]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
btrfs: Verify that every chunk has corresponding block group at mount time
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46 /*
47 * control flags for do_chunk_alloc's force field
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
59 */
60 enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
64 };
65
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_fs_info *fs_info,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_fs_info *fs_info,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_fs_info *fs_info,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_fs_info *fs_info, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
92 int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
101
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105 smp_mb();
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 return (cache->flags & bits) == bits;
113 }
114
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE);
232 set_extent_bits(&fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE);
247 clear_extent_bits(&fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE);
249 }
250
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(fs_info, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(fs_info, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 refcount_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 if (refcount_dec_and_test(&ctl->count))
328 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334 struct btrfs_fs_info *fs_info = block_group->fs_info;
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 fs_info->nodesize : fs_info->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349 }
350 #endif
351
352 /*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
362
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
370
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
390 }
391
392 return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
408
409 path = btrfs_alloc_path();
410 if (!path)
411 return -ENOMEM;
412
413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414
415 #ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
421 if (btrfs_should_fragment_free_space(block_group))
422 wakeup = false;
423 #endif
424 /*
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
429 */
430 path->skip_locking = 1;
431 path->search_commit_root = 1;
432 path->reada = READA_FORWARD;
433
434 key.objectid = last;
435 key.offset = 0;
436 key.type = BTRFS_EXTENT_ITEM_KEY;
437
438 next:
439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 if (ret < 0)
441 goto out;
442
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
446 while (1) {
447 if (btrfs_fs_closing(fs_info) > 1) {
448 last = (u64)-1;
449 break;
450 }
451
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
457 break;
458
459 if (need_resched() ||
460 rwsem_is_contended(&fs_info->commit_root_sem)) {
461 if (wakeup)
462 caching_ctl->progress = last;
463 btrfs_release_path(path);
464 up_read(&fs_info->commit_root_sem);
465 mutex_unlock(&caching_ctl->mutex);
466 cond_resched();
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
470 }
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
474 goto out;
475 if (ret)
476 break;
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
480 }
481
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
487 if (wakeup)
488 caching_ctl->progress = last;
489 btrfs_release_path(path);
490 goto next;
491 }
492
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
495 continue;
496 }
497
498 if (key.objectid >= block_group->key.objectid +
499 block_group->key.offset)
500 break;
501
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
509 fs_info->nodesize;
510 else
511 last = key.objectid + key.offset;
512
513 if (total_found > CACHING_CTL_WAKE_UP) {
514 total_found = 0;
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
517 }
518 }
519 path->slots[0]++;
520 }
521 ret = 0;
522
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
526 caching_ctl->progress = (u64)-1;
527
528 out:
529 btrfs_free_path(path);
530 return ret;
531 }
532
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 struct btrfs_root *extent_root;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544 extent_root = fs_info->extent_root;
545
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
548
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
553
554 spin_lock(&block_group->lock);
555 block_group->caching_ctl = NULL;
556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557 spin_unlock(&block_group->lock);
558
559 #ifdef CONFIG_BTRFS_DEBUG
560 if (btrfs_should_fragment_free_space(block_group)) {
561 u64 bytes_used;
562
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
570 fragment_free_space(block_group);
571 }
572 #endif
573
574 caching_ctl->progress = (u64)-1;
575
576 up_read(&fs_info->commit_root_sem);
577 free_excluded_extents(fs_info, block_group);
578 mutex_unlock(&caching_ctl->mutex);
579
580 wake_up(&caching_ctl->wait);
581
582 put_caching_control(caching_ctl);
583 btrfs_put_block_group(block_group);
584 }
585
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587 int load_cache_only)
588 {
589 DEFINE_WAIT(wait);
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
592 int ret = 0;
593
594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595 if (!caching_ctl)
596 return -ENOMEM;
597
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
603 refcount_set(&caching_ctl->count, 1);
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
606
607 spin_lock(&cache->lock);
608 /*
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
619 */
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
622
623 ctl = cache->caching_ctl;
624 refcount_inc(&ctl->count);
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
627
628 schedule();
629
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
633 }
634
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
638 return 0;
639 }
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
644
645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646 mutex_lock(&caching_ctl->mutex);
647 ret = load_free_space_cache(fs_info, cache);
648
649 spin_lock(&cache->lock);
650 if (ret == 1) {
651 cache->caching_ctl = NULL;
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
654 caching_ctl->progress = (u64)-1;
655 } else {
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
661 cache->has_caching_ctl = 1;
662 }
663 }
664 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
667 btrfs_should_fragment_free_space(cache)) {
668 u64 bytes_used;
669
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
677 fragment_free_space(cache);
678 }
679 #endif
680 mutex_unlock(&caching_ctl->mutex);
681
682 wake_up(&caching_ctl->wait);
683 if (ret == 1) {
684 put_caching_control(caching_ctl);
685 free_excluded_extents(fs_info, cache);
686 return 0;
687 }
688 } else {
689 /*
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
692 */
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
699 cache->has_caching_ctl = 1;
700 }
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
703 }
704
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
707 return 0;
708 }
709
710 down_write(&fs_info->commit_root_sem);
711 refcount_inc(&caching_ctl->count);
712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713 up_write(&fs_info->commit_root_sem);
714
715 btrfs_get_block_group(cache);
716
717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718
719 return ret;
720 }
721
722 /*
723 * return the block group that starts at or after bytenr
724 */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728 return block_group_cache_tree_search(info, bytenr, 0);
729 }
730
731 /*
732 * return the block group that contains the given bytenr
733 */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
737 {
738 return block_group_cache_tree_search(info, bytenr, 1);
739 }
740
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
743 {
744 struct list_head *head = &info->space_info;
745 struct btrfs_space_info *found;
746
747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
751 if (found->flags & flags) {
752 rcu_read_unlock();
753 return found;
754 }
755 }
756 rcu_read_unlock();
757 return NULL;
758 }
759
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
762 {
763 struct btrfs_space_info *space_info;
764 u64 flags;
765
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
776 ASSERT(space_info);
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779
780 /*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793 }
794
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798 int ret;
799 struct btrfs_key key;
800 struct btrfs_path *path;
801
802 path = btrfs_alloc_path();
803 if (!path)
804 return -ENOMEM;
805
806 key.objectid = start;
807 key.offset = len;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 btrfs_free_path(path);
811 return ret;
812 }
813
814 /*
815 * helper function to lookup reference count and flags of a tree block.
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 struct btrfs_fs_info *fs_info, u64 bytenr,
825 u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
844 metadata = 0;
845 }
846
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
855
856 search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 if (ret < 0)
866 goto out_free;
867
868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
875 key.offset == fs_info->nodesize)
876 ret = 0;
877 }
878 }
879
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898 BUG();
899 #endif
900 }
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
906 }
907
908 if (!trans)
909 goto out;
910
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
916 refcount_inc(&head->refs);
917 spin_unlock(&delayed_refs->lock);
918
919 btrfs_release_path(path);
920
921 /*
922 * Mutex was contended, block until it's released and try
923 * again
924 */
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
927 btrfs_put_delayed_ref_head(head);
928 goto search_again;
929 }
930 spin_lock(&head->lock);
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
935
936 num_refs += head->ref_mod;
937 spin_unlock(&head->lock);
938 mutex_unlock(&head->mutex);
939 }
940 spin_unlock(&delayed_refs->lock);
941 out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947 out_free:
948 btrfs_free_path(path);
949 return ret;
950 }
951
952 /*
953 * Back reference rules. Back refs have three main goals:
954 *
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
958 *
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
961 *
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
965 *
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
976 *
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
983 *
984 * When a tree block is COWed through a tree, there are four cases:
985 *
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
988 *
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
993 *
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
1014 * - different files inside a single subvolume
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
1017 * The extent ref structure for the implicit back refs has fields for:
1018 *
1019 * - Objectid of the subvolume root
1020 * - objectid of the file holding the reference
1021 * - original offset in the file
1022 * - how many bookend extents
1023 *
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
1026 *
1027 * The extent ref structure for the full back refs has field for:
1028 *
1029 * - number of pointers in the tree leaf
1030 *
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
1033 *
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
1036 *
1037 * (root_key.objectid, inode objectid, offset in file, 1)
1038 *
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
1041 *
1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1043 *
1044 * Btree extents can be referenced by:
1045 *
1046 * - Different subvolumes
1047 *
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
1052 *
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
1056 */
1057
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060 struct btrfs_fs_info *fs_info,
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
1063 {
1064 struct btrfs_root *root = fs_info->extent_root;
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
1070 struct btrfs_key key;
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1075
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
1090 BUG_ON(ret > 0); /* Corruption */
1091 leaf = path->nodes[0];
1092 }
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1099 }
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1104 }
1105 }
1106 btrfs_release_path(path);
1107
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1110
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
1116 BUG_ON(ret); /* Corruption */
1117
1118 btrfs_extend_item(fs_info, path, new_size);
1119
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1138 }
1139 #endif
1140
1141 /*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1149 {
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159 return type;
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173 return type;
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1176 /*
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1180 */
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1184 }
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1188 }
1189 }
1190
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1195
1196 return BTRFS_REF_TYPE_INVALID;
1197 }
1198
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1204
1205 lenum = cpu_to_le64(root_objectid);
1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207 lenum = cpu_to_le64(owner);
1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209 lenum = cpu_to_le64(offset);
1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1217 {
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1226 {
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1232 }
1233
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235 struct btrfs_fs_info *fs_info,
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1240 {
1241 struct btrfs_root *root = fs_info->extent_root;
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
1244 struct extent_buffer *leaf;
1245 u32 nritems;
1246 int ret;
1247 int recow;
1248 int err = -ENOENT;
1249
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1258 }
1259 again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1265 }
1266
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272 btrfs_release_path(path);
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1277 }
1278 if (!ret)
1279 return 0;
1280 #endif
1281 goto fail;
1282 }
1283
1284 leaf = path->nodes[0];
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1297 }
1298
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1303
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
1310 btrfs_release_path(path);
1311 goto again;
1312 }
1313 err = 0;
1314 break;
1315 }
1316 path->slots[0]++;
1317 }
1318 fail:
1319 return err;
1320 }
1321
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info,
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
1328 {
1329 struct btrfs_root *root = fs_info->extent_root;
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
1332 u32 size;
1333 u32 num_refs;
1334 int ret;
1335
1336 key.objectid = bytenr;
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1346 }
1347
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1351
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
1355 ref = btrfs_item_ptr(leaf, path->slots[0],
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363 }
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
1372 btrfs_release_path(path);
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
1378
1379 leaf = path->nodes[0];
1380 }
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393 }
1394 }
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397 fail:
1398 btrfs_release_path(path);
1399 return ret;
1400 }
1401
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_fs_info *fs_info,
1404 struct btrfs_path *path,
1405 int refs_to_drop, int *last_ref)
1406 {
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
1410 struct extent_buffer *leaf;
1411 u32 num_refs = 0;
1412 int ret = 0;
1413
1414 leaf = path->nodes[0];
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432 } else {
1433 BUG();
1434 }
1435
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
1438
1439 if (num_refs == 0) {
1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441 *last_ref = 1;
1442 } else {
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 }
1454 #endif
1455 btrfs_mark_buffer_dirty(leaf);
1456 }
1457 return ret;
1458 }
1459
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461 struct btrfs_extent_inline_ref *iref)
1462 {
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
1468 int type;
1469
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
1473 /*
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1476 */
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 }
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501 } else {
1502 WARN_ON(1);
1503 }
1504 return num_refs;
1505 }
1506
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508 struct btrfs_fs_info *fs_info,
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1512 {
1513 struct btrfs_root *root = fs_info->extent_root;
1514 struct btrfs_key key;
1515 int ret;
1516
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1524 }
1525
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
1531 btrfs_release_path(path);
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1536 }
1537 #endif
1538 return ret;
1539 }
1540
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542 struct btrfs_fs_info *fs_info,
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
1546 {
1547 struct btrfs_key key;
1548 int ret;
1549
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1557 }
1558
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
1561 btrfs_release_path(path);
1562 return ret;
1563 }
1564
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1578 }
1579 return type;
1580 }
1581
1582 static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
1584
1585 {
1586 for (; level < BTRFS_MAX_LEVEL; level++) {
1587 if (!path->nodes[level])
1588 break;
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1599 }
1600 return 1;
1601 }
1602
1603 /*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1615 */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618 struct btrfs_fs_info *fs_info,
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1624 {
1625 struct btrfs_root *root = fs_info->extent_root;
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640 int needed;
1641
1642 key.objectid = bytenr;
1643 key.type = BTRFS_EXTENT_ITEM_KEY;
1644 key.offset = num_bytes;
1645
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
1649 path->keep_locks = 1;
1650 } else
1651 extra_size = -1;
1652
1653 /*
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1656 */
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1660 }
1661
1662 again:
1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664 if (ret < 0) {
1665 err = ret;
1666 goto out;
1667 }
1668
1669 /*
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1672 */
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1683 }
1684 if (ret) {
1685 key.objectid = bytenr;
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1690 }
1691 }
1692
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
1696 } else if (WARN_ON(ret)) {
1697 err = -EIO;
1698 goto out;
1699 }
1700
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1708 }
1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1714 }
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 }
1718 #endif
1719 BUG_ON(item_size < sizeof(*ei));
1720
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1723
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1726
1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
1730 }
1731
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1736
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1742 }
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1755 }
1756
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1764 }
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1775 }
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1782 }
1783 if (ref_offset < root_objectid)
1784 break;
1785 }
1786 }
1787 ptr += btrfs_extent_inline_ref_size(type);
1788 }
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1794 }
1795 /*
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1800 */
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804 err = -EAGAIN;
1805 goto out;
1806 }
1807 }
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810 if (insert) {
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1813 }
1814 return err;
1815 }
1816
1817 /*
1818 * helper to add new inline back ref
1819 */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
1836
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1843
1844 btrfs_extend_item(fs_info, path, size);
1845
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1858
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_fs_info *fs_info,
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1887 {
1888 int ret;
1889
1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
1894 return ret;
1895
1896 btrfs_release_path(path);
1897 *ref_ret = NULL;
1898
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
1902 } else {
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
1906 }
1907 return ret;
1908 }
1909
1910 /*
1911 * helper to update/remove inline back ref
1912 */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
1920 {
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
1930 u64 refs;
1931
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941 /*
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1944 */
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
1957 }
1958
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1961
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
1968 *last_ref = 1;
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
1977 btrfs_truncate_item(fs_info, path, item_size, 1);
1978 }
1979 btrfs_mark_buffer_dirty(leaf);
1980 }
1981
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984 struct btrfs_fs_info *fs_info,
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1990 {
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1993
1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999 update_inline_extent_backref(fs_info, path, iref,
2000 refs_to_add, extent_op, NULL);
2001 } else if (ret == -ENOENT) {
2002 setup_inline_extent_backref(fs_info, path, iref, parent,
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
2006 }
2007 return ret;
2008 }
2009
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011 struct btrfs_fs_info *fs_info,
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2015 {
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020 parent, root_objectid);
2021 } else {
2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2025 }
2026 return ret;
2027 }
2028
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030 struct btrfs_fs_info *fs_info,
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
2033 int refs_to_drop, int is_data, int *last_ref)
2034 {
2035 int ret = 0;
2036
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
2039 update_inline_extent_backref(fs_info, path, iref,
2040 -refs_to_drop, NULL, last_ref);
2041 } else if (is_data) {
2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043 last_ref);
2044 } else {
2045 *last_ref = 1;
2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047 }
2048 return ret;
2049 }
2050
2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
2054 {
2055 int j, ret = 0;
2056 u64 bytes_left, end;
2057 u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2063 }
2064
2065 *discarded_bytes = 0;
2066
2067 if (!len)
2068 return 0;
2069
2070 end = start + len;
2071 bytes_left = len;
2072
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2078
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2083
2084 /*
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2087 */
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2093 }
2094 bytes_left = end - start;
2095 continue;
2096 }
2097
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2105 }
2106
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2111 }
2112 bytes_left = end - start;
2113 }
2114
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117 GFP_NOFS, 0);
2118 if (!ret)
2119 *discarded_bytes += bytes_left;
2120 }
2121 return ret;
2122 }
2123
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125 u64 num_bytes, u64 *actual_bytes)
2126 {
2127 int ret;
2128 u64 discarded_bytes = 0;
2129 struct btrfs_bio *bbio = NULL;
2130
2131
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2135 */
2136 btrfs_bio_counter_inc_blocked(fs_info);
2137 /* Tell the block device(s) that the sectors can be discarded */
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
2140 /* Error condition is -ENOMEM */
2141 if (!ret) {
2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143 int i;
2144
2145
2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147 u64 bytes;
2148 if (!stripe->dev->can_discard)
2149 continue;
2150
2151 ret = btrfs_issue_discard(stripe->dev->bdev,
2152 stripe->physical,
2153 stripe->length,
2154 &bytes);
2155 if (!ret)
2156 discarded_bytes += bytes;
2157 else if (ret != -EOPNOTSUPP)
2158 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2159
2160 /*
2161 * Just in case we get back EOPNOTSUPP for some reason,
2162 * just ignore the return value so we don't screw up
2163 * people calling discard_extent.
2164 */
2165 ret = 0;
2166 }
2167 btrfs_put_bbio(bbio);
2168 }
2169 btrfs_bio_counter_dec(fs_info);
2170
2171 if (actual_bytes)
2172 *actual_bytes = discarded_bytes;
2173
2174
2175 if (ret == -EOPNOTSUPP)
2176 ret = 0;
2177 return ret;
2178 }
2179
2180 /* Can return -ENOMEM */
2181 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2182 struct btrfs_root *root,
2183 u64 bytenr, u64 num_bytes, u64 parent,
2184 u64 root_objectid, u64 owner, u64 offset)
2185 {
2186 struct btrfs_fs_info *fs_info = root->fs_info;
2187 int old_ref_mod, new_ref_mod;
2188 int ret;
2189
2190 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2191 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2192
2193 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2194 owner, offset, BTRFS_ADD_DELAYED_REF);
2195
2196 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2197 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2198 num_bytes, parent,
2199 root_objectid, (int)owner,
2200 BTRFS_ADD_DELAYED_REF, NULL,
2201 &old_ref_mod, &new_ref_mod);
2202 } else {
2203 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2204 num_bytes, parent,
2205 root_objectid, owner, offset,
2206 0, BTRFS_ADD_DELAYED_REF,
2207 &old_ref_mod, &new_ref_mod);
2208 }
2209
2210 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2211 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2212
2213 return ret;
2214 }
2215
2216 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2217 struct btrfs_fs_info *fs_info,
2218 struct btrfs_delayed_ref_node *node,
2219 u64 parent, u64 root_objectid,
2220 u64 owner, u64 offset, int refs_to_add,
2221 struct btrfs_delayed_extent_op *extent_op)
2222 {
2223 struct btrfs_path *path;
2224 struct extent_buffer *leaf;
2225 struct btrfs_extent_item *item;
2226 struct btrfs_key key;
2227 u64 bytenr = node->bytenr;
2228 u64 num_bytes = node->num_bytes;
2229 u64 refs;
2230 int ret;
2231
2232 path = btrfs_alloc_path();
2233 if (!path)
2234 return -ENOMEM;
2235
2236 path->reada = READA_FORWARD;
2237 path->leave_spinning = 1;
2238 /* this will setup the path even if it fails to insert the back ref */
2239 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2240 num_bytes, parent, root_objectid,
2241 owner, offset,
2242 refs_to_add, extent_op);
2243 if ((ret < 0 && ret != -EAGAIN) || !ret)
2244 goto out;
2245
2246 /*
2247 * Ok we had -EAGAIN which means we didn't have space to insert and
2248 * inline extent ref, so just update the reference count and add a
2249 * normal backref.
2250 */
2251 leaf = path->nodes[0];
2252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2253 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2254 refs = btrfs_extent_refs(leaf, item);
2255 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2256 if (extent_op)
2257 __run_delayed_extent_op(extent_op, leaf, item);
2258
2259 btrfs_mark_buffer_dirty(leaf);
2260 btrfs_release_path(path);
2261
2262 path->reada = READA_FORWARD;
2263 path->leave_spinning = 1;
2264 /* now insert the actual backref */
2265 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2266 root_objectid, owner, offset, refs_to_add);
2267 if (ret)
2268 btrfs_abort_transaction(trans, ret);
2269 out:
2270 btrfs_free_path(path);
2271 return ret;
2272 }
2273
2274 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_fs_info *fs_info,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281 struct btrfs_delayed_data_ref *ref;
2282 struct btrfs_key ins;
2283 u64 parent = 0;
2284 u64 ref_root = 0;
2285 u64 flags = 0;
2286
2287 ins.objectid = node->bytenr;
2288 ins.offset = node->num_bytes;
2289 ins.type = BTRFS_EXTENT_ITEM_KEY;
2290
2291 ref = btrfs_delayed_node_to_data_ref(node);
2292 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2293
2294 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2295 parent = ref->parent;
2296 ref_root = ref->root;
2297
2298 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2299 if (extent_op)
2300 flags |= extent_op->flags_to_set;
2301 ret = alloc_reserved_file_extent(trans, fs_info,
2302 parent, ref_root, flags,
2303 ref->objectid, ref->offset,
2304 &ins, node->ref_mod);
2305 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2306 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2307 ref_root, ref->objectid,
2308 ref->offset, node->ref_mod,
2309 extent_op);
2310 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2311 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2312 ref_root, ref->objectid,
2313 ref->offset, node->ref_mod,
2314 extent_op);
2315 } else {
2316 BUG();
2317 }
2318 return ret;
2319 }
2320
2321 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2322 struct extent_buffer *leaf,
2323 struct btrfs_extent_item *ei)
2324 {
2325 u64 flags = btrfs_extent_flags(leaf, ei);
2326 if (extent_op->update_flags) {
2327 flags |= extent_op->flags_to_set;
2328 btrfs_set_extent_flags(leaf, ei, flags);
2329 }
2330
2331 if (extent_op->update_key) {
2332 struct btrfs_tree_block_info *bi;
2333 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2334 bi = (struct btrfs_tree_block_info *)(ei + 1);
2335 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2336 }
2337 }
2338
2339 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2340 struct btrfs_fs_info *fs_info,
2341 struct btrfs_delayed_ref_head *head,
2342 struct btrfs_delayed_extent_op *extent_op)
2343 {
2344 struct btrfs_key key;
2345 struct btrfs_path *path;
2346 struct btrfs_extent_item *ei;
2347 struct extent_buffer *leaf;
2348 u32 item_size;
2349 int ret;
2350 int err = 0;
2351 int metadata = !extent_op->is_data;
2352
2353 if (trans->aborted)
2354 return 0;
2355
2356 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2357 metadata = 0;
2358
2359 path = btrfs_alloc_path();
2360 if (!path)
2361 return -ENOMEM;
2362
2363 key.objectid = head->bytenr;
2364
2365 if (metadata) {
2366 key.type = BTRFS_METADATA_ITEM_KEY;
2367 key.offset = extent_op->level;
2368 } else {
2369 key.type = BTRFS_EXTENT_ITEM_KEY;
2370 key.offset = head->num_bytes;
2371 }
2372
2373 again:
2374 path->reada = READA_FORWARD;
2375 path->leave_spinning = 1;
2376 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2377 if (ret < 0) {
2378 err = ret;
2379 goto out;
2380 }
2381 if (ret > 0) {
2382 if (metadata) {
2383 if (path->slots[0] > 0) {
2384 path->slots[0]--;
2385 btrfs_item_key_to_cpu(path->nodes[0], &key,
2386 path->slots[0]);
2387 if (key.objectid == head->bytenr &&
2388 key.type == BTRFS_EXTENT_ITEM_KEY &&
2389 key.offset == head->num_bytes)
2390 ret = 0;
2391 }
2392 if (ret > 0) {
2393 btrfs_release_path(path);
2394 metadata = 0;
2395
2396 key.objectid = head->bytenr;
2397 key.offset = head->num_bytes;
2398 key.type = BTRFS_EXTENT_ITEM_KEY;
2399 goto again;
2400 }
2401 } else {
2402 err = -EIO;
2403 goto out;
2404 }
2405 }
2406
2407 leaf = path->nodes[0];
2408 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2410 if (item_size < sizeof(*ei)) {
2411 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2412 if (ret < 0) {
2413 err = ret;
2414 goto out;
2415 }
2416 leaf = path->nodes[0];
2417 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2418 }
2419 #endif
2420 BUG_ON(item_size < sizeof(*ei));
2421 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422 __run_delayed_extent_op(extent_op, leaf, ei);
2423
2424 btrfs_mark_buffer_dirty(leaf);
2425 out:
2426 btrfs_free_path(path);
2427 return err;
2428 }
2429
2430 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2431 struct btrfs_fs_info *fs_info,
2432 struct btrfs_delayed_ref_node *node,
2433 struct btrfs_delayed_extent_op *extent_op,
2434 int insert_reserved)
2435 {
2436 int ret = 0;
2437 struct btrfs_delayed_tree_ref *ref;
2438 struct btrfs_key ins;
2439 u64 parent = 0;
2440 u64 ref_root = 0;
2441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2442
2443 ref = btrfs_delayed_node_to_tree_ref(node);
2444 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2445
2446 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 parent = ref->parent;
2448 ref_root = ref->root;
2449
2450 ins.objectid = node->bytenr;
2451 if (skinny_metadata) {
2452 ins.offset = ref->level;
2453 ins.type = BTRFS_METADATA_ITEM_KEY;
2454 } else {
2455 ins.offset = node->num_bytes;
2456 ins.type = BTRFS_EXTENT_ITEM_KEY;
2457 }
2458
2459 if (node->ref_mod != 1) {
2460 btrfs_err(fs_info,
2461 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2462 node->bytenr, node->ref_mod, node->action, ref_root,
2463 parent);
2464 return -EIO;
2465 }
2466 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2467 BUG_ON(!extent_op || !extent_op->update_flags);
2468 ret = alloc_reserved_tree_block(trans, fs_info,
2469 parent, ref_root,
2470 extent_op->flags_to_set,
2471 &extent_op->key,
2472 ref->level, &ins);
2473 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2474 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2475 parent, ref_root,
2476 ref->level, 0, 1,
2477 extent_op);
2478 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2479 ret = __btrfs_free_extent(trans, fs_info, node,
2480 parent, ref_root,
2481 ref->level, 0, 1, extent_op);
2482 } else {
2483 BUG();
2484 }
2485 return ret;
2486 }
2487
2488 /* helper function to actually process a single delayed ref entry */
2489 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2490 struct btrfs_fs_info *fs_info,
2491 struct btrfs_delayed_ref_node *node,
2492 struct btrfs_delayed_extent_op *extent_op,
2493 int insert_reserved)
2494 {
2495 int ret = 0;
2496
2497 if (trans->aborted) {
2498 if (insert_reserved)
2499 btrfs_pin_extent(fs_info, node->bytenr,
2500 node->num_bytes, 1);
2501 return 0;
2502 }
2503
2504 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2505 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2506 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2507 insert_reserved);
2508 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2509 node->type == BTRFS_SHARED_DATA_REF_KEY)
2510 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2511 insert_reserved);
2512 else
2513 BUG();
2514 if (ret && insert_reserved)
2515 btrfs_pin_extent(trans->fs_info, node->bytenr,
2516 node->num_bytes, 1);
2517 return ret;
2518 }
2519
2520 static inline struct btrfs_delayed_ref_node *
2521 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2522 {
2523 struct btrfs_delayed_ref_node *ref;
2524
2525 if (RB_EMPTY_ROOT(&head->ref_tree))
2526 return NULL;
2527
2528 /*
2529 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2530 * This is to prevent a ref count from going down to zero, which deletes
2531 * the extent item from the extent tree, when there still are references
2532 * to add, which would fail because they would not find the extent item.
2533 */
2534 if (!list_empty(&head->ref_add_list))
2535 return list_first_entry(&head->ref_add_list,
2536 struct btrfs_delayed_ref_node, add_list);
2537
2538 ref = rb_entry(rb_first(&head->ref_tree),
2539 struct btrfs_delayed_ref_node, ref_node);
2540 ASSERT(list_empty(&ref->add_list));
2541 return ref;
2542 }
2543
2544 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2545 struct btrfs_delayed_ref_head *head)
2546 {
2547 spin_lock(&delayed_refs->lock);
2548 head->processing = 0;
2549 delayed_refs->num_heads_ready++;
2550 spin_unlock(&delayed_refs->lock);
2551 btrfs_delayed_ref_unlock(head);
2552 }
2553
2554 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2555 struct btrfs_fs_info *fs_info,
2556 struct btrfs_delayed_ref_head *head)
2557 {
2558 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2559 int ret;
2560
2561 if (!extent_op)
2562 return 0;
2563 head->extent_op = NULL;
2564 if (head->must_insert_reserved) {
2565 btrfs_free_delayed_extent_op(extent_op);
2566 return 0;
2567 }
2568 spin_unlock(&head->lock);
2569 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2570 btrfs_free_delayed_extent_op(extent_op);
2571 return ret ? ret : 1;
2572 }
2573
2574 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2575 struct btrfs_fs_info *fs_info,
2576 struct btrfs_delayed_ref_head *head)
2577 {
2578 struct btrfs_delayed_ref_root *delayed_refs;
2579 int ret;
2580
2581 delayed_refs = &trans->transaction->delayed_refs;
2582
2583 ret = cleanup_extent_op(trans, fs_info, head);
2584 if (ret < 0) {
2585 unselect_delayed_ref_head(delayed_refs, head);
2586 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2587 return ret;
2588 } else if (ret) {
2589 return ret;
2590 }
2591
2592 /*
2593 * Need to drop our head ref lock and re-acquire the delayed ref lock
2594 * and then re-check to make sure nobody got added.
2595 */
2596 spin_unlock(&head->lock);
2597 spin_lock(&delayed_refs->lock);
2598 spin_lock(&head->lock);
2599 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2600 spin_unlock(&head->lock);
2601 spin_unlock(&delayed_refs->lock);
2602 return 1;
2603 }
2604 delayed_refs->num_heads--;
2605 rb_erase(&head->href_node, &delayed_refs->href_root);
2606 RB_CLEAR_NODE(&head->href_node);
2607 spin_unlock(&delayed_refs->lock);
2608 spin_unlock(&head->lock);
2609 atomic_dec(&delayed_refs->num_entries);
2610
2611 trace_run_delayed_ref_head(fs_info, head, 0);
2612
2613 if (head->total_ref_mod < 0) {
2614 struct btrfs_space_info *space_info;
2615 u64 flags;
2616
2617 if (head->is_data)
2618 flags = BTRFS_BLOCK_GROUP_DATA;
2619 else if (head->is_system)
2620 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2621 else
2622 flags = BTRFS_BLOCK_GROUP_METADATA;
2623 space_info = __find_space_info(fs_info, flags);
2624 ASSERT(space_info);
2625 percpu_counter_add(&space_info->total_bytes_pinned,
2626 -head->num_bytes);
2627
2628 if (head->is_data) {
2629 spin_lock(&delayed_refs->lock);
2630 delayed_refs->pending_csums -= head->num_bytes;
2631 spin_unlock(&delayed_refs->lock);
2632 }
2633 }
2634
2635 if (head->must_insert_reserved) {
2636 btrfs_pin_extent(fs_info, head->bytenr,
2637 head->num_bytes, 1);
2638 if (head->is_data) {
2639 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2640 head->num_bytes);
2641 }
2642 }
2643
2644 /* Also free its reserved qgroup space */
2645 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2646 head->qgroup_reserved);
2647 btrfs_delayed_ref_unlock(head);
2648 btrfs_put_delayed_ref_head(head);
2649 return 0;
2650 }
2651
2652 /*
2653 * Returns 0 on success or if called with an already aborted transaction.
2654 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2655 */
2656 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2657 struct btrfs_fs_info *fs_info,
2658 unsigned long nr)
2659 {
2660 struct btrfs_delayed_ref_root *delayed_refs;
2661 struct btrfs_delayed_ref_node *ref;
2662 struct btrfs_delayed_ref_head *locked_ref = NULL;
2663 struct btrfs_delayed_extent_op *extent_op;
2664 ktime_t start = ktime_get();
2665 int ret;
2666 unsigned long count = 0;
2667 unsigned long actual_count = 0;
2668 int must_insert_reserved = 0;
2669
2670 delayed_refs = &trans->transaction->delayed_refs;
2671 while (1) {
2672 if (!locked_ref) {
2673 if (count >= nr)
2674 break;
2675
2676 spin_lock(&delayed_refs->lock);
2677 locked_ref = btrfs_select_ref_head(trans);
2678 if (!locked_ref) {
2679 spin_unlock(&delayed_refs->lock);
2680 break;
2681 }
2682
2683 /* grab the lock that says we are going to process
2684 * all the refs for this head */
2685 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2686 spin_unlock(&delayed_refs->lock);
2687 /*
2688 * we may have dropped the spin lock to get the head
2689 * mutex lock, and that might have given someone else
2690 * time to free the head. If that's true, it has been
2691 * removed from our list and we can move on.
2692 */
2693 if (ret == -EAGAIN) {
2694 locked_ref = NULL;
2695 count++;
2696 continue;
2697 }
2698 }
2699
2700 /*
2701 * We need to try and merge add/drops of the same ref since we
2702 * can run into issues with relocate dropping the implicit ref
2703 * and then it being added back again before the drop can
2704 * finish. If we merged anything we need to re-loop so we can
2705 * get a good ref.
2706 * Or we can get node references of the same type that weren't
2707 * merged when created due to bumps in the tree mod seq, and
2708 * we need to merge them to prevent adding an inline extent
2709 * backref before dropping it (triggering a BUG_ON at
2710 * insert_inline_extent_backref()).
2711 */
2712 spin_lock(&locked_ref->lock);
2713 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2714 locked_ref);
2715
2716 /*
2717 * locked_ref is the head node, so we have to go one
2718 * node back for any delayed ref updates
2719 */
2720 ref = select_delayed_ref(locked_ref);
2721
2722 if (ref && ref->seq &&
2723 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2724 spin_unlock(&locked_ref->lock);
2725 unselect_delayed_ref_head(delayed_refs, locked_ref);
2726 locked_ref = NULL;
2727 cond_resched();
2728 count++;
2729 continue;
2730 }
2731
2732 /*
2733 * We're done processing refs in this ref_head, clean everything
2734 * up and move on to the next ref_head.
2735 */
2736 if (!ref) {
2737 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2738 if (ret > 0 ) {
2739 /* We dropped our lock, we need to loop. */
2740 ret = 0;
2741 continue;
2742 } else if (ret) {
2743 return ret;
2744 }
2745 locked_ref = NULL;
2746 count++;
2747 continue;
2748 }
2749
2750 actual_count++;
2751 ref->in_tree = 0;
2752 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2753 RB_CLEAR_NODE(&ref->ref_node);
2754 if (!list_empty(&ref->add_list))
2755 list_del(&ref->add_list);
2756 /*
2757 * When we play the delayed ref, also correct the ref_mod on
2758 * head
2759 */
2760 switch (ref->action) {
2761 case BTRFS_ADD_DELAYED_REF:
2762 case BTRFS_ADD_DELAYED_EXTENT:
2763 locked_ref->ref_mod -= ref->ref_mod;
2764 break;
2765 case BTRFS_DROP_DELAYED_REF:
2766 locked_ref->ref_mod += ref->ref_mod;
2767 break;
2768 default:
2769 WARN_ON(1);
2770 }
2771 atomic_dec(&delayed_refs->num_entries);
2772
2773 /*
2774 * Record the must-insert_reserved flag before we drop the spin
2775 * lock.
2776 */
2777 must_insert_reserved = locked_ref->must_insert_reserved;
2778 locked_ref->must_insert_reserved = 0;
2779
2780 extent_op = locked_ref->extent_op;
2781 locked_ref->extent_op = NULL;
2782 spin_unlock(&locked_ref->lock);
2783
2784 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2785 must_insert_reserved);
2786
2787 btrfs_free_delayed_extent_op(extent_op);
2788 if (ret) {
2789 unselect_delayed_ref_head(delayed_refs, locked_ref);
2790 btrfs_put_delayed_ref(ref);
2791 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2792 ret);
2793 return ret;
2794 }
2795
2796 btrfs_put_delayed_ref(ref);
2797 count++;
2798 cond_resched();
2799 }
2800
2801 /*
2802 * We don't want to include ref heads since we can have empty ref heads
2803 * and those will drastically skew our runtime down since we just do
2804 * accounting, no actual extent tree updates.
2805 */
2806 if (actual_count > 0) {
2807 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2808 u64 avg;
2809
2810 /*
2811 * We weigh the current average higher than our current runtime
2812 * to avoid large swings in the average.
2813 */
2814 spin_lock(&delayed_refs->lock);
2815 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2816 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2817 spin_unlock(&delayed_refs->lock);
2818 }
2819 return 0;
2820 }
2821
2822 #ifdef SCRAMBLE_DELAYED_REFS
2823 /*
2824 * Normally delayed refs get processed in ascending bytenr order. This
2825 * correlates in most cases to the order added. To expose dependencies on this
2826 * order, we start to process the tree in the middle instead of the beginning
2827 */
2828 static u64 find_middle(struct rb_root *root)
2829 {
2830 struct rb_node *n = root->rb_node;
2831 struct btrfs_delayed_ref_node *entry;
2832 int alt = 1;
2833 u64 middle;
2834 u64 first = 0, last = 0;
2835
2836 n = rb_first(root);
2837 if (n) {
2838 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2839 first = entry->bytenr;
2840 }
2841 n = rb_last(root);
2842 if (n) {
2843 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2844 last = entry->bytenr;
2845 }
2846 n = root->rb_node;
2847
2848 while (n) {
2849 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2850 WARN_ON(!entry->in_tree);
2851
2852 middle = entry->bytenr;
2853
2854 if (alt)
2855 n = n->rb_left;
2856 else
2857 n = n->rb_right;
2858
2859 alt = 1 - alt;
2860 }
2861 return middle;
2862 }
2863 #endif
2864
2865 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2866 {
2867 u64 num_bytes;
2868
2869 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2870 sizeof(struct btrfs_extent_inline_ref));
2871 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2872 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2873
2874 /*
2875 * We don't ever fill up leaves all the way so multiply by 2 just to be
2876 * closer to what we're really going to want to use.
2877 */
2878 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2879 }
2880
2881 /*
2882 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2883 * would require to store the csums for that many bytes.
2884 */
2885 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2886 {
2887 u64 csum_size;
2888 u64 num_csums_per_leaf;
2889 u64 num_csums;
2890
2891 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2892 num_csums_per_leaf = div64_u64(csum_size,
2893 (u64)btrfs_super_csum_size(fs_info->super_copy));
2894 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2895 num_csums += num_csums_per_leaf - 1;
2896 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2897 return num_csums;
2898 }
2899
2900 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2901 struct btrfs_fs_info *fs_info)
2902 {
2903 struct btrfs_block_rsv *global_rsv;
2904 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2905 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2906 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2907 u64 num_bytes, num_dirty_bgs_bytes;
2908 int ret = 0;
2909
2910 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2911 num_heads = heads_to_leaves(fs_info, num_heads);
2912 if (num_heads > 1)
2913 num_bytes += (num_heads - 1) * fs_info->nodesize;
2914 num_bytes <<= 1;
2915 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2916 fs_info->nodesize;
2917 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2918 num_dirty_bgs);
2919 global_rsv = &fs_info->global_block_rsv;
2920
2921 /*
2922 * If we can't allocate any more chunks lets make sure we have _lots_ of
2923 * wiggle room since running delayed refs can create more delayed refs.
2924 */
2925 if (global_rsv->space_info->full) {
2926 num_dirty_bgs_bytes <<= 1;
2927 num_bytes <<= 1;
2928 }
2929
2930 spin_lock(&global_rsv->lock);
2931 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2932 ret = 1;
2933 spin_unlock(&global_rsv->lock);
2934 return ret;
2935 }
2936
2937 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2938 struct btrfs_fs_info *fs_info)
2939 {
2940 u64 num_entries =
2941 atomic_read(&trans->transaction->delayed_refs.num_entries);
2942 u64 avg_runtime;
2943 u64 val;
2944
2945 smp_mb();
2946 avg_runtime = fs_info->avg_delayed_ref_runtime;
2947 val = num_entries * avg_runtime;
2948 if (val >= NSEC_PER_SEC)
2949 return 1;
2950 if (val >= NSEC_PER_SEC / 2)
2951 return 2;
2952
2953 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2954 }
2955
2956 struct async_delayed_refs {
2957 struct btrfs_root *root;
2958 u64 transid;
2959 int count;
2960 int error;
2961 int sync;
2962 struct completion wait;
2963 struct btrfs_work work;
2964 };
2965
2966 static inline struct async_delayed_refs *
2967 to_async_delayed_refs(struct btrfs_work *work)
2968 {
2969 return container_of(work, struct async_delayed_refs, work);
2970 }
2971
2972 static void delayed_ref_async_start(struct btrfs_work *work)
2973 {
2974 struct async_delayed_refs *async = to_async_delayed_refs(work);
2975 struct btrfs_trans_handle *trans;
2976 struct btrfs_fs_info *fs_info = async->root->fs_info;
2977 int ret;
2978
2979 /* if the commit is already started, we don't need to wait here */
2980 if (btrfs_transaction_blocked(fs_info))
2981 goto done;
2982
2983 trans = btrfs_join_transaction(async->root);
2984 if (IS_ERR(trans)) {
2985 async->error = PTR_ERR(trans);
2986 goto done;
2987 }
2988
2989 /*
2990 * trans->sync means that when we call end_transaction, we won't
2991 * wait on delayed refs
2992 */
2993 trans->sync = true;
2994
2995 /* Don't bother flushing if we got into a different transaction */
2996 if (trans->transid > async->transid)
2997 goto end;
2998
2999 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
3000 if (ret)
3001 async->error = ret;
3002 end:
3003 ret = btrfs_end_transaction(trans);
3004 if (ret && !async->error)
3005 async->error = ret;
3006 done:
3007 if (async->sync)
3008 complete(&async->wait);
3009 else
3010 kfree(async);
3011 }
3012
3013 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3014 unsigned long count, u64 transid, int wait)
3015 {
3016 struct async_delayed_refs *async;
3017 int ret;
3018
3019 async = kmalloc(sizeof(*async), GFP_NOFS);
3020 if (!async)
3021 return -ENOMEM;
3022
3023 async->root = fs_info->tree_root;
3024 async->count = count;
3025 async->error = 0;
3026 async->transid = transid;
3027 if (wait)
3028 async->sync = 1;
3029 else
3030 async->sync = 0;
3031 init_completion(&async->wait);
3032
3033 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3034 delayed_ref_async_start, NULL, NULL);
3035
3036 btrfs_queue_work(fs_info->extent_workers, &async->work);
3037
3038 if (wait) {
3039 wait_for_completion(&async->wait);
3040 ret = async->error;
3041 kfree(async);
3042 return ret;
3043 }
3044 return 0;
3045 }
3046
3047 /*
3048 * this starts processing the delayed reference count updates and
3049 * extent insertions we have queued up so far. count can be
3050 * 0, which means to process everything in the tree at the start
3051 * of the run (but not newly added entries), or it can be some target
3052 * number you'd like to process.
3053 *
3054 * Returns 0 on success or if called with an aborted transaction
3055 * Returns <0 on error and aborts the transaction
3056 */
3057 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3058 struct btrfs_fs_info *fs_info, unsigned long count)
3059 {
3060 struct rb_node *node;
3061 struct btrfs_delayed_ref_root *delayed_refs;
3062 struct btrfs_delayed_ref_head *head;
3063 int ret;
3064 int run_all = count == (unsigned long)-1;
3065
3066 /* We'll clean this up in btrfs_cleanup_transaction */
3067 if (trans->aborted)
3068 return 0;
3069
3070 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3071 return 0;
3072
3073 delayed_refs = &trans->transaction->delayed_refs;
3074 if (count == 0)
3075 count = atomic_read(&delayed_refs->num_entries) * 2;
3076
3077 again:
3078 #ifdef SCRAMBLE_DELAYED_REFS
3079 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3080 #endif
3081 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3082 if (ret < 0) {
3083 btrfs_abort_transaction(trans, ret);
3084 return ret;
3085 }
3086
3087 if (run_all) {
3088 if (!list_empty(&trans->new_bgs))
3089 btrfs_create_pending_block_groups(trans, fs_info);
3090
3091 spin_lock(&delayed_refs->lock);
3092 node = rb_first(&delayed_refs->href_root);
3093 if (!node) {
3094 spin_unlock(&delayed_refs->lock);
3095 goto out;
3096 }
3097 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098 href_node);
3099 refcount_inc(&head->refs);
3100 spin_unlock(&delayed_refs->lock);
3101
3102 /* Mutex was contended, block until it's released and retry. */
3103 mutex_lock(&head->mutex);
3104 mutex_unlock(&head->mutex);
3105
3106 btrfs_put_delayed_ref_head(head);
3107 cond_resched();
3108 goto again;
3109 }
3110 out:
3111 return 0;
3112 }
3113
3114 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3115 struct btrfs_fs_info *fs_info,
3116 u64 bytenr, u64 num_bytes, u64 flags,
3117 int level, int is_data)
3118 {
3119 struct btrfs_delayed_extent_op *extent_op;
3120 int ret;
3121
3122 extent_op = btrfs_alloc_delayed_extent_op();
3123 if (!extent_op)
3124 return -ENOMEM;
3125
3126 extent_op->flags_to_set = flags;
3127 extent_op->update_flags = true;
3128 extent_op->update_key = false;
3129 extent_op->is_data = is_data ? true : false;
3130 extent_op->level = level;
3131
3132 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3133 num_bytes, extent_op);
3134 if (ret)
3135 btrfs_free_delayed_extent_op(extent_op);
3136 return ret;
3137 }
3138
3139 static noinline int check_delayed_ref(struct btrfs_root *root,
3140 struct btrfs_path *path,
3141 u64 objectid, u64 offset, u64 bytenr)
3142 {
3143 struct btrfs_delayed_ref_head *head;
3144 struct btrfs_delayed_ref_node *ref;
3145 struct btrfs_delayed_data_ref *data_ref;
3146 struct btrfs_delayed_ref_root *delayed_refs;
3147 struct btrfs_transaction *cur_trans;
3148 struct rb_node *node;
3149 int ret = 0;
3150
3151 spin_lock(&root->fs_info->trans_lock);
3152 cur_trans = root->fs_info->running_transaction;
3153 if (cur_trans)
3154 refcount_inc(&cur_trans->use_count);
3155 spin_unlock(&root->fs_info->trans_lock);
3156 if (!cur_trans)
3157 return 0;
3158
3159 delayed_refs = &cur_trans->delayed_refs;
3160 spin_lock(&delayed_refs->lock);
3161 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3162 if (!head) {
3163 spin_unlock(&delayed_refs->lock);
3164 btrfs_put_transaction(cur_trans);
3165 return 0;
3166 }
3167
3168 if (!mutex_trylock(&head->mutex)) {
3169 refcount_inc(&head->refs);
3170 spin_unlock(&delayed_refs->lock);
3171
3172 btrfs_release_path(path);
3173
3174 /*
3175 * Mutex was contended, block until it's released and let
3176 * caller try again
3177 */
3178 mutex_lock(&head->mutex);
3179 mutex_unlock(&head->mutex);
3180 btrfs_put_delayed_ref_head(head);
3181 btrfs_put_transaction(cur_trans);
3182 return -EAGAIN;
3183 }
3184 spin_unlock(&delayed_refs->lock);
3185
3186 spin_lock(&head->lock);
3187 /*
3188 * XXX: We should replace this with a proper search function in the
3189 * future.
3190 */
3191 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3192 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3193 /* If it's a shared ref we know a cross reference exists */
3194 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3195 ret = 1;
3196 break;
3197 }
3198
3199 data_ref = btrfs_delayed_node_to_data_ref(ref);
3200
3201 /*
3202 * If our ref doesn't match the one we're currently looking at
3203 * then we have a cross reference.
3204 */
3205 if (data_ref->root != root->root_key.objectid ||
3206 data_ref->objectid != objectid ||
3207 data_ref->offset != offset) {
3208 ret = 1;
3209 break;
3210 }
3211 }
3212 spin_unlock(&head->lock);
3213 mutex_unlock(&head->mutex);
3214 btrfs_put_transaction(cur_trans);
3215 return ret;
3216 }
3217
3218 static noinline int check_committed_ref(struct btrfs_root *root,
3219 struct btrfs_path *path,
3220 u64 objectid, u64 offset, u64 bytenr)
3221 {
3222 struct btrfs_fs_info *fs_info = root->fs_info;
3223 struct btrfs_root *extent_root = fs_info->extent_root;
3224 struct extent_buffer *leaf;
3225 struct btrfs_extent_data_ref *ref;
3226 struct btrfs_extent_inline_ref *iref;
3227 struct btrfs_extent_item *ei;
3228 struct btrfs_key key;
3229 u32 item_size;
3230 int type;
3231 int ret;
3232
3233 key.objectid = bytenr;
3234 key.offset = (u64)-1;
3235 key.type = BTRFS_EXTENT_ITEM_KEY;
3236
3237 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3238 if (ret < 0)
3239 goto out;
3240 BUG_ON(ret == 0); /* Corruption */
3241
3242 ret = -ENOENT;
3243 if (path->slots[0] == 0)
3244 goto out;
3245
3246 path->slots[0]--;
3247 leaf = path->nodes[0];
3248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3249
3250 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3251 goto out;
3252
3253 ret = 1;
3254 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3255 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3256 if (item_size < sizeof(*ei)) {
3257 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3258 goto out;
3259 }
3260 #endif
3261 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3262
3263 if (item_size != sizeof(*ei) +
3264 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3265 goto out;
3266
3267 if (btrfs_extent_generation(leaf, ei) <=
3268 btrfs_root_last_snapshot(&root->root_item))
3269 goto out;
3270
3271 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3272
3273 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3274 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3275 goto out;
3276
3277 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3278 if (btrfs_extent_refs(leaf, ei) !=
3279 btrfs_extent_data_ref_count(leaf, ref) ||
3280 btrfs_extent_data_ref_root(leaf, ref) !=
3281 root->root_key.objectid ||
3282 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3283 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3284 goto out;
3285
3286 ret = 0;
3287 out:
3288 return ret;
3289 }
3290
3291 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3292 u64 bytenr)
3293 {
3294 struct btrfs_path *path;
3295 int ret;
3296 int ret2;
3297
3298 path = btrfs_alloc_path();
3299 if (!path)
3300 return -ENOENT;
3301
3302 do {
3303 ret = check_committed_ref(root, path, objectid,
3304 offset, bytenr);
3305 if (ret && ret != -ENOENT)
3306 goto out;
3307
3308 ret2 = check_delayed_ref(root, path, objectid,
3309 offset, bytenr);
3310 } while (ret2 == -EAGAIN);
3311
3312 if (ret2 && ret2 != -ENOENT) {
3313 ret = ret2;
3314 goto out;
3315 }
3316
3317 if (ret != -ENOENT || ret2 != -ENOENT)
3318 ret = 0;
3319 out:
3320 btrfs_free_path(path);
3321 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3322 WARN_ON(ret > 0);
3323 return ret;
3324 }
3325
3326 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3327 struct btrfs_root *root,
3328 struct extent_buffer *buf,
3329 int full_backref, int inc)
3330 {
3331 struct btrfs_fs_info *fs_info = root->fs_info;
3332 u64 bytenr;
3333 u64 num_bytes;
3334 u64 parent;
3335 u64 ref_root;
3336 u32 nritems;
3337 struct btrfs_key key;
3338 struct btrfs_file_extent_item *fi;
3339 int i;
3340 int level;
3341 int ret = 0;
3342 int (*process_func)(struct btrfs_trans_handle *,
3343 struct btrfs_root *,
3344 u64, u64, u64, u64, u64, u64);
3345
3346
3347 if (btrfs_is_testing(fs_info))
3348 return 0;
3349
3350 ref_root = btrfs_header_owner(buf);
3351 nritems = btrfs_header_nritems(buf);
3352 level = btrfs_header_level(buf);
3353
3354 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3355 return 0;
3356
3357 if (inc)
3358 process_func = btrfs_inc_extent_ref;
3359 else
3360 process_func = btrfs_free_extent;
3361
3362 if (full_backref)
3363 parent = buf->start;
3364 else
3365 parent = 0;
3366
3367 for (i = 0; i < nritems; i++) {
3368 if (level == 0) {
3369 btrfs_item_key_to_cpu(buf, &key, i);
3370 if (key.type != BTRFS_EXTENT_DATA_KEY)
3371 continue;
3372 fi = btrfs_item_ptr(buf, i,
3373 struct btrfs_file_extent_item);
3374 if (btrfs_file_extent_type(buf, fi) ==
3375 BTRFS_FILE_EXTENT_INLINE)
3376 continue;
3377 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3378 if (bytenr == 0)
3379 continue;
3380
3381 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3382 key.offset -= btrfs_file_extent_offset(buf, fi);
3383 ret = process_func(trans, root, bytenr, num_bytes,
3384 parent, ref_root, key.objectid,
3385 key.offset);
3386 if (ret)
3387 goto fail;
3388 } else {
3389 bytenr = btrfs_node_blockptr(buf, i);
3390 num_bytes = fs_info->nodesize;
3391 ret = process_func(trans, root, bytenr, num_bytes,
3392 parent, ref_root, level - 1, 0);
3393 if (ret)
3394 goto fail;
3395 }
3396 }
3397 return 0;
3398 fail:
3399 return ret;
3400 }
3401
3402 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403 struct extent_buffer *buf, int full_backref)
3404 {
3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3406 }
3407
3408 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3409 struct extent_buffer *buf, int full_backref)
3410 {
3411 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3412 }
3413
3414 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3415 struct btrfs_fs_info *fs_info,
3416 struct btrfs_path *path,
3417 struct btrfs_block_group_cache *cache)
3418 {
3419 int ret;
3420 struct btrfs_root *extent_root = fs_info->extent_root;
3421 unsigned long bi;
3422 struct extent_buffer *leaf;
3423
3424 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3425 if (ret) {
3426 if (ret > 0)
3427 ret = -ENOENT;
3428 goto fail;
3429 }
3430
3431 leaf = path->nodes[0];
3432 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3433 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3434 btrfs_mark_buffer_dirty(leaf);
3435 fail:
3436 btrfs_release_path(path);
3437 return ret;
3438
3439 }
3440
3441 static struct btrfs_block_group_cache *
3442 next_block_group(struct btrfs_fs_info *fs_info,
3443 struct btrfs_block_group_cache *cache)
3444 {
3445 struct rb_node *node;
3446
3447 spin_lock(&fs_info->block_group_cache_lock);
3448
3449 /* If our block group was removed, we need a full search. */
3450 if (RB_EMPTY_NODE(&cache->cache_node)) {
3451 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3452
3453 spin_unlock(&fs_info->block_group_cache_lock);
3454 btrfs_put_block_group(cache);
3455 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3456 }
3457 node = rb_next(&cache->cache_node);
3458 btrfs_put_block_group(cache);
3459 if (node) {
3460 cache = rb_entry(node, struct btrfs_block_group_cache,
3461 cache_node);
3462 btrfs_get_block_group(cache);
3463 } else
3464 cache = NULL;
3465 spin_unlock(&fs_info->block_group_cache_lock);
3466 return cache;
3467 }
3468
3469 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3470 struct btrfs_trans_handle *trans,
3471 struct btrfs_path *path)
3472 {
3473 struct btrfs_fs_info *fs_info = block_group->fs_info;
3474 struct btrfs_root *root = fs_info->tree_root;
3475 struct inode *inode = NULL;
3476 struct extent_changeset *data_reserved = NULL;
3477 u64 alloc_hint = 0;
3478 int dcs = BTRFS_DC_ERROR;
3479 u64 num_pages = 0;
3480 int retries = 0;
3481 int ret = 0;
3482
3483 /*
3484 * If this block group is smaller than 100 megs don't bother caching the
3485 * block group.
3486 */
3487 if (block_group->key.offset < (100 * SZ_1M)) {
3488 spin_lock(&block_group->lock);
3489 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3490 spin_unlock(&block_group->lock);
3491 return 0;
3492 }
3493
3494 if (trans->aborted)
3495 return 0;
3496 again:
3497 inode = lookup_free_space_inode(fs_info, block_group, path);
3498 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3499 ret = PTR_ERR(inode);
3500 btrfs_release_path(path);
3501 goto out;
3502 }
3503
3504 if (IS_ERR(inode)) {
3505 BUG_ON(retries);
3506 retries++;
3507
3508 if (block_group->ro)
3509 goto out_free;
3510
3511 ret = create_free_space_inode(fs_info, trans, block_group,
3512 path);
3513 if (ret)
3514 goto out_free;
3515 goto again;
3516 }
3517
3518 /*
3519 * We want to set the generation to 0, that way if anything goes wrong
3520 * from here on out we know not to trust this cache when we load up next
3521 * time.
3522 */
3523 BTRFS_I(inode)->generation = 0;
3524 ret = btrfs_update_inode(trans, root, inode);
3525 if (ret) {
3526 /*
3527 * So theoretically we could recover from this, simply set the
3528 * super cache generation to 0 so we know to invalidate the
3529 * cache, but then we'd have to keep track of the block groups
3530 * that fail this way so we know we _have_ to reset this cache
3531 * before the next commit or risk reading stale cache. So to
3532 * limit our exposure to horrible edge cases lets just abort the
3533 * transaction, this only happens in really bad situations
3534 * anyway.
3535 */
3536 btrfs_abort_transaction(trans, ret);
3537 goto out_put;
3538 }
3539 WARN_ON(ret);
3540
3541 /* We've already setup this transaction, go ahead and exit */
3542 if (block_group->cache_generation == trans->transid &&
3543 i_size_read(inode)) {
3544 dcs = BTRFS_DC_SETUP;
3545 goto out_put;
3546 }
3547
3548 if (i_size_read(inode) > 0) {
3549 ret = btrfs_check_trunc_cache_free_space(fs_info,
3550 &fs_info->global_block_rsv);
3551 if (ret)
3552 goto out_put;
3553
3554 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3555 if (ret)
3556 goto out_put;
3557 }
3558
3559 spin_lock(&block_group->lock);
3560 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3561 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3562 /*
3563 * don't bother trying to write stuff out _if_
3564 * a) we're not cached,
3565 * b) we're with nospace_cache mount option,
3566 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3567 */
3568 dcs = BTRFS_DC_WRITTEN;
3569 spin_unlock(&block_group->lock);
3570 goto out_put;
3571 }
3572 spin_unlock(&block_group->lock);
3573
3574 /*
3575 * We hit an ENOSPC when setting up the cache in this transaction, just
3576 * skip doing the setup, we've already cleared the cache so we're safe.
3577 */
3578 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3579 ret = -ENOSPC;
3580 goto out_put;
3581 }
3582
3583 /*
3584 * Try to preallocate enough space based on how big the block group is.
3585 * Keep in mind this has to include any pinned space which could end up
3586 * taking up quite a bit since it's not folded into the other space
3587 * cache.
3588 */
3589 num_pages = div_u64(block_group->key.offset, SZ_256M);
3590 if (!num_pages)
3591 num_pages = 1;
3592
3593 num_pages *= 16;
3594 num_pages *= PAGE_SIZE;
3595
3596 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3597 if (ret)
3598 goto out_put;
3599
3600 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3601 num_pages, num_pages,
3602 &alloc_hint);
3603 /*
3604 * Our cache requires contiguous chunks so that we don't modify a bunch
3605 * of metadata or split extents when writing the cache out, which means
3606 * we can enospc if we are heavily fragmented in addition to just normal
3607 * out of space conditions. So if we hit this just skip setting up any
3608 * other block groups for this transaction, maybe we'll unpin enough
3609 * space the next time around.
3610 */
3611 if (!ret)
3612 dcs = BTRFS_DC_SETUP;
3613 else if (ret == -ENOSPC)
3614 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3615
3616 out_put:
3617 iput(inode);
3618 out_free:
3619 btrfs_release_path(path);
3620 out:
3621 spin_lock(&block_group->lock);
3622 if (!ret && dcs == BTRFS_DC_SETUP)
3623 block_group->cache_generation = trans->transid;
3624 block_group->disk_cache_state = dcs;
3625 spin_unlock(&block_group->lock);
3626
3627 extent_changeset_free(data_reserved);
3628 return ret;
3629 }
3630
3631 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3632 struct btrfs_fs_info *fs_info)
3633 {
3634 struct btrfs_block_group_cache *cache, *tmp;
3635 struct btrfs_transaction *cur_trans = trans->transaction;
3636 struct btrfs_path *path;
3637
3638 if (list_empty(&cur_trans->dirty_bgs) ||
3639 !btrfs_test_opt(fs_info, SPACE_CACHE))
3640 return 0;
3641
3642 path = btrfs_alloc_path();
3643 if (!path)
3644 return -ENOMEM;
3645
3646 /* Could add new block groups, use _safe just in case */
3647 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3648 dirty_list) {
3649 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3650 cache_save_setup(cache, trans, path);
3651 }
3652
3653 btrfs_free_path(path);
3654 return 0;
3655 }
3656
3657 /*
3658 * transaction commit does final block group cache writeback during a
3659 * critical section where nothing is allowed to change the FS. This is
3660 * required in order for the cache to actually match the block group,
3661 * but can introduce a lot of latency into the commit.
3662 *
3663 * So, btrfs_start_dirty_block_groups is here to kick off block group
3664 * cache IO. There's a chance we'll have to redo some of it if the
3665 * block group changes again during the commit, but it greatly reduces
3666 * the commit latency by getting rid of the easy block groups while
3667 * we're still allowing others to join the commit.
3668 */
3669 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3670 struct btrfs_fs_info *fs_info)
3671 {
3672 struct btrfs_block_group_cache *cache;
3673 struct btrfs_transaction *cur_trans = trans->transaction;
3674 int ret = 0;
3675 int should_put;
3676 struct btrfs_path *path = NULL;
3677 LIST_HEAD(dirty);
3678 struct list_head *io = &cur_trans->io_bgs;
3679 int num_started = 0;
3680 int loops = 0;
3681
3682 spin_lock(&cur_trans->dirty_bgs_lock);
3683 if (list_empty(&cur_trans->dirty_bgs)) {
3684 spin_unlock(&cur_trans->dirty_bgs_lock);
3685 return 0;
3686 }
3687 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3688 spin_unlock(&cur_trans->dirty_bgs_lock);
3689
3690 again:
3691 /*
3692 * make sure all the block groups on our dirty list actually
3693 * exist
3694 */
3695 btrfs_create_pending_block_groups(trans, fs_info);
3696
3697 if (!path) {
3698 path = btrfs_alloc_path();
3699 if (!path)
3700 return -ENOMEM;
3701 }
3702
3703 /*
3704 * cache_write_mutex is here only to save us from balance or automatic
3705 * removal of empty block groups deleting this block group while we are
3706 * writing out the cache
3707 */
3708 mutex_lock(&trans->transaction->cache_write_mutex);
3709 while (!list_empty(&dirty)) {
3710 cache = list_first_entry(&dirty,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
3713 /*
3714 * this can happen if something re-dirties a block
3715 * group that is already under IO. Just wait for it to
3716 * finish and then do it all again
3717 */
3718 if (!list_empty(&cache->io_list)) {
3719 list_del_init(&cache->io_list);
3720 btrfs_wait_cache_io(trans, cache, path);
3721 btrfs_put_block_group(cache);
3722 }
3723
3724
3725 /*
3726 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3727 * if it should update the cache_state. Don't delete
3728 * until after we wait.
3729 *
3730 * Since we're not running in the commit critical section
3731 * we need the dirty_bgs_lock to protect from update_block_group
3732 */
3733 spin_lock(&cur_trans->dirty_bgs_lock);
3734 list_del_init(&cache->dirty_list);
3735 spin_unlock(&cur_trans->dirty_bgs_lock);
3736
3737 should_put = 1;
3738
3739 cache_save_setup(cache, trans, path);
3740
3741 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
3743 ret = btrfs_write_out_cache(fs_info, trans,
3744 cache, path);
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
3748
3749 /*
3750 * the cache_write_mutex is protecting
3751 * the io_list
3752 */
3753 list_add_tail(&cache->io_list, io);
3754 } else {
3755 /*
3756 * if we failed to write the cache, the
3757 * generation will be bad and life goes on
3758 */
3759 ret = 0;
3760 }
3761 }
3762 if (!ret) {
3763 ret = write_one_cache_group(trans, fs_info,
3764 path, cache);
3765 /*
3766 * Our block group might still be attached to the list
3767 * of new block groups in the transaction handle of some
3768 * other task (struct btrfs_trans_handle->new_bgs). This
3769 * means its block group item isn't yet in the extent
3770 * tree. If this happens ignore the error, as we will
3771 * try again later in the critical section of the
3772 * transaction commit.
3773 */
3774 if (ret == -ENOENT) {
3775 ret = 0;
3776 spin_lock(&cur_trans->dirty_bgs_lock);
3777 if (list_empty(&cache->dirty_list)) {
3778 list_add_tail(&cache->dirty_list,
3779 &cur_trans->dirty_bgs);
3780 btrfs_get_block_group(cache);
3781 }
3782 spin_unlock(&cur_trans->dirty_bgs_lock);
3783 } else if (ret) {
3784 btrfs_abort_transaction(trans, ret);
3785 }
3786 }
3787
3788 /* if its not on the io list, we need to put the block group */
3789 if (should_put)
3790 btrfs_put_block_group(cache);
3791
3792 if (ret)
3793 break;
3794
3795 /*
3796 * Avoid blocking other tasks for too long. It might even save
3797 * us from writing caches for block groups that are going to be
3798 * removed.
3799 */
3800 mutex_unlock(&trans->transaction->cache_write_mutex);
3801 mutex_lock(&trans->transaction->cache_write_mutex);
3802 }
3803 mutex_unlock(&trans->transaction->cache_write_mutex);
3804
3805 /*
3806 * go through delayed refs for all the stuff we've just kicked off
3807 * and then loop back (just once)
3808 */
3809 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3810 if (!ret && loops == 0) {
3811 loops++;
3812 spin_lock(&cur_trans->dirty_bgs_lock);
3813 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3814 /*
3815 * dirty_bgs_lock protects us from concurrent block group
3816 * deletes too (not just cache_write_mutex).
3817 */
3818 if (!list_empty(&dirty)) {
3819 spin_unlock(&cur_trans->dirty_bgs_lock);
3820 goto again;
3821 }
3822 spin_unlock(&cur_trans->dirty_bgs_lock);
3823 } else if (ret < 0) {
3824 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3825 }
3826
3827 btrfs_free_path(path);
3828 return ret;
3829 }
3830
3831 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3832 struct btrfs_fs_info *fs_info)
3833 {
3834 struct btrfs_block_group_cache *cache;
3835 struct btrfs_transaction *cur_trans = trans->transaction;
3836 int ret = 0;
3837 int should_put;
3838 struct btrfs_path *path;
3839 struct list_head *io = &cur_trans->io_bgs;
3840 int num_started = 0;
3841
3842 path = btrfs_alloc_path();
3843 if (!path)
3844 return -ENOMEM;
3845
3846 /*
3847 * Even though we are in the critical section of the transaction commit,
3848 * we can still have concurrent tasks adding elements to this
3849 * transaction's list of dirty block groups. These tasks correspond to
3850 * endio free space workers started when writeback finishes for a
3851 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3852 * allocate new block groups as a result of COWing nodes of the root
3853 * tree when updating the free space inode. The writeback for the space
3854 * caches is triggered by an earlier call to
3855 * btrfs_start_dirty_block_groups() and iterations of the following
3856 * loop.
3857 * Also we want to do the cache_save_setup first and then run the
3858 * delayed refs to make sure we have the best chance at doing this all
3859 * in one shot.
3860 */
3861 spin_lock(&cur_trans->dirty_bgs_lock);
3862 while (!list_empty(&cur_trans->dirty_bgs)) {
3863 cache = list_first_entry(&cur_trans->dirty_bgs,
3864 struct btrfs_block_group_cache,
3865 dirty_list);
3866
3867 /*
3868 * this can happen if cache_save_setup re-dirties a block
3869 * group that is already under IO. Just wait for it to
3870 * finish and then do it all again
3871 */
3872 if (!list_empty(&cache->io_list)) {
3873 spin_unlock(&cur_trans->dirty_bgs_lock);
3874 list_del_init(&cache->io_list);
3875 btrfs_wait_cache_io(trans, cache, path);
3876 btrfs_put_block_group(cache);
3877 spin_lock(&cur_trans->dirty_bgs_lock);
3878 }
3879
3880 /*
3881 * don't remove from the dirty list until after we've waited
3882 * on any pending IO
3883 */
3884 list_del_init(&cache->dirty_list);
3885 spin_unlock(&cur_trans->dirty_bgs_lock);
3886 should_put = 1;
3887
3888 cache_save_setup(cache, trans, path);
3889
3890 if (!ret)
3891 ret = btrfs_run_delayed_refs(trans, fs_info,
3892 (unsigned long) -1);
3893
3894 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3895 cache->io_ctl.inode = NULL;
3896 ret = btrfs_write_out_cache(fs_info, trans,
3897 cache, path);
3898 if (ret == 0 && cache->io_ctl.inode) {
3899 num_started++;
3900 should_put = 0;
3901 list_add_tail(&cache->io_list, io);
3902 } else {
3903 /*
3904 * if we failed to write the cache, the
3905 * generation will be bad and life goes on
3906 */
3907 ret = 0;
3908 }
3909 }
3910 if (!ret) {
3911 ret = write_one_cache_group(trans, fs_info,
3912 path, cache);
3913 /*
3914 * One of the free space endio workers might have
3915 * created a new block group while updating a free space
3916 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3917 * and hasn't released its transaction handle yet, in
3918 * which case the new block group is still attached to
3919 * its transaction handle and its creation has not
3920 * finished yet (no block group item in the extent tree
3921 * yet, etc). If this is the case, wait for all free
3922 * space endio workers to finish and retry. This is a
3923 * a very rare case so no need for a more efficient and
3924 * complex approach.
3925 */
3926 if (ret == -ENOENT) {
3927 wait_event(cur_trans->writer_wait,
3928 atomic_read(&cur_trans->num_writers) == 1);
3929 ret = write_one_cache_group(trans, fs_info,
3930 path, cache);
3931 }
3932 if (ret)
3933 btrfs_abort_transaction(trans, ret);
3934 }
3935
3936 /* if its not on the io list, we need to put the block group */
3937 if (should_put)
3938 btrfs_put_block_group(cache);
3939 spin_lock(&cur_trans->dirty_bgs_lock);
3940 }
3941 spin_unlock(&cur_trans->dirty_bgs_lock);
3942
3943 while (!list_empty(io)) {
3944 cache = list_first_entry(io, struct btrfs_block_group_cache,
3945 io_list);
3946 list_del_init(&cache->io_list);
3947 btrfs_wait_cache_io(trans, cache, path);
3948 btrfs_put_block_group(cache);
3949 }
3950
3951 btrfs_free_path(path);
3952 return ret;
3953 }
3954
3955 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3956 {
3957 struct btrfs_block_group_cache *block_group;
3958 int readonly = 0;
3959
3960 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3961 if (!block_group || block_group->ro)
3962 readonly = 1;
3963 if (block_group)
3964 btrfs_put_block_group(block_group);
3965 return readonly;
3966 }
3967
3968 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3969 {
3970 struct btrfs_block_group_cache *bg;
3971 bool ret = true;
3972
3973 bg = btrfs_lookup_block_group(fs_info, bytenr);
3974 if (!bg)
3975 return false;
3976
3977 spin_lock(&bg->lock);
3978 if (bg->ro)
3979 ret = false;
3980 else
3981 atomic_inc(&bg->nocow_writers);
3982 spin_unlock(&bg->lock);
3983
3984 /* no put on block group, done by btrfs_dec_nocow_writers */
3985 if (!ret)
3986 btrfs_put_block_group(bg);
3987
3988 return ret;
3989
3990 }
3991
3992 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3993 {
3994 struct btrfs_block_group_cache *bg;
3995
3996 bg = btrfs_lookup_block_group(fs_info, bytenr);
3997 ASSERT(bg);
3998 if (atomic_dec_and_test(&bg->nocow_writers))
3999 wake_up_atomic_t(&bg->nocow_writers);
4000 /*
4001 * Once for our lookup and once for the lookup done by a previous call
4002 * to btrfs_inc_nocow_writers()
4003 */
4004 btrfs_put_block_group(bg);
4005 btrfs_put_block_group(bg);
4006 }
4007
4008 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4009 {
4010 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
4011 TASK_UNINTERRUPTIBLE);
4012 }
4013
4014 static const char *alloc_name(u64 flags)
4015 {
4016 switch (flags) {
4017 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4018 return "mixed";
4019 case BTRFS_BLOCK_GROUP_METADATA:
4020 return "metadata";
4021 case BTRFS_BLOCK_GROUP_DATA:
4022 return "data";
4023 case BTRFS_BLOCK_GROUP_SYSTEM:
4024 return "system";
4025 default:
4026 WARN_ON(1);
4027 return "invalid-combination";
4028 };
4029 }
4030
4031 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4032 struct btrfs_space_info **new)
4033 {
4034
4035 struct btrfs_space_info *space_info;
4036 int i;
4037 int ret;
4038
4039 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4040 if (!space_info)
4041 return -ENOMEM;
4042
4043 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4044 GFP_KERNEL);
4045 if (ret) {
4046 kfree(space_info);
4047 return ret;
4048 }
4049
4050 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4051 INIT_LIST_HEAD(&space_info->block_groups[i]);
4052 init_rwsem(&space_info->groups_sem);
4053 spin_lock_init(&space_info->lock);
4054 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4055 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4056 init_waitqueue_head(&space_info->wait);
4057 INIT_LIST_HEAD(&space_info->ro_bgs);
4058 INIT_LIST_HEAD(&space_info->tickets);
4059 INIT_LIST_HEAD(&space_info->priority_tickets);
4060
4061 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4062 info->space_info_kobj, "%s",
4063 alloc_name(space_info->flags));
4064 if (ret) {
4065 percpu_counter_destroy(&space_info->total_bytes_pinned);
4066 kfree(space_info);
4067 return ret;
4068 }
4069
4070 *new = space_info;
4071 list_add_rcu(&space_info->list, &info->space_info);
4072 if (flags & BTRFS_BLOCK_GROUP_DATA)
4073 info->data_sinfo = space_info;
4074
4075 return ret;
4076 }
4077
4078 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4079 u64 total_bytes, u64 bytes_used,
4080 u64 bytes_readonly,
4081 struct btrfs_space_info **space_info)
4082 {
4083 struct btrfs_space_info *found;
4084 int factor;
4085
4086 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4087 BTRFS_BLOCK_GROUP_RAID10))
4088 factor = 2;
4089 else
4090 factor = 1;
4091
4092 found = __find_space_info(info, flags);
4093 ASSERT(found);
4094 spin_lock(&found->lock);
4095 found->total_bytes += total_bytes;
4096 found->disk_total += total_bytes * factor;
4097 found->bytes_used += bytes_used;
4098 found->disk_used += bytes_used * factor;
4099 found->bytes_readonly += bytes_readonly;
4100 if (total_bytes > 0)
4101 found->full = 0;
4102 space_info_add_new_bytes(info, found, total_bytes -
4103 bytes_used - bytes_readonly);
4104 spin_unlock(&found->lock);
4105 *space_info = found;
4106 }
4107
4108 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4109 {
4110 u64 extra_flags = chunk_to_extended(flags) &
4111 BTRFS_EXTENDED_PROFILE_MASK;
4112
4113 write_seqlock(&fs_info->profiles_lock);
4114 if (flags & BTRFS_BLOCK_GROUP_DATA)
4115 fs_info->avail_data_alloc_bits |= extra_flags;
4116 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4117 fs_info->avail_metadata_alloc_bits |= extra_flags;
4118 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4119 fs_info->avail_system_alloc_bits |= extra_flags;
4120 write_sequnlock(&fs_info->profiles_lock);
4121 }
4122
4123 /*
4124 * returns target flags in extended format or 0 if restripe for this
4125 * chunk_type is not in progress
4126 *
4127 * should be called with either volume_mutex or balance_lock held
4128 */
4129 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4130 {
4131 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4132 u64 target = 0;
4133
4134 if (!bctl)
4135 return 0;
4136
4137 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4138 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4140 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4141 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4142 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4143 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4144 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4145 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4146 }
4147
4148 return target;
4149 }
4150
4151 /*
4152 * @flags: available profiles in extended format (see ctree.h)
4153 *
4154 * Returns reduced profile in chunk format. If profile changing is in
4155 * progress (either running or paused) picks the target profile (if it's
4156 * already available), otherwise falls back to plain reducing.
4157 */
4158 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4159 {
4160 u64 num_devices = fs_info->fs_devices->rw_devices;
4161 u64 target;
4162 u64 raid_type;
4163 u64 allowed = 0;
4164
4165 /*
4166 * see if restripe for this chunk_type is in progress, if so
4167 * try to reduce to the target profile
4168 */
4169 spin_lock(&fs_info->balance_lock);
4170 target = get_restripe_target(fs_info, flags);
4171 if (target) {
4172 /* pick target profile only if it's already available */
4173 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4174 spin_unlock(&fs_info->balance_lock);
4175 return extended_to_chunk(target);
4176 }
4177 }
4178 spin_unlock(&fs_info->balance_lock);
4179
4180 /* First, mask out the RAID levels which aren't possible */
4181 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4182 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4183 allowed |= btrfs_raid_group[raid_type];
4184 }
4185 allowed &= flags;
4186
4187 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4188 allowed = BTRFS_BLOCK_GROUP_RAID6;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4190 allowed = BTRFS_BLOCK_GROUP_RAID5;
4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4192 allowed = BTRFS_BLOCK_GROUP_RAID10;
4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4194 allowed = BTRFS_BLOCK_GROUP_RAID1;
4195 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4196 allowed = BTRFS_BLOCK_GROUP_RAID0;
4197
4198 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4199
4200 return extended_to_chunk(flags | allowed);
4201 }
4202
4203 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4204 {
4205 unsigned seq;
4206 u64 flags;
4207
4208 do {
4209 flags = orig_flags;
4210 seq = read_seqbegin(&fs_info->profiles_lock);
4211
4212 if (flags & BTRFS_BLOCK_GROUP_DATA)
4213 flags |= fs_info->avail_data_alloc_bits;
4214 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4215 flags |= fs_info->avail_system_alloc_bits;
4216 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4217 flags |= fs_info->avail_metadata_alloc_bits;
4218 } while (read_seqretry(&fs_info->profiles_lock, seq));
4219
4220 return btrfs_reduce_alloc_profile(fs_info, flags);
4221 }
4222
4223 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4224 {
4225 struct btrfs_fs_info *fs_info = root->fs_info;
4226 u64 flags;
4227 u64 ret;
4228
4229 if (data)
4230 flags = BTRFS_BLOCK_GROUP_DATA;
4231 else if (root == fs_info->chunk_root)
4232 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4233 else
4234 flags = BTRFS_BLOCK_GROUP_METADATA;
4235
4236 ret = get_alloc_profile(fs_info, flags);
4237 return ret;
4238 }
4239
4240 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4241 {
4242 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4243 }
4244
4245 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4246 {
4247 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4248 }
4249
4250 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4251 {
4252 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4253 }
4254
4255 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4256 bool may_use_included)
4257 {
4258 ASSERT(s_info);
4259 return s_info->bytes_used + s_info->bytes_reserved +
4260 s_info->bytes_pinned + s_info->bytes_readonly +
4261 (may_use_included ? s_info->bytes_may_use : 0);
4262 }
4263
4264 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4265 {
4266 struct btrfs_root *root = inode->root;
4267 struct btrfs_fs_info *fs_info = root->fs_info;
4268 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4269 u64 used;
4270 int ret = 0;
4271 int need_commit = 2;
4272 int have_pinned_space;
4273
4274 /* make sure bytes are sectorsize aligned */
4275 bytes = ALIGN(bytes, fs_info->sectorsize);
4276
4277 if (btrfs_is_free_space_inode(inode)) {
4278 need_commit = 0;
4279 ASSERT(current->journal_info);
4280 }
4281
4282 again:
4283 /* make sure we have enough space to handle the data first */
4284 spin_lock(&data_sinfo->lock);
4285 used = btrfs_space_info_used(data_sinfo, true);
4286
4287 if (used + bytes > data_sinfo->total_bytes) {
4288 struct btrfs_trans_handle *trans;
4289
4290 /*
4291 * if we don't have enough free bytes in this space then we need
4292 * to alloc a new chunk.
4293 */
4294 if (!data_sinfo->full) {
4295 u64 alloc_target;
4296
4297 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4298 spin_unlock(&data_sinfo->lock);
4299
4300 alloc_target = btrfs_data_alloc_profile(fs_info);
4301 /*
4302 * It is ugly that we don't call nolock join
4303 * transaction for the free space inode case here.
4304 * But it is safe because we only do the data space
4305 * reservation for the free space cache in the
4306 * transaction context, the common join transaction
4307 * just increase the counter of the current transaction
4308 * handler, doesn't try to acquire the trans_lock of
4309 * the fs.
4310 */
4311 trans = btrfs_join_transaction(root);
4312 if (IS_ERR(trans))
4313 return PTR_ERR(trans);
4314
4315 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4316 CHUNK_ALLOC_NO_FORCE);
4317 btrfs_end_transaction(trans);
4318 if (ret < 0) {
4319 if (ret != -ENOSPC)
4320 return ret;
4321 else {
4322 have_pinned_space = 1;
4323 goto commit_trans;
4324 }
4325 }
4326
4327 goto again;
4328 }
4329
4330 /*
4331 * If we don't have enough pinned space to deal with this
4332 * allocation, and no removed chunk in current transaction,
4333 * don't bother committing the transaction.
4334 */
4335 have_pinned_space = percpu_counter_compare(
4336 &data_sinfo->total_bytes_pinned,
4337 used + bytes - data_sinfo->total_bytes);
4338 spin_unlock(&data_sinfo->lock);
4339
4340 /* commit the current transaction and try again */
4341 commit_trans:
4342 if (need_commit &&
4343 !atomic_read(&fs_info->open_ioctl_trans)) {
4344 need_commit--;
4345
4346 if (need_commit > 0) {
4347 btrfs_start_delalloc_roots(fs_info, 0, -1);
4348 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4349 (u64)-1);
4350 }
4351
4352 trans = btrfs_join_transaction(root);
4353 if (IS_ERR(trans))
4354 return PTR_ERR(trans);
4355 if (have_pinned_space >= 0 ||
4356 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4357 &trans->transaction->flags) ||
4358 need_commit > 0) {
4359 ret = btrfs_commit_transaction(trans);
4360 if (ret)
4361 return ret;
4362 /*
4363 * The cleaner kthread might still be doing iput
4364 * operations. Wait for it to finish so that
4365 * more space is released.
4366 */
4367 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4368 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4369 goto again;
4370 } else {
4371 btrfs_end_transaction(trans);
4372 }
4373 }
4374
4375 trace_btrfs_space_reservation(fs_info,
4376 "space_info:enospc",
4377 data_sinfo->flags, bytes, 1);
4378 return -ENOSPC;
4379 }
4380 data_sinfo->bytes_may_use += bytes;
4381 trace_btrfs_space_reservation(fs_info, "space_info",
4382 data_sinfo->flags, bytes, 1);
4383 spin_unlock(&data_sinfo->lock);
4384
4385 return 0;
4386 }
4387
4388 int btrfs_check_data_free_space(struct inode *inode,
4389 struct extent_changeset **reserved, u64 start, u64 len)
4390 {
4391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4392 int ret;
4393
4394 /* align the range */
4395 len = round_up(start + len, fs_info->sectorsize) -
4396 round_down(start, fs_info->sectorsize);
4397 start = round_down(start, fs_info->sectorsize);
4398
4399 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4400 if (ret < 0)
4401 return ret;
4402
4403 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4404 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4405 if (ret < 0)
4406 btrfs_free_reserved_data_space_noquota(inode, start, len);
4407 else
4408 ret = 0;
4409 return ret;
4410 }
4411
4412 /*
4413 * Called if we need to clear a data reservation for this inode
4414 * Normally in a error case.
4415 *
4416 * This one will *NOT* use accurate qgroup reserved space API, just for case
4417 * which we can't sleep and is sure it won't affect qgroup reserved space.
4418 * Like clear_bit_hook().
4419 */
4420 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4421 u64 len)
4422 {
4423 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4424 struct btrfs_space_info *data_sinfo;
4425
4426 /* Make sure the range is aligned to sectorsize */
4427 len = round_up(start + len, fs_info->sectorsize) -
4428 round_down(start, fs_info->sectorsize);
4429 start = round_down(start, fs_info->sectorsize);
4430
4431 data_sinfo = fs_info->data_sinfo;
4432 spin_lock(&data_sinfo->lock);
4433 if (WARN_ON(data_sinfo->bytes_may_use < len))
4434 data_sinfo->bytes_may_use = 0;
4435 else
4436 data_sinfo->bytes_may_use -= len;
4437 trace_btrfs_space_reservation(fs_info, "space_info",
4438 data_sinfo->flags, len, 0);
4439 spin_unlock(&data_sinfo->lock);
4440 }
4441
4442 /*
4443 * Called if we need to clear a data reservation for this inode
4444 * Normally in a error case.
4445 *
4446 * This one will handle the per-inode data rsv map for accurate reserved
4447 * space framework.
4448 */
4449 void btrfs_free_reserved_data_space(struct inode *inode,
4450 struct extent_changeset *reserved, u64 start, u64 len)
4451 {
4452 struct btrfs_root *root = BTRFS_I(inode)->root;
4453
4454 /* Make sure the range is aligned to sectorsize */
4455 len = round_up(start + len, root->fs_info->sectorsize) -
4456 round_down(start, root->fs_info->sectorsize);
4457 start = round_down(start, root->fs_info->sectorsize);
4458
4459 btrfs_free_reserved_data_space_noquota(inode, start, len);
4460 btrfs_qgroup_free_data(inode, reserved, start, len);
4461 }
4462
4463 static void force_metadata_allocation(struct btrfs_fs_info *info)
4464 {
4465 struct list_head *head = &info->space_info;
4466 struct btrfs_space_info *found;
4467
4468 rcu_read_lock();
4469 list_for_each_entry_rcu(found, head, list) {
4470 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4471 found->force_alloc = CHUNK_ALLOC_FORCE;
4472 }
4473 rcu_read_unlock();
4474 }
4475
4476 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4477 {
4478 return (global->size << 1);
4479 }
4480
4481 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4482 struct btrfs_space_info *sinfo, int force)
4483 {
4484 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4485 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4486 u64 thresh;
4487
4488 if (force == CHUNK_ALLOC_FORCE)
4489 return 1;
4490
4491 /*
4492 * We need to take into account the global rsv because for all intents
4493 * and purposes it's used space. Don't worry about locking the
4494 * global_rsv, it doesn't change except when the transaction commits.
4495 */
4496 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4497 bytes_used += calc_global_rsv_need_space(global_rsv);
4498
4499 /*
4500 * in limited mode, we want to have some free space up to
4501 * about 1% of the FS size.
4502 */
4503 if (force == CHUNK_ALLOC_LIMITED) {
4504 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4505 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4506
4507 if (sinfo->total_bytes - bytes_used < thresh)
4508 return 1;
4509 }
4510
4511 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4512 return 0;
4513 return 1;
4514 }
4515
4516 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4517 {
4518 u64 num_dev;
4519
4520 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4521 BTRFS_BLOCK_GROUP_RAID0 |
4522 BTRFS_BLOCK_GROUP_RAID5 |
4523 BTRFS_BLOCK_GROUP_RAID6))
4524 num_dev = fs_info->fs_devices->rw_devices;
4525 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4526 num_dev = 2;
4527 else
4528 num_dev = 1; /* DUP or single */
4529
4530 return num_dev;
4531 }
4532
4533 /*
4534 * If @is_allocation is true, reserve space in the system space info necessary
4535 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4536 * removing a chunk.
4537 */
4538 void check_system_chunk(struct btrfs_trans_handle *trans,
4539 struct btrfs_fs_info *fs_info, u64 type)
4540 {
4541 struct btrfs_space_info *info;
4542 u64 left;
4543 u64 thresh;
4544 int ret = 0;
4545 u64 num_devs;
4546
4547 /*
4548 * Needed because we can end up allocating a system chunk and for an
4549 * atomic and race free space reservation in the chunk block reserve.
4550 */
4551 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4552
4553 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4554 spin_lock(&info->lock);
4555 left = info->total_bytes - btrfs_space_info_used(info, true);
4556 spin_unlock(&info->lock);
4557
4558 num_devs = get_profile_num_devs(fs_info, type);
4559
4560 /* num_devs device items to update and 1 chunk item to add or remove */
4561 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4562 btrfs_calc_trans_metadata_size(fs_info, 1);
4563
4564 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4565 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4566 left, thresh, type);
4567 dump_space_info(fs_info, info, 0, 0);
4568 }
4569
4570 if (left < thresh) {
4571 u64 flags = btrfs_system_alloc_profile(fs_info);
4572
4573 /*
4574 * Ignore failure to create system chunk. We might end up not
4575 * needing it, as we might not need to COW all nodes/leafs from
4576 * the paths we visit in the chunk tree (they were already COWed
4577 * or created in the current transaction for example).
4578 */
4579 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4580 }
4581
4582 if (!ret) {
4583 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4584 &fs_info->chunk_block_rsv,
4585 thresh, BTRFS_RESERVE_NO_FLUSH);
4586 if (!ret)
4587 trans->chunk_bytes_reserved += thresh;
4588 }
4589 }
4590
4591 /*
4592 * If force is CHUNK_ALLOC_FORCE:
4593 * - return 1 if it successfully allocates a chunk,
4594 * - return errors including -ENOSPC otherwise.
4595 * If force is NOT CHUNK_ALLOC_FORCE:
4596 * - return 0 if it doesn't need to allocate a new chunk,
4597 * - return 1 if it successfully allocates a chunk,
4598 * - return errors including -ENOSPC otherwise.
4599 */
4600 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4601 struct btrfs_fs_info *fs_info, u64 flags, int force)
4602 {
4603 struct btrfs_space_info *space_info;
4604 int wait_for_alloc = 0;
4605 int ret = 0;
4606
4607 /* Don't re-enter if we're already allocating a chunk */
4608 if (trans->allocating_chunk)
4609 return -ENOSPC;
4610
4611 space_info = __find_space_info(fs_info, flags);
4612 if (!space_info) {
4613 ret = create_space_info(fs_info, flags, &space_info);
4614 if (ret)
4615 return ret;
4616 }
4617
4618 again:
4619 spin_lock(&space_info->lock);
4620 if (force < space_info->force_alloc)
4621 force = space_info->force_alloc;
4622 if (space_info->full) {
4623 if (should_alloc_chunk(fs_info, space_info, force))
4624 ret = -ENOSPC;
4625 else
4626 ret = 0;
4627 spin_unlock(&space_info->lock);
4628 return ret;
4629 }
4630
4631 if (!should_alloc_chunk(fs_info, space_info, force)) {
4632 spin_unlock(&space_info->lock);
4633 return 0;
4634 } else if (space_info->chunk_alloc) {
4635 wait_for_alloc = 1;
4636 } else {
4637 space_info->chunk_alloc = 1;
4638 }
4639
4640 spin_unlock(&space_info->lock);
4641
4642 mutex_lock(&fs_info->chunk_mutex);
4643
4644 /*
4645 * The chunk_mutex is held throughout the entirety of a chunk
4646 * allocation, so once we've acquired the chunk_mutex we know that the
4647 * other guy is done and we need to recheck and see if we should
4648 * allocate.
4649 */
4650 if (wait_for_alloc) {
4651 mutex_unlock(&fs_info->chunk_mutex);
4652 wait_for_alloc = 0;
4653 cond_resched();
4654 goto again;
4655 }
4656
4657 trans->allocating_chunk = true;
4658
4659 /*
4660 * If we have mixed data/metadata chunks we want to make sure we keep
4661 * allocating mixed chunks instead of individual chunks.
4662 */
4663 if (btrfs_mixed_space_info(space_info))
4664 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4665
4666 /*
4667 * if we're doing a data chunk, go ahead and make sure that
4668 * we keep a reasonable number of metadata chunks allocated in the
4669 * FS as well.
4670 */
4671 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4672 fs_info->data_chunk_allocations++;
4673 if (!(fs_info->data_chunk_allocations %
4674 fs_info->metadata_ratio))
4675 force_metadata_allocation(fs_info);
4676 }
4677
4678 /*
4679 * Check if we have enough space in SYSTEM chunk because we may need
4680 * to update devices.
4681 */
4682 check_system_chunk(trans, fs_info, flags);
4683
4684 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4685 trans->allocating_chunk = false;
4686
4687 spin_lock(&space_info->lock);
4688 if (ret < 0 && ret != -ENOSPC)
4689 goto out;
4690 if (ret) {
4691 space_info->full = 1;
4692 } else {
4693 ret = 1;
4694 space_info->max_extent_size = 0;
4695 }
4696
4697 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4698 out:
4699 space_info->chunk_alloc = 0;
4700 spin_unlock(&space_info->lock);
4701 mutex_unlock(&fs_info->chunk_mutex);
4702 /*
4703 * When we allocate a new chunk we reserve space in the chunk block
4704 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4705 * add new nodes/leafs to it if we end up needing to do it when
4706 * inserting the chunk item and updating device items as part of the
4707 * second phase of chunk allocation, performed by
4708 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4709 * large number of new block groups to create in our transaction
4710 * handle's new_bgs list to avoid exhausting the chunk block reserve
4711 * in extreme cases - like having a single transaction create many new
4712 * block groups when starting to write out the free space caches of all
4713 * the block groups that were made dirty during the lifetime of the
4714 * transaction.
4715 */
4716 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4717 btrfs_create_pending_block_groups(trans, fs_info);
4718
4719 return ret;
4720 }
4721
4722 static int can_overcommit(struct btrfs_fs_info *fs_info,
4723 struct btrfs_space_info *space_info, u64 bytes,
4724 enum btrfs_reserve_flush_enum flush,
4725 bool system_chunk)
4726 {
4727 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4728 u64 profile;
4729 u64 space_size;
4730 u64 avail;
4731 u64 used;
4732
4733 /* Don't overcommit when in mixed mode. */
4734 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4735 return 0;
4736
4737 if (system_chunk)
4738 profile = btrfs_system_alloc_profile(fs_info);
4739 else
4740 profile = btrfs_metadata_alloc_profile(fs_info);
4741
4742 used = btrfs_space_info_used(space_info, false);
4743
4744 /*
4745 * We only want to allow over committing if we have lots of actual space
4746 * free, but if we don't have enough space to handle the global reserve
4747 * space then we could end up having a real enospc problem when trying
4748 * to allocate a chunk or some other such important allocation.
4749 */
4750 spin_lock(&global_rsv->lock);
4751 space_size = calc_global_rsv_need_space(global_rsv);
4752 spin_unlock(&global_rsv->lock);
4753 if (used + space_size >= space_info->total_bytes)
4754 return 0;
4755
4756 used += space_info->bytes_may_use;
4757
4758 avail = atomic64_read(&fs_info->free_chunk_space);
4759
4760 /*
4761 * If we have dup, raid1 or raid10 then only half of the free
4762 * space is actually useable. For raid56, the space info used
4763 * doesn't include the parity drive, so we don't have to
4764 * change the math
4765 */
4766 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4767 BTRFS_BLOCK_GROUP_RAID1 |
4768 BTRFS_BLOCK_GROUP_RAID10))
4769 avail >>= 1;
4770
4771 /*
4772 * If we aren't flushing all things, let us overcommit up to
4773 * 1/2th of the space. If we can flush, don't let us overcommit
4774 * too much, let it overcommit up to 1/8 of the space.
4775 */
4776 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4777 avail >>= 3;
4778 else
4779 avail >>= 1;
4780
4781 if (used + bytes < space_info->total_bytes + avail)
4782 return 1;
4783 return 0;
4784 }
4785
4786 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4787 unsigned long nr_pages, int nr_items)
4788 {
4789 struct super_block *sb = fs_info->sb;
4790
4791 if (down_read_trylock(&sb->s_umount)) {
4792 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4793 up_read(&sb->s_umount);
4794 } else {
4795 /*
4796 * We needn't worry the filesystem going from r/w to r/o though
4797 * we don't acquire ->s_umount mutex, because the filesystem
4798 * should guarantee the delalloc inodes list be empty after
4799 * the filesystem is readonly(all dirty pages are written to
4800 * the disk).
4801 */
4802 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4803 if (!current->journal_info)
4804 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4805 }
4806 }
4807
4808 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4809 u64 to_reclaim)
4810 {
4811 u64 bytes;
4812 u64 nr;
4813
4814 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4815 nr = div64_u64(to_reclaim, bytes);
4816 if (!nr)
4817 nr = 1;
4818 return nr;
4819 }
4820
4821 #define EXTENT_SIZE_PER_ITEM SZ_256K
4822
4823 /*
4824 * shrink metadata reservation for delalloc
4825 */
4826 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4827 u64 orig, bool wait_ordered)
4828 {
4829 struct btrfs_space_info *space_info;
4830 struct btrfs_trans_handle *trans;
4831 u64 delalloc_bytes;
4832 u64 max_reclaim;
4833 u64 items;
4834 long time_left;
4835 unsigned long nr_pages;
4836 int loops;
4837 enum btrfs_reserve_flush_enum flush;
4838
4839 /* Calc the number of the pages we need flush for space reservation */
4840 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4841 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4842
4843 trans = (struct btrfs_trans_handle *)current->journal_info;
4844 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4845
4846 delalloc_bytes = percpu_counter_sum_positive(
4847 &fs_info->delalloc_bytes);
4848 if (delalloc_bytes == 0) {
4849 if (trans)
4850 return;
4851 if (wait_ordered)
4852 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4853 return;
4854 }
4855
4856 loops = 0;
4857 while (delalloc_bytes && loops < 3) {
4858 max_reclaim = min(delalloc_bytes, to_reclaim);
4859 nr_pages = max_reclaim >> PAGE_SHIFT;
4860 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4861 /*
4862 * We need to wait for the async pages to actually start before
4863 * we do anything.
4864 */
4865 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4866 if (!max_reclaim)
4867 goto skip_async;
4868
4869 if (max_reclaim <= nr_pages)
4870 max_reclaim = 0;
4871 else
4872 max_reclaim -= nr_pages;
4873
4874 wait_event(fs_info->async_submit_wait,
4875 atomic_read(&fs_info->async_delalloc_pages) <=
4876 (int)max_reclaim);
4877 skip_async:
4878 if (!trans)
4879 flush = BTRFS_RESERVE_FLUSH_ALL;
4880 else
4881 flush = BTRFS_RESERVE_NO_FLUSH;
4882 spin_lock(&space_info->lock);
4883 if (list_empty(&space_info->tickets) &&
4884 list_empty(&space_info->priority_tickets)) {
4885 spin_unlock(&space_info->lock);
4886 break;
4887 }
4888 spin_unlock(&space_info->lock);
4889
4890 loops++;
4891 if (wait_ordered && !trans) {
4892 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4893 } else {
4894 time_left = schedule_timeout_killable(1);
4895 if (time_left)
4896 break;
4897 }
4898 delalloc_bytes = percpu_counter_sum_positive(
4899 &fs_info->delalloc_bytes);
4900 }
4901 }
4902
4903 struct reserve_ticket {
4904 u64 bytes;
4905 int error;
4906 struct list_head list;
4907 wait_queue_head_t wait;
4908 };
4909
4910 /**
4911 * maybe_commit_transaction - possibly commit the transaction if its ok to
4912 * @root - the root we're allocating for
4913 * @bytes - the number of bytes we want to reserve
4914 * @force - force the commit
4915 *
4916 * This will check to make sure that committing the transaction will actually
4917 * get us somewhere and then commit the transaction if it does. Otherwise it
4918 * will return -ENOSPC.
4919 */
4920 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4921 struct btrfs_space_info *space_info)
4922 {
4923 struct reserve_ticket *ticket = NULL;
4924 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4925 struct btrfs_trans_handle *trans;
4926 u64 bytes;
4927
4928 trans = (struct btrfs_trans_handle *)current->journal_info;
4929 if (trans)
4930 return -EAGAIN;
4931
4932 spin_lock(&space_info->lock);
4933 if (!list_empty(&space_info->priority_tickets))
4934 ticket = list_first_entry(&space_info->priority_tickets,
4935 struct reserve_ticket, list);
4936 else if (!list_empty(&space_info->tickets))
4937 ticket = list_first_entry(&space_info->tickets,
4938 struct reserve_ticket, list);
4939 bytes = (ticket) ? ticket->bytes : 0;
4940 spin_unlock(&space_info->lock);
4941
4942 if (!bytes)
4943 return 0;
4944
4945 /* See if there is enough pinned space to make this reservation */
4946 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4947 bytes) >= 0)
4948 goto commit;
4949
4950 /*
4951 * See if there is some space in the delayed insertion reservation for
4952 * this reservation.
4953 */
4954 if (space_info != delayed_rsv->space_info)
4955 return -ENOSPC;
4956
4957 spin_lock(&delayed_rsv->lock);
4958 if (delayed_rsv->size > bytes)
4959 bytes = 0;
4960 else
4961 bytes -= delayed_rsv->size;
4962 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4963 bytes) < 0) {
4964 spin_unlock(&delayed_rsv->lock);
4965 return -ENOSPC;
4966 }
4967 spin_unlock(&delayed_rsv->lock);
4968
4969 commit:
4970 trans = btrfs_join_transaction(fs_info->extent_root);
4971 if (IS_ERR(trans))
4972 return -ENOSPC;
4973
4974 return btrfs_commit_transaction(trans);
4975 }
4976
4977 /*
4978 * Try to flush some data based on policy set by @state. This is only advisory
4979 * and may fail for various reasons. The caller is supposed to examine the
4980 * state of @space_info to detect the outcome.
4981 */
4982 static void flush_space(struct btrfs_fs_info *fs_info,
4983 struct btrfs_space_info *space_info, u64 num_bytes,
4984 int state)
4985 {
4986 struct btrfs_root *root = fs_info->extent_root;
4987 struct btrfs_trans_handle *trans;
4988 int nr;
4989 int ret = 0;
4990
4991 switch (state) {
4992 case FLUSH_DELAYED_ITEMS_NR:
4993 case FLUSH_DELAYED_ITEMS:
4994 if (state == FLUSH_DELAYED_ITEMS_NR)
4995 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4996 else
4997 nr = -1;
4998
4999 trans = btrfs_join_transaction(root);
5000 if (IS_ERR(trans)) {
5001 ret = PTR_ERR(trans);
5002 break;
5003 }
5004 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
5005 btrfs_end_transaction(trans);
5006 break;
5007 case FLUSH_DELALLOC:
5008 case FLUSH_DELALLOC_WAIT:
5009 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5010 state == FLUSH_DELALLOC_WAIT);
5011 break;
5012 case ALLOC_CHUNK:
5013 trans = btrfs_join_transaction(root);
5014 if (IS_ERR(trans)) {
5015 ret = PTR_ERR(trans);
5016 break;
5017 }
5018 ret = do_chunk_alloc(trans, fs_info,
5019 btrfs_metadata_alloc_profile(fs_info),
5020 CHUNK_ALLOC_NO_FORCE);
5021 btrfs_end_transaction(trans);
5022 if (ret > 0 || ret == -ENOSPC)
5023 ret = 0;
5024 break;
5025 case COMMIT_TRANS:
5026 ret = may_commit_transaction(fs_info, space_info);
5027 break;
5028 default:
5029 ret = -ENOSPC;
5030 break;
5031 }
5032
5033 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5034 ret);
5035 return;
5036 }
5037
5038 static inline u64
5039 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5040 struct btrfs_space_info *space_info,
5041 bool system_chunk)
5042 {
5043 struct reserve_ticket *ticket;
5044 u64 used;
5045 u64 expected;
5046 u64 to_reclaim = 0;
5047
5048 list_for_each_entry(ticket, &space_info->tickets, list)
5049 to_reclaim += ticket->bytes;
5050 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5051 to_reclaim += ticket->bytes;
5052 if (to_reclaim)
5053 return to_reclaim;
5054
5055 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5056 if (can_overcommit(fs_info, space_info, to_reclaim,
5057 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5058 return 0;
5059
5060 used = btrfs_space_info_used(space_info, true);
5061
5062 if (can_overcommit(fs_info, space_info, SZ_1M,
5063 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5064 expected = div_factor_fine(space_info->total_bytes, 95);
5065 else
5066 expected = div_factor_fine(space_info->total_bytes, 90);
5067
5068 if (used > expected)
5069 to_reclaim = used - expected;
5070 else
5071 to_reclaim = 0;
5072 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5073 space_info->bytes_reserved);
5074 return to_reclaim;
5075 }
5076
5077 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5078 struct btrfs_space_info *space_info,
5079 u64 used, bool system_chunk)
5080 {
5081 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5082
5083 /* If we're just plain full then async reclaim just slows us down. */
5084 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5085 return 0;
5086
5087 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5088 system_chunk))
5089 return 0;
5090
5091 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5092 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5093 }
5094
5095 static void wake_all_tickets(struct list_head *head)
5096 {
5097 struct reserve_ticket *ticket;
5098
5099 while (!list_empty(head)) {
5100 ticket = list_first_entry(head, struct reserve_ticket, list);
5101 list_del_init(&ticket->list);
5102 ticket->error = -ENOSPC;
5103 wake_up(&ticket->wait);
5104 }
5105 }
5106
5107 /*
5108 * This is for normal flushers, we can wait all goddamned day if we want to. We
5109 * will loop and continuously try to flush as long as we are making progress.
5110 * We count progress as clearing off tickets each time we have to loop.
5111 */
5112 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5113 {
5114 struct btrfs_fs_info *fs_info;
5115 struct btrfs_space_info *space_info;
5116 u64 to_reclaim;
5117 int flush_state;
5118 int commit_cycles = 0;
5119 u64 last_tickets_id;
5120
5121 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5122 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5123
5124 spin_lock(&space_info->lock);
5125 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5126 false);
5127 if (!to_reclaim) {
5128 space_info->flush = 0;
5129 spin_unlock(&space_info->lock);
5130 return;
5131 }
5132 last_tickets_id = space_info->tickets_id;
5133 spin_unlock(&space_info->lock);
5134
5135 flush_state = FLUSH_DELAYED_ITEMS_NR;
5136 do {
5137 flush_space(fs_info, space_info, to_reclaim, flush_state);
5138 spin_lock(&space_info->lock);
5139 if (list_empty(&space_info->tickets)) {
5140 space_info->flush = 0;
5141 spin_unlock(&space_info->lock);
5142 return;
5143 }
5144 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5145 space_info,
5146 false);
5147 if (last_tickets_id == space_info->tickets_id) {
5148 flush_state++;
5149 } else {
5150 last_tickets_id = space_info->tickets_id;
5151 flush_state = FLUSH_DELAYED_ITEMS_NR;
5152 if (commit_cycles)
5153 commit_cycles--;
5154 }
5155
5156 if (flush_state > COMMIT_TRANS) {
5157 commit_cycles++;
5158 if (commit_cycles > 2) {
5159 wake_all_tickets(&space_info->tickets);
5160 space_info->flush = 0;
5161 } else {
5162 flush_state = FLUSH_DELAYED_ITEMS_NR;
5163 }
5164 }
5165 spin_unlock(&space_info->lock);
5166 } while (flush_state <= COMMIT_TRANS);
5167 }
5168
5169 void btrfs_init_async_reclaim_work(struct work_struct *work)
5170 {
5171 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5172 }
5173
5174 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5175 struct btrfs_space_info *space_info,
5176 struct reserve_ticket *ticket)
5177 {
5178 u64 to_reclaim;
5179 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5180
5181 spin_lock(&space_info->lock);
5182 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5183 false);
5184 if (!to_reclaim) {
5185 spin_unlock(&space_info->lock);
5186 return;
5187 }
5188 spin_unlock(&space_info->lock);
5189
5190 do {
5191 flush_space(fs_info, space_info, to_reclaim, flush_state);
5192 flush_state++;
5193 spin_lock(&space_info->lock);
5194 if (ticket->bytes == 0) {
5195 spin_unlock(&space_info->lock);
5196 return;
5197 }
5198 spin_unlock(&space_info->lock);
5199
5200 /*
5201 * Priority flushers can't wait on delalloc without
5202 * deadlocking.
5203 */
5204 if (flush_state == FLUSH_DELALLOC ||
5205 flush_state == FLUSH_DELALLOC_WAIT)
5206 flush_state = ALLOC_CHUNK;
5207 } while (flush_state < COMMIT_TRANS);
5208 }
5209
5210 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5211 struct btrfs_space_info *space_info,
5212 struct reserve_ticket *ticket, u64 orig_bytes)
5213
5214 {
5215 DEFINE_WAIT(wait);
5216 int ret = 0;
5217
5218 spin_lock(&space_info->lock);
5219 while (ticket->bytes > 0 && ticket->error == 0) {
5220 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5221 if (ret) {
5222 ret = -EINTR;
5223 break;
5224 }
5225 spin_unlock(&space_info->lock);
5226
5227 schedule();
5228
5229 finish_wait(&ticket->wait, &wait);
5230 spin_lock(&space_info->lock);
5231 }
5232 if (!ret)
5233 ret = ticket->error;
5234 if (!list_empty(&ticket->list))
5235 list_del_init(&ticket->list);
5236 if (ticket->bytes && ticket->bytes < orig_bytes) {
5237 u64 num_bytes = orig_bytes - ticket->bytes;
5238 space_info->bytes_may_use -= num_bytes;
5239 trace_btrfs_space_reservation(fs_info, "space_info",
5240 space_info->flags, num_bytes, 0);
5241 }
5242 spin_unlock(&space_info->lock);
5243
5244 return ret;
5245 }
5246
5247 /**
5248 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5249 * @root - the root we're allocating for
5250 * @space_info - the space info we want to allocate from
5251 * @orig_bytes - the number of bytes we want
5252 * @flush - whether or not we can flush to make our reservation
5253 *
5254 * This will reserve orig_bytes number of bytes from the space info associated
5255 * with the block_rsv. If there is not enough space it will make an attempt to
5256 * flush out space to make room. It will do this by flushing delalloc if
5257 * possible or committing the transaction. If flush is 0 then no attempts to
5258 * regain reservations will be made and this will fail if there is not enough
5259 * space already.
5260 */
5261 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5262 struct btrfs_space_info *space_info,
5263 u64 orig_bytes,
5264 enum btrfs_reserve_flush_enum flush,
5265 bool system_chunk)
5266 {
5267 struct reserve_ticket ticket;
5268 u64 used;
5269 int ret = 0;
5270
5271 ASSERT(orig_bytes);
5272 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5273
5274 spin_lock(&space_info->lock);
5275 ret = -ENOSPC;
5276 used = btrfs_space_info_used(space_info, true);
5277
5278 /*
5279 * If we have enough space then hooray, make our reservation and carry
5280 * on. If not see if we can overcommit, and if we can, hooray carry on.
5281 * If not things get more complicated.
5282 */
5283 if (used + orig_bytes <= space_info->total_bytes) {
5284 space_info->bytes_may_use += orig_bytes;
5285 trace_btrfs_space_reservation(fs_info, "space_info",
5286 space_info->flags, orig_bytes, 1);
5287 ret = 0;
5288 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5289 system_chunk)) {
5290 space_info->bytes_may_use += orig_bytes;
5291 trace_btrfs_space_reservation(fs_info, "space_info",
5292 space_info->flags, orig_bytes, 1);
5293 ret = 0;
5294 }
5295
5296 /*
5297 * If we couldn't make a reservation then setup our reservation ticket
5298 * and kick the async worker if it's not already running.
5299 *
5300 * If we are a priority flusher then we just need to add our ticket to
5301 * the list and we will do our own flushing further down.
5302 */
5303 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5304 ticket.bytes = orig_bytes;
5305 ticket.error = 0;
5306 init_waitqueue_head(&ticket.wait);
5307 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5308 list_add_tail(&ticket.list, &space_info->tickets);
5309 if (!space_info->flush) {
5310 space_info->flush = 1;
5311 trace_btrfs_trigger_flush(fs_info,
5312 space_info->flags,
5313 orig_bytes, flush,
5314 "enospc");
5315 queue_work(system_unbound_wq,
5316 &fs_info->async_reclaim_work);
5317 }
5318 } else {
5319 list_add_tail(&ticket.list,
5320 &space_info->priority_tickets);
5321 }
5322 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5323 used += orig_bytes;
5324 /*
5325 * We will do the space reservation dance during log replay,
5326 * which means we won't have fs_info->fs_root set, so don't do
5327 * the async reclaim as we will panic.
5328 */
5329 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5330 need_do_async_reclaim(fs_info, space_info,
5331 used, system_chunk) &&
5332 !work_busy(&fs_info->async_reclaim_work)) {
5333 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5334 orig_bytes, flush, "preempt");
5335 queue_work(system_unbound_wq,
5336 &fs_info->async_reclaim_work);
5337 }
5338 }
5339 spin_unlock(&space_info->lock);
5340 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5341 return ret;
5342
5343 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5344 return wait_reserve_ticket(fs_info, space_info, &ticket,
5345 orig_bytes);
5346
5347 ret = 0;
5348 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5349 spin_lock(&space_info->lock);
5350 if (ticket.bytes) {
5351 if (ticket.bytes < orig_bytes) {
5352 u64 num_bytes = orig_bytes - ticket.bytes;
5353 space_info->bytes_may_use -= num_bytes;
5354 trace_btrfs_space_reservation(fs_info, "space_info",
5355 space_info->flags,
5356 num_bytes, 0);
5357
5358 }
5359 list_del_init(&ticket.list);
5360 ret = -ENOSPC;
5361 }
5362 spin_unlock(&space_info->lock);
5363 ASSERT(list_empty(&ticket.list));
5364 return ret;
5365 }
5366
5367 /**
5368 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5369 * @root - the root we're allocating for
5370 * @block_rsv - the block_rsv we're allocating for
5371 * @orig_bytes - the number of bytes we want
5372 * @flush - whether or not we can flush to make our reservation
5373 *
5374 * This will reserve orgi_bytes number of bytes from the space info associated
5375 * with the block_rsv. If there is not enough space it will make an attempt to
5376 * flush out space to make room. It will do this by flushing delalloc if
5377 * possible or committing the transaction. If flush is 0 then no attempts to
5378 * regain reservations will be made and this will fail if there is not enough
5379 * space already.
5380 */
5381 static int reserve_metadata_bytes(struct btrfs_root *root,
5382 struct btrfs_block_rsv *block_rsv,
5383 u64 orig_bytes,
5384 enum btrfs_reserve_flush_enum flush)
5385 {
5386 struct btrfs_fs_info *fs_info = root->fs_info;
5387 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5388 int ret;
5389 bool system_chunk = (root == fs_info->chunk_root);
5390
5391 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5392 orig_bytes, flush, system_chunk);
5393 if (ret == -ENOSPC &&
5394 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5395 if (block_rsv != global_rsv &&
5396 !block_rsv_use_bytes(global_rsv, orig_bytes))
5397 ret = 0;
5398 }
5399 if (ret == -ENOSPC)
5400 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5401 block_rsv->space_info->flags,
5402 orig_bytes, 1);
5403 return ret;
5404 }
5405
5406 static struct btrfs_block_rsv *get_block_rsv(
5407 const struct btrfs_trans_handle *trans,
5408 const struct btrfs_root *root)
5409 {
5410 struct btrfs_fs_info *fs_info = root->fs_info;
5411 struct btrfs_block_rsv *block_rsv = NULL;
5412
5413 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5414 (root == fs_info->csum_root && trans->adding_csums) ||
5415 (root == fs_info->uuid_root))
5416 block_rsv = trans->block_rsv;
5417
5418 if (!block_rsv)
5419 block_rsv = root->block_rsv;
5420
5421 if (!block_rsv)
5422 block_rsv = &fs_info->empty_block_rsv;
5423
5424 return block_rsv;
5425 }
5426
5427 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5428 u64 num_bytes)
5429 {
5430 int ret = -ENOSPC;
5431 spin_lock(&block_rsv->lock);
5432 if (block_rsv->reserved >= num_bytes) {
5433 block_rsv->reserved -= num_bytes;
5434 if (block_rsv->reserved < block_rsv->size)
5435 block_rsv->full = 0;
5436 ret = 0;
5437 }
5438 spin_unlock(&block_rsv->lock);
5439 return ret;
5440 }
5441
5442 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5443 u64 num_bytes, int update_size)
5444 {
5445 spin_lock(&block_rsv->lock);
5446 block_rsv->reserved += num_bytes;
5447 if (update_size)
5448 block_rsv->size += num_bytes;
5449 else if (block_rsv->reserved >= block_rsv->size)
5450 block_rsv->full = 1;
5451 spin_unlock(&block_rsv->lock);
5452 }
5453
5454 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5455 struct btrfs_block_rsv *dest, u64 num_bytes,
5456 int min_factor)
5457 {
5458 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5459 u64 min_bytes;
5460
5461 if (global_rsv->space_info != dest->space_info)
5462 return -ENOSPC;
5463
5464 spin_lock(&global_rsv->lock);
5465 min_bytes = div_factor(global_rsv->size, min_factor);
5466 if (global_rsv->reserved < min_bytes + num_bytes) {
5467 spin_unlock(&global_rsv->lock);
5468 return -ENOSPC;
5469 }
5470 global_rsv->reserved -= num_bytes;
5471 if (global_rsv->reserved < global_rsv->size)
5472 global_rsv->full = 0;
5473 spin_unlock(&global_rsv->lock);
5474
5475 block_rsv_add_bytes(dest, num_bytes, 1);
5476 return 0;
5477 }
5478
5479 /*
5480 * This is for space we already have accounted in space_info->bytes_may_use, so
5481 * basically when we're returning space from block_rsv's.
5482 */
5483 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5484 struct btrfs_space_info *space_info,
5485 u64 num_bytes)
5486 {
5487 struct reserve_ticket *ticket;
5488 struct list_head *head;
5489 u64 used;
5490 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5491 bool check_overcommit = false;
5492
5493 spin_lock(&space_info->lock);
5494 head = &space_info->priority_tickets;
5495
5496 /*
5497 * If we are over our limit then we need to check and see if we can
5498 * overcommit, and if we can't then we just need to free up our space
5499 * and not satisfy any requests.
5500 */
5501 used = btrfs_space_info_used(space_info, true);
5502 if (used - num_bytes >= space_info->total_bytes)
5503 check_overcommit = true;
5504 again:
5505 while (!list_empty(head) && num_bytes) {
5506 ticket = list_first_entry(head, struct reserve_ticket,
5507 list);
5508 /*
5509 * We use 0 bytes because this space is already reserved, so
5510 * adding the ticket space would be a double count.
5511 */
5512 if (check_overcommit &&
5513 !can_overcommit(fs_info, space_info, 0, flush, false))
5514 break;
5515 if (num_bytes >= ticket->bytes) {
5516 list_del_init(&ticket->list);
5517 num_bytes -= ticket->bytes;
5518 ticket->bytes = 0;
5519 space_info->tickets_id++;
5520 wake_up(&ticket->wait);
5521 } else {
5522 ticket->bytes -= num_bytes;
5523 num_bytes = 0;
5524 }
5525 }
5526
5527 if (num_bytes && head == &space_info->priority_tickets) {
5528 head = &space_info->tickets;
5529 flush = BTRFS_RESERVE_FLUSH_ALL;
5530 goto again;
5531 }
5532 space_info->bytes_may_use -= num_bytes;
5533 trace_btrfs_space_reservation(fs_info, "space_info",
5534 space_info->flags, num_bytes, 0);
5535 spin_unlock(&space_info->lock);
5536 }
5537
5538 /*
5539 * This is for newly allocated space that isn't accounted in
5540 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5541 * we use this helper.
5542 */
5543 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5544 struct btrfs_space_info *space_info,
5545 u64 num_bytes)
5546 {
5547 struct reserve_ticket *ticket;
5548 struct list_head *head = &space_info->priority_tickets;
5549
5550 again:
5551 while (!list_empty(head) && num_bytes) {
5552 ticket = list_first_entry(head, struct reserve_ticket,
5553 list);
5554 if (num_bytes >= ticket->bytes) {
5555 trace_btrfs_space_reservation(fs_info, "space_info",
5556 space_info->flags,
5557 ticket->bytes, 1);
5558 list_del_init(&ticket->list);
5559 num_bytes -= ticket->bytes;
5560 space_info->bytes_may_use += ticket->bytes;
5561 ticket->bytes = 0;
5562 space_info->tickets_id++;
5563 wake_up(&ticket->wait);
5564 } else {
5565 trace_btrfs_space_reservation(fs_info, "space_info",
5566 space_info->flags,
5567 num_bytes, 1);
5568 space_info->bytes_may_use += num_bytes;
5569 ticket->bytes -= num_bytes;
5570 num_bytes = 0;
5571 }
5572 }
5573
5574 if (num_bytes && head == &space_info->priority_tickets) {
5575 head = &space_info->tickets;
5576 goto again;
5577 }
5578 }
5579
5580 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5581 struct btrfs_block_rsv *block_rsv,
5582 struct btrfs_block_rsv *dest, u64 num_bytes)
5583 {
5584 struct btrfs_space_info *space_info = block_rsv->space_info;
5585 u64 ret;
5586
5587 spin_lock(&block_rsv->lock);
5588 if (num_bytes == (u64)-1)
5589 num_bytes = block_rsv->size;
5590 block_rsv->size -= num_bytes;
5591 if (block_rsv->reserved >= block_rsv->size) {
5592 num_bytes = block_rsv->reserved - block_rsv->size;
5593 block_rsv->reserved = block_rsv->size;
5594 block_rsv->full = 1;
5595 } else {
5596 num_bytes = 0;
5597 }
5598 spin_unlock(&block_rsv->lock);
5599
5600 ret = num_bytes;
5601 if (num_bytes > 0) {
5602 if (dest) {
5603 spin_lock(&dest->lock);
5604 if (!dest->full) {
5605 u64 bytes_to_add;
5606
5607 bytes_to_add = dest->size - dest->reserved;
5608 bytes_to_add = min(num_bytes, bytes_to_add);
5609 dest->reserved += bytes_to_add;
5610 if (dest->reserved >= dest->size)
5611 dest->full = 1;
5612 num_bytes -= bytes_to_add;
5613 }
5614 spin_unlock(&dest->lock);
5615 }
5616 if (num_bytes)
5617 space_info_add_old_bytes(fs_info, space_info,
5618 num_bytes);
5619 }
5620 return ret;
5621 }
5622
5623 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5624 struct btrfs_block_rsv *dst, u64 num_bytes,
5625 int update_size)
5626 {
5627 int ret;
5628
5629 ret = block_rsv_use_bytes(src, num_bytes);
5630 if (ret)
5631 return ret;
5632
5633 block_rsv_add_bytes(dst, num_bytes, update_size);
5634 return 0;
5635 }
5636
5637 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5638 {
5639 memset(rsv, 0, sizeof(*rsv));
5640 spin_lock_init(&rsv->lock);
5641 rsv->type = type;
5642 }
5643
5644 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5645 struct btrfs_block_rsv *rsv,
5646 unsigned short type)
5647 {
5648 btrfs_init_block_rsv(rsv, type);
5649 rsv->space_info = __find_space_info(fs_info,
5650 BTRFS_BLOCK_GROUP_METADATA);
5651 }
5652
5653 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5654 unsigned short type)
5655 {
5656 struct btrfs_block_rsv *block_rsv;
5657
5658 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5659 if (!block_rsv)
5660 return NULL;
5661
5662 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5663 return block_rsv;
5664 }
5665
5666 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5667 struct btrfs_block_rsv *rsv)
5668 {
5669 if (!rsv)
5670 return;
5671 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5672 kfree(rsv);
5673 }
5674
5675 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5676 {
5677 kfree(rsv);
5678 }
5679
5680 int btrfs_block_rsv_add(struct btrfs_root *root,
5681 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5682 enum btrfs_reserve_flush_enum flush)
5683 {
5684 int ret;
5685
5686 if (num_bytes == 0)
5687 return 0;
5688
5689 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5690 if (!ret) {
5691 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5692 return 0;
5693 }
5694
5695 return ret;
5696 }
5697
5698 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5699 {
5700 u64 num_bytes = 0;
5701 int ret = -ENOSPC;
5702
5703 if (!block_rsv)
5704 return 0;
5705
5706 spin_lock(&block_rsv->lock);
5707 num_bytes = div_factor(block_rsv->size, min_factor);
5708 if (block_rsv->reserved >= num_bytes)
5709 ret = 0;
5710 spin_unlock(&block_rsv->lock);
5711
5712 return ret;
5713 }
5714
5715 int btrfs_block_rsv_refill(struct btrfs_root *root,
5716 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5717 enum btrfs_reserve_flush_enum flush)
5718 {
5719 u64 num_bytes = 0;
5720 int ret = -ENOSPC;
5721
5722 if (!block_rsv)
5723 return 0;
5724
5725 spin_lock(&block_rsv->lock);
5726 num_bytes = min_reserved;
5727 if (block_rsv->reserved >= num_bytes)
5728 ret = 0;
5729 else
5730 num_bytes -= block_rsv->reserved;
5731 spin_unlock(&block_rsv->lock);
5732
5733 if (!ret)
5734 return 0;
5735
5736 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5737 if (!ret) {
5738 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5739 return 0;
5740 }
5741
5742 return ret;
5743 }
5744
5745 /**
5746 * btrfs_inode_rsv_refill - refill the inode block rsv.
5747 * @inode - the inode we are refilling.
5748 * @flush - the flusing restriction.
5749 *
5750 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5751 * block_rsv->size as the minimum size. We'll either refill the missing amount
5752 * or return if we already have enough space. This will also handle the resreve
5753 * tracepoint for the reserved amount.
5754 */
5755 int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5756 enum btrfs_reserve_flush_enum flush)
5757 {
5758 struct btrfs_root *root = inode->root;
5759 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5760 u64 num_bytes = 0;
5761 int ret = -ENOSPC;
5762
5763 spin_lock(&block_rsv->lock);
5764 if (block_rsv->reserved < block_rsv->size)
5765 num_bytes = block_rsv->size - block_rsv->reserved;
5766 spin_unlock(&block_rsv->lock);
5767
5768 if (num_bytes == 0)
5769 return 0;
5770
5771 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5772 if (!ret) {
5773 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5774 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5775 btrfs_ino(inode), num_bytes, 1);
5776 }
5777 return ret;
5778 }
5779
5780 /**
5781 * btrfs_inode_rsv_release - release any excessive reservation.
5782 * @inode - the inode we need to release from.
5783 *
5784 * This is the same as btrfs_block_rsv_release, except that it handles the
5785 * tracepoint for the reservation.
5786 */
5787 void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5788 {
5789 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5791 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5792 u64 released = 0;
5793
5794 /*
5795 * Since we statically set the block_rsv->size we just want to say we
5796 * are releasing 0 bytes, and then we'll just get the reservation over
5797 * the size free'd.
5798 */
5799 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5800 if (released > 0)
5801 trace_btrfs_space_reservation(fs_info, "delalloc",
5802 btrfs_ino(inode), released, 0);
5803 }
5804
5805 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5806 struct btrfs_block_rsv *block_rsv,
5807 u64 num_bytes)
5808 {
5809 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5810
5811 if (global_rsv == block_rsv ||
5812 block_rsv->space_info != global_rsv->space_info)
5813 global_rsv = NULL;
5814 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5815 }
5816
5817 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5818 {
5819 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5820 struct btrfs_space_info *sinfo = block_rsv->space_info;
5821 u64 num_bytes;
5822
5823 /*
5824 * The global block rsv is based on the size of the extent tree, the
5825 * checksum tree and the root tree. If the fs is empty we want to set
5826 * it to a minimal amount for safety.
5827 */
5828 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5829 btrfs_root_used(&fs_info->csum_root->root_item) +
5830 btrfs_root_used(&fs_info->tree_root->root_item);
5831 num_bytes = max_t(u64, num_bytes, SZ_16M);
5832
5833 spin_lock(&sinfo->lock);
5834 spin_lock(&block_rsv->lock);
5835
5836 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5837
5838 if (block_rsv->reserved < block_rsv->size) {
5839 num_bytes = btrfs_space_info_used(sinfo, true);
5840 if (sinfo->total_bytes > num_bytes) {
5841 num_bytes = sinfo->total_bytes - num_bytes;
5842 num_bytes = min(num_bytes,
5843 block_rsv->size - block_rsv->reserved);
5844 block_rsv->reserved += num_bytes;
5845 sinfo->bytes_may_use += num_bytes;
5846 trace_btrfs_space_reservation(fs_info, "space_info",
5847 sinfo->flags, num_bytes,
5848 1);
5849 }
5850 } else if (block_rsv->reserved > block_rsv->size) {
5851 num_bytes = block_rsv->reserved - block_rsv->size;
5852 sinfo->bytes_may_use -= num_bytes;
5853 trace_btrfs_space_reservation(fs_info, "space_info",
5854 sinfo->flags, num_bytes, 0);
5855 block_rsv->reserved = block_rsv->size;
5856 }
5857
5858 if (block_rsv->reserved == block_rsv->size)
5859 block_rsv->full = 1;
5860 else
5861 block_rsv->full = 0;
5862
5863 spin_unlock(&block_rsv->lock);
5864 spin_unlock(&sinfo->lock);
5865 }
5866
5867 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5868 {
5869 struct btrfs_space_info *space_info;
5870
5871 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5872 fs_info->chunk_block_rsv.space_info = space_info;
5873
5874 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5875 fs_info->global_block_rsv.space_info = space_info;
5876 fs_info->trans_block_rsv.space_info = space_info;
5877 fs_info->empty_block_rsv.space_info = space_info;
5878 fs_info->delayed_block_rsv.space_info = space_info;
5879
5880 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5881 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5882 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5883 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5884 if (fs_info->quota_root)
5885 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5886 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5887
5888 update_global_block_rsv(fs_info);
5889 }
5890
5891 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5892 {
5893 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5894 (u64)-1);
5895 WARN_ON(fs_info->trans_block_rsv.size > 0);
5896 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5897 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5898 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5899 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5900 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5901 }
5902
5903 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5904 struct btrfs_fs_info *fs_info)
5905 {
5906 if (!trans->block_rsv) {
5907 ASSERT(!trans->bytes_reserved);
5908 return;
5909 }
5910
5911 if (!trans->bytes_reserved)
5912 return;
5913
5914 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5915 trace_btrfs_space_reservation(fs_info, "transaction",
5916 trans->transid, trans->bytes_reserved, 0);
5917 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5918 trans->bytes_reserved);
5919 trans->bytes_reserved = 0;
5920 }
5921
5922 /*
5923 * To be called after all the new block groups attached to the transaction
5924 * handle have been created (btrfs_create_pending_block_groups()).
5925 */
5926 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5927 {
5928 struct btrfs_fs_info *fs_info = trans->fs_info;
5929
5930 if (!trans->chunk_bytes_reserved)
5931 return;
5932
5933 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5934
5935 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5936 trans->chunk_bytes_reserved);
5937 trans->chunk_bytes_reserved = 0;
5938 }
5939
5940 /* Can only return 0 or -ENOSPC */
5941 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5942 struct btrfs_inode *inode)
5943 {
5944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5945 struct btrfs_root *root = inode->root;
5946 /*
5947 * We always use trans->block_rsv here as we will have reserved space
5948 * for our orphan when starting the transaction, using get_block_rsv()
5949 * here will sometimes make us choose the wrong block rsv as we could be
5950 * doing a reloc inode for a non refcounted root.
5951 */
5952 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5953 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5954
5955 /*
5956 * We need to hold space in order to delete our orphan item once we've
5957 * added it, so this takes the reservation so we can release it later
5958 * when we are truly done with the orphan item.
5959 */
5960 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5961
5962 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5963 num_bytes, 1);
5964 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5965 }
5966
5967 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5968 {
5969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5970 struct btrfs_root *root = inode->root;
5971 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5972
5973 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5974 num_bytes, 0);
5975 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5976 }
5977
5978 /*
5979 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5980 * root: the root of the parent directory
5981 * rsv: block reservation
5982 * items: the number of items that we need do reservation
5983 * qgroup_reserved: used to return the reserved size in qgroup
5984 *
5985 * This function is used to reserve the space for snapshot/subvolume
5986 * creation and deletion. Those operations are different with the
5987 * common file/directory operations, they change two fs/file trees
5988 * and root tree, the number of items that the qgroup reserves is
5989 * different with the free space reservation. So we can not use
5990 * the space reservation mechanism in start_transaction().
5991 */
5992 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5993 struct btrfs_block_rsv *rsv,
5994 int items,
5995 u64 *qgroup_reserved,
5996 bool use_global_rsv)
5997 {
5998 u64 num_bytes;
5999 int ret;
6000 struct btrfs_fs_info *fs_info = root->fs_info;
6001 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6002
6003 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6004 /* One for parent inode, two for dir entries */
6005 num_bytes = 3 * fs_info->nodesize;
6006 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
6007 if (ret)
6008 return ret;
6009 } else {
6010 num_bytes = 0;
6011 }
6012
6013 *qgroup_reserved = num_bytes;
6014
6015 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6016 rsv->space_info = __find_space_info(fs_info,
6017 BTRFS_BLOCK_GROUP_METADATA);
6018 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6019 BTRFS_RESERVE_FLUSH_ALL);
6020
6021 if (ret == -ENOSPC && use_global_rsv)
6022 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6023
6024 if (ret && *qgroup_reserved)
6025 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6026
6027 return ret;
6028 }
6029
6030 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6031 struct btrfs_block_rsv *rsv)
6032 {
6033 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6034 }
6035
6036 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6037 struct btrfs_inode *inode)
6038 {
6039 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6040 u64 reserve_size = 0;
6041 u64 csum_leaves;
6042 unsigned outstanding_extents;
6043
6044 lockdep_assert_held(&inode->lock);
6045 outstanding_extents = inode->outstanding_extents;
6046 if (outstanding_extents)
6047 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6048 outstanding_extents + 1);
6049 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6050 inode->csum_bytes);
6051 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6052 csum_leaves);
6053
6054 spin_lock(&block_rsv->lock);
6055 block_rsv->size = reserve_size;
6056 spin_unlock(&block_rsv->lock);
6057 }
6058
6059 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6060 {
6061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6062 struct btrfs_root *root = inode->root;
6063 unsigned nr_extents;
6064 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6065 int ret = 0;
6066 bool delalloc_lock = true;
6067
6068 /* If we are a free space inode we need to not flush since we will be in
6069 * the middle of a transaction commit. We also don't need the delalloc
6070 * mutex since we won't race with anybody. We need this mostly to make
6071 * lockdep shut its filthy mouth.
6072 *
6073 * If we have a transaction open (can happen if we call truncate_block
6074 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6075 */
6076 if (btrfs_is_free_space_inode(inode)) {
6077 flush = BTRFS_RESERVE_NO_FLUSH;
6078 delalloc_lock = false;
6079 } else if (current->journal_info) {
6080 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6081 }
6082
6083 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6084 btrfs_transaction_in_commit(fs_info))
6085 schedule_timeout(1);
6086
6087 if (delalloc_lock)
6088 mutex_lock(&inode->delalloc_mutex);
6089
6090 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6091
6092 /* Add our new extents and calculate the new rsv size. */
6093 spin_lock(&inode->lock);
6094 nr_extents = count_max_extents(num_bytes);
6095 btrfs_mod_outstanding_extents(inode, nr_extents);
6096 inode->csum_bytes += num_bytes;
6097 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6098 spin_unlock(&inode->lock);
6099
6100 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6101 ret = btrfs_qgroup_reserve_meta(root,
6102 nr_extents * fs_info->nodesize, true);
6103 if (ret)
6104 goto out_fail;
6105 }
6106
6107 ret = btrfs_inode_rsv_refill(inode, flush);
6108 if (unlikely(ret)) {
6109 btrfs_qgroup_free_meta(root,
6110 nr_extents * fs_info->nodesize);
6111 goto out_fail;
6112 }
6113
6114 if (delalloc_lock)
6115 mutex_unlock(&inode->delalloc_mutex);
6116 return 0;
6117
6118 out_fail:
6119 spin_lock(&inode->lock);
6120 nr_extents = count_max_extents(num_bytes);
6121 btrfs_mod_outstanding_extents(inode, -nr_extents);
6122 inode->csum_bytes -= num_bytes;
6123 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6124 spin_unlock(&inode->lock);
6125
6126 btrfs_inode_rsv_release(inode);
6127 if (delalloc_lock)
6128 mutex_unlock(&inode->delalloc_mutex);
6129 return ret;
6130 }
6131
6132 /**
6133 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6134 * @inode: the inode to release the reservation for.
6135 * @num_bytes: the number of bytes we are releasing.
6136 *
6137 * This will release the metadata reservation for an inode. This can be called
6138 * once we complete IO for a given set of bytes to release their metadata
6139 * reservations, or on error for the same reason.
6140 */
6141 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6142 {
6143 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6144
6145 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6146 spin_lock(&inode->lock);
6147 inode->csum_bytes -= num_bytes;
6148 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6149 spin_unlock(&inode->lock);
6150
6151 if (btrfs_is_testing(fs_info))
6152 return;
6153
6154 btrfs_inode_rsv_release(inode);
6155 }
6156
6157 /**
6158 * btrfs_delalloc_release_extents - release our outstanding_extents
6159 * @inode: the inode to balance the reservation for.
6160 * @num_bytes: the number of bytes we originally reserved with
6161 *
6162 * When we reserve space we increase outstanding_extents for the extents we may
6163 * add. Once we've set the range as delalloc or created our ordered extents we
6164 * have outstanding_extents to track the real usage, so we use this to free our
6165 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6166 * with btrfs_delalloc_reserve_metadata.
6167 */
6168 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6169 {
6170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6171 unsigned num_extents;
6172
6173 spin_lock(&inode->lock);
6174 num_extents = count_max_extents(num_bytes);
6175 btrfs_mod_outstanding_extents(inode, -num_extents);
6176 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6177 spin_unlock(&inode->lock);
6178
6179 if (btrfs_is_testing(fs_info))
6180 return;
6181
6182 btrfs_inode_rsv_release(inode);
6183 }
6184
6185 /**
6186 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6187 * delalloc
6188 * @inode: inode we're writing to
6189 * @start: start range we are writing to
6190 * @len: how long the range we are writing to
6191 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6192 * current reservation.
6193 *
6194 * This will do the following things
6195 *
6196 * o reserve space in data space info for num bytes
6197 * and reserve precious corresponding qgroup space
6198 * (Done in check_data_free_space)
6199 *
6200 * o reserve space for metadata space, based on the number of outstanding
6201 * extents and how much csums will be needed
6202 * also reserve metadata space in a per root over-reserve method.
6203 * o add to the inodes->delalloc_bytes
6204 * o add it to the fs_info's delalloc inodes list.
6205 * (Above 3 all done in delalloc_reserve_metadata)
6206 *
6207 * Return 0 for success
6208 * Return <0 for error(-ENOSPC or -EQUOT)
6209 */
6210 int btrfs_delalloc_reserve_space(struct inode *inode,
6211 struct extent_changeset **reserved, u64 start, u64 len)
6212 {
6213 int ret;
6214
6215 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6216 if (ret < 0)
6217 return ret;
6218 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6219 if (ret < 0)
6220 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6221 return ret;
6222 }
6223
6224 /**
6225 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6226 * @inode: inode we're releasing space for
6227 * @start: start position of the space already reserved
6228 * @len: the len of the space already reserved
6229 * @release_bytes: the len of the space we consumed or didn't use
6230 *
6231 * This function will release the metadata space that was not used and will
6232 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6233 * list if there are no delalloc bytes left.
6234 * Also it will handle the qgroup reserved space.
6235 */
6236 void btrfs_delalloc_release_space(struct inode *inode,
6237 struct extent_changeset *reserved,
6238 u64 start, u64 len)
6239 {
6240 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6241 btrfs_free_reserved_data_space(inode, reserved, start, len);
6242 }
6243
6244 static int update_block_group(struct btrfs_trans_handle *trans,
6245 struct btrfs_fs_info *info, u64 bytenr,
6246 u64 num_bytes, int alloc)
6247 {
6248 struct btrfs_block_group_cache *cache = NULL;
6249 u64 total = num_bytes;
6250 u64 old_val;
6251 u64 byte_in_group;
6252 int factor;
6253
6254 /* block accounting for super block */
6255 spin_lock(&info->delalloc_root_lock);
6256 old_val = btrfs_super_bytes_used(info->super_copy);
6257 if (alloc)
6258 old_val += num_bytes;
6259 else
6260 old_val -= num_bytes;
6261 btrfs_set_super_bytes_used(info->super_copy, old_val);
6262 spin_unlock(&info->delalloc_root_lock);
6263
6264 while (total) {
6265 cache = btrfs_lookup_block_group(info, bytenr);
6266 if (!cache)
6267 return -ENOENT;
6268 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6269 BTRFS_BLOCK_GROUP_RAID1 |
6270 BTRFS_BLOCK_GROUP_RAID10))
6271 factor = 2;
6272 else
6273 factor = 1;
6274 /*
6275 * If this block group has free space cache written out, we
6276 * need to make sure to load it if we are removing space. This
6277 * is because we need the unpinning stage to actually add the
6278 * space back to the block group, otherwise we will leak space.
6279 */
6280 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6281 cache_block_group(cache, 1);
6282
6283 byte_in_group = bytenr - cache->key.objectid;
6284 WARN_ON(byte_in_group > cache->key.offset);
6285
6286 spin_lock(&cache->space_info->lock);
6287 spin_lock(&cache->lock);
6288
6289 if (btrfs_test_opt(info, SPACE_CACHE) &&
6290 cache->disk_cache_state < BTRFS_DC_CLEAR)
6291 cache->disk_cache_state = BTRFS_DC_CLEAR;
6292
6293 old_val = btrfs_block_group_used(&cache->item);
6294 num_bytes = min(total, cache->key.offset - byte_in_group);
6295 if (alloc) {
6296 old_val += num_bytes;
6297 btrfs_set_block_group_used(&cache->item, old_val);
6298 cache->reserved -= num_bytes;
6299 cache->space_info->bytes_reserved -= num_bytes;
6300 cache->space_info->bytes_used += num_bytes;
6301 cache->space_info->disk_used += num_bytes * factor;
6302 spin_unlock(&cache->lock);
6303 spin_unlock(&cache->space_info->lock);
6304 } else {
6305 old_val -= num_bytes;
6306 btrfs_set_block_group_used(&cache->item, old_val);
6307 cache->pinned += num_bytes;
6308 cache->space_info->bytes_pinned += num_bytes;
6309 cache->space_info->bytes_used -= num_bytes;
6310 cache->space_info->disk_used -= num_bytes * factor;
6311 spin_unlock(&cache->lock);
6312 spin_unlock(&cache->space_info->lock);
6313
6314 trace_btrfs_space_reservation(info, "pinned",
6315 cache->space_info->flags,
6316 num_bytes, 1);
6317 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6318 num_bytes);
6319 set_extent_dirty(info->pinned_extents,
6320 bytenr, bytenr + num_bytes - 1,
6321 GFP_NOFS | __GFP_NOFAIL);
6322 }
6323
6324 spin_lock(&trans->transaction->dirty_bgs_lock);
6325 if (list_empty(&cache->dirty_list)) {
6326 list_add_tail(&cache->dirty_list,
6327 &trans->transaction->dirty_bgs);
6328 trans->transaction->num_dirty_bgs++;
6329 btrfs_get_block_group(cache);
6330 }
6331 spin_unlock(&trans->transaction->dirty_bgs_lock);
6332
6333 /*
6334 * No longer have used bytes in this block group, queue it for
6335 * deletion. We do this after adding the block group to the
6336 * dirty list to avoid races between cleaner kthread and space
6337 * cache writeout.
6338 */
6339 if (!alloc && old_val == 0) {
6340 spin_lock(&info->unused_bgs_lock);
6341 if (list_empty(&cache->bg_list)) {
6342 btrfs_get_block_group(cache);
6343 list_add_tail(&cache->bg_list,
6344 &info->unused_bgs);
6345 }
6346 spin_unlock(&info->unused_bgs_lock);
6347 }
6348
6349 btrfs_put_block_group(cache);
6350 total -= num_bytes;
6351 bytenr += num_bytes;
6352 }
6353 return 0;
6354 }
6355
6356 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6357 {
6358 struct btrfs_block_group_cache *cache;
6359 u64 bytenr;
6360
6361 spin_lock(&fs_info->block_group_cache_lock);
6362 bytenr = fs_info->first_logical_byte;
6363 spin_unlock(&fs_info->block_group_cache_lock);
6364
6365 if (bytenr < (u64)-1)
6366 return bytenr;
6367
6368 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6369 if (!cache)
6370 return 0;
6371
6372 bytenr = cache->key.objectid;
6373 btrfs_put_block_group(cache);
6374
6375 return bytenr;
6376 }
6377
6378 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6379 struct btrfs_block_group_cache *cache,
6380 u64 bytenr, u64 num_bytes, int reserved)
6381 {
6382 spin_lock(&cache->space_info->lock);
6383 spin_lock(&cache->lock);
6384 cache->pinned += num_bytes;
6385 cache->space_info->bytes_pinned += num_bytes;
6386 if (reserved) {
6387 cache->reserved -= num_bytes;
6388 cache->space_info->bytes_reserved -= num_bytes;
6389 }
6390 spin_unlock(&cache->lock);
6391 spin_unlock(&cache->space_info->lock);
6392
6393 trace_btrfs_space_reservation(fs_info, "pinned",
6394 cache->space_info->flags, num_bytes, 1);
6395 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6396 set_extent_dirty(fs_info->pinned_extents, bytenr,
6397 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6398 return 0;
6399 }
6400
6401 /*
6402 * this function must be called within transaction
6403 */
6404 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6405 u64 bytenr, u64 num_bytes, int reserved)
6406 {
6407 struct btrfs_block_group_cache *cache;
6408
6409 cache = btrfs_lookup_block_group(fs_info, bytenr);
6410 BUG_ON(!cache); /* Logic error */
6411
6412 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6413
6414 btrfs_put_block_group(cache);
6415 return 0;
6416 }
6417
6418 /*
6419 * this function must be called within transaction
6420 */
6421 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6422 u64 bytenr, u64 num_bytes)
6423 {
6424 struct btrfs_block_group_cache *cache;
6425 int ret;
6426
6427 cache = btrfs_lookup_block_group(fs_info, bytenr);
6428 if (!cache)
6429 return -EINVAL;
6430
6431 /*
6432 * pull in the free space cache (if any) so that our pin
6433 * removes the free space from the cache. We have load_only set
6434 * to one because the slow code to read in the free extents does check
6435 * the pinned extents.
6436 */
6437 cache_block_group(cache, 1);
6438
6439 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6440
6441 /* remove us from the free space cache (if we're there at all) */
6442 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6443 btrfs_put_block_group(cache);
6444 return ret;
6445 }
6446
6447 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6448 u64 start, u64 num_bytes)
6449 {
6450 int ret;
6451 struct btrfs_block_group_cache *block_group;
6452 struct btrfs_caching_control *caching_ctl;
6453
6454 block_group = btrfs_lookup_block_group(fs_info, start);
6455 if (!block_group)
6456 return -EINVAL;
6457
6458 cache_block_group(block_group, 0);
6459 caching_ctl = get_caching_control(block_group);
6460
6461 if (!caching_ctl) {
6462 /* Logic error */
6463 BUG_ON(!block_group_cache_done(block_group));
6464 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6465 } else {
6466 mutex_lock(&caching_ctl->mutex);
6467
6468 if (start >= caching_ctl->progress) {
6469 ret = add_excluded_extent(fs_info, start, num_bytes);
6470 } else if (start + num_bytes <= caching_ctl->progress) {
6471 ret = btrfs_remove_free_space(block_group,
6472 start, num_bytes);
6473 } else {
6474 num_bytes = caching_ctl->progress - start;
6475 ret = btrfs_remove_free_space(block_group,
6476 start, num_bytes);
6477 if (ret)
6478 goto out_lock;
6479
6480 num_bytes = (start + num_bytes) -
6481 caching_ctl->progress;
6482 start = caching_ctl->progress;
6483 ret = add_excluded_extent(fs_info, start, num_bytes);
6484 }
6485 out_lock:
6486 mutex_unlock(&caching_ctl->mutex);
6487 put_caching_control(caching_ctl);
6488 }
6489 btrfs_put_block_group(block_group);
6490 return ret;
6491 }
6492
6493 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6494 struct extent_buffer *eb)
6495 {
6496 struct btrfs_file_extent_item *item;
6497 struct btrfs_key key;
6498 int found_type;
6499 int i;
6500
6501 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6502 return 0;
6503
6504 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6505 btrfs_item_key_to_cpu(eb, &key, i);
6506 if (key.type != BTRFS_EXTENT_DATA_KEY)
6507 continue;
6508 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6509 found_type = btrfs_file_extent_type(eb, item);
6510 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6511 continue;
6512 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6513 continue;
6514 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6515 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6516 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6517 }
6518
6519 return 0;
6520 }
6521
6522 static void
6523 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6524 {
6525 atomic_inc(&bg->reservations);
6526 }
6527
6528 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6529 const u64 start)
6530 {
6531 struct btrfs_block_group_cache *bg;
6532
6533 bg = btrfs_lookup_block_group(fs_info, start);
6534 ASSERT(bg);
6535 if (atomic_dec_and_test(&bg->reservations))
6536 wake_up_atomic_t(&bg->reservations);
6537 btrfs_put_block_group(bg);
6538 }
6539
6540 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6541 {
6542 struct btrfs_space_info *space_info = bg->space_info;
6543
6544 ASSERT(bg->ro);
6545
6546 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6547 return;
6548
6549 /*
6550 * Our block group is read only but before we set it to read only,
6551 * some task might have had allocated an extent from it already, but it
6552 * has not yet created a respective ordered extent (and added it to a
6553 * root's list of ordered extents).
6554 * Therefore wait for any task currently allocating extents, since the
6555 * block group's reservations counter is incremented while a read lock
6556 * on the groups' semaphore is held and decremented after releasing
6557 * the read access on that semaphore and creating the ordered extent.
6558 */
6559 down_write(&space_info->groups_sem);
6560 up_write(&space_info->groups_sem);
6561
6562 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6563 TASK_UNINTERRUPTIBLE);
6564 }
6565
6566 /**
6567 * btrfs_add_reserved_bytes - update the block_group and space info counters
6568 * @cache: The cache we are manipulating
6569 * @ram_bytes: The number of bytes of file content, and will be same to
6570 * @num_bytes except for the compress path.
6571 * @num_bytes: The number of bytes in question
6572 * @delalloc: The blocks are allocated for the delalloc write
6573 *
6574 * This is called by the allocator when it reserves space. If this is a
6575 * reservation and the block group has become read only we cannot make the
6576 * reservation and return -EAGAIN, otherwise this function always succeeds.
6577 */
6578 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6579 u64 ram_bytes, u64 num_bytes, int delalloc)
6580 {
6581 struct btrfs_space_info *space_info = cache->space_info;
6582 int ret = 0;
6583
6584 spin_lock(&space_info->lock);
6585 spin_lock(&cache->lock);
6586 if (cache->ro) {
6587 ret = -EAGAIN;
6588 } else {
6589 cache->reserved += num_bytes;
6590 space_info->bytes_reserved += num_bytes;
6591
6592 trace_btrfs_space_reservation(cache->fs_info,
6593 "space_info", space_info->flags,
6594 ram_bytes, 0);
6595 space_info->bytes_may_use -= ram_bytes;
6596 if (delalloc)
6597 cache->delalloc_bytes += num_bytes;
6598 }
6599 spin_unlock(&cache->lock);
6600 spin_unlock(&space_info->lock);
6601 return ret;
6602 }
6603
6604 /**
6605 * btrfs_free_reserved_bytes - update the block_group and space info counters
6606 * @cache: The cache we are manipulating
6607 * @num_bytes: The number of bytes in question
6608 * @delalloc: The blocks are allocated for the delalloc write
6609 *
6610 * This is called by somebody who is freeing space that was never actually used
6611 * on disk. For example if you reserve some space for a new leaf in transaction
6612 * A and before transaction A commits you free that leaf, you call this with
6613 * reserve set to 0 in order to clear the reservation.
6614 */
6615
6616 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6617 u64 num_bytes, int delalloc)
6618 {
6619 struct btrfs_space_info *space_info = cache->space_info;
6620 int ret = 0;
6621
6622 spin_lock(&space_info->lock);
6623 spin_lock(&cache->lock);
6624 if (cache->ro)
6625 space_info->bytes_readonly += num_bytes;
6626 cache->reserved -= num_bytes;
6627 space_info->bytes_reserved -= num_bytes;
6628 space_info->max_extent_size = 0;
6629
6630 if (delalloc)
6631 cache->delalloc_bytes -= num_bytes;
6632 spin_unlock(&cache->lock);
6633 spin_unlock(&space_info->lock);
6634 return ret;
6635 }
6636 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6637 {
6638 struct btrfs_caching_control *next;
6639 struct btrfs_caching_control *caching_ctl;
6640 struct btrfs_block_group_cache *cache;
6641
6642 down_write(&fs_info->commit_root_sem);
6643
6644 list_for_each_entry_safe(caching_ctl, next,
6645 &fs_info->caching_block_groups, list) {
6646 cache = caching_ctl->block_group;
6647 if (block_group_cache_done(cache)) {
6648 cache->last_byte_to_unpin = (u64)-1;
6649 list_del_init(&caching_ctl->list);
6650 put_caching_control(caching_ctl);
6651 } else {
6652 cache->last_byte_to_unpin = caching_ctl->progress;
6653 }
6654 }
6655
6656 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6657 fs_info->pinned_extents = &fs_info->freed_extents[1];
6658 else
6659 fs_info->pinned_extents = &fs_info->freed_extents[0];
6660
6661 up_write(&fs_info->commit_root_sem);
6662
6663 update_global_block_rsv(fs_info);
6664 }
6665
6666 /*
6667 * Returns the free cluster for the given space info and sets empty_cluster to
6668 * what it should be based on the mount options.
6669 */
6670 static struct btrfs_free_cluster *
6671 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6672 struct btrfs_space_info *space_info, u64 *empty_cluster)
6673 {
6674 struct btrfs_free_cluster *ret = NULL;
6675
6676 *empty_cluster = 0;
6677 if (btrfs_mixed_space_info(space_info))
6678 return ret;
6679
6680 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6681 ret = &fs_info->meta_alloc_cluster;
6682 if (btrfs_test_opt(fs_info, SSD))
6683 *empty_cluster = SZ_2M;
6684 else
6685 *empty_cluster = SZ_64K;
6686 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6687 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6688 *empty_cluster = SZ_2M;
6689 ret = &fs_info->data_alloc_cluster;
6690 }
6691
6692 return ret;
6693 }
6694
6695 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6696 u64 start, u64 end,
6697 const bool return_free_space)
6698 {
6699 struct btrfs_block_group_cache *cache = NULL;
6700 struct btrfs_space_info *space_info;
6701 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6702 struct btrfs_free_cluster *cluster = NULL;
6703 u64 len;
6704 u64 total_unpinned = 0;
6705 u64 empty_cluster = 0;
6706 bool readonly;
6707
6708 while (start <= end) {
6709 readonly = false;
6710 if (!cache ||
6711 start >= cache->key.objectid + cache->key.offset) {
6712 if (cache)
6713 btrfs_put_block_group(cache);
6714 total_unpinned = 0;
6715 cache = btrfs_lookup_block_group(fs_info, start);
6716 BUG_ON(!cache); /* Logic error */
6717
6718 cluster = fetch_cluster_info(fs_info,
6719 cache->space_info,
6720 &empty_cluster);
6721 empty_cluster <<= 1;
6722 }
6723
6724 len = cache->key.objectid + cache->key.offset - start;
6725 len = min(len, end + 1 - start);
6726
6727 if (start < cache->last_byte_to_unpin) {
6728 len = min(len, cache->last_byte_to_unpin - start);
6729 if (return_free_space)
6730 btrfs_add_free_space(cache, start, len);
6731 }
6732
6733 start += len;
6734 total_unpinned += len;
6735 space_info = cache->space_info;
6736
6737 /*
6738 * If this space cluster has been marked as fragmented and we've
6739 * unpinned enough in this block group to potentially allow a
6740 * cluster to be created inside of it go ahead and clear the
6741 * fragmented check.
6742 */
6743 if (cluster && cluster->fragmented &&
6744 total_unpinned > empty_cluster) {
6745 spin_lock(&cluster->lock);
6746 cluster->fragmented = 0;
6747 spin_unlock(&cluster->lock);
6748 }
6749
6750 spin_lock(&space_info->lock);
6751 spin_lock(&cache->lock);
6752 cache->pinned -= len;
6753 space_info->bytes_pinned -= len;
6754
6755 trace_btrfs_space_reservation(fs_info, "pinned",
6756 space_info->flags, len, 0);
6757 space_info->max_extent_size = 0;
6758 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6759 if (cache->ro) {
6760 space_info->bytes_readonly += len;
6761 readonly = true;
6762 }
6763 spin_unlock(&cache->lock);
6764 if (!readonly && return_free_space &&
6765 global_rsv->space_info == space_info) {
6766 u64 to_add = len;
6767
6768 spin_lock(&global_rsv->lock);
6769 if (!global_rsv->full) {
6770 to_add = min(len, global_rsv->size -
6771 global_rsv->reserved);
6772 global_rsv->reserved += to_add;
6773 space_info->bytes_may_use += to_add;
6774 if (global_rsv->reserved >= global_rsv->size)
6775 global_rsv->full = 1;
6776 trace_btrfs_space_reservation(fs_info,
6777 "space_info",
6778 space_info->flags,
6779 to_add, 1);
6780 len -= to_add;
6781 }
6782 spin_unlock(&global_rsv->lock);
6783 /* Add to any tickets we may have */
6784 if (len)
6785 space_info_add_new_bytes(fs_info, space_info,
6786 len);
6787 }
6788 spin_unlock(&space_info->lock);
6789 }
6790
6791 if (cache)
6792 btrfs_put_block_group(cache);
6793 return 0;
6794 }
6795
6796 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6797 struct btrfs_fs_info *fs_info)
6798 {
6799 struct btrfs_block_group_cache *block_group, *tmp;
6800 struct list_head *deleted_bgs;
6801 struct extent_io_tree *unpin;
6802 u64 start;
6803 u64 end;
6804 int ret;
6805
6806 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6807 unpin = &fs_info->freed_extents[1];
6808 else
6809 unpin = &fs_info->freed_extents[0];
6810
6811 while (!trans->aborted) {
6812 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6813 ret = find_first_extent_bit(unpin, 0, &start, &end,
6814 EXTENT_DIRTY, NULL);
6815 if (ret) {
6816 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6817 break;
6818 }
6819
6820 if (btrfs_test_opt(fs_info, DISCARD))
6821 ret = btrfs_discard_extent(fs_info, start,
6822 end + 1 - start, NULL);
6823
6824 clear_extent_dirty(unpin, start, end);
6825 unpin_extent_range(fs_info, start, end, true);
6826 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6827 cond_resched();
6828 }
6829
6830 /*
6831 * Transaction is finished. We don't need the lock anymore. We
6832 * do need to clean up the block groups in case of a transaction
6833 * abort.
6834 */
6835 deleted_bgs = &trans->transaction->deleted_bgs;
6836 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6837 u64 trimmed = 0;
6838
6839 ret = -EROFS;
6840 if (!trans->aborted)
6841 ret = btrfs_discard_extent(fs_info,
6842 block_group->key.objectid,
6843 block_group->key.offset,
6844 &trimmed);
6845
6846 list_del_init(&block_group->bg_list);
6847 btrfs_put_block_group_trimming(block_group);
6848 btrfs_put_block_group(block_group);
6849
6850 if (ret) {
6851 const char *errstr = btrfs_decode_error(ret);
6852 btrfs_warn(fs_info,
6853 "discard failed while removing blockgroup: errno=%d %s",
6854 ret, errstr);
6855 }
6856 }
6857
6858 return 0;
6859 }
6860
6861 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6862 struct btrfs_fs_info *info,
6863 struct btrfs_delayed_ref_node *node, u64 parent,
6864 u64 root_objectid, u64 owner_objectid,
6865 u64 owner_offset, int refs_to_drop,
6866 struct btrfs_delayed_extent_op *extent_op)
6867 {
6868 struct btrfs_key key;
6869 struct btrfs_path *path;
6870 struct btrfs_root *extent_root = info->extent_root;
6871 struct extent_buffer *leaf;
6872 struct btrfs_extent_item *ei;
6873 struct btrfs_extent_inline_ref *iref;
6874 int ret;
6875 int is_data;
6876 int extent_slot = 0;
6877 int found_extent = 0;
6878 int num_to_del = 1;
6879 u32 item_size;
6880 u64 refs;
6881 u64 bytenr = node->bytenr;
6882 u64 num_bytes = node->num_bytes;
6883 int last_ref = 0;
6884 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6885
6886 path = btrfs_alloc_path();
6887 if (!path)
6888 return -ENOMEM;
6889
6890 path->reada = READA_FORWARD;
6891 path->leave_spinning = 1;
6892
6893 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6894 BUG_ON(!is_data && refs_to_drop != 1);
6895
6896 if (is_data)
6897 skinny_metadata = false;
6898
6899 ret = lookup_extent_backref(trans, info, path, &iref,
6900 bytenr, num_bytes, parent,
6901 root_objectid, owner_objectid,
6902 owner_offset);
6903 if (ret == 0) {
6904 extent_slot = path->slots[0];
6905 while (extent_slot >= 0) {
6906 btrfs_item_key_to_cpu(path->nodes[0], &key,
6907 extent_slot);
6908 if (key.objectid != bytenr)
6909 break;
6910 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6911 key.offset == num_bytes) {
6912 found_extent = 1;
6913 break;
6914 }
6915 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6916 key.offset == owner_objectid) {
6917 found_extent = 1;
6918 break;
6919 }
6920 if (path->slots[0] - extent_slot > 5)
6921 break;
6922 extent_slot--;
6923 }
6924 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6925 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6926 if (found_extent && item_size < sizeof(*ei))
6927 found_extent = 0;
6928 #endif
6929 if (!found_extent) {
6930 BUG_ON(iref);
6931 ret = remove_extent_backref(trans, info, path, NULL,
6932 refs_to_drop,
6933 is_data, &last_ref);
6934 if (ret) {
6935 btrfs_abort_transaction(trans, ret);
6936 goto out;
6937 }
6938 btrfs_release_path(path);
6939 path->leave_spinning = 1;
6940
6941 key.objectid = bytenr;
6942 key.type = BTRFS_EXTENT_ITEM_KEY;
6943 key.offset = num_bytes;
6944
6945 if (!is_data && skinny_metadata) {
6946 key.type = BTRFS_METADATA_ITEM_KEY;
6947 key.offset = owner_objectid;
6948 }
6949
6950 ret = btrfs_search_slot(trans, extent_root,
6951 &key, path, -1, 1);
6952 if (ret > 0 && skinny_metadata && path->slots[0]) {
6953 /*
6954 * Couldn't find our skinny metadata item,
6955 * see if we have ye olde extent item.
6956 */
6957 path->slots[0]--;
6958 btrfs_item_key_to_cpu(path->nodes[0], &key,
6959 path->slots[0]);
6960 if (key.objectid == bytenr &&
6961 key.type == BTRFS_EXTENT_ITEM_KEY &&
6962 key.offset == num_bytes)
6963 ret = 0;
6964 }
6965
6966 if (ret > 0 && skinny_metadata) {
6967 skinny_metadata = false;
6968 key.objectid = bytenr;
6969 key.type = BTRFS_EXTENT_ITEM_KEY;
6970 key.offset = num_bytes;
6971 btrfs_release_path(path);
6972 ret = btrfs_search_slot(trans, extent_root,
6973 &key, path, -1, 1);
6974 }
6975
6976 if (ret) {
6977 btrfs_err(info,
6978 "umm, got %d back from search, was looking for %llu",
6979 ret, bytenr);
6980 if (ret > 0)
6981 btrfs_print_leaf(path->nodes[0]);
6982 }
6983 if (ret < 0) {
6984 btrfs_abort_transaction(trans, ret);
6985 goto out;
6986 }
6987 extent_slot = path->slots[0];
6988 }
6989 } else if (WARN_ON(ret == -ENOENT)) {
6990 btrfs_print_leaf(path->nodes[0]);
6991 btrfs_err(info,
6992 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6993 bytenr, parent, root_objectid, owner_objectid,
6994 owner_offset);
6995 btrfs_abort_transaction(trans, ret);
6996 goto out;
6997 } else {
6998 btrfs_abort_transaction(trans, ret);
6999 goto out;
7000 }
7001
7002 leaf = path->nodes[0];
7003 item_size = btrfs_item_size_nr(leaf, extent_slot);
7004 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7005 if (item_size < sizeof(*ei)) {
7006 BUG_ON(found_extent || extent_slot != path->slots[0]);
7007 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7008 0);
7009 if (ret < 0) {
7010 btrfs_abort_transaction(trans, ret);
7011 goto out;
7012 }
7013
7014 btrfs_release_path(path);
7015 path->leave_spinning = 1;
7016
7017 key.objectid = bytenr;
7018 key.type = BTRFS_EXTENT_ITEM_KEY;
7019 key.offset = num_bytes;
7020
7021 ret = btrfs_search_slot(trans, extent_root, &key, path,
7022 -1, 1);
7023 if (ret) {
7024 btrfs_err(info,
7025 "umm, got %d back from search, was looking for %llu",
7026 ret, bytenr);
7027 btrfs_print_leaf(path->nodes[0]);
7028 }
7029 if (ret < 0) {
7030 btrfs_abort_transaction(trans, ret);
7031 goto out;
7032 }
7033
7034 extent_slot = path->slots[0];
7035 leaf = path->nodes[0];
7036 item_size = btrfs_item_size_nr(leaf, extent_slot);
7037 }
7038 #endif
7039 BUG_ON(item_size < sizeof(*ei));
7040 ei = btrfs_item_ptr(leaf, extent_slot,
7041 struct btrfs_extent_item);
7042 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7043 key.type == BTRFS_EXTENT_ITEM_KEY) {
7044 struct btrfs_tree_block_info *bi;
7045 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7046 bi = (struct btrfs_tree_block_info *)(ei + 1);
7047 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7048 }
7049
7050 refs = btrfs_extent_refs(leaf, ei);
7051 if (refs < refs_to_drop) {
7052 btrfs_err(info,
7053 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7054 refs_to_drop, refs, bytenr);
7055 ret = -EINVAL;
7056 btrfs_abort_transaction(trans, ret);
7057 goto out;
7058 }
7059 refs -= refs_to_drop;
7060
7061 if (refs > 0) {
7062 if (extent_op)
7063 __run_delayed_extent_op(extent_op, leaf, ei);
7064 /*
7065 * In the case of inline back ref, reference count will
7066 * be updated by remove_extent_backref
7067 */
7068 if (iref) {
7069 BUG_ON(!found_extent);
7070 } else {
7071 btrfs_set_extent_refs(leaf, ei, refs);
7072 btrfs_mark_buffer_dirty(leaf);
7073 }
7074 if (found_extent) {
7075 ret = remove_extent_backref(trans, info, path,
7076 iref, refs_to_drop,
7077 is_data, &last_ref);
7078 if (ret) {
7079 btrfs_abort_transaction(trans, ret);
7080 goto out;
7081 }
7082 }
7083 } else {
7084 if (found_extent) {
7085 BUG_ON(is_data && refs_to_drop !=
7086 extent_data_ref_count(path, iref));
7087 if (iref) {
7088 BUG_ON(path->slots[0] != extent_slot);
7089 } else {
7090 BUG_ON(path->slots[0] != extent_slot + 1);
7091 path->slots[0] = extent_slot;
7092 num_to_del = 2;
7093 }
7094 }
7095
7096 last_ref = 1;
7097 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7098 num_to_del);
7099 if (ret) {
7100 btrfs_abort_transaction(trans, ret);
7101 goto out;
7102 }
7103 btrfs_release_path(path);
7104
7105 if (is_data) {
7106 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7107 if (ret) {
7108 btrfs_abort_transaction(trans, ret);
7109 goto out;
7110 }
7111 }
7112
7113 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7114 if (ret) {
7115 btrfs_abort_transaction(trans, ret);
7116 goto out;
7117 }
7118
7119 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7120 if (ret) {
7121 btrfs_abort_transaction(trans, ret);
7122 goto out;
7123 }
7124 }
7125 btrfs_release_path(path);
7126
7127 out:
7128 btrfs_free_path(path);
7129 return ret;
7130 }
7131
7132 /*
7133 * when we free an block, it is possible (and likely) that we free the last
7134 * delayed ref for that extent as well. This searches the delayed ref tree for
7135 * a given extent, and if there are no other delayed refs to be processed, it
7136 * removes it from the tree.
7137 */
7138 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7139 u64 bytenr)
7140 {
7141 struct btrfs_delayed_ref_head *head;
7142 struct btrfs_delayed_ref_root *delayed_refs;
7143 int ret = 0;
7144
7145 delayed_refs = &trans->transaction->delayed_refs;
7146 spin_lock(&delayed_refs->lock);
7147 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7148 if (!head)
7149 goto out_delayed_unlock;
7150
7151 spin_lock(&head->lock);
7152 if (!RB_EMPTY_ROOT(&head->ref_tree))
7153 goto out;
7154
7155 if (head->extent_op) {
7156 if (!head->must_insert_reserved)
7157 goto out;
7158 btrfs_free_delayed_extent_op(head->extent_op);
7159 head->extent_op = NULL;
7160 }
7161
7162 /*
7163 * waiting for the lock here would deadlock. If someone else has it
7164 * locked they are already in the process of dropping it anyway
7165 */
7166 if (!mutex_trylock(&head->mutex))
7167 goto out;
7168
7169 /*
7170 * at this point we have a head with no other entries. Go
7171 * ahead and process it.
7172 */
7173 rb_erase(&head->href_node, &delayed_refs->href_root);
7174 RB_CLEAR_NODE(&head->href_node);
7175 atomic_dec(&delayed_refs->num_entries);
7176
7177 /*
7178 * we don't take a ref on the node because we're removing it from the
7179 * tree, so we just steal the ref the tree was holding.
7180 */
7181 delayed_refs->num_heads--;
7182 if (head->processing == 0)
7183 delayed_refs->num_heads_ready--;
7184 head->processing = 0;
7185 spin_unlock(&head->lock);
7186 spin_unlock(&delayed_refs->lock);
7187
7188 BUG_ON(head->extent_op);
7189 if (head->must_insert_reserved)
7190 ret = 1;
7191
7192 mutex_unlock(&head->mutex);
7193 btrfs_put_delayed_ref_head(head);
7194 return ret;
7195 out:
7196 spin_unlock(&head->lock);
7197
7198 out_delayed_unlock:
7199 spin_unlock(&delayed_refs->lock);
7200 return 0;
7201 }
7202
7203 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7204 struct btrfs_root *root,
7205 struct extent_buffer *buf,
7206 u64 parent, int last_ref)
7207 {
7208 struct btrfs_fs_info *fs_info = root->fs_info;
7209 int pin = 1;
7210 int ret;
7211
7212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7213 int old_ref_mod, new_ref_mod;
7214
7215 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7216 root->root_key.objectid,
7217 btrfs_header_level(buf), 0,
7218 BTRFS_DROP_DELAYED_REF);
7219 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7220 buf->len, parent,
7221 root->root_key.objectid,
7222 btrfs_header_level(buf),
7223 BTRFS_DROP_DELAYED_REF, NULL,
7224 &old_ref_mod, &new_ref_mod);
7225 BUG_ON(ret); /* -ENOMEM */
7226 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7227 }
7228
7229 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7230 struct btrfs_block_group_cache *cache;
7231
7232 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7233 ret = check_ref_cleanup(trans, buf->start);
7234 if (!ret)
7235 goto out;
7236 }
7237
7238 pin = 0;
7239 cache = btrfs_lookup_block_group(fs_info, buf->start);
7240
7241 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7242 pin_down_extent(fs_info, cache, buf->start,
7243 buf->len, 1);
7244 btrfs_put_block_group(cache);
7245 goto out;
7246 }
7247
7248 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7249
7250 btrfs_add_free_space(cache, buf->start, buf->len);
7251 btrfs_free_reserved_bytes(cache, buf->len, 0);
7252 btrfs_put_block_group(cache);
7253 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7254 }
7255 out:
7256 if (pin)
7257 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7258 root->root_key.objectid);
7259
7260 if (last_ref) {
7261 /*
7262 * Deleting the buffer, clear the corrupt flag since it doesn't
7263 * matter anymore.
7264 */
7265 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7266 }
7267 }
7268
7269 /* Can return -ENOMEM */
7270 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7271 struct btrfs_root *root,
7272 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7273 u64 owner, u64 offset)
7274 {
7275 struct btrfs_fs_info *fs_info = root->fs_info;
7276 int old_ref_mod, new_ref_mod;
7277 int ret;
7278
7279 if (btrfs_is_testing(fs_info))
7280 return 0;
7281
7282 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7283 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7284 root_objectid, owner, offset,
7285 BTRFS_DROP_DELAYED_REF);
7286
7287 /*
7288 * tree log blocks never actually go into the extent allocation
7289 * tree, just update pinning info and exit early.
7290 */
7291 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7292 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7293 /* unlocks the pinned mutex */
7294 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7295 old_ref_mod = new_ref_mod = 0;
7296 ret = 0;
7297 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7298 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7299 num_bytes, parent,
7300 root_objectid, (int)owner,
7301 BTRFS_DROP_DELAYED_REF, NULL,
7302 &old_ref_mod, &new_ref_mod);
7303 } else {
7304 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7305 num_bytes, parent,
7306 root_objectid, owner, offset,
7307 0, BTRFS_DROP_DELAYED_REF,
7308 &old_ref_mod, &new_ref_mod);
7309 }
7310
7311 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7312 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7313
7314 return ret;
7315 }
7316
7317 /*
7318 * when we wait for progress in the block group caching, its because
7319 * our allocation attempt failed at least once. So, we must sleep
7320 * and let some progress happen before we try again.
7321 *
7322 * This function will sleep at least once waiting for new free space to
7323 * show up, and then it will check the block group free space numbers
7324 * for our min num_bytes. Another option is to have it go ahead
7325 * and look in the rbtree for a free extent of a given size, but this
7326 * is a good start.
7327 *
7328 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7329 * any of the information in this block group.
7330 */
7331 static noinline void
7332 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7333 u64 num_bytes)
7334 {
7335 struct btrfs_caching_control *caching_ctl;
7336
7337 caching_ctl = get_caching_control(cache);
7338 if (!caching_ctl)
7339 return;
7340
7341 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7342 (cache->free_space_ctl->free_space >= num_bytes));
7343
7344 put_caching_control(caching_ctl);
7345 }
7346
7347 static noinline int
7348 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7349 {
7350 struct btrfs_caching_control *caching_ctl;
7351 int ret = 0;
7352
7353 caching_ctl = get_caching_control(cache);
7354 if (!caching_ctl)
7355 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7356
7357 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7358 if (cache->cached == BTRFS_CACHE_ERROR)
7359 ret = -EIO;
7360 put_caching_control(caching_ctl);
7361 return ret;
7362 }
7363
7364 int __get_raid_index(u64 flags)
7365 {
7366 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7367 return BTRFS_RAID_RAID10;
7368 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7369 return BTRFS_RAID_RAID1;
7370 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7371 return BTRFS_RAID_DUP;
7372 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7373 return BTRFS_RAID_RAID0;
7374 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7375 return BTRFS_RAID_RAID5;
7376 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7377 return BTRFS_RAID_RAID6;
7378
7379 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7380 }
7381
7382 int get_block_group_index(struct btrfs_block_group_cache *cache)
7383 {
7384 return __get_raid_index(cache->flags);
7385 }
7386
7387 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7388 [BTRFS_RAID_RAID10] = "raid10",
7389 [BTRFS_RAID_RAID1] = "raid1",
7390 [BTRFS_RAID_DUP] = "dup",
7391 [BTRFS_RAID_RAID0] = "raid0",
7392 [BTRFS_RAID_SINGLE] = "single",
7393 [BTRFS_RAID_RAID5] = "raid5",
7394 [BTRFS_RAID_RAID6] = "raid6",
7395 };
7396
7397 static const char *get_raid_name(enum btrfs_raid_types type)
7398 {
7399 if (type >= BTRFS_NR_RAID_TYPES)
7400 return NULL;
7401
7402 return btrfs_raid_type_names[type];
7403 }
7404
7405 enum btrfs_loop_type {
7406 LOOP_CACHING_NOWAIT = 0,
7407 LOOP_CACHING_WAIT = 1,
7408 LOOP_ALLOC_CHUNK = 2,
7409 LOOP_NO_EMPTY_SIZE = 3,
7410 };
7411
7412 static inline void
7413 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7414 int delalloc)
7415 {
7416 if (delalloc)
7417 down_read(&cache->data_rwsem);
7418 }
7419
7420 static inline void
7421 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7422 int delalloc)
7423 {
7424 btrfs_get_block_group(cache);
7425 if (delalloc)
7426 down_read(&cache->data_rwsem);
7427 }
7428
7429 static struct btrfs_block_group_cache *
7430 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7431 struct btrfs_free_cluster *cluster,
7432 int delalloc)
7433 {
7434 struct btrfs_block_group_cache *used_bg = NULL;
7435
7436 spin_lock(&cluster->refill_lock);
7437 while (1) {
7438 used_bg = cluster->block_group;
7439 if (!used_bg)
7440 return NULL;
7441
7442 if (used_bg == block_group)
7443 return used_bg;
7444
7445 btrfs_get_block_group(used_bg);
7446
7447 if (!delalloc)
7448 return used_bg;
7449
7450 if (down_read_trylock(&used_bg->data_rwsem))
7451 return used_bg;
7452
7453 spin_unlock(&cluster->refill_lock);
7454
7455 /* We should only have one-level nested. */
7456 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7457
7458 spin_lock(&cluster->refill_lock);
7459 if (used_bg == cluster->block_group)
7460 return used_bg;
7461
7462 up_read(&used_bg->data_rwsem);
7463 btrfs_put_block_group(used_bg);
7464 }
7465 }
7466
7467 static inline void
7468 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7469 int delalloc)
7470 {
7471 if (delalloc)
7472 up_read(&cache->data_rwsem);
7473 btrfs_put_block_group(cache);
7474 }
7475
7476 /*
7477 * walks the btree of allocated extents and find a hole of a given size.
7478 * The key ins is changed to record the hole:
7479 * ins->objectid == start position
7480 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7481 * ins->offset == the size of the hole.
7482 * Any available blocks before search_start are skipped.
7483 *
7484 * If there is no suitable free space, we will record the max size of
7485 * the free space extent currently.
7486 */
7487 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7488 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7489 u64 hint_byte, struct btrfs_key *ins,
7490 u64 flags, int delalloc)
7491 {
7492 int ret = 0;
7493 struct btrfs_root *root = fs_info->extent_root;
7494 struct btrfs_free_cluster *last_ptr = NULL;
7495 struct btrfs_block_group_cache *block_group = NULL;
7496 u64 search_start = 0;
7497 u64 max_extent_size = 0;
7498 u64 max_free_space = 0;
7499 u64 empty_cluster = 0;
7500 struct btrfs_space_info *space_info;
7501 int loop = 0;
7502 int index = __get_raid_index(flags);
7503 bool failed_cluster_refill = false;
7504 bool failed_alloc = false;
7505 bool use_cluster = true;
7506 bool have_caching_bg = false;
7507 bool orig_have_caching_bg = false;
7508 bool full_search = false;
7509
7510 WARN_ON(num_bytes < fs_info->sectorsize);
7511 ins->type = BTRFS_EXTENT_ITEM_KEY;
7512 ins->objectid = 0;
7513 ins->offset = 0;
7514
7515 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7516
7517 space_info = __find_space_info(fs_info, flags);
7518 if (!space_info) {
7519 btrfs_err(fs_info, "No space info for %llu", flags);
7520 return -ENOSPC;
7521 }
7522
7523 /*
7524 * If our free space is heavily fragmented we may not be able to make
7525 * big contiguous allocations, so instead of doing the expensive search
7526 * for free space, simply return ENOSPC with our max_extent_size so we
7527 * can go ahead and search for a more manageable chunk.
7528 *
7529 * If our max_extent_size is large enough for our allocation simply
7530 * disable clustering since we will likely not be able to find enough
7531 * space to create a cluster and induce latency trying.
7532 */
7533 if (unlikely(space_info->max_extent_size)) {
7534 spin_lock(&space_info->lock);
7535 if (space_info->max_extent_size &&
7536 num_bytes > space_info->max_extent_size) {
7537 ins->offset = space_info->max_extent_size;
7538 spin_unlock(&space_info->lock);
7539 return -ENOSPC;
7540 } else if (space_info->max_extent_size) {
7541 use_cluster = false;
7542 }
7543 spin_unlock(&space_info->lock);
7544 }
7545
7546 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7547 if (last_ptr) {
7548 spin_lock(&last_ptr->lock);
7549 if (last_ptr->block_group)
7550 hint_byte = last_ptr->window_start;
7551 if (last_ptr->fragmented) {
7552 /*
7553 * We still set window_start so we can keep track of the
7554 * last place we found an allocation to try and save
7555 * some time.
7556 */
7557 hint_byte = last_ptr->window_start;
7558 use_cluster = false;
7559 }
7560 spin_unlock(&last_ptr->lock);
7561 }
7562
7563 search_start = max(search_start, first_logical_byte(fs_info, 0));
7564 search_start = max(search_start, hint_byte);
7565 if (search_start == hint_byte) {
7566 block_group = btrfs_lookup_block_group(fs_info, search_start);
7567 /*
7568 * we don't want to use the block group if it doesn't match our
7569 * allocation bits, or if its not cached.
7570 *
7571 * However if we are re-searching with an ideal block group
7572 * picked out then we don't care that the block group is cached.
7573 */
7574 if (block_group && block_group_bits(block_group, flags) &&
7575 block_group->cached != BTRFS_CACHE_NO) {
7576 down_read(&space_info->groups_sem);
7577 if (list_empty(&block_group->list) ||
7578 block_group->ro) {
7579 /*
7580 * someone is removing this block group,
7581 * we can't jump into the have_block_group
7582 * target because our list pointers are not
7583 * valid
7584 */
7585 btrfs_put_block_group(block_group);
7586 up_read(&space_info->groups_sem);
7587 } else {
7588 index = get_block_group_index(block_group);
7589 btrfs_lock_block_group(block_group, delalloc);
7590 goto have_block_group;
7591 }
7592 } else if (block_group) {
7593 btrfs_put_block_group(block_group);
7594 }
7595 }
7596 search:
7597 have_caching_bg = false;
7598 if (index == 0 || index == __get_raid_index(flags))
7599 full_search = true;
7600 down_read(&space_info->groups_sem);
7601 list_for_each_entry(block_group, &space_info->block_groups[index],
7602 list) {
7603 u64 offset;
7604 int cached;
7605
7606 /* If the block group is read-only, we can skip it entirely. */
7607 if (unlikely(block_group->ro))
7608 continue;
7609
7610 btrfs_grab_block_group(block_group, delalloc);
7611 search_start = block_group->key.objectid;
7612
7613 /*
7614 * this can happen if we end up cycling through all the
7615 * raid types, but we want to make sure we only allocate
7616 * for the proper type.
7617 */
7618 if (!block_group_bits(block_group, flags)) {
7619 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7620 BTRFS_BLOCK_GROUP_RAID1 |
7621 BTRFS_BLOCK_GROUP_RAID5 |
7622 BTRFS_BLOCK_GROUP_RAID6 |
7623 BTRFS_BLOCK_GROUP_RAID10;
7624
7625 /*
7626 * if they asked for extra copies and this block group
7627 * doesn't provide them, bail. This does allow us to
7628 * fill raid0 from raid1.
7629 */
7630 if ((flags & extra) && !(block_group->flags & extra))
7631 goto loop;
7632 }
7633
7634 have_block_group:
7635 cached = block_group_cache_done(block_group);
7636 if (unlikely(!cached)) {
7637 have_caching_bg = true;
7638 ret = cache_block_group(block_group, 0);
7639 BUG_ON(ret < 0);
7640 ret = 0;
7641 }
7642
7643 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7644 goto loop;
7645
7646 /*
7647 * Ok we want to try and use the cluster allocator, so
7648 * lets look there
7649 */
7650 if (last_ptr && use_cluster) {
7651 struct btrfs_block_group_cache *used_block_group;
7652 unsigned long aligned_cluster;
7653 /*
7654 * the refill lock keeps out other
7655 * people trying to start a new cluster
7656 */
7657 used_block_group = btrfs_lock_cluster(block_group,
7658 last_ptr,
7659 delalloc);
7660 if (!used_block_group)
7661 goto refill_cluster;
7662
7663 if (used_block_group != block_group &&
7664 (used_block_group->ro ||
7665 !block_group_bits(used_block_group, flags)))
7666 goto release_cluster;
7667
7668 offset = btrfs_alloc_from_cluster(used_block_group,
7669 last_ptr,
7670 num_bytes,
7671 used_block_group->key.objectid,
7672 &max_extent_size);
7673 if (offset) {
7674 /* we have a block, we're done */
7675 spin_unlock(&last_ptr->refill_lock);
7676 trace_btrfs_reserve_extent_cluster(fs_info,
7677 used_block_group,
7678 search_start, num_bytes);
7679 if (used_block_group != block_group) {
7680 btrfs_release_block_group(block_group,
7681 delalloc);
7682 block_group = used_block_group;
7683 }
7684 goto checks;
7685 }
7686
7687 WARN_ON(last_ptr->block_group != used_block_group);
7688 release_cluster:
7689 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7690 * set up a new clusters, so lets just skip it
7691 * and let the allocator find whatever block
7692 * it can find. If we reach this point, we
7693 * will have tried the cluster allocator
7694 * plenty of times and not have found
7695 * anything, so we are likely way too
7696 * fragmented for the clustering stuff to find
7697 * anything.
7698 *
7699 * However, if the cluster is taken from the
7700 * current block group, release the cluster
7701 * first, so that we stand a better chance of
7702 * succeeding in the unclustered
7703 * allocation. */
7704 if (loop >= LOOP_NO_EMPTY_SIZE &&
7705 used_block_group != block_group) {
7706 spin_unlock(&last_ptr->refill_lock);
7707 btrfs_release_block_group(used_block_group,
7708 delalloc);
7709 goto unclustered_alloc;
7710 }
7711
7712 /*
7713 * this cluster didn't work out, free it and
7714 * start over
7715 */
7716 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7717
7718 if (used_block_group != block_group)
7719 btrfs_release_block_group(used_block_group,
7720 delalloc);
7721 refill_cluster:
7722 if (loop >= LOOP_NO_EMPTY_SIZE) {
7723 spin_unlock(&last_ptr->refill_lock);
7724 goto unclustered_alloc;
7725 }
7726
7727 aligned_cluster = max_t(unsigned long,
7728 empty_cluster + empty_size,
7729 block_group->full_stripe_len);
7730
7731 /* allocate a cluster in this block group */
7732 ret = btrfs_find_space_cluster(fs_info, block_group,
7733 last_ptr, search_start,
7734 num_bytes,
7735 aligned_cluster);
7736 if (ret == 0) {
7737 /*
7738 * now pull our allocation out of this
7739 * cluster
7740 */
7741 offset = btrfs_alloc_from_cluster(block_group,
7742 last_ptr,
7743 num_bytes,
7744 search_start,
7745 &max_extent_size);
7746 if (offset) {
7747 /* we found one, proceed */
7748 spin_unlock(&last_ptr->refill_lock);
7749 trace_btrfs_reserve_extent_cluster(fs_info,
7750 block_group, search_start,
7751 num_bytes);
7752 goto checks;
7753 }
7754 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7755 && !failed_cluster_refill) {
7756 spin_unlock(&last_ptr->refill_lock);
7757
7758 failed_cluster_refill = true;
7759 wait_block_group_cache_progress(block_group,
7760 num_bytes + empty_cluster + empty_size);
7761 goto have_block_group;
7762 }
7763
7764 /*
7765 * at this point we either didn't find a cluster
7766 * or we weren't able to allocate a block from our
7767 * cluster. Free the cluster we've been trying
7768 * to use, and go to the next block group
7769 */
7770 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7771 spin_unlock(&last_ptr->refill_lock);
7772 goto loop;
7773 }
7774
7775 unclustered_alloc:
7776 /*
7777 * We are doing an unclustered alloc, set the fragmented flag so
7778 * we don't bother trying to setup a cluster again until we get
7779 * more space.
7780 */
7781 if (unlikely(last_ptr)) {
7782 spin_lock(&last_ptr->lock);
7783 last_ptr->fragmented = 1;
7784 spin_unlock(&last_ptr->lock);
7785 }
7786 if (cached) {
7787 struct btrfs_free_space_ctl *ctl =
7788 block_group->free_space_ctl;
7789
7790 spin_lock(&ctl->tree_lock);
7791 if (ctl->free_space <
7792 num_bytes + empty_cluster + empty_size) {
7793 max_free_space = max(max_free_space,
7794 ctl->free_space);
7795 spin_unlock(&ctl->tree_lock);
7796 goto loop;
7797 }
7798 spin_unlock(&ctl->tree_lock);
7799 }
7800
7801 offset = btrfs_find_space_for_alloc(block_group, search_start,
7802 num_bytes, empty_size,
7803 &max_extent_size);
7804 /*
7805 * If we didn't find a chunk, and we haven't failed on this
7806 * block group before, and this block group is in the middle of
7807 * caching and we are ok with waiting, then go ahead and wait
7808 * for progress to be made, and set failed_alloc to true.
7809 *
7810 * If failed_alloc is true then we've already waited on this
7811 * block group once and should move on to the next block group.
7812 */
7813 if (!offset && !failed_alloc && !cached &&
7814 loop > LOOP_CACHING_NOWAIT) {
7815 wait_block_group_cache_progress(block_group,
7816 num_bytes + empty_size);
7817 failed_alloc = true;
7818 goto have_block_group;
7819 } else if (!offset) {
7820 goto loop;
7821 }
7822 checks:
7823 search_start = ALIGN(offset, fs_info->stripesize);
7824
7825 /* move on to the next group */
7826 if (search_start + num_bytes >
7827 block_group->key.objectid + block_group->key.offset) {
7828 btrfs_add_free_space(block_group, offset, num_bytes);
7829 goto loop;
7830 }
7831
7832 if (offset < search_start)
7833 btrfs_add_free_space(block_group, offset,
7834 search_start - offset);
7835 BUG_ON(offset > search_start);
7836
7837 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7838 num_bytes, delalloc);
7839 if (ret == -EAGAIN) {
7840 btrfs_add_free_space(block_group, offset, num_bytes);
7841 goto loop;
7842 }
7843 btrfs_inc_block_group_reservations(block_group);
7844
7845 /* we are all good, lets return */
7846 ins->objectid = search_start;
7847 ins->offset = num_bytes;
7848
7849 trace_btrfs_reserve_extent(fs_info, block_group,
7850 search_start, num_bytes);
7851 btrfs_release_block_group(block_group, delalloc);
7852 break;
7853 loop:
7854 failed_cluster_refill = false;
7855 failed_alloc = false;
7856 BUG_ON(index != get_block_group_index(block_group));
7857 btrfs_release_block_group(block_group, delalloc);
7858 cond_resched();
7859 }
7860 up_read(&space_info->groups_sem);
7861
7862 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7863 && !orig_have_caching_bg)
7864 orig_have_caching_bg = true;
7865
7866 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7867 goto search;
7868
7869 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7870 goto search;
7871
7872 /*
7873 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7874 * caching kthreads as we move along
7875 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7876 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7877 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7878 * again
7879 */
7880 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7881 index = 0;
7882 if (loop == LOOP_CACHING_NOWAIT) {
7883 /*
7884 * We want to skip the LOOP_CACHING_WAIT step if we
7885 * don't have any uncached bgs and we've already done a
7886 * full search through.
7887 */
7888 if (orig_have_caching_bg || !full_search)
7889 loop = LOOP_CACHING_WAIT;
7890 else
7891 loop = LOOP_ALLOC_CHUNK;
7892 } else {
7893 loop++;
7894 }
7895
7896 if (loop == LOOP_ALLOC_CHUNK) {
7897 struct btrfs_trans_handle *trans;
7898 int exist = 0;
7899
7900 trans = current->journal_info;
7901 if (trans)
7902 exist = 1;
7903 else
7904 trans = btrfs_join_transaction(root);
7905
7906 if (IS_ERR(trans)) {
7907 ret = PTR_ERR(trans);
7908 goto out;
7909 }
7910
7911 ret = do_chunk_alloc(trans, fs_info, flags,
7912 CHUNK_ALLOC_FORCE);
7913
7914 /*
7915 * If we can't allocate a new chunk we've already looped
7916 * through at least once, move on to the NO_EMPTY_SIZE
7917 * case.
7918 */
7919 if (ret == -ENOSPC)
7920 loop = LOOP_NO_EMPTY_SIZE;
7921
7922 /*
7923 * Do not bail out on ENOSPC since we
7924 * can do more things.
7925 */
7926 if (ret < 0 && ret != -ENOSPC)
7927 btrfs_abort_transaction(trans, ret);
7928 else
7929 ret = 0;
7930 if (!exist)
7931 btrfs_end_transaction(trans);
7932 if (ret)
7933 goto out;
7934 }
7935
7936 if (loop == LOOP_NO_EMPTY_SIZE) {
7937 /*
7938 * Don't loop again if we already have no empty_size and
7939 * no empty_cluster.
7940 */
7941 if (empty_size == 0 &&
7942 empty_cluster == 0) {
7943 ret = -ENOSPC;
7944 goto out;
7945 }
7946 empty_size = 0;
7947 empty_cluster = 0;
7948 }
7949
7950 goto search;
7951 } else if (!ins->objectid) {
7952 ret = -ENOSPC;
7953 } else if (ins->objectid) {
7954 if (!use_cluster && last_ptr) {
7955 spin_lock(&last_ptr->lock);
7956 last_ptr->window_start = ins->objectid;
7957 spin_unlock(&last_ptr->lock);
7958 }
7959 ret = 0;
7960 }
7961 out:
7962 if (ret == -ENOSPC) {
7963 if (!max_extent_size)
7964 max_extent_size = max_free_space;
7965 spin_lock(&space_info->lock);
7966 space_info->max_extent_size = max_extent_size;
7967 spin_unlock(&space_info->lock);
7968 ins->offset = max_extent_size;
7969 }
7970 return ret;
7971 }
7972
7973 static void dump_space_info(struct btrfs_fs_info *fs_info,
7974 struct btrfs_space_info *info, u64 bytes,
7975 int dump_block_groups)
7976 {
7977 struct btrfs_block_group_cache *cache;
7978 int index = 0;
7979
7980 spin_lock(&info->lock);
7981 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7982 info->flags,
7983 info->total_bytes - btrfs_space_info_used(info, true),
7984 info->full ? "" : "not ");
7985 btrfs_info(fs_info,
7986 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7987 info->total_bytes, info->bytes_used, info->bytes_pinned,
7988 info->bytes_reserved, info->bytes_may_use,
7989 info->bytes_readonly);
7990 spin_unlock(&info->lock);
7991
7992 if (!dump_block_groups)
7993 return;
7994
7995 down_read(&info->groups_sem);
7996 again:
7997 list_for_each_entry(cache, &info->block_groups[index], list) {
7998 spin_lock(&cache->lock);
7999 btrfs_info(fs_info,
8000 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8001 cache->key.objectid, cache->key.offset,
8002 btrfs_block_group_used(&cache->item), cache->pinned,
8003 cache->reserved, cache->ro ? "[readonly]" : "");
8004 btrfs_dump_free_space(cache, bytes);
8005 spin_unlock(&cache->lock);
8006 }
8007 if (++index < BTRFS_NR_RAID_TYPES)
8008 goto again;
8009 up_read(&info->groups_sem);
8010 }
8011
8012 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8013 u64 num_bytes, u64 min_alloc_size,
8014 u64 empty_size, u64 hint_byte,
8015 struct btrfs_key *ins, int is_data, int delalloc)
8016 {
8017 struct btrfs_fs_info *fs_info = root->fs_info;
8018 bool final_tried = num_bytes == min_alloc_size;
8019 u64 flags;
8020 int ret;
8021
8022 flags = get_alloc_profile_by_root(root, is_data);
8023 again:
8024 WARN_ON(num_bytes < fs_info->sectorsize);
8025 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8026 hint_byte, ins, flags, delalloc);
8027 if (!ret && !is_data) {
8028 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8029 } else if (ret == -ENOSPC) {
8030 if (!final_tried && ins->offset) {
8031 num_bytes = min(num_bytes >> 1, ins->offset);
8032 num_bytes = round_down(num_bytes,
8033 fs_info->sectorsize);
8034 num_bytes = max(num_bytes, min_alloc_size);
8035 ram_bytes = num_bytes;
8036 if (num_bytes == min_alloc_size)
8037 final_tried = true;
8038 goto again;
8039 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8040 struct btrfs_space_info *sinfo;
8041
8042 sinfo = __find_space_info(fs_info, flags);
8043 btrfs_err(fs_info,
8044 "allocation failed flags %llu, wanted %llu",
8045 flags, num_bytes);
8046 if (sinfo)
8047 dump_space_info(fs_info, sinfo, num_bytes, 1);
8048 }
8049 }
8050
8051 return ret;
8052 }
8053
8054 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8055 u64 start, u64 len,
8056 int pin, int delalloc)
8057 {
8058 struct btrfs_block_group_cache *cache;
8059 int ret = 0;
8060
8061 cache = btrfs_lookup_block_group(fs_info, start);
8062 if (!cache) {
8063 btrfs_err(fs_info, "Unable to find block group for %llu",
8064 start);
8065 return -ENOSPC;
8066 }
8067
8068 if (pin)
8069 pin_down_extent(fs_info, cache, start, len, 1);
8070 else {
8071 if (btrfs_test_opt(fs_info, DISCARD))
8072 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8073 btrfs_add_free_space(cache, start, len);
8074 btrfs_free_reserved_bytes(cache, len, delalloc);
8075 trace_btrfs_reserved_extent_free(fs_info, start, len);
8076 }
8077
8078 btrfs_put_block_group(cache);
8079 return ret;
8080 }
8081
8082 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8083 u64 start, u64 len, int delalloc)
8084 {
8085 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8086 }
8087
8088 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8089 u64 start, u64 len)
8090 {
8091 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8092 }
8093
8094 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8095 struct btrfs_fs_info *fs_info,
8096 u64 parent, u64 root_objectid,
8097 u64 flags, u64 owner, u64 offset,
8098 struct btrfs_key *ins, int ref_mod)
8099 {
8100 int ret;
8101 struct btrfs_extent_item *extent_item;
8102 struct btrfs_extent_inline_ref *iref;
8103 struct btrfs_path *path;
8104 struct extent_buffer *leaf;
8105 int type;
8106 u32 size;
8107
8108 if (parent > 0)
8109 type = BTRFS_SHARED_DATA_REF_KEY;
8110 else
8111 type = BTRFS_EXTENT_DATA_REF_KEY;
8112
8113 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8114
8115 path = btrfs_alloc_path();
8116 if (!path)
8117 return -ENOMEM;
8118
8119 path->leave_spinning = 1;
8120 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8121 ins, size);
8122 if (ret) {
8123 btrfs_free_path(path);
8124 return ret;
8125 }
8126
8127 leaf = path->nodes[0];
8128 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8129 struct btrfs_extent_item);
8130 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8131 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8132 btrfs_set_extent_flags(leaf, extent_item,
8133 flags | BTRFS_EXTENT_FLAG_DATA);
8134
8135 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8136 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8137 if (parent > 0) {
8138 struct btrfs_shared_data_ref *ref;
8139 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8140 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8141 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8142 } else {
8143 struct btrfs_extent_data_ref *ref;
8144 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8145 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8146 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8147 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8148 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8149 }
8150
8151 btrfs_mark_buffer_dirty(path->nodes[0]);
8152 btrfs_free_path(path);
8153
8154 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8155 ins->offset);
8156 if (ret)
8157 return ret;
8158
8159 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8160 if (ret) { /* -ENOENT, logic error */
8161 btrfs_err(fs_info, "update block group failed for %llu %llu",
8162 ins->objectid, ins->offset);
8163 BUG();
8164 }
8165 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8166 return ret;
8167 }
8168
8169 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8170 struct btrfs_fs_info *fs_info,
8171 u64 parent, u64 root_objectid,
8172 u64 flags, struct btrfs_disk_key *key,
8173 int level, struct btrfs_key *ins)
8174 {
8175 int ret;
8176 struct btrfs_extent_item *extent_item;
8177 struct btrfs_tree_block_info *block_info;
8178 struct btrfs_extent_inline_ref *iref;
8179 struct btrfs_path *path;
8180 struct extent_buffer *leaf;
8181 u32 size = sizeof(*extent_item) + sizeof(*iref);
8182 u64 num_bytes = ins->offset;
8183 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8184
8185 if (!skinny_metadata)
8186 size += sizeof(*block_info);
8187
8188 path = btrfs_alloc_path();
8189 if (!path)
8190 return -ENOMEM;
8191
8192 path->leave_spinning = 1;
8193 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8194 ins, size);
8195 if (ret) {
8196 btrfs_free_path(path);
8197 return ret;
8198 }
8199
8200 leaf = path->nodes[0];
8201 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8202 struct btrfs_extent_item);
8203 btrfs_set_extent_refs(leaf, extent_item, 1);
8204 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8205 btrfs_set_extent_flags(leaf, extent_item,
8206 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8207
8208 if (skinny_metadata) {
8209 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8210 num_bytes = fs_info->nodesize;
8211 } else {
8212 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8213 btrfs_set_tree_block_key(leaf, block_info, key);
8214 btrfs_set_tree_block_level(leaf, block_info, level);
8215 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8216 }
8217
8218 if (parent > 0) {
8219 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8220 btrfs_set_extent_inline_ref_type(leaf, iref,
8221 BTRFS_SHARED_BLOCK_REF_KEY);
8222 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8223 } else {
8224 btrfs_set_extent_inline_ref_type(leaf, iref,
8225 BTRFS_TREE_BLOCK_REF_KEY);
8226 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8227 }
8228
8229 btrfs_mark_buffer_dirty(leaf);
8230 btrfs_free_path(path);
8231
8232 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8233 num_bytes);
8234 if (ret)
8235 return ret;
8236
8237 ret = update_block_group(trans, fs_info, ins->objectid,
8238 fs_info->nodesize, 1);
8239 if (ret) { /* -ENOENT, logic error */
8240 btrfs_err(fs_info, "update block group failed for %llu %llu",
8241 ins->objectid, ins->offset);
8242 BUG();
8243 }
8244
8245 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8246 fs_info->nodesize);
8247 return ret;
8248 }
8249
8250 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8251 struct btrfs_root *root, u64 owner,
8252 u64 offset, u64 ram_bytes,
8253 struct btrfs_key *ins)
8254 {
8255 struct btrfs_fs_info *fs_info = root->fs_info;
8256 int ret;
8257
8258 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8259
8260 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8261 root->root_key.objectid, owner, offset,
8262 BTRFS_ADD_DELAYED_EXTENT);
8263
8264 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8265 ins->offset, 0,
8266 root->root_key.objectid, owner,
8267 offset, ram_bytes,
8268 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8269 return ret;
8270 }
8271
8272 /*
8273 * this is used by the tree logging recovery code. It records that
8274 * an extent has been allocated and makes sure to clear the free
8275 * space cache bits as well
8276 */
8277 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8278 struct btrfs_fs_info *fs_info,
8279 u64 root_objectid, u64 owner, u64 offset,
8280 struct btrfs_key *ins)
8281 {
8282 int ret;
8283 struct btrfs_block_group_cache *block_group;
8284 struct btrfs_space_info *space_info;
8285
8286 /*
8287 * Mixed block groups will exclude before processing the log so we only
8288 * need to do the exclude dance if this fs isn't mixed.
8289 */
8290 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8291 ret = __exclude_logged_extent(fs_info, ins->objectid,
8292 ins->offset);
8293 if (ret)
8294 return ret;
8295 }
8296
8297 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8298 if (!block_group)
8299 return -EINVAL;
8300
8301 space_info = block_group->space_info;
8302 spin_lock(&space_info->lock);
8303 spin_lock(&block_group->lock);
8304 space_info->bytes_reserved += ins->offset;
8305 block_group->reserved += ins->offset;
8306 spin_unlock(&block_group->lock);
8307 spin_unlock(&space_info->lock);
8308
8309 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8310 0, owner, offset, ins, 1);
8311 btrfs_put_block_group(block_group);
8312 return ret;
8313 }
8314
8315 static struct extent_buffer *
8316 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8317 u64 bytenr, int level)
8318 {
8319 struct btrfs_fs_info *fs_info = root->fs_info;
8320 struct extent_buffer *buf;
8321
8322 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8323 if (IS_ERR(buf))
8324 return buf;
8325
8326 /*
8327 * Extra safety check in case the extent tree is corrupted and extent
8328 * allocator chooses to use a tree block which is already used and
8329 * locked.
8330 */
8331 if (buf->lock_owner == current->pid) {
8332 btrfs_err_rl(fs_info,
8333 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8334 buf->start, btrfs_header_owner(buf), current->pid);
8335 free_extent_buffer(buf);
8336 return ERR_PTR(-EUCLEAN);
8337 }
8338
8339 btrfs_set_header_generation(buf, trans->transid);
8340 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8341 btrfs_tree_lock(buf);
8342 clean_tree_block(fs_info, buf);
8343 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8344
8345 btrfs_set_lock_blocking(buf);
8346 set_extent_buffer_uptodate(buf);
8347
8348 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8349 buf->log_index = root->log_transid % 2;
8350 /*
8351 * we allow two log transactions at a time, use different
8352 * EXENT bit to differentiate dirty pages.
8353 */
8354 if (buf->log_index == 0)
8355 set_extent_dirty(&root->dirty_log_pages, buf->start,
8356 buf->start + buf->len - 1, GFP_NOFS);
8357 else
8358 set_extent_new(&root->dirty_log_pages, buf->start,
8359 buf->start + buf->len - 1);
8360 } else {
8361 buf->log_index = -1;
8362 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8363 buf->start + buf->len - 1, GFP_NOFS);
8364 }
8365 trans->dirty = true;
8366 /* this returns a buffer locked for blocking */
8367 return buf;
8368 }
8369
8370 static struct btrfs_block_rsv *
8371 use_block_rsv(struct btrfs_trans_handle *trans,
8372 struct btrfs_root *root, u32 blocksize)
8373 {
8374 struct btrfs_fs_info *fs_info = root->fs_info;
8375 struct btrfs_block_rsv *block_rsv;
8376 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8377 int ret;
8378 bool global_updated = false;
8379
8380 block_rsv = get_block_rsv(trans, root);
8381
8382 if (unlikely(block_rsv->size == 0))
8383 goto try_reserve;
8384 again:
8385 ret = block_rsv_use_bytes(block_rsv, blocksize);
8386 if (!ret)
8387 return block_rsv;
8388
8389 if (block_rsv->failfast)
8390 return ERR_PTR(ret);
8391
8392 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8393 global_updated = true;
8394 update_global_block_rsv(fs_info);
8395 goto again;
8396 }
8397
8398 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8399 static DEFINE_RATELIMIT_STATE(_rs,
8400 DEFAULT_RATELIMIT_INTERVAL * 10,
8401 /*DEFAULT_RATELIMIT_BURST*/ 1);
8402 if (__ratelimit(&_rs))
8403 WARN(1, KERN_DEBUG
8404 "BTRFS: block rsv returned %d\n", ret);
8405 }
8406 try_reserve:
8407 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8408 BTRFS_RESERVE_NO_FLUSH);
8409 if (!ret)
8410 return block_rsv;
8411 /*
8412 * If we couldn't reserve metadata bytes try and use some from
8413 * the global reserve if its space type is the same as the global
8414 * reservation.
8415 */
8416 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8417 block_rsv->space_info == global_rsv->space_info) {
8418 ret = block_rsv_use_bytes(global_rsv, blocksize);
8419 if (!ret)
8420 return global_rsv;
8421 }
8422 return ERR_PTR(ret);
8423 }
8424
8425 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8426 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8427 {
8428 block_rsv_add_bytes(block_rsv, blocksize, 0);
8429 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8430 }
8431
8432 /*
8433 * finds a free extent and does all the dirty work required for allocation
8434 * returns the tree buffer or an ERR_PTR on error.
8435 */
8436 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8437 struct btrfs_root *root,
8438 u64 parent, u64 root_objectid,
8439 const struct btrfs_disk_key *key,
8440 int level, u64 hint,
8441 u64 empty_size)
8442 {
8443 struct btrfs_fs_info *fs_info = root->fs_info;
8444 struct btrfs_key ins;
8445 struct btrfs_block_rsv *block_rsv;
8446 struct extent_buffer *buf;
8447 struct btrfs_delayed_extent_op *extent_op;
8448 u64 flags = 0;
8449 int ret;
8450 u32 blocksize = fs_info->nodesize;
8451 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8452
8453 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8454 if (btrfs_is_testing(fs_info)) {
8455 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8456 level);
8457 if (!IS_ERR(buf))
8458 root->alloc_bytenr += blocksize;
8459 return buf;
8460 }
8461 #endif
8462
8463 block_rsv = use_block_rsv(trans, root, blocksize);
8464 if (IS_ERR(block_rsv))
8465 return ERR_CAST(block_rsv);
8466
8467 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8468 empty_size, hint, &ins, 0, 0);
8469 if (ret)
8470 goto out_unuse;
8471
8472 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8473 if (IS_ERR(buf)) {
8474 ret = PTR_ERR(buf);
8475 goto out_free_reserved;
8476 }
8477
8478 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8479 if (parent == 0)
8480 parent = ins.objectid;
8481 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8482 } else
8483 BUG_ON(parent > 0);
8484
8485 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8486 extent_op = btrfs_alloc_delayed_extent_op();
8487 if (!extent_op) {
8488 ret = -ENOMEM;
8489 goto out_free_buf;
8490 }
8491 if (key)
8492 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8493 else
8494 memset(&extent_op->key, 0, sizeof(extent_op->key));
8495 extent_op->flags_to_set = flags;
8496 extent_op->update_key = skinny_metadata ? false : true;
8497 extent_op->update_flags = true;
8498 extent_op->is_data = false;
8499 extent_op->level = level;
8500
8501 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8502 root_objectid, level, 0,
8503 BTRFS_ADD_DELAYED_EXTENT);
8504 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8505 ins.offset, parent,
8506 root_objectid, level,
8507 BTRFS_ADD_DELAYED_EXTENT,
8508 extent_op, NULL, NULL);
8509 if (ret)
8510 goto out_free_delayed;
8511 }
8512 return buf;
8513
8514 out_free_delayed:
8515 btrfs_free_delayed_extent_op(extent_op);
8516 out_free_buf:
8517 free_extent_buffer(buf);
8518 out_free_reserved:
8519 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8520 out_unuse:
8521 unuse_block_rsv(fs_info, block_rsv, blocksize);
8522 return ERR_PTR(ret);
8523 }
8524
8525 struct walk_control {
8526 u64 refs[BTRFS_MAX_LEVEL];
8527 u64 flags[BTRFS_MAX_LEVEL];
8528 struct btrfs_key update_progress;
8529 int stage;
8530 int level;
8531 int shared_level;
8532 int update_ref;
8533 int keep_locks;
8534 int reada_slot;
8535 int reada_count;
8536 int for_reloc;
8537 };
8538
8539 #define DROP_REFERENCE 1
8540 #define UPDATE_BACKREF 2
8541
8542 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8543 struct btrfs_root *root,
8544 struct walk_control *wc,
8545 struct btrfs_path *path)
8546 {
8547 struct btrfs_fs_info *fs_info = root->fs_info;
8548 u64 bytenr;
8549 u64 generation;
8550 u64 refs;
8551 u64 flags;
8552 u32 nritems;
8553 struct btrfs_key key;
8554 struct extent_buffer *eb;
8555 int ret;
8556 int slot;
8557 int nread = 0;
8558
8559 if (path->slots[wc->level] < wc->reada_slot) {
8560 wc->reada_count = wc->reada_count * 2 / 3;
8561 wc->reada_count = max(wc->reada_count, 2);
8562 } else {
8563 wc->reada_count = wc->reada_count * 3 / 2;
8564 wc->reada_count = min_t(int, wc->reada_count,
8565 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8566 }
8567
8568 eb = path->nodes[wc->level];
8569 nritems = btrfs_header_nritems(eb);
8570
8571 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8572 if (nread >= wc->reada_count)
8573 break;
8574
8575 cond_resched();
8576 bytenr = btrfs_node_blockptr(eb, slot);
8577 generation = btrfs_node_ptr_generation(eb, slot);
8578
8579 if (slot == path->slots[wc->level])
8580 goto reada;
8581
8582 if (wc->stage == UPDATE_BACKREF &&
8583 generation <= root->root_key.offset)
8584 continue;
8585
8586 /* We don't lock the tree block, it's OK to be racy here */
8587 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8588 wc->level - 1, 1, &refs,
8589 &flags);
8590 /* We don't care about errors in readahead. */
8591 if (ret < 0)
8592 continue;
8593 BUG_ON(refs == 0);
8594
8595 if (wc->stage == DROP_REFERENCE) {
8596 if (refs == 1)
8597 goto reada;
8598
8599 if (wc->level == 1 &&
8600 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8601 continue;
8602 if (!wc->update_ref ||
8603 generation <= root->root_key.offset)
8604 continue;
8605 btrfs_node_key_to_cpu(eb, &key, slot);
8606 ret = btrfs_comp_cpu_keys(&key,
8607 &wc->update_progress);
8608 if (ret < 0)
8609 continue;
8610 } else {
8611 if (wc->level == 1 &&
8612 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8613 continue;
8614 }
8615 reada:
8616 readahead_tree_block(fs_info, bytenr);
8617 nread++;
8618 }
8619 wc->reada_slot = slot;
8620 }
8621
8622 /*
8623 * helper to process tree block while walking down the tree.
8624 *
8625 * when wc->stage == UPDATE_BACKREF, this function updates
8626 * back refs for pointers in the block.
8627 *
8628 * NOTE: return value 1 means we should stop walking down.
8629 */
8630 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8631 struct btrfs_root *root,
8632 struct btrfs_path *path,
8633 struct walk_control *wc, int lookup_info)
8634 {
8635 struct btrfs_fs_info *fs_info = root->fs_info;
8636 int level = wc->level;
8637 struct extent_buffer *eb = path->nodes[level];
8638 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8639 int ret;
8640
8641 if (wc->stage == UPDATE_BACKREF &&
8642 btrfs_header_owner(eb) != root->root_key.objectid)
8643 return 1;
8644
8645 /*
8646 * when reference count of tree block is 1, it won't increase
8647 * again. once full backref flag is set, we never clear it.
8648 */
8649 if (lookup_info &&
8650 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8651 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8652 BUG_ON(!path->locks[level]);
8653 ret = btrfs_lookup_extent_info(trans, fs_info,
8654 eb->start, level, 1,
8655 &wc->refs[level],
8656 &wc->flags[level]);
8657 BUG_ON(ret == -ENOMEM);
8658 if (ret)
8659 return ret;
8660 BUG_ON(wc->refs[level] == 0);
8661 }
8662
8663 if (wc->stage == DROP_REFERENCE) {
8664 if (wc->refs[level] > 1)
8665 return 1;
8666
8667 if (path->locks[level] && !wc->keep_locks) {
8668 btrfs_tree_unlock_rw(eb, path->locks[level]);
8669 path->locks[level] = 0;
8670 }
8671 return 0;
8672 }
8673
8674 /* wc->stage == UPDATE_BACKREF */
8675 if (!(wc->flags[level] & flag)) {
8676 BUG_ON(!path->locks[level]);
8677 ret = btrfs_inc_ref(trans, root, eb, 1);
8678 BUG_ON(ret); /* -ENOMEM */
8679 ret = btrfs_dec_ref(trans, root, eb, 0);
8680 BUG_ON(ret); /* -ENOMEM */
8681 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8682 eb->len, flag,
8683 btrfs_header_level(eb), 0);
8684 BUG_ON(ret); /* -ENOMEM */
8685 wc->flags[level] |= flag;
8686 }
8687
8688 /*
8689 * the block is shared by multiple trees, so it's not good to
8690 * keep the tree lock
8691 */
8692 if (path->locks[level] && level > 0) {
8693 btrfs_tree_unlock_rw(eb, path->locks[level]);
8694 path->locks[level] = 0;
8695 }
8696 return 0;
8697 }
8698
8699 /*
8700 * helper to process tree block pointer.
8701 *
8702 * when wc->stage == DROP_REFERENCE, this function checks
8703 * reference count of the block pointed to. if the block
8704 * is shared and we need update back refs for the subtree
8705 * rooted at the block, this function changes wc->stage to
8706 * UPDATE_BACKREF. if the block is shared and there is no
8707 * need to update back, this function drops the reference
8708 * to the block.
8709 *
8710 * NOTE: return value 1 means we should stop walking down.
8711 */
8712 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8713 struct btrfs_root *root,
8714 struct btrfs_path *path,
8715 struct walk_control *wc, int *lookup_info)
8716 {
8717 struct btrfs_fs_info *fs_info = root->fs_info;
8718 u64 bytenr;
8719 u64 generation;
8720 u64 parent;
8721 u32 blocksize;
8722 struct btrfs_key key;
8723 struct extent_buffer *next;
8724 int level = wc->level;
8725 int reada = 0;
8726 int ret = 0;
8727 bool need_account = false;
8728
8729 generation = btrfs_node_ptr_generation(path->nodes[level],
8730 path->slots[level]);
8731 /*
8732 * if the lower level block was created before the snapshot
8733 * was created, we know there is no need to update back refs
8734 * for the subtree
8735 */
8736 if (wc->stage == UPDATE_BACKREF &&
8737 generation <= root->root_key.offset) {
8738 *lookup_info = 1;
8739 return 1;
8740 }
8741
8742 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8743 blocksize = fs_info->nodesize;
8744
8745 next = find_extent_buffer(fs_info, bytenr);
8746 if (!next) {
8747 next = btrfs_find_create_tree_block(fs_info, bytenr);
8748 if (IS_ERR(next))
8749 return PTR_ERR(next);
8750
8751 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8752 level - 1);
8753 reada = 1;
8754 }
8755 btrfs_tree_lock(next);
8756 btrfs_set_lock_blocking(next);
8757
8758 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8759 &wc->refs[level - 1],
8760 &wc->flags[level - 1]);
8761 if (ret < 0)
8762 goto out_unlock;
8763
8764 if (unlikely(wc->refs[level - 1] == 0)) {
8765 btrfs_err(fs_info, "Missing references.");
8766 ret = -EIO;
8767 goto out_unlock;
8768 }
8769 *lookup_info = 0;
8770
8771 if (wc->stage == DROP_REFERENCE) {
8772 if (wc->refs[level - 1] > 1) {
8773 need_account = true;
8774 if (level == 1 &&
8775 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8776 goto skip;
8777
8778 if (!wc->update_ref ||
8779 generation <= root->root_key.offset)
8780 goto skip;
8781
8782 btrfs_node_key_to_cpu(path->nodes[level], &key,
8783 path->slots[level]);
8784 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8785 if (ret < 0)
8786 goto skip;
8787
8788 wc->stage = UPDATE_BACKREF;
8789 wc->shared_level = level - 1;
8790 }
8791 } else {
8792 if (level == 1 &&
8793 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8794 goto skip;
8795 }
8796
8797 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8798 btrfs_tree_unlock(next);
8799 free_extent_buffer(next);
8800 next = NULL;
8801 *lookup_info = 1;
8802 }
8803
8804 if (!next) {
8805 if (reada && level == 1)
8806 reada_walk_down(trans, root, wc, path);
8807 next = read_tree_block(fs_info, bytenr, generation);
8808 if (IS_ERR(next)) {
8809 return PTR_ERR(next);
8810 } else if (!extent_buffer_uptodate(next)) {
8811 free_extent_buffer(next);
8812 return -EIO;
8813 }
8814 btrfs_tree_lock(next);
8815 btrfs_set_lock_blocking(next);
8816 }
8817
8818 level--;
8819 ASSERT(level == btrfs_header_level(next));
8820 if (level != btrfs_header_level(next)) {
8821 btrfs_err(root->fs_info, "mismatched level");
8822 ret = -EIO;
8823 goto out_unlock;
8824 }
8825 path->nodes[level] = next;
8826 path->slots[level] = 0;
8827 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8828 wc->level = level;
8829 if (wc->level == 1)
8830 wc->reada_slot = 0;
8831 return 0;
8832 skip:
8833 wc->refs[level - 1] = 0;
8834 wc->flags[level - 1] = 0;
8835 if (wc->stage == DROP_REFERENCE) {
8836 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8837 parent = path->nodes[level]->start;
8838 } else {
8839 ASSERT(root->root_key.objectid ==
8840 btrfs_header_owner(path->nodes[level]));
8841 if (root->root_key.objectid !=
8842 btrfs_header_owner(path->nodes[level])) {
8843 btrfs_err(root->fs_info,
8844 "mismatched block owner");
8845 ret = -EIO;
8846 goto out_unlock;
8847 }
8848 parent = 0;
8849 }
8850
8851 if (need_account) {
8852 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8853 generation, level - 1);
8854 if (ret) {
8855 btrfs_err_rl(fs_info,
8856 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8857 ret);
8858 }
8859 }
8860 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8861 parent, root->root_key.objectid,
8862 level - 1, 0);
8863 if (ret)
8864 goto out_unlock;
8865 }
8866
8867 *lookup_info = 1;
8868 ret = 1;
8869
8870 out_unlock:
8871 btrfs_tree_unlock(next);
8872 free_extent_buffer(next);
8873
8874 return ret;
8875 }
8876
8877 /*
8878 * helper to process tree block while walking up the tree.
8879 *
8880 * when wc->stage == DROP_REFERENCE, this function drops
8881 * reference count on the block.
8882 *
8883 * when wc->stage == UPDATE_BACKREF, this function changes
8884 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8885 * to UPDATE_BACKREF previously while processing the block.
8886 *
8887 * NOTE: return value 1 means we should stop walking up.
8888 */
8889 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8890 struct btrfs_root *root,
8891 struct btrfs_path *path,
8892 struct walk_control *wc)
8893 {
8894 struct btrfs_fs_info *fs_info = root->fs_info;
8895 int ret;
8896 int level = wc->level;
8897 struct extent_buffer *eb = path->nodes[level];
8898 u64 parent = 0;
8899
8900 if (wc->stage == UPDATE_BACKREF) {
8901 BUG_ON(wc->shared_level < level);
8902 if (level < wc->shared_level)
8903 goto out;
8904
8905 ret = find_next_key(path, level + 1, &wc->update_progress);
8906 if (ret > 0)
8907 wc->update_ref = 0;
8908
8909 wc->stage = DROP_REFERENCE;
8910 wc->shared_level = -1;
8911 path->slots[level] = 0;
8912
8913 /*
8914 * check reference count again if the block isn't locked.
8915 * we should start walking down the tree again if reference
8916 * count is one.
8917 */
8918 if (!path->locks[level]) {
8919 BUG_ON(level == 0);
8920 btrfs_tree_lock(eb);
8921 btrfs_set_lock_blocking(eb);
8922 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8923
8924 ret = btrfs_lookup_extent_info(trans, fs_info,
8925 eb->start, level, 1,
8926 &wc->refs[level],
8927 &wc->flags[level]);
8928 if (ret < 0) {
8929 btrfs_tree_unlock_rw(eb, path->locks[level]);
8930 path->locks[level] = 0;
8931 return ret;
8932 }
8933 BUG_ON(wc->refs[level] == 0);
8934 if (wc->refs[level] == 1) {
8935 btrfs_tree_unlock_rw(eb, path->locks[level]);
8936 path->locks[level] = 0;
8937 return 1;
8938 }
8939 }
8940 }
8941
8942 /* wc->stage == DROP_REFERENCE */
8943 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8944
8945 if (wc->refs[level] == 1) {
8946 if (level == 0) {
8947 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8948 ret = btrfs_dec_ref(trans, root, eb, 1);
8949 else
8950 ret = btrfs_dec_ref(trans, root, eb, 0);
8951 BUG_ON(ret); /* -ENOMEM */
8952 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8953 if (ret) {
8954 btrfs_err_rl(fs_info,
8955 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8956 ret);
8957 }
8958 }
8959 /* make block locked assertion in clean_tree_block happy */
8960 if (!path->locks[level] &&
8961 btrfs_header_generation(eb) == trans->transid) {
8962 btrfs_tree_lock(eb);
8963 btrfs_set_lock_blocking(eb);
8964 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8965 }
8966 clean_tree_block(fs_info, eb);
8967 }
8968
8969 if (eb == root->node) {
8970 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8971 parent = eb->start;
8972 else if (root->root_key.objectid != btrfs_header_owner(eb))
8973 goto owner_mismatch;
8974 } else {
8975 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8976 parent = path->nodes[level + 1]->start;
8977 else if (root->root_key.objectid !=
8978 btrfs_header_owner(path->nodes[level + 1]))
8979 goto owner_mismatch;
8980 }
8981
8982 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8983 out:
8984 wc->refs[level] = 0;
8985 wc->flags[level] = 0;
8986 return 0;
8987
8988 owner_mismatch:
8989 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8990 btrfs_header_owner(eb), root->root_key.objectid);
8991 return -EUCLEAN;
8992 }
8993
8994 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8995 struct btrfs_root *root,
8996 struct btrfs_path *path,
8997 struct walk_control *wc)
8998 {
8999 int level = wc->level;
9000 int lookup_info = 1;
9001 int ret;
9002
9003 while (level >= 0) {
9004 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9005 if (ret > 0)
9006 break;
9007
9008 if (level == 0)
9009 break;
9010
9011 if (path->slots[level] >=
9012 btrfs_header_nritems(path->nodes[level]))
9013 break;
9014
9015 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9016 if (ret > 0) {
9017 path->slots[level]++;
9018 continue;
9019 } else if (ret < 0)
9020 return ret;
9021 level = wc->level;
9022 }
9023 return 0;
9024 }
9025
9026 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9027 struct btrfs_root *root,
9028 struct btrfs_path *path,
9029 struct walk_control *wc, int max_level)
9030 {
9031 int level = wc->level;
9032 int ret;
9033
9034 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9035 while (level < max_level && path->nodes[level]) {
9036 wc->level = level;
9037 if (path->slots[level] + 1 <
9038 btrfs_header_nritems(path->nodes[level])) {
9039 path->slots[level]++;
9040 return 0;
9041 } else {
9042 ret = walk_up_proc(trans, root, path, wc);
9043 if (ret > 0)
9044 return 0;
9045 if (ret < 0)
9046 return ret;
9047
9048 if (path->locks[level]) {
9049 btrfs_tree_unlock_rw(path->nodes[level],
9050 path->locks[level]);
9051 path->locks[level] = 0;
9052 }
9053 free_extent_buffer(path->nodes[level]);
9054 path->nodes[level] = NULL;
9055 level++;
9056 }
9057 }
9058 return 1;
9059 }
9060
9061 /*
9062 * drop a subvolume tree.
9063 *
9064 * this function traverses the tree freeing any blocks that only
9065 * referenced by the tree.
9066 *
9067 * when a shared tree block is found. this function decreases its
9068 * reference count by one. if update_ref is true, this function
9069 * also make sure backrefs for the shared block and all lower level
9070 * blocks are properly updated.
9071 *
9072 * If called with for_reloc == 0, may exit early with -EAGAIN
9073 */
9074 int btrfs_drop_snapshot(struct btrfs_root *root,
9075 struct btrfs_block_rsv *block_rsv, int update_ref,
9076 int for_reloc)
9077 {
9078 struct btrfs_fs_info *fs_info = root->fs_info;
9079 struct btrfs_path *path;
9080 struct btrfs_trans_handle *trans;
9081 struct btrfs_root *tree_root = fs_info->tree_root;
9082 struct btrfs_root_item *root_item = &root->root_item;
9083 struct walk_control *wc;
9084 struct btrfs_key key;
9085 int err = 0;
9086 int ret;
9087 int level;
9088 bool root_dropped = false;
9089
9090 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9091
9092 path = btrfs_alloc_path();
9093 if (!path) {
9094 err = -ENOMEM;
9095 goto out;
9096 }
9097
9098 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9099 if (!wc) {
9100 btrfs_free_path(path);
9101 err = -ENOMEM;
9102 goto out;
9103 }
9104
9105 trans = btrfs_start_transaction(tree_root, 0);
9106 if (IS_ERR(trans)) {
9107 err = PTR_ERR(trans);
9108 goto out_free;
9109 }
9110
9111 if (block_rsv)
9112 trans->block_rsv = block_rsv;
9113
9114 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9115 level = btrfs_header_level(root->node);
9116 path->nodes[level] = btrfs_lock_root_node(root);
9117 btrfs_set_lock_blocking(path->nodes[level]);
9118 path->slots[level] = 0;
9119 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9120 memset(&wc->update_progress, 0,
9121 sizeof(wc->update_progress));
9122 } else {
9123 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9124 memcpy(&wc->update_progress, &key,
9125 sizeof(wc->update_progress));
9126
9127 level = root_item->drop_level;
9128 BUG_ON(level == 0);
9129 path->lowest_level = level;
9130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9131 path->lowest_level = 0;
9132 if (ret < 0) {
9133 err = ret;
9134 goto out_end_trans;
9135 }
9136 WARN_ON(ret > 0);
9137
9138 /*
9139 * unlock our path, this is safe because only this
9140 * function is allowed to delete this snapshot
9141 */
9142 btrfs_unlock_up_safe(path, 0);
9143
9144 level = btrfs_header_level(root->node);
9145 while (1) {
9146 btrfs_tree_lock(path->nodes[level]);
9147 btrfs_set_lock_blocking(path->nodes[level]);
9148 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9149
9150 ret = btrfs_lookup_extent_info(trans, fs_info,
9151 path->nodes[level]->start,
9152 level, 1, &wc->refs[level],
9153 &wc->flags[level]);
9154 if (ret < 0) {
9155 err = ret;
9156 goto out_end_trans;
9157 }
9158 BUG_ON(wc->refs[level] == 0);
9159
9160 if (level == root_item->drop_level)
9161 break;
9162
9163 btrfs_tree_unlock(path->nodes[level]);
9164 path->locks[level] = 0;
9165 WARN_ON(wc->refs[level] != 1);
9166 level--;
9167 }
9168 }
9169
9170 wc->level = level;
9171 wc->shared_level = -1;
9172 wc->stage = DROP_REFERENCE;
9173 wc->update_ref = update_ref;
9174 wc->keep_locks = 0;
9175 wc->for_reloc = for_reloc;
9176 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9177
9178 while (1) {
9179
9180 ret = walk_down_tree(trans, root, path, wc);
9181 if (ret < 0) {
9182 err = ret;
9183 break;
9184 }
9185
9186 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9187 if (ret < 0) {
9188 err = ret;
9189 break;
9190 }
9191
9192 if (ret > 0) {
9193 BUG_ON(wc->stage != DROP_REFERENCE);
9194 break;
9195 }
9196
9197 if (wc->stage == DROP_REFERENCE) {
9198 level = wc->level;
9199 btrfs_node_key(path->nodes[level],
9200 &root_item->drop_progress,
9201 path->slots[level]);
9202 root_item->drop_level = level;
9203 }
9204
9205 BUG_ON(wc->level == 0);
9206 if (btrfs_should_end_transaction(trans) ||
9207 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9208 ret = btrfs_update_root(trans, tree_root,
9209 &root->root_key,
9210 root_item);
9211 if (ret) {
9212 btrfs_abort_transaction(trans, ret);
9213 err = ret;
9214 goto out_end_trans;
9215 }
9216
9217 btrfs_end_transaction_throttle(trans);
9218 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9219 btrfs_debug(fs_info,
9220 "drop snapshot early exit");
9221 err = -EAGAIN;
9222 goto out_free;
9223 }
9224
9225 trans = btrfs_start_transaction(tree_root, 0);
9226 if (IS_ERR(trans)) {
9227 err = PTR_ERR(trans);
9228 goto out_free;
9229 }
9230 if (block_rsv)
9231 trans->block_rsv = block_rsv;
9232 }
9233 }
9234 btrfs_release_path(path);
9235 if (err)
9236 goto out_end_trans;
9237
9238 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9239 if (ret) {
9240 btrfs_abort_transaction(trans, ret);
9241 err = ret;
9242 goto out_end_trans;
9243 }
9244
9245 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9246 ret = btrfs_find_root(tree_root, &root->root_key, path,
9247 NULL, NULL);
9248 if (ret < 0) {
9249 btrfs_abort_transaction(trans, ret);
9250 err = ret;
9251 goto out_end_trans;
9252 } else if (ret > 0) {
9253 /* if we fail to delete the orphan item this time
9254 * around, it'll get picked up the next time.
9255 *
9256 * The most common failure here is just -ENOENT.
9257 */
9258 btrfs_del_orphan_item(trans, tree_root,
9259 root->root_key.objectid);
9260 }
9261 }
9262
9263 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9264 btrfs_add_dropped_root(trans, root);
9265 } else {
9266 free_extent_buffer(root->node);
9267 free_extent_buffer(root->commit_root);
9268 btrfs_put_fs_root(root);
9269 }
9270 root_dropped = true;
9271 out_end_trans:
9272 btrfs_end_transaction_throttle(trans);
9273 out_free:
9274 kfree(wc);
9275 btrfs_free_path(path);
9276 out:
9277 /*
9278 * So if we need to stop dropping the snapshot for whatever reason we
9279 * need to make sure to add it back to the dead root list so that we
9280 * keep trying to do the work later. This also cleans up roots if we
9281 * don't have it in the radix (like when we recover after a power fail
9282 * or unmount) so we don't leak memory.
9283 */
9284 if (!for_reloc && !root_dropped)
9285 btrfs_add_dead_root(root);
9286 if (err && err != -EAGAIN)
9287 btrfs_handle_fs_error(fs_info, err, NULL);
9288 return err;
9289 }
9290
9291 /*
9292 * drop subtree rooted at tree block 'node'.
9293 *
9294 * NOTE: this function will unlock and release tree block 'node'
9295 * only used by relocation code
9296 */
9297 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9298 struct btrfs_root *root,
9299 struct extent_buffer *node,
9300 struct extent_buffer *parent)
9301 {
9302 struct btrfs_fs_info *fs_info = root->fs_info;
9303 struct btrfs_path *path;
9304 struct walk_control *wc;
9305 int level;
9306 int parent_level;
9307 int ret = 0;
9308 int wret;
9309
9310 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9311
9312 path = btrfs_alloc_path();
9313 if (!path)
9314 return -ENOMEM;
9315
9316 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9317 if (!wc) {
9318 btrfs_free_path(path);
9319 return -ENOMEM;
9320 }
9321
9322 btrfs_assert_tree_locked(parent);
9323 parent_level = btrfs_header_level(parent);
9324 extent_buffer_get(parent);
9325 path->nodes[parent_level] = parent;
9326 path->slots[parent_level] = btrfs_header_nritems(parent);
9327
9328 btrfs_assert_tree_locked(node);
9329 level = btrfs_header_level(node);
9330 path->nodes[level] = node;
9331 path->slots[level] = 0;
9332 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9333
9334 wc->refs[parent_level] = 1;
9335 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9336 wc->level = level;
9337 wc->shared_level = -1;
9338 wc->stage = DROP_REFERENCE;
9339 wc->update_ref = 0;
9340 wc->keep_locks = 1;
9341 wc->for_reloc = 1;
9342 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9343
9344 while (1) {
9345 wret = walk_down_tree(trans, root, path, wc);
9346 if (wret < 0) {
9347 ret = wret;
9348 break;
9349 }
9350
9351 wret = walk_up_tree(trans, root, path, wc, parent_level);
9352 if (wret < 0)
9353 ret = wret;
9354 if (wret != 0)
9355 break;
9356 }
9357
9358 kfree(wc);
9359 btrfs_free_path(path);
9360 return ret;
9361 }
9362
9363 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9364 {
9365 u64 num_devices;
9366 u64 stripped;
9367
9368 /*
9369 * if restripe for this chunk_type is on pick target profile and
9370 * return, otherwise do the usual balance
9371 */
9372 stripped = get_restripe_target(fs_info, flags);
9373 if (stripped)
9374 return extended_to_chunk(stripped);
9375
9376 num_devices = fs_info->fs_devices->rw_devices;
9377
9378 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9379 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9380 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9381
9382 if (num_devices == 1) {
9383 stripped |= BTRFS_BLOCK_GROUP_DUP;
9384 stripped = flags & ~stripped;
9385
9386 /* turn raid0 into single device chunks */
9387 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9388 return stripped;
9389
9390 /* turn mirroring into duplication */
9391 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9392 BTRFS_BLOCK_GROUP_RAID10))
9393 return stripped | BTRFS_BLOCK_GROUP_DUP;
9394 } else {
9395 /* they already had raid on here, just return */
9396 if (flags & stripped)
9397 return flags;
9398
9399 stripped |= BTRFS_BLOCK_GROUP_DUP;
9400 stripped = flags & ~stripped;
9401
9402 /* switch duplicated blocks with raid1 */
9403 if (flags & BTRFS_BLOCK_GROUP_DUP)
9404 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9405
9406 /* this is drive concat, leave it alone */
9407 }
9408
9409 return flags;
9410 }
9411
9412 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9413 {
9414 struct btrfs_space_info *sinfo = cache->space_info;
9415 u64 num_bytes;
9416 u64 min_allocable_bytes;
9417 int ret = -ENOSPC;
9418
9419 /*
9420 * We need some metadata space and system metadata space for
9421 * allocating chunks in some corner cases until we force to set
9422 * it to be readonly.
9423 */
9424 if ((sinfo->flags &
9425 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9426 !force)
9427 min_allocable_bytes = SZ_1M;
9428 else
9429 min_allocable_bytes = 0;
9430
9431 spin_lock(&sinfo->lock);
9432 spin_lock(&cache->lock);
9433
9434 if (cache->ro) {
9435 cache->ro++;
9436 ret = 0;
9437 goto out;
9438 }
9439
9440 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9441 cache->bytes_super - btrfs_block_group_used(&cache->item);
9442
9443 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9444 min_allocable_bytes <= sinfo->total_bytes) {
9445 sinfo->bytes_readonly += num_bytes;
9446 cache->ro++;
9447 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9448 ret = 0;
9449 }
9450 out:
9451 spin_unlock(&cache->lock);
9452 spin_unlock(&sinfo->lock);
9453 return ret;
9454 }
9455
9456 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9457 struct btrfs_block_group_cache *cache)
9458
9459 {
9460 struct btrfs_trans_handle *trans;
9461 u64 alloc_flags;
9462 int ret;
9463
9464 again:
9465 trans = btrfs_join_transaction(fs_info->extent_root);
9466 if (IS_ERR(trans))
9467 return PTR_ERR(trans);
9468
9469 /*
9470 * we're not allowed to set block groups readonly after the dirty
9471 * block groups cache has started writing. If it already started,
9472 * back off and let this transaction commit
9473 */
9474 mutex_lock(&fs_info->ro_block_group_mutex);
9475 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9476 u64 transid = trans->transid;
9477
9478 mutex_unlock(&fs_info->ro_block_group_mutex);
9479 btrfs_end_transaction(trans);
9480
9481 ret = btrfs_wait_for_commit(fs_info, transid);
9482 if (ret)
9483 return ret;
9484 goto again;
9485 }
9486
9487 /*
9488 * if we are changing raid levels, try to allocate a corresponding
9489 * block group with the new raid level.
9490 */
9491 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9492 if (alloc_flags != cache->flags) {
9493 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9494 CHUNK_ALLOC_FORCE);
9495 /*
9496 * ENOSPC is allowed here, we may have enough space
9497 * already allocated at the new raid level to
9498 * carry on
9499 */
9500 if (ret == -ENOSPC)
9501 ret = 0;
9502 if (ret < 0)
9503 goto out;
9504 }
9505
9506 ret = inc_block_group_ro(cache, 0);
9507 if (!ret)
9508 goto out;
9509 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9510 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9511 CHUNK_ALLOC_FORCE);
9512 if (ret < 0)
9513 goto out;
9514 ret = inc_block_group_ro(cache, 0);
9515 out:
9516 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9517 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9518 mutex_lock(&fs_info->chunk_mutex);
9519 check_system_chunk(trans, fs_info, alloc_flags);
9520 mutex_unlock(&fs_info->chunk_mutex);
9521 }
9522 mutex_unlock(&fs_info->ro_block_group_mutex);
9523
9524 btrfs_end_transaction(trans);
9525 return ret;
9526 }
9527
9528 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9529 struct btrfs_fs_info *fs_info, u64 type)
9530 {
9531 u64 alloc_flags = get_alloc_profile(fs_info, type);
9532
9533 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9534 }
9535
9536 /*
9537 * helper to account the unused space of all the readonly block group in the
9538 * space_info. takes mirrors into account.
9539 */
9540 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9541 {
9542 struct btrfs_block_group_cache *block_group;
9543 u64 free_bytes = 0;
9544 int factor;
9545
9546 /* It's df, we don't care if it's racy */
9547 if (list_empty(&sinfo->ro_bgs))
9548 return 0;
9549
9550 spin_lock(&sinfo->lock);
9551 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9552 spin_lock(&block_group->lock);
9553
9554 if (!block_group->ro) {
9555 spin_unlock(&block_group->lock);
9556 continue;
9557 }
9558
9559 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9560 BTRFS_BLOCK_GROUP_RAID10 |
9561 BTRFS_BLOCK_GROUP_DUP))
9562 factor = 2;
9563 else
9564 factor = 1;
9565
9566 free_bytes += (block_group->key.offset -
9567 btrfs_block_group_used(&block_group->item)) *
9568 factor;
9569
9570 spin_unlock(&block_group->lock);
9571 }
9572 spin_unlock(&sinfo->lock);
9573
9574 return free_bytes;
9575 }
9576
9577 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9578 {
9579 struct btrfs_space_info *sinfo = cache->space_info;
9580 u64 num_bytes;
9581
9582 BUG_ON(!cache->ro);
9583
9584 spin_lock(&sinfo->lock);
9585 spin_lock(&cache->lock);
9586 if (!--cache->ro) {
9587 num_bytes = cache->key.offset - cache->reserved -
9588 cache->pinned - cache->bytes_super -
9589 btrfs_block_group_used(&cache->item);
9590 sinfo->bytes_readonly -= num_bytes;
9591 list_del_init(&cache->ro_list);
9592 }
9593 spin_unlock(&cache->lock);
9594 spin_unlock(&sinfo->lock);
9595 }
9596
9597 /*
9598 * checks to see if its even possible to relocate this block group.
9599 *
9600 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9601 * ok to go ahead and try.
9602 */
9603 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9604 {
9605 struct btrfs_root *root = fs_info->extent_root;
9606 struct btrfs_block_group_cache *block_group;
9607 struct btrfs_space_info *space_info;
9608 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9609 struct btrfs_device *device;
9610 struct btrfs_trans_handle *trans;
9611 u64 min_free;
9612 u64 dev_min = 1;
9613 u64 dev_nr = 0;
9614 u64 target;
9615 int debug;
9616 int index;
9617 int full = 0;
9618 int ret = 0;
9619
9620 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9621
9622 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9623
9624 /* odd, couldn't find the block group, leave it alone */
9625 if (!block_group) {
9626 if (debug)
9627 btrfs_warn(fs_info,
9628 "can't find block group for bytenr %llu",
9629 bytenr);
9630 return -1;
9631 }
9632
9633 min_free = btrfs_block_group_used(&block_group->item);
9634
9635 /* no bytes used, we're good */
9636 if (!min_free)
9637 goto out;
9638
9639 space_info = block_group->space_info;
9640 spin_lock(&space_info->lock);
9641
9642 full = space_info->full;
9643
9644 /*
9645 * if this is the last block group we have in this space, we can't
9646 * relocate it unless we're able to allocate a new chunk below.
9647 *
9648 * Otherwise, we need to make sure we have room in the space to handle
9649 * all of the extents from this block group. If we can, we're good
9650 */
9651 if ((space_info->total_bytes != block_group->key.offset) &&
9652 (btrfs_space_info_used(space_info, false) + min_free <
9653 space_info->total_bytes)) {
9654 spin_unlock(&space_info->lock);
9655 goto out;
9656 }
9657 spin_unlock(&space_info->lock);
9658
9659 /*
9660 * ok we don't have enough space, but maybe we have free space on our
9661 * devices to allocate new chunks for relocation, so loop through our
9662 * alloc devices and guess if we have enough space. if this block
9663 * group is going to be restriped, run checks against the target
9664 * profile instead of the current one.
9665 */
9666 ret = -1;
9667
9668 /*
9669 * index:
9670 * 0: raid10
9671 * 1: raid1
9672 * 2: dup
9673 * 3: raid0
9674 * 4: single
9675 */
9676 target = get_restripe_target(fs_info, block_group->flags);
9677 if (target) {
9678 index = __get_raid_index(extended_to_chunk(target));
9679 } else {
9680 /*
9681 * this is just a balance, so if we were marked as full
9682 * we know there is no space for a new chunk
9683 */
9684 if (full) {
9685 if (debug)
9686 btrfs_warn(fs_info,
9687 "no space to alloc new chunk for block group %llu",
9688 block_group->key.objectid);
9689 goto out;
9690 }
9691
9692 index = get_block_group_index(block_group);
9693 }
9694
9695 if (index == BTRFS_RAID_RAID10) {
9696 dev_min = 4;
9697 /* Divide by 2 */
9698 min_free >>= 1;
9699 } else if (index == BTRFS_RAID_RAID1) {
9700 dev_min = 2;
9701 } else if (index == BTRFS_RAID_DUP) {
9702 /* Multiply by 2 */
9703 min_free <<= 1;
9704 } else if (index == BTRFS_RAID_RAID0) {
9705 dev_min = fs_devices->rw_devices;
9706 min_free = div64_u64(min_free, dev_min);
9707 }
9708
9709 /* We need to do this so that we can look at pending chunks */
9710 trans = btrfs_join_transaction(root);
9711 if (IS_ERR(trans)) {
9712 ret = PTR_ERR(trans);
9713 goto out;
9714 }
9715
9716 mutex_lock(&fs_info->chunk_mutex);
9717 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9718 u64 dev_offset;
9719
9720 /*
9721 * check to make sure we can actually find a chunk with enough
9722 * space to fit our block group in.
9723 */
9724 if (device->total_bytes > device->bytes_used + min_free &&
9725 !device->is_tgtdev_for_dev_replace) {
9726 ret = find_free_dev_extent(trans, device, min_free,
9727 &dev_offset, NULL);
9728 if (!ret)
9729 dev_nr++;
9730
9731 if (dev_nr >= dev_min)
9732 break;
9733
9734 ret = -1;
9735 }
9736 }
9737 if (debug && ret == -1)
9738 btrfs_warn(fs_info,
9739 "no space to allocate a new chunk for block group %llu",
9740 block_group->key.objectid);
9741 mutex_unlock(&fs_info->chunk_mutex);
9742 btrfs_end_transaction(trans);
9743 out:
9744 btrfs_put_block_group(block_group);
9745 return ret;
9746 }
9747
9748 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9749 struct btrfs_path *path,
9750 struct btrfs_key *key)
9751 {
9752 struct btrfs_root *root = fs_info->extent_root;
9753 int ret = 0;
9754 struct btrfs_key found_key;
9755 struct extent_buffer *leaf;
9756 int slot;
9757
9758 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9759 if (ret < 0)
9760 goto out;
9761
9762 while (1) {
9763 slot = path->slots[0];
9764 leaf = path->nodes[0];
9765 if (slot >= btrfs_header_nritems(leaf)) {
9766 ret = btrfs_next_leaf(root, path);
9767 if (ret == 0)
9768 continue;
9769 if (ret < 0)
9770 goto out;
9771 break;
9772 }
9773 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9774
9775 if (found_key.objectid >= key->objectid &&
9776 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9777 struct extent_map_tree *em_tree;
9778 struct extent_map *em;
9779
9780 em_tree = &root->fs_info->mapping_tree.map_tree;
9781 read_lock(&em_tree->lock);
9782 em = lookup_extent_mapping(em_tree, found_key.objectid,
9783 found_key.offset);
9784 read_unlock(&em_tree->lock);
9785 if (!em) {
9786 btrfs_err(fs_info,
9787 "logical %llu len %llu found bg but no related chunk",
9788 found_key.objectid, found_key.offset);
9789 ret = -ENOENT;
9790 } else {
9791 ret = 0;
9792 }
9793 free_extent_map(em);
9794 goto out;
9795 }
9796 path->slots[0]++;
9797 }
9798 out:
9799 return ret;
9800 }
9801
9802 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9803 {
9804 struct btrfs_block_group_cache *block_group;
9805 u64 last = 0;
9806
9807 while (1) {
9808 struct inode *inode;
9809
9810 block_group = btrfs_lookup_first_block_group(info, last);
9811 while (block_group) {
9812 wait_block_group_cache_done(block_group);
9813 spin_lock(&block_group->lock);
9814 if (block_group->iref)
9815 break;
9816 spin_unlock(&block_group->lock);
9817 block_group = next_block_group(info, block_group);
9818 }
9819 if (!block_group) {
9820 if (last == 0)
9821 break;
9822 last = 0;
9823 continue;
9824 }
9825
9826 inode = block_group->inode;
9827 block_group->iref = 0;
9828 block_group->inode = NULL;
9829 spin_unlock(&block_group->lock);
9830 ASSERT(block_group->io_ctl.inode == NULL);
9831 iput(inode);
9832 last = block_group->key.objectid + block_group->key.offset;
9833 btrfs_put_block_group(block_group);
9834 }
9835 }
9836
9837 /*
9838 * Must be called only after stopping all workers, since we could have block
9839 * group caching kthreads running, and therefore they could race with us if we
9840 * freed the block groups before stopping them.
9841 */
9842 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9843 {
9844 struct btrfs_block_group_cache *block_group;
9845 struct btrfs_space_info *space_info;
9846 struct btrfs_caching_control *caching_ctl;
9847 struct rb_node *n;
9848
9849 down_write(&info->commit_root_sem);
9850 while (!list_empty(&info->caching_block_groups)) {
9851 caching_ctl = list_entry(info->caching_block_groups.next,
9852 struct btrfs_caching_control, list);
9853 list_del(&caching_ctl->list);
9854 put_caching_control(caching_ctl);
9855 }
9856 up_write(&info->commit_root_sem);
9857
9858 spin_lock(&info->unused_bgs_lock);
9859 while (!list_empty(&info->unused_bgs)) {
9860 block_group = list_first_entry(&info->unused_bgs,
9861 struct btrfs_block_group_cache,
9862 bg_list);
9863 list_del_init(&block_group->bg_list);
9864 btrfs_put_block_group(block_group);
9865 }
9866 spin_unlock(&info->unused_bgs_lock);
9867
9868 spin_lock(&info->block_group_cache_lock);
9869 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9870 block_group = rb_entry(n, struct btrfs_block_group_cache,
9871 cache_node);
9872 rb_erase(&block_group->cache_node,
9873 &info->block_group_cache_tree);
9874 RB_CLEAR_NODE(&block_group->cache_node);
9875 spin_unlock(&info->block_group_cache_lock);
9876
9877 down_write(&block_group->space_info->groups_sem);
9878 list_del(&block_group->list);
9879 up_write(&block_group->space_info->groups_sem);
9880
9881 /*
9882 * We haven't cached this block group, which means we could
9883 * possibly have excluded extents on this block group.
9884 */
9885 if (block_group->cached == BTRFS_CACHE_NO ||
9886 block_group->cached == BTRFS_CACHE_ERROR)
9887 free_excluded_extents(info, block_group);
9888
9889 btrfs_remove_free_space_cache(block_group);
9890 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9891 ASSERT(list_empty(&block_group->dirty_list));
9892 ASSERT(list_empty(&block_group->io_list));
9893 ASSERT(list_empty(&block_group->bg_list));
9894 ASSERT(atomic_read(&block_group->count) == 1);
9895 btrfs_put_block_group(block_group);
9896
9897 spin_lock(&info->block_group_cache_lock);
9898 }
9899 spin_unlock(&info->block_group_cache_lock);
9900
9901 /* now that all the block groups are freed, go through and
9902 * free all the space_info structs. This is only called during
9903 * the final stages of unmount, and so we know nobody is
9904 * using them. We call synchronize_rcu() once before we start,
9905 * just to be on the safe side.
9906 */
9907 synchronize_rcu();
9908
9909 release_global_block_rsv(info);
9910
9911 while (!list_empty(&info->space_info)) {
9912 int i;
9913
9914 space_info = list_entry(info->space_info.next,
9915 struct btrfs_space_info,
9916 list);
9917
9918 /*
9919 * Do not hide this behind enospc_debug, this is actually
9920 * important and indicates a real bug if this happens.
9921 */
9922 if (WARN_ON(space_info->bytes_pinned > 0 ||
9923 space_info->bytes_reserved > 0 ||
9924 space_info->bytes_may_use > 0))
9925 dump_space_info(info, space_info, 0, 0);
9926 list_del(&space_info->list);
9927 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9928 struct kobject *kobj;
9929 kobj = space_info->block_group_kobjs[i];
9930 space_info->block_group_kobjs[i] = NULL;
9931 if (kobj) {
9932 kobject_del(kobj);
9933 kobject_put(kobj);
9934 }
9935 }
9936 kobject_del(&space_info->kobj);
9937 kobject_put(&space_info->kobj);
9938 }
9939 return 0;
9940 }
9941
9942 static void link_block_group(struct btrfs_block_group_cache *cache)
9943 {
9944 struct btrfs_space_info *space_info = cache->space_info;
9945 int index = get_block_group_index(cache);
9946 bool first = false;
9947
9948 down_write(&space_info->groups_sem);
9949 if (list_empty(&space_info->block_groups[index]))
9950 first = true;
9951 list_add_tail(&cache->list, &space_info->block_groups[index]);
9952 up_write(&space_info->groups_sem);
9953
9954 if (first) {
9955 struct raid_kobject *rkobj;
9956 int ret;
9957
9958 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9959 if (!rkobj)
9960 goto out_err;
9961 rkobj->raid_type = index;
9962 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9963 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9964 "%s", get_raid_name(index));
9965 if (ret) {
9966 kobject_put(&rkobj->kobj);
9967 goto out_err;
9968 }
9969 space_info->block_group_kobjs[index] = &rkobj->kobj;
9970 }
9971
9972 return;
9973 out_err:
9974 btrfs_warn(cache->fs_info,
9975 "failed to add kobject for block cache, ignoring");
9976 }
9977
9978 static struct btrfs_block_group_cache *
9979 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9980 u64 start, u64 size)
9981 {
9982 struct btrfs_block_group_cache *cache;
9983
9984 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9985 if (!cache)
9986 return NULL;
9987
9988 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9989 GFP_NOFS);
9990 if (!cache->free_space_ctl) {
9991 kfree(cache);
9992 return NULL;
9993 }
9994
9995 cache->key.objectid = start;
9996 cache->key.offset = size;
9997 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9998
9999 cache->fs_info = fs_info;
10000 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10001 set_free_space_tree_thresholds(cache);
10002
10003 atomic_set(&cache->count, 1);
10004 spin_lock_init(&cache->lock);
10005 init_rwsem(&cache->data_rwsem);
10006 INIT_LIST_HEAD(&cache->list);
10007 INIT_LIST_HEAD(&cache->cluster_list);
10008 INIT_LIST_HEAD(&cache->bg_list);
10009 INIT_LIST_HEAD(&cache->ro_list);
10010 INIT_LIST_HEAD(&cache->dirty_list);
10011 INIT_LIST_HEAD(&cache->io_list);
10012 btrfs_init_free_space_ctl(cache);
10013 atomic_set(&cache->trimming, 0);
10014 mutex_init(&cache->free_space_lock);
10015 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10016
10017 return cache;
10018 }
10019
10020
10021 /*
10022 * Iterate all chunks and verify that each of them has the corresponding block
10023 * group
10024 */
10025 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10026 {
10027 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10028 struct extent_map *em;
10029 struct btrfs_block_group_cache *bg;
10030 u64 start = 0;
10031 int ret = 0;
10032
10033 while (1) {
10034 read_lock(&map_tree->map_tree.lock);
10035 /*
10036 * lookup_extent_mapping will return the first extent map
10037 * intersecting the range, so setting @len to 1 is enough to
10038 * get the first chunk.
10039 */
10040 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10041 read_unlock(&map_tree->map_tree.lock);
10042 if (!em)
10043 break;
10044
10045 bg = btrfs_lookup_block_group(fs_info, em->start);
10046 if (!bg) {
10047 btrfs_err(fs_info,
10048 "chunk start=%llu len=%llu doesn't have corresponding block group",
10049 em->start, em->len);
10050 ret = -EUCLEAN;
10051 free_extent_map(em);
10052 break;
10053 }
10054 if (bg->key.objectid != em->start ||
10055 bg->key.offset != em->len ||
10056 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10057 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10058 btrfs_err(fs_info,
10059 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10060 em->start, em->len,
10061 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10062 bg->key.objectid, bg->key.offset,
10063 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10064 ret = -EUCLEAN;
10065 free_extent_map(em);
10066 btrfs_put_block_group(bg);
10067 break;
10068 }
10069 start = em->start + em->len;
10070 free_extent_map(em);
10071 btrfs_put_block_group(bg);
10072 }
10073 return ret;
10074 }
10075
10076 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10077 {
10078 struct btrfs_path *path;
10079 int ret;
10080 struct btrfs_block_group_cache *cache;
10081 struct btrfs_space_info *space_info;
10082 struct btrfs_key key;
10083 struct btrfs_key found_key;
10084 struct extent_buffer *leaf;
10085 int need_clear = 0;
10086 u64 cache_gen;
10087 u64 feature;
10088 int mixed;
10089
10090 feature = btrfs_super_incompat_flags(info->super_copy);
10091 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10092
10093 key.objectid = 0;
10094 key.offset = 0;
10095 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10096 path = btrfs_alloc_path();
10097 if (!path)
10098 return -ENOMEM;
10099 path->reada = READA_FORWARD;
10100
10101 cache_gen = btrfs_super_cache_generation(info->super_copy);
10102 if (btrfs_test_opt(info, SPACE_CACHE) &&
10103 btrfs_super_generation(info->super_copy) != cache_gen)
10104 need_clear = 1;
10105 if (btrfs_test_opt(info, CLEAR_CACHE))
10106 need_clear = 1;
10107
10108 while (1) {
10109 ret = find_first_block_group(info, path, &key);
10110 if (ret > 0)
10111 break;
10112 if (ret != 0)
10113 goto error;
10114
10115 leaf = path->nodes[0];
10116 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10117
10118 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10119 found_key.offset);
10120 if (!cache) {
10121 ret = -ENOMEM;
10122 goto error;
10123 }
10124
10125 if (need_clear) {
10126 /*
10127 * When we mount with old space cache, we need to
10128 * set BTRFS_DC_CLEAR and set dirty flag.
10129 *
10130 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10131 * truncate the old free space cache inode and
10132 * setup a new one.
10133 * b) Setting 'dirty flag' makes sure that we flush
10134 * the new space cache info onto disk.
10135 */
10136 if (btrfs_test_opt(info, SPACE_CACHE))
10137 cache->disk_cache_state = BTRFS_DC_CLEAR;
10138 }
10139
10140 read_extent_buffer(leaf, &cache->item,
10141 btrfs_item_ptr_offset(leaf, path->slots[0]),
10142 sizeof(cache->item));
10143 cache->flags = btrfs_block_group_flags(&cache->item);
10144 if (!mixed &&
10145 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10146 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10147 btrfs_err(info,
10148 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10149 cache->key.objectid);
10150 ret = -EINVAL;
10151 goto error;
10152 }
10153
10154 key.objectid = found_key.objectid + found_key.offset;
10155 btrfs_release_path(path);
10156
10157 /*
10158 * We need to exclude the super stripes now so that the space
10159 * info has super bytes accounted for, otherwise we'll think
10160 * we have more space than we actually do.
10161 */
10162 ret = exclude_super_stripes(info, cache);
10163 if (ret) {
10164 /*
10165 * We may have excluded something, so call this just in
10166 * case.
10167 */
10168 free_excluded_extents(info, cache);
10169 btrfs_put_block_group(cache);
10170 goto error;
10171 }
10172
10173 /*
10174 * check for two cases, either we are full, and therefore
10175 * don't need to bother with the caching work since we won't
10176 * find any space, or we are empty, and we can just add all
10177 * the space in and be done with it. This saves us _alot_ of
10178 * time, particularly in the full case.
10179 */
10180 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10181 cache->last_byte_to_unpin = (u64)-1;
10182 cache->cached = BTRFS_CACHE_FINISHED;
10183 free_excluded_extents(info, cache);
10184 } else if (btrfs_block_group_used(&cache->item) == 0) {
10185 cache->last_byte_to_unpin = (u64)-1;
10186 cache->cached = BTRFS_CACHE_FINISHED;
10187 add_new_free_space(cache, info,
10188 found_key.objectid,
10189 found_key.objectid +
10190 found_key.offset);
10191 free_excluded_extents(info, cache);
10192 }
10193
10194 ret = btrfs_add_block_group_cache(info, cache);
10195 if (ret) {
10196 btrfs_remove_free_space_cache(cache);
10197 btrfs_put_block_group(cache);
10198 goto error;
10199 }
10200
10201 trace_btrfs_add_block_group(info, cache, 0);
10202 update_space_info(info, cache->flags, found_key.offset,
10203 btrfs_block_group_used(&cache->item),
10204 cache->bytes_super, &space_info);
10205
10206 cache->space_info = space_info;
10207
10208 link_block_group(cache);
10209
10210 set_avail_alloc_bits(info, cache->flags);
10211 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10212 inc_block_group_ro(cache, 1);
10213 } else if (btrfs_block_group_used(&cache->item) == 0) {
10214 spin_lock(&info->unused_bgs_lock);
10215 /* Should always be true but just in case. */
10216 if (list_empty(&cache->bg_list)) {
10217 btrfs_get_block_group(cache);
10218 list_add_tail(&cache->bg_list,
10219 &info->unused_bgs);
10220 }
10221 spin_unlock(&info->unused_bgs_lock);
10222 }
10223 }
10224
10225 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10226 if (!(get_alloc_profile(info, space_info->flags) &
10227 (BTRFS_BLOCK_GROUP_RAID10 |
10228 BTRFS_BLOCK_GROUP_RAID1 |
10229 BTRFS_BLOCK_GROUP_RAID5 |
10230 BTRFS_BLOCK_GROUP_RAID6 |
10231 BTRFS_BLOCK_GROUP_DUP)))
10232 continue;
10233 /*
10234 * avoid allocating from un-mirrored block group if there are
10235 * mirrored block groups.
10236 */
10237 list_for_each_entry(cache,
10238 &space_info->block_groups[BTRFS_RAID_RAID0],
10239 list)
10240 inc_block_group_ro(cache, 1);
10241 list_for_each_entry(cache,
10242 &space_info->block_groups[BTRFS_RAID_SINGLE],
10243 list)
10244 inc_block_group_ro(cache, 1);
10245 }
10246
10247 init_global_block_rsv(info);
10248 ret = check_chunk_block_group_mappings(info);
10249 error:
10250 btrfs_free_path(path);
10251 return ret;
10252 }
10253
10254 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10255 struct btrfs_fs_info *fs_info)
10256 {
10257 struct btrfs_block_group_cache *block_group;
10258 struct btrfs_root *extent_root = fs_info->extent_root;
10259 struct btrfs_block_group_item item;
10260 struct btrfs_key key;
10261 int ret = 0;
10262
10263 if (!trans->can_flush_pending_bgs)
10264 return;
10265
10266 while (!list_empty(&trans->new_bgs)) {
10267 block_group = list_first_entry(&trans->new_bgs,
10268 struct btrfs_block_group_cache,
10269 bg_list);
10270 if (ret)
10271 goto next;
10272
10273 spin_lock(&block_group->lock);
10274 memcpy(&item, &block_group->item, sizeof(item));
10275 memcpy(&key, &block_group->key, sizeof(key));
10276 spin_unlock(&block_group->lock);
10277
10278 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10279 sizeof(item));
10280 if (ret)
10281 btrfs_abort_transaction(trans, ret);
10282 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10283 key.offset);
10284 if (ret)
10285 btrfs_abort_transaction(trans, ret);
10286 add_block_group_free_space(trans, fs_info, block_group);
10287 /* already aborted the transaction if it failed. */
10288 next:
10289 list_del_init(&block_group->bg_list);
10290 }
10291 btrfs_trans_release_chunk_metadata(trans);
10292 }
10293
10294 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10295 struct btrfs_fs_info *fs_info, u64 bytes_used,
10296 u64 type, u64 chunk_offset, u64 size)
10297 {
10298 struct btrfs_block_group_cache *cache;
10299 int ret;
10300
10301 btrfs_set_log_full_commit(fs_info, trans);
10302
10303 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10304 if (!cache)
10305 return -ENOMEM;
10306
10307 btrfs_set_block_group_used(&cache->item, bytes_used);
10308 btrfs_set_block_group_chunk_objectid(&cache->item,
10309 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10310 btrfs_set_block_group_flags(&cache->item, type);
10311
10312 cache->flags = type;
10313 cache->last_byte_to_unpin = (u64)-1;
10314 cache->cached = BTRFS_CACHE_FINISHED;
10315 cache->needs_free_space = 1;
10316 ret = exclude_super_stripes(fs_info, cache);
10317 if (ret) {
10318 /*
10319 * We may have excluded something, so call this just in
10320 * case.
10321 */
10322 free_excluded_extents(fs_info, cache);
10323 btrfs_put_block_group(cache);
10324 return ret;
10325 }
10326
10327 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10328
10329 free_excluded_extents(fs_info, cache);
10330
10331 #ifdef CONFIG_BTRFS_DEBUG
10332 if (btrfs_should_fragment_free_space(cache)) {
10333 u64 new_bytes_used = size - bytes_used;
10334
10335 bytes_used += new_bytes_used >> 1;
10336 fragment_free_space(cache);
10337 }
10338 #endif
10339 /*
10340 * Ensure the corresponding space_info object is created and
10341 * assigned to our block group. We want our bg to be added to the rbtree
10342 * with its ->space_info set.
10343 */
10344 cache->space_info = __find_space_info(fs_info, cache->flags);
10345 if (!cache->space_info) {
10346 ret = create_space_info(fs_info, cache->flags,
10347 &cache->space_info);
10348 if (ret) {
10349 btrfs_remove_free_space_cache(cache);
10350 btrfs_put_block_group(cache);
10351 return ret;
10352 }
10353 }
10354
10355 ret = btrfs_add_block_group_cache(fs_info, cache);
10356 if (ret) {
10357 btrfs_remove_free_space_cache(cache);
10358 btrfs_put_block_group(cache);
10359 return ret;
10360 }
10361
10362 /*
10363 * Now that our block group has its ->space_info set and is inserted in
10364 * the rbtree, update the space info's counters.
10365 */
10366 trace_btrfs_add_block_group(fs_info, cache, 1);
10367 update_space_info(fs_info, cache->flags, size, bytes_used,
10368 cache->bytes_super, &cache->space_info);
10369 update_global_block_rsv(fs_info);
10370
10371 link_block_group(cache);
10372
10373 list_add_tail(&cache->bg_list, &trans->new_bgs);
10374
10375 set_avail_alloc_bits(fs_info, type);
10376 return 0;
10377 }
10378
10379 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10380 {
10381 u64 extra_flags = chunk_to_extended(flags) &
10382 BTRFS_EXTENDED_PROFILE_MASK;
10383
10384 write_seqlock(&fs_info->profiles_lock);
10385 if (flags & BTRFS_BLOCK_GROUP_DATA)
10386 fs_info->avail_data_alloc_bits &= ~extra_flags;
10387 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10388 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10389 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10390 fs_info->avail_system_alloc_bits &= ~extra_flags;
10391 write_sequnlock(&fs_info->profiles_lock);
10392 }
10393
10394 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10395 struct btrfs_fs_info *fs_info, u64 group_start,
10396 struct extent_map *em)
10397 {
10398 struct btrfs_root *root = fs_info->extent_root;
10399 struct btrfs_path *path;
10400 struct btrfs_block_group_cache *block_group;
10401 struct btrfs_free_cluster *cluster;
10402 struct btrfs_root *tree_root = fs_info->tree_root;
10403 struct btrfs_key key;
10404 struct inode *inode;
10405 struct kobject *kobj = NULL;
10406 int ret;
10407 int index;
10408 int factor;
10409 struct btrfs_caching_control *caching_ctl = NULL;
10410 bool remove_em;
10411
10412 block_group = btrfs_lookup_block_group(fs_info, group_start);
10413 BUG_ON(!block_group);
10414 BUG_ON(!block_group->ro);
10415
10416 /*
10417 * Free the reserved super bytes from this block group before
10418 * remove it.
10419 */
10420 free_excluded_extents(fs_info, block_group);
10421 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10422 block_group->key.offset);
10423
10424 memcpy(&key, &block_group->key, sizeof(key));
10425 index = get_block_group_index(block_group);
10426 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10427 BTRFS_BLOCK_GROUP_RAID1 |
10428 BTRFS_BLOCK_GROUP_RAID10))
10429 factor = 2;
10430 else
10431 factor = 1;
10432
10433 /* make sure this block group isn't part of an allocation cluster */
10434 cluster = &fs_info->data_alloc_cluster;
10435 spin_lock(&cluster->refill_lock);
10436 btrfs_return_cluster_to_free_space(block_group, cluster);
10437 spin_unlock(&cluster->refill_lock);
10438
10439 /*
10440 * make sure this block group isn't part of a metadata
10441 * allocation cluster
10442 */
10443 cluster = &fs_info->meta_alloc_cluster;
10444 spin_lock(&cluster->refill_lock);
10445 btrfs_return_cluster_to_free_space(block_group, cluster);
10446 spin_unlock(&cluster->refill_lock);
10447
10448 path = btrfs_alloc_path();
10449 if (!path) {
10450 ret = -ENOMEM;
10451 goto out;
10452 }
10453
10454 /*
10455 * get the inode first so any iput calls done for the io_list
10456 * aren't the final iput (no unlinks allowed now)
10457 */
10458 inode = lookup_free_space_inode(fs_info, block_group, path);
10459
10460 mutex_lock(&trans->transaction->cache_write_mutex);
10461 /*
10462 * make sure our free spache cache IO is done before remove the
10463 * free space inode
10464 */
10465 spin_lock(&trans->transaction->dirty_bgs_lock);
10466 if (!list_empty(&block_group->io_list)) {
10467 list_del_init(&block_group->io_list);
10468
10469 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10470
10471 spin_unlock(&trans->transaction->dirty_bgs_lock);
10472 btrfs_wait_cache_io(trans, block_group, path);
10473 btrfs_put_block_group(block_group);
10474 spin_lock(&trans->transaction->dirty_bgs_lock);
10475 }
10476
10477 if (!list_empty(&block_group->dirty_list)) {
10478 list_del_init(&block_group->dirty_list);
10479 btrfs_put_block_group(block_group);
10480 }
10481 spin_unlock(&trans->transaction->dirty_bgs_lock);
10482 mutex_unlock(&trans->transaction->cache_write_mutex);
10483
10484 if (!IS_ERR(inode)) {
10485 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10486 if (ret) {
10487 btrfs_add_delayed_iput(inode);
10488 goto out;
10489 }
10490 clear_nlink(inode);
10491 /* One for the block groups ref */
10492 spin_lock(&block_group->lock);
10493 if (block_group->iref) {
10494 block_group->iref = 0;
10495 block_group->inode = NULL;
10496 spin_unlock(&block_group->lock);
10497 iput(inode);
10498 } else {
10499 spin_unlock(&block_group->lock);
10500 }
10501 /* One for our lookup ref */
10502 btrfs_add_delayed_iput(inode);
10503 }
10504
10505 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10506 key.offset = block_group->key.objectid;
10507 key.type = 0;
10508
10509 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10510 if (ret < 0)
10511 goto out;
10512 if (ret > 0)
10513 btrfs_release_path(path);
10514 if (ret == 0) {
10515 ret = btrfs_del_item(trans, tree_root, path);
10516 if (ret)
10517 goto out;
10518 btrfs_release_path(path);
10519 }
10520
10521 spin_lock(&fs_info->block_group_cache_lock);
10522 rb_erase(&block_group->cache_node,
10523 &fs_info->block_group_cache_tree);
10524 RB_CLEAR_NODE(&block_group->cache_node);
10525
10526 if (fs_info->first_logical_byte == block_group->key.objectid)
10527 fs_info->first_logical_byte = (u64)-1;
10528 spin_unlock(&fs_info->block_group_cache_lock);
10529
10530 down_write(&block_group->space_info->groups_sem);
10531 /*
10532 * we must use list_del_init so people can check to see if they
10533 * are still on the list after taking the semaphore
10534 */
10535 list_del_init(&block_group->list);
10536 if (list_empty(&block_group->space_info->block_groups[index])) {
10537 kobj = block_group->space_info->block_group_kobjs[index];
10538 block_group->space_info->block_group_kobjs[index] = NULL;
10539 clear_avail_alloc_bits(fs_info, block_group->flags);
10540 }
10541 up_write(&block_group->space_info->groups_sem);
10542 if (kobj) {
10543 kobject_del(kobj);
10544 kobject_put(kobj);
10545 }
10546
10547 if (block_group->has_caching_ctl)
10548 caching_ctl = get_caching_control(block_group);
10549 if (block_group->cached == BTRFS_CACHE_STARTED)
10550 wait_block_group_cache_done(block_group);
10551 if (block_group->has_caching_ctl) {
10552 down_write(&fs_info->commit_root_sem);
10553 if (!caching_ctl) {
10554 struct btrfs_caching_control *ctl;
10555
10556 list_for_each_entry(ctl,
10557 &fs_info->caching_block_groups, list)
10558 if (ctl->block_group == block_group) {
10559 caching_ctl = ctl;
10560 refcount_inc(&caching_ctl->count);
10561 break;
10562 }
10563 }
10564 if (caching_ctl)
10565 list_del_init(&caching_ctl->list);
10566 up_write(&fs_info->commit_root_sem);
10567 if (caching_ctl) {
10568 /* Once for the caching bgs list and once for us. */
10569 put_caching_control(caching_ctl);
10570 put_caching_control(caching_ctl);
10571 }
10572 }
10573
10574 spin_lock(&trans->transaction->dirty_bgs_lock);
10575 if (!list_empty(&block_group->dirty_list)) {
10576 WARN_ON(1);
10577 }
10578 if (!list_empty(&block_group->io_list)) {
10579 WARN_ON(1);
10580 }
10581 spin_unlock(&trans->transaction->dirty_bgs_lock);
10582 btrfs_remove_free_space_cache(block_group);
10583
10584 spin_lock(&block_group->space_info->lock);
10585 list_del_init(&block_group->ro_list);
10586
10587 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10588 WARN_ON(block_group->space_info->total_bytes
10589 < block_group->key.offset);
10590 WARN_ON(block_group->space_info->bytes_readonly
10591 < block_group->key.offset);
10592 WARN_ON(block_group->space_info->disk_total
10593 < block_group->key.offset * factor);
10594 }
10595 block_group->space_info->total_bytes -= block_group->key.offset;
10596 block_group->space_info->bytes_readonly -= block_group->key.offset;
10597 block_group->space_info->disk_total -= block_group->key.offset * factor;
10598
10599 spin_unlock(&block_group->space_info->lock);
10600
10601 memcpy(&key, &block_group->key, sizeof(key));
10602
10603 mutex_lock(&fs_info->chunk_mutex);
10604 if (!list_empty(&em->list)) {
10605 /* We're in the transaction->pending_chunks list. */
10606 free_extent_map(em);
10607 }
10608 spin_lock(&block_group->lock);
10609 block_group->removed = 1;
10610 /*
10611 * At this point trimming can't start on this block group, because we
10612 * removed the block group from the tree fs_info->block_group_cache_tree
10613 * so no one can't find it anymore and even if someone already got this
10614 * block group before we removed it from the rbtree, they have already
10615 * incremented block_group->trimming - if they didn't, they won't find
10616 * any free space entries because we already removed them all when we
10617 * called btrfs_remove_free_space_cache().
10618 *
10619 * And we must not remove the extent map from the fs_info->mapping_tree
10620 * to prevent the same logical address range and physical device space
10621 * ranges from being reused for a new block group. This is because our
10622 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10623 * completely transactionless, so while it is trimming a range the
10624 * currently running transaction might finish and a new one start,
10625 * allowing for new block groups to be created that can reuse the same
10626 * physical device locations unless we take this special care.
10627 *
10628 * There may also be an implicit trim operation if the file system
10629 * is mounted with -odiscard. The same protections must remain
10630 * in place until the extents have been discarded completely when
10631 * the transaction commit has completed.
10632 */
10633 remove_em = (atomic_read(&block_group->trimming) == 0);
10634 /*
10635 * Make sure a trimmer task always sees the em in the pinned_chunks list
10636 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10637 * before checking block_group->removed).
10638 */
10639 if (!remove_em) {
10640 /*
10641 * Our em might be in trans->transaction->pending_chunks which
10642 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10643 * and so is the fs_info->pinned_chunks list.
10644 *
10645 * So at this point we must be holding the chunk_mutex to avoid
10646 * any races with chunk allocation (more specifically at
10647 * volumes.c:contains_pending_extent()), to ensure it always
10648 * sees the em, either in the pending_chunks list or in the
10649 * pinned_chunks list.
10650 */
10651 list_move_tail(&em->list, &fs_info->pinned_chunks);
10652 }
10653 spin_unlock(&block_group->lock);
10654
10655 if (remove_em) {
10656 struct extent_map_tree *em_tree;
10657
10658 em_tree = &fs_info->mapping_tree.map_tree;
10659 write_lock(&em_tree->lock);
10660 /*
10661 * The em might be in the pending_chunks list, so make sure the
10662 * chunk mutex is locked, since remove_extent_mapping() will
10663 * delete us from that list.
10664 */
10665 remove_extent_mapping(em_tree, em);
10666 write_unlock(&em_tree->lock);
10667 /* once for the tree */
10668 free_extent_map(em);
10669 }
10670
10671 mutex_unlock(&fs_info->chunk_mutex);
10672
10673 ret = remove_block_group_free_space(trans, fs_info, block_group);
10674 if (ret)
10675 goto out;
10676
10677 btrfs_put_block_group(block_group);
10678 btrfs_put_block_group(block_group);
10679
10680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10681 if (ret > 0)
10682 ret = -EIO;
10683 if (ret < 0)
10684 goto out;
10685
10686 ret = btrfs_del_item(trans, root, path);
10687 out:
10688 btrfs_free_path(path);
10689 return ret;
10690 }
10691
10692 struct btrfs_trans_handle *
10693 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10694 const u64 chunk_offset)
10695 {
10696 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10697 struct extent_map *em;
10698 struct map_lookup *map;
10699 unsigned int num_items;
10700
10701 read_lock(&em_tree->lock);
10702 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10703 read_unlock(&em_tree->lock);
10704 ASSERT(em && em->start == chunk_offset);
10705
10706 /*
10707 * We need to reserve 3 + N units from the metadata space info in order
10708 * to remove a block group (done at btrfs_remove_chunk() and at
10709 * btrfs_remove_block_group()), which are used for:
10710 *
10711 * 1 unit for adding the free space inode's orphan (located in the tree
10712 * of tree roots).
10713 * 1 unit for deleting the block group item (located in the extent
10714 * tree).
10715 * 1 unit for deleting the free space item (located in tree of tree
10716 * roots).
10717 * N units for deleting N device extent items corresponding to each
10718 * stripe (located in the device tree).
10719 *
10720 * In order to remove a block group we also need to reserve units in the
10721 * system space info in order to update the chunk tree (update one or
10722 * more device items and remove one chunk item), but this is done at
10723 * btrfs_remove_chunk() through a call to check_system_chunk().
10724 */
10725 map = em->map_lookup;
10726 num_items = 3 + map->num_stripes;
10727 free_extent_map(em);
10728
10729 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10730 num_items, 1);
10731 }
10732
10733 /*
10734 * Process the unused_bgs list and remove any that don't have any allocated
10735 * space inside of them.
10736 */
10737 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10738 {
10739 struct btrfs_block_group_cache *block_group;
10740 struct btrfs_space_info *space_info;
10741 struct btrfs_trans_handle *trans;
10742 int ret = 0;
10743
10744 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10745 return;
10746
10747 spin_lock(&fs_info->unused_bgs_lock);
10748 while (!list_empty(&fs_info->unused_bgs)) {
10749 u64 start, end;
10750 int trimming;
10751
10752 block_group = list_first_entry(&fs_info->unused_bgs,
10753 struct btrfs_block_group_cache,
10754 bg_list);
10755 list_del_init(&block_group->bg_list);
10756
10757 space_info = block_group->space_info;
10758
10759 if (ret || btrfs_mixed_space_info(space_info)) {
10760 btrfs_put_block_group(block_group);
10761 continue;
10762 }
10763 spin_unlock(&fs_info->unused_bgs_lock);
10764
10765 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10766
10767 /* Don't want to race with allocators so take the groups_sem */
10768 down_write(&space_info->groups_sem);
10769 spin_lock(&block_group->lock);
10770 if (block_group->reserved || block_group->pinned ||
10771 btrfs_block_group_used(&block_group->item) ||
10772 block_group->ro ||
10773 list_is_singular(&block_group->list)) {
10774 /*
10775 * We want to bail if we made new allocations or have
10776 * outstanding allocations in this block group. We do
10777 * the ro check in case balance is currently acting on
10778 * this block group.
10779 */
10780 spin_unlock(&block_group->lock);
10781 up_write(&space_info->groups_sem);
10782 goto next;
10783 }
10784 spin_unlock(&block_group->lock);
10785
10786 /* We don't want to force the issue, only flip if it's ok. */
10787 ret = inc_block_group_ro(block_group, 0);
10788 up_write(&space_info->groups_sem);
10789 if (ret < 0) {
10790 ret = 0;
10791 goto next;
10792 }
10793
10794 /*
10795 * Want to do this before we do anything else so we can recover
10796 * properly if we fail to join the transaction.
10797 */
10798 trans = btrfs_start_trans_remove_block_group(fs_info,
10799 block_group->key.objectid);
10800 if (IS_ERR(trans)) {
10801 btrfs_dec_block_group_ro(block_group);
10802 ret = PTR_ERR(trans);
10803 goto next;
10804 }
10805
10806 /*
10807 * We could have pending pinned extents for this block group,
10808 * just delete them, we don't care about them anymore.
10809 */
10810 start = block_group->key.objectid;
10811 end = start + block_group->key.offset - 1;
10812 /*
10813 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10814 * btrfs_finish_extent_commit(). If we are at transaction N,
10815 * another task might be running finish_extent_commit() for the
10816 * previous transaction N - 1, and have seen a range belonging
10817 * to the block group in freed_extents[] before we were able to
10818 * clear the whole block group range from freed_extents[]. This
10819 * means that task can lookup for the block group after we
10820 * unpinned it from freed_extents[] and removed it, leading to
10821 * a BUG_ON() at btrfs_unpin_extent_range().
10822 */
10823 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10824 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10825 EXTENT_DIRTY);
10826 if (ret) {
10827 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10828 btrfs_dec_block_group_ro(block_group);
10829 goto end_trans;
10830 }
10831 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10832 EXTENT_DIRTY);
10833 if (ret) {
10834 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10835 btrfs_dec_block_group_ro(block_group);
10836 goto end_trans;
10837 }
10838 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10839
10840 /* Reset pinned so btrfs_put_block_group doesn't complain */
10841 spin_lock(&space_info->lock);
10842 spin_lock(&block_group->lock);
10843
10844 space_info->bytes_pinned -= block_group->pinned;
10845 space_info->bytes_readonly += block_group->pinned;
10846 percpu_counter_add(&space_info->total_bytes_pinned,
10847 -block_group->pinned);
10848 block_group->pinned = 0;
10849
10850 spin_unlock(&block_group->lock);
10851 spin_unlock(&space_info->lock);
10852
10853 /* DISCARD can flip during remount */
10854 trimming = btrfs_test_opt(fs_info, DISCARD);
10855
10856 /* Implicit trim during transaction commit. */
10857 if (trimming)
10858 btrfs_get_block_group_trimming(block_group);
10859
10860 /*
10861 * Btrfs_remove_chunk will abort the transaction if things go
10862 * horribly wrong.
10863 */
10864 ret = btrfs_remove_chunk(trans, fs_info,
10865 block_group->key.objectid);
10866
10867 if (ret) {
10868 if (trimming)
10869 btrfs_put_block_group_trimming(block_group);
10870 goto end_trans;
10871 }
10872
10873 /*
10874 * If we're not mounted with -odiscard, we can just forget
10875 * about this block group. Otherwise we'll need to wait
10876 * until transaction commit to do the actual discard.
10877 */
10878 if (trimming) {
10879 spin_lock(&fs_info->unused_bgs_lock);
10880 /*
10881 * A concurrent scrub might have added us to the list
10882 * fs_info->unused_bgs, so use a list_move operation
10883 * to add the block group to the deleted_bgs list.
10884 */
10885 list_move(&block_group->bg_list,
10886 &trans->transaction->deleted_bgs);
10887 spin_unlock(&fs_info->unused_bgs_lock);
10888 btrfs_get_block_group(block_group);
10889 }
10890 end_trans:
10891 btrfs_end_transaction(trans);
10892 next:
10893 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10894 btrfs_put_block_group(block_group);
10895 spin_lock(&fs_info->unused_bgs_lock);
10896 }
10897 spin_unlock(&fs_info->unused_bgs_lock);
10898 }
10899
10900 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10901 {
10902 struct btrfs_space_info *space_info;
10903 struct btrfs_super_block *disk_super;
10904 u64 features;
10905 u64 flags;
10906 int mixed = 0;
10907 int ret;
10908
10909 disk_super = fs_info->super_copy;
10910 if (!btrfs_super_root(disk_super))
10911 return -EINVAL;
10912
10913 features = btrfs_super_incompat_flags(disk_super);
10914 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10915 mixed = 1;
10916
10917 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10918 ret = create_space_info(fs_info, flags, &space_info);
10919 if (ret)
10920 goto out;
10921
10922 if (mixed) {
10923 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10924 ret = create_space_info(fs_info, flags, &space_info);
10925 } else {
10926 flags = BTRFS_BLOCK_GROUP_METADATA;
10927 ret = create_space_info(fs_info, flags, &space_info);
10928 if (ret)
10929 goto out;
10930
10931 flags = BTRFS_BLOCK_GROUP_DATA;
10932 ret = create_space_info(fs_info, flags, &space_info);
10933 }
10934 out:
10935 return ret;
10936 }
10937
10938 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10939 u64 start, u64 end)
10940 {
10941 return unpin_extent_range(fs_info, start, end, false);
10942 }
10943
10944 /*
10945 * It used to be that old block groups would be left around forever.
10946 * Iterating over them would be enough to trim unused space. Since we
10947 * now automatically remove them, we also need to iterate over unallocated
10948 * space.
10949 *
10950 * We don't want a transaction for this since the discard may take a
10951 * substantial amount of time. We don't require that a transaction be
10952 * running, but we do need to take a running transaction into account
10953 * to ensure that we're not discarding chunks that were released or
10954 * allocated in the current transaction.
10955 *
10956 * Holding the chunks lock will prevent other threads from allocating
10957 * or releasing chunks, but it won't prevent a running transaction
10958 * from committing and releasing the memory that the pending chunks
10959 * list head uses. For that, we need to take a reference to the
10960 * transaction and hold the commit root sem. We only need to hold
10961 * it while performing the free space search since we have already
10962 * held back allocations.
10963 */
10964 static int btrfs_trim_free_extents(struct btrfs_device *device,
10965 u64 minlen, u64 *trimmed)
10966 {
10967 u64 start = 0, len = 0;
10968 int ret;
10969
10970 *trimmed = 0;
10971
10972 /* Discard not supported = nothing to do. */
10973 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10974 return 0;
10975
10976 /* Not writeable = nothing to do. */
10977 if (!device->writeable)
10978 return 0;
10979
10980 /* No free space = nothing to do. */
10981 if (device->total_bytes <= device->bytes_used)
10982 return 0;
10983
10984 ret = 0;
10985
10986 while (1) {
10987 struct btrfs_fs_info *fs_info = device->fs_info;
10988 struct btrfs_transaction *trans;
10989 u64 bytes;
10990
10991 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10992 if (ret)
10993 break;
10994
10995 ret = down_read_killable(&fs_info->commit_root_sem);
10996 if (ret) {
10997 mutex_unlock(&fs_info->chunk_mutex);
10998 break;
10999 }
11000
11001 spin_lock(&fs_info->trans_lock);
11002 trans = fs_info->running_transaction;
11003 if (trans)
11004 refcount_inc(&trans->use_count);
11005 spin_unlock(&fs_info->trans_lock);
11006
11007 if (!trans)
11008 up_read(&fs_info->commit_root_sem);
11009
11010 ret = find_free_dev_extent_start(trans, device, minlen, start,
11011 &start, &len);
11012 if (trans) {
11013 up_read(&fs_info->commit_root_sem);
11014 btrfs_put_transaction(trans);
11015 }
11016
11017 if (ret) {
11018 mutex_unlock(&fs_info->chunk_mutex);
11019 if (ret == -ENOSPC)
11020 ret = 0;
11021 break;
11022 }
11023
11024 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11025 mutex_unlock(&fs_info->chunk_mutex);
11026
11027 if (ret)
11028 break;
11029
11030 start += len;
11031 *trimmed += bytes;
11032
11033 if (fatal_signal_pending(current)) {
11034 ret = -ERESTARTSYS;
11035 break;
11036 }
11037
11038 cond_resched();
11039 }
11040
11041 return ret;
11042 }
11043
11044 /*
11045 * Trim the whole filesystem by:
11046 * 1) trimming the free space in each block group
11047 * 2) trimming the unallocated space on each device
11048 *
11049 * This will also continue trimming even if a block group or device encounters
11050 * an error. The return value will be the last error, or 0 if nothing bad
11051 * happens.
11052 */
11053 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11054 {
11055 struct btrfs_block_group_cache *cache = NULL;
11056 struct btrfs_device *device;
11057 struct list_head *devices;
11058 u64 group_trimmed;
11059 u64 start;
11060 u64 end;
11061 u64 trimmed = 0;
11062 u64 bg_failed = 0;
11063 u64 dev_failed = 0;
11064 int bg_ret = 0;
11065 int dev_ret = 0;
11066 int ret = 0;
11067
11068 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11069 for (; cache; cache = next_block_group(fs_info, cache)) {
11070 if (cache->key.objectid >= (range->start + range->len)) {
11071 btrfs_put_block_group(cache);
11072 break;
11073 }
11074
11075 start = max(range->start, cache->key.objectid);
11076 end = min(range->start + range->len,
11077 cache->key.objectid + cache->key.offset);
11078
11079 if (end - start >= range->minlen) {
11080 if (!block_group_cache_done(cache)) {
11081 ret = cache_block_group(cache, 0);
11082 if (ret) {
11083 bg_failed++;
11084 bg_ret = ret;
11085 continue;
11086 }
11087 ret = wait_block_group_cache_done(cache);
11088 if (ret) {
11089 bg_failed++;
11090 bg_ret = ret;
11091 continue;
11092 }
11093 }
11094 ret = btrfs_trim_block_group(cache,
11095 &group_trimmed,
11096 start,
11097 end,
11098 range->minlen);
11099
11100 trimmed += group_trimmed;
11101 if (ret) {
11102 bg_failed++;
11103 bg_ret = ret;
11104 continue;
11105 }
11106 }
11107 }
11108
11109 if (bg_failed)
11110 btrfs_warn(fs_info,
11111 "failed to trim %llu block group(s), last error %d",
11112 bg_failed, bg_ret);
11113 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11114 devices = &fs_info->fs_devices->devices;
11115 list_for_each_entry(device, devices, dev_list) {
11116 ret = btrfs_trim_free_extents(device, range->minlen,
11117 &group_trimmed);
11118 if (ret) {
11119 dev_failed++;
11120 dev_ret = ret;
11121 break;
11122 }
11123
11124 trimmed += group_trimmed;
11125 }
11126 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11127
11128 if (dev_failed)
11129 btrfs_warn(fs_info,
11130 "failed to trim %llu device(s), last error %d",
11131 dev_failed, dev_ret);
11132 range->len = trimmed;
11133 if (bg_ret)
11134 return bg_ret;
11135 return dev_ret;
11136 }
11137
11138 /*
11139 * btrfs_{start,end}_write_no_snapshotting() are similar to
11140 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11141 * data into the page cache through nocow before the subvolume is snapshoted,
11142 * but flush the data into disk after the snapshot creation, or to prevent
11143 * operations while snapshotting is ongoing and that cause the snapshot to be
11144 * inconsistent (writes followed by expanding truncates for example).
11145 */
11146 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11147 {
11148 percpu_counter_dec(&root->subv_writers->counter);
11149 /*
11150 * Make sure counter is updated before we wake up waiters.
11151 */
11152 smp_mb();
11153 if (waitqueue_active(&root->subv_writers->wait))
11154 wake_up(&root->subv_writers->wait);
11155 }
11156
11157 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11158 {
11159 if (atomic_read(&root->will_be_snapshotted))
11160 return 0;
11161
11162 percpu_counter_inc(&root->subv_writers->counter);
11163 /*
11164 * Make sure counter is updated before we check for snapshot creation.
11165 */
11166 smp_mb();
11167 if (atomic_read(&root->will_be_snapshotted)) {
11168 btrfs_end_write_no_snapshotting(root);
11169 return 0;
11170 }
11171 return 1;
11172 }
11173
11174 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11175 {
11176 while (true) {
11177 int ret;
11178
11179 ret = btrfs_start_write_no_snapshotting(root);
11180 if (ret)
11181 break;
11182 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11183 TASK_UNINTERRUPTIBLE);
11184 }
11185 }