 struct btrfs_space_info *space_info,
3501 u64 bytes, int force)
3502 {
3503 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3504 struct btrfs_trans_handle *trans;
3505
3506 trans = (struct btrfs_trans_handle *)current->journal_info;
3507 if (trans)
3508 return -EAGAIN;
3509
3510 if (force)
3511 goto commit;
3512
3513 /* See if there is enough pinned space to make this reservation */
3514 spin_lock(&space_info->lock);
3515 if (space_info->bytes_pinned >= bytes) {
3516 spin_unlock(&space_info->lock);
3517 goto commit;
3518 }
3519 spin_unlock(&space_info->lock);
3520
3521 /*
3522 * See if there is some space in the delayed insertion reservation for
3523 * this reservation.
3524 */
3525 if (space_info != delayed_rsv->space_info)
3526 return -ENOSPC;
3527
3528 spin_lock(&delayed_rsv->lock);
3529 if (delayed_rsv->size < bytes) {
3530 spin_unlock(&delayed_rsv->lock);
3531 return -ENOSPC;
3532 }
3533 spin_unlock(&delayed_rsv->lock);
3534
3535 commit:
3536 trans = btrfs_join_transaction(root);
3537 if (IS_ERR(trans))
3538 return -ENOSPC;
3539
3540 return btrfs_commit_transaction(trans, root);
3541 }
3542
3543 /**
3544 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3545 * @root - the root we're allocating for
3546 * @block_rsv - the block_rsv we're allocating for
3547 * @orig_bytes - the number of bytes we want
3548 * @flush - wether or not we can flush to make our reservation
3549 *
3550 * This will reserve orgi_bytes number of bytes from the space info associated
3551 * with the block_rsv. If there is not enough space it will make an attempt to
3552 * flush out space to make room. It will do this by flushing delalloc if
3553 * possible or committing the transaction. If flush is 0 then no attempts to
3554 * regain reservations will be made and this will fail if there is not enough
3555 * space already.
3556 */
3557 static int reserve_metadata_bytes(struct btrfs_root *root,
3558 struct btrfs_block_rsv *block_rsv,
3559 u64 orig_bytes, int flush)
3560 {
3561 struct btrfs_space_info *space_info = block_rsv->space_info;
3562 u64 used;
3563 u64 num_bytes = orig_bytes;
3564 int retries = 0;
3565 int ret = 0;
3566 bool committed = false;
3567 bool flushing = false;
3568 bool wait_ordered = false;
3569
3570 again:
3571 ret = 0;
3572 spin_lock(&space_info->lock);
3573 /*
3574 * We only want to wait if somebody other than us is flushing and we are
3575 * actually alloed to flush.
3576 */
3577 while (flush && !flushing && space_info->flush) {
3578 spin_unlock(&space_info->lock);
3579 /*
3580 * If we have a trans handle we can't wait because the flusher
3581 * may have to commit the transaction, which would mean we would
3582 * deadlock since we are waiting for the flusher to finish, but
3583 * hold the current transaction open.
3584 */
3585 if (current->journal_info)
3586 return -EAGAIN;
3587 ret = wait_event_interruptible(space_info->wait,
3588 !space_info->flush);
3589 /* Must have been interrupted, return */
3590 if (ret)
3591 return -EINTR;
3592
3593 spin_lock(&space_info->lock);
3594 }
3595
3596 ret = -ENOSPC;
3597 used = space_info->bytes_used + space_info->bytes_reserved +
3598 space_info->bytes_pinned + space_info->bytes_readonly +
3599 space_info->bytes_may_use;
3600
3601 /*
3602 * The idea here is that we've not already over-reserved the block group
3603 * then we can go ahead and save our reservation first and then start
3604 * flushing if we need to. Otherwise if we've already overcommitted
3605 * lets start flushing stuff first and then come back and try to make
3606 * our reservation.
3607 */
3608 if (used <= space_info->total_bytes) {
3609 if (used + orig_bytes <= space_info->total_bytes) {
3610 space_info->bytes_may_use += orig_bytes;
3611 ret = 0;
3612 } else {
3613 /*
3614 * Ok set num_bytes to orig_bytes since we aren't
3615 * overocmmitted, this way we only try and reclaim what
3616 * we need.
3617 */
3618 num_bytes = orig_bytes;
3619 }
3620 } else {
3621 /*
3622 * Ok we're over committed, set num_bytes to the overcommitted
3623 * amount plus the amount of bytes that we need for this
3624 * reservation.
3625 */
3626 wait_ordered = true;
3627 num_bytes = used - space_info->total_bytes +
3628 (orig_bytes * (retries + 1));
3629 }
3630
3631 if (ret) {
3632 u64 profile = btrfs_get_alloc_profile(root, 0);
3633 u64 avail;
3634
3635 /*
3636 * If we have a lot of space that's pinned, don't bother doing
3637 * the overcommit dance yet and just commit the transaction.
3638 */
3639 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3640 do_div(avail, 10);
3641 if (space_info->bytes_pinned >= avail && flush && !committed) {
3642 space_info->flush = 1;
3643 flushing = true;
3644 spin_unlock(&space_info->lock);
3645 ret = may_commit_transaction(root, space_info,
3646 orig_bytes, 1);
3647 if (ret)
3648 goto out;
3649 committed = true;
3650 goto again;
3651 }
3652
3653 spin_lock(&root->fs_info->free_chunk_lock);
3654 avail = root->fs_info->free_chunk_space;
3655
3656 /*
3657 * If we have dup, raid1 or raid10 then only half of the free
3658 * space is actually useable.
3659 */
3660 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3661 BTRFS_BLOCK_GROUP_RAID1 |
3662 BTRFS_BLOCK_GROUP_RAID10))
3663 avail >>= 1;
3664
3665 /*
3666 * If we aren't flushing don't let us overcommit too much, say
3667 * 1/8th of the space. If we can flush, let it overcommit up to
3668 * 1/2 of the space.
3669 */
3670 if (flush)
3671 avail >>= 3;
3672 else
3673 avail >>= 1;
3674 spin_unlock(&root->fs_info->free_chunk_lock);
3675
3676 if (used + num_bytes < space_info->total_bytes + avail) {
3677 space_info->bytes_may_use += orig_bytes;
3678 ret = 0;
3679 } else {
3680 wait_ordered = true;
3681 }
3682 }
3683
3684 /*
3685 * Couldn't make our reservation, save our place so while we're trying
3686 * to reclaim space we can actually use it instead of somebody else
3687 * stealing it from us.
3688 */
3689 if (ret && flush) {
3690 flushing = true;
3691 space_info->flush = 1;
3692 }
3693
3694 spin_unlock(&space_info->lock);
3695
3696 if (!ret || !flush)
3697 goto out;
3698
3699 /*
3700 * We do synchronous shrinking since we don't actually unreserve
3701 * metadata until after the IO is completed.
3702 */
3703 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3704 if (ret < 0)
3705 goto out;
3706
3707 ret = 0;
3708
3709 /*
3710 * So if we were overcommitted it's possible that somebody else flushed
3711 * out enough space and we simply didn't have enough space to reclaim,
3712 * so go back around and try again.
3713 */
3714 if (retries < 2) {
3715 wait_ordered = true;
3716 retries++;
3717 goto again;
3718 }
3719
3720 ret = -ENOSPC;
3721 if (committed)
3722 goto out;
3723
3724 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3725 if (!ret) {
3726 committed = true;
3727 goto again;
3728 }
3729
3730 out:
3731 if (flushing) {
3732 spin_lock(&space_info->lock);
3733 space_info->flush = 0;
3734 wake_up_all(&space_info->wait);
3735 spin_unlock(&space_info->lock);
3736 }
3737 return ret;
3738 }
3739
3740 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3741 struct btrfs_root *root)
3742 {
3743 struct btrfs_block_rsv *block_rsv = NULL;
3744
3745 if (root->ref_cows || root == root->fs_info->csum_root)
3746 block_rsv = trans->block_rsv;
3747
3748 if (!block_rsv)
3749 block_rsv = root->block_rsv;
3750
3751 if (!block_rsv)
3752 block_rsv = &root->fs_info->empty_block_rsv;
3753
3754 return block_rsv;
3755 }
3756
3757 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3758 u64 num_bytes)
3759 {
3760 int ret = -ENOSPC;
3761 spin_lock(&block_rsv->lock);
3762 if (block_rsv->reserved >= num_bytes) {
3763 block_rsv->reserved -= num_bytes;
3764 if (block_rsv->reserved < block_rsv->size)
3765 block_rsv->full = 0;
3766 ret = 0;
3767 }
3768 spin_unlock(&block_rsv->lock);
3769 return ret;
3770 }
3771
3772 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3773 u64 num_bytes, int update_size)
3774 {
3775 spin_lock(&block_rsv->lock);
3776 block_rsv->reserved += num_bytes;
3777 if (update_size)
3778 block_rsv->size += num_bytes;
3779 else if (block_rsv->reserved >= block_rsv->size)
3780 block_rsv->full = 1;
3781 spin_unlock(&block_rsv->lock);
3782 }
3783
3784 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3785 struct btrfs_block_rsv *dest, u64 num_bytes)
3786 {
3787 struct btrfs_space_info *space_info = block_rsv->space_info;
3788
3789 spin_lock(&block_rsv->lock);
3790 if (num_bytes == (u64)-1)
3791 num_bytes = block_rsv->size;
3792 block_rsv->size -= num_bytes;
3793 if (block_rsv->reserved >= block_rsv->size) {
3794 num_bytes = block_rsv->reserved - block_rsv->size;
3795 block_rsv->reserved = block_rsv->size;
3796 block_rsv->full = 1;
3797 } else {
3798 num_bytes = 0;
3799 }
3800 spin_unlock(&block_rsv->lock);
3801
3802 if (num_bytes > 0) {
3803 if (dest) {
3804 spin_lock(&dest->lock);
3805 if (!dest->full) {
3806 u64 bytes_to_add;
3807
3808 bytes_to_add = dest->size - dest->reserved;
3809 bytes_to_add = min(num_bytes, bytes_to_add);
3810 dest->reserved += bytes_to_add;
3811 if (dest->reserved >= dest->size)
3812 dest->full = 1;
3813 num_bytes -= bytes_to_add;
3814 }
3815 spin_unlock(&dest->lock);
3816 }
3817 if (num_bytes) {
3818 spin_lock(&space_info->lock);
3819 space_info->bytes_may_use -= num_bytes;
3820 space_info->reservation_progress++;
3821 spin_unlock(&space_info->lock);
3822 }
3823 }
3824 }
3825
3826 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3827 struct btrfs_block_rsv *dst, u64 num_bytes)
3828 {
3829 int ret;
3830
3831 ret = block_rsv_use_bytes(src, num_bytes);
3832 if (ret)
3833 return ret;
3834
3835 block_rsv_add_bytes(dst, num_bytes, 1);
3836 return 0;
3837 }
3838
3839 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3840 {
3841 memset(rsv, 0, sizeof(*rsv));
3842 spin_lock_init(&rsv->lock);
3843 }
3844
3845 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3846 {
3847 struct btrfs_block_rsv *block_rsv;
3848 struct btrfs_fs_info *fs_info = root->fs_info;
3849
3850 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3851 if (!block_rsv)
3852 return NULL;
3853
3854 btrfs_init_block_rsv(block_rsv);
3855 block_rsv->space_info = __find_space_info(fs_info,
3856 BTRFS_BLOCK_GROUP_METADATA);
3857 return block_rsv;
3858 }
3859
3860 void btrfs_free_block_rsv(struct btrfs_root *root,
3861 struct btrfs_block_rsv *rsv)
3862 {
3863 btrfs_block_rsv_release(root, rsv, (u64)-1);
3864 kfree(rsv);
3865 }
3866
3867 static inline int __block_rsv_add(struct btrfs_root *root,
3868 struct btrfs_block_rsv *block_rsv,
3869 u64 num_bytes, int flush)
3870 {
3871 int ret;
3872
3873 if (num_bytes == 0)
3874 return 0;
3875
3876 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3877 if (!ret) {
3878 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3879 return 0;
3880 }
3881
3882 return ret;
3883 }
3884
3885 int btrfs_block_rsv_add(struct btrfs_root *root,
3886 struct btrfs_block_rsv *block_rsv,
3887 u64 num_bytes)
3888 {
3889 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3890 }
3891
3892 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3893 struct btrfs_block_rsv *block_rsv,
3894 u64 num_bytes)
3895 {
3896 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3897 }
3898
3899 int btrfs_block_rsv_check(struct btrfs_root *root,
3900 struct btrfs_block_rsv *block_rsv, int min_factor)
3901 {
3902 u64 num_bytes = 0;
3903 int ret = -ENOSPC;
3904
3905 if (!block_rsv)
3906 return 0;
3907
3908 spin_lock(&block_rsv->lock);
3909 num_bytes = div_factor(block_rsv->size, min_factor);
3910 if (block_rsv->reserved >= num_bytes)
3911 ret = 0;
3912 spin_unlock(&block_rsv->lock);
3913
3914 return ret;
3915 }
3916
3917 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
3918 struct btrfs_block_rsv *block_rsv,
3919 u64 min_reserved, int flush)
3920 {
3921 u64 num_bytes = 0;
3922 int ret = -ENOSPC;
3923
3924 if (!block_rsv)
3925 return 0;
3926
3927 spin_lock(&block_rsv->lock);
3928 num_bytes = min_reserved;
3929 if (block_rsv->reserved >= num_bytes)
3930 ret = 0;
3931 else
3932 num_bytes -= block_rsv->reserved;
3933 spin_unlock(&block_rsv->lock);
3934
3935 if (!ret)
3936 return 0;
3937
3938 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3939 if (!ret) {
3940 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3941 return 0;
3942 }
3943
3944 return ret;
3945 }
3946
3947 int btrfs_block_rsv_refill(struct btrfs_root *root,
3948 struct btrfs_block_rsv *block_rsv,
3949 u64 min_reserved)
3950 {
3951 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
3952 }
3953
3954 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
3955 struct btrfs_block_rsv *block_rsv,
3956 u64 min_reserved)
3957 {
3958 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
3959 }
3960
3961 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3962 struct btrfs_block_rsv *dst_rsv,
3963 u64 num_bytes)
3964 {
3965 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3966 }
3967
3968 void btrfs_block_rsv_release(struct btrfs_root *root,
3969 struct btrfs_block_rsv *block_rsv,
3970 u64 num_bytes)
3971 {
3972 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3973 if (global_rsv->full || global_rsv == block_rsv ||
3974 block_rsv->space_info != global_rsv->space_info)
3975 global_rsv = NULL;
3976 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3977 }
3978
3979 /*
3980 * helper to calculate size of global block reservation.
3981 * the desired value is sum of space used by extent tree,
3982 * checksum tree and root tree
3983 */
3984 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3985 {
3986 struct btrfs_space_info *sinfo;
3987 u64 num_bytes;
3988 u64 meta_used;
3989 u64 data_used;
3990 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
3991
3992 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3993 spin_lock(&sinfo->lock);
3994 data_used = sinfo->bytes_used;
3995 spin_unlock(&sinfo->lock);
3996
3997 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3998 spin_lock(&sinfo->lock);
3999 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4000 data_used = 0;
4001 meta_used = sinfo->bytes_used;
4002 spin_unlock(&sinfo->lock);
4003
4004 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4005 csum_size * 2;
4006 num_bytes += div64_u64(data_used + meta_used, 50);
4007
4008 if (num_bytes * 3 > meta_used)
4009 num_bytes = div64_u64(meta_used, 3);
4010
4011 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4012 }
4013
4014 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4015 {
4016 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4017 struct btrfs_space_info *sinfo = block_rsv->space_info;
4018 u64 num_bytes;
4019
4020 num_bytes = calc_global_metadata_size(fs_info);
4021
4022 spin_lock(&block_rsv->lock);
4023 spin_lock(&sinfo->lock);
4024
4025 block_rsv->size = num_bytes;
4026
4027 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4028 sinfo->bytes_reserved + sinfo->bytes_readonly +
4029 sinfo->bytes_may_use;
4030
4031 if (sinfo->total_bytes > num_bytes) {
4032 num_bytes = sinfo->total_bytes - num_bytes;
4033 block_rsv->reserved += num_bytes;
4034 sinfo->bytes_may_use += num_bytes;
4035 }
4036
4037 if (block_rsv->reserved >= block_rsv->size) {
4038 num_bytes = block_rsv->reserved - block_rsv->size;
4039 sinfo->bytes_may_use -= num_bytes;
4040 sinfo->reservation_progress++;
4041 block_rsv->reserved = block_rsv->size;
4042 block_rsv->full = 1;
4043 }
4044
4045 spin_unlock(&sinfo->lock);
4046 spin_unlock(&block_rsv->lock);
4047 }
4048
4049 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4050 {
4051 struct btrfs_space_info *space_info;
4052
4053 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4054 fs_info->chunk_block_rsv.space_info = space_info;
4055
4056 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4057 fs_info->global_block_rsv.space_info = space_info;
4058 fs_info->delalloc_block_rsv.space_info = space_info;
4059 fs_info->trans_block_rsv.space_info = space_info;
4060 fs_info->empty_block_rsv.space_info = space_info;
4061 fs_info->delayed_block_rsv.space_info = space_info;
4062
4063 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4064 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4065 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4066 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4067 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4068
4069 update_global_block_rsv(fs_info);
4070 }
4071
4072 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4073 {
4074 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
4075 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4076 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4077 WARN_ON(fs_info->trans_block_rsv.size > 0);
4078 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4079 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4080 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4081 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4082 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4083 }
4084
4085 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4086 struct btrfs_root *root)
4087 {
4088 if (!trans->bytes_reserved)
4089 return;
4090
4091 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4092 trans->bytes_reserved = 0;
4093 }
4094
4095 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4096 struct inode *inode)
4097 {
4098 struct btrfs_root *root = BTRFS_I(inode)->root;
4099 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4100 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4101
4102 /*
4103 * We need to hold space in order to delete our orphan item once we've
4104 * added it, so this takes the reservation so we can release it later
4105 * when we are truly done with the orphan item.
4106 */
4107 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4108 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4109 }
4110
4111 void btrfs_orphan_release_metadata(struct inode *inode)
4112 {
4113 struct btrfs_root *root = BTRFS_I(inode)->root;
4114 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4115 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4116 }
4117
4118 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4119 struct btrfs_pending_snapshot *pending)
4120 {
4121 struct btrfs_root *root = pending->root;
4122 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4123 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4124 /*
4125 * two for root back/forward refs, two for directory entries
4126 * and one for root of the snapshot.
4127 */
4128 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4129 dst_rsv->space_info = src_rsv->space_info;
4130 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4131 }
4132
4133 /**
4134 * drop_outstanding_extent - drop an outstanding extent
4135 * @inode: the inode we're dropping the extent for
4136 *
4137 * This is called when we are freeing up an outstanding extent, either called
4138 * after an error or after an extent is written. This will return the number of
4139 * reserved extents that need to be freed. This must be called with
4140 * BTRFS_I(inode)->lock held.
4141 */
4142 static unsigned drop_outstanding_extent(struct inode *inode)
4143 {
4144 unsigned drop_inode_space = 0;
4145 unsigned dropped_extents = 0;
4146
4147 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4148 BTRFS_I(inode)->outstanding_extents--;
4149
4150 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4151 BTRFS_I(inode)->delalloc_meta_reserved) {
4152 drop_inode_space = 1;
4153 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4154 }
4155
4156 /*
4157 * If we have more or the same amount of outsanding extents than we have
4158 * reserved then we need to leave the reserved extents count alone.
4159 */
4160 if (BTRFS_I(inode)->outstanding_extents >=
4161 BTRFS_I(inode)->reserved_extents)
4162 return drop_inode_space;
4163
4164 dropped_extents = BTRFS_I(inode)->reserved_extents -
4165 BTRFS_I(inode)->outstanding_extents;
4166 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4167 return dropped_extents + drop_inode_space;
4168 }
4169
4170 /**
4171 * calc_csum_metadata_size - return the amount of metada space that must be
4172 * reserved/free'd for the given bytes.
4173 * @inode: the inode we're manipulating
4174 * @num_bytes: the number of bytes in question
4175 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4176 *
4177 * This adjusts the number of csum_bytes in the inode and then returns the
4178 * correct amount of metadata that must either be reserved or freed. We
4179 * calculate how many checksums we can fit into one leaf and then divide the
4180 * number of bytes that will need to be checksumed by this value to figure out
4181 * how many checksums will be required. If we are adding bytes then the number
4182 * may go up and we will return the number of additional bytes that must be
4183 * reserved. If it is going down we will return the number of bytes that must
4184 * be freed.
4185 *
4186 * This must be called with BTRFS_I(inode)->lock held.
4187 */
4188 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4189 int reserve)
4190 {
4191 struct btrfs_root *root = BTRFS_I(inode)->root;
4192 u64 csum_size;
4193 int num_csums_per_leaf;
4194 int num_csums;
4195 int old_csums;
4196
4197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4198 BTRFS_I(inode)->csum_bytes == 0)
4199 return 0;
4200
4201 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4202 if (reserve)
4203 BTRFS_I(inode)->csum_bytes += num_bytes;
4204 else
4205 BTRFS_I(inode)->csum_bytes -= num_bytes;
4206 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4207 num_csums_per_leaf = (int)div64_u64(csum_size,
4208 sizeof(struct btrfs_csum_item) +
4209 sizeof(struct btrfs_disk_key));
4210 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4211 num_csums = num_csums + num_csums_per_leaf - 1;
4212 num_csums = num_csums / num_csums_per_leaf;
4213
4214 old_csums = old_csums + num_csums_per_leaf - 1;
4215 old_csums = old_csums / num_csums_per_leaf;
4216
4217 /* No change, no need to reserve more */
4218 if (old_csums == num_csums)
4219 return 0;
4220
4221 if (reserve)
4222 return btrfs_calc_trans_metadata_size(root,
4223 num_csums - old_csums);
4224
4225 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4226 }
4227
4228 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4229 {
4230 struct btrfs_root *root = BTRFS_I(inode)->root;
4231 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4232 u64 to_reserve = 0;
4233 u64 csum_bytes;
4234 unsigned nr_extents = 0;
4235 int extra_reserve = 0;
4236 int flush = 1;
4237 int ret;
4238
4239 /* Need to be holding the i_mutex here if we aren't free space cache */
4240 if (btrfs_is_free_space_inode(root, inode))
4241 flush = 0;
4242 else
4243 WARN_ON(!mutex_is_locked(&inode->i_mutex));
4244
4245 if (flush && btrfs_transaction_in_commit(root->fs_info))
4246 schedule_timeout(1);
4247
4248 num_bytes = ALIGN(num_bytes, root->sectorsize);
4249
4250 spin_lock(&BTRFS_I(inode)->lock);
4251 BTRFS_I(inode)->outstanding_extents++;
4252
4253 if (BTRFS_I(inode)->outstanding_extents >
4254 BTRFS_I(inode)->reserved_extents)
4255 nr_extents = BTRFS_I(inode)->outstanding_extents -
4256 BTRFS_I(inode)->reserved_extents;
4257
4258 /*
4259 * Add an item to reserve for updating the inode when we complete the
4260 * delalloc io.
4261 */
4262 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4263 nr_extents++;
4264 extra_reserve = 1;
4265 }
4266
4267 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4268 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4269 csum_bytes = BTRFS_I(inode)->csum_bytes;
4270 spin_unlock(&BTRFS_I(inode)->lock);
4271
4272 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4273 if (ret) {
4274 u64 to_free = 0;
4275 unsigned dropped;
4276
4277 spin_lock(&BTRFS_I(inode)->lock);
4278 dropped = drop_outstanding_extent(inode);
4279 /*
4280 * If the inodes csum_bytes is the same as the original
4281 * csum_bytes then we know we haven't raced with any free()ers
4282 * so we can just reduce our inodes csum bytes and carry on.
4283 * Otherwise we have to do the normal free thing to account for
4284 * the case that the free side didn't free up its reserve
4285 * because of this outstanding reservation.
4286 */
4287 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4288 calc_csum_metadata_size(inode, num_bytes, 0);
4289 else
4290 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4291 spin_unlock(&BTRFS_I(inode)->lock);
4292 if (dropped)
4293 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4294
4295 if (to_free)
4296 btrfs_block_rsv_release(root, block_rsv, to_free);
4297 return ret;
4298 }
4299
4300 spin_lock(&BTRFS_I(inode)->lock);
4301 if (extra_reserve) {
4302 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4303 nr_extents--;
4304 }
4305 BTRFS_I(inode)->reserved_extents += nr_extents;
4306 spin_unlock(&BTRFS_I(inode)->lock);
4307
4308 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4309
4310 return 0;
4311 }
4312
4313 /**
4314 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4315 * @inode: the inode to release the reservation for
4316 * @num_bytes: the number of bytes we're releasing
4317 *
4318 * This will release the metadata reservation for an inode. This can be called
4319 * once we complete IO for a given set of bytes to release their metadata
4320 * reservations.
4321 */
4322 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4323 {
4324 struct btrfs_root *root = BTRFS_I(inode)->root;
4325 u64 to_free = 0;
4326 unsigned dropped;
4327
4328 num_bytes = ALIGN(num_bytes, root->sectorsize);
4329 spin_lock(&BTRFS_I(inode)->lock);
4330 dropped = drop_outstanding_extent(inode);
4331
4332 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4333 spin_unlock(&BTRFS_I(inode)->lock);
4334 if (dropped > 0)
4335 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4336
4337 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4338 to_free);
4339 }
4340
4341 /**
4342 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4343 * @inode: inode we're writing to
4344 * @num_bytes: the number of bytes we want to allocate
4345 *
4346 * This will do the following things
4347 *
4348 * o reserve space in the data space info for num_bytes
4349 * o reserve space in the metadata space info based on number of outstanding
4350 * extents and how much csums will be needed
4351 * o add to the inodes ->delalloc_bytes
4352 * o add it to the fs_info's delalloc inodes list.
4353 *
4354 * This will return 0 for success and -ENOSPC if there is no space left.
4355 */
4356 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4357 {
4358 int ret;
4359
4360 ret = btrfs_check_data_free_space(inode, num_bytes);
4361 if (ret)
4362 return ret;
4363
4364 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4365 if (ret) {
4366 btrfs_free_reserved_data_space(inode, num_bytes);
4367 return ret;
4368 }
4369
4370 return 0;
4371 }
4372
4373 /**
4374 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4375 * @inode: inode we're releasing space for
4376 * @num_bytes: the number of bytes we want to free up
4377 *
4378 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4379 * called in the case that we don't need the metadata AND data reservations
4380 * anymore. So if there is an error or we insert an inline extent.
4381 *
4382 * This function will release the metadata space that was not used and will
4383 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4384 * list if there are no delalloc bytes left.
4385 */
4386 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4387 {
4388 btrfs_delalloc_release_metadata(inode, num_bytes);
4389 btrfs_free_reserved_data_space(inode, num_bytes);
4390 }
4391
4392 static int update_block_group(struct btrfs_trans_handle *trans,
4393 struct btrfs_root *root,
4394 u64 bytenr, u64 num_bytes, int alloc)
4395 {
4396 struct btrfs_block_group_cache *cache = NULL;
4397 struct btrfs_fs_info *info = root->fs_info;
4398 u64 total = num_bytes;
4399 u64 old_val;
4400 u64 byte_in_group;
4401 int factor;
4402
4403 /* block accounting for super block */
4404 spin_lock(&info->delalloc_lock);
4405 old_val = btrfs_super_bytes_used(info->super_copy);
4406 if (alloc)
4407 old_val += num_bytes;
4408 else
4409 old_val -= num_bytes;
4410 btrfs_set_super_bytes_used(info->super_copy, old_val);
4411 spin_unlock(&info->delalloc_lock);
4412
4413 while (total) {
4414 cache = btrfs_lookup_block_group(info, bytenr);
4415 if (!cache)
4416 return -1;
4417 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4418 BTRFS_BLOCK_GROUP_RAID1 |
4419 BTRFS_BLOCK_GROUP_RAID10))
4420 factor = 2;
4421 else
4422 factor = 1;
4423 /*
4424 * If this block group has free space cache written out, we
4425 * need to make sure to load it if we are removing space. This
4426 * is because we need the unpinning stage to actually add the
4427 * space back to the block group, otherwise we will leak space.
4428 */
4429 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4430 cache_block_group(cache, trans, NULL, 1);
4431
4432 byte_in_group = bytenr - cache->key.objectid;
4433 WARN_ON(byte_in_group > cache->key.offset);
4434
4435 spin_lock(&cache->space_info->lock);
4436 spin_lock(&cache->lock);
4437
4438 if (btrfs_test_opt(root, SPACE_CACHE) &&
4439 cache->disk_cache_state < BTRFS_DC_CLEAR)
4440 cache->disk_cache_state = BTRFS_DC_CLEAR;
4441
4442 cache->dirty = 1;
4443 old_val = btrfs_block_group_used(&cache->item);
4444 num_bytes = min(total, cache->key.offset - byte_in_group);
4445 if (alloc) {
4446 old_val += num_bytes;
4447 btrfs_set_block_group_used(&cache->item, old_val);
4448 cache->reserved -= num_bytes;
4449 cache->space_info->bytes_reserved -= num_bytes;
4450 cache->space_info->bytes_used += num_bytes;
4451 cache->space_info->disk_used += num_bytes * factor;
4452 spin_unlock(&cache->lock);
4453 spin_unlock(&cache->space_info->lock);
4454 } else {
4455 old_val -= num_bytes;
4456 btrfs_set_block_group_used(&cache->item, old_val);
4457 cache->pinned += num_bytes;
4458 cache->space_info->bytes_pinned += num_bytes;
4459 cache->space_info->bytes_used -= num_bytes;
4460 cache->space_info->disk_used -= num_bytes * factor;
4461 spin_unlock(&cache->lock);
4462 spin_unlock(&cache->space_info->lock);
4463
4464 set_extent_dirty(info->pinned_extents,
4465 bytenr, bytenr + num_bytes - 1,
4466 GFP_NOFS | __GFP_NOFAIL);
4467 }
4468 btrfs_put_block_group(cache);
4469 total -= num_bytes;
4470 bytenr += num_bytes;
4471 }
4472 return 0;
4473 }
4474
4475 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4476 {
4477 struct btrfs_block_group_cache *cache;
4478 u64 bytenr;
4479
4480 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4481 if (!cache)
4482 return 0;
4483
4484 bytenr = cache->key.objectid;
4485 btrfs_put_block_group(cache);
4486
4487 return bytenr;
4488 }
4489
4490 static int pin_down_extent(struct btrfs_root *root,
4491 struct btrfs_block_group_cache *cache,
4492 u64 bytenr, u64 num_bytes, int reserved)
4493 {
4494 spin_lock(&cache->space_info->lock);
4495 spin_lock(&cache->lock);
4496 cache->pinned += num_bytes;
4497 cache->space_info->bytes_pinned += num_bytes;
4498 if (reserved) {
4499 cache->reserved -= num_bytes;
4500 cache->space_info->bytes_reserved -= num_bytes;
4501 }
4502 spin_unlock(&cache->lock);
4503 spin_unlock(&cache->space_info->lock);
4504
4505 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4506 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4507 return 0;
4508 }
4509
4510 /*
4511 * this function must be called within transaction
4512 */
4513 int btrfs_pin_extent(struct btrfs_root *root,
4514 u64 bytenr, u64 num_bytes, int reserved)
4515 {
4516 struct btrfs_block_group_cache *cache;
4517
4518 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4519 BUG_ON(!cache);
4520
4521 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4522
4523 btrfs_put_block_group(cache);
4524 return 0;
4525 }
4526
4527 /*
4528 * this function must be called within transaction
4529 */
4530 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4531 struct btrfs_root *root,
4532 u64 bytenr, u64 num_bytes)
4533 {
4534 struct btrfs_block_group_cache *cache;
4535
4536 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4537 BUG_ON(!cache);
4538
4539 /*
4540 * pull in the free space cache (if any) so that our pin
4541 * removes the free space from the cache. We have load_only set
4542 * to one because the slow code to read in the free extents does check
4543 * the pinned extents.
4544 */
4545 cache_block_group(cache, trans, root, 1);
4546
4547 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4548
4549 /* remove us from the free space cache (if we're there at all) */
4550 btrfs_remove_free_space(cache, bytenr, num_bytes);
4551 btrfs_put_block_group(cache);
4552 return 0;
4553 }
4554
4555 /**
4556 * btrfs_update_reserved_bytes - update the block_group and space info counters
4557 * @cache: The cache we are manipulating
4558 * @num_bytes: The number of bytes in question
4559 * @reserve: One of the reservation enums
4560 *
4561 * This is called by the allocator when it reserves space, or by somebody who is
4562 * freeing space that was never actually used on disk. For example if you
4563 * reserve some space for a new leaf in transaction A and before transaction A
4564 * commits you free that leaf, you call this with reserve set to 0 in order to
4565 * clear the reservation.
4566 *
4567 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4568 * ENOSPC accounting. For data we handle the reservation through clearing the
4569 * delalloc bits in the io_tree. We have to do this since we could end up
4570 * allocating less disk space for the amount of data we have reserved in the
4571 * case of compression.
4572 *
4573 * If this is a reservation and the block group has become read only we cannot
4574 * make the reservation and return -EAGAIN, otherwise this function always
4575 * succeeds.
4576 */
4577 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4578 u64 num_bytes, int reserve)
4579 {
4580 struct btrfs_space_info *space_info = cache->space_info;
4581 int ret = 0;
4582 spin_lock(&space_info->lock);
4583 spin_lock(&cache->lock);
4584 if (reserve != RESERVE_FREE) {
4585 if (cache->ro) {
4586 ret = -EAGAIN;
4587 } else {
4588 cache->reserved += num_bytes;
4589 space_info->bytes_reserved += num_bytes;
4590 if (reserve == RESERVE_ALLOC) {
4591 BUG_ON(space_info->bytes_may_use < num_bytes);
4592 space_info->bytes_may_use -= num_bytes;
4593 }
4594 }
4595 } else {
4596 if (cache->ro)
4597 space_info->bytes_readonly += num_bytes;
4598 cache->reserved -= num_bytes;
4599 space_info->bytes_reserved -= num_bytes;
4600 space_info->reservation_progress++;
4601 }
4602 spin_unlock(&cache->lock);
4603 spin_unlock(&space_info->lock);
4604 return ret;
4605 }
4606
4607 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4608 struct btrfs_root *root)
4609 {
4610 struct btrfs_fs_info *fs_info = root->fs_info;
4611 struct btrfs_caching_control *next;
4612 struct btrfs_caching_control *caching_ctl;
4613 struct btrfs_block_group_cache *cache;
4614
4615 down_write(&fs_info->extent_commit_sem);
4616
4617 list_for_each_entry_safe(caching_ctl, next,
4618 &fs_info->caching_block_groups, list) {
4619 cache = caching_ctl->block_group;
4620 if (block_group_cache_done(cache)) {
4621 cache->last_byte_to_unpin = (u64)-1;
4622 list_del_init(&caching_ctl->list);
4623 put_caching_control(caching_ctl);
4624 } else {
4625 cache->last_byte_to_unpin = caching_ctl->progress;
4626 }
4627 }
4628
4629 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4630 fs_info->pinned_extents = &fs_info->freed_extents[1];
4631 else
4632 fs_info->pinned_extents = &fs_info->freed_extents[0];
4633
4634 up_write(&fs_info->extent_commit_sem);
4635
4636 update_global_block_rsv(fs_info);
4637 return 0;
4638 }
4639
4640 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4641 {
4642 struct btrfs_fs_info *fs_info = root->fs_info;
4643 struct btrfs_block_group_cache *cache = NULL;
4644 u64 len;
4645
4646 while (start <= end) {
4647 if (!cache ||
4648 start >= cache->key.objectid + cache->key.offset) {
4649 if (cache)
4650 btrfs_put_block_group(cache);
4651 cache = btrfs_lookup_block_group(fs_info, start);
4652 BUG_ON(!cache);
4653 }
4654
4655 len = cache->key.objectid + cache->key.offset - start;
4656 len = min(len, end + 1 - start);
4657
4658 if (start < cache->last_byte_to_unpin) {
4659 len = min(len, cache->last_byte_to_unpin - start);
4660 btrfs_add_free_space(cache, start, len);
4661 }
4662
4663 start += len;
4664
4665 spin_lock(&cache->space_info->lock);
4666 spin_lock(&cache->lock);
4667 cache->pinned -= len;
4668 cache->space_info->bytes_pinned -= len;
4669 if (cache->ro)
4670 cache->space_info->bytes_readonly += len;
4671 spin_unlock(&cache->lock);
4672 spin_unlock(&cache->space_info->lock);
4673 }
4674
4675 if (cache)
4676 btrfs_put_block_group(cache);
4677 return 0;
4678 }
4679
4680 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4681 struct btrfs_root *root)
4682 {
4683 struct btrfs_fs_info *fs_info = root->fs_info;
4684 struct extent_io_tree *unpin;
4685 u64 start;
4686 u64 end;
4687 int ret;
4688
4689 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4690 unpin = &fs_info->freed_extents[1];
4691 else
4692 unpin = &fs_info->freed_extents[0];
4693
4694 while (1) {
4695 ret = find_first_extent_bit(unpin, 0, &start, &end,
4696 EXTENT_DIRTY);
4697 if (ret)
4698 break;
4699
4700 if (btrfs_test_opt(root, DISCARD))
4701 ret = btrfs_discard_extent(root, start,
4702 end + 1 - start, NULL);
4703
4704 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4705 unpin_extent_range(root, start, end);
4706 cond_resched();
4707 }
4708
4709 return 0;
4710 }
4711
4712 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4713 struct btrfs_root *root,
4714 u64 bytenr, u64 num_bytes, u64 parent,
4715 u64 root_objectid, u64 owner_objectid,
4716 u64 owner_offset, int refs_to_drop,
4717 struct btrfs_delayed_extent_op *extent_op)
4718 {
4719 struct btrfs_key key;
4720 struct btrfs_path *path;
4721 struct btrfs_fs_info *info = root->fs_info;
4722 struct btrfs_root *extent_root = info->extent_root;
4723 struct extent_buffer *leaf;
4724 struct btrfs_extent_item *ei;
4725 struct btrfs_extent_inline_ref *iref;
4726 int ret;
4727 int is_data;
4728 int extent_slot = 0;
4729 int found_extent = 0;
4730 int num_to_del = 1;
4731 u32 item_size;
4732 u64 refs;
4733
4734 path = btrfs_alloc_path();
4735 if (!path)
4736 return -ENOMEM;
4737
4738 path->reada = 1;
4739 path->leave_spinning = 1;
4740
4741 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4742 BUG_ON(!is_data && refs_to_drop != 1);
4743
4744 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4745 bytenr, num_bytes, parent,
4746 root_objectid, owner_objectid,
4747 owner_offset);
4748 if (ret == 0) {
4749 extent_slot = path->slots[0];
4750 while (extent_slot >= 0) {
4751 btrfs_item_key_to_cpu(path->nodes[0], &key,
4752 extent_slot);
4753 if (key.objectid != bytenr)
4754 break;
4755 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4756 key.offset == num_bytes) {
4757 found_extent = 1;
4758 break;
4759 }
4760 if (path->slots[0] - extent_slot > 5)
4761 break;
4762 extent_slot--;
4763 }
4764 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4765 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4766 if (found_extent && item_size < sizeof(*ei))
4767 found_extent = 0;
4768 #endif
4769 if (!found_extent) {
4770 BUG_ON(iref);
4771 ret = remove_extent_backref(trans, extent_root, path,
4772 NULL, refs_to_drop,
4773 is_data);
4774 BUG_ON(ret);
4775 btrfs_release_path(path);
4776 path->leave_spinning = 1;
4777
4778 key.objectid = bytenr;
4779 key.type = BTRFS_EXTENT_ITEM_KEY;
4780 key.offset = num_bytes;
4781
4782 ret = btrfs_search_slot(trans, extent_root,
4783 &key, path, -1, 1);
4784 if (ret) {
4785 printk(KERN_ERR "umm, got %d back from search"
4786 ", was looking for %llu\n", ret,
4787 (unsigned long long)bytenr);
4788 if (ret > 0)
4789 btrfs_print_leaf(extent_root,
4790 path->nodes[0]);
4791 }
4792 BUG_ON(ret);
4793 extent_slot = path->slots[0];
4794 }
4795 } else {
4796 btrfs_print_leaf(extent_root, path->nodes[0]);
4797 WARN_ON(1);
4798 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4799 "parent %llu root %llu owner %llu offset %llu\n",
4800 (unsigned long long)bytenr,
4801 (unsigned long long)parent,
4802 (unsigned long long)root_objectid,
4803 (unsigned long long)owner_objectid,
4804 (unsigned long long)owner_offset);
4805 }
4806
4807 leaf = path->nodes[0];
4808 item_size = btrfs_item_size_nr(leaf, extent_slot);
4809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4810 if (item_size < sizeof(*ei)) {
4811 BUG_ON(found_extent || extent_slot != path->slots[0]);
4812 ret = convert_extent_item_v0(trans, extent_root, path,
4813 owner_objectid, 0);
4814 BUG_ON(ret < 0);
4815
4816 btrfs_release_path(path);
4817 path->leave_spinning = 1;
4818
4819 key.objectid = bytenr;
4820 key.type = BTRFS_EXTENT_ITEM_KEY;
4821 key.offset = num_bytes;
4822
4823 ret = btrfs_search_slot(trans, extent_root, &key, path,
4824 -1, 1);
4825 if (ret) {
4826 printk(KERN_ERR "umm, got %d back from search"
4827 ", was looking for %llu\n", ret,
4828 (unsigned long long)bytenr);
4829 btrfs_print_leaf(extent_root, path->nodes[0]);
4830 }
4831 BUG_ON(ret);
4832 extent_slot = path->slots[0];
4833 leaf = path->nodes[0];
4834 item_size = btrfs_item_size_nr(leaf, extent_slot);
4835 }
4836 #endif
4837 BUG_ON(item_size < sizeof(*ei));
4838 ei = btrfs_item_ptr(leaf, extent_slot,
4839 struct btrfs_extent_item);
4840 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4841 struct btrfs_tree_block_info *bi;
4842 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4843 bi = (struct btrfs_tree_block_info *)(ei + 1);
4844 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4845 }
4846
4847 refs = btrfs_extent_refs(leaf, ei);
4848 BUG_ON(refs < refs_to_drop);
4849 refs -= refs_to_drop;
4850
4851 if (refs > 0) {
4852 if (extent_op)
4853 __run_delayed_extent_op(extent_op, leaf, ei);
4854 /*
4855 * In the case of inline back ref, reference count will
4856 * be updated by remove_extent_backref
4857 */
4858 if (iref) {
4859 BUG_ON(!found_extent);
4860 } else {
4861 btrfs_set_extent_refs(leaf, ei, refs);
4862 btrfs_mark_buffer_dirty(leaf);
4863 }
4864 if (found_extent) {
4865 ret = remove_extent_backref(trans, extent_root, path,
4866 iref, refs_to_drop,
4867 is_data);
4868 BUG_ON(ret);
4869 }
4870 } else {
4871 if (found_extent) {
4872 BUG_ON(is_data && refs_to_drop !=
4873 extent_data_ref_count(root, path, iref));
4874 if (iref) {
4875 BUG_ON(path->slots[0] != extent_slot);
4876 } else {
4877 BUG_ON(path->slots[0] != extent_slot + 1);
4878 path->slots[0] = extent_slot;
4879 num_to_del = 2;
4880 }
4881 }
4882
4883 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4884 num_to_del);
4885 BUG_ON(ret);
4886 btrfs_release_path(path);
4887
4888 if (is_data) {
4889 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4890 BUG_ON(ret);
4891 } else {
4892 invalidate_mapping_pages(info->btree_inode->i_mapping,
4893 bytenr >> PAGE_CACHE_SHIFT,
4894 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4895 }
4896
4897 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4898 BUG_ON(ret);
4899 }
4900 btrfs_free_path(path);
4901 return ret;
4902 }
4903
4904 /*
4905 * when we free an block, it is possible (and likely) that we free the last
4906 * delayed ref for that extent as well. This searches the delayed ref tree for
4907 * a given extent, and if there are no other delayed refs to be processed, it
4908 * removes it from the tree.
4909 */
4910 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4911 struct btrfs_root *root, u64 bytenr)
4912 {
4913 struct btrfs_delayed_ref_head *head;
4914 struct btrfs_delayed_ref_root *delayed_refs;
4915 struct btrfs_delayed_ref_node *ref;
4916 struct rb_node *node;
4917 int ret = 0;
4918
4919 delayed_refs = &trans->transaction->delayed_refs;
4920 spin_lock(&delayed_refs->lock);
4921 head = btrfs_find_delayed_ref_head(trans, bytenr);
4922 if (!head)
4923 goto out;
4924
4925 node = rb_prev(&head->node.rb_node);
4926 if (!node)
4927 goto out;
4928
4929 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4930
4931 /* there are still entries for this ref, we can't drop it */
4932 if (ref->bytenr == bytenr)
4933 goto out;
4934
4935 if (head->extent_op) {
4936 if (!head->must_insert_reserved)
4937 goto out;
4938 kfree(head->extent_op);
4939 head->extent_op = NULL;
4940 }
4941
4942 /*
4943 * waiting for the lock here would deadlock. If someone else has it
4944 * locked they are already in the process of dropping it anyway
4945 */
4946 if (!mutex_trylock(&head->mutex))
4947 goto out;
4948
4949 /*
4950 * at this point we have a head with no other entries. Go
4951 * ahead and process it.
4952 */
4953 head->node.in_tree = 0;
4954 rb_erase(&head->node.rb_node, &delayed_refs->root);
4955
4956 delayed_refs->num_entries--;
4957
4958 /*
4959 * we don't take a ref on the node because we're removing it from the
4960 * tree, so we just steal the ref the tree was holding.
4961 */
4962 delayed_refs->num_heads--;
4963 if (list_empty(&head->cluster))
4964 delayed_refs->num_heads_ready--;
4965
4966 list_del_init(&head->cluster);
4967 spin_unlock(&delayed_refs->lock);
4968
4969 BUG_ON(head->extent_op);
4970 if (head->must_insert_reserved)
4971 ret = 1;
4972
4973 mutex_unlock(&head->mutex);
4974 btrfs_put_delayed_ref(&head->node);
4975 return ret;
4976 out:
4977 spin_unlock(&delayed_refs->lock);
4978 return 0;
4979 }
4980
4981 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4982 struct btrfs_root *root,
4983 struct extent_buffer *buf,
4984 u64 parent, int last_ref)
4985 {
4986 struct btrfs_block_group_cache *cache = NULL;
4987 int ret;
4988
4989 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4990 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4991 parent, root->root_key.objectid,
4992 btrfs_header_level(buf),
4993 BTRFS_DROP_DELAYED_REF, NULL);
4994 BUG_ON(ret);
4995 }
4996
4997 if (!last_ref)
4998 return;
4999
5000 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5001
5002 if (btrfs_header_generation(buf) == trans->transid) {
5003 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5004 ret = check_ref_cleanup(trans, root, buf->start);
5005 if (!ret)
5006 goto out;
5007 }
5008
5009 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5010 pin_down_extent(root, cache, buf->start, buf->len, 1);
5011 goto out;
5012 }
5013
5014 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5015
5016 btrfs_add_free_space(cache, buf->start, buf->len);
5017 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5018 }
5019 out:
5020 /*
5021 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5022 * anymore.
5023 */
5024 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5025 btrfs_put_block_group(cache);
5026 }
5027
5028 int btrfs_free_extent(struct btrfs_trans_handle *trans,
5029 struct btrfs_root *root,
5030 u64 bytenr, u64 num_bytes, u64 parent,
5031 u64 root_objectid, u64 owner, u64 offset)
5032 {
5033 int ret;
5034
5035 /*
5036 * tree log blocks never actually go into the extent allocation
5037 * tree, just update pinning info and exit early.
5038 */
5039 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5040 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5041 /* unlocks the pinned mutex */
5042 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5043 ret = 0;
5044 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5045 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
5046 parent, root_objectid, (int)owner,
5047 BTRFS_DROP_DELAYED_REF, NULL);
5048 BUG_ON(ret);
5049 } else {
5050 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
5051 parent, root_objectid, owner,
5052 offset, BTRFS_DROP_DELAYED_REF, NULL);
5053 BUG_ON(ret);
5054 }
5055 return ret;
5056 }
5057
5058 static u64 stripe_align(struct btrfs_root *root, u64 val)
5059 {
5060 u64 mask = ((u64)root->stripesize - 1);
5061 u64 ret = (val + mask) & ~mask;
5062 return ret;
5063 }
5064
5065 /*
5066 * when we wait for progress in the block group caching, its because
5067 * our allocation attempt failed at least once. So, we must sleep
5068 * and let some progress happen before we try again.
5069 *
5070 * This function will sleep at least once waiting for new free space to
5071 * show up, and then it will check the block group free space numbers
5072 * for our min num_bytes. Another option is to have it go ahead
5073 * and look in the rbtree for a free extent of a given size, but this
5074 * is a good start.
5075 */
5076 static noinline int
5077 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5078 u64 num_bytes)
5079 {
5080 struct btrfs_caching_control *caching_ctl;
5081 DEFINE_WAIT(wait);
5082
5083 caching_ctl = get_caching_control(cache);
5084 if (!caching_ctl)
5085 return 0;
5086
5087 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5088 (cache->free_space_ctl->free_space >= num_bytes));
5089
5090 put_caching_control(caching_ctl);
5091 return 0;
5092 }
5093
5094 static noinline int
5095 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5096 {
5097 struct btrfs_caching_control *caching_ctl;
5098 DEFINE_WAIT(wait);
5099
5100 caching_ctl = get_caching_control(cache);
5101 if (!caching_ctl)
5102 return 0;
5103
5104 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5105
5106 put_caching_control(caching_ctl);
5107 return 0;
5108 }
5109
5110 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5111 {
5112 int index;
5113 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5114 index = 0;
5115 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5116 index = 1;
5117 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5118 index = 2;
5119 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5120 index = 3;
5121 else
5122 index = 4;
5123 return index;
5124 }
5125
5126 enum btrfs_loop_type {
5127 LOOP_FIND_IDEAL = 0,
5128 LOOP_CACHING_NOWAIT = 1,
5129 LOOP_CACHING_WAIT = 2,
5130 LOOP_ALLOC_CHUNK = 3,
5131 LOOP_NO_EMPTY_SIZE = 4,
5132 };
5133
5134 /*
5135 * walks the btree of allocated extents and find a hole of a given size.
5136 * The key ins is changed to record the hole:
5137 * ins->objectid == block start
5138 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5139 * ins->offset == number of blocks
5140 * Any available blocks before search_start are skipped.
5141 */
5142 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5143 struct btrfs_root *orig_root,
5144 u64 num_bytes, u64 empty_size,
5145 u64 search_start, u64 search_end,
5146 u64 hint_byte, struct btrfs_key *ins,
5147 u64 data)
5148 {
5149 int ret = 0;
5150 struct btrfs_root *root = orig_root->fs_info->extent_root;
5151 struct btrfs_free_cluster *last_ptr = NULL;
5152 struct btrfs_block_group_cache *block_group = NULL;
5153 struct btrfs_block_group_cache *used_block_group;
5154 int empty_cluster = 2 * 1024 * 1024;
5155 int allowed_chunk_alloc = 0;
5156 int done_chunk_alloc = 0;
5157 struct btrfs_space_info *space_info;
5158 int loop = 0;
5159 int index = 0;
5160 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5161 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5162 bool found_uncached_bg = false;
5163 bool failed_cluster_refill = false;
5164 bool failed_alloc = false;
5165 bool use_cluster = true;
5166 bool have_caching_bg = false;
5167 u64 ideal_cache_percent = 0;
5168 u64 ideal_cache_offset = 0;
5169
5170 WARN_ON(num_bytes < root->sectorsize);
5171 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5172 ins->objectid = 0;
5173 ins->offset = 0;
5174
5175 space_info = __find_space_info(root->fs_info, data);
5176 if (!space_info) {
5177 printk(KERN_ERR "No space info for %llu\n", data);
5178 return -ENOSPC;
5179 }
5180
5181 /*
5182 * If the space info is for both data and metadata it means we have a
5183 * small filesystem and we can't use the clustering stuff.
5184 */
5185 if (btrfs_mixed_space_info(space_info))
5186 use_cluster = false;
5187
5188 if (orig_root->ref_cows || empty_size)
5189 allowed_chunk_alloc = 1;
5190
5191 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5192 last_ptr = &root->fs_info->meta_alloc_cluster;
5193 if (!btrfs_test_opt(root, SSD))
5194 empty_cluster = 64 * 1024;
5195 }
5196
5197 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5198 btrfs_test_opt(root, SSD)) {
5199 last_ptr = &root->fs_info->data_alloc_cluster;
5200 }
5201
5202 if (last_ptr) {
5203 spin_lock(&last_ptr->lock);
5204 if (last_ptr->block_group)
5205 hint_byte = last_ptr->window_start;
5206 spin_unlock(&last_ptr->lock);
5207 }
5208
5209 search_start = max(search_start, first_logical_byte(root, 0));
5210 search_start = max(search_start, hint_byte);
5211
5212 if (!last_ptr)
5213 empty_cluster = 0;
5214
5215 if (search_start == hint_byte) {
5216 ideal_cache:
5217 block_group = btrfs_lookup_block_group(root->fs_info,
5218 search_start);
5219 used_block_group = block_group;
5220 /*
5221 * we don't want to use the block group if it doesn't match our
5222 * allocation bits, or if its not cached.
5223 *
5224 * However if we are re-searching with an ideal block group
5225 * picked out then we don't care that the block group is cached.
5226 */
5227 if (block_group && block_group_bits(block_group, data) &&
5228 (block_group->cached != BTRFS_CACHE_NO ||
5229 search_start == ideal_cache_offset)) {
5230 down_read(&space_info->groups_sem);
5231 if (list_empty(&block_group->list) ||
5232 block_group->ro) {
5233 /*
5234 * someone is removing this block group,
5235 * we can't jump into the have_block_group
5236 * target because our list pointers are not
5237 * valid
5238 */
5239 btrfs_put_block_group(block_group);
5240 up_read(&space_info->groups_sem);
5241 } else {
5242 index = get_block_group_index(block_group);
5243 goto have_block_group;
5244 }
5245 } else if (block_group) {
5246 btrfs_put_block_group(block_group);
5247 }
5248 }
5249 search:
5250 have_caching_bg = false;
5251 down_read(&space_info->groups_sem);
5252 list_for_each_entry(block_group, &space_info->block_groups[index],
5253 list) {
5254 u64 offset;
5255 int cached;
5256
5257 used_block_group = block_group;
5258 btrfs_get_block_group(block_group);
5259 search_start = block_group->key.objectid;
5260
5261 /*
5262 * this can happen if we end up cycling through all the
5263 * raid types, but we want to make sure we only allocate
5264 * for the proper type.
5265 */
5266 if (!block_group_bits(block_group, data)) {
5267 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5268 BTRFS_BLOCK_GROUP_RAID1 |
5269 BTRFS_BLOCK_GROUP_RAID10;
5270
5271 /*
5272 * if they asked for extra copies and this block group
5273 * doesn't provide them, bail. This does allow us to
5274 * fill raid0 from raid1.
5275 */
5276 if ((data & extra) && !(block_group->flags & extra))
5277 goto loop;
5278 }
5279
5280 have_block_group:
5281 cached = block_group_cache_done(block_group);
5282 if (unlikely(!cached)) {
5283 u64 free_percent;
5284
5285 found_uncached_bg = true;
5286 ret = cache_block_group(block_group, trans,
5287 orig_root, 1);
5288 if (block_group->cached == BTRFS_CACHE_FINISHED)
5289 goto alloc;
5290
5291 free_percent = btrfs_block_group_used(&block_group->item);
5292 free_percent *= 100;
5293 free_percent = div64_u64(free_percent,
5294 block_group->key.offset);
5295 free_percent = 100 - free_percent;
5296 if (free_percent > ideal_cache_percent &&
5297 likely(!block_group->ro)) {
5298 ideal_cache_offset = block_group->key.objectid;
5299 ideal_cache_percent = free_percent;
5300 }
5301
5302 /*
5303 * The caching workers are limited to 2 threads, so we
5304 * can queue as much work as we care to.
5305 */
5306 if (loop > LOOP_FIND_IDEAL) {
5307 ret = cache_block_group(block_group, trans,
5308 orig_root, 0);
5309 BUG_ON(ret);
5310 }
5311
5312 /*
5313 * If loop is set for cached only, try the next block
5314 * group.
5315 */
5316 if (loop == LOOP_FIND_IDEAL)
5317 goto loop;
5318 }
5319
5320 alloc:
5321 if (unlikely(block_group->ro))
5322 goto loop;
5323
5324 /*
5325 * Ok we want to try and use the cluster allocator, so
5326 * lets look there
5327 */
5328 if (last_ptr) {
5329 /*
5330 * the refill lock keeps out other
5331 * people trying to start a new cluster
5332 */
5333 spin_lock(&last_ptr->refill_lock);
5334 used_block_group = last_ptr->block_group;
5335 if (used_block_group != block_group &&
5336 (!used_block_group ||
5337 used_block_group->ro ||
5338 !block_group_bits(used_block_group, data))) {
5339 used_block_group = block_group;
5340 goto refill_cluster;
5341 }
5342
5343 if (used_block_group != block_group)
5344 btrfs_get_block_group(used_block_group);
5345
5346 offset = btrfs_alloc_from_cluster(used_block_group,
5347 last_ptr, num_bytes, used_block_group->key.objectid);
5348 if (offset) {
5349 /* we have a block, we're done */
5350 spin_unlock(&last_ptr->refill_lock);
5351 goto checks;
5352 }
5353
5354 WARN_ON(last_ptr->block_group != used_block_group);
5355 if (used_block_group != block_group) {
5356 btrfs_put_block_group(used_block_group);
5357 used_block_group = block_group;
5358 }
5359 refill_cluster:
5360 BUG_ON(used_block_group != block_group);
5361 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5362 * set up a new clusters, so lets just skip it
5363 * and let the allocator find whatever block
5364 * it can find. If we reach this point, we
5365 * will have tried the cluster allocator
5366 * plenty of times and not have found
5367 * anything, so we are likely way too
5368 * fragmented for the clustering stuff to find
5369 * anything.
5370 *
5371 * However, if the cluster is taken from the
5372 * current block group, release the cluster
5373 * first, so that we stand a better chance of
5374 * succeeding in the unclustered
5375 * allocation. */
5376 if (loop >= LOOP_NO_EMPTY_SIZE &&
5377 last_ptr->block_group != block_group) {
5378 spin_unlock(&last_ptr->refill_lock);
5379 goto unclustered_alloc;
5380 }
5381
5382 /*
5383 * this cluster didn't work out, free it and
5384 * start over
5385 */
5386 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5387
5388 if (loop >= LOOP_NO_EMPTY_SIZE) {
5389 spin_unlock(&last_ptr->refill_lock);
5390 goto unclustered_alloc;
5391 }
5392
5393 /* allocate a cluster in this block group */
5394 ret = btrfs_find_space_cluster(trans, root,
5395 block_group, last_ptr,
5396 search_start, num_bytes,
5397 empty_cluster + empty_size);
5398 if (ret == 0) {
5399 /*
5400 * now pull our allocation out of this
5401 * cluster
5402 */
5403 offset = btrfs_alloc_from_cluster(block_group,
5404 last_ptr, num_bytes,
5405 search_start);
5406 if (offset) {
5407 /* we found one, proceed */
5408 spin_unlock(&last_ptr->refill_lock);
5409 goto checks;
5410 }
5411 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5412 && !failed_cluster_refill) {
5413 spin_unlock(&last_ptr->refill_lock);
5414
5415 failed_cluster_refill = true;
5416 wait_block_group_cache_progress(block_group,
5417 num_bytes + empty_cluster + empty_size);
5418 goto have_block_group;
5419 }
5420
5421 /*
5422 * at this point we either didn't find a cluster
5423 * or we weren't able to allocate a block from our
5424 * cluster. Free the cluster we've been trying
5425 * to use, and go to the next block group
5426 */
5427 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5428 spin_unlock(&last_ptr->refill_lock);
5429 goto loop;
5430 }
5431
5432 unclustered_alloc:
5433 spin_lock(&block_group->free_space_ctl->tree_lock);
5434 if (cached &&
5435 block_group->free_space_ctl->free_space <
5436 num_bytes + empty_cluster + empty_size) {
5437 spin_unlock(&block_group->free_space_ctl->tree_lock);
5438 goto loop;
5439 }
5440 spin_unlock(&block_group->free_space_ctl->tree_lock);
5441
5442 offset = btrfs_find_space_for_alloc(block_group, search_start,
5443 num_bytes, empty_size);
5444 /*
5445 * If we didn't find a chunk, and we haven't failed on this
5446 * block group before, and this block group is in the middle of
5447 * caching and we are ok with waiting, then go ahead and wait
5448 * for progress to be made, and set failed_alloc to true.
5449 *
5450 * If failed_alloc is true then we've already waited on this
5451 * block group once and should move on to the next block group.
5452 */
5453 if (!offset && !failed_alloc && !cached &&
5454 loop > LOOP_CACHING_NOWAIT) {
5455 wait_block_group_cache_progress(block_group,
5456 num_bytes + empty_size);
5457 failed_alloc = true;
5458 goto have_block_group;
5459 } else if (!offset) {
5460 if (!cached)
5461 have_caching_bg = true;
5462 goto loop;
5463 }
5464 checks:
5465 search_start = stripe_align(root, offset);
5466 /* move on to the next group */
5467 if (search_start + num_bytes >= search_end) {
5468 btrfs_add_free_space(used_block_group, offset, num_bytes);
5469 goto loop;
5470 }
5471
5472 /* move on to the next group */
5473 if (search_start + num_bytes >
5474 used_block_group->key.objectid + used_block_group->key.offset) {
5475 btrfs_add_free_space(used_block_group, offset, num_bytes);
5476 goto loop;
5477 }
5478
5479 if (offset < search_start)
5480 btrfs_add_free_space(used_block_group, offset,
5481 search_start - offset);
5482 BUG_ON(offset > search_start);
5483
5484 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5485 alloc_type);
5486 if (ret == -EAGAIN) {
5487 btrfs_add_free_space(used_block_group, offset, num_bytes);
5488 goto loop;
5489 }
5490
5491 /* we are all good, lets return */
5492 ins->objectid = search_start;
5493 ins->offset = num_bytes;
5494
5495 if (offset < search_start)
5496 btrfs_add_free_space(used_block_group, offset,
5497 search_start - offset);
5498 BUG_ON(offset > search_start);
5499 if (used_block_group != block_group)
5500 btrfs_put_block_group(used_block_group);
5501 btrfs_put_block_group(block_group);
5502 break;
5503 loop:
5504 failed_cluster_refill = false;
5505 failed_alloc = false;
5506 BUG_ON(index != get_block_group_index(block_group));
5507 if (used_block_group != block_group)
5508 btrfs_put_block_group(used_block_group);
5509 btrfs_put_block_group(block_group);
5510 }
5511 up_read(&space_info->groups_sem);
5512
5513 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5514 goto search;
5515
5516 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5517 goto search;
5518
5519 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5520 * for them to make caching progress. Also
5521 * determine the best possible bg to cache
5522 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5523 * caching kthreads as we move along
5524 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5525 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5526 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5527 * again
5528 */
5529 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5530 index = 0;
5531 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5532 found_uncached_bg = false;
5533 loop++;
5534 if (!ideal_cache_percent)
5535 goto search;
5536
5537 /*
5538 * 1 of the following 2 things have happened so far
5539 *
5540 * 1) We found an ideal block group for caching that
5541 * is mostly full and will cache quickly, so we might
5542 * as well wait for it.
5543 *
5544 * 2) We searched for cached only and we didn't find
5545 * anything, and we didn't start any caching kthreads
5546 * either, so chances are we will loop through and
5547 * start a couple caching kthreads, and then come back
5548 * around and just wait for them. This will be slower
5549 * because we will have 2 caching kthreads reading at
5550 * the same time when we could have just started one
5551 * and waited for it to get far enough to give us an
5552 * allocation, so go ahead and go to the wait caching
5553 * loop.
5554 */
5555 loop = LOOP_CACHING_WAIT;
5556 search_start = ideal_cache_offset;
5557 ideal_cache_percent = 0;
5558 goto ideal_cache;
5559 } else if (loop == LOOP_FIND_IDEAL) {
5560 /*
5561 * Didn't find a uncached bg, wait on anything we find
5562 * next.
5563 */
5564 loop = LOOP_CACHING_WAIT;
5565 goto search;
5566 }
5567
5568 loop++;
5569
5570 if (loop == LOOP_ALLOC_CHUNK) {
5571 if (allowed_chunk_alloc) {
5572 ret = do_chunk_alloc(trans, root, num_bytes +
5573 2 * 1024 * 1024, data,
5574 CHUNK_ALLOC_LIMITED);
5575 allowed_chunk_alloc = 0;
5576 if (ret == 1)
5577 done_chunk_alloc = 1;
5578 } else if (!done_chunk_alloc &&
5579 space_info->force_alloc ==
5580 CHUNK_ALLOC_NO_FORCE) {
5581 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5582 }
5583
5584 /*
5585 * We didn't allocate a chunk, go ahead and drop the
5586 * empty size and loop again.
5587 */
5588 if (!done_chunk_alloc)
5589 loop = LOOP_NO_EMPTY_SIZE;
5590 }
5591
5592 if (loop == LOOP_NO_EMPTY_SIZE) {
5593 empty_size = 0;
5594 empty_cluster = 0;
5595 }
5596
5597 goto search;
5598 } else if (!ins->objectid) {
5599 ret = -ENOSPC;
5600 } else if (ins->objectid) {
5601 ret = 0;
5602 }
5603
5604 return ret;
5605 }
5606
5607 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5608 int dump_block_groups)
5609 {
5610 struct btrfs_block_group_cache *cache;
5611 int index = 0;
5612
5613 spin_lock(&info->lock);
5614 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5615 (unsigned long long)info->flags,
5616 (unsigned long long)(info->total_bytes - info->bytes_used -
5617 info->bytes_pinned - info->bytes_reserved -
5618 info->bytes_readonly),
5619 (info->full) ? "" : "not ");
5620 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5621 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5622 (unsigned long long)info->total_bytes,
5623 (unsigned long long)info->bytes_used,
5624 (unsigned long long)info->bytes_pinned,
5625 (unsigned long long)info->bytes_reserved,
5626 (unsigned long long)info->bytes_may_use,
5627 (unsigned long long)info->bytes_readonly);
5628 spin_unlock(&info->lock);
5629
5630 if (!dump_block_groups)
5631 return;
5632
5633 down_read(&info->groups_sem);
5634 again:
5635 list_for_each_entry(cache, &info->block_groups[index], list) {
5636 spin_lock(&cache->lock);
5637 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5638 "%llu pinned %llu reserved\n",
5639 (unsigned long long)cache->key.objectid,
5640 (unsigned long long)cache->key.offset,
5641 (unsigned long long)btrfs_block_group_used(&cache->item),
5642 (unsigned long long)cache->pinned,
5643 (unsigned long long)cache->reserved);
5644 btrfs_dump_free_space(cache, bytes);
5645 spin_unlock(&cache->lock);
5646 }
5647 if (++index < BTRFS_NR_RAID_TYPES)
5648 goto again;
5649 up_read(&info->groups_sem);
5650 }
5651
5652 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5653 struct btrfs_root *root,
5654 u64 num_bytes, u64 min_alloc_size,
5655 u64 empty_size, u64 hint_byte,
5656 u64 search_end, struct btrfs_key *ins,
5657 u64 data)
5658 {
5659 int ret;
5660 u64 search_start = 0;
5661
5662 data = btrfs_get_alloc_profile(root, data);
5663 again:
5664 /*
5665 * the only place that sets empty_size is btrfs_realloc_node, which
5666 * is not called recursively on allocations
5667 */
5668 if (empty_size || root->ref_cows)
5669 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5670 num_bytes + 2 * 1024 * 1024, data,
5671 CHUNK_ALLOC_NO_FORCE);
5672
5673 WARN_ON(num_bytes < root->sectorsize);
5674 ret = find_free_extent(trans, root, num_bytes, empty_size,
5675 search_start, search_end, hint_byte,
5676 ins, data);
5677
5678 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5679 num_bytes = num_bytes >> 1;
5680 num_bytes = num_bytes & ~(root->sectorsize - 1);
5681 num_bytes = max(num_bytes, min_alloc_size);
5682 do_chunk_alloc(trans, root->fs_info->extent_root,
5683 num_bytes, data, CHUNK_ALLOC_FORCE);
5684 goto again;
5685 }
5686 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5687 struct btrfs_space_info *sinfo;
5688
5689 sinfo = __find_space_info(root->fs_info, data);
5690 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5691 "wanted %llu\n", (unsigned long long)data,
5692 (unsigned long long)num_bytes);
5693 dump_space_info(sinfo, num_bytes, 1);
5694 }
5695
5696 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5697
5698 return ret;
5699 }
5700
5701 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5702 u64 start, u64 len, int pin)
5703 {
5704 struct btrfs_block_group_cache *cache;
5705 int ret = 0;
5706
5707 cache = btrfs_lookup_block_group(root->fs_info, start);
5708 if (!cache) {
5709 printk(KERN_ERR "Unable to find block group for %llu\n",
5710 (unsigned long long)start);
5711 return -ENOSPC;
5712 }
5713
5714 if (btrfs_test_opt(root, DISCARD))
5715 ret = btrfs_discard_extent(root, start, len, NULL);
5716
5717 if (pin)
5718 pin_down_extent(root, cache, start, len, 1);
5719 else {
5720 btrfs_add_free_space(cache, start, len);
5721 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5722 }
5723 btrfs_put_block_group(cache);
5724
5725 trace_btrfs_reserved_extent_free(root, start, len);
5726
5727 return ret;
5728 }
5729
5730 int btrfs_free_reserved_extent(struct btrfs_root *root,
5731 u64 start, u64 len)
5732 {
5733 return __btrfs_free_reserved_extent(root, start, len, 0);
5734 }
5735
5736 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5737 u64 start, u64 len)
5738 {
5739 return __btrfs_free_reserved_extent(root, start, len, 1);
5740 }
5741
5742 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5743 struct btrfs_root *root,
5744 u64 parent, u64 root_objectid,
5745 u64 flags, u64 owner, u64 offset,
5746 struct btrfs_key *ins, int ref_mod)
5747 {
5748 int ret;
5749 struct btrfs_fs_info *fs_info = root->fs_info;
5750 struct btrfs_extent_item *extent_item;
5751 struct btrfs_extent_inline_ref *iref;
5752 struct btrfs_path *path;
5753 struct extent_buffer *leaf;
5754 int type;
5755 u32 size;
5756
5757 if (parent > 0)
5758 type = BTRFS_SHARED_DATA_REF_KEY;
5759 else
5760 type = BTRFS_EXTENT_DATA_REF_KEY;
5761
5762 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5763
5764 path = btrfs_alloc_path();
5765 if (!path)
5766 return -ENOMEM;
5767
5768 path->leave_spinning = 1;
5769 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5770 ins, size);
5771 BUG_ON(ret);
5772
5773 leaf = path->nodes[0];
5774 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5775 struct btrfs_extent_item);
5776 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5777 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5778 btrfs_set_extent_flags(leaf, extent_item,
5779 flags | BTRFS_EXTENT_FLAG_DATA);
5780
5781 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5782 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5783 if (parent > 0) {
5784 struct btrfs_shared_data_ref *ref;
5785 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5786 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5787 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5788 } else {
5789 struct btrfs_extent_data_ref *ref;
5790 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5791 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5792 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5793 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5794 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5795 }
5796
5797 btrfs_mark_buffer_dirty(path->nodes[0]);
5798 btrfs_free_path(path);
5799
5800 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5801 if (ret) {
5802 printk(KERN_ERR "btrfs update block group failed for %llu "
5803 "%llu\n", (unsigned long long)ins->objectid,
5804 (unsigned long long)ins->offset);
5805 BUG();
5806 }
5807 return ret;
5808 }
5809
5810 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5811 struct btrfs_root *root,
5812 u64 parent, u64 root_objectid,
5813 u64 flags, struct btrfs_disk_key *key,
5814 int level, struct btrfs_key *ins)
5815 {
5816 int ret;
5817 struct btrfs_fs_info *fs_info = root->fs_info;
5818 struct btrfs_extent_item *extent_item;
5819 struct btrfs_tree_block_info *block_info;
5820 struct btrfs_extent_inline_ref *iref;
5821 struct btrfs_path *path;
5822 struct extent_buffer *leaf;
5823 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5824
5825 path = btrfs_alloc_path();
5826 if (!path)
5827 return -ENOMEM;
5828
5829 path->leave_spinning = 1;
5830 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5831 ins, size);
5832 BUG_ON(ret);
5833
5834 leaf = path->nodes[0];
5835 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5836 struct btrfs_extent_item);
5837 btrfs_set_extent_refs(leaf, extent_item, 1);
5838 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5839 btrfs_set_extent_flags(leaf, extent_item,
5840 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5841 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5842
5843 btrfs_set_tree_block_key(leaf, block_info, key);
5844 btrfs_set_tree_block_level(leaf, block_info, level);
5845
5846 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5847 if (parent > 0) {
5848 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5849 btrfs_set_extent_inline_ref_type(leaf, iref,
5850 BTRFS_SHARED_BLOCK_REF_KEY);
5851 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5852 } else {
5853 btrfs_set_extent_inline_ref_type(leaf, iref,
5854 BTRFS_TREE_BLOCK_REF_KEY);
5855 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5856 }
5857
5858 btrfs_mark_buffer_dirty(leaf);
5859 btrfs_free_path(path);
5860
5861 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5862 if (ret) {
5863 printk(KERN_ERR "btrfs update block group failed for %llu "
5864 "%llu\n", (unsigned long long)ins->objectid,
5865 (unsigned long long)ins->offset);
5866 BUG();
5867 }
5868 return ret;
5869 }
5870
5871 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5872 struct btrfs_root *root,
5873 u64 root_objectid, u64 owner,
5874 u64 offset, struct btrfs_key *ins)
5875 {
5876 int ret;
5877
5878 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5879
5880 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5881 0, root_objectid, owner, offset,
5882 BTRFS_ADD_DELAYED_EXTENT, NULL);
5883 return ret;
5884 }
5885
5886 /*
5887 * this is used by the tree logging recovery code. It records that
5888 * an extent has been allocated and makes sure to clear the free
5889 * space cache bits as well
5890 */
5891 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5892 struct btrfs_root *root,
5893 u64 root_objectid, u64 owner, u64 offset,
5894 struct btrfs_key *ins)
5895 {
5896 int ret;
5897 struct btrfs_block_group_cache *block_group;
5898 struct btrfs_caching_control *caching_ctl;
5899 u64 start = ins->objectid;
5900 u64 num_bytes = ins->offset;
5901
5902 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5903 cache_block_group(block_group, trans, NULL, 0);
5904 caching_ctl = get_caching_control(block_group);
5905
5906 if (!caching_ctl) {
5907 BUG_ON(!block_group_cache_done(block_group));
5908 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5909 BUG_ON(ret);
5910 } else {
5911 mutex_lock(&caching_ctl->mutex);
5912
5913 if (start >= caching_ctl->progress) {
5914 ret = add_excluded_extent(root, start, num_bytes);
5915 BUG_ON(ret);
5916 } else if (start + num_bytes <= caching_ctl->progress) {
5917 ret = btrfs_remove_free_space(block_group,
5918 start, num_bytes);
5919 BUG_ON(ret);
5920 } else {
5921 num_bytes = caching_ctl->progress - start;
5922 ret = btrfs_remove_free_space(block_group,
5923 start, num_bytes);
5924 BUG_ON(ret);
5925
5926 start = caching_ctl->progress;
5927 num_bytes = ins->objectid + ins->offset -
5928 caching_ctl->progress;
5929 ret = add_excluded_extent(root, start, num_bytes);
5930 BUG_ON(ret);
5931 }
5932
5933 mutex_unlock(&caching_ctl->mutex);
5934 put_caching_control(caching_ctl);
5935 }
5936
5937 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5938 RESERVE_ALLOC_NO_ACCOUNT);
5939 BUG_ON(ret);
5940 btrfs_put_block_group(block_group);
5941 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5942 0, owner, offset, ins, 1);
5943 return ret;
5944 }
5945
5946 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5947 struct btrfs_root *root,
5948 u64 bytenr, u32 blocksize,
5949 int level)
5950 {
5951 struct extent_buffer *buf;
5952
5953 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5954 if (!buf)
5955 return ERR_PTR(-ENOMEM);
5956 btrfs_set_header_generation(buf, trans->transid);
5957 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5958 btrfs_tree_lock(buf);
5959 clean_tree_block(trans, root, buf);
5960
5961 btrfs_set_lock_blocking(buf);
5962 btrfs_set_buffer_uptodate(buf);
5963
5964 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5965 /*
5966 * we allow two log transactions at a time, use different
5967 * EXENT bit to differentiate dirty pages.
5968 */
5969 if (root->log_transid % 2 == 0)
5970 set_extent_dirty(&root->dirty_log_pages, buf->start,
5971 buf->start + buf->len - 1, GFP_NOFS);
5972 else
5973 set_extent_new(&root->dirty_log_pages, buf->start,
5974 buf->start + buf->len - 1, GFP_NOFS);
5975 } else {
5976 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5977 buf->start + buf->len - 1, GFP_NOFS);
5978 }
5979 trans->blocks_used++;
5980 /* this returns a buffer locked for blocking */
5981 return buf;
5982 }
5983
5984 static struct btrfs_block_rsv *
5985 use_block_rsv(struct btrfs_trans_handle *trans,
5986 struct btrfs_root *root, u32 blocksize)
5987 {
5988 struct btrfs_block_rsv *block_rsv;
5989 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5990 int ret;
5991
5992 block_rsv = get_block_rsv(trans, root);
5993
5994 if (block_rsv->size == 0) {
5995 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5996 /*
5997 * If we couldn't reserve metadata bytes try and use some from
5998 * the global reserve.
5999 */
6000 if (ret && block_rsv != global_rsv) {
6001 ret = block_rsv_use_bytes(global_rsv, blocksize);
6002 if (!ret)
6003 return global_rsv;
6004 return ERR_PTR(ret);
6005 } else if (ret) {
6006 return ERR_PTR(ret);
6007 }
6008 return block_rsv;
6009 }
6010
6011 ret = block_rsv_use_bytes(block_rsv, blocksize);
6012 if (!ret)
6013 return block_rsv;
6014 if (ret) {
6015 static DEFINE_RATELIMIT_STATE(_rs,
6016 DEFAULT_RATELIMIT_INTERVAL,
6017 /*DEFAULT_RATELIMIT_BURST*/ 2);
6018 if (__ratelimit(&_rs)) {
6019 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6020 WARN_ON(1);
6021 }
6022 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6023 if (!ret) {
6024 return block_rsv;
6025 } else if (ret && block_rsv != global_rsv) {
6026 ret = block_rsv_use_bytes(global_rsv, blocksize);
6027 if (!ret)
6028 return global_rsv;
6029 }
6030 }
6031
6032 return ERR_PTR(-ENOSPC);
6033 }
6034
6035 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
6036 {
6037 block_rsv_add_bytes(block_rsv, blocksize, 0);
6038 block_rsv_release_bytes(block_rsv, NULL, 0);
6039 }
6040
6041 /*
6042 * finds a free extent and does all the dirty work required for allocation
6043 * returns the key for the extent through ins, and a tree buffer for
6044 * the first block of the extent through buf.
6045 *
6046 * returns the tree buffer or NULL.
6047 */
6048 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6049 struct btrfs_root *root, u32 blocksize,
6050 u64 parent, u64 root_objectid,
6051 struct btrfs_disk_key *key, int level,
6052 u64 hint, u64 empty_size)
6053 {
6054 struct btrfs_key ins;
6055 struct btrfs_block_rsv *block_rsv;
6056 struct extent_buffer *buf;
6057 u64 flags = 0;
6058 int ret;
6059
6060
6061 block_rsv = use_block_rsv(trans, root, blocksize);
6062 if (IS_ERR(block_rsv))
6063 return ERR_CAST(block_rsv);
6064
6065 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6066 empty_size, hint, (u64)-1, &ins, 0);
6067 if (ret) {
6068 unuse_block_rsv(block_rsv, blocksize);
6069 return ERR_PTR(ret);
6070 }
6071
6072 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6073 blocksize, level);
6074 BUG_ON(IS_ERR(buf));
6075
6076 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6077 if (parent == 0)
6078 parent = ins.objectid;
6079 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6080 } else
6081 BUG_ON(parent > 0);
6082
6083 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6084 struct btrfs_delayed_extent_op *extent_op;
6085 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6086 BUG_ON(!extent_op);
6087 if (key)
6088 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6089 else
6090 memset(&extent_op->key, 0, sizeof(extent_op->key));
6091 extent_op->flags_to_set = flags;
6092 extent_op->update_key = 1;
6093 extent_op->update_flags = 1;
6094 extent_op->is_data = 0;
6095
6096 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
6097 ins.offset, parent, root_objectid,
6098 level, BTRFS_ADD_DELAYED_EXTENT,
6099 extent_op);
6100 BUG_ON(ret);
6101 }
6102 return buf;
6103 }
6104
6105 struct walk_control {
6106 u64 refs[BTRFS_MAX_LEVEL];
6107 u64 flags[BTRFS_MAX_LEVEL];
6108 struct btrfs_key update_progress;
6109 int stage;
6110 int level;
6111 int shared_level;
6112 int update_ref;
6113 int keep_locks;
6114 int reada_slot;
6115 int reada_count;
6116 };
6117
6118 #define DROP_REFERENCE 1
6119 #define UPDATE_BACKREF 2
6120
6121 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6122 struct btrfs_root *root,
6123 struct walk_control *wc,
6124 struct btrfs_path *path)
6125 {
6126 u64 bytenr;
6127 u64 generation;
6128 u64 refs;
6129 u64 flags;
6130 u32 nritems;
6131 u32 blocksize;
6132 struct btrfs_key key;
6133 struct extent_buffer *eb;
6134 int ret;
6135 int slot;
6136 int nread = 0;
6137
6138 if (path->slots[wc->level] < wc->reada_slot) {
6139 wc->reada_count = wc->reada_count * 2 / 3;
6140 wc->reada_count = max(wc->reada_count, 2);
6141 } else {
6142 wc->reada_count = wc->reada_count * 3 / 2;
6143 wc->reada_count = min_t(int, wc->reada_count,
6144 BTRFS_NODEPTRS_PER_BLOCK(root));
6145 }
6146
6147 eb = path->nodes[wc->level];
6148 nritems = btrfs_header_nritems(eb);
6149 blocksize = btrfs_level_size(root, wc->level - 1);
6150
6151 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6152 if (nread >= wc->reada_count)
6153 break;
6154
6155 cond_resched();
6156 bytenr = btrfs_node_blockptr(eb, slot);
6157 generation = btrfs_node_ptr_generation(eb, slot);
6158
6159 if (slot == path->slots[wc->level])
6160 goto reada;
6161
6162 if (wc->stage == UPDATE_BACKREF &&
6163 generation <= root->root_key.offset)
6164 continue;
6165
6166 /* We don't lock the tree block, it's OK to be racy here */
6167 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6168 &refs, &flags);
6169 BUG_ON(ret);
6170 BUG_ON(refs == 0);
6171
6172 if (wc->stage == DROP_REFERENCE) {
6173 if (refs == 1)
6174 goto reada;
6175
6176 if (wc->level == 1 &&
6177 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6178 continue;
6179 if (!wc->update_ref ||
6180 generation <= root->root_key.offset)
6181 continue;
6182 btrfs_node_key_to_cpu(eb, &key, slot);
6183 ret = btrfs_comp_cpu_keys(&key,
6184 &wc->update_progress);
6185 if (ret < 0)
6186 continue;
6187 } else {
6188 if (wc->level == 1 &&
6189 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6190 continue;
6191 }
6192 reada:
6193 ret = readahead_tree_block(root, bytenr, blocksize,
6194 generation);
6195 if (ret)
6196 break;
6197 nread++;
6198 }
6199 wc->reada_slot = slot;
6200 }
6201
6202 /*
6203 * hepler to process tree block while walking down the tree.
6204 *
6205 * when wc->stage == UPDATE_BACKREF, this function updates
6206 * back refs for pointers in the block.
6207 *
6208 * NOTE: return value 1 means we should stop walking down.
6209 */
6210 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6211 struct btrfs_root *root,
6212 struct btrfs_path *path,
6213 struct walk_control *wc, int lookup_info)
6214 {
6215 int level = wc->level;
6216 struct extent_buffer *eb = path->nodes[level];
6217 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6218 int ret;
6219
6220 if (wc->stage == UPDATE_BACKREF &&
6221 btrfs_header_owner(eb) != root->root_key.objectid)
6222 return 1;
6223
6224 /*
6225 * when reference count of tree block is 1, it won't increase
6226 * again. once full backref flag is set, we never clear it.
6227 */
6228 if (lookup_info &&
6229 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6230 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6231 BUG_ON(!path->locks[level]);
6232 ret = btrfs_lookup_extent_info(trans, root,
6233 eb->start, eb->len,
6234 &wc->refs[level],
6235 &wc->flags[level]);
6236 BUG_ON(ret);
6237 BUG_ON(wc->refs[level] == 0);
6238 }
6239
6240 if (wc->stage == DROP_REFERENCE) {
6241 if (wc->refs[level] > 1)
6242 return 1;
6243
6244 if (path->locks[level] && !wc->keep_locks) {
6245 btrfs_tree_unlock_rw(eb, path->locks[level]);
6246 path->locks[level] = 0;
6247 }
6248 return 0;
6249 }
6250
6251 /* wc->stage == UPDATE_BACKREF */
6252 if (!(wc->flags[level] & flag)) {
6253 BUG_ON(!path->locks[level]);
6254 ret = btrfs_inc_ref(trans, root, eb, 1);
6255 BUG_ON(ret);
6256 ret = btrfs_dec_ref(trans, root, eb, 0);
6257 BUG_ON(ret);
6258 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6259 eb->len, flag, 0);
6260 BUG_ON(ret);
6261 wc->flags[level] |= flag;
6262 }
6263
6264 /*
6265 * the block is shared by multiple trees, so it's not good to
6266 * keep the tree lock
6267 */
6268 if (path->locks[level] && level > 0) {
6269 btrfs_tree_unlock_rw(eb, path->locks[level]);
6270 path->locks[level] = 0;
6271 }
6272 return 0;
6273 }
6274
6275 /*
6276 * hepler to process tree block pointer.
6277 *
6278 * when wc->stage == DROP_REFERENCE, this function checks
6279 * reference count of the block pointed to. if the block
6280 * is shared and we need update back refs for the subtree
6281 * rooted at the block, this function changes wc->stage to
6282 * UPDATE_BACKREF. if the block is shared and there is no
6283 * need to update back, this function drops the reference
6284 * to the block.
6285 *
6286 * NOTE: return value 1 means we should stop walking down.
6287 */
6288 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6289 struct btrfs_root *root,
6290 struct btrfs_path *path,
6291 struct walk_control *wc, int *lookup_info)
6292 {
6293 u64 bytenr;
6294 u64 generation;
6295 u64 parent;
6296 u32 blocksize;
6297 struct btrfs_key key;
6298 struct extent_buffer *next;
6299 int level = wc->level;
6300 int reada = 0;
6301 int ret = 0;
6302
6303 generation = btrfs_node_ptr_generation(path->nodes[level],
6304 path->slots[level]);
6305 /*
6306 * if the lower level block was created before the snapshot
6307 * was created, we know there is no need to update back refs
6308 * for the subtree
6309 */
6310 if (wc->stage == UPDATE_BACKREF &&
6311 generation <= root->root_key.offset) {
6312 *lookup_info = 1;
6313 return 1;
6314 }
6315
6316 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6317 blocksize = btrfs_level_size(root, level - 1);
6318
6319 next = btrfs_find_tree_block(root, bytenr, blocksize);
6320 if (!next) {
6321 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6322 if (!next)
6323 return -ENOMEM;
6324 reada = 1;
6325 }
6326 btrfs_tree_lock(next);
6327 btrfs_set_lock_blocking(next);
6328
6329 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6330 &wc->refs[level - 1],
6331 &wc->flags[level - 1]);
6332 BUG_ON(ret);
6333 BUG_ON(wc->refs[level - 1] == 0);
6334 *lookup_info = 0;
6335
6336 if (wc->stage == DROP_REFERENCE) {
6337 if (wc->refs[level - 1] > 1) {
6338 if (level == 1 &&
6339 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6340 goto skip;
6341
6342 if (!wc->update_ref ||
6343 generation <= root->root_key.offset)
6344 goto skip;
6345
6346 btrfs_node_key_to_cpu(path->nodes[level], &key,
6347 path->slots[level]);
6348 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6349 if (ret < 0)
6350 goto skip;
6351
6352 wc->stage = UPDATE_BACKREF;
6353 wc->shared_level = level - 1;
6354 }
6355 } else {
6356 if (level == 1 &&
6357 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6358 goto skip;
6359 }
6360
6361 if (!btrfs_buffer_uptodate(next, generation)) {
6362 btrfs_tree_unlock(next);
6363 free_extent_buffer(next);
6364 next = NULL;
6365 *lookup_info = 1;
6366 }
6367
6368 if (!next) {
6369 if (reada && level == 1)
6370 reada_walk_down(trans, root, wc, path);
6371 next = read_tree_block(root, bytenr, blocksize, generation);
6372 if (!next)
6373 return -EIO;
6374 btrfs_tree_lock(next);
6375 btrfs_set_lock_blocking(next);
6376 }
6377
6378 level--;
6379 BUG_ON(level != btrfs_header_level(next));
6380 path->nodes[level] = next;
6381 path->slots[level] = 0;
6382 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6383 wc->level = level;
6384 if (wc->level == 1)
6385 wc->reada_slot = 0;
6386 return 0;
6387 skip:
6388 wc->refs[level - 1] = 0;
6389 wc->flags[level - 1] = 0;
6390 if (wc->stage == DROP_REFERENCE) {
6391 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6392 parent = path->nodes[level]->start;
6393 } else {
6394 BUG_ON(root->root_key.objectid !=
6395 btrfs_header_owner(path->nodes[level]));
6396 parent = 0;
6397 }
6398
6399 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6400 root->root_key.objectid, level - 1, 0);
6401 BUG_ON(ret);
6402 }
6403 btrfs_tree_unlock(next);
6404 free_extent_buffer(next);
6405 *lookup_info = 1;
6406 return 1;
6407 }
6408
6409 /*
6410 * hepler to process tree block while walking up the tree.
6411 *
6412 * when wc->stage == DROP_REFERENCE, this function drops
6413 * reference count on the block.
6414 *
6415 * when wc->stage == UPDATE_BACKREF, this function changes
6416 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6417 * to UPDATE_BACKREF previously while processing the block.
6418 *
6419 * NOTE: return value 1 means we should stop walking up.
6420 */
6421 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6422 struct btrfs_root *root,
6423 struct btrfs_path *path,
6424 struct walk_control *wc)
6425 {
6426 int ret;
6427 int level = wc->level;
6428 struct extent_buffer *eb = path->nodes[level];
6429 u64 parent = 0;
6430
6431 if (wc->stage == UPDATE_BACKREF) {
6432 BUG_ON(wc->shared_level < level);
6433 if (level < wc->shared_level)
6434 goto out;
6435
6436 ret = find_next_key(path, level + 1, &wc->update_progress);
6437 if (ret > 0)
6438 wc->update_ref = 0;
6439
6440 wc->stage = DROP_REFERENCE;
6441 wc->shared_level = -1;
6442 path->slots[level] = 0;
6443
6444 /*
6445 * check reference count again if the block isn't locked.
6446 * we should start walking down the tree again if reference
6447 * count is one.
6448 */
6449 if (!path->locks[level]) {
6450 BUG_ON(level == 0);
6451 btrfs_tree_lock(eb);
6452 btrfs_set_lock_blocking(eb);
6453 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6454
6455 ret = btrfs_lookup_extent_info(trans, root,
6456 eb->start, eb->len,
6457 &wc->refs[level],
6458 &wc->flags[level]);
6459 BUG_ON(ret);
6460 BUG_ON(wc->refs[level] == 0);
6461 if (wc->refs[level] == 1) {
6462 btrfs_tree_unlock_rw(eb, path->locks[level]);
6463 return 1;
6464 }
6465 }
6466 }
6467
6468 /* wc->stage == DROP_REFERENCE */
6469 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6470
6471 if (wc->refs[level] == 1) {
6472 if (level == 0) {
6473 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6474 ret = btrfs_dec_ref(trans, root, eb, 1);
6475 else
6476 ret = btrfs_dec_ref(trans, root, eb, 0);
6477 BUG_ON(ret);
6478 }
6479 /* make block locked assertion in clean_tree_block happy */
6480 if (!path->locks[level] &&
6481 btrfs_header_generation(eb) == trans->transid) {
6482 btrfs_tree_lock(eb);
6483 btrfs_set_lock_blocking(eb);
6484 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6485 }
6486 clean_tree_block(trans, root, eb);
6487 }
6488
6489 if (eb == root->node) {
6490 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6491 parent = eb->start;
6492 else
6493 BUG_ON(root->root_key.objectid !=
6494 btrfs_header_owner(eb));
6495 } else {
6496 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6497 parent = path->nodes[level + 1]->start;
6498 else
6499 BUG_ON(root->root_key.objectid !=
6500 btrfs_header_owner(path->nodes[level + 1]));
6501 }
6502
6503 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6504 out:
6505 wc->refs[level] = 0;
6506 wc->flags[level] = 0;
6507 return 0;
6508 }
6509
6510 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6511 struct btrfs_root *root,
6512 struct btrfs_path *path,
6513 struct walk_control *wc)
6514 {
6515 int level = wc->level;
6516 int lookup_info = 1;
6517 int ret;
6518
6519 while (level >= 0) {
6520 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6521 if (ret > 0)
6522 break;
6523
6524 if (level == 0)
6525 break;
6526
6527 if (path->slots[level] >=
6528 btrfs_header_nritems(path->nodes[level]))
6529 break;
6530
6531 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6532 if (ret > 0) {
6533 path->slots[level]++;
6534 continue;
6535 } else if (ret < 0)
6536 return ret;
6537 level = wc->level;
6538 }
6539 return 0;
6540 }
6541
6542 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6543 struct btrfs_root *root,
6544 struct btrfs_path *path,
6545 struct walk_control *wc, int max_level)
6546 {
6547 int level = wc->level;
6548 int ret;
6549
6550 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6551 while (level < max_level && path->nodes[level]) {
6552 wc->level = level;
6553 if (path->slots[level] + 1 <
6554 btrfs_header_nritems(path->nodes[level])) {
6555 path->slots[level]++;
6556 return 0;
6557 } else {
6558 ret = walk_up_proc(trans, root, path, wc);
6559 if (ret > 0)
6560 return 0;
6561
6562 if (path->locks[level]) {
6563 btrfs_tree_unlock_rw(path->nodes[level],
6564 path->locks[level]);
6565 path->locks[level] = 0;
6566 }
6567 free_extent_buffer(path->nodes[level]);
6568 path->nodes[level] = NULL;
6569 level++;
6570 }
6571 }
6572 return 1;
6573 }
6574
6575 /*
6576 * drop a subvolume tree.
6577 *
6578 * this function traverses the tree freeing any blocks that only
6579 * referenced by the tree.
6580 *
6581 * when a shared tree block is found. this function decreases its
6582 * reference count by one. if update_ref is true, this function
6583 * also make sure backrefs for the shared block and all lower level
6584 * blocks are properly updated.
6585 */
6586 void btrfs_drop_snapshot(struct btrfs_root *root,
6587 struct btrfs_block_rsv *block_rsv, int update_ref)
6588 {
6589 struct btrfs_path *path;
6590 struct btrfs_trans_handle *trans;
6591 struct btrfs_root *tree_root = root->fs_info->tree_root;
6592 struct btrfs_root_item *root_item = &root->root_item;
6593 struct walk_control *wc;
6594 struct btrfs_key key;
6595 int err = 0;
6596 int ret;
6597 int level;
6598
6599 path = btrfs_alloc_path();
6600 if (!path) {
6601 err = -ENOMEM;
6602 goto out;
6603 }
6604
6605 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6606 if (!wc) {
6607 btrfs_free_path(path);
6608 err = -ENOMEM;
6609 goto out;
6610 }
6611
6612 trans = btrfs_start_transaction(tree_root, 0);
6613 BUG_ON(IS_ERR(trans));
6614
6615 if (block_rsv)
6616 trans->block_rsv = block_rsv;
6617
6618 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6619 level = btrfs_header_level(root->node);
6620 path->nodes[level] = btrfs_lock_root_node(root);
6621 btrfs_set_lock_blocking(path->nodes[level]);
6622 path->slots[level] = 0;
6623 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6624 memset(&wc->update_progress, 0,
6625 sizeof(wc->update_progress));
6626 } else {
6627 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6628 memcpy(&wc->update_progress, &key,
6629 sizeof(wc->update_progress));
6630
6631 level = root_item->drop_level;
6632 BUG_ON(level == 0);
6633 path->lowest_level = level;
6634 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6635 path->lowest_level = 0;
6636 if (ret < 0) {
6637 err = ret;
6638 goto out_free;
6639 }
6640 WARN_ON(ret > 0);
6641
6642 /*
6643 * unlock our path, this is safe because only this
6644 * function is allowed to delete this snapshot
6645 */
6646 btrfs_unlock_up_safe(path, 0);
6647
6648 level = btrfs_header_level(root->node);
6649 while (1) {
6650 btrfs_tree_lock(path->nodes[level]);
6651 btrfs_set_lock_blocking(path->nodes[level]);
6652
6653 ret = btrfs_lookup_extent_info(trans, root,
6654 path->nodes[level]->start,
6655 path->nodes[level]->len,
6656 &wc->refs[level],
6657 &wc->flags[level]);
6658 BUG_ON(ret);
6659 BUG_ON(wc->refs[level] == 0);
6660
6661 if (level == root_item->drop_level)
6662 break;
6663
6664 btrfs_tree_unlock(path->nodes[level]);
6665 WARN_ON(wc->refs[level] != 1);
6666 level--;
6667 }
6668 }
6669
6670 wc->level = level;
6671 wc->shared_level = -1;
6672 wc->stage = DROP_REFERENCE;
6673 wc->update_ref = update_ref;
6674 wc->keep_locks = 0;
6675 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6676
6677 while (1) {
6678 ret = walk_down_tree(trans, root, path, wc);
6679 if (ret < 0) {
6680 err = ret;
6681 break;
6682 }
6683
6684 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6685 if (ret < 0) {
6686 err = ret;
6687 break;
6688 }
6689
6690 if (ret > 0) {
6691 BUG_ON(wc->stage != DROP_REFERENCE);
6692 break;
6693 }
6694
6695 if (wc->stage == DROP_REFERENCE) {
6696 level = wc->level;
6697 btrfs_node_key(path->nodes[level],
6698 &root_item->drop_progress,
6699 path->slots[level]);
6700 root_item->drop_level = level;
6701 }
6702
6703 BUG_ON(wc->level == 0);
6704 if (btrfs_should_end_transaction(trans, tree_root)) {
6705 ret = btrfs_update_root(trans, tree_root,
6706 &root->root_key,
6707 root_item);
6708 BUG_ON(ret);
6709
6710 btrfs_end_transaction_throttle(trans, tree_root);
6711 trans = btrfs_start_transaction(tree_root, 0);
6712 BUG_ON(IS_ERR(trans));
6713 if (block_rsv)
6714 trans->block_rsv = block_rsv;
6715 }
6716 }
6717 btrfs_release_path(path);
6718 BUG_ON(err);
6719
6720 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6721 BUG_ON(ret);
6722
6723 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6724 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6725 NULL, NULL);
6726 BUG_ON(ret < 0);
6727 if (ret > 0) {
6728 /* if we fail to delete the orphan item this time
6729 * around, it'll get picked up the next time.
6730 *
6731 * The most common failure here is just -ENOENT.
6732 */
6733 btrfs_del_orphan_item(trans, tree_root,
6734 root->root_key.objectid);
6735 }
6736 }
6737
6738 if (root->in_radix) {
6739 btrfs_free_fs_root(tree_root->fs_info, root);
6740 } else {
6741 free_extent_buffer(root->node);
6742 free_extent_buffer(root->commit_root);
6743 kfree(root);
6744 }
6745 out_free:
6746 btrfs_end_transaction_throttle(trans, tree_root);
6747 kfree(wc);
6748 btrfs_free_path(path);
6749 out:
6750 if (err)
6751 btrfs_std_error(root->fs_info, err);
6752 return;
6753 }
6754
6755 /*
6756 * drop subtree rooted at tree block 'node'.
6757 *
6758 * NOTE: this function will unlock and release tree block 'node'
6759 */
6760 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6761 struct btrfs_root *root,
6762 struct extent_buffer *node,
6763 struct extent_buffer *parent)
6764 {
6765 struct btrfs_path *path;
6766 struct walk_control *wc;
6767 int level;
6768 int parent_level;
6769 int ret = 0;
6770 int wret;
6771
6772 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6773
6774 path = btrfs_alloc_path();
6775 if (!path)
6776 return -ENOMEM;
6777
6778 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6779 if (!wc) {
6780 btrfs_free_path(path);
6781 return -ENOMEM;
6782 }
6783
6784 btrfs_assert_tree_locked(parent);
6785 parent_level = btrfs_header_level(parent);
6786 extent_buffer_get(parent);
6787 path->nodes[parent_level] = parent;
6788 path->slots[parent_level] = btrfs_header_nritems(parent);
6789
6790 btrfs_assert_tree_locked(node);
6791 level = btrfs_header_level(node);
6792 path->nodes[level] = node;
6793 path->slots[level] = 0;
6794 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6795
6796 wc->refs[parent_level] = 1;
6797 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6798 wc->level = level;
6799 wc->shared_level = -1;
6800 wc->stage = DROP_REFERENCE;
6801 wc->update_ref = 0;
6802 wc->keep_locks = 1;
6803 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6804
6805 while (1) {
6806 wret = walk_down_tree(trans, root, path, wc);
6807 if (wret < 0) {
6808 ret = wret;
6809 break;
6810 }
6811
6812 wret = walk_up_tree(trans, root, path, wc, parent_level);
6813 if (wret < 0)
6814 ret = wret;
6815 if (wret != 0)
6816 break;
6817 }
6818
6819 kfree(wc);
6820 btrfs_free_path(path);
6821 return ret;
6822 }
6823
6824 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6825 {
6826 u64 num_devices;
6827 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6828 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6829
6830 if (root->fs_info->balance_ctl) {
6831 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
6832 u64 tgt = 0;
6833
6834 /* pick restriper's target profile and return */
6835 if (flags & BTRFS_BLOCK_GROUP_DATA &&
6836 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6837 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
6838 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
6839 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6840 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
6841 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
6842 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6843 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
6844 }
6845
6846 if (tgt) {
6847 /* extended -> chunk profile */
6848 tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
6849 return tgt;
6850 }
6851 }
6852
6853 /*
6854 * we add in the count of missing devices because we want
6855 * to make sure that any RAID levels on a degraded FS
6856 * continue to be honored.
6857 */
6858 num_devices = root->fs_info->fs_devices->rw_devices +
6859 root->fs_info->fs_devices->missing_devices;
6860
6861 if (num_devices == 1) {
6862 stripped |= BTRFS_BLOCK_GROUP_DUP;
6863 stripped = flags & ~stripped;
6864
6865 /* turn raid0 into single device chunks */
6866 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6867 return stripped;
6868
6869 /* turn mirroring into duplication */
6870 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6871 BTRFS_BLOCK_GROUP_RAID10))
6872 return stripped | BTRFS_BLOCK_GROUP_DUP;
6873 return flags;
6874 } else {
6875 /* they already had raid on here, just return */
6876 if (flags & stripped)
6877 return flags;
6878
6879 stripped |= BTRFS_BLOCK_GROUP_DUP;
6880 stripped = flags & ~stripped;
6881
6882 /* switch duplicated blocks with raid1 */
6883 if (flags & BTRFS_BLOCK_GROUP_DUP)
6884 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6885
6886 /* turn single device chunks into raid0 */
6887 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6888 }
6889 return flags;
6890 }
6891
6892 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6893 {
6894 struct btrfs_space_info *sinfo = cache->space_info;
6895 u64 num_bytes;
6896 u64 min_allocable_bytes;
6897 int ret = -ENOSPC;
6898
6899
6900 /*
6901 * We need some metadata space and system metadata space for
6902 * allocating chunks in some corner cases until we force to set
6903 * it to be readonly.
6904 */
6905 if ((sinfo->flags &
6906 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6907 !force)
6908 min_allocable_bytes = 1 * 1024 * 1024;
6909 else
6910 min_allocable_bytes = 0;
6911
6912 spin_lock(&sinfo->lock);
6913 spin_lock(&cache->lock);
6914
6915 if (cache->ro) {
6916 ret = 0;
6917 goto out;
6918 }
6919
6920 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6921 cache->bytes_super - btrfs_block_group_used(&cache->item);
6922
6923 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6924 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6925 min_allocable_bytes <= sinfo->total_bytes) {
6926 sinfo->bytes_readonly += num_bytes;
6927 cache->ro = 1;
6928 ret = 0;
6929 }
6930 out:
6931 spin_unlock(&cache->lock);
6932 spin_unlock(&sinfo->lock);
6933 return ret;
6934 }
6935
6936 int btrfs_set_block_group_ro(struct btrfs_root *root,
6937 struct btrfs_block_group_cache *cache)
6938
6939 {
6940 struct btrfs_trans_handle *trans;
6941 u64 alloc_flags;
6942 int ret;
6943
6944 BUG_ON(cache->ro);
6945
6946 trans = btrfs_join_transaction(root);
6947 BUG_ON(IS_ERR(trans));
6948
6949 alloc_flags = update_block_group_flags(root, cache->flags);
6950 if (alloc_flags != cache->flags)
6951 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6952 CHUNK_ALLOC_FORCE);
6953
6954 ret = set_block_group_ro(cache, 0);
6955 if (!ret)
6956 goto out;
6957 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6958 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6959 CHUNK_ALLOC_FORCE);
6960 if (ret < 0)
6961 goto out;
6962 ret = set_block_group_ro(cache, 0);
6963 out:
6964 btrfs_end_transaction(trans, root);
6965 return ret;
6966 }
6967
6968 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6969 struct btrfs_root *root, u64 type)
6970 {
6971 u64 alloc_flags = get_alloc_profile(root, type);
6972 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6973 CHUNK_ALLOC_FORCE);
6974 }
6975
6976 /*
6977 * helper to account the unused space of all the readonly block group in the
6978 * list. takes mirrors into account.
6979 */
6980 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6981 {
6982 struct btrfs_block_group_cache *block_group;
6983 u64 free_bytes = 0;
6984 int factor;
6985
6986 list_for_each_entry(block_group, groups_list, list) {
6987 spin_lock(&block_group->lock);
6988
6989 if (!block_group->ro) {
6990 spin_unlock(&block_group->lock);
6991 continue;
6992 }
6993
6994 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6995 BTRFS_BLOCK_GROUP_RAID10 |
6996 BTRFS_BLOCK_GROUP_DUP))
6997 factor = 2;
6998 else
6999 factor = 1;
7000
7001 free_bytes += (block_group->key.offset -
7002 btrfs_block_group_used(&block_group->item)) *
7003 factor;
7004
7005 spin_unlock(&block_group->lock);
7006 }
7007
7008 return free_bytes;
7009 }
7010
7011 /*
7012 * helper to account the unused space of all the readonly block group in the
7013 * space_info. takes mirrors into account.
7014 */
7015 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7016 {
7017 int i;
7018 u64 free_bytes = 0;
7019
7020 spin_lock(&sinfo->lock);
7021
7022 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7023 if (!list_empty(&sinfo->block_groups[i]))
7024 free_bytes += __btrfs_get_ro_block_group_free_space(
7025 &sinfo->block_groups[i]);
7026
7027 spin_unlock(&sinfo->lock);
7028
7029 return free_bytes;
7030 }
7031
7032 int btrfs_set_block_group_rw(struct btrfs_root *root,
7033 struct btrfs_block_group_cache *cache)
7034 {
7035 struct btrfs_space_info *sinfo = cache->space_info;
7036 u64 num_bytes;
7037
7038 BUG_ON(!cache->ro);
7039
7040 spin_lock(&sinfo->lock);
7041 spin_lock(&cache->lock);
7042 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7043 cache->bytes_super - btrfs_block_group_used(&cache->item);
7044 sinfo->bytes_readonly -= num_bytes;
7045 cache->ro = 0;
7046 spin_unlock(&cache->lock);
7047 spin_unlock(&sinfo->lock);
7048 return 0;
7049 }
7050
7051 /*
7052 * checks to see if its even possible to relocate this block group.
7053 *
7054 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7055 * ok to go ahead and try.
7056 */
7057 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7058 {
7059 struct btrfs_block_group_cache *block_group;
7060 struct btrfs_space_info *space_info;
7061 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7062 struct btrfs_device *device;
7063 u64 min_free;
7064 u64 dev_min = 1;
7065 u64 dev_nr = 0;
7066 int index;
7067 int full = 0;
7068 int ret = 0;
7069
7070 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7071
7072 /* odd, couldn't find the block group, leave it alone */
7073 if (!block_group)
7074 return -1;
7075
7076 min_free = btrfs_block_group_used(&block_group->item);
7077
7078 /* no bytes used, we're good */
7079 if (!min_free)
7080 goto out;
7081
7082 space_info = block_group->space_info;
7083 spin_lock(&space_info->lock);
7084
7085 full = space_info->full;
7086
7087 /*
7088 * if this is the last block group we have in this space, we can't
7089 * relocate it unless we're able to allocate a new chunk below.
7090 *
7091 * Otherwise, we need to make sure we have room in the space to handle
7092 * all of the extents from this block group. If we can, we're good
7093 */
7094 if ((space_info->total_bytes != block_group->key.offset) &&
7095 (space_info->bytes_used + space_info->bytes_reserved +
7096 space_info->bytes_pinned + space_info->bytes_readonly +
7097 min_free < space_info->total_bytes)) {
7098 spin_unlock(&space_info->lock);
7099 goto out;
7100 }
7101 spin_unlock(&space_info->lock);
7102
7103 /*
7104 * ok we don't have enough space, but maybe we have free space on our
7105 * devices to allocate new chunks for relocation, so loop through our
7106 * alloc devices and guess if we have enough space. However, if we
7107 * were marked as full, then we know there aren't enough chunks, and we
7108 * can just return.
7109 */
7110 ret = -1;
7111 if (full)
7112 goto out;
7113
7114 /*
7115 * index:
7116 * 0: raid10
7117 * 1: raid1
7118 * 2: dup
7119 * 3: raid0
7120 * 4: single
7121 */
7122 index = get_block_group_index(block_group);
7123 if (index == 0) {
7124 dev_min = 4;
7125 /* Divide by 2 */
7126 min_free >>= 1;
7127 } else if (index == 1) {
7128 dev_min = 2;
7129 } else if (index == 2) {
7130 /* Multiply by 2 */
7131 min_free <<= 1;
7132 } else if (index == 3) {
7133 dev_min = fs_devices->rw_devices;
7134 do_div(min_free, dev_min);
7135 }
7136
7137 mutex_lock(&root->fs_info->chunk_mutex);
7138 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7139 u64 dev_offset;
7140
7141 /*
7142 * check to make sure we can actually find a chunk with enough
7143 * space to fit our block group in.
7144 */
7145 if (device->total_bytes > device->bytes_used + min_free) {
7146 ret = find_free_dev_extent(NULL, device, min_free,
7147 &dev_offset, NULL);
7148 if (!ret)
7149 dev_nr++;
7150
7151 if (dev_nr >= dev_min)
7152 break;
7153
7154 ret = -1;
7155 }
7156 }
7157 mutex_unlock(&root->fs_info->chunk_mutex);
7158 out:
7159 btrfs_put_block_group(block_group);
7160 return ret;
7161 }
7162
7163 static int find_first_block_group(struct btrfs_root *root,
7164 struct btrfs_path *path, struct btrfs_key *key)
7165 {
7166 int ret = 0;
7167 struct btrfs_key found_key;
7168 struct extent_buffer *leaf;
7169 int slot;
7170
7171 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7172 if (ret < 0)
7173 goto out;
7174
7175 while (1) {
7176 slot = path->slots[0];
7177 leaf = path->nodes[0];
7178 if (slot >= btrfs_header_nritems(leaf)) {
7179 ret = btrfs_next_leaf(root, path);
7180 if (ret == 0)
7181 continue;
7182 if (ret < 0)
7183 goto out;
7184 break;
7185 }
7186 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7187
7188 if (found_key.objectid >= key->objectid &&
7189 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7190 ret = 0;
7191 goto out;
7192 }
7193 path->slots[0]++;
7194 }
7195 out:
7196 return ret;
7197 }
7198
7199 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7200 {
7201 struct btrfs_block_group_cache *block_group;
7202 u64 last = 0;
7203
7204 while (1) {
7205 struct inode *inode;
7206
7207 block_group = btrfs_lookup_first_block_group(info, last);
7208 while (block_group) {
7209 spin_lock(&block_group->lock);
7210 if (block_group->iref)
7211 break;
7212 spin_unlock(&block_group->lock);
7213 block_group = next_block_group(info->tree_root,
7214 block_group);
7215 }
7216 if (!block_group) {
7217 if (last == 0)
7218 break;
7219 last = 0;
7220 continue;
7221 }
7222
7223 inode = block_group->inode;
7224 block_group->iref = 0;
7225 block_group->inode = NULL;
7226 spin_unlock(&block_group->lock);
7227 iput(inode);
7228 last = block_group->key.objectid + block_group->key.offset;
7229 btrfs_put_block_group(block_group);
7230 }
7231 }
7232
7233 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7234 {
7235 struct btrfs_block_group_cache *block_group;
7236 struct btrfs_space_info *space_info;
7237 struct btrfs_caching_control *caching_ctl;
7238 struct rb_node *n;
7239
7240 down_write(&info->extent_commit_sem);
7241 while (!list_empty(&info->caching_block_groups)) {
7242 caching_ctl = list_entry(info->caching_block_groups.next,
7243 struct btrfs_caching_control, list);
7244 list_del(&caching_ctl->list);
7245 put_caching_control(caching_ctl);
7246 }
7247 up_write(&info->extent_commit_sem);
7248
7249 spin_lock(&info->block_group_cache_lock);
7250 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7251 block_group = rb_entry(n, struct btrfs_block_group_cache,
7252 cache_node);
7253 rb_erase(&block_group->cache_node,
7254 &info->block_group_cache_tree);
7255 spin_unlock(&info->block_group_cache_lock);
7256
7257 down_write(&block_group->space_info->groups_sem);
7258 list_del(&block_group->list);
7259 up_write(&block_group->space_info->groups_sem);
7260
7261 if (block_group->cached == BTRFS_CACHE_STARTED)
7262 wait_block_group_cache_done(block_group);
7263
7264 /*
7265 * We haven't cached this block group, which means we could
7266 * possibly have excluded extents on this block group.
7267 */
7268 if (block_group->cached == BTRFS_CACHE_NO)
7269 free_excluded_extents(info->extent_root, block_group);
7270
7271 btrfs_remove_free_space_cache(block_group);
7272 btrfs_put_block_group(block_group);
7273
7274 spin_lock(&info->block_group_cache_lock);
7275 }
7276 spin_unlock(&info->block_group_cache_lock);
7277
7278 /* now that all the block groups are freed, go through and
7279 * free all the space_info structs. This is only called during
7280 * the final stages of unmount, and so we know nobody is
7281 * using them. We call synchronize_rcu() once before we start,
7282 * just to be on the safe side.
7283 */
7284 synchronize_rcu();
7285
7286 release_global_block_rsv(info);
7287
7288 while(!list_empty(&info->space_info)) {
7289 space_info = list_entry(info->space_info.next,
7290 struct btrfs_space_info,
7291 list);
7292 if (space_info->bytes_pinned > 0 ||
7293 space_info->bytes_reserved > 0 ||
7294 space_info->bytes_may_use > 0) {
7295 WARN_ON(1);
7296 dump_space_info(space_info, 0, 0);
7297 }
7298 list_del(&space_info->list);
7299 kfree(space_info);
7300 }
7301 return 0;
7302 }
7303
7304 static void __link_block_group(struct btrfs_space_info *space_info,
7305 struct btrfs_block_group_cache *cache)
7306 {
7307 int index = get_block_group_index(cache);
7308
7309 down_write(&space_info->groups_sem);
7310 list_add_tail(&cache->list, &space_info->block_groups[index]);
7311 up_write(&space_info->groups_sem);
7312 }
7313
7314 int btrfs_read_block_groups(struct btrfs_root *root)
7315 {
7316 struct btrfs_path *path;
7317 int ret;
7318 struct btrfs_block_group_cache *cache;
7319 struct btrfs_fs_info *info = root->fs_info;
7320 struct btrfs_space_info *space_info;
7321 struct btrfs_key key;
7322 struct btrfs_key found_key;
7323 struct extent_buffer *leaf;
7324 int need_clear = 0;
7325 u64 cache_gen;
7326
7327 root = info->extent_root;
7328 key.objectid = 0;
7329 key.offset = 0;
7330 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7331 path = btrfs_alloc_path();
7332 if (!path)
7333 return -ENOMEM;
7334 path->reada = 1;
7335
7336 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7337 if (btrfs_test_opt(root, SPACE_CACHE) &&
7338 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7339 need_clear = 1;
7340 if (btrfs_test_opt(root, CLEAR_CACHE))
7341 need_clear = 1;
7342
7343 while (1) {
7344 ret = find_first_block_group(root, path, &key);
7345 if (ret > 0)
7346 break;
7347 if (ret != 0)
7348 goto error;
7349 leaf = path->nodes[0];
7350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7351 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7352 if (!cache) {
7353 ret = -ENOMEM;
7354 goto error;
7355 }
7356 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7357 GFP_NOFS);
7358 if (!cache->free_space_ctl) {
7359 kfree(cache);
7360 ret = -ENOMEM;
7361 goto error;
7362 }
7363
7364 atomic_set(&cache->count, 1);
7365 spin_lock_init(&cache->lock);
7366 cache->fs_info = info;
7367 INIT_LIST_HEAD(&cache->list);
7368 INIT_LIST_HEAD(&cache->cluster_list);
7369
7370 if (need_clear)
7371 cache->disk_cache_state = BTRFS_DC_CLEAR;
7372
7373 read_extent_buffer(leaf, &cache->item,
7374 btrfs_item_ptr_offset(leaf, path->slots[0]),
7375 sizeof(cache->item));
7376 memcpy(&cache->key, &found_key, sizeof(found_key));
7377
7378 key.objectid = found_key.objectid + found_key.offset;
7379 btrfs_release_path(path);
7380 cache->flags = btrfs_block_group_flags(&cache->item);
7381 cache->sectorsize = root->sectorsize;
7382
7383 btrfs_init_free_space_ctl(cache);
7384
7385 /*
7386 * We need to exclude the super stripes now so that the space
7387 * info has super bytes accounted for, otherwise we'll think
7388 * we have more space than we actually do.
7389 */
7390 exclude_super_stripes(root, cache);
7391
7392 /*
7393 * check for two cases, either we are full, and therefore
7394 * don't need to bother with the caching work since we won't
7395 * find any space, or we are empty, and we can just add all
7396 * the space in and be done with it. This saves us _alot_ of
7397 * time, particularly in the full case.
7398 */
7399 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7400 cache->last_byte_to_unpin = (u64)-1;
7401 cache->cached = BTRFS_CACHE_FINISHED;
7402 free_excluded_extents(root, cache);
7403 } else if (btrfs_block_group_used(&cache->item) == 0) {
7404 cache->last_byte_to_unpin = (u64)-1;
7405 cache->cached = BTRFS_CACHE_FINISHED;
7406 add_new_free_space(cache, root->fs_info,
7407 found_key.objectid,
7408 found_key.objectid +
7409 found_key.offset);
7410 free_excluded_extents(root, cache);
7411 }
7412
7413 ret = update_space_info(info, cache->flags, found_key.offset,
7414 btrfs_block_group_used(&cache->item),
7415 &space_info);
7416 BUG_ON(ret);
7417 cache->space_info = space_info;
7418 spin_lock(&cache->space_info->lock);
7419 cache->space_info->bytes_readonly += cache->bytes_super;
7420 spin_unlock(&cache->space_info->lock);
7421
7422 __link_block_group(space_info, cache);
7423
7424 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7425 BUG_ON(ret);
7426
7427 set_avail_alloc_bits(root->fs_info, cache->flags);
7428 if (btrfs_chunk_readonly(root, cache->key.objectid))
7429 set_block_group_ro(cache, 1);
7430 }
7431
7432 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7433 if (!(get_alloc_profile(root, space_info->flags) &
7434 (BTRFS_BLOCK_GROUP_RAID10 |
7435 BTRFS_BLOCK_GROUP_RAID1 |
7436 BTRFS_BLOCK_GROUP_DUP)))
7437 continue;
7438 /*
7439 * avoid allocating from un-mirrored block group if there are
7440 * mirrored block groups.
7441 */
7442 list_for_each_entry(cache, &space_info->block_groups[3], list)
7443 set_block_group_ro(cache, 1);
7444 list_for_each_entry(cache, &space_info->block_groups[4], list)
7445 set_block_group_ro(cache, 1);
7446 }
7447
7448 init_global_block_rsv(info);
7449 ret = 0;
7450 error:
7451 btrfs_free_path(path);
7452 return ret;
7453 }
7454
7455 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7456 struct btrfs_root *root, u64 bytes_used,
7457 u64 type, u64 chunk_objectid, u64 chunk_offset,
7458 u64 size)
7459 {
7460 int ret;
7461 struct btrfs_root *extent_root;
7462 struct btrfs_block_group_cache *cache;
7463
7464 extent_root = root->fs_info->extent_root;
7465
7466 root->fs_info->last_trans_log_full_commit = trans->transid;
7467
7468 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7469 if (!cache)
7470 return -ENOMEM;
7471 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7472 GFP_NOFS);
7473 if (!cache->free_space_ctl) {
7474 kfree(cache);
7475 return -ENOMEM;
7476 }
7477
7478 cache->key.objectid = chunk_offset;
7479 cache->key.offset = size;
7480 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7481 cache->sectorsize = root->sectorsize;
7482 cache->fs_info = root->fs_info;
7483
7484 atomic_set(&cache->count, 1);
7485 spin_lock_init(&cache->lock);
7486 INIT_LIST_HEAD(&cache->list);
7487 INIT_LIST_HEAD(&cache->cluster_list);
7488
7489 btrfs_init_free_space_ctl(cache);
7490
7491 btrfs_set_block_group_used(&cache->item, bytes_used);
7492 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7493 cache->flags = type;
7494 btrfs_set_block_group_flags(&cache->item, type);
7495
7496 cache->last_byte_to_unpin = (u64)-1;
7497 cache->cached = BTRFS_CACHE_FINISHED;
7498 exclude_super_stripes(root, cache);
7499
7500 add_new_free_space(cache, root->fs_info, chunk_offset,
7501 chunk_offset + size);
7502
7503 free_excluded_extents(root, cache);
7504
7505 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7506 &cache->space_info);
7507 BUG_ON(ret);
7508
7509 spin_lock(&cache->space_info->lock);
7510 cache->space_info->bytes_readonly += cache->bytes_super;
7511 spin_unlock(&cache->space_info->lock);
7512
7513 __link_block_group(cache->space_info, cache);
7514
7515 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7516 BUG_ON(ret);
7517
7518 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7519 sizeof(cache->item));
7520 BUG_ON(ret);
7521
7522 set_avail_alloc_bits(extent_root->fs_info, type);
7523
7524 return 0;
7525 }
7526
7527 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7528 {
7529 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7530
7531 /* chunk -> extended profile */
7532 if (extra_flags == 0)
7533 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7534
7535 if (flags & BTRFS_BLOCK_GROUP_DATA)
7536 fs_info->avail_data_alloc_bits &= ~extra_flags;
7537 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7538 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7539 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7540 fs_info->avail_system_alloc_bits &= ~extra_flags;
7541 }
7542
7543 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7544 struct btrfs_root *root, u64 group_start)
7545 {
7546 struct btrfs_path *path;
7547 struct btrfs_block_group_cache *block_group;
7548 struct btrfs_free_cluster *cluster;
7549 struct btrfs_root *tree_root = root->fs_info->tree_root;
7550 struct btrfs_key key;
7551 struct inode *inode;
7552 int ret;
7553 int index;
7554 int factor;
7555
7556 root = root->fs_info->extent_root;
7557
7558 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7559 BUG_ON(!block_group);
7560 BUG_ON(!block_group->ro);
7561
7562 /*
7563 * Free the reserved super bytes from this block group before
7564 * remove it.
7565 */
7566 free_excluded_extents(root, block_group);
7567
7568 memcpy(&key, &block_group->key, sizeof(key));
7569 index = get_block_group_index(block_group);
7570 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7571 BTRFS_BLOCK_GROUP_RAID1 |
7572 BTRFS_BLOCK_GROUP_RAID10))
7573 factor = 2;
7574 else
7575 factor = 1;
7576
7577 /* make sure this block group isn't part of an allocation cluster */
7578 cluster = &root->fs_info->data_alloc_cluster;
7579 spin_lock(&cluster->refill_lock);
7580 btrfs_return_cluster_to_free_space(block_group, cluster);
7581 spin_unlock(&cluster->refill_lock);
7582
7583 /*
7584 * make sure this block group isn't part of a metadata
7585 * allocation cluster
7586 */
7587 cluster = &root->fs_info->meta_alloc_cluster;
7588 spin_lock(&cluster->refill_lock);
7589 btrfs_return_cluster_to_free_space(block_group, cluster);
7590 spin_unlock(&cluster->refill_lock);
7591
7592 path = btrfs_alloc_path();
7593 if (!path) {
7594 ret = -ENOMEM;
7595 goto out;
7596 }
7597
7598 inode = lookup_free_space_inode(tree_root, block_group, path);
7599 if (!IS_ERR(inode)) {
7600 ret = btrfs_orphan_add(trans, inode);
7601 BUG_ON(ret);
7602 clear_nlink(inode);
7603 /* One for the block groups ref */
7604 spin_lock(&block_group->lock);
7605 if (block_group->iref) {
7606 block_group->iref = 0;
7607 block_group->inode = NULL;
7608 spin_unlock(&block_group->lock);
7609 iput(inode);
7610 } else {
7611 spin_unlock(&block_group->lock);
7612 }
7613 /* One for our lookup ref */
7614 btrfs_add_delayed_iput(inode);
7615 }
7616
7617 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7618 key.offset = block_group->key.objectid;
7619 key.type = 0;
7620
7621 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7622 if (ret < 0)
7623 goto out;
7624 if (ret > 0)
7625 btrfs_release_path(path);
7626 if (ret == 0) {
7627 ret = btrfs_del_item(trans, tree_root, path);
7628 if (ret)
7629 goto out;
7630 btrfs_release_path(path);
7631 }
7632
7633 spin_lock(&root->fs_info->block_group_cache_lock);
7634 rb_erase(&block_group->cache_node,
7635 &root->fs_info->block_group_cache_tree);
7636 spin_unlock(&root->fs_info->block_group_cache_lock);
7637
7638 down_write(&block_group->space_info->groups_sem);
7639 /*
7640 * we must use list_del_init so people can check to see if they
7641 * are still on the list after taking the semaphore
7642 */
7643 list_del_init(&block_group->list);
7644 if (list_empty(&block_group->space_info->block_groups[index]))
7645 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7646 up_write(&block_group->space_info->groups_sem);
7647
7648 if (block_group->cached == BTRFS_CACHE_STARTED)
7649 wait_block_group_cache_done(block_group);
7650
7651 btrfs_remove_free_space_cache(block_group);
7652
7653 spin_lock(&block_group->space_info->lock);
7654 block_group->space_info->total_bytes -= block_group->key.offset;
7655 block_group->space_info->bytes_readonly -= block_group->key.offset;
7656 block_group->space_info->disk_total -= block_group->key.offset * factor;
7657 spin_unlock(&block_group->space_info->lock);
7658
7659 memcpy(&key, &block_group->key, sizeof(key));
7660
7661 btrfs_clear_space_info_full(root->fs_info);
7662
7663 btrfs_put_block_group(block_group);
7664 btrfs_put_block_group(block_group);
7665
7666 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7667 if (ret > 0)
7668 ret = -EIO;
7669 if (ret < 0)
7670 goto out;
7671
7672 ret = btrfs_del_item(trans, root, path);
7673 out:
7674 btrfs_free_path(path);
7675 return ret;
7676 }
7677
7678 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7679 {
7680 struct btrfs_space_info *space_info;
7681 struct btrfs_super_block *disk_super;
7682 u64 features;
7683 u64 flags;
7684 int mixed = 0;
7685 int ret;
7686
7687 disk_super = fs_info->super_copy;
7688 if (!btrfs_super_root(disk_super))
7689 return 1;
7690
7691 features = btrfs_super_incompat_flags(disk_super);
7692 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7693 mixed = 1;
7694
7695 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7696 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7697 if (ret)
7698 goto out;
7699
7700 if (mixed) {
7701 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7702 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7703 } else {
7704 flags = BTRFS_BLOCK_GROUP_METADATA;
7705 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7706 if (ret)
7707 goto out;
7708
7709 flags = BTRFS_BLOCK_GROUP_DATA;
7710 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7711 }
7712 out:
7713 return ret;
7714 }
7715
7716 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7717 {
7718 return unpin_extent_range(root, start, end);
7719 }
7720
7721 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7722 u64 num_bytes, u64 *actual_bytes)
7723 {
7724 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7725 }
7726
7727 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7728 {
7729 struct btrfs_fs_info *fs_info = root->fs_info;
7730 struct btrfs_block_group_cache *cache = NULL;
7731 u64 group_trimmed;
7732 u64 start;
7733 u64 end;
7734 u64 trimmed = 0;
7735 int ret = 0;
7736
7737 cache = btrfs_lookup_block_group(fs_info, range->start);
7738
7739 while (cache) {
7740 if (cache->key.objectid >= (range->start + range->len)) {
7741 btrfs_put_block_group(cache);
7742 break;
7743 }
7744
7745 start = max(range->start, cache->key.objectid);
7746 end = min(range->start + range->len,
7747 cache->key.objectid + cache->key.offset);
7748
7749 if (end - start >= range->minlen) {
7750 if (!block_group_cache_done(cache)) {
7751 ret = cache_block_group(cache, NULL, root, 0);
7752 if (!ret)
7753 wait_block_group_cache_done(cache);
7754 }
7755 ret = btrfs_trim_block_group(cache,
7756 &group_trimmed,
7757 start,
7758 end,
7759 range->minlen);
7760
7761 trimmed += group_trimmed;
7762 if (ret) {
7763 btrfs_put_block_group(cache);
7764 break;
7765 }
7766 }
7767
7768 cache = next_block_group(fs_info->tree_root, cache);
7769 }
7770
7771 range->len = trimmed;
7772 return ret;
7773 }