]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
Merge remote-tracking branches 'spi/topic/atmel', 'spi/topic/cadence', 'spi/topic...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op,
85 int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (cache->cached != BTRFS_CACHE_STARTED) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 /* We're loading it the fast way, so we don't have a caching_ctl. */
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 atomic_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (atomic_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 /*
342 * this is only called by cache_block_group, since we could have freed extents
343 * we need to check the pinned_extents for any extents that can't be used yet
344 * since their free space will be released as soon as the transaction commits.
345 */
346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
347 struct btrfs_fs_info *info, u64 start, u64 end)
348 {
349 u64 extent_start, extent_end, size, total_added = 0;
350 int ret;
351
352 while (start < end) {
353 ret = find_first_extent_bit(info->pinned_extents, start,
354 &extent_start, &extent_end,
355 EXTENT_DIRTY | EXTENT_UPTODATE,
356 NULL);
357 if (ret)
358 break;
359
360 if (extent_start <= start) {
361 start = extent_end + 1;
362 } else if (extent_start > start && extent_start < end) {
363 size = extent_start - start;
364 total_added += size;
365 ret = btrfs_add_free_space(block_group, start,
366 size);
367 BUG_ON(ret); /* -ENOMEM or logic error */
368 start = extent_end + 1;
369 } else {
370 break;
371 }
372 }
373
374 if (start < end) {
375 size = end - start;
376 total_added += size;
377 ret = btrfs_add_free_space(block_group, start, size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 }
380
381 return total_added;
382 }
383
384 static noinline void caching_thread(struct btrfs_work *work)
385 {
386 struct btrfs_block_group_cache *block_group;
387 struct btrfs_fs_info *fs_info;
388 struct btrfs_caching_control *caching_ctl;
389 struct btrfs_root *extent_root;
390 struct btrfs_path *path;
391 struct extent_buffer *leaf;
392 struct btrfs_key key;
393 u64 total_found = 0;
394 u64 last = 0;
395 u32 nritems;
396 int ret = -ENOMEM;
397
398 caching_ctl = container_of(work, struct btrfs_caching_control, work);
399 block_group = caching_ctl->block_group;
400 fs_info = block_group->fs_info;
401 extent_root = fs_info->extent_root;
402
403 path = btrfs_alloc_path();
404 if (!path)
405 goto out;
406
407 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
408
409 /*
410 * We don't want to deadlock with somebody trying to allocate a new
411 * extent for the extent root while also trying to search the extent
412 * root to add free space. So we skip locking and search the commit
413 * root, since its read-only
414 */
415 path->skip_locking = 1;
416 path->search_commit_root = 1;
417 path->reada = 1;
418
419 key.objectid = last;
420 key.offset = 0;
421 key.type = BTRFS_EXTENT_ITEM_KEY;
422 again:
423 mutex_lock(&caching_ctl->mutex);
424 /* need to make sure the commit_root doesn't disappear */
425 down_read(&fs_info->commit_root_sem);
426
427 next:
428 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 if (ret < 0)
430 goto err;
431
432 leaf = path->nodes[0];
433 nritems = btrfs_header_nritems(leaf);
434
435 while (1) {
436 if (btrfs_fs_closing(fs_info) > 1) {
437 last = (u64)-1;
438 break;
439 }
440
441 if (path->slots[0] < nritems) {
442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 } else {
444 ret = find_next_key(path, 0, &key);
445 if (ret)
446 break;
447
448 if (need_resched() ||
449 rwsem_is_contended(&fs_info->commit_root_sem)) {
450 caching_ctl->progress = last;
451 btrfs_release_path(path);
452 up_read(&fs_info->commit_root_sem);
453 mutex_unlock(&caching_ctl->mutex);
454 cond_resched();
455 goto again;
456 }
457
458 ret = btrfs_next_leaf(extent_root, path);
459 if (ret < 0)
460 goto err;
461 if (ret)
462 break;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 continue;
466 }
467
468 if (key.objectid < last) {
469 key.objectid = last;
470 key.offset = 0;
471 key.type = BTRFS_EXTENT_ITEM_KEY;
472
473 caching_ctl->progress = last;
474 btrfs_release_path(path);
475 goto next;
476 }
477
478 if (key.objectid < block_group->key.objectid) {
479 path->slots[0]++;
480 continue;
481 }
482
483 if (key.objectid >= block_group->key.objectid +
484 block_group->key.offset)
485 break;
486
487 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 key.type == BTRFS_METADATA_ITEM_KEY) {
489 total_found += add_new_free_space(block_group,
490 fs_info, last,
491 key.objectid);
492 if (key.type == BTRFS_METADATA_ITEM_KEY)
493 last = key.objectid +
494 fs_info->tree_root->nodesize;
495 else
496 last = key.objectid + key.offset;
497
498 if (total_found > (1024 * 1024 * 2)) {
499 total_found = 0;
500 wake_up(&caching_ctl->wait);
501 }
502 }
503 path->slots[0]++;
504 }
505 ret = 0;
506
507 total_found += add_new_free_space(block_group, fs_info, last,
508 block_group->key.objectid +
509 block_group->key.offset);
510 caching_ctl->progress = (u64)-1;
511
512 spin_lock(&block_group->lock);
513 block_group->caching_ctl = NULL;
514 block_group->cached = BTRFS_CACHE_FINISHED;
515 spin_unlock(&block_group->lock);
516
517 err:
518 btrfs_free_path(path);
519 up_read(&fs_info->commit_root_sem);
520
521 free_excluded_extents(extent_root, block_group);
522
523 mutex_unlock(&caching_ctl->mutex);
524 out:
525 if (ret) {
526 spin_lock(&block_group->lock);
527 block_group->caching_ctl = NULL;
528 block_group->cached = BTRFS_CACHE_ERROR;
529 spin_unlock(&block_group->lock);
530 }
531 wake_up(&caching_ctl->wait);
532
533 put_caching_control(caching_ctl);
534 btrfs_put_block_group(block_group);
535 }
536
537 static int cache_block_group(struct btrfs_block_group_cache *cache,
538 int load_cache_only)
539 {
540 DEFINE_WAIT(wait);
541 struct btrfs_fs_info *fs_info = cache->fs_info;
542 struct btrfs_caching_control *caching_ctl;
543 int ret = 0;
544
545 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
546 if (!caching_ctl)
547 return -ENOMEM;
548
549 INIT_LIST_HEAD(&caching_ctl->list);
550 mutex_init(&caching_ctl->mutex);
551 init_waitqueue_head(&caching_ctl->wait);
552 caching_ctl->block_group = cache;
553 caching_ctl->progress = cache->key.objectid;
554 atomic_set(&caching_ctl->count, 1);
555 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
556 caching_thread, NULL, NULL);
557
558 spin_lock(&cache->lock);
559 /*
560 * This should be a rare occasion, but this could happen I think in the
561 * case where one thread starts to load the space cache info, and then
562 * some other thread starts a transaction commit which tries to do an
563 * allocation while the other thread is still loading the space cache
564 * info. The previous loop should have kept us from choosing this block
565 * group, but if we've moved to the state where we will wait on caching
566 * block groups we need to first check if we're doing a fast load here,
567 * so we can wait for it to finish, otherwise we could end up allocating
568 * from a block group who's cache gets evicted for one reason or
569 * another.
570 */
571 while (cache->cached == BTRFS_CACHE_FAST) {
572 struct btrfs_caching_control *ctl;
573
574 ctl = cache->caching_ctl;
575 atomic_inc(&ctl->count);
576 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
577 spin_unlock(&cache->lock);
578
579 schedule();
580
581 finish_wait(&ctl->wait, &wait);
582 put_caching_control(ctl);
583 spin_lock(&cache->lock);
584 }
585
586 if (cache->cached != BTRFS_CACHE_NO) {
587 spin_unlock(&cache->lock);
588 kfree(caching_ctl);
589 return 0;
590 }
591 WARN_ON(cache->caching_ctl);
592 cache->caching_ctl = caching_ctl;
593 cache->cached = BTRFS_CACHE_FAST;
594 spin_unlock(&cache->lock);
595
596 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
597 ret = load_free_space_cache(fs_info, cache);
598
599 spin_lock(&cache->lock);
600 if (ret == 1) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_FINISHED;
603 cache->last_byte_to_unpin = (u64)-1;
604 } else {
605 if (load_cache_only) {
606 cache->caching_ctl = NULL;
607 cache->cached = BTRFS_CACHE_NO;
608 } else {
609 cache->cached = BTRFS_CACHE_STARTED;
610 }
611 }
612 spin_unlock(&cache->lock);
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
1322 {
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359 }
1360
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1366 {
1367 struct btrfs_key key;
1368 int ret;
1369
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1377 }
1378
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
1384 btrfs_release_path(path);
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1390 #endif
1391 return ret;
1392 }
1393
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
1399 {
1400 struct btrfs_key key;
1401 int ret;
1402
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 btrfs_release_path(path);
1414 return ret;
1415 }
1416
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
1432 }
1433
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
1436
1437 {
1438 for (; level < BTRFS_MAX_LEVEL; level++) {
1439 if (!path->nodes[level])
1440 break;
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453 }
1454
1455 /*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476 {
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
1492
1493 key.objectid = bytenr;
1494 key.type = BTRFS_EXTENT_ITEM_KEY;
1495 key.offset = num_bytes;
1496
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
1500 path->keep_locks = 1;
1501 } else
1502 extra_size = -1;
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513 again:
1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 if (ret < 0) {
1516 err = ret;
1517 goto out;
1518 }
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
1536 key.objectid = bytenr;
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
1547 } else if (WARN_ON(ret)) {
1548 err = -EIO;
1549 goto out;
1550 }
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569 #endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 if (insert) {
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656 }
1657
1658 /*
1659 * helper to add new inline back ref
1660 */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
1685 btrfs_extend_item(root, path, size);
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
1720 }
1721
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
1735 return ret;
1736
1737 btrfs_release_path(path);
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
1746 }
1747 return ret;
1748 }
1749
1750 /*
1751 * helper to update/remove inline back ref
1752 */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
1760 {
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
1792 }
1793
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
1803 *last_ref = 1;
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
1812 btrfs_truncate_item(root, path, item_size, 1);
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
1815 }
1816
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 update_inline_extent_backref(root, path, iref,
1835 refs_to_add, extent_op, NULL);
1836 } else if (ret == -ENOENT) {
1837 setup_inline_extent_backref(root, path, iref, parent,
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
1841 }
1842 return ret;
1843 }
1844
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862 }
1863
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
1868 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 int ret = 0;
1871
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
1874 update_inline_extent_backref(root, path, iref,
1875 -refs_to_drop, NULL, last_ref);
1876 } else if (is_data) {
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
1879 } else {
1880 *last_ref = 1;
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884 }
1885
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 u64 start, u64 len)
1888 {
1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891
1892 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 int ret;
1896 u64 discarded_bytes = 0;
1897 struct btrfs_bio *bbio = NULL;
1898
1899
1900 /* Tell the block device(s) that the sectors can be discarded */
1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 bytenr, &num_bytes, &bbio, 0);
1903 /* Error condition is -ENOMEM */
1904 if (!ret) {
1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 int i;
1907
1908
1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
1927 }
1928 kfree(bbio);
1929 }
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
1934
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
1937 return ret;
1938 }
1939
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
1944 u64 root_objectid, u64 owner, u64 offset,
1945 int no_quota)
1946 {
1947 int ret;
1948 struct btrfs_fs_info *fs_info = root->fs_info;
1949
1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952
1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 num_bytes,
1956 parent, root_objectid, (int)owner,
1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 } else {
1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 num_bytes,
1961 parent, root_objectid, owner, offset,
1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 }
1964 return ret;
1965 }
1966
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
1969 u64 bytenr, u64 num_bytes,
1970 u64 parent, u64 root_objectid,
1971 u64 owner, u64 offset, int refs_to_add,
1972 int no_quota,
1973 struct btrfs_delayed_extent_op *extent_op)
1974 {
1975 struct btrfs_fs_info *fs_info = root->fs_info;
1976 struct btrfs_path *path;
1977 struct extent_buffer *leaf;
1978 struct btrfs_extent_item *item;
1979 struct btrfs_key key;
1980 u64 refs;
1981 int ret;
1982 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1989 no_quota = 1;
1990
1991 path->reada = 1;
1992 path->leave_spinning = 1;
1993 /* this will setup the path even if it fails to insert the back ref */
1994 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset,
1997 refs_to_add, extent_op);
1998 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
1999 goto out;
2000 /*
2001 * Ok we were able to insert an inline extent and it appears to be a new
2002 * reference, deal with the qgroup accounting.
2003 */
2004 if (!ret && !no_quota) {
2005 ASSERT(root->fs_info->quota_enabled);
2006 leaf = path->nodes[0];
2007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2008 item = btrfs_item_ptr(leaf, path->slots[0],
2009 struct btrfs_extent_item);
2010 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2011 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2012 btrfs_release_path(path);
2013
2014 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2015 bytenr, num_bytes, type, 0);
2016 goto out;
2017 }
2018
2019 /*
2020 * Ok we had -EAGAIN which means we didn't have space to insert and
2021 * inline extent ref, so just update the reference count and add a
2022 * normal backref.
2023 */
2024 leaf = path->nodes[0];
2025 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2026 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2027 refs = btrfs_extent_refs(leaf, item);
2028 if (refs)
2029 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2030 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2031 if (extent_op)
2032 __run_delayed_extent_op(extent_op, leaf, item);
2033
2034 btrfs_mark_buffer_dirty(leaf);
2035 btrfs_release_path(path);
2036
2037 if (!no_quota) {
2038 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2039 bytenr, num_bytes, type, 0);
2040 if (ret)
2041 goto out;
2042 }
2043
2044 path->reada = 1;
2045 path->leave_spinning = 1;
2046 /* now insert the actual backref */
2047 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2048 path, bytenr, parent, root_objectid,
2049 owner, offset, refs_to_add);
2050 if (ret)
2051 btrfs_abort_transaction(trans, root, ret);
2052 out:
2053 btrfs_free_path(path);
2054 return ret;
2055 }
2056
2057 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2058 struct btrfs_root *root,
2059 struct btrfs_delayed_ref_node *node,
2060 struct btrfs_delayed_extent_op *extent_op,
2061 int insert_reserved)
2062 {
2063 int ret = 0;
2064 struct btrfs_delayed_data_ref *ref;
2065 struct btrfs_key ins;
2066 u64 parent = 0;
2067 u64 ref_root = 0;
2068 u64 flags = 0;
2069
2070 ins.objectid = node->bytenr;
2071 ins.offset = node->num_bytes;
2072 ins.type = BTRFS_EXTENT_ITEM_KEY;
2073
2074 ref = btrfs_delayed_node_to_data_ref(node);
2075 trace_run_delayed_data_ref(node, ref, node->action);
2076
2077 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2078 parent = ref->parent;
2079 ref_root = ref->root;
2080
2081 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2082 if (extent_op)
2083 flags |= extent_op->flags_to_set;
2084 ret = alloc_reserved_file_extent(trans, root,
2085 parent, ref_root, flags,
2086 ref->objectid, ref->offset,
2087 &ins, node->ref_mod);
2088 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2089 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2090 node->num_bytes, parent,
2091 ref_root, ref->objectid,
2092 ref->offset, node->ref_mod,
2093 node->no_quota, extent_op);
2094 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2095 ret = __btrfs_free_extent(trans, root, node->bytenr,
2096 node->num_bytes, parent,
2097 ref_root, ref->objectid,
2098 ref->offset, node->ref_mod,
2099 extent_op, node->no_quota);
2100 } else {
2101 BUG();
2102 }
2103 return ret;
2104 }
2105
2106 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2107 struct extent_buffer *leaf,
2108 struct btrfs_extent_item *ei)
2109 {
2110 u64 flags = btrfs_extent_flags(leaf, ei);
2111 if (extent_op->update_flags) {
2112 flags |= extent_op->flags_to_set;
2113 btrfs_set_extent_flags(leaf, ei, flags);
2114 }
2115
2116 if (extent_op->update_key) {
2117 struct btrfs_tree_block_info *bi;
2118 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2119 bi = (struct btrfs_tree_block_info *)(ei + 1);
2120 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2121 }
2122 }
2123
2124 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2125 struct btrfs_root *root,
2126 struct btrfs_delayed_ref_node *node,
2127 struct btrfs_delayed_extent_op *extent_op)
2128 {
2129 struct btrfs_key key;
2130 struct btrfs_path *path;
2131 struct btrfs_extent_item *ei;
2132 struct extent_buffer *leaf;
2133 u32 item_size;
2134 int ret;
2135 int err = 0;
2136 int metadata = !extent_op->is_data;
2137
2138 if (trans->aborted)
2139 return 0;
2140
2141 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2142 metadata = 0;
2143
2144 path = btrfs_alloc_path();
2145 if (!path)
2146 return -ENOMEM;
2147
2148 key.objectid = node->bytenr;
2149
2150 if (metadata) {
2151 key.type = BTRFS_METADATA_ITEM_KEY;
2152 key.offset = extent_op->level;
2153 } else {
2154 key.type = BTRFS_EXTENT_ITEM_KEY;
2155 key.offset = node->num_bytes;
2156 }
2157
2158 again:
2159 path->reada = 1;
2160 path->leave_spinning = 1;
2161 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2162 path, 0, 1);
2163 if (ret < 0) {
2164 err = ret;
2165 goto out;
2166 }
2167 if (ret > 0) {
2168 if (metadata) {
2169 if (path->slots[0] > 0) {
2170 path->slots[0]--;
2171 btrfs_item_key_to_cpu(path->nodes[0], &key,
2172 path->slots[0]);
2173 if (key.objectid == node->bytenr &&
2174 key.type == BTRFS_EXTENT_ITEM_KEY &&
2175 key.offset == node->num_bytes)
2176 ret = 0;
2177 }
2178 if (ret > 0) {
2179 btrfs_release_path(path);
2180 metadata = 0;
2181
2182 key.objectid = node->bytenr;
2183 key.offset = node->num_bytes;
2184 key.type = BTRFS_EXTENT_ITEM_KEY;
2185 goto again;
2186 }
2187 } else {
2188 err = -EIO;
2189 goto out;
2190 }
2191 }
2192
2193 leaf = path->nodes[0];
2194 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 if (item_size < sizeof(*ei)) {
2197 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2198 path, (u64)-1, 0);
2199 if (ret < 0) {
2200 err = ret;
2201 goto out;
2202 }
2203 leaf = path->nodes[0];
2204 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2205 }
2206 #endif
2207 BUG_ON(item_size < sizeof(*ei));
2208 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2209 __run_delayed_extent_op(extent_op, leaf, ei);
2210
2211 btrfs_mark_buffer_dirty(leaf);
2212 out:
2213 btrfs_free_path(path);
2214 return err;
2215 }
2216
2217 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root,
2219 struct btrfs_delayed_ref_node *node,
2220 struct btrfs_delayed_extent_op *extent_op,
2221 int insert_reserved)
2222 {
2223 int ret = 0;
2224 struct btrfs_delayed_tree_ref *ref;
2225 struct btrfs_key ins;
2226 u64 parent = 0;
2227 u64 ref_root = 0;
2228 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2229 SKINNY_METADATA);
2230
2231 ref = btrfs_delayed_node_to_tree_ref(node);
2232 trace_run_delayed_tree_ref(node, ref, node->action);
2233
2234 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2235 parent = ref->parent;
2236 ref_root = ref->root;
2237
2238 ins.objectid = node->bytenr;
2239 if (skinny_metadata) {
2240 ins.offset = ref->level;
2241 ins.type = BTRFS_METADATA_ITEM_KEY;
2242 } else {
2243 ins.offset = node->num_bytes;
2244 ins.type = BTRFS_EXTENT_ITEM_KEY;
2245 }
2246
2247 BUG_ON(node->ref_mod != 1);
2248 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2249 BUG_ON(!extent_op || !extent_op->update_flags);
2250 ret = alloc_reserved_tree_block(trans, root,
2251 parent, ref_root,
2252 extent_op->flags_to_set,
2253 &extent_op->key,
2254 ref->level, &ins,
2255 node->no_quota);
2256 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2257 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2258 node->num_bytes, parent, ref_root,
2259 ref->level, 0, 1, node->no_quota,
2260 extent_op);
2261 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2262 ret = __btrfs_free_extent(trans, root, node->bytenr,
2263 node->num_bytes, parent, ref_root,
2264 ref->level, 0, 1, extent_op,
2265 node->no_quota);
2266 } else {
2267 BUG();
2268 }
2269 return ret;
2270 }
2271
2272 /* helper function to actually process a single delayed ref entry */
2273 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2274 struct btrfs_root *root,
2275 struct btrfs_delayed_ref_node *node,
2276 struct btrfs_delayed_extent_op *extent_op,
2277 int insert_reserved)
2278 {
2279 int ret = 0;
2280
2281 if (trans->aborted) {
2282 if (insert_reserved)
2283 btrfs_pin_extent(root, node->bytenr,
2284 node->num_bytes, 1);
2285 return 0;
2286 }
2287
2288 if (btrfs_delayed_ref_is_head(node)) {
2289 struct btrfs_delayed_ref_head *head;
2290 /*
2291 * we've hit the end of the chain and we were supposed
2292 * to insert this extent into the tree. But, it got
2293 * deleted before we ever needed to insert it, so all
2294 * we have to do is clean up the accounting
2295 */
2296 BUG_ON(extent_op);
2297 head = btrfs_delayed_node_to_head(node);
2298 trace_run_delayed_ref_head(node, head, node->action);
2299
2300 if (insert_reserved) {
2301 btrfs_pin_extent(root, node->bytenr,
2302 node->num_bytes, 1);
2303 if (head->is_data) {
2304 ret = btrfs_del_csums(trans, root,
2305 node->bytenr,
2306 node->num_bytes);
2307 }
2308 }
2309 return ret;
2310 }
2311
2312 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2313 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2314 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2315 insert_reserved);
2316 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2317 node->type == BTRFS_SHARED_DATA_REF_KEY)
2318 ret = run_delayed_data_ref(trans, root, node, extent_op,
2319 insert_reserved);
2320 else
2321 BUG();
2322 return ret;
2323 }
2324
2325 static noinline struct btrfs_delayed_ref_node *
2326 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2327 {
2328 struct rb_node *node;
2329 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2330
2331 /*
2332 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2333 * this prevents ref count from going down to zero when
2334 * there still are pending delayed ref.
2335 */
2336 node = rb_first(&head->ref_root);
2337 while (node) {
2338 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2339 rb_node);
2340 if (ref->action == BTRFS_ADD_DELAYED_REF)
2341 return ref;
2342 else if (last == NULL)
2343 last = ref;
2344 node = rb_next(node);
2345 }
2346 return last;
2347 }
2348
2349 /*
2350 * Returns 0 on success or if called with an already aborted transaction.
2351 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2352 */
2353 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2354 struct btrfs_root *root,
2355 unsigned long nr)
2356 {
2357 struct btrfs_delayed_ref_root *delayed_refs;
2358 struct btrfs_delayed_ref_node *ref;
2359 struct btrfs_delayed_ref_head *locked_ref = NULL;
2360 struct btrfs_delayed_extent_op *extent_op;
2361 struct btrfs_fs_info *fs_info = root->fs_info;
2362 ktime_t start = ktime_get();
2363 int ret;
2364 unsigned long count = 0;
2365 unsigned long actual_count = 0;
2366 int must_insert_reserved = 0;
2367
2368 delayed_refs = &trans->transaction->delayed_refs;
2369 while (1) {
2370 if (!locked_ref) {
2371 if (count >= nr)
2372 break;
2373
2374 spin_lock(&delayed_refs->lock);
2375 locked_ref = btrfs_select_ref_head(trans);
2376 if (!locked_ref) {
2377 spin_unlock(&delayed_refs->lock);
2378 break;
2379 }
2380
2381 /* grab the lock that says we are going to process
2382 * all the refs for this head */
2383 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2384 spin_unlock(&delayed_refs->lock);
2385 /*
2386 * we may have dropped the spin lock to get the head
2387 * mutex lock, and that might have given someone else
2388 * time to free the head. If that's true, it has been
2389 * removed from our list and we can move on.
2390 */
2391 if (ret == -EAGAIN) {
2392 locked_ref = NULL;
2393 count++;
2394 continue;
2395 }
2396 }
2397
2398 /*
2399 * We need to try and merge add/drops of the same ref since we
2400 * can run into issues with relocate dropping the implicit ref
2401 * and then it being added back again before the drop can
2402 * finish. If we merged anything we need to re-loop so we can
2403 * get a good ref.
2404 */
2405 spin_lock(&locked_ref->lock);
2406 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2407 locked_ref);
2408
2409 /*
2410 * locked_ref is the head node, so we have to go one
2411 * node back for any delayed ref updates
2412 */
2413 ref = select_delayed_ref(locked_ref);
2414
2415 if (ref && ref->seq &&
2416 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2417 spin_unlock(&locked_ref->lock);
2418 btrfs_delayed_ref_unlock(locked_ref);
2419 spin_lock(&delayed_refs->lock);
2420 locked_ref->processing = 0;
2421 delayed_refs->num_heads_ready++;
2422 spin_unlock(&delayed_refs->lock);
2423 locked_ref = NULL;
2424 cond_resched();
2425 count++;
2426 continue;
2427 }
2428
2429 /*
2430 * record the must insert reserved flag before we
2431 * drop the spin lock.
2432 */
2433 must_insert_reserved = locked_ref->must_insert_reserved;
2434 locked_ref->must_insert_reserved = 0;
2435
2436 extent_op = locked_ref->extent_op;
2437 locked_ref->extent_op = NULL;
2438
2439 if (!ref) {
2440
2441
2442 /* All delayed refs have been processed, Go ahead
2443 * and send the head node to run_one_delayed_ref,
2444 * so that any accounting fixes can happen
2445 */
2446 ref = &locked_ref->node;
2447
2448 if (extent_op && must_insert_reserved) {
2449 btrfs_free_delayed_extent_op(extent_op);
2450 extent_op = NULL;
2451 }
2452
2453 if (extent_op) {
2454 spin_unlock(&locked_ref->lock);
2455 ret = run_delayed_extent_op(trans, root,
2456 ref, extent_op);
2457 btrfs_free_delayed_extent_op(extent_op);
2458
2459 if (ret) {
2460 /*
2461 * Need to reset must_insert_reserved if
2462 * there was an error so the abort stuff
2463 * can cleanup the reserved space
2464 * properly.
2465 */
2466 if (must_insert_reserved)
2467 locked_ref->must_insert_reserved = 1;
2468 locked_ref->processing = 0;
2469 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2470 btrfs_delayed_ref_unlock(locked_ref);
2471 return ret;
2472 }
2473 continue;
2474 }
2475
2476 /*
2477 * Need to drop our head ref lock and re-aqcuire the
2478 * delayed ref lock and then re-check to make sure
2479 * nobody got added.
2480 */
2481 spin_unlock(&locked_ref->lock);
2482 spin_lock(&delayed_refs->lock);
2483 spin_lock(&locked_ref->lock);
2484 if (rb_first(&locked_ref->ref_root) ||
2485 locked_ref->extent_op) {
2486 spin_unlock(&locked_ref->lock);
2487 spin_unlock(&delayed_refs->lock);
2488 continue;
2489 }
2490 ref->in_tree = 0;
2491 delayed_refs->num_heads--;
2492 rb_erase(&locked_ref->href_node,
2493 &delayed_refs->href_root);
2494 spin_unlock(&delayed_refs->lock);
2495 } else {
2496 actual_count++;
2497 ref->in_tree = 0;
2498 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2499 }
2500 atomic_dec(&delayed_refs->num_entries);
2501
2502 if (!btrfs_delayed_ref_is_head(ref)) {
2503 /*
2504 * when we play the delayed ref, also correct the
2505 * ref_mod on head
2506 */
2507 switch (ref->action) {
2508 case BTRFS_ADD_DELAYED_REF:
2509 case BTRFS_ADD_DELAYED_EXTENT:
2510 locked_ref->node.ref_mod -= ref->ref_mod;
2511 break;
2512 case BTRFS_DROP_DELAYED_REF:
2513 locked_ref->node.ref_mod += ref->ref_mod;
2514 break;
2515 default:
2516 WARN_ON(1);
2517 }
2518 }
2519 spin_unlock(&locked_ref->lock);
2520
2521 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2522 must_insert_reserved);
2523
2524 btrfs_free_delayed_extent_op(extent_op);
2525 if (ret) {
2526 locked_ref->processing = 0;
2527 btrfs_delayed_ref_unlock(locked_ref);
2528 btrfs_put_delayed_ref(ref);
2529 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2530 return ret;
2531 }
2532
2533 /*
2534 * If this node is a head, that means all the refs in this head
2535 * have been dealt with, and we will pick the next head to deal
2536 * with, so we must unlock the head and drop it from the cluster
2537 * list before we release it.
2538 */
2539 if (btrfs_delayed_ref_is_head(ref)) {
2540 btrfs_delayed_ref_unlock(locked_ref);
2541 locked_ref = NULL;
2542 }
2543 btrfs_put_delayed_ref(ref);
2544 count++;
2545 cond_resched();
2546 }
2547
2548 /*
2549 * We don't want to include ref heads since we can have empty ref heads
2550 * and those will drastically skew our runtime down since we just do
2551 * accounting, no actual extent tree updates.
2552 */
2553 if (actual_count > 0) {
2554 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2555 u64 avg;
2556
2557 /*
2558 * We weigh the current average higher than our current runtime
2559 * to avoid large swings in the average.
2560 */
2561 spin_lock(&delayed_refs->lock);
2562 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2563 avg = div64_u64(avg, 4);
2564 fs_info->avg_delayed_ref_runtime = avg;
2565 spin_unlock(&delayed_refs->lock);
2566 }
2567 return 0;
2568 }
2569
2570 #ifdef SCRAMBLE_DELAYED_REFS
2571 /*
2572 * Normally delayed refs get processed in ascending bytenr order. This
2573 * correlates in most cases to the order added. To expose dependencies on this
2574 * order, we start to process the tree in the middle instead of the beginning
2575 */
2576 static u64 find_middle(struct rb_root *root)
2577 {
2578 struct rb_node *n = root->rb_node;
2579 struct btrfs_delayed_ref_node *entry;
2580 int alt = 1;
2581 u64 middle;
2582 u64 first = 0, last = 0;
2583
2584 n = rb_first(root);
2585 if (n) {
2586 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2587 first = entry->bytenr;
2588 }
2589 n = rb_last(root);
2590 if (n) {
2591 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2592 last = entry->bytenr;
2593 }
2594 n = root->rb_node;
2595
2596 while (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 WARN_ON(!entry->in_tree);
2599
2600 middle = entry->bytenr;
2601
2602 if (alt)
2603 n = n->rb_left;
2604 else
2605 n = n->rb_right;
2606
2607 alt = 1 - alt;
2608 }
2609 return middle;
2610 }
2611 #endif
2612
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614 {
2615 u64 num_bytes;
2616
2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 sizeof(struct btrfs_extent_inline_ref));
2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621
2622 /*
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2625 */
2626 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627 }
2628
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2631 {
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 num_bytes;
2635 int ret = 0;
2636
2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 num_heads = heads_to_leaves(root, num_heads);
2639 if (num_heads > 1)
2640 num_bytes += (num_heads - 1) * root->nodesize;
2641 num_bytes <<= 1;
2642 global_rsv = &root->fs_info->global_block_rsv;
2643
2644 /*
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2647 */
2648 if (global_rsv->space_info->full)
2649 num_bytes <<= 1;
2650
2651 spin_lock(&global_rsv->lock);
2652 if (global_rsv->reserved <= num_bytes)
2653 ret = 1;
2654 spin_unlock(&global_rsv->lock);
2655 return ret;
2656 }
2657
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root)
2660 {
2661 struct btrfs_fs_info *fs_info = root->fs_info;
2662 u64 num_entries =
2663 atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 u64 avg_runtime;
2665 u64 val;
2666
2667 smp_mb();
2668 avg_runtime = fs_info->avg_delayed_ref_runtime;
2669 val = num_entries * avg_runtime;
2670 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2671 return 1;
2672 if (val >= NSEC_PER_SEC / 2)
2673 return 2;
2674
2675 return btrfs_check_space_for_delayed_refs(trans, root);
2676 }
2677
2678 struct async_delayed_refs {
2679 struct btrfs_root *root;
2680 int count;
2681 int error;
2682 int sync;
2683 struct completion wait;
2684 struct btrfs_work work;
2685 };
2686
2687 static void delayed_ref_async_start(struct btrfs_work *work)
2688 {
2689 struct async_delayed_refs *async;
2690 struct btrfs_trans_handle *trans;
2691 int ret;
2692
2693 async = container_of(work, struct async_delayed_refs, work);
2694
2695 trans = btrfs_join_transaction(async->root);
2696 if (IS_ERR(trans)) {
2697 async->error = PTR_ERR(trans);
2698 goto done;
2699 }
2700
2701 /*
2702 * trans->sync means that when we call end_transaciton, we won't
2703 * wait on delayed refs
2704 */
2705 trans->sync = true;
2706 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2707 if (ret)
2708 async->error = ret;
2709
2710 ret = btrfs_end_transaction(trans, async->root);
2711 if (ret && !async->error)
2712 async->error = ret;
2713 done:
2714 if (async->sync)
2715 complete(&async->wait);
2716 else
2717 kfree(async);
2718 }
2719
2720 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2721 unsigned long count, int wait)
2722 {
2723 struct async_delayed_refs *async;
2724 int ret;
2725
2726 async = kmalloc(sizeof(*async), GFP_NOFS);
2727 if (!async)
2728 return -ENOMEM;
2729
2730 async->root = root->fs_info->tree_root;
2731 async->count = count;
2732 async->error = 0;
2733 if (wait)
2734 async->sync = 1;
2735 else
2736 async->sync = 0;
2737 init_completion(&async->wait);
2738
2739 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2740 delayed_ref_async_start, NULL, NULL);
2741
2742 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2743
2744 if (wait) {
2745 wait_for_completion(&async->wait);
2746 ret = async->error;
2747 kfree(async);
2748 return ret;
2749 }
2750 return 0;
2751 }
2752
2753 /*
2754 * this starts processing the delayed reference count updates and
2755 * extent insertions we have queued up so far. count can be
2756 * 0, which means to process everything in the tree at the start
2757 * of the run (but not newly added entries), or it can be some target
2758 * number you'd like to process.
2759 *
2760 * Returns 0 on success or if called with an aborted transaction
2761 * Returns <0 on error and aborts the transaction
2762 */
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root, unsigned long count)
2765 {
2766 struct rb_node *node;
2767 struct btrfs_delayed_ref_root *delayed_refs;
2768 struct btrfs_delayed_ref_head *head;
2769 int ret;
2770 int run_all = count == (unsigned long)-1;
2771 int run_most = 0;
2772
2773 /* We'll clean this up in btrfs_cleanup_transaction */
2774 if (trans->aborted)
2775 return 0;
2776
2777 if (root == root->fs_info->extent_root)
2778 root = root->fs_info->tree_root;
2779
2780 delayed_refs = &trans->transaction->delayed_refs;
2781 if (count == 0) {
2782 count = atomic_read(&delayed_refs->num_entries) * 2;
2783 run_most = 1;
2784 }
2785
2786 again:
2787 #ifdef SCRAMBLE_DELAYED_REFS
2788 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2789 #endif
2790 ret = __btrfs_run_delayed_refs(trans, root, count);
2791 if (ret < 0) {
2792 btrfs_abort_transaction(trans, root, ret);
2793 return ret;
2794 }
2795
2796 if (run_all) {
2797 if (!list_empty(&trans->new_bgs))
2798 btrfs_create_pending_block_groups(trans, root);
2799
2800 spin_lock(&delayed_refs->lock);
2801 node = rb_first(&delayed_refs->href_root);
2802 if (!node) {
2803 spin_unlock(&delayed_refs->lock);
2804 goto out;
2805 }
2806 count = (unsigned long)-1;
2807
2808 while (node) {
2809 head = rb_entry(node, struct btrfs_delayed_ref_head,
2810 href_node);
2811 if (btrfs_delayed_ref_is_head(&head->node)) {
2812 struct btrfs_delayed_ref_node *ref;
2813
2814 ref = &head->node;
2815 atomic_inc(&ref->refs);
2816
2817 spin_unlock(&delayed_refs->lock);
2818 /*
2819 * Mutex was contended, block until it's
2820 * released and try again
2821 */
2822 mutex_lock(&head->mutex);
2823 mutex_unlock(&head->mutex);
2824
2825 btrfs_put_delayed_ref(ref);
2826 cond_resched();
2827 goto again;
2828 } else {
2829 WARN_ON(1);
2830 }
2831 node = rb_next(node);
2832 }
2833 spin_unlock(&delayed_refs->lock);
2834 cond_resched();
2835 goto again;
2836 }
2837 out:
2838 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2839 if (ret)
2840 return ret;
2841 assert_qgroups_uptodate(trans);
2842 return 0;
2843 }
2844
2845 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2846 struct btrfs_root *root,
2847 u64 bytenr, u64 num_bytes, u64 flags,
2848 int level, int is_data)
2849 {
2850 struct btrfs_delayed_extent_op *extent_op;
2851 int ret;
2852
2853 extent_op = btrfs_alloc_delayed_extent_op();
2854 if (!extent_op)
2855 return -ENOMEM;
2856
2857 extent_op->flags_to_set = flags;
2858 extent_op->update_flags = 1;
2859 extent_op->update_key = 0;
2860 extent_op->is_data = is_data ? 1 : 0;
2861 extent_op->level = level;
2862
2863 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2864 num_bytes, extent_op);
2865 if (ret)
2866 btrfs_free_delayed_extent_op(extent_op);
2867 return ret;
2868 }
2869
2870 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root,
2872 struct btrfs_path *path,
2873 u64 objectid, u64 offset, u64 bytenr)
2874 {
2875 struct btrfs_delayed_ref_head *head;
2876 struct btrfs_delayed_ref_node *ref;
2877 struct btrfs_delayed_data_ref *data_ref;
2878 struct btrfs_delayed_ref_root *delayed_refs;
2879 struct rb_node *node;
2880 int ret = 0;
2881
2882 delayed_refs = &trans->transaction->delayed_refs;
2883 spin_lock(&delayed_refs->lock);
2884 head = btrfs_find_delayed_ref_head(trans, bytenr);
2885 if (!head) {
2886 spin_unlock(&delayed_refs->lock);
2887 return 0;
2888 }
2889
2890 if (!mutex_trylock(&head->mutex)) {
2891 atomic_inc(&head->node.refs);
2892 spin_unlock(&delayed_refs->lock);
2893
2894 btrfs_release_path(path);
2895
2896 /*
2897 * Mutex was contended, block until it's released and let
2898 * caller try again
2899 */
2900 mutex_lock(&head->mutex);
2901 mutex_unlock(&head->mutex);
2902 btrfs_put_delayed_ref(&head->node);
2903 return -EAGAIN;
2904 }
2905 spin_unlock(&delayed_refs->lock);
2906
2907 spin_lock(&head->lock);
2908 node = rb_first(&head->ref_root);
2909 while (node) {
2910 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2911 node = rb_next(node);
2912
2913 /* If it's a shared ref we know a cross reference exists */
2914 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2915 ret = 1;
2916 break;
2917 }
2918
2919 data_ref = btrfs_delayed_node_to_data_ref(ref);
2920
2921 /*
2922 * If our ref doesn't match the one we're currently looking at
2923 * then we have a cross reference.
2924 */
2925 if (data_ref->root != root->root_key.objectid ||
2926 data_ref->objectid != objectid ||
2927 data_ref->offset != offset) {
2928 ret = 1;
2929 break;
2930 }
2931 }
2932 spin_unlock(&head->lock);
2933 mutex_unlock(&head->mutex);
2934 return ret;
2935 }
2936
2937 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2938 struct btrfs_root *root,
2939 struct btrfs_path *path,
2940 u64 objectid, u64 offset, u64 bytenr)
2941 {
2942 struct btrfs_root *extent_root = root->fs_info->extent_root;
2943 struct extent_buffer *leaf;
2944 struct btrfs_extent_data_ref *ref;
2945 struct btrfs_extent_inline_ref *iref;
2946 struct btrfs_extent_item *ei;
2947 struct btrfs_key key;
2948 u32 item_size;
2949 int ret;
2950
2951 key.objectid = bytenr;
2952 key.offset = (u64)-1;
2953 key.type = BTRFS_EXTENT_ITEM_KEY;
2954
2955 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2956 if (ret < 0)
2957 goto out;
2958 BUG_ON(ret == 0); /* Corruption */
2959
2960 ret = -ENOENT;
2961 if (path->slots[0] == 0)
2962 goto out;
2963
2964 path->slots[0]--;
2965 leaf = path->nodes[0];
2966 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2967
2968 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2969 goto out;
2970
2971 ret = 1;
2972 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2974 if (item_size < sizeof(*ei)) {
2975 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2976 goto out;
2977 }
2978 #endif
2979 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2980
2981 if (item_size != sizeof(*ei) +
2982 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2983 goto out;
2984
2985 if (btrfs_extent_generation(leaf, ei) <=
2986 btrfs_root_last_snapshot(&root->root_item))
2987 goto out;
2988
2989 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2990 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2991 BTRFS_EXTENT_DATA_REF_KEY)
2992 goto out;
2993
2994 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2995 if (btrfs_extent_refs(leaf, ei) !=
2996 btrfs_extent_data_ref_count(leaf, ref) ||
2997 btrfs_extent_data_ref_root(leaf, ref) !=
2998 root->root_key.objectid ||
2999 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3000 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3001 goto out;
3002
3003 ret = 0;
3004 out:
3005 return ret;
3006 }
3007
3008 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3009 struct btrfs_root *root,
3010 u64 objectid, u64 offset, u64 bytenr)
3011 {
3012 struct btrfs_path *path;
3013 int ret;
3014 int ret2;
3015
3016 path = btrfs_alloc_path();
3017 if (!path)
3018 return -ENOENT;
3019
3020 do {
3021 ret = check_committed_ref(trans, root, path, objectid,
3022 offset, bytenr);
3023 if (ret && ret != -ENOENT)
3024 goto out;
3025
3026 ret2 = check_delayed_ref(trans, root, path, objectid,
3027 offset, bytenr);
3028 } while (ret2 == -EAGAIN);
3029
3030 if (ret2 && ret2 != -ENOENT) {
3031 ret = ret2;
3032 goto out;
3033 }
3034
3035 if (ret != -ENOENT || ret2 != -ENOENT)
3036 ret = 0;
3037 out:
3038 btrfs_free_path(path);
3039 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3040 WARN_ON(ret > 0);
3041 return ret;
3042 }
3043
3044 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3045 struct btrfs_root *root,
3046 struct extent_buffer *buf,
3047 int full_backref, int inc)
3048 {
3049 u64 bytenr;
3050 u64 num_bytes;
3051 u64 parent;
3052 u64 ref_root;
3053 u32 nritems;
3054 struct btrfs_key key;
3055 struct btrfs_file_extent_item *fi;
3056 int i;
3057 int level;
3058 int ret = 0;
3059 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3060 u64, u64, u64, u64, u64, u64, int);
3061
3062
3063 if (btrfs_test_is_dummy_root(root))
3064 return 0;
3065
3066 ref_root = btrfs_header_owner(buf);
3067 nritems = btrfs_header_nritems(buf);
3068 level = btrfs_header_level(buf);
3069
3070 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3071 return 0;
3072
3073 if (inc)
3074 process_func = btrfs_inc_extent_ref;
3075 else
3076 process_func = btrfs_free_extent;
3077
3078 if (full_backref)
3079 parent = buf->start;
3080 else
3081 parent = 0;
3082
3083 for (i = 0; i < nritems; i++) {
3084 if (level == 0) {
3085 btrfs_item_key_to_cpu(buf, &key, i);
3086 if (key.type != BTRFS_EXTENT_DATA_KEY)
3087 continue;
3088 fi = btrfs_item_ptr(buf, i,
3089 struct btrfs_file_extent_item);
3090 if (btrfs_file_extent_type(buf, fi) ==
3091 BTRFS_FILE_EXTENT_INLINE)
3092 continue;
3093 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3094 if (bytenr == 0)
3095 continue;
3096
3097 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3098 key.offset -= btrfs_file_extent_offset(buf, fi);
3099 ret = process_func(trans, root, bytenr, num_bytes,
3100 parent, ref_root, key.objectid,
3101 key.offset, 1);
3102 if (ret)
3103 goto fail;
3104 } else {
3105 bytenr = btrfs_node_blockptr(buf, i);
3106 num_bytes = root->nodesize;
3107 ret = process_func(trans, root, bytenr, num_bytes,
3108 parent, ref_root, level - 1, 0,
3109 1);
3110 if (ret)
3111 goto fail;
3112 }
3113 }
3114 return 0;
3115 fail:
3116 return ret;
3117 }
3118
3119 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3120 struct extent_buffer *buf, int full_backref)
3121 {
3122 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3123 }
3124
3125 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3126 struct extent_buffer *buf, int full_backref)
3127 {
3128 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3129 }
3130
3131 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3132 struct btrfs_root *root,
3133 struct btrfs_path *path,
3134 struct btrfs_block_group_cache *cache)
3135 {
3136 int ret;
3137 struct btrfs_root *extent_root = root->fs_info->extent_root;
3138 unsigned long bi;
3139 struct extent_buffer *leaf;
3140
3141 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3142 if (ret < 0)
3143 goto fail;
3144 BUG_ON(ret); /* Corruption */
3145
3146 leaf = path->nodes[0];
3147 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 btrfs_mark_buffer_dirty(leaf);
3150 btrfs_release_path(path);
3151 fail:
3152 if (ret) {
3153 btrfs_abort_transaction(trans, root, ret);
3154 return ret;
3155 }
3156 return 0;
3157
3158 }
3159
3160 static struct btrfs_block_group_cache *
3161 next_block_group(struct btrfs_root *root,
3162 struct btrfs_block_group_cache *cache)
3163 {
3164 struct rb_node *node;
3165 spin_lock(&root->fs_info->block_group_cache_lock);
3166 node = rb_next(&cache->cache_node);
3167 btrfs_put_block_group(cache);
3168 if (node) {
3169 cache = rb_entry(node, struct btrfs_block_group_cache,
3170 cache_node);
3171 btrfs_get_block_group(cache);
3172 } else
3173 cache = NULL;
3174 spin_unlock(&root->fs_info->block_group_cache_lock);
3175 return cache;
3176 }
3177
3178 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3179 struct btrfs_trans_handle *trans,
3180 struct btrfs_path *path)
3181 {
3182 struct btrfs_root *root = block_group->fs_info->tree_root;
3183 struct inode *inode = NULL;
3184 u64 alloc_hint = 0;
3185 int dcs = BTRFS_DC_ERROR;
3186 int num_pages = 0;
3187 int retries = 0;
3188 int ret = 0;
3189
3190 /*
3191 * If this block group is smaller than 100 megs don't bother caching the
3192 * block group.
3193 */
3194 if (block_group->key.offset < (100 * 1024 * 1024)) {
3195 spin_lock(&block_group->lock);
3196 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3197 spin_unlock(&block_group->lock);
3198 return 0;
3199 }
3200
3201 again:
3202 inode = lookup_free_space_inode(root, block_group, path);
3203 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3204 ret = PTR_ERR(inode);
3205 btrfs_release_path(path);
3206 goto out;
3207 }
3208
3209 if (IS_ERR(inode)) {
3210 BUG_ON(retries);
3211 retries++;
3212
3213 if (block_group->ro)
3214 goto out_free;
3215
3216 ret = create_free_space_inode(root, trans, block_group, path);
3217 if (ret)
3218 goto out_free;
3219 goto again;
3220 }
3221
3222 /* We've already setup this transaction, go ahead and exit */
3223 if (block_group->cache_generation == trans->transid &&
3224 i_size_read(inode)) {
3225 dcs = BTRFS_DC_SETUP;
3226 goto out_put;
3227 }
3228
3229 /*
3230 * We want to set the generation to 0, that way if anything goes wrong
3231 * from here on out we know not to trust this cache when we load up next
3232 * time.
3233 */
3234 BTRFS_I(inode)->generation = 0;
3235 ret = btrfs_update_inode(trans, root, inode);
3236 WARN_ON(ret);
3237
3238 if (i_size_read(inode) > 0) {
3239 ret = btrfs_check_trunc_cache_free_space(root,
3240 &root->fs_info->global_block_rsv);
3241 if (ret)
3242 goto out_put;
3243
3244 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3245 if (ret)
3246 goto out_put;
3247 }
3248
3249 spin_lock(&block_group->lock);
3250 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3251 !btrfs_test_opt(root, SPACE_CACHE) ||
3252 block_group->delalloc_bytes) {
3253 /*
3254 * don't bother trying to write stuff out _if_
3255 * a) we're not cached,
3256 * b) we're with nospace_cache mount option.
3257 */
3258 dcs = BTRFS_DC_WRITTEN;
3259 spin_unlock(&block_group->lock);
3260 goto out_put;
3261 }
3262 spin_unlock(&block_group->lock);
3263
3264 /*
3265 * Try to preallocate enough space based on how big the block group is.
3266 * Keep in mind this has to include any pinned space which could end up
3267 * taking up quite a bit since it's not folded into the other space
3268 * cache.
3269 */
3270 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3271 if (!num_pages)
3272 num_pages = 1;
3273
3274 num_pages *= 16;
3275 num_pages *= PAGE_CACHE_SIZE;
3276
3277 ret = btrfs_check_data_free_space(inode, num_pages);
3278 if (ret)
3279 goto out_put;
3280
3281 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3282 num_pages, num_pages,
3283 &alloc_hint);
3284 if (!ret)
3285 dcs = BTRFS_DC_SETUP;
3286 btrfs_free_reserved_data_space(inode, num_pages);
3287
3288 out_put:
3289 iput(inode);
3290 out_free:
3291 btrfs_release_path(path);
3292 out:
3293 spin_lock(&block_group->lock);
3294 if (!ret && dcs == BTRFS_DC_SETUP)
3295 block_group->cache_generation = trans->transid;
3296 block_group->disk_cache_state = dcs;
3297 spin_unlock(&block_group->lock);
3298
3299 return ret;
3300 }
3301
3302 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3303 struct btrfs_root *root)
3304 {
3305 struct btrfs_block_group_cache *cache;
3306 int err = 0;
3307 struct btrfs_path *path;
3308 u64 last = 0;
3309
3310 path = btrfs_alloc_path();
3311 if (!path)
3312 return -ENOMEM;
3313
3314 again:
3315 while (1) {
3316 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3317 while (cache) {
3318 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3319 break;
3320 cache = next_block_group(root, cache);
3321 }
3322 if (!cache) {
3323 if (last == 0)
3324 break;
3325 last = 0;
3326 continue;
3327 }
3328 err = cache_save_setup(cache, trans, path);
3329 last = cache->key.objectid + cache->key.offset;
3330 btrfs_put_block_group(cache);
3331 }
3332
3333 while (1) {
3334 if (last == 0) {
3335 err = btrfs_run_delayed_refs(trans, root,
3336 (unsigned long)-1);
3337 if (err) /* File system offline */
3338 goto out;
3339 }
3340
3341 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3342 while (cache) {
3343 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3344 btrfs_put_block_group(cache);
3345 goto again;
3346 }
3347
3348 if (cache->dirty)
3349 break;
3350 cache = next_block_group(root, cache);
3351 }
3352 if (!cache) {
3353 if (last == 0)
3354 break;
3355 last = 0;
3356 continue;
3357 }
3358
3359 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3360 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3361 cache->dirty = 0;
3362 last = cache->key.objectid + cache->key.offset;
3363
3364 err = write_one_cache_group(trans, root, path, cache);
3365 btrfs_put_block_group(cache);
3366 if (err) /* File system offline */
3367 goto out;
3368 }
3369
3370 while (1) {
3371 /*
3372 * I don't think this is needed since we're just marking our
3373 * preallocated extent as written, but just in case it can't
3374 * hurt.
3375 */
3376 if (last == 0) {
3377 err = btrfs_run_delayed_refs(trans, root,
3378 (unsigned long)-1);
3379 if (err) /* File system offline */
3380 goto out;
3381 }
3382
3383 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3384 while (cache) {
3385 /*
3386 * Really this shouldn't happen, but it could if we
3387 * couldn't write the entire preallocated extent and
3388 * splitting the extent resulted in a new block.
3389 */
3390 if (cache->dirty) {
3391 btrfs_put_block_group(cache);
3392 goto again;
3393 }
3394 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3395 break;
3396 cache = next_block_group(root, cache);
3397 }
3398 if (!cache) {
3399 if (last == 0)
3400 break;
3401 last = 0;
3402 continue;
3403 }
3404
3405 err = btrfs_write_out_cache(root, trans, cache, path);
3406
3407 /*
3408 * If we didn't have an error then the cache state is still
3409 * NEED_WRITE, so we can set it to WRITTEN.
3410 */
3411 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3412 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3413 last = cache->key.objectid + cache->key.offset;
3414 btrfs_put_block_group(cache);
3415 }
3416 out:
3417
3418 btrfs_free_path(path);
3419 return err;
3420 }
3421
3422 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3423 {
3424 struct btrfs_block_group_cache *block_group;
3425 int readonly = 0;
3426
3427 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3428 if (!block_group || block_group->ro)
3429 readonly = 1;
3430 if (block_group)
3431 btrfs_put_block_group(block_group);
3432 return readonly;
3433 }
3434
3435 static const char *alloc_name(u64 flags)
3436 {
3437 switch (flags) {
3438 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3439 return "mixed";
3440 case BTRFS_BLOCK_GROUP_METADATA:
3441 return "metadata";
3442 case BTRFS_BLOCK_GROUP_DATA:
3443 return "data";
3444 case BTRFS_BLOCK_GROUP_SYSTEM:
3445 return "system";
3446 default:
3447 WARN_ON(1);
3448 return "invalid-combination";
3449 };
3450 }
3451
3452 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3453 u64 total_bytes, u64 bytes_used,
3454 struct btrfs_space_info **space_info)
3455 {
3456 struct btrfs_space_info *found;
3457 int i;
3458 int factor;
3459 int ret;
3460
3461 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3462 BTRFS_BLOCK_GROUP_RAID10))
3463 factor = 2;
3464 else
3465 factor = 1;
3466
3467 found = __find_space_info(info, flags);
3468 if (found) {
3469 spin_lock(&found->lock);
3470 found->total_bytes += total_bytes;
3471 found->disk_total += total_bytes * factor;
3472 found->bytes_used += bytes_used;
3473 found->disk_used += bytes_used * factor;
3474 found->full = 0;
3475 spin_unlock(&found->lock);
3476 *space_info = found;
3477 return 0;
3478 }
3479 found = kzalloc(sizeof(*found), GFP_NOFS);
3480 if (!found)
3481 return -ENOMEM;
3482
3483 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3484 if (ret) {
3485 kfree(found);
3486 return ret;
3487 }
3488
3489 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3490 INIT_LIST_HEAD(&found->block_groups[i]);
3491 init_rwsem(&found->groups_sem);
3492 spin_lock_init(&found->lock);
3493 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3494 found->total_bytes = total_bytes;
3495 found->disk_total = total_bytes * factor;
3496 found->bytes_used = bytes_used;
3497 found->disk_used = bytes_used * factor;
3498 found->bytes_pinned = 0;
3499 found->bytes_reserved = 0;
3500 found->bytes_readonly = 0;
3501 found->bytes_may_use = 0;
3502 found->full = 0;
3503 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3504 found->chunk_alloc = 0;
3505 found->flush = 0;
3506 init_waitqueue_head(&found->wait);
3507
3508 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3509 info->space_info_kobj, "%s",
3510 alloc_name(found->flags));
3511 if (ret) {
3512 kfree(found);
3513 return ret;
3514 }
3515
3516 *space_info = found;
3517 list_add_rcu(&found->list, &info->space_info);
3518 if (flags & BTRFS_BLOCK_GROUP_DATA)
3519 info->data_sinfo = found;
3520
3521 return ret;
3522 }
3523
3524 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3525 {
3526 u64 extra_flags = chunk_to_extended(flags) &
3527 BTRFS_EXTENDED_PROFILE_MASK;
3528
3529 write_seqlock(&fs_info->profiles_lock);
3530 if (flags & BTRFS_BLOCK_GROUP_DATA)
3531 fs_info->avail_data_alloc_bits |= extra_flags;
3532 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3533 fs_info->avail_metadata_alloc_bits |= extra_flags;
3534 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3535 fs_info->avail_system_alloc_bits |= extra_flags;
3536 write_sequnlock(&fs_info->profiles_lock);
3537 }
3538
3539 /*
3540 * returns target flags in extended format or 0 if restripe for this
3541 * chunk_type is not in progress
3542 *
3543 * should be called with either volume_mutex or balance_lock held
3544 */
3545 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3546 {
3547 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3548 u64 target = 0;
3549
3550 if (!bctl)
3551 return 0;
3552
3553 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3554 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3555 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3556 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3557 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3558 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3559 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3560 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3561 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3562 }
3563
3564 return target;
3565 }
3566
3567 /*
3568 * @flags: available profiles in extended format (see ctree.h)
3569 *
3570 * Returns reduced profile in chunk format. If profile changing is in
3571 * progress (either running or paused) picks the target profile (if it's
3572 * already available), otherwise falls back to plain reducing.
3573 */
3574 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3575 {
3576 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3577 u64 target;
3578 u64 tmp;
3579
3580 /*
3581 * see if restripe for this chunk_type is in progress, if so
3582 * try to reduce to the target profile
3583 */
3584 spin_lock(&root->fs_info->balance_lock);
3585 target = get_restripe_target(root->fs_info, flags);
3586 if (target) {
3587 /* pick target profile only if it's already available */
3588 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3589 spin_unlock(&root->fs_info->balance_lock);
3590 return extended_to_chunk(target);
3591 }
3592 }
3593 spin_unlock(&root->fs_info->balance_lock);
3594
3595 /* First, mask out the RAID levels which aren't possible */
3596 if (num_devices == 1)
3597 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3598 BTRFS_BLOCK_GROUP_RAID5);
3599 if (num_devices < 3)
3600 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3601 if (num_devices < 4)
3602 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3603
3604 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3605 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3606 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3607 flags &= ~tmp;
3608
3609 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3610 tmp = BTRFS_BLOCK_GROUP_RAID6;
3611 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3612 tmp = BTRFS_BLOCK_GROUP_RAID5;
3613 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3614 tmp = BTRFS_BLOCK_GROUP_RAID10;
3615 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3616 tmp = BTRFS_BLOCK_GROUP_RAID1;
3617 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3618 tmp = BTRFS_BLOCK_GROUP_RAID0;
3619
3620 return extended_to_chunk(flags | tmp);
3621 }
3622
3623 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3624 {
3625 unsigned seq;
3626 u64 flags;
3627
3628 do {
3629 flags = orig_flags;
3630 seq = read_seqbegin(&root->fs_info->profiles_lock);
3631
3632 if (flags & BTRFS_BLOCK_GROUP_DATA)
3633 flags |= root->fs_info->avail_data_alloc_bits;
3634 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3635 flags |= root->fs_info->avail_system_alloc_bits;
3636 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3637 flags |= root->fs_info->avail_metadata_alloc_bits;
3638 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3639
3640 return btrfs_reduce_alloc_profile(root, flags);
3641 }
3642
3643 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3644 {
3645 u64 flags;
3646 u64 ret;
3647
3648 if (data)
3649 flags = BTRFS_BLOCK_GROUP_DATA;
3650 else if (root == root->fs_info->chunk_root)
3651 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3652 else
3653 flags = BTRFS_BLOCK_GROUP_METADATA;
3654
3655 ret = get_alloc_profile(root, flags);
3656 return ret;
3657 }
3658
3659 /*
3660 * This will check the space that the inode allocates from to make sure we have
3661 * enough space for bytes.
3662 */
3663 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3664 {
3665 struct btrfs_space_info *data_sinfo;
3666 struct btrfs_root *root = BTRFS_I(inode)->root;
3667 struct btrfs_fs_info *fs_info = root->fs_info;
3668 u64 used;
3669 int ret = 0, committed = 0, alloc_chunk = 1;
3670
3671 /* make sure bytes are sectorsize aligned */
3672 bytes = ALIGN(bytes, root->sectorsize);
3673
3674 if (btrfs_is_free_space_inode(inode)) {
3675 committed = 1;
3676 ASSERT(current->journal_info);
3677 }
3678
3679 data_sinfo = fs_info->data_sinfo;
3680 if (!data_sinfo)
3681 goto alloc;
3682
3683 again:
3684 /* make sure we have enough space to handle the data first */
3685 spin_lock(&data_sinfo->lock);
3686 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3687 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3688 data_sinfo->bytes_may_use;
3689
3690 if (used + bytes > data_sinfo->total_bytes) {
3691 struct btrfs_trans_handle *trans;
3692
3693 /*
3694 * if we don't have enough free bytes in this space then we need
3695 * to alloc a new chunk.
3696 */
3697 if (!data_sinfo->full && alloc_chunk) {
3698 u64 alloc_target;
3699
3700 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3701 spin_unlock(&data_sinfo->lock);
3702 alloc:
3703 alloc_target = btrfs_get_alloc_profile(root, 1);
3704 /*
3705 * It is ugly that we don't call nolock join
3706 * transaction for the free space inode case here.
3707 * But it is safe because we only do the data space
3708 * reservation for the free space cache in the
3709 * transaction context, the common join transaction
3710 * just increase the counter of the current transaction
3711 * handler, doesn't try to acquire the trans_lock of
3712 * the fs.
3713 */
3714 trans = btrfs_join_transaction(root);
3715 if (IS_ERR(trans))
3716 return PTR_ERR(trans);
3717
3718 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3719 alloc_target,
3720 CHUNK_ALLOC_NO_FORCE);
3721 btrfs_end_transaction(trans, root);
3722 if (ret < 0) {
3723 if (ret != -ENOSPC)
3724 return ret;
3725 else
3726 goto commit_trans;
3727 }
3728
3729 if (!data_sinfo)
3730 data_sinfo = fs_info->data_sinfo;
3731
3732 goto again;
3733 }
3734
3735 /*
3736 * If we don't have enough pinned space to deal with this
3737 * allocation don't bother committing the transaction.
3738 */
3739 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3740 bytes) < 0)
3741 committed = 1;
3742 spin_unlock(&data_sinfo->lock);
3743
3744 /* commit the current transaction and try again */
3745 commit_trans:
3746 if (!committed &&
3747 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3748 committed = 1;
3749
3750 trans = btrfs_join_transaction(root);
3751 if (IS_ERR(trans))
3752 return PTR_ERR(trans);
3753 ret = btrfs_commit_transaction(trans, root);
3754 if (ret)
3755 return ret;
3756 goto again;
3757 }
3758
3759 trace_btrfs_space_reservation(root->fs_info,
3760 "space_info:enospc",
3761 data_sinfo->flags, bytes, 1);
3762 return -ENOSPC;
3763 }
3764 data_sinfo->bytes_may_use += bytes;
3765 trace_btrfs_space_reservation(root->fs_info, "space_info",
3766 data_sinfo->flags, bytes, 1);
3767 spin_unlock(&data_sinfo->lock);
3768
3769 return 0;
3770 }
3771
3772 /*
3773 * Called if we need to clear a data reservation for this inode.
3774 */
3775 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3776 {
3777 struct btrfs_root *root = BTRFS_I(inode)->root;
3778 struct btrfs_space_info *data_sinfo;
3779
3780 /* make sure bytes are sectorsize aligned */
3781 bytes = ALIGN(bytes, root->sectorsize);
3782
3783 data_sinfo = root->fs_info->data_sinfo;
3784 spin_lock(&data_sinfo->lock);
3785 WARN_ON(data_sinfo->bytes_may_use < bytes);
3786 data_sinfo->bytes_may_use -= bytes;
3787 trace_btrfs_space_reservation(root->fs_info, "space_info",
3788 data_sinfo->flags, bytes, 0);
3789 spin_unlock(&data_sinfo->lock);
3790 }
3791
3792 static void force_metadata_allocation(struct btrfs_fs_info *info)
3793 {
3794 struct list_head *head = &info->space_info;
3795 struct btrfs_space_info *found;
3796
3797 rcu_read_lock();
3798 list_for_each_entry_rcu(found, head, list) {
3799 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3800 found->force_alloc = CHUNK_ALLOC_FORCE;
3801 }
3802 rcu_read_unlock();
3803 }
3804
3805 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3806 {
3807 return (global->size << 1);
3808 }
3809
3810 static int should_alloc_chunk(struct btrfs_root *root,
3811 struct btrfs_space_info *sinfo, int force)
3812 {
3813 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3814 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3815 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3816 u64 thresh;
3817
3818 if (force == CHUNK_ALLOC_FORCE)
3819 return 1;
3820
3821 /*
3822 * We need to take into account the global rsv because for all intents
3823 * and purposes it's used space. Don't worry about locking the
3824 * global_rsv, it doesn't change except when the transaction commits.
3825 */
3826 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3827 num_allocated += calc_global_rsv_need_space(global_rsv);
3828
3829 /*
3830 * in limited mode, we want to have some free space up to
3831 * about 1% of the FS size.
3832 */
3833 if (force == CHUNK_ALLOC_LIMITED) {
3834 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3835 thresh = max_t(u64, 64 * 1024 * 1024,
3836 div_factor_fine(thresh, 1));
3837
3838 if (num_bytes - num_allocated < thresh)
3839 return 1;
3840 }
3841
3842 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3843 return 0;
3844 return 1;
3845 }
3846
3847 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3848 {
3849 u64 num_dev;
3850
3851 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3852 BTRFS_BLOCK_GROUP_RAID0 |
3853 BTRFS_BLOCK_GROUP_RAID5 |
3854 BTRFS_BLOCK_GROUP_RAID6))
3855 num_dev = root->fs_info->fs_devices->rw_devices;
3856 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3857 num_dev = 2;
3858 else
3859 num_dev = 1; /* DUP or single */
3860
3861 /* metadata for updaing devices and chunk tree */
3862 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3863 }
3864
3865 static void check_system_chunk(struct btrfs_trans_handle *trans,
3866 struct btrfs_root *root, u64 type)
3867 {
3868 struct btrfs_space_info *info;
3869 u64 left;
3870 u64 thresh;
3871
3872 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3873 spin_lock(&info->lock);
3874 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3875 info->bytes_reserved - info->bytes_readonly;
3876 spin_unlock(&info->lock);
3877
3878 thresh = get_system_chunk_thresh(root, type);
3879 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3880 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3881 left, thresh, type);
3882 dump_space_info(info, 0, 0);
3883 }
3884
3885 if (left < thresh) {
3886 u64 flags;
3887
3888 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3889 btrfs_alloc_chunk(trans, root, flags);
3890 }
3891 }
3892
3893 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3894 struct btrfs_root *extent_root, u64 flags, int force)
3895 {
3896 struct btrfs_space_info *space_info;
3897 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3898 int wait_for_alloc = 0;
3899 int ret = 0;
3900
3901 /* Don't re-enter if we're already allocating a chunk */
3902 if (trans->allocating_chunk)
3903 return -ENOSPC;
3904
3905 space_info = __find_space_info(extent_root->fs_info, flags);
3906 if (!space_info) {
3907 ret = update_space_info(extent_root->fs_info, flags,
3908 0, 0, &space_info);
3909 BUG_ON(ret); /* -ENOMEM */
3910 }
3911 BUG_ON(!space_info); /* Logic error */
3912
3913 again:
3914 spin_lock(&space_info->lock);
3915 if (force < space_info->force_alloc)
3916 force = space_info->force_alloc;
3917 if (space_info->full) {
3918 if (should_alloc_chunk(extent_root, space_info, force))
3919 ret = -ENOSPC;
3920 else
3921 ret = 0;
3922 spin_unlock(&space_info->lock);
3923 return ret;
3924 }
3925
3926 if (!should_alloc_chunk(extent_root, space_info, force)) {
3927 spin_unlock(&space_info->lock);
3928 return 0;
3929 } else if (space_info->chunk_alloc) {
3930 wait_for_alloc = 1;
3931 } else {
3932 space_info->chunk_alloc = 1;
3933 }
3934
3935 spin_unlock(&space_info->lock);
3936
3937 mutex_lock(&fs_info->chunk_mutex);
3938
3939 /*
3940 * The chunk_mutex is held throughout the entirety of a chunk
3941 * allocation, so once we've acquired the chunk_mutex we know that the
3942 * other guy is done and we need to recheck and see if we should
3943 * allocate.
3944 */
3945 if (wait_for_alloc) {
3946 mutex_unlock(&fs_info->chunk_mutex);
3947 wait_for_alloc = 0;
3948 goto again;
3949 }
3950
3951 trans->allocating_chunk = true;
3952
3953 /*
3954 * If we have mixed data/metadata chunks we want to make sure we keep
3955 * allocating mixed chunks instead of individual chunks.
3956 */
3957 if (btrfs_mixed_space_info(space_info))
3958 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3959
3960 /*
3961 * if we're doing a data chunk, go ahead and make sure that
3962 * we keep a reasonable number of metadata chunks allocated in the
3963 * FS as well.
3964 */
3965 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3966 fs_info->data_chunk_allocations++;
3967 if (!(fs_info->data_chunk_allocations %
3968 fs_info->metadata_ratio))
3969 force_metadata_allocation(fs_info);
3970 }
3971
3972 /*
3973 * Check if we have enough space in SYSTEM chunk because we may need
3974 * to update devices.
3975 */
3976 check_system_chunk(trans, extent_root, flags);
3977
3978 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3979 trans->allocating_chunk = false;
3980
3981 spin_lock(&space_info->lock);
3982 if (ret < 0 && ret != -ENOSPC)
3983 goto out;
3984 if (ret)
3985 space_info->full = 1;
3986 else
3987 ret = 1;
3988
3989 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3990 out:
3991 space_info->chunk_alloc = 0;
3992 spin_unlock(&space_info->lock);
3993 mutex_unlock(&fs_info->chunk_mutex);
3994 return ret;
3995 }
3996
3997 static int can_overcommit(struct btrfs_root *root,
3998 struct btrfs_space_info *space_info, u64 bytes,
3999 enum btrfs_reserve_flush_enum flush)
4000 {
4001 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4002 u64 profile = btrfs_get_alloc_profile(root, 0);
4003 u64 space_size;
4004 u64 avail;
4005 u64 used;
4006
4007 used = space_info->bytes_used + space_info->bytes_reserved +
4008 space_info->bytes_pinned + space_info->bytes_readonly;
4009
4010 /*
4011 * We only want to allow over committing if we have lots of actual space
4012 * free, but if we don't have enough space to handle the global reserve
4013 * space then we could end up having a real enospc problem when trying
4014 * to allocate a chunk or some other such important allocation.
4015 */
4016 spin_lock(&global_rsv->lock);
4017 space_size = calc_global_rsv_need_space(global_rsv);
4018 spin_unlock(&global_rsv->lock);
4019 if (used + space_size >= space_info->total_bytes)
4020 return 0;
4021
4022 used += space_info->bytes_may_use;
4023
4024 spin_lock(&root->fs_info->free_chunk_lock);
4025 avail = root->fs_info->free_chunk_space;
4026 spin_unlock(&root->fs_info->free_chunk_lock);
4027
4028 /*
4029 * If we have dup, raid1 or raid10 then only half of the free
4030 * space is actually useable. For raid56, the space info used
4031 * doesn't include the parity drive, so we don't have to
4032 * change the math
4033 */
4034 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4035 BTRFS_BLOCK_GROUP_RAID1 |
4036 BTRFS_BLOCK_GROUP_RAID10))
4037 avail >>= 1;
4038
4039 /*
4040 * If we aren't flushing all things, let us overcommit up to
4041 * 1/2th of the space. If we can flush, don't let us overcommit
4042 * too much, let it overcommit up to 1/8 of the space.
4043 */
4044 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4045 avail >>= 3;
4046 else
4047 avail >>= 1;
4048
4049 if (used + bytes < space_info->total_bytes + avail)
4050 return 1;
4051 return 0;
4052 }
4053
4054 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4055 unsigned long nr_pages, int nr_items)
4056 {
4057 struct super_block *sb = root->fs_info->sb;
4058
4059 if (down_read_trylock(&sb->s_umount)) {
4060 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4061 up_read(&sb->s_umount);
4062 } else {
4063 /*
4064 * We needn't worry the filesystem going from r/w to r/o though
4065 * we don't acquire ->s_umount mutex, because the filesystem
4066 * should guarantee the delalloc inodes list be empty after
4067 * the filesystem is readonly(all dirty pages are written to
4068 * the disk).
4069 */
4070 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4071 if (!current->journal_info)
4072 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4073 }
4074 }
4075
4076 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4077 {
4078 u64 bytes;
4079 int nr;
4080
4081 bytes = btrfs_calc_trans_metadata_size(root, 1);
4082 nr = (int)div64_u64(to_reclaim, bytes);
4083 if (!nr)
4084 nr = 1;
4085 return nr;
4086 }
4087
4088 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4089
4090 /*
4091 * shrink metadata reservation for delalloc
4092 */
4093 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4094 bool wait_ordered)
4095 {
4096 struct btrfs_block_rsv *block_rsv;
4097 struct btrfs_space_info *space_info;
4098 struct btrfs_trans_handle *trans;
4099 u64 delalloc_bytes;
4100 u64 max_reclaim;
4101 long time_left;
4102 unsigned long nr_pages;
4103 int loops;
4104 int items;
4105 enum btrfs_reserve_flush_enum flush;
4106
4107 /* Calc the number of the pages we need flush for space reservation */
4108 items = calc_reclaim_items_nr(root, to_reclaim);
4109 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4110
4111 trans = (struct btrfs_trans_handle *)current->journal_info;
4112 block_rsv = &root->fs_info->delalloc_block_rsv;
4113 space_info = block_rsv->space_info;
4114
4115 delalloc_bytes = percpu_counter_sum_positive(
4116 &root->fs_info->delalloc_bytes);
4117 if (delalloc_bytes == 0) {
4118 if (trans)
4119 return;
4120 if (wait_ordered)
4121 btrfs_wait_ordered_roots(root->fs_info, items);
4122 return;
4123 }
4124
4125 loops = 0;
4126 while (delalloc_bytes && loops < 3) {
4127 max_reclaim = min(delalloc_bytes, to_reclaim);
4128 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4129 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4130 /*
4131 * We need to wait for the async pages to actually start before
4132 * we do anything.
4133 */
4134 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4135 if (!max_reclaim)
4136 goto skip_async;
4137
4138 if (max_reclaim <= nr_pages)
4139 max_reclaim = 0;
4140 else
4141 max_reclaim -= nr_pages;
4142
4143 wait_event(root->fs_info->async_submit_wait,
4144 atomic_read(&root->fs_info->async_delalloc_pages) <=
4145 (int)max_reclaim);
4146 skip_async:
4147 if (!trans)
4148 flush = BTRFS_RESERVE_FLUSH_ALL;
4149 else
4150 flush = BTRFS_RESERVE_NO_FLUSH;
4151 spin_lock(&space_info->lock);
4152 if (can_overcommit(root, space_info, orig, flush)) {
4153 spin_unlock(&space_info->lock);
4154 break;
4155 }
4156 spin_unlock(&space_info->lock);
4157
4158 loops++;
4159 if (wait_ordered && !trans) {
4160 btrfs_wait_ordered_roots(root->fs_info, items);
4161 } else {
4162 time_left = schedule_timeout_killable(1);
4163 if (time_left)
4164 break;
4165 }
4166 delalloc_bytes = percpu_counter_sum_positive(
4167 &root->fs_info->delalloc_bytes);
4168 }
4169 }
4170
4171 /**
4172 * maybe_commit_transaction - possibly commit the transaction if its ok to
4173 * @root - the root we're allocating for
4174 * @bytes - the number of bytes we want to reserve
4175 * @force - force the commit
4176 *
4177 * This will check to make sure that committing the transaction will actually
4178 * get us somewhere and then commit the transaction if it does. Otherwise it
4179 * will return -ENOSPC.
4180 */
4181 static int may_commit_transaction(struct btrfs_root *root,
4182 struct btrfs_space_info *space_info,
4183 u64 bytes, int force)
4184 {
4185 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4186 struct btrfs_trans_handle *trans;
4187
4188 trans = (struct btrfs_trans_handle *)current->journal_info;
4189 if (trans)
4190 return -EAGAIN;
4191
4192 if (force)
4193 goto commit;
4194
4195 /* See if there is enough pinned space to make this reservation */
4196 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4197 bytes) >= 0)
4198 goto commit;
4199
4200 /*
4201 * See if there is some space in the delayed insertion reservation for
4202 * this reservation.
4203 */
4204 if (space_info != delayed_rsv->space_info)
4205 return -ENOSPC;
4206
4207 spin_lock(&delayed_rsv->lock);
4208 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4209 bytes - delayed_rsv->size) >= 0) {
4210 spin_unlock(&delayed_rsv->lock);
4211 return -ENOSPC;
4212 }
4213 spin_unlock(&delayed_rsv->lock);
4214
4215 commit:
4216 trans = btrfs_join_transaction(root);
4217 if (IS_ERR(trans))
4218 return -ENOSPC;
4219
4220 return btrfs_commit_transaction(trans, root);
4221 }
4222
4223 enum flush_state {
4224 FLUSH_DELAYED_ITEMS_NR = 1,
4225 FLUSH_DELAYED_ITEMS = 2,
4226 FLUSH_DELALLOC = 3,
4227 FLUSH_DELALLOC_WAIT = 4,
4228 ALLOC_CHUNK = 5,
4229 COMMIT_TRANS = 6,
4230 };
4231
4232 static int flush_space(struct btrfs_root *root,
4233 struct btrfs_space_info *space_info, u64 num_bytes,
4234 u64 orig_bytes, int state)
4235 {
4236 struct btrfs_trans_handle *trans;
4237 int nr;
4238 int ret = 0;
4239
4240 switch (state) {
4241 case FLUSH_DELAYED_ITEMS_NR:
4242 case FLUSH_DELAYED_ITEMS:
4243 if (state == FLUSH_DELAYED_ITEMS_NR)
4244 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4245 else
4246 nr = -1;
4247
4248 trans = btrfs_join_transaction(root);
4249 if (IS_ERR(trans)) {
4250 ret = PTR_ERR(trans);
4251 break;
4252 }
4253 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4254 btrfs_end_transaction(trans, root);
4255 break;
4256 case FLUSH_DELALLOC:
4257 case FLUSH_DELALLOC_WAIT:
4258 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4259 state == FLUSH_DELALLOC_WAIT);
4260 break;
4261 case ALLOC_CHUNK:
4262 trans = btrfs_join_transaction(root);
4263 if (IS_ERR(trans)) {
4264 ret = PTR_ERR(trans);
4265 break;
4266 }
4267 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4268 btrfs_get_alloc_profile(root, 0),
4269 CHUNK_ALLOC_NO_FORCE);
4270 btrfs_end_transaction(trans, root);
4271 if (ret == -ENOSPC)
4272 ret = 0;
4273 break;
4274 case COMMIT_TRANS:
4275 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4276 break;
4277 default:
4278 ret = -ENOSPC;
4279 break;
4280 }
4281
4282 return ret;
4283 }
4284
4285 static inline u64
4286 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4287 struct btrfs_space_info *space_info)
4288 {
4289 u64 used;
4290 u64 expected;
4291 u64 to_reclaim;
4292
4293 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4294 16 * 1024 * 1024);
4295 spin_lock(&space_info->lock);
4296 if (can_overcommit(root, space_info, to_reclaim,
4297 BTRFS_RESERVE_FLUSH_ALL)) {
4298 to_reclaim = 0;
4299 goto out;
4300 }
4301
4302 used = space_info->bytes_used + space_info->bytes_reserved +
4303 space_info->bytes_pinned + space_info->bytes_readonly +
4304 space_info->bytes_may_use;
4305 if (can_overcommit(root, space_info, 1024 * 1024,
4306 BTRFS_RESERVE_FLUSH_ALL))
4307 expected = div_factor_fine(space_info->total_bytes, 95);
4308 else
4309 expected = div_factor_fine(space_info->total_bytes, 90);
4310
4311 if (used > expected)
4312 to_reclaim = used - expected;
4313 else
4314 to_reclaim = 0;
4315 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4316 space_info->bytes_reserved);
4317 out:
4318 spin_unlock(&space_info->lock);
4319
4320 return to_reclaim;
4321 }
4322
4323 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4324 struct btrfs_fs_info *fs_info, u64 used)
4325 {
4326 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4327 !btrfs_fs_closing(fs_info) &&
4328 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4329 }
4330
4331 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4332 struct btrfs_fs_info *fs_info,
4333 int flush_state)
4334 {
4335 u64 used;
4336
4337 spin_lock(&space_info->lock);
4338 /*
4339 * We run out of space and have not got any free space via flush_space,
4340 * so don't bother doing async reclaim.
4341 */
4342 if (flush_state > COMMIT_TRANS && space_info->full) {
4343 spin_unlock(&space_info->lock);
4344 return 0;
4345 }
4346
4347 used = space_info->bytes_used + space_info->bytes_reserved +
4348 space_info->bytes_pinned + space_info->bytes_readonly +
4349 space_info->bytes_may_use;
4350 if (need_do_async_reclaim(space_info, fs_info, used)) {
4351 spin_unlock(&space_info->lock);
4352 return 1;
4353 }
4354 spin_unlock(&space_info->lock);
4355
4356 return 0;
4357 }
4358
4359 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4360 {
4361 struct btrfs_fs_info *fs_info;
4362 struct btrfs_space_info *space_info;
4363 u64 to_reclaim;
4364 int flush_state;
4365
4366 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4367 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4368
4369 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4370 space_info);
4371 if (!to_reclaim)
4372 return;
4373
4374 flush_state = FLUSH_DELAYED_ITEMS_NR;
4375 do {
4376 flush_space(fs_info->fs_root, space_info, to_reclaim,
4377 to_reclaim, flush_state);
4378 flush_state++;
4379 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4380 flush_state))
4381 return;
4382 } while (flush_state <= COMMIT_TRANS);
4383
4384 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4385 queue_work(system_unbound_wq, work);
4386 }
4387
4388 void btrfs_init_async_reclaim_work(struct work_struct *work)
4389 {
4390 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4391 }
4392
4393 /**
4394 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4395 * @root - the root we're allocating for
4396 * @block_rsv - the block_rsv we're allocating for
4397 * @orig_bytes - the number of bytes we want
4398 * @flush - whether or not we can flush to make our reservation
4399 *
4400 * This will reserve orgi_bytes number of bytes from the space info associated
4401 * with the block_rsv. If there is not enough space it will make an attempt to
4402 * flush out space to make room. It will do this by flushing delalloc if
4403 * possible or committing the transaction. If flush is 0 then no attempts to
4404 * regain reservations will be made and this will fail if there is not enough
4405 * space already.
4406 */
4407 static int reserve_metadata_bytes(struct btrfs_root *root,
4408 struct btrfs_block_rsv *block_rsv,
4409 u64 orig_bytes,
4410 enum btrfs_reserve_flush_enum flush)
4411 {
4412 struct btrfs_space_info *space_info = block_rsv->space_info;
4413 u64 used;
4414 u64 num_bytes = orig_bytes;
4415 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4416 int ret = 0;
4417 bool flushing = false;
4418
4419 again:
4420 ret = 0;
4421 spin_lock(&space_info->lock);
4422 /*
4423 * We only want to wait if somebody other than us is flushing and we
4424 * are actually allowed to flush all things.
4425 */
4426 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4427 space_info->flush) {
4428 spin_unlock(&space_info->lock);
4429 /*
4430 * If we have a trans handle we can't wait because the flusher
4431 * may have to commit the transaction, which would mean we would
4432 * deadlock since we are waiting for the flusher to finish, but
4433 * hold the current transaction open.
4434 */
4435 if (current->journal_info)
4436 return -EAGAIN;
4437 ret = wait_event_killable(space_info->wait, !space_info->flush);
4438 /* Must have been killed, return */
4439 if (ret)
4440 return -EINTR;
4441
4442 spin_lock(&space_info->lock);
4443 }
4444
4445 ret = -ENOSPC;
4446 used = space_info->bytes_used + space_info->bytes_reserved +
4447 space_info->bytes_pinned + space_info->bytes_readonly +
4448 space_info->bytes_may_use;
4449
4450 /*
4451 * The idea here is that we've not already over-reserved the block group
4452 * then we can go ahead and save our reservation first and then start
4453 * flushing if we need to. Otherwise if we've already overcommitted
4454 * lets start flushing stuff first and then come back and try to make
4455 * our reservation.
4456 */
4457 if (used <= space_info->total_bytes) {
4458 if (used + orig_bytes <= space_info->total_bytes) {
4459 space_info->bytes_may_use += orig_bytes;
4460 trace_btrfs_space_reservation(root->fs_info,
4461 "space_info", space_info->flags, orig_bytes, 1);
4462 ret = 0;
4463 } else {
4464 /*
4465 * Ok set num_bytes to orig_bytes since we aren't
4466 * overocmmitted, this way we only try and reclaim what
4467 * we need.
4468 */
4469 num_bytes = orig_bytes;
4470 }
4471 } else {
4472 /*
4473 * Ok we're over committed, set num_bytes to the overcommitted
4474 * amount plus the amount of bytes that we need for this
4475 * reservation.
4476 */
4477 num_bytes = used - space_info->total_bytes +
4478 (orig_bytes * 2);
4479 }
4480
4481 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4482 space_info->bytes_may_use += orig_bytes;
4483 trace_btrfs_space_reservation(root->fs_info, "space_info",
4484 space_info->flags, orig_bytes,
4485 1);
4486 ret = 0;
4487 }
4488
4489 /*
4490 * Couldn't make our reservation, save our place so while we're trying
4491 * to reclaim space we can actually use it instead of somebody else
4492 * stealing it from us.
4493 *
4494 * We make the other tasks wait for the flush only when we can flush
4495 * all things.
4496 */
4497 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4498 flushing = true;
4499 space_info->flush = 1;
4500 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4501 used += orig_bytes;
4502 /*
4503 * We will do the space reservation dance during log replay,
4504 * which means we won't have fs_info->fs_root set, so don't do
4505 * the async reclaim as we will panic.
4506 */
4507 if (!root->fs_info->log_root_recovering &&
4508 need_do_async_reclaim(space_info, root->fs_info, used) &&
4509 !work_busy(&root->fs_info->async_reclaim_work))
4510 queue_work(system_unbound_wq,
4511 &root->fs_info->async_reclaim_work);
4512 }
4513 spin_unlock(&space_info->lock);
4514
4515 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4516 goto out;
4517
4518 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4519 flush_state);
4520 flush_state++;
4521
4522 /*
4523 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4524 * would happen. So skip delalloc flush.
4525 */
4526 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4527 (flush_state == FLUSH_DELALLOC ||
4528 flush_state == FLUSH_DELALLOC_WAIT))
4529 flush_state = ALLOC_CHUNK;
4530
4531 if (!ret)
4532 goto again;
4533 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4534 flush_state < COMMIT_TRANS)
4535 goto again;
4536 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4537 flush_state <= COMMIT_TRANS)
4538 goto again;
4539
4540 out:
4541 if (ret == -ENOSPC &&
4542 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4543 struct btrfs_block_rsv *global_rsv =
4544 &root->fs_info->global_block_rsv;
4545
4546 if (block_rsv != global_rsv &&
4547 !block_rsv_use_bytes(global_rsv, orig_bytes))
4548 ret = 0;
4549 }
4550 if (ret == -ENOSPC)
4551 trace_btrfs_space_reservation(root->fs_info,
4552 "space_info:enospc",
4553 space_info->flags, orig_bytes, 1);
4554 if (flushing) {
4555 spin_lock(&space_info->lock);
4556 space_info->flush = 0;
4557 wake_up_all(&space_info->wait);
4558 spin_unlock(&space_info->lock);
4559 }
4560 return ret;
4561 }
4562
4563 static struct btrfs_block_rsv *get_block_rsv(
4564 const struct btrfs_trans_handle *trans,
4565 const struct btrfs_root *root)
4566 {
4567 struct btrfs_block_rsv *block_rsv = NULL;
4568
4569 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4570 block_rsv = trans->block_rsv;
4571
4572 if (root == root->fs_info->csum_root && trans->adding_csums)
4573 block_rsv = trans->block_rsv;
4574
4575 if (root == root->fs_info->uuid_root)
4576 block_rsv = trans->block_rsv;
4577
4578 if (!block_rsv)
4579 block_rsv = root->block_rsv;
4580
4581 if (!block_rsv)
4582 block_rsv = &root->fs_info->empty_block_rsv;
4583
4584 return block_rsv;
4585 }
4586
4587 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4588 u64 num_bytes)
4589 {
4590 int ret = -ENOSPC;
4591 spin_lock(&block_rsv->lock);
4592 if (block_rsv->reserved >= num_bytes) {
4593 block_rsv->reserved -= num_bytes;
4594 if (block_rsv->reserved < block_rsv->size)
4595 block_rsv->full = 0;
4596 ret = 0;
4597 }
4598 spin_unlock(&block_rsv->lock);
4599 return ret;
4600 }
4601
4602 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4603 u64 num_bytes, int update_size)
4604 {
4605 spin_lock(&block_rsv->lock);
4606 block_rsv->reserved += num_bytes;
4607 if (update_size)
4608 block_rsv->size += num_bytes;
4609 else if (block_rsv->reserved >= block_rsv->size)
4610 block_rsv->full = 1;
4611 spin_unlock(&block_rsv->lock);
4612 }
4613
4614 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4615 struct btrfs_block_rsv *dest, u64 num_bytes,
4616 int min_factor)
4617 {
4618 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4619 u64 min_bytes;
4620
4621 if (global_rsv->space_info != dest->space_info)
4622 return -ENOSPC;
4623
4624 spin_lock(&global_rsv->lock);
4625 min_bytes = div_factor(global_rsv->size, min_factor);
4626 if (global_rsv->reserved < min_bytes + num_bytes) {
4627 spin_unlock(&global_rsv->lock);
4628 return -ENOSPC;
4629 }
4630 global_rsv->reserved -= num_bytes;
4631 if (global_rsv->reserved < global_rsv->size)
4632 global_rsv->full = 0;
4633 spin_unlock(&global_rsv->lock);
4634
4635 block_rsv_add_bytes(dest, num_bytes, 1);
4636 return 0;
4637 }
4638
4639 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4640 struct btrfs_block_rsv *block_rsv,
4641 struct btrfs_block_rsv *dest, u64 num_bytes)
4642 {
4643 struct btrfs_space_info *space_info = block_rsv->space_info;
4644
4645 spin_lock(&block_rsv->lock);
4646 if (num_bytes == (u64)-1)
4647 num_bytes = block_rsv->size;
4648 block_rsv->size -= num_bytes;
4649 if (block_rsv->reserved >= block_rsv->size) {
4650 num_bytes = block_rsv->reserved - block_rsv->size;
4651 block_rsv->reserved = block_rsv->size;
4652 block_rsv->full = 1;
4653 } else {
4654 num_bytes = 0;
4655 }
4656 spin_unlock(&block_rsv->lock);
4657
4658 if (num_bytes > 0) {
4659 if (dest) {
4660 spin_lock(&dest->lock);
4661 if (!dest->full) {
4662 u64 bytes_to_add;
4663
4664 bytes_to_add = dest->size - dest->reserved;
4665 bytes_to_add = min(num_bytes, bytes_to_add);
4666 dest->reserved += bytes_to_add;
4667 if (dest->reserved >= dest->size)
4668 dest->full = 1;
4669 num_bytes -= bytes_to_add;
4670 }
4671 spin_unlock(&dest->lock);
4672 }
4673 if (num_bytes) {
4674 spin_lock(&space_info->lock);
4675 space_info->bytes_may_use -= num_bytes;
4676 trace_btrfs_space_reservation(fs_info, "space_info",
4677 space_info->flags, num_bytes, 0);
4678 spin_unlock(&space_info->lock);
4679 }
4680 }
4681 }
4682
4683 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4684 struct btrfs_block_rsv *dst, u64 num_bytes)
4685 {
4686 int ret;
4687
4688 ret = block_rsv_use_bytes(src, num_bytes);
4689 if (ret)
4690 return ret;
4691
4692 block_rsv_add_bytes(dst, num_bytes, 1);
4693 return 0;
4694 }
4695
4696 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4697 {
4698 memset(rsv, 0, sizeof(*rsv));
4699 spin_lock_init(&rsv->lock);
4700 rsv->type = type;
4701 }
4702
4703 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4704 unsigned short type)
4705 {
4706 struct btrfs_block_rsv *block_rsv;
4707 struct btrfs_fs_info *fs_info = root->fs_info;
4708
4709 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4710 if (!block_rsv)
4711 return NULL;
4712
4713 btrfs_init_block_rsv(block_rsv, type);
4714 block_rsv->space_info = __find_space_info(fs_info,
4715 BTRFS_BLOCK_GROUP_METADATA);
4716 return block_rsv;
4717 }
4718
4719 void btrfs_free_block_rsv(struct btrfs_root *root,
4720 struct btrfs_block_rsv *rsv)
4721 {
4722 if (!rsv)
4723 return;
4724 btrfs_block_rsv_release(root, rsv, (u64)-1);
4725 kfree(rsv);
4726 }
4727
4728 int btrfs_block_rsv_add(struct btrfs_root *root,
4729 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4730 enum btrfs_reserve_flush_enum flush)
4731 {
4732 int ret;
4733
4734 if (num_bytes == 0)
4735 return 0;
4736
4737 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4738 if (!ret) {
4739 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4740 return 0;
4741 }
4742
4743 return ret;
4744 }
4745
4746 int btrfs_block_rsv_check(struct btrfs_root *root,
4747 struct btrfs_block_rsv *block_rsv, int min_factor)
4748 {
4749 u64 num_bytes = 0;
4750 int ret = -ENOSPC;
4751
4752 if (!block_rsv)
4753 return 0;
4754
4755 spin_lock(&block_rsv->lock);
4756 num_bytes = div_factor(block_rsv->size, min_factor);
4757 if (block_rsv->reserved >= num_bytes)
4758 ret = 0;
4759 spin_unlock(&block_rsv->lock);
4760
4761 return ret;
4762 }
4763
4764 int btrfs_block_rsv_refill(struct btrfs_root *root,
4765 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4766 enum btrfs_reserve_flush_enum flush)
4767 {
4768 u64 num_bytes = 0;
4769 int ret = -ENOSPC;
4770
4771 if (!block_rsv)
4772 return 0;
4773
4774 spin_lock(&block_rsv->lock);
4775 num_bytes = min_reserved;
4776 if (block_rsv->reserved >= num_bytes)
4777 ret = 0;
4778 else
4779 num_bytes -= block_rsv->reserved;
4780 spin_unlock(&block_rsv->lock);
4781
4782 if (!ret)
4783 return 0;
4784
4785 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4786 if (!ret) {
4787 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4788 return 0;
4789 }
4790
4791 return ret;
4792 }
4793
4794 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4795 struct btrfs_block_rsv *dst_rsv,
4796 u64 num_bytes)
4797 {
4798 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4799 }
4800
4801 void btrfs_block_rsv_release(struct btrfs_root *root,
4802 struct btrfs_block_rsv *block_rsv,
4803 u64 num_bytes)
4804 {
4805 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4806 if (global_rsv == block_rsv ||
4807 block_rsv->space_info != global_rsv->space_info)
4808 global_rsv = NULL;
4809 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4810 num_bytes);
4811 }
4812
4813 /*
4814 * helper to calculate size of global block reservation.
4815 * the desired value is sum of space used by extent tree,
4816 * checksum tree and root tree
4817 */
4818 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4819 {
4820 struct btrfs_space_info *sinfo;
4821 u64 num_bytes;
4822 u64 meta_used;
4823 u64 data_used;
4824 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4825
4826 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4827 spin_lock(&sinfo->lock);
4828 data_used = sinfo->bytes_used;
4829 spin_unlock(&sinfo->lock);
4830
4831 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4832 spin_lock(&sinfo->lock);
4833 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4834 data_used = 0;
4835 meta_used = sinfo->bytes_used;
4836 spin_unlock(&sinfo->lock);
4837
4838 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4839 csum_size * 2;
4840 num_bytes += div64_u64(data_used + meta_used, 50);
4841
4842 if (num_bytes * 3 > meta_used)
4843 num_bytes = div64_u64(meta_used, 3);
4844
4845 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4846 }
4847
4848 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4849 {
4850 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4851 struct btrfs_space_info *sinfo = block_rsv->space_info;
4852 u64 num_bytes;
4853
4854 num_bytes = calc_global_metadata_size(fs_info);
4855
4856 spin_lock(&sinfo->lock);
4857 spin_lock(&block_rsv->lock);
4858
4859 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4860
4861 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4862 sinfo->bytes_reserved + sinfo->bytes_readonly +
4863 sinfo->bytes_may_use;
4864
4865 if (sinfo->total_bytes > num_bytes) {
4866 num_bytes = sinfo->total_bytes - num_bytes;
4867 block_rsv->reserved += num_bytes;
4868 sinfo->bytes_may_use += num_bytes;
4869 trace_btrfs_space_reservation(fs_info, "space_info",
4870 sinfo->flags, num_bytes, 1);
4871 }
4872
4873 if (block_rsv->reserved >= block_rsv->size) {
4874 num_bytes = block_rsv->reserved - block_rsv->size;
4875 sinfo->bytes_may_use -= num_bytes;
4876 trace_btrfs_space_reservation(fs_info, "space_info",
4877 sinfo->flags, num_bytes, 0);
4878 block_rsv->reserved = block_rsv->size;
4879 block_rsv->full = 1;
4880 }
4881
4882 spin_unlock(&block_rsv->lock);
4883 spin_unlock(&sinfo->lock);
4884 }
4885
4886 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4887 {
4888 struct btrfs_space_info *space_info;
4889
4890 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4891 fs_info->chunk_block_rsv.space_info = space_info;
4892
4893 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4894 fs_info->global_block_rsv.space_info = space_info;
4895 fs_info->delalloc_block_rsv.space_info = space_info;
4896 fs_info->trans_block_rsv.space_info = space_info;
4897 fs_info->empty_block_rsv.space_info = space_info;
4898 fs_info->delayed_block_rsv.space_info = space_info;
4899
4900 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4901 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4902 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4903 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4904 if (fs_info->quota_root)
4905 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4906 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4907
4908 update_global_block_rsv(fs_info);
4909 }
4910
4911 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4912 {
4913 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4914 (u64)-1);
4915 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4916 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4917 WARN_ON(fs_info->trans_block_rsv.size > 0);
4918 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4919 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4920 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4921 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4922 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4923 }
4924
4925 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4926 struct btrfs_root *root)
4927 {
4928 if (!trans->block_rsv)
4929 return;
4930
4931 if (!trans->bytes_reserved)
4932 return;
4933
4934 trace_btrfs_space_reservation(root->fs_info, "transaction",
4935 trans->transid, trans->bytes_reserved, 0);
4936 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4937 trans->bytes_reserved = 0;
4938 }
4939
4940 /* Can only return 0 or -ENOSPC */
4941 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4942 struct inode *inode)
4943 {
4944 struct btrfs_root *root = BTRFS_I(inode)->root;
4945 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4946 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4947
4948 /*
4949 * We need to hold space in order to delete our orphan item once we've
4950 * added it, so this takes the reservation so we can release it later
4951 * when we are truly done with the orphan item.
4952 */
4953 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4954 trace_btrfs_space_reservation(root->fs_info, "orphan",
4955 btrfs_ino(inode), num_bytes, 1);
4956 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4957 }
4958
4959 void btrfs_orphan_release_metadata(struct inode *inode)
4960 {
4961 struct btrfs_root *root = BTRFS_I(inode)->root;
4962 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4963 trace_btrfs_space_reservation(root->fs_info, "orphan",
4964 btrfs_ino(inode), num_bytes, 0);
4965 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4966 }
4967
4968 /*
4969 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4970 * root: the root of the parent directory
4971 * rsv: block reservation
4972 * items: the number of items that we need do reservation
4973 * qgroup_reserved: used to return the reserved size in qgroup
4974 *
4975 * This function is used to reserve the space for snapshot/subvolume
4976 * creation and deletion. Those operations are different with the
4977 * common file/directory operations, they change two fs/file trees
4978 * and root tree, the number of items that the qgroup reserves is
4979 * different with the free space reservation. So we can not use
4980 * the space reseravtion mechanism in start_transaction().
4981 */
4982 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4983 struct btrfs_block_rsv *rsv,
4984 int items,
4985 u64 *qgroup_reserved,
4986 bool use_global_rsv)
4987 {
4988 u64 num_bytes;
4989 int ret;
4990 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4991
4992 if (root->fs_info->quota_enabled) {
4993 /* One for parent inode, two for dir entries */
4994 num_bytes = 3 * root->nodesize;
4995 ret = btrfs_qgroup_reserve(root, num_bytes);
4996 if (ret)
4997 return ret;
4998 } else {
4999 num_bytes = 0;
5000 }
5001
5002 *qgroup_reserved = num_bytes;
5003
5004 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5005 rsv->space_info = __find_space_info(root->fs_info,
5006 BTRFS_BLOCK_GROUP_METADATA);
5007 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5008 BTRFS_RESERVE_FLUSH_ALL);
5009
5010 if (ret == -ENOSPC && use_global_rsv)
5011 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5012
5013 if (ret) {
5014 if (*qgroup_reserved)
5015 btrfs_qgroup_free(root, *qgroup_reserved);
5016 }
5017
5018 return ret;
5019 }
5020
5021 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5022 struct btrfs_block_rsv *rsv,
5023 u64 qgroup_reserved)
5024 {
5025 btrfs_block_rsv_release(root, rsv, (u64)-1);
5026 if (qgroup_reserved)
5027 btrfs_qgroup_free(root, qgroup_reserved);
5028 }
5029
5030 /**
5031 * drop_outstanding_extent - drop an outstanding extent
5032 * @inode: the inode we're dropping the extent for
5033 *
5034 * This is called when we are freeing up an outstanding extent, either called
5035 * after an error or after an extent is written. This will return the number of
5036 * reserved extents that need to be freed. This must be called with
5037 * BTRFS_I(inode)->lock held.
5038 */
5039 static unsigned drop_outstanding_extent(struct inode *inode)
5040 {
5041 unsigned drop_inode_space = 0;
5042 unsigned dropped_extents = 0;
5043
5044 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5045 BTRFS_I(inode)->outstanding_extents--;
5046
5047 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5048 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5049 &BTRFS_I(inode)->runtime_flags))
5050 drop_inode_space = 1;
5051
5052 /*
5053 * If we have more or the same amount of outsanding extents than we have
5054 * reserved then we need to leave the reserved extents count alone.
5055 */
5056 if (BTRFS_I(inode)->outstanding_extents >=
5057 BTRFS_I(inode)->reserved_extents)
5058 return drop_inode_space;
5059
5060 dropped_extents = BTRFS_I(inode)->reserved_extents -
5061 BTRFS_I(inode)->outstanding_extents;
5062 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5063 return dropped_extents + drop_inode_space;
5064 }
5065
5066 /**
5067 * calc_csum_metadata_size - return the amount of metada space that must be
5068 * reserved/free'd for the given bytes.
5069 * @inode: the inode we're manipulating
5070 * @num_bytes: the number of bytes in question
5071 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5072 *
5073 * This adjusts the number of csum_bytes in the inode and then returns the
5074 * correct amount of metadata that must either be reserved or freed. We
5075 * calculate how many checksums we can fit into one leaf and then divide the
5076 * number of bytes that will need to be checksumed by this value to figure out
5077 * how many checksums will be required. If we are adding bytes then the number
5078 * may go up and we will return the number of additional bytes that must be
5079 * reserved. If it is going down we will return the number of bytes that must
5080 * be freed.
5081 *
5082 * This must be called with BTRFS_I(inode)->lock held.
5083 */
5084 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5085 int reserve)
5086 {
5087 struct btrfs_root *root = BTRFS_I(inode)->root;
5088 u64 csum_size;
5089 int num_csums_per_leaf;
5090 int num_csums;
5091 int old_csums;
5092
5093 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5094 BTRFS_I(inode)->csum_bytes == 0)
5095 return 0;
5096
5097 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5098 if (reserve)
5099 BTRFS_I(inode)->csum_bytes += num_bytes;
5100 else
5101 BTRFS_I(inode)->csum_bytes -= num_bytes;
5102 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5103 num_csums_per_leaf = (int)div64_u64(csum_size,
5104 sizeof(struct btrfs_csum_item) +
5105 sizeof(struct btrfs_disk_key));
5106 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5107 num_csums = num_csums + num_csums_per_leaf - 1;
5108 num_csums = num_csums / num_csums_per_leaf;
5109
5110 old_csums = old_csums + num_csums_per_leaf - 1;
5111 old_csums = old_csums / num_csums_per_leaf;
5112
5113 /* No change, no need to reserve more */
5114 if (old_csums == num_csums)
5115 return 0;
5116
5117 if (reserve)
5118 return btrfs_calc_trans_metadata_size(root,
5119 num_csums - old_csums);
5120
5121 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5122 }
5123
5124 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5125 {
5126 struct btrfs_root *root = BTRFS_I(inode)->root;
5127 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5128 u64 to_reserve = 0;
5129 u64 csum_bytes;
5130 unsigned nr_extents = 0;
5131 int extra_reserve = 0;
5132 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5133 int ret = 0;
5134 bool delalloc_lock = true;
5135 u64 to_free = 0;
5136 unsigned dropped;
5137
5138 /* If we are a free space inode we need to not flush since we will be in
5139 * the middle of a transaction commit. We also don't need the delalloc
5140 * mutex since we won't race with anybody. We need this mostly to make
5141 * lockdep shut its filthy mouth.
5142 */
5143 if (btrfs_is_free_space_inode(inode)) {
5144 flush = BTRFS_RESERVE_NO_FLUSH;
5145 delalloc_lock = false;
5146 }
5147
5148 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5149 btrfs_transaction_in_commit(root->fs_info))
5150 schedule_timeout(1);
5151
5152 if (delalloc_lock)
5153 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5154
5155 num_bytes = ALIGN(num_bytes, root->sectorsize);
5156
5157 spin_lock(&BTRFS_I(inode)->lock);
5158 BTRFS_I(inode)->outstanding_extents++;
5159
5160 if (BTRFS_I(inode)->outstanding_extents >
5161 BTRFS_I(inode)->reserved_extents)
5162 nr_extents = BTRFS_I(inode)->outstanding_extents -
5163 BTRFS_I(inode)->reserved_extents;
5164
5165 /*
5166 * Add an item to reserve for updating the inode when we complete the
5167 * delalloc io.
5168 */
5169 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5170 &BTRFS_I(inode)->runtime_flags)) {
5171 nr_extents++;
5172 extra_reserve = 1;
5173 }
5174
5175 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5176 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5177 csum_bytes = BTRFS_I(inode)->csum_bytes;
5178 spin_unlock(&BTRFS_I(inode)->lock);
5179
5180 if (root->fs_info->quota_enabled) {
5181 ret = btrfs_qgroup_reserve(root, num_bytes +
5182 nr_extents * root->nodesize);
5183 if (ret)
5184 goto out_fail;
5185 }
5186
5187 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5188 if (unlikely(ret)) {
5189 if (root->fs_info->quota_enabled)
5190 btrfs_qgroup_free(root, num_bytes +
5191 nr_extents * root->nodesize);
5192 goto out_fail;
5193 }
5194
5195 spin_lock(&BTRFS_I(inode)->lock);
5196 if (extra_reserve) {
5197 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5198 &BTRFS_I(inode)->runtime_flags);
5199 nr_extents--;
5200 }
5201 BTRFS_I(inode)->reserved_extents += nr_extents;
5202 spin_unlock(&BTRFS_I(inode)->lock);
5203
5204 if (delalloc_lock)
5205 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5206
5207 if (to_reserve)
5208 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5209 btrfs_ino(inode), to_reserve, 1);
5210 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5211
5212 return 0;
5213
5214 out_fail:
5215 spin_lock(&BTRFS_I(inode)->lock);
5216 dropped = drop_outstanding_extent(inode);
5217 /*
5218 * If the inodes csum_bytes is the same as the original
5219 * csum_bytes then we know we haven't raced with any free()ers
5220 * so we can just reduce our inodes csum bytes and carry on.
5221 */
5222 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5223 calc_csum_metadata_size(inode, num_bytes, 0);
5224 } else {
5225 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5226 u64 bytes;
5227
5228 /*
5229 * This is tricky, but first we need to figure out how much we
5230 * free'd from any free-ers that occured during this
5231 * reservation, so we reset ->csum_bytes to the csum_bytes
5232 * before we dropped our lock, and then call the free for the
5233 * number of bytes that were freed while we were trying our
5234 * reservation.
5235 */
5236 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5237 BTRFS_I(inode)->csum_bytes = csum_bytes;
5238 to_free = calc_csum_metadata_size(inode, bytes, 0);
5239
5240
5241 /*
5242 * Now we need to see how much we would have freed had we not
5243 * been making this reservation and our ->csum_bytes were not
5244 * artificially inflated.
5245 */
5246 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5247 bytes = csum_bytes - orig_csum_bytes;
5248 bytes = calc_csum_metadata_size(inode, bytes, 0);
5249
5250 /*
5251 * Now reset ->csum_bytes to what it should be. If bytes is
5252 * more than to_free then we would have free'd more space had we
5253 * not had an artificially high ->csum_bytes, so we need to free
5254 * the remainder. If bytes is the same or less then we don't
5255 * need to do anything, the other free-ers did the correct
5256 * thing.
5257 */
5258 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5259 if (bytes > to_free)
5260 to_free = bytes - to_free;
5261 else
5262 to_free = 0;
5263 }
5264 spin_unlock(&BTRFS_I(inode)->lock);
5265 if (dropped)
5266 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5267
5268 if (to_free) {
5269 btrfs_block_rsv_release(root, block_rsv, to_free);
5270 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5271 btrfs_ino(inode), to_free, 0);
5272 }
5273 if (delalloc_lock)
5274 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5275 return ret;
5276 }
5277
5278 /**
5279 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5280 * @inode: the inode to release the reservation for
5281 * @num_bytes: the number of bytes we're releasing
5282 *
5283 * This will release the metadata reservation for an inode. This can be called
5284 * once we complete IO for a given set of bytes to release their metadata
5285 * reservations.
5286 */
5287 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5288 {
5289 struct btrfs_root *root = BTRFS_I(inode)->root;
5290 u64 to_free = 0;
5291 unsigned dropped;
5292
5293 num_bytes = ALIGN(num_bytes, root->sectorsize);
5294 spin_lock(&BTRFS_I(inode)->lock);
5295 dropped = drop_outstanding_extent(inode);
5296
5297 if (num_bytes)
5298 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5299 spin_unlock(&BTRFS_I(inode)->lock);
5300 if (dropped > 0)
5301 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5302
5303 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5304 btrfs_ino(inode), to_free, 0);
5305 if (root->fs_info->quota_enabled) {
5306 btrfs_qgroup_free(root, num_bytes +
5307 dropped * root->nodesize);
5308 }
5309
5310 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5311 to_free);
5312 }
5313
5314 /**
5315 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5316 * @inode: inode we're writing to
5317 * @num_bytes: the number of bytes we want to allocate
5318 *
5319 * This will do the following things
5320 *
5321 * o reserve space in the data space info for num_bytes
5322 * o reserve space in the metadata space info based on number of outstanding
5323 * extents and how much csums will be needed
5324 * o add to the inodes ->delalloc_bytes
5325 * o add it to the fs_info's delalloc inodes list.
5326 *
5327 * This will return 0 for success and -ENOSPC if there is no space left.
5328 */
5329 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5330 {
5331 int ret;
5332
5333 ret = btrfs_check_data_free_space(inode, num_bytes);
5334 if (ret)
5335 return ret;
5336
5337 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5338 if (ret) {
5339 btrfs_free_reserved_data_space(inode, num_bytes);
5340 return ret;
5341 }
5342
5343 return 0;
5344 }
5345
5346 /**
5347 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5348 * @inode: inode we're releasing space for
5349 * @num_bytes: the number of bytes we want to free up
5350 *
5351 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5352 * called in the case that we don't need the metadata AND data reservations
5353 * anymore. So if there is an error or we insert an inline extent.
5354 *
5355 * This function will release the metadata space that was not used and will
5356 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5357 * list if there are no delalloc bytes left.
5358 */
5359 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5360 {
5361 btrfs_delalloc_release_metadata(inode, num_bytes);
5362 btrfs_free_reserved_data_space(inode, num_bytes);
5363 }
5364
5365 static int update_block_group(struct btrfs_root *root,
5366 u64 bytenr, u64 num_bytes, int alloc)
5367 {
5368 struct btrfs_block_group_cache *cache = NULL;
5369 struct btrfs_fs_info *info = root->fs_info;
5370 u64 total = num_bytes;
5371 u64 old_val;
5372 u64 byte_in_group;
5373 int factor;
5374
5375 /* block accounting for super block */
5376 spin_lock(&info->delalloc_root_lock);
5377 old_val = btrfs_super_bytes_used(info->super_copy);
5378 if (alloc)
5379 old_val += num_bytes;
5380 else
5381 old_val -= num_bytes;
5382 btrfs_set_super_bytes_used(info->super_copy, old_val);
5383 spin_unlock(&info->delalloc_root_lock);
5384
5385 while (total) {
5386 cache = btrfs_lookup_block_group(info, bytenr);
5387 if (!cache)
5388 return -ENOENT;
5389 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5390 BTRFS_BLOCK_GROUP_RAID1 |
5391 BTRFS_BLOCK_GROUP_RAID10))
5392 factor = 2;
5393 else
5394 factor = 1;
5395 /*
5396 * If this block group has free space cache written out, we
5397 * need to make sure to load it if we are removing space. This
5398 * is because we need the unpinning stage to actually add the
5399 * space back to the block group, otherwise we will leak space.
5400 */
5401 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5402 cache_block_group(cache, 1);
5403
5404 byte_in_group = bytenr - cache->key.objectid;
5405 WARN_ON(byte_in_group > cache->key.offset);
5406
5407 spin_lock(&cache->space_info->lock);
5408 spin_lock(&cache->lock);
5409
5410 if (btrfs_test_opt(root, SPACE_CACHE) &&
5411 cache->disk_cache_state < BTRFS_DC_CLEAR)
5412 cache->disk_cache_state = BTRFS_DC_CLEAR;
5413
5414 cache->dirty = 1;
5415 old_val = btrfs_block_group_used(&cache->item);
5416 num_bytes = min(total, cache->key.offset - byte_in_group);
5417 if (alloc) {
5418 old_val += num_bytes;
5419 btrfs_set_block_group_used(&cache->item, old_val);
5420 cache->reserved -= num_bytes;
5421 cache->space_info->bytes_reserved -= num_bytes;
5422 cache->space_info->bytes_used += num_bytes;
5423 cache->space_info->disk_used += num_bytes * factor;
5424 spin_unlock(&cache->lock);
5425 spin_unlock(&cache->space_info->lock);
5426 } else {
5427 old_val -= num_bytes;
5428
5429 /*
5430 * No longer have used bytes in this block group, queue
5431 * it for deletion.
5432 */
5433 if (old_val == 0) {
5434 spin_lock(&info->unused_bgs_lock);
5435 if (list_empty(&cache->bg_list)) {
5436 btrfs_get_block_group(cache);
5437 list_add_tail(&cache->bg_list,
5438 &info->unused_bgs);
5439 }
5440 spin_unlock(&info->unused_bgs_lock);
5441 }
5442 btrfs_set_block_group_used(&cache->item, old_val);
5443 cache->pinned += num_bytes;
5444 cache->space_info->bytes_pinned += num_bytes;
5445 cache->space_info->bytes_used -= num_bytes;
5446 cache->space_info->disk_used -= num_bytes * factor;
5447 spin_unlock(&cache->lock);
5448 spin_unlock(&cache->space_info->lock);
5449
5450 set_extent_dirty(info->pinned_extents,
5451 bytenr, bytenr + num_bytes - 1,
5452 GFP_NOFS | __GFP_NOFAIL);
5453 }
5454 btrfs_put_block_group(cache);
5455 total -= num_bytes;
5456 bytenr += num_bytes;
5457 }
5458 return 0;
5459 }
5460
5461 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5462 {
5463 struct btrfs_block_group_cache *cache;
5464 u64 bytenr;
5465
5466 spin_lock(&root->fs_info->block_group_cache_lock);
5467 bytenr = root->fs_info->first_logical_byte;
5468 spin_unlock(&root->fs_info->block_group_cache_lock);
5469
5470 if (bytenr < (u64)-1)
5471 return bytenr;
5472
5473 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5474 if (!cache)
5475 return 0;
5476
5477 bytenr = cache->key.objectid;
5478 btrfs_put_block_group(cache);
5479
5480 return bytenr;
5481 }
5482
5483 static int pin_down_extent(struct btrfs_root *root,
5484 struct btrfs_block_group_cache *cache,
5485 u64 bytenr, u64 num_bytes, int reserved)
5486 {
5487 spin_lock(&cache->space_info->lock);
5488 spin_lock(&cache->lock);
5489 cache->pinned += num_bytes;
5490 cache->space_info->bytes_pinned += num_bytes;
5491 if (reserved) {
5492 cache->reserved -= num_bytes;
5493 cache->space_info->bytes_reserved -= num_bytes;
5494 }
5495 spin_unlock(&cache->lock);
5496 spin_unlock(&cache->space_info->lock);
5497
5498 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5499 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5500 if (reserved)
5501 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5502 return 0;
5503 }
5504
5505 /*
5506 * this function must be called within transaction
5507 */
5508 int btrfs_pin_extent(struct btrfs_root *root,
5509 u64 bytenr, u64 num_bytes, int reserved)
5510 {
5511 struct btrfs_block_group_cache *cache;
5512
5513 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5514 BUG_ON(!cache); /* Logic error */
5515
5516 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5517
5518 btrfs_put_block_group(cache);
5519 return 0;
5520 }
5521
5522 /*
5523 * this function must be called within transaction
5524 */
5525 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5526 u64 bytenr, u64 num_bytes)
5527 {
5528 struct btrfs_block_group_cache *cache;
5529 int ret;
5530
5531 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5532 if (!cache)
5533 return -EINVAL;
5534
5535 /*
5536 * pull in the free space cache (if any) so that our pin
5537 * removes the free space from the cache. We have load_only set
5538 * to one because the slow code to read in the free extents does check
5539 * the pinned extents.
5540 */
5541 cache_block_group(cache, 1);
5542
5543 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5544
5545 /* remove us from the free space cache (if we're there at all) */
5546 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5547 btrfs_put_block_group(cache);
5548 return ret;
5549 }
5550
5551 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5552 {
5553 int ret;
5554 struct btrfs_block_group_cache *block_group;
5555 struct btrfs_caching_control *caching_ctl;
5556
5557 block_group = btrfs_lookup_block_group(root->fs_info, start);
5558 if (!block_group)
5559 return -EINVAL;
5560
5561 cache_block_group(block_group, 0);
5562 caching_ctl = get_caching_control(block_group);
5563
5564 if (!caching_ctl) {
5565 /* Logic error */
5566 BUG_ON(!block_group_cache_done(block_group));
5567 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5568 } else {
5569 mutex_lock(&caching_ctl->mutex);
5570
5571 if (start >= caching_ctl->progress) {
5572 ret = add_excluded_extent(root, start, num_bytes);
5573 } else if (start + num_bytes <= caching_ctl->progress) {
5574 ret = btrfs_remove_free_space(block_group,
5575 start, num_bytes);
5576 } else {
5577 num_bytes = caching_ctl->progress - start;
5578 ret = btrfs_remove_free_space(block_group,
5579 start, num_bytes);
5580 if (ret)
5581 goto out_lock;
5582
5583 num_bytes = (start + num_bytes) -
5584 caching_ctl->progress;
5585 start = caching_ctl->progress;
5586 ret = add_excluded_extent(root, start, num_bytes);
5587 }
5588 out_lock:
5589 mutex_unlock(&caching_ctl->mutex);
5590 put_caching_control(caching_ctl);
5591 }
5592 btrfs_put_block_group(block_group);
5593 return ret;
5594 }
5595
5596 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5597 struct extent_buffer *eb)
5598 {
5599 struct btrfs_file_extent_item *item;
5600 struct btrfs_key key;
5601 int found_type;
5602 int i;
5603
5604 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5605 return 0;
5606
5607 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5608 btrfs_item_key_to_cpu(eb, &key, i);
5609 if (key.type != BTRFS_EXTENT_DATA_KEY)
5610 continue;
5611 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5612 found_type = btrfs_file_extent_type(eb, item);
5613 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5614 continue;
5615 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5616 continue;
5617 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5618 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5619 __exclude_logged_extent(log, key.objectid, key.offset);
5620 }
5621
5622 return 0;
5623 }
5624
5625 /**
5626 * btrfs_update_reserved_bytes - update the block_group and space info counters
5627 * @cache: The cache we are manipulating
5628 * @num_bytes: The number of bytes in question
5629 * @reserve: One of the reservation enums
5630 * @delalloc: The blocks are allocated for the delalloc write
5631 *
5632 * This is called by the allocator when it reserves space, or by somebody who is
5633 * freeing space that was never actually used on disk. For example if you
5634 * reserve some space for a new leaf in transaction A and before transaction A
5635 * commits you free that leaf, you call this with reserve set to 0 in order to
5636 * clear the reservation.
5637 *
5638 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5639 * ENOSPC accounting. For data we handle the reservation through clearing the
5640 * delalloc bits in the io_tree. We have to do this since we could end up
5641 * allocating less disk space for the amount of data we have reserved in the
5642 * case of compression.
5643 *
5644 * If this is a reservation and the block group has become read only we cannot
5645 * make the reservation and return -EAGAIN, otherwise this function always
5646 * succeeds.
5647 */
5648 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5649 u64 num_bytes, int reserve, int delalloc)
5650 {
5651 struct btrfs_space_info *space_info = cache->space_info;
5652 int ret = 0;
5653
5654 spin_lock(&space_info->lock);
5655 spin_lock(&cache->lock);
5656 if (reserve != RESERVE_FREE) {
5657 if (cache->ro) {
5658 ret = -EAGAIN;
5659 } else {
5660 cache->reserved += num_bytes;
5661 space_info->bytes_reserved += num_bytes;
5662 if (reserve == RESERVE_ALLOC) {
5663 trace_btrfs_space_reservation(cache->fs_info,
5664 "space_info", space_info->flags,
5665 num_bytes, 0);
5666 space_info->bytes_may_use -= num_bytes;
5667 }
5668
5669 if (delalloc)
5670 cache->delalloc_bytes += num_bytes;
5671 }
5672 } else {
5673 if (cache->ro)
5674 space_info->bytes_readonly += num_bytes;
5675 cache->reserved -= num_bytes;
5676 space_info->bytes_reserved -= num_bytes;
5677
5678 if (delalloc)
5679 cache->delalloc_bytes -= num_bytes;
5680 }
5681 spin_unlock(&cache->lock);
5682 spin_unlock(&space_info->lock);
5683 return ret;
5684 }
5685
5686 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5687 struct btrfs_root *root)
5688 {
5689 struct btrfs_fs_info *fs_info = root->fs_info;
5690 struct btrfs_caching_control *next;
5691 struct btrfs_caching_control *caching_ctl;
5692 struct btrfs_block_group_cache *cache;
5693
5694 down_write(&fs_info->commit_root_sem);
5695
5696 list_for_each_entry_safe(caching_ctl, next,
5697 &fs_info->caching_block_groups, list) {
5698 cache = caching_ctl->block_group;
5699 if (block_group_cache_done(cache)) {
5700 cache->last_byte_to_unpin = (u64)-1;
5701 list_del_init(&caching_ctl->list);
5702 put_caching_control(caching_ctl);
5703 } else {
5704 cache->last_byte_to_unpin = caching_ctl->progress;
5705 }
5706 }
5707
5708 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5709 fs_info->pinned_extents = &fs_info->freed_extents[1];
5710 else
5711 fs_info->pinned_extents = &fs_info->freed_extents[0];
5712
5713 up_write(&fs_info->commit_root_sem);
5714
5715 update_global_block_rsv(fs_info);
5716 }
5717
5718 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5719 {
5720 struct btrfs_fs_info *fs_info = root->fs_info;
5721 struct btrfs_block_group_cache *cache = NULL;
5722 struct btrfs_space_info *space_info;
5723 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5724 u64 len;
5725 bool readonly;
5726
5727 while (start <= end) {
5728 readonly = false;
5729 if (!cache ||
5730 start >= cache->key.objectid + cache->key.offset) {
5731 if (cache)
5732 btrfs_put_block_group(cache);
5733 cache = btrfs_lookup_block_group(fs_info, start);
5734 BUG_ON(!cache); /* Logic error */
5735 }
5736
5737 len = cache->key.objectid + cache->key.offset - start;
5738 len = min(len, end + 1 - start);
5739
5740 if (start < cache->last_byte_to_unpin) {
5741 len = min(len, cache->last_byte_to_unpin - start);
5742 btrfs_add_free_space(cache, start, len);
5743 }
5744
5745 start += len;
5746 space_info = cache->space_info;
5747
5748 spin_lock(&space_info->lock);
5749 spin_lock(&cache->lock);
5750 cache->pinned -= len;
5751 space_info->bytes_pinned -= len;
5752 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5753 if (cache->ro) {
5754 space_info->bytes_readonly += len;
5755 readonly = true;
5756 }
5757 spin_unlock(&cache->lock);
5758 if (!readonly && global_rsv->space_info == space_info) {
5759 spin_lock(&global_rsv->lock);
5760 if (!global_rsv->full) {
5761 len = min(len, global_rsv->size -
5762 global_rsv->reserved);
5763 global_rsv->reserved += len;
5764 space_info->bytes_may_use += len;
5765 if (global_rsv->reserved >= global_rsv->size)
5766 global_rsv->full = 1;
5767 }
5768 spin_unlock(&global_rsv->lock);
5769 }
5770 spin_unlock(&space_info->lock);
5771 }
5772
5773 if (cache)
5774 btrfs_put_block_group(cache);
5775 return 0;
5776 }
5777
5778 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5779 struct btrfs_root *root)
5780 {
5781 struct btrfs_fs_info *fs_info = root->fs_info;
5782 struct extent_io_tree *unpin;
5783 u64 start;
5784 u64 end;
5785 int ret;
5786
5787 if (trans->aborted)
5788 return 0;
5789
5790 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5791 unpin = &fs_info->freed_extents[1];
5792 else
5793 unpin = &fs_info->freed_extents[0];
5794
5795 while (1) {
5796 ret = find_first_extent_bit(unpin, 0, &start, &end,
5797 EXTENT_DIRTY, NULL);
5798 if (ret)
5799 break;
5800
5801 if (btrfs_test_opt(root, DISCARD))
5802 ret = btrfs_discard_extent(root, start,
5803 end + 1 - start, NULL);
5804
5805 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5806 unpin_extent_range(root, start, end);
5807 cond_resched();
5808 }
5809
5810 return 0;
5811 }
5812
5813 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5814 u64 owner, u64 root_objectid)
5815 {
5816 struct btrfs_space_info *space_info;
5817 u64 flags;
5818
5819 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5820 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5821 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5822 else
5823 flags = BTRFS_BLOCK_GROUP_METADATA;
5824 } else {
5825 flags = BTRFS_BLOCK_GROUP_DATA;
5826 }
5827
5828 space_info = __find_space_info(fs_info, flags);
5829 BUG_ON(!space_info); /* Logic bug */
5830 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5831 }
5832
5833
5834 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5835 struct btrfs_root *root,
5836 u64 bytenr, u64 num_bytes, u64 parent,
5837 u64 root_objectid, u64 owner_objectid,
5838 u64 owner_offset, int refs_to_drop,
5839 struct btrfs_delayed_extent_op *extent_op,
5840 int no_quota)
5841 {
5842 struct btrfs_key key;
5843 struct btrfs_path *path;
5844 struct btrfs_fs_info *info = root->fs_info;
5845 struct btrfs_root *extent_root = info->extent_root;
5846 struct extent_buffer *leaf;
5847 struct btrfs_extent_item *ei;
5848 struct btrfs_extent_inline_ref *iref;
5849 int ret;
5850 int is_data;
5851 int extent_slot = 0;
5852 int found_extent = 0;
5853 int num_to_del = 1;
5854 u32 item_size;
5855 u64 refs;
5856 int last_ref = 0;
5857 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5858 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5859 SKINNY_METADATA);
5860
5861 if (!info->quota_enabled || !is_fstree(root_objectid))
5862 no_quota = 1;
5863
5864 path = btrfs_alloc_path();
5865 if (!path)
5866 return -ENOMEM;
5867
5868 path->reada = 1;
5869 path->leave_spinning = 1;
5870
5871 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5872 BUG_ON(!is_data && refs_to_drop != 1);
5873
5874 if (is_data)
5875 skinny_metadata = 0;
5876
5877 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5878 bytenr, num_bytes, parent,
5879 root_objectid, owner_objectid,
5880 owner_offset);
5881 if (ret == 0) {
5882 extent_slot = path->slots[0];
5883 while (extent_slot >= 0) {
5884 btrfs_item_key_to_cpu(path->nodes[0], &key,
5885 extent_slot);
5886 if (key.objectid != bytenr)
5887 break;
5888 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5889 key.offset == num_bytes) {
5890 found_extent = 1;
5891 break;
5892 }
5893 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5894 key.offset == owner_objectid) {
5895 found_extent = 1;
5896 break;
5897 }
5898 if (path->slots[0] - extent_slot > 5)
5899 break;
5900 extent_slot--;
5901 }
5902 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5903 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5904 if (found_extent && item_size < sizeof(*ei))
5905 found_extent = 0;
5906 #endif
5907 if (!found_extent) {
5908 BUG_ON(iref);
5909 ret = remove_extent_backref(trans, extent_root, path,
5910 NULL, refs_to_drop,
5911 is_data, &last_ref);
5912 if (ret) {
5913 btrfs_abort_transaction(trans, extent_root, ret);
5914 goto out;
5915 }
5916 btrfs_release_path(path);
5917 path->leave_spinning = 1;
5918
5919 key.objectid = bytenr;
5920 key.type = BTRFS_EXTENT_ITEM_KEY;
5921 key.offset = num_bytes;
5922
5923 if (!is_data && skinny_metadata) {
5924 key.type = BTRFS_METADATA_ITEM_KEY;
5925 key.offset = owner_objectid;
5926 }
5927
5928 ret = btrfs_search_slot(trans, extent_root,
5929 &key, path, -1, 1);
5930 if (ret > 0 && skinny_metadata && path->slots[0]) {
5931 /*
5932 * Couldn't find our skinny metadata item,
5933 * see if we have ye olde extent item.
5934 */
5935 path->slots[0]--;
5936 btrfs_item_key_to_cpu(path->nodes[0], &key,
5937 path->slots[0]);
5938 if (key.objectid == bytenr &&
5939 key.type == BTRFS_EXTENT_ITEM_KEY &&
5940 key.offset == num_bytes)
5941 ret = 0;
5942 }
5943
5944 if (ret > 0 && skinny_metadata) {
5945 skinny_metadata = false;
5946 key.objectid = bytenr;
5947 key.type = BTRFS_EXTENT_ITEM_KEY;
5948 key.offset = num_bytes;
5949 btrfs_release_path(path);
5950 ret = btrfs_search_slot(trans, extent_root,
5951 &key, path, -1, 1);
5952 }
5953
5954 if (ret) {
5955 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5956 ret, bytenr);
5957 if (ret > 0)
5958 btrfs_print_leaf(extent_root,
5959 path->nodes[0]);
5960 }
5961 if (ret < 0) {
5962 btrfs_abort_transaction(trans, extent_root, ret);
5963 goto out;
5964 }
5965 extent_slot = path->slots[0];
5966 }
5967 } else if (WARN_ON(ret == -ENOENT)) {
5968 btrfs_print_leaf(extent_root, path->nodes[0]);
5969 btrfs_err(info,
5970 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5971 bytenr, parent, root_objectid, owner_objectid,
5972 owner_offset);
5973 btrfs_abort_transaction(trans, extent_root, ret);
5974 goto out;
5975 } else {
5976 btrfs_abort_transaction(trans, extent_root, ret);
5977 goto out;
5978 }
5979
5980 leaf = path->nodes[0];
5981 item_size = btrfs_item_size_nr(leaf, extent_slot);
5982 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5983 if (item_size < sizeof(*ei)) {
5984 BUG_ON(found_extent || extent_slot != path->slots[0]);
5985 ret = convert_extent_item_v0(trans, extent_root, path,
5986 owner_objectid, 0);
5987 if (ret < 0) {
5988 btrfs_abort_transaction(trans, extent_root, ret);
5989 goto out;
5990 }
5991
5992 btrfs_release_path(path);
5993 path->leave_spinning = 1;
5994
5995 key.objectid = bytenr;
5996 key.type = BTRFS_EXTENT_ITEM_KEY;
5997 key.offset = num_bytes;
5998
5999 ret = btrfs_search_slot(trans, extent_root, &key, path,
6000 -1, 1);
6001 if (ret) {
6002 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6003 ret, bytenr);
6004 btrfs_print_leaf(extent_root, path->nodes[0]);
6005 }
6006 if (ret < 0) {
6007 btrfs_abort_transaction(trans, extent_root, ret);
6008 goto out;
6009 }
6010
6011 extent_slot = path->slots[0];
6012 leaf = path->nodes[0];
6013 item_size = btrfs_item_size_nr(leaf, extent_slot);
6014 }
6015 #endif
6016 BUG_ON(item_size < sizeof(*ei));
6017 ei = btrfs_item_ptr(leaf, extent_slot,
6018 struct btrfs_extent_item);
6019 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6020 key.type == BTRFS_EXTENT_ITEM_KEY) {
6021 struct btrfs_tree_block_info *bi;
6022 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6023 bi = (struct btrfs_tree_block_info *)(ei + 1);
6024 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6025 }
6026
6027 refs = btrfs_extent_refs(leaf, ei);
6028 if (refs < refs_to_drop) {
6029 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6030 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6031 ret = -EINVAL;
6032 btrfs_abort_transaction(trans, extent_root, ret);
6033 goto out;
6034 }
6035 refs -= refs_to_drop;
6036
6037 if (refs > 0) {
6038 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6039 if (extent_op)
6040 __run_delayed_extent_op(extent_op, leaf, ei);
6041 /*
6042 * In the case of inline back ref, reference count will
6043 * be updated by remove_extent_backref
6044 */
6045 if (iref) {
6046 BUG_ON(!found_extent);
6047 } else {
6048 btrfs_set_extent_refs(leaf, ei, refs);
6049 btrfs_mark_buffer_dirty(leaf);
6050 }
6051 if (found_extent) {
6052 ret = remove_extent_backref(trans, extent_root, path,
6053 iref, refs_to_drop,
6054 is_data, &last_ref);
6055 if (ret) {
6056 btrfs_abort_transaction(trans, extent_root, ret);
6057 goto out;
6058 }
6059 }
6060 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6061 root_objectid);
6062 } else {
6063 if (found_extent) {
6064 BUG_ON(is_data && refs_to_drop !=
6065 extent_data_ref_count(root, path, iref));
6066 if (iref) {
6067 BUG_ON(path->slots[0] != extent_slot);
6068 } else {
6069 BUG_ON(path->slots[0] != extent_slot + 1);
6070 path->slots[0] = extent_slot;
6071 num_to_del = 2;
6072 }
6073 }
6074
6075 last_ref = 1;
6076 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6077 num_to_del);
6078 if (ret) {
6079 btrfs_abort_transaction(trans, extent_root, ret);
6080 goto out;
6081 }
6082 btrfs_release_path(path);
6083
6084 if (is_data) {
6085 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6086 if (ret) {
6087 btrfs_abort_transaction(trans, extent_root, ret);
6088 goto out;
6089 }
6090 }
6091
6092 ret = update_block_group(root, bytenr, num_bytes, 0);
6093 if (ret) {
6094 btrfs_abort_transaction(trans, extent_root, ret);
6095 goto out;
6096 }
6097 }
6098 btrfs_release_path(path);
6099
6100 /* Deal with the quota accounting */
6101 if (!ret && last_ref && !no_quota) {
6102 int mod_seq = 0;
6103
6104 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6105 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6106 mod_seq = 1;
6107
6108 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6109 bytenr, num_bytes, type,
6110 mod_seq);
6111 }
6112 out:
6113 btrfs_free_path(path);
6114 return ret;
6115 }
6116
6117 /*
6118 * when we free an block, it is possible (and likely) that we free the last
6119 * delayed ref for that extent as well. This searches the delayed ref tree for
6120 * a given extent, and if there are no other delayed refs to be processed, it
6121 * removes it from the tree.
6122 */
6123 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6124 struct btrfs_root *root, u64 bytenr)
6125 {
6126 struct btrfs_delayed_ref_head *head;
6127 struct btrfs_delayed_ref_root *delayed_refs;
6128 int ret = 0;
6129
6130 delayed_refs = &trans->transaction->delayed_refs;
6131 spin_lock(&delayed_refs->lock);
6132 head = btrfs_find_delayed_ref_head(trans, bytenr);
6133 if (!head)
6134 goto out_delayed_unlock;
6135
6136 spin_lock(&head->lock);
6137 if (rb_first(&head->ref_root))
6138 goto out;
6139
6140 if (head->extent_op) {
6141 if (!head->must_insert_reserved)
6142 goto out;
6143 btrfs_free_delayed_extent_op(head->extent_op);
6144 head->extent_op = NULL;
6145 }
6146
6147 /*
6148 * waiting for the lock here would deadlock. If someone else has it
6149 * locked they are already in the process of dropping it anyway
6150 */
6151 if (!mutex_trylock(&head->mutex))
6152 goto out;
6153
6154 /*
6155 * at this point we have a head with no other entries. Go
6156 * ahead and process it.
6157 */
6158 head->node.in_tree = 0;
6159 rb_erase(&head->href_node, &delayed_refs->href_root);
6160
6161 atomic_dec(&delayed_refs->num_entries);
6162
6163 /*
6164 * we don't take a ref on the node because we're removing it from the
6165 * tree, so we just steal the ref the tree was holding.
6166 */
6167 delayed_refs->num_heads--;
6168 if (head->processing == 0)
6169 delayed_refs->num_heads_ready--;
6170 head->processing = 0;
6171 spin_unlock(&head->lock);
6172 spin_unlock(&delayed_refs->lock);
6173
6174 BUG_ON(head->extent_op);
6175 if (head->must_insert_reserved)
6176 ret = 1;
6177
6178 mutex_unlock(&head->mutex);
6179 btrfs_put_delayed_ref(&head->node);
6180 return ret;
6181 out:
6182 spin_unlock(&head->lock);
6183
6184 out_delayed_unlock:
6185 spin_unlock(&delayed_refs->lock);
6186 return 0;
6187 }
6188
6189 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6190 struct btrfs_root *root,
6191 struct extent_buffer *buf,
6192 u64 parent, int last_ref)
6193 {
6194 struct btrfs_block_group_cache *cache = NULL;
6195 int pin = 1;
6196 int ret;
6197
6198 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6199 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6200 buf->start, buf->len,
6201 parent, root->root_key.objectid,
6202 btrfs_header_level(buf),
6203 BTRFS_DROP_DELAYED_REF, NULL, 0);
6204 BUG_ON(ret); /* -ENOMEM */
6205 }
6206
6207 if (!last_ref)
6208 return;
6209
6210 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6211
6212 if (btrfs_header_generation(buf) == trans->transid) {
6213 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6214 ret = check_ref_cleanup(trans, root, buf->start);
6215 if (!ret)
6216 goto out;
6217 }
6218
6219 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6220 pin_down_extent(root, cache, buf->start, buf->len, 1);
6221 goto out;
6222 }
6223
6224 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6225
6226 btrfs_add_free_space(cache, buf->start, buf->len);
6227 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6228 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6229 pin = 0;
6230 }
6231 out:
6232 if (pin)
6233 add_pinned_bytes(root->fs_info, buf->len,
6234 btrfs_header_level(buf),
6235 root->root_key.objectid);
6236
6237 /*
6238 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6239 * anymore.
6240 */
6241 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6242 btrfs_put_block_group(cache);
6243 }
6244
6245 /* Can return -ENOMEM */
6246 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6247 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6248 u64 owner, u64 offset, int no_quota)
6249 {
6250 int ret;
6251 struct btrfs_fs_info *fs_info = root->fs_info;
6252
6253 if (btrfs_test_is_dummy_root(root))
6254 return 0;
6255
6256 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6257
6258 /*
6259 * tree log blocks never actually go into the extent allocation
6260 * tree, just update pinning info and exit early.
6261 */
6262 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6263 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6264 /* unlocks the pinned mutex */
6265 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6266 ret = 0;
6267 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6268 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6269 num_bytes,
6270 parent, root_objectid, (int)owner,
6271 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6272 } else {
6273 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6274 num_bytes,
6275 parent, root_objectid, owner,
6276 offset, BTRFS_DROP_DELAYED_REF,
6277 NULL, no_quota);
6278 }
6279 return ret;
6280 }
6281
6282 /*
6283 * when we wait for progress in the block group caching, its because
6284 * our allocation attempt failed at least once. So, we must sleep
6285 * and let some progress happen before we try again.
6286 *
6287 * This function will sleep at least once waiting for new free space to
6288 * show up, and then it will check the block group free space numbers
6289 * for our min num_bytes. Another option is to have it go ahead
6290 * and look in the rbtree for a free extent of a given size, but this
6291 * is a good start.
6292 *
6293 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6294 * any of the information in this block group.
6295 */
6296 static noinline void
6297 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6298 u64 num_bytes)
6299 {
6300 struct btrfs_caching_control *caching_ctl;
6301
6302 caching_ctl = get_caching_control(cache);
6303 if (!caching_ctl)
6304 return;
6305
6306 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6307 (cache->free_space_ctl->free_space >= num_bytes));
6308
6309 put_caching_control(caching_ctl);
6310 }
6311
6312 static noinline int
6313 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6314 {
6315 struct btrfs_caching_control *caching_ctl;
6316 int ret = 0;
6317
6318 caching_ctl = get_caching_control(cache);
6319 if (!caching_ctl)
6320 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6321
6322 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6323 if (cache->cached == BTRFS_CACHE_ERROR)
6324 ret = -EIO;
6325 put_caching_control(caching_ctl);
6326 return ret;
6327 }
6328
6329 int __get_raid_index(u64 flags)
6330 {
6331 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6332 return BTRFS_RAID_RAID10;
6333 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6334 return BTRFS_RAID_RAID1;
6335 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6336 return BTRFS_RAID_DUP;
6337 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6338 return BTRFS_RAID_RAID0;
6339 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6340 return BTRFS_RAID_RAID5;
6341 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6342 return BTRFS_RAID_RAID6;
6343
6344 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6345 }
6346
6347 int get_block_group_index(struct btrfs_block_group_cache *cache)
6348 {
6349 return __get_raid_index(cache->flags);
6350 }
6351
6352 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6353 [BTRFS_RAID_RAID10] = "raid10",
6354 [BTRFS_RAID_RAID1] = "raid1",
6355 [BTRFS_RAID_DUP] = "dup",
6356 [BTRFS_RAID_RAID0] = "raid0",
6357 [BTRFS_RAID_SINGLE] = "single",
6358 [BTRFS_RAID_RAID5] = "raid5",
6359 [BTRFS_RAID_RAID6] = "raid6",
6360 };
6361
6362 static const char *get_raid_name(enum btrfs_raid_types type)
6363 {
6364 if (type >= BTRFS_NR_RAID_TYPES)
6365 return NULL;
6366
6367 return btrfs_raid_type_names[type];
6368 }
6369
6370 enum btrfs_loop_type {
6371 LOOP_CACHING_NOWAIT = 0,
6372 LOOP_CACHING_WAIT = 1,
6373 LOOP_ALLOC_CHUNK = 2,
6374 LOOP_NO_EMPTY_SIZE = 3,
6375 };
6376
6377 static inline void
6378 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6379 int delalloc)
6380 {
6381 if (delalloc)
6382 down_read(&cache->data_rwsem);
6383 }
6384
6385 static inline void
6386 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6387 int delalloc)
6388 {
6389 btrfs_get_block_group(cache);
6390 if (delalloc)
6391 down_read(&cache->data_rwsem);
6392 }
6393
6394 static struct btrfs_block_group_cache *
6395 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6396 struct btrfs_free_cluster *cluster,
6397 int delalloc)
6398 {
6399 struct btrfs_block_group_cache *used_bg;
6400 bool locked = false;
6401 again:
6402 spin_lock(&cluster->refill_lock);
6403 if (locked) {
6404 if (used_bg == cluster->block_group)
6405 return used_bg;
6406
6407 up_read(&used_bg->data_rwsem);
6408 btrfs_put_block_group(used_bg);
6409 }
6410
6411 used_bg = cluster->block_group;
6412 if (!used_bg)
6413 return NULL;
6414
6415 if (used_bg == block_group)
6416 return used_bg;
6417
6418 btrfs_get_block_group(used_bg);
6419
6420 if (!delalloc)
6421 return used_bg;
6422
6423 if (down_read_trylock(&used_bg->data_rwsem))
6424 return used_bg;
6425
6426 spin_unlock(&cluster->refill_lock);
6427 down_read(&used_bg->data_rwsem);
6428 locked = true;
6429 goto again;
6430 }
6431
6432 static inline void
6433 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6434 int delalloc)
6435 {
6436 if (delalloc)
6437 up_read(&cache->data_rwsem);
6438 btrfs_put_block_group(cache);
6439 }
6440
6441 /*
6442 * walks the btree of allocated extents and find a hole of a given size.
6443 * The key ins is changed to record the hole:
6444 * ins->objectid == start position
6445 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6446 * ins->offset == the size of the hole.
6447 * Any available blocks before search_start are skipped.
6448 *
6449 * If there is no suitable free space, we will record the max size of
6450 * the free space extent currently.
6451 */
6452 static noinline int find_free_extent(struct btrfs_root *orig_root,
6453 u64 num_bytes, u64 empty_size,
6454 u64 hint_byte, struct btrfs_key *ins,
6455 u64 flags, int delalloc)
6456 {
6457 int ret = 0;
6458 struct btrfs_root *root = orig_root->fs_info->extent_root;
6459 struct btrfs_free_cluster *last_ptr = NULL;
6460 struct btrfs_block_group_cache *block_group = NULL;
6461 u64 search_start = 0;
6462 u64 max_extent_size = 0;
6463 int empty_cluster = 2 * 1024 * 1024;
6464 struct btrfs_space_info *space_info;
6465 int loop = 0;
6466 int index = __get_raid_index(flags);
6467 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6468 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6469 bool failed_cluster_refill = false;
6470 bool failed_alloc = false;
6471 bool use_cluster = true;
6472 bool have_caching_bg = false;
6473
6474 WARN_ON(num_bytes < root->sectorsize);
6475 ins->type = BTRFS_EXTENT_ITEM_KEY;
6476 ins->objectid = 0;
6477 ins->offset = 0;
6478
6479 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6480
6481 space_info = __find_space_info(root->fs_info, flags);
6482 if (!space_info) {
6483 btrfs_err(root->fs_info, "No space info for %llu", flags);
6484 return -ENOSPC;
6485 }
6486
6487 /*
6488 * If the space info is for both data and metadata it means we have a
6489 * small filesystem and we can't use the clustering stuff.
6490 */
6491 if (btrfs_mixed_space_info(space_info))
6492 use_cluster = false;
6493
6494 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6495 last_ptr = &root->fs_info->meta_alloc_cluster;
6496 if (!btrfs_test_opt(root, SSD))
6497 empty_cluster = 64 * 1024;
6498 }
6499
6500 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6501 btrfs_test_opt(root, SSD)) {
6502 last_ptr = &root->fs_info->data_alloc_cluster;
6503 }
6504
6505 if (last_ptr) {
6506 spin_lock(&last_ptr->lock);
6507 if (last_ptr->block_group)
6508 hint_byte = last_ptr->window_start;
6509 spin_unlock(&last_ptr->lock);
6510 }
6511
6512 search_start = max(search_start, first_logical_byte(root, 0));
6513 search_start = max(search_start, hint_byte);
6514
6515 if (!last_ptr)
6516 empty_cluster = 0;
6517
6518 if (search_start == hint_byte) {
6519 block_group = btrfs_lookup_block_group(root->fs_info,
6520 search_start);
6521 /*
6522 * we don't want to use the block group if it doesn't match our
6523 * allocation bits, or if its not cached.
6524 *
6525 * However if we are re-searching with an ideal block group
6526 * picked out then we don't care that the block group is cached.
6527 */
6528 if (block_group && block_group_bits(block_group, flags) &&
6529 block_group->cached != BTRFS_CACHE_NO) {
6530 down_read(&space_info->groups_sem);
6531 if (list_empty(&block_group->list) ||
6532 block_group->ro) {
6533 /*
6534 * someone is removing this block group,
6535 * we can't jump into the have_block_group
6536 * target because our list pointers are not
6537 * valid
6538 */
6539 btrfs_put_block_group(block_group);
6540 up_read(&space_info->groups_sem);
6541 } else {
6542 index = get_block_group_index(block_group);
6543 btrfs_lock_block_group(block_group, delalloc);
6544 goto have_block_group;
6545 }
6546 } else if (block_group) {
6547 btrfs_put_block_group(block_group);
6548 }
6549 }
6550 search:
6551 have_caching_bg = false;
6552 down_read(&space_info->groups_sem);
6553 list_for_each_entry(block_group, &space_info->block_groups[index],
6554 list) {
6555 u64 offset;
6556 int cached;
6557
6558 btrfs_grab_block_group(block_group, delalloc);
6559 search_start = block_group->key.objectid;
6560
6561 /*
6562 * this can happen if we end up cycling through all the
6563 * raid types, but we want to make sure we only allocate
6564 * for the proper type.
6565 */
6566 if (!block_group_bits(block_group, flags)) {
6567 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6568 BTRFS_BLOCK_GROUP_RAID1 |
6569 BTRFS_BLOCK_GROUP_RAID5 |
6570 BTRFS_BLOCK_GROUP_RAID6 |
6571 BTRFS_BLOCK_GROUP_RAID10;
6572
6573 /*
6574 * if they asked for extra copies and this block group
6575 * doesn't provide them, bail. This does allow us to
6576 * fill raid0 from raid1.
6577 */
6578 if ((flags & extra) && !(block_group->flags & extra))
6579 goto loop;
6580 }
6581
6582 have_block_group:
6583 cached = block_group_cache_done(block_group);
6584 if (unlikely(!cached)) {
6585 ret = cache_block_group(block_group, 0);
6586 BUG_ON(ret < 0);
6587 ret = 0;
6588 }
6589
6590 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6591 goto loop;
6592 if (unlikely(block_group->ro))
6593 goto loop;
6594
6595 /*
6596 * Ok we want to try and use the cluster allocator, so
6597 * lets look there
6598 */
6599 if (last_ptr) {
6600 struct btrfs_block_group_cache *used_block_group;
6601 unsigned long aligned_cluster;
6602 /*
6603 * the refill lock keeps out other
6604 * people trying to start a new cluster
6605 */
6606 used_block_group = btrfs_lock_cluster(block_group,
6607 last_ptr,
6608 delalloc);
6609 if (!used_block_group)
6610 goto refill_cluster;
6611
6612 if (used_block_group != block_group &&
6613 (used_block_group->ro ||
6614 !block_group_bits(used_block_group, flags)))
6615 goto release_cluster;
6616
6617 offset = btrfs_alloc_from_cluster(used_block_group,
6618 last_ptr,
6619 num_bytes,
6620 used_block_group->key.objectid,
6621 &max_extent_size);
6622 if (offset) {
6623 /* we have a block, we're done */
6624 spin_unlock(&last_ptr->refill_lock);
6625 trace_btrfs_reserve_extent_cluster(root,
6626 used_block_group,
6627 search_start, num_bytes);
6628 if (used_block_group != block_group) {
6629 btrfs_release_block_group(block_group,
6630 delalloc);
6631 block_group = used_block_group;
6632 }
6633 goto checks;
6634 }
6635
6636 WARN_ON(last_ptr->block_group != used_block_group);
6637 release_cluster:
6638 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6639 * set up a new clusters, so lets just skip it
6640 * and let the allocator find whatever block
6641 * it can find. If we reach this point, we
6642 * will have tried the cluster allocator
6643 * plenty of times and not have found
6644 * anything, so we are likely way too
6645 * fragmented for the clustering stuff to find
6646 * anything.
6647 *
6648 * However, if the cluster is taken from the
6649 * current block group, release the cluster
6650 * first, so that we stand a better chance of
6651 * succeeding in the unclustered
6652 * allocation. */
6653 if (loop >= LOOP_NO_EMPTY_SIZE &&
6654 used_block_group != block_group) {
6655 spin_unlock(&last_ptr->refill_lock);
6656 btrfs_release_block_group(used_block_group,
6657 delalloc);
6658 goto unclustered_alloc;
6659 }
6660
6661 /*
6662 * this cluster didn't work out, free it and
6663 * start over
6664 */
6665 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6666
6667 if (used_block_group != block_group)
6668 btrfs_release_block_group(used_block_group,
6669 delalloc);
6670 refill_cluster:
6671 if (loop >= LOOP_NO_EMPTY_SIZE) {
6672 spin_unlock(&last_ptr->refill_lock);
6673 goto unclustered_alloc;
6674 }
6675
6676 aligned_cluster = max_t(unsigned long,
6677 empty_cluster + empty_size,
6678 block_group->full_stripe_len);
6679
6680 /* allocate a cluster in this block group */
6681 ret = btrfs_find_space_cluster(root, block_group,
6682 last_ptr, search_start,
6683 num_bytes,
6684 aligned_cluster);
6685 if (ret == 0) {
6686 /*
6687 * now pull our allocation out of this
6688 * cluster
6689 */
6690 offset = btrfs_alloc_from_cluster(block_group,
6691 last_ptr,
6692 num_bytes,
6693 search_start,
6694 &max_extent_size);
6695 if (offset) {
6696 /* we found one, proceed */
6697 spin_unlock(&last_ptr->refill_lock);
6698 trace_btrfs_reserve_extent_cluster(root,
6699 block_group, search_start,
6700 num_bytes);
6701 goto checks;
6702 }
6703 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6704 && !failed_cluster_refill) {
6705 spin_unlock(&last_ptr->refill_lock);
6706
6707 failed_cluster_refill = true;
6708 wait_block_group_cache_progress(block_group,
6709 num_bytes + empty_cluster + empty_size);
6710 goto have_block_group;
6711 }
6712
6713 /*
6714 * at this point we either didn't find a cluster
6715 * or we weren't able to allocate a block from our
6716 * cluster. Free the cluster we've been trying
6717 * to use, and go to the next block group
6718 */
6719 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6720 spin_unlock(&last_ptr->refill_lock);
6721 goto loop;
6722 }
6723
6724 unclustered_alloc:
6725 spin_lock(&block_group->free_space_ctl->tree_lock);
6726 if (cached &&
6727 block_group->free_space_ctl->free_space <
6728 num_bytes + empty_cluster + empty_size) {
6729 if (block_group->free_space_ctl->free_space >
6730 max_extent_size)
6731 max_extent_size =
6732 block_group->free_space_ctl->free_space;
6733 spin_unlock(&block_group->free_space_ctl->tree_lock);
6734 goto loop;
6735 }
6736 spin_unlock(&block_group->free_space_ctl->tree_lock);
6737
6738 offset = btrfs_find_space_for_alloc(block_group, search_start,
6739 num_bytes, empty_size,
6740 &max_extent_size);
6741 /*
6742 * If we didn't find a chunk, and we haven't failed on this
6743 * block group before, and this block group is in the middle of
6744 * caching and we are ok with waiting, then go ahead and wait
6745 * for progress to be made, and set failed_alloc to true.
6746 *
6747 * If failed_alloc is true then we've already waited on this
6748 * block group once and should move on to the next block group.
6749 */
6750 if (!offset && !failed_alloc && !cached &&
6751 loop > LOOP_CACHING_NOWAIT) {
6752 wait_block_group_cache_progress(block_group,
6753 num_bytes + empty_size);
6754 failed_alloc = true;
6755 goto have_block_group;
6756 } else if (!offset) {
6757 if (!cached)
6758 have_caching_bg = true;
6759 goto loop;
6760 }
6761 checks:
6762 search_start = ALIGN(offset, root->stripesize);
6763
6764 /* move on to the next group */
6765 if (search_start + num_bytes >
6766 block_group->key.objectid + block_group->key.offset) {
6767 btrfs_add_free_space(block_group, offset, num_bytes);
6768 goto loop;
6769 }
6770
6771 if (offset < search_start)
6772 btrfs_add_free_space(block_group, offset,
6773 search_start - offset);
6774 BUG_ON(offset > search_start);
6775
6776 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6777 alloc_type, delalloc);
6778 if (ret == -EAGAIN) {
6779 btrfs_add_free_space(block_group, offset, num_bytes);
6780 goto loop;
6781 }
6782
6783 /* we are all good, lets return */
6784 ins->objectid = search_start;
6785 ins->offset = num_bytes;
6786
6787 trace_btrfs_reserve_extent(orig_root, block_group,
6788 search_start, num_bytes);
6789 btrfs_release_block_group(block_group, delalloc);
6790 break;
6791 loop:
6792 failed_cluster_refill = false;
6793 failed_alloc = false;
6794 BUG_ON(index != get_block_group_index(block_group));
6795 btrfs_release_block_group(block_group, delalloc);
6796 }
6797 up_read(&space_info->groups_sem);
6798
6799 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6800 goto search;
6801
6802 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6803 goto search;
6804
6805 /*
6806 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6807 * caching kthreads as we move along
6808 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6809 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6810 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6811 * again
6812 */
6813 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6814 index = 0;
6815 loop++;
6816 if (loop == LOOP_ALLOC_CHUNK) {
6817 struct btrfs_trans_handle *trans;
6818 int exist = 0;
6819
6820 trans = current->journal_info;
6821 if (trans)
6822 exist = 1;
6823 else
6824 trans = btrfs_join_transaction(root);
6825
6826 if (IS_ERR(trans)) {
6827 ret = PTR_ERR(trans);
6828 goto out;
6829 }
6830
6831 ret = do_chunk_alloc(trans, root, flags,
6832 CHUNK_ALLOC_FORCE);
6833 /*
6834 * Do not bail out on ENOSPC since we
6835 * can do more things.
6836 */
6837 if (ret < 0 && ret != -ENOSPC)
6838 btrfs_abort_transaction(trans,
6839 root, ret);
6840 else
6841 ret = 0;
6842 if (!exist)
6843 btrfs_end_transaction(trans, root);
6844 if (ret)
6845 goto out;
6846 }
6847
6848 if (loop == LOOP_NO_EMPTY_SIZE) {
6849 empty_size = 0;
6850 empty_cluster = 0;
6851 }
6852
6853 goto search;
6854 } else if (!ins->objectid) {
6855 ret = -ENOSPC;
6856 } else if (ins->objectid) {
6857 ret = 0;
6858 }
6859 out:
6860 if (ret == -ENOSPC)
6861 ins->offset = max_extent_size;
6862 return ret;
6863 }
6864
6865 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6866 int dump_block_groups)
6867 {
6868 struct btrfs_block_group_cache *cache;
6869 int index = 0;
6870
6871 spin_lock(&info->lock);
6872 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6873 info->flags,
6874 info->total_bytes - info->bytes_used - info->bytes_pinned -
6875 info->bytes_reserved - info->bytes_readonly,
6876 (info->full) ? "" : "not ");
6877 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6878 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6879 info->total_bytes, info->bytes_used, info->bytes_pinned,
6880 info->bytes_reserved, info->bytes_may_use,
6881 info->bytes_readonly);
6882 spin_unlock(&info->lock);
6883
6884 if (!dump_block_groups)
6885 return;
6886
6887 down_read(&info->groups_sem);
6888 again:
6889 list_for_each_entry(cache, &info->block_groups[index], list) {
6890 spin_lock(&cache->lock);
6891 printk(KERN_INFO "BTRFS: "
6892 "block group %llu has %llu bytes, "
6893 "%llu used %llu pinned %llu reserved %s\n",
6894 cache->key.objectid, cache->key.offset,
6895 btrfs_block_group_used(&cache->item), cache->pinned,
6896 cache->reserved, cache->ro ? "[readonly]" : "");
6897 btrfs_dump_free_space(cache, bytes);
6898 spin_unlock(&cache->lock);
6899 }
6900 if (++index < BTRFS_NR_RAID_TYPES)
6901 goto again;
6902 up_read(&info->groups_sem);
6903 }
6904
6905 int btrfs_reserve_extent(struct btrfs_root *root,
6906 u64 num_bytes, u64 min_alloc_size,
6907 u64 empty_size, u64 hint_byte,
6908 struct btrfs_key *ins, int is_data, int delalloc)
6909 {
6910 bool final_tried = false;
6911 u64 flags;
6912 int ret;
6913
6914 flags = btrfs_get_alloc_profile(root, is_data);
6915 again:
6916 WARN_ON(num_bytes < root->sectorsize);
6917 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6918 flags, delalloc);
6919
6920 if (ret == -ENOSPC) {
6921 if (!final_tried && ins->offset) {
6922 num_bytes = min(num_bytes >> 1, ins->offset);
6923 num_bytes = round_down(num_bytes, root->sectorsize);
6924 num_bytes = max(num_bytes, min_alloc_size);
6925 if (num_bytes == min_alloc_size)
6926 final_tried = true;
6927 goto again;
6928 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6929 struct btrfs_space_info *sinfo;
6930
6931 sinfo = __find_space_info(root->fs_info, flags);
6932 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6933 flags, num_bytes);
6934 if (sinfo)
6935 dump_space_info(sinfo, num_bytes, 1);
6936 }
6937 }
6938
6939 return ret;
6940 }
6941
6942 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6943 u64 start, u64 len,
6944 int pin, int delalloc)
6945 {
6946 struct btrfs_block_group_cache *cache;
6947 int ret = 0;
6948
6949 cache = btrfs_lookup_block_group(root->fs_info, start);
6950 if (!cache) {
6951 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6952 start);
6953 return -ENOSPC;
6954 }
6955
6956 if (btrfs_test_opt(root, DISCARD))
6957 ret = btrfs_discard_extent(root, start, len, NULL);
6958
6959 if (pin)
6960 pin_down_extent(root, cache, start, len, 1);
6961 else {
6962 btrfs_add_free_space(cache, start, len);
6963 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6964 }
6965 btrfs_put_block_group(cache);
6966
6967 trace_btrfs_reserved_extent_free(root, start, len);
6968
6969 return ret;
6970 }
6971
6972 int btrfs_free_reserved_extent(struct btrfs_root *root,
6973 u64 start, u64 len, int delalloc)
6974 {
6975 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6976 }
6977
6978 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6979 u64 start, u64 len)
6980 {
6981 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6982 }
6983
6984 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6985 struct btrfs_root *root,
6986 u64 parent, u64 root_objectid,
6987 u64 flags, u64 owner, u64 offset,
6988 struct btrfs_key *ins, int ref_mod)
6989 {
6990 int ret;
6991 struct btrfs_fs_info *fs_info = root->fs_info;
6992 struct btrfs_extent_item *extent_item;
6993 struct btrfs_extent_inline_ref *iref;
6994 struct btrfs_path *path;
6995 struct extent_buffer *leaf;
6996 int type;
6997 u32 size;
6998
6999 if (parent > 0)
7000 type = BTRFS_SHARED_DATA_REF_KEY;
7001 else
7002 type = BTRFS_EXTENT_DATA_REF_KEY;
7003
7004 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7005
7006 path = btrfs_alloc_path();
7007 if (!path)
7008 return -ENOMEM;
7009
7010 path->leave_spinning = 1;
7011 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7012 ins, size);
7013 if (ret) {
7014 btrfs_free_path(path);
7015 return ret;
7016 }
7017
7018 leaf = path->nodes[0];
7019 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7020 struct btrfs_extent_item);
7021 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7022 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7023 btrfs_set_extent_flags(leaf, extent_item,
7024 flags | BTRFS_EXTENT_FLAG_DATA);
7025
7026 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7027 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7028 if (parent > 0) {
7029 struct btrfs_shared_data_ref *ref;
7030 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7031 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7032 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7033 } else {
7034 struct btrfs_extent_data_ref *ref;
7035 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7036 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7037 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7038 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7039 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7040 }
7041
7042 btrfs_mark_buffer_dirty(path->nodes[0]);
7043 btrfs_free_path(path);
7044
7045 /* Always set parent to 0 here since its exclusive anyway. */
7046 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7047 ins->objectid, ins->offset,
7048 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7049 if (ret)
7050 return ret;
7051
7052 ret = update_block_group(root, ins->objectid, ins->offset, 1);
7053 if (ret) { /* -ENOENT, logic error */
7054 btrfs_err(fs_info, "update block group failed for %llu %llu",
7055 ins->objectid, ins->offset);
7056 BUG();
7057 }
7058 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7059 return ret;
7060 }
7061
7062 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7063 struct btrfs_root *root,
7064 u64 parent, u64 root_objectid,
7065 u64 flags, struct btrfs_disk_key *key,
7066 int level, struct btrfs_key *ins,
7067 int no_quota)
7068 {
7069 int ret;
7070 struct btrfs_fs_info *fs_info = root->fs_info;
7071 struct btrfs_extent_item *extent_item;
7072 struct btrfs_tree_block_info *block_info;
7073 struct btrfs_extent_inline_ref *iref;
7074 struct btrfs_path *path;
7075 struct extent_buffer *leaf;
7076 u32 size = sizeof(*extent_item) + sizeof(*iref);
7077 u64 num_bytes = ins->offset;
7078 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7079 SKINNY_METADATA);
7080
7081 if (!skinny_metadata)
7082 size += sizeof(*block_info);
7083
7084 path = btrfs_alloc_path();
7085 if (!path) {
7086 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7087 root->nodesize);
7088 return -ENOMEM;
7089 }
7090
7091 path->leave_spinning = 1;
7092 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7093 ins, size);
7094 if (ret) {
7095 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7096 root->nodesize);
7097 btrfs_free_path(path);
7098 return ret;
7099 }
7100
7101 leaf = path->nodes[0];
7102 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7103 struct btrfs_extent_item);
7104 btrfs_set_extent_refs(leaf, extent_item, 1);
7105 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7106 btrfs_set_extent_flags(leaf, extent_item,
7107 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7108
7109 if (skinny_metadata) {
7110 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7111 num_bytes = root->nodesize;
7112 } else {
7113 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7114 btrfs_set_tree_block_key(leaf, block_info, key);
7115 btrfs_set_tree_block_level(leaf, block_info, level);
7116 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7117 }
7118
7119 if (parent > 0) {
7120 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7121 btrfs_set_extent_inline_ref_type(leaf, iref,
7122 BTRFS_SHARED_BLOCK_REF_KEY);
7123 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7124 } else {
7125 btrfs_set_extent_inline_ref_type(leaf, iref,
7126 BTRFS_TREE_BLOCK_REF_KEY);
7127 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7128 }
7129
7130 btrfs_mark_buffer_dirty(leaf);
7131 btrfs_free_path(path);
7132
7133 if (!no_quota) {
7134 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7135 ins->objectid, num_bytes,
7136 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7137 if (ret)
7138 return ret;
7139 }
7140
7141 ret = update_block_group(root, ins->objectid, root->nodesize, 1);
7142 if (ret) { /* -ENOENT, logic error */
7143 btrfs_err(fs_info, "update block group failed for %llu %llu",
7144 ins->objectid, ins->offset);
7145 BUG();
7146 }
7147
7148 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7149 return ret;
7150 }
7151
7152 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7153 struct btrfs_root *root,
7154 u64 root_objectid, u64 owner,
7155 u64 offset, struct btrfs_key *ins)
7156 {
7157 int ret;
7158
7159 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7160
7161 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7162 ins->offset, 0,
7163 root_objectid, owner, offset,
7164 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7165 return ret;
7166 }
7167
7168 /*
7169 * this is used by the tree logging recovery code. It records that
7170 * an extent has been allocated and makes sure to clear the free
7171 * space cache bits as well
7172 */
7173 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7174 struct btrfs_root *root,
7175 u64 root_objectid, u64 owner, u64 offset,
7176 struct btrfs_key *ins)
7177 {
7178 int ret;
7179 struct btrfs_block_group_cache *block_group;
7180
7181 /*
7182 * Mixed block groups will exclude before processing the log so we only
7183 * need to do the exlude dance if this fs isn't mixed.
7184 */
7185 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7186 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7187 if (ret)
7188 return ret;
7189 }
7190
7191 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7192 if (!block_group)
7193 return -EINVAL;
7194
7195 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7196 RESERVE_ALLOC_NO_ACCOUNT, 0);
7197 BUG_ON(ret); /* logic error */
7198 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7199 0, owner, offset, ins, 1);
7200 btrfs_put_block_group(block_group);
7201 return ret;
7202 }
7203
7204 static struct extent_buffer *
7205 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7206 u64 bytenr, u32 blocksize, int level)
7207 {
7208 struct extent_buffer *buf;
7209
7210 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7211 if (!buf)
7212 return ERR_PTR(-ENOMEM);
7213 btrfs_set_header_generation(buf, trans->transid);
7214 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7215 btrfs_tree_lock(buf);
7216 clean_tree_block(trans, root, buf);
7217 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7218
7219 btrfs_set_lock_blocking(buf);
7220 btrfs_set_buffer_uptodate(buf);
7221
7222 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7223 buf->log_index = root->log_transid % 2;
7224 /*
7225 * we allow two log transactions at a time, use different
7226 * EXENT bit to differentiate dirty pages.
7227 */
7228 if (buf->log_index == 0)
7229 set_extent_dirty(&root->dirty_log_pages, buf->start,
7230 buf->start + buf->len - 1, GFP_NOFS);
7231 else
7232 set_extent_new(&root->dirty_log_pages, buf->start,
7233 buf->start + buf->len - 1, GFP_NOFS);
7234 } else {
7235 buf->log_index = -1;
7236 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7237 buf->start + buf->len - 1, GFP_NOFS);
7238 }
7239 trans->blocks_used++;
7240 /* this returns a buffer locked for blocking */
7241 return buf;
7242 }
7243
7244 static struct btrfs_block_rsv *
7245 use_block_rsv(struct btrfs_trans_handle *trans,
7246 struct btrfs_root *root, u32 blocksize)
7247 {
7248 struct btrfs_block_rsv *block_rsv;
7249 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7250 int ret;
7251 bool global_updated = false;
7252
7253 block_rsv = get_block_rsv(trans, root);
7254
7255 if (unlikely(block_rsv->size == 0))
7256 goto try_reserve;
7257 again:
7258 ret = block_rsv_use_bytes(block_rsv, blocksize);
7259 if (!ret)
7260 return block_rsv;
7261
7262 if (block_rsv->failfast)
7263 return ERR_PTR(ret);
7264
7265 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7266 global_updated = true;
7267 update_global_block_rsv(root->fs_info);
7268 goto again;
7269 }
7270
7271 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7272 static DEFINE_RATELIMIT_STATE(_rs,
7273 DEFAULT_RATELIMIT_INTERVAL * 10,
7274 /*DEFAULT_RATELIMIT_BURST*/ 1);
7275 if (__ratelimit(&_rs))
7276 WARN(1, KERN_DEBUG
7277 "BTRFS: block rsv returned %d\n", ret);
7278 }
7279 try_reserve:
7280 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7281 BTRFS_RESERVE_NO_FLUSH);
7282 if (!ret)
7283 return block_rsv;
7284 /*
7285 * If we couldn't reserve metadata bytes try and use some from
7286 * the global reserve if its space type is the same as the global
7287 * reservation.
7288 */
7289 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7290 block_rsv->space_info == global_rsv->space_info) {
7291 ret = block_rsv_use_bytes(global_rsv, blocksize);
7292 if (!ret)
7293 return global_rsv;
7294 }
7295 return ERR_PTR(ret);
7296 }
7297
7298 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7299 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7300 {
7301 block_rsv_add_bytes(block_rsv, blocksize, 0);
7302 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7303 }
7304
7305 /*
7306 * finds a free extent and does all the dirty work required for allocation
7307 * returns the key for the extent through ins, and a tree buffer for
7308 * the first block of the extent through buf.
7309 *
7310 * returns the tree buffer or NULL.
7311 */
7312 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7313 struct btrfs_root *root,
7314 u64 parent, u64 root_objectid,
7315 struct btrfs_disk_key *key, int level,
7316 u64 hint, u64 empty_size)
7317 {
7318 struct btrfs_key ins;
7319 struct btrfs_block_rsv *block_rsv;
7320 struct extent_buffer *buf;
7321 u64 flags = 0;
7322 int ret;
7323 u32 blocksize = root->nodesize;
7324 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7325 SKINNY_METADATA);
7326
7327 if (btrfs_test_is_dummy_root(root)) {
7328 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7329 blocksize, level);
7330 if (!IS_ERR(buf))
7331 root->alloc_bytenr += blocksize;
7332 return buf;
7333 }
7334
7335 block_rsv = use_block_rsv(trans, root, blocksize);
7336 if (IS_ERR(block_rsv))
7337 return ERR_CAST(block_rsv);
7338
7339 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7340 empty_size, hint, &ins, 0, 0);
7341 if (ret) {
7342 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7343 return ERR_PTR(ret);
7344 }
7345
7346 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7347 blocksize, level);
7348 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7349
7350 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7351 if (parent == 0)
7352 parent = ins.objectid;
7353 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7354 } else
7355 BUG_ON(parent > 0);
7356
7357 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7358 struct btrfs_delayed_extent_op *extent_op;
7359 extent_op = btrfs_alloc_delayed_extent_op();
7360 BUG_ON(!extent_op); /* -ENOMEM */
7361 if (key)
7362 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7363 else
7364 memset(&extent_op->key, 0, sizeof(extent_op->key));
7365 extent_op->flags_to_set = flags;
7366 if (skinny_metadata)
7367 extent_op->update_key = 0;
7368 else
7369 extent_op->update_key = 1;
7370 extent_op->update_flags = 1;
7371 extent_op->is_data = 0;
7372 extent_op->level = level;
7373
7374 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7375 ins.objectid,
7376 ins.offset, parent, root_objectid,
7377 level, BTRFS_ADD_DELAYED_EXTENT,
7378 extent_op, 0);
7379 BUG_ON(ret); /* -ENOMEM */
7380 }
7381 return buf;
7382 }
7383
7384 struct walk_control {
7385 u64 refs[BTRFS_MAX_LEVEL];
7386 u64 flags[BTRFS_MAX_LEVEL];
7387 struct btrfs_key update_progress;
7388 int stage;
7389 int level;
7390 int shared_level;
7391 int update_ref;
7392 int keep_locks;
7393 int reada_slot;
7394 int reada_count;
7395 int for_reloc;
7396 };
7397
7398 #define DROP_REFERENCE 1
7399 #define UPDATE_BACKREF 2
7400
7401 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7402 struct btrfs_root *root,
7403 struct walk_control *wc,
7404 struct btrfs_path *path)
7405 {
7406 u64 bytenr;
7407 u64 generation;
7408 u64 refs;
7409 u64 flags;
7410 u32 nritems;
7411 u32 blocksize;
7412 struct btrfs_key key;
7413 struct extent_buffer *eb;
7414 int ret;
7415 int slot;
7416 int nread = 0;
7417
7418 if (path->slots[wc->level] < wc->reada_slot) {
7419 wc->reada_count = wc->reada_count * 2 / 3;
7420 wc->reada_count = max(wc->reada_count, 2);
7421 } else {
7422 wc->reada_count = wc->reada_count * 3 / 2;
7423 wc->reada_count = min_t(int, wc->reada_count,
7424 BTRFS_NODEPTRS_PER_BLOCK(root));
7425 }
7426
7427 eb = path->nodes[wc->level];
7428 nritems = btrfs_header_nritems(eb);
7429 blocksize = root->nodesize;
7430
7431 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7432 if (nread >= wc->reada_count)
7433 break;
7434
7435 cond_resched();
7436 bytenr = btrfs_node_blockptr(eb, slot);
7437 generation = btrfs_node_ptr_generation(eb, slot);
7438
7439 if (slot == path->slots[wc->level])
7440 goto reada;
7441
7442 if (wc->stage == UPDATE_BACKREF &&
7443 generation <= root->root_key.offset)
7444 continue;
7445
7446 /* We don't lock the tree block, it's OK to be racy here */
7447 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7448 wc->level - 1, 1, &refs,
7449 &flags);
7450 /* We don't care about errors in readahead. */
7451 if (ret < 0)
7452 continue;
7453 BUG_ON(refs == 0);
7454
7455 if (wc->stage == DROP_REFERENCE) {
7456 if (refs == 1)
7457 goto reada;
7458
7459 if (wc->level == 1 &&
7460 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7461 continue;
7462 if (!wc->update_ref ||
7463 generation <= root->root_key.offset)
7464 continue;
7465 btrfs_node_key_to_cpu(eb, &key, slot);
7466 ret = btrfs_comp_cpu_keys(&key,
7467 &wc->update_progress);
7468 if (ret < 0)
7469 continue;
7470 } else {
7471 if (wc->level == 1 &&
7472 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7473 continue;
7474 }
7475 reada:
7476 readahead_tree_block(root, bytenr, blocksize);
7477 nread++;
7478 }
7479 wc->reada_slot = slot;
7480 }
7481
7482 static int account_leaf_items(struct btrfs_trans_handle *trans,
7483 struct btrfs_root *root,
7484 struct extent_buffer *eb)
7485 {
7486 int nr = btrfs_header_nritems(eb);
7487 int i, extent_type, ret;
7488 struct btrfs_key key;
7489 struct btrfs_file_extent_item *fi;
7490 u64 bytenr, num_bytes;
7491
7492 for (i = 0; i < nr; i++) {
7493 btrfs_item_key_to_cpu(eb, &key, i);
7494
7495 if (key.type != BTRFS_EXTENT_DATA_KEY)
7496 continue;
7497
7498 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7499 /* filter out non qgroup-accountable extents */
7500 extent_type = btrfs_file_extent_type(eb, fi);
7501
7502 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7503 continue;
7504
7505 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7506 if (!bytenr)
7507 continue;
7508
7509 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7510
7511 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7512 root->objectid,
7513 bytenr, num_bytes,
7514 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7515 if (ret)
7516 return ret;
7517 }
7518 return 0;
7519 }
7520
7521 /*
7522 * Walk up the tree from the bottom, freeing leaves and any interior
7523 * nodes which have had all slots visited. If a node (leaf or
7524 * interior) is freed, the node above it will have it's slot
7525 * incremented. The root node will never be freed.
7526 *
7527 * At the end of this function, we should have a path which has all
7528 * slots incremented to the next position for a search. If we need to
7529 * read a new node it will be NULL and the node above it will have the
7530 * correct slot selected for a later read.
7531 *
7532 * If we increment the root nodes slot counter past the number of
7533 * elements, 1 is returned to signal completion of the search.
7534 */
7535 static int adjust_slots_upwards(struct btrfs_root *root,
7536 struct btrfs_path *path, int root_level)
7537 {
7538 int level = 0;
7539 int nr, slot;
7540 struct extent_buffer *eb;
7541
7542 if (root_level == 0)
7543 return 1;
7544
7545 while (level <= root_level) {
7546 eb = path->nodes[level];
7547 nr = btrfs_header_nritems(eb);
7548 path->slots[level]++;
7549 slot = path->slots[level];
7550 if (slot >= nr || level == 0) {
7551 /*
7552 * Don't free the root - we will detect this
7553 * condition after our loop and return a
7554 * positive value for caller to stop walking the tree.
7555 */
7556 if (level != root_level) {
7557 btrfs_tree_unlock_rw(eb, path->locks[level]);
7558 path->locks[level] = 0;
7559
7560 free_extent_buffer(eb);
7561 path->nodes[level] = NULL;
7562 path->slots[level] = 0;
7563 }
7564 } else {
7565 /*
7566 * We have a valid slot to walk back down
7567 * from. Stop here so caller can process these
7568 * new nodes.
7569 */
7570 break;
7571 }
7572
7573 level++;
7574 }
7575
7576 eb = path->nodes[root_level];
7577 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7578 return 1;
7579
7580 return 0;
7581 }
7582
7583 /*
7584 * root_eb is the subtree root and is locked before this function is called.
7585 */
7586 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7587 struct btrfs_root *root,
7588 struct extent_buffer *root_eb,
7589 u64 root_gen,
7590 int root_level)
7591 {
7592 int ret = 0;
7593 int level;
7594 struct extent_buffer *eb = root_eb;
7595 struct btrfs_path *path = NULL;
7596
7597 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7598 BUG_ON(root_eb == NULL);
7599
7600 if (!root->fs_info->quota_enabled)
7601 return 0;
7602
7603 if (!extent_buffer_uptodate(root_eb)) {
7604 ret = btrfs_read_buffer(root_eb, root_gen);
7605 if (ret)
7606 goto out;
7607 }
7608
7609 if (root_level == 0) {
7610 ret = account_leaf_items(trans, root, root_eb);
7611 goto out;
7612 }
7613
7614 path = btrfs_alloc_path();
7615 if (!path)
7616 return -ENOMEM;
7617
7618 /*
7619 * Walk down the tree. Missing extent blocks are filled in as
7620 * we go. Metadata is accounted every time we read a new
7621 * extent block.
7622 *
7623 * When we reach a leaf, we account for file extent items in it,
7624 * walk back up the tree (adjusting slot pointers as we go)
7625 * and restart the search process.
7626 */
7627 extent_buffer_get(root_eb); /* For path */
7628 path->nodes[root_level] = root_eb;
7629 path->slots[root_level] = 0;
7630 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7631 walk_down:
7632 level = root_level;
7633 while (level >= 0) {
7634 if (path->nodes[level] == NULL) {
7635 int parent_slot;
7636 u64 child_gen;
7637 u64 child_bytenr;
7638
7639 /* We need to get child blockptr/gen from
7640 * parent before we can read it. */
7641 eb = path->nodes[level + 1];
7642 parent_slot = path->slots[level + 1];
7643 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7644 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7645
7646 eb = read_tree_block(root, child_bytenr, child_gen);
7647 if (!eb || !extent_buffer_uptodate(eb)) {
7648 ret = -EIO;
7649 goto out;
7650 }
7651
7652 path->nodes[level] = eb;
7653 path->slots[level] = 0;
7654
7655 btrfs_tree_read_lock(eb);
7656 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7657 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7658
7659 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7660 root->objectid,
7661 child_bytenr,
7662 root->nodesize,
7663 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7664 0);
7665 if (ret)
7666 goto out;
7667
7668 }
7669
7670 if (level == 0) {
7671 ret = account_leaf_items(trans, root, path->nodes[level]);
7672 if (ret)
7673 goto out;
7674
7675 /* Nonzero return here means we completed our search */
7676 ret = adjust_slots_upwards(root, path, root_level);
7677 if (ret)
7678 break;
7679
7680 /* Restart search with new slots */
7681 goto walk_down;
7682 }
7683
7684 level--;
7685 }
7686
7687 ret = 0;
7688 out:
7689 btrfs_free_path(path);
7690
7691 return ret;
7692 }
7693
7694 /*
7695 * helper to process tree block while walking down the tree.
7696 *
7697 * when wc->stage == UPDATE_BACKREF, this function updates
7698 * back refs for pointers in the block.
7699 *
7700 * NOTE: return value 1 means we should stop walking down.
7701 */
7702 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7703 struct btrfs_root *root,
7704 struct btrfs_path *path,
7705 struct walk_control *wc, int lookup_info)
7706 {
7707 int level = wc->level;
7708 struct extent_buffer *eb = path->nodes[level];
7709 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7710 int ret;
7711
7712 if (wc->stage == UPDATE_BACKREF &&
7713 btrfs_header_owner(eb) != root->root_key.objectid)
7714 return 1;
7715
7716 /*
7717 * when reference count of tree block is 1, it won't increase
7718 * again. once full backref flag is set, we never clear it.
7719 */
7720 if (lookup_info &&
7721 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7722 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7723 BUG_ON(!path->locks[level]);
7724 ret = btrfs_lookup_extent_info(trans, root,
7725 eb->start, level, 1,
7726 &wc->refs[level],
7727 &wc->flags[level]);
7728 BUG_ON(ret == -ENOMEM);
7729 if (ret)
7730 return ret;
7731 BUG_ON(wc->refs[level] == 0);
7732 }
7733
7734 if (wc->stage == DROP_REFERENCE) {
7735 if (wc->refs[level] > 1)
7736 return 1;
7737
7738 if (path->locks[level] && !wc->keep_locks) {
7739 btrfs_tree_unlock_rw(eb, path->locks[level]);
7740 path->locks[level] = 0;
7741 }
7742 return 0;
7743 }
7744
7745 /* wc->stage == UPDATE_BACKREF */
7746 if (!(wc->flags[level] & flag)) {
7747 BUG_ON(!path->locks[level]);
7748 ret = btrfs_inc_ref(trans, root, eb, 1);
7749 BUG_ON(ret); /* -ENOMEM */
7750 ret = btrfs_dec_ref(trans, root, eb, 0);
7751 BUG_ON(ret); /* -ENOMEM */
7752 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7753 eb->len, flag,
7754 btrfs_header_level(eb), 0);
7755 BUG_ON(ret); /* -ENOMEM */
7756 wc->flags[level] |= flag;
7757 }
7758
7759 /*
7760 * the block is shared by multiple trees, so it's not good to
7761 * keep the tree lock
7762 */
7763 if (path->locks[level] && level > 0) {
7764 btrfs_tree_unlock_rw(eb, path->locks[level]);
7765 path->locks[level] = 0;
7766 }
7767 return 0;
7768 }
7769
7770 /*
7771 * helper to process tree block pointer.
7772 *
7773 * when wc->stage == DROP_REFERENCE, this function checks
7774 * reference count of the block pointed to. if the block
7775 * is shared and we need update back refs for the subtree
7776 * rooted at the block, this function changes wc->stage to
7777 * UPDATE_BACKREF. if the block is shared and there is no
7778 * need to update back, this function drops the reference
7779 * to the block.
7780 *
7781 * NOTE: return value 1 means we should stop walking down.
7782 */
7783 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7784 struct btrfs_root *root,
7785 struct btrfs_path *path,
7786 struct walk_control *wc, int *lookup_info)
7787 {
7788 u64 bytenr;
7789 u64 generation;
7790 u64 parent;
7791 u32 blocksize;
7792 struct btrfs_key key;
7793 struct extent_buffer *next;
7794 int level = wc->level;
7795 int reada = 0;
7796 int ret = 0;
7797 bool need_account = false;
7798
7799 generation = btrfs_node_ptr_generation(path->nodes[level],
7800 path->slots[level]);
7801 /*
7802 * if the lower level block was created before the snapshot
7803 * was created, we know there is no need to update back refs
7804 * for the subtree
7805 */
7806 if (wc->stage == UPDATE_BACKREF &&
7807 generation <= root->root_key.offset) {
7808 *lookup_info = 1;
7809 return 1;
7810 }
7811
7812 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7813 blocksize = root->nodesize;
7814
7815 next = btrfs_find_tree_block(root, bytenr);
7816 if (!next) {
7817 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7818 if (!next)
7819 return -ENOMEM;
7820 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7821 level - 1);
7822 reada = 1;
7823 }
7824 btrfs_tree_lock(next);
7825 btrfs_set_lock_blocking(next);
7826
7827 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7828 &wc->refs[level - 1],
7829 &wc->flags[level - 1]);
7830 if (ret < 0) {
7831 btrfs_tree_unlock(next);
7832 return ret;
7833 }
7834
7835 if (unlikely(wc->refs[level - 1] == 0)) {
7836 btrfs_err(root->fs_info, "Missing references.");
7837 BUG();
7838 }
7839 *lookup_info = 0;
7840
7841 if (wc->stage == DROP_REFERENCE) {
7842 if (wc->refs[level - 1] > 1) {
7843 need_account = true;
7844 if (level == 1 &&
7845 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7846 goto skip;
7847
7848 if (!wc->update_ref ||
7849 generation <= root->root_key.offset)
7850 goto skip;
7851
7852 btrfs_node_key_to_cpu(path->nodes[level], &key,
7853 path->slots[level]);
7854 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7855 if (ret < 0)
7856 goto skip;
7857
7858 wc->stage = UPDATE_BACKREF;
7859 wc->shared_level = level - 1;
7860 }
7861 } else {
7862 if (level == 1 &&
7863 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7864 goto skip;
7865 }
7866
7867 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7868 btrfs_tree_unlock(next);
7869 free_extent_buffer(next);
7870 next = NULL;
7871 *lookup_info = 1;
7872 }
7873
7874 if (!next) {
7875 if (reada && level == 1)
7876 reada_walk_down(trans, root, wc, path);
7877 next = read_tree_block(root, bytenr, generation);
7878 if (!next || !extent_buffer_uptodate(next)) {
7879 free_extent_buffer(next);
7880 return -EIO;
7881 }
7882 btrfs_tree_lock(next);
7883 btrfs_set_lock_blocking(next);
7884 }
7885
7886 level--;
7887 BUG_ON(level != btrfs_header_level(next));
7888 path->nodes[level] = next;
7889 path->slots[level] = 0;
7890 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7891 wc->level = level;
7892 if (wc->level == 1)
7893 wc->reada_slot = 0;
7894 return 0;
7895 skip:
7896 wc->refs[level - 1] = 0;
7897 wc->flags[level - 1] = 0;
7898 if (wc->stage == DROP_REFERENCE) {
7899 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7900 parent = path->nodes[level]->start;
7901 } else {
7902 BUG_ON(root->root_key.objectid !=
7903 btrfs_header_owner(path->nodes[level]));
7904 parent = 0;
7905 }
7906
7907 if (need_account) {
7908 ret = account_shared_subtree(trans, root, next,
7909 generation, level - 1);
7910 if (ret) {
7911 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7912 "%d accounting shared subtree. Quota "
7913 "is out of sync, rescan required.\n",
7914 root->fs_info->sb->s_id, ret);
7915 }
7916 }
7917 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7918 root->root_key.objectid, level - 1, 0, 0);
7919 BUG_ON(ret); /* -ENOMEM */
7920 }
7921 btrfs_tree_unlock(next);
7922 free_extent_buffer(next);
7923 *lookup_info = 1;
7924 return 1;
7925 }
7926
7927 /*
7928 * helper to process tree block while walking up the tree.
7929 *
7930 * when wc->stage == DROP_REFERENCE, this function drops
7931 * reference count on the block.
7932 *
7933 * when wc->stage == UPDATE_BACKREF, this function changes
7934 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7935 * to UPDATE_BACKREF previously while processing the block.
7936 *
7937 * NOTE: return value 1 means we should stop walking up.
7938 */
7939 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7940 struct btrfs_root *root,
7941 struct btrfs_path *path,
7942 struct walk_control *wc)
7943 {
7944 int ret;
7945 int level = wc->level;
7946 struct extent_buffer *eb = path->nodes[level];
7947 u64 parent = 0;
7948
7949 if (wc->stage == UPDATE_BACKREF) {
7950 BUG_ON(wc->shared_level < level);
7951 if (level < wc->shared_level)
7952 goto out;
7953
7954 ret = find_next_key(path, level + 1, &wc->update_progress);
7955 if (ret > 0)
7956 wc->update_ref = 0;
7957
7958 wc->stage = DROP_REFERENCE;
7959 wc->shared_level = -1;
7960 path->slots[level] = 0;
7961
7962 /*
7963 * check reference count again if the block isn't locked.
7964 * we should start walking down the tree again if reference
7965 * count is one.
7966 */
7967 if (!path->locks[level]) {
7968 BUG_ON(level == 0);
7969 btrfs_tree_lock(eb);
7970 btrfs_set_lock_blocking(eb);
7971 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7972
7973 ret = btrfs_lookup_extent_info(trans, root,
7974 eb->start, level, 1,
7975 &wc->refs[level],
7976 &wc->flags[level]);
7977 if (ret < 0) {
7978 btrfs_tree_unlock_rw(eb, path->locks[level]);
7979 path->locks[level] = 0;
7980 return ret;
7981 }
7982 BUG_ON(wc->refs[level] == 0);
7983 if (wc->refs[level] == 1) {
7984 btrfs_tree_unlock_rw(eb, path->locks[level]);
7985 path->locks[level] = 0;
7986 return 1;
7987 }
7988 }
7989 }
7990
7991 /* wc->stage == DROP_REFERENCE */
7992 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7993
7994 if (wc->refs[level] == 1) {
7995 if (level == 0) {
7996 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7997 ret = btrfs_dec_ref(trans, root, eb, 1);
7998 else
7999 ret = btrfs_dec_ref(trans, root, eb, 0);
8000 BUG_ON(ret); /* -ENOMEM */
8001 ret = account_leaf_items(trans, root, eb);
8002 if (ret) {
8003 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8004 "%d accounting leaf items. Quota "
8005 "is out of sync, rescan required.\n",
8006 root->fs_info->sb->s_id, ret);
8007 }
8008 }
8009 /* make block locked assertion in clean_tree_block happy */
8010 if (!path->locks[level] &&
8011 btrfs_header_generation(eb) == trans->transid) {
8012 btrfs_tree_lock(eb);
8013 btrfs_set_lock_blocking(eb);
8014 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8015 }
8016 clean_tree_block(trans, root, eb);
8017 }
8018
8019 if (eb == root->node) {
8020 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8021 parent = eb->start;
8022 else
8023 BUG_ON(root->root_key.objectid !=
8024 btrfs_header_owner(eb));
8025 } else {
8026 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8027 parent = path->nodes[level + 1]->start;
8028 else
8029 BUG_ON(root->root_key.objectid !=
8030 btrfs_header_owner(path->nodes[level + 1]));
8031 }
8032
8033 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8034 out:
8035 wc->refs[level] = 0;
8036 wc->flags[level] = 0;
8037 return 0;
8038 }
8039
8040 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8041 struct btrfs_root *root,
8042 struct btrfs_path *path,
8043 struct walk_control *wc)
8044 {
8045 int level = wc->level;
8046 int lookup_info = 1;
8047 int ret;
8048
8049 while (level >= 0) {
8050 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8051 if (ret > 0)
8052 break;
8053
8054 if (level == 0)
8055 break;
8056
8057 if (path->slots[level] >=
8058 btrfs_header_nritems(path->nodes[level]))
8059 break;
8060
8061 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8062 if (ret > 0) {
8063 path->slots[level]++;
8064 continue;
8065 } else if (ret < 0)
8066 return ret;
8067 level = wc->level;
8068 }
8069 return 0;
8070 }
8071
8072 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8073 struct btrfs_root *root,
8074 struct btrfs_path *path,
8075 struct walk_control *wc, int max_level)
8076 {
8077 int level = wc->level;
8078 int ret;
8079
8080 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8081 while (level < max_level && path->nodes[level]) {
8082 wc->level = level;
8083 if (path->slots[level] + 1 <
8084 btrfs_header_nritems(path->nodes[level])) {
8085 path->slots[level]++;
8086 return 0;
8087 } else {
8088 ret = walk_up_proc(trans, root, path, wc);
8089 if (ret > 0)
8090 return 0;
8091
8092 if (path->locks[level]) {
8093 btrfs_tree_unlock_rw(path->nodes[level],
8094 path->locks[level]);
8095 path->locks[level] = 0;
8096 }
8097 free_extent_buffer(path->nodes[level]);
8098 path->nodes[level] = NULL;
8099 level++;
8100 }
8101 }
8102 return 1;
8103 }
8104
8105 /*
8106 * drop a subvolume tree.
8107 *
8108 * this function traverses the tree freeing any blocks that only
8109 * referenced by the tree.
8110 *
8111 * when a shared tree block is found. this function decreases its
8112 * reference count by one. if update_ref is true, this function
8113 * also make sure backrefs for the shared block and all lower level
8114 * blocks are properly updated.
8115 *
8116 * If called with for_reloc == 0, may exit early with -EAGAIN
8117 */
8118 int btrfs_drop_snapshot(struct btrfs_root *root,
8119 struct btrfs_block_rsv *block_rsv, int update_ref,
8120 int for_reloc)
8121 {
8122 struct btrfs_path *path;
8123 struct btrfs_trans_handle *trans;
8124 struct btrfs_root *tree_root = root->fs_info->tree_root;
8125 struct btrfs_root_item *root_item = &root->root_item;
8126 struct walk_control *wc;
8127 struct btrfs_key key;
8128 int err = 0;
8129 int ret;
8130 int level;
8131 bool root_dropped = false;
8132
8133 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8134
8135 path = btrfs_alloc_path();
8136 if (!path) {
8137 err = -ENOMEM;
8138 goto out;
8139 }
8140
8141 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8142 if (!wc) {
8143 btrfs_free_path(path);
8144 err = -ENOMEM;
8145 goto out;
8146 }
8147
8148 trans = btrfs_start_transaction(tree_root, 0);
8149 if (IS_ERR(trans)) {
8150 err = PTR_ERR(trans);
8151 goto out_free;
8152 }
8153
8154 if (block_rsv)
8155 trans->block_rsv = block_rsv;
8156
8157 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8158 level = btrfs_header_level(root->node);
8159 path->nodes[level] = btrfs_lock_root_node(root);
8160 btrfs_set_lock_blocking(path->nodes[level]);
8161 path->slots[level] = 0;
8162 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8163 memset(&wc->update_progress, 0,
8164 sizeof(wc->update_progress));
8165 } else {
8166 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8167 memcpy(&wc->update_progress, &key,
8168 sizeof(wc->update_progress));
8169
8170 level = root_item->drop_level;
8171 BUG_ON(level == 0);
8172 path->lowest_level = level;
8173 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8174 path->lowest_level = 0;
8175 if (ret < 0) {
8176 err = ret;
8177 goto out_end_trans;
8178 }
8179 WARN_ON(ret > 0);
8180
8181 /*
8182 * unlock our path, this is safe because only this
8183 * function is allowed to delete this snapshot
8184 */
8185 btrfs_unlock_up_safe(path, 0);
8186
8187 level = btrfs_header_level(root->node);
8188 while (1) {
8189 btrfs_tree_lock(path->nodes[level]);
8190 btrfs_set_lock_blocking(path->nodes[level]);
8191 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8192
8193 ret = btrfs_lookup_extent_info(trans, root,
8194 path->nodes[level]->start,
8195 level, 1, &wc->refs[level],
8196 &wc->flags[level]);
8197 if (ret < 0) {
8198 err = ret;
8199 goto out_end_trans;
8200 }
8201 BUG_ON(wc->refs[level] == 0);
8202
8203 if (level == root_item->drop_level)
8204 break;
8205
8206 btrfs_tree_unlock(path->nodes[level]);
8207 path->locks[level] = 0;
8208 WARN_ON(wc->refs[level] != 1);
8209 level--;
8210 }
8211 }
8212
8213 wc->level = level;
8214 wc->shared_level = -1;
8215 wc->stage = DROP_REFERENCE;
8216 wc->update_ref = update_ref;
8217 wc->keep_locks = 0;
8218 wc->for_reloc = for_reloc;
8219 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8220
8221 while (1) {
8222
8223 ret = walk_down_tree(trans, root, path, wc);
8224 if (ret < 0) {
8225 err = ret;
8226 break;
8227 }
8228
8229 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8230 if (ret < 0) {
8231 err = ret;
8232 break;
8233 }
8234
8235 if (ret > 0) {
8236 BUG_ON(wc->stage != DROP_REFERENCE);
8237 break;
8238 }
8239
8240 if (wc->stage == DROP_REFERENCE) {
8241 level = wc->level;
8242 btrfs_node_key(path->nodes[level],
8243 &root_item->drop_progress,
8244 path->slots[level]);
8245 root_item->drop_level = level;
8246 }
8247
8248 BUG_ON(wc->level == 0);
8249 if (btrfs_should_end_transaction(trans, tree_root) ||
8250 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8251 ret = btrfs_update_root(trans, tree_root,
8252 &root->root_key,
8253 root_item);
8254 if (ret) {
8255 btrfs_abort_transaction(trans, tree_root, ret);
8256 err = ret;
8257 goto out_end_trans;
8258 }
8259
8260 /*
8261 * Qgroup update accounting is run from
8262 * delayed ref handling. This usually works
8263 * out because delayed refs are normally the
8264 * only way qgroup updates are added. However,
8265 * we may have added updates during our tree
8266 * walk so run qgroups here to make sure we
8267 * don't lose any updates.
8268 */
8269 ret = btrfs_delayed_qgroup_accounting(trans,
8270 root->fs_info);
8271 if (ret)
8272 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8273 "running qgroup updates "
8274 "during snapshot delete. "
8275 "Quota is out of sync, "
8276 "rescan required.\n", ret);
8277
8278 btrfs_end_transaction_throttle(trans, tree_root);
8279 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8280 pr_debug("BTRFS: drop snapshot early exit\n");
8281 err = -EAGAIN;
8282 goto out_free;
8283 }
8284
8285 trans = btrfs_start_transaction(tree_root, 0);
8286 if (IS_ERR(trans)) {
8287 err = PTR_ERR(trans);
8288 goto out_free;
8289 }
8290 if (block_rsv)
8291 trans->block_rsv = block_rsv;
8292 }
8293 }
8294 btrfs_release_path(path);
8295 if (err)
8296 goto out_end_trans;
8297
8298 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8299 if (ret) {
8300 btrfs_abort_transaction(trans, tree_root, ret);
8301 goto out_end_trans;
8302 }
8303
8304 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8305 ret = btrfs_find_root(tree_root, &root->root_key, path,
8306 NULL, NULL);
8307 if (ret < 0) {
8308 btrfs_abort_transaction(trans, tree_root, ret);
8309 err = ret;
8310 goto out_end_trans;
8311 } else if (ret > 0) {
8312 /* if we fail to delete the orphan item this time
8313 * around, it'll get picked up the next time.
8314 *
8315 * The most common failure here is just -ENOENT.
8316 */
8317 btrfs_del_orphan_item(trans, tree_root,
8318 root->root_key.objectid);
8319 }
8320 }
8321
8322 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8323 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8324 } else {
8325 free_extent_buffer(root->node);
8326 free_extent_buffer(root->commit_root);
8327 btrfs_put_fs_root(root);
8328 }
8329 root_dropped = true;
8330 out_end_trans:
8331 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8332 if (ret)
8333 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8334 "running qgroup updates "
8335 "during snapshot delete. "
8336 "Quota is out of sync, "
8337 "rescan required.\n", ret);
8338
8339 btrfs_end_transaction_throttle(trans, tree_root);
8340 out_free:
8341 kfree(wc);
8342 btrfs_free_path(path);
8343 out:
8344 /*
8345 * So if we need to stop dropping the snapshot for whatever reason we
8346 * need to make sure to add it back to the dead root list so that we
8347 * keep trying to do the work later. This also cleans up roots if we
8348 * don't have it in the radix (like when we recover after a power fail
8349 * or unmount) so we don't leak memory.
8350 */
8351 if (!for_reloc && root_dropped == false)
8352 btrfs_add_dead_root(root);
8353 if (err && err != -EAGAIN)
8354 btrfs_std_error(root->fs_info, err);
8355 return err;
8356 }
8357
8358 /*
8359 * drop subtree rooted at tree block 'node'.
8360 *
8361 * NOTE: this function will unlock and release tree block 'node'
8362 * only used by relocation code
8363 */
8364 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8365 struct btrfs_root *root,
8366 struct extent_buffer *node,
8367 struct extent_buffer *parent)
8368 {
8369 struct btrfs_path *path;
8370 struct walk_control *wc;
8371 int level;
8372 int parent_level;
8373 int ret = 0;
8374 int wret;
8375
8376 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8377
8378 path = btrfs_alloc_path();
8379 if (!path)
8380 return -ENOMEM;
8381
8382 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8383 if (!wc) {
8384 btrfs_free_path(path);
8385 return -ENOMEM;
8386 }
8387
8388 btrfs_assert_tree_locked(parent);
8389 parent_level = btrfs_header_level(parent);
8390 extent_buffer_get(parent);
8391 path->nodes[parent_level] = parent;
8392 path->slots[parent_level] = btrfs_header_nritems(parent);
8393
8394 btrfs_assert_tree_locked(node);
8395 level = btrfs_header_level(node);
8396 path->nodes[level] = node;
8397 path->slots[level] = 0;
8398 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8399
8400 wc->refs[parent_level] = 1;
8401 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8402 wc->level = level;
8403 wc->shared_level = -1;
8404 wc->stage = DROP_REFERENCE;
8405 wc->update_ref = 0;
8406 wc->keep_locks = 1;
8407 wc->for_reloc = 1;
8408 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8409
8410 while (1) {
8411 wret = walk_down_tree(trans, root, path, wc);
8412 if (wret < 0) {
8413 ret = wret;
8414 break;
8415 }
8416
8417 wret = walk_up_tree(trans, root, path, wc, parent_level);
8418 if (wret < 0)
8419 ret = wret;
8420 if (wret != 0)
8421 break;
8422 }
8423
8424 kfree(wc);
8425 btrfs_free_path(path);
8426 return ret;
8427 }
8428
8429 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8430 {
8431 u64 num_devices;
8432 u64 stripped;
8433
8434 /*
8435 * if restripe for this chunk_type is on pick target profile and
8436 * return, otherwise do the usual balance
8437 */
8438 stripped = get_restripe_target(root->fs_info, flags);
8439 if (stripped)
8440 return extended_to_chunk(stripped);
8441
8442 num_devices = root->fs_info->fs_devices->rw_devices;
8443
8444 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8445 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8446 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8447
8448 if (num_devices == 1) {
8449 stripped |= BTRFS_BLOCK_GROUP_DUP;
8450 stripped = flags & ~stripped;
8451
8452 /* turn raid0 into single device chunks */
8453 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8454 return stripped;
8455
8456 /* turn mirroring into duplication */
8457 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8458 BTRFS_BLOCK_GROUP_RAID10))
8459 return stripped | BTRFS_BLOCK_GROUP_DUP;
8460 } else {
8461 /* they already had raid on here, just return */
8462 if (flags & stripped)
8463 return flags;
8464
8465 stripped |= BTRFS_BLOCK_GROUP_DUP;
8466 stripped = flags & ~stripped;
8467
8468 /* switch duplicated blocks with raid1 */
8469 if (flags & BTRFS_BLOCK_GROUP_DUP)
8470 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8471
8472 /* this is drive concat, leave it alone */
8473 }
8474
8475 return flags;
8476 }
8477
8478 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8479 {
8480 struct btrfs_space_info *sinfo = cache->space_info;
8481 u64 num_bytes;
8482 u64 min_allocable_bytes;
8483 int ret = -ENOSPC;
8484
8485
8486 /*
8487 * We need some metadata space and system metadata space for
8488 * allocating chunks in some corner cases until we force to set
8489 * it to be readonly.
8490 */
8491 if ((sinfo->flags &
8492 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8493 !force)
8494 min_allocable_bytes = 1 * 1024 * 1024;
8495 else
8496 min_allocable_bytes = 0;
8497
8498 spin_lock(&sinfo->lock);
8499 spin_lock(&cache->lock);
8500
8501 if (cache->ro) {
8502 ret = 0;
8503 goto out;
8504 }
8505
8506 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8507 cache->bytes_super - btrfs_block_group_used(&cache->item);
8508
8509 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8510 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8511 min_allocable_bytes <= sinfo->total_bytes) {
8512 sinfo->bytes_readonly += num_bytes;
8513 cache->ro = 1;
8514 ret = 0;
8515 }
8516 out:
8517 spin_unlock(&cache->lock);
8518 spin_unlock(&sinfo->lock);
8519 return ret;
8520 }
8521
8522 int btrfs_set_block_group_ro(struct btrfs_root *root,
8523 struct btrfs_block_group_cache *cache)
8524
8525 {
8526 struct btrfs_trans_handle *trans;
8527 u64 alloc_flags;
8528 int ret;
8529
8530 BUG_ON(cache->ro);
8531
8532 trans = btrfs_join_transaction(root);
8533 if (IS_ERR(trans))
8534 return PTR_ERR(trans);
8535
8536 alloc_flags = update_block_group_flags(root, cache->flags);
8537 if (alloc_flags != cache->flags) {
8538 ret = do_chunk_alloc(trans, root, alloc_flags,
8539 CHUNK_ALLOC_FORCE);
8540 if (ret < 0)
8541 goto out;
8542 }
8543
8544 ret = set_block_group_ro(cache, 0);
8545 if (!ret)
8546 goto out;
8547 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8548 ret = do_chunk_alloc(trans, root, alloc_flags,
8549 CHUNK_ALLOC_FORCE);
8550 if (ret < 0)
8551 goto out;
8552 ret = set_block_group_ro(cache, 0);
8553 out:
8554 btrfs_end_transaction(trans, root);
8555 return ret;
8556 }
8557
8558 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8559 struct btrfs_root *root, u64 type)
8560 {
8561 u64 alloc_flags = get_alloc_profile(root, type);
8562 return do_chunk_alloc(trans, root, alloc_flags,
8563 CHUNK_ALLOC_FORCE);
8564 }
8565
8566 /*
8567 * helper to account the unused space of all the readonly block group in the
8568 * list. takes mirrors into account.
8569 */
8570 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8571 {
8572 struct btrfs_block_group_cache *block_group;
8573 u64 free_bytes = 0;
8574 int factor;
8575
8576 list_for_each_entry(block_group, groups_list, list) {
8577 spin_lock(&block_group->lock);
8578
8579 if (!block_group->ro) {
8580 spin_unlock(&block_group->lock);
8581 continue;
8582 }
8583
8584 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8585 BTRFS_BLOCK_GROUP_RAID10 |
8586 BTRFS_BLOCK_GROUP_DUP))
8587 factor = 2;
8588 else
8589 factor = 1;
8590
8591 free_bytes += (block_group->key.offset -
8592 btrfs_block_group_used(&block_group->item)) *
8593 factor;
8594
8595 spin_unlock(&block_group->lock);
8596 }
8597
8598 return free_bytes;
8599 }
8600
8601 /*
8602 * helper to account the unused space of all the readonly block group in the
8603 * space_info. takes mirrors into account.
8604 */
8605 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8606 {
8607 int i;
8608 u64 free_bytes = 0;
8609
8610 spin_lock(&sinfo->lock);
8611
8612 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8613 if (!list_empty(&sinfo->block_groups[i]))
8614 free_bytes += __btrfs_get_ro_block_group_free_space(
8615 &sinfo->block_groups[i]);
8616
8617 spin_unlock(&sinfo->lock);
8618
8619 return free_bytes;
8620 }
8621
8622 void btrfs_set_block_group_rw(struct btrfs_root *root,
8623 struct btrfs_block_group_cache *cache)
8624 {
8625 struct btrfs_space_info *sinfo = cache->space_info;
8626 u64 num_bytes;
8627
8628 BUG_ON(!cache->ro);
8629
8630 spin_lock(&sinfo->lock);
8631 spin_lock(&cache->lock);
8632 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8633 cache->bytes_super - btrfs_block_group_used(&cache->item);
8634 sinfo->bytes_readonly -= num_bytes;
8635 cache->ro = 0;
8636 spin_unlock(&cache->lock);
8637 spin_unlock(&sinfo->lock);
8638 }
8639
8640 /*
8641 * checks to see if its even possible to relocate this block group.
8642 *
8643 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8644 * ok to go ahead and try.
8645 */
8646 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8647 {
8648 struct btrfs_block_group_cache *block_group;
8649 struct btrfs_space_info *space_info;
8650 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8651 struct btrfs_device *device;
8652 struct btrfs_trans_handle *trans;
8653 u64 min_free;
8654 u64 dev_min = 1;
8655 u64 dev_nr = 0;
8656 u64 target;
8657 int index;
8658 int full = 0;
8659 int ret = 0;
8660
8661 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8662
8663 /* odd, couldn't find the block group, leave it alone */
8664 if (!block_group)
8665 return -1;
8666
8667 min_free = btrfs_block_group_used(&block_group->item);
8668
8669 /* no bytes used, we're good */
8670 if (!min_free)
8671 goto out;
8672
8673 space_info = block_group->space_info;
8674 spin_lock(&space_info->lock);
8675
8676 full = space_info->full;
8677
8678 /*
8679 * if this is the last block group we have in this space, we can't
8680 * relocate it unless we're able to allocate a new chunk below.
8681 *
8682 * Otherwise, we need to make sure we have room in the space to handle
8683 * all of the extents from this block group. If we can, we're good
8684 */
8685 if ((space_info->total_bytes != block_group->key.offset) &&
8686 (space_info->bytes_used + space_info->bytes_reserved +
8687 space_info->bytes_pinned + space_info->bytes_readonly +
8688 min_free < space_info->total_bytes)) {
8689 spin_unlock(&space_info->lock);
8690 goto out;
8691 }
8692 spin_unlock(&space_info->lock);
8693
8694 /*
8695 * ok we don't have enough space, but maybe we have free space on our
8696 * devices to allocate new chunks for relocation, so loop through our
8697 * alloc devices and guess if we have enough space. if this block
8698 * group is going to be restriped, run checks against the target
8699 * profile instead of the current one.
8700 */
8701 ret = -1;
8702
8703 /*
8704 * index:
8705 * 0: raid10
8706 * 1: raid1
8707 * 2: dup
8708 * 3: raid0
8709 * 4: single
8710 */
8711 target = get_restripe_target(root->fs_info, block_group->flags);
8712 if (target) {
8713 index = __get_raid_index(extended_to_chunk(target));
8714 } else {
8715 /*
8716 * this is just a balance, so if we were marked as full
8717 * we know there is no space for a new chunk
8718 */
8719 if (full)
8720 goto out;
8721
8722 index = get_block_group_index(block_group);
8723 }
8724
8725 if (index == BTRFS_RAID_RAID10) {
8726 dev_min = 4;
8727 /* Divide by 2 */
8728 min_free >>= 1;
8729 } else if (index == BTRFS_RAID_RAID1) {
8730 dev_min = 2;
8731 } else if (index == BTRFS_RAID_DUP) {
8732 /* Multiply by 2 */
8733 min_free <<= 1;
8734 } else if (index == BTRFS_RAID_RAID0) {
8735 dev_min = fs_devices->rw_devices;
8736 do_div(min_free, dev_min);
8737 }
8738
8739 /* We need to do this so that we can look at pending chunks */
8740 trans = btrfs_join_transaction(root);
8741 if (IS_ERR(trans)) {
8742 ret = PTR_ERR(trans);
8743 goto out;
8744 }
8745
8746 mutex_lock(&root->fs_info->chunk_mutex);
8747 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8748 u64 dev_offset;
8749
8750 /*
8751 * check to make sure we can actually find a chunk with enough
8752 * space to fit our block group in.
8753 */
8754 if (device->total_bytes > device->bytes_used + min_free &&
8755 !device->is_tgtdev_for_dev_replace) {
8756 ret = find_free_dev_extent(trans, device, min_free,
8757 &dev_offset, NULL);
8758 if (!ret)
8759 dev_nr++;
8760
8761 if (dev_nr >= dev_min)
8762 break;
8763
8764 ret = -1;
8765 }
8766 }
8767 mutex_unlock(&root->fs_info->chunk_mutex);
8768 btrfs_end_transaction(trans, root);
8769 out:
8770 btrfs_put_block_group(block_group);
8771 return ret;
8772 }
8773
8774 static int find_first_block_group(struct btrfs_root *root,
8775 struct btrfs_path *path, struct btrfs_key *key)
8776 {
8777 int ret = 0;
8778 struct btrfs_key found_key;
8779 struct extent_buffer *leaf;
8780 int slot;
8781
8782 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8783 if (ret < 0)
8784 goto out;
8785
8786 while (1) {
8787 slot = path->slots[0];
8788 leaf = path->nodes[0];
8789 if (slot >= btrfs_header_nritems(leaf)) {
8790 ret = btrfs_next_leaf(root, path);
8791 if (ret == 0)
8792 continue;
8793 if (ret < 0)
8794 goto out;
8795 break;
8796 }
8797 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8798
8799 if (found_key.objectid >= key->objectid &&
8800 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8801 ret = 0;
8802 goto out;
8803 }
8804 path->slots[0]++;
8805 }
8806 out:
8807 return ret;
8808 }
8809
8810 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8811 {
8812 struct btrfs_block_group_cache *block_group;
8813 u64 last = 0;
8814
8815 while (1) {
8816 struct inode *inode;
8817
8818 block_group = btrfs_lookup_first_block_group(info, last);
8819 while (block_group) {
8820 spin_lock(&block_group->lock);
8821 if (block_group->iref)
8822 break;
8823 spin_unlock(&block_group->lock);
8824 block_group = next_block_group(info->tree_root,
8825 block_group);
8826 }
8827 if (!block_group) {
8828 if (last == 0)
8829 break;
8830 last = 0;
8831 continue;
8832 }
8833
8834 inode = block_group->inode;
8835 block_group->iref = 0;
8836 block_group->inode = NULL;
8837 spin_unlock(&block_group->lock);
8838 iput(inode);
8839 last = block_group->key.objectid + block_group->key.offset;
8840 btrfs_put_block_group(block_group);
8841 }
8842 }
8843
8844 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8845 {
8846 struct btrfs_block_group_cache *block_group;
8847 struct btrfs_space_info *space_info;
8848 struct btrfs_caching_control *caching_ctl;
8849 struct rb_node *n;
8850
8851 down_write(&info->commit_root_sem);
8852 while (!list_empty(&info->caching_block_groups)) {
8853 caching_ctl = list_entry(info->caching_block_groups.next,
8854 struct btrfs_caching_control, list);
8855 list_del(&caching_ctl->list);
8856 put_caching_control(caching_ctl);
8857 }
8858 up_write(&info->commit_root_sem);
8859
8860 spin_lock(&info->unused_bgs_lock);
8861 while (!list_empty(&info->unused_bgs)) {
8862 block_group = list_first_entry(&info->unused_bgs,
8863 struct btrfs_block_group_cache,
8864 bg_list);
8865 list_del_init(&block_group->bg_list);
8866 btrfs_put_block_group(block_group);
8867 }
8868 spin_unlock(&info->unused_bgs_lock);
8869
8870 spin_lock(&info->block_group_cache_lock);
8871 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8872 block_group = rb_entry(n, struct btrfs_block_group_cache,
8873 cache_node);
8874 rb_erase(&block_group->cache_node,
8875 &info->block_group_cache_tree);
8876 spin_unlock(&info->block_group_cache_lock);
8877
8878 down_write(&block_group->space_info->groups_sem);
8879 list_del(&block_group->list);
8880 up_write(&block_group->space_info->groups_sem);
8881
8882 if (block_group->cached == BTRFS_CACHE_STARTED)
8883 wait_block_group_cache_done(block_group);
8884
8885 /*
8886 * We haven't cached this block group, which means we could
8887 * possibly have excluded extents on this block group.
8888 */
8889 if (block_group->cached == BTRFS_CACHE_NO ||
8890 block_group->cached == BTRFS_CACHE_ERROR)
8891 free_excluded_extents(info->extent_root, block_group);
8892
8893 btrfs_remove_free_space_cache(block_group);
8894 btrfs_put_block_group(block_group);
8895
8896 spin_lock(&info->block_group_cache_lock);
8897 }
8898 spin_unlock(&info->block_group_cache_lock);
8899
8900 /* now that all the block groups are freed, go through and
8901 * free all the space_info structs. This is only called during
8902 * the final stages of unmount, and so we know nobody is
8903 * using them. We call synchronize_rcu() once before we start,
8904 * just to be on the safe side.
8905 */
8906 synchronize_rcu();
8907
8908 release_global_block_rsv(info);
8909
8910 while (!list_empty(&info->space_info)) {
8911 int i;
8912
8913 space_info = list_entry(info->space_info.next,
8914 struct btrfs_space_info,
8915 list);
8916 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8917 if (WARN_ON(space_info->bytes_pinned > 0 ||
8918 space_info->bytes_reserved > 0 ||
8919 space_info->bytes_may_use > 0)) {
8920 dump_space_info(space_info, 0, 0);
8921 }
8922 }
8923 list_del(&space_info->list);
8924 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8925 struct kobject *kobj;
8926 kobj = space_info->block_group_kobjs[i];
8927 space_info->block_group_kobjs[i] = NULL;
8928 if (kobj) {
8929 kobject_del(kobj);
8930 kobject_put(kobj);
8931 }
8932 }
8933 kobject_del(&space_info->kobj);
8934 kobject_put(&space_info->kobj);
8935 }
8936 return 0;
8937 }
8938
8939 static void __link_block_group(struct btrfs_space_info *space_info,
8940 struct btrfs_block_group_cache *cache)
8941 {
8942 int index = get_block_group_index(cache);
8943 bool first = false;
8944
8945 down_write(&space_info->groups_sem);
8946 if (list_empty(&space_info->block_groups[index]))
8947 first = true;
8948 list_add_tail(&cache->list, &space_info->block_groups[index]);
8949 up_write(&space_info->groups_sem);
8950
8951 if (first) {
8952 struct raid_kobject *rkobj;
8953 int ret;
8954
8955 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8956 if (!rkobj)
8957 goto out_err;
8958 rkobj->raid_type = index;
8959 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8960 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8961 "%s", get_raid_name(index));
8962 if (ret) {
8963 kobject_put(&rkobj->kobj);
8964 goto out_err;
8965 }
8966 space_info->block_group_kobjs[index] = &rkobj->kobj;
8967 }
8968
8969 return;
8970 out_err:
8971 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8972 }
8973
8974 static struct btrfs_block_group_cache *
8975 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8976 {
8977 struct btrfs_block_group_cache *cache;
8978
8979 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8980 if (!cache)
8981 return NULL;
8982
8983 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8984 GFP_NOFS);
8985 if (!cache->free_space_ctl) {
8986 kfree(cache);
8987 return NULL;
8988 }
8989
8990 cache->key.objectid = start;
8991 cache->key.offset = size;
8992 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8993
8994 cache->sectorsize = root->sectorsize;
8995 cache->fs_info = root->fs_info;
8996 cache->full_stripe_len = btrfs_full_stripe_len(root,
8997 &root->fs_info->mapping_tree,
8998 start);
8999 atomic_set(&cache->count, 1);
9000 spin_lock_init(&cache->lock);
9001 init_rwsem(&cache->data_rwsem);
9002 INIT_LIST_HEAD(&cache->list);
9003 INIT_LIST_HEAD(&cache->cluster_list);
9004 INIT_LIST_HEAD(&cache->bg_list);
9005 btrfs_init_free_space_ctl(cache);
9006
9007 return cache;
9008 }
9009
9010 int btrfs_read_block_groups(struct btrfs_root *root)
9011 {
9012 struct btrfs_path *path;
9013 int ret;
9014 struct btrfs_block_group_cache *cache;
9015 struct btrfs_fs_info *info = root->fs_info;
9016 struct btrfs_space_info *space_info;
9017 struct btrfs_key key;
9018 struct btrfs_key found_key;
9019 struct extent_buffer *leaf;
9020 int need_clear = 0;
9021 u64 cache_gen;
9022
9023 root = info->extent_root;
9024 key.objectid = 0;
9025 key.offset = 0;
9026 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9027 path = btrfs_alloc_path();
9028 if (!path)
9029 return -ENOMEM;
9030 path->reada = 1;
9031
9032 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9033 if (btrfs_test_opt(root, SPACE_CACHE) &&
9034 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9035 need_clear = 1;
9036 if (btrfs_test_opt(root, CLEAR_CACHE))
9037 need_clear = 1;
9038
9039 while (1) {
9040 ret = find_first_block_group(root, path, &key);
9041 if (ret > 0)
9042 break;
9043 if (ret != 0)
9044 goto error;
9045
9046 leaf = path->nodes[0];
9047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9048
9049 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9050 found_key.offset);
9051 if (!cache) {
9052 ret = -ENOMEM;
9053 goto error;
9054 }
9055
9056 if (need_clear) {
9057 /*
9058 * When we mount with old space cache, we need to
9059 * set BTRFS_DC_CLEAR and set dirty flag.
9060 *
9061 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9062 * truncate the old free space cache inode and
9063 * setup a new one.
9064 * b) Setting 'dirty flag' makes sure that we flush
9065 * the new space cache info onto disk.
9066 */
9067 cache->disk_cache_state = BTRFS_DC_CLEAR;
9068 if (btrfs_test_opt(root, SPACE_CACHE))
9069 cache->dirty = 1;
9070 }
9071
9072 read_extent_buffer(leaf, &cache->item,
9073 btrfs_item_ptr_offset(leaf, path->slots[0]),
9074 sizeof(cache->item));
9075 cache->flags = btrfs_block_group_flags(&cache->item);
9076
9077 key.objectid = found_key.objectid + found_key.offset;
9078 btrfs_release_path(path);
9079
9080 /*
9081 * We need to exclude the super stripes now so that the space
9082 * info has super bytes accounted for, otherwise we'll think
9083 * we have more space than we actually do.
9084 */
9085 ret = exclude_super_stripes(root, cache);
9086 if (ret) {
9087 /*
9088 * We may have excluded something, so call this just in
9089 * case.
9090 */
9091 free_excluded_extents(root, cache);
9092 btrfs_put_block_group(cache);
9093 goto error;
9094 }
9095
9096 /*
9097 * check for two cases, either we are full, and therefore
9098 * don't need to bother with the caching work since we won't
9099 * find any space, or we are empty, and we can just add all
9100 * the space in and be done with it. This saves us _alot_ of
9101 * time, particularly in the full case.
9102 */
9103 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9104 cache->last_byte_to_unpin = (u64)-1;
9105 cache->cached = BTRFS_CACHE_FINISHED;
9106 free_excluded_extents(root, cache);
9107 } else if (btrfs_block_group_used(&cache->item) == 0) {
9108 cache->last_byte_to_unpin = (u64)-1;
9109 cache->cached = BTRFS_CACHE_FINISHED;
9110 add_new_free_space(cache, root->fs_info,
9111 found_key.objectid,
9112 found_key.objectid +
9113 found_key.offset);
9114 free_excluded_extents(root, cache);
9115 }
9116
9117 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9118 if (ret) {
9119 btrfs_remove_free_space_cache(cache);
9120 btrfs_put_block_group(cache);
9121 goto error;
9122 }
9123
9124 ret = update_space_info(info, cache->flags, found_key.offset,
9125 btrfs_block_group_used(&cache->item),
9126 &space_info);
9127 if (ret) {
9128 btrfs_remove_free_space_cache(cache);
9129 spin_lock(&info->block_group_cache_lock);
9130 rb_erase(&cache->cache_node,
9131 &info->block_group_cache_tree);
9132 spin_unlock(&info->block_group_cache_lock);
9133 btrfs_put_block_group(cache);
9134 goto error;
9135 }
9136
9137 cache->space_info = space_info;
9138 spin_lock(&cache->space_info->lock);
9139 cache->space_info->bytes_readonly += cache->bytes_super;
9140 spin_unlock(&cache->space_info->lock);
9141
9142 __link_block_group(space_info, cache);
9143
9144 set_avail_alloc_bits(root->fs_info, cache->flags);
9145 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9146 set_block_group_ro(cache, 1);
9147 } else if (btrfs_block_group_used(&cache->item) == 0) {
9148 spin_lock(&info->unused_bgs_lock);
9149 /* Should always be true but just in case. */
9150 if (list_empty(&cache->bg_list)) {
9151 btrfs_get_block_group(cache);
9152 list_add_tail(&cache->bg_list,
9153 &info->unused_bgs);
9154 }
9155 spin_unlock(&info->unused_bgs_lock);
9156 }
9157 }
9158
9159 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9160 if (!(get_alloc_profile(root, space_info->flags) &
9161 (BTRFS_BLOCK_GROUP_RAID10 |
9162 BTRFS_BLOCK_GROUP_RAID1 |
9163 BTRFS_BLOCK_GROUP_RAID5 |
9164 BTRFS_BLOCK_GROUP_RAID6 |
9165 BTRFS_BLOCK_GROUP_DUP)))
9166 continue;
9167 /*
9168 * avoid allocating from un-mirrored block group if there are
9169 * mirrored block groups.
9170 */
9171 list_for_each_entry(cache,
9172 &space_info->block_groups[BTRFS_RAID_RAID0],
9173 list)
9174 set_block_group_ro(cache, 1);
9175 list_for_each_entry(cache,
9176 &space_info->block_groups[BTRFS_RAID_SINGLE],
9177 list)
9178 set_block_group_ro(cache, 1);
9179 }
9180
9181 init_global_block_rsv(info);
9182 ret = 0;
9183 error:
9184 btrfs_free_path(path);
9185 return ret;
9186 }
9187
9188 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9189 struct btrfs_root *root)
9190 {
9191 struct btrfs_block_group_cache *block_group, *tmp;
9192 struct btrfs_root *extent_root = root->fs_info->extent_root;
9193 struct btrfs_block_group_item item;
9194 struct btrfs_key key;
9195 int ret = 0;
9196
9197 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9198 list_del_init(&block_group->bg_list);
9199 if (ret)
9200 continue;
9201
9202 spin_lock(&block_group->lock);
9203 memcpy(&item, &block_group->item, sizeof(item));
9204 memcpy(&key, &block_group->key, sizeof(key));
9205 spin_unlock(&block_group->lock);
9206
9207 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9208 sizeof(item));
9209 if (ret)
9210 btrfs_abort_transaction(trans, extent_root, ret);
9211 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9212 key.objectid, key.offset);
9213 if (ret)
9214 btrfs_abort_transaction(trans, extent_root, ret);
9215 }
9216 }
9217
9218 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9219 struct btrfs_root *root, u64 bytes_used,
9220 u64 type, u64 chunk_objectid, u64 chunk_offset,
9221 u64 size)
9222 {
9223 int ret;
9224 struct btrfs_root *extent_root;
9225 struct btrfs_block_group_cache *cache;
9226
9227 extent_root = root->fs_info->extent_root;
9228
9229 btrfs_set_log_full_commit(root->fs_info, trans);
9230
9231 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9232 if (!cache)
9233 return -ENOMEM;
9234
9235 btrfs_set_block_group_used(&cache->item, bytes_used);
9236 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9237 btrfs_set_block_group_flags(&cache->item, type);
9238
9239 cache->flags = type;
9240 cache->last_byte_to_unpin = (u64)-1;
9241 cache->cached = BTRFS_CACHE_FINISHED;
9242 ret = exclude_super_stripes(root, cache);
9243 if (ret) {
9244 /*
9245 * We may have excluded something, so call this just in
9246 * case.
9247 */
9248 free_excluded_extents(root, cache);
9249 btrfs_put_block_group(cache);
9250 return ret;
9251 }
9252
9253 add_new_free_space(cache, root->fs_info, chunk_offset,
9254 chunk_offset + size);
9255
9256 free_excluded_extents(root, cache);
9257
9258 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9259 if (ret) {
9260 btrfs_remove_free_space_cache(cache);
9261 btrfs_put_block_group(cache);
9262 return ret;
9263 }
9264
9265 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9266 &cache->space_info);
9267 if (ret) {
9268 btrfs_remove_free_space_cache(cache);
9269 spin_lock(&root->fs_info->block_group_cache_lock);
9270 rb_erase(&cache->cache_node,
9271 &root->fs_info->block_group_cache_tree);
9272 spin_unlock(&root->fs_info->block_group_cache_lock);
9273 btrfs_put_block_group(cache);
9274 return ret;
9275 }
9276 update_global_block_rsv(root->fs_info);
9277
9278 spin_lock(&cache->space_info->lock);
9279 cache->space_info->bytes_readonly += cache->bytes_super;
9280 spin_unlock(&cache->space_info->lock);
9281
9282 __link_block_group(cache->space_info, cache);
9283
9284 list_add_tail(&cache->bg_list, &trans->new_bgs);
9285
9286 set_avail_alloc_bits(extent_root->fs_info, type);
9287
9288 return 0;
9289 }
9290
9291 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9292 {
9293 u64 extra_flags = chunk_to_extended(flags) &
9294 BTRFS_EXTENDED_PROFILE_MASK;
9295
9296 write_seqlock(&fs_info->profiles_lock);
9297 if (flags & BTRFS_BLOCK_GROUP_DATA)
9298 fs_info->avail_data_alloc_bits &= ~extra_flags;
9299 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9300 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9301 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9302 fs_info->avail_system_alloc_bits &= ~extra_flags;
9303 write_sequnlock(&fs_info->profiles_lock);
9304 }
9305
9306 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9307 struct btrfs_root *root, u64 group_start)
9308 {
9309 struct btrfs_path *path;
9310 struct btrfs_block_group_cache *block_group;
9311 struct btrfs_free_cluster *cluster;
9312 struct btrfs_root *tree_root = root->fs_info->tree_root;
9313 struct btrfs_key key;
9314 struct inode *inode;
9315 struct kobject *kobj = NULL;
9316 int ret;
9317 int index;
9318 int factor;
9319
9320 root = root->fs_info->extent_root;
9321
9322 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9323 BUG_ON(!block_group);
9324 BUG_ON(!block_group->ro);
9325
9326 /*
9327 * Free the reserved super bytes from this block group before
9328 * remove it.
9329 */
9330 free_excluded_extents(root, block_group);
9331
9332 memcpy(&key, &block_group->key, sizeof(key));
9333 index = get_block_group_index(block_group);
9334 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9335 BTRFS_BLOCK_GROUP_RAID1 |
9336 BTRFS_BLOCK_GROUP_RAID10))
9337 factor = 2;
9338 else
9339 factor = 1;
9340
9341 /* make sure this block group isn't part of an allocation cluster */
9342 cluster = &root->fs_info->data_alloc_cluster;
9343 spin_lock(&cluster->refill_lock);
9344 btrfs_return_cluster_to_free_space(block_group, cluster);
9345 spin_unlock(&cluster->refill_lock);
9346
9347 /*
9348 * make sure this block group isn't part of a metadata
9349 * allocation cluster
9350 */
9351 cluster = &root->fs_info->meta_alloc_cluster;
9352 spin_lock(&cluster->refill_lock);
9353 btrfs_return_cluster_to_free_space(block_group, cluster);
9354 spin_unlock(&cluster->refill_lock);
9355
9356 path = btrfs_alloc_path();
9357 if (!path) {
9358 ret = -ENOMEM;
9359 goto out;
9360 }
9361
9362 inode = lookup_free_space_inode(tree_root, block_group, path);
9363 if (!IS_ERR(inode)) {
9364 ret = btrfs_orphan_add(trans, inode);
9365 if (ret) {
9366 btrfs_add_delayed_iput(inode);
9367 goto out;
9368 }
9369 clear_nlink(inode);
9370 /* One for the block groups ref */
9371 spin_lock(&block_group->lock);
9372 if (block_group->iref) {
9373 block_group->iref = 0;
9374 block_group->inode = NULL;
9375 spin_unlock(&block_group->lock);
9376 iput(inode);
9377 } else {
9378 spin_unlock(&block_group->lock);
9379 }
9380 /* One for our lookup ref */
9381 btrfs_add_delayed_iput(inode);
9382 }
9383
9384 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9385 key.offset = block_group->key.objectid;
9386 key.type = 0;
9387
9388 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9389 if (ret < 0)
9390 goto out;
9391 if (ret > 0)
9392 btrfs_release_path(path);
9393 if (ret == 0) {
9394 ret = btrfs_del_item(trans, tree_root, path);
9395 if (ret)
9396 goto out;
9397 btrfs_release_path(path);
9398 }
9399
9400 spin_lock(&root->fs_info->block_group_cache_lock);
9401 rb_erase(&block_group->cache_node,
9402 &root->fs_info->block_group_cache_tree);
9403
9404 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9405 root->fs_info->first_logical_byte = (u64)-1;
9406 spin_unlock(&root->fs_info->block_group_cache_lock);
9407
9408 down_write(&block_group->space_info->groups_sem);
9409 /*
9410 * we must use list_del_init so people can check to see if they
9411 * are still on the list after taking the semaphore
9412 */
9413 list_del_init(&block_group->list);
9414 if (list_empty(&block_group->space_info->block_groups[index])) {
9415 kobj = block_group->space_info->block_group_kobjs[index];
9416 block_group->space_info->block_group_kobjs[index] = NULL;
9417 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9418 }
9419 up_write(&block_group->space_info->groups_sem);
9420 if (kobj) {
9421 kobject_del(kobj);
9422 kobject_put(kobj);
9423 }
9424
9425 if (block_group->cached == BTRFS_CACHE_STARTED)
9426 wait_block_group_cache_done(block_group);
9427
9428 btrfs_remove_free_space_cache(block_group);
9429
9430 spin_lock(&block_group->space_info->lock);
9431 block_group->space_info->total_bytes -= block_group->key.offset;
9432 block_group->space_info->bytes_readonly -= block_group->key.offset;
9433 block_group->space_info->disk_total -= block_group->key.offset * factor;
9434 spin_unlock(&block_group->space_info->lock);
9435
9436 memcpy(&key, &block_group->key, sizeof(key));
9437
9438 btrfs_put_block_group(block_group);
9439 btrfs_put_block_group(block_group);
9440
9441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9442 if (ret > 0)
9443 ret = -EIO;
9444 if (ret < 0)
9445 goto out;
9446
9447 ret = btrfs_del_item(trans, root, path);
9448 out:
9449 btrfs_free_path(path);
9450 return ret;
9451 }
9452
9453 /*
9454 * Process the unused_bgs list and remove any that don't have any allocated
9455 * space inside of them.
9456 */
9457 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9458 {
9459 struct btrfs_block_group_cache *block_group;
9460 struct btrfs_space_info *space_info;
9461 struct btrfs_root *root = fs_info->extent_root;
9462 struct btrfs_trans_handle *trans;
9463 int ret = 0;
9464
9465 if (!fs_info->open)
9466 return;
9467
9468 spin_lock(&fs_info->unused_bgs_lock);
9469 while (!list_empty(&fs_info->unused_bgs)) {
9470 u64 start, end;
9471
9472 block_group = list_first_entry(&fs_info->unused_bgs,
9473 struct btrfs_block_group_cache,
9474 bg_list);
9475 space_info = block_group->space_info;
9476 list_del_init(&block_group->bg_list);
9477 if (ret || btrfs_mixed_space_info(space_info)) {
9478 btrfs_put_block_group(block_group);
9479 continue;
9480 }
9481 spin_unlock(&fs_info->unused_bgs_lock);
9482
9483 /* Don't want to race with allocators so take the groups_sem */
9484 down_write(&space_info->groups_sem);
9485 spin_lock(&block_group->lock);
9486 if (block_group->reserved ||
9487 btrfs_block_group_used(&block_group->item) ||
9488 block_group->ro) {
9489 /*
9490 * We want to bail if we made new allocations or have
9491 * outstanding allocations in this block group. We do
9492 * the ro check in case balance is currently acting on
9493 * this block group.
9494 */
9495 spin_unlock(&block_group->lock);
9496 up_write(&space_info->groups_sem);
9497 goto next;
9498 }
9499 spin_unlock(&block_group->lock);
9500
9501 /* We don't want to force the issue, only flip if it's ok. */
9502 ret = set_block_group_ro(block_group, 0);
9503 up_write(&space_info->groups_sem);
9504 if (ret < 0) {
9505 ret = 0;
9506 goto next;
9507 }
9508
9509 /*
9510 * Want to do this before we do anything else so we can recover
9511 * properly if we fail to join the transaction.
9512 */
9513 trans = btrfs_join_transaction(root);
9514 if (IS_ERR(trans)) {
9515 btrfs_set_block_group_rw(root, block_group);
9516 ret = PTR_ERR(trans);
9517 goto next;
9518 }
9519
9520 /*
9521 * We could have pending pinned extents for this block group,
9522 * just delete them, we don't care about them anymore.
9523 */
9524 start = block_group->key.objectid;
9525 end = start + block_group->key.offset - 1;
9526 clear_extent_bits(&fs_info->freed_extents[0], start, end,
9527 EXTENT_DIRTY, GFP_NOFS);
9528 clear_extent_bits(&fs_info->freed_extents[1], start, end,
9529 EXTENT_DIRTY, GFP_NOFS);
9530
9531 /* Reset pinned so btrfs_put_block_group doesn't complain */
9532 block_group->pinned = 0;
9533
9534 /*
9535 * Btrfs_remove_chunk will abort the transaction if things go
9536 * horribly wrong.
9537 */
9538 ret = btrfs_remove_chunk(trans, root,
9539 block_group->key.objectid);
9540 btrfs_end_transaction(trans, root);
9541 next:
9542 btrfs_put_block_group(block_group);
9543 spin_lock(&fs_info->unused_bgs_lock);
9544 }
9545 spin_unlock(&fs_info->unused_bgs_lock);
9546 }
9547
9548 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9549 {
9550 struct btrfs_space_info *space_info;
9551 struct btrfs_super_block *disk_super;
9552 u64 features;
9553 u64 flags;
9554 int mixed = 0;
9555 int ret;
9556
9557 disk_super = fs_info->super_copy;
9558 if (!btrfs_super_root(disk_super))
9559 return 1;
9560
9561 features = btrfs_super_incompat_flags(disk_super);
9562 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9563 mixed = 1;
9564
9565 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9566 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9567 if (ret)
9568 goto out;
9569
9570 if (mixed) {
9571 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9572 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9573 } else {
9574 flags = BTRFS_BLOCK_GROUP_METADATA;
9575 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9576 if (ret)
9577 goto out;
9578
9579 flags = BTRFS_BLOCK_GROUP_DATA;
9580 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9581 }
9582 out:
9583 return ret;
9584 }
9585
9586 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9587 {
9588 return unpin_extent_range(root, start, end);
9589 }
9590
9591 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9592 u64 num_bytes, u64 *actual_bytes)
9593 {
9594 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9595 }
9596
9597 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9598 {
9599 struct btrfs_fs_info *fs_info = root->fs_info;
9600 struct btrfs_block_group_cache *cache = NULL;
9601 u64 group_trimmed;
9602 u64 start;
9603 u64 end;
9604 u64 trimmed = 0;
9605 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9606 int ret = 0;
9607
9608 /*
9609 * try to trim all FS space, our block group may start from non-zero.
9610 */
9611 if (range->len == total_bytes)
9612 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9613 else
9614 cache = btrfs_lookup_block_group(fs_info, range->start);
9615
9616 while (cache) {
9617 if (cache->key.objectid >= (range->start + range->len)) {
9618 btrfs_put_block_group(cache);
9619 break;
9620 }
9621
9622 start = max(range->start, cache->key.objectid);
9623 end = min(range->start + range->len,
9624 cache->key.objectid + cache->key.offset);
9625
9626 if (end - start >= range->minlen) {
9627 if (!block_group_cache_done(cache)) {
9628 ret = cache_block_group(cache, 0);
9629 if (ret) {
9630 btrfs_put_block_group(cache);
9631 break;
9632 }
9633 ret = wait_block_group_cache_done(cache);
9634 if (ret) {
9635 btrfs_put_block_group(cache);
9636 break;
9637 }
9638 }
9639 ret = btrfs_trim_block_group(cache,
9640 &group_trimmed,
9641 start,
9642 end,
9643 range->minlen);
9644
9645 trimmed += group_trimmed;
9646 if (ret) {
9647 btrfs_put_block_group(cache);
9648 break;
9649 }
9650 }
9651
9652 cache = next_block_group(fs_info->tree_root, cache);
9653 }
9654
9655 range->len = trimmed;
9656 return ret;
9657 }
9658
9659 /*
9660 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9661 * they are used to prevent the some tasks writing data into the page cache
9662 * by nocow before the subvolume is snapshoted, but flush the data into
9663 * the disk after the snapshot creation.
9664 */
9665 void btrfs_end_nocow_write(struct btrfs_root *root)
9666 {
9667 percpu_counter_dec(&root->subv_writers->counter);
9668 /*
9669 * Make sure counter is updated before we wake up
9670 * waiters.
9671 */
9672 smp_mb();
9673 if (waitqueue_active(&root->subv_writers->wait))
9674 wake_up(&root->subv_writers->wait);
9675 }
9676
9677 int btrfs_start_nocow_write(struct btrfs_root *root)
9678 {
9679 if (atomic_read(&root->will_be_snapshoted))
9680 return 0;
9681
9682 percpu_counter_inc(&root->subv_writers->counter);
9683 /*
9684 * Make sure counter is updated before we check for snapshot creation.
9685 */
9686 smp_mb();
9687 if (atomic_read(&root->will_be_snapshoted)) {
9688 btrfs_end_nocow_write(root);
9689 return 0;
9690 }
9691 return 1;
9692 }