]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 kfree(cache->free_space_ctl);
146 kfree(cache);
147 }
148 }
149
150 /*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group_cache *block_group)
156 {
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188 }
189
190 /*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197 {
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
226 if (ret) {
227 btrfs_get_block_group(ret);
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234 }
235
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237 u64 start, u64 num_bytes)
238 {
239 u64 end = start + num_bytes - 1;
240 set_extent_bits(&fs_info->freed_extents[0],
241 start, end, EXTENT_UPTODATE);
242 set_extent_bits(&fs_info->freed_extents[1],
243 start, end, EXTENT_UPTODATE);
244 return 0;
245 }
246
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 start, end;
251
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
255 clear_extent_bits(&fs_info->freed_extents[0],
256 start, end, EXTENT_UPTODATE);
257 clear_extent_bits(&fs_info->freed_extents[1],
258 start, end, EXTENT_UPTODATE);
259 }
260
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262 struct btrfs_block_group_cache *cache)
263 {
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(fs_info, cache->key.objectid,
273 stripe_len);
274 if (ret)
275 return ret;
276 }
277
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281 bytenr, 0, &logical, &nr, &stripe_len);
282 if (ret)
283 return ret;
284
285 while (nr--) {
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
306 ret = add_excluded_extent(fs_info, start, len);
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
311 }
312
313 kfree(logical);
314 }
315 return 0;
316 }
317
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 refcount_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (refcount_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344 struct btrfs_fs_info *fs_info = block_group->fs_info;
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348 fs_info->nodesize : fs_info->sectorsize;
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359 }
360 #endif
361
362 /*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370 u64 extent_start, extent_end, size, total_added = 0;
371 int ret;
372
373 while (start < end) {
374 ret = find_first_extent_bit(info->pinned_extents, start,
375 &extent_start, &extent_end,
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
378 if (ret)
379 break;
380
381 if (extent_start <= start) {
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
385 total_added += size;
386 ret = btrfs_add_free_space(block_group, start,
387 size);
388 BUG_ON(ret); /* -ENOMEM or logic error */
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
397 total_added += size;
398 ret = btrfs_add_free_space(block_group, start, size);
399 BUG_ON(ret); /* -ENOMEM or logic error */
400 }
401
402 return total_added;
403 }
404
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
410 struct btrfs_path *path;
411 struct extent_buffer *leaf;
412 struct btrfs_key key;
413 u64 total_found = 0;
414 u64 last = 0;
415 u32 nritems;
416 int ret;
417 bool wakeup = true;
418
419 path = btrfs_alloc_path();
420 if (!path)
421 return -ENOMEM;
422
423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424
425 #ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(block_group))
432 wakeup = false;
433 #endif
434 /*
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
439 */
440 path->skip_locking = 1;
441 path->search_commit_root = 1;
442 path->reada = READA_FORWARD;
443
444 key.objectid = last;
445 key.offset = 0;
446 key.type = BTRFS_EXTENT_ITEM_KEY;
447
448 next:
449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450 if (ret < 0)
451 goto out;
452
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
456 while (1) {
457 if (btrfs_fs_closing(fs_info) > 1) {
458 last = (u64)-1;
459 break;
460 }
461
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
467 break;
468
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info->commit_root_sem)) {
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 up_read(&fs_info->commit_root_sem);
475 mutex_unlock(&caching_ctl->mutex);
476 cond_resched();
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
480 }
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
484 goto out;
485 if (ret)
486 break;
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
490 }
491
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
497 if (wakeup)
498 caching_ctl->progress = last;
499 btrfs_release_path(path);
500 goto next;
501 }
502
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
505 continue;
506 }
507
508 if (key.objectid >= block_group->key.objectid +
509 block_group->key.offset)
510 break;
511
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
519 fs_info->nodesize;
520 else
521 last = key.objectid + key.offset;
522
523 if (total_found > CACHING_CTL_WAKE_UP) {
524 total_found = 0;
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
527 }
528 }
529 path->slots[0]++;
530 }
531 ret = 0;
532
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
536 caching_ctl->progress = (u64)-1;
537
538 out:
539 btrfs_free_path(path);
540 return ret;
541 }
542
543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
548 struct btrfs_root *extent_root;
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
554 extent_root = fs_info->extent_root;
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
563
564 spin_lock(&block_group->lock);
565 block_group->caching_ctl = NULL;
566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567 spin_unlock(&block_group->lock);
568
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group)) {
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
580 fragment_free_space(block_group);
581 }
582 #endif
583
584 caching_ctl->progress = (u64)-1;
585
586 up_read(&fs_info->commit_root_sem);
587 free_excluded_extents(fs_info, block_group);
588 mutex_unlock(&caching_ctl->mutex);
589
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
593 btrfs_put_block_group(block_group);
594 }
595
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597 int load_cache_only)
598 {
599 DEFINE_WAIT(wait);
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
602 int ret = 0;
603
604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605 if (!caching_ctl)
606 return -ENOMEM;
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
613 refcount_set(&caching_ctl->count, 1);
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
634 refcount_inc(&ctl->count);
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
648 return 0;
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
654
655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656 mutex_lock(&caching_ctl->mutex);
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
664 caching_ctl->progress = (u64)-1;
665 } else {
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
671 cache->has_caching_ctl = 1;
672 }
673 }
674 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
677 btrfs_should_fragment_free_space(cache)) {
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
687 fragment_free_space(cache);
688 }
689 #endif
690 mutex_unlock(&caching_ctl->mutex);
691
692 wake_up(&caching_ctl->wait);
693 if (ret == 1) {
694 put_caching_control(caching_ctl);
695 free_excluded_extents(fs_info, cache);
696 return 0;
697 }
698 } else {
699 /*
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
709 cache->has_caching_ctl = 1;
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
713 }
714
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
717 return 0;
718 }
719
720 down_write(&fs_info->commit_root_sem);
721 refcount_inc(&caching_ctl->count);
722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723 up_write(&fs_info->commit_root_sem);
724
725 btrfs_get_block_group(cache);
726
727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728
729 return ret;
730 }
731
732 /*
733 * return the block group that starts at or after bytenr
734 */
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738 return block_group_cache_tree_search(info, bytenr, 0);
739 }
740
741 /*
742 * return the block group that contains the given bytenr
743 */
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
747 {
748 return block_group_cache_tree_search(info, bytenr, 1);
749 }
750
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
753 {
754 struct list_head *head = &info->space_info;
755 struct btrfs_space_info *found;
756
757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
761 if (found->flags & flags) {
762 rcu_read_unlock();
763 return found;
764 }
765 }
766 rcu_read_unlock();
767 return NULL;
768 }
769
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
772 {
773 struct btrfs_space_info *space_info;
774 u64 flags;
775
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 else
780 flags = BTRFS_BLOCK_GROUP_METADATA;
781 } else {
782 flags = BTRFS_BLOCK_GROUP_DATA;
783 }
784
785 space_info = __find_space_info(fs_info, flags);
786 ASSERT(space_info);
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788 }
789
790 /*
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
793 */
794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795 {
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(found, head, list)
801 found->full = 0;
802 rcu_read_unlock();
803 }
804
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
807 {
808 int ret;
809 struct btrfs_key key;
810 struct btrfs_path *path;
811
812 path = btrfs_alloc_path();
813 if (!path)
814 return -ENOMEM;
815
816 key.objectid = start;
817 key.offset = len;
818 key.type = BTRFS_EXTENT_ITEM_KEY;
819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820 btrfs_free_path(path);
821 return ret;
822 }
823
824 /*
825 * helper function to lookup reference count and flags of a tree block.
826 *
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
832 */
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834 struct btrfs_fs_info *fs_info, u64 bytenr,
835 u64 offset, int metadata, u64 *refs, u64 *flags)
836 {
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
843 u32 item_size;
844 u64 num_refs;
845 u64 extent_flags;
846 int ret;
847
848 /*
849 * If we don't have skinny metadata, don't bother doing anything
850 * different
851 */
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
854 metadata = 0;
855 }
856
857 path = btrfs_alloc_path();
858 if (!path)
859 return -ENOMEM;
860
861 if (!trans) {
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
864 }
865
866 search_again:
867 key.objectid = bytenr;
868 key.offset = offset;
869 if (metadata)
870 key.type = BTRFS_METADATA_ITEM_KEY;
871 else
872 key.type = BTRFS_EXTENT_ITEM_KEY;
873
874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
875 if (ret < 0)
876 goto out_free;
877
878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879 if (path->slots[0]) {
880 path->slots[0]--;
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 path->slots[0]);
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
885 key.offset == fs_info->nodesize)
886 ret = 0;
887 }
888 }
889
890 if (ret == 0) {
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
898 } else {
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 #else
908 BUG();
909 #endif
910 }
911 BUG_ON(num_refs == 0);
912 } else {
913 num_refs = 0;
914 extent_flags = 0;
915 ret = 0;
916 }
917
918 if (!trans)
919 goto out;
920
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
924 if (head) {
925 if (!mutex_trylock(&head->mutex)) {
926 refcount_inc(&head->node.refs);
927 spin_unlock(&delayed_refs->lock);
928
929 btrfs_release_path(path);
930
931 /*
932 * Mutex was contended, block until it's released and try
933 * again
934 */
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
938 goto search_again;
939 }
940 spin_lock(&head->lock);
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
943 else
944 BUG_ON(num_refs == 0);
945
946 num_refs += head->node.ref_mod;
947 spin_unlock(&head->lock);
948 mutex_unlock(&head->mutex);
949 }
950 spin_unlock(&delayed_refs->lock);
951 out:
952 WARN_ON(num_refs == 0);
953 if (refs)
954 *refs = num_refs;
955 if (flags)
956 *flags = extent_flags;
957 out_free:
958 btrfs_free_path(path);
959 return ret;
960 }
961
962 /*
963 * Back reference rules. Back refs have three main goals:
964 *
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
968 *
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
971 *
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
975 *
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
986 *
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
993 *
994 * When a tree block is COWed through a tree, there are four cases:
995 *
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
998 *
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1003 *
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1009 *
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1013 *
1014 * Back Reference Key composing:
1015 *
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1019 * of back refs.
1020 *
1021 * File extents can be referenced by:
1022 *
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
1024 * - different files inside a single subvolume
1025 * - different offsets inside a file (bookend extents in file.c)
1026 *
1027 * The extent ref structure for the implicit back refs has fields for:
1028 *
1029 * - Objectid of the subvolume root
1030 * - objectid of the file holding the reference
1031 * - original offset in the file
1032 * - how many bookend extents
1033 *
1034 * The key offset for the implicit back refs is hash of the first
1035 * three fields.
1036 *
1037 * The extent ref structure for the full back refs has field for:
1038 *
1039 * - number of pointers in the tree leaf
1040 *
1041 * The key offset for the implicit back refs is the first byte of
1042 * the tree leaf
1043 *
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
1046 *
1047 * (root_key.objectid, inode objectid, offset in file, 1)
1048 *
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
1051 *
1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1053 *
1054 * Btree extents can be referenced by:
1055 *
1056 * - Different subvolumes
1057 *
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
1062 *
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
1066 */
1067
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070 struct btrfs_fs_info *fs_info,
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
1073 {
1074 struct btrfs_root *root = fs_info->extent_root;
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
1080 struct btrfs_key key;
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1083 u64 refs;
1084 int ret;
1085
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094 if (owner == (u64)-1) {
1095 while (1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1098 if (ret < 0)
1099 return ret;
1100 BUG_ON(ret > 0); /* Corruption */
1101 leaf = path->nodes[0];
1102 }
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1104 path->slots[0]);
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 path->slots[0]++;
1108 continue;
1109 }
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 break;
1114 }
1115 }
1116 btrfs_release_path(path);
1117
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1120
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1124 if (ret < 0)
1125 return ret;
1126 BUG_ON(ret); /* Corruption */
1127
1128 btrfs_extend_item(fs_info, path, new_size);
1129
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 } else {
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 }
1146 btrfs_mark_buffer_dirty(leaf);
1147 return 0;
1148 }
1149 #endif
1150
1151 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152 {
1153 u32 high_crc = ~(u32)0;
1154 u32 low_crc = ~(u32)0;
1155 __le64 lenum;
1156
1157 lenum = cpu_to_le64(root_objectid);
1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1159 lenum = cpu_to_le64(owner);
1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1161 lenum = cpu_to_le64(offset);
1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1163
1164 return ((u64)high_crc << 31) ^ (u64)low_crc;
1165 }
1166
1167 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168 struct btrfs_extent_data_ref *ref)
1169 {
1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171 btrfs_extent_data_ref_objectid(leaf, ref),
1172 btrfs_extent_data_ref_offset(leaf, ref));
1173 }
1174
1175 static int match_extent_data_ref(struct extent_buffer *leaf,
1176 struct btrfs_extent_data_ref *ref,
1177 u64 root_objectid, u64 owner, u64 offset)
1178 {
1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182 return 0;
1183 return 1;
1184 }
1185
1186 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info,
1188 struct btrfs_path *path,
1189 u64 bytenr, u64 parent,
1190 u64 root_objectid,
1191 u64 owner, u64 offset)
1192 {
1193 struct btrfs_root *root = fs_info->extent_root;
1194 struct btrfs_key key;
1195 struct btrfs_extent_data_ref *ref;
1196 struct extent_buffer *leaf;
1197 u32 nritems;
1198 int ret;
1199 int recow;
1200 int err = -ENOENT;
1201
1202 key.objectid = bytenr;
1203 if (parent) {
1204 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 key.offset = parent;
1206 } else {
1207 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 key.offset = hash_extent_data_ref(root_objectid,
1209 owner, offset);
1210 }
1211 again:
1212 recow = 0;
1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214 if (ret < 0) {
1215 err = ret;
1216 goto fail;
1217 }
1218
1219 if (parent) {
1220 if (!ret)
1221 return 0;
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 key.type = BTRFS_EXTENT_REF_V0_KEY;
1224 btrfs_release_path(path);
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0) {
1227 err = ret;
1228 goto fail;
1229 }
1230 if (!ret)
1231 return 0;
1232 #endif
1233 goto fail;
1234 }
1235
1236 leaf = path->nodes[0];
1237 nritems = btrfs_header_nritems(leaf);
1238 while (1) {
1239 if (path->slots[0] >= nritems) {
1240 ret = btrfs_next_leaf(root, path);
1241 if (ret < 0)
1242 err = ret;
1243 if (ret)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 nritems = btrfs_header_nritems(leaf);
1248 recow = 1;
1249 }
1250
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.objectid != bytenr ||
1253 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254 goto fail;
1255
1256 ref = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_extent_data_ref);
1258
1259 if (match_extent_data_ref(leaf, ref, root_objectid,
1260 owner, offset)) {
1261 if (recow) {
1262 btrfs_release_path(path);
1263 goto again;
1264 }
1265 err = 0;
1266 break;
1267 }
1268 path->slots[0]++;
1269 }
1270 fail:
1271 return err;
1272 }
1273
1274 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info,
1276 struct btrfs_path *path,
1277 u64 bytenr, u64 parent,
1278 u64 root_objectid, u64 owner,
1279 u64 offset, int refs_to_add)
1280 {
1281 struct btrfs_root *root = fs_info->extent_root;
1282 struct btrfs_key key;
1283 struct extent_buffer *leaf;
1284 u32 size;
1285 u32 num_refs;
1286 int ret;
1287
1288 key.objectid = bytenr;
1289 if (parent) {
1290 key.type = BTRFS_SHARED_DATA_REF_KEY;
1291 key.offset = parent;
1292 size = sizeof(struct btrfs_shared_data_ref);
1293 } else {
1294 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295 key.offset = hash_extent_data_ref(root_objectid,
1296 owner, offset);
1297 size = sizeof(struct btrfs_extent_data_ref);
1298 }
1299
1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301 if (ret && ret != -EEXIST)
1302 goto fail;
1303
1304 leaf = path->nodes[0];
1305 if (parent) {
1306 struct btrfs_shared_data_ref *ref;
1307 ref = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_shared_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1315 }
1316 } else {
1317 struct btrfs_extent_data_ref *ref;
1318 while (ret == -EEXIST) {
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (match_extent_data_ref(leaf, ref, root_objectid,
1322 owner, offset))
1323 break;
1324 btrfs_release_path(path);
1325 key.offset++;
1326 ret = btrfs_insert_empty_item(trans, root, path, &key,
1327 size);
1328 if (ret && ret != -EEXIST)
1329 goto fail;
1330
1331 leaf = path->nodes[0];
1332 }
1333 ref = btrfs_item_ptr(leaf, path->slots[0],
1334 struct btrfs_extent_data_ref);
1335 if (ret == 0) {
1336 btrfs_set_extent_data_ref_root(leaf, ref,
1337 root_objectid);
1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341 } else {
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343 num_refs += refs_to_add;
1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1345 }
1346 }
1347 btrfs_mark_buffer_dirty(leaf);
1348 ret = 0;
1349 fail:
1350 btrfs_release_path(path);
1351 return ret;
1352 }
1353
1354 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1355 struct btrfs_fs_info *fs_info,
1356 struct btrfs_path *path,
1357 int refs_to_drop, int *last_ref)
1358 {
1359 struct btrfs_key key;
1360 struct btrfs_extent_data_ref *ref1 = NULL;
1361 struct btrfs_shared_data_ref *ref2 = NULL;
1362 struct extent_buffer *leaf;
1363 u32 num_refs = 0;
1364 int ret = 0;
1365
1366 leaf = path->nodes[0];
1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_extent_data_ref);
1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375 struct btrfs_shared_data_ref);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379 struct btrfs_extent_ref_v0 *ref0;
1380 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381 struct btrfs_extent_ref_v0);
1382 num_refs = btrfs_ref_count_v0(leaf, ref0);
1383 #endif
1384 } else {
1385 BUG();
1386 }
1387
1388 BUG_ON(num_refs < refs_to_drop);
1389 num_refs -= refs_to_drop;
1390
1391 if (num_refs == 0) {
1392 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1393 *last_ref = 1;
1394 } else {
1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400 else {
1401 struct btrfs_extent_ref_v0 *ref0;
1402 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_ref_v0);
1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405 }
1406 #endif
1407 btrfs_mark_buffer_dirty(leaf);
1408 }
1409 return ret;
1410 }
1411
1412 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1413 struct btrfs_extent_inline_ref *iref)
1414 {
1415 struct btrfs_key key;
1416 struct extent_buffer *leaf;
1417 struct btrfs_extent_data_ref *ref1;
1418 struct btrfs_shared_data_ref *ref2;
1419 u32 num_refs = 0;
1420
1421 leaf = path->nodes[0];
1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423 if (iref) {
1424 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425 BTRFS_EXTENT_DATA_REF_KEY) {
1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428 } else {
1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431 }
1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_extent_data_ref);
1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_shared_data_ref);
1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442 struct btrfs_extent_ref_v0 *ref0;
1443 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_extent_ref_v0);
1445 num_refs = btrfs_ref_count_v0(leaf, ref0);
1446 #endif
1447 } else {
1448 WARN_ON(1);
1449 }
1450 return num_refs;
1451 }
1452
1453 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1454 struct btrfs_fs_info *fs_info,
1455 struct btrfs_path *path,
1456 u64 bytenr, u64 parent,
1457 u64 root_objectid)
1458 {
1459 struct btrfs_root *root = fs_info->extent_root;
1460 struct btrfs_key key;
1461 int ret;
1462
1463 key.objectid = bytenr;
1464 if (parent) {
1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466 key.offset = parent;
1467 } else {
1468 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469 key.offset = root_objectid;
1470 }
1471
1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473 if (ret > 0)
1474 ret = -ENOENT;
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (ret == -ENOENT && parent) {
1477 btrfs_release_path(path);
1478 key.type = BTRFS_EXTENT_REF_V0_KEY;
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret > 0)
1481 ret = -ENOENT;
1482 }
1483 #endif
1484 return ret;
1485 }
1486
1487 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1488 struct btrfs_fs_info *fs_info,
1489 struct btrfs_path *path,
1490 u64 bytenr, u64 parent,
1491 u64 root_objectid)
1492 {
1493 struct btrfs_key key;
1494 int ret;
1495
1496 key.objectid = bytenr;
1497 if (parent) {
1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499 key.offset = parent;
1500 } else {
1501 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502 key.offset = root_objectid;
1503 }
1504
1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506 path, &key, 0);
1507 btrfs_release_path(path);
1508 return ret;
1509 }
1510
1511 static inline int extent_ref_type(u64 parent, u64 owner)
1512 {
1513 int type;
1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 if (parent > 0)
1516 type = BTRFS_SHARED_BLOCK_REF_KEY;
1517 else
1518 type = BTRFS_TREE_BLOCK_REF_KEY;
1519 } else {
1520 if (parent > 0)
1521 type = BTRFS_SHARED_DATA_REF_KEY;
1522 else
1523 type = BTRFS_EXTENT_DATA_REF_KEY;
1524 }
1525 return type;
1526 }
1527
1528 static int find_next_key(struct btrfs_path *path, int level,
1529 struct btrfs_key *key)
1530
1531 {
1532 for (; level < BTRFS_MAX_LEVEL; level++) {
1533 if (!path->nodes[level])
1534 break;
1535 if (path->slots[level] + 1 >=
1536 btrfs_header_nritems(path->nodes[level]))
1537 continue;
1538 if (level == 0)
1539 btrfs_item_key_to_cpu(path->nodes[level], key,
1540 path->slots[level] + 1);
1541 else
1542 btrfs_node_key_to_cpu(path->nodes[level], key,
1543 path->slots[level] + 1);
1544 return 0;
1545 }
1546 return 1;
1547 }
1548
1549 /*
1550 * look for inline back ref. if back ref is found, *ref_ret is set
1551 * to the address of inline back ref, and 0 is returned.
1552 *
1553 * if back ref isn't found, *ref_ret is set to the address where it
1554 * should be inserted, and -ENOENT is returned.
1555 *
1556 * if insert is true and there are too many inline back refs, the path
1557 * points to the extent item, and -EAGAIN is returned.
1558 *
1559 * NOTE: inline back refs are ordered in the same way that back ref
1560 * items in the tree are ordered.
1561 */
1562 static noinline_for_stack
1563 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 struct btrfs_fs_info *fs_info,
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref **ref_ret,
1567 u64 bytenr, u64 num_bytes,
1568 u64 parent, u64 root_objectid,
1569 u64 owner, u64 offset, int insert)
1570 {
1571 struct btrfs_root *root = fs_info->extent_root;
1572 struct btrfs_key key;
1573 struct extent_buffer *leaf;
1574 struct btrfs_extent_item *ei;
1575 struct btrfs_extent_inline_ref *iref;
1576 u64 flags;
1577 u64 item_size;
1578 unsigned long ptr;
1579 unsigned long end;
1580 int extra_size;
1581 int type;
1582 int want;
1583 int ret;
1584 int err = 0;
1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1586
1587 key.objectid = bytenr;
1588 key.type = BTRFS_EXTENT_ITEM_KEY;
1589 key.offset = num_bytes;
1590
1591 want = extent_ref_type(parent, owner);
1592 if (insert) {
1593 extra_size = btrfs_extent_inline_ref_size(want);
1594 path->keep_locks = 1;
1595 } else
1596 extra_size = -1;
1597
1598 /*
1599 * Owner is our parent level, so we can just add one to get the level
1600 * for the block we are interested in.
1601 */
1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603 key.type = BTRFS_METADATA_ITEM_KEY;
1604 key.offset = owner;
1605 }
1606
1607 again:
1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1609 if (ret < 0) {
1610 err = ret;
1611 goto out;
1612 }
1613
1614 /*
1615 * We may be a newly converted file system which still has the old fat
1616 * extent entries for metadata, so try and see if we have one of those.
1617 */
1618 if (ret > 0 && skinny_metadata) {
1619 skinny_metadata = false;
1620 if (path->slots[0]) {
1621 path->slots[0]--;
1622 btrfs_item_key_to_cpu(path->nodes[0], &key,
1623 path->slots[0]);
1624 if (key.objectid == bytenr &&
1625 key.type == BTRFS_EXTENT_ITEM_KEY &&
1626 key.offset == num_bytes)
1627 ret = 0;
1628 }
1629 if (ret) {
1630 key.objectid = bytenr;
1631 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 key.offset = num_bytes;
1633 btrfs_release_path(path);
1634 goto again;
1635 }
1636 }
1637
1638 if (ret && !insert) {
1639 err = -ENOENT;
1640 goto out;
1641 } else if (WARN_ON(ret)) {
1642 err = -EIO;
1643 goto out;
1644 }
1645
1646 leaf = path->nodes[0];
1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 if (item_size < sizeof(*ei)) {
1650 if (!insert) {
1651 err = -ENOENT;
1652 goto out;
1653 }
1654 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1655 extra_size);
1656 if (ret < 0) {
1657 err = ret;
1658 goto out;
1659 }
1660 leaf = path->nodes[0];
1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662 }
1663 #endif
1664 BUG_ON(item_size < sizeof(*ei));
1665
1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667 flags = btrfs_extent_flags(leaf, ei);
1668
1669 ptr = (unsigned long)(ei + 1);
1670 end = (unsigned long)ei + item_size;
1671
1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1673 ptr += sizeof(struct btrfs_tree_block_info);
1674 BUG_ON(ptr > end);
1675 }
1676
1677 err = -ENOENT;
1678 while (1) {
1679 if (ptr >= end) {
1680 WARN_ON(ptr > end);
1681 break;
1682 }
1683 iref = (struct btrfs_extent_inline_ref *)ptr;
1684 type = btrfs_extent_inline_ref_type(leaf, iref);
1685 if (want < type)
1686 break;
1687 if (want > type) {
1688 ptr += btrfs_extent_inline_ref_size(type);
1689 continue;
1690 }
1691
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693 struct btrfs_extent_data_ref *dref;
1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695 if (match_extent_data_ref(leaf, dref, root_objectid,
1696 owner, offset)) {
1697 err = 0;
1698 break;
1699 }
1700 if (hash_extent_data_ref_item(leaf, dref) <
1701 hash_extent_data_ref(root_objectid, owner, offset))
1702 break;
1703 } else {
1704 u64 ref_offset;
1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706 if (parent > 0) {
1707 if (parent == ref_offset) {
1708 err = 0;
1709 break;
1710 }
1711 if (ref_offset < parent)
1712 break;
1713 } else {
1714 if (root_objectid == ref_offset) {
1715 err = 0;
1716 break;
1717 }
1718 if (ref_offset < root_objectid)
1719 break;
1720 }
1721 }
1722 ptr += btrfs_extent_inline_ref_size(type);
1723 }
1724 if (err == -ENOENT && insert) {
1725 if (item_size + extra_size >=
1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727 err = -EAGAIN;
1728 goto out;
1729 }
1730 /*
1731 * To add new inline back ref, we have to make sure
1732 * there is no corresponding back ref item.
1733 * For simplicity, we just do not add new inline back
1734 * ref if there is any kind of item for this block
1735 */
1736 if (find_next_key(path, 0, &key) == 0 &&
1737 key.objectid == bytenr &&
1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1739 err = -EAGAIN;
1740 goto out;
1741 }
1742 }
1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744 out:
1745 if (insert) {
1746 path->keep_locks = 0;
1747 btrfs_unlock_up_safe(path, 1);
1748 }
1749 return err;
1750 }
1751
1752 /*
1753 * helper to add new inline back ref
1754 */
1755 static noinline_for_stack
1756 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 u64 parent, u64 root_objectid,
1760 u64 owner, u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 struct extent_buffer *leaf;
1764 struct btrfs_extent_item *ei;
1765 unsigned long ptr;
1766 unsigned long end;
1767 unsigned long item_offset;
1768 u64 refs;
1769 int size;
1770 int type;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 item_offset = (unsigned long)iref - (unsigned long)ei;
1775
1776 type = extent_ref_type(parent, owner);
1777 size = btrfs_extent_inline_ref_size(type);
1778
1779 btrfs_extend_item(fs_info, path, size);
1780
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 refs += refs_to_add;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 ptr = (unsigned long)ei + item_offset;
1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790 if (ptr < end - size)
1791 memmove_extent_buffer(leaf, ptr + size, ptr,
1792 end - size - ptr);
1793
1794 iref = (struct btrfs_extent_inline_ref *)ptr;
1795 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 struct btrfs_extent_data_ref *dref;
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804 struct btrfs_shared_data_ref *sref;
1805 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810 } else {
1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1817 struct btrfs_fs_info *fs_info,
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref **ref_ret,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner, u64 offset)
1822 {
1823 int ret;
1824
1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1826 bytenr, num_bytes, parent,
1827 root_objectid, owner, offset, 0);
1828 if (ret != -ENOENT)
1829 return ret;
1830
1831 btrfs_release_path(path);
1832 *ref_ret = NULL;
1833
1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836 parent, root_objectid);
1837 } else {
1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839 parent, root_objectid, owner,
1840 offset);
1841 }
1842 return ret;
1843 }
1844
1845 /*
1846 * helper to update/remove inline back ref
1847 */
1848 static noinline_for_stack
1849 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1850 struct btrfs_path *path,
1851 struct btrfs_extent_inline_ref *iref,
1852 int refs_to_mod,
1853 struct btrfs_delayed_extent_op *extent_op,
1854 int *last_ref)
1855 {
1856 struct extent_buffer *leaf;
1857 struct btrfs_extent_item *ei;
1858 struct btrfs_extent_data_ref *dref = NULL;
1859 struct btrfs_shared_data_ref *sref = NULL;
1860 unsigned long ptr;
1861 unsigned long end;
1862 u32 item_size;
1863 int size;
1864 int type;
1865 u64 refs;
1866
1867 leaf = path->nodes[0];
1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, ei);
1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871 refs += refs_to_mod;
1872 btrfs_set_extent_refs(leaf, ei, refs);
1873 if (extent_op)
1874 __run_delayed_extent_op(extent_op, leaf, ei);
1875
1876 type = btrfs_extent_inline_ref_type(leaf, iref);
1877
1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880 refs = btrfs_extent_data_ref_count(leaf, dref);
1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883 refs = btrfs_shared_data_ref_count(leaf, sref);
1884 } else {
1885 refs = 1;
1886 BUG_ON(refs_to_mod != -1);
1887 }
1888
1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890 refs += refs_to_mod;
1891
1892 if (refs > 0) {
1893 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895 else
1896 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897 } else {
1898 *last_ref = 1;
1899 size = btrfs_extent_inline_ref_size(type);
1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901 ptr = (unsigned long)iref;
1902 end = (unsigned long)ei + item_size;
1903 if (ptr + size < end)
1904 memmove_extent_buffer(leaf, ptr, ptr + size,
1905 end - ptr - size);
1906 item_size -= size;
1907 btrfs_truncate_item(fs_info, path, item_size, 1);
1908 }
1909 btrfs_mark_buffer_dirty(leaf);
1910 }
1911
1912 static noinline_for_stack
1913 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1914 struct btrfs_fs_info *fs_info,
1915 struct btrfs_path *path,
1916 u64 bytenr, u64 num_bytes, u64 parent,
1917 u64 root_objectid, u64 owner,
1918 u64 offset, int refs_to_add,
1919 struct btrfs_delayed_extent_op *extent_op)
1920 {
1921 struct btrfs_extent_inline_ref *iref;
1922 int ret;
1923
1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1925 bytenr, num_bytes, parent,
1926 root_objectid, owner, offset, 1);
1927 if (ret == 0) {
1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1929 update_inline_extent_backref(fs_info, path, iref,
1930 refs_to_add, extent_op, NULL);
1931 } else if (ret == -ENOENT) {
1932 setup_inline_extent_backref(fs_info, path, iref, parent,
1933 root_objectid, owner, offset,
1934 refs_to_add, extent_op);
1935 ret = 0;
1936 }
1937 return ret;
1938 }
1939
1940 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1941 struct btrfs_fs_info *fs_info,
1942 struct btrfs_path *path,
1943 u64 bytenr, u64 parent, u64 root_objectid,
1944 u64 owner, u64 offset, int refs_to_add)
1945 {
1946 int ret;
1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948 BUG_ON(refs_to_add != 1);
1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1950 parent, root_objectid);
1951 } else {
1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1953 parent, root_objectid,
1954 owner, offset, refs_to_add);
1955 }
1956 return ret;
1957 }
1958
1959 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1960 struct btrfs_fs_info *fs_info,
1961 struct btrfs_path *path,
1962 struct btrfs_extent_inline_ref *iref,
1963 int refs_to_drop, int is_data, int *last_ref)
1964 {
1965 int ret = 0;
1966
1967 BUG_ON(!is_data && refs_to_drop != 1);
1968 if (iref) {
1969 update_inline_extent_backref(fs_info, path, iref,
1970 -refs_to_drop, NULL, last_ref);
1971 } else if (is_data) {
1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1973 last_ref);
1974 } else {
1975 *last_ref = 1;
1976 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1977 }
1978 return ret;
1979 }
1980
1981 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1982 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983 u64 *discarded_bytes)
1984 {
1985 int j, ret = 0;
1986 u64 bytes_left, end;
1987 u64 aligned_start = ALIGN(start, 1 << 9);
1988
1989 if (WARN_ON(start != aligned_start)) {
1990 len -= aligned_start - start;
1991 len = round_down(len, 1 << 9);
1992 start = aligned_start;
1993 }
1994
1995 *discarded_bytes = 0;
1996
1997 if (!len)
1998 return 0;
1999
2000 end = start + len;
2001 bytes_left = len;
2002
2003 /* Skip any superblocks on this device. */
2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005 u64 sb_start = btrfs_sb_offset(j);
2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007 u64 size = sb_start - start;
2008
2009 if (!in_range(sb_start, start, bytes_left) &&
2010 !in_range(sb_end, start, bytes_left) &&
2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012 continue;
2013
2014 /*
2015 * Superblock spans beginning of range. Adjust start and
2016 * try again.
2017 */
2018 if (sb_start <= start) {
2019 start += sb_end - start;
2020 if (start > end) {
2021 bytes_left = 0;
2022 break;
2023 }
2024 bytes_left = end - start;
2025 continue;
2026 }
2027
2028 if (size) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += size;
2033 else if (ret != -EOPNOTSUPP)
2034 return ret;
2035 }
2036
2037 start = sb_end;
2038 if (start > end) {
2039 bytes_left = 0;
2040 break;
2041 }
2042 bytes_left = end - start;
2043 }
2044
2045 if (bytes_left) {
2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2047 GFP_NOFS, 0);
2048 if (!ret)
2049 *discarded_bytes += bytes_left;
2050 }
2051 return ret;
2052 }
2053
2054 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2055 u64 num_bytes, u64 *actual_bytes)
2056 {
2057 int ret;
2058 u64 discarded_bytes = 0;
2059 struct btrfs_bio *bbio = NULL;
2060
2061
2062 /*
2063 * Avoid races with device replace and make sure our bbio has devices
2064 * associated to its stripes that don't go away while we are discarding.
2065 */
2066 btrfs_bio_counter_inc_blocked(fs_info);
2067 /* Tell the block device(s) that the sectors can be discarded */
2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069 &bbio, 0);
2070 /* Error condition is -ENOMEM */
2071 if (!ret) {
2072 struct btrfs_bio_stripe *stripe = bbio->stripes;
2073 int i;
2074
2075
2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2077 u64 bytes;
2078 if (!stripe->dev->can_discard)
2079 continue;
2080
2081 ret = btrfs_issue_discard(stripe->dev->bdev,
2082 stripe->physical,
2083 stripe->length,
2084 &bytes);
2085 if (!ret)
2086 discarded_bytes += bytes;
2087 else if (ret != -EOPNOTSUPP)
2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2089
2090 /*
2091 * Just in case we get back EOPNOTSUPP for some reason,
2092 * just ignore the return value so we don't screw up
2093 * people calling discard_extent.
2094 */
2095 ret = 0;
2096 }
2097 btrfs_put_bbio(bbio);
2098 }
2099 btrfs_bio_counter_dec(fs_info);
2100
2101 if (actual_bytes)
2102 *actual_bytes = discarded_bytes;
2103
2104
2105 if (ret == -EOPNOTSUPP)
2106 ret = 0;
2107 return ret;
2108 }
2109
2110 /* Can return -ENOMEM */
2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2112 struct btrfs_fs_info *fs_info,
2113 u64 bytenr, u64 num_bytes, u64 parent,
2114 u64 root_objectid, u64 owner, u64 offset)
2115 {
2116 int old_ref_mod, new_ref_mod;
2117 int ret;
2118
2119 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2120 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2121
2122 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2123 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2124 num_bytes, parent,
2125 root_objectid, (int)owner,
2126 BTRFS_ADD_DELAYED_REF, NULL,
2127 &old_ref_mod, &new_ref_mod);
2128 } else {
2129 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2130 num_bytes, parent,
2131 root_objectid, owner, offset,
2132 0, BTRFS_ADD_DELAYED_REF,
2133 &old_ref_mod, &new_ref_mod);
2134 }
2135
2136 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2137 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2138
2139 return ret;
2140 }
2141
2142 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2143 struct btrfs_fs_info *fs_info,
2144 struct btrfs_delayed_ref_node *node,
2145 u64 parent, u64 root_objectid,
2146 u64 owner, u64 offset, int refs_to_add,
2147 struct btrfs_delayed_extent_op *extent_op)
2148 {
2149 struct btrfs_path *path;
2150 struct extent_buffer *leaf;
2151 struct btrfs_extent_item *item;
2152 struct btrfs_key key;
2153 u64 bytenr = node->bytenr;
2154 u64 num_bytes = node->num_bytes;
2155 u64 refs;
2156 int ret;
2157
2158 path = btrfs_alloc_path();
2159 if (!path)
2160 return -ENOMEM;
2161
2162 path->reada = READA_FORWARD;
2163 path->leave_spinning = 1;
2164 /* this will setup the path even if it fails to insert the back ref */
2165 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2166 num_bytes, parent, root_objectid,
2167 owner, offset,
2168 refs_to_add, extent_op);
2169 if ((ret < 0 && ret != -EAGAIN) || !ret)
2170 goto out;
2171
2172 /*
2173 * Ok we had -EAGAIN which means we didn't have space to insert and
2174 * inline extent ref, so just update the reference count and add a
2175 * normal backref.
2176 */
2177 leaf = path->nodes[0];
2178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2180 refs = btrfs_extent_refs(leaf, item);
2181 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2182 if (extent_op)
2183 __run_delayed_extent_op(extent_op, leaf, item);
2184
2185 btrfs_mark_buffer_dirty(leaf);
2186 btrfs_release_path(path);
2187
2188 path->reada = READA_FORWARD;
2189 path->leave_spinning = 1;
2190 /* now insert the actual backref */
2191 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2192 root_objectid, owner, offset, refs_to_add);
2193 if (ret)
2194 btrfs_abort_transaction(trans, ret);
2195 out:
2196 btrfs_free_path(path);
2197 return ret;
2198 }
2199
2200 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2201 struct btrfs_fs_info *fs_info,
2202 struct btrfs_delayed_ref_node *node,
2203 struct btrfs_delayed_extent_op *extent_op,
2204 int insert_reserved)
2205 {
2206 int ret = 0;
2207 struct btrfs_delayed_data_ref *ref;
2208 struct btrfs_key ins;
2209 u64 parent = 0;
2210 u64 ref_root = 0;
2211 u64 flags = 0;
2212
2213 ins.objectid = node->bytenr;
2214 ins.offset = node->num_bytes;
2215 ins.type = BTRFS_EXTENT_ITEM_KEY;
2216
2217 ref = btrfs_delayed_node_to_data_ref(node);
2218 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2219
2220 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2221 parent = ref->parent;
2222 ref_root = ref->root;
2223
2224 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2225 if (extent_op)
2226 flags |= extent_op->flags_to_set;
2227 ret = alloc_reserved_file_extent(trans, fs_info,
2228 parent, ref_root, flags,
2229 ref->objectid, ref->offset,
2230 &ins, node->ref_mod);
2231 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2232 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2233 ref_root, ref->objectid,
2234 ref->offset, node->ref_mod,
2235 extent_op);
2236 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2237 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2238 ref_root, ref->objectid,
2239 ref->offset, node->ref_mod,
2240 extent_op);
2241 } else {
2242 BUG();
2243 }
2244 return ret;
2245 }
2246
2247 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2248 struct extent_buffer *leaf,
2249 struct btrfs_extent_item *ei)
2250 {
2251 u64 flags = btrfs_extent_flags(leaf, ei);
2252 if (extent_op->update_flags) {
2253 flags |= extent_op->flags_to_set;
2254 btrfs_set_extent_flags(leaf, ei, flags);
2255 }
2256
2257 if (extent_op->update_key) {
2258 struct btrfs_tree_block_info *bi;
2259 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2260 bi = (struct btrfs_tree_block_info *)(ei + 1);
2261 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2262 }
2263 }
2264
2265 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2266 struct btrfs_fs_info *fs_info,
2267 struct btrfs_delayed_ref_node *node,
2268 struct btrfs_delayed_extent_op *extent_op)
2269 {
2270 struct btrfs_key key;
2271 struct btrfs_path *path;
2272 struct btrfs_extent_item *ei;
2273 struct extent_buffer *leaf;
2274 u32 item_size;
2275 int ret;
2276 int err = 0;
2277 int metadata = !extent_op->is_data;
2278
2279 if (trans->aborted)
2280 return 0;
2281
2282 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2283 metadata = 0;
2284
2285 path = btrfs_alloc_path();
2286 if (!path)
2287 return -ENOMEM;
2288
2289 key.objectid = node->bytenr;
2290
2291 if (metadata) {
2292 key.type = BTRFS_METADATA_ITEM_KEY;
2293 key.offset = extent_op->level;
2294 } else {
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 key.offset = node->num_bytes;
2297 }
2298
2299 again:
2300 path->reada = READA_FORWARD;
2301 path->leave_spinning = 1;
2302 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 if (ret > 0) {
2308 if (metadata) {
2309 if (path->slots[0] > 0) {
2310 path->slots[0]--;
2311 btrfs_item_key_to_cpu(path->nodes[0], &key,
2312 path->slots[0]);
2313 if (key.objectid == node->bytenr &&
2314 key.type == BTRFS_EXTENT_ITEM_KEY &&
2315 key.offset == node->num_bytes)
2316 ret = 0;
2317 }
2318 if (ret > 0) {
2319 btrfs_release_path(path);
2320 metadata = 0;
2321
2322 key.objectid = node->bytenr;
2323 key.offset = node->num_bytes;
2324 key.type = BTRFS_EXTENT_ITEM_KEY;
2325 goto again;
2326 }
2327 } else {
2328 err = -EIO;
2329 goto out;
2330 }
2331 }
2332
2333 leaf = path->nodes[0];
2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2336 if (item_size < sizeof(*ei)) {
2337 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2338 if (ret < 0) {
2339 err = ret;
2340 goto out;
2341 }
2342 leaf = path->nodes[0];
2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344 }
2345 #endif
2346 BUG_ON(item_size < sizeof(*ei));
2347 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2348 __run_delayed_extent_op(extent_op, leaf, ei);
2349
2350 btrfs_mark_buffer_dirty(leaf);
2351 out:
2352 btrfs_free_path(path);
2353 return err;
2354 }
2355
2356 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2357 struct btrfs_fs_info *fs_info,
2358 struct btrfs_delayed_ref_node *node,
2359 struct btrfs_delayed_extent_op *extent_op,
2360 int insert_reserved)
2361 {
2362 int ret = 0;
2363 struct btrfs_delayed_tree_ref *ref;
2364 struct btrfs_key ins;
2365 u64 parent = 0;
2366 u64 ref_root = 0;
2367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2368
2369 ref = btrfs_delayed_node_to_tree_ref(node);
2370 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2371
2372 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2373 parent = ref->parent;
2374 ref_root = ref->root;
2375
2376 ins.objectid = node->bytenr;
2377 if (skinny_metadata) {
2378 ins.offset = ref->level;
2379 ins.type = BTRFS_METADATA_ITEM_KEY;
2380 } else {
2381 ins.offset = node->num_bytes;
2382 ins.type = BTRFS_EXTENT_ITEM_KEY;
2383 }
2384
2385 if (node->ref_mod != 1) {
2386 btrfs_err(fs_info,
2387 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2388 node->bytenr, node->ref_mod, node->action, ref_root,
2389 parent);
2390 return -EIO;
2391 }
2392 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2393 BUG_ON(!extent_op || !extent_op->update_flags);
2394 ret = alloc_reserved_tree_block(trans, fs_info,
2395 parent, ref_root,
2396 extent_op->flags_to_set,
2397 &extent_op->key,
2398 ref->level, &ins);
2399 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2400 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2401 parent, ref_root,
2402 ref->level, 0, 1,
2403 extent_op);
2404 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2405 ret = __btrfs_free_extent(trans, fs_info, node,
2406 parent, ref_root,
2407 ref->level, 0, 1, extent_op);
2408 } else {
2409 BUG();
2410 }
2411 return ret;
2412 }
2413
2414 /* helper function to actually process a single delayed ref entry */
2415 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2416 struct btrfs_fs_info *fs_info,
2417 struct btrfs_delayed_ref_node *node,
2418 struct btrfs_delayed_extent_op *extent_op,
2419 int insert_reserved)
2420 {
2421 int ret = 0;
2422
2423 if (trans->aborted) {
2424 if (insert_reserved)
2425 btrfs_pin_extent(fs_info, node->bytenr,
2426 node->num_bytes, 1);
2427 return 0;
2428 }
2429
2430 if (btrfs_delayed_ref_is_head(node)) {
2431 struct btrfs_delayed_ref_head *head;
2432 /*
2433 * we've hit the end of the chain and we were supposed
2434 * to insert this extent into the tree. But, it got
2435 * deleted before we ever needed to insert it, so all
2436 * we have to do is clean up the accounting
2437 */
2438 BUG_ON(extent_op);
2439 head = btrfs_delayed_node_to_head(node);
2440 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2441
2442 if (head->total_ref_mod < 0) {
2443 struct btrfs_block_group_cache *cache;
2444
2445 cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2446 ASSERT(cache);
2447 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2448 -node->num_bytes);
2449 btrfs_put_block_group(cache);
2450 }
2451
2452 if (insert_reserved) {
2453 btrfs_pin_extent(fs_info, node->bytenr,
2454 node->num_bytes, 1);
2455 if (head->is_data) {
2456 ret = btrfs_del_csums(trans, fs_info,
2457 node->bytenr,
2458 node->num_bytes);
2459 }
2460 }
2461
2462 /* Also free its reserved qgroup space */
2463 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2464 head->qgroup_reserved);
2465 return ret;
2466 }
2467
2468 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2469 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2470 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2471 insert_reserved);
2472 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2473 node->type == BTRFS_SHARED_DATA_REF_KEY)
2474 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2475 insert_reserved);
2476 else
2477 BUG();
2478 return ret;
2479 }
2480
2481 static inline struct btrfs_delayed_ref_node *
2482 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2483 {
2484 struct btrfs_delayed_ref_node *ref;
2485
2486 if (list_empty(&head->ref_list))
2487 return NULL;
2488
2489 /*
2490 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2491 * This is to prevent a ref count from going down to zero, which deletes
2492 * the extent item from the extent tree, when there still are references
2493 * to add, which would fail because they would not find the extent item.
2494 */
2495 if (!list_empty(&head->ref_add_list))
2496 return list_first_entry(&head->ref_add_list,
2497 struct btrfs_delayed_ref_node, add_list);
2498
2499 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2500 list);
2501 ASSERT(list_empty(&ref->add_list));
2502 return ref;
2503 }
2504
2505 /*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2510 struct btrfs_fs_info *fs_info,
2511 unsigned long nr)
2512 {
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
2516 struct btrfs_delayed_extent_op *extent_op;
2517 ktime_t start = ktime_get();
2518 int ret;
2519 unsigned long count = 0;
2520 unsigned long actual_count = 0;
2521 int must_insert_reserved = 0;
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
2524 while (1) {
2525 if (!locked_ref) {
2526 if (count >= nr)
2527 break;
2528
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539 spin_unlock(&delayed_refs->lock);
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
2550 }
2551 }
2552
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
2565 spin_lock(&locked_ref->lock);
2566 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2567 locked_ref);
2568
2569 /*
2570 * locked_ref is the head node, so we have to go one
2571 * node back for any delayed ref updates
2572 */
2573 ref = select_delayed_ref(locked_ref);
2574
2575 if (ref && ref->seq &&
2576 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2577 spin_unlock(&locked_ref->lock);
2578 spin_lock(&delayed_refs->lock);
2579 locked_ref->processing = 0;
2580 delayed_refs->num_heads_ready++;
2581 spin_unlock(&delayed_refs->lock);
2582 btrfs_delayed_ref_unlock(locked_ref);
2583 locked_ref = NULL;
2584 cond_resched();
2585 count++;
2586 continue;
2587 }
2588
2589 /*
2590 * record the must insert reserved flag before we
2591 * drop the spin lock.
2592 */
2593 must_insert_reserved = locked_ref->must_insert_reserved;
2594 locked_ref->must_insert_reserved = 0;
2595
2596 extent_op = locked_ref->extent_op;
2597 locked_ref->extent_op = NULL;
2598
2599 if (!ref) {
2600
2601
2602 /* All delayed refs have been processed, Go ahead
2603 * and send the head node to run_one_delayed_ref,
2604 * so that any accounting fixes can happen
2605 */
2606 ref = &locked_ref->node;
2607
2608 if (extent_op && must_insert_reserved) {
2609 btrfs_free_delayed_extent_op(extent_op);
2610 extent_op = NULL;
2611 }
2612
2613 if (extent_op) {
2614 spin_unlock(&locked_ref->lock);
2615 ret = run_delayed_extent_op(trans, fs_info,
2616 ref, extent_op);
2617 btrfs_free_delayed_extent_op(extent_op);
2618
2619 if (ret) {
2620 /*
2621 * Need to reset must_insert_reserved if
2622 * there was an error so the abort stuff
2623 * can cleanup the reserved space
2624 * properly.
2625 */
2626 if (must_insert_reserved)
2627 locked_ref->must_insert_reserved = 1;
2628 spin_lock(&delayed_refs->lock);
2629 locked_ref->processing = 0;
2630 delayed_refs->num_heads_ready++;
2631 spin_unlock(&delayed_refs->lock);
2632 btrfs_debug(fs_info,
2633 "run_delayed_extent_op returned %d",
2634 ret);
2635 btrfs_delayed_ref_unlock(locked_ref);
2636 return ret;
2637 }
2638 continue;
2639 }
2640
2641 /*
2642 * Need to drop our head ref lock and re-acquire the
2643 * delayed ref lock and then re-check to make sure
2644 * nobody got added.
2645 */
2646 spin_unlock(&locked_ref->lock);
2647 spin_lock(&delayed_refs->lock);
2648 spin_lock(&locked_ref->lock);
2649 if (!list_empty(&locked_ref->ref_list) ||
2650 locked_ref->extent_op) {
2651 spin_unlock(&locked_ref->lock);
2652 spin_unlock(&delayed_refs->lock);
2653 continue;
2654 }
2655 ref->in_tree = 0;
2656 delayed_refs->num_heads--;
2657 rb_erase(&locked_ref->href_node,
2658 &delayed_refs->href_root);
2659 spin_unlock(&delayed_refs->lock);
2660 } else {
2661 actual_count++;
2662 ref->in_tree = 0;
2663 list_del(&ref->list);
2664 if (!list_empty(&ref->add_list))
2665 list_del(&ref->add_list);
2666 }
2667 atomic_dec(&delayed_refs->num_entries);
2668
2669 if (!btrfs_delayed_ref_is_head(ref)) {
2670 /*
2671 * when we play the delayed ref, also correct the
2672 * ref_mod on head
2673 */
2674 switch (ref->action) {
2675 case BTRFS_ADD_DELAYED_REF:
2676 case BTRFS_ADD_DELAYED_EXTENT:
2677 locked_ref->node.ref_mod -= ref->ref_mod;
2678 break;
2679 case BTRFS_DROP_DELAYED_REF:
2680 locked_ref->node.ref_mod += ref->ref_mod;
2681 break;
2682 default:
2683 WARN_ON(1);
2684 }
2685 }
2686 spin_unlock(&locked_ref->lock);
2687
2688 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2689 must_insert_reserved);
2690
2691 btrfs_free_delayed_extent_op(extent_op);
2692 if (ret) {
2693 spin_lock(&delayed_refs->lock);
2694 locked_ref->processing = 0;
2695 delayed_refs->num_heads_ready++;
2696 spin_unlock(&delayed_refs->lock);
2697 btrfs_delayed_ref_unlock(locked_ref);
2698 btrfs_put_delayed_ref(ref);
2699 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2700 ret);
2701 return ret;
2702 }
2703
2704 /*
2705 * If this node is a head, that means all the refs in this head
2706 * have been dealt with, and we will pick the next head to deal
2707 * with, so we must unlock the head and drop it from the cluster
2708 * list before we release it.
2709 */
2710 if (btrfs_delayed_ref_is_head(ref)) {
2711 if (locked_ref->is_data &&
2712 locked_ref->total_ref_mod < 0) {
2713 spin_lock(&delayed_refs->lock);
2714 delayed_refs->pending_csums -= ref->num_bytes;
2715 spin_unlock(&delayed_refs->lock);
2716 }
2717 btrfs_delayed_ref_unlock(locked_ref);
2718 locked_ref = NULL;
2719 }
2720 btrfs_put_delayed_ref(ref);
2721 count++;
2722 cond_resched();
2723 }
2724
2725 /*
2726 * We don't want to include ref heads since we can have empty ref heads
2727 * and those will drastically skew our runtime down since we just do
2728 * accounting, no actual extent tree updates.
2729 */
2730 if (actual_count > 0) {
2731 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2732 u64 avg;
2733
2734 /*
2735 * We weigh the current average higher than our current runtime
2736 * to avoid large swings in the average.
2737 */
2738 spin_lock(&delayed_refs->lock);
2739 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2740 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2741 spin_unlock(&delayed_refs->lock);
2742 }
2743 return 0;
2744 }
2745
2746 #ifdef SCRAMBLE_DELAYED_REFS
2747 /*
2748 * Normally delayed refs get processed in ascending bytenr order. This
2749 * correlates in most cases to the order added. To expose dependencies on this
2750 * order, we start to process the tree in the middle instead of the beginning
2751 */
2752 static u64 find_middle(struct rb_root *root)
2753 {
2754 struct rb_node *n = root->rb_node;
2755 struct btrfs_delayed_ref_node *entry;
2756 int alt = 1;
2757 u64 middle;
2758 u64 first = 0, last = 0;
2759
2760 n = rb_first(root);
2761 if (n) {
2762 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2763 first = entry->bytenr;
2764 }
2765 n = rb_last(root);
2766 if (n) {
2767 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2768 last = entry->bytenr;
2769 }
2770 n = root->rb_node;
2771
2772 while (n) {
2773 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2774 WARN_ON(!entry->in_tree);
2775
2776 middle = entry->bytenr;
2777
2778 if (alt)
2779 n = n->rb_left;
2780 else
2781 n = n->rb_right;
2782
2783 alt = 1 - alt;
2784 }
2785 return middle;
2786 }
2787 #endif
2788
2789 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2790 {
2791 u64 num_bytes;
2792
2793 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2794 sizeof(struct btrfs_extent_inline_ref));
2795 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2796 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2797
2798 /*
2799 * We don't ever fill up leaves all the way so multiply by 2 just to be
2800 * closer to what we're really going to want to use.
2801 */
2802 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2803 }
2804
2805 /*
2806 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2807 * would require to store the csums for that many bytes.
2808 */
2809 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2810 {
2811 u64 csum_size;
2812 u64 num_csums_per_leaf;
2813 u64 num_csums;
2814
2815 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2816 num_csums_per_leaf = div64_u64(csum_size,
2817 (u64)btrfs_super_csum_size(fs_info->super_copy));
2818 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2819 num_csums += num_csums_per_leaf - 1;
2820 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2821 return num_csums;
2822 }
2823
2824 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2825 struct btrfs_fs_info *fs_info)
2826 {
2827 struct btrfs_block_rsv *global_rsv;
2828 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2829 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2830 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2831 u64 num_bytes, num_dirty_bgs_bytes;
2832 int ret = 0;
2833
2834 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2835 num_heads = heads_to_leaves(fs_info, num_heads);
2836 if (num_heads > 1)
2837 num_bytes += (num_heads - 1) * fs_info->nodesize;
2838 num_bytes <<= 1;
2839 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2840 fs_info->nodesize;
2841 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2842 num_dirty_bgs);
2843 global_rsv = &fs_info->global_block_rsv;
2844
2845 /*
2846 * If we can't allocate any more chunks lets make sure we have _lots_ of
2847 * wiggle room since running delayed refs can create more delayed refs.
2848 */
2849 if (global_rsv->space_info->full) {
2850 num_dirty_bgs_bytes <<= 1;
2851 num_bytes <<= 1;
2852 }
2853
2854 spin_lock(&global_rsv->lock);
2855 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2856 ret = 1;
2857 spin_unlock(&global_rsv->lock);
2858 return ret;
2859 }
2860
2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2862 struct btrfs_fs_info *fs_info)
2863 {
2864 u64 num_entries =
2865 atomic_read(&trans->transaction->delayed_refs.num_entries);
2866 u64 avg_runtime;
2867 u64 val;
2868
2869 smp_mb();
2870 avg_runtime = fs_info->avg_delayed_ref_runtime;
2871 val = num_entries * avg_runtime;
2872 if (val >= NSEC_PER_SEC)
2873 return 1;
2874 if (val >= NSEC_PER_SEC / 2)
2875 return 2;
2876
2877 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2878 }
2879
2880 struct async_delayed_refs {
2881 struct btrfs_root *root;
2882 u64 transid;
2883 int count;
2884 int error;
2885 int sync;
2886 struct completion wait;
2887 struct btrfs_work work;
2888 };
2889
2890 static inline struct async_delayed_refs *
2891 to_async_delayed_refs(struct btrfs_work *work)
2892 {
2893 return container_of(work, struct async_delayed_refs, work);
2894 }
2895
2896 static void delayed_ref_async_start(struct btrfs_work *work)
2897 {
2898 struct async_delayed_refs *async = to_async_delayed_refs(work);
2899 struct btrfs_trans_handle *trans;
2900 struct btrfs_fs_info *fs_info = async->root->fs_info;
2901 int ret;
2902
2903 /* if the commit is already started, we don't need to wait here */
2904 if (btrfs_transaction_blocked(fs_info))
2905 goto done;
2906
2907 trans = btrfs_join_transaction(async->root);
2908 if (IS_ERR(trans)) {
2909 async->error = PTR_ERR(trans);
2910 goto done;
2911 }
2912
2913 /*
2914 * trans->sync means that when we call end_transaction, we won't
2915 * wait on delayed refs
2916 */
2917 trans->sync = true;
2918
2919 /* Don't bother flushing if we got into a different transaction */
2920 if (trans->transid > async->transid)
2921 goto end;
2922
2923 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2924 if (ret)
2925 async->error = ret;
2926 end:
2927 ret = btrfs_end_transaction(trans);
2928 if (ret && !async->error)
2929 async->error = ret;
2930 done:
2931 if (async->sync)
2932 complete(&async->wait);
2933 else
2934 kfree(async);
2935 }
2936
2937 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2938 unsigned long count, u64 transid, int wait)
2939 {
2940 struct async_delayed_refs *async;
2941 int ret;
2942
2943 async = kmalloc(sizeof(*async), GFP_NOFS);
2944 if (!async)
2945 return -ENOMEM;
2946
2947 async->root = fs_info->tree_root;
2948 async->count = count;
2949 async->error = 0;
2950 async->transid = transid;
2951 if (wait)
2952 async->sync = 1;
2953 else
2954 async->sync = 0;
2955 init_completion(&async->wait);
2956
2957 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2958 delayed_ref_async_start, NULL, NULL);
2959
2960 btrfs_queue_work(fs_info->extent_workers, &async->work);
2961
2962 if (wait) {
2963 wait_for_completion(&async->wait);
2964 ret = async->error;
2965 kfree(async);
2966 return ret;
2967 }
2968 return 0;
2969 }
2970
2971 /*
2972 * this starts processing the delayed reference count updates and
2973 * extent insertions we have queued up so far. count can be
2974 * 0, which means to process everything in the tree at the start
2975 * of the run (but not newly added entries), or it can be some target
2976 * number you'd like to process.
2977 *
2978 * Returns 0 on success or if called with an aborted transaction
2979 * Returns <0 on error and aborts the transaction
2980 */
2981 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2982 struct btrfs_fs_info *fs_info, unsigned long count)
2983 {
2984 struct rb_node *node;
2985 struct btrfs_delayed_ref_root *delayed_refs;
2986 struct btrfs_delayed_ref_head *head;
2987 int ret;
2988 int run_all = count == (unsigned long)-1;
2989 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2990
2991 /* We'll clean this up in btrfs_cleanup_transaction */
2992 if (trans->aborted)
2993 return 0;
2994
2995 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2996 return 0;
2997
2998 delayed_refs = &trans->transaction->delayed_refs;
2999 if (count == 0)
3000 count = atomic_read(&delayed_refs->num_entries) * 2;
3001
3002 again:
3003 #ifdef SCRAMBLE_DELAYED_REFS
3004 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3005 #endif
3006 trans->can_flush_pending_bgs = false;
3007 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3008 if (ret < 0) {
3009 btrfs_abort_transaction(trans, ret);
3010 return ret;
3011 }
3012
3013 if (run_all) {
3014 if (!list_empty(&trans->new_bgs))
3015 btrfs_create_pending_block_groups(trans, fs_info);
3016
3017 spin_lock(&delayed_refs->lock);
3018 node = rb_first(&delayed_refs->href_root);
3019 if (!node) {
3020 spin_unlock(&delayed_refs->lock);
3021 goto out;
3022 }
3023
3024 while (node) {
3025 head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 href_node);
3027 if (btrfs_delayed_ref_is_head(&head->node)) {
3028 struct btrfs_delayed_ref_node *ref;
3029
3030 ref = &head->node;
3031 refcount_inc(&ref->refs);
3032
3033 spin_unlock(&delayed_refs->lock);
3034 /*
3035 * Mutex was contended, block until it's
3036 * released and try again
3037 */
3038 mutex_lock(&head->mutex);
3039 mutex_unlock(&head->mutex);
3040
3041 btrfs_put_delayed_ref(ref);
3042 cond_resched();
3043 goto again;
3044 } else {
3045 WARN_ON(1);
3046 }
3047 node = rb_next(node);
3048 }
3049 spin_unlock(&delayed_refs->lock);
3050 cond_resched();
3051 goto again;
3052 }
3053 out:
3054 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3055 return 0;
3056 }
3057
3058 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3059 struct btrfs_fs_info *fs_info,
3060 u64 bytenr, u64 num_bytes, u64 flags,
3061 int level, int is_data)
3062 {
3063 struct btrfs_delayed_extent_op *extent_op;
3064 int ret;
3065
3066 extent_op = btrfs_alloc_delayed_extent_op();
3067 if (!extent_op)
3068 return -ENOMEM;
3069
3070 extent_op->flags_to_set = flags;
3071 extent_op->update_flags = true;
3072 extent_op->update_key = false;
3073 extent_op->is_data = is_data ? true : false;
3074 extent_op->level = level;
3075
3076 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3077 num_bytes, extent_op);
3078 if (ret)
3079 btrfs_free_delayed_extent_op(extent_op);
3080 return ret;
3081 }
3082
3083 static noinline int check_delayed_ref(struct btrfs_root *root,
3084 struct btrfs_path *path,
3085 u64 objectid, u64 offset, u64 bytenr)
3086 {
3087 struct btrfs_delayed_ref_head *head;
3088 struct btrfs_delayed_ref_node *ref;
3089 struct btrfs_delayed_data_ref *data_ref;
3090 struct btrfs_delayed_ref_root *delayed_refs;
3091 struct btrfs_transaction *cur_trans;
3092 int ret = 0;
3093
3094 cur_trans = root->fs_info->running_transaction;
3095 if (!cur_trans)
3096 return 0;
3097
3098 delayed_refs = &cur_trans->delayed_refs;
3099 spin_lock(&delayed_refs->lock);
3100 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3101 if (!head) {
3102 spin_unlock(&delayed_refs->lock);
3103 return 0;
3104 }
3105
3106 if (!mutex_trylock(&head->mutex)) {
3107 refcount_inc(&head->node.refs);
3108 spin_unlock(&delayed_refs->lock);
3109
3110 btrfs_release_path(path);
3111
3112 /*
3113 * Mutex was contended, block until it's released and let
3114 * caller try again
3115 */
3116 mutex_lock(&head->mutex);
3117 mutex_unlock(&head->mutex);
3118 btrfs_put_delayed_ref(&head->node);
3119 return -EAGAIN;
3120 }
3121 spin_unlock(&delayed_refs->lock);
3122
3123 spin_lock(&head->lock);
3124 list_for_each_entry(ref, &head->ref_list, list) {
3125 /* If it's a shared ref we know a cross reference exists */
3126 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3127 ret = 1;
3128 break;
3129 }
3130
3131 data_ref = btrfs_delayed_node_to_data_ref(ref);
3132
3133 /*
3134 * If our ref doesn't match the one we're currently looking at
3135 * then we have a cross reference.
3136 */
3137 if (data_ref->root != root->root_key.objectid ||
3138 data_ref->objectid != objectid ||
3139 data_ref->offset != offset) {
3140 ret = 1;
3141 break;
3142 }
3143 }
3144 spin_unlock(&head->lock);
3145 mutex_unlock(&head->mutex);
3146 return ret;
3147 }
3148
3149 static noinline int check_committed_ref(struct btrfs_root *root,
3150 struct btrfs_path *path,
3151 u64 objectid, u64 offset, u64 bytenr)
3152 {
3153 struct btrfs_fs_info *fs_info = root->fs_info;
3154 struct btrfs_root *extent_root = fs_info->extent_root;
3155 struct extent_buffer *leaf;
3156 struct btrfs_extent_data_ref *ref;
3157 struct btrfs_extent_inline_ref *iref;
3158 struct btrfs_extent_item *ei;
3159 struct btrfs_key key;
3160 u32 item_size;
3161 int ret;
3162
3163 key.objectid = bytenr;
3164 key.offset = (u64)-1;
3165 key.type = BTRFS_EXTENT_ITEM_KEY;
3166
3167 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3168 if (ret < 0)
3169 goto out;
3170 BUG_ON(ret == 0); /* Corruption */
3171
3172 ret = -ENOENT;
3173 if (path->slots[0] == 0)
3174 goto out;
3175
3176 path->slots[0]--;
3177 leaf = path->nodes[0];
3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3179
3180 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3181 goto out;
3182
3183 ret = 1;
3184 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3185 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3186 if (item_size < sizeof(*ei)) {
3187 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3188 goto out;
3189 }
3190 #endif
3191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3192
3193 if (item_size != sizeof(*ei) +
3194 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3195 goto out;
3196
3197 if (btrfs_extent_generation(leaf, ei) <=
3198 btrfs_root_last_snapshot(&root->root_item))
3199 goto out;
3200
3201 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3202 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3203 BTRFS_EXTENT_DATA_REF_KEY)
3204 goto out;
3205
3206 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3207 if (btrfs_extent_refs(leaf, ei) !=
3208 btrfs_extent_data_ref_count(leaf, ref) ||
3209 btrfs_extent_data_ref_root(leaf, ref) !=
3210 root->root_key.objectid ||
3211 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3212 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3213 goto out;
3214
3215 ret = 0;
3216 out:
3217 return ret;
3218 }
3219
3220 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3221 u64 bytenr)
3222 {
3223 struct btrfs_path *path;
3224 int ret;
3225 int ret2;
3226
3227 path = btrfs_alloc_path();
3228 if (!path)
3229 return -ENOENT;
3230
3231 do {
3232 ret = check_committed_ref(root, path, objectid,
3233 offset, bytenr);
3234 if (ret && ret != -ENOENT)
3235 goto out;
3236
3237 ret2 = check_delayed_ref(root, path, objectid,
3238 offset, bytenr);
3239 } while (ret2 == -EAGAIN);
3240
3241 if (ret2 && ret2 != -ENOENT) {
3242 ret = ret2;
3243 goto out;
3244 }
3245
3246 if (ret != -ENOENT || ret2 != -ENOENT)
3247 ret = 0;
3248 out:
3249 btrfs_free_path(path);
3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3251 WARN_ON(ret > 0);
3252 return ret;
3253 }
3254
3255 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3256 struct btrfs_root *root,
3257 struct extent_buffer *buf,
3258 int full_backref, int inc)
3259 {
3260 struct btrfs_fs_info *fs_info = root->fs_info;
3261 u64 bytenr;
3262 u64 num_bytes;
3263 u64 parent;
3264 u64 ref_root;
3265 u32 nritems;
3266 struct btrfs_key key;
3267 struct btrfs_file_extent_item *fi;
3268 int i;
3269 int level;
3270 int ret = 0;
3271 int (*process_func)(struct btrfs_trans_handle *,
3272 struct btrfs_fs_info *,
3273 u64, u64, u64, u64, u64, u64);
3274
3275
3276 if (btrfs_is_testing(fs_info))
3277 return 0;
3278
3279 ref_root = btrfs_header_owner(buf);
3280 nritems = btrfs_header_nritems(buf);
3281 level = btrfs_header_level(buf);
3282
3283 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3284 return 0;
3285
3286 if (inc)
3287 process_func = btrfs_inc_extent_ref;
3288 else
3289 process_func = btrfs_free_extent;
3290
3291 if (full_backref)
3292 parent = buf->start;
3293 else
3294 parent = 0;
3295
3296 for (i = 0; i < nritems; i++) {
3297 if (level == 0) {
3298 btrfs_item_key_to_cpu(buf, &key, i);
3299 if (key.type != BTRFS_EXTENT_DATA_KEY)
3300 continue;
3301 fi = btrfs_item_ptr(buf, i,
3302 struct btrfs_file_extent_item);
3303 if (btrfs_file_extent_type(buf, fi) ==
3304 BTRFS_FILE_EXTENT_INLINE)
3305 continue;
3306 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3307 if (bytenr == 0)
3308 continue;
3309
3310 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3311 key.offset -= btrfs_file_extent_offset(buf, fi);
3312 ret = process_func(trans, fs_info, bytenr, num_bytes,
3313 parent, ref_root, key.objectid,
3314 key.offset);
3315 if (ret)
3316 goto fail;
3317 } else {
3318 bytenr = btrfs_node_blockptr(buf, i);
3319 num_bytes = fs_info->nodesize;
3320 ret = process_func(trans, fs_info, bytenr, num_bytes,
3321 parent, ref_root, level - 1, 0);
3322 if (ret)
3323 goto fail;
3324 }
3325 }
3326 return 0;
3327 fail:
3328 return ret;
3329 }
3330
3331 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3332 struct extent_buffer *buf, int full_backref)
3333 {
3334 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3335 }
3336
3337 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3338 struct extent_buffer *buf, int full_backref)
3339 {
3340 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3341 }
3342
3343 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3344 struct btrfs_fs_info *fs_info,
3345 struct btrfs_path *path,
3346 struct btrfs_block_group_cache *cache)
3347 {
3348 int ret;
3349 struct btrfs_root *extent_root = fs_info->extent_root;
3350 unsigned long bi;
3351 struct extent_buffer *leaf;
3352
3353 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3354 if (ret) {
3355 if (ret > 0)
3356 ret = -ENOENT;
3357 goto fail;
3358 }
3359
3360 leaf = path->nodes[0];
3361 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3362 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3363 btrfs_mark_buffer_dirty(leaf);
3364 fail:
3365 btrfs_release_path(path);
3366 return ret;
3367
3368 }
3369
3370 static struct btrfs_block_group_cache *
3371 next_block_group(struct btrfs_fs_info *fs_info,
3372 struct btrfs_block_group_cache *cache)
3373 {
3374 struct rb_node *node;
3375
3376 spin_lock(&fs_info->block_group_cache_lock);
3377
3378 /* If our block group was removed, we need a full search. */
3379 if (RB_EMPTY_NODE(&cache->cache_node)) {
3380 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3381
3382 spin_unlock(&fs_info->block_group_cache_lock);
3383 btrfs_put_block_group(cache);
3384 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3385 }
3386 node = rb_next(&cache->cache_node);
3387 btrfs_put_block_group(cache);
3388 if (node) {
3389 cache = rb_entry(node, struct btrfs_block_group_cache,
3390 cache_node);
3391 btrfs_get_block_group(cache);
3392 } else
3393 cache = NULL;
3394 spin_unlock(&fs_info->block_group_cache_lock);
3395 return cache;
3396 }
3397
3398 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3399 struct btrfs_trans_handle *trans,
3400 struct btrfs_path *path)
3401 {
3402 struct btrfs_fs_info *fs_info = block_group->fs_info;
3403 struct btrfs_root *root = fs_info->tree_root;
3404 struct inode *inode = NULL;
3405 struct extent_changeset *data_reserved = NULL;
3406 u64 alloc_hint = 0;
3407 int dcs = BTRFS_DC_ERROR;
3408 u64 num_pages = 0;
3409 int retries = 0;
3410 int ret = 0;
3411
3412 /*
3413 * If this block group is smaller than 100 megs don't bother caching the
3414 * block group.
3415 */
3416 if (block_group->key.offset < (100 * SZ_1M)) {
3417 spin_lock(&block_group->lock);
3418 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3419 spin_unlock(&block_group->lock);
3420 return 0;
3421 }
3422
3423 if (trans->aborted)
3424 return 0;
3425 again:
3426 inode = lookup_free_space_inode(fs_info, block_group, path);
3427 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3428 ret = PTR_ERR(inode);
3429 btrfs_release_path(path);
3430 goto out;
3431 }
3432
3433 if (IS_ERR(inode)) {
3434 BUG_ON(retries);
3435 retries++;
3436
3437 if (block_group->ro)
3438 goto out_free;
3439
3440 ret = create_free_space_inode(fs_info, trans, block_group,
3441 path);
3442 if (ret)
3443 goto out_free;
3444 goto again;
3445 }
3446
3447 /* We've already setup this transaction, go ahead and exit */
3448 if (block_group->cache_generation == trans->transid &&
3449 i_size_read(inode)) {
3450 dcs = BTRFS_DC_SETUP;
3451 goto out_put;
3452 }
3453
3454 /*
3455 * We want to set the generation to 0, that way if anything goes wrong
3456 * from here on out we know not to trust this cache when we load up next
3457 * time.
3458 */
3459 BTRFS_I(inode)->generation = 0;
3460 ret = btrfs_update_inode(trans, root, inode);
3461 if (ret) {
3462 /*
3463 * So theoretically we could recover from this, simply set the
3464 * super cache generation to 0 so we know to invalidate the
3465 * cache, but then we'd have to keep track of the block groups
3466 * that fail this way so we know we _have_ to reset this cache
3467 * before the next commit or risk reading stale cache. So to
3468 * limit our exposure to horrible edge cases lets just abort the
3469 * transaction, this only happens in really bad situations
3470 * anyway.
3471 */
3472 btrfs_abort_transaction(trans, ret);
3473 goto out_put;
3474 }
3475 WARN_ON(ret);
3476
3477 if (i_size_read(inode) > 0) {
3478 ret = btrfs_check_trunc_cache_free_space(fs_info,
3479 &fs_info->global_block_rsv);
3480 if (ret)
3481 goto out_put;
3482
3483 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3484 if (ret)
3485 goto out_put;
3486 }
3487
3488 spin_lock(&block_group->lock);
3489 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3490 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3491 /*
3492 * don't bother trying to write stuff out _if_
3493 * a) we're not cached,
3494 * b) we're with nospace_cache mount option,
3495 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3496 */
3497 dcs = BTRFS_DC_WRITTEN;
3498 spin_unlock(&block_group->lock);
3499 goto out_put;
3500 }
3501 spin_unlock(&block_group->lock);
3502
3503 /*
3504 * We hit an ENOSPC when setting up the cache in this transaction, just
3505 * skip doing the setup, we've already cleared the cache so we're safe.
3506 */
3507 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3508 ret = -ENOSPC;
3509 goto out_put;
3510 }
3511
3512 /*
3513 * Try to preallocate enough space based on how big the block group is.
3514 * Keep in mind this has to include any pinned space which could end up
3515 * taking up quite a bit since it's not folded into the other space
3516 * cache.
3517 */
3518 num_pages = div_u64(block_group->key.offset, SZ_256M);
3519 if (!num_pages)
3520 num_pages = 1;
3521
3522 num_pages *= 16;
3523 num_pages *= PAGE_SIZE;
3524
3525 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3526 if (ret)
3527 goto out_put;
3528
3529 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3530 num_pages, num_pages,
3531 &alloc_hint);
3532 /*
3533 * Our cache requires contiguous chunks so that we don't modify a bunch
3534 * of metadata or split extents when writing the cache out, which means
3535 * we can enospc if we are heavily fragmented in addition to just normal
3536 * out of space conditions. So if we hit this just skip setting up any
3537 * other block groups for this transaction, maybe we'll unpin enough
3538 * space the next time around.
3539 */
3540 if (!ret)
3541 dcs = BTRFS_DC_SETUP;
3542 else if (ret == -ENOSPC)
3543 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3544
3545 out_put:
3546 iput(inode);
3547 out_free:
3548 btrfs_release_path(path);
3549 out:
3550 spin_lock(&block_group->lock);
3551 if (!ret && dcs == BTRFS_DC_SETUP)
3552 block_group->cache_generation = trans->transid;
3553 block_group->disk_cache_state = dcs;
3554 spin_unlock(&block_group->lock);
3555
3556 extent_changeset_free(data_reserved);
3557 return ret;
3558 }
3559
3560 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3561 struct btrfs_fs_info *fs_info)
3562 {
3563 struct btrfs_block_group_cache *cache, *tmp;
3564 struct btrfs_transaction *cur_trans = trans->transaction;
3565 struct btrfs_path *path;
3566
3567 if (list_empty(&cur_trans->dirty_bgs) ||
3568 !btrfs_test_opt(fs_info, SPACE_CACHE))
3569 return 0;
3570
3571 path = btrfs_alloc_path();
3572 if (!path)
3573 return -ENOMEM;
3574
3575 /* Could add new block groups, use _safe just in case */
3576 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3577 dirty_list) {
3578 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3579 cache_save_setup(cache, trans, path);
3580 }
3581
3582 btrfs_free_path(path);
3583 return 0;
3584 }
3585
3586 /*
3587 * transaction commit does final block group cache writeback during a
3588 * critical section where nothing is allowed to change the FS. This is
3589 * required in order for the cache to actually match the block group,
3590 * but can introduce a lot of latency into the commit.
3591 *
3592 * So, btrfs_start_dirty_block_groups is here to kick off block group
3593 * cache IO. There's a chance we'll have to redo some of it if the
3594 * block group changes again during the commit, but it greatly reduces
3595 * the commit latency by getting rid of the easy block groups while
3596 * we're still allowing others to join the commit.
3597 */
3598 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3599 struct btrfs_fs_info *fs_info)
3600 {
3601 struct btrfs_block_group_cache *cache;
3602 struct btrfs_transaction *cur_trans = trans->transaction;
3603 int ret = 0;
3604 int should_put;
3605 struct btrfs_path *path = NULL;
3606 LIST_HEAD(dirty);
3607 struct list_head *io = &cur_trans->io_bgs;
3608 int num_started = 0;
3609 int loops = 0;
3610
3611 spin_lock(&cur_trans->dirty_bgs_lock);
3612 if (list_empty(&cur_trans->dirty_bgs)) {
3613 spin_unlock(&cur_trans->dirty_bgs_lock);
3614 return 0;
3615 }
3616 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3617 spin_unlock(&cur_trans->dirty_bgs_lock);
3618
3619 again:
3620 /*
3621 * make sure all the block groups on our dirty list actually
3622 * exist
3623 */
3624 btrfs_create_pending_block_groups(trans, fs_info);
3625
3626 if (!path) {
3627 path = btrfs_alloc_path();
3628 if (!path)
3629 return -ENOMEM;
3630 }
3631
3632 /*
3633 * cache_write_mutex is here only to save us from balance or automatic
3634 * removal of empty block groups deleting this block group while we are
3635 * writing out the cache
3636 */
3637 mutex_lock(&trans->transaction->cache_write_mutex);
3638 while (!list_empty(&dirty)) {
3639 cache = list_first_entry(&dirty,
3640 struct btrfs_block_group_cache,
3641 dirty_list);
3642 /*
3643 * this can happen if something re-dirties a block
3644 * group that is already under IO. Just wait for it to
3645 * finish and then do it all again
3646 */
3647 if (!list_empty(&cache->io_list)) {
3648 list_del_init(&cache->io_list);
3649 btrfs_wait_cache_io(trans, cache, path);
3650 btrfs_put_block_group(cache);
3651 }
3652
3653
3654 /*
3655 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3656 * if it should update the cache_state. Don't delete
3657 * until after we wait.
3658 *
3659 * Since we're not running in the commit critical section
3660 * we need the dirty_bgs_lock to protect from update_block_group
3661 */
3662 spin_lock(&cur_trans->dirty_bgs_lock);
3663 list_del_init(&cache->dirty_list);
3664 spin_unlock(&cur_trans->dirty_bgs_lock);
3665
3666 should_put = 1;
3667
3668 cache_save_setup(cache, trans, path);
3669
3670 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3671 cache->io_ctl.inode = NULL;
3672 ret = btrfs_write_out_cache(fs_info, trans,
3673 cache, path);
3674 if (ret == 0 && cache->io_ctl.inode) {
3675 num_started++;
3676 should_put = 0;
3677
3678 /*
3679 * the cache_write_mutex is protecting
3680 * the io_list
3681 */
3682 list_add_tail(&cache->io_list, io);
3683 } else {
3684 /*
3685 * if we failed to write the cache, the
3686 * generation will be bad and life goes on
3687 */
3688 ret = 0;
3689 }
3690 }
3691 if (!ret) {
3692 ret = write_one_cache_group(trans, fs_info,
3693 path, cache);
3694 /*
3695 * Our block group might still be attached to the list
3696 * of new block groups in the transaction handle of some
3697 * other task (struct btrfs_trans_handle->new_bgs). This
3698 * means its block group item isn't yet in the extent
3699 * tree. If this happens ignore the error, as we will
3700 * try again later in the critical section of the
3701 * transaction commit.
3702 */
3703 if (ret == -ENOENT) {
3704 ret = 0;
3705 spin_lock(&cur_trans->dirty_bgs_lock);
3706 if (list_empty(&cache->dirty_list)) {
3707 list_add_tail(&cache->dirty_list,
3708 &cur_trans->dirty_bgs);
3709 btrfs_get_block_group(cache);
3710 }
3711 spin_unlock(&cur_trans->dirty_bgs_lock);
3712 } else if (ret) {
3713 btrfs_abort_transaction(trans, ret);
3714 }
3715 }
3716
3717 /* if its not on the io list, we need to put the block group */
3718 if (should_put)
3719 btrfs_put_block_group(cache);
3720
3721 if (ret)
3722 break;
3723
3724 /*
3725 * Avoid blocking other tasks for too long. It might even save
3726 * us from writing caches for block groups that are going to be
3727 * removed.
3728 */
3729 mutex_unlock(&trans->transaction->cache_write_mutex);
3730 mutex_lock(&trans->transaction->cache_write_mutex);
3731 }
3732 mutex_unlock(&trans->transaction->cache_write_mutex);
3733
3734 /*
3735 * go through delayed refs for all the stuff we've just kicked off
3736 * and then loop back (just once)
3737 */
3738 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3739 if (!ret && loops == 0) {
3740 loops++;
3741 spin_lock(&cur_trans->dirty_bgs_lock);
3742 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3743 /*
3744 * dirty_bgs_lock protects us from concurrent block group
3745 * deletes too (not just cache_write_mutex).
3746 */
3747 if (!list_empty(&dirty)) {
3748 spin_unlock(&cur_trans->dirty_bgs_lock);
3749 goto again;
3750 }
3751 spin_unlock(&cur_trans->dirty_bgs_lock);
3752 } else if (ret < 0) {
3753 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3754 }
3755
3756 btrfs_free_path(path);
3757 return ret;
3758 }
3759
3760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3761 struct btrfs_fs_info *fs_info)
3762 {
3763 struct btrfs_block_group_cache *cache;
3764 struct btrfs_transaction *cur_trans = trans->transaction;
3765 int ret = 0;
3766 int should_put;
3767 struct btrfs_path *path;
3768 struct list_head *io = &cur_trans->io_bgs;
3769 int num_started = 0;
3770
3771 path = btrfs_alloc_path();
3772 if (!path)
3773 return -ENOMEM;
3774
3775 /*
3776 * Even though we are in the critical section of the transaction commit,
3777 * we can still have concurrent tasks adding elements to this
3778 * transaction's list of dirty block groups. These tasks correspond to
3779 * endio free space workers started when writeback finishes for a
3780 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3781 * allocate new block groups as a result of COWing nodes of the root
3782 * tree when updating the free space inode. The writeback for the space
3783 * caches is triggered by an earlier call to
3784 * btrfs_start_dirty_block_groups() and iterations of the following
3785 * loop.
3786 * Also we want to do the cache_save_setup first and then run the
3787 * delayed refs to make sure we have the best chance at doing this all
3788 * in one shot.
3789 */
3790 spin_lock(&cur_trans->dirty_bgs_lock);
3791 while (!list_empty(&cur_trans->dirty_bgs)) {
3792 cache = list_first_entry(&cur_trans->dirty_bgs,
3793 struct btrfs_block_group_cache,
3794 dirty_list);
3795
3796 /*
3797 * this can happen if cache_save_setup re-dirties a block
3798 * group that is already under IO. Just wait for it to
3799 * finish and then do it all again
3800 */
3801 if (!list_empty(&cache->io_list)) {
3802 spin_unlock(&cur_trans->dirty_bgs_lock);
3803 list_del_init(&cache->io_list);
3804 btrfs_wait_cache_io(trans, cache, path);
3805 btrfs_put_block_group(cache);
3806 spin_lock(&cur_trans->dirty_bgs_lock);
3807 }
3808
3809 /*
3810 * don't remove from the dirty list until after we've waited
3811 * on any pending IO
3812 */
3813 list_del_init(&cache->dirty_list);
3814 spin_unlock(&cur_trans->dirty_bgs_lock);
3815 should_put = 1;
3816
3817 cache_save_setup(cache, trans, path);
3818
3819 if (!ret)
3820 ret = btrfs_run_delayed_refs(trans, fs_info,
3821 (unsigned long) -1);
3822
3823 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3824 cache->io_ctl.inode = NULL;
3825 ret = btrfs_write_out_cache(fs_info, trans,
3826 cache, path);
3827 if (ret == 0 && cache->io_ctl.inode) {
3828 num_started++;
3829 should_put = 0;
3830 list_add_tail(&cache->io_list, io);
3831 } else {
3832 /*
3833 * if we failed to write the cache, the
3834 * generation will be bad and life goes on
3835 */
3836 ret = 0;
3837 }
3838 }
3839 if (!ret) {
3840 ret = write_one_cache_group(trans, fs_info,
3841 path, cache);
3842 /*
3843 * One of the free space endio workers might have
3844 * created a new block group while updating a free space
3845 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3846 * and hasn't released its transaction handle yet, in
3847 * which case the new block group is still attached to
3848 * its transaction handle and its creation has not
3849 * finished yet (no block group item in the extent tree
3850 * yet, etc). If this is the case, wait for all free
3851 * space endio workers to finish and retry. This is a
3852 * a very rare case so no need for a more efficient and
3853 * complex approach.
3854 */
3855 if (ret == -ENOENT) {
3856 wait_event(cur_trans->writer_wait,
3857 atomic_read(&cur_trans->num_writers) == 1);
3858 ret = write_one_cache_group(trans, fs_info,
3859 path, cache);
3860 }
3861 if (ret)
3862 btrfs_abort_transaction(trans, ret);
3863 }
3864
3865 /* if its not on the io list, we need to put the block group */
3866 if (should_put)
3867 btrfs_put_block_group(cache);
3868 spin_lock(&cur_trans->dirty_bgs_lock);
3869 }
3870 spin_unlock(&cur_trans->dirty_bgs_lock);
3871
3872 while (!list_empty(io)) {
3873 cache = list_first_entry(io, struct btrfs_block_group_cache,
3874 io_list);
3875 list_del_init(&cache->io_list);
3876 btrfs_wait_cache_io(trans, cache, path);
3877 btrfs_put_block_group(cache);
3878 }
3879
3880 btrfs_free_path(path);
3881 return ret;
3882 }
3883
3884 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3885 {
3886 struct btrfs_block_group_cache *block_group;
3887 int readonly = 0;
3888
3889 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3890 if (!block_group || block_group->ro)
3891 readonly = 1;
3892 if (block_group)
3893 btrfs_put_block_group(block_group);
3894 return readonly;
3895 }
3896
3897 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3898 {
3899 struct btrfs_block_group_cache *bg;
3900 bool ret = true;
3901
3902 bg = btrfs_lookup_block_group(fs_info, bytenr);
3903 if (!bg)
3904 return false;
3905
3906 spin_lock(&bg->lock);
3907 if (bg->ro)
3908 ret = false;
3909 else
3910 atomic_inc(&bg->nocow_writers);
3911 spin_unlock(&bg->lock);
3912
3913 /* no put on block group, done by btrfs_dec_nocow_writers */
3914 if (!ret)
3915 btrfs_put_block_group(bg);
3916
3917 return ret;
3918
3919 }
3920
3921 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3922 {
3923 struct btrfs_block_group_cache *bg;
3924
3925 bg = btrfs_lookup_block_group(fs_info, bytenr);
3926 ASSERT(bg);
3927 if (atomic_dec_and_test(&bg->nocow_writers))
3928 wake_up_atomic_t(&bg->nocow_writers);
3929 /*
3930 * Once for our lookup and once for the lookup done by a previous call
3931 * to btrfs_inc_nocow_writers()
3932 */
3933 btrfs_put_block_group(bg);
3934 btrfs_put_block_group(bg);
3935 }
3936
3937 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3938 {
3939 schedule();
3940 return 0;
3941 }
3942
3943 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3944 {
3945 wait_on_atomic_t(&bg->nocow_writers,
3946 btrfs_wait_nocow_writers_atomic_t,
3947 TASK_UNINTERRUPTIBLE);
3948 }
3949
3950 static const char *alloc_name(u64 flags)
3951 {
3952 switch (flags) {
3953 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3954 return "mixed";
3955 case BTRFS_BLOCK_GROUP_METADATA:
3956 return "metadata";
3957 case BTRFS_BLOCK_GROUP_DATA:
3958 return "data";
3959 case BTRFS_BLOCK_GROUP_SYSTEM:
3960 return "system";
3961 default:
3962 WARN_ON(1);
3963 return "invalid-combination";
3964 };
3965 }
3966
3967 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3968 struct btrfs_space_info **new)
3969 {
3970
3971 struct btrfs_space_info *space_info;
3972 int i;
3973 int ret;
3974
3975 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3976 if (!space_info)
3977 return -ENOMEM;
3978
3979 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3980 GFP_KERNEL);
3981 if (ret) {
3982 kfree(space_info);
3983 return ret;
3984 }
3985
3986 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3987 INIT_LIST_HEAD(&space_info->block_groups[i]);
3988 init_rwsem(&space_info->groups_sem);
3989 spin_lock_init(&space_info->lock);
3990 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3991 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3992 init_waitqueue_head(&space_info->wait);
3993 INIT_LIST_HEAD(&space_info->ro_bgs);
3994 INIT_LIST_HEAD(&space_info->tickets);
3995 INIT_LIST_HEAD(&space_info->priority_tickets);
3996
3997 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3998 info->space_info_kobj, "%s",
3999 alloc_name(space_info->flags));
4000 if (ret) {
4001 percpu_counter_destroy(&space_info->total_bytes_pinned);
4002 kfree(space_info);
4003 return ret;
4004 }
4005
4006 *new = space_info;
4007 list_add_rcu(&space_info->list, &info->space_info);
4008 if (flags & BTRFS_BLOCK_GROUP_DATA)
4009 info->data_sinfo = space_info;
4010
4011 return ret;
4012 }
4013
4014 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4015 u64 total_bytes, u64 bytes_used,
4016 u64 bytes_readonly,
4017 struct btrfs_space_info **space_info)
4018 {
4019 struct btrfs_space_info *found;
4020 int factor;
4021
4022 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4023 BTRFS_BLOCK_GROUP_RAID10))
4024 factor = 2;
4025 else
4026 factor = 1;
4027
4028 found = __find_space_info(info, flags);
4029 ASSERT(found);
4030 spin_lock(&found->lock);
4031 found->total_bytes += total_bytes;
4032 found->disk_total += total_bytes * factor;
4033 found->bytes_used += bytes_used;
4034 found->disk_used += bytes_used * factor;
4035 found->bytes_readonly += bytes_readonly;
4036 if (total_bytes > 0)
4037 found->full = 0;
4038 space_info_add_new_bytes(info, found, total_bytes -
4039 bytes_used - bytes_readonly);
4040 spin_unlock(&found->lock);
4041 *space_info = found;
4042 }
4043
4044 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4045 {
4046 u64 extra_flags = chunk_to_extended(flags) &
4047 BTRFS_EXTENDED_PROFILE_MASK;
4048
4049 write_seqlock(&fs_info->profiles_lock);
4050 if (flags & BTRFS_BLOCK_GROUP_DATA)
4051 fs_info->avail_data_alloc_bits |= extra_flags;
4052 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4053 fs_info->avail_metadata_alloc_bits |= extra_flags;
4054 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4055 fs_info->avail_system_alloc_bits |= extra_flags;
4056 write_sequnlock(&fs_info->profiles_lock);
4057 }
4058
4059 /*
4060 * returns target flags in extended format or 0 if restripe for this
4061 * chunk_type is not in progress
4062 *
4063 * should be called with either volume_mutex or balance_lock held
4064 */
4065 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4066 {
4067 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4068 u64 target = 0;
4069
4070 if (!bctl)
4071 return 0;
4072
4073 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4074 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4075 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4076 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4077 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4078 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4079 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4080 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4081 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4082 }
4083
4084 return target;
4085 }
4086
4087 /*
4088 * @flags: available profiles in extended format (see ctree.h)
4089 *
4090 * Returns reduced profile in chunk format. If profile changing is in
4091 * progress (either running or paused) picks the target profile (if it's
4092 * already available), otherwise falls back to plain reducing.
4093 */
4094 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4095 {
4096 u64 num_devices = fs_info->fs_devices->rw_devices;
4097 u64 target;
4098 u64 raid_type;
4099 u64 allowed = 0;
4100
4101 /*
4102 * see if restripe for this chunk_type is in progress, if so
4103 * try to reduce to the target profile
4104 */
4105 spin_lock(&fs_info->balance_lock);
4106 target = get_restripe_target(fs_info, flags);
4107 if (target) {
4108 /* pick target profile only if it's already available */
4109 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4110 spin_unlock(&fs_info->balance_lock);
4111 return extended_to_chunk(target);
4112 }
4113 }
4114 spin_unlock(&fs_info->balance_lock);
4115
4116 /* First, mask out the RAID levels which aren't possible */
4117 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4118 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4119 allowed |= btrfs_raid_group[raid_type];
4120 }
4121 allowed &= flags;
4122
4123 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4124 allowed = BTRFS_BLOCK_GROUP_RAID6;
4125 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4126 allowed = BTRFS_BLOCK_GROUP_RAID5;
4127 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4128 allowed = BTRFS_BLOCK_GROUP_RAID10;
4129 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4130 allowed = BTRFS_BLOCK_GROUP_RAID1;
4131 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4132 allowed = BTRFS_BLOCK_GROUP_RAID0;
4133
4134 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4135
4136 return extended_to_chunk(flags | allowed);
4137 }
4138
4139 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4140 {
4141 unsigned seq;
4142 u64 flags;
4143
4144 do {
4145 flags = orig_flags;
4146 seq = read_seqbegin(&fs_info->profiles_lock);
4147
4148 if (flags & BTRFS_BLOCK_GROUP_DATA)
4149 flags |= fs_info->avail_data_alloc_bits;
4150 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4151 flags |= fs_info->avail_system_alloc_bits;
4152 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4153 flags |= fs_info->avail_metadata_alloc_bits;
4154 } while (read_seqretry(&fs_info->profiles_lock, seq));
4155
4156 return btrfs_reduce_alloc_profile(fs_info, flags);
4157 }
4158
4159 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4160 {
4161 struct btrfs_fs_info *fs_info = root->fs_info;
4162 u64 flags;
4163 u64 ret;
4164
4165 if (data)
4166 flags = BTRFS_BLOCK_GROUP_DATA;
4167 else if (root == fs_info->chunk_root)
4168 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4169 else
4170 flags = BTRFS_BLOCK_GROUP_METADATA;
4171
4172 ret = get_alloc_profile(fs_info, flags);
4173 return ret;
4174 }
4175
4176 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4177 {
4178 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4179 }
4180
4181 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4182 {
4183 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4184 }
4185
4186 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4187 {
4188 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4189 }
4190
4191 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4192 bool may_use_included)
4193 {
4194 ASSERT(s_info);
4195 return s_info->bytes_used + s_info->bytes_reserved +
4196 s_info->bytes_pinned + s_info->bytes_readonly +
4197 (may_use_included ? s_info->bytes_may_use : 0);
4198 }
4199
4200 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4201 {
4202 struct btrfs_space_info *data_sinfo;
4203 struct btrfs_root *root = inode->root;
4204 struct btrfs_fs_info *fs_info = root->fs_info;
4205 u64 used;
4206 int ret = 0;
4207 int need_commit = 2;
4208 int have_pinned_space;
4209
4210 /* make sure bytes are sectorsize aligned */
4211 bytes = ALIGN(bytes, fs_info->sectorsize);
4212
4213 if (btrfs_is_free_space_inode(inode)) {
4214 need_commit = 0;
4215 ASSERT(current->journal_info);
4216 }
4217
4218 data_sinfo = fs_info->data_sinfo;
4219 if (!data_sinfo)
4220 goto alloc;
4221
4222 again:
4223 /* make sure we have enough space to handle the data first */
4224 spin_lock(&data_sinfo->lock);
4225 used = btrfs_space_info_used(data_sinfo, true);
4226
4227 if (used + bytes > data_sinfo->total_bytes) {
4228 struct btrfs_trans_handle *trans;
4229
4230 /*
4231 * if we don't have enough free bytes in this space then we need
4232 * to alloc a new chunk.
4233 */
4234 if (!data_sinfo->full) {
4235 u64 alloc_target;
4236
4237 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4238 spin_unlock(&data_sinfo->lock);
4239 alloc:
4240 alloc_target = btrfs_data_alloc_profile(fs_info);
4241 /*
4242 * It is ugly that we don't call nolock join
4243 * transaction for the free space inode case here.
4244 * But it is safe because we only do the data space
4245 * reservation for the free space cache in the
4246 * transaction context, the common join transaction
4247 * just increase the counter of the current transaction
4248 * handler, doesn't try to acquire the trans_lock of
4249 * the fs.
4250 */
4251 trans = btrfs_join_transaction(root);
4252 if (IS_ERR(trans))
4253 return PTR_ERR(trans);
4254
4255 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4256 CHUNK_ALLOC_NO_FORCE);
4257 btrfs_end_transaction(trans);
4258 if (ret < 0) {
4259 if (ret != -ENOSPC)
4260 return ret;
4261 else {
4262 have_pinned_space = 1;
4263 goto commit_trans;
4264 }
4265 }
4266
4267 if (!data_sinfo)
4268 data_sinfo = fs_info->data_sinfo;
4269
4270 goto again;
4271 }
4272
4273 /*
4274 * If we don't have enough pinned space to deal with this
4275 * allocation, and no removed chunk in current transaction,
4276 * don't bother committing the transaction.
4277 */
4278 have_pinned_space = percpu_counter_compare(
4279 &data_sinfo->total_bytes_pinned,
4280 used + bytes - data_sinfo->total_bytes);
4281 spin_unlock(&data_sinfo->lock);
4282
4283 /* commit the current transaction and try again */
4284 commit_trans:
4285 if (need_commit &&
4286 !atomic_read(&fs_info->open_ioctl_trans)) {
4287 need_commit--;
4288
4289 if (need_commit > 0) {
4290 btrfs_start_delalloc_roots(fs_info, 0, -1);
4291 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4292 (u64)-1);
4293 }
4294
4295 trans = btrfs_join_transaction(root);
4296 if (IS_ERR(trans))
4297 return PTR_ERR(trans);
4298 if (have_pinned_space >= 0 ||
4299 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4300 &trans->transaction->flags) ||
4301 need_commit > 0) {
4302 ret = btrfs_commit_transaction(trans);
4303 if (ret)
4304 return ret;
4305 /*
4306 * The cleaner kthread might still be doing iput
4307 * operations. Wait for it to finish so that
4308 * more space is released.
4309 */
4310 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4311 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4312 goto again;
4313 } else {
4314 btrfs_end_transaction(trans);
4315 }
4316 }
4317
4318 trace_btrfs_space_reservation(fs_info,
4319 "space_info:enospc",
4320 data_sinfo->flags, bytes, 1);
4321 return -ENOSPC;
4322 }
4323 data_sinfo->bytes_may_use += bytes;
4324 trace_btrfs_space_reservation(fs_info, "space_info",
4325 data_sinfo->flags, bytes, 1);
4326 spin_unlock(&data_sinfo->lock);
4327
4328 return ret;
4329 }
4330
4331 int btrfs_check_data_free_space(struct inode *inode,
4332 struct extent_changeset **reserved, u64 start, u64 len)
4333 {
4334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4335 int ret;
4336
4337 /* align the range */
4338 len = round_up(start + len, fs_info->sectorsize) -
4339 round_down(start, fs_info->sectorsize);
4340 start = round_down(start, fs_info->sectorsize);
4341
4342 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4343 if (ret < 0)
4344 return ret;
4345
4346 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4347 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4348 if (ret < 0)
4349 btrfs_free_reserved_data_space_noquota(inode, start, len);
4350 else
4351 ret = 0;
4352 return ret;
4353 }
4354
4355 /*
4356 * Called if we need to clear a data reservation for this inode
4357 * Normally in a error case.
4358 *
4359 * This one will *NOT* use accurate qgroup reserved space API, just for case
4360 * which we can't sleep and is sure it won't affect qgroup reserved space.
4361 * Like clear_bit_hook().
4362 */
4363 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4364 u64 len)
4365 {
4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4367 struct btrfs_space_info *data_sinfo;
4368
4369 /* Make sure the range is aligned to sectorsize */
4370 len = round_up(start + len, fs_info->sectorsize) -
4371 round_down(start, fs_info->sectorsize);
4372 start = round_down(start, fs_info->sectorsize);
4373
4374 data_sinfo = fs_info->data_sinfo;
4375 spin_lock(&data_sinfo->lock);
4376 if (WARN_ON(data_sinfo->bytes_may_use < len))
4377 data_sinfo->bytes_may_use = 0;
4378 else
4379 data_sinfo->bytes_may_use -= len;
4380 trace_btrfs_space_reservation(fs_info, "space_info",
4381 data_sinfo->flags, len, 0);
4382 spin_unlock(&data_sinfo->lock);
4383 }
4384
4385 /*
4386 * Called if we need to clear a data reservation for this inode
4387 * Normally in a error case.
4388 *
4389 * This one will handle the per-inode data rsv map for accurate reserved
4390 * space framework.
4391 */
4392 void btrfs_free_reserved_data_space(struct inode *inode,
4393 struct extent_changeset *reserved, u64 start, u64 len)
4394 {
4395 struct btrfs_root *root = BTRFS_I(inode)->root;
4396
4397 /* Make sure the range is aligned to sectorsize */
4398 len = round_up(start + len, root->fs_info->sectorsize) -
4399 round_down(start, root->fs_info->sectorsize);
4400 start = round_down(start, root->fs_info->sectorsize);
4401
4402 btrfs_free_reserved_data_space_noquota(inode, start, len);
4403 btrfs_qgroup_free_data(inode, reserved, start, len);
4404 }
4405
4406 static void force_metadata_allocation(struct btrfs_fs_info *info)
4407 {
4408 struct list_head *head = &info->space_info;
4409 struct btrfs_space_info *found;
4410
4411 rcu_read_lock();
4412 list_for_each_entry_rcu(found, head, list) {
4413 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4414 found->force_alloc = CHUNK_ALLOC_FORCE;
4415 }
4416 rcu_read_unlock();
4417 }
4418
4419 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4420 {
4421 return (global->size << 1);
4422 }
4423
4424 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4425 struct btrfs_space_info *sinfo, int force)
4426 {
4427 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4428 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4429 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4430 u64 thresh;
4431
4432 if (force == CHUNK_ALLOC_FORCE)
4433 return 1;
4434
4435 /*
4436 * We need to take into account the global rsv because for all intents
4437 * and purposes it's used space. Don't worry about locking the
4438 * global_rsv, it doesn't change except when the transaction commits.
4439 */
4440 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4441 num_allocated += calc_global_rsv_need_space(global_rsv);
4442
4443 /*
4444 * in limited mode, we want to have some free space up to
4445 * about 1% of the FS size.
4446 */
4447 if (force == CHUNK_ALLOC_LIMITED) {
4448 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4449 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4450
4451 if (num_bytes - num_allocated < thresh)
4452 return 1;
4453 }
4454
4455 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4456 return 0;
4457 return 1;
4458 }
4459
4460 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4461 {
4462 u64 num_dev;
4463
4464 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4465 BTRFS_BLOCK_GROUP_RAID0 |
4466 BTRFS_BLOCK_GROUP_RAID5 |
4467 BTRFS_BLOCK_GROUP_RAID6))
4468 num_dev = fs_info->fs_devices->rw_devices;
4469 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4470 num_dev = 2;
4471 else
4472 num_dev = 1; /* DUP or single */
4473
4474 return num_dev;
4475 }
4476
4477 /*
4478 * If @is_allocation is true, reserve space in the system space info necessary
4479 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4480 * removing a chunk.
4481 */
4482 void check_system_chunk(struct btrfs_trans_handle *trans,
4483 struct btrfs_fs_info *fs_info, u64 type)
4484 {
4485 struct btrfs_space_info *info;
4486 u64 left;
4487 u64 thresh;
4488 int ret = 0;
4489 u64 num_devs;
4490
4491 /*
4492 * Needed because we can end up allocating a system chunk and for an
4493 * atomic and race free space reservation in the chunk block reserve.
4494 */
4495 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4496
4497 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4498 spin_lock(&info->lock);
4499 left = info->total_bytes - btrfs_space_info_used(info, true);
4500 spin_unlock(&info->lock);
4501
4502 num_devs = get_profile_num_devs(fs_info, type);
4503
4504 /* num_devs device items to update and 1 chunk item to add or remove */
4505 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4506 btrfs_calc_trans_metadata_size(fs_info, 1);
4507
4508 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4509 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4510 left, thresh, type);
4511 dump_space_info(fs_info, info, 0, 0);
4512 }
4513
4514 if (left < thresh) {
4515 u64 flags = btrfs_system_alloc_profile(fs_info);
4516
4517 /*
4518 * Ignore failure to create system chunk. We might end up not
4519 * needing it, as we might not need to COW all nodes/leafs from
4520 * the paths we visit in the chunk tree (they were already COWed
4521 * or created in the current transaction for example).
4522 */
4523 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4524 }
4525
4526 if (!ret) {
4527 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4528 &fs_info->chunk_block_rsv,
4529 thresh, BTRFS_RESERVE_NO_FLUSH);
4530 if (!ret)
4531 trans->chunk_bytes_reserved += thresh;
4532 }
4533 }
4534
4535 /*
4536 * If force is CHUNK_ALLOC_FORCE:
4537 * - return 1 if it successfully allocates a chunk,
4538 * - return errors including -ENOSPC otherwise.
4539 * If force is NOT CHUNK_ALLOC_FORCE:
4540 * - return 0 if it doesn't need to allocate a new chunk,
4541 * - return 1 if it successfully allocates a chunk,
4542 * - return errors including -ENOSPC otherwise.
4543 */
4544 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4545 struct btrfs_fs_info *fs_info, u64 flags, int force)
4546 {
4547 struct btrfs_space_info *space_info;
4548 int wait_for_alloc = 0;
4549 int ret = 0;
4550
4551 /* Don't re-enter if we're already allocating a chunk */
4552 if (trans->allocating_chunk)
4553 return -ENOSPC;
4554
4555 space_info = __find_space_info(fs_info, flags);
4556 if (!space_info) {
4557 ret = create_space_info(fs_info, flags, &space_info);
4558 if (ret)
4559 return ret;
4560 }
4561
4562 again:
4563 spin_lock(&space_info->lock);
4564 if (force < space_info->force_alloc)
4565 force = space_info->force_alloc;
4566 if (space_info->full) {
4567 if (should_alloc_chunk(fs_info, space_info, force))
4568 ret = -ENOSPC;
4569 else
4570 ret = 0;
4571 spin_unlock(&space_info->lock);
4572 return ret;
4573 }
4574
4575 if (!should_alloc_chunk(fs_info, space_info, force)) {
4576 spin_unlock(&space_info->lock);
4577 return 0;
4578 } else if (space_info->chunk_alloc) {
4579 wait_for_alloc = 1;
4580 } else {
4581 space_info->chunk_alloc = 1;
4582 }
4583
4584 spin_unlock(&space_info->lock);
4585
4586 mutex_lock(&fs_info->chunk_mutex);
4587
4588 /*
4589 * The chunk_mutex is held throughout the entirety of a chunk
4590 * allocation, so once we've acquired the chunk_mutex we know that the
4591 * other guy is done and we need to recheck and see if we should
4592 * allocate.
4593 */
4594 if (wait_for_alloc) {
4595 mutex_unlock(&fs_info->chunk_mutex);
4596 wait_for_alloc = 0;
4597 goto again;
4598 }
4599
4600 trans->allocating_chunk = true;
4601
4602 /*
4603 * If we have mixed data/metadata chunks we want to make sure we keep
4604 * allocating mixed chunks instead of individual chunks.
4605 */
4606 if (btrfs_mixed_space_info(space_info))
4607 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4608
4609 /*
4610 * if we're doing a data chunk, go ahead and make sure that
4611 * we keep a reasonable number of metadata chunks allocated in the
4612 * FS as well.
4613 */
4614 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4615 fs_info->data_chunk_allocations++;
4616 if (!(fs_info->data_chunk_allocations %
4617 fs_info->metadata_ratio))
4618 force_metadata_allocation(fs_info);
4619 }
4620
4621 /*
4622 * Check if we have enough space in SYSTEM chunk because we may need
4623 * to update devices.
4624 */
4625 check_system_chunk(trans, fs_info, flags);
4626
4627 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4628 trans->allocating_chunk = false;
4629
4630 spin_lock(&space_info->lock);
4631 if (ret < 0 && ret != -ENOSPC)
4632 goto out;
4633 if (ret)
4634 space_info->full = 1;
4635 else
4636 ret = 1;
4637
4638 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4639 out:
4640 space_info->chunk_alloc = 0;
4641 spin_unlock(&space_info->lock);
4642 mutex_unlock(&fs_info->chunk_mutex);
4643 /*
4644 * When we allocate a new chunk we reserve space in the chunk block
4645 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4646 * add new nodes/leafs to it if we end up needing to do it when
4647 * inserting the chunk item and updating device items as part of the
4648 * second phase of chunk allocation, performed by
4649 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4650 * large number of new block groups to create in our transaction
4651 * handle's new_bgs list to avoid exhausting the chunk block reserve
4652 * in extreme cases - like having a single transaction create many new
4653 * block groups when starting to write out the free space caches of all
4654 * the block groups that were made dirty during the lifetime of the
4655 * transaction.
4656 */
4657 if (trans->can_flush_pending_bgs &&
4658 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4659 btrfs_create_pending_block_groups(trans, fs_info);
4660 btrfs_trans_release_chunk_metadata(trans);
4661 }
4662 return ret;
4663 }
4664
4665 static int can_overcommit(struct btrfs_fs_info *fs_info,
4666 struct btrfs_space_info *space_info, u64 bytes,
4667 enum btrfs_reserve_flush_enum flush,
4668 bool system_chunk)
4669 {
4670 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4671 u64 profile;
4672 u64 space_size;
4673 u64 avail;
4674 u64 used;
4675
4676 /* Don't overcommit when in mixed mode. */
4677 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4678 return 0;
4679
4680 if (system_chunk)
4681 profile = btrfs_system_alloc_profile(fs_info);
4682 else
4683 profile = btrfs_metadata_alloc_profile(fs_info);
4684
4685 used = btrfs_space_info_used(space_info, false);
4686
4687 /*
4688 * We only want to allow over committing if we have lots of actual space
4689 * free, but if we don't have enough space to handle the global reserve
4690 * space then we could end up having a real enospc problem when trying
4691 * to allocate a chunk or some other such important allocation.
4692 */
4693 spin_lock(&global_rsv->lock);
4694 space_size = calc_global_rsv_need_space(global_rsv);
4695 spin_unlock(&global_rsv->lock);
4696 if (used + space_size >= space_info->total_bytes)
4697 return 0;
4698
4699 used += space_info->bytes_may_use;
4700
4701 avail = atomic64_read(&fs_info->free_chunk_space);
4702
4703 /*
4704 * If we have dup, raid1 or raid10 then only half of the free
4705 * space is actually useable. For raid56, the space info used
4706 * doesn't include the parity drive, so we don't have to
4707 * change the math
4708 */
4709 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4710 BTRFS_BLOCK_GROUP_RAID1 |
4711 BTRFS_BLOCK_GROUP_RAID10))
4712 avail >>= 1;
4713
4714 /*
4715 * If we aren't flushing all things, let us overcommit up to
4716 * 1/2th of the space. If we can flush, don't let us overcommit
4717 * too much, let it overcommit up to 1/8 of the space.
4718 */
4719 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4720 avail >>= 3;
4721 else
4722 avail >>= 1;
4723
4724 if (used + bytes < space_info->total_bytes + avail)
4725 return 1;
4726 return 0;
4727 }
4728
4729 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4730 unsigned long nr_pages, int nr_items)
4731 {
4732 struct super_block *sb = fs_info->sb;
4733
4734 if (down_read_trylock(&sb->s_umount)) {
4735 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4736 up_read(&sb->s_umount);
4737 } else {
4738 /*
4739 * We needn't worry the filesystem going from r/w to r/o though
4740 * we don't acquire ->s_umount mutex, because the filesystem
4741 * should guarantee the delalloc inodes list be empty after
4742 * the filesystem is readonly(all dirty pages are written to
4743 * the disk).
4744 */
4745 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4746 if (!current->journal_info)
4747 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4748 }
4749 }
4750
4751 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4752 u64 to_reclaim)
4753 {
4754 u64 bytes;
4755 u64 nr;
4756
4757 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4758 nr = div64_u64(to_reclaim, bytes);
4759 if (!nr)
4760 nr = 1;
4761 return nr;
4762 }
4763
4764 #define EXTENT_SIZE_PER_ITEM SZ_256K
4765
4766 /*
4767 * shrink metadata reservation for delalloc
4768 */
4769 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4770 u64 orig, bool wait_ordered)
4771 {
4772 struct btrfs_block_rsv *block_rsv;
4773 struct btrfs_space_info *space_info;
4774 struct btrfs_trans_handle *trans;
4775 u64 delalloc_bytes;
4776 u64 max_reclaim;
4777 u64 items;
4778 long time_left;
4779 unsigned long nr_pages;
4780 int loops;
4781 enum btrfs_reserve_flush_enum flush;
4782
4783 /* Calc the number of the pages we need flush for space reservation */
4784 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4785 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4786
4787 trans = (struct btrfs_trans_handle *)current->journal_info;
4788 block_rsv = &fs_info->delalloc_block_rsv;
4789 space_info = block_rsv->space_info;
4790
4791 delalloc_bytes = percpu_counter_sum_positive(
4792 &fs_info->delalloc_bytes);
4793 if (delalloc_bytes == 0) {
4794 if (trans)
4795 return;
4796 if (wait_ordered)
4797 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4798 return;
4799 }
4800
4801 loops = 0;
4802 while (delalloc_bytes && loops < 3) {
4803 max_reclaim = min(delalloc_bytes, to_reclaim);
4804 nr_pages = max_reclaim >> PAGE_SHIFT;
4805 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4806 /*
4807 * We need to wait for the async pages to actually start before
4808 * we do anything.
4809 */
4810 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4811 if (!max_reclaim)
4812 goto skip_async;
4813
4814 if (max_reclaim <= nr_pages)
4815 max_reclaim = 0;
4816 else
4817 max_reclaim -= nr_pages;
4818
4819 wait_event(fs_info->async_submit_wait,
4820 atomic_read(&fs_info->async_delalloc_pages) <=
4821 (int)max_reclaim);
4822 skip_async:
4823 if (!trans)
4824 flush = BTRFS_RESERVE_FLUSH_ALL;
4825 else
4826 flush = BTRFS_RESERVE_NO_FLUSH;
4827 spin_lock(&space_info->lock);
4828 if (can_overcommit(fs_info, space_info, orig, flush, false)) {
4829 spin_unlock(&space_info->lock);
4830 break;
4831 }
4832 if (list_empty(&space_info->tickets) &&
4833 list_empty(&space_info->priority_tickets)) {
4834 spin_unlock(&space_info->lock);
4835 break;
4836 }
4837 spin_unlock(&space_info->lock);
4838
4839 loops++;
4840 if (wait_ordered && !trans) {
4841 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4842 } else {
4843 time_left = schedule_timeout_killable(1);
4844 if (time_left)
4845 break;
4846 }
4847 delalloc_bytes = percpu_counter_sum_positive(
4848 &fs_info->delalloc_bytes);
4849 }
4850 }
4851
4852 /**
4853 * maybe_commit_transaction - possibly commit the transaction if its ok to
4854 * @root - the root we're allocating for
4855 * @bytes - the number of bytes we want to reserve
4856 * @force - force the commit
4857 *
4858 * This will check to make sure that committing the transaction will actually
4859 * get us somewhere and then commit the transaction if it does. Otherwise it
4860 * will return -ENOSPC.
4861 */
4862 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4863 struct btrfs_space_info *space_info,
4864 u64 bytes, int force)
4865 {
4866 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4867 struct btrfs_trans_handle *trans;
4868
4869 trans = (struct btrfs_trans_handle *)current->journal_info;
4870 if (trans)
4871 return -EAGAIN;
4872
4873 if (force)
4874 goto commit;
4875
4876 /* See if there is enough pinned space to make this reservation */
4877 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4878 bytes) >= 0)
4879 goto commit;
4880
4881 /*
4882 * See if there is some space in the delayed insertion reservation for
4883 * this reservation.
4884 */
4885 if (space_info != delayed_rsv->space_info)
4886 return -ENOSPC;
4887
4888 spin_lock(&delayed_rsv->lock);
4889 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4890 bytes - delayed_rsv->size) < 0) {
4891 spin_unlock(&delayed_rsv->lock);
4892 return -ENOSPC;
4893 }
4894 spin_unlock(&delayed_rsv->lock);
4895
4896 commit:
4897 trans = btrfs_join_transaction(fs_info->extent_root);
4898 if (IS_ERR(trans))
4899 return -ENOSPC;
4900
4901 return btrfs_commit_transaction(trans);
4902 }
4903
4904 struct reserve_ticket {
4905 u64 bytes;
4906 int error;
4907 struct list_head list;
4908 wait_queue_head_t wait;
4909 };
4910
4911 static int flush_space(struct btrfs_fs_info *fs_info,
4912 struct btrfs_space_info *space_info, u64 num_bytes,
4913 u64 orig_bytes, int state)
4914 {
4915 struct btrfs_root *root = fs_info->extent_root;
4916 struct btrfs_trans_handle *trans;
4917 int nr;
4918 int ret = 0;
4919
4920 switch (state) {
4921 case FLUSH_DELAYED_ITEMS_NR:
4922 case FLUSH_DELAYED_ITEMS:
4923 if (state == FLUSH_DELAYED_ITEMS_NR)
4924 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4925 else
4926 nr = -1;
4927
4928 trans = btrfs_join_transaction(root);
4929 if (IS_ERR(trans)) {
4930 ret = PTR_ERR(trans);
4931 break;
4932 }
4933 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4934 btrfs_end_transaction(trans);
4935 break;
4936 case FLUSH_DELALLOC:
4937 case FLUSH_DELALLOC_WAIT:
4938 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
4939 state == FLUSH_DELALLOC_WAIT);
4940 break;
4941 case ALLOC_CHUNK:
4942 trans = btrfs_join_transaction(root);
4943 if (IS_ERR(trans)) {
4944 ret = PTR_ERR(trans);
4945 break;
4946 }
4947 ret = do_chunk_alloc(trans, fs_info,
4948 btrfs_metadata_alloc_profile(fs_info),
4949 CHUNK_ALLOC_NO_FORCE);
4950 btrfs_end_transaction(trans);
4951 if (ret > 0 || ret == -ENOSPC)
4952 ret = 0;
4953 break;
4954 case COMMIT_TRANS:
4955 ret = may_commit_transaction(fs_info, space_info,
4956 orig_bytes, 0);
4957 break;
4958 default:
4959 ret = -ENOSPC;
4960 break;
4961 }
4962
4963 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4964 orig_bytes, state, ret);
4965 return ret;
4966 }
4967
4968 static inline u64
4969 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4970 struct btrfs_space_info *space_info,
4971 bool system_chunk)
4972 {
4973 struct reserve_ticket *ticket;
4974 u64 used;
4975 u64 expected;
4976 u64 to_reclaim = 0;
4977
4978 list_for_each_entry(ticket, &space_info->tickets, list)
4979 to_reclaim += ticket->bytes;
4980 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4981 to_reclaim += ticket->bytes;
4982 if (to_reclaim)
4983 return to_reclaim;
4984
4985 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4986 if (can_overcommit(fs_info, space_info, to_reclaim,
4987 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4988 return 0;
4989
4990 used = btrfs_space_info_used(space_info, true);
4991
4992 if (can_overcommit(fs_info, space_info, SZ_1M,
4993 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4994 expected = div_factor_fine(space_info->total_bytes, 95);
4995 else
4996 expected = div_factor_fine(space_info->total_bytes, 90);
4997
4998 if (used > expected)
4999 to_reclaim = used - expected;
5000 else
5001 to_reclaim = 0;
5002 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5003 space_info->bytes_reserved);
5004 return to_reclaim;
5005 }
5006
5007 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5008 struct btrfs_space_info *space_info,
5009 u64 used, bool system_chunk)
5010 {
5011 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5012
5013 /* If we're just plain full then async reclaim just slows us down. */
5014 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5015 return 0;
5016
5017 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5018 system_chunk))
5019 return 0;
5020
5021 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5022 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5023 }
5024
5025 static void wake_all_tickets(struct list_head *head)
5026 {
5027 struct reserve_ticket *ticket;
5028
5029 while (!list_empty(head)) {
5030 ticket = list_first_entry(head, struct reserve_ticket, list);
5031 list_del_init(&ticket->list);
5032 ticket->error = -ENOSPC;
5033 wake_up(&ticket->wait);
5034 }
5035 }
5036
5037 /*
5038 * This is for normal flushers, we can wait all goddamned day if we want to. We
5039 * will loop and continuously try to flush as long as we are making progress.
5040 * We count progress as clearing off tickets each time we have to loop.
5041 */
5042 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5043 {
5044 struct btrfs_fs_info *fs_info;
5045 struct btrfs_space_info *space_info;
5046 u64 to_reclaim;
5047 int flush_state;
5048 int commit_cycles = 0;
5049 u64 last_tickets_id;
5050
5051 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5052 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5053
5054 spin_lock(&space_info->lock);
5055 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5056 false);
5057 if (!to_reclaim) {
5058 space_info->flush = 0;
5059 spin_unlock(&space_info->lock);
5060 return;
5061 }
5062 last_tickets_id = space_info->tickets_id;
5063 spin_unlock(&space_info->lock);
5064
5065 flush_state = FLUSH_DELAYED_ITEMS_NR;
5066 do {
5067 struct reserve_ticket *ticket;
5068 int ret;
5069
5070 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5071 flush_state);
5072 spin_lock(&space_info->lock);
5073 if (list_empty(&space_info->tickets)) {
5074 space_info->flush = 0;
5075 spin_unlock(&space_info->lock);
5076 return;
5077 }
5078 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5079 space_info,
5080 false);
5081 ticket = list_first_entry(&space_info->tickets,
5082 struct reserve_ticket, list);
5083 if (last_tickets_id == space_info->tickets_id) {
5084 flush_state++;
5085 } else {
5086 last_tickets_id = space_info->tickets_id;
5087 flush_state = FLUSH_DELAYED_ITEMS_NR;
5088 if (commit_cycles)
5089 commit_cycles--;
5090 }
5091
5092 if (flush_state > COMMIT_TRANS) {
5093 commit_cycles++;
5094 if (commit_cycles > 2) {
5095 wake_all_tickets(&space_info->tickets);
5096 space_info->flush = 0;
5097 } else {
5098 flush_state = FLUSH_DELAYED_ITEMS_NR;
5099 }
5100 }
5101 spin_unlock(&space_info->lock);
5102 } while (flush_state <= COMMIT_TRANS);
5103 }
5104
5105 void btrfs_init_async_reclaim_work(struct work_struct *work)
5106 {
5107 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5108 }
5109
5110 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5111 struct btrfs_space_info *space_info,
5112 struct reserve_ticket *ticket)
5113 {
5114 u64 to_reclaim;
5115 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5116
5117 spin_lock(&space_info->lock);
5118 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119 false);
5120 if (!to_reclaim) {
5121 spin_unlock(&space_info->lock);
5122 return;
5123 }
5124 spin_unlock(&space_info->lock);
5125
5126 do {
5127 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5128 flush_state);
5129 flush_state++;
5130 spin_lock(&space_info->lock);
5131 if (ticket->bytes == 0) {
5132 spin_unlock(&space_info->lock);
5133 return;
5134 }
5135 spin_unlock(&space_info->lock);
5136
5137 /*
5138 * Priority flushers can't wait on delalloc without
5139 * deadlocking.
5140 */
5141 if (flush_state == FLUSH_DELALLOC ||
5142 flush_state == FLUSH_DELALLOC_WAIT)
5143 flush_state = ALLOC_CHUNK;
5144 } while (flush_state < COMMIT_TRANS);
5145 }
5146
5147 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5148 struct btrfs_space_info *space_info,
5149 struct reserve_ticket *ticket, u64 orig_bytes)
5150
5151 {
5152 DEFINE_WAIT(wait);
5153 int ret = 0;
5154
5155 spin_lock(&space_info->lock);
5156 while (ticket->bytes > 0 && ticket->error == 0) {
5157 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5158 if (ret) {
5159 ret = -EINTR;
5160 break;
5161 }
5162 spin_unlock(&space_info->lock);
5163
5164 schedule();
5165
5166 finish_wait(&ticket->wait, &wait);
5167 spin_lock(&space_info->lock);
5168 }
5169 if (!ret)
5170 ret = ticket->error;
5171 if (!list_empty(&ticket->list))
5172 list_del_init(&ticket->list);
5173 if (ticket->bytes && ticket->bytes < orig_bytes) {
5174 u64 num_bytes = orig_bytes - ticket->bytes;
5175 space_info->bytes_may_use -= num_bytes;
5176 trace_btrfs_space_reservation(fs_info, "space_info",
5177 space_info->flags, num_bytes, 0);
5178 }
5179 spin_unlock(&space_info->lock);
5180
5181 return ret;
5182 }
5183
5184 /**
5185 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5186 * @root - the root we're allocating for
5187 * @space_info - the space info we want to allocate from
5188 * @orig_bytes - the number of bytes we want
5189 * @flush - whether or not we can flush to make our reservation
5190 *
5191 * This will reserve orig_bytes number of bytes from the space info associated
5192 * with the block_rsv. If there is not enough space it will make an attempt to
5193 * flush out space to make room. It will do this by flushing delalloc if
5194 * possible or committing the transaction. If flush is 0 then no attempts to
5195 * regain reservations will be made and this will fail if there is not enough
5196 * space already.
5197 */
5198 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5199 struct btrfs_space_info *space_info,
5200 u64 orig_bytes,
5201 enum btrfs_reserve_flush_enum flush,
5202 bool system_chunk)
5203 {
5204 struct reserve_ticket ticket;
5205 u64 used;
5206 int ret = 0;
5207
5208 ASSERT(orig_bytes);
5209 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5210
5211 spin_lock(&space_info->lock);
5212 ret = -ENOSPC;
5213 used = btrfs_space_info_used(space_info, true);
5214
5215 /*
5216 * If we have enough space then hooray, make our reservation and carry
5217 * on. If not see if we can overcommit, and if we can, hooray carry on.
5218 * If not things get more complicated.
5219 */
5220 if (used + orig_bytes <= space_info->total_bytes) {
5221 space_info->bytes_may_use += orig_bytes;
5222 trace_btrfs_space_reservation(fs_info, "space_info",
5223 space_info->flags, orig_bytes, 1);
5224 ret = 0;
5225 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5226 system_chunk)) {
5227 space_info->bytes_may_use += orig_bytes;
5228 trace_btrfs_space_reservation(fs_info, "space_info",
5229 space_info->flags, orig_bytes, 1);
5230 ret = 0;
5231 }
5232
5233 /*
5234 * If we couldn't make a reservation then setup our reservation ticket
5235 * and kick the async worker if it's not already running.
5236 *
5237 * If we are a priority flusher then we just need to add our ticket to
5238 * the list and we will do our own flushing further down.
5239 */
5240 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5241 ticket.bytes = orig_bytes;
5242 ticket.error = 0;
5243 init_waitqueue_head(&ticket.wait);
5244 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5245 list_add_tail(&ticket.list, &space_info->tickets);
5246 if (!space_info->flush) {
5247 space_info->flush = 1;
5248 trace_btrfs_trigger_flush(fs_info,
5249 space_info->flags,
5250 orig_bytes, flush,
5251 "enospc");
5252 queue_work(system_unbound_wq,
5253 &fs_info->async_reclaim_work);
5254 }
5255 } else {
5256 list_add_tail(&ticket.list,
5257 &space_info->priority_tickets);
5258 }
5259 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5260 used += orig_bytes;
5261 /*
5262 * We will do the space reservation dance during log replay,
5263 * which means we won't have fs_info->fs_root set, so don't do
5264 * the async reclaim as we will panic.
5265 */
5266 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5267 need_do_async_reclaim(fs_info, space_info,
5268 used, system_chunk) &&
5269 !work_busy(&fs_info->async_reclaim_work)) {
5270 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5271 orig_bytes, flush, "preempt");
5272 queue_work(system_unbound_wq,
5273 &fs_info->async_reclaim_work);
5274 }
5275 }
5276 spin_unlock(&space_info->lock);
5277 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5278 return ret;
5279
5280 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5281 return wait_reserve_ticket(fs_info, space_info, &ticket,
5282 orig_bytes);
5283
5284 ret = 0;
5285 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5286 spin_lock(&space_info->lock);
5287 if (ticket.bytes) {
5288 if (ticket.bytes < orig_bytes) {
5289 u64 num_bytes = orig_bytes - ticket.bytes;
5290 space_info->bytes_may_use -= num_bytes;
5291 trace_btrfs_space_reservation(fs_info, "space_info",
5292 space_info->flags,
5293 num_bytes, 0);
5294
5295 }
5296 list_del_init(&ticket.list);
5297 ret = -ENOSPC;
5298 }
5299 spin_unlock(&space_info->lock);
5300 ASSERT(list_empty(&ticket.list));
5301 return ret;
5302 }
5303
5304 /**
5305 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5306 * @root - the root we're allocating for
5307 * @block_rsv - the block_rsv we're allocating for
5308 * @orig_bytes - the number of bytes we want
5309 * @flush - whether or not we can flush to make our reservation
5310 *
5311 * This will reserve orgi_bytes number of bytes from the space info associated
5312 * with the block_rsv. If there is not enough space it will make an attempt to
5313 * flush out space to make room. It will do this by flushing delalloc if
5314 * possible or committing the transaction. If flush is 0 then no attempts to
5315 * regain reservations will be made and this will fail if there is not enough
5316 * space already.
5317 */
5318 static int reserve_metadata_bytes(struct btrfs_root *root,
5319 struct btrfs_block_rsv *block_rsv,
5320 u64 orig_bytes,
5321 enum btrfs_reserve_flush_enum flush)
5322 {
5323 struct btrfs_fs_info *fs_info = root->fs_info;
5324 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5325 int ret;
5326 bool system_chunk = (root == fs_info->chunk_root);
5327
5328 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5329 orig_bytes, flush, system_chunk);
5330 if (ret == -ENOSPC &&
5331 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5332 if (block_rsv != global_rsv &&
5333 !block_rsv_use_bytes(global_rsv, orig_bytes))
5334 ret = 0;
5335 }
5336 if (ret == -ENOSPC)
5337 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5338 block_rsv->space_info->flags,
5339 orig_bytes, 1);
5340 return ret;
5341 }
5342
5343 static struct btrfs_block_rsv *get_block_rsv(
5344 const struct btrfs_trans_handle *trans,
5345 const struct btrfs_root *root)
5346 {
5347 struct btrfs_fs_info *fs_info = root->fs_info;
5348 struct btrfs_block_rsv *block_rsv = NULL;
5349
5350 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5351 (root == fs_info->csum_root && trans->adding_csums) ||
5352 (root == fs_info->uuid_root))
5353 block_rsv = trans->block_rsv;
5354
5355 if (!block_rsv)
5356 block_rsv = root->block_rsv;
5357
5358 if (!block_rsv)
5359 block_rsv = &fs_info->empty_block_rsv;
5360
5361 return block_rsv;
5362 }
5363
5364 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5365 u64 num_bytes)
5366 {
5367 int ret = -ENOSPC;
5368 spin_lock(&block_rsv->lock);
5369 if (block_rsv->reserved >= num_bytes) {
5370 block_rsv->reserved -= num_bytes;
5371 if (block_rsv->reserved < block_rsv->size)
5372 block_rsv->full = 0;
5373 ret = 0;
5374 }
5375 spin_unlock(&block_rsv->lock);
5376 return ret;
5377 }
5378
5379 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5380 u64 num_bytes, int update_size)
5381 {
5382 spin_lock(&block_rsv->lock);
5383 block_rsv->reserved += num_bytes;
5384 if (update_size)
5385 block_rsv->size += num_bytes;
5386 else if (block_rsv->reserved >= block_rsv->size)
5387 block_rsv->full = 1;
5388 spin_unlock(&block_rsv->lock);
5389 }
5390
5391 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5392 struct btrfs_block_rsv *dest, u64 num_bytes,
5393 int min_factor)
5394 {
5395 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5396 u64 min_bytes;
5397
5398 if (global_rsv->space_info != dest->space_info)
5399 return -ENOSPC;
5400
5401 spin_lock(&global_rsv->lock);
5402 min_bytes = div_factor(global_rsv->size, min_factor);
5403 if (global_rsv->reserved < min_bytes + num_bytes) {
5404 spin_unlock(&global_rsv->lock);
5405 return -ENOSPC;
5406 }
5407 global_rsv->reserved -= num_bytes;
5408 if (global_rsv->reserved < global_rsv->size)
5409 global_rsv->full = 0;
5410 spin_unlock(&global_rsv->lock);
5411
5412 block_rsv_add_bytes(dest, num_bytes, 1);
5413 return 0;
5414 }
5415
5416 /*
5417 * This is for space we already have accounted in space_info->bytes_may_use, so
5418 * basically when we're returning space from block_rsv's.
5419 */
5420 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5421 struct btrfs_space_info *space_info,
5422 u64 num_bytes)
5423 {
5424 struct reserve_ticket *ticket;
5425 struct list_head *head;
5426 u64 used;
5427 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5428 bool check_overcommit = false;
5429
5430 spin_lock(&space_info->lock);
5431 head = &space_info->priority_tickets;
5432
5433 /*
5434 * If we are over our limit then we need to check and see if we can
5435 * overcommit, and if we can't then we just need to free up our space
5436 * and not satisfy any requests.
5437 */
5438 used = btrfs_space_info_used(space_info, true);
5439 if (used - num_bytes >= space_info->total_bytes)
5440 check_overcommit = true;
5441 again:
5442 while (!list_empty(head) && num_bytes) {
5443 ticket = list_first_entry(head, struct reserve_ticket,
5444 list);
5445 /*
5446 * We use 0 bytes because this space is already reserved, so
5447 * adding the ticket space would be a double count.
5448 */
5449 if (check_overcommit &&
5450 !can_overcommit(fs_info, space_info, 0, flush, false))
5451 break;
5452 if (num_bytes >= ticket->bytes) {
5453 list_del_init(&ticket->list);
5454 num_bytes -= ticket->bytes;
5455 ticket->bytes = 0;
5456 space_info->tickets_id++;
5457 wake_up(&ticket->wait);
5458 } else {
5459 ticket->bytes -= num_bytes;
5460 num_bytes = 0;
5461 }
5462 }
5463
5464 if (num_bytes && head == &space_info->priority_tickets) {
5465 head = &space_info->tickets;
5466 flush = BTRFS_RESERVE_FLUSH_ALL;
5467 goto again;
5468 }
5469 space_info->bytes_may_use -= num_bytes;
5470 trace_btrfs_space_reservation(fs_info, "space_info",
5471 space_info->flags, num_bytes, 0);
5472 spin_unlock(&space_info->lock);
5473 }
5474
5475 /*
5476 * This is for newly allocated space that isn't accounted in
5477 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5478 * we use this helper.
5479 */
5480 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5481 struct btrfs_space_info *space_info,
5482 u64 num_bytes)
5483 {
5484 struct reserve_ticket *ticket;
5485 struct list_head *head = &space_info->priority_tickets;
5486
5487 again:
5488 while (!list_empty(head) && num_bytes) {
5489 ticket = list_first_entry(head, struct reserve_ticket,
5490 list);
5491 if (num_bytes >= ticket->bytes) {
5492 trace_btrfs_space_reservation(fs_info, "space_info",
5493 space_info->flags,
5494 ticket->bytes, 1);
5495 list_del_init(&ticket->list);
5496 num_bytes -= ticket->bytes;
5497 space_info->bytes_may_use += ticket->bytes;
5498 ticket->bytes = 0;
5499 space_info->tickets_id++;
5500 wake_up(&ticket->wait);
5501 } else {
5502 trace_btrfs_space_reservation(fs_info, "space_info",
5503 space_info->flags,
5504 num_bytes, 1);
5505 space_info->bytes_may_use += num_bytes;
5506 ticket->bytes -= num_bytes;
5507 num_bytes = 0;
5508 }
5509 }
5510
5511 if (num_bytes && head == &space_info->priority_tickets) {
5512 head = &space_info->tickets;
5513 goto again;
5514 }
5515 }
5516
5517 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5518 struct btrfs_block_rsv *block_rsv,
5519 struct btrfs_block_rsv *dest, u64 num_bytes)
5520 {
5521 struct btrfs_space_info *space_info = block_rsv->space_info;
5522
5523 spin_lock(&block_rsv->lock);
5524 if (num_bytes == (u64)-1)
5525 num_bytes = block_rsv->size;
5526 block_rsv->size -= num_bytes;
5527 if (block_rsv->reserved >= block_rsv->size) {
5528 num_bytes = block_rsv->reserved - block_rsv->size;
5529 block_rsv->reserved = block_rsv->size;
5530 block_rsv->full = 1;
5531 } else {
5532 num_bytes = 0;
5533 }
5534 spin_unlock(&block_rsv->lock);
5535
5536 if (num_bytes > 0) {
5537 if (dest) {
5538 spin_lock(&dest->lock);
5539 if (!dest->full) {
5540 u64 bytes_to_add;
5541
5542 bytes_to_add = dest->size - dest->reserved;
5543 bytes_to_add = min(num_bytes, bytes_to_add);
5544 dest->reserved += bytes_to_add;
5545 if (dest->reserved >= dest->size)
5546 dest->full = 1;
5547 num_bytes -= bytes_to_add;
5548 }
5549 spin_unlock(&dest->lock);
5550 }
5551 if (num_bytes)
5552 space_info_add_old_bytes(fs_info, space_info,
5553 num_bytes);
5554 }
5555 }
5556
5557 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5558 struct btrfs_block_rsv *dst, u64 num_bytes,
5559 int update_size)
5560 {
5561 int ret;
5562
5563 ret = block_rsv_use_bytes(src, num_bytes);
5564 if (ret)
5565 return ret;
5566
5567 block_rsv_add_bytes(dst, num_bytes, update_size);
5568 return 0;
5569 }
5570
5571 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5572 {
5573 memset(rsv, 0, sizeof(*rsv));
5574 spin_lock_init(&rsv->lock);
5575 rsv->type = type;
5576 }
5577
5578 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5579 unsigned short type)
5580 {
5581 struct btrfs_block_rsv *block_rsv;
5582
5583 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5584 if (!block_rsv)
5585 return NULL;
5586
5587 btrfs_init_block_rsv(block_rsv, type);
5588 block_rsv->space_info = __find_space_info(fs_info,
5589 BTRFS_BLOCK_GROUP_METADATA);
5590 return block_rsv;
5591 }
5592
5593 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5594 struct btrfs_block_rsv *rsv)
5595 {
5596 if (!rsv)
5597 return;
5598 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5599 kfree(rsv);
5600 }
5601
5602 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5603 {
5604 kfree(rsv);
5605 }
5606
5607 int btrfs_block_rsv_add(struct btrfs_root *root,
5608 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5609 enum btrfs_reserve_flush_enum flush)
5610 {
5611 int ret;
5612
5613 if (num_bytes == 0)
5614 return 0;
5615
5616 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5617 if (!ret) {
5618 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5619 return 0;
5620 }
5621
5622 return ret;
5623 }
5624
5625 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5626 {
5627 u64 num_bytes = 0;
5628 int ret = -ENOSPC;
5629
5630 if (!block_rsv)
5631 return 0;
5632
5633 spin_lock(&block_rsv->lock);
5634 num_bytes = div_factor(block_rsv->size, min_factor);
5635 if (block_rsv->reserved >= num_bytes)
5636 ret = 0;
5637 spin_unlock(&block_rsv->lock);
5638
5639 return ret;
5640 }
5641
5642 int btrfs_block_rsv_refill(struct btrfs_root *root,
5643 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5644 enum btrfs_reserve_flush_enum flush)
5645 {
5646 u64 num_bytes = 0;
5647 int ret = -ENOSPC;
5648
5649 if (!block_rsv)
5650 return 0;
5651
5652 spin_lock(&block_rsv->lock);
5653 num_bytes = min_reserved;
5654 if (block_rsv->reserved >= num_bytes)
5655 ret = 0;
5656 else
5657 num_bytes -= block_rsv->reserved;
5658 spin_unlock(&block_rsv->lock);
5659
5660 if (!ret)
5661 return 0;
5662
5663 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5664 if (!ret) {
5665 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5666 return 0;
5667 }
5668
5669 return ret;
5670 }
5671
5672 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5673 struct btrfs_block_rsv *block_rsv,
5674 u64 num_bytes)
5675 {
5676 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5677
5678 if (global_rsv == block_rsv ||
5679 block_rsv->space_info != global_rsv->space_info)
5680 global_rsv = NULL;
5681 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5682 }
5683
5684 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5685 {
5686 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5687 struct btrfs_space_info *sinfo = block_rsv->space_info;
5688 u64 num_bytes;
5689
5690 /*
5691 * The global block rsv is based on the size of the extent tree, the
5692 * checksum tree and the root tree. If the fs is empty we want to set
5693 * it to a minimal amount for safety.
5694 */
5695 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5696 btrfs_root_used(&fs_info->csum_root->root_item) +
5697 btrfs_root_used(&fs_info->tree_root->root_item);
5698 num_bytes = max_t(u64, num_bytes, SZ_16M);
5699
5700 spin_lock(&sinfo->lock);
5701 spin_lock(&block_rsv->lock);
5702
5703 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5704
5705 if (block_rsv->reserved < block_rsv->size) {
5706 num_bytes = btrfs_space_info_used(sinfo, true);
5707 if (sinfo->total_bytes > num_bytes) {
5708 num_bytes = sinfo->total_bytes - num_bytes;
5709 num_bytes = min(num_bytes,
5710 block_rsv->size - block_rsv->reserved);
5711 block_rsv->reserved += num_bytes;
5712 sinfo->bytes_may_use += num_bytes;
5713 trace_btrfs_space_reservation(fs_info, "space_info",
5714 sinfo->flags, num_bytes,
5715 1);
5716 }
5717 } else if (block_rsv->reserved > block_rsv->size) {
5718 num_bytes = block_rsv->reserved - block_rsv->size;
5719 sinfo->bytes_may_use -= num_bytes;
5720 trace_btrfs_space_reservation(fs_info, "space_info",
5721 sinfo->flags, num_bytes, 0);
5722 block_rsv->reserved = block_rsv->size;
5723 }
5724
5725 if (block_rsv->reserved == block_rsv->size)
5726 block_rsv->full = 1;
5727 else
5728 block_rsv->full = 0;
5729
5730 spin_unlock(&block_rsv->lock);
5731 spin_unlock(&sinfo->lock);
5732 }
5733
5734 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5735 {
5736 struct btrfs_space_info *space_info;
5737
5738 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5739 fs_info->chunk_block_rsv.space_info = space_info;
5740
5741 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5742 fs_info->global_block_rsv.space_info = space_info;
5743 fs_info->delalloc_block_rsv.space_info = space_info;
5744 fs_info->trans_block_rsv.space_info = space_info;
5745 fs_info->empty_block_rsv.space_info = space_info;
5746 fs_info->delayed_block_rsv.space_info = space_info;
5747
5748 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5749 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5750 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5751 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5752 if (fs_info->quota_root)
5753 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5754 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5755
5756 update_global_block_rsv(fs_info);
5757 }
5758
5759 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5760 {
5761 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5762 (u64)-1);
5763 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5764 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5765 WARN_ON(fs_info->trans_block_rsv.size > 0);
5766 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5767 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5768 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5769 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5770 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5771 }
5772
5773 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5774 struct btrfs_fs_info *fs_info)
5775 {
5776 if (!trans->block_rsv)
5777 return;
5778
5779 if (!trans->bytes_reserved)
5780 return;
5781
5782 trace_btrfs_space_reservation(fs_info, "transaction",
5783 trans->transid, trans->bytes_reserved, 0);
5784 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5785 trans->bytes_reserved);
5786 trans->bytes_reserved = 0;
5787 }
5788
5789 /*
5790 * To be called after all the new block groups attached to the transaction
5791 * handle have been created (btrfs_create_pending_block_groups()).
5792 */
5793 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5794 {
5795 struct btrfs_fs_info *fs_info = trans->fs_info;
5796
5797 if (!trans->chunk_bytes_reserved)
5798 return;
5799
5800 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5801
5802 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5803 trans->chunk_bytes_reserved);
5804 trans->chunk_bytes_reserved = 0;
5805 }
5806
5807 /* Can only return 0 or -ENOSPC */
5808 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5809 struct btrfs_inode *inode)
5810 {
5811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5812 struct btrfs_root *root = inode->root;
5813 /*
5814 * We always use trans->block_rsv here as we will have reserved space
5815 * for our orphan when starting the transaction, using get_block_rsv()
5816 * here will sometimes make us choose the wrong block rsv as we could be
5817 * doing a reloc inode for a non refcounted root.
5818 */
5819 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5820 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5821
5822 /*
5823 * We need to hold space in order to delete our orphan item once we've
5824 * added it, so this takes the reservation so we can release it later
5825 * when we are truly done with the orphan item.
5826 */
5827 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5828
5829 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5830 num_bytes, 1);
5831 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5832 }
5833
5834 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5835 {
5836 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5837 struct btrfs_root *root = inode->root;
5838 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5839
5840 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5841 num_bytes, 0);
5842 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5843 }
5844
5845 /*
5846 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5847 * root: the root of the parent directory
5848 * rsv: block reservation
5849 * items: the number of items that we need do reservation
5850 * qgroup_reserved: used to return the reserved size in qgroup
5851 *
5852 * This function is used to reserve the space for snapshot/subvolume
5853 * creation and deletion. Those operations are different with the
5854 * common file/directory operations, they change two fs/file trees
5855 * and root tree, the number of items that the qgroup reserves is
5856 * different with the free space reservation. So we can not use
5857 * the space reservation mechanism in start_transaction().
5858 */
5859 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5860 struct btrfs_block_rsv *rsv,
5861 int items,
5862 u64 *qgroup_reserved,
5863 bool use_global_rsv)
5864 {
5865 u64 num_bytes;
5866 int ret;
5867 struct btrfs_fs_info *fs_info = root->fs_info;
5868 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5869
5870 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5871 /* One for parent inode, two for dir entries */
5872 num_bytes = 3 * fs_info->nodesize;
5873 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5874 if (ret)
5875 return ret;
5876 } else {
5877 num_bytes = 0;
5878 }
5879
5880 *qgroup_reserved = num_bytes;
5881
5882 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5883 rsv->space_info = __find_space_info(fs_info,
5884 BTRFS_BLOCK_GROUP_METADATA);
5885 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5886 BTRFS_RESERVE_FLUSH_ALL);
5887
5888 if (ret == -ENOSPC && use_global_rsv)
5889 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5890
5891 if (ret && *qgroup_reserved)
5892 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5893
5894 return ret;
5895 }
5896
5897 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5898 struct btrfs_block_rsv *rsv)
5899 {
5900 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5901 }
5902
5903 /**
5904 * drop_outstanding_extent - drop an outstanding extent
5905 * @inode: the inode we're dropping the extent for
5906 * @num_bytes: the number of bytes we're releasing.
5907 *
5908 * This is called when we are freeing up an outstanding extent, either called
5909 * after an error or after an extent is written. This will return the number of
5910 * reserved extents that need to be freed. This must be called with
5911 * BTRFS_I(inode)->lock held.
5912 */
5913 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5914 u64 num_bytes)
5915 {
5916 unsigned drop_inode_space = 0;
5917 unsigned dropped_extents = 0;
5918 unsigned num_extents;
5919
5920 num_extents = count_max_extents(num_bytes);
5921 ASSERT(num_extents);
5922 ASSERT(inode->outstanding_extents >= num_extents);
5923 inode->outstanding_extents -= num_extents;
5924
5925 if (inode->outstanding_extents == 0 &&
5926 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5927 &inode->runtime_flags))
5928 drop_inode_space = 1;
5929
5930 /*
5931 * If we have more or the same amount of outstanding extents than we have
5932 * reserved then we need to leave the reserved extents count alone.
5933 */
5934 if (inode->outstanding_extents >= inode->reserved_extents)
5935 return drop_inode_space;
5936
5937 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5938 inode->reserved_extents -= dropped_extents;
5939 return dropped_extents + drop_inode_space;
5940 }
5941
5942 /**
5943 * calc_csum_metadata_size - return the amount of metadata space that must be
5944 * reserved/freed for the given bytes.
5945 * @inode: the inode we're manipulating
5946 * @num_bytes: the number of bytes in question
5947 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5948 *
5949 * This adjusts the number of csum_bytes in the inode and then returns the
5950 * correct amount of metadata that must either be reserved or freed. We
5951 * calculate how many checksums we can fit into one leaf and then divide the
5952 * number of bytes that will need to be checksumed by this value to figure out
5953 * how many checksums will be required. If we are adding bytes then the number
5954 * may go up and we will return the number of additional bytes that must be
5955 * reserved. If it is going down we will return the number of bytes that must
5956 * be freed.
5957 *
5958 * This must be called with BTRFS_I(inode)->lock held.
5959 */
5960 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5961 int reserve)
5962 {
5963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5964 u64 old_csums, num_csums;
5965
5966 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5967 return 0;
5968
5969 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5970 if (reserve)
5971 inode->csum_bytes += num_bytes;
5972 else
5973 inode->csum_bytes -= num_bytes;
5974 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5975
5976 /* No change, no need to reserve more */
5977 if (old_csums == num_csums)
5978 return 0;
5979
5980 if (reserve)
5981 return btrfs_calc_trans_metadata_size(fs_info,
5982 num_csums - old_csums);
5983
5984 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5985 }
5986
5987 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5988 {
5989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5990 struct btrfs_root *root = inode->root;
5991 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5992 u64 to_reserve = 0;
5993 u64 csum_bytes;
5994 unsigned nr_extents;
5995 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5996 int ret = 0;
5997 bool delalloc_lock = true;
5998 u64 to_free = 0;
5999 unsigned dropped;
6000 bool release_extra = false;
6001
6002 /* If we are a free space inode we need to not flush since we will be in
6003 * the middle of a transaction commit. We also don't need the delalloc
6004 * mutex since we won't race with anybody. We need this mostly to make
6005 * lockdep shut its filthy mouth.
6006 *
6007 * If we have a transaction open (can happen if we call truncate_block
6008 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6009 */
6010 if (btrfs_is_free_space_inode(inode)) {
6011 flush = BTRFS_RESERVE_NO_FLUSH;
6012 delalloc_lock = false;
6013 } else if (current->journal_info) {
6014 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6015 }
6016
6017 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6018 btrfs_transaction_in_commit(fs_info))
6019 schedule_timeout(1);
6020
6021 if (delalloc_lock)
6022 mutex_lock(&inode->delalloc_mutex);
6023
6024 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6025
6026 spin_lock(&inode->lock);
6027 nr_extents = count_max_extents(num_bytes);
6028 inode->outstanding_extents += nr_extents;
6029
6030 nr_extents = 0;
6031 if (inode->outstanding_extents > inode->reserved_extents)
6032 nr_extents += inode->outstanding_extents -
6033 inode->reserved_extents;
6034
6035 /* We always want to reserve a slot for updating the inode. */
6036 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
6037 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6038 csum_bytes = inode->csum_bytes;
6039 spin_unlock(&inode->lock);
6040
6041 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6042 ret = btrfs_qgroup_reserve_meta(root,
6043 nr_extents * fs_info->nodesize, true);
6044 if (ret)
6045 goto out_fail;
6046 }
6047
6048 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6049 if (unlikely(ret)) {
6050 btrfs_qgroup_free_meta(root,
6051 nr_extents * fs_info->nodesize);
6052 goto out_fail;
6053 }
6054
6055 spin_lock(&inode->lock);
6056 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6057 &inode->runtime_flags)) {
6058 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6059 release_extra = true;
6060 }
6061 inode->reserved_extents += nr_extents;
6062 spin_unlock(&inode->lock);
6063
6064 if (delalloc_lock)
6065 mutex_unlock(&inode->delalloc_mutex);
6066
6067 if (to_reserve)
6068 trace_btrfs_space_reservation(fs_info, "delalloc",
6069 btrfs_ino(inode), to_reserve, 1);
6070 if (release_extra)
6071 btrfs_block_rsv_release(fs_info, block_rsv,
6072 btrfs_calc_trans_metadata_size(fs_info, 1));
6073 return 0;
6074
6075 out_fail:
6076 spin_lock(&inode->lock);
6077 dropped = drop_outstanding_extent(inode, num_bytes);
6078 /*
6079 * If the inodes csum_bytes is the same as the original
6080 * csum_bytes then we know we haven't raced with any free()ers
6081 * so we can just reduce our inodes csum bytes and carry on.
6082 */
6083 if (inode->csum_bytes == csum_bytes) {
6084 calc_csum_metadata_size(inode, num_bytes, 0);
6085 } else {
6086 u64 orig_csum_bytes = inode->csum_bytes;
6087 u64 bytes;
6088
6089 /*
6090 * This is tricky, but first we need to figure out how much we
6091 * freed from any free-ers that occurred during this
6092 * reservation, so we reset ->csum_bytes to the csum_bytes
6093 * before we dropped our lock, and then call the free for the
6094 * number of bytes that were freed while we were trying our
6095 * reservation.
6096 */
6097 bytes = csum_bytes - inode->csum_bytes;
6098 inode->csum_bytes = csum_bytes;
6099 to_free = calc_csum_metadata_size(inode, bytes, 0);
6100
6101
6102 /*
6103 * Now we need to see how much we would have freed had we not
6104 * been making this reservation and our ->csum_bytes were not
6105 * artificially inflated.
6106 */
6107 inode->csum_bytes = csum_bytes - num_bytes;
6108 bytes = csum_bytes - orig_csum_bytes;
6109 bytes = calc_csum_metadata_size(inode, bytes, 0);
6110
6111 /*
6112 * Now reset ->csum_bytes to what it should be. If bytes is
6113 * more than to_free then we would have freed more space had we
6114 * not had an artificially high ->csum_bytes, so we need to free
6115 * the remainder. If bytes is the same or less then we don't
6116 * need to do anything, the other free-ers did the correct
6117 * thing.
6118 */
6119 inode->csum_bytes = orig_csum_bytes - num_bytes;
6120 if (bytes > to_free)
6121 to_free = bytes - to_free;
6122 else
6123 to_free = 0;
6124 }
6125 spin_unlock(&inode->lock);
6126 if (dropped)
6127 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6128
6129 if (to_free) {
6130 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6131 trace_btrfs_space_reservation(fs_info, "delalloc",
6132 btrfs_ino(inode), to_free, 0);
6133 }
6134 if (delalloc_lock)
6135 mutex_unlock(&inode->delalloc_mutex);
6136 return ret;
6137 }
6138
6139 /**
6140 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6141 * @inode: the inode to release the reservation for
6142 * @num_bytes: the number of bytes we're releasing
6143 *
6144 * This will release the metadata reservation for an inode. This can be called
6145 * once we complete IO for a given set of bytes to release their metadata
6146 * reservations.
6147 */
6148 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6149 {
6150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6151 u64 to_free = 0;
6152 unsigned dropped;
6153
6154 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6155 spin_lock(&inode->lock);
6156 dropped = drop_outstanding_extent(inode, num_bytes);
6157
6158 if (num_bytes)
6159 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6160 spin_unlock(&inode->lock);
6161 if (dropped > 0)
6162 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6163
6164 if (btrfs_is_testing(fs_info))
6165 return;
6166
6167 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6168 to_free, 0);
6169
6170 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6171 }
6172
6173 /**
6174 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6175 * delalloc
6176 * @inode: inode we're writing to
6177 * @start: start range we are writing to
6178 * @len: how long the range we are writing to
6179 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6180 * current reservation.
6181 *
6182 * This will do the following things
6183 *
6184 * o reserve space in data space info for num bytes
6185 * and reserve precious corresponding qgroup space
6186 * (Done in check_data_free_space)
6187 *
6188 * o reserve space for metadata space, based on the number of outstanding
6189 * extents and how much csums will be needed
6190 * also reserve metadata space in a per root over-reserve method.
6191 * o add to the inodes->delalloc_bytes
6192 * o add it to the fs_info's delalloc inodes list.
6193 * (Above 3 all done in delalloc_reserve_metadata)
6194 *
6195 * Return 0 for success
6196 * Return <0 for error(-ENOSPC or -EQUOT)
6197 */
6198 int btrfs_delalloc_reserve_space(struct inode *inode,
6199 struct extent_changeset **reserved, u64 start, u64 len)
6200 {
6201 int ret;
6202
6203 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6204 if (ret < 0)
6205 return ret;
6206 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6207 if (ret < 0)
6208 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6209 return ret;
6210 }
6211
6212 /**
6213 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6214 * @inode: inode we're releasing space for
6215 * @start: start position of the space already reserved
6216 * @len: the len of the space already reserved
6217 *
6218 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6219 * called in the case that we don't need the metadata AND data reservations
6220 * anymore. So if there is an error or we insert an inline extent.
6221 *
6222 * This function will release the metadata space that was not used and will
6223 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6224 * list if there are no delalloc bytes left.
6225 * Also it will handle the qgroup reserved space.
6226 */
6227 void btrfs_delalloc_release_space(struct inode *inode,
6228 struct extent_changeset *reserved, u64 start, u64 len)
6229 {
6230 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6231 btrfs_free_reserved_data_space(inode, reserved, start, len);
6232 }
6233
6234 static int update_block_group(struct btrfs_trans_handle *trans,
6235 struct btrfs_fs_info *info, u64 bytenr,
6236 u64 num_bytes, int alloc)
6237 {
6238 struct btrfs_block_group_cache *cache = NULL;
6239 u64 total = num_bytes;
6240 u64 old_val;
6241 u64 byte_in_group;
6242 int factor;
6243
6244 /* block accounting for super block */
6245 spin_lock(&info->delalloc_root_lock);
6246 old_val = btrfs_super_bytes_used(info->super_copy);
6247 if (alloc)
6248 old_val += num_bytes;
6249 else
6250 old_val -= num_bytes;
6251 btrfs_set_super_bytes_used(info->super_copy, old_val);
6252 spin_unlock(&info->delalloc_root_lock);
6253
6254 while (total) {
6255 cache = btrfs_lookup_block_group(info, bytenr);
6256 if (!cache)
6257 return -ENOENT;
6258 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6259 BTRFS_BLOCK_GROUP_RAID1 |
6260 BTRFS_BLOCK_GROUP_RAID10))
6261 factor = 2;
6262 else
6263 factor = 1;
6264 /*
6265 * If this block group has free space cache written out, we
6266 * need to make sure to load it if we are removing space. This
6267 * is because we need the unpinning stage to actually add the
6268 * space back to the block group, otherwise we will leak space.
6269 */
6270 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6271 cache_block_group(cache, 1);
6272
6273 byte_in_group = bytenr - cache->key.objectid;
6274 WARN_ON(byte_in_group > cache->key.offset);
6275
6276 spin_lock(&cache->space_info->lock);
6277 spin_lock(&cache->lock);
6278
6279 if (btrfs_test_opt(info, SPACE_CACHE) &&
6280 cache->disk_cache_state < BTRFS_DC_CLEAR)
6281 cache->disk_cache_state = BTRFS_DC_CLEAR;
6282
6283 old_val = btrfs_block_group_used(&cache->item);
6284 num_bytes = min(total, cache->key.offset - byte_in_group);
6285 if (alloc) {
6286 old_val += num_bytes;
6287 btrfs_set_block_group_used(&cache->item, old_val);
6288 cache->reserved -= num_bytes;
6289 cache->space_info->bytes_reserved -= num_bytes;
6290 cache->space_info->bytes_used += num_bytes;
6291 cache->space_info->disk_used += num_bytes * factor;
6292 spin_unlock(&cache->lock);
6293 spin_unlock(&cache->space_info->lock);
6294 } else {
6295 old_val -= num_bytes;
6296 btrfs_set_block_group_used(&cache->item, old_val);
6297 cache->pinned += num_bytes;
6298 cache->space_info->bytes_pinned += num_bytes;
6299 cache->space_info->bytes_used -= num_bytes;
6300 cache->space_info->disk_used -= num_bytes * factor;
6301 spin_unlock(&cache->lock);
6302 spin_unlock(&cache->space_info->lock);
6303
6304 trace_btrfs_space_reservation(info, "pinned",
6305 cache->space_info->flags,
6306 num_bytes, 1);
6307 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6308 num_bytes);
6309 set_extent_dirty(info->pinned_extents,
6310 bytenr, bytenr + num_bytes - 1,
6311 GFP_NOFS | __GFP_NOFAIL);
6312 }
6313
6314 spin_lock(&trans->transaction->dirty_bgs_lock);
6315 if (list_empty(&cache->dirty_list)) {
6316 list_add_tail(&cache->dirty_list,
6317 &trans->transaction->dirty_bgs);
6318 trans->transaction->num_dirty_bgs++;
6319 btrfs_get_block_group(cache);
6320 }
6321 spin_unlock(&trans->transaction->dirty_bgs_lock);
6322
6323 /*
6324 * No longer have used bytes in this block group, queue it for
6325 * deletion. We do this after adding the block group to the
6326 * dirty list to avoid races between cleaner kthread and space
6327 * cache writeout.
6328 */
6329 if (!alloc && old_val == 0) {
6330 spin_lock(&info->unused_bgs_lock);
6331 if (list_empty(&cache->bg_list)) {
6332 btrfs_get_block_group(cache);
6333 list_add_tail(&cache->bg_list,
6334 &info->unused_bgs);
6335 }
6336 spin_unlock(&info->unused_bgs_lock);
6337 }
6338
6339 btrfs_put_block_group(cache);
6340 total -= num_bytes;
6341 bytenr += num_bytes;
6342 }
6343 return 0;
6344 }
6345
6346 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6347 {
6348 struct btrfs_block_group_cache *cache;
6349 u64 bytenr;
6350
6351 spin_lock(&fs_info->block_group_cache_lock);
6352 bytenr = fs_info->first_logical_byte;
6353 spin_unlock(&fs_info->block_group_cache_lock);
6354
6355 if (bytenr < (u64)-1)
6356 return bytenr;
6357
6358 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6359 if (!cache)
6360 return 0;
6361
6362 bytenr = cache->key.objectid;
6363 btrfs_put_block_group(cache);
6364
6365 return bytenr;
6366 }
6367
6368 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6369 struct btrfs_block_group_cache *cache,
6370 u64 bytenr, u64 num_bytes, int reserved)
6371 {
6372 spin_lock(&cache->space_info->lock);
6373 spin_lock(&cache->lock);
6374 cache->pinned += num_bytes;
6375 cache->space_info->bytes_pinned += num_bytes;
6376 if (reserved) {
6377 cache->reserved -= num_bytes;
6378 cache->space_info->bytes_reserved -= num_bytes;
6379 }
6380 spin_unlock(&cache->lock);
6381 spin_unlock(&cache->space_info->lock);
6382
6383 trace_btrfs_space_reservation(fs_info, "pinned",
6384 cache->space_info->flags, num_bytes, 1);
6385 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6386 set_extent_dirty(fs_info->pinned_extents, bytenr,
6387 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6388 return 0;
6389 }
6390
6391 /*
6392 * this function must be called within transaction
6393 */
6394 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6395 u64 bytenr, u64 num_bytes, int reserved)
6396 {
6397 struct btrfs_block_group_cache *cache;
6398
6399 cache = btrfs_lookup_block_group(fs_info, bytenr);
6400 BUG_ON(!cache); /* Logic error */
6401
6402 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6403
6404 btrfs_put_block_group(cache);
6405 return 0;
6406 }
6407
6408 /*
6409 * this function must be called within transaction
6410 */
6411 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6412 u64 bytenr, u64 num_bytes)
6413 {
6414 struct btrfs_block_group_cache *cache;
6415 int ret;
6416
6417 cache = btrfs_lookup_block_group(fs_info, bytenr);
6418 if (!cache)
6419 return -EINVAL;
6420
6421 /*
6422 * pull in the free space cache (if any) so that our pin
6423 * removes the free space from the cache. We have load_only set
6424 * to one because the slow code to read in the free extents does check
6425 * the pinned extents.
6426 */
6427 cache_block_group(cache, 1);
6428
6429 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6430
6431 /* remove us from the free space cache (if we're there at all) */
6432 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6433 btrfs_put_block_group(cache);
6434 return ret;
6435 }
6436
6437 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6438 u64 start, u64 num_bytes)
6439 {
6440 int ret;
6441 struct btrfs_block_group_cache *block_group;
6442 struct btrfs_caching_control *caching_ctl;
6443
6444 block_group = btrfs_lookup_block_group(fs_info, start);
6445 if (!block_group)
6446 return -EINVAL;
6447
6448 cache_block_group(block_group, 0);
6449 caching_ctl = get_caching_control(block_group);
6450
6451 if (!caching_ctl) {
6452 /* Logic error */
6453 BUG_ON(!block_group_cache_done(block_group));
6454 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6455 } else {
6456 mutex_lock(&caching_ctl->mutex);
6457
6458 if (start >= caching_ctl->progress) {
6459 ret = add_excluded_extent(fs_info, start, num_bytes);
6460 } else if (start + num_bytes <= caching_ctl->progress) {
6461 ret = btrfs_remove_free_space(block_group,
6462 start, num_bytes);
6463 } else {
6464 num_bytes = caching_ctl->progress - start;
6465 ret = btrfs_remove_free_space(block_group,
6466 start, num_bytes);
6467 if (ret)
6468 goto out_lock;
6469
6470 num_bytes = (start + num_bytes) -
6471 caching_ctl->progress;
6472 start = caching_ctl->progress;
6473 ret = add_excluded_extent(fs_info, start, num_bytes);
6474 }
6475 out_lock:
6476 mutex_unlock(&caching_ctl->mutex);
6477 put_caching_control(caching_ctl);
6478 }
6479 btrfs_put_block_group(block_group);
6480 return ret;
6481 }
6482
6483 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6484 struct extent_buffer *eb)
6485 {
6486 struct btrfs_file_extent_item *item;
6487 struct btrfs_key key;
6488 int found_type;
6489 int i;
6490
6491 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6492 return 0;
6493
6494 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6495 btrfs_item_key_to_cpu(eb, &key, i);
6496 if (key.type != BTRFS_EXTENT_DATA_KEY)
6497 continue;
6498 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6499 found_type = btrfs_file_extent_type(eb, item);
6500 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6501 continue;
6502 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6503 continue;
6504 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6505 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6506 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6507 }
6508
6509 return 0;
6510 }
6511
6512 static void
6513 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6514 {
6515 atomic_inc(&bg->reservations);
6516 }
6517
6518 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6519 const u64 start)
6520 {
6521 struct btrfs_block_group_cache *bg;
6522
6523 bg = btrfs_lookup_block_group(fs_info, start);
6524 ASSERT(bg);
6525 if (atomic_dec_and_test(&bg->reservations))
6526 wake_up_atomic_t(&bg->reservations);
6527 btrfs_put_block_group(bg);
6528 }
6529
6530 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6531 {
6532 schedule();
6533 return 0;
6534 }
6535
6536 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6537 {
6538 struct btrfs_space_info *space_info = bg->space_info;
6539
6540 ASSERT(bg->ro);
6541
6542 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6543 return;
6544
6545 /*
6546 * Our block group is read only but before we set it to read only,
6547 * some task might have had allocated an extent from it already, but it
6548 * has not yet created a respective ordered extent (and added it to a
6549 * root's list of ordered extents).
6550 * Therefore wait for any task currently allocating extents, since the
6551 * block group's reservations counter is incremented while a read lock
6552 * on the groups' semaphore is held and decremented after releasing
6553 * the read access on that semaphore and creating the ordered extent.
6554 */
6555 down_write(&space_info->groups_sem);
6556 up_write(&space_info->groups_sem);
6557
6558 wait_on_atomic_t(&bg->reservations,
6559 btrfs_wait_bg_reservations_atomic_t,
6560 TASK_UNINTERRUPTIBLE);
6561 }
6562
6563 /**
6564 * btrfs_add_reserved_bytes - update the block_group and space info counters
6565 * @cache: The cache we are manipulating
6566 * @ram_bytes: The number of bytes of file content, and will be same to
6567 * @num_bytes except for the compress path.
6568 * @num_bytes: The number of bytes in question
6569 * @delalloc: The blocks are allocated for the delalloc write
6570 *
6571 * This is called by the allocator when it reserves space. If this is a
6572 * reservation and the block group has become read only we cannot make the
6573 * reservation and return -EAGAIN, otherwise this function always succeeds.
6574 */
6575 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6576 u64 ram_bytes, u64 num_bytes, int delalloc)
6577 {
6578 struct btrfs_space_info *space_info = cache->space_info;
6579 int ret = 0;
6580
6581 spin_lock(&space_info->lock);
6582 spin_lock(&cache->lock);
6583 if (cache->ro) {
6584 ret = -EAGAIN;
6585 } else {
6586 cache->reserved += num_bytes;
6587 space_info->bytes_reserved += num_bytes;
6588
6589 trace_btrfs_space_reservation(cache->fs_info,
6590 "space_info", space_info->flags,
6591 ram_bytes, 0);
6592 space_info->bytes_may_use -= ram_bytes;
6593 if (delalloc)
6594 cache->delalloc_bytes += num_bytes;
6595 }
6596 spin_unlock(&cache->lock);
6597 spin_unlock(&space_info->lock);
6598 return ret;
6599 }
6600
6601 /**
6602 * btrfs_free_reserved_bytes - update the block_group and space info counters
6603 * @cache: The cache we are manipulating
6604 * @num_bytes: The number of bytes in question
6605 * @delalloc: The blocks are allocated for the delalloc write
6606 *
6607 * This is called by somebody who is freeing space that was never actually used
6608 * on disk. For example if you reserve some space for a new leaf in transaction
6609 * A and before transaction A commits you free that leaf, you call this with
6610 * reserve set to 0 in order to clear the reservation.
6611 */
6612
6613 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6614 u64 num_bytes, int delalloc)
6615 {
6616 struct btrfs_space_info *space_info = cache->space_info;
6617 int ret = 0;
6618
6619 spin_lock(&space_info->lock);
6620 spin_lock(&cache->lock);
6621 if (cache->ro)
6622 space_info->bytes_readonly += num_bytes;
6623 cache->reserved -= num_bytes;
6624 space_info->bytes_reserved -= num_bytes;
6625
6626 if (delalloc)
6627 cache->delalloc_bytes -= num_bytes;
6628 spin_unlock(&cache->lock);
6629 spin_unlock(&space_info->lock);
6630 return ret;
6631 }
6632 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6633 {
6634 struct btrfs_caching_control *next;
6635 struct btrfs_caching_control *caching_ctl;
6636 struct btrfs_block_group_cache *cache;
6637
6638 down_write(&fs_info->commit_root_sem);
6639
6640 list_for_each_entry_safe(caching_ctl, next,
6641 &fs_info->caching_block_groups, list) {
6642 cache = caching_ctl->block_group;
6643 if (block_group_cache_done(cache)) {
6644 cache->last_byte_to_unpin = (u64)-1;
6645 list_del_init(&caching_ctl->list);
6646 put_caching_control(caching_ctl);
6647 } else {
6648 cache->last_byte_to_unpin = caching_ctl->progress;
6649 }
6650 }
6651
6652 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6653 fs_info->pinned_extents = &fs_info->freed_extents[1];
6654 else
6655 fs_info->pinned_extents = &fs_info->freed_extents[0];
6656
6657 up_write(&fs_info->commit_root_sem);
6658
6659 update_global_block_rsv(fs_info);
6660 }
6661
6662 /*
6663 * Returns the free cluster for the given space info and sets empty_cluster to
6664 * what it should be based on the mount options.
6665 */
6666 static struct btrfs_free_cluster *
6667 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6668 struct btrfs_space_info *space_info, u64 *empty_cluster)
6669 {
6670 struct btrfs_free_cluster *ret = NULL;
6671 bool ssd = btrfs_test_opt(fs_info, SSD);
6672
6673 *empty_cluster = 0;
6674 if (btrfs_mixed_space_info(space_info))
6675 return ret;
6676
6677 if (ssd)
6678 *empty_cluster = SZ_2M;
6679 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6680 ret = &fs_info->meta_alloc_cluster;
6681 if (!ssd)
6682 *empty_cluster = SZ_64K;
6683 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6684 ret = &fs_info->data_alloc_cluster;
6685 }
6686
6687 return ret;
6688 }
6689
6690 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6691 u64 start, u64 end,
6692 const bool return_free_space)
6693 {
6694 struct btrfs_block_group_cache *cache = NULL;
6695 struct btrfs_space_info *space_info;
6696 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6697 struct btrfs_free_cluster *cluster = NULL;
6698 u64 len;
6699 u64 total_unpinned = 0;
6700 u64 empty_cluster = 0;
6701 bool readonly;
6702
6703 while (start <= end) {
6704 readonly = false;
6705 if (!cache ||
6706 start >= cache->key.objectid + cache->key.offset) {
6707 if (cache)
6708 btrfs_put_block_group(cache);
6709 total_unpinned = 0;
6710 cache = btrfs_lookup_block_group(fs_info, start);
6711 BUG_ON(!cache); /* Logic error */
6712
6713 cluster = fetch_cluster_info(fs_info,
6714 cache->space_info,
6715 &empty_cluster);
6716 empty_cluster <<= 1;
6717 }
6718
6719 len = cache->key.objectid + cache->key.offset - start;
6720 len = min(len, end + 1 - start);
6721
6722 if (start < cache->last_byte_to_unpin) {
6723 len = min(len, cache->last_byte_to_unpin - start);
6724 if (return_free_space)
6725 btrfs_add_free_space(cache, start, len);
6726 }
6727
6728 start += len;
6729 total_unpinned += len;
6730 space_info = cache->space_info;
6731
6732 /*
6733 * If this space cluster has been marked as fragmented and we've
6734 * unpinned enough in this block group to potentially allow a
6735 * cluster to be created inside of it go ahead and clear the
6736 * fragmented check.
6737 */
6738 if (cluster && cluster->fragmented &&
6739 total_unpinned > empty_cluster) {
6740 spin_lock(&cluster->lock);
6741 cluster->fragmented = 0;
6742 spin_unlock(&cluster->lock);
6743 }
6744
6745 spin_lock(&space_info->lock);
6746 spin_lock(&cache->lock);
6747 cache->pinned -= len;
6748 space_info->bytes_pinned -= len;
6749
6750 trace_btrfs_space_reservation(fs_info, "pinned",
6751 space_info->flags, len, 0);
6752 space_info->max_extent_size = 0;
6753 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6754 if (cache->ro) {
6755 space_info->bytes_readonly += len;
6756 readonly = true;
6757 }
6758 spin_unlock(&cache->lock);
6759 if (!readonly && return_free_space &&
6760 global_rsv->space_info == space_info) {
6761 u64 to_add = len;
6762 WARN_ON(!return_free_space);
6763 spin_lock(&global_rsv->lock);
6764 if (!global_rsv->full) {
6765 to_add = min(len, global_rsv->size -
6766 global_rsv->reserved);
6767 global_rsv->reserved += to_add;
6768 space_info->bytes_may_use += to_add;
6769 if (global_rsv->reserved >= global_rsv->size)
6770 global_rsv->full = 1;
6771 trace_btrfs_space_reservation(fs_info,
6772 "space_info",
6773 space_info->flags,
6774 to_add, 1);
6775 len -= to_add;
6776 }
6777 spin_unlock(&global_rsv->lock);
6778 /* Add to any tickets we may have */
6779 if (len)
6780 space_info_add_new_bytes(fs_info, space_info,
6781 len);
6782 }
6783 spin_unlock(&space_info->lock);
6784 }
6785
6786 if (cache)
6787 btrfs_put_block_group(cache);
6788 return 0;
6789 }
6790
6791 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6792 struct btrfs_fs_info *fs_info)
6793 {
6794 struct btrfs_block_group_cache *block_group, *tmp;
6795 struct list_head *deleted_bgs;
6796 struct extent_io_tree *unpin;
6797 u64 start;
6798 u64 end;
6799 int ret;
6800
6801 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6802 unpin = &fs_info->freed_extents[1];
6803 else
6804 unpin = &fs_info->freed_extents[0];
6805
6806 while (!trans->aborted) {
6807 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6808 ret = find_first_extent_bit(unpin, 0, &start, &end,
6809 EXTENT_DIRTY, NULL);
6810 if (ret) {
6811 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6812 break;
6813 }
6814
6815 if (btrfs_test_opt(fs_info, DISCARD))
6816 ret = btrfs_discard_extent(fs_info, start,
6817 end + 1 - start, NULL);
6818
6819 clear_extent_dirty(unpin, start, end);
6820 unpin_extent_range(fs_info, start, end, true);
6821 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6822 cond_resched();
6823 }
6824
6825 /*
6826 * Transaction is finished. We don't need the lock anymore. We
6827 * do need to clean up the block groups in case of a transaction
6828 * abort.
6829 */
6830 deleted_bgs = &trans->transaction->deleted_bgs;
6831 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6832 u64 trimmed = 0;
6833
6834 ret = -EROFS;
6835 if (!trans->aborted)
6836 ret = btrfs_discard_extent(fs_info,
6837 block_group->key.objectid,
6838 block_group->key.offset,
6839 &trimmed);
6840
6841 list_del_init(&block_group->bg_list);
6842 btrfs_put_block_group_trimming(block_group);
6843 btrfs_put_block_group(block_group);
6844
6845 if (ret) {
6846 const char *errstr = btrfs_decode_error(ret);
6847 btrfs_warn(fs_info,
6848 "Discard failed while removing blockgroup: errno=%d %s\n",
6849 ret, errstr);
6850 }
6851 }
6852
6853 return 0;
6854 }
6855
6856 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6857 struct btrfs_fs_info *info,
6858 struct btrfs_delayed_ref_node *node, u64 parent,
6859 u64 root_objectid, u64 owner_objectid,
6860 u64 owner_offset, int refs_to_drop,
6861 struct btrfs_delayed_extent_op *extent_op)
6862 {
6863 struct btrfs_key key;
6864 struct btrfs_path *path;
6865 struct btrfs_root *extent_root = info->extent_root;
6866 struct extent_buffer *leaf;
6867 struct btrfs_extent_item *ei;
6868 struct btrfs_extent_inline_ref *iref;
6869 int ret;
6870 int is_data;
6871 int extent_slot = 0;
6872 int found_extent = 0;
6873 int num_to_del = 1;
6874 u32 item_size;
6875 u64 refs;
6876 u64 bytenr = node->bytenr;
6877 u64 num_bytes = node->num_bytes;
6878 int last_ref = 0;
6879 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6880
6881 path = btrfs_alloc_path();
6882 if (!path)
6883 return -ENOMEM;
6884
6885 path->reada = READA_FORWARD;
6886 path->leave_spinning = 1;
6887
6888 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6889 BUG_ON(!is_data && refs_to_drop != 1);
6890
6891 if (is_data)
6892 skinny_metadata = 0;
6893
6894 ret = lookup_extent_backref(trans, info, path, &iref,
6895 bytenr, num_bytes, parent,
6896 root_objectid, owner_objectid,
6897 owner_offset);
6898 if (ret == 0) {
6899 extent_slot = path->slots[0];
6900 while (extent_slot >= 0) {
6901 btrfs_item_key_to_cpu(path->nodes[0], &key,
6902 extent_slot);
6903 if (key.objectid != bytenr)
6904 break;
6905 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6906 key.offset == num_bytes) {
6907 found_extent = 1;
6908 break;
6909 }
6910 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6911 key.offset == owner_objectid) {
6912 found_extent = 1;
6913 break;
6914 }
6915 if (path->slots[0] - extent_slot > 5)
6916 break;
6917 extent_slot--;
6918 }
6919 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6920 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6921 if (found_extent && item_size < sizeof(*ei))
6922 found_extent = 0;
6923 #endif
6924 if (!found_extent) {
6925 BUG_ON(iref);
6926 ret = remove_extent_backref(trans, info, path, NULL,
6927 refs_to_drop,
6928 is_data, &last_ref);
6929 if (ret) {
6930 btrfs_abort_transaction(trans, ret);
6931 goto out;
6932 }
6933 btrfs_release_path(path);
6934 path->leave_spinning = 1;
6935
6936 key.objectid = bytenr;
6937 key.type = BTRFS_EXTENT_ITEM_KEY;
6938 key.offset = num_bytes;
6939
6940 if (!is_data && skinny_metadata) {
6941 key.type = BTRFS_METADATA_ITEM_KEY;
6942 key.offset = owner_objectid;
6943 }
6944
6945 ret = btrfs_search_slot(trans, extent_root,
6946 &key, path, -1, 1);
6947 if (ret > 0 && skinny_metadata && path->slots[0]) {
6948 /*
6949 * Couldn't find our skinny metadata item,
6950 * see if we have ye olde extent item.
6951 */
6952 path->slots[0]--;
6953 btrfs_item_key_to_cpu(path->nodes[0], &key,
6954 path->slots[0]);
6955 if (key.objectid == bytenr &&
6956 key.type == BTRFS_EXTENT_ITEM_KEY &&
6957 key.offset == num_bytes)
6958 ret = 0;
6959 }
6960
6961 if (ret > 0 && skinny_metadata) {
6962 skinny_metadata = false;
6963 key.objectid = bytenr;
6964 key.type = BTRFS_EXTENT_ITEM_KEY;
6965 key.offset = num_bytes;
6966 btrfs_release_path(path);
6967 ret = btrfs_search_slot(trans, extent_root,
6968 &key, path, -1, 1);
6969 }
6970
6971 if (ret) {
6972 btrfs_err(info,
6973 "umm, got %d back from search, was looking for %llu",
6974 ret, bytenr);
6975 if (ret > 0)
6976 btrfs_print_leaf(info, path->nodes[0]);
6977 }
6978 if (ret < 0) {
6979 btrfs_abort_transaction(trans, ret);
6980 goto out;
6981 }
6982 extent_slot = path->slots[0];
6983 }
6984 } else if (WARN_ON(ret == -ENOENT)) {
6985 btrfs_print_leaf(info, path->nodes[0]);
6986 btrfs_err(info,
6987 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6988 bytenr, parent, root_objectid, owner_objectid,
6989 owner_offset);
6990 btrfs_abort_transaction(trans, ret);
6991 goto out;
6992 } else {
6993 btrfs_abort_transaction(trans, ret);
6994 goto out;
6995 }
6996
6997 leaf = path->nodes[0];
6998 item_size = btrfs_item_size_nr(leaf, extent_slot);
6999 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7000 if (item_size < sizeof(*ei)) {
7001 BUG_ON(found_extent || extent_slot != path->slots[0]);
7002 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7003 0);
7004 if (ret < 0) {
7005 btrfs_abort_transaction(trans, ret);
7006 goto out;
7007 }
7008
7009 btrfs_release_path(path);
7010 path->leave_spinning = 1;
7011
7012 key.objectid = bytenr;
7013 key.type = BTRFS_EXTENT_ITEM_KEY;
7014 key.offset = num_bytes;
7015
7016 ret = btrfs_search_slot(trans, extent_root, &key, path,
7017 -1, 1);
7018 if (ret) {
7019 btrfs_err(info,
7020 "umm, got %d back from search, was looking for %llu",
7021 ret, bytenr);
7022 btrfs_print_leaf(info, path->nodes[0]);
7023 }
7024 if (ret < 0) {
7025 btrfs_abort_transaction(trans, ret);
7026 goto out;
7027 }
7028
7029 extent_slot = path->slots[0];
7030 leaf = path->nodes[0];
7031 item_size = btrfs_item_size_nr(leaf, extent_slot);
7032 }
7033 #endif
7034 BUG_ON(item_size < sizeof(*ei));
7035 ei = btrfs_item_ptr(leaf, extent_slot,
7036 struct btrfs_extent_item);
7037 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7038 key.type == BTRFS_EXTENT_ITEM_KEY) {
7039 struct btrfs_tree_block_info *bi;
7040 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7041 bi = (struct btrfs_tree_block_info *)(ei + 1);
7042 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7043 }
7044
7045 refs = btrfs_extent_refs(leaf, ei);
7046 if (refs < refs_to_drop) {
7047 btrfs_err(info,
7048 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7049 refs_to_drop, refs, bytenr);
7050 ret = -EINVAL;
7051 btrfs_abort_transaction(trans, ret);
7052 goto out;
7053 }
7054 refs -= refs_to_drop;
7055
7056 if (refs > 0) {
7057 if (extent_op)
7058 __run_delayed_extent_op(extent_op, leaf, ei);
7059 /*
7060 * In the case of inline back ref, reference count will
7061 * be updated by remove_extent_backref
7062 */
7063 if (iref) {
7064 BUG_ON(!found_extent);
7065 } else {
7066 btrfs_set_extent_refs(leaf, ei, refs);
7067 btrfs_mark_buffer_dirty(leaf);
7068 }
7069 if (found_extent) {
7070 ret = remove_extent_backref(trans, info, path,
7071 iref, refs_to_drop,
7072 is_data, &last_ref);
7073 if (ret) {
7074 btrfs_abort_transaction(trans, ret);
7075 goto out;
7076 }
7077 }
7078 } else {
7079 if (found_extent) {
7080 BUG_ON(is_data && refs_to_drop !=
7081 extent_data_ref_count(path, iref));
7082 if (iref) {
7083 BUG_ON(path->slots[0] != extent_slot);
7084 } else {
7085 BUG_ON(path->slots[0] != extent_slot + 1);
7086 path->slots[0] = extent_slot;
7087 num_to_del = 2;
7088 }
7089 }
7090
7091 last_ref = 1;
7092 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7093 num_to_del);
7094 if (ret) {
7095 btrfs_abort_transaction(trans, ret);
7096 goto out;
7097 }
7098 btrfs_release_path(path);
7099
7100 if (is_data) {
7101 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7102 if (ret) {
7103 btrfs_abort_transaction(trans, ret);
7104 goto out;
7105 }
7106 }
7107
7108 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7109 if (ret) {
7110 btrfs_abort_transaction(trans, ret);
7111 goto out;
7112 }
7113
7114 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7115 if (ret) {
7116 btrfs_abort_transaction(trans, ret);
7117 goto out;
7118 }
7119 }
7120 btrfs_release_path(path);
7121
7122 out:
7123 btrfs_free_path(path);
7124 return ret;
7125 }
7126
7127 /*
7128 * when we free an block, it is possible (and likely) that we free the last
7129 * delayed ref for that extent as well. This searches the delayed ref tree for
7130 * a given extent, and if there are no other delayed refs to be processed, it
7131 * removes it from the tree.
7132 */
7133 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7134 u64 bytenr)
7135 {
7136 struct btrfs_delayed_ref_head *head;
7137 struct btrfs_delayed_ref_root *delayed_refs;
7138 int ret = 0;
7139
7140 delayed_refs = &trans->transaction->delayed_refs;
7141 spin_lock(&delayed_refs->lock);
7142 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7143 if (!head)
7144 goto out_delayed_unlock;
7145
7146 spin_lock(&head->lock);
7147 if (!list_empty(&head->ref_list))
7148 goto out;
7149
7150 if (head->extent_op) {
7151 if (!head->must_insert_reserved)
7152 goto out;
7153 btrfs_free_delayed_extent_op(head->extent_op);
7154 head->extent_op = NULL;
7155 }
7156
7157 /*
7158 * waiting for the lock here would deadlock. If someone else has it
7159 * locked they are already in the process of dropping it anyway
7160 */
7161 if (!mutex_trylock(&head->mutex))
7162 goto out;
7163
7164 /*
7165 * at this point we have a head with no other entries. Go
7166 * ahead and process it.
7167 */
7168 head->node.in_tree = 0;
7169 rb_erase(&head->href_node, &delayed_refs->href_root);
7170
7171 atomic_dec(&delayed_refs->num_entries);
7172
7173 /*
7174 * we don't take a ref on the node because we're removing it from the
7175 * tree, so we just steal the ref the tree was holding.
7176 */
7177 delayed_refs->num_heads--;
7178 if (head->processing == 0)
7179 delayed_refs->num_heads_ready--;
7180 head->processing = 0;
7181 spin_unlock(&head->lock);
7182 spin_unlock(&delayed_refs->lock);
7183
7184 BUG_ON(head->extent_op);
7185 if (head->must_insert_reserved)
7186 ret = 1;
7187
7188 mutex_unlock(&head->mutex);
7189 btrfs_put_delayed_ref(&head->node);
7190 return ret;
7191 out:
7192 spin_unlock(&head->lock);
7193
7194 out_delayed_unlock:
7195 spin_unlock(&delayed_refs->lock);
7196 return 0;
7197 }
7198
7199 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7200 struct btrfs_root *root,
7201 struct extent_buffer *buf,
7202 u64 parent, int last_ref)
7203 {
7204 struct btrfs_fs_info *fs_info = root->fs_info;
7205 int pin = 1;
7206 int ret;
7207
7208 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7209 int old_ref_mod, new_ref_mod;
7210
7211 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7212 buf->len, parent,
7213 root->root_key.objectid,
7214 btrfs_header_level(buf),
7215 BTRFS_DROP_DELAYED_REF, NULL,
7216 &old_ref_mod, &new_ref_mod);
7217 BUG_ON(ret); /* -ENOMEM */
7218 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7219 }
7220
7221 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7222 struct btrfs_block_group_cache *cache;
7223
7224 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7225 ret = check_ref_cleanup(trans, buf->start);
7226 if (!ret)
7227 goto out;
7228 }
7229
7230 pin = 0;
7231 cache = btrfs_lookup_block_group(fs_info, buf->start);
7232
7233 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7234 pin_down_extent(fs_info, cache, buf->start,
7235 buf->len, 1);
7236 btrfs_put_block_group(cache);
7237 goto out;
7238 }
7239
7240 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7241
7242 btrfs_add_free_space(cache, buf->start, buf->len);
7243 btrfs_free_reserved_bytes(cache, buf->len, 0);
7244 btrfs_put_block_group(cache);
7245 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7246 }
7247 out:
7248 if (pin)
7249 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7250 root->root_key.objectid);
7251
7252 if (last_ref) {
7253 /*
7254 * Deleting the buffer, clear the corrupt flag since it doesn't
7255 * matter anymore.
7256 */
7257 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7258 }
7259 }
7260
7261 /* Can return -ENOMEM */
7262 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7263 struct btrfs_fs_info *fs_info,
7264 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7265 u64 owner, u64 offset)
7266 {
7267 int old_ref_mod, new_ref_mod;
7268 int ret;
7269
7270 if (btrfs_is_testing(fs_info))
7271 return 0;
7272
7273
7274 /*
7275 * tree log blocks never actually go into the extent allocation
7276 * tree, just update pinning info and exit early.
7277 */
7278 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7279 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7280 /* unlocks the pinned mutex */
7281 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7282 old_ref_mod = new_ref_mod = 0;
7283 ret = 0;
7284 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7285 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7286 num_bytes, parent,
7287 root_objectid, (int)owner,
7288 BTRFS_DROP_DELAYED_REF, NULL,
7289 &old_ref_mod, &new_ref_mod);
7290 } else {
7291 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7292 num_bytes, parent,
7293 root_objectid, owner, offset,
7294 0, BTRFS_DROP_DELAYED_REF,
7295 &old_ref_mod, &new_ref_mod);
7296 }
7297
7298 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7299 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7300
7301 return ret;
7302 }
7303
7304 /*
7305 * when we wait for progress in the block group caching, its because
7306 * our allocation attempt failed at least once. So, we must sleep
7307 * and let some progress happen before we try again.
7308 *
7309 * This function will sleep at least once waiting for new free space to
7310 * show up, and then it will check the block group free space numbers
7311 * for our min num_bytes. Another option is to have it go ahead
7312 * and look in the rbtree for a free extent of a given size, but this
7313 * is a good start.
7314 *
7315 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7316 * any of the information in this block group.
7317 */
7318 static noinline void
7319 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7320 u64 num_bytes)
7321 {
7322 struct btrfs_caching_control *caching_ctl;
7323
7324 caching_ctl = get_caching_control(cache);
7325 if (!caching_ctl)
7326 return;
7327
7328 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7329 (cache->free_space_ctl->free_space >= num_bytes));
7330
7331 put_caching_control(caching_ctl);
7332 }
7333
7334 static noinline int
7335 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7336 {
7337 struct btrfs_caching_control *caching_ctl;
7338 int ret = 0;
7339
7340 caching_ctl = get_caching_control(cache);
7341 if (!caching_ctl)
7342 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7343
7344 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7345 if (cache->cached == BTRFS_CACHE_ERROR)
7346 ret = -EIO;
7347 put_caching_control(caching_ctl);
7348 return ret;
7349 }
7350
7351 int __get_raid_index(u64 flags)
7352 {
7353 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7354 return BTRFS_RAID_RAID10;
7355 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7356 return BTRFS_RAID_RAID1;
7357 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7358 return BTRFS_RAID_DUP;
7359 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7360 return BTRFS_RAID_RAID0;
7361 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7362 return BTRFS_RAID_RAID5;
7363 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7364 return BTRFS_RAID_RAID6;
7365
7366 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7367 }
7368
7369 int get_block_group_index(struct btrfs_block_group_cache *cache)
7370 {
7371 return __get_raid_index(cache->flags);
7372 }
7373
7374 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7375 [BTRFS_RAID_RAID10] = "raid10",
7376 [BTRFS_RAID_RAID1] = "raid1",
7377 [BTRFS_RAID_DUP] = "dup",
7378 [BTRFS_RAID_RAID0] = "raid0",
7379 [BTRFS_RAID_SINGLE] = "single",
7380 [BTRFS_RAID_RAID5] = "raid5",
7381 [BTRFS_RAID_RAID6] = "raid6",
7382 };
7383
7384 static const char *get_raid_name(enum btrfs_raid_types type)
7385 {
7386 if (type >= BTRFS_NR_RAID_TYPES)
7387 return NULL;
7388
7389 return btrfs_raid_type_names[type];
7390 }
7391
7392 enum btrfs_loop_type {
7393 LOOP_CACHING_NOWAIT = 0,
7394 LOOP_CACHING_WAIT = 1,
7395 LOOP_ALLOC_CHUNK = 2,
7396 LOOP_NO_EMPTY_SIZE = 3,
7397 };
7398
7399 static inline void
7400 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7401 int delalloc)
7402 {
7403 if (delalloc)
7404 down_read(&cache->data_rwsem);
7405 }
7406
7407 static inline void
7408 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7409 int delalloc)
7410 {
7411 btrfs_get_block_group(cache);
7412 if (delalloc)
7413 down_read(&cache->data_rwsem);
7414 }
7415
7416 static struct btrfs_block_group_cache *
7417 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7418 struct btrfs_free_cluster *cluster,
7419 int delalloc)
7420 {
7421 struct btrfs_block_group_cache *used_bg = NULL;
7422
7423 spin_lock(&cluster->refill_lock);
7424 while (1) {
7425 used_bg = cluster->block_group;
7426 if (!used_bg)
7427 return NULL;
7428
7429 if (used_bg == block_group)
7430 return used_bg;
7431
7432 btrfs_get_block_group(used_bg);
7433
7434 if (!delalloc)
7435 return used_bg;
7436
7437 if (down_read_trylock(&used_bg->data_rwsem))
7438 return used_bg;
7439
7440 spin_unlock(&cluster->refill_lock);
7441
7442 /* We should only have one-level nested. */
7443 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7444
7445 spin_lock(&cluster->refill_lock);
7446 if (used_bg == cluster->block_group)
7447 return used_bg;
7448
7449 up_read(&used_bg->data_rwsem);
7450 btrfs_put_block_group(used_bg);
7451 }
7452 }
7453
7454 static inline void
7455 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7456 int delalloc)
7457 {
7458 if (delalloc)
7459 up_read(&cache->data_rwsem);
7460 btrfs_put_block_group(cache);
7461 }
7462
7463 /*
7464 * walks the btree of allocated extents and find a hole of a given size.
7465 * The key ins is changed to record the hole:
7466 * ins->objectid == start position
7467 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7468 * ins->offset == the size of the hole.
7469 * Any available blocks before search_start are skipped.
7470 *
7471 * If there is no suitable free space, we will record the max size of
7472 * the free space extent currently.
7473 */
7474 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7475 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7476 u64 hint_byte, struct btrfs_key *ins,
7477 u64 flags, int delalloc)
7478 {
7479 int ret = 0;
7480 struct btrfs_root *root = fs_info->extent_root;
7481 struct btrfs_free_cluster *last_ptr = NULL;
7482 struct btrfs_block_group_cache *block_group = NULL;
7483 u64 search_start = 0;
7484 u64 max_extent_size = 0;
7485 u64 empty_cluster = 0;
7486 struct btrfs_space_info *space_info;
7487 int loop = 0;
7488 int index = __get_raid_index(flags);
7489 bool failed_cluster_refill = false;
7490 bool failed_alloc = false;
7491 bool use_cluster = true;
7492 bool have_caching_bg = false;
7493 bool orig_have_caching_bg = false;
7494 bool full_search = false;
7495
7496 WARN_ON(num_bytes < fs_info->sectorsize);
7497 ins->type = BTRFS_EXTENT_ITEM_KEY;
7498 ins->objectid = 0;
7499 ins->offset = 0;
7500
7501 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7502
7503 space_info = __find_space_info(fs_info, flags);
7504 if (!space_info) {
7505 btrfs_err(fs_info, "No space info for %llu", flags);
7506 return -ENOSPC;
7507 }
7508
7509 /*
7510 * If our free space is heavily fragmented we may not be able to make
7511 * big contiguous allocations, so instead of doing the expensive search
7512 * for free space, simply return ENOSPC with our max_extent_size so we
7513 * can go ahead and search for a more manageable chunk.
7514 *
7515 * If our max_extent_size is large enough for our allocation simply
7516 * disable clustering since we will likely not be able to find enough
7517 * space to create a cluster and induce latency trying.
7518 */
7519 if (unlikely(space_info->max_extent_size)) {
7520 spin_lock(&space_info->lock);
7521 if (space_info->max_extent_size &&
7522 num_bytes > space_info->max_extent_size) {
7523 ins->offset = space_info->max_extent_size;
7524 spin_unlock(&space_info->lock);
7525 return -ENOSPC;
7526 } else if (space_info->max_extent_size) {
7527 use_cluster = false;
7528 }
7529 spin_unlock(&space_info->lock);
7530 }
7531
7532 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7533 if (last_ptr) {
7534 spin_lock(&last_ptr->lock);
7535 if (last_ptr->block_group)
7536 hint_byte = last_ptr->window_start;
7537 if (last_ptr->fragmented) {
7538 /*
7539 * We still set window_start so we can keep track of the
7540 * last place we found an allocation to try and save
7541 * some time.
7542 */
7543 hint_byte = last_ptr->window_start;
7544 use_cluster = false;
7545 }
7546 spin_unlock(&last_ptr->lock);
7547 }
7548
7549 search_start = max(search_start, first_logical_byte(fs_info, 0));
7550 search_start = max(search_start, hint_byte);
7551 if (search_start == hint_byte) {
7552 block_group = btrfs_lookup_block_group(fs_info, search_start);
7553 /*
7554 * we don't want to use the block group if it doesn't match our
7555 * allocation bits, or if its not cached.
7556 *
7557 * However if we are re-searching with an ideal block group
7558 * picked out then we don't care that the block group is cached.
7559 */
7560 if (block_group && block_group_bits(block_group, flags) &&
7561 block_group->cached != BTRFS_CACHE_NO) {
7562 down_read(&space_info->groups_sem);
7563 if (list_empty(&block_group->list) ||
7564 block_group->ro) {
7565 /*
7566 * someone is removing this block group,
7567 * we can't jump into the have_block_group
7568 * target because our list pointers are not
7569 * valid
7570 */
7571 btrfs_put_block_group(block_group);
7572 up_read(&space_info->groups_sem);
7573 } else {
7574 index = get_block_group_index(block_group);
7575 btrfs_lock_block_group(block_group, delalloc);
7576 goto have_block_group;
7577 }
7578 } else if (block_group) {
7579 btrfs_put_block_group(block_group);
7580 }
7581 }
7582 search:
7583 have_caching_bg = false;
7584 if (index == 0 || index == __get_raid_index(flags))
7585 full_search = true;
7586 down_read(&space_info->groups_sem);
7587 list_for_each_entry(block_group, &space_info->block_groups[index],
7588 list) {
7589 u64 offset;
7590 int cached;
7591
7592 btrfs_grab_block_group(block_group, delalloc);
7593 search_start = block_group->key.objectid;
7594
7595 /*
7596 * this can happen if we end up cycling through all the
7597 * raid types, but we want to make sure we only allocate
7598 * for the proper type.
7599 */
7600 if (!block_group_bits(block_group, flags)) {
7601 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7602 BTRFS_BLOCK_GROUP_RAID1 |
7603 BTRFS_BLOCK_GROUP_RAID5 |
7604 BTRFS_BLOCK_GROUP_RAID6 |
7605 BTRFS_BLOCK_GROUP_RAID10;
7606
7607 /*
7608 * if they asked for extra copies and this block group
7609 * doesn't provide them, bail. This does allow us to
7610 * fill raid0 from raid1.
7611 */
7612 if ((flags & extra) && !(block_group->flags & extra))
7613 goto loop;
7614 }
7615
7616 have_block_group:
7617 cached = block_group_cache_done(block_group);
7618 if (unlikely(!cached)) {
7619 have_caching_bg = true;
7620 ret = cache_block_group(block_group, 0);
7621 BUG_ON(ret < 0);
7622 ret = 0;
7623 }
7624
7625 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7626 goto loop;
7627 if (unlikely(block_group->ro))
7628 goto loop;
7629
7630 /*
7631 * Ok we want to try and use the cluster allocator, so
7632 * lets look there
7633 */
7634 if (last_ptr && use_cluster) {
7635 struct btrfs_block_group_cache *used_block_group;
7636 unsigned long aligned_cluster;
7637 /*
7638 * the refill lock keeps out other
7639 * people trying to start a new cluster
7640 */
7641 used_block_group = btrfs_lock_cluster(block_group,
7642 last_ptr,
7643 delalloc);
7644 if (!used_block_group)
7645 goto refill_cluster;
7646
7647 if (used_block_group != block_group &&
7648 (used_block_group->ro ||
7649 !block_group_bits(used_block_group, flags)))
7650 goto release_cluster;
7651
7652 offset = btrfs_alloc_from_cluster(used_block_group,
7653 last_ptr,
7654 num_bytes,
7655 used_block_group->key.objectid,
7656 &max_extent_size);
7657 if (offset) {
7658 /* we have a block, we're done */
7659 spin_unlock(&last_ptr->refill_lock);
7660 trace_btrfs_reserve_extent_cluster(fs_info,
7661 used_block_group,
7662 search_start, num_bytes);
7663 if (used_block_group != block_group) {
7664 btrfs_release_block_group(block_group,
7665 delalloc);
7666 block_group = used_block_group;
7667 }
7668 goto checks;
7669 }
7670
7671 WARN_ON(last_ptr->block_group != used_block_group);
7672 release_cluster:
7673 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7674 * set up a new clusters, so lets just skip it
7675 * and let the allocator find whatever block
7676 * it can find. If we reach this point, we
7677 * will have tried the cluster allocator
7678 * plenty of times and not have found
7679 * anything, so we are likely way too
7680 * fragmented for the clustering stuff to find
7681 * anything.
7682 *
7683 * However, if the cluster is taken from the
7684 * current block group, release the cluster
7685 * first, so that we stand a better chance of
7686 * succeeding in the unclustered
7687 * allocation. */
7688 if (loop >= LOOP_NO_EMPTY_SIZE &&
7689 used_block_group != block_group) {
7690 spin_unlock(&last_ptr->refill_lock);
7691 btrfs_release_block_group(used_block_group,
7692 delalloc);
7693 goto unclustered_alloc;
7694 }
7695
7696 /*
7697 * this cluster didn't work out, free it and
7698 * start over
7699 */
7700 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7701
7702 if (used_block_group != block_group)
7703 btrfs_release_block_group(used_block_group,
7704 delalloc);
7705 refill_cluster:
7706 if (loop >= LOOP_NO_EMPTY_SIZE) {
7707 spin_unlock(&last_ptr->refill_lock);
7708 goto unclustered_alloc;
7709 }
7710
7711 aligned_cluster = max_t(unsigned long,
7712 empty_cluster + empty_size,
7713 block_group->full_stripe_len);
7714
7715 /* allocate a cluster in this block group */
7716 ret = btrfs_find_space_cluster(fs_info, block_group,
7717 last_ptr, search_start,
7718 num_bytes,
7719 aligned_cluster);
7720 if (ret == 0) {
7721 /*
7722 * now pull our allocation out of this
7723 * cluster
7724 */
7725 offset = btrfs_alloc_from_cluster(block_group,
7726 last_ptr,
7727 num_bytes,
7728 search_start,
7729 &max_extent_size);
7730 if (offset) {
7731 /* we found one, proceed */
7732 spin_unlock(&last_ptr->refill_lock);
7733 trace_btrfs_reserve_extent_cluster(fs_info,
7734 block_group, search_start,
7735 num_bytes);
7736 goto checks;
7737 }
7738 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7739 && !failed_cluster_refill) {
7740 spin_unlock(&last_ptr->refill_lock);
7741
7742 failed_cluster_refill = true;
7743 wait_block_group_cache_progress(block_group,
7744 num_bytes + empty_cluster + empty_size);
7745 goto have_block_group;
7746 }
7747
7748 /*
7749 * at this point we either didn't find a cluster
7750 * or we weren't able to allocate a block from our
7751 * cluster. Free the cluster we've been trying
7752 * to use, and go to the next block group
7753 */
7754 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7755 spin_unlock(&last_ptr->refill_lock);
7756 goto loop;
7757 }
7758
7759 unclustered_alloc:
7760 /*
7761 * We are doing an unclustered alloc, set the fragmented flag so
7762 * we don't bother trying to setup a cluster again until we get
7763 * more space.
7764 */
7765 if (unlikely(last_ptr)) {
7766 spin_lock(&last_ptr->lock);
7767 last_ptr->fragmented = 1;
7768 spin_unlock(&last_ptr->lock);
7769 }
7770 if (cached) {
7771 struct btrfs_free_space_ctl *ctl =
7772 block_group->free_space_ctl;
7773
7774 spin_lock(&ctl->tree_lock);
7775 if (ctl->free_space <
7776 num_bytes + empty_cluster + empty_size) {
7777 if (ctl->free_space > max_extent_size)
7778 max_extent_size = ctl->free_space;
7779 spin_unlock(&ctl->tree_lock);
7780 goto loop;
7781 }
7782 spin_unlock(&ctl->tree_lock);
7783 }
7784
7785 offset = btrfs_find_space_for_alloc(block_group, search_start,
7786 num_bytes, empty_size,
7787 &max_extent_size);
7788 /*
7789 * If we didn't find a chunk, and we haven't failed on this
7790 * block group before, and this block group is in the middle of
7791 * caching and we are ok with waiting, then go ahead and wait
7792 * for progress to be made, and set failed_alloc to true.
7793 *
7794 * If failed_alloc is true then we've already waited on this
7795 * block group once and should move on to the next block group.
7796 */
7797 if (!offset && !failed_alloc && !cached &&
7798 loop > LOOP_CACHING_NOWAIT) {
7799 wait_block_group_cache_progress(block_group,
7800 num_bytes + empty_size);
7801 failed_alloc = true;
7802 goto have_block_group;
7803 } else if (!offset) {
7804 goto loop;
7805 }
7806 checks:
7807 search_start = ALIGN(offset, fs_info->stripesize);
7808
7809 /* move on to the next group */
7810 if (search_start + num_bytes >
7811 block_group->key.objectid + block_group->key.offset) {
7812 btrfs_add_free_space(block_group, offset, num_bytes);
7813 goto loop;
7814 }
7815
7816 if (offset < search_start)
7817 btrfs_add_free_space(block_group, offset,
7818 search_start - offset);
7819 BUG_ON(offset > search_start);
7820
7821 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7822 num_bytes, delalloc);
7823 if (ret == -EAGAIN) {
7824 btrfs_add_free_space(block_group, offset, num_bytes);
7825 goto loop;
7826 }
7827 btrfs_inc_block_group_reservations(block_group);
7828
7829 /* we are all good, lets return */
7830 ins->objectid = search_start;
7831 ins->offset = num_bytes;
7832
7833 trace_btrfs_reserve_extent(fs_info, block_group,
7834 search_start, num_bytes);
7835 btrfs_release_block_group(block_group, delalloc);
7836 break;
7837 loop:
7838 failed_cluster_refill = false;
7839 failed_alloc = false;
7840 BUG_ON(index != get_block_group_index(block_group));
7841 btrfs_release_block_group(block_group, delalloc);
7842 }
7843 up_read(&space_info->groups_sem);
7844
7845 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7846 && !orig_have_caching_bg)
7847 orig_have_caching_bg = true;
7848
7849 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7850 goto search;
7851
7852 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7853 goto search;
7854
7855 /*
7856 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7857 * caching kthreads as we move along
7858 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7859 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7860 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7861 * again
7862 */
7863 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7864 index = 0;
7865 if (loop == LOOP_CACHING_NOWAIT) {
7866 /*
7867 * We want to skip the LOOP_CACHING_WAIT step if we
7868 * don't have any uncached bgs and we've already done a
7869 * full search through.
7870 */
7871 if (orig_have_caching_bg || !full_search)
7872 loop = LOOP_CACHING_WAIT;
7873 else
7874 loop = LOOP_ALLOC_CHUNK;
7875 } else {
7876 loop++;
7877 }
7878
7879 if (loop == LOOP_ALLOC_CHUNK) {
7880 struct btrfs_trans_handle *trans;
7881 int exist = 0;
7882
7883 trans = current->journal_info;
7884 if (trans)
7885 exist = 1;
7886 else
7887 trans = btrfs_join_transaction(root);
7888
7889 if (IS_ERR(trans)) {
7890 ret = PTR_ERR(trans);
7891 goto out;
7892 }
7893
7894 ret = do_chunk_alloc(trans, fs_info, flags,
7895 CHUNK_ALLOC_FORCE);
7896
7897 /*
7898 * If we can't allocate a new chunk we've already looped
7899 * through at least once, move on to the NO_EMPTY_SIZE
7900 * case.
7901 */
7902 if (ret == -ENOSPC)
7903 loop = LOOP_NO_EMPTY_SIZE;
7904
7905 /*
7906 * Do not bail out on ENOSPC since we
7907 * can do more things.
7908 */
7909 if (ret < 0 && ret != -ENOSPC)
7910 btrfs_abort_transaction(trans, ret);
7911 else
7912 ret = 0;
7913 if (!exist)
7914 btrfs_end_transaction(trans);
7915 if (ret)
7916 goto out;
7917 }
7918
7919 if (loop == LOOP_NO_EMPTY_SIZE) {
7920 /*
7921 * Don't loop again if we already have no empty_size and
7922 * no empty_cluster.
7923 */
7924 if (empty_size == 0 &&
7925 empty_cluster == 0) {
7926 ret = -ENOSPC;
7927 goto out;
7928 }
7929 empty_size = 0;
7930 empty_cluster = 0;
7931 }
7932
7933 goto search;
7934 } else if (!ins->objectid) {
7935 ret = -ENOSPC;
7936 } else if (ins->objectid) {
7937 if (!use_cluster && last_ptr) {
7938 spin_lock(&last_ptr->lock);
7939 last_ptr->window_start = ins->objectid;
7940 spin_unlock(&last_ptr->lock);
7941 }
7942 ret = 0;
7943 }
7944 out:
7945 if (ret == -ENOSPC) {
7946 spin_lock(&space_info->lock);
7947 space_info->max_extent_size = max_extent_size;
7948 spin_unlock(&space_info->lock);
7949 ins->offset = max_extent_size;
7950 }
7951 return ret;
7952 }
7953
7954 static void dump_space_info(struct btrfs_fs_info *fs_info,
7955 struct btrfs_space_info *info, u64 bytes,
7956 int dump_block_groups)
7957 {
7958 struct btrfs_block_group_cache *cache;
7959 int index = 0;
7960
7961 spin_lock(&info->lock);
7962 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7963 info->flags,
7964 info->total_bytes - btrfs_space_info_used(info, true),
7965 info->full ? "" : "not ");
7966 btrfs_info(fs_info,
7967 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7968 info->total_bytes, info->bytes_used, info->bytes_pinned,
7969 info->bytes_reserved, info->bytes_may_use,
7970 info->bytes_readonly);
7971 spin_unlock(&info->lock);
7972
7973 if (!dump_block_groups)
7974 return;
7975
7976 down_read(&info->groups_sem);
7977 again:
7978 list_for_each_entry(cache, &info->block_groups[index], list) {
7979 spin_lock(&cache->lock);
7980 btrfs_info(fs_info,
7981 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7982 cache->key.objectid, cache->key.offset,
7983 btrfs_block_group_used(&cache->item), cache->pinned,
7984 cache->reserved, cache->ro ? "[readonly]" : "");
7985 btrfs_dump_free_space(cache, bytes);
7986 spin_unlock(&cache->lock);
7987 }
7988 if (++index < BTRFS_NR_RAID_TYPES)
7989 goto again;
7990 up_read(&info->groups_sem);
7991 }
7992
7993 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7994 u64 num_bytes, u64 min_alloc_size,
7995 u64 empty_size, u64 hint_byte,
7996 struct btrfs_key *ins, int is_data, int delalloc)
7997 {
7998 struct btrfs_fs_info *fs_info = root->fs_info;
7999 bool final_tried = num_bytes == min_alloc_size;
8000 u64 flags;
8001 int ret;
8002
8003 flags = get_alloc_profile_by_root(root, is_data);
8004 again:
8005 WARN_ON(num_bytes < fs_info->sectorsize);
8006 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8007 hint_byte, ins, flags, delalloc);
8008 if (!ret && !is_data) {
8009 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8010 } else if (ret == -ENOSPC) {
8011 if (!final_tried && ins->offset) {
8012 num_bytes = min(num_bytes >> 1, ins->offset);
8013 num_bytes = round_down(num_bytes,
8014 fs_info->sectorsize);
8015 num_bytes = max(num_bytes, min_alloc_size);
8016 ram_bytes = num_bytes;
8017 if (num_bytes == min_alloc_size)
8018 final_tried = true;
8019 goto again;
8020 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8021 struct btrfs_space_info *sinfo;
8022
8023 sinfo = __find_space_info(fs_info, flags);
8024 btrfs_err(fs_info,
8025 "allocation failed flags %llu, wanted %llu",
8026 flags, num_bytes);
8027 if (sinfo)
8028 dump_space_info(fs_info, sinfo, num_bytes, 1);
8029 }
8030 }
8031
8032 return ret;
8033 }
8034
8035 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8036 u64 start, u64 len,
8037 int pin, int delalloc)
8038 {
8039 struct btrfs_block_group_cache *cache;
8040 int ret = 0;
8041
8042 cache = btrfs_lookup_block_group(fs_info, start);
8043 if (!cache) {
8044 btrfs_err(fs_info, "Unable to find block group for %llu",
8045 start);
8046 return -ENOSPC;
8047 }
8048
8049 if (pin)
8050 pin_down_extent(fs_info, cache, start, len, 1);
8051 else {
8052 if (btrfs_test_opt(fs_info, DISCARD))
8053 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8054 btrfs_add_free_space(cache, start, len);
8055 btrfs_free_reserved_bytes(cache, len, delalloc);
8056 trace_btrfs_reserved_extent_free(fs_info, start, len);
8057 }
8058
8059 btrfs_put_block_group(cache);
8060 return ret;
8061 }
8062
8063 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8064 u64 start, u64 len, int delalloc)
8065 {
8066 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8067 }
8068
8069 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8070 u64 start, u64 len)
8071 {
8072 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8073 }
8074
8075 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8076 struct btrfs_fs_info *fs_info,
8077 u64 parent, u64 root_objectid,
8078 u64 flags, u64 owner, u64 offset,
8079 struct btrfs_key *ins, int ref_mod)
8080 {
8081 int ret;
8082 struct btrfs_extent_item *extent_item;
8083 struct btrfs_extent_inline_ref *iref;
8084 struct btrfs_path *path;
8085 struct extent_buffer *leaf;
8086 int type;
8087 u32 size;
8088
8089 if (parent > 0)
8090 type = BTRFS_SHARED_DATA_REF_KEY;
8091 else
8092 type = BTRFS_EXTENT_DATA_REF_KEY;
8093
8094 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8095
8096 path = btrfs_alloc_path();
8097 if (!path)
8098 return -ENOMEM;
8099
8100 path->leave_spinning = 1;
8101 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8102 ins, size);
8103 if (ret) {
8104 btrfs_free_path(path);
8105 return ret;
8106 }
8107
8108 leaf = path->nodes[0];
8109 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8110 struct btrfs_extent_item);
8111 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8112 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8113 btrfs_set_extent_flags(leaf, extent_item,
8114 flags | BTRFS_EXTENT_FLAG_DATA);
8115
8116 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8117 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8118 if (parent > 0) {
8119 struct btrfs_shared_data_ref *ref;
8120 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8121 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8122 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8123 } else {
8124 struct btrfs_extent_data_ref *ref;
8125 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8126 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8127 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8128 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8129 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8130 }
8131
8132 btrfs_mark_buffer_dirty(path->nodes[0]);
8133 btrfs_free_path(path);
8134
8135 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8136 ins->offset);
8137 if (ret)
8138 return ret;
8139
8140 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8141 if (ret) { /* -ENOENT, logic error */
8142 btrfs_err(fs_info, "update block group failed for %llu %llu",
8143 ins->objectid, ins->offset);
8144 BUG();
8145 }
8146 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8147 return ret;
8148 }
8149
8150 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8151 struct btrfs_fs_info *fs_info,
8152 u64 parent, u64 root_objectid,
8153 u64 flags, struct btrfs_disk_key *key,
8154 int level, struct btrfs_key *ins)
8155 {
8156 int ret;
8157 struct btrfs_extent_item *extent_item;
8158 struct btrfs_tree_block_info *block_info;
8159 struct btrfs_extent_inline_ref *iref;
8160 struct btrfs_path *path;
8161 struct extent_buffer *leaf;
8162 u32 size = sizeof(*extent_item) + sizeof(*iref);
8163 u64 num_bytes = ins->offset;
8164 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8165
8166 if (!skinny_metadata)
8167 size += sizeof(*block_info);
8168
8169 path = btrfs_alloc_path();
8170 if (!path) {
8171 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8172 fs_info->nodesize);
8173 return -ENOMEM;
8174 }
8175
8176 path->leave_spinning = 1;
8177 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8178 ins, size);
8179 if (ret) {
8180 btrfs_free_path(path);
8181 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8182 fs_info->nodesize);
8183 return ret;
8184 }
8185
8186 leaf = path->nodes[0];
8187 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8188 struct btrfs_extent_item);
8189 btrfs_set_extent_refs(leaf, extent_item, 1);
8190 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8191 btrfs_set_extent_flags(leaf, extent_item,
8192 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8193
8194 if (skinny_metadata) {
8195 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8196 num_bytes = fs_info->nodesize;
8197 } else {
8198 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8199 btrfs_set_tree_block_key(leaf, block_info, key);
8200 btrfs_set_tree_block_level(leaf, block_info, level);
8201 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8202 }
8203
8204 if (parent > 0) {
8205 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8206 btrfs_set_extent_inline_ref_type(leaf, iref,
8207 BTRFS_SHARED_BLOCK_REF_KEY);
8208 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8209 } else {
8210 btrfs_set_extent_inline_ref_type(leaf, iref,
8211 BTRFS_TREE_BLOCK_REF_KEY);
8212 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8213 }
8214
8215 btrfs_mark_buffer_dirty(leaf);
8216 btrfs_free_path(path);
8217
8218 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8219 num_bytes);
8220 if (ret)
8221 return ret;
8222
8223 ret = update_block_group(trans, fs_info, ins->objectid,
8224 fs_info->nodesize, 1);
8225 if (ret) { /* -ENOENT, logic error */
8226 btrfs_err(fs_info, "update block group failed for %llu %llu",
8227 ins->objectid, ins->offset);
8228 BUG();
8229 }
8230
8231 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8232 fs_info->nodesize);
8233 return ret;
8234 }
8235
8236 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8237 u64 root_objectid, u64 owner,
8238 u64 offset, u64 ram_bytes,
8239 struct btrfs_key *ins)
8240 {
8241 struct btrfs_fs_info *fs_info = trans->fs_info;
8242 int ret;
8243
8244 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8245
8246 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8247 ins->offset, 0, root_objectid, owner,
8248 offset, ram_bytes,
8249 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8250 return ret;
8251 }
8252
8253 /*
8254 * this is used by the tree logging recovery code. It records that
8255 * an extent has been allocated and makes sure to clear the free
8256 * space cache bits as well
8257 */
8258 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8259 struct btrfs_fs_info *fs_info,
8260 u64 root_objectid, u64 owner, u64 offset,
8261 struct btrfs_key *ins)
8262 {
8263 int ret;
8264 struct btrfs_block_group_cache *block_group;
8265 struct btrfs_space_info *space_info;
8266
8267 /*
8268 * Mixed block groups will exclude before processing the log so we only
8269 * need to do the exclude dance if this fs isn't mixed.
8270 */
8271 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8272 ret = __exclude_logged_extent(fs_info, ins->objectid,
8273 ins->offset);
8274 if (ret)
8275 return ret;
8276 }
8277
8278 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8279 if (!block_group)
8280 return -EINVAL;
8281
8282 space_info = block_group->space_info;
8283 spin_lock(&space_info->lock);
8284 spin_lock(&block_group->lock);
8285 space_info->bytes_reserved += ins->offset;
8286 block_group->reserved += ins->offset;
8287 spin_unlock(&block_group->lock);
8288 spin_unlock(&space_info->lock);
8289
8290 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8291 0, owner, offset, ins, 1);
8292 btrfs_put_block_group(block_group);
8293 return ret;
8294 }
8295
8296 static struct extent_buffer *
8297 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8298 u64 bytenr, int level)
8299 {
8300 struct btrfs_fs_info *fs_info = root->fs_info;
8301 struct extent_buffer *buf;
8302
8303 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8304 if (IS_ERR(buf))
8305 return buf;
8306
8307 btrfs_set_header_generation(buf, trans->transid);
8308 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8309 btrfs_tree_lock(buf);
8310 clean_tree_block(fs_info, buf);
8311 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8312
8313 btrfs_set_lock_blocking(buf);
8314 set_extent_buffer_uptodate(buf);
8315
8316 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8317 buf->log_index = root->log_transid % 2;
8318 /*
8319 * we allow two log transactions at a time, use different
8320 * EXENT bit to differentiate dirty pages.
8321 */
8322 if (buf->log_index == 0)
8323 set_extent_dirty(&root->dirty_log_pages, buf->start,
8324 buf->start + buf->len - 1, GFP_NOFS);
8325 else
8326 set_extent_new(&root->dirty_log_pages, buf->start,
8327 buf->start + buf->len - 1);
8328 } else {
8329 buf->log_index = -1;
8330 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8331 buf->start + buf->len - 1, GFP_NOFS);
8332 }
8333 trans->dirty = true;
8334 /* this returns a buffer locked for blocking */
8335 return buf;
8336 }
8337
8338 static struct btrfs_block_rsv *
8339 use_block_rsv(struct btrfs_trans_handle *trans,
8340 struct btrfs_root *root, u32 blocksize)
8341 {
8342 struct btrfs_fs_info *fs_info = root->fs_info;
8343 struct btrfs_block_rsv *block_rsv;
8344 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8345 int ret;
8346 bool global_updated = false;
8347
8348 block_rsv = get_block_rsv(trans, root);
8349
8350 if (unlikely(block_rsv->size == 0))
8351 goto try_reserve;
8352 again:
8353 ret = block_rsv_use_bytes(block_rsv, blocksize);
8354 if (!ret)
8355 return block_rsv;
8356
8357 if (block_rsv->failfast)
8358 return ERR_PTR(ret);
8359
8360 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8361 global_updated = true;
8362 update_global_block_rsv(fs_info);
8363 goto again;
8364 }
8365
8366 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8367 static DEFINE_RATELIMIT_STATE(_rs,
8368 DEFAULT_RATELIMIT_INTERVAL * 10,
8369 /*DEFAULT_RATELIMIT_BURST*/ 1);
8370 if (__ratelimit(&_rs))
8371 WARN(1, KERN_DEBUG
8372 "BTRFS: block rsv returned %d\n", ret);
8373 }
8374 try_reserve:
8375 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8376 BTRFS_RESERVE_NO_FLUSH);
8377 if (!ret)
8378 return block_rsv;
8379 /*
8380 * If we couldn't reserve metadata bytes try and use some from
8381 * the global reserve if its space type is the same as the global
8382 * reservation.
8383 */
8384 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8385 block_rsv->space_info == global_rsv->space_info) {
8386 ret = block_rsv_use_bytes(global_rsv, blocksize);
8387 if (!ret)
8388 return global_rsv;
8389 }
8390 return ERR_PTR(ret);
8391 }
8392
8393 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8394 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8395 {
8396 block_rsv_add_bytes(block_rsv, blocksize, 0);
8397 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8398 }
8399
8400 /*
8401 * finds a free extent and does all the dirty work required for allocation
8402 * returns the tree buffer or an ERR_PTR on error.
8403 */
8404 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8405 struct btrfs_root *root,
8406 u64 parent, u64 root_objectid,
8407 const struct btrfs_disk_key *key,
8408 int level, u64 hint,
8409 u64 empty_size)
8410 {
8411 struct btrfs_fs_info *fs_info = root->fs_info;
8412 struct btrfs_key ins;
8413 struct btrfs_block_rsv *block_rsv;
8414 struct extent_buffer *buf;
8415 struct btrfs_delayed_extent_op *extent_op;
8416 u64 flags = 0;
8417 int ret;
8418 u32 blocksize = fs_info->nodesize;
8419 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8420
8421 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8422 if (btrfs_is_testing(fs_info)) {
8423 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8424 level);
8425 if (!IS_ERR(buf))
8426 root->alloc_bytenr += blocksize;
8427 return buf;
8428 }
8429 #endif
8430
8431 block_rsv = use_block_rsv(trans, root, blocksize);
8432 if (IS_ERR(block_rsv))
8433 return ERR_CAST(block_rsv);
8434
8435 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8436 empty_size, hint, &ins, 0, 0);
8437 if (ret)
8438 goto out_unuse;
8439
8440 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8441 if (IS_ERR(buf)) {
8442 ret = PTR_ERR(buf);
8443 goto out_free_reserved;
8444 }
8445
8446 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8447 if (parent == 0)
8448 parent = ins.objectid;
8449 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8450 } else
8451 BUG_ON(parent > 0);
8452
8453 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8454 extent_op = btrfs_alloc_delayed_extent_op();
8455 if (!extent_op) {
8456 ret = -ENOMEM;
8457 goto out_free_buf;
8458 }
8459 if (key)
8460 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8461 else
8462 memset(&extent_op->key, 0, sizeof(extent_op->key));
8463 extent_op->flags_to_set = flags;
8464 extent_op->update_key = skinny_metadata ? false : true;
8465 extent_op->update_flags = true;
8466 extent_op->is_data = false;
8467 extent_op->level = level;
8468
8469 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8470 ins.offset, parent,
8471 root_objectid, level,
8472 BTRFS_ADD_DELAYED_EXTENT,
8473 extent_op, NULL, NULL);
8474 if (ret)
8475 goto out_free_delayed;
8476 }
8477 return buf;
8478
8479 out_free_delayed:
8480 btrfs_free_delayed_extent_op(extent_op);
8481 out_free_buf:
8482 free_extent_buffer(buf);
8483 out_free_reserved:
8484 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8485 out_unuse:
8486 unuse_block_rsv(fs_info, block_rsv, blocksize);
8487 return ERR_PTR(ret);
8488 }
8489
8490 struct walk_control {
8491 u64 refs[BTRFS_MAX_LEVEL];
8492 u64 flags[BTRFS_MAX_LEVEL];
8493 struct btrfs_key update_progress;
8494 int stage;
8495 int level;
8496 int shared_level;
8497 int update_ref;
8498 int keep_locks;
8499 int reada_slot;
8500 int reada_count;
8501 int for_reloc;
8502 };
8503
8504 #define DROP_REFERENCE 1
8505 #define UPDATE_BACKREF 2
8506
8507 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8508 struct btrfs_root *root,
8509 struct walk_control *wc,
8510 struct btrfs_path *path)
8511 {
8512 struct btrfs_fs_info *fs_info = root->fs_info;
8513 u64 bytenr;
8514 u64 generation;
8515 u64 refs;
8516 u64 flags;
8517 u32 nritems;
8518 struct btrfs_key key;
8519 struct extent_buffer *eb;
8520 int ret;
8521 int slot;
8522 int nread = 0;
8523
8524 if (path->slots[wc->level] < wc->reada_slot) {
8525 wc->reada_count = wc->reada_count * 2 / 3;
8526 wc->reada_count = max(wc->reada_count, 2);
8527 } else {
8528 wc->reada_count = wc->reada_count * 3 / 2;
8529 wc->reada_count = min_t(int, wc->reada_count,
8530 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8531 }
8532
8533 eb = path->nodes[wc->level];
8534 nritems = btrfs_header_nritems(eb);
8535
8536 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8537 if (nread >= wc->reada_count)
8538 break;
8539
8540 cond_resched();
8541 bytenr = btrfs_node_blockptr(eb, slot);
8542 generation = btrfs_node_ptr_generation(eb, slot);
8543
8544 if (slot == path->slots[wc->level])
8545 goto reada;
8546
8547 if (wc->stage == UPDATE_BACKREF &&
8548 generation <= root->root_key.offset)
8549 continue;
8550
8551 /* We don't lock the tree block, it's OK to be racy here */
8552 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8553 wc->level - 1, 1, &refs,
8554 &flags);
8555 /* We don't care about errors in readahead. */
8556 if (ret < 0)
8557 continue;
8558 BUG_ON(refs == 0);
8559
8560 if (wc->stage == DROP_REFERENCE) {
8561 if (refs == 1)
8562 goto reada;
8563
8564 if (wc->level == 1 &&
8565 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8566 continue;
8567 if (!wc->update_ref ||
8568 generation <= root->root_key.offset)
8569 continue;
8570 btrfs_node_key_to_cpu(eb, &key, slot);
8571 ret = btrfs_comp_cpu_keys(&key,
8572 &wc->update_progress);
8573 if (ret < 0)
8574 continue;
8575 } else {
8576 if (wc->level == 1 &&
8577 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578 continue;
8579 }
8580 reada:
8581 readahead_tree_block(fs_info, bytenr);
8582 nread++;
8583 }
8584 wc->reada_slot = slot;
8585 }
8586
8587 /*
8588 * helper to process tree block while walking down the tree.
8589 *
8590 * when wc->stage == UPDATE_BACKREF, this function updates
8591 * back refs for pointers in the block.
8592 *
8593 * NOTE: return value 1 means we should stop walking down.
8594 */
8595 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8596 struct btrfs_root *root,
8597 struct btrfs_path *path,
8598 struct walk_control *wc, int lookup_info)
8599 {
8600 struct btrfs_fs_info *fs_info = root->fs_info;
8601 int level = wc->level;
8602 struct extent_buffer *eb = path->nodes[level];
8603 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8604 int ret;
8605
8606 if (wc->stage == UPDATE_BACKREF &&
8607 btrfs_header_owner(eb) != root->root_key.objectid)
8608 return 1;
8609
8610 /*
8611 * when reference count of tree block is 1, it won't increase
8612 * again. once full backref flag is set, we never clear it.
8613 */
8614 if (lookup_info &&
8615 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8616 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8617 BUG_ON(!path->locks[level]);
8618 ret = btrfs_lookup_extent_info(trans, fs_info,
8619 eb->start, level, 1,
8620 &wc->refs[level],
8621 &wc->flags[level]);
8622 BUG_ON(ret == -ENOMEM);
8623 if (ret)
8624 return ret;
8625 BUG_ON(wc->refs[level] == 0);
8626 }
8627
8628 if (wc->stage == DROP_REFERENCE) {
8629 if (wc->refs[level] > 1)
8630 return 1;
8631
8632 if (path->locks[level] && !wc->keep_locks) {
8633 btrfs_tree_unlock_rw(eb, path->locks[level]);
8634 path->locks[level] = 0;
8635 }
8636 return 0;
8637 }
8638
8639 /* wc->stage == UPDATE_BACKREF */
8640 if (!(wc->flags[level] & flag)) {
8641 BUG_ON(!path->locks[level]);
8642 ret = btrfs_inc_ref(trans, root, eb, 1);
8643 BUG_ON(ret); /* -ENOMEM */
8644 ret = btrfs_dec_ref(trans, root, eb, 0);
8645 BUG_ON(ret); /* -ENOMEM */
8646 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8647 eb->len, flag,
8648 btrfs_header_level(eb), 0);
8649 BUG_ON(ret); /* -ENOMEM */
8650 wc->flags[level] |= flag;
8651 }
8652
8653 /*
8654 * the block is shared by multiple trees, so it's not good to
8655 * keep the tree lock
8656 */
8657 if (path->locks[level] && level > 0) {
8658 btrfs_tree_unlock_rw(eb, path->locks[level]);
8659 path->locks[level] = 0;
8660 }
8661 return 0;
8662 }
8663
8664 /*
8665 * helper to process tree block pointer.
8666 *
8667 * when wc->stage == DROP_REFERENCE, this function checks
8668 * reference count of the block pointed to. if the block
8669 * is shared and we need update back refs for the subtree
8670 * rooted at the block, this function changes wc->stage to
8671 * UPDATE_BACKREF. if the block is shared and there is no
8672 * need to update back, this function drops the reference
8673 * to the block.
8674 *
8675 * NOTE: return value 1 means we should stop walking down.
8676 */
8677 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8678 struct btrfs_root *root,
8679 struct btrfs_path *path,
8680 struct walk_control *wc, int *lookup_info)
8681 {
8682 struct btrfs_fs_info *fs_info = root->fs_info;
8683 u64 bytenr;
8684 u64 generation;
8685 u64 parent;
8686 u32 blocksize;
8687 struct btrfs_key key;
8688 struct extent_buffer *next;
8689 int level = wc->level;
8690 int reada = 0;
8691 int ret = 0;
8692 bool need_account = false;
8693
8694 generation = btrfs_node_ptr_generation(path->nodes[level],
8695 path->slots[level]);
8696 /*
8697 * if the lower level block was created before the snapshot
8698 * was created, we know there is no need to update back refs
8699 * for the subtree
8700 */
8701 if (wc->stage == UPDATE_BACKREF &&
8702 generation <= root->root_key.offset) {
8703 *lookup_info = 1;
8704 return 1;
8705 }
8706
8707 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8708 blocksize = fs_info->nodesize;
8709
8710 next = find_extent_buffer(fs_info, bytenr);
8711 if (!next) {
8712 next = btrfs_find_create_tree_block(fs_info, bytenr);
8713 if (IS_ERR(next))
8714 return PTR_ERR(next);
8715
8716 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8717 level - 1);
8718 reada = 1;
8719 }
8720 btrfs_tree_lock(next);
8721 btrfs_set_lock_blocking(next);
8722
8723 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8724 &wc->refs[level - 1],
8725 &wc->flags[level - 1]);
8726 if (ret < 0)
8727 goto out_unlock;
8728
8729 if (unlikely(wc->refs[level - 1] == 0)) {
8730 btrfs_err(fs_info, "Missing references.");
8731 ret = -EIO;
8732 goto out_unlock;
8733 }
8734 *lookup_info = 0;
8735
8736 if (wc->stage == DROP_REFERENCE) {
8737 if (wc->refs[level - 1] > 1) {
8738 need_account = true;
8739 if (level == 1 &&
8740 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8741 goto skip;
8742
8743 if (!wc->update_ref ||
8744 generation <= root->root_key.offset)
8745 goto skip;
8746
8747 btrfs_node_key_to_cpu(path->nodes[level], &key,
8748 path->slots[level]);
8749 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8750 if (ret < 0)
8751 goto skip;
8752
8753 wc->stage = UPDATE_BACKREF;
8754 wc->shared_level = level - 1;
8755 }
8756 } else {
8757 if (level == 1 &&
8758 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8759 goto skip;
8760 }
8761
8762 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8763 btrfs_tree_unlock(next);
8764 free_extent_buffer(next);
8765 next = NULL;
8766 *lookup_info = 1;
8767 }
8768
8769 if (!next) {
8770 if (reada && level == 1)
8771 reada_walk_down(trans, root, wc, path);
8772 next = read_tree_block(fs_info, bytenr, generation);
8773 if (IS_ERR(next)) {
8774 return PTR_ERR(next);
8775 } else if (!extent_buffer_uptodate(next)) {
8776 free_extent_buffer(next);
8777 return -EIO;
8778 }
8779 btrfs_tree_lock(next);
8780 btrfs_set_lock_blocking(next);
8781 }
8782
8783 level--;
8784 ASSERT(level == btrfs_header_level(next));
8785 if (level != btrfs_header_level(next)) {
8786 btrfs_err(root->fs_info, "mismatched level");
8787 ret = -EIO;
8788 goto out_unlock;
8789 }
8790 path->nodes[level] = next;
8791 path->slots[level] = 0;
8792 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8793 wc->level = level;
8794 if (wc->level == 1)
8795 wc->reada_slot = 0;
8796 return 0;
8797 skip:
8798 wc->refs[level - 1] = 0;
8799 wc->flags[level - 1] = 0;
8800 if (wc->stage == DROP_REFERENCE) {
8801 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8802 parent = path->nodes[level]->start;
8803 } else {
8804 ASSERT(root->root_key.objectid ==
8805 btrfs_header_owner(path->nodes[level]));
8806 if (root->root_key.objectid !=
8807 btrfs_header_owner(path->nodes[level])) {
8808 btrfs_err(root->fs_info,
8809 "mismatched block owner");
8810 ret = -EIO;
8811 goto out_unlock;
8812 }
8813 parent = 0;
8814 }
8815
8816 if (need_account) {
8817 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8818 generation, level - 1);
8819 if (ret) {
8820 btrfs_err_rl(fs_info,
8821 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8822 ret);
8823 }
8824 }
8825 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8826 parent, root->root_key.objectid,
8827 level - 1, 0);
8828 if (ret)
8829 goto out_unlock;
8830 }
8831
8832 *lookup_info = 1;
8833 ret = 1;
8834
8835 out_unlock:
8836 btrfs_tree_unlock(next);
8837 free_extent_buffer(next);
8838
8839 return ret;
8840 }
8841
8842 /*
8843 * helper to process tree block while walking up the tree.
8844 *
8845 * when wc->stage == DROP_REFERENCE, this function drops
8846 * reference count on the block.
8847 *
8848 * when wc->stage == UPDATE_BACKREF, this function changes
8849 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8850 * to UPDATE_BACKREF previously while processing the block.
8851 *
8852 * NOTE: return value 1 means we should stop walking up.
8853 */
8854 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8855 struct btrfs_root *root,
8856 struct btrfs_path *path,
8857 struct walk_control *wc)
8858 {
8859 struct btrfs_fs_info *fs_info = root->fs_info;
8860 int ret;
8861 int level = wc->level;
8862 struct extent_buffer *eb = path->nodes[level];
8863 u64 parent = 0;
8864
8865 if (wc->stage == UPDATE_BACKREF) {
8866 BUG_ON(wc->shared_level < level);
8867 if (level < wc->shared_level)
8868 goto out;
8869
8870 ret = find_next_key(path, level + 1, &wc->update_progress);
8871 if (ret > 0)
8872 wc->update_ref = 0;
8873
8874 wc->stage = DROP_REFERENCE;
8875 wc->shared_level = -1;
8876 path->slots[level] = 0;
8877
8878 /*
8879 * check reference count again if the block isn't locked.
8880 * we should start walking down the tree again if reference
8881 * count is one.
8882 */
8883 if (!path->locks[level]) {
8884 BUG_ON(level == 0);
8885 btrfs_tree_lock(eb);
8886 btrfs_set_lock_blocking(eb);
8887 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8888
8889 ret = btrfs_lookup_extent_info(trans, fs_info,
8890 eb->start, level, 1,
8891 &wc->refs[level],
8892 &wc->flags[level]);
8893 if (ret < 0) {
8894 btrfs_tree_unlock_rw(eb, path->locks[level]);
8895 path->locks[level] = 0;
8896 return ret;
8897 }
8898 BUG_ON(wc->refs[level] == 0);
8899 if (wc->refs[level] == 1) {
8900 btrfs_tree_unlock_rw(eb, path->locks[level]);
8901 path->locks[level] = 0;
8902 return 1;
8903 }
8904 }
8905 }
8906
8907 /* wc->stage == DROP_REFERENCE */
8908 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8909
8910 if (wc->refs[level] == 1) {
8911 if (level == 0) {
8912 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8913 ret = btrfs_dec_ref(trans, root, eb, 1);
8914 else
8915 ret = btrfs_dec_ref(trans, root, eb, 0);
8916 BUG_ON(ret); /* -ENOMEM */
8917 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8918 if (ret) {
8919 btrfs_err_rl(fs_info,
8920 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8921 ret);
8922 }
8923 }
8924 /* make block locked assertion in clean_tree_block happy */
8925 if (!path->locks[level] &&
8926 btrfs_header_generation(eb) == trans->transid) {
8927 btrfs_tree_lock(eb);
8928 btrfs_set_lock_blocking(eb);
8929 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8930 }
8931 clean_tree_block(fs_info, eb);
8932 }
8933
8934 if (eb == root->node) {
8935 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8936 parent = eb->start;
8937 else
8938 BUG_ON(root->root_key.objectid !=
8939 btrfs_header_owner(eb));
8940 } else {
8941 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8942 parent = path->nodes[level + 1]->start;
8943 else
8944 BUG_ON(root->root_key.objectid !=
8945 btrfs_header_owner(path->nodes[level + 1]));
8946 }
8947
8948 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8949 out:
8950 wc->refs[level] = 0;
8951 wc->flags[level] = 0;
8952 return 0;
8953 }
8954
8955 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8956 struct btrfs_root *root,
8957 struct btrfs_path *path,
8958 struct walk_control *wc)
8959 {
8960 int level = wc->level;
8961 int lookup_info = 1;
8962 int ret;
8963
8964 while (level >= 0) {
8965 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8966 if (ret > 0)
8967 break;
8968
8969 if (level == 0)
8970 break;
8971
8972 if (path->slots[level] >=
8973 btrfs_header_nritems(path->nodes[level]))
8974 break;
8975
8976 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8977 if (ret > 0) {
8978 path->slots[level]++;
8979 continue;
8980 } else if (ret < 0)
8981 return ret;
8982 level = wc->level;
8983 }
8984 return 0;
8985 }
8986
8987 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8988 struct btrfs_root *root,
8989 struct btrfs_path *path,
8990 struct walk_control *wc, int max_level)
8991 {
8992 int level = wc->level;
8993 int ret;
8994
8995 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8996 while (level < max_level && path->nodes[level]) {
8997 wc->level = level;
8998 if (path->slots[level] + 1 <
8999 btrfs_header_nritems(path->nodes[level])) {
9000 path->slots[level]++;
9001 return 0;
9002 } else {
9003 ret = walk_up_proc(trans, root, path, wc);
9004 if (ret > 0)
9005 return 0;
9006
9007 if (path->locks[level]) {
9008 btrfs_tree_unlock_rw(path->nodes[level],
9009 path->locks[level]);
9010 path->locks[level] = 0;
9011 }
9012 free_extent_buffer(path->nodes[level]);
9013 path->nodes[level] = NULL;
9014 level++;
9015 }
9016 }
9017 return 1;
9018 }
9019
9020 /*
9021 * drop a subvolume tree.
9022 *
9023 * this function traverses the tree freeing any blocks that only
9024 * referenced by the tree.
9025 *
9026 * when a shared tree block is found. this function decreases its
9027 * reference count by one. if update_ref is true, this function
9028 * also make sure backrefs for the shared block and all lower level
9029 * blocks are properly updated.
9030 *
9031 * If called with for_reloc == 0, may exit early with -EAGAIN
9032 */
9033 int btrfs_drop_snapshot(struct btrfs_root *root,
9034 struct btrfs_block_rsv *block_rsv, int update_ref,
9035 int for_reloc)
9036 {
9037 struct btrfs_fs_info *fs_info = root->fs_info;
9038 struct btrfs_path *path;
9039 struct btrfs_trans_handle *trans;
9040 struct btrfs_root *tree_root = fs_info->tree_root;
9041 struct btrfs_root_item *root_item = &root->root_item;
9042 struct walk_control *wc;
9043 struct btrfs_key key;
9044 int err = 0;
9045 int ret;
9046 int level;
9047 bool root_dropped = false;
9048
9049 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9050
9051 path = btrfs_alloc_path();
9052 if (!path) {
9053 err = -ENOMEM;
9054 goto out;
9055 }
9056
9057 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9058 if (!wc) {
9059 btrfs_free_path(path);
9060 err = -ENOMEM;
9061 goto out;
9062 }
9063
9064 trans = btrfs_start_transaction(tree_root, 0);
9065 if (IS_ERR(trans)) {
9066 err = PTR_ERR(trans);
9067 goto out_free;
9068 }
9069
9070 if (block_rsv)
9071 trans->block_rsv = block_rsv;
9072
9073 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9074 level = btrfs_header_level(root->node);
9075 path->nodes[level] = btrfs_lock_root_node(root);
9076 btrfs_set_lock_blocking(path->nodes[level]);
9077 path->slots[level] = 0;
9078 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9079 memset(&wc->update_progress, 0,
9080 sizeof(wc->update_progress));
9081 } else {
9082 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9083 memcpy(&wc->update_progress, &key,
9084 sizeof(wc->update_progress));
9085
9086 level = root_item->drop_level;
9087 BUG_ON(level == 0);
9088 path->lowest_level = level;
9089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9090 path->lowest_level = 0;
9091 if (ret < 0) {
9092 err = ret;
9093 goto out_end_trans;
9094 }
9095 WARN_ON(ret > 0);
9096
9097 /*
9098 * unlock our path, this is safe because only this
9099 * function is allowed to delete this snapshot
9100 */
9101 btrfs_unlock_up_safe(path, 0);
9102
9103 level = btrfs_header_level(root->node);
9104 while (1) {
9105 btrfs_tree_lock(path->nodes[level]);
9106 btrfs_set_lock_blocking(path->nodes[level]);
9107 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9108
9109 ret = btrfs_lookup_extent_info(trans, fs_info,
9110 path->nodes[level]->start,
9111 level, 1, &wc->refs[level],
9112 &wc->flags[level]);
9113 if (ret < 0) {
9114 err = ret;
9115 goto out_end_trans;
9116 }
9117 BUG_ON(wc->refs[level] == 0);
9118
9119 if (level == root_item->drop_level)
9120 break;
9121
9122 btrfs_tree_unlock(path->nodes[level]);
9123 path->locks[level] = 0;
9124 WARN_ON(wc->refs[level] != 1);
9125 level--;
9126 }
9127 }
9128
9129 wc->level = level;
9130 wc->shared_level = -1;
9131 wc->stage = DROP_REFERENCE;
9132 wc->update_ref = update_ref;
9133 wc->keep_locks = 0;
9134 wc->for_reloc = for_reloc;
9135 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9136
9137 while (1) {
9138
9139 ret = walk_down_tree(trans, root, path, wc);
9140 if (ret < 0) {
9141 err = ret;
9142 break;
9143 }
9144
9145 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9146 if (ret < 0) {
9147 err = ret;
9148 break;
9149 }
9150
9151 if (ret > 0) {
9152 BUG_ON(wc->stage != DROP_REFERENCE);
9153 break;
9154 }
9155
9156 if (wc->stage == DROP_REFERENCE) {
9157 level = wc->level;
9158 btrfs_node_key(path->nodes[level],
9159 &root_item->drop_progress,
9160 path->slots[level]);
9161 root_item->drop_level = level;
9162 }
9163
9164 BUG_ON(wc->level == 0);
9165 if (btrfs_should_end_transaction(trans) ||
9166 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9167 ret = btrfs_update_root(trans, tree_root,
9168 &root->root_key,
9169 root_item);
9170 if (ret) {
9171 btrfs_abort_transaction(trans, ret);
9172 err = ret;
9173 goto out_end_trans;
9174 }
9175
9176 btrfs_end_transaction_throttle(trans);
9177 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9178 btrfs_debug(fs_info,
9179 "drop snapshot early exit");
9180 err = -EAGAIN;
9181 goto out_free;
9182 }
9183
9184 trans = btrfs_start_transaction(tree_root, 0);
9185 if (IS_ERR(trans)) {
9186 err = PTR_ERR(trans);
9187 goto out_free;
9188 }
9189 if (block_rsv)
9190 trans->block_rsv = block_rsv;
9191 }
9192 }
9193 btrfs_release_path(path);
9194 if (err)
9195 goto out_end_trans;
9196
9197 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9198 if (ret) {
9199 btrfs_abort_transaction(trans, ret);
9200 goto out_end_trans;
9201 }
9202
9203 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9204 ret = btrfs_find_root(tree_root, &root->root_key, path,
9205 NULL, NULL);
9206 if (ret < 0) {
9207 btrfs_abort_transaction(trans, ret);
9208 err = ret;
9209 goto out_end_trans;
9210 } else if (ret > 0) {
9211 /* if we fail to delete the orphan item this time
9212 * around, it'll get picked up the next time.
9213 *
9214 * The most common failure here is just -ENOENT.
9215 */
9216 btrfs_del_orphan_item(trans, tree_root,
9217 root->root_key.objectid);
9218 }
9219 }
9220
9221 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9222 btrfs_add_dropped_root(trans, root);
9223 } else {
9224 free_extent_buffer(root->node);
9225 free_extent_buffer(root->commit_root);
9226 btrfs_put_fs_root(root);
9227 }
9228 root_dropped = true;
9229 out_end_trans:
9230 btrfs_end_transaction_throttle(trans);
9231 out_free:
9232 kfree(wc);
9233 btrfs_free_path(path);
9234 out:
9235 /*
9236 * So if we need to stop dropping the snapshot for whatever reason we
9237 * need to make sure to add it back to the dead root list so that we
9238 * keep trying to do the work later. This also cleans up roots if we
9239 * don't have it in the radix (like when we recover after a power fail
9240 * or unmount) so we don't leak memory.
9241 */
9242 if (!for_reloc && root_dropped == false)
9243 btrfs_add_dead_root(root);
9244 if (err && err != -EAGAIN)
9245 btrfs_handle_fs_error(fs_info, err, NULL);
9246 return err;
9247 }
9248
9249 /*
9250 * drop subtree rooted at tree block 'node'.
9251 *
9252 * NOTE: this function will unlock and release tree block 'node'
9253 * only used by relocation code
9254 */
9255 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9256 struct btrfs_root *root,
9257 struct extent_buffer *node,
9258 struct extent_buffer *parent)
9259 {
9260 struct btrfs_fs_info *fs_info = root->fs_info;
9261 struct btrfs_path *path;
9262 struct walk_control *wc;
9263 int level;
9264 int parent_level;
9265 int ret = 0;
9266 int wret;
9267
9268 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9269
9270 path = btrfs_alloc_path();
9271 if (!path)
9272 return -ENOMEM;
9273
9274 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9275 if (!wc) {
9276 btrfs_free_path(path);
9277 return -ENOMEM;
9278 }
9279
9280 btrfs_assert_tree_locked(parent);
9281 parent_level = btrfs_header_level(parent);
9282 extent_buffer_get(parent);
9283 path->nodes[parent_level] = parent;
9284 path->slots[parent_level] = btrfs_header_nritems(parent);
9285
9286 btrfs_assert_tree_locked(node);
9287 level = btrfs_header_level(node);
9288 path->nodes[level] = node;
9289 path->slots[level] = 0;
9290 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9291
9292 wc->refs[parent_level] = 1;
9293 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9294 wc->level = level;
9295 wc->shared_level = -1;
9296 wc->stage = DROP_REFERENCE;
9297 wc->update_ref = 0;
9298 wc->keep_locks = 1;
9299 wc->for_reloc = 1;
9300 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9301
9302 while (1) {
9303 wret = walk_down_tree(trans, root, path, wc);
9304 if (wret < 0) {
9305 ret = wret;
9306 break;
9307 }
9308
9309 wret = walk_up_tree(trans, root, path, wc, parent_level);
9310 if (wret < 0)
9311 ret = wret;
9312 if (wret != 0)
9313 break;
9314 }
9315
9316 kfree(wc);
9317 btrfs_free_path(path);
9318 return ret;
9319 }
9320
9321 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9322 {
9323 u64 num_devices;
9324 u64 stripped;
9325
9326 /*
9327 * if restripe for this chunk_type is on pick target profile and
9328 * return, otherwise do the usual balance
9329 */
9330 stripped = get_restripe_target(fs_info, flags);
9331 if (stripped)
9332 return extended_to_chunk(stripped);
9333
9334 num_devices = fs_info->fs_devices->rw_devices;
9335
9336 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9337 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9338 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9339
9340 if (num_devices == 1) {
9341 stripped |= BTRFS_BLOCK_GROUP_DUP;
9342 stripped = flags & ~stripped;
9343
9344 /* turn raid0 into single device chunks */
9345 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9346 return stripped;
9347
9348 /* turn mirroring into duplication */
9349 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9350 BTRFS_BLOCK_GROUP_RAID10))
9351 return stripped | BTRFS_BLOCK_GROUP_DUP;
9352 } else {
9353 /* they already had raid on here, just return */
9354 if (flags & stripped)
9355 return flags;
9356
9357 stripped |= BTRFS_BLOCK_GROUP_DUP;
9358 stripped = flags & ~stripped;
9359
9360 /* switch duplicated blocks with raid1 */
9361 if (flags & BTRFS_BLOCK_GROUP_DUP)
9362 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9363
9364 /* this is drive concat, leave it alone */
9365 }
9366
9367 return flags;
9368 }
9369
9370 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9371 {
9372 struct btrfs_space_info *sinfo = cache->space_info;
9373 u64 num_bytes;
9374 u64 min_allocable_bytes;
9375 int ret = -ENOSPC;
9376
9377 /*
9378 * We need some metadata space and system metadata space for
9379 * allocating chunks in some corner cases until we force to set
9380 * it to be readonly.
9381 */
9382 if ((sinfo->flags &
9383 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9384 !force)
9385 min_allocable_bytes = SZ_1M;
9386 else
9387 min_allocable_bytes = 0;
9388
9389 spin_lock(&sinfo->lock);
9390 spin_lock(&cache->lock);
9391
9392 if (cache->ro) {
9393 cache->ro++;
9394 ret = 0;
9395 goto out;
9396 }
9397
9398 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9399 cache->bytes_super - btrfs_block_group_used(&cache->item);
9400
9401 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9402 min_allocable_bytes <= sinfo->total_bytes) {
9403 sinfo->bytes_readonly += num_bytes;
9404 cache->ro++;
9405 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9406 ret = 0;
9407 }
9408 out:
9409 spin_unlock(&cache->lock);
9410 spin_unlock(&sinfo->lock);
9411 return ret;
9412 }
9413
9414 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9415 struct btrfs_block_group_cache *cache)
9416
9417 {
9418 struct btrfs_trans_handle *trans;
9419 u64 alloc_flags;
9420 int ret;
9421
9422 again:
9423 trans = btrfs_join_transaction(fs_info->extent_root);
9424 if (IS_ERR(trans))
9425 return PTR_ERR(trans);
9426
9427 /*
9428 * we're not allowed to set block groups readonly after the dirty
9429 * block groups cache has started writing. If it already started,
9430 * back off and let this transaction commit
9431 */
9432 mutex_lock(&fs_info->ro_block_group_mutex);
9433 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9434 u64 transid = trans->transid;
9435
9436 mutex_unlock(&fs_info->ro_block_group_mutex);
9437 btrfs_end_transaction(trans);
9438
9439 ret = btrfs_wait_for_commit(fs_info, transid);
9440 if (ret)
9441 return ret;
9442 goto again;
9443 }
9444
9445 /*
9446 * if we are changing raid levels, try to allocate a corresponding
9447 * block group with the new raid level.
9448 */
9449 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9450 if (alloc_flags != cache->flags) {
9451 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9452 CHUNK_ALLOC_FORCE);
9453 /*
9454 * ENOSPC is allowed here, we may have enough space
9455 * already allocated at the new raid level to
9456 * carry on
9457 */
9458 if (ret == -ENOSPC)
9459 ret = 0;
9460 if (ret < 0)
9461 goto out;
9462 }
9463
9464 ret = inc_block_group_ro(cache, 0);
9465 if (!ret)
9466 goto out;
9467 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9468 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9469 CHUNK_ALLOC_FORCE);
9470 if (ret < 0)
9471 goto out;
9472 ret = inc_block_group_ro(cache, 0);
9473 out:
9474 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9475 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9476 mutex_lock(&fs_info->chunk_mutex);
9477 check_system_chunk(trans, fs_info, alloc_flags);
9478 mutex_unlock(&fs_info->chunk_mutex);
9479 }
9480 mutex_unlock(&fs_info->ro_block_group_mutex);
9481
9482 btrfs_end_transaction(trans);
9483 return ret;
9484 }
9485
9486 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9487 struct btrfs_fs_info *fs_info, u64 type)
9488 {
9489 u64 alloc_flags = get_alloc_profile(fs_info, type);
9490
9491 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9492 }
9493
9494 /*
9495 * helper to account the unused space of all the readonly block group in the
9496 * space_info. takes mirrors into account.
9497 */
9498 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9499 {
9500 struct btrfs_block_group_cache *block_group;
9501 u64 free_bytes = 0;
9502 int factor;
9503
9504 /* It's df, we don't care if it's racy */
9505 if (list_empty(&sinfo->ro_bgs))
9506 return 0;
9507
9508 spin_lock(&sinfo->lock);
9509 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9510 spin_lock(&block_group->lock);
9511
9512 if (!block_group->ro) {
9513 spin_unlock(&block_group->lock);
9514 continue;
9515 }
9516
9517 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9518 BTRFS_BLOCK_GROUP_RAID10 |
9519 BTRFS_BLOCK_GROUP_DUP))
9520 factor = 2;
9521 else
9522 factor = 1;
9523
9524 free_bytes += (block_group->key.offset -
9525 btrfs_block_group_used(&block_group->item)) *
9526 factor;
9527
9528 spin_unlock(&block_group->lock);
9529 }
9530 spin_unlock(&sinfo->lock);
9531
9532 return free_bytes;
9533 }
9534
9535 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9536 {
9537 struct btrfs_space_info *sinfo = cache->space_info;
9538 u64 num_bytes;
9539
9540 BUG_ON(!cache->ro);
9541
9542 spin_lock(&sinfo->lock);
9543 spin_lock(&cache->lock);
9544 if (!--cache->ro) {
9545 num_bytes = cache->key.offset - cache->reserved -
9546 cache->pinned - cache->bytes_super -
9547 btrfs_block_group_used(&cache->item);
9548 sinfo->bytes_readonly -= num_bytes;
9549 list_del_init(&cache->ro_list);
9550 }
9551 spin_unlock(&cache->lock);
9552 spin_unlock(&sinfo->lock);
9553 }
9554
9555 /*
9556 * checks to see if its even possible to relocate this block group.
9557 *
9558 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9559 * ok to go ahead and try.
9560 */
9561 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9562 {
9563 struct btrfs_root *root = fs_info->extent_root;
9564 struct btrfs_block_group_cache *block_group;
9565 struct btrfs_space_info *space_info;
9566 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9567 struct btrfs_device *device;
9568 struct btrfs_trans_handle *trans;
9569 u64 min_free;
9570 u64 dev_min = 1;
9571 u64 dev_nr = 0;
9572 u64 target;
9573 int debug;
9574 int index;
9575 int full = 0;
9576 int ret = 0;
9577
9578 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9579
9580 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9581
9582 /* odd, couldn't find the block group, leave it alone */
9583 if (!block_group) {
9584 if (debug)
9585 btrfs_warn(fs_info,
9586 "can't find block group for bytenr %llu",
9587 bytenr);
9588 return -1;
9589 }
9590
9591 min_free = btrfs_block_group_used(&block_group->item);
9592
9593 /* no bytes used, we're good */
9594 if (!min_free)
9595 goto out;
9596
9597 space_info = block_group->space_info;
9598 spin_lock(&space_info->lock);
9599
9600 full = space_info->full;
9601
9602 /*
9603 * if this is the last block group we have in this space, we can't
9604 * relocate it unless we're able to allocate a new chunk below.
9605 *
9606 * Otherwise, we need to make sure we have room in the space to handle
9607 * all of the extents from this block group. If we can, we're good
9608 */
9609 if ((space_info->total_bytes != block_group->key.offset) &&
9610 (btrfs_space_info_used(space_info, false) + min_free <
9611 space_info->total_bytes)) {
9612 spin_unlock(&space_info->lock);
9613 goto out;
9614 }
9615 spin_unlock(&space_info->lock);
9616
9617 /*
9618 * ok we don't have enough space, but maybe we have free space on our
9619 * devices to allocate new chunks for relocation, so loop through our
9620 * alloc devices and guess if we have enough space. if this block
9621 * group is going to be restriped, run checks against the target
9622 * profile instead of the current one.
9623 */
9624 ret = -1;
9625
9626 /*
9627 * index:
9628 * 0: raid10
9629 * 1: raid1
9630 * 2: dup
9631 * 3: raid0
9632 * 4: single
9633 */
9634 target = get_restripe_target(fs_info, block_group->flags);
9635 if (target) {
9636 index = __get_raid_index(extended_to_chunk(target));
9637 } else {
9638 /*
9639 * this is just a balance, so if we were marked as full
9640 * we know there is no space for a new chunk
9641 */
9642 if (full) {
9643 if (debug)
9644 btrfs_warn(fs_info,
9645 "no space to alloc new chunk for block group %llu",
9646 block_group->key.objectid);
9647 goto out;
9648 }
9649
9650 index = get_block_group_index(block_group);
9651 }
9652
9653 if (index == BTRFS_RAID_RAID10) {
9654 dev_min = 4;
9655 /* Divide by 2 */
9656 min_free >>= 1;
9657 } else if (index == BTRFS_RAID_RAID1) {
9658 dev_min = 2;
9659 } else if (index == BTRFS_RAID_DUP) {
9660 /* Multiply by 2 */
9661 min_free <<= 1;
9662 } else if (index == BTRFS_RAID_RAID0) {
9663 dev_min = fs_devices->rw_devices;
9664 min_free = div64_u64(min_free, dev_min);
9665 }
9666
9667 /* We need to do this so that we can look at pending chunks */
9668 trans = btrfs_join_transaction(root);
9669 if (IS_ERR(trans)) {
9670 ret = PTR_ERR(trans);
9671 goto out;
9672 }
9673
9674 mutex_lock(&fs_info->chunk_mutex);
9675 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9676 u64 dev_offset;
9677
9678 /*
9679 * check to make sure we can actually find a chunk with enough
9680 * space to fit our block group in.
9681 */
9682 if (device->total_bytes > device->bytes_used + min_free &&
9683 !device->is_tgtdev_for_dev_replace) {
9684 ret = find_free_dev_extent(trans, device, min_free,
9685 &dev_offset, NULL);
9686 if (!ret)
9687 dev_nr++;
9688
9689 if (dev_nr >= dev_min)
9690 break;
9691
9692 ret = -1;
9693 }
9694 }
9695 if (debug && ret == -1)
9696 btrfs_warn(fs_info,
9697 "no space to allocate a new chunk for block group %llu",
9698 block_group->key.objectid);
9699 mutex_unlock(&fs_info->chunk_mutex);
9700 btrfs_end_transaction(trans);
9701 out:
9702 btrfs_put_block_group(block_group);
9703 return ret;
9704 }
9705
9706 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9707 struct btrfs_path *path,
9708 struct btrfs_key *key)
9709 {
9710 struct btrfs_root *root = fs_info->extent_root;
9711 int ret = 0;
9712 struct btrfs_key found_key;
9713 struct extent_buffer *leaf;
9714 int slot;
9715
9716 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9717 if (ret < 0)
9718 goto out;
9719
9720 while (1) {
9721 slot = path->slots[0];
9722 leaf = path->nodes[0];
9723 if (slot >= btrfs_header_nritems(leaf)) {
9724 ret = btrfs_next_leaf(root, path);
9725 if (ret == 0)
9726 continue;
9727 if (ret < 0)
9728 goto out;
9729 break;
9730 }
9731 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9732
9733 if (found_key.objectid >= key->objectid &&
9734 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9735 struct extent_map_tree *em_tree;
9736 struct extent_map *em;
9737
9738 em_tree = &root->fs_info->mapping_tree.map_tree;
9739 read_lock(&em_tree->lock);
9740 em = lookup_extent_mapping(em_tree, found_key.objectid,
9741 found_key.offset);
9742 read_unlock(&em_tree->lock);
9743 if (!em) {
9744 btrfs_err(fs_info,
9745 "logical %llu len %llu found bg but no related chunk",
9746 found_key.objectid, found_key.offset);
9747 ret = -ENOENT;
9748 } else {
9749 ret = 0;
9750 }
9751 free_extent_map(em);
9752 goto out;
9753 }
9754 path->slots[0]++;
9755 }
9756 out:
9757 return ret;
9758 }
9759
9760 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9761 {
9762 struct btrfs_block_group_cache *block_group;
9763 u64 last = 0;
9764
9765 while (1) {
9766 struct inode *inode;
9767
9768 block_group = btrfs_lookup_first_block_group(info, last);
9769 while (block_group) {
9770 spin_lock(&block_group->lock);
9771 if (block_group->iref)
9772 break;
9773 spin_unlock(&block_group->lock);
9774 block_group = next_block_group(info, block_group);
9775 }
9776 if (!block_group) {
9777 if (last == 0)
9778 break;
9779 last = 0;
9780 continue;
9781 }
9782
9783 inode = block_group->inode;
9784 block_group->iref = 0;
9785 block_group->inode = NULL;
9786 spin_unlock(&block_group->lock);
9787 ASSERT(block_group->io_ctl.inode == NULL);
9788 iput(inode);
9789 last = block_group->key.objectid + block_group->key.offset;
9790 btrfs_put_block_group(block_group);
9791 }
9792 }
9793
9794 /*
9795 * Must be called only after stopping all workers, since we could have block
9796 * group caching kthreads running, and therefore they could race with us if we
9797 * freed the block groups before stopping them.
9798 */
9799 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9800 {
9801 struct btrfs_block_group_cache *block_group;
9802 struct btrfs_space_info *space_info;
9803 struct btrfs_caching_control *caching_ctl;
9804 struct rb_node *n;
9805
9806 down_write(&info->commit_root_sem);
9807 while (!list_empty(&info->caching_block_groups)) {
9808 caching_ctl = list_entry(info->caching_block_groups.next,
9809 struct btrfs_caching_control, list);
9810 list_del(&caching_ctl->list);
9811 put_caching_control(caching_ctl);
9812 }
9813 up_write(&info->commit_root_sem);
9814
9815 spin_lock(&info->unused_bgs_lock);
9816 while (!list_empty(&info->unused_bgs)) {
9817 block_group = list_first_entry(&info->unused_bgs,
9818 struct btrfs_block_group_cache,
9819 bg_list);
9820 list_del_init(&block_group->bg_list);
9821 btrfs_put_block_group(block_group);
9822 }
9823 spin_unlock(&info->unused_bgs_lock);
9824
9825 spin_lock(&info->block_group_cache_lock);
9826 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9827 block_group = rb_entry(n, struct btrfs_block_group_cache,
9828 cache_node);
9829 rb_erase(&block_group->cache_node,
9830 &info->block_group_cache_tree);
9831 RB_CLEAR_NODE(&block_group->cache_node);
9832 spin_unlock(&info->block_group_cache_lock);
9833
9834 down_write(&block_group->space_info->groups_sem);
9835 list_del(&block_group->list);
9836 up_write(&block_group->space_info->groups_sem);
9837
9838 /*
9839 * We haven't cached this block group, which means we could
9840 * possibly have excluded extents on this block group.
9841 */
9842 if (block_group->cached == BTRFS_CACHE_NO ||
9843 block_group->cached == BTRFS_CACHE_ERROR)
9844 free_excluded_extents(info, block_group);
9845
9846 btrfs_remove_free_space_cache(block_group);
9847 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9848 ASSERT(list_empty(&block_group->dirty_list));
9849 ASSERT(list_empty(&block_group->io_list));
9850 ASSERT(list_empty(&block_group->bg_list));
9851 ASSERT(atomic_read(&block_group->count) == 1);
9852 btrfs_put_block_group(block_group);
9853
9854 spin_lock(&info->block_group_cache_lock);
9855 }
9856 spin_unlock(&info->block_group_cache_lock);
9857
9858 /* now that all the block groups are freed, go through and
9859 * free all the space_info structs. This is only called during
9860 * the final stages of unmount, and so we know nobody is
9861 * using them. We call synchronize_rcu() once before we start,
9862 * just to be on the safe side.
9863 */
9864 synchronize_rcu();
9865
9866 release_global_block_rsv(info);
9867
9868 while (!list_empty(&info->space_info)) {
9869 int i;
9870
9871 space_info = list_entry(info->space_info.next,
9872 struct btrfs_space_info,
9873 list);
9874
9875 /*
9876 * Do not hide this behind enospc_debug, this is actually
9877 * important and indicates a real bug if this happens.
9878 */
9879 if (WARN_ON(space_info->bytes_pinned > 0 ||
9880 space_info->bytes_reserved > 0 ||
9881 space_info->bytes_may_use > 0))
9882 dump_space_info(info, space_info, 0, 0);
9883 list_del(&space_info->list);
9884 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9885 struct kobject *kobj;
9886 kobj = space_info->block_group_kobjs[i];
9887 space_info->block_group_kobjs[i] = NULL;
9888 if (kobj) {
9889 kobject_del(kobj);
9890 kobject_put(kobj);
9891 }
9892 }
9893 kobject_del(&space_info->kobj);
9894 kobject_put(&space_info->kobj);
9895 }
9896 return 0;
9897 }
9898
9899 static void __link_block_group(struct btrfs_space_info *space_info,
9900 struct btrfs_block_group_cache *cache)
9901 {
9902 int index = get_block_group_index(cache);
9903 bool first = false;
9904
9905 down_write(&space_info->groups_sem);
9906 if (list_empty(&space_info->block_groups[index]))
9907 first = true;
9908 list_add_tail(&cache->list, &space_info->block_groups[index]);
9909 up_write(&space_info->groups_sem);
9910
9911 if (first) {
9912 struct raid_kobject *rkobj;
9913 int ret;
9914
9915 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9916 if (!rkobj)
9917 goto out_err;
9918 rkobj->raid_type = index;
9919 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9920 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9921 "%s", get_raid_name(index));
9922 if (ret) {
9923 kobject_put(&rkobj->kobj);
9924 goto out_err;
9925 }
9926 space_info->block_group_kobjs[index] = &rkobj->kobj;
9927 }
9928
9929 return;
9930 out_err:
9931 btrfs_warn(cache->fs_info,
9932 "failed to add kobject for block cache, ignoring");
9933 }
9934
9935 static struct btrfs_block_group_cache *
9936 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9937 u64 start, u64 size)
9938 {
9939 struct btrfs_block_group_cache *cache;
9940
9941 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9942 if (!cache)
9943 return NULL;
9944
9945 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9946 GFP_NOFS);
9947 if (!cache->free_space_ctl) {
9948 kfree(cache);
9949 return NULL;
9950 }
9951
9952 cache->key.objectid = start;
9953 cache->key.offset = size;
9954 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9955
9956 cache->sectorsize = fs_info->sectorsize;
9957 cache->fs_info = fs_info;
9958 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9959 &fs_info->mapping_tree,
9960 start);
9961 set_free_space_tree_thresholds(cache);
9962
9963 atomic_set(&cache->count, 1);
9964 spin_lock_init(&cache->lock);
9965 init_rwsem(&cache->data_rwsem);
9966 INIT_LIST_HEAD(&cache->list);
9967 INIT_LIST_HEAD(&cache->cluster_list);
9968 INIT_LIST_HEAD(&cache->bg_list);
9969 INIT_LIST_HEAD(&cache->ro_list);
9970 INIT_LIST_HEAD(&cache->dirty_list);
9971 INIT_LIST_HEAD(&cache->io_list);
9972 btrfs_init_free_space_ctl(cache);
9973 atomic_set(&cache->trimming, 0);
9974 mutex_init(&cache->free_space_lock);
9975 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9976
9977 return cache;
9978 }
9979
9980 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9981 {
9982 struct btrfs_path *path;
9983 int ret;
9984 struct btrfs_block_group_cache *cache;
9985 struct btrfs_space_info *space_info;
9986 struct btrfs_key key;
9987 struct btrfs_key found_key;
9988 struct extent_buffer *leaf;
9989 int need_clear = 0;
9990 u64 cache_gen;
9991 u64 feature;
9992 int mixed;
9993
9994 feature = btrfs_super_incompat_flags(info->super_copy);
9995 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9996
9997 key.objectid = 0;
9998 key.offset = 0;
9999 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10000 path = btrfs_alloc_path();
10001 if (!path)
10002 return -ENOMEM;
10003 path->reada = READA_FORWARD;
10004
10005 cache_gen = btrfs_super_cache_generation(info->super_copy);
10006 if (btrfs_test_opt(info, SPACE_CACHE) &&
10007 btrfs_super_generation(info->super_copy) != cache_gen)
10008 need_clear = 1;
10009 if (btrfs_test_opt(info, CLEAR_CACHE))
10010 need_clear = 1;
10011
10012 while (1) {
10013 ret = find_first_block_group(info, path, &key);
10014 if (ret > 0)
10015 break;
10016 if (ret != 0)
10017 goto error;
10018
10019 leaf = path->nodes[0];
10020 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10021
10022 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10023 found_key.offset);
10024 if (!cache) {
10025 ret = -ENOMEM;
10026 goto error;
10027 }
10028
10029 if (need_clear) {
10030 /*
10031 * When we mount with old space cache, we need to
10032 * set BTRFS_DC_CLEAR and set dirty flag.
10033 *
10034 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10035 * truncate the old free space cache inode and
10036 * setup a new one.
10037 * b) Setting 'dirty flag' makes sure that we flush
10038 * the new space cache info onto disk.
10039 */
10040 if (btrfs_test_opt(info, SPACE_CACHE))
10041 cache->disk_cache_state = BTRFS_DC_CLEAR;
10042 }
10043
10044 read_extent_buffer(leaf, &cache->item,
10045 btrfs_item_ptr_offset(leaf, path->slots[0]),
10046 sizeof(cache->item));
10047 cache->flags = btrfs_block_group_flags(&cache->item);
10048 if (!mixed &&
10049 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10050 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10051 btrfs_err(info,
10052 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10053 cache->key.objectid);
10054 ret = -EINVAL;
10055 goto error;
10056 }
10057
10058 key.objectid = found_key.objectid + found_key.offset;
10059 btrfs_release_path(path);
10060
10061 /*
10062 * We need to exclude the super stripes now so that the space
10063 * info has super bytes accounted for, otherwise we'll think
10064 * we have more space than we actually do.
10065 */
10066 ret = exclude_super_stripes(info, cache);
10067 if (ret) {
10068 /*
10069 * We may have excluded something, so call this just in
10070 * case.
10071 */
10072 free_excluded_extents(info, cache);
10073 btrfs_put_block_group(cache);
10074 goto error;
10075 }
10076
10077 /*
10078 * check for two cases, either we are full, and therefore
10079 * don't need to bother with the caching work since we won't
10080 * find any space, or we are empty, and we can just add all
10081 * the space in and be done with it. This saves us _alot_ of
10082 * time, particularly in the full case.
10083 */
10084 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10085 cache->last_byte_to_unpin = (u64)-1;
10086 cache->cached = BTRFS_CACHE_FINISHED;
10087 free_excluded_extents(info, cache);
10088 } else if (btrfs_block_group_used(&cache->item) == 0) {
10089 cache->last_byte_to_unpin = (u64)-1;
10090 cache->cached = BTRFS_CACHE_FINISHED;
10091 add_new_free_space(cache, info,
10092 found_key.objectid,
10093 found_key.objectid +
10094 found_key.offset);
10095 free_excluded_extents(info, cache);
10096 }
10097
10098 ret = btrfs_add_block_group_cache(info, cache);
10099 if (ret) {
10100 btrfs_remove_free_space_cache(cache);
10101 btrfs_put_block_group(cache);
10102 goto error;
10103 }
10104
10105 trace_btrfs_add_block_group(info, cache, 0);
10106 update_space_info(info, cache->flags, found_key.offset,
10107 btrfs_block_group_used(&cache->item),
10108 cache->bytes_super, &space_info);
10109
10110 cache->space_info = space_info;
10111
10112 __link_block_group(space_info, cache);
10113
10114 set_avail_alloc_bits(info, cache->flags);
10115 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10116 inc_block_group_ro(cache, 1);
10117 } else if (btrfs_block_group_used(&cache->item) == 0) {
10118 spin_lock(&info->unused_bgs_lock);
10119 /* Should always be true but just in case. */
10120 if (list_empty(&cache->bg_list)) {
10121 btrfs_get_block_group(cache);
10122 list_add_tail(&cache->bg_list,
10123 &info->unused_bgs);
10124 }
10125 spin_unlock(&info->unused_bgs_lock);
10126 }
10127 }
10128
10129 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10130 if (!(get_alloc_profile(info, space_info->flags) &
10131 (BTRFS_BLOCK_GROUP_RAID10 |
10132 BTRFS_BLOCK_GROUP_RAID1 |
10133 BTRFS_BLOCK_GROUP_RAID5 |
10134 BTRFS_BLOCK_GROUP_RAID6 |
10135 BTRFS_BLOCK_GROUP_DUP)))
10136 continue;
10137 /*
10138 * avoid allocating from un-mirrored block group if there are
10139 * mirrored block groups.
10140 */
10141 list_for_each_entry(cache,
10142 &space_info->block_groups[BTRFS_RAID_RAID0],
10143 list)
10144 inc_block_group_ro(cache, 1);
10145 list_for_each_entry(cache,
10146 &space_info->block_groups[BTRFS_RAID_SINGLE],
10147 list)
10148 inc_block_group_ro(cache, 1);
10149 }
10150
10151 init_global_block_rsv(info);
10152 ret = 0;
10153 error:
10154 btrfs_free_path(path);
10155 return ret;
10156 }
10157
10158 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10159 struct btrfs_fs_info *fs_info)
10160 {
10161 struct btrfs_block_group_cache *block_group, *tmp;
10162 struct btrfs_root *extent_root = fs_info->extent_root;
10163 struct btrfs_block_group_item item;
10164 struct btrfs_key key;
10165 int ret = 0;
10166 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10167
10168 trans->can_flush_pending_bgs = false;
10169 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10170 if (ret)
10171 goto next;
10172
10173 spin_lock(&block_group->lock);
10174 memcpy(&item, &block_group->item, sizeof(item));
10175 memcpy(&key, &block_group->key, sizeof(key));
10176 spin_unlock(&block_group->lock);
10177
10178 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10179 sizeof(item));
10180 if (ret)
10181 btrfs_abort_transaction(trans, ret);
10182 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10183 key.offset);
10184 if (ret)
10185 btrfs_abort_transaction(trans, ret);
10186 add_block_group_free_space(trans, fs_info, block_group);
10187 /* already aborted the transaction if it failed. */
10188 next:
10189 list_del_init(&block_group->bg_list);
10190 }
10191 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10192 }
10193
10194 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10195 struct btrfs_fs_info *fs_info, u64 bytes_used,
10196 u64 type, u64 chunk_objectid, u64 chunk_offset,
10197 u64 size)
10198 {
10199 struct btrfs_block_group_cache *cache;
10200 int ret;
10201
10202 btrfs_set_log_full_commit(fs_info, trans);
10203
10204 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10205 if (!cache)
10206 return -ENOMEM;
10207
10208 btrfs_set_block_group_used(&cache->item, bytes_used);
10209 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10210 btrfs_set_block_group_flags(&cache->item, type);
10211
10212 cache->flags = type;
10213 cache->last_byte_to_unpin = (u64)-1;
10214 cache->cached = BTRFS_CACHE_FINISHED;
10215 cache->needs_free_space = 1;
10216 ret = exclude_super_stripes(fs_info, cache);
10217 if (ret) {
10218 /*
10219 * We may have excluded something, so call this just in
10220 * case.
10221 */
10222 free_excluded_extents(fs_info, cache);
10223 btrfs_put_block_group(cache);
10224 return ret;
10225 }
10226
10227 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10228
10229 free_excluded_extents(fs_info, cache);
10230
10231 #ifdef CONFIG_BTRFS_DEBUG
10232 if (btrfs_should_fragment_free_space(cache)) {
10233 u64 new_bytes_used = size - bytes_used;
10234
10235 bytes_used += new_bytes_used >> 1;
10236 fragment_free_space(cache);
10237 }
10238 #endif
10239 /*
10240 * Ensure the corresponding space_info object is created and
10241 * assigned to our block group. We want our bg to be added to the rbtree
10242 * with its ->space_info set.
10243 */
10244 cache->space_info = __find_space_info(fs_info, cache->flags);
10245 if (!cache->space_info) {
10246 ret = create_space_info(fs_info, cache->flags,
10247 &cache->space_info);
10248 if (ret) {
10249 btrfs_remove_free_space_cache(cache);
10250 btrfs_put_block_group(cache);
10251 return ret;
10252 }
10253 }
10254
10255 ret = btrfs_add_block_group_cache(fs_info, cache);
10256 if (ret) {
10257 btrfs_remove_free_space_cache(cache);
10258 btrfs_put_block_group(cache);
10259 return ret;
10260 }
10261
10262 /*
10263 * Now that our block group has its ->space_info set and is inserted in
10264 * the rbtree, update the space info's counters.
10265 */
10266 trace_btrfs_add_block_group(fs_info, cache, 1);
10267 update_space_info(fs_info, cache->flags, size, bytes_used,
10268 cache->bytes_super, &cache->space_info);
10269 update_global_block_rsv(fs_info);
10270
10271 __link_block_group(cache->space_info, cache);
10272
10273 list_add_tail(&cache->bg_list, &trans->new_bgs);
10274
10275 set_avail_alloc_bits(fs_info, type);
10276 return 0;
10277 }
10278
10279 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10280 {
10281 u64 extra_flags = chunk_to_extended(flags) &
10282 BTRFS_EXTENDED_PROFILE_MASK;
10283
10284 write_seqlock(&fs_info->profiles_lock);
10285 if (flags & BTRFS_BLOCK_GROUP_DATA)
10286 fs_info->avail_data_alloc_bits &= ~extra_flags;
10287 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10288 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10289 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10290 fs_info->avail_system_alloc_bits &= ~extra_flags;
10291 write_sequnlock(&fs_info->profiles_lock);
10292 }
10293
10294 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10295 struct btrfs_fs_info *fs_info, u64 group_start,
10296 struct extent_map *em)
10297 {
10298 struct btrfs_root *root = fs_info->extent_root;
10299 struct btrfs_path *path;
10300 struct btrfs_block_group_cache *block_group;
10301 struct btrfs_free_cluster *cluster;
10302 struct btrfs_root *tree_root = fs_info->tree_root;
10303 struct btrfs_key key;
10304 struct inode *inode;
10305 struct kobject *kobj = NULL;
10306 int ret;
10307 int index;
10308 int factor;
10309 struct btrfs_caching_control *caching_ctl = NULL;
10310 bool remove_em;
10311
10312 block_group = btrfs_lookup_block_group(fs_info, group_start);
10313 BUG_ON(!block_group);
10314 BUG_ON(!block_group->ro);
10315
10316 /*
10317 * Free the reserved super bytes from this block group before
10318 * remove it.
10319 */
10320 free_excluded_extents(fs_info, block_group);
10321
10322 memcpy(&key, &block_group->key, sizeof(key));
10323 index = get_block_group_index(block_group);
10324 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10325 BTRFS_BLOCK_GROUP_RAID1 |
10326 BTRFS_BLOCK_GROUP_RAID10))
10327 factor = 2;
10328 else
10329 factor = 1;
10330
10331 /* make sure this block group isn't part of an allocation cluster */
10332 cluster = &fs_info->data_alloc_cluster;
10333 spin_lock(&cluster->refill_lock);
10334 btrfs_return_cluster_to_free_space(block_group, cluster);
10335 spin_unlock(&cluster->refill_lock);
10336
10337 /*
10338 * make sure this block group isn't part of a metadata
10339 * allocation cluster
10340 */
10341 cluster = &fs_info->meta_alloc_cluster;
10342 spin_lock(&cluster->refill_lock);
10343 btrfs_return_cluster_to_free_space(block_group, cluster);
10344 spin_unlock(&cluster->refill_lock);
10345
10346 path = btrfs_alloc_path();
10347 if (!path) {
10348 ret = -ENOMEM;
10349 goto out;
10350 }
10351
10352 /*
10353 * get the inode first so any iput calls done for the io_list
10354 * aren't the final iput (no unlinks allowed now)
10355 */
10356 inode = lookup_free_space_inode(fs_info, block_group, path);
10357
10358 mutex_lock(&trans->transaction->cache_write_mutex);
10359 /*
10360 * make sure our free spache cache IO is done before remove the
10361 * free space inode
10362 */
10363 spin_lock(&trans->transaction->dirty_bgs_lock);
10364 if (!list_empty(&block_group->io_list)) {
10365 list_del_init(&block_group->io_list);
10366
10367 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10368
10369 spin_unlock(&trans->transaction->dirty_bgs_lock);
10370 btrfs_wait_cache_io(trans, block_group, path);
10371 btrfs_put_block_group(block_group);
10372 spin_lock(&trans->transaction->dirty_bgs_lock);
10373 }
10374
10375 if (!list_empty(&block_group->dirty_list)) {
10376 list_del_init(&block_group->dirty_list);
10377 btrfs_put_block_group(block_group);
10378 }
10379 spin_unlock(&trans->transaction->dirty_bgs_lock);
10380 mutex_unlock(&trans->transaction->cache_write_mutex);
10381
10382 if (!IS_ERR(inode)) {
10383 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10384 if (ret) {
10385 btrfs_add_delayed_iput(inode);
10386 goto out;
10387 }
10388 clear_nlink(inode);
10389 /* One for the block groups ref */
10390 spin_lock(&block_group->lock);
10391 if (block_group->iref) {
10392 block_group->iref = 0;
10393 block_group->inode = NULL;
10394 spin_unlock(&block_group->lock);
10395 iput(inode);
10396 } else {
10397 spin_unlock(&block_group->lock);
10398 }
10399 /* One for our lookup ref */
10400 btrfs_add_delayed_iput(inode);
10401 }
10402
10403 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10404 key.offset = block_group->key.objectid;
10405 key.type = 0;
10406
10407 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10408 if (ret < 0)
10409 goto out;
10410 if (ret > 0)
10411 btrfs_release_path(path);
10412 if (ret == 0) {
10413 ret = btrfs_del_item(trans, tree_root, path);
10414 if (ret)
10415 goto out;
10416 btrfs_release_path(path);
10417 }
10418
10419 spin_lock(&fs_info->block_group_cache_lock);
10420 rb_erase(&block_group->cache_node,
10421 &fs_info->block_group_cache_tree);
10422 RB_CLEAR_NODE(&block_group->cache_node);
10423
10424 if (fs_info->first_logical_byte == block_group->key.objectid)
10425 fs_info->first_logical_byte = (u64)-1;
10426 spin_unlock(&fs_info->block_group_cache_lock);
10427
10428 down_write(&block_group->space_info->groups_sem);
10429 /*
10430 * we must use list_del_init so people can check to see if they
10431 * are still on the list after taking the semaphore
10432 */
10433 list_del_init(&block_group->list);
10434 if (list_empty(&block_group->space_info->block_groups[index])) {
10435 kobj = block_group->space_info->block_group_kobjs[index];
10436 block_group->space_info->block_group_kobjs[index] = NULL;
10437 clear_avail_alloc_bits(fs_info, block_group->flags);
10438 }
10439 up_write(&block_group->space_info->groups_sem);
10440 if (kobj) {
10441 kobject_del(kobj);
10442 kobject_put(kobj);
10443 }
10444
10445 if (block_group->has_caching_ctl)
10446 caching_ctl = get_caching_control(block_group);
10447 if (block_group->cached == BTRFS_CACHE_STARTED)
10448 wait_block_group_cache_done(block_group);
10449 if (block_group->has_caching_ctl) {
10450 down_write(&fs_info->commit_root_sem);
10451 if (!caching_ctl) {
10452 struct btrfs_caching_control *ctl;
10453
10454 list_for_each_entry(ctl,
10455 &fs_info->caching_block_groups, list)
10456 if (ctl->block_group == block_group) {
10457 caching_ctl = ctl;
10458 refcount_inc(&caching_ctl->count);
10459 break;
10460 }
10461 }
10462 if (caching_ctl)
10463 list_del_init(&caching_ctl->list);
10464 up_write(&fs_info->commit_root_sem);
10465 if (caching_ctl) {
10466 /* Once for the caching bgs list and once for us. */
10467 put_caching_control(caching_ctl);
10468 put_caching_control(caching_ctl);
10469 }
10470 }
10471
10472 spin_lock(&trans->transaction->dirty_bgs_lock);
10473 if (!list_empty(&block_group->dirty_list)) {
10474 WARN_ON(1);
10475 }
10476 if (!list_empty(&block_group->io_list)) {
10477 WARN_ON(1);
10478 }
10479 spin_unlock(&trans->transaction->dirty_bgs_lock);
10480 btrfs_remove_free_space_cache(block_group);
10481
10482 spin_lock(&block_group->space_info->lock);
10483 list_del_init(&block_group->ro_list);
10484
10485 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10486 WARN_ON(block_group->space_info->total_bytes
10487 < block_group->key.offset);
10488 WARN_ON(block_group->space_info->bytes_readonly
10489 < block_group->key.offset);
10490 WARN_ON(block_group->space_info->disk_total
10491 < block_group->key.offset * factor);
10492 }
10493 block_group->space_info->total_bytes -= block_group->key.offset;
10494 block_group->space_info->bytes_readonly -= block_group->key.offset;
10495 block_group->space_info->disk_total -= block_group->key.offset * factor;
10496
10497 spin_unlock(&block_group->space_info->lock);
10498
10499 memcpy(&key, &block_group->key, sizeof(key));
10500
10501 mutex_lock(&fs_info->chunk_mutex);
10502 if (!list_empty(&em->list)) {
10503 /* We're in the transaction->pending_chunks list. */
10504 free_extent_map(em);
10505 }
10506 spin_lock(&block_group->lock);
10507 block_group->removed = 1;
10508 /*
10509 * At this point trimming can't start on this block group, because we
10510 * removed the block group from the tree fs_info->block_group_cache_tree
10511 * so no one can't find it anymore and even if someone already got this
10512 * block group before we removed it from the rbtree, they have already
10513 * incremented block_group->trimming - if they didn't, they won't find
10514 * any free space entries because we already removed them all when we
10515 * called btrfs_remove_free_space_cache().
10516 *
10517 * And we must not remove the extent map from the fs_info->mapping_tree
10518 * to prevent the same logical address range and physical device space
10519 * ranges from being reused for a new block group. This is because our
10520 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10521 * completely transactionless, so while it is trimming a range the
10522 * currently running transaction might finish and a new one start,
10523 * allowing for new block groups to be created that can reuse the same
10524 * physical device locations unless we take this special care.
10525 *
10526 * There may also be an implicit trim operation if the file system
10527 * is mounted with -odiscard. The same protections must remain
10528 * in place until the extents have been discarded completely when
10529 * the transaction commit has completed.
10530 */
10531 remove_em = (atomic_read(&block_group->trimming) == 0);
10532 /*
10533 * Make sure a trimmer task always sees the em in the pinned_chunks list
10534 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10535 * before checking block_group->removed).
10536 */
10537 if (!remove_em) {
10538 /*
10539 * Our em might be in trans->transaction->pending_chunks which
10540 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10541 * and so is the fs_info->pinned_chunks list.
10542 *
10543 * So at this point we must be holding the chunk_mutex to avoid
10544 * any races with chunk allocation (more specifically at
10545 * volumes.c:contains_pending_extent()), to ensure it always
10546 * sees the em, either in the pending_chunks list or in the
10547 * pinned_chunks list.
10548 */
10549 list_move_tail(&em->list, &fs_info->pinned_chunks);
10550 }
10551 spin_unlock(&block_group->lock);
10552
10553 if (remove_em) {
10554 struct extent_map_tree *em_tree;
10555
10556 em_tree = &fs_info->mapping_tree.map_tree;
10557 write_lock(&em_tree->lock);
10558 /*
10559 * The em might be in the pending_chunks list, so make sure the
10560 * chunk mutex is locked, since remove_extent_mapping() will
10561 * delete us from that list.
10562 */
10563 remove_extent_mapping(em_tree, em);
10564 write_unlock(&em_tree->lock);
10565 /* once for the tree */
10566 free_extent_map(em);
10567 }
10568
10569 mutex_unlock(&fs_info->chunk_mutex);
10570
10571 ret = remove_block_group_free_space(trans, fs_info, block_group);
10572 if (ret)
10573 goto out;
10574
10575 btrfs_put_block_group(block_group);
10576 btrfs_put_block_group(block_group);
10577
10578 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10579 if (ret > 0)
10580 ret = -EIO;
10581 if (ret < 0)
10582 goto out;
10583
10584 ret = btrfs_del_item(trans, root, path);
10585 out:
10586 btrfs_free_path(path);
10587 return ret;
10588 }
10589
10590 struct btrfs_trans_handle *
10591 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10592 const u64 chunk_offset)
10593 {
10594 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10595 struct extent_map *em;
10596 struct map_lookup *map;
10597 unsigned int num_items;
10598
10599 read_lock(&em_tree->lock);
10600 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10601 read_unlock(&em_tree->lock);
10602 ASSERT(em && em->start == chunk_offset);
10603
10604 /*
10605 * We need to reserve 3 + N units from the metadata space info in order
10606 * to remove a block group (done at btrfs_remove_chunk() and at
10607 * btrfs_remove_block_group()), which are used for:
10608 *
10609 * 1 unit for adding the free space inode's orphan (located in the tree
10610 * of tree roots).
10611 * 1 unit for deleting the block group item (located in the extent
10612 * tree).
10613 * 1 unit for deleting the free space item (located in tree of tree
10614 * roots).
10615 * N units for deleting N device extent items corresponding to each
10616 * stripe (located in the device tree).
10617 *
10618 * In order to remove a block group we also need to reserve units in the
10619 * system space info in order to update the chunk tree (update one or
10620 * more device items and remove one chunk item), but this is done at
10621 * btrfs_remove_chunk() through a call to check_system_chunk().
10622 */
10623 map = em->map_lookup;
10624 num_items = 3 + map->num_stripes;
10625 free_extent_map(em);
10626
10627 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10628 num_items, 1);
10629 }
10630
10631 /*
10632 * Process the unused_bgs list and remove any that don't have any allocated
10633 * space inside of them.
10634 */
10635 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10636 {
10637 struct btrfs_block_group_cache *block_group;
10638 struct btrfs_space_info *space_info;
10639 struct btrfs_trans_handle *trans;
10640 int ret = 0;
10641
10642 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10643 return;
10644
10645 spin_lock(&fs_info->unused_bgs_lock);
10646 while (!list_empty(&fs_info->unused_bgs)) {
10647 u64 start, end;
10648 int trimming;
10649
10650 block_group = list_first_entry(&fs_info->unused_bgs,
10651 struct btrfs_block_group_cache,
10652 bg_list);
10653 list_del_init(&block_group->bg_list);
10654
10655 space_info = block_group->space_info;
10656
10657 if (ret || btrfs_mixed_space_info(space_info)) {
10658 btrfs_put_block_group(block_group);
10659 continue;
10660 }
10661 spin_unlock(&fs_info->unused_bgs_lock);
10662
10663 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10664
10665 /* Don't want to race with allocators so take the groups_sem */
10666 down_write(&space_info->groups_sem);
10667 spin_lock(&block_group->lock);
10668 if (block_group->reserved ||
10669 btrfs_block_group_used(&block_group->item) ||
10670 block_group->ro ||
10671 list_is_singular(&block_group->list)) {
10672 /*
10673 * We want to bail if we made new allocations or have
10674 * outstanding allocations in this block group. We do
10675 * the ro check in case balance is currently acting on
10676 * this block group.
10677 */
10678 spin_unlock(&block_group->lock);
10679 up_write(&space_info->groups_sem);
10680 goto next;
10681 }
10682 spin_unlock(&block_group->lock);
10683
10684 /* We don't want to force the issue, only flip if it's ok. */
10685 ret = inc_block_group_ro(block_group, 0);
10686 up_write(&space_info->groups_sem);
10687 if (ret < 0) {
10688 ret = 0;
10689 goto next;
10690 }
10691
10692 /*
10693 * Want to do this before we do anything else so we can recover
10694 * properly if we fail to join the transaction.
10695 */
10696 trans = btrfs_start_trans_remove_block_group(fs_info,
10697 block_group->key.objectid);
10698 if (IS_ERR(trans)) {
10699 btrfs_dec_block_group_ro(block_group);
10700 ret = PTR_ERR(trans);
10701 goto next;
10702 }
10703
10704 /*
10705 * We could have pending pinned extents for this block group,
10706 * just delete them, we don't care about them anymore.
10707 */
10708 start = block_group->key.objectid;
10709 end = start + block_group->key.offset - 1;
10710 /*
10711 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10712 * btrfs_finish_extent_commit(). If we are at transaction N,
10713 * another task might be running finish_extent_commit() for the
10714 * previous transaction N - 1, and have seen a range belonging
10715 * to the block group in freed_extents[] before we were able to
10716 * clear the whole block group range from freed_extents[]. This
10717 * means that task can lookup for the block group after we
10718 * unpinned it from freed_extents[] and removed it, leading to
10719 * a BUG_ON() at btrfs_unpin_extent_range().
10720 */
10721 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10722 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10723 EXTENT_DIRTY);
10724 if (ret) {
10725 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10726 btrfs_dec_block_group_ro(block_group);
10727 goto end_trans;
10728 }
10729 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10730 EXTENT_DIRTY);
10731 if (ret) {
10732 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10733 btrfs_dec_block_group_ro(block_group);
10734 goto end_trans;
10735 }
10736 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10737
10738 /* Reset pinned so btrfs_put_block_group doesn't complain */
10739 spin_lock(&space_info->lock);
10740 spin_lock(&block_group->lock);
10741
10742 space_info->bytes_pinned -= block_group->pinned;
10743 space_info->bytes_readonly += block_group->pinned;
10744 percpu_counter_add(&space_info->total_bytes_pinned,
10745 -block_group->pinned);
10746 block_group->pinned = 0;
10747
10748 spin_unlock(&block_group->lock);
10749 spin_unlock(&space_info->lock);
10750
10751 /* DISCARD can flip during remount */
10752 trimming = btrfs_test_opt(fs_info, DISCARD);
10753
10754 /* Implicit trim during transaction commit. */
10755 if (trimming)
10756 btrfs_get_block_group_trimming(block_group);
10757
10758 /*
10759 * Btrfs_remove_chunk will abort the transaction if things go
10760 * horribly wrong.
10761 */
10762 ret = btrfs_remove_chunk(trans, fs_info,
10763 block_group->key.objectid);
10764
10765 if (ret) {
10766 if (trimming)
10767 btrfs_put_block_group_trimming(block_group);
10768 goto end_trans;
10769 }
10770
10771 /*
10772 * If we're not mounted with -odiscard, we can just forget
10773 * about this block group. Otherwise we'll need to wait
10774 * until transaction commit to do the actual discard.
10775 */
10776 if (trimming) {
10777 spin_lock(&fs_info->unused_bgs_lock);
10778 /*
10779 * A concurrent scrub might have added us to the list
10780 * fs_info->unused_bgs, so use a list_move operation
10781 * to add the block group to the deleted_bgs list.
10782 */
10783 list_move(&block_group->bg_list,
10784 &trans->transaction->deleted_bgs);
10785 spin_unlock(&fs_info->unused_bgs_lock);
10786 btrfs_get_block_group(block_group);
10787 }
10788 end_trans:
10789 btrfs_end_transaction(trans);
10790 next:
10791 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10792 btrfs_put_block_group(block_group);
10793 spin_lock(&fs_info->unused_bgs_lock);
10794 }
10795 spin_unlock(&fs_info->unused_bgs_lock);
10796 }
10797
10798 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10799 {
10800 struct btrfs_space_info *space_info;
10801 struct btrfs_super_block *disk_super;
10802 u64 features;
10803 u64 flags;
10804 int mixed = 0;
10805 int ret;
10806
10807 disk_super = fs_info->super_copy;
10808 if (!btrfs_super_root(disk_super))
10809 return -EINVAL;
10810
10811 features = btrfs_super_incompat_flags(disk_super);
10812 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10813 mixed = 1;
10814
10815 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10816 ret = create_space_info(fs_info, flags, &space_info);
10817 if (ret)
10818 goto out;
10819
10820 if (mixed) {
10821 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10822 ret = create_space_info(fs_info, flags, &space_info);
10823 } else {
10824 flags = BTRFS_BLOCK_GROUP_METADATA;
10825 ret = create_space_info(fs_info, flags, &space_info);
10826 if (ret)
10827 goto out;
10828
10829 flags = BTRFS_BLOCK_GROUP_DATA;
10830 ret = create_space_info(fs_info, flags, &space_info);
10831 }
10832 out:
10833 return ret;
10834 }
10835
10836 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10837 u64 start, u64 end)
10838 {
10839 return unpin_extent_range(fs_info, start, end, false);
10840 }
10841
10842 /*
10843 * It used to be that old block groups would be left around forever.
10844 * Iterating over them would be enough to trim unused space. Since we
10845 * now automatically remove them, we also need to iterate over unallocated
10846 * space.
10847 *
10848 * We don't want a transaction for this since the discard may take a
10849 * substantial amount of time. We don't require that a transaction be
10850 * running, but we do need to take a running transaction into account
10851 * to ensure that we're not discarding chunks that were released in
10852 * the current transaction.
10853 *
10854 * Holding the chunks lock will prevent other threads from allocating
10855 * or releasing chunks, but it won't prevent a running transaction
10856 * from committing and releasing the memory that the pending chunks
10857 * list head uses. For that, we need to take a reference to the
10858 * transaction.
10859 */
10860 static int btrfs_trim_free_extents(struct btrfs_device *device,
10861 u64 minlen, u64 *trimmed)
10862 {
10863 u64 start = 0, len = 0;
10864 int ret;
10865
10866 *trimmed = 0;
10867
10868 /* Not writeable = nothing to do. */
10869 if (!device->writeable)
10870 return 0;
10871
10872 /* No free space = nothing to do. */
10873 if (device->total_bytes <= device->bytes_used)
10874 return 0;
10875
10876 ret = 0;
10877
10878 while (1) {
10879 struct btrfs_fs_info *fs_info = device->fs_info;
10880 struct btrfs_transaction *trans;
10881 u64 bytes;
10882
10883 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10884 if (ret)
10885 return ret;
10886
10887 down_read(&fs_info->commit_root_sem);
10888
10889 spin_lock(&fs_info->trans_lock);
10890 trans = fs_info->running_transaction;
10891 if (trans)
10892 refcount_inc(&trans->use_count);
10893 spin_unlock(&fs_info->trans_lock);
10894
10895 ret = find_free_dev_extent_start(trans, device, minlen, start,
10896 &start, &len);
10897 if (trans)
10898 btrfs_put_transaction(trans);
10899
10900 if (ret) {
10901 up_read(&fs_info->commit_root_sem);
10902 mutex_unlock(&fs_info->chunk_mutex);
10903 if (ret == -ENOSPC)
10904 ret = 0;
10905 break;
10906 }
10907
10908 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10909 up_read(&fs_info->commit_root_sem);
10910 mutex_unlock(&fs_info->chunk_mutex);
10911
10912 if (ret)
10913 break;
10914
10915 start += len;
10916 *trimmed += bytes;
10917
10918 if (fatal_signal_pending(current)) {
10919 ret = -ERESTARTSYS;
10920 break;
10921 }
10922
10923 cond_resched();
10924 }
10925
10926 return ret;
10927 }
10928
10929 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10930 {
10931 struct btrfs_block_group_cache *cache = NULL;
10932 struct btrfs_device *device;
10933 struct list_head *devices;
10934 u64 group_trimmed;
10935 u64 start;
10936 u64 end;
10937 u64 trimmed = 0;
10938 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10939 int ret = 0;
10940
10941 /*
10942 * try to trim all FS space, our block group may start from non-zero.
10943 */
10944 if (range->len == total_bytes)
10945 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10946 else
10947 cache = btrfs_lookup_block_group(fs_info, range->start);
10948
10949 while (cache) {
10950 if (cache->key.objectid >= (range->start + range->len)) {
10951 btrfs_put_block_group(cache);
10952 break;
10953 }
10954
10955 start = max(range->start, cache->key.objectid);
10956 end = min(range->start + range->len,
10957 cache->key.objectid + cache->key.offset);
10958
10959 if (end - start >= range->minlen) {
10960 if (!block_group_cache_done(cache)) {
10961 ret = cache_block_group(cache, 0);
10962 if (ret) {
10963 btrfs_put_block_group(cache);
10964 break;
10965 }
10966 ret = wait_block_group_cache_done(cache);
10967 if (ret) {
10968 btrfs_put_block_group(cache);
10969 break;
10970 }
10971 }
10972 ret = btrfs_trim_block_group(cache,
10973 &group_trimmed,
10974 start,
10975 end,
10976 range->minlen);
10977
10978 trimmed += group_trimmed;
10979 if (ret) {
10980 btrfs_put_block_group(cache);
10981 break;
10982 }
10983 }
10984
10985 cache = next_block_group(fs_info, cache);
10986 }
10987
10988 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10989 devices = &fs_info->fs_devices->alloc_list;
10990 list_for_each_entry(device, devices, dev_alloc_list) {
10991 ret = btrfs_trim_free_extents(device, range->minlen,
10992 &group_trimmed);
10993 if (ret)
10994 break;
10995
10996 trimmed += group_trimmed;
10997 }
10998 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10999
11000 range->len = trimmed;
11001 return ret;
11002 }
11003
11004 /*
11005 * btrfs_{start,end}_write_no_snapshoting() are similar to
11006 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11007 * data into the page cache through nocow before the subvolume is snapshoted,
11008 * but flush the data into disk after the snapshot creation, or to prevent
11009 * operations while snapshoting is ongoing and that cause the snapshot to be
11010 * inconsistent (writes followed by expanding truncates for example).
11011 */
11012 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11013 {
11014 percpu_counter_dec(&root->subv_writers->counter);
11015 /*
11016 * Make sure counter is updated before we wake up waiters.
11017 */
11018 smp_mb();
11019 if (waitqueue_active(&root->subv_writers->wait))
11020 wake_up(&root->subv_writers->wait);
11021 }
11022
11023 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11024 {
11025 if (atomic_read(&root->will_be_snapshoted))
11026 return 0;
11027
11028 percpu_counter_inc(&root->subv_writers->counter);
11029 /*
11030 * Make sure counter is updated before we check for snapshot creation.
11031 */
11032 smp_mb();
11033 if (atomic_read(&root->will_be_snapshoted)) {
11034 btrfs_end_write_no_snapshoting(root);
11035 return 0;
11036 }
11037 return 1;
11038 }
11039
11040 static int wait_snapshoting_atomic_t(atomic_t *a)
11041 {
11042 schedule();
11043 return 0;
11044 }
11045
11046 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11047 {
11048 while (true) {
11049 int ret;
11050
11051 ret = btrfs_start_write_no_snapshoting(root);
11052 if (ret)
11053 break;
11054 wait_on_atomic_t(&root->will_be_snapshoted,
11055 wait_snapshoting_atomic_t,
11056 TASK_UNINTERRUPTIBLE);
11057 }
11058 }