]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/extent-tree.c
btrfs: cleanup root usage by btrfs_get_alloc_profile
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134
135 /*
136 * If not empty, someone is still holding mutex of
137 * full_stripe_lock, which can only be released by caller.
138 * And it will definitely cause use-after-free when caller
139 * tries to release full stripe lock.
140 *
141 * No better way to resolve, but only to warn.
142 */
143 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
144 kfree(cache->free_space_ctl);
145 kfree(cache);
146 }
147 }
148
149 /*
150 * this adds the block group to the fs_info rb tree for the block group
151 * cache
152 */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 struct btrfs_block_group_cache *block_group)
155 {
156 struct rb_node **p;
157 struct rb_node *parent = NULL;
158 struct btrfs_block_group_cache *cache;
159
160 spin_lock(&info->block_group_cache_lock);
161 p = &info->block_group_cache_tree.rb_node;
162
163 while (*p) {
164 parent = *p;
165 cache = rb_entry(parent, struct btrfs_block_group_cache,
166 cache_node);
167 if (block_group->key.objectid < cache->key.objectid) {
168 p = &(*p)->rb_left;
169 } else if (block_group->key.objectid > cache->key.objectid) {
170 p = &(*p)->rb_right;
171 } else {
172 spin_unlock(&info->block_group_cache_lock);
173 return -EEXIST;
174 }
175 }
176
177 rb_link_node(&block_group->cache_node, parent, p);
178 rb_insert_color(&block_group->cache_node,
179 &info->block_group_cache_tree);
180
181 if (info->first_logical_byte > block_group->key.objectid)
182 info->first_logical_byte = block_group->key.objectid;
183
184 spin_unlock(&info->block_group_cache_lock);
185
186 return 0;
187 }
188
189 /*
190 * This will return the block group at or after bytenr if contains is 0, else
191 * it will return the block group that contains the bytenr
192 */
193 static struct btrfs_block_group_cache *
194 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
195 int contains)
196 {
197 struct btrfs_block_group_cache *cache, *ret = NULL;
198 struct rb_node *n;
199 u64 end, start;
200
201 spin_lock(&info->block_group_cache_lock);
202 n = info->block_group_cache_tree.rb_node;
203
204 while (n) {
205 cache = rb_entry(n, struct btrfs_block_group_cache,
206 cache_node);
207 end = cache->key.objectid + cache->key.offset - 1;
208 start = cache->key.objectid;
209
210 if (bytenr < start) {
211 if (!contains && (!ret || start < ret->key.objectid))
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
227 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
228 info->first_logical_byte = ret->key.objectid;
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233 }
234
235 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
236 u64 start, u64 num_bytes)
237 {
238 u64 end = start + num_bytes - 1;
239 set_extent_bits(&fs_info->freed_extents[0],
240 start, end, EXTENT_UPTODATE);
241 set_extent_bits(&fs_info->freed_extents[1],
242 start, end, EXTENT_UPTODATE);
243 return 0;
244 }
245
246 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
247 struct btrfs_block_group_cache *cache)
248 {
249 u64 start, end;
250
251 start = cache->key.objectid;
252 end = start + cache->key.offset - 1;
253
254 clear_extent_bits(&fs_info->freed_extents[0],
255 start, end, EXTENT_UPTODATE);
256 clear_extent_bits(&fs_info->freed_extents[1],
257 start, end, EXTENT_UPTODATE);
258 }
259
260 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
261 struct btrfs_block_group_cache *cache)
262 {
263 u64 bytenr;
264 u64 *logical;
265 int stripe_len;
266 int i, nr, ret;
267
268 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
269 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
270 cache->bytes_super += stripe_len;
271 ret = add_excluded_extent(fs_info, cache->key.objectid,
272 stripe_len);
273 if (ret)
274 return ret;
275 }
276
277 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
278 bytenr = btrfs_sb_offset(i);
279 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
280 bytenr, 0, &logical, &nr, &stripe_len);
281 if (ret)
282 return ret;
283
284 while (nr--) {
285 u64 start, len;
286
287 if (logical[nr] > cache->key.objectid +
288 cache->key.offset)
289 continue;
290
291 if (logical[nr] + stripe_len <= cache->key.objectid)
292 continue;
293
294 start = logical[nr];
295 if (start < cache->key.objectid) {
296 start = cache->key.objectid;
297 len = (logical[nr] + stripe_len) - start;
298 } else {
299 len = min_t(u64, stripe_len,
300 cache->key.objectid +
301 cache->key.offset - start);
302 }
303
304 cache->bytes_super += len;
305 ret = add_excluded_extent(fs_info, start, len);
306 if (ret) {
307 kfree(logical);
308 return ret;
309 }
310 }
311
312 kfree(logical);
313 }
314 return 0;
315 }
316
317 static struct btrfs_caching_control *
318 get_caching_control(struct btrfs_block_group_cache *cache)
319 {
320 struct btrfs_caching_control *ctl;
321
322 spin_lock(&cache->lock);
323 if (!cache->caching_ctl) {
324 spin_unlock(&cache->lock);
325 return NULL;
326 }
327
328 ctl = cache->caching_ctl;
329 refcount_inc(&ctl->count);
330 spin_unlock(&cache->lock);
331 return ctl;
332 }
333
334 static void put_caching_control(struct btrfs_caching_control *ctl)
335 {
336 if (refcount_dec_and_test(&ctl->count))
337 kfree(ctl);
338 }
339
340 #ifdef CONFIG_BTRFS_DEBUG
341 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
342 {
343 struct btrfs_fs_info *fs_info = block_group->fs_info;
344 u64 start = block_group->key.objectid;
345 u64 len = block_group->key.offset;
346 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
347 fs_info->nodesize : fs_info->sectorsize;
348 u64 step = chunk << 1;
349
350 while (len > chunk) {
351 btrfs_remove_free_space(block_group, start, chunk);
352 start += step;
353 if (len < step)
354 len = 0;
355 else
356 len -= step;
357 }
358 }
359 #endif
360
361 /*
362 * this is only called by cache_block_group, since we could have freed extents
363 * we need to check the pinned_extents for any extents that can't be used yet
364 * since their free space will be released as soon as the transaction commits.
365 */
366 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
367 struct btrfs_fs_info *info, u64 start, u64 end)
368 {
369 u64 extent_start, extent_end, size, total_added = 0;
370 int ret;
371
372 while (start < end) {
373 ret = find_first_extent_bit(info->pinned_extents, start,
374 &extent_start, &extent_end,
375 EXTENT_DIRTY | EXTENT_UPTODATE,
376 NULL);
377 if (ret)
378 break;
379
380 if (extent_start <= start) {
381 start = extent_end + 1;
382 } else if (extent_start > start && extent_start < end) {
383 size = extent_start - start;
384 total_added += size;
385 ret = btrfs_add_free_space(block_group, start,
386 size);
387 BUG_ON(ret); /* -ENOMEM or logic error */
388 start = extent_end + 1;
389 } else {
390 break;
391 }
392 }
393
394 if (start < end) {
395 size = end - start;
396 total_added += size;
397 ret = btrfs_add_free_space(block_group, start, size);
398 BUG_ON(ret); /* -ENOMEM or logic error */
399 }
400
401 return total_added;
402 }
403
404 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
405 {
406 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
407 struct btrfs_fs_info *fs_info = block_group->fs_info;
408 struct btrfs_root *extent_root = fs_info->extent_root;
409 struct btrfs_path *path;
410 struct extent_buffer *leaf;
411 struct btrfs_key key;
412 u64 total_found = 0;
413 u64 last = 0;
414 u32 nritems;
415 int ret;
416 bool wakeup = true;
417
418 path = btrfs_alloc_path();
419 if (!path)
420 return -ENOMEM;
421
422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425 /*
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
428 * the free space.
429 */
430 if (btrfs_should_fragment_free_space(block_group))
431 wakeup = false;
432 #endif
433 /*
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
438 */
439 path->skip_locking = 1;
440 path->search_commit_root = 1;
441 path->reada = READA_FORWARD;
442
443 key.objectid = last;
444 key.offset = 0;
445 key.type = BTRFS_EXTENT_ITEM_KEY;
446
447 next:
448 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
449 if (ret < 0)
450 goto out;
451
452 leaf = path->nodes[0];
453 nritems = btrfs_header_nritems(leaf);
454
455 while (1) {
456 if (btrfs_fs_closing(fs_info) > 1) {
457 last = (u64)-1;
458 break;
459 }
460
461 if (path->slots[0] < nritems) {
462 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463 } else {
464 ret = find_next_key(path, 0, &key);
465 if (ret)
466 break;
467
468 if (need_resched() ||
469 rwsem_is_contended(&fs_info->commit_root_sem)) {
470 if (wakeup)
471 caching_ctl->progress = last;
472 btrfs_release_path(path);
473 up_read(&fs_info->commit_root_sem);
474 mutex_unlock(&caching_ctl->mutex);
475 cond_resched();
476 mutex_lock(&caching_ctl->mutex);
477 down_read(&fs_info->commit_root_sem);
478 goto next;
479 }
480
481 ret = btrfs_next_leaf(extent_root, path);
482 if (ret < 0)
483 goto out;
484 if (ret)
485 break;
486 leaf = path->nodes[0];
487 nritems = btrfs_header_nritems(leaf);
488 continue;
489 }
490
491 if (key.objectid < last) {
492 key.objectid = last;
493 key.offset = 0;
494 key.type = BTRFS_EXTENT_ITEM_KEY;
495
496 if (wakeup)
497 caching_ctl->progress = last;
498 btrfs_release_path(path);
499 goto next;
500 }
501
502 if (key.objectid < block_group->key.objectid) {
503 path->slots[0]++;
504 continue;
505 }
506
507 if (key.objectid >= block_group->key.objectid +
508 block_group->key.offset)
509 break;
510
511 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
512 key.type == BTRFS_METADATA_ITEM_KEY) {
513 total_found += add_new_free_space(block_group,
514 fs_info, last,
515 key.objectid);
516 if (key.type == BTRFS_METADATA_ITEM_KEY)
517 last = key.objectid +
518 fs_info->nodesize;
519 else
520 last = key.objectid + key.offset;
521
522 if (total_found > CACHING_CTL_WAKE_UP) {
523 total_found = 0;
524 if (wakeup)
525 wake_up(&caching_ctl->wait);
526 }
527 }
528 path->slots[0]++;
529 }
530 ret = 0;
531
532 total_found += add_new_free_space(block_group, fs_info, last,
533 block_group->key.objectid +
534 block_group->key.offset);
535 caching_ctl->progress = (u64)-1;
536
537 out:
538 btrfs_free_path(path);
539 return ret;
540 }
541
542 static noinline void caching_thread(struct btrfs_work *work)
543 {
544 struct btrfs_block_group_cache *block_group;
545 struct btrfs_fs_info *fs_info;
546 struct btrfs_caching_control *caching_ctl;
547 struct btrfs_root *extent_root;
548 int ret;
549
550 caching_ctl = container_of(work, struct btrfs_caching_control, work);
551 block_group = caching_ctl->block_group;
552 fs_info = block_group->fs_info;
553 extent_root = fs_info->extent_root;
554
555 mutex_lock(&caching_ctl->mutex);
556 down_read(&fs_info->commit_root_sem);
557
558 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
559 ret = load_free_space_tree(caching_ctl);
560 else
561 ret = load_extent_tree_free(caching_ctl);
562
563 spin_lock(&block_group->lock);
564 block_group->caching_ctl = NULL;
565 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
566 spin_unlock(&block_group->lock);
567
568 #ifdef CONFIG_BTRFS_DEBUG
569 if (btrfs_should_fragment_free_space(block_group)) {
570 u64 bytes_used;
571
572 spin_lock(&block_group->space_info->lock);
573 spin_lock(&block_group->lock);
574 bytes_used = block_group->key.offset -
575 btrfs_block_group_used(&block_group->item);
576 block_group->space_info->bytes_used += bytes_used >> 1;
577 spin_unlock(&block_group->lock);
578 spin_unlock(&block_group->space_info->lock);
579 fragment_free_space(block_group);
580 }
581 #endif
582
583 caching_ctl->progress = (u64)-1;
584
585 up_read(&fs_info->commit_root_sem);
586 free_excluded_extents(fs_info, block_group);
587 mutex_unlock(&caching_ctl->mutex);
588
589 wake_up(&caching_ctl->wait);
590
591 put_caching_control(caching_ctl);
592 btrfs_put_block_group(block_group);
593 }
594
595 static int cache_block_group(struct btrfs_block_group_cache *cache,
596 int load_cache_only)
597 {
598 DEFINE_WAIT(wait);
599 struct btrfs_fs_info *fs_info = cache->fs_info;
600 struct btrfs_caching_control *caching_ctl;
601 int ret = 0;
602
603 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
604 if (!caching_ctl)
605 return -ENOMEM;
606
607 INIT_LIST_HEAD(&caching_ctl->list);
608 mutex_init(&caching_ctl->mutex);
609 init_waitqueue_head(&caching_ctl->wait);
610 caching_ctl->block_group = cache;
611 caching_ctl->progress = cache->key.objectid;
612 refcount_set(&caching_ctl->count, 1);
613 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
614 caching_thread, NULL, NULL);
615
616 spin_lock(&cache->lock);
617 /*
618 * This should be a rare occasion, but this could happen I think in the
619 * case where one thread starts to load the space cache info, and then
620 * some other thread starts a transaction commit which tries to do an
621 * allocation while the other thread is still loading the space cache
622 * info. The previous loop should have kept us from choosing this block
623 * group, but if we've moved to the state where we will wait on caching
624 * block groups we need to first check if we're doing a fast load here,
625 * so we can wait for it to finish, otherwise we could end up allocating
626 * from a block group who's cache gets evicted for one reason or
627 * another.
628 */
629 while (cache->cached == BTRFS_CACHE_FAST) {
630 struct btrfs_caching_control *ctl;
631
632 ctl = cache->caching_ctl;
633 refcount_inc(&ctl->count);
634 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
635 spin_unlock(&cache->lock);
636
637 schedule();
638
639 finish_wait(&ctl->wait, &wait);
640 put_caching_control(ctl);
641 spin_lock(&cache->lock);
642 }
643
644 if (cache->cached != BTRFS_CACHE_NO) {
645 spin_unlock(&cache->lock);
646 kfree(caching_ctl);
647 return 0;
648 }
649 WARN_ON(cache->caching_ctl);
650 cache->caching_ctl = caching_ctl;
651 cache->cached = BTRFS_CACHE_FAST;
652 spin_unlock(&cache->lock);
653
654 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
655 mutex_lock(&caching_ctl->mutex);
656 ret = load_free_space_cache(fs_info, cache);
657
658 spin_lock(&cache->lock);
659 if (ret == 1) {
660 cache->caching_ctl = NULL;
661 cache->cached = BTRFS_CACHE_FINISHED;
662 cache->last_byte_to_unpin = (u64)-1;
663 caching_ctl->progress = (u64)-1;
664 } else {
665 if (load_cache_only) {
666 cache->caching_ctl = NULL;
667 cache->cached = BTRFS_CACHE_NO;
668 } else {
669 cache->cached = BTRFS_CACHE_STARTED;
670 cache->has_caching_ctl = 1;
671 }
672 }
673 spin_unlock(&cache->lock);
674 #ifdef CONFIG_BTRFS_DEBUG
675 if (ret == 1 &&
676 btrfs_should_fragment_free_space(cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(cache);
687 }
688 #endif
689 mutex_unlock(&caching_ctl->mutex);
690
691 wake_up(&caching_ctl->wait);
692 if (ret == 1) {
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info, cache);
695 return 0;
696 }
697 } else {
698 /*
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
712 }
713
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
716 return 0;
717 }
718
719 down_write(&fs_info->commit_root_sem);
720 refcount_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
723
724 btrfs_get_block_group(cache);
725
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728 return ret;
729 }
730
731 /*
732 * return the block group that starts at or after bytenr
733 */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 return block_group_cache_tree_search(info, bytenr, 0);
738 }
739
740 /*
741 * return the block group that contains the given bytenr
742 */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
746 {
747 return block_group_cache_tree_search(info, bytenr, 1);
748 }
749
750 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
751 u64 flags)
752 {
753 struct list_head *head = &info->space_info;
754 struct btrfs_space_info *found;
755
756 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
757
758 rcu_read_lock();
759 list_for_each_entry_rcu(found, head, list) {
760 if (found->flags & flags) {
761 rcu_read_unlock();
762 return found;
763 }
764 }
765 rcu_read_unlock();
766 return NULL;
767 }
768
769 /*
770 * after adding space to the filesystem, we need to clear the full flags
771 * on all the space infos.
772 */
773 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
774 {
775 struct list_head *head = &info->space_info;
776 struct btrfs_space_info *found;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(found, head, list)
780 found->full = 0;
781 rcu_read_unlock();
782 }
783
784 /* simple helper to search for an existing data extent at a given offset */
785 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
786 {
787 int ret;
788 struct btrfs_key key;
789 struct btrfs_path *path;
790
791 path = btrfs_alloc_path();
792 if (!path)
793 return -ENOMEM;
794
795 key.objectid = start;
796 key.offset = len;
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
799 btrfs_free_path(path);
800 return ret;
801 }
802
803 /*
804 * helper function to lookup reference count and flags of a tree block.
805 *
806 * the head node for delayed ref is used to store the sum of all the
807 * reference count modifications queued up in the rbtree. the head
808 * node may also store the extent flags to set. This way you can check
809 * to see what the reference count and extent flags would be if all of
810 * the delayed refs are not processed.
811 */
812 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
813 struct btrfs_fs_info *fs_info, u64 bytenr,
814 u64 offset, int metadata, u64 *refs, u64 *flags)
815 {
816 struct btrfs_delayed_ref_head *head;
817 struct btrfs_delayed_ref_root *delayed_refs;
818 struct btrfs_path *path;
819 struct btrfs_extent_item *ei;
820 struct extent_buffer *leaf;
821 struct btrfs_key key;
822 u32 item_size;
823 u64 num_refs;
824 u64 extent_flags;
825 int ret;
826
827 /*
828 * If we don't have skinny metadata, don't bother doing anything
829 * different
830 */
831 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
832 offset = fs_info->nodesize;
833 metadata = 0;
834 }
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return -ENOMEM;
839
840 if (!trans) {
841 path->skip_locking = 1;
842 path->search_commit_root = 1;
843 }
844
845 search_again:
846 key.objectid = bytenr;
847 key.offset = offset;
848 if (metadata)
849 key.type = BTRFS_METADATA_ITEM_KEY;
850 else
851 key.type = BTRFS_EXTENT_ITEM_KEY;
852
853 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
854 if (ret < 0)
855 goto out_free;
856
857 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
858 if (path->slots[0]) {
859 path->slots[0]--;
860 btrfs_item_key_to_cpu(path->nodes[0], &key,
861 path->slots[0]);
862 if (key.objectid == bytenr &&
863 key.type == BTRFS_EXTENT_ITEM_KEY &&
864 key.offset == fs_info->nodesize)
865 ret = 0;
866 }
867 }
868
869 if (ret == 0) {
870 leaf = path->nodes[0];
871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
872 if (item_size >= sizeof(*ei)) {
873 ei = btrfs_item_ptr(leaf, path->slots[0],
874 struct btrfs_extent_item);
875 num_refs = btrfs_extent_refs(leaf, ei);
876 extent_flags = btrfs_extent_flags(leaf, ei);
877 } else {
878 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
879 struct btrfs_extent_item_v0 *ei0;
880 BUG_ON(item_size != sizeof(*ei0));
881 ei0 = btrfs_item_ptr(leaf, path->slots[0],
882 struct btrfs_extent_item_v0);
883 num_refs = btrfs_extent_refs_v0(leaf, ei0);
884 /* FIXME: this isn't correct for data */
885 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
886 #else
887 BUG();
888 #endif
889 }
890 BUG_ON(num_refs == 0);
891 } else {
892 num_refs = 0;
893 extent_flags = 0;
894 ret = 0;
895 }
896
897 if (!trans)
898 goto out;
899
900 delayed_refs = &trans->transaction->delayed_refs;
901 spin_lock(&delayed_refs->lock);
902 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
903 if (head) {
904 if (!mutex_trylock(&head->mutex)) {
905 refcount_inc(&head->node.refs);
906 spin_unlock(&delayed_refs->lock);
907
908 btrfs_release_path(path);
909
910 /*
911 * Mutex was contended, block until it's released and try
912 * again
913 */
914 mutex_lock(&head->mutex);
915 mutex_unlock(&head->mutex);
916 btrfs_put_delayed_ref(&head->node);
917 goto search_again;
918 }
919 spin_lock(&head->lock);
920 if (head->extent_op && head->extent_op->update_flags)
921 extent_flags |= head->extent_op->flags_to_set;
922 else
923 BUG_ON(num_refs == 0);
924
925 num_refs += head->node.ref_mod;
926 spin_unlock(&head->lock);
927 mutex_unlock(&head->mutex);
928 }
929 spin_unlock(&delayed_refs->lock);
930 out:
931 WARN_ON(num_refs == 0);
932 if (refs)
933 *refs = num_refs;
934 if (flags)
935 *flags = extent_flags;
936 out_free:
937 btrfs_free_path(path);
938 return ret;
939 }
940
941 /*
942 * Back reference rules. Back refs have three main goals:
943 *
944 * 1) differentiate between all holders of references to an extent so that
945 * when a reference is dropped we can make sure it was a valid reference
946 * before freeing the extent.
947 *
948 * 2) Provide enough information to quickly find the holders of an extent
949 * if we notice a given block is corrupted or bad.
950 *
951 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
952 * maintenance. This is actually the same as #2, but with a slightly
953 * different use case.
954 *
955 * There are two kinds of back refs. The implicit back refs is optimized
956 * for pointers in non-shared tree blocks. For a given pointer in a block,
957 * back refs of this kind provide information about the block's owner tree
958 * and the pointer's key. These information allow us to find the block by
959 * b-tree searching. The full back refs is for pointers in tree blocks not
960 * referenced by their owner trees. The location of tree block is recorded
961 * in the back refs. Actually the full back refs is generic, and can be
962 * used in all cases the implicit back refs is used. The major shortcoming
963 * of the full back refs is its overhead. Every time a tree block gets
964 * COWed, we have to update back refs entry for all pointers in it.
965 *
966 * For a newly allocated tree block, we use implicit back refs for
967 * pointers in it. This means most tree related operations only involve
968 * implicit back refs. For a tree block created in old transaction, the
969 * only way to drop a reference to it is COW it. So we can detect the
970 * event that tree block loses its owner tree's reference and do the
971 * back refs conversion.
972 *
973 * When a tree block is COWed through a tree, there are four cases:
974 *
975 * The reference count of the block is one and the tree is the block's
976 * owner tree. Nothing to do in this case.
977 *
978 * The reference count of the block is one and the tree is not the
979 * block's owner tree. In this case, full back refs is used for pointers
980 * in the block. Remove these full back refs, add implicit back refs for
981 * every pointers in the new block.
982 *
983 * The reference count of the block is greater than one and the tree is
984 * the block's owner tree. In this case, implicit back refs is used for
985 * pointers in the block. Add full back refs for every pointers in the
986 * block, increase lower level extents' reference counts. The original
987 * implicit back refs are entailed to the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * not the block's owner tree. Add implicit back refs for every pointer in
991 * the new block, increase lower level extents' reference count.
992 *
993 * Back Reference Key composing:
994 *
995 * The key objectid corresponds to the first byte in the extent,
996 * The key type is used to differentiate between types of back refs.
997 * There are different meanings of the key offset for different types
998 * of back refs.
999 *
1000 * File extents can be referenced by:
1001 *
1002 * - multiple snapshots, subvolumes, or different generations in one subvol
1003 * - different files inside a single subvolume
1004 * - different offsets inside a file (bookend extents in file.c)
1005 *
1006 * The extent ref structure for the implicit back refs has fields for:
1007 *
1008 * - Objectid of the subvolume root
1009 * - objectid of the file holding the reference
1010 * - original offset in the file
1011 * - how many bookend extents
1012 *
1013 * The key offset for the implicit back refs is hash of the first
1014 * three fields.
1015 *
1016 * The extent ref structure for the full back refs has field for:
1017 *
1018 * - number of pointers in the tree leaf
1019 *
1020 * The key offset for the implicit back refs is the first byte of
1021 * the tree leaf
1022 *
1023 * When a file extent is allocated, The implicit back refs is used.
1024 * the fields are filled in:
1025 *
1026 * (root_key.objectid, inode objectid, offset in file, 1)
1027 *
1028 * When a file extent is removed file truncation, we find the
1029 * corresponding implicit back refs and check the following fields:
1030 *
1031 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1032 *
1033 * Btree extents can be referenced by:
1034 *
1035 * - Different subvolumes
1036 *
1037 * Both the implicit back refs and the full back refs for tree blocks
1038 * only consist of key. The key offset for the implicit back refs is
1039 * objectid of block's owner tree. The key offset for the full back refs
1040 * is the first byte of parent block.
1041 *
1042 * When implicit back refs is used, information about the lowest key and
1043 * level of the tree block are required. These information are stored in
1044 * tree block info structure.
1045 */
1046
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1049 struct btrfs_fs_info *fs_info,
1050 struct btrfs_path *path,
1051 u64 owner, u32 extra_size)
1052 {
1053 struct btrfs_root *root = fs_info->extent_root;
1054 struct btrfs_extent_item *item;
1055 struct btrfs_extent_item_v0 *ei0;
1056 struct btrfs_extent_ref_v0 *ref0;
1057 struct btrfs_tree_block_info *bi;
1058 struct extent_buffer *leaf;
1059 struct btrfs_key key;
1060 struct btrfs_key found_key;
1061 u32 new_size = sizeof(*item);
1062 u64 refs;
1063 int ret;
1064
1065 leaf = path->nodes[0];
1066 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1067
1068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1069 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1070 struct btrfs_extent_item_v0);
1071 refs = btrfs_extent_refs_v0(leaf, ei0);
1072
1073 if (owner == (u64)-1) {
1074 while (1) {
1075 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1076 ret = btrfs_next_leaf(root, path);
1077 if (ret < 0)
1078 return ret;
1079 BUG_ON(ret > 0); /* Corruption */
1080 leaf = path->nodes[0];
1081 }
1082 btrfs_item_key_to_cpu(leaf, &found_key,
1083 path->slots[0]);
1084 BUG_ON(key.objectid != found_key.objectid);
1085 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086 path->slots[0]++;
1087 continue;
1088 }
1089 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1090 struct btrfs_extent_ref_v0);
1091 owner = btrfs_ref_objectid_v0(leaf, ref0);
1092 break;
1093 }
1094 }
1095 btrfs_release_path(path);
1096
1097 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1098 new_size += sizeof(*bi);
1099
1100 new_size -= sizeof(*ei0);
1101 ret = btrfs_search_slot(trans, root, &key, path,
1102 new_size + extra_size, 1);
1103 if (ret < 0)
1104 return ret;
1105 BUG_ON(ret); /* Corruption */
1106
1107 btrfs_extend_item(fs_info, path, new_size);
1108
1109 leaf = path->nodes[0];
1110 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1111 btrfs_set_extent_refs(leaf, item, refs);
1112 /* FIXME: get real generation */
1113 btrfs_set_extent_generation(leaf, item, 0);
1114 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1115 btrfs_set_extent_flags(leaf, item,
1116 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1117 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1118 bi = (struct btrfs_tree_block_info *)(item + 1);
1119 /* FIXME: get first key of the block */
1120 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1121 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1122 } else {
1123 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1124 }
1125 btrfs_mark_buffer_dirty(leaf);
1126 return 0;
1127 }
1128 #endif
1129
1130 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1131 {
1132 u32 high_crc = ~(u32)0;
1133 u32 low_crc = ~(u32)0;
1134 __le64 lenum;
1135
1136 lenum = cpu_to_le64(root_objectid);
1137 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1138 lenum = cpu_to_le64(owner);
1139 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1140 lenum = cpu_to_le64(offset);
1141 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1142
1143 return ((u64)high_crc << 31) ^ (u64)low_crc;
1144 }
1145
1146 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1147 struct btrfs_extent_data_ref *ref)
1148 {
1149 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1150 btrfs_extent_data_ref_objectid(leaf, ref),
1151 btrfs_extent_data_ref_offset(leaf, ref));
1152 }
1153
1154 static int match_extent_data_ref(struct extent_buffer *leaf,
1155 struct btrfs_extent_data_ref *ref,
1156 u64 root_objectid, u64 owner, u64 offset)
1157 {
1158 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1159 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1160 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1161 return 0;
1162 return 1;
1163 }
1164
1165 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1166 struct btrfs_fs_info *fs_info,
1167 struct btrfs_path *path,
1168 u64 bytenr, u64 parent,
1169 u64 root_objectid,
1170 u64 owner, u64 offset)
1171 {
1172 struct btrfs_root *root = fs_info->extent_root;
1173 struct btrfs_key key;
1174 struct btrfs_extent_data_ref *ref;
1175 struct extent_buffer *leaf;
1176 u32 nritems;
1177 int ret;
1178 int recow;
1179 int err = -ENOENT;
1180
1181 key.objectid = bytenr;
1182 if (parent) {
1183 key.type = BTRFS_SHARED_DATA_REF_KEY;
1184 key.offset = parent;
1185 } else {
1186 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1187 key.offset = hash_extent_data_ref(root_objectid,
1188 owner, offset);
1189 }
1190 again:
1191 recow = 0;
1192 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1193 if (ret < 0) {
1194 err = ret;
1195 goto fail;
1196 }
1197
1198 if (parent) {
1199 if (!ret)
1200 return 0;
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 key.type = BTRFS_EXTENT_REF_V0_KEY;
1203 btrfs_release_path(path);
1204 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1205 if (ret < 0) {
1206 err = ret;
1207 goto fail;
1208 }
1209 if (!ret)
1210 return 0;
1211 #endif
1212 goto fail;
1213 }
1214
1215 leaf = path->nodes[0];
1216 nritems = btrfs_header_nritems(leaf);
1217 while (1) {
1218 if (path->slots[0] >= nritems) {
1219 ret = btrfs_next_leaf(root, path);
1220 if (ret < 0)
1221 err = ret;
1222 if (ret)
1223 goto fail;
1224
1225 leaf = path->nodes[0];
1226 nritems = btrfs_header_nritems(leaf);
1227 recow = 1;
1228 }
1229
1230 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1231 if (key.objectid != bytenr ||
1232 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1233 goto fail;
1234
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset)) {
1240 if (recow) {
1241 btrfs_release_path(path);
1242 goto again;
1243 }
1244 err = 0;
1245 break;
1246 }
1247 path->slots[0]++;
1248 }
1249 fail:
1250 return err;
1251 }
1252
1253 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1255 struct btrfs_path *path,
1256 u64 bytenr, u64 parent,
1257 u64 root_objectid, u64 owner,
1258 u64 offset, int refs_to_add)
1259 {
1260 struct btrfs_root *root = fs_info->extent_root;
1261 struct btrfs_key key;
1262 struct extent_buffer *leaf;
1263 u32 size;
1264 u32 num_refs;
1265 int ret;
1266
1267 key.objectid = bytenr;
1268 if (parent) {
1269 key.type = BTRFS_SHARED_DATA_REF_KEY;
1270 key.offset = parent;
1271 size = sizeof(struct btrfs_shared_data_ref);
1272 } else {
1273 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1274 key.offset = hash_extent_data_ref(root_objectid,
1275 owner, offset);
1276 size = sizeof(struct btrfs_extent_data_ref);
1277 }
1278
1279 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1280 if (ret && ret != -EEXIST)
1281 goto fail;
1282
1283 leaf = path->nodes[0];
1284 if (parent) {
1285 struct btrfs_shared_data_ref *ref;
1286 ref = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_shared_data_ref);
1288 if (ret == 0) {
1289 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1290 } else {
1291 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1292 num_refs += refs_to_add;
1293 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1294 }
1295 } else {
1296 struct btrfs_extent_data_ref *ref;
1297 while (ret == -EEXIST) {
1298 ref = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_extent_data_ref);
1300 if (match_extent_data_ref(leaf, ref, root_objectid,
1301 owner, offset))
1302 break;
1303 btrfs_release_path(path);
1304 key.offset++;
1305 ret = btrfs_insert_empty_item(trans, root, path, &key,
1306 size);
1307 if (ret && ret != -EEXIST)
1308 goto fail;
1309
1310 leaf = path->nodes[0];
1311 }
1312 ref = btrfs_item_ptr(leaf, path->slots[0],
1313 struct btrfs_extent_data_ref);
1314 if (ret == 0) {
1315 btrfs_set_extent_data_ref_root(leaf, ref,
1316 root_objectid);
1317 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1318 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1319 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1320 } else {
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1322 num_refs += refs_to_add;
1323 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1324 }
1325 }
1326 btrfs_mark_buffer_dirty(leaf);
1327 ret = 0;
1328 fail:
1329 btrfs_release_path(path);
1330 return ret;
1331 }
1332
1333 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info,
1335 struct btrfs_path *path,
1336 int refs_to_drop, int *last_ref)
1337 {
1338 struct btrfs_key key;
1339 struct btrfs_extent_data_ref *ref1 = NULL;
1340 struct btrfs_shared_data_ref *ref2 = NULL;
1341 struct extent_buffer *leaf;
1342 u32 num_refs = 0;
1343 int ret = 0;
1344
1345 leaf = path->nodes[0];
1346 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1347
1348 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 BUG();
1365 }
1366
1367 BUG_ON(num_refs < refs_to_drop);
1368 num_refs -= refs_to_drop;
1369
1370 if (num_refs == 0) {
1371 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1372 *last_ref = 1;
1373 } else {
1374 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1375 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1376 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1377 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1378 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1379 else {
1380 struct btrfs_extent_ref_v0 *ref0;
1381 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_ref_v0);
1383 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1384 }
1385 #endif
1386 btrfs_mark_buffer_dirty(leaf);
1387 }
1388 return ret;
1389 }
1390
1391 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1392 struct btrfs_extent_inline_ref *iref)
1393 {
1394 struct btrfs_key key;
1395 struct extent_buffer *leaf;
1396 struct btrfs_extent_data_ref *ref1;
1397 struct btrfs_shared_data_ref *ref2;
1398 u32 num_refs = 0;
1399
1400 leaf = path->nodes[0];
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 if (iref) {
1403 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1404 BTRFS_EXTENT_DATA_REF_KEY) {
1405 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else {
1408 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 }
1411 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_data_ref);
1414 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1416 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1417 struct btrfs_shared_data_ref);
1418 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1420 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1421 struct btrfs_extent_ref_v0 *ref0;
1422 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_extent_ref_v0);
1424 num_refs = btrfs_ref_count_v0(leaf, ref0);
1425 #endif
1426 } else {
1427 WARN_ON(1);
1428 }
1429 return num_refs;
1430 }
1431
1432 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1433 struct btrfs_fs_info *fs_info,
1434 struct btrfs_path *path,
1435 u64 bytenr, u64 parent,
1436 u64 root_objectid)
1437 {
1438 struct btrfs_root *root = fs_info->extent_root;
1439 struct btrfs_key key;
1440 int ret;
1441
1442 key.objectid = bytenr;
1443 if (parent) {
1444 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 key.offset = parent;
1446 } else {
1447 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1448 key.offset = root_objectid;
1449 }
1450
1451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1452 if (ret > 0)
1453 ret = -ENOENT;
1454 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1455 if (ret == -ENOENT && parent) {
1456 btrfs_release_path(path);
1457 key.type = BTRFS_EXTENT_REF_V0_KEY;
1458 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1459 if (ret > 0)
1460 ret = -ENOENT;
1461 }
1462 #endif
1463 return ret;
1464 }
1465
1466 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1467 struct btrfs_fs_info *fs_info,
1468 struct btrfs_path *path,
1469 u64 bytenr, u64 parent,
1470 u64 root_objectid)
1471 {
1472 struct btrfs_key key;
1473 int ret;
1474
1475 key.objectid = bytenr;
1476 if (parent) {
1477 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1478 key.offset = parent;
1479 } else {
1480 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1481 key.offset = root_objectid;
1482 }
1483
1484 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1485 path, &key, 0);
1486 btrfs_release_path(path);
1487 return ret;
1488 }
1489
1490 static inline int extent_ref_type(u64 parent, u64 owner)
1491 {
1492 int type;
1493 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1494 if (parent > 0)
1495 type = BTRFS_SHARED_BLOCK_REF_KEY;
1496 else
1497 type = BTRFS_TREE_BLOCK_REF_KEY;
1498 } else {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_DATA_REF_KEY;
1501 else
1502 type = BTRFS_EXTENT_DATA_REF_KEY;
1503 }
1504 return type;
1505 }
1506
1507 static int find_next_key(struct btrfs_path *path, int level,
1508 struct btrfs_key *key)
1509
1510 {
1511 for (; level < BTRFS_MAX_LEVEL; level++) {
1512 if (!path->nodes[level])
1513 break;
1514 if (path->slots[level] + 1 >=
1515 btrfs_header_nritems(path->nodes[level]))
1516 continue;
1517 if (level == 0)
1518 btrfs_item_key_to_cpu(path->nodes[level], key,
1519 path->slots[level] + 1);
1520 else
1521 btrfs_node_key_to_cpu(path->nodes[level], key,
1522 path->slots[level] + 1);
1523 return 0;
1524 }
1525 return 1;
1526 }
1527
1528 /*
1529 * look for inline back ref. if back ref is found, *ref_ret is set
1530 * to the address of inline back ref, and 0 is returned.
1531 *
1532 * if back ref isn't found, *ref_ret is set to the address where it
1533 * should be inserted, and -ENOENT is returned.
1534 *
1535 * if insert is true and there are too many inline back refs, the path
1536 * points to the extent item, and -EAGAIN is returned.
1537 *
1538 * NOTE: inline back refs are ordered in the same way that back ref
1539 * items in the tree are ordered.
1540 */
1541 static noinline_for_stack
1542 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1543 struct btrfs_fs_info *fs_info,
1544 struct btrfs_path *path,
1545 struct btrfs_extent_inline_ref **ref_ret,
1546 u64 bytenr, u64 num_bytes,
1547 u64 parent, u64 root_objectid,
1548 u64 owner, u64 offset, int insert)
1549 {
1550 struct btrfs_root *root = fs_info->extent_root;
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
1564 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1565
1566 key.objectid = bytenr;
1567 key.type = BTRFS_EXTENT_ITEM_KEY;
1568 key.offset = num_bytes;
1569
1570 want = extent_ref_type(parent, owner);
1571 if (insert) {
1572 extra_size = btrfs_extent_inline_ref_size(want);
1573 path->keep_locks = 1;
1574 } else
1575 extra_size = -1;
1576
1577 /*
1578 * Owner is our parent level, so we can just add one to get the level
1579 * for the block we are interested in.
1580 */
1581 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1582 key.type = BTRFS_METADATA_ITEM_KEY;
1583 key.offset = owner;
1584 }
1585
1586 again:
1587 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1588 if (ret < 0) {
1589 err = ret;
1590 goto out;
1591 }
1592
1593 /*
1594 * We may be a newly converted file system which still has the old fat
1595 * extent entries for metadata, so try and see if we have one of those.
1596 */
1597 if (ret > 0 && skinny_metadata) {
1598 skinny_metadata = false;
1599 if (path->slots[0]) {
1600 path->slots[0]--;
1601 btrfs_item_key_to_cpu(path->nodes[0], &key,
1602 path->slots[0]);
1603 if (key.objectid == bytenr &&
1604 key.type == BTRFS_EXTENT_ITEM_KEY &&
1605 key.offset == num_bytes)
1606 ret = 0;
1607 }
1608 if (ret) {
1609 key.objectid = bytenr;
1610 key.type = BTRFS_EXTENT_ITEM_KEY;
1611 key.offset = num_bytes;
1612 btrfs_release_path(path);
1613 goto again;
1614 }
1615 }
1616
1617 if (ret && !insert) {
1618 err = -ENOENT;
1619 goto out;
1620 } else if (WARN_ON(ret)) {
1621 err = -EIO;
1622 goto out;
1623 }
1624
1625 leaf = path->nodes[0];
1626 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1628 if (item_size < sizeof(*ei)) {
1629 if (!insert) {
1630 err = -ENOENT;
1631 goto out;
1632 }
1633 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1634 extra_size);
1635 if (ret < 0) {
1636 err = ret;
1637 goto out;
1638 }
1639 leaf = path->nodes[0];
1640 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 }
1642 #endif
1643 BUG_ON(item_size < sizeof(*ei));
1644
1645 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1646 flags = btrfs_extent_flags(leaf, ei);
1647
1648 ptr = (unsigned long)(ei + 1);
1649 end = (unsigned long)ei + item_size;
1650
1651 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1652 ptr += sizeof(struct btrfs_tree_block_info);
1653 BUG_ON(ptr > end);
1654 }
1655
1656 err = -ENOENT;
1657 while (1) {
1658 if (ptr >= end) {
1659 WARN_ON(ptr > end);
1660 break;
1661 }
1662 iref = (struct btrfs_extent_inline_ref *)ptr;
1663 type = btrfs_extent_inline_ref_type(leaf, iref);
1664 if (want < type)
1665 break;
1666 if (want > type) {
1667 ptr += btrfs_extent_inline_ref_size(type);
1668 continue;
1669 }
1670
1671 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1672 struct btrfs_extent_data_ref *dref;
1673 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1674 if (match_extent_data_ref(leaf, dref, root_objectid,
1675 owner, offset)) {
1676 err = 0;
1677 break;
1678 }
1679 if (hash_extent_data_ref_item(leaf, dref) <
1680 hash_extent_data_ref(root_objectid, owner, offset))
1681 break;
1682 } else {
1683 u64 ref_offset;
1684 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1685 if (parent > 0) {
1686 if (parent == ref_offset) {
1687 err = 0;
1688 break;
1689 }
1690 if (ref_offset < parent)
1691 break;
1692 } else {
1693 if (root_objectid == ref_offset) {
1694 err = 0;
1695 break;
1696 }
1697 if (ref_offset < root_objectid)
1698 break;
1699 }
1700 }
1701 ptr += btrfs_extent_inline_ref_size(type);
1702 }
1703 if (err == -ENOENT && insert) {
1704 if (item_size + extra_size >=
1705 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1706 err = -EAGAIN;
1707 goto out;
1708 }
1709 /*
1710 * To add new inline back ref, we have to make sure
1711 * there is no corresponding back ref item.
1712 * For simplicity, we just do not add new inline back
1713 * ref if there is any kind of item for this block
1714 */
1715 if (find_next_key(path, 0, &key) == 0 &&
1716 key.objectid == bytenr &&
1717 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1718 err = -EAGAIN;
1719 goto out;
1720 }
1721 }
1722 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1723 out:
1724 if (insert) {
1725 path->keep_locks = 0;
1726 btrfs_unlock_up_safe(path, 1);
1727 }
1728 return err;
1729 }
1730
1731 /*
1732 * helper to add new inline back ref
1733 */
1734 static noinline_for_stack
1735 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1736 struct btrfs_path *path,
1737 struct btrfs_extent_inline_ref *iref,
1738 u64 parent, u64 root_objectid,
1739 u64 owner, u64 offset, int refs_to_add,
1740 struct btrfs_delayed_extent_op *extent_op)
1741 {
1742 struct extent_buffer *leaf;
1743 struct btrfs_extent_item *ei;
1744 unsigned long ptr;
1745 unsigned long end;
1746 unsigned long item_offset;
1747 u64 refs;
1748 int size;
1749 int type;
1750
1751 leaf = path->nodes[0];
1752 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1753 item_offset = (unsigned long)iref - (unsigned long)ei;
1754
1755 type = extent_ref_type(parent, owner);
1756 size = btrfs_extent_inline_ref_size(type);
1757
1758 btrfs_extend_item(fs_info, path, size);
1759
1760 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1761 refs = btrfs_extent_refs(leaf, ei);
1762 refs += refs_to_add;
1763 btrfs_set_extent_refs(leaf, ei, refs);
1764 if (extent_op)
1765 __run_delayed_extent_op(extent_op, leaf, ei);
1766
1767 ptr = (unsigned long)ei + item_offset;
1768 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1769 if (ptr < end - size)
1770 memmove_extent_buffer(leaf, ptr + size, ptr,
1771 end - size - ptr);
1772
1773 iref = (struct btrfs_extent_inline_ref *)ptr;
1774 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1775 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1776 struct btrfs_extent_data_ref *dref;
1777 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1778 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1779 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1780 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1781 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1782 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1783 struct btrfs_shared_data_ref *sref;
1784 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1785 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1786 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1787 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1788 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1789 } else {
1790 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1791 }
1792 btrfs_mark_buffer_dirty(leaf);
1793 }
1794
1795 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1796 struct btrfs_fs_info *fs_info,
1797 struct btrfs_path *path,
1798 struct btrfs_extent_inline_ref **ref_ret,
1799 u64 bytenr, u64 num_bytes, u64 parent,
1800 u64 root_objectid, u64 owner, u64 offset)
1801 {
1802 int ret;
1803
1804 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1805 bytenr, num_bytes, parent,
1806 root_objectid, owner, offset, 0);
1807 if (ret != -ENOENT)
1808 return ret;
1809
1810 btrfs_release_path(path);
1811 *ref_ret = NULL;
1812
1813 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1814 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1815 parent, root_objectid);
1816 } else {
1817 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1818 parent, root_objectid, owner,
1819 offset);
1820 }
1821 return ret;
1822 }
1823
1824 /*
1825 * helper to update/remove inline back ref
1826 */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
1834 {
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
1866 }
1867
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
1877 *last_ref = 1;
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
1886 btrfs_truncate_item(fs_info, path, item_size, 1);
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
1889 }
1890
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_fs_info *fs_info,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 update_inline_extent_backref(fs_info, path, iref,
1909 refs_to_add, extent_op, NULL);
1910 } else if (ret == -ENOENT) {
1911 setup_inline_extent_backref(fs_info, path, iref, parent,
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
1915 }
1916 return ret;
1917 }
1918
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_fs_info *fs_info,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936 }
1937
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_fs_info *fs_info,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
1942 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 int ret = 0;
1945
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
1948 update_inline_extent_backref(fs_info, path, iref,
1949 -refs_to_drop, NULL, last_ref);
1950 } else if (is_data) {
1951 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1952 last_ref);
1953 } else {
1954 *last_ref = 1;
1955 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1956 }
1957 return ret;
1958 }
1959
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
1963 {
1964 int j, ret = 0;
1965 u64 bytes_left, end;
1966 u64 aligned_start = ALIGN(start, 1 << 9);
1967
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
1973
1974 *discarded_bytes = 0;
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 GFP_NOFS, 0);
2027 if (!ret)
2028 *discarded_bytes += bytes_left;
2029 }
2030 return ret;
2031 }
2032
2033 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 int ret;
2037 u64 discarded_bytes = 0;
2038 struct btrfs_bio *bbio = NULL;
2039
2040
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(fs_info);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2048 &bbio, 0);
2049 /* Error condition is -ENOMEM */
2050 if (!ret) {
2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 int i;
2053
2054
2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 u64 bytes;
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
2062 stripe->length,
2063 &bytes);
2064 if (!ret)
2065 discarded_bytes += bytes;
2066 else if (ret != -EOPNOTSUPP)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
2075 }
2076 btrfs_put_bbio(bbio);
2077 }
2078 btrfs_bio_counter_dec(fs_info);
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
2083
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
2086 return ret;
2087 }
2088
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_fs_info *fs_info,
2092 u64 bytenr, u64 num_bytes, u64 parent,
2093 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 int ret;
2096
2097 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2098 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2099
2100 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2101 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2102 num_bytes,
2103 parent, root_objectid, (int)owner,
2104 BTRFS_ADD_DELAYED_REF, NULL);
2105 } else {
2106 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2107 num_bytes, parent, root_objectid,
2108 owner, offset, 0,
2109 BTRFS_ADD_DELAYED_REF);
2110 }
2111 return ret;
2112 }
2113
2114 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2115 struct btrfs_fs_info *fs_info,
2116 struct btrfs_delayed_ref_node *node,
2117 u64 parent, u64 root_objectid,
2118 u64 owner, u64 offset, int refs_to_add,
2119 struct btrfs_delayed_extent_op *extent_op)
2120 {
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
2124 struct btrfs_key key;
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
2127 u64 refs;
2128 int ret;
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
2134 path->reada = READA_FORWARD;
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
2137 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2138 num_bytes, parent, root_objectid,
2139 owner, offset,
2140 refs_to_add, extent_op);
2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
2142 goto out;
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
2149 leaf = path->nodes[0];
2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
2156
2157 btrfs_mark_buffer_dirty(leaf);
2158 btrfs_release_path(path);
2159
2160 path->reada = READA_FORWARD;
2161 path->leave_spinning = 1;
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2164 root_objectid, owner, offset, refs_to_add);
2165 if (ret)
2166 btrfs_abort_transaction(trans, ret);
2167 out:
2168 btrfs_free_path(path);
2169 return ret;
2170 }
2171
2172 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2173 struct btrfs_fs_info *fs_info,
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
2177 {
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2190 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2191
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
2194 ref_root = ref->root;
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197 if (extent_op)
2198 flags |= extent_op->flags_to_set;
2199 ret = alloc_reserved_file_extent(trans, fs_info,
2200 parent, ref_root, flags,
2201 ref->objectid, ref->offset,
2202 &ins, node->ref_mod);
2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
2207 extent_op);
2208 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2209 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2210 ref_root, ref->objectid,
2211 ref->offset, node->ref_mod,
2212 extent_op);
2213 } else {
2214 BUG();
2215 }
2216 return ret;
2217 }
2218
2219 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2220 struct extent_buffer *leaf,
2221 struct btrfs_extent_item *ei)
2222 {
2223 u64 flags = btrfs_extent_flags(leaf, ei);
2224 if (extent_op->update_flags) {
2225 flags |= extent_op->flags_to_set;
2226 btrfs_set_extent_flags(leaf, ei, flags);
2227 }
2228
2229 if (extent_op->update_key) {
2230 struct btrfs_tree_block_info *bi;
2231 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2232 bi = (struct btrfs_tree_block_info *)(ei + 1);
2233 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2234 }
2235 }
2236
2237 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2238 struct btrfs_fs_info *fs_info,
2239 struct btrfs_delayed_ref_node *node,
2240 struct btrfs_delayed_extent_op *extent_op)
2241 {
2242 struct btrfs_key key;
2243 struct btrfs_path *path;
2244 struct btrfs_extent_item *ei;
2245 struct extent_buffer *leaf;
2246 u32 item_size;
2247 int ret;
2248 int err = 0;
2249 int metadata = !extent_op->is_data;
2250
2251 if (trans->aborted)
2252 return 0;
2253
2254 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2255 metadata = 0;
2256
2257 path = btrfs_alloc_path();
2258 if (!path)
2259 return -ENOMEM;
2260
2261 key.objectid = node->bytenr;
2262
2263 if (metadata) {
2264 key.type = BTRFS_METADATA_ITEM_KEY;
2265 key.offset = extent_op->level;
2266 } else {
2267 key.type = BTRFS_EXTENT_ITEM_KEY;
2268 key.offset = node->num_bytes;
2269 }
2270
2271 again:
2272 path->reada = READA_FORWARD;
2273 path->leave_spinning = 1;
2274 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2275 if (ret < 0) {
2276 err = ret;
2277 goto out;
2278 }
2279 if (ret > 0) {
2280 if (metadata) {
2281 if (path->slots[0] > 0) {
2282 path->slots[0]--;
2283 btrfs_item_key_to_cpu(path->nodes[0], &key,
2284 path->slots[0]);
2285 if (key.objectid == node->bytenr &&
2286 key.type == BTRFS_EXTENT_ITEM_KEY &&
2287 key.offset == node->num_bytes)
2288 ret = 0;
2289 }
2290 if (ret > 0) {
2291 btrfs_release_path(path);
2292 metadata = 0;
2293
2294 key.objectid = node->bytenr;
2295 key.offset = node->num_bytes;
2296 key.type = BTRFS_EXTENT_ITEM_KEY;
2297 goto again;
2298 }
2299 } else {
2300 err = -EIO;
2301 goto out;
2302 }
2303 }
2304
2305 leaf = path->nodes[0];
2306 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2308 if (item_size < sizeof(*ei)) {
2309 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2310 if (ret < 0) {
2311 err = ret;
2312 goto out;
2313 }
2314 leaf = path->nodes[0];
2315 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2316 }
2317 #endif
2318 BUG_ON(item_size < sizeof(*ei));
2319 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2320 __run_delayed_extent_op(extent_op, leaf, ei);
2321
2322 btrfs_mark_buffer_dirty(leaf);
2323 out:
2324 btrfs_free_path(path);
2325 return err;
2326 }
2327
2328 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2329 struct btrfs_fs_info *fs_info,
2330 struct btrfs_delayed_ref_node *node,
2331 struct btrfs_delayed_extent_op *extent_op,
2332 int insert_reserved)
2333 {
2334 int ret = 0;
2335 struct btrfs_delayed_tree_ref *ref;
2336 struct btrfs_key ins;
2337 u64 parent = 0;
2338 u64 ref_root = 0;
2339 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2340
2341 ref = btrfs_delayed_node_to_tree_ref(node);
2342 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2343
2344 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2345 parent = ref->parent;
2346 ref_root = ref->root;
2347
2348 ins.objectid = node->bytenr;
2349 if (skinny_metadata) {
2350 ins.offset = ref->level;
2351 ins.type = BTRFS_METADATA_ITEM_KEY;
2352 } else {
2353 ins.offset = node->num_bytes;
2354 ins.type = BTRFS_EXTENT_ITEM_KEY;
2355 }
2356
2357 if (node->ref_mod != 1) {
2358 btrfs_err(fs_info,
2359 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2360 node->bytenr, node->ref_mod, node->action, ref_root,
2361 parent);
2362 return -EIO;
2363 }
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 BUG_ON(!extent_op || !extent_op->update_flags);
2366 ret = alloc_reserved_tree_block(trans, fs_info,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
2370 ref->level, &ins);
2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
2375 extent_op);
2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 ret = __btrfs_free_extent(trans, fs_info, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
2380 } else {
2381 BUG();
2382 }
2383 return ret;
2384 }
2385
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_fs_info *fs_info,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
2392 {
2393 int ret = 0;
2394
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(fs_info, node->bytenr,
2398 node->num_bytes, 1);
2399 return 0;
2400 }
2401
2402 if (btrfs_delayed_ref_is_head(node)) {
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
2412 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2413
2414 if (insert_reserved) {
2415 btrfs_pin_extent(fs_info, node->bytenr,
2416 node->num_bytes, 1);
2417 if (head->is_data) {
2418 ret = btrfs_del_csums(trans, fs_info,
2419 node->bytenr,
2420 node->num_bytes);
2421 }
2422 }
2423
2424 /* Also free its reserved qgroup space */
2425 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2426 head->qgroup_reserved);
2427 return ret;
2428 }
2429
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2433 insert_reserved);
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2437 insert_reserved);
2438 else
2439 BUG();
2440 return ret;
2441 }
2442
2443 static inline struct btrfs_delayed_ref_node *
2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446 struct btrfs_delayed_ref_node *ref;
2447
2448 if (list_empty(&head->ref_list))
2449 return NULL;
2450
2451 /*
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2456 */
2457 if (!list_empty(&head->ref_add_list))
2458 return list_first_entry(&head->ref_add_list,
2459 struct btrfs_delayed_ref_node, add_list);
2460
2461 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462 list);
2463 ASSERT(list_empty(&ref->add_list));
2464 return ref;
2465 }
2466
2467 /*
2468 * Returns 0 on success or if called with an already aborted transaction.
2469 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 */
2471 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2472 struct btrfs_fs_info *fs_info,
2473 unsigned long nr)
2474 {
2475 struct btrfs_delayed_ref_root *delayed_refs;
2476 struct btrfs_delayed_ref_node *ref;
2477 struct btrfs_delayed_ref_head *locked_ref = NULL;
2478 struct btrfs_delayed_extent_op *extent_op;
2479 ktime_t start = ktime_get();
2480 int ret;
2481 unsigned long count = 0;
2482 unsigned long actual_count = 0;
2483 int must_insert_reserved = 0;
2484
2485 delayed_refs = &trans->transaction->delayed_refs;
2486 while (1) {
2487 if (!locked_ref) {
2488 if (count >= nr)
2489 break;
2490
2491 spin_lock(&delayed_refs->lock);
2492 locked_ref = btrfs_select_ref_head(trans);
2493 if (!locked_ref) {
2494 spin_unlock(&delayed_refs->lock);
2495 break;
2496 }
2497
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 spin_unlock(&delayed_refs->lock);
2502 /*
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2507 */
2508 if (ret == -EAGAIN) {
2509 locked_ref = NULL;
2510 count++;
2511 continue;
2512 }
2513 }
2514
2515 /*
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2520 * get a good ref.
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2526 */
2527 spin_lock(&locked_ref->lock);
2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 locked_ref);
2530
2531 /*
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2534 */
2535 ref = select_delayed_ref(locked_ref);
2536
2537 if (ref && ref->seq &&
2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 spin_unlock(&locked_ref->lock);
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 btrfs_delayed_ref_unlock(locked_ref);
2545 locked_ref = NULL;
2546 cond_resched();
2547 count++;
2548 continue;
2549 }
2550
2551 /*
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2554 */
2555 must_insert_reserved = locked_ref->must_insert_reserved;
2556 locked_ref->must_insert_reserved = 0;
2557
2558 extent_op = locked_ref->extent_op;
2559 locked_ref->extent_op = NULL;
2560
2561 if (!ref) {
2562
2563
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2567 */
2568 ref = &locked_ref->node;
2569
2570 if (extent_op && must_insert_reserved) {
2571 btrfs_free_delayed_extent_op(extent_op);
2572 extent_op = NULL;
2573 }
2574
2575 if (extent_op) {
2576 spin_unlock(&locked_ref->lock);
2577 ret = run_delayed_extent_op(trans, fs_info,
2578 ref, extent_op);
2579 btrfs_free_delayed_extent_op(extent_op);
2580
2581 if (ret) {
2582 /*
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2586 * properly.
2587 */
2588 if (must_insert_reserved)
2589 locked_ref->must_insert_reserved = 1;
2590 spin_lock(&delayed_refs->lock);
2591 locked_ref->processing = 0;
2592 delayed_refs->num_heads_ready++;
2593 spin_unlock(&delayed_refs->lock);
2594 btrfs_debug(fs_info,
2595 "run_delayed_extent_op returned %d",
2596 ret);
2597 btrfs_delayed_ref_unlock(locked_ref);
2598 return ret;
2599 }
2600 continue;
2601 }
2602
2603 /*
2604 * Need to drop our head ref lock and re-acquire the
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
2611 if (!list_empty(&locked_ref->ref_list) ||
2612 locked_ref->extent_op) {
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
2623 actual_count++;
2624 ref->in_tree = 0;
2625 list_del(&ref->list);
2626 if (!list_empty(&ref->add_list))
2627 list_del(&ref->add_list);
2628 }
2629 atomic_dec(&delayed_refs->num_entries);
2630
2631 if (!btrfs_delayed_ref_is_head(ref)) {
2632 /*
2633 * when we play the delayed ref, also correct the
2634 * ref_mod on head
2635 */
2636 switch (ref->action) {
2637 case BTRFS_ADD_DELAYED_REF:
2638 case BTRFS_ADD_DELAYED_EXTENT:
2639 locked_ref->node.ref_mod -= ref->ref_mod;
2640 break;
2641 case BTRFS_DROP_DELAYED_REF:
2642 locked_ref->node.ref_mod += ref->ref_mod;
2643 break;
2644 default:
2645 WARN_ON(1);
2646 }
2647 }
2648 spin_unlock(&locked_ref->lock);
2649
2650 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2651 must_insert_reserved);
2652
2653 btrfs_free_delayed_extent_op(extent_op);
2654 if (ret) {
2655 spin_lock(&delayed_refs->lock);
2656 locked_ref->processing = 0;
2657 delayed_refs->num_heads_ready++;
2658 spin_unlock(&delayed_refs->lock);
2659 btrfs_delayed_ref_unlock(locked_ref);
2660 btrfs_put_delayed_ref(ref);
2661 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2662 ret);
2663 return ret;
2664 }
2665
2666 /*
2667 * If this node is a head, that means all the refs in this head
2668 * have been dealt with, and we will pick the next head to deal
2669 * with, so we must unlock the head and drop it from the cluster
2670 * list before we release it.
2671 */
2672 if (btrfs_delayed_ref_is_head(ref)) {
2673 if (locked_ref->is_data &&
2674 locked_ref->total_ref_mod < 0) {
2675 spin_lock(&delayed_refs->lock);
2676 delayed_refs->pending_csums -= ref->num_bytes;
2677 spin_unlock(&delayed_refs->lock);
2678 }
2679 btrfs_delayed_ref_unlock(locked_ref);
2680 locked_ref = NULL;
2681 }
2682 btrfs_put_delayed_ref(ref);
2683 count++;
2684 cond_resched();
2685 }
2686
2687 /*
2688 * We don't want to include ref heads since we can have empty ref heads
2689 * and those will drastically skew our runtime down since we just do
2690 * accounting, no actual extent tree updates.
2691 */
2692 if (actual_count > 0) {
2693 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2694 u64 avg;
2695
2696 /*
2697 * We weigh the current average higher than our current runtime
2698 * to avoid large swings in the average.
2699 */
2700 spin_lock(&delayed_refs->lock);
2701 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2702 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2703 spin_unlock(&delayed_refs->lock);
2704 }
2705 return 0;
2706 }
2707
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 /*
2710 * Normally delayed refs get processed in ascending bytenr order. This
2711 * correlates in most cases to the order added. To expose dependencies on this
2712 * order, we start to process the tree in the middle instead of the beginning
2713 */
2714 static u64 find_middle(struct rb_root *root)
2715 {
2716 struct rb_node *n = root->rb_node;
2717 struct btrfs_delayed_ref_node *entry;
2718 int alt = 1;
2719 u64 middle;
2720 u64 first = 0, last = 0;
2721
2722 n = rb_first(root);
2723 if (n) {
2724 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 first = entry->bytenr;
2726 }
2727 n = rb_last(root);
2728 if (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 last = entry->bytenr;
2731 }
2732 n = root->rb_node;
2733
2734 while (n) {
2735 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2736 WARN_ON(!entry->in_tree);
2737
2738 middle = entry->bytenr;
2739
2740 if (alt)
2741 n = n->rb_left;
2742 else
2743 n = n->rb_right;
2744
2745 alt = 1 - alt;
2746 }
2747 return middle;
2748 }
2749 #endif
2750
2751 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2752 {
2753 u64 num_bytes;
2754
2755 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2756 sizeof(struct btrfs_extent_inline_ref));
2757 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2758 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2759
2760 /*
2761 * We don't ever fill up leaves all the way so multiply by 2 just to be
2762 * closer to what we're really going to want to use.
2763 */
2764 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2765 }
2766
2767 /*
2768 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2769 * would require to store the csums for that many bytes.
2770 */
2771 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2772 {
2773 u64 csum_size;
2774 u64 num_csums_per_leaf;
2775 u64 num_csums;
2776
2777 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2778 num_csums_per_leaf = div64_u64(csum_size,
2779 (u64)btrfs_super_csum_size(fs_info->super_copy));
2780 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2781 num_csums += num_csums_per_leaf - 1;
2782 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2783 return num_csums;
2784 }
2785
2786 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2787 struct btrfs_fs_info *fs_info)
2788 {
2789 struct btrfs_block_rsv *global_rsv;
2790 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2791 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2792 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2793 u64 num_bytes, num_dirty_bgs_bytes;
2794 int ret = 0;
2795
2796 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2797 num_heads = heads_to_leaves(fs_info, num_heads);
2798 if (num_heads > 1)
2799 num_bytes += (num_heads - 1) * fs_info->nodesize;
2800 num_bytes <<= 1;
2801 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2802 fs_info->nodesize;
2803 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2804 num_dirty_bgs);
2805 global_rsv = &fs_info->global_block_rsv;
2806
2807 /*
2808 * If we can't allocate any more chunks lets make sure we have _lots_ of
2809 * wiggle room since running delayed refs can create more delayed refs.
2810 */
2811 if (global_rsv->space_info->full) {
2812 num_dirty_bgs_bytes <<= 1;
2813 num_bytes <<= 1;
2814 }
2815
2816 spin_lock(&global_rsv->lock);
2817 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2818 ret = 1;
2819 spin_unlock(&global_rsv->lock);
2820 return ret;
2821 }
2822
2823 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_fs_info *fs_info)
2825 {
2826 u64 num_entries =
2827 atomic_read(&trans->transaction->delayed_refs.num_entries);
2828 u64 avg_runtime;
2829 u64 val;
2830
2831 smp_mb();
2832 avg_runtime = fs_info->avg_delayed_ref_runtime;
2833 val = num_entries * avg_runtime;
2834 if (val >= NSEC_PER_SEC)
2835 return 1;
2836 if (val >= NSEC_PER_SEC / 2)
2837 return 2;
2838
2839 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2840 }
2841
2842 struct async_delayed_refs {
2843 struct btrfs_root *root;
2844 u64 transid;
2845 int count;
2846 int error;
2847 int sync;
2848 struct completion wait;
2849 struct btrfs_work work;
2850 };
2851
2852 static inline struct async_delayed_refs *
2853 to_async_delayed_refs(struct btrfs_work *work)
2854 {
2855 return container_of(work, struct async_delayed_refs, work);
2856 }
2857
2858 static void delayed_ref_async_start(struct btrfs_work *work)
2859 {
2860 struct async_delayed_refs *async = to_async_delayed_refs(work);
2861 struct btrfs_trans_handle *trans;
2862 struct btrfs_fs_info *fs_info = async->root->fs_info;
2863 int ret;
2864
2865 /* if the commit is already started, we don't need to wait here */
2866 if (btrfs_transaction_blocked(fs_info))
2867 goto done;
2868
2869 trans = btrfs_join_transaction(async->root);
2870 if (IS_ERR(trans)) {
2871 async->error = PTR_ERR(trans);
2872 goto done;
2873 }
2874
2875 /*
2876 * trans->sync means that when we call end_transaction, we won't
2877 * wait on delayed refs
2878 */
2879 trans->sync = true;
2880
2881 /* Don't bother flushing if we got into a different transaction */
2882 if (trans->transid > async->transid)
2883 goto end;
2884
2885 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2886 if (ret)
2887 async->error = ret;
2888 end:
2889 ret = btrfs_end_transaction(trans);
2890 if (ret && !async->error)
2891 async->error = ret;
2892 done:
2893 if (async->sync)
2894 complete(&async->wait);
2895 else
2896 kfree(async);
2897 }
2898
2899 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2900 unsigned long count, u64 transid, int wait)
2901 {
2902 struct async_delayed_refs *async;
2903 int ret;
2904
2905 async = kmalloc(sizeof(*async), GFP_NOFS);
2906 if (!async)
2907 return -ENOMEM;
2908
2909 async->root = fs_info->tree_root;
2910 async->count = count;
2911 async->error = 0;
2912 async->transid = transid;
2913 if (wait)
2914 async->sync = 1;
2915 else
2916 async->sync = 0;
2917 init_completion(&async->wait);
2918
2919 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920 delayed_ref_async_start, NULL, NULL);
2921
2922 btrfs_queue_work(fs_info->extent_workers, &async->work);
2923
2924 if (wait) {
2925 wait_for_completion(&async->wait);
2926 ret = async->error;
2927 kfree(async);
2928 return ret;
2929 }
2930 return 0;
2931 }
2932
2933 /*
2934 * this starts processing the delayed reference count updates and
2935 * extent insertions we have queued up so far. count can be
2936 * 0, which means to process everything in the tree at the start
2937 * of the run (but not newly added entries), or it can be some target
2938 * number you'd like to process.
2939 *
2940 * Returns 0 on success or if called with an aborted transaction
2941 * Returns <0 on error and aborts the transaction
2942 */
2943 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2944 struct btrfs_fs_info *fs_info, unsigned long count)
2945 {
2946 struct rb_node *node;
2947 struct btrfs_delayed_ref_root *delayed_refs;
2948 struct btrfs_delayed_ref_head *head;
2949 int ret;
2950 int run_all = count == (unsigned long)-1;
2951 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2952
2953 /* We'll clean this up in btrfs_cleanup_transaction */
2954 if (trans->aborted)
2955 return 0;
2956
2957 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2958 return 0;
2959
2960 delayed_refs = &trans->transaction->delayed_refs;
2961 if (count == 0)
2962 count = atomic_read(&delayed_refs->num_entries) * 2;
2963
2964 again:
2965 #ifdef SCRAMBLE_DELAYED_REFS
2966 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2967 #endif
2968 trans->can_flush_pending_bgs = false;
2969 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2970 if (ret < 0) {
2971 btrfs_abort_transaction(trans, ret);
2972 return ret;
2973 }
2974
2975 if (run_all) {
2976 if (!list_empty(&trans->new_bgs))
2977 btrfs_create_pending_block_groups(trans, fs_info);
2978
2979 spin_lock(&delayed_refs->lock);
2980 node = rb_first(&delayed_refs->href_root);
2981 if (!node) {
2982 spin_unlock(&delayed_refs->lock);
2983 goto out;
2984 }
2985
2986 while (node) {
2987 head = rb_entry(node, struct btrfs_delayed_ref_head,
2988 href_node);
2989 if (btrfs_delayed_ref_is_head(&head->node)) {
2990 struct btrfs_delayed_ref_node *ref;
2991
2992 ref = &head->node;
2993 refcount_inc(&ref->refs);
2994
2995 spin_unlock(&delayed_refs->lock);
2996 /*
2997 * Mutex was contended, block until it's
2998 * released and try again
2999 */
3000 mutex_lock(&head->mutex);
3001 mutex_unlock(&head->mutex);
3002
3003 btrfs_put_delayed_ref(ref);
3004 cond_resched();
3005 goto again;
3006 } else {
3007 WARN_ON(1);
3008 }
3009 node = rb_next(node);
3010 }
3011 spin_unlock(&delayed_refs->lock);
3012 cond_resched();
3013 goto again;
3014 }
3015 out:
3016 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3017 return 0;
3018 }
3019
3020 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3021 struct btrfs_fs_info *fs_info,
3022 u64 bytenr, u64 num_bytes, u64 flags,
3023 int level, int is_data)
3024 {
3025 struct btrfs_delayed_extent_op *extent_op;
3026 int ret;
3027
3028 extent_op = btrfs_alloc_delayed_extent_op();
3029 if (!extent_op)
3030 return -ENOMEM;
3031
3032 extent_op->flags_to_set = flags;
3033 extent_op->update_flags = true;
3034 extent_op->update_key = false;
3035 extent_op->is_data = is_data ? true : false;
3036 extent_op->level = level;
3037
3038 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3039 num_bytes, extent_op);
3040 if (ret)
3041 btrfs_free_delayed_extent_op(extent_op);
3042 return ret;
3043 }
3044
3045 static noinline int check_delayed_ref(struct btrfs_root *root,
3046 struct btrfs_path *path,
3047 u64 objectid, u64 offset, u64 bytenr)
3048 {
3049 struct btrfs_delayed_ref_head *head;
3050 struct btrfs_delayed_ref_node *ref;
3051 struct btrfs_delayed_data_ref *data_ref;
3052 struct btrfs_delayed_ref_root *delayed_refs;
3053 struct btrfs_transaction *cur_trans;
3054 int ret = 0;
3055
3056 cur_trans = root->fs_info->running_transaction;
3057 if (!cur_trans)
3058 return 0;
3059
3060 delayed_refs = &cur_trans->delayed_refs;
3061 spin_lock(&delayed_refs->lock);
3062 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3063 if (!head) {
3064 spin_unlock(&delayed_refs->lock);
3065 return 0;
3066 }
3067
3068 if (!mutex_trylock(&head->mutex)) {
3069 refcount_inc(&head->node.refs);
3070 spin_unlock(&delayed_refs->lock);
3071
3072 btrfs_release_path(path);
3073
3074 /*
3075 * Mutex was contended, block until it's released and let
3076 * caller try again
3077 */
3078 mutex_lock(&head->mutex);
3079 mutex_unlock(&head->mutex);
3080 btrfs_put_delayed_ref(&head->node);
3081 return -EAGAIN;
3082 }
3083 spin_unlock(&delayed_refs->lock);
3084
3085 spin_lock(&head->lock);
3086 list_for_each_entry(ref, &head->ref_list, list) {
3087 /* If it's a shared ref we know a cross reference exists */
3088 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089 ret = 1;
3090 break;
3091 }
3092
3093 data_ref = btrfs_delayed_node_to_data_ref(ref);
3094
3095 /*
3096 * If our ref doesn't match the one we're currently looking at
3097 * then we have a cross reference.
3098 */
3099 if (data_ref->root != root->root_key.objectid ||
3100 data_ref->objectid != objectid ||
3101 data_ref->offset != offset) {
3102 ret = 1;
3103 break;
3104 }
3105 }
3106 spin_unlock(&head->lock);
3107 mutex_unlock(&head->mutex);
3108 return ret;
3109 }
3110
3111 static noinline int check_committed_ref(struct btrfs_root *root,
3112 struct btrfs_path *path,
3113 u64 objectid, u64 offset, u64 bytenr)
3114 {
3115 struct btrfs_fs_info *fs_info = root->fs_info;
3116 struct btrfs_root *extent_root = fs_info->extent_root;
3117 struct extent_buffer *leaf;
3118 struct btrfs_extent_data_ref *ref;
3119 struct btrfs_extent_inline_ref *iref;
3120 struct btrfs_extent_item *ei;
3121 struct btrfs_key key;
3122 u32 item_size;
3123 int ret;
3124
3125 key.objectid = bytenr;
3126 key.offset = (u64)-1;
3127 key.type = BTRFS_EXTENT_ITEM_KEY;
3128
3129 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130 if (ret < 0)
3131 goto out;
3132 BUG_ON(ret == 0); /* Corruption */
3133
3134 ret = -ENOENT;
3135 if (path->slots[0] == 0)
3136 goto out;
3137
3138 path->slots[0]--;
3139 leaf = path->nodes[0];
3140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3141
3142 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3143 goto out;
3144
3145 ret = 1;
3146 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148 if (item_size < sizeof(*ei)) {
3149 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150 goto out;
3151 }
3152 #endif
3153 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3154
3155 if (item_size != sizeof(*ei) +
3156 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157 goto out;
3158
3159 if (btrfs_extent_generation(leaf, ei) <=
3160 btrfs_root_last_snapshot(&root->root_item))
3161 goto out;
3162
3163 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165 BTRFS_EXTENT_DATA_REF_KEY)
3166 goto out;
3167
3168 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169 if (btrfs_extent_refs(leaf, ei) !=
3170 btrfs_extent_data_ref_count(leaf, ref) ||
3171 btrfs_extent_data_ref_root(leaf, ref) !=
3172 root->root_key.objectid ||
3173 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175 goto out;
3176
3177 ret = 0;
3178 out:
3179 return ret;
3180 }
3181
3182 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3183 u64 bytenr)
3184 {
3185 struct btrfs_path *path;
3186 int ret;
3187 int ret2;
3188
3189 path = btrfs_alloc_path();
3190 if (!path)
3191 return -ENOENT;
3192
3193 do {
3194 ret = check_committed_ref(root, path, objectid,
3195 offset, bytenr);
3196 if (ret && ret != -ENOENT)
3197 goto out;
3198
3199 ret2 = check_delayed_ref(root, path, objectid,
3200 offset, bytenr);
3201 } while (ret2 == -EAGAIN);
3202
3203 if (ret2 && ret2 != -ENOENT) {
3204 ret = ret2;
3205 goto out;
3206 }
3207
3208 if (ret != -ENOENT || ret2 != -ENOENT)
3209 ret = 0;
3210 out:
3211 btrfs_free_path(path);
3212 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3213 WARN_ON(ret > 0);
3214 return ret;
3215 }
3216
3217 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root,
3219 struct extent_buffer *buf,
3220 int full_backref, int inc)
3221 {
3222 struct btrfs_fs_info *fs_info = root->fs_info;
3223 u64 bytenr;
3224 u64 num_bytes;
3225 u64 parent;
3226 u64 ref_root;
3227 u32 nritems;
3228 struct btrfs_key key;
3229 struct btrfs_file_extent_item *fi;
3230 int i;
3231 int level;
3232 int ret = 0;
3233 int (*process_func)(struct btrfs_trans_handle *,
3234 struct btrfs_fs_info *,
3235 u64, u64, u64, u64, u64, u64);
3236
3237
3238 if (btrfs_is_testing(fs_info))
3239 return 0;
3240
3241 ref_root = btrfs_header_owner(buf);
3242 nritems = btrfs_header_nritems(buf);
3243 level = btrfs_header_level(buf);
3244
3245 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3246 return 0;
3247
3248 if (inc)
3249 process_func = btrfs_inc_extent_ref;
3250 else
3251 process_func = btrfs_free_extent;
3252
3253 if (full_backref)
3254 parent = buf->start;
3255 else
3256 parent = 0;
3257
3258 for (i = 0; i < nritems; i++) {
3259 if (level == 0) {
3260 btrfs_item_key_to_cpu(buf, &key, i);
3261 if (key.type != BTRFS_EXTENT_DATA_KEY)
3262 continue;
3263 fi = btrfs_item_ptr(buf, i,
3264 struct btrfs_file_extent_item);
3265 if (btrfs_file_extent_type(buf, fi) ==
3266 BTRFS_FILE_EXTENT_INLINE)
3267 continue;
3268 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269 if (bytenr == 0)
3270 continue;
3271
3272 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273 key.offset -= btrfs_file_extent_offset(buf, fi);
3274 ret = process_func(trans, fs_info, bytenr, num_bytes,
3275 parent, ref_root, key.objectid,
3276 key.offset);
3277 if (ret)
3278 goto fail;
3279 } else {
3280 bytenr = btrfs_node_blockptr(buf, i);
3281 num_bytes = fs_info->nodesize;
3282 ret = process_func(trans, fs_info, bytenr, num_bytes,
3283 parent, ref_root, level - 1, 0);
3284 if (ret)
3285 goto fail;
3286 }
3287 }
3288 return 0;
3289 fail:
3290 return ret;
3291 }
3292
3293 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3294 struct extent_buffer *buf, int full_backref)
3295 {
3296 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3297 }
3298
3299 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3300 struct extent_buffer *buf, int full_backref)
3301 {
3302 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3303 }
3304
3305 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3306 struct btrfs_fs_info *fs_info,
3307 struct btrfs_path *path,
3308 struct btrfs_block_group_cache *cache)
3309 {
3310 int ret;
3311 struct btrfs_root *extent_root = fs_info->extent_root;
3312 unsigned long bi;
3313 struct extent_buffer *leaf;
3314
3315 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3316 if (ret) {
3317 if (ret > 0)
3318 ret = -ENOENT;
3319 goto fail;
3320 }
3321
3322 leaf = path->nodes[0];
3323 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325 btrfs_mark_buffer_dirty(leaf);
3326 fail:
3327 btrfs_release_path(path);
3328 return ret;
3329
3330 }
3331
3332 static struct btrfs_block_group_cache *
3333 next_block_group(struct btrfs_fs_info *fs_info,
3334 struct btrfs_block_group_cache *cache)
3335 {
3336 struct rb_node *node;
3337
3338 spin_lock(&fs_info->block_group_cache_lock);
3339
3340 /* If our block group was removed, we need a full search. */
3341 if (RB_EMPTY_NODE(&cache->cache_node)) {
3342 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343
3344 spin_unlock(&fs_info->block_group_cache_lock);
3345 btrfs_put_block_group(cache);
3346 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3347 }
3348 node = rb_next(&cache->cache_node);
3349 btrfs_put_block_group(cache);
3350 if (node) {
3351 cache = rb_entry(node, struct btrfs_block_group_cache,
3352 cache_node);
3353 btrfs_get_block_group(cache);
3354 } else
3355 cache = NULL;
3356 spin_unlock(&fs_info->block_group_cache_lock);
3357 return cache;
3358 }
3359
3360 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3361 struct btrfs_trans_handle *trans,
3362 struct btrfs_path *path)
3363 {
3364 struct btrfs_fs_info *fs_info = block_group->fs_info;
3365 struct btrfs_root *root = fs_info->tree_root;
3366 struct inode *inode = NULL;
3367 u64 alloc_hint = 0;
3368 int dcs = BTRFS_DC_ERROR;
3369 u64 num_pages = 0;
3370 int retries = 0;
3371 int ret = 0;
3372
3373 /*
3374 * If this block group is smaller than 100 megs don't bother caching the
3375 * block group.
3376 */
3377 if (block_group->key.offset < (100 * SZ_1M)) {
3378 spin_lock(&block_group->lock);
3379 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380 spin_unlock(&block_group->lock);
3381 return 0;
3382 }
3383
3384 if (trans->aborted)
3385 return 0;
3386 again:
3387 inode = lookup_free_space_inode(fs_info, block_group, path);
3388 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389 ret = PTR_ERR(inode);
3390 btrfs_release_path(path);
3391 goto out;
3392 }
3393
3394 if (IS_ERR(inode)) {
3395 BUG_ON(retries);
3396 retries++;
3397
3398 if (block_group->ro)
3399 goto out_free;
3400
3401 ret = create_free_space_inode(fs_info, trans, block_group,
3402 path);
3403 if (ret)
3404 goto out_free;
3405 goto again;
3406 }
3407
3408 /* We've already setup this transaction, go ahead and exit */
3409 if (block_group->cache_generation == trans->transid &&
3410 i_size_read(inode)) {
3411 dcs = BTRFS_DC_SETUP;
3412 goto out_put;
3413 }
3414
3415 /*
3416 * We want to set the generation to 0, that way if anything goes wrong
3417 * from here on out we know not to trust this cache when we load up next
3418 * time.
3419 */
3420 BTRFS_I(inode)->generation = 0;
3421 ret = btrfs_update_inode(trans, root, inode);
3422 if (ret) {
3423 /*
3424 * So theoretically we could recover from this, simply set the
3425 * super cache generation to 0 so we know to invalidate the
3426 * cache, but then we'd have to keep track of the block groups
3427 * that fail this way so we know we _have_ to reset this cache
3428 * before the next commit or risk reading stale cache. So to
3429 * limit our exposure to horrible edge cases lets just abort the
3430 * transaction, this only happens in really bad situations
3431 * anyway.
3432 */
3433 btrfs_abort_transaction(trans, ret);
3434 goto out_put;
3435 }
3436 WARN_ON(ret);
3437
3438 if (i_size_read(inode) > 0) {
3439 ret = btrfs_check_trunc_cache_free_space(fs_info,
3440 &fs_info->global_block_rsv);
3441 if (ret)
3442 goto out_put;
3443
3444 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3445 if (ret)
3446 goto out_put;
3447 }
3448
3449 spin_lock(&block_group->lock);
3450 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3451 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3452 /*
3453 * don't bother trying to write stuff out _if_
3454 * a) we're not cached,
3455 * b) we're with nospace_cache mount option,
3456 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3457 */
3458 dcs = BTRFS_DC_WRITTEN;
3459 spin_unlock(&block_group->lock);
3460 goto out_put;
3461 }
3462 spin_unlock(&block_group->lock);
3463
3464 /*
3465 * We hit an ENOSPC when setting up the cache in this transaction, just
3466 * skip doing the setup, we've already cleared the cache so we're safe.
3467 */
3468 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3469 ret = -ENOSPC;
3470 goto out_put;
3471 }
3472
3473 /*
3474 * Try to preallocate enough space based on how big the block group is.
3475 * Keep in mind this has to include any pinned space which could end up
3476 * taking up quite a bit since it's not folded into the other space
3477 * cache.
3478 */
3479 num_pages = div_u64(block_group->key.offset, SZ_256M);
3480 if (!num_pages)
3481 num_pages = 1;
3482
3483 num_pages *= 16;
3484 num_pages *= PAGE_SIZE;
3485
3486 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3487 if (ret)
3488 goto out_put;
3489
3490 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3491 num_pages, num_pages,
3492 &alloc_hint);
3493 /*
3494 * Our cache requires contiguous chunks so that we don't modify a bunch
3495 * of metadata or split extents when writing the cache out, which means
3496 * we can enospc if we are heavily fragmented in addition to just normal
3497 * out of space conditions. So if we hit this just skip setting up any
3498 * other block groups for this transaction, maybe we'll unpin enough
3499 * space the next time around.
3500 */
3501 if (!ret)
3502 dcs = BTRFS_DC_SETUP;
3503 else if (ret == -ENOSPC)
3504 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3505
3506 out_put:
3507 iput(inode);
3508 out_free:
3509 btrfs_release_path(path);
3510 out:
3511 spin_lock(&block_group->lock);
3512 if (!ret && dcs == BTRFS_DC_SETUP)
3513 block_group->cache_generation = trans->transid;
3514 block_group->disk_cache_state = dcs;
3515 spin_unlock(&block_group->lock);
3516
3517 return ret;
3518 }
3519
3520 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3521 struct btrfs_fs_info *fs_info)
3522 {
3523 struct btrfs_block_group_cache *cache, *tmp;
3524 struct btrfs_transaction *cur_trans = trans->transaction;
3525 struct btrfs_path *path;
3526
3527 if (list_empty(&cur_trans->dirty_bgs) ||
3528 !btrfs_test_opt(fs_info, SPACE_CACHE))
3529 return 0;
3530
3531 path = btrfs_alloc_path();
3532 if (!path)
3533 return -ENOMEM;
3534
3535 /* Could add new block groups, use _safe just in case */
3536 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537 dirty_list) {
3538 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539 cache_save_setup(cache, trans, path);
3540 }
3541
3542 btrfs_free_path(path);
3543 return 0;
3544 }
3545
3546 /*
3547 * transaction commit does final block group cache writeback during a
3548 * critical section where nothing is allowed to change the FS. This is
3549 * required in order for the cache to actually match the block group,
3550 * but can introduce a lot of latency into the commit.
3551 *
3552 * So, btrfs_start_dirty_block_groups is here to kick off block group
3553 * cache IO. There's a chance we'll have to redo some of it if the
3554 * block group changes again during the commit, but it greatly reduces
3555 * the commit latency by getting rid of the easy block groups while
3556 * we're still allowing others to join the commit.
3557 */
3558 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3559 struct btrfs_fs_info *fs_info)
3560 {
3561 struct btrfs_block_group_cache *cache;
3562 struct btrfs_transaction *cur_trans = trans->transaction;
3563 int ret = 0;
3564 int should_put;
3565 struct btrfs_path *path = NULL;
3566 LIST_HEAD(dirty);
3567 struct list_head *io = &cur_trans->io_bgs;
3568 int num_started = 0;
3569 int loops = 0;
3570
3571 spin_lock(&cur_trans->dirty_bgs_lock);
3572 if (list_empty(&cur_trans->dirty_bgs)) {
3573 spin_unlock(&cur_trans->dirty_bgs_lock);
3574 return 0;
3575 }
3576 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3577 spin_unlock(&cur_trans->dirty_bgs_lock);
3578
3579 again:
3580 /*
3581 * make sure all the block groups on our dirty list actually
3582 * exist
3583 */
3584 btrfs_create_pending_block_groups(trans, fs_info);
3585
3586 if (!path) {
3587 path = btrfs_alloc_path();
3588 if (!path)
3589 return -ENOMEM;
3590 }
3591
3592 /*
3593 * cache_write_mutex is here only to save us from balance or automatic
3594 * removal of empty block groups deleting this block group while we are
3595 * writing out the cache
3596 */
3597 mutex_lock(&trans->transaction->cache_write_mutex);
3598 while (!list_empty(&dirty)) {
3599 cache = list_first_entry(&dirty,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
3602 /*
3603 * this can happen if something re-dirties a block
3604 * group that is already under IO. Just wait for it to
3605 * finish and then do it all again
3606 */
3607 if (!list_empty(&cache->io_list)) {
3608 list_del_init(&cache->io_list);
3609 btrfs_wait_cache_io(trans, cache, path);
3610 btrfs_put_block_group(cache);
3611 }
3612
3613
3614 /*
3615 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3616 * if it should update the cache_state. Don't delete
3617 * until after we wait.
3618 *
3619 * Since we're not running in the commit critical section
3620 * we need the dirty_bgs_lock to protect from update_block_group
3621 */
3622 spin_lock(&cur_trans->dirty_bgs_lock);
3623 list_del_init(&cache->dirty_list);
3624 spin_unlock(&cur_trans->dirty_bgs_lock);
3625
3626 should_put = 1;
3627
3628 cache_save_setup(cache, trans, path);
3629
3630 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3631 cache->io_ctl.inode = NULL;
3632 ret = btrfs_write_out_cache(fs_info, trans,
3633 cache, path);
3634 if (ret == 0 && cache->io_ctl.inode) {
3635 num_started++;
3636 should_put = 0;
3637
3638 /*
3639 * the cache_write_mutex is protecting
3640 * the io_list
3641 */
3642 list_add_tail(&cache->io_list, io);
3643 } else {
3644 /*
3645 * if we failed to write the cache, the
3646 * generation will be bad and life goes on
3647 */
3648 ret = 0;
3649 }
3650 }
3651 if (!ret) {
3652 ret = write_one_cache_group(trans, fs_info,
3653 path, cache);
3654 /*
3655 * Our block group might still be attached to the list
3656 * of new block groups in the transaction handle of some
3657 * other task (struct btrfs_trans_handle->new_bgs). This
3658 * means its block group item isn't yet in the extent
3659 * tree. If this happens ignore the error, as we will
3660 * try again later in the critical section of the
3661 * transaction commit.
3662 */
3663 if (ret == -ENOENT) {
3664 ret = 0;
3665 spin_lock(&cur_trans->dirty_bgs_lock);
3666 if (list_empty(&cache->dirty_list)) {
3667 list_add_tail(&cache->dirty_list,
3668 &cur_trans->dirty_bgs);
3669 btrfs_get_block_group(cache);
3670 }
3671 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 } else if (ret) {
3673 btrfs_abort_transaction(trans, ret);
3674 }
3675 }
3676
3677 /* if its not on the io list, we need to put the block group */
3678 if (should_put)
3679 btrfs_put_block_group(cache);
3680
3681 if (ret)
3682 break;
3683
3684 /*
3685 * Avoid blocking other tasks for too long. It might even save
3686 * us from writing caches for block groups that are going to be
3687 * removed.
3688 */
3689 mutex_unlock(&trans->transaction->cache_write_mutex);
3690 mutex_lock(&trans->transaction->cache_write_mutex);
3691 }
3692 mutex_unlock(&trans->transaction->cache_write_mutex);
3693
3694 /*
3695 * go through delayed refs for all the stuff we've just kicked off
3696 * and then loop back (just once)
3697 */
3698 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3699 if (!ret && loops == 0) {
3700 loops++;
3701 spin_lock(&cur_trans->dirty_bgs_lock);
3702 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3703 /*
3704 * dirty_bgs_lock protects us from concurrent block group
3705 * deletes too (not just cache_write_mutex).
3706 */
3707 if (!list_empty(&dirty)) {
3708 spin_unlock(&cur_trans->dirty_bgs_lock);
3709 goto again;
3710 }
3711 spin_unlock(&cur_trans->dirty_bgs_lock);
3712 } else if (ret < 0) {
3713 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3714 }
3715
3716 btrfs_free_path(path);
3717 return ret;
3718 }
3719
3720 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3721 struct btrfs_fs_info *fs_info)
3722 {
3723 struct btrfs_block_group_cache *cache;
3724 struct btrfs_transaction *cur_trans = trans->transaction;
3725 int ret = 0;
3726 int should_put;
3727 struct btrfs_path *path;
3728 struct list_head *io = &cur_trans->io_bgs;
3729 int num_started = 0;
3730
3731 path = btrfs_alloc_path();
3732 if (!path)
3733 return -ENOMEM;
3734
3735 /*
3736 * Even though we are in the critical section of the transaction commit,
3737 * we can still have concurrent tasks adding elements to this
3738 * transaction's list of dirty block groups. These tasks correspond to
3739 * endio free space workers started when writeback finishes for a
3740 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3741 * allocate new block groups as a result of COWing nodes of the root
3742 * tree when updating the free space inode. The writeback for the space
3743 * caches is triggered by an earlier call to
3744 * btrfs_start_dirty_block_groups() and iterations of the following
3745 * loop.
3746 * Also we want to do the cache_save_setup first and then run the
3747 * delayed refs to make sure we have the best chance at doing this all
3748 * in one shot.
3749 */
3750 spin_lock(&cur_trans->dirty_bgs_lock);
3751 while (!list_empty(&cur_trans->dirty_bgs)) {
3752 cache = list_first_entry(&cur_trans->dirty_bgs,
3753 struct btrfs_block_group_cache,
3754 dirty_list);
3755
3756 /*
3757 * this can happen if cache_save_setup re-dirties a block
3758 * group that is already under IO. Just wait for it to
3759 * finish and then do it all again
3760 */
3761 if (!list_empty(&cache->io_list)) {
3762 spin_unlock(&cur_trans->dirty_bgs_lock);
3763 list_del_init(&cache->io_list);
3764 btrfs_wait_cache_io(trans, cache, path);
3765 btrfs_put_block_group(cache);
3766 spin_lock(&cur_trans->dirty_bgs_lock);
3767 }
3768
3769 /*
3770 * don't remove from the dirty list until after we've waited
3771 * on any pending IO
3772 */
3773 list_del_init(&cache->dirty_list);
3774 spin_unlock(&cur_trans->dirty_bgs_lock);
3775 should_put = 1;
3776
3777 cache_save_setup(cache, trans, path);
3778
3779 if (!ret)
3780 ret = btrfs_run_delayed_refs(trans, fs_info,
3781 (unsigned long) -1);
3782
3783 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3784 cache->io_ctl.inode = NULL;
3785 ret = btrfs_write_out_cache(fs_info, trans,
3786 cache, path);
3787 if (ret == 0 && cache->io_ctl.inode) {
3788 num_started++;
3789 should_put = 0;
3790 list_add_tail(&cache->io_list, io);
3791 } else {
3792 /*
3793 * if we failed to write the cache, the
3794 * generation will be bad and life goes on
3795 */
3796 ret = 0;
3797 }
3798 }
3799 if (!ret) {
3800 ret = write_one_cache_group(trans, fs_info,
3801 path, cache);
3802 /*
3803 * One of the free space endio workers might have
3804 * created a new block group while updating a free space
3805 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3806 * and hasn't released its transaction handle yet, in
3807 * which case the new block group is still attached to
3808 * its transaction handle and its creation has not
3809 * finished yet (no block group item in the extent tree
3810 * yet, etc). If this is the case, wait for all free
3811 * space endio workers to finish and retry. This is a
3812 * a very rare case so no need for a more efficient and
3813 * complex approach.
3814 */
3815 if (ret == -ENOENT) {
3816 wait_event(cur_trans->writer_wait,
3817 atomic_read(&cur_trans->num_writers) == 1);
3818 ret = write_one_cache_group(trans, fs_info,
3819 path, cache);
3820 }
3821 if (ret)
3822 btrfs_abort_transaction(trans, ret);
3823 }
3824
3825 /* if its not on the io list, we need to put the block group */
3826 if (should_put)
3827 btrfs_put_block_group(cache);
3828 spin_lock(&cur_trans->dirty_bgs_lock);
3829 }
3830 spin_unlock(&cur_trans->dirty_bgs_lock);
3831
3832 while (!list_empty(io)) {
3833 cache = list_first_entry(io, struct btrfs_block_group_cache,
3834 io_list);
3835 list_del_init(&cache->io_list);
3836 btrfs_wait_cache_io(trans, cache, path);
3837 btrfs_put_block_group(cache);
3838 }
3839
3840 btrfs_free_path(path);
3841 return ret;
3842 }
3843
3844 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846 struct btrfs_block_group_cache *block_group;
3847 int readonly = 0;
3848
3849 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3850 if (!block_group || block_group->ro)
3851 readonly = 1;
3852 if (block_group)
3853 btrfs_put_block_group(block_group);
3854 return readonly;
3855 }
3856
3857 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858 {
3859 struct btrfs_block_group_cache *bg;
3860 bool ret = true;
3861
3862 bg = btrfs_lookup_block_group(fs_info, bytenr);
3863 if (!bg)
3864 return false;
3865
3866 spin_lock(&bg->lock);
3867 if (bg->ro)
3868 ret = false;
3869 else
3870 atomic_inc(&bg->nocow_writers);
3871 spin_unlock(&bg->lock);
3872
3873 /* no put on block group, done by btrfs_dec_nocow_writers */
3874 if (!ret)
3875 btrfs_put_block_group(bg);
3876
3877 return ret;
3878
3879 }
3880
3881 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3882 {
3883 struct btrfs_block_group_cache *bg;
3884
3885 bg = btrfs_lookup_block_group(fs_info, bytenr);
3886 ASSERT(bg);
3887 if (atomic_dec_and_test(&bg->nocow_writers))
3888 wake_up_atomic_t(&bg->nocow_writers);
3889 /*
3890 * Once for our lookup and once for the lookup done by a previous call
3891 * to btrfs_inc_nocow_writers()
3892 */
3893 btrfs_put_block_group(bg);
3894 btrfs_put_block_group(bg);
3895 }
3896
3897 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3898 {
3899 schedule();
3900 return 0;
3901 }
3902
3903 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3904 {
3905 wait_on_atomic_t(&bg->nocow_writers,
3906 btrfs_wait_nocow_writers_atomic_t,
3907 TASK_UNINTERRUPTIBLE);
3908 }
3909
3910 static const char *alloc_name(u64 flags)
3911 {
3912 switch (flags) {
3913 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3914 return "mixed";
3915 case BTRFS_BLOCK_GROUP_METADATA:
3916 return "metadata";
3917 case BTRFS_BLOCK_GROUP_DATA:
3918 return "data";
3919 case BTRFS_BLOCK_GROUP_SYSTEM:
3920 return "system";
3921 default:
3922 WARN_ON(1);
3923 return "invalid-combination";
3924 };
3925 }
3926
3927 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3928 u64 total_bytes, u64 bytes_used,
3929 u64 bytes_readonly,
3930 struct btrfs_space_info **space_info)
3931 {
3932 struct btrfs_space_info *found;
3933 int i;
3934 int factor;
3935 int ret;
3936
3937 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3938 BTRFS_BLOCK_GROUP_RAID10))
3939 factor = 2;
3940 else
3941 factor = 1;
3942
3943 found = __find_space_info(info, flags);
3944 if (found) {
3945 spin_lock(&found->lock);
3946 found->total_bytes += total_bytes;
3947 found->disk_total += total_bytes * factor;
3948 found->bytes_used += bytes_used;
3949 found->disk_used += bytes_used * factor;
3950 found->bytes_readonly += bytes_readonly;
3951 if (total_bytes > 0)
3952 found->full = 0;
3953 space_info_add_new_bytes(info, found, total_bytes -
3954 bytes_used - bytes_readonly);
3955 spin_unlock(&found->lock);
3956 *space_info = found;
3957 return 0;
3958 }
3959 found = kzalloc(sizeof(*found), GFP_NOFS);
3960 if (!found)
3961 return -ENOMEM;
3962
3963 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3964 if (ret) {
3965 kfree(found);
3966 return ret;
3967 }
3968
3969 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3970 INIT_LIST_HEAD(&found->block_groups[i]);
3971 init_rwsem(&found->groups_sem);
3972 spin_lock_init(&found->lock);
3973 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3974 found->total_bytes = total_bytes;
3975 found->disk_total = total_bytes * factor;
3976 found->bytes_used = bytes_used;
3977 found->disk_used = bytes_used * factor;
3978 found->bytes_pinned = 0;
3979 found->bytes_reserved = 0;
3980 found->bytes_readonly = bytes_readonly;
3981 found->bytes_may_use = 0;
3982 found->full = 0;
3983 found->max_extent_size = 0;
3984 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3985 found->chunk_alloc = 0;
3986 found->flush = 0;
3987 init_waitqueue_head(&found->wait);
3988 INIT_LIST_HEAD(&found->ro_bgs);
3989 INIT_LIST_HEAD(&found->tickets);
3990 INIT_LIST_HEAD(&found->priority_tickets);
3991
3992 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3993 info->space_info_kobj, "%s",
3994 alloc_name(found->flags));
3995 if (ret) {
3996 percpu_counter_destroy(&found->total_bytes_pinned);
3997 kfree(found);
3998 return ret;
3999 }
4000
4001 *space_info = found;
4002 list_add_rcu(&found->list, &info->space_info);
4003 if (flags & BTRFS_BLOCK_GROUP_DATA)
4004 info->data_sinfo = found;
4005
4006 return ret;
4007 }
4008
4009 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4010 {
4011 u64 extra_flags = chunk_to_extended(flags) &
4012 BTRFS_EXTENDED_PROFILE_MASK;
4013
4014 write_seqlock(&fs_info->profiles_lock);
4015 if (flags & BTRFS_BLOCK_GROUP_DATA)
4016 fs_info->avail_data_alloc_bits |= extra_flags;
4017 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4018 fs_info->avail_metadata_alloc_bits |= extra_flags;
4019 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4020 fs_info->avail_system_alloc_bits |= extra_flags;
4021 write_sequnlock(&fs_info->profiles_lock);
4022 }
4023
4024 /*
4025 * returns target flags in extended format or 0 if restripe for this
4026 * chunk_type is not in progress
4027 *
4028 * should be called with either volume_mutex or balance_lock held
4029 */
4030 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4031 {
4032 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4033 u64 target = 0;
4034
4035 if (!bctl)
4036 return 0;
4037
4038 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4039 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4040 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4041 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4042 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4043 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4044 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4045 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4046 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4047 }
4048
4049 return target;
4050 }
4051
4052 /*
4053 * @flags: available profiles in extended format (see ctree.h)
4054 *
4055 * Returns reduced profile in chunk format. If profile changing is in
4056 * progress (either running or paused) picks the target profile (if it's
4057 * already available), otherwise falls back to plain reducing.
4058 */
4059 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4060 {
4061 u64 num_devices = fs_info->fs_devices->rw_devices;
4062 u64 target;
4063 u64 raid_type;
4064 u64 allowed = 0;
4065
4066 /*
4067 * see if restripe for this chunk_type is in progress, if so
4068 * try to reduce to the target profile
4069 */
4070 spin_lock(&fs_info->balance_lock);
4071 target = get_restripe_target(fs_info, flags);
4072 if (target) {
4073 /* pick target profile only if it's already available */
4074 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4075 spin_unlock(&fs_info->balance_lock);
4076 return extended_to_chunk(target);
4077 }
4078 }
4079 spin_unlock(&fs_info->balance_lock);
4080
4081 /* First, mask out the RAID levels which aren't possible */
4082 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4083 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4084 allowed |= btrfs_raid_group[raid_type];
4085 }
4086 allowed &= flags;
4087
4088 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4089 allowed = BTRFS_BLOCK_GROUP_RAID6;
4090 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4091 allowed = BTRFS_BLOCK_GROUP_RAID5;
4092 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4093 allowed = BTRFS_BLOCK_GROUP_RAID10;
4094 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4095 allowed = BTRFS_BLOCK_GROUP_RAID1;
4096 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4097 allowed = BTRFS_BLOCK_GROUP_RAID0;
4098
4099 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4100
4101 return extended_to_chunk(flags | allowed);
4102 }
4103
4104 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4105 {
4106 unsigned seq;
4107 u64 flags;
4108
4109 do {
4110 flags = orig_flags;
4111 seq = read_seqbegin(&fs_info->profiles_lock);
4112
4113 if (flags & BTRFS_BLOCK_GROUP_DATA)
4114 flags |= fs_info->avail_data_alloc_bits;
4115 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4116 flags |= fs_info->avail_system_alloc_bits;
4117 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4118 flags |= fs_info->avail_metadata_alloc_bits;
4119 } while (read_seqretry(&fs_info->profiles_lock, seq));
4120
4121 return btrfs_reduce_alloc_profile(fs_info, flags);
4122 }
4123
4124 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4125 {
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 u64 flags;
4128 u64 ret;
4129
4130 if (data)
4131 flags = BTRFS_BLOCK_GROUP_DATA;
4132 else if (root == fs_info->chunk_root)
4133 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4134 else
4135 flags = BTRFS_BLOCK_GROUP_METADATA;
4136
4137 ret = get_alloc_profile(fs_info, flags);
4138 return ret;
4139 }
4140
4141 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4142 {
4143 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4144 }
4145
4146 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4147 {
4148 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4149 }
4150
4151 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4152 {
4153 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4154 }
4155
4156 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4157 bool may_use_included)
4158 {
4159 ASSERT(s_info);
4160 return s_info->bytes_used + s_info->bytes_reserved +
4161 s_info->bytes_pinned + s_info->bytes_readonly +
4162 (may_use_included ? s_info->bytes_may_use : 0);
4163 }
4164
4165 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4166 {
4167 struct btrfs_space_info *data_sinfo;
4168 struct btrfs_root *root = inode->root;
4169 struct btrfs_fs_info *fs_info = root->fs_info;
4170 u64 used;
4171 int ret = 0;
4172 int need_commit = 2;
4173 int have_pinned_space;
4174
4175 /* make sure bytes are sectorsize aligned */
4176 bytes = ALIGN(bytes, fs_info->sectorsize);
4177
4178 if (btrfs_is_free_space_inode(inode)) {
4179 need_commit = 0;
4180 ASSERT(current->journal_info);
4181 }
4182
4183 data_sinfo = fs_info->data_sinfo;
4184 if (!data_sinfo)
4185 goto alloc;
4186
4187 again:
4188 /* make sure we have enough space to handle the data first */
4189 spin_lock(&data_sinfo->lock);
4190 used = btrfs_space_info_used(data_sinfo, true);
4191
4192 if (used + bytes > data_sinfo->total_bytes) {
4193 struct btrfs_trans_handle *trans;
4194
4195 /*
4196 * if we don't have enough free bytes in this space then we need
4197 * to alloc a new chunk.
4198 */
4199 if (!data_sinfo->full) {
4200 u64 alloc_target;
4201
4202 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4203 spin_unlock(&data_sinfo->lock);
4204 alloc:
4205 alloc_target = btrfs_data_alloc_profile(fs_info);
4206 /*
4207 * It is ugly that we don't call nolock join
4208 * transaction for the free space inode case here.
4209 * But it is safe because we only do the data space
4210 * reservation for the free space cache in the
4211 * transaction context, the common join transaction
4212 * just increase the counter of the current transaction
4213 * handler, doesn't try to acquire the trans_lock of
4214 * the fs.
4215 */
4216 trans = btrfs_join_transaction(root);
4217 if (IS_ERR(trans))
4218 return PTR_ERR(trans);
4219
4220 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4221 CHUNK_ALLOC_NO_FORCE);
4222 btrfs_end_transaction(trans);
4223 if (ret < 0) {
4224 if (ret != -ENOSPC)
4225 return ret;
4226 else {
4227 have_pinned_space = 1;
4228 goto commit_trans;
4229 }
4230 }
4231
4232 if (!data_sinfo)
4233 data_sinfo = fs_info->data_sinfo;
4234
4235 goto again;
4236 }
4237
4238 /*
4239 * If we don't have enough pinned space to deal with this
4240 * allocation, and no removed chunk in current transaction,
4241 * don't bother committing the transaction.
4242 */
4243 have_pinned_space = percpu_counter_compare(
4244 &data_sinfo->total_bytes_pinned,
4245 used + bytes - data_sinfo->total_bytes);
4246 spin_unlock(&data_sinfo->lock);
4247
4248 /* commit the current transaction and try again */
4249 commit_trans:
4250 if (need_commit &&
4251 !atomic_read(&fs_info->open_ioctl_trans)) {
4252 need_commit--;
4253
4254 if (need_commit > 0) {
4255 btrfs_start_delalloc_roots(fs_info, 0, -1);
4256 btrfs_wait_ordered_roots(fs_info, -1, 0,
4257 (u64)-1);
4258 }
4259
4260 trans = btrfs_join_transaction(root);
4261 if (IS_ERR(trans))
4262 return PTR_ERR(trans);
4263 if (have_pinned_space >= 0 ||
4264 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4265 &trans->transaction->flags) ||
4266 need_commit > 0) {
4267 ret = btrfs_commit_transaction(trans);
4268 if (ret)
4269 return ret;
4270 /*
4271 * The cleaner kthread might still be doing iput
4272 * operations. Wait for it to finish so that
4273 * more space is released.
4274 */
4275 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4276 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4277 goto again;
4278 } else {
4279 btrfs_end_transaction(trans);
4280 }
4281 }
4282
4283 trace_btrfs_space_reservation(fs_info,
4284 "space_info:enospc",
4285 data_sinfo->flags, bytes, 1);
4286 return -ENOSPC;
4287 }
4288 data_sinfo->bytes_may_use += bytes;
4289 trace_btrfs_space_reservation(fs_info, "space_info",
4290 data_sinfo->flags, bytes, 1);
4291 spin_unlock(&data_sinfo->lock);
4292
4293 return ret;
4294 }
4295
4296 /*
4297 * New check_data_free_space() with ability for precious data reservation
4298 * Will replace old btrfs_check_data_free_space(), but for patch split,
4299 * add a new function first and then replace it.
4300 */
4301 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4302 {
4303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4304 int ret;
4305
4306 /* align the range */
4307 len = round_up(start + len, fs_info->sectorsize) -
4308 round_down(start, fs_info->sectorsize);
4309 start = round_down(start, fs_info->sectorsize);
4310
4311 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4312 if (ret < 0)
4313 return ret;
4314
4315 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4316 ret = btrfs_qgroup_reserve_data(inode, start, len);
4317 if (ret)
4318 btrfs_free_reserved_data_space_noquota(inode, start, len);
4319 return ret;
4320 }
4321
4322 /*
4323 * Called if we need to clear a data reservation for this inode
4324 * Normally in a error case.
4325 *
4326 * This one will *NOT* use accurate qgroup reserved space API, just for case
4327 * which we can't sleep and is sure it won't affect qgroup reserved space.
4328 * Like clear_bit_hook().
4329 */
4330 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4331 u64 len)
4332 {
4333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4334 struct btrfs_space_info *data_sinfo;
4335
4336 /* Make sure the range is aligned to sectorsize */
4337 len = round_up(start + len, fs_info->sectorsize) -
4338 round_down(start, fs_info->sectorsize);
4339 start = round_down(start, fs_info->sectorsize);
4340
4341 data_sinfo = fs_info->data_sinfo;
4342 spin_lock(&data_sinfo->lock);
4343 if (WARN_ON(data_sinfo->bytes_may_use < len))
4344 data_sinfo->bytes_may_use = 0;
4345 else
4346 data_sinfo->bytes_may_use -= len;
4347 trace_btrfs_space_reservation(fs_info, "space_info",
4348 data_sinfo->flags, len, 0);
4349 spin_unlock(&data_sinfo->lock);
4350 }
4351
4352 /*
4353 * Called if we need to clear a data reservation for this inode
4354 * Normally in a error case.
4355 *
4356 * This one will handle the per-inode data rsv map for accurate reserved
4357 * space framework.
4358 */
4359 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4360 {
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362
4363 /* Make sure the range is aligned to sectorsize */
4364 len = round_up(start + len, root->fs_info->sectorsize) -
4365 round_down(start, root->fs_info->sectorsize);
4366 start = round_down(start, root->fs_info->sectorsize);
4367
4368 btrfs_free_reserved_data_space_noquota(inode, start, len);
4369 btrfs_qgroup_free_data(inode, start, len);
4370 }
4371
4372 static void force_metadata_allocation(struct btrfs_fs_info *info)
4373 {
4374 struct list_head *head = &info->space_info;
4375 struct btrfs_space_info *found;
4376
4377 rcu_read_lock();
4378 list_for_each_entry_rcu(found, head, list) {
4379 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4380 found->force_alloc = CHUNK_ALLOC_FORCE;
4381 }
4382 rcu_read_unlock();
4383 }
4384
4385 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4386 {
4387 return (global->size << 1);
4388 }
4389
4390 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4391 struct btrfs_space_info *sinfo, int force)
4392 {
4393 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4394 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4395 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4396 u64 thresh;
4397
4398 if (force == CHUNK_ALLOC_FORCE)
4399 return 1;
4400
4401 /*
4402 * We need to take into account the global rsv because for all intents
4403 * and purposes it's used space. Don't worry about locking the
4404 * global_rsv, it doesn't change except when the transaction commits.
4405 */
4406 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4407 num_allocated += calc_global_rsv_need_space(global_rsv);
4408
4409 /*
4410 * in limited mode, we want to have some free space up to
4411 * about 1% of the FS size.
4412 */
4413 if (force == CHUNK_ALLOC_LIMITED) {
4414 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4415 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4416
4417 if (num_bytes - num_allocated < thresh)
4418 return 1;
4419 }
4420
4421 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4422 return 0;
4423 return 1;
4424 }
4425
4426 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4427 {
4428 u64 num_dev;
4429
4430 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4431 BTRFS_BLOCK_GROUP_RAID0 |
4432 BTRFS_BLOCK_GROUP_RAID5 |
4433 BTRFS_BLOCK_GROUP_RAID6))
4434 num_dev = fs_info->fs_devices->rw_devices;
4435 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4436 num_dev = 2;
4437 else
4438 num_dev = 1; /* DUP or single */
4439
4440 return num_dev;
4441 }
4442
4443 /*
4444 * If @is_allocation is true, reserve space in the system space info necessary
4445 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4446 * removing a chunk.
4447 */
4448 void check_system_chunk(struct btrfs_trans_handle *trans,
4449 struct btrfs_fs_info *fs_info, u64 type)
4450 {
4451 struct btrfs_space_info *info;
4452 u64 left;
4453 u64 thresh;
4454 int ret = 0;
4455 u64 num_devs;
4456
4457 /*
4458 * Needed because we can end up allocating a system chunk and for an
4459 * atomic and race free space reservation in the chunk block reserve.
4460 */
4461 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4462
4463 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4464 spin_lock(&info->lock);
4465 left = info->total_bytes - btrfs_space_info_used(info, true);
4466 spin_unlock(&info->lock);
4467
4468 num_devs = get_profile_num_devs(fs_info, type);
4469
4470 /* num_devs device items to update and 1 chunk item to add or remove */
4471 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4472 btrfs_calc_trans_metadata_size(fs_info, 1);
4473
4474 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4475 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4476 left, thresh, type);
4477 dump_space_info(fs_info, info, 0, 0);
4478 }
4479
4480 if (left < thresh) {
4481 u64 flags = btrfs_system_alloc_profile(fs_info);
4482
4483 /*
4484 * Ignore failure to create system chunk. We might end up not
4485 * needing it, as we might not need to COW all nodes/leafs from
4486 * the paths we visit in the chunk tree (they were already COWed
4487 * or created in the current transaction for example).
4488 */
4489 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4490 }
4491
4492 if (!ret) {
4493 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4494 &fs_info->chunk_block_rsv,
4495 thresh, BTRFS_RESERVE_NO_FLUSH);
4496 if (!ret)
4497 trans->chunk_bytes_reserved += thresh;
4498 }
4499 }
4500
4501 /*
4502 * If force is CHUNK_ALLOC_FORCE:
4503 * - return 1 if it successfully allocates a chunk,
4504 * - return errors including -ENOSPC otherwise.
4505 * If force is NOT CHUNK_ALLOC_FORCE:
4506 * - return 0 if it doesn't need to allocate a new chunk,
4507 * - return 1 if it successfully allocates a chunk,
4508 * - return errors including -ENOSPC otherwise.
4509 */
4510 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4511 struct btrfs_fs_info *fs_info, u64 flags, int force)
4512 {
4513 struct btrfs_space_info *space_info;
4514 int wait_for_alloc = 0;
4515 int ret = 0;
4516
4517 /* Don't re-enter if we're already allocating a chunk */
4518 if (trans->allocating_chunk)
4519 return -ENOSPC;
4520
4521 space_info = __find_space_info(fs_info, flags);
4522 if (!space_info) {
4523 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4524 BUG_ON(ret); /* -ENOMEM */
4525 }
4526 BUG_ON(!space_info); /* Logic error */
4527
4528 again:
4529 spin_lock(&space_info->lock);
4530 if (force < space_info->force_alloc)
4531 force = space_info->force_alloc;
4532 if (space_info->full) {
4533 if (should_alloc_chunk(fs_info, space_info, force))
4534 ret = -ENOSPC;
4535 else
4536 ret = 0;
4537 spin_unlock(&space_info->lock);
4538 return ret;
4539 }
4540
4541 if (!should_alloc_chunk(fs_info, space_info, force)) {
4542 spin_unlock(&space_info->lock);
4543 return 0;
4544 } else if (space_info->chunk_alloc) {
4545 wait_for_alloc = 1;
4546 } else {
4547 space_info->chunk_alloc = 1;
4548 }
4549
4550 spin_unlock(&space_info->lock);
4551
4552 mutex_lock(&fs_info->chunk_mutex);
4553
4554 /*
4555 * The chunk_mutex is held throughout the entirety of a chunk
4556 * allocation, so once we've acquired the chunk_mutex we know that the
4557 * other guy is done and we need to recheck and see if we should
4558 * allocate.
4559 */
4560 if (wait_for_alloc) {
4561 mutex_unlock(&fs_info->chunk_mutex);
4562 wait_for_alloc = 0;
4563 goto again;
4564 }
4565
4566 trans->allocating_chunk = true;
4567
4568 /*
4569 * If we have mixed data/metadata chunks we want to make sure we keep
4570 * allocating mixed chunks instead of individual chunks.
4571 */
4572 if (btrfs_mixed_space_info(space_info))
4573 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4574
4575 /*
4576 * if we're doing a data chunk, go ahead and make sure that
4577 * we keep a reasonable number of metadata chunks allocated in the
4578 * FS as well.
4579 */
4580 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4581 fs_info->data_chunk_allocations++;
4582 if (!(fs_info->data_chunk_allocations %
4583 fs_info->metadata_ratio))
4584 force_metadata_allocation(fs_info);
4585 }
4586
4587 /*
4588 * Check if we have enough space in SYSTEM chunk because we may need
4589 * to update devices.
4590 */
4591 check_system_chunk(trans, fs_info, flags);
4592
4593 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4594 trans->allocating_chunk = false;
4595
4596 spin_lock(&space_info->lock);
4597 if (ret < 0 && ret != -ENOSPC)
4598 goto out;
4599 if (ret)
4600 space_info->full = 1;
4601 else
4602 ret = 1;
4603
4604 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4605 out:
4606 space_info->chunk_alloc = 0;
4607 spin_unlock(&space_info->lock);
4608 mutex_unlock(&fs_info->chunk_mutex);
4609 /*
4610 * When we allocate a new chunk we reserve space in the chunk block
4611 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4612 * add new nodes/leafs to it if we end up needing to do it when
4613 * inserting the chunk item and updating device items as part of the
4614 * second phase of chunk allocation, performed by
4615 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4616 * large number of new block groups to create in our transaction
4617 * handle's new_bgs list to avoid exhausting the chunk block reserve
4618 * in extreme cases - like having a single transaction create many new
4619 * block groups when starting to write out the free space caches of all
4620 * the block groups that were made dirty during the lifetime of the
4621 * transaction.
4622 */
4623 if (trans->can_flush_pending_bgs &&
4624 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4625 btrfs_create_pending_block_groups(trans, fs_info);
4626 btrfs_trans_release_chunk_metadata(trans);
4627 }
4628 return ret;
4629 }
4630
4631 static int can_overcommit(struct btrfs_root *root,
4632 struct btrfs_space_info *space_info, u64 bytes,
4633 enum btrfs_reserve_flush_enum flush)
4634 {
4635 struct btrfs_fs_info *fs_info = root->fs_info;
4636 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4637 u64 profile;
4638 u64 space_size;
4639 u64 avail;
4640 u64 used;
4641
4642 /* Don't overcommit when in mixed mode. */
4643 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4644 return 0;
4645
4646 profile = get_alloc_profile_by_root(root, 0);
4647 used = btrfs_space_info_used(space_info, false);
4648
4649 /*
4650 * We only want to allow over committing if we have lots of actual space
4651 * free, but if we don't have enough space to handle the global reserve
4652 * space then we could end up having a real enospc problem when trying
4653 * to allocate a chunk or some other such important allocation.
4654 */
4655 spin_lock(&global_rsv->lock);
4656 space_size = calc_global_rsv_need_space(global_rsv);
4657 spin_unlock(&global_rsv->lock);
4658 if (used + space_size >= space_info->total_bytes)
4659 return 0;
4660
4661 used += space_info->bytes_may_use;
4662
4663 avail = atomic64_read(&fs_info->free_chunk_space);
4664
4665 /*
4666 * If we have dup, raid1 or raid10 then only half of the free
4667 * space is actually useable. For raid56, the space info used
4668 * doesn't include the parity drive, so we don't have to
4669 * change the math
4670 */
4671 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4672 BTRFS_BLOCK_GROUP_RAID1 |
4673 BTRFS_BLOCK_GROUP_RAID10))
4674 avail >>= 1;
4675
4676 /*
4677 * If we aren't flushing all things, let us overcommit up to
4678 * 1/2th of the space. If we can flush, don't let us overcommit
4679 * too much, let it overcommit up to 1/8 of the space.
4680 */
4681 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4682 avail >>= 3;
4683 else
4684 avail >>= 1;
4685
4686 if (used + bytes < space_info->total_bytes + avail)
4687 return 1;
4688 return 0;
4689 }
4690
4691 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4692 unsigned long nr_pages, int nr_items)
4693 {
4694 struct super_block *sb = fs_info->sb;
4695
4696 if (down_read_trylock(&sb->s_umount)) {
4697 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4698 up_read(&sb->s_umount);
4699 } else {
4700 /*
4701 * We needn't worry the filesystem going from r/w to r/o though
4702 * we don't acquire ->s_umount mutex, because the filesystem
4703 * should guarantee the delalloc inodes list be empty after
4704 * the filesystem is readonly(all dirty pages are written to
4705 * the disk).
4706 */
4707 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4708 if (!current->journal_info)
4709 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4710 }
4711 }
4712
4713 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4714 u64 to_reclaim)
4715 {
4716 u64 bytes;
4717 int nr;
4718
4719 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4720 nr = (int)div64_u64(to_reclaim, bytes);
4721 if (!nr)
4722 nr = 1;
4723 return nr;
4724 }
4725
4726 #define EXTENT_SIZE_PER_ITEM SZ_256K
4727
4728 /*
4729 * shrink metadata reservation for delalloc
4730 */
4731 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4732 bool wait_ordered)
4733 {
4734 struct btrfs_fs_info *fs_info = root->fs_info;
4735 struct btrfs_block_rsv *block_rsv;
4736 struct btrfs_space_info *space_info;
4737 struct btrfs_trans_handle *trans;
4738 u64 delalloc_bytes;
4739 u64 max_reclaim;
4740 long time_left;
4741 unsigned long nr_pages;
4742 int loops;
4743 int items;
4744 enum btrfs_reserve_flush_enum flush;
4745
4746 /* Calc the number of the pages we need flush for space reservation */
4747 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4748 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4749
4750 trans = (struct btrfs_trans_handle *)current->journal_info;
4751 block_rsv = &fs_info->delalloc_block_rsv;
4752 space_info = block_rsv->space_info;
4753
4754 delalloc_bytes = percpu_counter_sum_positive(
4755 &fs_info->delalloc_bytes);
4756 if (delalloc_bytes == 0) {
4757 if (trans)
4758 return;
4759 if (wait_ordered)
4760 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4761 return;
4762 }
4763
4764 loops = 0;
4765 while (delalloc_bytes && loops < 3) {
4766 max_reclaim = min(delalloc_bytes, to_reclaim);
4767 nr_pages = max_reclaim >> PAGE_SHIFT;
4768 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4769 /*
4770 * We need to wait for the async pages to actually start before
4771 * we do anything.
4772 */
4773 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4774 if (!max_reclaim)
4775 goto skip_async;
4776
4777 if (max_reclaim <= nr_pages)
4778 max_reclaim = 0;
4779 else
4780 max_reclaim -= nr_pages;
4781
4782 wait_event(fs_info->async_submit_wait,
4783 atomic_read(&fs_info->async_delalloc_pages) <=
4784 (int)max_reclaim);
4785 skip_async:
4786 if (!trans)
4787 flush = BTRFS_RESERVE_FLUSH_ALL;
4788 else
4789 flush = BTRFS_RESERVE_NO_FLUSH;
4790 spin_lock(&space_info->lock);
4791 if (can_overcommit(root, space_info, orig, flush)) {
4792 spin_unlock(&space_info->lock);
4793 break;
4794 }
4795 if (list_empty(&space_info->tickets) &&
4796 list_empty(&space_info->priority_tickets)) {
4797 spin_unlock(&space_info->lock);
4798 break;
4799 }
4800 spin_unlock(&space_info->lock);
4801
4802 loops++;
4803 if (wait_ordered && !trans) {
4804 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4805 } else {
4806 time_left = schedule_timeout_killable(1);
4807 if (time_left)
4808 break;
4809 }
4810 delalloc_bytes = percpu_counter_sum_positive(
4811 &fs_info->delalloc_bytes);
4812 }
4813 }
4814
4815 /**
4816 * maybe_commit_transaction - possibly commit the transaction if its ok to
4817 * @root - the root we're allocating for
4818 * @bytes - the number of bytes we want to reserve
4819 * @force - force the commit
4820 *
4821 * This will check to make sure that committing the transaction will actually
4822 * get us somewhere and then commit the transaction if it does. Otherwise it
4823 * will return -ENOSPC.
4824 */
4825 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4826 struct btrfs_space_info *space_info,
4827 u64 bytes, int force)
4828 {
4829 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4830 struct btrfs_trans_handle *trans;
4831
4832 trans = (struct btrfs_trans_handle *)current->journal_info;
4833 if (trans)
4834 return -EAGAIN;
4835
4836 if (force)
4837 goto commit;
4838
4839 /* See if there is enough pinned space to make this reservation */
4840 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4841 bytes) >= 0)
4842 goto commit;
4843
4844 /*
4845 * See if there is some space in the delayed insertion reservation for
4846 * this reservation.
4847 */
4848 if (space_info != delayed_rsv->space_info)
4849 return -ENOSPC;
4850
4851 spin_lock(&delayed_rsv->lock);
4852 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4853 bytes - delayed_rsv->size) >= 0) {
4854 spin_unlock(&delayed_rsv->lock);
4855 return -ENOSPC;
4856 }
4857 spin_unlock(&delayed_rsv->lock);
4858
4859 commit:
4860 trans = btrfs_join_transaction(fs_info->extent_root);
4861 if (IS_ERR(trans))
4862 return -ENOSPC;
4863
4864 return btrfs_commit_transaction(trans);
4865 }
4866
4867 struct reserve_ticket {
4868 u64 bytes;
4869 int error;
4870 struct list_head list;
4871 wait_queue_head_t wait;
4872 };
4873
4874 static int flush_space(struct btrfs_fs_info *fs_info,
4875 struct btrfs_space_info *space_info, u64 num_bytes,
4876 u64 orig_bytes, int state)
4877 {
4878 struct btrfs_root *root = fs_info->extent_root;
4879 struct btrfs_trans_handle *trans;
4880 int nr;
4881 int ret = 0;
4882
4883 switch (state) {
4884 case FLUSH_DELAYED_ITEMS_NR:
4885 case FLUSH_DELAYED_ITEMS:
4886 if (state == FLUSH_DELAYED_ITEMS_NR)
4887 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4888 else
4889 nr = -1;
4890
4891 trans = btrfs_join_transaction(root);
4892 if (IS_ERR(trans)) {
4893 ret = PTR_ERR(trans);
4894 break;
4895 }
4896 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4897 btrfs_end_transaction(trans);
4898 break;
4899 case FLUSH_DELALLOC:
4900 case FLUSH_DELALLOC_WAIT:
4901 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4902 state == FLUSH_DELALLOC_WAIT);
4903 break;
4904 case ALLOC_CHUNK:
4905 trans = btrfs_join_transaction(root);
4906 if (IS_ERR(trans)) {
4907 ret = PTR_ERR(trans);
4908 break;
4909 }
4910 ret = do_chunk_alloc(trans, fs_info,
4911 btrfs_metadata_alloc_profile(fs_info),
4912 CHUNK_ALLOC_NO_FORCE);
4913 btrfs_end_transaction(trans);
4914 if (ret > 0 || ret == -ENOSPC)
4915 ret = 0;
4916 break;
4917 case COMMIT_TRANS:
4918 ret = may_commit_transaction(fs_info, space_info,
4919 orig_bytes, 0);
4920 break;
4921 default:
4922 ret = -ENOSPC;
4923 break;
4924 }
4925
4926 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4927 orig_bytes, state, ret);
4928 return ret;
4929 }
4930
4931 static inline u64
4932 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4933 struct btrfs_space_info *space_info)
4934 {
4935 struct reserve_ticket *ticket;
4936 u64 used;
4937 u64 expected;
4938 u64 to_reclaim = 0;
4939
4940 list_for_each_entry(ticket, &space_info->tickets, list)
4941 to_reclaim += ticket->bytes;
4942 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4943 to_reclaim += ticket->bytes;
4944 if (to_reclaim)
4945 return to_reclaim;
4946
4947 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4948 if (can_overcommit(root, space_info, to_reclaim,
4949 BTRFS_RESERVE_FLUSH_ALL))
4950 return 0;
4951
4952 used = space_info->bytes_used + space_info->bytes_reserved +
4953 space_info->bytes_pinned + space_info->bytes_readonly +
4954 space_info->bytes_may_use;
4955 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4956 expected = div_factor_fine(space_info->total_bytes, 95);
4957 else
4958 expected = div_factor_fine(space_info->total_bytes, 90);
4959
4960 if (used > expected)
4961 to_reclaim = used - expected;
4962 else
4963 to_reclaim = 0;
4964 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4965 space_info->bytes_reserved);
4966 return to_reclaim;
4967 }
4968
4969 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4970 struct btrfs_root *root, u64 used)
4971 {
4972 struct btrfs_fs_info *fs_info = root->fs_info;
4973 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4974
4975 /* If we're just plain full then async reclaim just slows us down. */
4976 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4977 return 0;
4978
4979 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4980 return 0;
4981
4982 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4983 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4984 }
4985
4986 static void wake_all_tickets(struct list_head *head)
4987 {
4988 struct reserve_ticket *ticket;
4989
4990 while (!list_empty(head)) {
4991 ticket = list_first_entry(head, struct reserve_ticket, list);
4992 list_del_init(&ticket->list);
4993 ticket->error = -ENOSPC;
4994 wake_up(&ticket->wait);
4995 }
4996 }
4997
4998 /*
4999 * This is for normal flushers, we can wait all goddamned day if we want to. We
5000 * will loop and continuously try to flush as long as we are making progress.
5001 * We count progress as clearing off tickets each time we have to loop.
5002 */
5003 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5004 {
5005 struct btrfs_fs_info *fs_info;
5006 struct btrfs_space_info *space_info;
5007 u64 to_reclaim;
5008 int flush_state;
5009 int commit_cycles = 0;
5010 u64 last_tickets_id;
5011
5012 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5013 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5014
5015 spin_lock(&space_info->lock);
5016 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5017 space_info);
5018 if (!to_reclaim) {
5019 space_info->flush = 0;
5020 spin_unlock(&space_info->lock);
5021 return;
5022 }
5023 last_tickets_id = space_info->tickets_id;
5024 spin_unlock(&space_info->lock);
5025
5026 flush_state = FLUSH_DELAYED_ITEMS_NR;
5027 do {
5028 struct reserve_ticket *ticket;
5029 int ret;
5030
5031 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5032 flush_state);
5033 spin_lock(&space_info->lock);
5034 if (list_empty(&space_info->tickets)) {
5035 space_info->flush = 0;
5036 spin_unlock(&space_info->lock);
5037 return;
5038 }
5039 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5040 space_info);
5041 ticket = list_first_entry(&space_info->tickets,
5042 struct reserve_ticket, list);
5043 if (last_tickets_id == space_info->tickets_id) {
5044 flush_state++;
5045 } else {
5046 last_tickets_id = space_info->tickets_id;
5047 flush_state = FLUSH_DELAYED_ITEMS_NR;
5048 if (commit_cycles)
5049 commit_cycles--;
5050 }
5051
5052 if (flush_state > COMMIT_TRANS) {
5053 commit_cycles++;
5054 if (commit_cycles > 2) {
5055 wake_all_tickets(&space_info->tickets);
5056 space_info->flush = 0;
5057 } else {
5058 flush_state = FLUSH_DELAYED_ITEMS_NR;
5059 }
5060 }
5061 spin_unlock(&space_info->lock);
5062 } while (flush_state <= COMMIT_TRANS);
5063 }
5064
5065 void btrfs_init_async_reclaim_work(struct work_struct *work)
5066 {
5067 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5068 }
5069
5070 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5071 struct btrfs_space_info *space_info,
5072 struct reserve_ticket *ticket)
5073 {
5074 u64 to_reclaim;
5075 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5076
5077 spin_lock(&space_info->lock);
5078 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->extent_root,
5079 space_info);
5080 if (!to_reclaim) {
5081 spin_unlock(&space_info->lock);
5082 return;
5083 }
5084 spin_unlock(&space_info->lock);
5085
5086 do {
5087 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5088 flush_state);
5089 flush_state++;
5090 spin_lock(&space_info->lock);
5091 if (ticket->bytes == 0) {
5092 spin_unlock(&space_info->lock);
5093 return;
5094 }
5095 spin_unlock(&space_info->lock);
5096
5097 /*
5098 * Priority flushers can't wait on delalloc without
5099 * deadlocking.
5100 */
5101 if (flush_state == FLUSH_DELALLOC ||
5102 flush_state == FLUSH_DELALLOC_WAIT)
5103 flush_state = ALLOC_CHUNK;
5104 } while (flush_state < COMMIT_TRANS);
5105 }
5106
5107 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5108 struct btrfs_space_info *space_info,
5109 struct reserve_ticket *ticket, u64 orig_bytes)
5110
5111 {
5112 DEFINE_WAIT(wait);
5113 int ret = 0;
5114
5115 spin_lock(&space_info->lock);
5116 while (ticket->bytes > 0 && ticket->error == 0) {
5117 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5118 if (ret) {
5119 ret = -EINTR;
5120 break;
5121 }
5122 spin_unlock(&space_info->lock);
5123
5124 schedule();
5125
5126 finish_wait(&ticket->wait, &wait);
5127 spin_lock(&space_info->lock);
5128 }
5129 if (!ret)
5130 ret = ticket->error;
5131 if (!list_empty(&ticket->list))
5132 list_del_init(&ticket->list);
5133 if (ticket->bytes && ticket->bytes < orig_bytes) {
5134 u64 num_bytes = orig_bytes - ticket->bytes;
5135 space_info->bytes_may_use -= num_bytes;
5136 trace_btrfs_space_reservation(fs_info, "space_info",
5137 space_info->flags, num_bytes, 0);
5138 }
5139 spin_unlock(&space_info->lock);
5140
5141 return ret;
5142 }
5143
5144 /**
5145 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5146 * @root - the root we're allocating for
5147 * @space_info - the space info we want to allocate from
5148 * @orig_bytes - the number of bytes we want
5149 * @flush - whether or not we can flush to make our reservation
5150 *
5151 * This will reserve orig_bytes number of bytes from the space info associated
5152 * with the block_rsv. If there is not enough space it will make an attempt to
5153 * flush out space to make room. It will do this by flushing delalloc if
5154 * possible or committing the transaction. If flush is 0 then no attempts to
5155 * regain reservations will be made and this will fail if there is not enough
5156 * space already.
5157 */
5158 static int __reserve_metadata_bytes(struct btrfs_root *root,
5159 struct btrfs_space_info *space_info,
5160 u64 orig_bytes,
5161 enum btrfs_reserve_flush_enum flush)
5162 {
5163 struct btrfs_fs_info *fs_info = root->fs_info;
5164 struct reserve_ticket ticket;
5165 u64 used;
5166 int ret = 0;
5167
5168 ASSERT(orig_bytes);
5169 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5170
5171 spin_lock(&space_info->lock);
5172 ret = -ENOSPC;
5173 used = btrfs_space_info_used(space_info, true);
5174
5175 /*
5176 * If we have enough space then hooray, make our reservation and carry
5177 * on. If not see if we can overcommit, and if we can, hooray carry on.
5178 * If not things get more complicated.
5179 */
5180 if (used + orig_bytes <= space_info->total_bytes) {
5181 space_info->bytes_may_use += orig_bytes;
5182 trace_btrfs_space_reservation(fs_info, "space_info",
5183 space_info->flags, orig_bytes, 1);
5184 ret = 0;
5185 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5186 space_info->bytes_may_use += orig_bytes;
5187 trace_btrfs_space_reservation(fs_info, "space_info",
5188 space_info->flags, orig_bytes, 1);
5189 ret = 0;
5190 }
5191
5192 /*
5193 * If we couldn't make a reservation then setup our reservation ticket
5194 * and kick the async worker if it's not already running.
5195 *
5196 * If we are a priority flusher then we just need to add our ticket to
5197 * the list and we will do our own flushing further down.
5198 */
5199 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5200 ticket.bytes = orig_bytes;
5201 ticket.error = 0;
5202 init_waitqueue_head(&ticket.wait);
5203 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5204 list_add_tail(&ticket.list, &space_info->tickets);
5205 if (!space_info->flush) {
5206 space_info->flush = 1;
5207 trace_btrfs_trigger_flush(fs_info,
5208 space_info->flags,
5209 orig_bytes, flush,
5210 "enospc");
5211 queue_work(system_unbound_wq,
5212 &root->fs_info->async_reclaim_work);
5213 }
5214 } else {
5215 list_add_tail(&ticket.list,
5216 &space_info->priority_tickets);
5217 }
5218 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5219 used += orig_bytes;
5220 /*
5221 * We will do the space reservation dance during log replay,
5222 * which means we won't have fs_info->fs_root set, so don't do
5223 * the async reclaim as we will panic.
5224 */
5225 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5226 need_do_async_reclaim(space_info, root, used) &&
5227 !work_busy(&fs_info->async_reclaim_work)) {
5228 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5229 orig_bytes, flush, "preempt");
5230 queue_work(system_unbound_wq,
5231 &fs_info->async_reclaim_work);
5232 }
5233 }
5234 spin_unlock(&space_info->lock);
5235 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5236 return ret;
5237
5238 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5239 return wait_reserve_ticket(fs_info, space_info, &ticket,
5240 orig_bytes);
5241
5242 ret = 0;
5243 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5244 spin_lock(&space_info->lock);
5245 if (ticket.bytes) {
5246 if (ticket.bytes < orig_bytes) {
5247 u64 num_bytes = orig_bytes - ticket.bytes;
5248 space_info->bytes_may_use -= num_bytes;
5249 trace_btrfs_space_reservation(fs_info, "space_info",
5250 space_info->flags,
5251 num_bytes, 0);
5252
5253 }
5254 list_del_init(&ticket.list);
5255 ret = -ENOSPC;
5256 }
5257 spin_unlock(&space_info->lock);
5258 ASSERT(list_empty(&ticket.list));
5259 return ret;
5260 }
5261
5262 /**
5263 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5264 * @root - the root we're allocating for
5265 * @block_rsv - the block_rsv we're allocating for
5266 * @orig_bytes - the number of bytes we want
5267 * @flush - whether or not we can flush to make our reservation
5268 *
5269 * This will reserve orgi_bytes number of bytes from the space info associated
5270 * with the block_rsv. If there is not enough space it will make an attempt to
5271 * flush out space to make room. It will do this by flushing delalloc if
5272 * possible or committing the transaction. If flush is 0 then no attempts to
5273 * regain reservations will be made and this will fail if there is not enough
5274 * space already.
5275 */
5276 static int reserve_metadata_bytes(struct btrfs_root *root,
5277 struct btrfs_block_rsv *block_rsv,
5278 u64 orig_bytes,
5279 enum btrfs_reserve_flush_enum flush)
5280 {
5281 struct btrfs_fs_info *fs_info = root->fs_info;
5282 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5283 int ret;
5284
5285 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5286 flush);
5287 if (ret == -ENOSPC &&
5288 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5289 if (block_rsv != global_rsv &&
5290 !block_rsv_use_bytes(global_rsv, orig_bytes))
5291 ret = 0;
5292 }
5293 if (ret == -ENOSPC)
5294 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5295 block_rsv->space_info->flags,
5296 orig_bytes, 1);
5297 return ret;
5298 }
5299
5300 static struct btrfs_block_rsv *get_block_rsv(
5301 const struct btrfs_trans_handle *trans,
5302 const struct btrfs_root *root)
5303 {
5304 struct btrfs_fs_info *fs_info = root->fs_info;
5305 struct btrfs_block_rsv *block_rsv = NULL;
5306
5307 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5308 (root == fs_info->csum_root && trans->adding_csums) ||
5309 (root == fs_info->uuid_root))
5310 block_rsv = trans->block_rsv;
5311
5312 if (!block_rsv)
5313 block_rsv = root->block_rsv;
5314
5315 if (!block_rsv)
5316 block_rsv = &fs_info->empty_block_rsv;
5317
5318 return block_rsv;
5319 }
5320
5321 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5322 u64 num_bytes)
5323 {
5324 int ret = -ENOSPC;
5325 spin_lock(&block_rsv->lock);
5326 if (block_rsv->reserved >= num_bytes) {
5327 block_rsv->reserved -= num_bytes;
5328 if (block_rsv->reserved < block_rsv->size)
5329 block_rsv->full = 0;
5330 ret = 0;
5331 }
5332 spin_unlock(&block_rsv->lock);
5333 return ret;
5334 }
5335
5336 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5337 u64 num_bytes, int update_size)
5338 {
5339 spin_lock(&block_rsv->lock);
5340 block_rsv->reserved += num_bytes;
5341 if (update_size)
5342 block_rsv->size += num_bytes;
5343 else if (block_rsv->reserved >= block_rsv->size)
5344 block_rsv->full = 1;
5345 spin_unlock(&block_rsv->lock);
5346 }
5347
5348 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5349 struct btrfs_block_rsv *dest, u64 num_bytes,
5350 int min_factor)
5351 {
5352 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5353 u64 min_bytes;
5354
5355 if (global_rsv->space_info != dest->space_info)
5356 return -ENOSPC;
5357
5358 spin_lock(&global_rsv->lock);
5359 min_bytes = div_factor(global_rsv->size, min_factor);
5360 if (global_rsv->reserved < min_bytes + num_bytes) {
5361 spin_unlock(&global_rsv->lock);
5362 return -ENOSPC;
5363 }
5364 global_rsv->reserved -= num_bytes;
5365 if (global_rsv->reserved < global_rsv->size)
5366 global_rsv->full = 0;
5367 spin_unlock(&global_rsv->lock);
5368
5369 block_rsv_add_bytes(dest, num_bytes, 1);
5370 return 0;
5371 }
5372
5373 /*
5374 * This is for space we already have accounted in space_info->bytes_may_use, so
5375 * basically when we're returning space from block_rsv's.
5376 */
5377 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5378 struct btrfs_space_info *space_info,
5379 u64 num_bytes)
5380 {
5381 struct reserve_ticket *ticket;
5382 struct list_head *head;
5383 u64 used;
5384 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5385 bool check_overcommit = false;
5386
5387 spin_lock(&space_info->lock);
5388 head = &space_info->priority_tickets;
5389
5390 /*
5391 * If we are over our limit then we need to check and see if we can
5392 * overcommit, and if we can't then we just need to free up our space
5393 * and not satisfy any requests.
5394 */
5395 used = space_info->bytes_used + space_info->bytes_reserved +
5396 space_info->bytes_pinned + space_info->bytes_readonly +
5397 space_info->bytes_may_use;
5398 if (used - num_bytes >= space_info->total_bytes)
5399 check_overcommit = true;
5400 again:
5401 while (!list_empty(head) && num_bytes) {
5402 ticket = list_first_entry(head, struct reserve_ticket,
5403 list);
5404 /*
5405 * We use 0 bytes because this space is already reserved, so
5406 * adding the ticket space would be a double count.
5407 */
5408 if (check_overcommit &&
5409 !can_overcommit(fs_info->extent_root, space_info, 0,
5410 flush))
5411 break;
5412 if (num_bytes >= ticket->bytes) {
5413 list_del_init(&ticket->list);
5414 num_bytes -= ticket->bytes;
5415 ticket->bytes = 0;
5416 space_info->tickets_id++;
5417 wake_up(&ticket->wait);
5418 } else {
5419 ticket->bytes -= num_bytes;
5420 num_bytes = 0;
5421 }
5422 }
5423
5424 if (num_bytes && head == &space_info->priority_tickets) {
5425 head = &space_info->tickets;
5426 flush = BTRFS_RESERVE_FLUSH_ALL;
5427 goto again;
5428 }
5429 space_info->bytes_may_use -= num_bytes;
5430 trace_btrfs_space_reservation(fs_info, "space_info",
5431 space_info->flags, num_bytes, 0);
5432 spin_unlock(&space_info->lock);
5433 }
5434
5435 /*
5436 * This is for newly allocated space that isn't accounted in
5437 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5438 * we use this helper.
5439 */
5440 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5441 struct btrfs_space_info *space_info,
5442 u64 num_bytes)
5443 {
5444 struct reserve_ticket *ticket;
5445 struct list_head *head = &space_info->priority_tickets;
5446
5447 again:
5448 while (!list_empty(head) && num_bytes) {
5449 ticket = list_first_entry(head, struct reserve_ticket,
5450 list);
5451 if (num_bytes >= ticket->bytes) {
5452 trace_btrfs_space_reservation(fs_info, "space_info",
5453 space_info->flags,
5454 ticket->bytes, 1);
5455 list_del_init(&ticket->list);
5456 num_bytes -= ticket->bytes;
5457 space_info->bytes_may_use += ticket->bytes;
5458 ticket->bytes = 0;
5459 space_info->tickets_id++;
5460 wake_up(&ticket->wait);
5461 } else {
5462 trace_btrfs_space_reservation(fs_info, "space_info",
5463 space_info->flags,
5464 num_bytes, 1);
5465 space_info->bytes_may_use += num_bytes;
5466 ticket->bytes -= num_bytes;
5467 num_bytes = 0;
5468 }
5469 }
5470
5471 if (num_bytes && head == &space_info->priority_tickets) {
5472 head = &space_info->tickets;
5473 goto again;
5474 }
5475 }
5476
5477 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5478 struct btrfs_block_rsv *block_rsv,
5479 struct btrfs_block_rsv *dest, u64 num_bytes)
5480 {
5481 struct btrfs_space_info *space_info = block_rsv->space_info;
5482
5483 spin_lock(&block_rsv->lock);
5484 if (num_bytes == (u64)-1)
5485 num_bytes = block_rsv->size;
5486 block_rsv->size -= num_bytes;
5487 if (block_rsv->reserved >= block_rsv->size) {
5488 num_bytes = block_rsv->reserved - block_rsv->size;
5489 block_rsv->reserved = block_rsv->size;
5490 block_rsv->full = 1;
5491 } else {
5492 num_bytes = 0;
5493 }
5494 spin_unlock(&block_rsv->lock);
5495
5496 if (num_bytes > 0) {
5497 if (dest) {
5498 spin_lock(&dest->lock);
5499 if (!dest->full) {
5500 u64 bytes_to_add;
5501
5502 bytes_to_add = dest->size - dest->reserved;
5503 bytes_to_add = min(num_bytes, bytes_to_add);
5504 dest->reserved += bytes_to_add;
5505 if (dest->reserved >= dest->size)
5506 dest->full = 1;
5507 num_bytes -= bytes_to_add;
5508 }
5509 spin_unlock(&dest->lock);
5510 }
5511 if (num_bytes)
5512 space_info_add_old_bytes(fs_info, space_info,
5513 num_bytes);
5514 }
5515 }
5516
5517 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5518 struct btrfs_block_rsv *dst, u64 num_bytes,
5519 int update_size)
5520 {
5521 int ret;
5522
5523 ret = block_rsv_use_bytes(src, num_bytes);
5524 if (ret)
5525 return ret;
5526
5527 block_rsv_add_bytes(dst, num_bytes, update_size);
5528 return 0;
5529 }
5530
5531 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5532 {
5533 memset(rsv, 0, sizeof(*rsv));
5534 spin_lock_init(&rsv->lock);
5535 rsv->type = type;
5536 }
5537
5538 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5539 unsigned short type)
5540 {
5541 struct btrfs_block_rsv *block_rsv;
5542
5543 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5544 if (!block_rsv)
5545 return NULL;
5546
5547 btrfs_init_block_rsv(block_rsv, type);
5548 block_rsv->space_info = __find_space_info(fs_info,
5549 BTRFS_BLOCK_GROUP_METADATA);
5550 return block_rsv;
5551 }
5552
5553 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5554 struct btrfs_block_rsv *rsv)
5555 {
5556 if (!rsv)
5557 return;
5558 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5559 kfree(rsv);
5560 }
5561
5562 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5563 {
5564 kfree(rsv);
5565 }
5566
5567 int btrfs_block_rsv_add(struct btrfs_root *root,
5568 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5569 enum btrfs_reserve_flush_enum flush)
5570 {
5571 int ret;
5572
5573 if (num_bytes == 0)
5574 return 0;
5575
5576 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5577 if (!ret) {
5578 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5579 return 0;
5580 }
5581
5582 return ret;
5583 }
5584
5585 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5586 {
5587 u64 num_bytes = 0;
5588 int ret = -ENOSPC;
5589
5590 if (!block_rsv)
5591 return 0;
5592
5593 spin_lock(&block_rsv->lock);
5594 num_bytes = div_factor(block_rsv->size, min_factor);
5595 if (block_rsv->reserved >= num_bytes)
5596 ret = 0;
5597 spin_unlock(&block_rsv->lock);
5598
5599 return ret;
5600 }
5601
5602 int btrfs_block_rsv_refill(struct btrfs_root *root,
5603 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5604 enum btrfs_reserve_flush_enum flush)
5605 {
5606 u64 num_bytes = 0;
5607 int ret = -ENOSPC;
5608
5609 if (!block_rsv)
5610 return 0;
5611
5612 spin_lock(&block_rsv->lock);
5613 num_bytes = min_reserved;
5614 if (block_rsv->reserved >= num_bytes)
5615 ret = 0;
5616 else
5617 num_bytes -= block_rsv->reserved;
5618 spin_unlock(&block_rsv->lock);
5619
5620 if (!ret)
5621 return 0;
5622
5623 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5624 if (!ret) {
5625 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5626 return 0;
5627 }
5628
5629 return ret;
5630 }
5631
5632 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5633 struct btrfs_block_rsv *block_rsv,
5634 u64 num_bytes)
5635 {
5636 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5637
5638 if (global_rsv == block_rsv ||
5639 block_rsv->space_info != global_rsv->space_info)
5640 global_rsv = NULL;
5641 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5642 }
5643
5644 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5645 {
5646 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5647 struct btrfs_space_info *sinfo = block_rsv->space_info;
5648 u64 num_bytes;
5649
5650 /*
5651 * The global block rsv is based on the size of the extent tree, the
5652 * checksum tree and the root tree. If the fs is empty we want to set
5653 * it to a minimal amount for safety.
5654 */
5655 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5656 btrfs_root_used(&fs_info->csum_root->root_item) +
5657 btrfs_root_used(&fs_info->tree_root->root_item);
5658 num_bytes = max_t(u64, num_bytes, SZ_16M);
5659
5660 spin_lock(&sinfo->lock);
5661 spin_lock(&block_rsv->lock);
5662
5663 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5664
5665 if (block_rsv->reserved < block_rsv->size) {
5666 num_bytes = btrfs_space_info_used(sinfo, true);
5667 if (sinfo->total_bytes > num_bytes) {
5668 num_bytes = sinfo->total_bytes - num_bytes;
5669 num_bytes = min(num_bytes,
5670 block_rsv->size - block_rsv->reserved);
5671 block_rsv->reserved += num_bytes;
5672 sinfo->bytes_may_use += num_bytes;
5673 trace_btrfs_space_reservation(fs_info, "space_info",
5674 sinfo->flags, num_bytes,
5675 1);
5676 }
5677 } else if (block_rsv->reserved > block_rsv->size) {
5678 num_bytes = block_rsv->reserved - block_rsv->size;
5679 sinfo->bytes_may_use -= num_bytes;
5680 trace_btrfs_space_reservation(fs_info, "space_info",
5681 sinfo->flags, num_bytes, 0);
5682 block_rsv->reserved = block_rsv->size;
5683 }
5684
5685 if (block_rsv->reserved == block_rsv->size)
5686 block_rsv->full = 1;
5687 else
5688 block_rsv->full = 0;
5689
5690 spin_unlock(&block_rsv->lock);
5691 spin_unlock(&sinfo->lock);
5692 }
5693
5694 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5695 {
5696 struct btrfs_space_info *space_info;
5697
5698 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5699 fs_info->chunk_block_rsv.space_info = space_info;
5700
5701 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5702 fs_info->global_block_rsv.space_info = space_info;
5703 fs_info->delalloc_block_rsv.space_info = space_info;
5704 fs_info->trans_block_rsv.space_info = space_info;
5705 fs_info->empty_block_rsv.space_info = space_info;
5706 fs_info->delayed_block_rsv.space_info = space_info;
5707
5708 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5709 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5710 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5711 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5712 if (fs_info->quota_root)
5713 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5714 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5715
5716 update_global_block_rsv(fs_info);
5717 }
5718
5719 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5720 {
5721 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5722 (u64)-1);
5723 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5724 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5725 WARN_ON(fs_info->trans_block_rsv.size > 0);
5726 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5727 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5728 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5729 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5730 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5731 }
5732
5733 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5734 struct btrfs_fs_info *fs_info)
5735 {
5736 if (!trans->block_rsv)
5737 return;
5738
5739 if (!trans->bytes_reserved)
5740 return;
5741
5742 trace_btrfs_space_reservation(fs_info, "transaction",
5743 trans->transid, trans->bytes_reserved, 0);
5744 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5745 trans->bytes_reserved);
5746 trans->bytes_reserved = 0;
5747 }
5748
5749 /*
5750 * To be called after all the new block groups attached to the transaction
5751 * handle have been created (btrfs_create_pending_block_groups()).
5752 */
5753 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5754 {
5755 struct btrfs_fs_info *fs_info = trans->fs_info;
5756
5757 if (!trans->chunk_bytes_reserved)
5758 return;
5759
5760 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5761
5762 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5763 trans->chunk_bytes_reserved);
5764 trans->chunk_bytes_reserved = 0;
5765 }
5766
5767 /* Can only return 0 or -ENOSPC */
5768 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5769 struct btrfs_inode *inode)
5770 {
5771 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5772 struct btrfs_root *root = inode->root;
5773 /*
5774 * We always use trans->block_rsv here as we will have reserved space
5775 * for our orphan when starting the transaction, using get_block_rsv()
5776 * here will sometimes make us choose the wrong block rsv as we could be
5777 * doing a reloc inode for a non refcounted root.
5778 */
5779 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5780 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5781
5782 /*
5783 * We need to hold space in order to delete our orphan item once we've
5784 * added it, so this takes the reservation so we can release it later
5785 * when we are truly done with the orphan item.
5786 */
5787 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5788
5789 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5790 num_bytes, 1);
5791 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5792 }
5793
5794 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5795 {
5796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5797 struct btrfs_root *root = inode->root;
5798 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5799
5800 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5801 num_bytes, 0);
5802 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5803 }
5804
5805 /*
5806 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5807 * root: the root of the parent directory
5808 * rsv: block reservation
5809 * items: the number of items that we need do reservation
5810 * qgroup_reserved: used to return the reserved size in qgroup
5811 *
5812 * This function is used to reserve the space for snapshot/subvolume
5813 * creation and deletion. Those operations are different with the
5814 * common file/directory operations, they change two fs/file trees
5815 * and root tree, the number of items that the qgroup reserves is
5816 * different with the free space reservation. So we can not use
5817 * the space reservation mechanism in start_transaction().
5818 */
5819 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5820 struct btrfs_block_rsv *rsv,
5821 int items,
5822 u64 *qgroup_reserved,
5823 bool use_global_rsv)
5824 {
5825 u64 num_bytes;
5826 int ret;
5827 struct btrfs_fs_info *fs_info = root->fs_info;
5828 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5829
5830 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5831 /* One for parent inode, two for dir entries */
5832 num_bytes = 3 * fs_info->nodesize;
5833 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5834 if (ret)
5835 return ret;
5836 } else {
5837 num_bytes = 0;
5838 }
5839
5840 *qgroup_reserved = num_bytes;
5841
5842 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5843 rsv->space_info = __find_space_info(fs_info,
5844 BTRFS_BLOCK_GROUP_METADATA);
5845 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5846 BTRFS_RESERVE_FLUSH_ALL);
5847
5848 if (ret == -ENOSPC && use_global_rsv)
5849 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5850
5851 if (ret && *qgroup_reserved)
5852 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5853
5854 return ret;
5855 }
5856
5857 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5858 struct btrfs_block_rsv *rsv)
5859 {
5860 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5861 }
5862
5863 /**
5864 * drop_outstanding_extent - drop an outstanding extent
5865 * @inode: the inode we're dropping the extent for
5866 * @num_bytes: the number of bytes we're releasing.
5867 *
5868 * This is called when we are freeing up an outstanding extent, either called
5869 * after an error or after an extent is written. This will return the number of
5870 * reserved extents that need to be freed. This must be called with
5871 * BTRFS_I(inode)->lock held.
5872 */
5873 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5874 u64 num_bytes)
5875 {
5876 unsigned drop_inode_space = 0;
5877 unsigned dropped_extents = 0;
5878 unsigned num_extents;
5879
5880 num_extents = count_max_extents(num_bytes);
5881 ASSERT(num_extents);
5882 ASSERT(inode->outstanding_extents >= num_extents);
5883 inode->outstanding_extents -= num_extents;
5884
5885 if (inode->outstanding_extents == 0 &&
5886 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5887 &inode->runtime_flags))
5888 drop_inode_space = 1;
5889
5890 /*
5891 * If we have more or the same amount of outstanding extents than we have
5892 * reserved then we need to leave the reserved extents count alone.
5893 */
5894 if (inode->outstanding_extents >= inode->reserved_extents)
5895 return drop_inode_space;
5896
5897 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5898 inode->reserved_extents -= dropped_extents;
5899 return dropped_extents + drop_inode_space;
5900 }
5901
5902 /**
5903 * calc_csum_metadata_size - return the amount of metadata space that must be
5904 * reserved/freed for the given bytes.
5905 * @inode: the inode we're manipulating
5906 * @num_bytes: the number of bytes in question
5907 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5908 *
5909 * This adjusts the number of csum_bytes in the inode and then returns the
5910 * correct amount of metadata that must either be reserved or freed. We
5911 * calculate how many checksums we can fit into one leaf and then divide the
5912 * number of bytes that will need to be checksumed by this value to figure out
5913 * how many checksums will be required. If we are adding bytes then the number
5914 * may go up and we will return the number of additional bytes that must be
5915 * reserved. If it is going down we will return the number of bytes that must
5916 * be freed.
5917 *
5918 * This must be called with BTRFS_I(inode)->lock held.
5919 */
5920 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5921 int reserve)
5922 {
5923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5924 u64 old_csums, num_csums;
5925
5926 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5927 return 0;
5928
5929 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5930 if (reserve)
5931 inode->csum_bytes += num_bytes;
5932 else
5933 inode->csum_bytes -= num_bytes;
5934 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5935
5936 /* No change, no need to reserve more */
5937 if (old_csums == num_csums)
5938 return 0;
5939
5940 if (reserve)
5941 return btrfs_calc_trans_metadata_size(fs_info,
5942 num_csums - old_csums);
5943
5944 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5945 }
5946
5947 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5948 {
5949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5950 struct btrfs_root *root = inode->root;
5951 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5952 u64 to_reserve = 0;
5953 u64 csum_bytes;
5954 unsigned nr_extents;
5955 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5956 int ret = 0;
5957 bool delalloc_lock = true;
5958 u64 to_free = 0;
5959 unsigned dropped;
5960 bool release_extra = false;
5961
5962 /* If we are a free space inode we need to not flush since we will be in
5963 * the middle of a transaction commit. We also don't need the delalloc
5964 * mutex since we won't race with anybody. We need this mostly to make
5965 * lockdep shut its filthy mouth.
5966 *
5967 * If we have a transaction open (can happen if we call truncate_block
5968 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5969 */
5970 if (btrfs_is_free_space_inode(inode)) {
5971 flush = BTRFS_RESERVE_NO_FLUSH;
5972 delalloc_lock = false;
5973 } else if (current->journal_info) {
5974 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5975 }
5976
5977 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5978 btrfs_transaction_in_commit(fs_info))
5979 schedule_timeout(1);
5980
5981 if (delalloc_lock)
5982 mutex_lock(&inode->delalloc_mutex);
5983
5984 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5985
5986 spin_lock(&inode->lock);
5987 nr_extents = count_max_extents(num_bytes);
5988 inode->outstanding_extents += nr_extents;
5989
5990 nr_extents = 0;
5991 if (inode->outstanding_extents > inode->reserved_extents)
5992 nr_extents += inode->outstanding_extents -
5993 inode->reserved_extents;
5994
5995 /* We always want to reserve a slot for updating the inode. */
5996 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5997 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5998 csum_bytes = inode->csum_bytes;
5999 spin_unlock(&inode->lock);
6000
6001 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6002 ret = btrfs_qgroup_reserve_meta(root,
6003 nr_extents * fs_info->nodesize, true);
6004 if (ret)
6005 goto out_fail;
6006 }
6007
6008 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6009 if (unlikely(ret)) {
6010 btrfs_qgroup_free_meta(root,
6011 nr_extents * fs_info->nodesize);
6012 goto out_fail;
6013 }
6014
6015 spin_lock(&inode->lock);
6016 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6017 &inode->runtime_flags)) {
6018 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6019 release_extra = true;
6020 }
6021 inode->reserved_extents += nr_extents;
6022 spin_unlock(&inode->lock);
6023
6024 if (delalloc_lock)
6025 mutex_unlock(&inode->delalloc_mutex);
6026
6027 if (to_reserve)
6028 trace_btrfs_space_reservation(fs_info, "delalloc",
6029 btrfs_ino(inode), to_reserve, 1);
6030 if (release_extra)
6031 btrfs_block_rsv_release(fs_info, block_rsv,
6032 btrfs_calc_trans_metadata_size(fs_info, 1));
6033 return 0;
6034
6035 out_fail:
6036 spin_lock(&inode->lock);
6037 dropped = drop_outstanding_extent(inode, num_bytes);
6038 /*
6039 * If the inodes csum_bytes is the same as the original
6040 * csum_bytes then we know we haven't raced with any free()ers
6041 * so we can just reduce our inodes csum bytes and carry on.
6042 */
6043 if (inode->csum_bytes == csum_bytes) {
6044 calc_csum_metadata_size(inode, num_bytes, 0);
6045 } else {
6046 u64 orig_csum_bytes = inode->csum_bytes;
6047 u64 bytes;
6048
6049 /*
6050 * This is tricky, but first we need to figure out how much we
6051 * freed from any free-ers that occurred during this
6052 * reservation, so we reset ->csum_bytes to the csum_bytes
6053 * before we dropped our lock, and then call the free for the
6054 * number of bytes that were freed while we were trying our
6055 * reservation.
6056 */
6057 bytes = csum_bytes - inode->csum_bytes;
6058 inode->csum_bytes = csum_bytes;
6059 to_free = calc_csum_metadata_size(inode, bytes, 0);
6060
6061
6062 /*
6063 * Now we need to see how much we would have freed had we not
6064 * been making this reservation and our ->csum_bytes were not
6065 * artificially inflated.
6066 */
6067 inode->csum_bytes = csum_bytes - num_bytes;
6068 bytes = csum_bytes - orig_csum_bytes;
6069 bytes = calc_csum_metadata_size(inode, bytes, 0);
6070
6071 /*
6072 * Now reset ->csum_bytes to what it should be. If bytes is
6073 * more than to_free then we would have freed more space had we
6074 * not had an artificially high ->csum_bytes, so we need to free
6075 * the remainder. If bytes is the same or less then we don't
6076 * need to do anything, the other free-ers did the correct
6077 * thing.
6078 */
6079 inode->csum_bytes = orig_csum_bytes - num_bytes;
6080 if (bytes > to_free)
6081 to_free = bytes - to_free;
6082 else
6083 to_free = 0;
6084 }
6085 spin_unlock(&inode->lock);
6086 if (dropped)
6087 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6088
6089 if (to_free) {
6090 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6091 trace_btrfs_space_reservation(fs_info, "delalloc",
6092 btrfs_ino(inode), to_free, 0);
6093 }
6094 if (delalloc_lock)
6095 mutex_unlock(&inode->delalloc_mutex);
6096 return ret;
6097 }
6098
6099 /**
6100 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6101 * @inode: the inode to release the reservation for
6102 * @num_bytes: the number of bytes we're releasing
6103 *
6104 * This will release the metadata reservation for an inode. This can be called
6105 * once we complete IO for a given set of bytes to release their metadata
6106 * reservations.
6107 */
6108 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6109 {
6110 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6111 u64 to_free = 0;
6112 unsigned dropped;
6113
6114 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6115 spin_lock(&inode->lock);
6116 dropped = drop_outstanding_extent(inode, num_bytes);
6117
6118 if (num_bytes)
6119 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6120 spin_unlock(&inode->lock);
6121 if (dropped > 0)
6122 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6123
6124 if (btrfs_is_testing(fs_info))
6125 return;
6126
6127 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6128 to_free, 0);
6129
6130 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6131 }
6132
6133 /**
6134 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6135 * delalloc
6136 * @inode: inode we're writing to
6137 * @start: start range we are writing to
6138 * @len: how long the range we are writing to
6139 *
6140 * This will do the following things
6141 *
6142 * o reserve space in data space info for num bytes
6143 * and reserve precious corresponding qgroup space
6144 * (Done in check_data_free_space)
6145 *
6146 * o reserve space for metadata space, based on the number of outstanding
6147 * extents and how much csums will be needed
6148 * also reserve metadata space in a per root over-reserve method.
6149 * o add to the inodes->delalloc_bytes
6150 * o add it to the fs_info's delalloc inodes list.
6151 * (Above 3 all done in delalloc_reserve_metadata)
6152 *
6153 * Return 0 for success
6154 * Return <0 for error(-ENOSPC or -EQUOT)
6155 */
6156 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6157 {
6158 int ret;
6159
6160 ret = btrfs_check_data_free_space(inode, start, len);
6161 if (ret < 0)
6162 return ret;
6163 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6164 if (ret < 0)
6165 btrfs_free_reserved_data_space(inode, start, len);
6166 return ret;
6167 }
6168
6169 /**
6170 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6171 * @inode: inode we're releasing space for
6172 * @start: start position of the space already reserved
6173 * @len: the len of the space already reserved
6174 *
6175 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6176 * called in the case that we don't need the metadata AND data reservations
6177 * anymore. So if there is an error or we insert an inline extent.
6178 *
6179 * This function will release the metadata space that was not used and will
6180 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6181 * list if there are no delalloc bytes left.
6182 * Also it will handle the qgroup reserved space.
6183 */
6184 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6185 {
6186 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6187 btrfs_free_reserved_data_space(inode, start, len);
6188 }
6189
6190 static int update_block_group(struct btrfs_trans_handle *trans,
6191 struct btrfs_fs_info *info, u64 bytenr,
6192 u64 num_bytes, int alloc)
6193 {
6194 struct btrfs_block_group_cache *cache = NULL;
6195 u64 total = num_bytes;
6196 u64 old_val;
6197 u64 byte_in_group;
6198 int factor;
6199
6200 /* block accounting for super block */
6201 spin_lock(&info->delalloc_root_lock);
6202 old_val = btrfs_super_bytes_used(info->super_copy);
6203 if (alloc)
6204 old_val += num_bytes;
6205 else
6206 old_val -= num_bytes;
6207 btrfs_set_super_bytes_used(info->super_copy, old_val);
6208 spin_unlock(&info->delalloc_root_lock);
6209
6210 while (total) {
6211 cache = btrfs_lookup_block_group(info, bytenr);
6212 if (!cache)
6213 return -ENOENT;
6214 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6215 BTRFS_BLOCK_GROUP_RAID1 |
6216 BTRFS_BLOCK_GROUP_RAID10))
6217 factor = 2;
6218 else
6219 factor = 1;
6220 /*
6221 * If this block group has free space cache written out, we
6222 * need to make sure to load it if we are removing space. This
6223 * is because we need the unpinning stage to actually add the
6224 * space back to the block group, otherwise we will leak space.
6225 */
6226 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6227 cache_block_group(cache, 1);
6228
6229 byte_in_group = bytenr - cache->key.objectid;
6230 WARN_ON(byte_in_group > cache->key.offset);
6231
6232 spin_lock(&cache->space_info->lock);
6233 spin_lock(&cache->lock);
6234
6235 if (btrfs_test_opt(info, SPACE_CACHE) &&
6236 cache->disk_cache_state < BTRFS_DC_CLEAR)
6237 cache->disk_cache_state = BTRFS_DC_CLEAR;
6238
6239 old_val = btrfs_block_group_used(&cache->item);
6240 num_bytes = min(total, cache->key.offset - byte_in_group);
6241 if (alloc) {
6242 old_val += num_bytes;
6243 btrfs_set_block_group_used(&cache->item, old_val);
6244 cache->reserved -= num_bytes;
6245 cache->space_info->bytes_reserved -= num_bytes;
6246 cache->space_info->bytes_used += num_bytes;
6247 cache->space_info->disk_used += num_bytes * factor;
6248 spin_unlock(&cache->lock);
6249 spin_unlock(&cache->space_info->lock);
6250 } else {
6251 old_val -= num_bytes;
6252 btrfs_set_block_group_used(&cache->item, old_val);
6253 cache->pinned += num_bytes;
6254 cache->space_info->bytes_pinned += num_bytes;
6255 cache->space_info->bytes_used -= num_bytes;
6256 cache->space_info->disk_used -= num_bytes * factor;
6257 spin_unlock(&cache->lock);
6258 spin_unlock(&cache->space_info->lock);
6259
6260 trace_btrfs_space_reservation(info, "pinned",
6261 cache->space_info->flags,
6262 num_bytes, 1);
6263 set_extent_dirty(info->pinned_extents,
6264 bytenr, bytenr + num_bytes - 1,
6265 GFP_NOFS | __GFP_NOFAIL);
6266 }
6267
6268 spin_lock(&trans->transaction->dirty_bgs_lock);
6269 if (list_empty(&cache->dirty_list)) {
6270 list_add_tail(&cache->dirty_list,
6271 &trans->transaction->dirty_bgs);
6272 trans->transaction->num_dirty_bgs++;
6273 btrfs_get_block_group(cache);
6274 }
6275 spin_unlock(&trans->transaction->dirty_bgs_lock);
6276
6277 /*
6278 * No longer have used bytes in this block group, queue it for
6279 * deletion. We do this after adding the block group to the
6280 * dirty list to avoid races between cleaner kthread and space
6281 * cache writeout.
6282 */
6283 if (!alloc && old_val == 0) {
6284 spin_lock(&info->unused_bgs_lock);
6285 if (list_empty(&cache->bg_list)) {
6286 btrfs_get_block_group(cache);
6287 list_add_tail(&cache->bg_list,
6288 &info->unused_bgs);
6289 }
6290 spin_unlock(&info->unused_bgs_lock);
6291 }
6292
6293 btrfs_put_block_group(cache);
6294 total -= num_bytes;
6295 bytenr += num_bytes;
6296 }
6297 return 0;
6298 }
6299
6300 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6301 {
6302 struct btrfs_block_group_cache *cache;
6303 u64 bytenr;
6304
6305 spin_lock(&fs_info->block_group_cache_lock);
6306 bytenr = fs_info->first_logical_byte;
6307 spin_unlock(&fs_info->block_group_cache_lock);
6308
6309 if (bytenr < (u64)-1)
6310 return bytenr;
6311
6312 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6313 if (!cache)
6314 return 0;
6315
6316 bytenr = cache->key.objectid;
6317 btrfs_put_block_group(cache);
6318
6319 return bytenr;
6320 }
6321
6322 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6323 struct btrfs_block_group_cache *cache,
6324 u64 bytenr, u64 num_bytes, int reserved)
6325 {
6326 spin_lock(&cache->space_info->lock);
6327 spin_lock(&cache->lock);
6328 cache->pinned += num_bytes;
6329 cache->space_info->bytes_pinned += num_bytes;
6330 if (reserved) {
6331 cache->reserved -= num_bytes;
6332 cache->space_info->bytes_reserved -= num_bytes;
6333 }
6334 spin_unlock(&cache->lock);
6335 spin_unlock(&cache->space_info->lock);
6336
6337 trace_btrfs_space_reservation(fs_info, "pinned",
6338 cache->space_info->flags, num_bytes, 1);
6339 set_extent_dirty(fs_info->pinned_extents, bytenr,
6340 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6341 return 0;
6342 }
6343
6344 /*
6345 * this function must be called within transaction
6346 */
6347 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6348 u64 bytenr, u64 num_bytes, int reserved)
6349 {
6350 struct btrfs_block_group_cache *cache;
6351
6352 cache = btrfs_lookup_block_group(fs_info, bytenr);
6353 BUG_ON(!cache); /* Logic error */
6354
6355 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6356
6357 btrfs_put_block_group(cache);
6358 return 0;
6359 }
6360
6361 /*
6362 * this function must be called within transaction
6363 */
6364 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6365 u64 bytenr, u64 num_bytes)
6366 {
6367 struct btrfs_block_group_cache *cache;
6368 int ret;
6369
6370 cache = btrfs_lookup_block_group(fs_info, bytenr);
6371 if (!cache)
6372 return -EINVAL;
6373
6374 /*
6375 * pull in the free space cache (if any) so that our pin
6376 * removes the free space from the cache. We have load_only set
6377 * to one because the slow code to read in the free extents does check
6378 * the pinned extents.
6379 */
6380 cache_block_group(cache, 1);
6381
6382 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6383
6384 /* remove us from the free space cache (if we're there at all) */
6385 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6386 btrfs_put_block_group(cache);
6387 return ret;
6388 }
6389
6390 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6391 u64 start, u64 num_bytes)
6392 {
6393 int ret;
6394 struct btrfs_block_group_cache *block_group;
6395 struct btrfs_caching_control *caching_ctl;
6396
6397 block_group = btrfs_lookup_block_group(fs_info, start);
6398 if (!block_group)
6399 return -EINVAL;
6400
6401 cache_block_group(block_group, 0);
6402 caching_ctl = get_caching_control(block_group);
6403
6404 if (!caching_ctl) {
6405 /* Logic error */
6406 BUG_ON(!block_group_cache_done(block_group));
6407 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6408 } else {
6409 mutex_lock(&caching_ctl->mutex);
6410
6411 if (start >= caching_ctl->progress) {
6412 ret = add_excluded_extent(fs_info, start, num_bytes);
6413 } else if (start + num_bytes <= caching_ctl->progress) {
6414 ret = btrfs_remove_free_space(block_group,
6415 start, num_bytes);
6416 } else {
6417 num_bytes = caching_ctl->progress - start;
6418 ret = btrfs_remove_free_space(block_group,
6419 start, num_bytes);
6420 if (ret)
6421 goto out_lock;
6422
6423 num_bytes = (start + num_bytes) -
6424 caching_ctl->progress;
6425 start = caching_ctl->progress;
6426 ret = add_excluded_extent(fs_info, start, num_bytes);
6427 }
6428 out_lock:
6429 mutex_unlock(&caching_ctl->mutex);
6430 put_caching_control(caching_ctl);
6431 }
6432 btrfs_put_block_group(block_group);
6433 return ret;
6434 }
6435
6436 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6437 struct extent_buffer *eb)
6438 {
6439 struct btrfs_file_extent_item *item;
6440 struct btrfs_key key;
6441 int found_type;
6442 int i;
6443
6444 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6445 return 0;
6446
6447 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6448 btrfs_item_key_to_cpu(eb, &key, i);
6449 if (key.type != BTRFS_EXTENT_DATA_KEY)
6450 continue;
6451 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6452 found_type = btrfs_file_extent_type(eb, item);
6453 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6454 continue;
6455 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6456 continue;
6457 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6458 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6459 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6460 }
6461
6462 return 0;
6463 }
6464
6465 static void
6466 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6467 {
6468 atomic_inc(&bg->reservations);
6469 }
6470
6471 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6472 const u64 start)
6473 {
6474 struct btrfs_block_group_cache *bg;
6475
6476 bg = btrfs_lookup_block_group(fs_info, start);
6477 ASSERT(bg);
6478 if (atomic_dec_and_test(&bg->reservations))
6479 wake_up_atomic_t(&bg->reservations);
6480 btrfs_put_block_group(bg);
6481 }
6482
6483 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6484 {
6485 schedule();
6486 return 0;
6487 }
6488
6489 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6490 {
6491 struct btrfs_space_info *space_info = bg->space_info;
6492
6493 ASSERT(bg->ro);
6494
6495 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6496 return;
6497
6498 /*
6499 * Our block group is read only but before we set it to read only,
6500 * some task might have had allocated an extent from it already, but it
6501 * has not yet created a respective ordered extent (and added it to a
6502 * root's list of ordered extents).
6503 * Therefore wait for any task currently allocating extents, since the
6504 * block group's reservations counter is incremented while a read lock
6505 * on the groups' semaphore is held and decremented after releasing
6506 * the read access on that semaphore and creating the ordered extent.
6507 */
6508 down_write(&space_info->groups_sem);
6509 up_write(&space_info->groups_sem);
6510
6511 wait_on_atomic_t(&bg->reservations,
6512 btrfs_wait_bg_reservations_atomic_t,
6513 TASK_UNINTERRUPTIBLE);
6514 }
6515
6516 /**
6517 * btrfs_add_reserved_bytes - update the block_group and space info counters
6518 * @cache: The cache we are manipulating
6519 * @ram_bytes: The number of bytes of file content, and will be same to
6520 * @num_bytes except for the compress path.
6521 * @num_bytes: The number of bytes in question
6522 * @delalloc: The blocks are allocated for the delalloc write
6523 *
6524 * This is called by the allocator when it reserves space. If this is a
6525 * reservation and the block group has become read only we cannot make the
6526 * reservation and return -EAGAIN, otherwise this function always succeeds.
6527 */
6528 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6529 u64 ram_bytes, u64 num_bytes, int delalloc)
6530 {
6531 struct btrfs_space_info *space_info = cache->space_info;
6532 int ret = 0;
6533
6534 spin_lock(&space_info->lock);
6535 spin_lock(&cache->lock);
6536 if (cache->ro) {
6537 ret = -EAGAIN;
6538 } else {
6539 cache->reserved += num_bytes;
6540 space_info->bytes_reserved += num_bytes;
6541
6542 trace_btrfs_space_reservation(cache->fs_info,
6543 "space_info", space_info->flags,
6544 ram_bytes, 0);
6545 space_info->bytes_may_use -= ram_bytes;
6546 if (delalloc)
6547 cache->delalloc_bytes += num_bytes;
6548 }
6549 spin_unlock(&cache->lock);
6550 spin_unlock(&space_info->lock);
6551 return ret;
6552 }
6553
6554 /**
6555 * btrfs_free_reserved_bytes - update the block_group and space info counters
6556 * @cache: The cache we are manipulating
6557 * @num_bytes: The number of bytes in question
6558 * @delalloc: The blocks are allocated for the delalloc write
6559 *
6560 * This is called by somebody who is freeing space that was never actually used
6561 * on disk. For example if you reserve some space for a new leaf in transaction
6562 * A and before transaction A commits you free that leaf, you call this with
6563 * reserve set to 0 in order to clear the reservation.
6564 */
6565
6566 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6567 u64 num_bytes, int delalloc)
6568 {
6569 struct btrfs_space_info *space_info = cache->space_info;
6570 int ret = 0;
6571
6572 spin_lock(&space_info->lock);
6573 spin_lock(&cache->lock);
6574 if (cache->ro)
6575 space_info->bytes_readonly += num_bytes;
6576 cache->reserved -= num_bytes;
6577 space_info->bytes_reserved -= num_bytes;
6578
6579 if (delalloc)
6580 cache->delalloc_bytes -= num_bytes;
6581 spin_unlock(&cache->lock);
6582 spin_unlock(&space_info->lock);
6583 return ret;
6584 }
6585 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6586 {
6587 struct btrfs_caching_control *next;
6588 struct btrfs_caching_control *caching_ctl;
6589 struct btrfs_block_group_cache *cache;
6590
6591 down_write(&fs_info->commit_root_sem);
6592
6593 list_for_each_entry_safe(caching_ctl, next,
6594 &fs_info->caching_block_groups, list) {
6595 cache = caching_ctl->block_group;
6596 if (block_group_cache_done(cache)) {
6597 cache->last_byte_to_unpin = (u64)-1;
6598 list_del_init(&caching_ctl->list);
6599 put_caching_control(caching_ctl);
6600 } else {
6601 cache->last_byte_to_unpin = caching_ctl->progress;
6602 }
6603 }
6604
6605 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6606 fs_info->pinned_extents = &fs_info->freed_extents[1];
6607 else
6608 fs_info->pinned_extents = &fs_info->freed_extents[0];
6609
6610 up_write(&fs_info->commit_root_sem);
6611
6612 update_global_block_rsv(fs_info);
6613 }
6614
6615 /*
6616 * Returns the free cluster for the given space info and sets empty_cluster to
6617 * what it should be based on the mount options.
6618 */
6619 static struct btrfs_free_cluster *
6620 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6621 struct btrfs_space_info *space_info, u64 *empty_cluster)
6622 {
6623 struct btrfs_free_cluster *ret = NULL;
6624 bool ssd = btrfs_test_opt(fs_info, SSD);
6625
6626 *empty_cluster = 0;
6627 if (btrfs_mixed_space_info(space_info))
6628 return ret;
6629
6630 if (ssd)
6631 *empty_cluster = SZ_2M;
6632 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6633 ret = &fs_info->meta_alloc_cluster;
6634 if (!ssd)
6635 *empty_cluster = SZ_64K;
6636 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6637 ret = &fs_info->data_alloc_cluster;
6638 }
6639
6640 return ret;
6641 }
6642
6643 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6644 u64 start, u64 end,
6645 const bool return_free_space)
6646 {
6647 struct btrfs_block_group_cache *cache = NULL;
6648 struct btrfs_space_info *space_info;
6649 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6650 struct btrfs_free_cluster *cluster = NULL;
6651 u64 len;
6652 u64 total_unpinned = 0;
6653 u64 empty_cluster = 0;
6654 bool readonly;
6655
6656 while (start <= end) {
6657 readonly = false;
6658 if (!cache ||
6659 start >= cache->key.objectid + cache->key.offset) {
6660 if (cache)
6661 btrfs_put_block_group(cache);
6662 total_unpinned = 0;
6663 cache = btrfs_lookup_block_group(fs_info, start);
6664 BUG_ON(!cache); /* Logic error */
6665
6666 cluster = fetch_cluster_info(fs_info,
6667 cache->space_info,
6668 &empty_cluster);
6669 empty_cluster <<= 1;
6670 }
6671
6672 len = cache->key.objectid + cache->key.offset - start;
6673 len = min(len, end + 1 - start);
6674
6675 if (start < cache->last_byte_to_unpin) {
6676 len = min(len, cache->last_byte_to_unpin - start);
6677 if (return_free_space)
6678 btrfs_add_free_space(cache, start, len);
6679 }
6680
6681 start += len;
6682 total_unpinned += len;
6683 space_info = cache->space_info;
6684
6685 /*
6686 * If this space cluster has been marked as fragmented and we've
6687 * unpinned enough in this block group to potentially allow a
6688 * cluster to be created inside of it go ahead and clear the
6689 * fragmented check.
6690 */
6691 if (cluster && cluster->fragmented &&
6692 total_unpinned > empty_cluster) {
6693 spin_lock(&cluster->lock);
6694 cluster->fragmented = 0;
6695 spin_unlock(&cluster->lock);
6696 }
6697
6698 spin_lock(&space_info->lock);
6699 spin_lock(&cache->lock);
6700 cache->pinned -= len;
6701 space_info->bytes_pinned -= len;
6702
6703 trace_btrfs_space_reservation(fs_info, "pinned",
6704 space_info->flags, len, 0);
6705 space_info->max_extent_size = 0;
6706 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6707 if (cache->ro) {
6708 space_info->bytes_readonly += len;
6709 readonly = true;
6710 }
6711 spin_unlock(&cache->lock);
6712 if (!readonly && return_free_space &&
6713 global_rsv->space_info == space_info) {
6714 u64 to_add = len;
6715 WARN_ON(!return_free_space);
6716 spin_lock(&global_rsv->lock);
6717 if (!global_rsv->full) {
6718 to_add = min(len, global_rsv->size -
6719 global_rsv->reserved);
6720 global_rsv->reserved += to_add;
6721 space_info->bytes_may_use += to_add;
6722 if (global_rsv->reserved >= global_rsv->size)
6723 global_rsv->full = 1;
6724 trace_btrfs_space_reservation(fs_info,
6725 "space_info",
6726 space_info->flags,
6727 to_add, 1);
6728 len -= to_add;
6729 }
6730 spin_unlock(&global_rsv->lock);
6731 /* Add to any tickets we may have */
6732 if (len)
6733 space_info_add_new_bytes(fs_info, space_info,
6734 len);
6735 }
6736 spin_unlock(&space_info->lock);
6737 }
6738
6739 if (cache)
6740 btrfs_put_block_group(cache);
6741 return 0;
6742 }
6743
6744 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6745 struct btrfs_fs_info *fs_info)
6746 {
6747 struct btrfs_block_group_cache *block_group, *tmp;
6748 struct list_head *deleted_bgs;
6749 struct extent_io_tree *unpin;
6750 u64 start;
6751 u64 end;
6752 int ret;
6753
6754 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6755 unpin = &fs_info->freed_extents[1];
6756 else
6757 unpin = &fs_info->freed_extents[0];
6758
6759 while (!trans->aborted) {
6760 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6761 ret = find_first_extent_bit(unpin, 0, &start, &end,
6762 EXTENT_DIRTY, NULL);
6763 if (ret) {
6764 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6765 break;
6766 }
6767
6768 if (btrfs_test_opt(fs_info, DISCARD))
6769 ret = btrfs_discard_extent(fs_info, start,
6770 end + 1 - start, NULL);
6771
6772 clear_extent_dirty(unpin, start, end);
6773 unpin_extent_range(fs_info, start, end, true);
6774 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6775 cond_resched();
6776 }
6777
6778 /*
6779 * Transaction is finished. We don't need the lock anymore. We
6780 * do need to clean up the block groups in case of a transaction
6781 * abort.
6782 */
6783 deleted_bgs = &trans->transaction->deleted_bgs;
6784 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6785 u64 trimmed = 0;
6786
6787 ret = -EROFS;
6788 if (!trans->aborted)
6789 ret = btrfs_discard_extent(fs_info,
6790 block_group->key.objectid,
6791 block_group->key.offset,
6792 &trimmed);
6793
6794 list_del_init(&block_group->bg_list);
6795 btrfs_put_block_group_trimming(block_group);
6796 btrfs_put_block_group(block_group);
6797
6798 if (ret) {
6799 const char *errstr = btrfs_decode_error(ret);
6800 btrfs_warn(fs_info,
6801 "Discard failed while removing blockgroup: errno=%d %s\n",
6802 ret, errstr);
6803 }
6804 }
6805
6806 return 0;
6807 }
6808
6809 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6810 u64 owner, u64 root_objectid)
6811 {
6812 struct btrfs_space_info *space_info;
6813 u64 flags;
6814
6815 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6816 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6817 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6818 else
6819 flags = BTRFS_BLOCK_GROUP_METADATA;
6820 } else {
6821 flags = BTRFS_BLOCK_GROUP_DATA;
6822 }
6823
6824 space_info = __find_space_info(fs_info, flags);
6825 BUG_ON(!space_info); /* Logic bug */
6826 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6827 }
6828
6829
6830 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6831 struct btrfs_fs_info *info,
6832 struct btrfs_delayed_ref_node *node, u64 parent,
6833 u64 root_objectid, u64 owner_objectid,
6834 u64 owner_offset, int refs_to_drop,
6835 struct btrfs_delayed_extent_op *extent_op)
6836 {
6837 struct btrfs_key key;
6838 struct btrfs_path *path;
6839 struct btrfs_root *extent_root = info->extent_root;
6840 struct extent_buffer *leaf;
6841 struct btrfs_extent_item *ei;
6842 struct btrfs_extent_inline_ref *iref;
6843 int ret;
6844 int is_data;
6845 int extent_slot = 0;
6846 int found_extent = 0;
6847 int num_to_del = 1;
6848 u32 item_size;
6849 u64 refs;
6850 u64 bytenr = node->bytenr;
6851 u64 num_bytes = node->num_bytes;
6852 int last_ref = 0;
6853 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6854
6855 path = btrfs_alloc_path();
6856 if (!path)
6857 return -ENOMEM;
6858
6859 path->reada = READA_FORWARD;
6860 path->leave_spinning = 1;
6861
6862 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6863 BUG_ON(!is_data && refs_to_drop != 1);
6864
6865 if (is_data)
6866 skinny_metadata = 0;
6867
6868 ret = lookup_extent_backref(trans, info, path, &iref,
6869 bytenr, num_bytes, parent,
6870 root_objectid, owner_objectid,
6871 owner_offset);
6872 if (ret == 0) {
6873 extent_slot = path->slots[0];
6874 while (extent_slot >= 0) {
6875 btrfs_item_key_to_cpu(path->nodes[0], &key,
6876 extent_slot);
6877 if (key.objectid != bytenr)
6878 break;
6879 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6880 key.offset == num_bytes) {
6881 found_extent = 1;
6882 break;
6883 }
6884 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6885 key.offset == owner_objectid) {
6886 found_extent = 1;
6887 break;
6888 }
6889 if (path->slots[0] - extent_slot > 5)
6890 break;
6891 extent_slot--;
6892 }
6893 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6894 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6895 if (found_extent && item_size < sizeof(*ei))
6896 found_extent = 0;
6897 #endif
6898 if (!found_extent) {
6899 BUG_ON(iref);
6900 ret = remove_extent_backref(trans, info, path, NULL,
6901 refs_to_drop,
6902 is_data, &last_ref);
6903 if (ret) {
6904 btrfs_abort_transaction(trans, ret);
6905 goto out;
6906 }
6907 btrfs_release_path(path);
6908 path->leave_spinning = 1;
6909
6910 key.objectid = bytenr;
6911 key.type = BTRFS_EXTENT_ITEM_KEY;
6912 key.offset = num_bytes;
6913
6914 if (!is_data && skinny_metadata) {
6915 key.type = BTRFS_METADATA_ITEM_KEY;
6916 key.offset = owner_objectid;
6917 }
6918
6919 ret = btrfs_search_slot(trans, extent_root,
6920 &key, path, -1, 1);
6921 if (ret > 0 && skinny_metadata && path->slots[0]) {
6922 /*
6923 * Couldn't find our skinny metadata item,
6924 * see if we have ye olde extent item.
6925 */
6926 path->slots[0]--;
6927 btrfs_item_key_to_cpu(path->nodes[0], &key,
6928 path->slots[0]);
6929 if (key.objectid == bytenr &&
6930 key.type == BTRFS_EXTENT_ITEM_KEY &&
6931 key.offset == num_bytes)
6932 ret = 0;
6933 }
6934
6935 if (ret > 0 && skinny_metadata) {
6936 skinny_metadata = false;
6937 key.objectid = bytenr;
6938 key.type = BTRFS_EXTENT_ITEM_KEY;
6939 key.offset = num_bytes;
6940 btrfs_release_path(path);
6941 ret = btrfs_search_slot(trans, extent_root,
6942 &key, path, -1, 1);
6943 }
6944
6945 if (ret) {
6946 btrfs_err(info,
6947 "umm, got %d back from search, was looking for %llu",
6948 ret, bytenr);
6949 if (ret > 0)
6950 btrfs_print_leaf(info, path->nodes[0]);
6951 }
6952 if (ret < 0) {
6953 btrfs_abort_transaction(trans, ret);
6954 goto out;
6955 }
6956 extent_slot = path->slots[0];
6957 }
6958 } else if (WARN_ON(ret == -ENOENT)) {
6959 btrfs_print_leaf(info, path->nodes[0]);
6960 btrfs_err(info,
6961 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6962 bytenr, parent, root_objectid, owner_objectid,
6963 owner_offset);
6964 btrfs_abort_transaction(trans, ret);
6965 goto out;
6966 } else {
6967 btrfs_abort_transaction(trans, ret);
6968 goto out;
6969 }
6970
6971 leaf = path->nodes[0];
6972 item_size = btrfs_item_size_nr(leaf, extent_slot);
6973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6974 if (item_size < sizeof(*ei)) {
6975 BUG_ON(found_extent || extent_slot != path->slots[0]);
6976 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6977 0);
6978 if (ret < 0) {
6979 btrfs_abort_transaction(trans, ret);
6980 goto out;
6981 }
6982
6983 btrfs_release_path(path);
6984 path->leave_spinning = 1;
6985
6986 key.objectid = bytenr;
6987 key.type = BTRFS_EXTENT_ITEM_KEY;
6988 key.offset = num_bytes;
6989
6990 ret = btrfs_search_slot(trans, extent_root, &key, path,
6991 -1, 1);
6992 if (ret) {
6993 btrfs_err(info,
6994 "umm, got %d back from search, was looking for %llu",
6995 ret, bytenr);
6996 btrfs_print_leaf(info, path->nodes[0]);
6997 }
6998 if (ret < 0) {
6999 btrfs_abort_transaction(trans, ret);
7000 goto out;
7001 }
7002
7003 extent_slot = path->slots[0];
7004 leaf = path->nodes[0];
7005 item_size = btrfs_item_size_nr(leaf, extent_slot);
7006 }
7007 #endif
7008 BUG_ON(item_size < sizeof(*ei));
7009 ei = btrfs_item_ptr(leaf, extent_slot,
7010 struct btrfs_extent_item);
7011 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7012 key.type == BTRFS_EXTENT_ITEM_KEY) {
7013 struct btrfs_tree_block_info *bi;
7014 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7015 bi = (struct btrfs_tree_block_info *)(ei + 1);
7016 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7017 }
7018
7019 refs = btrfs_extent_refs(leaf, ei);
7020 if (refs < refs_to_drop) {
7021 btrfs_err(info,
7022 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7023 refs_to_drop, refs, bytenr);
7024 ret = -EINVAL;
7025 btrfs_abort_transaction(trans, ret);
7026 goto out;
7027 }
7028 refs -= refs_to_drop;
7029
7030 if (refs > 0) {
7031 if (extent_op)
7032 __run_delayed_extent_op(extent_op, leaf, ei);
7033 /*
7034 * In the case of inline back ref, reference count will
7035 * be updated by remove_extent_backref
7036 */
7037 if (iref) {
7038 BUG_ON(!found_extent);
7039 } else {
7040 btrfs_set_extent_refs(leaf, ei, refs);
7041 btrfs_mark_buffer_dirty(leaf);
7042 }
7043 if (found_extent) {
7044 ret = remove_extent_backref(trans, info, path,
7045 iref, refs_to_drop,
7046 is_data, &last_ref);
7047 if (ret) {
7048 btrfs_abort_transaction(trans, ret);
7049 goto out;
7050 }
7051 }
7052 add_pinned_bytes(info, -num_bytes, owner_objectid,
7053 root_objectid);
7054 } else {
7055 if (found_extent) {
7056 BUG_ON(is_data && refs_to_drop !=
7057 extent_data_ref_count(path, iref));
7058 if (iref) {
7059 BUG_ON(path->slots[0] != extent_slot);
7060 } else {
7061 BUG_ON(path->slots[0] != extent_slot + 1);
7062 path->slots[0] = extent_slot;
7063 num_to_del = 2;
7064 }
7065 }
7066
7067 last_ref = 1;
7068 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7069 num_to_del);
7070 if (ret) {
7071 btrfs_abort_transaction(trans, ret);
7072 goto out;
7073 }
7074 btrfs_release_path(path);
7075
7076 if (is_data) {
7077 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7078 if (ret) {
7079 btrfs_abort_transaction(trans, ret);
7080 goto out;
7081 }
7082 }
7083
7084 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7085 if (ret) {
7086 btrfs_abort_transaction(trans, ret);
7087 goto out;
7088 }
7089
7090 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7091 if (ret) {
7092 btrfs_abort_transaction(trans, ret);
7093 goto out;
7094 }
7095 }
7096 btrfs_release_path(path);
7097
7098 out:
7099 btrfs_free_path(path);
7100 return ret;
7101 }
7102
7103 /*
7104 * when we free an block, it is possible (and likely) that we free the last
7105 * delayed ref for that extent as well. This searches the delayed ref tree for
7106 * a given extent, and if there are no other delayed refs to be processed, it
7107 * removes it from the tree.
7108 */
7109 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7110 u64 bytenr)
7111 {
7112 struct btrfs_delayed_ref_head *head;
7113 struct btrfs_delayed_ref_root *delayed_refs;
7114 int ret = 0;
7115
7116 delayed_refs = &trans->transaction->delayed_refs;
7117 spin_lock(&delayed_refs->lock);
7118 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7119 if (!head)
7120 goto out_delayed_unlock;
7121
7122 spin_lock(&head->lock);
7123 if (!list_empty(&head->ref_list))
7124 goto out;
7125
7126 if (head->extent_op) {
7127 if (!head->must_insert_reserved)
7128 goto out;
7129 btrfs_free_delayed_extent_op(head->extent_op);
7130 head->extent_op = NULL;
7131 }
7132
7133 /*
7134 * waiting for the lock here would deadlock. If someone else has it
7135 * locked they are already in the process of dropping it anyway
7136 */
7137 if (!mutex_trylock(&head->mutex))
7138 goto out;
7139
7140 /*
7141 * at this point we have a head with no other entries. Go
7142 * ahead and process it.
7143 */
7144 head->node.in_tree = 0;
7145 rb_erase(&head->href_node, &delayed_refs->href_root);
7146
7147 atomic_dec(&delayed_refs->num_entries);
7148
7149 /*
7150 * we don't take a ref on the node because we're removing it from the
7151 * tree, so we just steal the ref the tree was holding.
7152 */
7153 delayed_refs->num_heads--;
7154 if (head->processing == 0)
7155 delayed_refs->num_heads_ready--;
7156 head->processing = 0;
7157 spin_unlock(&head->lock);
7158 spin_unlock(&delayed_refs->lock);
7159
7160 BUG_ON(head->extent_op);
7161 if (head->must_insert_reserved)
7162 ret = 1;
7163
7164 mutex_unlock(&head->mutex);
7165 btrfs_put_delayed_ref(&head->node);
7166 return ret;
7167 out:
7168 spin_unlock(&head->lock);
7169
7170 out_delayed_unlock:
7171 spin_unlock(&delayed_refs->lock);
7172 return 0;
7173 }
7174
7175 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7176 struct btrfs_root *root,
7177 struct extent_buffer *buf,
7178 u64 parent, int last_ref)
7179 {
7180 struct btrfs_fs_info *fs_info = root->fs_info;
7181 int pin = 1;
7182 int ret;
7183
7184 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7185 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7186 buf->start, buf->len,
7187 parent,
7188 root->root_key.objectid,
7189 btrfs_header_level(buf),
7190 BTRFS_DROP_DELAYED_REF, NULL);
7191 BUG_ON(ret); /* -ENOMEM */
7192 }
7193
7194 if (!last_ref)
7195 return;
7196
7197 if (btrfs_header_generation(buf) == trans->transid) {
7198 struct btrfs_block_group_cache *cache;
7199
7200 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7201 ret = check_ref_cleanup(trans, buf->start);
7202 if (!ret)
7203 goto out;
7204 }
7205
7206 cache = btrfs_lookup_block_group(fs_info, buf->start);
7207
7208 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7209 pin_down_extent(fs_info, cache, buf->start,
7210 buf->len, 1);
7211 btrfs_put_block_group(cache);
7212 goto out;
7213 }
7214
7215 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7216
7217 btrfs_add_free_space(cache, buf->start, buf->len);
7218 btrfs_free_reserved_bytes(cache, buf->len, 0);
7219 btrfs_put_block_group(cache);
7220 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7221 pin = 0;
7222 }
7223 out:
7224 if (pin)
7225 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7226 root->root_key.objectid);
7227
7228 /*
7229 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7230 * anymore.
7231 */
7232 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7233 }
7234
7235 /* Can return -ENOMEM */
7236 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7237 struct btrfs_fs_info *fs_info,
7238 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7239 u64 owner, u64 offset)
7240 {
7241 int ret;
7242
7243 if (btrfs_is_testing(fs_info))
7244 return 0;
7245
7246 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7247
7248 /*
7249 * tree log blocks never actually go into the extent allocation
7250 * tree, just update pinning info and exit early.
7251 */
7252 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7253 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7254 /* unlocks the pinned mutex */
7255 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7256 ret = 0;
7257 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7258 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7259 num_bytes,
7260 parent, root_objectid, (int)owner,
7261 BTRFS_DROP_DELAYED_REF, NULL);
7262 } else {
7263 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7264 num_bytes,
7265 parent, root_objectid, owner,
7266 offset, 0,
7267 BTRFS_DROP_DELAYED_REF);
7268 }
7269 return ret;
7270 }
7271
7272 /*
7273 * when we wait for progress in the block group caching, its because
7274 * our allocation attempt failed at least once. So, we must sleep
7275 * and let some progress happen before we try again.
7276 *
7277 * This function will sleep at least once waiting for new free space to
7278 * show up, and then it will check the block group free space numbers
7279 * for our min num_bytes. Another option is to have it go ahead
7280 * and look in the rbtree for a free extent of a given size, but this
7281 * is a good start.
7282 *
7283 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7284 * any of the information in this block group.
7285 */
7286 static noinline void
7287 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7288 u64 num_bytes)
7289 {
7290 struct btrfs_caching_control *caching_ctl;
7291
7292 caching_ctl = get_caching_control(cache);
7293 if (!caching_ctl)
7294 return;
7295
7296 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7297 (cache->free_space_ctl->free_space >= num_bytes));
7298
7299 put_caching_control(caching_ctl);
7300 }
7301
7302 static noinline int
7303 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7304 {
7305 struct btrfs_caching_control *caching_ctl;
7306 int ret = 0;
7307
7308 caching_ctl = get_caching_control(cache);
7309 if (!caching_ctl)
7310 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7311
7312 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7313 if (cache->cached == BTRFS_CACHE_ERROR)
7314 ret = -EIO;
7315 put_caching_control(caching_ctl);
7316 return ret;
7317 }
7318
7319 int __get_raid_index(u64 flags)
7320 {
7321 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7322 return BTRFS_RAID_RAID10;
7323 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7324 return BTRFS_RAID_RAID1;
7325 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7326 return BTRFS_RAID_DUP;
7327 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7328 return BTRFS_RAID_RAID0;
7329 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7330 return BTRFS_RAID_RAID5;
7331 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7332 return BTRFS_RAID_RAID6;
7333
7334 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7335 }
7336
7337 int get_block_group_index(struct btrfs_block_group_cache *cache)
7338 {
7339 return __get_raid_index(cache->flags);
7340 }
7341
7342 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7343 [BTRFS_RAID_RAID10] = "raid10",
7344 [BTRFS_RAID_RAID1] = "raid1",
7345 [BTRFS_RAID_DUP] = "dup",
7346 [BTRFS_RAID_RAID0] = "raid0",
7347 [BTRFS_RAID_SINGLE] = "single",
7348 [BTRFS_RAID_RAID5] = "raid5",
7349 [BTRFS_RAID_RAID6] = "raid6",
7350 };
7351
7352 static const char *get_raid_name(enum btrfs_raid_types type)
7353 {
7354 if (type >= BTRFS_NR_RAID_TYPES)
7355 return NULL;
7356
7357 return btrfs_raid_type_names[type];
7358 }
7359
7360 enum btrfs_loop_type {
7361 LOOP_CACHING_NOWAIT = 0,
7362 LOOP_CACHING_WAIT = 1,
7363 LOOP_ALLOC_CHUNK = 2,
7364 LOOP_NO_EMPTY_SIZE = 3,
7365 };
7366
7367 static inline void
7368 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7369 int delalloc)
7370 {
7371 if (delalloc)
7372 down_read(&cache->data_rwsem);
7373 }
7374
7375 static inline void
7376 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7377 int delalloc)
7378 {
7379 btrfs_get_block_group(cache);
7380 if (delalloc)
7381 down_read(&cache->data_rwsem);
7382 }
7383
7384 static struct btrfs_block_group_cache *
7385 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7386 struct btrfs_free_cluster *cluster,
7387 int delalloc)
7388 {
7389 struct btrfs_block_group_cache *used_bg = NULL;
7390
7391 spin_lock(&cluster->refill_lock);
7392 while (1) {
7393 used_bg = cluster->block_group;
7394 if (!used_bg)
7395 return NULL;
7396
7397 if (used_bg == block_group)
7398 return used_bg;
7399
7400 btrfs_get_block_group(used_bg);
7401
7402 if (!delalloc)
7403 return used_bg;
7404
7405 if (down_read_trylock(&used_bg->data_rwsem))
7406 return used_bg;
7407
7408 spin_unlock(&cluster->refill_lock);
7409
7410 /* We should only have one-level nested. */
7411 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7412
7413 spin_lock(&cluster->refill_lock);
7414 if (used_bg == cluster->block_group)
7415 return used_bg;
7416
7417 up_read(&used_bg->data_rwsem);
7418 btrfs_put_block_group(used_bg);
7419 }
7420 }
7421
7422 static inline void
7423 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7424 int delalloc)
7425 {
7426 if (delalloc)
7427 up_read(&cache->data_rwsem);
7428 btrfs_put_block_group(cache);
7429 }
7430
7431 /*
7432 * walks the btree of allocated extents and find a hole of a given size.
7433 * The key ins is changed to record the hole:
7434 * ins->objectid == start position
7435 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7436 * ins->offset == the size of the hole.
7437 * Any available blocks before search_start are skipped.
7438 *
7439 * If there is no suitable free space, we will record the max size of
7440 * the free space extent currently.
7441 */
7442 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7443 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7444 u64 hint_byte, struct btrfs_key *ins,
7445 u64 flags, int delalloc)
7446 {
7447 int ret = 0;
7448 struct btrfs_root *root = fs_info->extent_root;
7449 struct btrfs_free_cluster *last_ptr = NULL;
7450 struct btrfs_block_group_cache *block_group = NULL;
7451 u64 search_start = 0;
7452 u64 max_extent_size = 0;
7453 u64 empty_cluster = 0;
7454 struct btrfs_space_info *space_info;
7455 int loop = 0;
7456 int index = __get_raid_index(flags);
7457 bool failed_cluster_refill = false;
7458 bool failed_alloc = false;
7459 bool use_cluster = true;
7460 bool have_caching_bg = false;
7461 bool orig_have_caching_bg = false;
7462 bool full_search = false;
7463
7464 WARN_ON(num_bytes < fs_info->sectorsize);
7465 ins->type = BTRFS_EXTENT_ITEM_KEY;
7466 ins->objectid = 0;
7467 ins->offset = 0;
7468
7469 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7470
7471 space_info = __find_space_info(fs_info, flags);
7472 if (!space_info) {
7473 btrfs_err(fs_info, "No space info for %llu", flags);
7474 return -ENOSPC;
7475 }
7476
7477 /*
7478 * If our free space is heavily fragmented we may not be able to make
7479 * big contiguous allocations, so instead of doing the expensive search
7480 * for free space, simply return ENOSPC with our max_extent_size so we
7481 * can go ahead and search for a more manageable chunk.
7482 *
7483 * If our max_extent_size is large enough for our allocation simply
7484 * disable clustering since we will likely not be able to find enough
7485 * space to create a cluster and induce latency trying.
7486 */
7487 if (unlikely(space_info->max_extent_size)) {
7488 spin_lock(&space_info->lock);
7489 if (space_info->max_extent_size &&
7490 num_bytes > space_info->max_extent_size) {
7491 ins->offset = space_info->max_extent_size;
7492 spin_unlock(&space_info->lock);
7493 return -ENOSPC;
7494 } else if (space_info->max_extent_size) {
7495 use_cluster = false;
7496 }
7497 spin_unlock(&space_info->lock);
7498 }
7499
7500 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7501 if (last_ptr) {
7502 spin_lock(&last_ptr->lock);
7503 if (last_ptr->block_group)
7504 hint_byte = last_ptr->window_start;
7505 if (last_ptr->fragmented) {
7506 /*
7507 * We still set window_start so we can keep track of the
7508 * last place we found an allocation to try and save
7509 * some time.
7510 */
7511 hint_byte = last_ptr->window_start;
7512 use_cluster = false;
7513 }
7514 spin_unlock(&last_ptr->lock);
7515 }
7516
7517 search_start = max(search_start, first_logical_byte(fs_info, 0));
7518 search_start = max(search_start, hint_byte);
7519 if (search_start == hint_byte) {
7520 block_group = btrfs_lookup_block_group(fs_info, search_start);
7521 /*
7522 * we don't want to use the block group if it doesn't match our
7523 * allocation bits, or if its not cached.
7524 *
7525 * However if we are re-searching with an ideal block group
7526 * picked out then we don't care that the block group is cached.
7527 */
7528 if (block_group && block_group_bits(block_group, flags) &&
7529 block_group->cached != BTRFS_CACHE_NO) {
7530 down_read(&space_info->groups_sem);
7531 if (list_empty(&block_group->list) ||
7532 block_group->ro) {
7533 /*
7534 * someone is removing this block group,
7535 * we can't jump into the have_block_group
7536 * target because our list pointers are not
7537 * valid
7538 */
7539 btrfs_put_block_group(block_group);
7540 up_read(&space_info->groups_sem);
7541 } else {
7542 index = get_block_group_index(block_group);
7543 btrfs_lock_block_group(block_group, delalloc);
7544 goto have_block_group;
7545 }
7546 } else if (block_group) {
7547 btrfs_put_block_group(block_group);
7548 }
7549 }
7550 search:
7551 have_caching_bg = false;
7552 if (index == 0 || index == __get_raid_index(flags))
7553 full_search = true;
7554 down_read(&space_info->groups_sem);
7555 list_for_each_entry(block_group, &space_info->block_groups[index],
7556 list) {
7557 u64 offset;
7558 int cached;
7559
7560 btrfs_grab_block_group(block_group, delalloc);
7561 search_start = block_group->key.objectid;
7562
7563 /*
7564 * this can happen if we end up cycling through all the
7565 * raid types, but we want to make sure we only allocate
7566 * for the proper type.
7567 */
7568 if (!block_group_bits(block_group, flags)) {
7569 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7570 BTRFS_BLOCK_GROUP_RAID1 |
7571 BTRFS_BLOCK_GROUP_RAID5 |
7572 BTRFS_BLOCK_GROUP_RAID6 |
7573 BTRFS_BLOCK_GROUP_RAID10;
7574
7575 /*
7576 * if they asked for extra copies and this block group
7577 * doesn't provide them, bail. This does allow us to
7578 * fill raid0 from raid1.
7579 */
7580 if ((flags & extra) && !(block_group->flags & extra))
7581 goto loop;
7582 }
7583
7584 have_block_group:
7585 cached = block_group_cache_done(block_group);
7586 if (unlikely(!cached)) {
7587 have_caching_bg = true;
7588 ret = cache_block_group(block_group, 0);
7589 BUG_ON(ret < 0);
7590 ret = 0;
7591 }
7592
7593 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7594 goto loop;
7595 if (unlikely(block_group->ro))
7596 goto loop;
7597
7598 /*
7599 * Ok we want to try and use the cluster allocator, so
7600 * lets look there
7601 */
7602 if (last_ptr && use_cluster) {
7603 struct btrfs_block_group_cache *used_block_group;
7604 unsigned long aligned_cluster;
7605 /*
7606 * the refill lock keeps out other
7607 * people trying to start a new cluster
7608 */
7609 used_block_group = btrfs_lock_cluster(block_group,
7610 last_ptr,
7611 delalloc);
7612 if (!used_block_group)
7613 goto refill_cluster;
7614
7615 if (used_block_group != block_group &&
7616 (used_block_group->ro ||
7617 !block_group_bits(used_block_group, flags)))
7618 goto release_cluster;
7619
7620 offset = btrfs_alloc_from_cluster(used_block_group,
7621 last_ptr,
7622 num_bytes,
7623 used_block_group->key.objectid,
7624 &max_extent_size);
7625 if (offset) {
7626 /* we have a block, we're done */
7627 spin_unlock(&last_ptr->refill_lock);
7628 trace_btrfs_reserve_extent_cluster(fs_info,
7629 used_block_group,
7630 search_start, num_bytes);
7631 if (used_block_group != block_group) {
7632 btrfs_release_block_group(block_group,
7633 delalloc);
7634 block_group = used_block_group;
7635 }
7636 goto checks;
7637 }
7638
7639 WARN_ON(last_ptr->block_group != used_block_group);
7640 release_cluster:
7641 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7642 * set up a new clusters, so lets just skip it
7643 * and let the allocator find whatever block
7644 * it can find. If we reach this point, we
7645 * will have tried the cluster allocator
7646 * plenty of times and not have found
7647 * anything, so we are likely way too
7648 * fragmented for the clustering stuff to find
7649 * anything.
7650 *
7651 * However, if the cluster is taken from the
7652 * current block group, release the cluster
7653 * first, so that we stand a better chance of
7654 * succeeding in the unclustered
7655 * allocation. */
7656 if (loop >= LOOP_NO_EMPTY_SIZE &&
7657 used_block_group != block_group) {
7658 spin_unlock(&last_ptr->refill_lock);
7659 btrfs_release_block_group(used_block_group,
7660 delalloc);
7661 goto unclustered_alloc;
7662 }
7663
7664 /*
7665 * this cluster didn't work out, free it and
7666 * start over
7667 */
7668 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7669
7670 if (used_block_group != block_group)
7671 btrfs_release_block_group(used_block_group,
7672 delalloc);
7673 refill_cluster:
7674 if (loop >= LOOP_NO_EMPTY_SIZE) {
7675 spin_unlock(&last_ptr->refill_lock);
7676 goto unclustered_alloc;
7677 }
7678
7679 aligned_cluster = max_t(unsigned long,
7680 empty_cluster + empty_size,
7681 block_group->full_stripe_len);
7682
7683 /* allocate a cluster in this block group */
7684 ret = btrfs_find_space_cluster(fs_info, block_group,
7685 last_ptr, search_start,
7686 num_bytes,
7687 aligned_cluster);
7688 if (ret == 0) {
7689 /*
7690 * now pull our allocation out of this
7691 * cluster
7692 */
7693 offset = btrfs_alloc_from_cluster(block_group,
7694 last_ptr,
7695 num_bytes,
7696 search_start,
7697 &max_extent_size);
7698 if (offset) {
7699 /* we found one, proceed */
7700 spin_unlock(&last_ptr->refill_lock);
7701 trace_btrfs_reserve_extent_cluster(fs_info,
7702 block_group, search_start,
7703 num_bytes);
7704 goto checks;
7705 }
7706 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7707 && !failed_cluster_refill) {
7708 spin_unlock(&last_ptr->refill_lock);
7709
7710 failed_cluster_refill = true;
7711 wait_block_group_cache_progress(block_group,
7712 num_bytes + empty_cluster + empty_size);
7713 goto have_block_group;
7714 }
7715
7716 /*
7717 * at this point we either didn't find a cluster
7718 * or we weren't able to allocate a block from our
7719 * cluster. Free the cluster we've been trying
7720 * to use, and go to the next block group
7721 */
7722 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7723 spin_unlock(&last_ptr->refill_lock);
7724 goto loop;
7725 }
7726
7727 unclustered_alloc:
7728 /*
7729 * We are doing an unclustered alloc, set the fragmented flag so
7730 * we don't bother trying to setup a cluster again until we get
7731 * more space.
7732 */
7733 if (unlikely(last_ptr)) {
7734 spin_lock(&last_ptr->lock);
7735 last_ptr->fragmented = 1;
7736 spin_unlock(&last_ptr->lock);
7737 }
7738 if (cached) {
7739 struct btrfs_free_space_ctl *ctl =
7740 block_group->free_space_ctl;
7741
7742 spin_lock(&ctl->tree_lock);
7743 if (ctl->free_space <
7744 num_bytes + empty_cluster + empty_size) {
7745 if (ctl->free_space > max_extent_size)
7746 max_extent_size = ctl->free_space;
7747 spin_unlock(&ctl->tree_lock);
7748 goto loop;
7749 }
7750 spin_unlock(&ctl->tree_lock);
7751 }
7752
7753 offset = btrfs_find_space_for_alloc(block_group, search_start,
7754 num_bytes, empty_size,
7755 &max_extent_size);
7756 /*
7757 * If we didn't find a chunk, and we haven't failed on this
7758 * block group before, and this block group is in the middle of
7759 * caching and we are ok with waiting, then go ahead and wait
7760 * for progress to be made, and set failed_alloc to true.
7761 *
7762 * If failed_alloc is true then we've already waited on this
7763 * block group once and should move on to the next block group.
7764 */
7765 if (!offset && !failed_alloc && !cached &&
7766 loop > LOOP_CACHING_NOWAIT) {
7767 wait_block_group_cache_progress(block_group,
7768 num_bytes + empty_size);
7769 failed_alloc = true;
7770 goto have_block_group;
7771 } else if (!offset) {
7772 goto loop;
7773 }
7774 checks:
7775 search_start = ALIGN(offset, fs_info->stripesize);
7776
7777 /* move on to the next group */
7778 if (search_start + num_bytes >
7779 block_group->key.objectid + block_group->key.offset) {
7780 btrfs_add_free_space(block_group, offset, num_bytes);
7781 goto loop;
7782 }
7783
7784 if (offset < search_start)
7785 btrfs_add_free_space(block_group, offset,
7786 search_start - offset);
7787 BUG_ON(offset > search_start);
7788
7789 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7790 num_bytes, delalloc);
7791 if (ret == -EAGAIN) {
7792 btrfs_add_free_space(block_group, offset, num_bytes);
7793 goto loop;
7794 }
7795 btrfs_inc_block_group_reservations(block_group);
7796
7797 /* we are all good, lets return */
7798 ins->objectid = search_start;
7799 ins->offset = num_bytes;
7800
7801 trace_btrfs_reserve_extent(fs_info, block_group,
7802 search_start, num_bytes);
7803 btrfs_release_block_group(block_group, delalloc);
7804 break;
7805 loop:
7806 failed_cluster_refill = false;
7807 failed_alloc = false;
7808 BUG_ON(index != get_block_group_index(block_group));
7809 btrfs_release_block_group(block_group, delalloc);
7810 }
7811 up_read(&space_info->groups_sem);
7812
7813 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7814 && !orig_have_caching_bg)
7815 orig_have_caching_bg = true;
7816
7817 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7818 goto search;
7819
7820 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7821 goto search;
7822
7823 /*
7824 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7825 * caching kthreads as we move along
7826 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7827 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7828 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7829 * again
7830 */
7831 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7832 index = 0;
7833 if (loop == LOOP_CACHING_NOWAIT) {
7834 /*
7835 * We want to skip the LOOP_CACHING_WAIT step if we
7836 * don't have any uncached bgs and we've already done a
7837 * full search through.
7838 */
7839 if (orig_have_caching_bg || !full_search)
7840 loop = LOOP_CACHING_WAIT;
7841 else
7842 loop = LOOP_ALLOC_CHUNK;
7843 } else {
7844 loop++;
7845 }
7846
7847 if (loop == LOOP_ALLOC_CHUNK) {
7848 struct btrfs_trans_handle *trans;
7849 int exist = 0;
7850
7851 trans = current->journal_info;
7852 if (trans)
7853 exist = 1;
7854 else
7855 trans = btrfs_join_transaction(root);
7856
7857 if (IS_ERR(trans)) {
7858 ret = PTR_ERR(trans);
7859 goto out;
7860 }
7861
7862 ret = do_chunk_alloc(trans, fs_info, flags,
7863 CHUNK_ALLOC_FORCE);
7864
7865 /*
7866 * If we can't allocate a new chunk we've already looped
7867 * through at least once, move on to the NO_EMPTY_SIZE
7868 * case.
7869 */
7870 if (ret == -ENOSPC)
7871 loop = LOOP_NO_EMPTY_SIZE;
7872
7873 /*
7874 * Do not bail out on ENOSPC since we
7875 * can do more things.
7876 */
7877 if (ret < 0 && ret != -ENOSPC)
7878 btrfs_abort_transaction(trans, ret);
7879 else
7880 ret = 0;
7881 if (!exist)
7882 btrfs_end_transaction(trans);
7883 if (ret)
7884 goto out;
7885 }
7886
7887 if (loop == LOOP_NO_EMPTY_SIZE) {
7888 /*
7889 * Don't loop again if we already have no empty_size and
7890 * no empty_cluster.
7891 */
7892 if (empty_size == 0 &&
7893 empty_cluster == 0) {
7894 ret = -ENOSPC;
7895 goto out;
7896 }
7897 empty_size = 0;
7898 empty_cluster = 0;
7899 }
7900
7901 goto search;
7902 } else if (!ins->objectid) {
7903 ret = -ENOSPC;
7904 } else if (ins->objectid) {
7905 if (!use_cluster && last_ptr) {
7906 spin_lock(&last_ptr->lock);
7907 last_ptr->window_start = ins->objectid;
7908 spin_unlock(&last_ptr->lock);
7909 }
7910 ret = 0;
7911 }
7912 out:
7913 if (ret == -ENOSPC) {
7914 spin_lock(&space_info->lock);
7915 space_info->max_extent_size = max_extent_size;
7916 spin_unlock(&space_info->lock);
7917 ins->offset = max_extent_size;
7918 }
7919 return ret;
7920 }
7921
7922 static void dump_space_info(struct btrfs_fs_info *fs_info,
7923 struct btrfs_space_info *info, u64 bytes,
7924 int dump_block_groups)
7925 {
7926 struct btrfs_block_group_cache *cache;
7927 int index = 0;
7928
7929 spin_lock(&info->lock);
7930 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7931 info->flags,
7932 info->total_bytes - btrfs_space_info_used(info, true),
7933 info->full ? "" : "not ");
7934 btrfs_info(fs_info,
7935 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7936 info->total_bytes, info->bytes_used, info->bytes_pinned,
7937 info->bytes_reserved, info->bytes_may_use,
7938 info->bytes_readonly);
7939 spin_unlock(&info->lock);
7940
7941 if (!dump_block_groups)
7942 return;
7943
7944 down_read(&info->groups_sem);
7945 again:
7946 list_for_each_entry(cache, &info->block_groups[index], list) {
7947 spin_lock(&cache->lock);
7948 btrfs_info(fs_info,
7949 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7950 cache->key.objectid, cache->key.offset,
7951 btrfs_block_group_used(&cache->item), cache->pinned,
7952 cache->reserved, cache->ro ? "[readonly]" : "");
7953 btrfs_dump_free_space(cache, bytes);
7954 spin_unlock(&cache->lock);
7955 }
7956 if (++index < BTRFS_NR_RAID_TYPES)
7957 goto again;
7958 up_read(&info->groups_sem);
7959 }
7960
7961 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7962 u64 num_bytes, u64 min_alloc_size,
7963 u64 empty_size, u64 hint_byte,
7964 struct btrfs_key *ins, int is_data, int delalloc)
7965 {
7966 struct btrfs_fs_info *fs_info = root->fs_info;
7967 bool final_tried = num_bytes == min_alloc_size;
7968 u64 flags;
7969 int ret;
7970
7971 flags = get_alloc_profile_by_root(root, is_data);
7972 again:
7973 WARN_ON(num_bytes < fs_info->sectorsize);
7974 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7975 hint_byte, ins, flags, delalloc);
7976 if (!ret && !is_data) {
7977 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7978 } else if (ret == -ENOSPC) {
7979 if (!final_tried && ins->offset) {
7980 num_bytes = min(num_bytes >> 1, ins->offset);
7981 num_bytes = round_down(num_bytes,
7982 fs_info->sectorsize);
7983 num_bytes = max(num_bytes, min_alloc_size);
7984 ram_bytes = num_bytes;
7985 if (num_bytes == min_alloc_size)
7986 final_tried = true;
7987 goto again;
7988 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7989 struct btrfs_space_info *sinfo;
7990
7991 sinfo = __find_space_info(fs_info, flags);
7992 btrfs_err(fs_info,
7993 "allocation failed flags %llu, wanted %llu",
7994 flags, num_bytes);
7995 if (sinfo)
7996 dump_space_info(fs_info, sinfo, num_bytes, 1);
7997 }
7998 }
7999
8000 return ret;
8001 }
8002
8003 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8004 u64 start, u64 len,
8005 int pin, int delalloc)
8006 {
8007 struct btrfs_block_group_cache *cache;
8008 int ret = 0;
8009
8010 cache = btrfs_lookup_block_group(fs_info, start);
8011 if (!cache) {
8012 btrfs_err(fs_info, "Unable to find block group for %llu",
8013 start);
8014 return -ENOSPC;
8015 }
8016
8017 if (pin)
8018 pin_down_extent(fs_info, cache, start, len, 1);
8019 else {
8020 if (btrfs_test_opt(fs_info, DISCARD))
8021 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8022 btrfs_add_free_space(cache, start, len);
8023 btrfs_free_reserved_bytes(cache, len, delalloc);
8024 trace_btrfs_reserved_extent_free(fs_info, start, len);
8025 }
8026
8027 btrfs_put_block_group(cache);
8028 return ret;
8029 }
8030
8031 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8032 u64 start, u64 len, int delalloc)
8033 {
8034 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8035 }
8036
8037 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8038 u64 start, u64 len)
8039 {
8040 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8041 }
8042
8043 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8044 struct btrfs_fs_info *fs_info,
8045 u64 parent, u64 root_objectid,
8046 u64 flags, u64 owner, u64 offset,
8047 struct btrfs_key *ins, int ref_mod)
8048 {
8049 int ret;
8050 struct btrfs_extent_item *extent_item;
8051 struct btrfs_extent_inline_ref *iref;
8052 struct btrfs_path *path;
8053 struct extent_buffer *leaf;
8054 int type;
8055 u32 size;
8056
8057 if (parent > 0)
8058 type = BTRFS_SHARED_DATA_REF_KEY;
8059 else
8060 type = BTRFS_EXTENT_DATA_REF_KEY;
8061
8062 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8063
8064 path = btrfs_alloc_path();
8065 if (!path)
8066 return -ENOMEM;
8067
8068 path->leave_spinning = 1;
8069 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8070 ins, size);
8071 if (ret) {
8072 btrfs_free_path(path);
8073 return ret;
8074 }
8075
8076 leaf = path->nodes[0];
8077 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8078 struct btrfs_extent_item);
8079 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8080 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8081 btrfs_set_extent_flags(leaf, extent_item,
8082 flags | BTRFS_EXTENT_FLAG_DATA);
8083
8084 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8085 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8086 if (parent > 0) {
8087 struct btrfs_shared_data_ref *ref;
8088 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8089 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8090 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8091 } else {
8092 struct btrfs_extent_data_ref *ref;
8093 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8094 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8095 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8096 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8097 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8098 }
8099
8100 btrfs_mark_buffer_dirty(path->nodes[0]);
8101 btrfs_free_path(path);
8102
8103 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8104 ins->offset);
8105 if (ret)
8106 return ret;
8107
8108 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8109 if (ret) { /* -ENOENT, logic error */
8110 btrfs_err(fs_info, "update block group failed for %llu %llu",
8111 ins->objectid, ins->offset);
8112 BUG();
8113 }
8114 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8115 return ret;
8116 }
8117
8118 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8119 struct btrfs_fs_info *fs_info,
8120 u64 parent, u64 root_objectid,
8121 u64 flags, struct btrfs_disk_key *key,
8122 int level, struct btrfs_key *ins)
8123 {
8124 int ret;
8125 struct btrfs_extent_item *extent_item;
8126 struct btrfs_tree_block_info *block_info;
8127 struct btrfs_extent_inline_ref *iref;
8128 struct btrfs_path *path;
8129 struct extent_buffer *leaf;
8130 u32 size = sizeof(*extent_item) + sizeof(*iref);
8131 u64 num_bytes = ins->offset;
8132 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8133
8134 if (!skinny_metadata)
8135 size += sizeof(*block_info);
8136
8137 path = btrfs_alloc_path();
8138 if (!path) {
8139 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8140 fs_info->nodesize);
8141 return -ENOMEM;
8142 }
8143
8144 path->leave_spinning = 1;
8145 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8146 ins, size);
8147 if (ret) {
8148 btrfs_free_path(path);
8149 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8150 fs_info->nodesize);
8151 return ret;
8152 }
8153
8154 leaf = path->nodes[0];
8155 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8156 struct btrfs_extent_item);
8157 btrfs_set_extent_refs(leaf, extent_item, 1);
8158 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8159 btrfs_set_extent_flags(leaf, extent_item,
8160 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8161
8162 if (skinny_metadata) {
8163 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8164 num_bytes = fs_info->nodesize;
8165 } else {
8166 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8167 btrfs_set_tree_block_key(leaf, block_info, key);
8168 btrfs_set_tree_block_level(leaf, block_info, level);
8169 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8170 }
8171
8172 if (parent > 0) {
8173 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8174 btrfs_set_extent_inline_ref_type(leaf, iref,
8175 BTRFS_SHARED_BLOCK_REF_KEY);
8176 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8177 } else {
8178 btrfs_set_extent_inline_ref_type(leaf, iref,
8179 BTRFS_TREE_BLOCK_REF_KEY);
8180 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8181 }
8182
8183 btrfs_mark_buffer_dirty(leaf);
8184 btrfs_free_path(path);
8185
8186 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8187 num_bytes);
8188 if (ret)
8189 return ret;
8190
8191 ret = update_block_group(trans, fs_info, ins->objectid,
8192 fs_info->nodesize, 1);
8193 if (ret) { /* -ENOENT, logic error */
8194 btrfs_err(fs_info, "update block group failed for %llu %llu",
8195 ins->objectid, ins->offset);
8196 BUG();
8197 }
8198
8199 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8200 fs_info->nodesize);
8201 return ret;
8202 }
8203
8204 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8205 u64 root_objectid, u64 owner,
8206 u64 offset, u64 ram_bytes,
8207 struct btrfs_key *ins)
8208 {
8209 struct btrfs_fs_info *fs_info = trans->fs_info;
8210 int ret;
8211
8212 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8213
8214 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8215 ins->offset, 0,
8216 root_objectid, owner, offset,
8217 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8218 return ret;
8219 }
8220
8221 /*
8222 * this is used by the tree logging recovery code. It records that
8223 * an extent has been allocated and makes sure to clear the free
8224 * space cache bits as well
8225 */
8226 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8227 struct btrfs_fs_info *fs_info,
8228 u64 root_objectid, u64 owner, u64 offset,
8229 struct btrfs_key *ins)
8230 {
8231 int ret;
8232 struct btrfs_block_group_cache *block_group;
8233 struct btrfs_space_info *space_info;
8234
8235 /*
8236 * Mixed block groups will exclude before processing the log so we only
8237 * need to do the exclude dance if this fs isn't mixed.
8238 */
8239 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8240 ret = __exclude_logged_extent(fs_info, ins->objectid,
8241 ins->offset);
8242 if (ret)
8243 return ret;
8244 }
8245
8246 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8247 if (!block_group)
8248 return -EINVAL;
8249
8250 space_info = block_group->space_info;
8251 spin_lock(&space_info->lock);
8252 spin_lock(&block_group->lock);
8253 space_info->bytes_reserved += ins->offset;
8254 block_group->reserved += ins->offset;
8255 spin_unlock(&block_group->lock);
8256 spin_unlock(&space_info->lock);
8257
8258 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8259 0, owner, offset, ins, 1);
8260 btrfs_put_block_group(block_group);
8261 return ret;
8262 }
8263
8264 static struct extent_buffer *
8265 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8266 u64 bytenr, int level)
8267 {
8268 struct btrfs_fs_info *fs_info = root->fs_info;
8269 struct extent_buffer *buf;
8270
8271 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8272 if (IS_ERR(buf))
8273 return buf;
8274
8275 btrfs_set_header_generation(buf, trans->transid);
8276 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8277 btrfs_tree_lock(buf);
8278 clean_tree_block(fs_info, buf);
8279 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8280
8281 btrfs_set_lock_blocking(buf);
8282 set_extent_buffer_uptodate(buf);
8283
8284 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8285 buf->log_index = root->log_transid % 2;
8286 /*
8287 * we allow two log transactions at a time, use different
8288 * EXENT bit to differentiate dirty pages.
8289 */
8290 if (buf->log_index == 0)
8291 set_extent_dirty(&root->dirty_log_pages, buf->start,
8292 buf->start + buf->len - 1, GFP_NOFS);
8293 else
8294 set_extent_new(&root->dirty_log_pages, buf->start,
8295 buf->start + buf->len - 1);
8296 } else {
8297 buf->log_index = -1;
8298 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8299 buf->start + buf->len - 1, GFP_NOFS);
8300 }
8301 trans->dirty = true;
8302 /* this returns a buffer locked for blocking */
8303 return buf;
8304 }
8305
8306 static struct btrfs_block_rsv *
8307 use_block_rsv(struct btrfs_trans_handle *trans,
8308 struct btrfs_root *root, u32 blocksize)
8309 {
8310 struct btrfs_fs_info *fs_info = root->fs_info;
8311 struct btrfs_block_rsv *block_rsv;
8312 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8313 int ret;
8314 bool global_updated = false;
8315
8316 block_rsv = get_block_rsv(trans, root);
8317
8318 if (unlikely(block_rsv->size == 0))
8319 goto try_reserve;
8320 again:
8321 ret = block_rsv_use_bytes(block_rsv, blocksize);
8322 if (!ret)
8323 return block_rsv;
8324
8325 if (block_rsv->failfast)
8326 return ERR_PTR(ret);
8327
8328 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8329 global_updated = true;
8330 update_global_block_rsv(fs_info);
8331 goto again;
8332 }
8333
8334 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8335 static DEFINE_RATELIMIT_STATE(_rs,
8336 DEFAULT_RATELIMIT_INTERVAL * 10,
8337 /*DEFAULT_RATELIMIT_BURST*/ 1);
8338 if (__ratelimit(&_rs))
8339 WARN(1, KERN_DEBUG
8340 "BTRFS: block rsv returned %d\n", ret);
8341 }
8342 try_reserve:
8343 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8344 BTRFS_RESERVE_NO_FLUSH);
8345 if (!ret)
8346 return block_rsv;
8347 /*
8348 * If we couldn't reserve metadata bytes try and use some from
8349 * the global reserve if its space type is the same as the global
8350 * reservation.
8351 */
8352 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8353 block_rsv->space_info == global_rsv->space_info) {
8354 ret = block_rsv_use_bytes(global_rsv, blocksize);
8355 if (!ret)
8356 return global_rsv;
8357 }
8358 return ERR_PTR(ret);
8359 }
8360
8361 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8362 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8363 {
8364 block_rsv_add_bytes(block_rsv, blocksize, 0);
8365 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8366 }
8367
8368 /*
8369 * finds a free extent and does all the dirty work required for allocation
8370 * returns the tree buffer or an ERR_PTR on error.
8371 */
8372 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8373 struct btrfs_root *root,
8374 u64 parent, u64 root_objectid,
8375 const struct btrfs_disk_key *key,
8376 int level, u64 hint,
8377 u64 empty_size)
8378 {
8379 struct btrfs_fs_info *fs_info = root->fs_info;
8380 struct btrfs_key ins;
8381 struct btrfs_block_rsv *block_rsv;
8382 struct extent_buffer *buf;
8383 struct btrfs_delayed_extent_op *extent_op;
8384 u64 flags = 0;
8385 int ret;
8386 u32 blocksize = fs_info->nodesize;
8387 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8388
8389 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8390 if (btrfs_is_testing(fs_info)) {
8391 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8392 level);
8393 if (!IS_ERR(buf))
8394 root->alloc_bytenr += blocksize;
8395 return buf;
8396 }
8397 #endif
8398
8399 block_rsv = use_block_rsv(trans, root, blocksize);
8400 if (IS_ERR(block_rsv))
8401 return ERR_CAST(block_rsv);
8402
8403 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8404 empty_size, hint, &ins, 0, 0);
8405 if (ret)
8406 goto out_unuse;
8407
8408 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8409 if (IS_ERR(buf)) {
8410 ret = PTR_ERR(buf);
8411 goto out_free_reserved;
8412 }
8413
8414 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8415 if (parent == 0)
8416 parent = ins.objectid;
8417 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8418 } else
8419 BUG_ON(parent > 0);
8420
8421 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8422 extent_op = btrfs_alloc_delayed_extent_op();
8423 if (!extent_op) {
8424 ret = -ENOMEM;
8425 goto out_free_buf;
8426 }
8427 if (key)
8428 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8429 else
8430 memset(&extent_op->key, 0, sizeof(extent_op->key));
8431 extent_op->flags_to_set = flags;
8432 extent_op->update_key = skinny_metadata ? false : true;
8433 extent_op->update_flags = true;
8434 extent_op->is_data = false;
8435 extent_op->level = level;
8436
8437 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8438 ins.objectid, ins.offset,
8439 parent, root_objectid, level,
8440 BTRFS_ADD_DELAYED_EXTENT,
8441 extent_op);
8442 if (ret)
8443 goto out_free_delayed;
8444 }
8445 return buf;
8446
8447 out_free_delayed:
8448 btrfs_free_delayed_extent_op(extent_op);
8449 out_free_buf:
8450 free_extent_buffer(buf);
8451 out_free_reserved:
8452 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8453 out_unuse:
8454 unuse_block_rsv(fs_info, block_rsv, blocksize);
8455 return ERR_PTR(ret);
8456 }
8457
8458 struct walk_control {
8459 u64 refs[BTRFS_MAX_LEVEL];
8460 u64 flags[BTRFS_MAX_LEVEL];
8461 struct btrfs_key update_progress;
8462 int stage;
8463 int level;
8464 int shared_level;
8465 int update_ref;
8466 int keep_locks;
8467 int reada_slot;
8468 int reada_count;
8469 int for_reloc;
8470 };
8471
8472 #define DROP_REFERENCE 1
8473 #define UPDATE_BACKREF 2
8474
8475 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8476 struct btrfs_root *root,
8477 struct walk_control *wc,
8478 struct btrfs_path *path)
8479 {
8480 struct btrfs_fs_info *fs_info = root->fs_info;
8481 u64 bytenr;
8482 u64 generation;
8483 u64 refs;
8484 u64 flags;
8485 u32 nritems;
8486 struct btrfs_key key;
8487 struct extent_buffer *eb;
8488 int ret;
8489 int slot;
8490 int nread = 0;
8491
8492 if (path->slots[wc->level] < wc->reada_slot) {
8493 wc->reada_count = wc->reada_count * 2 / 3;
8494 wc->reada_count = max(wc->reada_count, 2);
8495 } else {
8496 wc->reada_count = wc->reada_count * 3 / 2;
8497 wc->reada_count = min_t(int, wc->reada_count,
8498 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8499 }
8500
8501 eb = path->nodes[wc->level];
8502 nritems = btrfs_header_nritems(eb);
8503
8504 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8505 if (nread >= wc->reada_count)
8506 break;
8507
8508 cond_resched();
8509 bytenr = btrfs_node_blockptr(eb, slot);
8510 generation = btrfs_node_ptr_generation(eb, slot);
8511
8512 if (slot == path->slots[wc->level])
8513 goto reada;
8514
8515 if (wc->stage == UPDATE_BACKREF &&
8516 generation <= root->root_key.offset)
8517 continue;
8518
8519 /* We don't lock the tree block, it's OK to be racy here */
8520 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8521 wc->level - 1, 1, &refs,
8522 &flags);
8523 /* We don't care about errors in readahead. */
8524 if (ret < 0)
8525 continue;
8526 BUG_ON(refs == 0);
8527
8528 if (wc->stage == DROP_REFERENCE) {
8529 if (refs == 1)
8530 goto reada;
8531
8532 if (wc->level == 1 &&
8533 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8534 continue;
8535 if (!wc->update_ref ||
8536 generation <= root->root_key.offset)
8537 continue;
8538 btrfs_node_key_to_cpu(eb, &key, slot);
8539 ret = btrfs_comp_cpu_keys(&key,
8540 &wc->update_progress);
8541 if (ret < 0)
8542 continue;
8543 } else {
8544 if (wc->level == 1 &&
8545 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8546 continue;
8547 }
8548 reada:
8549 readahead_tree_block(fs_info, bytenr);
8550 nread++;
8551 }
8552 wc->reada_slot = slot;
8553 }
8554
8555 /*
8556 * helper to process tree block while walking down the tree.
8557 *
8558 * when wc->stage == UPDATE_BACKREF, this function updates
8559 * back refs for pointers in the block.
8560 *
8561 * NOTE: return value 1 means we should stop walking down.
8562 */
8563 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8564 struct btrfs_root *root,
8565 struct btrfs_path *path,
8566 struct walk_control *wc, int lookup_info)
8567 {
8568 struct btrfs_fs_info *fs_info = root->fs_info;
8569 int level = wc->level;
8570 struct extent_buffer *eb = path->nodes[level];
8571 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8572 int ret;
8573
8574 if (wc->stage == UPDATE_BACKREF &&
8575 btrfs_header_owner(eb) != root->root_key.objectid)
8576 return 1;
8577
8578 /*
8579 * when reference count of tree block is 1, it won't increase
8580 * again. once full backref flag is set, we never clear it.
8581 */
8582 if (lookup_info &&
8583 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8584 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8585 BUG_ON(!path->locks[level]);
8586 ret = btrfs_lookup_extent_info(trans, fs_info,
8587 eb->start, level, 1,
8588 &wc->refs[level],
8589 &wc->flags[level]);
8590 BUG_ON(ret == -ENOMEM);
8591 if (ret)
8592 return ret;
8593 BUG_ON(wc->refs[level] == 0);
8594 }
8595
8596 if (wc->stage == DROP_REFERENCE) {
8597 if (wc->refs[level] > 1)
8598 return 1;
8599
8600 if (path->locks[level] && !wc->keep_locks) {
8601 btrfs_tree_unlock_rw(eb, path->locks[level]);
8602 path->locks[level] = 0;
8603 }
8604 return 0;
8605 }
8606
8607 /* wc->stage == UPDATE_BACKREF */
8608 if (!(wc->flags[level] & flag)) {
8609 BUG_ON(!path->locks[level]);
8610 ret = btrfs_inc_ref(trans, root, eb, 1);
8611 BUG_ON(ret); /* -ENOMEM */
8612 ret = btrfs_dec_ref(trans, root, eb, 0);
8613 BUG_ON(ret); /* -ENOMEM */
8614 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8615 eb->len, flag,
8616 btrfs_header_level(eb), 0);
8617 BUG_ON(ret); /* -ENOMEM */
8618 wc->flags[level] |= flag;
8619 }
8620
8621 /*
8622 * the block is shared by multiple trees, so it's not good to
8623 * keep the tree lock
8624 */
8625 if (path->locks[level] && level > 0) {
8626 btrfs_tree_unlock_rw(eb, path->locks[level]);
8627 path->locks[level] = 0;
8628 }
8629 return 0;
8630 }
8631
8632 /*
8633 * helper to process tree block pointer.
8634 *
8635 * when wc->stage == DROP_REFERENCE, this function checks
8636 * reference count of the block pointed to. if the block
8637 * is shared and we need update back refs for the subtree
8638 * rooted at the block, this function changes wc->stage to
8639 * UPDATE_BACKREF. if the block is shared and there is no
8640 * need to update back, this function drops the reference
8641 * to the block.
8642 *
8643 * NOTE: return value 1 means we should stop walking down.
8644 */
8645 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8646 struct btrfs_root *root,
8647 struct btrfs_path *path,
8648 struct walk_control *wc, int *lookup_info)
8649 {
8650 struct btrfs_fs_info *fs_info = root->fs_info;
8651 u64 bytenr;
8652 u64 generation;
8653 u64 parent;
8654 u32 blocksize;
8655 struct btrfs_key key;
8656 struct extent_buffer *next;
8657 int level = wc->level;
8658 int reada = 0;
8659 int ret = 0;
8660 bool need_account = false;
8661
8662 generation = btrfs_node_ptr_generation(path->nodes[level],
8663 path->slots[level]);
8664 /*
8665 * if the lower level block was created before the snapshot
8666 * was created, we know there is no need to update back refs
8667 * for the subtree
8668 */
8669 if (wc->stage == UPDATE_BACKREF &&
8670 generation <= root->root_key.offset) {
8671 *lookup_info = 1;
8672 return 1;
8673 }
8674
8675 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8676 blocksize = fs_info->nodesize;
8677
8678 next = find_extent_buffer(fs_info, bytenr);
8679 if (!next) {
8680 next = btrfs_find_create_tree_block(fs_info, bytenr);
8681 if (IS_ERR(next))
8682 return PTR_ERR(next);
8683
8684 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8685 level - 1);
8686 reada = 1;
8687 }
8688 btrfs_tree_lock(next);
8689 btrfs_set_lock_blocking(next);
8690
8691 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8692 &wc->refs[level - 1],
8693 &wc->flags[level - 1]);
8694 if (ret < 0)
8695 goto out_unlock;
8696
8697 if (unlikely(wc->refs[level - 1] == 0)) {
8698 btrfs_err(fs_info, "Missing references.");
8699 ret = -EIO;
8700 goto out_unlock;
8701 }
8702 *lookup_info = 0;
8703
8704 if (wc->stage == DROP_REFERENCE) {
8705 if (wc->refs[level - 1] > 1) {
8706 need_account = true;
8707 if (level == 1 &&
8708 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8709 goto skip;
8710
8711 if (!wc->update_ref ||
8712 generation <= root->root_key.offset)
8713 goto skip;
8714
8715 btrfs_node_key_to_cpu(path->nodes[level], &key,
8716 path->slots[level]);
8717 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8718 if (ret < 0)
8719 goto skip;
8720
8721 wc->stage = UPDATE_BACKREF;
8722 wc->shared_level = level - 1;
8723 }
8724 } else {
8725 if (level == 1 &&
8726 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8727 goto skip;
8728 }
8729
8730 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8731 btrfs_tree_unlock(next);
8732 free_extent_buffer(next);
8733 next = NULL;
8734 *lookup_info = 1;
8735 }
8736
8737 if (!next) {
8738 if (reada && level == 1)
8739 reada_walk_down(trans, root, wc, path);
8740 next = read_tree_block(fs_info, bytenr, generation);
8741 if (IS_ERR(next)) {
8742 return PTR_ERR(next);
8743 } else if (!extent_buffer_uptodate(next)) {
8744 free_extent_buffer(next);
8745 return -EIO;
8746 }
8747 btrfs_tree_lock(next);
8748 btrfs_set_lock_blocking(next);
8749 }
8750
8751 level--;
8752 ASSERT(level == btrfs_header_level(next));
8753 if (level != btrfs_header_level(next)) {
8754 btrfs_err(root->fs_info, "mismatched level");
8755 ret = -EIO;
8756 goto out_unlock;
8757 }
8758 path->nodes[level] = next;
8759 path->slots[level] = 0;
8760 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8761 wc->level = level;
8762 if (wc->level == 1)
8763 wc->reada_slot = 0;
8764 return 0;
8765 skip:
8766 wc->refs[level - 1] = 0;
8767 wc->flags[level - 1] = 0;
8768 if (wc->stage == DROP_REFERENCE) {
8769 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8770 parent = path->nodes[level]->start;
8771 } else {
8772 ASSERT(root->root_key.objectid ==
8773 btrfs_header_owner(path->nodes[level]));
8774 if (root->root_key.objectid !=
8775 btrfs_header_owner(path->nodes[level])) {
8776 btrfs_err(root->fs_info,
8777 "mismatched block owner");
8778 ret = -EIO;
8779 goto out_unlock;
8780 }
8781 parent = 0;
8782 }
8783
8784 if (need_account) {
8785 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8786 generation, level - 1);
8787 if (ret) {
8788 btrfs_err_rl(fs_info,
8789 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8790 ret);
8791 }
8792 }
8793 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8794 parent, root->root_key.objectid,
8795 level - 1, 0);
8796 if (ret)
8797 goto out_unlock;
8798 }
8799
8800 *lookup_info = 1;
8801 ret = 1;
8802
8803 out_unlock:
8804 btrfs_tree_unlock(next);
8805 free_extent_buffer(next);
8806
8807 return ret;
8808 }
8809
8810 /*
8811 * helper to process tree block while walking up the tree.
8812 *
8813 * when wc->stage == DROP_REFERENCE, this function drops
8814 * reference count on the block.
8815 *
8816 * when wc->stage == UPDATE_BACKREF, this function changes
8817 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8818 * to UPDATE_BACKREF previously while processing the block.
8819 *
8820 * NOTE: return value 1 means we should stop walking up.
8821 */
8822 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8823 struct btrfs_root *root,
8824 struct btrfs_path *path,
8825 struct walk_control *wc)
8826 {
8827 struct btrfs_fs_info *fs_info = root->fs_info;
8828 int ret;
8829 int level = wc->level;
8830 struct extent_buffer *eb = path->nodes[level];
8831 u64 parent = 0;
8832
8833 if (wc->stage == UPDATE_BACKREF) {
8834 BUG_ON(wc->shared_level < level);
8835 if (level < wc->shared_level)
8836 goto out;
8837
8838 ret = find_next_key(path, level + 1, &wc->update_progress);
8839 if (ret > 0)
8840 wc->update_ref = 0;
8841
8842 wc->stage = DROP_REFERENCE;
8843 wc->shared_level = -1;
8844 path->slots[level] = 0;
8845
8846 /*
8847 * check reference count again if the block isn't locked.
8848 * we should start walking down the tree again if reference
8849 * count is one.
8850 */
8851 if (!path->locks[level]) {
8852 BUG_ON(level == 0);
8853 btrfs_tree_lock(eb);
8854 btrfs_set_lock_blocking(eb);
8855 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8856
8857 ret = btrfs_lookup_extent_info(trans, fs_info,
8858 eb->start, level, 1,
8859 &wc->refs[level],
8860 &wc->flags[level]);
8861 if (ret < 0) {
8862 btrfs_tree_unlock_rw(eb, path->locks[level]);
8863 path->locks[level] = 0;
8864 return ret;
8865 }
8866 BUG_ON(wc->refs[level] == 0);
8867 if (wc->refs[level] == 1) {
8868 btrfs_tree_unlock_rw(eb, path->locks[level]);
8869 path->locks[level] = 0;
8870 return 1;
8871 }
8872 }
8873 }
8874
8875 /* wc->stage == DROP_REFERENCE */
8876 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8877
8878 if (wc->refs[level] == 1) {
8879 if (level == 0) {
8880 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8881 ret = btrfs_dec_ref(trans, root, eb, 1);
8882 else
8883 ret = btrfs_dec_ref(trans, root, eb, 0);
8884 BUG_ON(ret); /* -ENOMEM */
8885 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8886 if (ret) {
8887 btrfs_err_rl(fs_info,
8888 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8889 ret);
8890 }
8891 }
8892 /* make block locked assertion in clean_tree_block happy */
8893 if (!path->locks[level] &&
8894 btrfs_header_generation(eb) == trans->transid) {
8895 btrfs_tree_lock(eb);
8896 btrfs_set_lock_blocking(eb);
8897 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8898 }
8899 clean_tree_block(fs_info, eb);
8900 }
8901
8902 if (eb == root->node) {
8903 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8904 parent = eb->start;
8905 else
8906 BUG_ON(root->root_key.objectid !=
8907 btrfs_header_owner(eb));
8908 } else {
8909 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8910 parent = path->nodes[level + 1]->start;
8911 else
8912 BUG_ON(root->root_key.objectid !=
8913 btrfs_header_owner(path->nodes[level + 1]));
8914 }
8915
8916 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8917 out:
8918 wc->refs[level] = 0;
8919 wc->flags[level] = 0;
8920 return 0;
8921 }
8922
8923 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8924 struct btrfs_root *root,
8925 struct btrfs_path *path,
8926 struct walk_control *wc)
8927 {
8928 int level = wc->level;
8929 int lookup_info = 1;
8930 int ret;
8931
8932 while (level >= 0) {
8933 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8934 if (ret > 0)
8935 break;
8936
8937 if (level == 0)
8938 break;
8939
8940 if (path->slots[level] >=
8941 btrfs_header_nritems(path->nodes[level]))
8942 break;
8943
8944 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8945 if (ret > 0) {
8946 path->slots[level]++;
8947 continue;
8948 } else if (ret < 0)
8949 return ret;
8950 level = wc->level;
8951 }
8952 return 0;
8953 }
8954
8955 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8956 struct btrfs_root *root,
8957 struct btrfs_path *path,
8958 struct walk_control *wc, int max_level)
8959 {
8960 int level = wc->level;
8961 int ret;
8962
8963 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8964 while (level < max_level && path->nodes[level]) {
8965 wc->level = level;
8966 if (path->slots[level] + 1 <
8967 btrfs_header_nritems(path->nodes[level])) {
8968 path->slots[level]++;
8969 return 0;
8970 } else {
8971 ret = walk_up_proc(trans, root, path, wc);
8972 if (ret > 0)
8973 return 0;
8974
8975 if (path->locks[level]) {
8976 btrfs_tree_unlock_rw(path->nodes[level],
8977 path->locks[level]);
8978 path->locks[level] = 0;
8979 }
8980 free_extent_buffer(path->nodes[level]);
8981 path->nodes[level] = NULL;
8982 level++;
8983 }
8984 }
8985 return 1;
8986 }
8987
8988 /*
8989 * drop a subvolume tree.
8990 *
8991 * this function traverses the tree freeing any blocks that only
8992 * referenced by the tree.
8993 *
8994 * when a shared tree block is found. this function decreases its
8995 * reference count by one. if update_ref is true, this function
8996 * also make sure backrefs for the shared block and all lower level
8997 * blocks are properly updated.
8998 *
8999 * If called with for_reloc == 0, may exit early with -EAGAIN
9000 */
9001 int btrfs_drop_snapshot(struct btrfs_root *root,
9002 struct btrfs_block_rsv *block_rsv, int update_ref,
9003 int for_reloc)
9004 {
9005 struct btrfs_fs_info *fs_info = root->fs_info;
9006 struct btrfs_path *path;
9007 struct btrfs_trans_handle *trans;
9008 struct btrfs_root *tree_root = fs_info->tree_root;
9009 struct btrfs_root_item *root_item = &root->root_item;
9010 struct walk_control *wc;
9011 struct btrfs_key key;
9012 int err = 0;
9013 int ret;
9014 int level;
9015 bool root_dropped = false;
9016
9017 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9018
9019 path = btrfs_alloc_path();
9020 if (!path) {
9021 err = -ENOMEM;
9022 goto out;
9023 }
9024
9025 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9026 if (!wc) {
9027 btrfs_free_path(path);
9028 err = -ENOMEM;
9029 goto out;
9030 }
9031
9032 trans = btrfs_start_transaction(tree_root, 0);
9033 if (IS_ERR(trans)) {
9034 err = PTR_ERR(trans);
9035 goto out_free;
9036 }
9037
9038 if (block_rsv)
9039 trans->block_rsv = block_rsv;
9040
9041 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9042 level = btrfs_header_level(root->node);
9043 path->nodes[level] = btrfs_lock_root_node(root);
9044 btrfs_set_lock_blocking(path->nodes[level]);
9045 path->slots[level] = 0;
9046 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9047 memset(&wc->update_progress, 0,
9048 sizeof(wc->update_progress));
9049 } else {
9050 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9051 memcpy(&wc->update_progress, &key,
9052 sizeof(wc->update_progress));
9053
9054 level = root_item->drop_level;
9055 BUG_ON(level == 0);
9056 path->lowest_level = level;
9057 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9058 path->lowest_level = 0;
9059 if (ret < 0) {
9060 err = ret;
9061 goto out_end_trans;
9062 }
9063 WARN_ON(ret > 0);
9064
9065 /*
9066 * unlock our path, this is safe because only this
9067 * function is allowed to delete this snapshot
9068 */
9069 btrfs_unlock_up_safe(path, 0);
9070
9071 level = btrfs_header_level(root->node);
9072 while (1) {
9073 btrfs_tree_lock(path->nodes[level]);
9074 btrfs_set_lock_blocking(path->nodes[level]);
9075 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9076
9077 ret = btrfs_lookup_extent_info(trans, fs_info,
9078 path->nodes[level]->start,
9079 level, 1, &wc->refs[level],
9080 &wc->flags[level]);
9081 if (ret < 0) {
9082 err = ret;
9083 goto out_end_trans;
9084 }
9085 BUG_ON(wc->refs[level] == 0);
9086
9087 if (level == root_item->drop_level)
9088 break;
9089
9090 btrfs_tree_unlock(path->nodes[level]);
9091 path->locks[level] = 0;
9092 WARN_ON(wc->refs[level] != 1);
9093 level--;
9094 }
9095 }
9096
9097 wc->level = level;
9098 wc->shared_level = -1;
9099 wc->stage = DROP_REFERENCE;
9100 wc->update_ref = update_ref;
9101 wc->keep_locks = 0;
9102 wc->for_reloc = for_reloc;
9103 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9104
9105 while (1) {
9106
9107 ret = walk_down_tree(trans, root, path, wc);
9108 if (ret < 0) {
9109 err = ret;
9110 break;
9111 }
9112
9113 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9114 if (ret < 0) {
9115 err = ret;
9116 break;
9117 }
9118
9119 if (ret > 0) {
9120 BUG_ON(wc->stage != DROP_REFERENCE);
9121 break;
9122 }
9123
9124 if (wc->stage == DROP_REFERENCE) {
9125 level = wc->level;
9126 btrfs_node_key(path->nodes[level],
9127 &root_item->drop_progress,
9128 path->slots[level]);
9129 root_item->drop_level = level;
9130 }
9131
9132 BUG_ON(wc->level == 0);
9133 if (btrfs_should_end_transaction(trans) ||
9134 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9135 ret = btrfs_update_root(trans, tree_root,
9136 &root->root_key,
9137 root_item);
9138 if (ret) {
9139 btrfs_abort_transaction(trans, ret);
9140 err = ret;
9141 goto out_end_trans;
9142 }
9143
9144 btrfs_end_transaction_throttle(trans);
9145 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9146 btrfs_debug(fs_info,
9147 "drop snapshot early exit");
9148 err = -EAGAIN;
9149 goto out_free;
9150 }
9151
9152 trans = btrfs_start_transaction(tree_root, 0);
9153 if (IS_ERR(trans)) {
9154 err = PTR_ERR(trans);
9155 goto out_free;
9156 }
9157 if (block_rsv)
9158 trans->block_rsv = block_rsv;
9159 }
9160 }
9161 btrfs_release_path(path);
9162 if (err)
9163 goto out_end_trans;
9164
9165 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9166 if (ret) {
9167 btrfs_abort_transaction(trans, ret);
9168 goto out_end_trans;
9169 }
9170
9171 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9172 ret = btrfs_find_root(tree_root, &root->root_key, path,
9173 NULL, NULL);
9174 if (ret < 0) {
9175 btrfs_abort_transaction(trans, ret);
9176 err = ret;
9177 goto out_end_trans;
9178 } else if (ret > 0) {
9179 /* if we fail to delete the orphan item this time
9180 * around, it'll get picked up the next time.
9181 *
9182 * The most common failure here is just -ENOENT.
9183 */
9184 btrfs_del_orphan_item(trans, tree_root,
9185 root->root_key.objectid);
9186 }
9187 }
9188
9189 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9190 btrfs_add_dropped_root(trans, root);
9191 } else {
9192 free_extent_buffer(root->node);
9193 free_extent_buffer(root->commit_root);
9194 btrfs_put_fs_root(root);
9195 }
9196 root_dropped = true;
9197 out_end_trans:
9198 btrfs_end_transaction_throttle(trans);
9199 out_free:
9200 kfree(wc);
9201 btrfs_free_path(path);
9202 out:
9203 /*
9204 * So if we need to stop dropping the snapshot for whatever reason we
9205 * need to make sure to add it back to the dead root list so that we
9206 * keep trying to do the work later. This also cleans up roots if we
9207 * don't have it in the radix (like when we recover after a power fail
9208 * or unmount) so we don't leak memory.
9209 */
9210 if (!for_reloc && root_dropped == false)
9211 btrfs_add_dead_root(root);
9212 if (err && err != -EAGAIN)
9213 btrfs_handle_fs_error(fs_info, err, NULL);
9214 return err;
9215 }
9216
9217 /*
9218 * drop subtree rooted at tree block 'node'.
9219 *
9220 * NOTE: this function will unlock and release tree block 'node'
9221 * only used by relocation code
9222 */
9223 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9224 struct btrfs_root *root,
9225 struct extent_buffer *node,
9226 struct extent_buffer *parent)
9227 {
9228 struct btrfs_fs_info *fs_info = root->fs_info;
9229 struct btrfs_path *path;
9230 struct walk_control *wc;
9231 int level;
9232 int parent_level;
9233 int ret = 0;
9234 int wret;
9235
9236 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9237
9238 path = btrfs_alloc_path();
9239 if (!path)
9240 return -ENOMEM;
9241
9242 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9243 if (!wc) {
9244 btrfs_free_path(path);
9245 return -ENOMEM;
9246 }
9247
9248 btrfs_assert_tree_locked(parent);
9249 parent_level = btrfs_header_level(parent);
9250 extent_buffer_get(parent);
9251 path->nodes[parent_level] = parent;
9252 path->slots[parent_level] = btrfs_header_nritems(parent);
9253
9254 btrfs_assert_tree_locked(node);
9255 level = btrfs_header_level(node);
9256 path->nodes[level] = node;
9257 path->slots[level] = 0;
9258 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9259
9260 wc->refs[parent_level] = 1;
9261 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9262 wc->level = level;
9263 wc->shared_level = -1;
9264 wc->stage = DROP_REFERENCE;
9265 wc->update_ref = 0;
9266 wc->keep_locks = 1;
9267 wc->for_reloc = 1;
9268 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9269
9270 while (1) {
9271 wret = walk_down_tree(trans, root, path, wc);
9272 if (wret < 0) {
9273 ret = wret;
9274 break;
9275 }
9276
9277 wret = walk_up_tree(trans, root, path, wc, parent_level);
9278 if (wret < 0)
9279 ret = wret;
9280 if (wret != 0)
9281 break;
9282 }
9283
9284 kfree(wc);
9285 btrfs_free_path(path);
9286 return ret;
9287 }
9288
9289 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9290 {
9291 u64 num_devices;
9292 u64 stripped;
9293
9294 /*
9295 * if restripe for this chunk_type is on pick target profile and
9296 * return, otherwise do the usual balance
9297 */
9298 stripped = get_restripe_target(fs_info, flags);
9299 if (stripped)
9300 return extended_to_chunk(stripped);
9301
9302 num_devices = fs_info->fs_devices->rw_devices;
9303
9304 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9305 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9306 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9307
9308 if (num_devices == 1) {
9309 stripped |= BTRFS_BLOCK_GROUP_DUP;
9310 stripped = flags & ~stripped;
9311
9312 /* turn raid0 into single device chunks */
9313 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9314 return stripped;
9315
9316 /* turn mirroring into duplication */
9317 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9318 BTRFS_BLOCK_GROUP_RAID10))
9319 return stripped | BTRFS_BLOCK_GROUP_DUP;
9320 } else {
9321 /* they already had raid on here, just return */
9322 if (flags & stripped)
9323 return flags;
9324
9325 stripped |= BTRFS_BLOCK_GROUP_DUP;
9326 stripped = flags & ~stripped;
9327
9328 /* switch duplicated blocks with raid1 */
9329 if (flags & BTRFS_BLOCK_GROUP_DUP)
9330 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9331
9332 /* this is drive concat, leave it alone */
9333 }
9334
9335 return flags;
9336 }
9337
9338 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9339 {
9340 struct btrfs_space_info *sinfo = cache->space_info;
9341 u64 num_bytes;
9342 u64 min_allocable_bytes;
9343 int ret = -ENOSPC;
9344
9345 /*
9346 * We need some metadata space and system metadata space for
9347 * allocating chunks in some corner cases until we force to set
9348 * it to be readonly.
9349 */
9350 if ((sinfo->flags &
9351 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9352 !force)
9353 min_allocable_bytes = SZ_1M;
9354 else
9355 min_allocable_bytes = 0;
9356
9357 spin_lock(&sinfo->lock);
9358 spin_lock(&cache->lock);
9359
9360 if (cache->ro) {
9361 cache->ro++;
9362 ret = 0;
9363 goto out;
9364 }
9365
9366 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9367 cache->bytes_super - btrfs_block_group_used(&cache->item);
9368
9369 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9370 min_allocable_bytes <= sinfo->total_bytes) {
9371 sinfo->bytes_readonly += num_bytes;
9372 cache->ro++;
9373 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9374 ret = 0;
9375 }
9376 out:
9377 spin_unlock(&cache->lock);
9378 spin_unlock(&sinfo->lock);
9379 return ret;
9380 }
9381
9382 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9383 struct btrfs_block_group_cache *cache)
9384
9385 {
9386 struct btrfs_trans_handle *trans;
9387 u64 alloc_flags;
9388 int ret;
9389
9390 again:
9391 trans = btrfs_join_transaction(fs_info->extent_root);
9392 if (IS_ERR(trans))
9393 return PTR_ERR(trans);
9394
9395 /*
9396 * we're not allowed to set block groups readonly after the dirty
9397 * block groups cache has started writing. If it already started,
9398 * back off and let this transaction commit
9399 */
9400 mutex_lock(&fs_info->ro_block_group_mutex);
9401 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9402 u64 transid = trans->transid;
9403
9404 mutex_unlock(&fs_info->ro_block_group_mutex);
9405 btrfs_end_transaction(trans);
9406
9407 ret = btrfs_wait_for_commit(fs_info, transid);
9408 if (ret)
9409 return ret;
9410 goto again;
9411 }
9412
9413 /*
9414 * if we are changing raid levels, try to allocate a corresponding
9415 * block group with the new raid level.
9416 */
9417 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9418 if (alloc_flags != cache->flags) {
9419 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9420 CHUNK_ALLOC_FORCE);
9421 /*
9422 * ENOSPC is allowed here, we may have enough space
9423 * already allocated at the new raid level to
9424 * carry on
9425 */
9426 if (ret == -ENOSPC)
9427 ret = 0;
9428 if (ret < 0)
9429 goto out;
9430 }
9431
9432 ret = inc_block_group_ro(cache, 0);
9433 if (!ret)
9434 goto out;
9435 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9436 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9437 CHUNK_ALLOC_FORCE);
9438 if (ret < 0)
9439 goto out;
9440 ret = inc_block_group_ro(cache, 0);
9441 out:
9442 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9443 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9444 mutex_lock(&fs_info->chunk_mutex);
9445 check_system_chunk(trans, fs_info, alloc_flags);
9446 mutex_unlock(&fs_info->chunk_mutex);
9447 }
9448 mutex_unlock(&fs_info->ro_block_group_mutex);
9449
9450 btrfs_end_transaction(trans);
9451 return ret;
9452 }
9453
9454 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9455 struct btrfs_fs_info *fs_info, u64 type)
9456 {
9457 u64 alloc_flags = get_alloc_profile(fs_info, type);
9458
9459 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9460 }
9461
9462 /*
9463 * helper to account the unused space of all the readonly block group in the
9464 * space_info. takes mirrors into account.
9465 */
9466 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9467 {
9468 struct btrfs_block_group_cache *block_group;
9469 u64 free_bytes = 0;
9470 int factor;
9471
9472 /* It's df, we don't care if it's racy */
9473 if (list_empty(&sinfo->ro_bgs))
9474 return 0;
9475
9476 spin_lock(&sinfo->lock);
9477 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9478 spin_lock(&block_group->lock);
9479
9480 if (!block_group->ro) {
9481 spin_unlock(&block_group->lock);
9482 continue;
9483 }
9484
9485 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9486 BTRFS_BLOCK_GROUP_RAID10 |
9487 BTRFS_BLOCK_GROUP_DUP))
9488 factor = 2;
9489 else
9490 factor = 1;
9491
9492 free_bytes += (block_group->key.offset -
9493 btrfs_block_group_used(&block_group->item)) *
9494 factor;
9495
9496 spin_unlock(&block_group->lock);
9497 }
9498 spin_unlock(&sinfo->lock);
9499
9500 return free_bytes;
9501 }
9502
9503 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9504 {
9505 struct btrfs_space_info *sinfo = cache->space_info;
9506 u64 num_bytes;
9507
9508 BUG_ON(!cache->ro);
9509
9510 spin_lock(&sinfo->lock);
9511 spin_lock(&cache->lock);
9512 if (!--cache->ro) {
9513 num_bytes = cache->key.offset - cache->reserved -
9514 cache->pinned - cache->bytes_super -
9515 btrfs_block_group_used(&cache->item);
9516 sinfo->bytes_readonly -= num_bytes;
9517 list_del_init(&cache->ro_list);
9518 }
9519 spin_unlock(&cache->lock);
9520 spin_unlock(&sinfo->lock);
9521 }
9522
9523 /*
9524 * checks to see if its even possible to relocate this block group.
9525 *
9526 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9527 * ok to go ahead and try.
9528 */
9529 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9530 {
9531 struct btrfs_root *root = fs_info->extent_root;
9532 struct btrfs_block_group_cache *block_group;
9533 struct btrfs_space_info *space_info;
9534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9535 struct btrfs_device *device;
9536 struct btrfs_trans_handle *trans;
9537 u64 min_free;
9538 u64 dev_min = 1;
9539 u64 dev_nr = 0;
9540 u64 target;
9541 int debug;
9542 int index;
9543 int full = 0;
9544 int ret = 0;
9545
9546 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9547
9548 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9549
9550 /* odd, couldn't find the block group, leave it alone */
9551 if (!block_group) {
9552 if (debug)
9553 btrfs_warn(fs_info,
9554 "can't find block group for bytenr %llu",
9555 bytenr);
9556 return -1;
9557 }
9558
9559 min_free = btrfs_block_group_used(&block_group->item);
9560
9561 /* no bytes used, we're good */
9562 if (!min_free)
9563 goto out;
9564
9565 space_info = block_group->space_info;
9566 spin_lock(&space_info->lock);
9567
9568 full = space_info->full;
9569
9570 /*
9571 * if this is the last block group we have in this space, we can't
9572 * relocate it unless we're able to allocate a new chunk below.
9573 *
9574 * Otherwise, we need to make sure we have room in the space to handle
9575 * all of the extents from this block group. If we can, we're good
9576 */
9577 if ((space_info->total_bytes != block_group->key.offset) &&
9578 (btrfs_space_info_used(space_info, false) + min_free <
9579 space_info->total_bytes)) {
9580 spin_unlock(&space_info->lock);
9581 goto out;
9582 }
9583 spin_unlock(&space_info->lock);
9584
9585 /*
9586 * ok we don't have enough space, but maybe we have free space on our
9587 * devices to allocate new chunks for relocation, so loop through our
9588 * alloc devices and guess if we have enough space. if this block
9589 * group is going to be restriped, run checks against the target
9590 * profile instead of the current one.
9591 */
9592 ret = -1;
9593
9594 /*
9595 * index:
9596 * 0: raid10
9597 * 1: raid1
9598 * 2: dup
9599 * 3: raid0
9600 * 4: single
9601 */
9602 target = get_restripe_target(fs_info, block_group->flags);
9603 if (target) {
9604 index = __get_raid_index(extended_to_chunk(target));
9605 } else {
9606 /*
9607 * this is just a balance, so if we were marked as full
9608 * we know there is no space for a new chunk
9609 */
9610 if (full) {
9611 if (debug)
9612 btrfs_warn(fs_info,
9613 "no space to alloc new chunk for block group %llu",
9614 block_group->key.objectid);
9615 goto out;
9616 }
9617
9618 index = get_block_group_index(block_group);
9619 }
9620
9621 if (index == BTRFS_RAID_RAID10) {
9622 dev_min = 4;
9623 /* Divide by 2 */
9624 min_free >>= 1;
9625 } else if (index == BTRFS_RAID_RAID1) {
9626 dev_min = 2;
9627 } else if (index == BTRFS_RAID_DUP) {
9628 /* Multiply by 2 */
9629 min_free <<= 1;
9630 } else if (index == BTRFS_RAID_RAID0) {
9631 dev_min = fs_devices->rw_devices;
9632 min_free = div64_u64(min_free, dev_min);
9633 }
9634
9635 /* We need to do this so that we can look at pending chunks */
9636 trans = btrfs_join_transaction(root);
9637 if (IS_ERR(trans)) {
9638 ret = PTR_ERR(trans);
9639 goto out;
9640 }
9641
9642 mutex_lock(&fs_info->chunk_mutex);
9643 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9644 u64 dev_offset;
9645
9646 /*
9647 * check to make sure we can actually find a chunk with enough
9648 * space to fit our block group in.
9649 */
9650 if (device->total_bytes > device->bytes_used + min_free &&
9651 !device->is_tgtdev_for_dev_replace) {
9652 ret = find_free_dev_extent(trans, device, min_free,
9653 &dev_offset, NULL);
9654 if (!ret)
9655 dev_nr++;
9656
9657 if (dev_nr >= dev_min)
9658 break;
9659
9660 ret = -1;
9661 }
9662 }
9663 if (debug && ret == -1)
9664 btrfs_warn(fs_info,
9665 "no space to allocate a new chunk for block group %llu",
9666 block_group->key.objectid);
9667 mutex_unlock(&fs_info->chunk_mutex);
9668 btrfs_end_transaction(trans);
9669 out:
9670 btrfs_put_block_group(block_group);
9671 return ret;
9672 }
9673
9674 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9675 struct btrfs_path *path,
9676 struct btrfs_key *key)
9677 {
9678 struct btrfs_root *root = fs_info->extent_root;
9679 int ret = 0;
9680 struct btrfs_key found_key;
9681 struct extent_buffer *leaf;
9682 int slot;
9683
9684 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9685 if (ret < 0)
9686 goto out;
9687
9688 while (1) {
9689 slot = path->slots[0];
9690 leaf = path->nodes[0];
9691 if (slot >= btrfs_header_nritems(leaf)) {
9692 ret = btrfs_next_leaf(root, path);
9693 if (ret == 0)
9694 continue;
9695 if (ret < 0)
9696 goto out;
9697 break;
9698 }
9699 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9700
9701 if (found_key.objectid >= key->objectid &&
9702 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9703 struct extent_map_tree *em_tree;
9704 struct extent_map *em;
9705
9706 em_tree = &root->fs_info->mapping_tree.map_tree;
9707 read_lock(&em_tree->lock);
9708 em = lookup_extent_mapping(em_tree, found_key.objectid,
9709 found_key.offset);
9710 read_unlock(&em_tree->lock);
9711 if (!em) {
9712 btrfs_err(fs_info,
9713 "logical %llu len %llu found bg but no related chunk",
9714 found_key.objectid, found_key.offset);
9715 ret = -ENOENT;
9716 } else {
9717 ret = 0;
9718 }
9719 free_extent_map(em);
9720 goto out;
9721 }
9722 path->slots[0]++;
9723 }
9724 out:
9725 return ret;
9726 }
9727
9728 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9729 {
9730 struct btrfs_block_group_cache *block_group;
9731 u64 last = 0;
9732
9733 while (1) {
9734 struct inode *inode;
9735
9736 block_group = btrfs_lookup_first_block_group(info, last);
9737 while (block_group) {
9738 spin_lock(&block_group->lock);
9739 if (block_group->iref)
9740 break;
9741 spin_unlock(&block_group->lock);
9742 block_group = next_block_group(info, block_group);
9743 }
9744 if (!block_group) {
9745 if (last == 0)
9746 break;
9747 last = 0;
9748 continue;
9749 }
9750
9751 inode = block_group->inode;
9752 block_group->iref = 0;
9753 block_group->inode = NULL;
9754 spin_unlock(&block_group->lock);
9755 ASSERT(block_group->io_ctl.inode == NULL);
9756 iput(inode);
9757 last = block_group->key.objectid + block_group->key.offset;
9758 btrfs_put_block_group(block_group);
9759 }
9760 }
9761
9762 /*
9763 * Must be called only after stopping all workers, since we could have block
9764 * group caching kthreads running, and therefore they could race with us if we
9765 * freed the block groups before stopping them.
9766 */
9767 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9768 {
9769 struct btrfs_block_group_cache *block_group;
9770 struct btrfs_space_info *space_info;
9771 struct btrfs_caching_control *caching_ctl;
9772 struct rb_node *n;
9773
9774 down_write(&info->commit_root_sem);
9775 while (!list_empty(&info->caching_block_groups)) {
9776 caching_ctl = list_entry(info->caching_block_groups.next,
9777 struct btrfs_caching_control, list);
9778 list_del(&caching_ctl->list);
9779 put_caching_control(caching_ctl);
9780 }
9781 up_write(&info->commit_root_sem);
9782
9783 spin_lock(&info->unused_bgs_lock);
9784 while (!list_empty(&info->unused_bgs)) {
9785 block_group = list_first_entry(&info->unused_bgs,
9786 struct btrfs_block_group_cache,
9787 bg_list);
9788 list_del_init(&block_group->bg_list);
9789 btrfs_put_block_group(block_group);
9790 }
9791 spin_unlock(&info->unused_bgs_lock);
9792
9793 spin_lock(&info->block_group_cache_lock);
9794 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9795 block_group = rb_entry(n, struct btrfs_block_group_cache,
9796 cache_node);
9797 rb_erase(&block_group->cache_node,
9798 &info->block_group_cache_tree);
9799 RB_CLEAR_NODE(&block_group->cache_node);
9800 spin_unlock(&info->block_group_cache_lock);
9801
9802 down_write(&block_group->space_info->groups_sem);
9803 list_del(&block_group->list);
9804 up_write(&block_group->space_info->groups_sem);
9805
9806 /*
9807 * We haven't cached this block group, which means we could
9808 * possibly have excluded extents on this block group.
9809 */
9810 if (block_group->cached == BTRFS_CACHE_NO ||
9811 block_group->cached == BTRFS_CACHE_ERROR)
9812 free_excluded_extents(info, block_group);
9813
9814 btrfs_remove_free_space_cache(block_group);
9815 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9816 ASSERT(list_empty(&block_group->dirty_list));
9817 ASSERT(list_empty(&block_group->io_list));
9818 ASSERT(list_empty(&block_group->bg_list));
9819 ASSERT(atomic_read(&block_group->count) == 1);
9820 btrfs_put_block_group(block_group);
9821
9822 spin_lock(&info->block_group_cache_lock);
9823 }
9824 spin_unlock(&info->block_group_cache_lock);
9825
9826 /* now that all the block groups are freed, go through and
9827 * free all the space_info structs. This is only called during
9828 * the final stages of unmount, and so we know nobody is
9829 * using them. We call synchronize_rcu() once before we start,
9830 * just to be on the safe side.
9831 */
9832 synchronize_rcu();
9833
9834 release_global_block_rsv(info);
9835
9836 while (!list_empty(&info->space_info)) {
9837 int i;
9838
9839 space_info = list_entry(info->space_info.next,
9840 struct btrfs_space_info,
9841 list);
9842
9843 /*
9844 * Do not hide this behind enospc_debug, this is actually
9845 * important and indicates a real bug if this happens.
9846 */
9847 if (WARN_ON(space_info->bytes_pinned > 0 ||
9848 space_info->bytes_reserved > 0 ||
9849 space_info->bytes_may_use > 0))
9850 dump_space_info(info, space_info, 0, 0);
9851 list_del(&space_info->list);
9852 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9853 struct kobject *kobj;
9854 kobj = space_info->block_group_kobjs[i];
9855 space_info->block_group_kobjs[i] = NULL;
9856 if (kobj) {
9857 kobject_del(kobj);
9858 kobject_put(kobj);
9859 }
9860 }
9861 kobject_del(&space_info->kobj);
9862 kobject_put(&space_info->kobj);
9863 }
9864 return 0;
9865 }
9866
9867 static void __link_block_group(struct btrfs_space_info *space_info,
9868 struct btrfs_block_group_cache *cache)
9869 {
9870 int index = get_block_group_index(cache);
9871 bool first = false;
9872
9873 down_write(&space_info->groups_sem);
9874 if (list_empty(&space_info->block_groups[index]))
9875 first = true;
9876 list_add_tail(&cache->list, &space_info->block_groups[index]);
9877 up_write(&space_info->groups_sem);
9878
9879 if (first) {
9880 struct raid_kobject *rkobj;
9881 int ret;
9882
9883 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9884 if (!rkobj)
9885 goto out_err;
9886 rkobj->raid_type = index;
9887 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9888 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9889 "%s", get_raid_name(index));
9890 if (ret) {
9891 kobject_put(&rkobj->kobj);
9892 goto out_err;
9893 }
9894 space_info->block_group_kobjs[index] = &rkobj->kobj;
9895 }
9896
9897 return;
9898 out_err:
9899 btrfs_warn(cache->fs_info,
9900 "failed to add kobject for block cache, ignoring");
9901 }
9902
9903 static struct btrfs_block_group_cache *
9904 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9905 u64 start, u64 size)
9906 {
9907 struct btrfs_block_group_cache *cache;
9908
9909 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9910 if (!cache)
9911 return NULL;
9912
9913 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9914 GFP_NOFS);
9915 if (!cache->free_space_ctl) {
9916 kfree(cache);
9917 return NULL;
9918 }
9919
9920 cache->key.objectid = start;
9921 cache->key.offset = size;
9922 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9923
9924 cache->sectorsize = fs_info->sectorsize;
9925 cache->fs_info = fs_info;
9926 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9927 &fs_info->mapping_tree,
9928 start);
9929 set_free_space_tree_thresholds(cache);
9930
9931 atomic_set(&cache->count, 1);
9932 spin_lock_init(&cache->lock);
9933 init_rwsem(&cache->data_rwsem);
9934 INIT_LIST_HEAD(&cache->list);
9935 INIT_LIST_HEAD(&cache->cluster_list);
9936 INIT_LIST_HEAD(&cache->bg_list);
9937 INIT_LIST_HEAD(&cache->ro_list);
9938 INIT_LIST_HEAD(&cache->dirty_list);
9939 INIT_LIST_HEAD(&cache->io_list);
9940 btrfs_init_free_space_ctl(cache);
9941 atomic_set(&cache->trimming, 0);
9942 mutex_init(&cache->free_space_lock);
9943 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9944
9945 return cache;
9946 }
9947
9948 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9949 {
9950 struct btrfs_path *path;
9951 int ret;
9952 struct btrfs_block_group_cache *cache;
9953 struct btrfs_space_info *space_info;
9954 struct btrfs_key key;
9955 struct btrfs_key found_key;
9956 struct extent_buffer *leaf;
9957 int need_clear = 0;
9958 u64 cache_gen;
9959 u64 feature;
9960 int mixed;
9961
9962 feature = btrfs_super_incompat_flags(info->super_copy);
9963 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9964
9965 key.objectid = 0;
9966 key.offset = 0;
9967 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9968 path = btrfs_alloc_path();
9969 if (!path)
9970 return -ENOMEM;
9971 path->reada = READA_FORWARD;
9972
9973 cache_gen = btrfs_super_cache_generation(info->super_copy);
9974 if (btrfs_test_opt(info, SPACE_CACHE) &&
9975 btrfs_super_generation(info->super_copy) != cache_gen)
9976 need_clear = 1;
9977 if (btrfs_test_opt(info, CLEAR_CACHE))
9978 need_clear = 1;
9979
9980 while (1) {
9981 ret = find_first_block_group(info, path, &key);
9982 if (ret > 0)
9983 break;
9984 if (ret != 0)
9985 goto error;
9986
9987 leaf = path->nodes[0];
9988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9989
9990 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9991 found_key.offset);
9992 if (!cache) {
9993 ret = -ENOMEM;
9994 goto error;
9995 }
9996
9997 if (need_clear) {
9998 /*
9999 * When we mount with old space cache, we need to
10000 * set BTRFS_DC_CLEAR and set dirty flag.
10001 *
10002 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10003 * truncate the old free space cache inode and
10004 * setup a new one.
10005 * b) Setting 'dirty flag' makes sure that we flush
10006 * the new space cache info onto disk.
10007 */
10008 if (btrfs_test_opt(info, SPACE_CACHE))
10009 cache->disk_cache_state = BTRFS_DC_CLEAR;
10010 }
10011
10012 read_extent_buffer(leaf, &cache->item,
10013 btrfs_item_ptr_offset(leaf, path->slots[0]),
10014 sizeof(cache->item));
10015 cache->flags = btrfs_block_group_flags(&cache->item);
10016 if (!mixed &&
10017 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10018 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10019 btrfs_err(info,
10020 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10021 cache->key.objectid);
10022 ret = -EINVAL;
10023 goto error;
10024 }
10025
10026 key.objectid = found_key.objectid + found_key.offset;
10027 btrfs_release_path(path);
10028
10029 /*
10030 * We need to exclude the super stripes now so that the space
10031 * info has super bytes accounted for, otherwise we'll think
10032 * we have more space than we actually do.
10033 */
10034 ret = exclude_super_stripes(info, cache);
10035 if (ret) {
10036 /*
10037 * We may have excluded something, so call this just in
10038 * case.
10039 */
10040 free_excluded_extents(info, cache);
10041 btrfs_put_block_group(cache);
10042 goto error;
10043 }
10044
10045 /*
10046 * check for two cases, either we are full, and therefore
10047 * don't need to bother with the caching work since we won't
10048 * find any space, or we are empty, and we can just add all
10049 * the space in and be done with it. This saves us _alot_ of
10050 * time, particularly in the full case.
10051 */
10052 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10053 cache->last_byte_to_unpin = (u64)-1;
10054 cache->cached = BTRFS_CACHE_FINISHED;
10055 free_excluded_extents(info, cache);
10056 } else if (btrfs_block_group_used(&cache->item) == 0) {
10057 cache->last_byte_to_unpin = (u64)-1;
10058 cache->cached = BTRFS_CACHE_FINISHED;
10059 add_new_free_space(cache, info,
10060 found_key.objectid,
10061 found_key.objectid +
10062 found_key.offset);
10063 free_excluded_extents(info, cache);
10064 }
10065
10066 ret = btrfs_add_block_group_cache(info, cache);
10067 if (ret) {
10068 btrfs_remove_free_space_cache(cache);
10069 btrfs_put_block_group(cache);
10070 goto error;
10071 }
10072
10073 trace_btrfs_add_block_group(info, cache, 0);
10074 ret = update_space_info(info, cache->flags, found_key.offset,
10075 btrfs_block_group_used(&cache->item),
10076 cache->bytes_super, &space_info);
10077 if (ret) {
10078 btrfs_remove_free_space_cache(cache);
10079 spin_lock(&info->block_group_cache_lock);
10080 rb_erase(&cache->cache_node,
10081 &info->block_group_cache_tree);
10082 RB_CLEAR_NODE(&cache->cache_node);
10083 spin_unlock(&info->block_group_cache_lock);
10084 btrfs_put_block_group(cache);
10085 goto error;
10086 }
10087
10088 cache->space_info = space_info;
10089
10090 __link_block_group(space_info, cache);
10091
10092 set_avail_alloc_bits(info, cache->flags);
10093 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10094 inc_block_group_ro(cache, 1);
10095 } else if (btrfs_block_group_used(&cache->item) == 0) {
10096 spin_lock(&info->unused_bgs_lock);
10097 /* Should always be true but just in case. */
10098 if (list_empty(&cache->bg_list)) {
10099 btrfs_get_block_group(cache);
10100 list_add_tail(&cache->bg_list,
10101 &info->unused_bgs);
10102 }
10103 spin_unlock(&info->unused_bgs_lock);
10104 }
10105 }
10106
10107 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10108 if (!(get_alloc_profile(info, space_info->flags) &
10109 (BTRFS_BLOCK_GROUP_RAID10 |
10110 BTRFS_BLOCK_GROUP_RAID1 |
10111 BTRFS_BLOCK_GROUP_RAID5 |
10112 BTRFS_BLOCK_GROUP_RAID6 |
10113 BTRFS_BLOCK_GROUP_DUP)))
10114 continue;
10115 /*
10116 * avoid allocating from un-mirrored block group if there are
10117 * mirrored block groups.
10118 */
10119 list_for_each_entry(cache,
10120 &space_info->block_groups[BTRFS_RAID_RAID0],
10121 list)
10122 inc_block_group_ro(cache, 1);
10123 list_for_each_entry(cache,
10124 &space_info->block_groups[BTRFS_RAID_SINGLE],
10125 list)
10126 inc_block_group_ro(cache, 1);
10127 }
10128
10129 init_global_block_rsv(info);
10130 ret = 0;
10131 error:
10132 btrfs_free_path(path);
10133 return ret;
10134 }
10135
10136 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10137 struct btrfs_fs_info *fs_info)
10138 {
10139 struct btrfs_block_group_cache *block_group, *tmp;
10140 struct btrfs_root *extent_root = fs_info->extent_root;
10141 struct btrfs_block_group_item item;
10142 struct btrfs_key key;
10143 int ret = 0;
10144 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10145
10146 trans->can_flush_pending_bgs = false;
10147 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10148 if (ret)
10149 goto next;
10150
10151 spin_lock(&block_group->lock);
10152 memcpy(&item, &block_group->item, sizeof(item));
10153 memcpy(&key, &block_group->key, sizeof(key));
10154 spin_unlock(&block_group->lock);
10155
10156 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10157 sizeof(item));
10158 if (ret)
10159 btrfs_abort_transaction(trans, ret);
10160 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10161 key.offset);
10162 if (ret)
10163 btrfs_abort_transaction(trans, ret);
10164 add_block_group_free_space(trans, fs_info, block_group);
10165 /* already aborted the transaction if it failed. */
10166 next:
10167 list_del_init(&block_group->bg_list);
10168 }
10169 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10170 }
10171
10172 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10173 struct btrfs_fs_info *fs_info, u64 bytes_used,
10174 u64 type, u64 chunk_objectid, u64 chunk_offset,
10175 u64 size)
10176 {
10177 struct btrfs_block_group_cache *cache;
10178 int ret;
10179
10180 btrfs_set_log_full_commit(fs_info, trans);
10181
10182 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10183 if (!cache)
10184 return -ENOMEM;
10185
10186 btrfs_set_block_group_used(&cache->item, bytes_used);
10187 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10188 btrfs_set_block_group_flags(&cache->item, type);
10189
10190 cache->flags = type;
10191 cache->last_byte_to_unpin = (u64)-1;
10192 cache->cached = BTRFS_CACHE_FINISHED;
10193 cache->needs_free_space = 1;
10194 ret = exclude_super_stripes(fs_info, cache);
10195 if (ret) {
10196 /*
10197 * We may have excluded something, so call this just in
10198 * case.
10199 */
10200 free_excluded_extents(fs_info, cache);
10201 btrfs_put_block_group(cache);
10202 return ret;
10203 }
10204
10205 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10206
10207 free_excluded_extents(fs_info, cache);
10208
10209 #ifdef CONFIG_BTRFS_DEBUG
10210 if (btrfs_should_fragment_free_space(cache)) {
10211 u64 new_bytes_used = size - bytes_used;
10212
10213 bytes_used += new_bytes_used >> 1;
10214 fragment_free_space(cache);
10215 }
10216 #endif
10217 /*
10218 * Call to ensure the corresponding space_info object is created and
10219 * assigned to our block group, but don't update its counters just yet.
10220 * We want our bg to be added to the rbtree with its ->space_info set.
10221 */
10222 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10223 &cache->space_info);
10224 if (ret) {
10225 btrfs_remove_free_space_cache(cache);
10226 btrfs_put_block_group(cache);
10227 return ret;
10228 }
10229
10230 ret = btrfs_add_block_group_cache(fs_info, cache);
10231 if (ret) {
10232 btrfs_remove_free_space_cache(cache);
10233 btrfs_put_block_group(cache);
10234 return ret;
10235 }
10236
10237 /*
10238 * Now that our block group has its ->space_info set and is inserted in
10239 * the rbtree, update the space info's counters.
10240 */
10241 trace_btrfs_add_block_group(fs_info, cache, 1);
10242 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10243 cache->bytes_super, &cache->space_info);
10244 if (ret) {
10245 btrfs_remove_free_space_cache(cache);
10246 spin_lock(&fs_info->block_group_cache_lock);
10247 rb_erase(&cache->cache_node,
10248 &fs_info->block_group_cache_tree);
10249 RB_CLEAR_NODE(&cache->cache_node);
10250 spin_unlock(&fs_info->block_group_cache_lock);
10251 btrfs_put_block_group(cache);
10252 return ret;
10253 }
10254 update_global_block_rsv(fs_info);
10255
10256 __link_block_group(cache->space_info, cache);
10257
10258 list_add_tail(&cache->bg_list, &trans->new_bgs);
10259
10260 set_avail_alloc_bits(fs_info, type);
10261 return 0;
10262 }
10263
10264 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10265 {
10266 u64 extra_flags = chunk_to_extended(flags) &
10267 BTRFS_EXTENDED_PROFILE_MASK;
10268
10269 write_seqlock(&fs_info->profiles_lock);
10270 if (flags & BTRFS_BLOCK_GROUP_DATA)
10271 fs_info->avail_data_alloc_bits &= ~extra_flags;
10272 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10273 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10274 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10275 fs_info->avail_system_alloc_bits &= ~extra_flags;
10276 write_sequnlock(&fs_info->profiles_lock);
10277 }
10278
10279 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10280 struct btrfs_fs_info *fs_info, u64 group_start,
10281 struct extent_map *em)
10282 {
10283 struct btrfs_root *root = fs_info->extent_root;
10284 struct btrfs_path *path;
10285 struct btrfs_block_group_cache *block_group;
10286 struct btrfs_free_cluster *cluster;
10287 struct btrfs_root *tree_root = fs_info->tree_root;
10288 struct btrfs_key key;
10289 struct inode *inode;
10290 struct kobject *kobj = NULL;
10291 int ret;
10292 int index;
10293 int factor;
10294 struct btrfs_caching_control *caching_ctl = NULL;
10295 bool remove_em;
10296
10297 block_group = btrfs_lookup_block_group(fs_info, group_start);
10298 BUG_ON(!block_group);
10299 BUG_ON(!block_group->ro);
10300
10301 /*
10302 * Free the reserved super bytes from this block group before
10303 * remove it.
10304 */
10305 free_excluded_extents(fs_info, block_group);
10306
10307 memcpy(&key, &block_group->key, sizeof(key));
10308 index = get_block_group_index(block_group);
10309 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10310 BTRFS_BLOCK_GROUP_RAID1 |
10311 BTRFS_BLOCK_GROUP_RAID10))
10312 factor = 2;
10313 else
10314 factor = 1;
10315
10316 /* make sure this block group isn't part of an allocation cluster */
10317 cluster = &fs_info->data_alloc_cluster;
10318 spin_lock(&cluster->refill_lock);
10319 btrfs_return_cluster_to_free_space(block_group, cluster);
10320 spin_unlock(&cluster->refill_lock);
10321
10322 /*
10323 * make sure this block group isn't part of a metadata
10324 * allocation cluster
10325 */
10326 cluster = &fs_info->meta_alloc_cluster;
10327 spin_lock(&cluster->refill_lock);
10328 btrfs_return_cluster_to_free_space(block_group, cluster);
10329 spin_unlock(&cluster->refill_lock);
10330
10331 path = btrfs_alloc_path();
10332 if (!path) {
10333 ret = -ENOMEM;
10334 goto out;
10335 }
10336
10337 /*
10338 * get the inode first so any iput calls done for the io_list
10339 * aren't the final iput (no unlinks allowed now)
10340 */
10341 inode = lookup_free_space_inode(fs_info, block_group, path);
10342
10343 mutex_lock(&trans->transaction->cache_write_mutex);
10344 /*
10345 * make sure our free spache cache IO is done before remove the
10346 * free space inode
10347 */
10348 spin_lock(&trans->transaction->dirty_bgs_lock);
10349 if (!list_empty(&block_group->io_list)) {
10350 list_del_init(&block_group->io_list);
10351
10352 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10353
10354 spin_unlock(&trans->transaction->dirty_bgs_lock);
10355 btrfs_wait_cache_io(trans, block_group, path);
10356 btrfs_put_block_group(block_group);
10357 spin_lock(&trans->transaction->dirty_bgs_lock);
10358 }
10359
10360 if (!list_empty(&block_group->dirty_list)) {
10361 list_del_init(&block_group->dirty_list);
10362 btrfs_put_block_group(block_group);
10363 }
10364 spin_unlock(&trans->transaction->dirty_bgs_lock);
10365 mutex_unlock(&trans->transaction->cache_write_mutex);
10366
10367 if (!IS_ERR(inode)) {
10368 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10369 if (ret) {
10370 btrfs_add_delayed_iput(inode);
10371 goto out;
10372 }
10373 clear_nlink(inode);
10374 /* One for the block groups ref */
10375 spin_lock(&block_group->lock);
10376 if (block_group->iref) {
10377 block_group->iref = 0;
10378 block_group->inode = NULL;
10379 spin_unlock(&block_group->lock);
10380 iput(inode);
10381 } else {
10382 spin_unlock(&block_group->lock);
10383 }
10384 /* One for our lookup ref */
10385 btrfs_add_delayed_iput(inode);
10386 }
10387
10388 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10389 key.offset = block_group->key.objectid;
10390 key.type = 0;
10391
10392 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10393 if (ret < 0)
10394 goto out;
10395 if (ret > 0)
10396 btrfs_release_path(path);
10397 if (ret == 0) {
10398 ret = btrfs_del_item(trans, tree_root, path);
10399 if (ret)
10400 goto out;
10401 btrfs_release_path(path);
10402 }
10403
10404 spin_lock(&fs_info->block_group_cache_lock);
10405 rb_erase(&block_group->cache_node,
10406 &fs_info->block_group_cache_tree);
10407 RB_CLEAR_NODE(&block_group->cache_node);
10408
10409 if (fs_info->first_logical_byte == block_group->key.objectid)
10410 fs_info->first_logical_byte = (u64)-1;
10411 spin_unlock(&fs_info->block_group_cache_lock);
10412
10413 down_write(&block_group->space_info->groups_sem);
10414 /*
10415 * we must use list_del_init so people can check to see if they
10416 * are still on the list after taking the semaphore
10417 */
10418 list_del_init(&block_group->list);
10419 if (list_empty(&block_group->space_info->block_groups[index])) {
10420 kobj = block_group->space_info->block_group_kobjs[index];
10421 block_group->space_info->block_group_kobjs[index] = NULL;
10422 clear_avail_alloc_bits(fs_info, block_group->flags);
10423 }
10424 up_write(&block_group->space_info->groups_sem);
10425 if (kobj) {
10426 kobject_del(kobj);
10427 kobject_put(kobj);
10428 }
10429
10430 if (block_group->has_caching_ctl)
10431 caching_ctl = get_caching_control(block_group);
10432 if (block_group->cached == BTRFS_CACHE_STARTED)
10433 wait_block_group_cache_done(block_group);
10434 if (block_group->has_caching_ctl) {
10435 down_write(&fs_info->commit_root_sem);
10436 if (!caching_ctl) {
10437 struct btrfs_caching_control *ctl;
10438
10439 list_for_each_entry(ctl,
10440 &fs_info->caching_block_groups, list)
10441 if (ctl->block_group == block_group) {
10442 caching_ctl = ctl;
10443 refcount_inc(&caching_ctl->count);
10444 break;
10445 }
10446 }
10447 if (caching_ctl)
10448 list_del_init(&caching_ctl->list);
10449 up_write(&fs_info->commit_root_sem);
10450 if (caching_ctl) {
10451 /* Once for the caching bgs list and once for us. */
10452 put_caching_control(caching_ctl);
10453 put_caching_control(caching_ctl);
10454 }
10455 }
10456
10457 spin_lock(&trans->transaction->dirty_bgs_lock);
10458 if (!list_empty(&block_group->dirty_list)) {
10459 WARN_ON(1);
10460 }
10461 if (!list_empty(&block_group->io_list)) {
10462 WARN_ON(1);
10463 }
10464 spin_unlock(&trans->transaction->dirty_bgs_lock);
10465 btrfs_remove_free_space_cache(block_group);
10466
10467 spin_lock(&block_group->space_info->lock);
10468 list_del_init(&block_group->ro_list);
10469
10470 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10471 WARN_ON(block_group->space_info->total_bytes
10472 < block_group->key.offset);
10473 WARN_ON(block_group->space_info->bytes_readonly
10474 < block_group->key.offset);
10475 WARN_ON(block_group->space_info->disk_total
10476 < block_group->key.offset * factor);
10477 }
10478 block_group->space_info->total_bytes -= block_group->key.offset;
10479 block_group->space_info->bytes_readonly -= block_group->key.offset;
10480 block_group->space_info->disk_total -= block_group->key.offset * factor;
10481
10482 spin_unlock(&block_group->space_info->lock);
10483
10484 memcpy(&key, &block_group->key, sizeof(key));
10485
10486 mutex_lock(&fs_info->chunk_mutex);
10487 if (!list_empty(&em->list)) {
10488 /* We're in the transaction->pending_chunks list. */
10489 free_extent_map(em);
10490 }
10491 spin_lock(&block_group->lock);
10492 block_group->removed = 1;
10493 /*
10494 * At this point trimming can't start on this block group, because we
10495 * removed the block group from the tree fs_info->block_group_cache_tree
10496 * so no one can't find it anymore and even if someone already got this
10497 * block group before we removed it from the rbtree, they have already
10498 * incremented block_group->trimming - if they didn't, they won't find
10499 * any free space entries because we already removed them all when we
10500 * called btrfs_remove_free_space_cache().
10501 *
10502 * And we must not remove the extent map from the fs_info->mapping_tree
10503 * to prevent the same logical address range and physical device space
10504 * ranges from being reused for a new block group. This is because our
10505 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10506 * completely transactionless, so while it is trimming a range the
10507 * currently running transaction might finish and a new one start,
10508 * allowing for new block groups to be created that can reuse the same
10509 * physical device locations unless we take this special care.
10510 *
10511 * There may also be an implicit trim operation if the file system
10512 * is mounted with -odiscard. The same protections must remain
10513 * in place until the extents have been discarded completely when
10514 * the transaction commit has completed.
10515 */
10516 remove_em = (atomic_read(&block_group->trimming) == 0);
10517 /*
10518 * Make sure a trimmer task always sees the em in the pinned_chunks list
10519 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10520 * before checking block_group->removed).
10521 */
10522 if (!remove_em) {
10523 /*
10524 * Our em might be in trans->transaction->pending_chunks which
10525 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10526 * and so is the fs_info->pinned_chunks list.
10527 *
10528 * So at this point we must be holding the chunk_mutex to avoid
10529 * any races with chunk allocation (more specifically at
10530 * volumes.c:contains_pending_extent()), to ensure it always
10531 * sees the em, either in the pending_chunks list or in the
10532 * pinned_chunks list.
10533 */
10534 list_move_tail(&em->list, &fs_info->pinned_chunks);
10535 }
10536 spin_unlock(&block_group->lock);
10537
10538 if (remove_em) {
10539 struct extent_map_tree *em_tree;
10540
10541 em_tree = &fs_info->mapping_tree.map_tree;
10542 write_lock(&em_tree->lock);
10543 /*
10544 * The em might be in the pending_chunks list, so make sure the
10545 * chunk mutex is locked, since remove_extent_mapping() will
10546 * delete us from that list.
10547 */
10548 remove_extent_mapping(em_tree, em);
10549 write_unlock(&em_tree->lock);
10550 /* once for the tree */
10551 free_extent_map(em);
10552 }
10553
10554 mutex_unlock(&fs_info->chunk_mutex);
10555
10556 ret = remove_block_group_free_space(trans, fs_info, block_group);
10557 if (ret)
10558 goto out;
10559
10560 btrfs_put_block_group(block_group);
10561 btrfs_put_block_group(block_group);
10562
10563 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10564 if (ret > 0)
10565 ret = -EIO;
10566 if (ret < 0)
10567 goto out;
10568
10569 ret = btrfs_del_item(trans, root, path);
10570 out:
10571 btrfs_free_path(path);
10572 return ret;
10573 }
10574
10575 struct btrfs_trans_handle *
10576 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10577 const u64 chunk_offset)
10578 {
10579 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10580 struct extent_map *em;
10581 struct map_lookup *map;
10582 unsigned int num_items;
10583
10584 read_lock(&em_tree->lock);
10585 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10586 read_unlock(&em_tree->lock);
10587 ASSERT(em && em->start == chunk_offset);
10588
10589 /*
10590 * We need to reserve 3 + N units from the metadata space info in order
10591 * to remove a block group (done at btrfs_remove_chunk() and at
10592 * btrfs_remove_block_group()), which are used for:
10593 *
10594 * 1 unit for adding the free space inode's orphan (located in the tree
10595 * of tree roots).
10596 * 1 unit for deleting the block group item (located in the extent
10597 * tree).
10598 * 1 unit for deleting the free space item (located in tree of tree
10599 * roots).
10600 * N units for deleting N device extent items corresponding to each
10601 * stripe (located in the device tree).
10602 *
10603 * In order to remove a block group we also need to reserve units in the
10604 * system space info in order to update the chunk tree (update one or
10605 * more device items and remove one chunk item), but this is done at
10606 * btrfs_remove_chunk() through a call to check_system_chunk().
10607 */
10608 map = em->map_lookup;
10609 num_items = 3 + map->num_stripes;
10610 free_extent_map(em);
10611
10612 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10613 num_items, 1);
10614 }
10615
10616 /*
10617 * Process the unused_bgs list and remove any that don't have any allocated
10618 * space inside of them.
10619 */
10620 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10621 {
10622 struct btrfs_block_group_cache *block_group;
10623 struct btrfs_space_info *space_info;
10624 struct btrfs_trans_handle *trans;
10625 int ret = 0;
10626
10627 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10628 return;
10629
10630 spin_lock(&fs_info->unused_bgs_lock);
10631 while (!list_empty(&fs_info->unused_bgs)) {
10632 u64 start, end;
10633 int trimming;
10634
10635 block_group = list_first_entry(&fs_info->unused_bgs,
10636 struct btrfs_block_group_cache,
10637 bg_list);
10638 list_del_init(&block_group->bg_list);
10639
10640 space_info = block_group->space_info;
10641
10642 if (ret || btrfs_mixed_space_info(space_info)) {
10643 btrfs_put_block_group(block_group);
10644 continue;
10645 }
10646 spin_unlock(&fs_info->unused_bgs_lock);
10647
10648 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10649
10650 /* Don't want to race with allocators so take the groups_sem */
10651 down_write(&space_info->groups_sem);
10652 spin_lock(&block_group->lock);
10653 if (block_group->reserved ||
10654 btrfs_block_group_used(&block_group->item) ||
10655 block_group->ro ||
10656 list_is_singular(&block_group->list)) {
10657 /*
10658 * We want to bail if we made new allocations or have
10659 * outstanding allocations in this block group. We do
10660 * the ro check in case balance is currently acting on
10661 * this block group.
10662 */
10663 spin_unlock(&block_group->lock);
10664 up_write(&space_info->groups_sem);
10665 goto next;
10666 }
10667 spin_unlock(&block_group->lock);
10668
10669 /* We don't want to force the issue, only flip if it's ok. */
10670 ret = inc_block_group_ro(block_group, 0);
10671 up_write(&space_info->groups_sem);
10672 if (ret < 0) {
10673 ret = 0;
10674 goto next;
10675 }
10676
10677 /*
10678 * Want to do this before we do anything else so we can recover
10679 * properly if we fail to join the transaction.
10680 */
10681 trans = btrfs_start_trans_remove_block_group(fs_info,
10682 block_group->key.objectid);
10683 if (IS_ERR(trans)) {
10684 btrfs_dec_block_group_ro(block_group);
10685 ret = PTR_ERR(trans);
10686 goto next;
10687 }
10688
10689 /*
10690 * We could have pending pinned extents for this block group,
10691 * just delete them, we don't care about them anymore.
10692 */
10693 start = block_group->key.objectid;
10694 end = start + block_group->key.offset - 1;
10695 /*
10696 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10697 * btrfs_finish_extent_commit(). If we are at transaction N,
10698 * another task might be running finish_extent_commit() for the
10699 * previous transaction N - 1, and have seen a range belonging
10700 * to the block group in freed_extents[] before we were able to
10701 * clear the whole block group range from freed_extents[]. This
10702 * means that task can lookup for the block group after we
10703 * unpinned it from freed_extents[] and removed it, leading to
10704 * a BUG_ON() at btrfs_unpin_extent_range().
10705 */
10706 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10707 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10708 EXTENT_DIRTY);
10709 if (ret) {
10710 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10711 btrfs_dec_block_group_ro(block_group);
10712 goto end_trans;
10713 }
10714 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10715 EXTENT_DIRTY);
10716 if (ret) {
10717 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10718 btrfs_dec_block_group_ro(block_group);
10719 goto end_trans;
10720 }
10721 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10722
10723 /* Reset pinned so btrfs_put_block_group doesn't complain */
10724 spin_lock(&space_info->lock);
10725 spin_lock(&block_group->lock);
10726
10727 space_info->bytes_pinned -= block_group->pinned;
10728 space_info->bytes_readonly += block_group->pinned;
10729 percpu_counter_add(&space_info->total_bytes_pinned,
10730 -block_group->pinned);
10731 block_group->pinned = 0;
10732
10733 spin_unlock(&block_group->lock);
10734 spin_unlock(&space_info->lock);
10735
10736 /* DISCARD can flip during remount */
10737 trimming = btrfs_test_opt(fs_info, DISCARD);
10738
10739 /* Implicit trim during transaction commit. */
10740 if (trimming)
10741 btrfs_get_block_group_trimming(block_group);
10742
10743 /*
10744 * Btrfs_remove_chunk will abort the transaction if things go
10745 * horribly wrong.
10746 */
10747 ret = btrfs_remove_chunk(trans, fs_info,
10748 block_group->key.objectid);
10749
10750 if (ret) {
10751 if (trimming)
10752 btrfs_put_block_group_trimming(block_group);
10753 goto end_trans;
10754 }
10755
10756 /*
10757 * If we're not mounted with -odiscard, we can just forget
10758 * about this block group. Otherwise we'll need to wait
10759 * until transaction commit to do the actual discard.
10760 */
10761 if (trimming) {
10762 spin_lock(&fs_info->unused_bgs_lock);
10763 /*
10764 * A concurrent scrub might have added us to the list
10765 * fs_info->unused_bgs, so use a list_move operation
10766 * to add the block group to the deleted_bgs list.
10767 */
10768 list_move(&block_group->bg_list,
10769 &trans->transaction->deleted_bgs);
10770 spin_unlock(&fs_info->unused_bgs_lock);
10771 btrfs_get_block_group(block_group);
10772 }
10773 end_trans:
10774 btrfs_end_transaction(trans);
10775 next:
10776 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10777 btrfs_put_block_group(block_group);
10778 spin_lock(&fs_info->unused_bgs_lock);
10779 }
10780 spin_unlock(&fs_info->unused_bgs_lock);
10781 }
10782
10783 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10784 {
10785 struct btrfs_space_info *space_info;
10786 struct btrfs_super_block *disk_super;
10787 u64 features;
10788 u64 flags;
10789 int mixed = 0;
10790 int ret;
10791
10792 disk_super = fs_info->super_copy;
10793 if (!btrfs_super_root(disk_super))
10794 return -EINVAL;
10795
10796 features = btrfs_super_incompat_flags(disk_super);
10797 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10798 mixed = 1;
10799
10800 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10801 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10802 if (ret)
10803 goto out;
10804
10805 if (mixed) {
10806 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10807 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10808 } else {
10809 flags = BTRFS_BLOCK_GROUP_METADATA;
10810 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10811 if (ret)
10812 goto out;
10813
10814 flags = BTRFS_BLOCK_GROUP_DATA;
10815 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10816 }
10817 out:
10818 return ret;
10819 }
10820
10821 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10822 u64 start, u64 end)
10823 {
10824 return unpin_extent_range(fs_info, start, end, false);
10825 }
10826
10827 /*
10828 * It used to be that old block groups would be left around forever.
10829 * Iterating over them would be enough to trim unused space. Since we
10830 * now automatically remove them, we also need to iterate over unallocated
10831 * space.
10832 *
10833 * We don't want a transaction for this since the discard may take a
10834 * substantial amount of time. We don't require that a transaction be
10835 * running, but we do need to take a running transaction into account
10836 * to ensure that we're not discarding chunks that were released in
10837 * the current transaction.
10838 *
10839 * Holding the chunks lock will prevent other threads from allocating
10840 * or releasing chunks, but it won't prevent a running transaction
10841 * from committing and releasing the memory that the pending chunks
10842 * list head uses. For that, we need to take a reference to the
10843 * transaction.
10844 */
10845 static int btrfs_trim_free_extents(struct btrfs_device *device,
10846 u64 minlen, u64 *trimmed)
10847 {
10848 u64 start = 0, len = 0;
10849 int ret;
10850
10851 *trimmed = 0;
10852
10853 /* Not writeable = nothing to do. */
10854 if (!device->writeable)
10855 return 0;
10856
10857 /* No free space = nothing to do. */
10858 if (device->total_bytes <= device->bytes_used)
10859 return 0;
10860
10861 ret = 0;
10862
10863 while (1) {
10864 struct btrfs_fs_info *fs_info = device->fs_info;
10865 struct btrfs_transaction *trans;
10866 u64 bytes;
10867
10868 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10869 if (ret)
10870 return ret;
10871
10872 down_read(&fs_info->commit_root_sem);
10873
10874 spin_lock(&fs_info->trans_lock);
10875 trans = fs_info->running_transaction;
10876 if (trans)
10877 refcount_inc(&trans->use_count);
10878 spin_unlock(&fs_info->trans_lock);
10879
10880 ret = find_free_dev_extent_start(trans, device, minlen, start,
10881 &start, &len);
10882 if (trans)
10883 btrfs_put_transaction(trans);
10884
10885 if (ret) {
10886 up_read(&fs_info->commit_root_sem);
10887 mutex_unlock(&fs_info->chunk_mutex);
10888 if (ret == -ENOSPC)
10889 ret = 0;
10890 break;
10891 }
10892
10893 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10894 up_read(&fs_info->commit_root_sem);
10895 mutex_unlock(&fs_info->chunk_mutex);
10896
10897 if (ret)
10898 break;
10899
10900 start += len;
10901 *trimmed += bytes;
10902
10903 if (fatal_signal_pending(current)) {
10904 ret = -ERESTARTSYS;
10905 break;
10906 }
10907
10908 cond_resched();
10909 }
10910
10911 return ret;
10912 }
10913
10914 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10915 {
10916 struct btrfs_block_group_cache *cache = NULL;
10917 struct btrfs_device *device;
10918 struct list_head *devices;
10919 u64 group_trimmed;
10920 u64 start;
10921 u64 end;
10922 u64 trimmed = 0;
10923 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10924 int ret = 0;
10925
10926 /*
10927 * try to trim all FS space, our block group may start from non-zero.
10928 */
10929 if (range->len == total_bytes)
10930 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10931 else
10932 cache = btrfs_lookup_block_group(fs_info, range->start);
10933
10934 while (cache) {
10935 if (cache->key.objectid >= (range->start + range->len)) {
10936 btrfs_put_block_group(cache);
10937 break;
10938 }
10939
10940 start = max(range->start, cache->key.objectid);
10941 end = min(range->start + range->len,
10942 cache->key.objectid + cache->key.offset);
10943
10944 if (end - start >= range->minlen) {
10945 if (!block_group_cache_done(cache)) {
10946 ret = cache_block_group(cache, 0);
10947 if (ret) {
10948 btrfs_put_block_group(cache);
10949 break;
10950 }
10951 ret = wait_block_group_cache_done(cache);
10952 if (ret) {
10953 btrfs_put_block_group(cache);
10954 break;
10955 }
10956 }
10957 ret = btrfs_trim_block_group(cache,
10958 &group_trimmed,
10959 start,
10960 end,
10961 range->minlen);
10962
10963 trimmed += group_trimmed;
10964 if (ret) {
10965 btrfs_put_block_group(cache);
10966 break;
10967 }
10968 }
10969
10970 cache = next_block_group(fs_info, cache);
10971 }
10972
10973 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10974 devices = &fs_info->fs_devices->alloc_list;
10975 list_for_each_entry(device, devices, dev_alloc_list) {
10976 ret = btrfs_trim_free_extents(device, range->minlen,
10977 &group_trimmed);
10978 if (ret)
10979 break;
10980
10981 trimmed += group_trimmed;
10982 }
10983 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10984
10985 range->len = trimmed;
10986 return ret;
10987 }
10988
10989 /*
10990 * btrfs_{start,end}_write_no_snapshoting() are similar to
10991 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10992 * data into the page cache through nocow before the subvolume is snapshoted,
10993 * but flush the data into disk after the snapshot creation, or to prevent
10994 * operations while snapshoting is ongoing and that cause the snapshot to be
10995 * inconsistent (writes followed by expanding truncates for example).
10996 */
10997 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10998 {
10999 percpu_counter_dec(&root->subv_writers->counter);
11000 /*
11001 * Make sure counter is updated before we wake up waiters.
11002 */
11003 smp_mb();
11004 if (waitqueue_active(&root->subv_writers->wait))
11005 wake_up(&root->subv_writers->wait);
11006 }
11007
11008 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11009 {
11010 if (atomic_read(&root->will_be_snapshoted))
11011 return 0;
11012
11013 percpu_counter_inc(&root->subv_writers->counter);
11014 /*
11015 * Make sure counter is updated before we check for snapshot creation.
11016 */
11017 smp_mb();
11018 if (atomic_read(&root->will_be_snapshoted)) {
11019 btrfs_end_write_no_snapshoting(root);
11020 return 0;
11021 }
11022 return 1;
11023 }
11024
11025 static int wait_snapshoting_atomic_t(atomic_t *a)
11026 {
11027 schedule();
11028 return 0;
11029 }
11030
11031 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11032 {
11033 while (true) {
11034 int ret;
11035
11036 ret = btrfs_start_write_no_snapshoting(root);
11037 if (ret)
11038 break;
11039 wait_on_atomic_t(&root->will_be_snapshoted,
11040 wait_snapshoting_atomic_t,
11041 TASK_UNINTERRUPTIBLE);
11042 }
11043 }