]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent-tree.c
btrfs: replace many BUG_ONs with proper error handling
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /*
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 *
50 */
51 enum {
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
55 };
56
57 /*
58 * Control how reservations are dealt with.
59 *
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * ENOSPC accounting
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 */
66 enum {
67 RESERVE_FREE = 0,
68 RESERVE_ALLOC = 1,
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
103
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 smp_mb();
108 return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 return (cache->flags & bits) == bits;
114 }
115
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 atomic_inc(&cache->count);
119 }
120
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
127 kfree(cache);
128 }
129 }
130
131 /*
132 * this adds the block group to the fs_info rb tree for the block group
133 * cache
134 */
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
137 {
138 struct rb_node **p;
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
141
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
144
145 while (*p) {
146 parent = *p;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 cache_node);
149 if (block_group->key.objectid < cache->key.objectid) {
150 p = &(*p)->rb_left;
151 } else if (block_group->key.objectid > cache->key.objectid) {
152 p = &(*p)->rb_right;
153 } else {
154 spin_unlock(&info->block_group_cache_lock);
155 return -EEXIST;
156 }
157 }
158
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
163
164 return 0;
165 }
166
167 /*
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
170 */
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 int contains)
174 {
175 struct btrfs_block_group_cache *cache, *ret = NULL;
176 struct rb_node *n;
177 u64 end, start;
178
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
181
182 while (n) {
183 cache = rb_entry(n, struct btrfs_block_group_cache,
184 cache_node);
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
187
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
190 ret = cache;
191 n = n->rb_left;
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
194 ret = cache;
195 break;
196 }
197 n = n->rb_right;
198 } else {
199 ret = cache;
200 break;
201 }
202 }
203 if (ret)
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
206
207 return ret;
208 }
209
210 static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
212 {
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 return 0;
219 }
220
221 static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
223 {
224 u64 start, end;
225
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
228
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234
235 static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
237 {
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
242
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
247 stripe_len);
248 BUG_ON(ret); /* -ENOMEM */
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret); /* -ENOMEM */
257
258 while (nr--) {
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
261 stripe_len);
262 BUG_ON(ret); /* -ENOMEM */
263 }
264
265 kfree(logical);
266 }
267 return 0;
268 }
269
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 struct btrfs_caching_control *ctl;
274
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
278 return NULL;
279 }
280
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
284 return NULL;
285 }
286
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
290 return ctl;
291 }
292
293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 if (atomic_dec_and_test(&ctl->count))
296 kfree(ctl);
297 }
298
299 /*
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
303 */
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 u64 extent_start, extent_end, size, total_added = 0;
308 int ret;
309
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
314 if (ret)
315 break;
316
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
321 total_added += size;
322 ret = btrfs_add_free_space(block_group, start,
323 size);
324 BUG_ON(ret); /* -ENOMEM or logic error */
325 start = extent_end + 1;
326 } else {
327 break;
328 }
329 }
330
331 if (start < end) {
332 size = end - start;
333 total_added += size;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret); /* -ENOMEM or logic error */
336 }
337
338 return total_added;
339 }
340
341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
350 u64 total_found = 0;
351 u64 last = 0;
352 u32 nritems;
353 int ret = 0;
354
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
359
360 path = btrfs_alloc_path();
361 if (!path)
362 goto out;
363
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365
366 /*
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
371 */
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
374 path->reada = 1;
375
376 key.objectid = last;
377 key.offset = 0;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
383
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 if (ret < 0)
386 goto err;
387
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
390
391 while (1) {
392 if (btrfs_fs_closing(fs_info) > 1) {
393 last = (u64)-1;
394 break;
395 }
396
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 } else {
400 ret = find_next_key(path, 0, &key);
401 if (ret)
402 break;
403
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
410 cond_resched();
411 goto again;
412 }
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
415 continue;
416 }
417
418 if (key.objectid < block_group->key.objectid) {
419 path->slots[0]++;
420 continue;
421 }
422
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
425 break;
426
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
429 fs_info, last,
430 key.objectid);
431 last = key.objectid + key.offset;
432
433 if (total_found > (1024 * 1024 * 2)) {
434 total_found = 0;
435 wake_up(&caching_ctl->wait);
436 }
437 }
438 path->slots[0]++;
439 }
440 ret = 0;
441
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
446
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
451
452 err:
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
455
456 free_excluded_extents(extent_root, block_group);
457
458 mutex_unlock(&caching_ctl->mutex);
459 out:
460 wake_up(&caching_ctl->wait);
461
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
464 }
465
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
469 int load_cache_only)
470 {
471 DEFINE_WAIT(wait);
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
474 int ret = 0;
475
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 if (!caching_ctl)
478 return -ENOMEM;
479
480 INIT_LIST_HEAD(&caching_ctl->list);
481 mutex_init(&caching_ctl->mutex);
482 init_waitqueue_head(&caching_ctl->wait);
483 caching_ctl->block_group = cache;
484 caching_ctl->progress = cache->key.objectid;
485 atomic_set(&caching_ctl->count, 1);
486 caching_ctl->work.func = caching_thread;
487
488 spin_lock(&cache->lock);
489 /*
490 * This should be a rare occasion, but this could happen I think in the
491 * case where one thread starts to load the space cache info, and then
492 * some other thread starts a transaction commit which tries to do an
493 * allocation while the other thread is still loading the space cache
494 * info. The previous loop should have kept us from choosing this block
495 * group, but if we've moved to the state where we will wait on caching
496 * block groups we need to first check if we're doing a fast load here,
497 * so we can wait for it to finish, otherwise we could end up allocating
498 * from a block group who's cache gets evicted for one reason or
499 * another.
500 */
501 while (cache->cached == BTRFS_CACHE_FAST) {
502 struct btrfs_caching_control *ctl;
503
504 ctl = cache->caching_ctl;
505 atomic_inc(&ctl->count);
506 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
507 spin_unlock(&cache->lock);
508
509 schedule();
510
511 finish_wait(&ctl->wait, &wait);
512 put_caching_control(ctl);
513 spin_lock(&cache->lock);
514 }
515
516 if (cache->cached != BTRFS_CACHE_NO) {
517 spin_unlock(&cache->lock);
518 kfree(caching_ctl);
519 return 0;
520 }
521 WARN_ON(cache->caching_ctl);
522 cache->caching_ctl = caching_ctl;
523 cache->cached = BTRFS_CACHE_FAST;
524 spin_unlock(&cache->lock);
525
526 /*
527 * We can't do the read from on-disk cache during a commit since we need
528 * to have the normal tree locking. Also if we are currently trying to
529 * allocate blocks for the tree root we can't do the fast caching since
530 * we likely hold important locks.
531 */
532 if (trans && (!trans->transaction->in_commit) &&
533 (root && root != root->fs_info->tree_root) &&
534 btrfs_test_opt(root, SPACE_CACHE)) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 static u64 div_factor(u64 num, int factor)
652 {
653 if (factor == 10)
654 return num;
655 num *= factor;
656 do_div(num, 10);
657 return num;
658 }
659
660 static u64 div_factor_fine(u64 num, int factor)
661 {
662 if (factor == 100)
663 return num;
664 num *= factor;
665 do_div(num, 100);
666 return num;
667 }
668
669 u64 btrfs_find_block_group(struct btrfs_root *root,
670 u64 search_start, u64 search_hint, int owner)
671 {
672 struct btrfs_block_group_cache *cache;
673 u64 used;
674 u64 last = max(search_hint, search_start);
675 u64 group_start = 0;
676 int full_search = 0;
677 int factor = 9;
678 int wrapped = 0;
679 again:
680 while (1) {
681 cache = btrfs_lookup_first_block_group(root->fs_info, last);
682 if (!cache)
683 break;
684
685 spin_lock(&cache->lock);
686 last = cache->key.objectid + cache->key.offset;
687 used = btrfs_block_group_used(&cache->item);
688
689 if ((full_search || !cache->ro) &&
690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
691 if (used + cache->pinned + cache->reserved <
692 div_factor(cache->key.offset, factor)) {
693 group_start = cache->key.objectid;
694 spin_unlock(&cache->lock);
695 btrfs_put_block_group(cache);
696 goto found;
697 }
698 }
699 spin_unlock(&cache->lock);
700 btrfs_put_block_group(cache);
701 cond_resched();
702 }
703 if (!wrapped) {
704 last = search_start;
705 wrapped = 1;
706 goto again;
707 }
708 if (!full_search && factor < 10) {
709 last = search_start;
710 full_search = 1;
711 factor = 10;
712 goto again;
713 }
714 found:
715 return group_start;
716 }
717
718 /* simple helper to search for an existing extent at a given offset */
719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 {
721 int ret;
722 struct btrfs_key key;
723 struct btrfs_path *path;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 key.objectid = start;
730 key.offset = len;
731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
733 0, 0);
734 btrfs_free_path(path);
735 return ret;
736 }
737
738 /*
739 * helper function to lookup reference count and flags of extent.
740 *
741 * the head node for delayed ref is used to store the sum of all the
742 * reference count modifications queued up in the rbtree. the head
743 * node may also store the extent flags to set. This way you can check
744 * to see what the reference count and extent flags would be if all of
745 * the delayed refs are not processed.
746 */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, u64 bytenr,
749 u64 num_bytes, u64 *refs, u64 *flags)
750 {
751 struct btrfs_delayed_ref_head *head;
752 struct btrfs_delayed_ref_root *delayed_refs;
753 struct btrfs_path *path;
754 struct btrfs_extent_item *ei;
755 struct extent_buffer *leaf;
756 struct btrfs_key key;
757 u32 item_size;
758 u64 num_refs;
759 u64 extent_flags;
760 int ret;
761
762 path = btrfs_alloc_path();
763 if (!path)
764 return -ENOMEM;
765
766 key.objectid = bytenr;
767 key.type = BTRFS_EXTENT_ITEM_KEY;
768 key.offset = num_bytes;
769 if (!trans) {
770 path->skip_locking = 1;
771 path->search_commit_root = 1;
772 }
773 again:
774 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
775 &key, path, 0, 0);
776 if (ret < 0)
777 goto out_free;
778
779 if (ret == 0) {
780 leaf = path->nodes[0];
781 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 if (item_size >= sizeof(*ei)) {
783 ei = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_extent_item);
785 num_refs = btrfs_extent_refs(leaf, ei);
786 extent_flags = btrfs_extent_flags(leaf, ei);
787 } else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 struct btrfs_extent_item_v0 *ei0;
790 BUG_ON(item_size != sizeof(*ei0));
791 ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_extent_item_v0);
793 num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 /* FIXME: this isn't correct for data */
795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 BUG();
798 #endif
799 }
800 BUG_ON(num_refs == 0);
801 } else {
802 num_refs = 0;
803 extent_flags = 0;
804 ret = 0;
805 }
806
807 if (!trans)
808 goto out;
809
810 delayed_refs = &trans->transaction->delayed_refs;
811 spin_lock(&delayed_refs->lock);
812 head = btrfs_find_delayed_ref_head(trans, bytenr);
813 if (head) {
814 if (!mutex_trylock(&head->mutex)) {
815 atomic_inc(&head->node.refs);
816 spin_unlock(&delayed_refs->lock);
817
818 btrfs_release_path(path);
819
820 /*
821 * Mutex was contended, block until it's released and try
822 * again
823 */
824 mutex_lock(&head->mutex);
825 mutex_unlock(&head->mutex);
826 btrfs_put_delayed_ref(&head->node);
827 goto again;
828 }
829 if (head->extent_op && head->extent_op->update_flags)
830 extent_flags |= head->extent_op->flags_to_set;
831 else
832 BUG_ON(num_refs == 0);
833
834 num_refs += head->node.ref_mod;
835 mutex_unlock(&head->mutex);
836 }
837 spin_unlock(&delayed_refs->lock);
838 out:
839 WARN_ON(num_refs == 0);
840 if (refs)
841 *refs = num_refs;
842 if (flags)
843 *flags = extent_flags;
844 out_free:
845 btrfs_free_path(path);
846 return ret;
847 }
848
849 /*
850 * Back reference rules. Back refs have three main goals:
851 *
852 * 1) differentiate between all holders of references to an extent so that
853 * when a reference is dropped we can make sure it was a valid reference
854 * before freeing the extent.
855 *
856 * 2) Provide enough information to quickly find the holders of an extent
857 * if we notice a given block is corrupted or bad.
858 *
859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860 * maintenance. This is actually the same as #2, but with a slightly
861 * different use case.
862 *
863 * There are two kinds of back refs. The implicit back refs is optimized
864 * for pointers in non-shared tree blocks. For a given pointer in a block,
865 * back refs of this kind provide information about the block's owner tree
866 * and the pointer's key. These information allow us to find the block by
867 * b-tree searching. The full back refs is for pointers in tree blocks not
868 * referenced by their owner trees. The location of tree block is recorded
869 * in the back refs. Actually the full back refs is generic, and can be
870 * used in all cases the implicit back refs is used. The major shortcoming
871 * of the full back refs is its overhead. Every time a tree block gets
872 * COWed, we have to update back refs entry for all pointers in it.
873 *
874 * For a newly allocated tree block, we use implicit back refs for
875 * pointers in it. This means most tree related operations only involve
876 * implicit back refs. For a tree block created in old transaction, the
877 * only way to drop a reference to it is COW it. So we can detect the
878 * event that tree block loses its owner tree's reference and do the
879 * back refs conversion.
880 *
881 * When a tree block is COW'd through a tree, there are four cases:
882 *
883 * The reference count of the block is one and the tree is the block's
884 * owner tree. Nothing to do in this case.
885 *
886 * The reference count of the block is one and the tree is not the
887 * block's owner tree. In this case, full back refs is used for pointers
888 * in the block. Remove these full back refs, add implicit back refs for
889 * every pointers in the new block.
890 *
891 * The reference count of the block is greater than one and the tree is
892 * the block's owner tree. In this case, implicit back refs is used for
893 * pointers in the block. Add full back refs for every pointers in the
894 * block, increase lower level extents' reference counts. The original
895 * implicit back refs are entailed to the new block.
896 *
897 * The reference count of the block is greater than one and the tree is
898 * not the block's owner tree. Add implicit back refs for every pointer in
899 * the new block, increase lower level extents' reference count.
900 *
901 * Back Reference Key composing:
902 *
903 * The key objectid corresponds to the first byte in the extent,
904 * The key type is used to differentiate between types of back refs.
905 * There are different meanings of the key offset for different types
906 * of back refs.
907 *
908 * File extents can be referenced by:
909 *
910 * - multiple snapshots, subvolumes, or different generations in one subvol
911 * - different files inside a single subvolume
912 * - different offsets inside a file (bookend extents in file.c)
913 *
914 * The extent ref structure for the implicit back refs has fields for:
915 *
916 * - Objectid of the subvolume root
917 * - objectid of the file holding the reference
918 * - original offset in the file
919 * - how many bookend extents
920 *
921 * The key offset for the implicit back refs is hash of the first
922 * three fields.
923 *
924 * The extent ref structure for the full back refs has field for:
925 *
926 * - number of pointers in the tree leaf
927 *
928 * The key offset for the implicit back refs is the first byte of
929 * the tree leaf
930 *
931 * When a file extent is allocated, The implicit back refs is used.
932 * the fields are filled in:
933 *
934 * (root_key.objectid, inode objectid, offset in file, 1)
935 *
936 * When a file extent is removed file truncation, we find the
937 * corresponding implicit back refs and check the following fields:
938 *
939 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 *
941 * Btree extents can be referenced by:
942 *
943 * - Different subvolumes
944 *
945 * Both the implicit back refs and the full back refs for tree blocks
946 * only consist of key. The key offset for the implicit back refs is
947 * objectid of block's owner tree. The key offset for the full back refs
948 * is the first byte of parent block.
949 *
950 * When implicit back refs is used, information about the lowest key and
951 * level of the tree block are required. These information are stored in
952 * tree block info structure.
953 */
954
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct btrfs_path *path,
959 u64 owner, u32 extra_size)
960 {
961 struct btrfs_extent_item *item;
962 struct btrfs_extent_item_v0 *ei0;
963 struct btrfs_extent_ref_v0 *ref0;
964 struct btrfs_tree_block_info *bi;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 u32 new_size = sizeof(*item);
969 u64 refs;
970 int ret;
971
972 leaf = path->nodes[0];
973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 struct btrfs_extent_item_v0);
978 refs = btrfs_extent_refs_v0(leaf, ei0);
979
980 if (owner == (u64)-1) {
981 while (1) {
982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 ret = btrfs_next_leaf(root, path);
984 if (ret < 0)
985 return ret;
986 BUG_ON(ret > 0); /* Corruption */
987 leaf = path->nodes[0];
988 }
989 btrfs_item_key_to_cpu(leaf, &found_key,
990 path->slots[0]);
991 BUG_ON(key.objectid != found_key.objectid);
992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 path->slots[0]++;
994 continue;
995 }
996 ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_extent_ref_v0);
998 owner = btrfs_ref_objectid_v0(leaf, ref0);
999 break;
1000 }
1001 }
1002 btrfs_release_path(path);
1003
1004 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 new_size += sizeof(*bi);
1006
1007 new_size -= sizeof(*ei0);
1008 ret = btrfs_search_slot(trans, root, &key, path,
1009 new_size + extra_size, 1);
1010 if (ret < 0)
1011 return ret;
1012 BUG_ON(ret); /* Corruption */
1013
1014 btrfs_extend_item(trans, root, path, new_size);
1015
1016 leaf = path->nodes[0];
1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 btrfs_set_extent_refs(leaf, item, refs);
1019 /* FIXME: get real generation */
1020 btrfs_set_extent_generation(leaf, item, 0);
1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 btrfs_set_extent_flags(leaf, item,
1023 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 bi = (struct btrfs_tree_block_info *)(item + 1);
1026 /* FIXME: get first key of the block */
1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 } else {
1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 }
1032 btrfs_mark_buffer_dirty(leaf);
1033 return 0;
1034 }
1035 #endif
1036
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 u32 high_crc = ~(u32)0;
1040 u32 low_crc = ~(u32)0;
1041 __le64 lenum;
1042
1043 lenum = cpu_to_le64(root_objectid);
1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(owner);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 lenum = cpu_to_le64(offset);
1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049
1050 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 struct btrfs_extent_data_ref *ref)
1055 {
1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 btrfs_extent_data_ref_objectid(leaf, ref),
1058 btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 struct btrfs_extent_data_ref *ref,
1063 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 u64 bytenr, u64 parent,
1076 u64 root_objectid,
1077 u64 owner, u64 offset)
1078 {
1079 struct btrfs_key key;
1080 struct btrfs_extent_data_ref *ref;
1081 struct extent_buffer *leaf;
1082 u32 nritems;
1083 int ret;
1084 int recow;
1085 int err = -ENOENT;
1086
1087 key.objectid = bytenr;
1088 if (parent) {
1089 key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 key.offset = parent;
1091 } else {
1092 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 key.offset = hash_extent_data_ref(root_objectid,
1094 owner, offset);
1095 }
1096 again:
1097 recow = 0;
1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 if (ret < 0) {
1100 err = ret;
1101 goto fail;
1102 }
1103
1104 if (parent) {
1105 if (!ret)
1106 return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 btrfs_release_path(path);
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret < 0) {
1112 err = ret;
1113 goto fail;
1114 }
1115 if (!ret)
1116 return 0;
1117 #endif
1118 goto fail;
1119 }
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 while (1) {
1124 if (path->slots[0] >= nritems) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret < 0)
1127 err = ret;
1128 if (ret)
1129 goto fail;
1130
1131 leaf = path->nodes[0];
1132 nritems = btrfs_header_nritems(leaf);
1133 recow = 1;
1134 }
1135
1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 if (key.objectid != bytenr ||
1138 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 goto fail;
1140
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143
1144 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 owner, offset)) {
1146 if (recow) {
1147 btrfs_release_path(path);
1148 goto again;
1149 }
1150 err = 0;
1151 break;
1152 }
1153 path->slots[0]++;
1154 }
1155 fail:
1156 return err;
1157 }
1158
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid, u64 owner,
1164 u64 offset, int refs_to_add)
1165 {
1166 struct btrfs_key key;
1167 struct extent_buffer *leaf;
1168 u32 size;
1169 u32 num_refs;
1170 int ret;
1171
1172 key.objectid = bytenr;
1173 if (parent) {
1174 key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 key.offset = parent;
1176 size = sizeof(struct btrfs_shared_data_ref);
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 size = sizeof(struct btrfs_extent_data_ref);
1182 }
1183
1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 if (ret && ret != -EEXIST)
1186 goto fail;
1187
1188 leaf = path->nodes[0];
1189 if (parent) {
1190 struct btrfs_shared_data_ref *ref;
1191 ref = btrfs_item_ptr(leaf, path->slots[0],
1192 struct btrfs_shared_data_ref);
1193 if (ret == 0) {
1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 } else {
1196 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 num_refs += refs_to_add;
1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 }
1200 } else {
1201 struct btrfs_extent_data_ref *ref;
1202 while (ret == -EEXIST) {
1203 ref = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_extent_data_ref);
1205 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 owner, offset))
1207 break;
1208 btrfs_release_path(path);
1209 key.offset++;
1210 ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 size);
1212 if (ret && ret != -EEXIST)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 }
1217 ref = btrfs_item_ptr(leaf, path->slots[0],
1218 struct btrfs_extent_data_ref);
1219 if (ret == 0) {
1220 btrfs_set_extent_data_ref_root(leaf, ref,
1221 root_objectid);
1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 }
1230 }
1231 btrfs_mark_buffer_dirty(leaf);
1232 ret = 0;
1233 fail:
1234 btrfs_release_path(path);
1235 return ret;
1236 }
1237
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 int refs_to_drop)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_extent_data_ref *ref1 = NULL;
1245 struct btrfs_shared_data_ref *ref2 = NULL;
1246 struct extent_buffer *leaf;
1247 u32 num_refs = 0;
1248 int ret = 0;
1249
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252
1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_shared_data_ref);
1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 struct btrfs_extent_ref_v0 *ref0;
1264 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_ref_v0);
1266 num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 } else {
1269 BUG();
1270 }
1271
1272 BUG_ON(num_refs < refs_to_drop);
1273 num_refs -= refs_to_drop;
1274
1275 if (num_refs == 0) {
1276 ret = btrfs_del_item(trans, root, path);
1277 } else {
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 else {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 }
1289 #endif
1290 btrfs_mark_buffer_dirty(leaf);
1291 }
1292 return ret;
1293 }
1294
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 struct btrfs_extent_inline_ref *iref)
1298 {
1299 struct btrfs_key key;
1300 struct extent_buffer *leaf;
1301 struct btrfs_extent_data_ref *ref1;
1302 struct btrfs_shared_data_ref *ref2;
1303 u32 num_refs = 0;
1304
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 if (iref) {
1308 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 BTRFS_EXTENT_DATA_REF_KEY) {
1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 } else {
1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 }
1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_data_ref);
1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 struct btrfs_shared_data_ref);
1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 struct btrfs_extent_ref_v0 *ref0;
1327 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 struct btrfs_extent_ref_v0);
1329 num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 } else {
1332 WARN_ON(1);
1333 }
1334 return num_refs;
1335 }
1336
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct btrfs_path *path,
1340 u64 bytenr, u64 parent,
1341 u64 root_objectid)
1342 {
1343 struct btrfs_key key;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 key.offset = parent;
1350 } else {
1351 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 key.offset = root_objectid;
1353 }
1354
1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 if (ret == -ENOENT && parent) {
1360 btrfs_release_path(path);
1361 key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 }
1366 #endif
1367 return ret;
1368 }
1369
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 btrfs_release_path(path);
1390 return ret;
1391 }
1392
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 int type;
1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 if (parent > 0)
1398 type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 else
1400 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 } else {
1402 if (parent > 0)
1403 type = BTRFS_SHARED_DATA_REF_KEY;
1404 else
1405 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 }
1407 return type;
1408 }
1409
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 struct btrfs_key *key)
1412
1413 {
1414 for (; level < BTRFS_MAX_LEVEL; level++) {
1415 if (!path->nodes[level])
1416 break;
1417 if (path->slots[level] + 1 >=
1418 btrfs_header_nritems(path->nodes[level]))
1419 continue;
1420 if (level == 0)
1421 btrfs_item_key_to_cpu(path->nodes[level], key,
1422 path->slots[level] + 1);
1423 else
1424 btrfs_node_key_to_cpu(path->nodes[level], key,
1425 path->slots[level] + 1);
1426 return 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * look for inline back ref. if back ref is found, *ref_ret is set
1433 * to the address of inline back ref, and 0 is returned.
1434 *
1435 * if back ref isn't found, *ref_ret is set to the address where it
1436 * should be inserted, and -ENOENT is returned.
1437 *
1438 * if insert is true and there are too many inline back refs, the path
1439 * points to the extent item, and -EAGAIN is returned.
1440 *
1441 * NOTE: inline back refs are ordered in the same way that back ref
1442 * items in the tree are ordered.
1443 */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct btrfs_extent_inline_ref **ref_ret,
1449 u64 bytenr, u64 num_bytes,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int insert)
1452 {
1453 struct btrfs_key key;
1454 struct extent_buffer *leaf;
1455 struct btrfs_extent_item *ei;
1456 struct btrfs_extent_inline_ref *iref;
1457 u64 flags;
1458 u64 item_size;
1459 unsigned long ptr;
1460 unsigned long end;
1461 int extra_size;
1462 int type;
1463 int want;
1464 int ret;
1465 int err = 0;
1466
1467 key.objectid = bytenr;
1468 key.type = BTRFS_EXTENT_ITEM_KEY;
1469 key.offset = num_bytes;
1470
1471 want = extent_ref_type(parent, owner);
1472 if (insert) {
1473 extra_size = btrfs_extent_inline_ref_size(want);
1474 path->keep_locks = 1;
1475 } else
1476 extra_size = -1;
1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1478 if (ret < 0) {
1479 err = ret;
1480 goto out;
1481 }
1482 if (ret && !insert) {
1483 err = -ENOENT;
1484 goto out;
1485 }
1486 BUG_ON(ret); /* Corruption */
1487
1488 leaf = path->nodes[0];
1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1491 if (item_size < sizeof(*ei)) {
1492 if (!insert) {
1493 err = -ENOENT;
1494 goto out;
1495 }
1496 ret = convert_extent_item_v0(trans, root, path, owner,
1497 extra_size);
1498 if (ret < 0) {
1499 err = ret;
1500 goto out;
1501 }
1502 leaf = path->nodes[0];
1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 }
1505 #endif
1506 BUG_ON(item_size < sizeof(*ei));
1507
1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1509 flags = btrfs_extent_flags(leaf, ei);
1510
1511 ptr = (unsigned long)(ei + 1);
1512 end = (unsigned long)ei + item_size;
1513
1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1515 ptr += sizeof(struct btrfs_tree_block_info);
1516 BUG_ON(ptr > end);
1517 } else {
1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 }
1520
1521 err = -ENOENT;
1522 while (1) {
1523 if (ptr >= end) {
1524 WARN_ON(ptr > end);
1525 break;
1526 }
1527 iref = (struct btrfs_extent_inline_ref *)ptr;
1528 type = btrfs_extent_inline_ref_type(leaf, iref);
1529 if (want < type)
1530 break;
1531 if (want > type) {
1532 ptr += btrfs_extent_inline_ref_size(type);
1533 continue;
1534 }
1535
1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1537 struct btrfs_extent_data_ref *dref;
1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1539 if (match_extent_data_ref(leaf, dref, root_objectid,
1540 owner, offset)) {
1541 err = 0;
1542 break;
1543 }
1544 if (hash_extent_data_ref_item(leaf, dref) <
1545 hash_extent_data_ref(root_objectid, owner, offset))
1546 break;
1547 } else {
1548 u64 ref_offset;
1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1550 if (parent > 0) {
1551 if (parent == ref_offset) {
1552 err = 0;
1553 break;
1554 }
1555 if (ref_offset < parent)
1556 break;
1557 } else {
1558 if (root_objectid == ref_offset) {
1559 err = 0;
1560 break;
1561 }
1562 if (ref_offset < root_objectid)
1563 break;
1564 }
1565 }
1566 ptr += btrfs_extent_inline_ref_size(type);
1567 }
1568 if (err == -ENOENT && insert) {
1569 if (item_size + extra_size >=
1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1571 err = -EAGAIN;
1572 goto out;
1573 }
1574 /*
1575 * To add new inline back ref, we have to make sure
1576 * there is no corresponding back ref item.
1577 * For simplicity, we just do not add new inline back
1578 * ref if there is any kind of item for this block
1579 */
1580 if (find_next_key(path, 0, &key) == 0 &&
1581 key.objectid == bytenr &&
1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1583 err = -EAGAIN;
1584 goto out;
1585 }
1586 }
1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 out:
1589 if (insert) {
1590 path->keep_locks = 0;
1591 btrfs_unlock_up_safe(path, 1);
1592 }
1593 return err;
1594 }
1595
1596 /*
1597 * helper to add new inline back ref
1598 */
1599 static noinline_for_stack
1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1601 struct btrfs_root *root,
1602 struct btrfs_path *path,
1603 struct btrfs_extent_inline_ref *iref,
1604 u64 parent, u64 root_objectid,
1605 u64 owner, u64 offset, int refs_to_add,
1606 struct btrfs_delayed_extent_op *extent_op)
1607 {
1608 struct extent_buffer *leaf;
1609 struct btrfs_extent_item *ei;
1610 unsigned long ptr;
1611 unsigned long end;
1612 unsigned long item_offset;
1613 u64 refs;
1614 int size;
1615 int type;
1616
1617 leaf = path->nodes[0];
1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 item_offset = (unsigned long)iref - (unsigned long)ei;
1620
1621 type = extent_ref_type(parent, owner);
1622 size = btrfs_extent_inline_ref_size(type);
1623
1624 btrfs_extend_item(trans, root, path, size);
1625
1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1627 refs = btrfs_extent_refs(leaf, ei);
1628 refs += refs_to_add;
1629 btrfs_set_extent_refs(leaf, ei, refs);
1630 if (extent_op)
1631 __run_delayed_extent_op(extent_op, leaf, ei);
1632
1633 ptr = (unsigned long)ei + item_offset;
1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1635 if (ptr < end - size)
1636 memmove_extent_buffer(leaf, ptr + size, ptr,
1637 end - size - ptr);
1638
1639 iref = (struct btrfs_extent_inline_ref *)ptr;
1640 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 struct btrfs_extent_data_ref *dref;
1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1649 struct btrfs_shared_data_ref *sref;
1650 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1655 } else {
1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1657 }
1658 btrfs_mark_buffer_dirty(leaf);
1659 }
1660
1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref **ref_ret,
1665 u64 bytenr, u64 num_bytes, u64 parent,
1666 u64 root_objectid, u64 owner, u64 offset)
1667 {
1668 int ret;
1669
1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1671 bytenr, num_bytes, parent,
1672 root_objectid, owner, offset, 0);
1673 if (ret != -ENOENT)
1674 return ret;
1675
1676 btrfs_release_path(path);
1677 *ref_ret = NULL;
1678
1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 root_objectid);
1682 } else {
1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1684 root_objectid, owner, offset);
1685 }
1686 return ret;
1687 }
1688
1689 /*
1690 * helper to update/remove inline back ref
1691 */
1692 static noinline_for_stack
1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct btrfs_extent_inline_ref *iref,
1697 int refs_to_mod,
1698 struct btrfs_delayed_extent_op *extent_op)
1699 {
1700 struct extent_buffer *leaf;
1701 struct btrfs_extent_item *ei;
1702 struct btrfs_extent_data_ref *dref = NULL;
1703 struct btrfs_shared_data_ref *sref = NULL;
1704 unsigned long ptr;
1705 unsigned long end;
1706 u32 item_size;
1707 int size;
1708 int type;
1709 u64 refs;
1710
1711 leaf = path->nodes[0];
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 refs = btrfs_extent_refs(leaf, ei);
1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1715 refs += refs_to_mod;
1716 btrfs_set_extent_refs(leaf, ei, refs);
1717 if (extent_op)
1718 __run_delayed_extent_op(extent_op, leaf, ei);
1719
1720 type = btrfs_extent_inline_ref_type(leaf, iref);
1721
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1724 refs = btrfs_extent_data_ref_count(leaf, dref);
1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1726 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1727 refs = btrfs_shared_data_ref_count(leaf, sref);
1728 } else {
1729 refs = 1;
1730 BUG_ON(refs_to_mod != -1);
1731 }
1732
1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1734 refs += refs_to_mod;
1735
1736 if (refs > 0) {
1737 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1738 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1739 else
1740 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1741 } else {
1742 size = btrfs_extent_inline_ref_size(type);
1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1744 ptr = (unsigned long)iref;
1745 end = (unsigned long)ei + item_size;
1746 if (ptr + size < end)
1747 memmove_extent_buffer(leaf, ptr, ptr + size,
1748 end - ptr - size);
1749 item_size -= size;
1750 btrfs_truncate_item(trans, root, path, item_size, 1);
1751 }
1752 btrfs_mark_buffer_dirty(leaf);
1753 }
1754
1755 static noinline_for_stack
1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path,
1759 u64 bytenr, u64 num_bytes, u64 parent,
1760 u64 root_objectid, u64 owner,
1761 u64 offset, int refs_to_add,
1762 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 struct btrfs_extent_inline_ref *iref;
1765 int ret;
1766
1767 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1768 bytenr, num_bytes, parent,
1769 root_objectid, owner, offset, 1);
1770 if (ret == 0) {
1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1772 update_inline_extent_backref(trans, root, path, iref,
1773 refs_to_add, extent_op);
1774 } else if (ret == -ENOENT) {
1775 setup_inline_extent_backref(trans, root, path, iref, parent,
1776 root_objectid, owner, offset,
1777 refs_to_add, extent_op);
1778 ret = 0;
1779 }
1780 return ret;
1781 }
1782
1783 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *root,
1785 struct btrfs_path *path,
1786 u64 bytenr, u64 parent, u64 root_objectid,
1787 u64 owner, u64 offset, int refs_to_add)
1788 {
1789 int ret;
1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1791 BUG_ON(refs_to_add != 1);
1792 ret = insert_tree_block_ref(trans, root, path, bytenr,
1793 parent, root_objectid);
1794 } else {
1795 ret = insert_extent_data_ref(trans, root, path, bytenr,
1796 parent, root_objectid,
1797 owner, offset, refs_to_add);
1798 }
1799 return ret;
1800 }
1801
1802 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 struct btrfs_extent_inline_ref *iref,
1806 int refs_to_drop, int is_data)
1807 {
1808 int ret = 0;
1809
1810 BUG_ON(!is_data && refs_to_drop != 1);
1811 if (iref) {
1812 update_inline_extent_backref(trans, root, path, iref,
1813 -refs_to_drop, NULL);
1814 } else if (is_data) {
1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1816 } else {
1817 ret = btrfs_del_item(trans, root, path);
1818 }
1819 return ret;
1820 }
1821
1822 static int btrfs_issue_discard(struct block_device *bdev,
1823 u64 start, u64 len)
1824 {
1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 }
1827
1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1829 u64 num_bytes, u64 *actual_bytes)
1830 {
1831 int ret;
1832 u64 discarded_bytes = 0;
1833 struct btrfs_bio *bbio = NULL;
1834
1835
1836 /* Tell the block device(s) that the sectors can be discarded */
1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1838 bytenr, &num_bytes, &bbio, 0);
1839 /* Error condition is -ENOMEM */
1840 if (!ret) {
1841 struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 int i;
1843
1844
1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1846 if (!stripe->dev->can_discard)
1847 continue;
1848
1849 ret = btrfs_issue_discard(stripe->dev->bdev,
1850 stripe->physical,
1851 stripe->length);
1852 if (!ret)
1853 discarded_bytes += stripe->length;
1854 else if (ret != -EOPNOTSUPP)
1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856
1857 /*
1858 * Just in case we get back EOPNOTSUPP for some reason,
1859 * just ignore the return value so we don't screw up
1860 * people calling discard_extent.
1861 */
1862 ret = 0;
1863 }
1864 kfree(bbio);
1865 }
1866
1867 if (actual_bytes)
1868 *actual_bytes = discarded_bytes;
1869
1870
1871 return ret;
1872 }
1873
1874 /* Can return -ENOMEM */
1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 u64 bytenr, u64 num_bytes, u64 parent,
1878 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 {
1880 int ret;
1881 struct btrfs_fs_info *fs_info = root->fs_info;
1882
1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1884 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1885
1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1888 num_bytes,
1889 parent, root_objectid, (int)owner,
1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 } else {
1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1893 num_bytes,
1894 parent, root_objectid, owner, offset,
1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 }
1897 return ret;
1898 }
1899
1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 u64 bytenr, u64 num_bytes,
1903 u64 parent, u64 root_objectid,
1904 u64 owner, u64 offset, int refs_to_add,
1905 struct btrfs_delayed_extent_op *extent_op)
1906 {
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_extent_item *item;
1910 u64 refs;
1911 int ret;
1912 int err = 0;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return -ENOMEM;
1917
1918 path->reada = 1;
1919 path->leave_spinning = 1;
1920 /* this will setup the path even if it fails to insert the back ref */
1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1922 path, bytenr, num_bytes, parent,
1923 root_objectid, owner, offset,
1924 refs_to_add, extent_op);
1925 if (ret == 0)
1926 goto out;
1927
1928 if (ret != -EAGAIN) {
1929 err = ret;
1930 goto out;
1931 }
1932
1933 leaf = path->nodes[0];
1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1935 refs = btrfs_extent_refs(leaf, item);
1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1937 if (extent_op)
1938 __run_delayed_extent_op(extent_op, leaf, item);
1939
1940 btrfs_mark_buffer_dirty(leaf);
1941 btrfs_release_path(path);
1942
1943 path->reada = 1;
1944 path->leave_spinning = 1;
1945
1946 /* now insert the actual backref */
1947 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1948 path, bytenr, parent, root_objectid,
1949 owner, offset, refs_to_add);
1950 if (ret)
1951 btrfs_abort_transaction(trans, root, ret);
1952 out:
1953 btrfs_free_path(path);
1954 return err;
1955 }
1956
1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_delayed_ref_node *node,
1960 struct btrfs_delayed_extent_op *extent_op,
1961 int insert_reserved)
1962 {
1963 int ret = 0;
1964 struct btrfs_delayed_data_ref *ref;
1965 struct btrfs_key ins;
1966 u64 parent = 0;
1967 u64 ref_root = 0;
1968 u64 flags = 0;
1969
1970 ins.objectid = node->bytenr;
1971 ins.offset = node->num_bytes;
1972 ins.type = BTRFS_EXTENT_ITEM_KEY;
1973
1974 ref = btrfs_delayed_node_to_data_ref(node);
1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1976 parent = ref->parent;
1977 else
1978 ref_root = ref->root;
1979
1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1981 if (extent_op) {
1982 BUG_ON(extent_op->update_key);
1983 flags |= extent_op->flags_to_set;
1984 }
1985 ret = alloc_reserved_file_extent(trans, root,
1986 parent, ref_root, flags,
1987 ref->objectid, ref->offset,
1988 &ins, node->ref_mod);
1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1991 node->num_bytes, parent,
1992 ref_root, ref->objectid,
1993 ref->offset, node->ref_mod,
1994 extent_op);
1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1996 ret = __btrfs_free_extent(trans, root, node->bytenr,
1997 node->num_bytes, parent,
1998 ref_root, ref->objectid,
1999 ref->offset, node->ref_mod,
2000 extent_op);
2001 } else {
2002 BUG();
2003 }
2004 return ret;
2005 }
2006
2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2008 struct extent_buffer *leaf,
2009 struct btrfs_extent_item *ei)
2010 {
2011 u64 flags = btrfs_extent_flags(leaf, ei);
2012 if (extent_op->update_flags) {
2013 flags |= extent_op->flags_to_set;
2014 btrfs_set_extent_flags(leaf, ei, flags);
2015 }
2016
2017 if (extent_op->update_key) {
2018 struct btrfs_tree_block_info *bi;
2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2020 bi = (struct btrfs_tree_block_info *)(ei + 1);
2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2022 }
2023 }
2024
2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2026 struct btrfs_root *root,
2027 struct btrfs_delayed_ref_node *node,
2028 struct btrfs_delayed_extent_op *extent_op)
2029 {
2030 struct btrfs_key key;
2031 struct btrfs_path *path;
2032 struct btrfs_extent_item *ei;
2033 struct extent_buffer *leaf;
2034 u32 item_size;
2035 int ret;
2036 int err = 0;
2037
2038 if (trans->aborted)
2039 return 0;
2040
2041 path = btrfs_alloc_path();
2042 if (!path)
2043 return -ENOMEM;
2044
2045 key.objectid = node->bytenr;
2046 key.type = BTRFS_EXTENT_ITEM_KEY;
2047 key.offset = node->num_bytes;
2048
2049 path->reada = 1;
2050 path->leave_spinning = 1;
2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2052 path, 0, 1);
2053 if (ret < 0) {
2054 err = ret;
2055 goto out;
2056 }
2057 if (ret > 0) {
2058 err = -EIO;
2059 goto out;
2060 }
2061
2062 leaf = path->nodes[0];
2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2065 if (item_size < sizeof(*ei)) {
2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2067 path, (u64)-1, 0);
2068 if (ret < 0) {
2069 err = ret;
2070 goto out;
2071 }
2072 leaf = path->nodes[0];
2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 }
2075 #endif
2076 BUG_ON(item_size < sizeof(*ei));
2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 __run_delayed_extent_op(extent_op, leaf, ei);
2079
2080 btrfs_mark_buffer_dirty(leaf);
2081 out:
2082 btrfs_free_path(path);
2083 return err;
2084 }
2085
2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2087 struct btrfs_root *root,
2088 struct btrfs_delayed_ref_node *node,
2089 struct btrfs_delayed_extent_op *extent_op,
2090 int insert_reserved)
2091 {
2092 int ret = 0;
2093 struct btrfs_delayed_tree_ref *ref;
2094 struct btrfs_key ins;
2095 u64 parent = 0;
2096 u64 ref_root = 0;
2097
2098 ins.objectid = node->bytenr;
2099 ins.offset = node->num_bytes;
2100 ins.type = BTRFS_EXTENT_ITEM_KEY;
2101
2102 ref = btrfs_delayed_node_to_tree_ref(node);
2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 parent = ref->parent;
2105 else
2106 ref_root = ref->root;
2107
2108 BUG_ON(node->ref_mod != 1);
2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2110 BUG_ON(!extent_op || !extent_op->update_flags ||
2111 !extent_op->update_key);
2112 ret = alloc_reserved_tree_block(trans, root,
2113 parent, ref_root,
2114 extent_op->flags_to_set,
2115 &extent_op->key,
2116 ref->level, &ins);
2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2119 node->num_bytes, parent, ref_root,
2120 ref->level, 0, 1, extent_op);
2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2122 ret = __btrfs_free_extent(trans, root, node->bytenr,
2123 node->num_bytes, parent, ref_root,
2124 ref->level, 0, 1, extent_op);
2125 } else {
2126 BUG();
2127 }
2128 return ret;
2129 }
2130
2131 /* helper function to actually process a single delayed ref entry */
2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2133 struct btrfs_root *root,
2134 struct btrfs_delayed_ref_node *node,
2135 struct btrfs_delayed_extent_op *extent_op,
2136 int insert_reserved)
2137 {
2138 int ret = 0;
2139
2140 if (trans->aborted)
2141 return 0;
2142
2143 if (btrfs_delayed_ref_is_head(node)) {
2144 struct btrfs_delayed_ref_head *head;
2145 /*
2146 * we've hit the end of the chain and we were supposed
2147 * to insert this extent into the tree. But, it got
2148 * deleted before we ever needed to insert it, so all
2149 * we have to do is clean up the accounting
2150 */
2151 BUG_ON(extent_op);
2152 head = btrfs_delayed_node_to_head(node);
2153 if (insert_reserved) {
2154 btrfs_pin_extent(root, node->bytenr,
2155 node->num_bytes, 1);
2156 if (head->is_data) {
2157 ret = btrfs_del_csums(trans, root,
2158 node->bytenr,
2159 node->num_bytes);
2160 }
2161 }
2162 mutex_unlock(&head->mutex);
2163 return ret;
2164 }
2165
2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2168 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2169 insert_reserved);
2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2171 node->type == BTRFS_SHARED_DATA_REF_KEY)
2172 ret = run_delayed_data_ref(trans, root, node, extent_op,
2173 insert_reserved);
2174 else
2175 BUG();
2176 return ret;
2177 }
2178
2179 static noinline struct btrfs_delayed_ref_node *
2180 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2181 {
2182 struct rb_node *node;
2183 struct btrfs_delayed_ref_node *ref;
2184 int action = BTRFS_ADD_DELAYED_REF;
2185 again:
2186 /*
2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2188 * this prevents ref count from going down to zero when
2189 * there still are pending delayed ref.
2190 */
2191 node = rb_prev(&head->node.rb_node);
2192 while (1) {
2193 if (!node)
2194 break;
2195 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2196 rb_node);
2197 if (ref->bytenr != head->node.bytenr)
2198 break;
2199 if (ref->action == action)
2200 return ref;
2201 node = rb_prev(node);
2202 }
2203 if (action == BTRFS_ADD_DELAYED_REF) {
2204 action = BTRFS_DROP_DELAYED_REF;
2205 goto again;
2206 }
2207 return NULL;
2208 }
2209
2210 /*
2211 * Returns 0 on success or if called with an already aborted transaction.
2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2213 */
2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct list_head *cluster)
2217 {
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct btrfs_delayed_ref_head *locked_ref = NULL;
2221 struct btrfs_delayed_extent_op *extent_op;
2222 int ret;
2223 int count = 0;
2224 int must_insert_reserved = 0;
2225
2226 delayed_refs = &trans->transaction->delayed_refs;
2227 while (1) {
2228 if (!locked_ref) {
2229 /* pick a new head ref from the cluster list */
2230 if (list_empty(cluster))
2231 break;
2232
2233 locked_ref = list_entry(cluster->next,
2234 struct btrfs_delayed_ref_head, cluster);
2235
2236 /* grab the lock that says we are going to process
2237 * all the refs for this head */
2238 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2239
2240 /*
2241 * we may have dropped the spin lock to get the head
2242 * mutex lock, and that might have given someone else
2243 * time to free the head. If that's true, it has been
2244 * removed from our list and we can move on.
2245 */
2246 if (ret == -EAGAIN) {
2247 locked_ref = NULL;
2248 count++;
2249 continue;
2250 }
2251 }
2252
2253 /*
2254 * locked_ref is the head node, so we have to go one
2255 * node back for any delayed ref updates
2256 */
2257 ref = select_delayed_ref(locked_ref);
2258
2259 if (ref && ref->seq &&
2260 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2261 /*
2262 * there are still refs with lower seq numbers in the
2263 * process of being added. Don't run this ref yet.
2264 */
2265 list_del_init(&locked_ref->cluster);
2266 mutex_unlock(&locked_ref->mutex);
2267 locked_ref = NULL;
2268 delayed_refs->num_heads_ready++;
2269 spin_unlock(&delayed_refs->lock);
2270 cond_resched();
2271 spin_lock(&delayed_refs->lock);
2272 continue;
2273 }
2274
2275 /*
2276 * record the must insert reserved flag before we
2277 * drop the spin lock.
2278 */
2279 must_insert_reserved = locked_ref->must_insert_reserved;
2280 locked_ref->must_insert_reserved = 0;
2281
2282 extent_op = locked_ref->extent_op;
2283 locked_ref->extent_op = NULL;
2284
2285 if (!ref) {
2286 /* All delayed refs have been processed, Go ahead
2287 * and send the head node to run_one_delayed_ref,
2288 * so that any accounting fixes can happen
2289 */
2290 ref = &locked_ref->node;
2291
2292 if (extent_op && must_insert_reserved) {
2293 kfree(extent_op);
2294 extent_op = NULL;
2295 }
2296
2297 if (extent_op) {
2298 spin_unlock(&delayed_refs->lock);
2299
2300 ret = run_delayed_extent_op(trans, root,
2301 ref, extent_op);
2302 kfree(extent_op);
2303
2304 if (ret) {
2305 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2306 return ret;
2307 }
2308
2309 goto next;
2310 }
2311
2312 list_del_init(&locked_ref->cluster);
2313 locked_ref = NULL;
2314 }
2315
2316 ref->in_tree = 0;
2317 rb_erase(&ref->rb_node, &delayed_refs->root);
2318 delayed_refs->num_entries--;
2319 /*
2320 * we modified num_entries, but as we're currently running
2321 * delayed refs, skip
2322 * wake_up(&delayed_refs->seq_wait);
2323 * here.
2324 */
2325 spin_unlock(&delayed_refs->lock);
2326
2327 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2328 must_insert_reserved);
2329
2330 btrfs_put_delayed_ref(ref);
2331 kfree(extent_op);
2332 count++;
2333
2334 if (ret) {
2335 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2336 return ret;
2337 }
2338
2339 next:
2340 do_chunk_alloc(trans, root->fs_info->extent_root,
2341 2 * 1024 * 1024,
2342 btrfs_get_alloc_profile(root, 0),
2343 CHUNK_ALLOC_NO_FORCE);
2344 cond_resched();
2345 spin_lock(&delayed_refs->lock);
2346 }
2347 return count;
2348 }
2349
2350
2351 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2352 unsigned long num_refs)
2353 {
2354 struct list_head *first_seq = delayed_refs->seq_head.next;
2355
2356 spin_unlock(&delayed_refs->lock);
2357 pr_debug("waiting for more refs (num %ld, first %p)\n",
2358 num_refs, first_seq);
2359 wait_event(delayed_refs->seq_wait,
2360 num_refs != delayed_refs->num_entries ||
2361 delayed_refs->seq_head.next != first_seq);
2362 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2363 delayed_refs->num_entries, delayed_refs->seq_head.next);
2364 spin_lock(&delayed_refs->lock);
2365 }
2366
2367 /*
2368 * this starts processing the delayed reference count updates and
2369 * extent insertions we have queued up so far. count can be
2370 * 0, which means to process everything in the tree at the start
2371 * of the run (but not newly added entries), or it can be some target
2372 * number you'd like to process.
2373 *
2374 * Returns 0 on success or if called with an aborted transaction
2375 * Returns <0 on error and aborts the transaction
2376 */
2377 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, unsigned long count)
2379 {
2380 struct rb_node *node;
2381 struct btrfs_delayed_ref_root *delayed_refs;
2382 struct btrfs_delayed_ref_node *ref;
2383 struct list_head cluster;
2384 int ret;
2385 u64 delayed_start;
2386 int run_all = count == (unsigned long)-1;
2387 int run_most = 0;
2388 unsigned long num_refs = 0;
2389 int consider_waiting;
2390
2391 /* We'll clean this up in btrfs_cleanup_transaction */
2392 if (trans->aborted)
2393 return 0;
2394
2395 if (root == root->fs_info->extent_root)
2396 root = root->fs_info->tree_root;
2397
2398 do_chunk_alloc(trans, root->fs_info->extent_root,
2399 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2400 CHUNK_ALLOC_NO_FORCE);
2401
2402 delayed_refs = &trans->transaction->delayed_refs;
2403 INIT_LIST_HEAD(&cluster);
2404 again:
2405 consider_waiting = 0;
2406 spin_lock(&delayed_refs->lock);
2407 if (count == 0) {
2408 count = delayed_refs->num_entries * 2;
2409 run_most = 1;
2410 }
2411 while (1) {
2412 if (!(run_all || run_most) &&
2413 delayed_refs->num_heads_ready < 64)
2414 break;
2415
2416 /*
2417 * go find something we can process in the rbtree. We start at
2418 * the beginning of the tree, and then build a cluster
2419 * of refs to process starting at the first one we are able to
2420 * lock
2421 */
2422 delayed_start = delayed_refs->run_delayed_start;
2423 ret = btrfs_find_ref_cluster(trans, &cluster,
2424 delayed_refs->run_delayed_start);
2425 if (ret)
2426 break;
2427
2428 if (delayed_start >= delayed_refs->run_delayed_start) {
2429 if (consider_waiting == 0) {
2430 /*
2431 * btrfs_find_ref_cluster looped. let's do one
2432 * more cycle. if we don't run any delayed ref
2433 * during that cycle (because we can't because
2434 * all of them are blocked) and if the number of
2435 * refs doesn't change, we avoid busy waiting.
2436 */
2437 consider_waiting = 1;
2438 num_refs = delayed_refs->num_entries;
2439 } else {
2440 wait_for_more_refs(delayed_refs, num_refs);
2441 /*
2442 * after waiting, things have changed. we
2443 * dropped the lock and someone else might have
2444 * run some refs, built new clusters and so on.
2445 * therefore, we restart staleness detection.
2446 */
2447 consider_waiting = 0;
2448 }
2449 }
2450
2451 ret = run_clustered_refs(trans, root, &cluster);
2452 if (ret < 0) {
2453 spin_unlock(&delayed_refs->lock);
2454 btrfs_abort_transaction(trans, root, ret);
2455 return ret;
2456 }
2457
2458 count -= min_t(unsigned long, ret, count);
2459
2460 if (count == 0)
2461 break;
2462
2463 if (ret || delayed_refs->run_delayed_start == 0) {
2464 /* refs were run, let's reset staleness detection */
2465 consider_waiting = 0;
2466 }
2467 }
2468
2469 if (run_all) {
2470 node = rb_first(&delayed_refs->root);
2471 if (!node)
2472 goto out;
2473 count = (unsigned long)-1;
2474
2475 while (node) {
2476 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2477 rb_node);
2478 if (btrfs_delayed_ref_is_head(ref)) {
2479 struct btrfs_delayed_ref_head *head;
2480
2481 head = btrfs_delayed_node_to_head(ref);
2482 atomic_inc(&ref->refs);
2483
2484 spin_unlock(&delayed_refs->lock);
2485 /*
2486 * Mutex was contended, block until it's
2487 * released and try again
2488 */
2489 mutex_lock(&head->mutex);
2490 mutex_unlock(&head->mutex);
2491
2492 btrfs_put_delayed_ref(ref);
2493 cond_resched();
2494 goto again;
2495 }
2496 node = rb_next(node);
2497 }
2498 spin_unlock(&delayed_refs->lock);
2499 schedule_timeout(1);
2500 goto again;
2501 }
2502 out:
2503 spin_unlock(&delayed_refs->lock);
2504 return 0;
2505 }
2506
2507 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *root,
2509 u64 bytenr, u64 num_bytes, u64 flags,
2510 int is_data)
2511 {
2512 struct btrfs_delayed_extent_op *extent_op;
2513 int ret;
2514
2515 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2516 if (!extent_op)
2517 return -ENOMEM;
2518
2519 extent_op->flags_to_set = flags;
2520 extent_op->update_flags = 1;
2521 extent_op->update_key = 0;
2522 extent_op->is_data = is_data ? 1 : 0;
2523
2524 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2525 num_bytes, extent_op);
2526 if (ret)
2527 kfree(extent_op);
2528 return ret;
2529 }
2530
2531 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root,
2533 struct btrfs_path *path,
2534 u64 objectid, u64 offset, u64 bytenr)
2535 {
2536 struct btrfs_delayed_ref_head *head;
2537 struct btrfs_delayed_ref_node *ref;
2538 struct btrfs_delayed_data_ref *data_ref;
2539 struct btrfs_delayed_ref_root *delayed_refs;
2540 struct rb_node *node;
2541 int ret = 0;
2542
2543 ret = -ENOENT;
2544 delayed_refs = &trans->transaction->delayed_refs;
2545 spin_lock(&delayed_refs->lock);
2546 head = btrfs_find_delayed_ref_head(trans, bytenr);
2547 if (!head)
2548 goto out;
2549
2550 if (!mutex_trylock(&head->mutex)) {
2551 atomic_inc(&head->node.refs);
2552 spin_unlock(&delayed_refs->lock);
2553
2554 btrfs_release_path(path);
2555
2556 /*
2557 * Mutex was contended, block until it's released and let
2558 * caller try again
2559 */
2560 mutex_lock(&head->mutex);
2561 mutex_unlock(&head->mutex);
2562 btrfs_put_delayed_ref(&head->node);
2563 return -EAGAIN;
2564 }
2565
2566 node = rb_prev(&head->node.rb_node);
2567 if (!node)
2568 goto out_unlock;
2569
2570 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2571
2572 if (ref->bytenr != bytenr)
2573 goto out_unlock;
2574
2575 ret = 1;
2576 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2577 goto out_unlock;
2578
2579 data_ref = btrfs_delayed_node_to_data_ref(ref);
2580
2581 node = rb_prev(node);
2582 if (node) {
2583 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2584 if (ref->bytenr == bytenr)
2585 goto out_unlock;
2586 }
2587
2588 if (data_ref->root != root->root_key.objectid ||
2589 data_ref->objectid != objectid || data_ref->offset != offset)
2590 goto out_unlock;
2591
2592 ret = 0;
2593 out_unlock:
2594 mutex_unlock(&head->mutex);
2595 out:
2596 spin_unlock(&delayed_refs->lock);
2597 return ret;
2598 }
2599
2600 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *root,
2602 struct btrfs_path *path,
2603 u64 objectid, u64 offset, u64 bytenr)
2604 {
2605 struct btrfs_root *extent_root = root->fs_info->extent_root;
2606 struct extent_buffer *leaf;
2607 struct btrfs_extent_data_ref *ref;
2608 struct btrfs_extent_inline_ref *iref;
2609 struct btrfs_extent_item *ei;
2610 struct btrfs_key key;
2611 u32 item_size;
2612 int ret;
2613
2614 key.objectid = bytenr;
2615 key.offset = (u64)-1;
2616 key.type = BTRFS_EXTENT_ITEM_KEY;
2617
2618 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2619 if (ret < 0)
2620 goto out;
2621 BUG_ON(ret == 0); /* Corruption */
2622
2623 ret = -ENOENT;
2624 if (path->slots[0] == 0)
2625 goto out;
2626
2627 path->slots[0]--;
2628 leaf = path->nodes[0];
2629 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2630
2631 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2632 goto out;
2633
2634 ret = 1;
2635 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2637 if (item_size < sizeof(*ei)) {
2638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2639 goto out;
2640 }
2641 #endif
2642 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2643
2644 if (item_size != sizeof(*ei) +
2645 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2646 goto out;
2647
2648 if (btrfs_extent_generation(leaf, ei) <=
2649 btrfs_root_last_snapshot(&root->root_item))
2650 goto out;
2651
2652 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2653 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2654 BTRFS_EXTENT_DATA_REF_KEY)
2655 goto out;
2656
2657 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2658 if (btrfs_extent_refs(leaf, ei) !=
2659 btrfs_extent_data_ref_count(leaf, ref) ||
2660 btrfs_extent_data_ref_root(leaf, ref) !=
2661 root->root_key.objectid ||
2662 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2663 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2664 goto out;
2665
2666 ret = 0;
2667 out:
2668 return ret;
2669 }
2670
2671 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2672 struct btrfs_root *root,
2673 u64 objectid, u64 offset, u64 bytenr)
2674 {
2675 struct btrfs_path *path;
2676 int ret;
2677 int ret2;
2678
2679 path = btrfs_alloc_path();
2680 if (!path)
2681 return -ENOENT;
2682
2683 do {
2684 ret = check_committed_ref(trans, root, path, objectid,
2685 offset, bytenr);
2686 if (ret && ret != -ENOENT)
2687 goto out;
2688
2689 ret2 = check_delayed_ref(trans, root, path, objectid,
2690 offset, bytenr);
2691 } while (ret2 == -EAGAIN);
2692
2693 if (ret2 && ret2 != -ENOENT) {
2694 ret = ret2;
2695 goto out;
2696 }
2697
2698 if (ret != -ENOENT || ret2 != -ENOENT)
2699 ret = 0;
2700 out:
2701 btrfs_free_path(path);
2702 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2703 WARN_ON(ret > 0);
2704 return ret;
2705 }
2706
2707 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2708 struct btrfs_root *root,
2709 struct extent_buffer *buf,
2710 int full_backref, int inc, int for_cow)
2711 {
2712 u64 bytenr;
2713 u64 num_bytes;
2714 u64 parent;
2715 u64 ref_root;
2716 u32 nritems;
2717 struct btrfs_key key;
2718 struct btrfs_file_extent_item *fi;
2719 int i;
2720 int level;
2721 int ret = 0;
2722 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2723 u64, u64, u64, u64, u64, u64, int);
2724
2725 ref_root = btrfs_header_owner(buf);
2726 nritems = btrfs_header_nritems(buf);
2727 level = btrfs_header_level(buf);
2728
2729 if (!root->ref_cows && level == 0)
2730 return 0;
2731
2732 if (inc)
2733 process_func = btrfs_inc_extent_ref;
2734 else
2735 process_func = btrfs_free_extent;
2736
2737 if (full_backref)
2738 parent = buf->start;
2739 else
2740 parent = 0;
2741
2742 for (i = 0; i < nritems; i++) {
2743 if (level == 0) {
2744 btrfs_item_key_to_cpu(buf, &key, i);
2745 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2746 continue;
2747 fi = btrfs_item_ptr(buf, i,
2748 struct btrfs_file_extent_item);
2749 if (btrfs_file_extent_type(buf, fi) ==
2750 BTRFS_FILE_EXTENT_INLINE)
2751 continue;
2752 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2753 if (bytenr == 0)
2754 continue;
2755
2756 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2757 key.offset -= btrfs_file_extent_offset(buf, fi);
2758 ret = process_func(trans, root, bytenr, num_bytes,
2759 parent, ref_root, key.objectid,
2760 key.offset, for_cow);
2761 if (ret)
2762 goto fail;
2763 } else {
2764 bytenr = btrfs_node_blockptr(buf, i);
2765 num_bytes = btrfs_level_size(root, level - 1);
2766 ret = process_func(trans, root, bytenr, num_bytes,
2767 parent, ref_root, level - 1, 0,
2768 for_cow);
2769 if (ret)
2770 goto fail;
2771 }
2772 }
2773 return 0;
2774 fail:
2775 return ret;
2776 }
2777
2778 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2779 struct extent_buffer *buf, int full_backref, int for_cow)
2780 {
2781 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2782 }
2783
2784 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2785 struct extent_buffer *buf, int full_backref, int for_cow)
2786 {
2787 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2788 }
2789
2790 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root,
2792 struct btrfs_path *path,
2793 struct btrfs_block_group_cache *cache)
2794 {
2795 int ret;
2796 struct btrfs_root *extent_root = root->fs_info->extent_root;
2797 unsigned long bi;
2798 struct extent_buffer *leaf;
2799
2800 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2801 if (ret < 0)
2802 goto fail;
2803 BUG_ON(ret); /* Corruption */
2804
2805 leaf = path->nodes[0];
2806 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2807 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2808 btrfs_mark_buffer_dirty(leaf);
2809 btrfs_release_path(path);
2810 fail:
2811 if (ret) {
2812 btrfs_abort_transaction(trans, root, ret);
2813 return ret;
2814 }
2815 return 0;
2816
2817 }
2818
2819 static struct btrfs_block_group_cache *
2820 next_block_group(struct btrfs_root *root,
2821 struct btrfs_block_group_cache *cache)
2822 {
2823 struct rb_node *node;
2824 spin_lock(&root->fs_info->block_group_cache_lock);
2825 node = rb_next(&cache->cache_node);
2826 btrfs_put_block_group(cache);
2827 if (node) {
2828 cache = rb_entry(node, struct btrfs_block_group_cache,
2829 cache_node);
2830 btrfs_get_block_group(cache);
2831 } else
2832 cache = NULL;
2833 spin_unlock(&root->fs_info->block_group_cache_lock);
2834 return cache;
2835 }
2836
2837 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2838 struct btrfs_trans_handle *trans,
2839 struct btrfs_path *path)
2840 {
2841 struct btrfs_root *root = block_group->fs_info->tree_root;
2842 struct inode *inode = NULL;
2843 u64 alloc_hint = 0;
2844 int dcs = BTRFS_DC_ERROR;
2845 int num_pages = 0;
2846 int retries = 0;
2847 int ret = 0;
2848
2849 /*
2850 * If this block group is smaller than 100 megs don't bother caching the
2851 * block group.
2852 */
2853 if (block_group->key.offset < (100 * 1024 * 1024)) {
2854 spin_lock(&block_group->lock);
2855 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2856 spin_unlock(&block_group->lock);
2857 return 0;
2858 }
2859
2860 again:
2861 inode = lookup_free_space_inode(root, block_group, path);
2862 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2863 ret = PTR_ERR(inode);
2864 btrfs_release_path(path);
2865 goto out;
2866 }
2867
2868 if (IS_ERR(inode)) {
2869 BUG_ON(retries);
2870 retries++;
2871
2872 if (block_group->ro)
2873 goto out_free;
2874
2875 ret = create_free_space_inode(root, trans, block_group, path);
2876 if (ret)
2877 goto out_free;
2878 goto again;
2879 }
2880
2881 /* We've already setup this transaction, go ahead and exit */
2882 if (block_group->cache_generation == trans->transid &&
2883 i_size_read(inode)) {
2884 dcs = BTRFS_DC_SETUP;
2885 goto out_put;
2886 }
2887
2888 /*
2889 * We want to set the generation to 0, that way if anything goes wrong
2890 * from here on out we know not to trust this cache when we load up next
2891 * time.
2892 */
2893 BTRFS_I(inode)->generation = 0;
2894 ret = btrfs_update_inode(trans, root, inode);
2895 WARN_ON(ret);
2896
2897 if (i_size_read(inode) > 0) {
2898 ret = btrfs_truncate_free_space_cache(root, trans, path,
2899 inode);
2900 if (ret)
2901 goto out_put;
2902 }
2903
2904 spin_lock(&block_group->lock);
2905 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2906 /* We're not cached, don't bother trying to write stuff out */
2907 dcs = BTRFS_DC_WRITTEN;
2908 spin_unlock(&block_group->lock);
2909 goto out_put;
2910 }
2911 spin_unlock(&block_group->lock);
2912
2913 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2914 if (!num_pages)
2915 num_pages = 1;
2916
2917 /*
2918 * Just to make absolutely sure we have enough space, we're going to
2919 * preallocate 12 pages worth of space for each block group. In
2920 * practice we ought to use at most 8, but we need extra space so we can
2921 * add our header and have a terminator between the extents and the
2922 * bitmaps.
2923 */
2924 num_pages *= 16;
2925 num_pages *= PAGE_CACHE_SIZE;
2926
2927 ret = btrfs_check_data_free_space(inode, num_pages);
2928 if (ret)
2929 goto out_put;
2930
2931 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2932 num_pages, num_pages,
2933 &alloc_hint);
2934 if (!ret)
2935 dcs = BTRFS_DC_SETUP;
2936 btrfs_free_reserved_data_space(inode, num_pages);
2937
2938 out_put:
2939 iput(inode);
2940 out_free:
2941 btrfs_release_path(path);
2942 out:
2943 spin_lock(&block_group->lock);
2944 if (!ret && dcs == BTRFS_DC_SETUP)
2945 block_group->cache_generation = trans->transid;
2946 block_group->disk_cache_state = dcs;
2947 spin_unlock(&block_group->lock);
2948
2949 return ret;
2950 }
2951
2952 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2953 struct btrfs_root *root)
2954 {
2955 struct btrfs_block_group_cache *cache;
2956 int err = 0;
2957 struct btrfs_path *path;
2958 u64 last = 0;
2959
2960 path = btrfs_alloc_path();
2961 if (!path)
2962 return -ENOMEM;
2963
2964 again:
2965 while (1) {
2966 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2967 while (cache) {
2968 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2969 break;
2970 cache = next_block_group(root, cache);
2971 }
2972 if (!cache) {
2973 if (last == 0)
2974 break;
2975 last = 0;
2976 continue;
2977 }
2978 err = cache_save_setup(cache, trans, path);
2979 last = cache->key.objectid + cache->key.offset;
2980 btrfs_put_block_group(cache);
2981 }
2982
2983 while (1) {
2984 if (last == 0) {
2985 err = btrfs_run_delayed_refs(trans, root,
2986 (unsigned long)-1);
2987 if (err) /* File system offline */
2988 goto out;
2989 }
2990
2991 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2992 while (cache) {
2993 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2994 btrfs_put_block_group(cache);
2995 goto again;
2996 }
2997
2998 if (cache->dirty)
2999 break;
3000 cache = next_block_group(root, cache);
3001 }
3002 if (!cache) {
3003 if (last == 0)
3004 break;
3005 last = 0;
3006 continue;
3007 }
3008
3009 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3010 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3011 cache->dirty = 0;
3012 last = cache->key.objectid + cache->key.offset;
3013
3014 err = write_one_cache_group(trans, root, path, cache);
3015 if (err) /* File system offline */
3016 goto out;
3017
3018 btrfs_put_block_group(cache);
3019 }
3020
3021 while (1) {
3022 /*
3023 * I don't think this is needed since we're just marking our
3024 * preallocated extent as written, but just in case it can't
3025 * hurt.
3026 */
3027 if (last == 0) {
3028 err = btrfs_run_delayed_refs(trans, root,
3029 (unsigned long)-1);
3030 if (err) /* File system offline */
3031 goto out;
3032 }
3033
3034 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3035 while (cache) {
3036 /*
3037 * Really this shouldn't happen, but it could if we
3038 * couldn't write the entire preallocated extent and
3039 * splitting the extent resulted in a new block.
3040 */
3041 if (cache->dirty) {
3042 btrfs_put_block_group(cache);
3043 goto again;
3044 }
3045 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3046 break;
3047 cache = next_block_group(root, cache);
3048 }
3049 if (!cache) {
3050 if (last == 0)
3051 break;
3052 last = 0;
3053 continue;
3054 }
3055
3056 err = btrfs_write_out_cache(root, trans, cache, path);
3057
3058 /*
3059 * If we didn't have an error then the cache state is still
3060 * NEED_WRITE, so we can set it to WRITTEN.
3061 */
3062 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3063 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3064 last = cache->key.objectid + cache->key.offset;
3065 btrfs_put_block_group(cache);
3066 }
3067 out:
3068
3069 btrfs_free_path(path);
3070 return err;
3071 }
3072
3073 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3074 {
3075 struct btrfs_block_group_cache *block_group;
3076 int readonly = 0;
3077
3078 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3079 if (!block_group || block_group->ro)
3080 readonly = 1;
3081 if (block_group)
3082 btrfs_put_block_group(block_group);
3083 return readonly;
3084 }
3085
3086 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3087 u64 total_bytes, u64 bytes_used,
3088 struct btrfs_space_info **space_info)
3089 {
3090 struct btrfs_space_info *found;
3091 int i;
3092 int factor;
3093
3094 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3095 BTRFS_BLOCK_GROUP_RAID10))
3096 factor = 2;
3097 else
3098 factor = 1;
3099
3100 found = __find_space_info(info, flags);
3101 if (found) {
3102 spin_lock(&found->lock);
3103 found->total_bytes += total_bytes;
3104 found->disk_total += total_bytes * factor;
3105 found->bytes_used += bytes_used;
3106 found->disk_used += bytes_used * factor;
3107 found->full = 0;
3108 spin_unlock(&found->lock);
3109 *space_info = found;
3110 return 0;
3111 }
3112 found = kzalloc(sizeof(*found), GFP_NOFS);
3113 if (!found)
3114 return -ENOMEM;
3115
3116 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3117 INIT_LIST_HEAD(&found->block_groups[i]);
3118 init_rwsem(&found->groups_sem);
3119 spin_lock_init(&found->lock);
3120 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3121 found->total_bytes = total_bytes;
3122 found->disk_total = total_bytes * factor;
3123 found->bytes_used = bytes_used;
3124 found->disk_used = bytes_used * factor;
3125 found->bytes_pinned = 0;
3126 found->bytes_reserved = 0;
3127 found->bytes_readonly = 0;
3128 found->bytes_may_use = 0;
3129 found->full = 0;
3130 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3131 found->chunk_alloc = 0;
3132 found->flush = 0;
3133 init_waitqueue_head(&found->wait);
3134 *space_info = found;
3135 list_add_rcu(&found->list, &info->space_info);
3136 return 0;
3137 }
3138
3139 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3140 {
3141 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3142
3143 /* chunk -> extended profile */
3144 if (extra_flags == 0)
3145 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3146
3147 if (flags & BTRFS_BLOCK_GROUP_DATA)
3148 fs_info->avail_data_alloc_bits |= extra_flags;
3149 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3150 fs_info->avail_metadata_alloc_bits |= extra_flags;
3151 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3152 fs_info->avail_system_alloc_bits |= extra_flags;
3153 }
3154
3155 /*
3156 * @flags: available profiles in extended format (see ctree.h)
3157 *
3158 * Returns reduced profile in chunk format. If profile changing is in
3159 * progress (either running or paused) picks the target profile (if it's
3160 * already available), otherwise falls back to plain reducing.
3161 */
3162 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3163 {
3164 /*
3165 * we add in the count of missing devices because we want
3166 * to make sure that any RAID levels on a degraded FS
3167 * continue to be honored.
3168 */
3169 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3170 root->fs_info->fs_devices->missing_devices;
3171
3172 /* pick restriper's target profile if it's available */
3173 spin_lock(&root->fs_info->balance_lock);
3174 if (root->fs_info->balance_ctl) {
3175 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3176 u64 tgt = 0;
3177
3178 if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3179 (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3180 (flags & bctl->data.target)) {
3181 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3182 } else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3183 (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3184 (flags & bctl->sys.target)) {
3185 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3186 } else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3187 (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3188 (flags & bctl->meta.target)) {
3189 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3190 }
3191
3192 if (tgt) {
3193 spin_unlock(&root->fs_info->balance_lock);
3194 flags = tgt;
3195 goto out;
3196 }
3197 }
3198 spin_unlock(&root->fs_info->balance_lock);
3199
3200 if (num_devices == 1)
3201 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3202 if (num_devices < 4)
3203 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3204
3205 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3206 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3207 BTRFS_BLOCK_GROUP_RAID10))) {
3208 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3209 }
3210
3211 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3212 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3213 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3214 }
3215
3216 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3217 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3218 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3219 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3220 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3221 }
3222
3223 out:
3224 /* extended -> chunk profile */
3225 flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3226 return flags;
3227 }
3228
3229 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3230 {
3231 if (flags & BTRFS_BLOCK_GROUP_DATA)
3232 flags |= root->fs_info->avail_data_alloc_bits;
3233 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3234 flags |= root->fs_info->avail_system_alloc_bits;
3235 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3236 flags |= root->fs_info->avail_metadata_alloc_bits;
3237
3238 return btrfs_reduce_alloc_profile(root, flags);
3239 }
3240
3241 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3242 {
3243 u64 flags;
3244
3245 if (data)
3246 flags = BTRFS_BLOCK_GROUP_DATA;
3247 else if (root == root->fs_info->chunk_root)
3248 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3249 else
3250 flags = BTRFS_BLOCK_GROUP_METADATA;
3251
3252 return get_alloc_profile(root, flags);
3253 }
3254
3255 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3256 {
3257 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3258 BTRFS_BLOCK_GROUP_DATA);
3259 }
3260
3261 /*
3262 * This will check the space that the inode allocates from to make sure we have
3263 * enough space for bytes.
3264 */
3265 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3266 {
3267 struct btrfs_space_info *data_sinfo;
3268 struct btrfs_root *root = BTRFS_I(inode)->root;
3269 u64 used;
3270 int ret = 0, committed = 0, alloc_chunk = 1;
3271
3272 /* make sure bytes are sectorsize aligned */
3273 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3274
3275 if (root == root->fs_info->tree_root ||
3276 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3277 alloc_chunk = 0;
3278 committed = 1;
3279 }
3280
3281 data_sinfo = BTRFS_I(inode)->space_info;
3282 if (!data_sinfo)
3283 goto alloc;
3284
3285 again:
3286 /* make sure we have enough space to handle the data first */
3287 spin_lock(&data_sinfo->lock);
3288 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3289 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3290 data_sinfo->bytes_may_use;
3291
3292 if (used + bytes > data_sinfo->total_bytes) {
3293 struct btrfs_trans_handle *trans;
3294
3295 /*
3296 * if we don't have enough free bytes in this space then we need
3297 * to alloc a new chunk.
3298 */
3299 if (!data_sinfo->full && alloc_chunk) {
3300 u64 alloc_target;
3301
3302 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3303 spin_unlock(&data_sinfo->lock);
3304 alloc:
3305 alloc_target = btrfs_get_alloc_profile(root, 1);
3306 trans = btrfs_join_transaction(root);
3307 if (IS_ERR(trans))
3308 return PTR_ERR(trans);
3309
3310 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3311 bytes + 2 * 1024 * 1024,
3312 alloc_target,
3313 CHUNK_ALLOC_NO_FORCE);
3314 btrfs_end_transaction(trans, root);
3315 if (ret < 0) {
3316 if (ret != -ENOSPC)
3317 return ret;
3318 else
3319 goto commit_trans;
3320 }
3321
3322 if (!data_sinfo) {
3323 btrfs_set_inode_space_info(root, inode);
3324 data_sinfo = BTRFS_I(inode)->space_info;
3325 }
3326 goto again;
3327 }
3328
3329 /*
3330 * If we have less pinned bytes than we want to allocate then
3331 * don't bother committing the transaction, it won't help us.
3332 */
3333 if (data_sinfo->bytes_pinned < bytes)
3334 committed = 1;
3335 spin_unlock(&data_sinfo->lock);
3336
3337 /* commit the current transaction and try again */
3338 commit_trans:
3339 if (!committed &&
3340 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3341 committed = 1;
3342 trans = btrfs_join_transaction(root);
3343 if (IS_ERR(trans))
3344 return PTR_ERR(trans);
3345 ret = btrfs_commit_transaction(trans, root);
3346 if (ret)
3347 return ret;
3348 goto again;
3349 }
3350
3351 return -ENOSPC;
3352 }
3353 data_sinfo->bytes_may_use += bytes;
3354 trace_btrfs_space_reservation(root->fs_info, "space_info",
3355 (u64)(unsigned long)data_sinfo,
3356 bytes, 1);
3357 spin_unlock(&data_sinfo->lock);
3358
3359 return 0;
3360 }
3361
3362 /*
3363 * Called if we need to clear a data reservation for this inode.
3364 */
3365 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3366 {
3367 struct btrfs_root *root = BTRFS_I(inode)->root;
3368 struct btrfs_space_info *data_sinfo;
3369
3370 /* make sure bytes are sectorsize aligned */
3371 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3372
3373 data_sinfo = BTRFS_I(inode)->space_info;
3374 spin_lock(&data_sinfo->lock);
3375 data_sinfo->bytes_may_use -= bytes;
3376 trace_btrfs_space_reservation(root->fs_info, "space_info",
3377 (u64)(unsigned long)data_sinfo,
3378 bytes, 0);
3379 spin_unlock(&data_sinfo->lock);
3380 }
3381
3382 static void force_metadata_allocation(struct btrfs_fs_info *info)
3383 {
3384 struct list_head *head = &info->space_info;
3385 struct btrfs_space_info *found;
3386
3387 rcu_read_lock();
3388 list_for_each_entry_rcu(found, head, list) {
3389 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3390 found->force_alloc = CHUNK_ALLOC_FORCE;
3391 }
3392 rcu_read_unlock();
3393 }
3394
3395 static int should_alloc_chunk(struct btrfs_root *root,
3396 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3397 int force)
3398 {
3399 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3400 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3401 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3402 u64 thresh;
3403
3404 if (force == CHUNK_ALLOC_FORCE)
3405 return 1;
3406
3407 /*
3408 * We need to take into account the global rsv because for all intents
3409 * and purposes it's used space. Don't worry about locking the
3410 * global_rsv, it doesn't change except when the transaction commits.
3411 */
3412 num_allocated += global_rsv->size;
3413
3414 /*
3415 * in limited mode, we want to have some free space up to
3416 * about 1% of the FS size.
3417 */
3418 if (force == CHUNK_ALLOC_LIMITED) {
3419 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3420 thresh = max_t(u64, 64 * 1024 * 1024,
3421 div_factor_fine(thresh, 1));
3422
3423 if (num_bytes - num_allocated < thresh)
3424 return 1;
3425 }
3426 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3427
3428 /* 256MB or 2% of the FS */
3429 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3430 /* system chunks need a much small threshold */
3431 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3432 thresh = 32 * 1024 * 1024;
3433
3434 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3435 return 0;
3436 return 1;
3437 }
3438
3439 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3440 struct btrfs_root *extent_root, u64 alloc_bytes,
3441 u64 flags, int force)
3442 {
3443 struct btrfs_space_info *space_info;
3444 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3445 int wait_for_alloc = 0;
3446 int ret = 0;
3447
3448 BUG_ON(!profile_is_valid(flags, 0));
3449
3450 space_info = __find_space_info(extent_root->fs_info, flags);
3451 if (!space_info) {
3452 ret = update_space_info(extent_root->fs_info, flags,
3453 0, 0, &space_info);
3454 BUG_ON(ret); /* -ENOMEM */
3455 }
3456 BUG_ON(!space_info); /* Logic error */
3457
3458 again:
3459 spin_lock(&space_info->lock);
3460 if (force < space_info->force_alloc)
3461 force = space_info->force_alloc;
3462 if (space_info->full) {
3463 spin_unlock(&space_info->lock);
3464 return 0;
3465 }
3466
3467 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3468 spin_unlock(&space_info->lock);
3469 return 0;
3470 } else if (space_info->chunk_alloc) {
3471 wait_for_alloc = 1;
3472 } else {
3473 space_info->chunk_alloc = 1;
3474 }
3475
3476 spin_unlock(&space_info->lock);
3477
3478 mutex_lock(&fs_info->chunk_mutex);
3479
3480 /*
3481 * The chunk_mutex is held throughout the entirety of a chunk
3482 * allocation, so once we've acquired the chunk_mutex we know that the
3483 * other guy is done and we need to recheck and see if we should
3484 * allocate.
3485 */
3486 if (wait_for_alloc) {
3487 mutex_unlock(&fs_info->chunk_mutex);
3488 wait_for_alloc = 0;
3489 goto again;
3490 }
3491
3492 /*
3493 * If we have mixed data/metadata chunks we want to make sure we keep
3494 * allocating mixed chunks instead of individual chunks.
3495 */
3496 if (btrfs_mixed_space_info(space_info))
3497 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3498
3499 /*
3500 * if we're doing a data chunk, go ahead and make sure that
3501 * we keep a reasonable number of metadata chunks allocated in the
3502 * FS as well.
3503 */
3504 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3505 fs_info->data_chunk_allocations++;
3506 if (!(fs_info->data_chunk_allocations %
3507 fs_info->metadata_ratio))
3508 force_metadata_allocation(fs_info);
3509 }
3510
3511 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3512 if (ret < 0 && ret != -ENOSPC)
3513 goto out;
3514
3515 spin_lock(&space_info->lock);
3516 if (ret)
3517 space_info->full = 1;
3518 else
3519 ret = 1;
3520
3521 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3522 space_info->chunk_alloc = 0;
3523 spin_unlock(&space_info->lock);
3524 out:
3525 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3526 return ret;
3527 }
3528
3529 /*
3530 * shrink metadata reservation for delalloc
3531 */
3532 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3533 bool wait_ordered)
3534 {
3535 struct btrfs_block_rsv *block_rsv;
3536 struct btrfs_space_info *space_info;
3537 struct btrfs_trans_handle *trans;
3538 u64 reserved;
3539 u64 max_reclaim;
3540 u64 reclaimed = 0;
3541 long time_left;
3542 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3543 int loops = 0;
3544 unsigned long progress;
3545
3546 trans = (struct btrfs_trans_handle *)current->journal_info;
3547 block_rsv = &root->fs_info->delalloc_block_rsv;
3548 space_info = block_rsv->space_info;
3549
3550 smp_mb();
3551 reserved = space_info->bytes_may_use;
3552 progress = space_info->reservation_progress;
3553
3554 if (reserved == 0)
3555 return 0;
3556
3557 smp_mb();
3558 if (root->fs_info->delalloc_bytes == 0) {
3559 if (trans)
3560 return 0;
3561 btrfs_wait_ordered_extents(root, 0, 0);
3562 return 0;
3563 }
3564
3565 max_reclaim = min(reserved, to_reclaim);
3566 nr_pages = max_t(unsigned long, nr_pages,
3567 max_reclaim >> PAGE_CACHE_SHIFT);
3568 while (loops < 1024) {
3569 /* have the flusher threads jump in and do some IO */
3570 smp_mb();
3571 nr_pages = min_t(unsigned long, nr_pages,
3572 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3573 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3574 WB_REASON_FS_FREE_SPACE);
3575
3576 spin_lock(&space_info->lock);
3577 if (reserved > space_info->bytes_may_use)
3578 reclaimed += reserved - space_info->bytes_may_use;
3579 reserved = space_info->bytes_may_use;
3580 spin_unlock(&space_info->lock);
3581
3582 loops++;
3583
3584 if (reserved == 0 || reclaimed >= max_reclaim)
3585 break;
3586
3587 if (trans && trans->transaction->blocked)
3588 return -EAGAIN;
3589
3590 if (wait_ordered && !trans) {
3591 btrfs_wait_ordered_extents(root, 0, 0);
3592 } else {
3593 time_left = schedule_timeout_interruptible(1);
3594
3595 /* We were interrupted, exit */
3596 if (time_left)
3597 break;
3598 }
3599
3600 /* we've kicked the IO a few times, if anything has been freed,
3601 * exit. There is no sense in looping here for a long time
3602 * when we really need to commit the transaction, or there are
3603 * just too many writers without enough free space
3604 */
3605
3606 if (loops > 3) {
3607 smp_mb();
3608 if (progress != space_info->reservation_progress)
3609 break;
3610 }
3611
3612 }
3613
3614 return reclaimed >= to_reclaim;
3615 }
3616
3617 /**
3618 * maybe_commit_transaction - possibly commit the transaction if its ok to
3619 * @root - the root we're allocating for
3620 * @bytes - the number of bytes we want to reserve
3621 * @force - force the commit
3622 *
3623 * This will check to make sure that committing the transaction will actually
3624 * get us somewhere and then commit the transaction if it does. Otherwise it
3625 * will return -ENOSPC.
3626 */
3627 static int may_commit_transaction(struct btrfs_root *root,
3628 struct btrfs_space_info *space_info,
3629 u64 bytes, int force)
3630 {
3631 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3632 struct btrfs_trans_handle *trans;
3633
3634 trans = (struct btrfs_trans_handle *)current->journal_info;
3635 if (trans)
3636 return -EAGAIN;
3637
3638 if (force)
3639 goto commit;
3640
3641 /* See if there is enough pinned space to make this reservation */
3642 spin_lock(&space_info->lock);
3643 if (space_info->bytes_pinned >= bytes) {
3644 spin_unlock(&space_info->lock);
3645 goto commit;
3646 }
3647 spin_unlock(&space_info->lock);
3648
3649 /*
3650 * See if there is some space in the delayed insertion reservation for
3651 * this reservation.
3652 */
3653 if (space_info != delayed_rsv->space_info)
3654 return -ENOSPC;
3655
3656 spin_lock(&space_info->lock);
3657 spin_lock(&delayed_rsv->lock);
3658 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3659 spin_unlock(&delayed_rsv->lock);
3660 spin_unlock(&space_info->lock);
3661 return -ENOSPC;
3662 }
3663 spin_unlock(&delayed_rsv->lock);
3664 spin_unlock(&space_info->lock);
3665
3666 commit:
3667 trans = btrfs_join_transaction(root);
3668 if (IS_ERR(trans))
3669 return -ENOSPC;
3670
3671 return btrfs_commit_transaction(trans, root);
3672 }
3673
3674 /**
3675 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3676 * @root - the root we're allocating for
3677 * @block_rsv - the block_rsv we're allocating for
3678 * @orig_bytes - the number of bytes we want
3679 * @flush - wether or not we can flush to make our reservation
3680 *
3681 * This will reserve orgi_bytes number of bytes from the space info associated
3682 * with the block_rsv. If there is not enough space it will make an attempt to
3683 * flush out space to make room. It will do this by flushing delalloc if
3684 * possible or committing the transaction. If flush is 0 then no attempts to
3685 * regain reservations will be made and this will fail if there is not enough
3686 * space already.
3687 */
3688 static int reserve_metadata_bytes(struct btrfs_root *root,
3689 struct btrfs_block_rsv *block_rsv,
3690 u64 orig_bytes, int flush)
3691 {
3692 struct btrfs_space_info *space_info = block_rsv->space_info;
3693 u64 used;
3694 u64 num_bytes = orig_bytes;
3695 int retries = 0;
3696 int ret = 0;
3697 bool committed = false;
3698 bool flushing = false;
3699 bool wait_ordered = false;
3700
3701 again:
3702 ret = 0;
3703 spin_lock(&space_info->lock);
3704 /*
3705 * We only want to wait if somebody other than us is flushing and we are
3706 * actually alloed to flush.
3707 */
3708 while (flush && !flushing && space_info->flush) {
3709 spin_unlock(&space_info->lock);
3710 /*
3711 * If we have a trans handle we can't wait because the flusher
3712 * may have to commit the transaction, which would mean we would
3713 * deadlock since we are waiting for the flusher to finish, but
3714 * hold the current transaction open.
3715 */
3716 if (current->journal_info)
3717 return -EAGAIN;
3718 ret = wait_event_interruptible(space_info->wait,
3719 !space_info->flush);
3720 /* Must have been interrupted, return */
3721 if (ret) {
3722 printk(KERN_DEBUG "btrfs: %s returning -EINTR\n", __func__);
3723 return -EINTR;
3724 }
3725
3726 spin_lock(&space_info->lock);
3727 }
3728
3729 ret = -ENOSPC;
3730 used = space_info->bytes_used + space_info->bytes_reserved +
3731 space_info->bytes_pinned + space_info->bytes_readonly +
3732 space_info->bytes_may_use;
3733
3734 /*
3735 * The idea here is that we've not already over-reserved the block group
3736 * then we can go ahead and save our reservation first and then start
3737 * flushing if we need to. Otherwise if we've already overcommitted
3738 * lets start flushing stuff first and then come back and try to make
3739 * our reservation.
3740 */
3741 if (used <= space_info->total_bytes) {
3742 if (used + orig_bytes <= space_info->total_bytes) {
3743 space_info->bytes_may_use += orig_bytes;
3744 trace_btrfs_space_reservation(root->fs_info,
3745 "space_info",
3746 (u64)(unsigned long)space_info,
3747 orig_bytes, 1);
3748 ret = 0;
3749 } else {
3750 /*
3751 * Ok set num_bytes to orig_bytes since we aren't
3752 * overocmmitted, this way we only try and reclaim what
3753 * we need.
3754 */
3755 num_bytes = orig_bytes;
3756 }
3757 } else {
3758 /*
3759 * Ok we're over committed, set num_bytes to the overcommitted
3760 * amount plus the amount of bytes that we need for this
3761 * reservation.
3762 */
3763 wait_ordered = true;
3764 num_bytes = used - space_info->total_bytes +
3765 (orig_bytes * (retries + 1));
3766 }
3767
3768 if (ret) {
3769 u64 profile = btrfs_get_alloc_profile(root, 0);
3770 u64 avail;
3771
3772 /*
3773 * If we have a lot of space that's pinned, don't bother doing
3774 * the overcommit dance yet and just commit the transaction.
3775 */
3776 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3777 do_div(avail, 10);
3778 if (space_info->bytes_pinned >= avail && flush && !committed) {
3779 space_info->flush = 1;
3780 flushing = true;
3781 spin_unlock(&space_info->lock);
3782 ret = may_commit_transaction(root, space_info,
3783 orig_bytes, 1);
3784 if (ret)
3785 goto out;
3786 committed = true;
3787 goto again;
3788 }
3789
3790 spin_lock(&root->fs_info->free_chunk_lock);
3791 avail = root->fs_info->free_chunk_space;
3792
3793 /*
3794 * If we have dup, raid1 or raid10 then only half of the free
3795 * space is actually useable.
3796 */
3797 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3798 BTRFS_BLOCK_GROUP_RAID1 |
3799 BTRFS_BLOCK_GROUP_RAID10))
3800 avail >>= 1;
3801
3802 /*
3803 * If we aren't flushing don't let us overcommit too much, say
3804 * 1/8th of the space. If we can flush, let it overcommit up to
3805 * 1/2 of the space.
3806 */
3807 if (flush)
3808 avail >>= 3;
3809 else
3810 avail >>= 1;
3811 spin_unlock(&root->fs_info->free_chunk_lock);
3812
3813 if (used + num_bytes < space_info->total_bytes + avail) {
3814 space_info->bytes_may_use += orig_bytes;
3815 trace_btrfs_space_reservation(root->fs_info,
3816 "space_info",
3817 (u64)(unsigned long)space_info,
3818 orig_bytes, 1);
3819 ret = 0;
3820 } else {
3821 wait_ordered = true;
3822 }
3823 }
3824
3825 /*
3826 * Couldn't make our reservation, save our place so while we're trying
3827 * to reclaim space we can actually use it instead of somebody else
3828 * stealing it from us.
3829 */
3830 if (ret && flush) {
3831 flushing = true;
3832 space_info->flush = 1;
3833 }
3834
3835 spin_unlock(&space_info->lock);
3836
3837 if (!ret || !flush)
3838 goto out;
3839
3840 /*
3841 * We do synchronous shrinking since we don't actually unreserve
3842 * metadata until after the IO is completed.
3843 */
3844 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3845 if (ret < 0)
3846 goto out;
3847
3848 ret = 0;
3849
3850 /*
3851 * So if we were overcommitted it's possible that somebody else flushed
3852 * out enough space and we simply didn't have enough space to reclaim,
3853 * so go back around and try again.
3854 */
3855 if (retries < 2) {
3856 wait_ordered = true;
3857 retries++;
3858 goto again;
3859 }
3860
3861 ret = -ENOSPC;
3862 if (committed)
3863 goto out;
3864
3865 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3866 if (!ret) {
3867 committed = true;
3868 goto again;
3869 }
3870
3871 out:
3872 if (flushing) {
3873 spin_lock(&space_info->lock);
3874 space_info->flush = 0;
3875 wake_up_all(&space_info->wait);
3876 spin_unlock(&space_info->lock);
3877 }
3878 return ret;
3879 }
3880
3881 static struct btrfs_block_rsv *get_block_rsv(
3882 const struct btrfs_trans_handle *trans,
3883 const struct btrfs_root *root)
3884 {
3885 struct btrfs_block_rsv *block_rsv = NULL;
3886
3887 if (root->ref_cows || root == root->fs_info->csum_root)
3888 block_rsv = trans->block_rsv;
3889
3890 if (!block_rsv)
3891 block_rsv = root->block_rsv;
3892
3893 if (!block_rsv)
3894 block_rsv = &root->fs_info->empty_block_rsv;
3895
3896 return block_rsv;
3897 }
3898
3899 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3900 u64 num_bytes)
3901 {
3902 int ret = -ENOSPC;
3903 spin_lock(&block_rsv->lock);
3904 if (block_rsv->reserved >= num_bytes) {
3905 block_rsv->reserved -= num_bytes;
3906 if (block_rsv->reserved < block_rsv->size)
3907 block_rsv->full = 0;
3908 ret = 0;
3909 }
3910 spin_unlock(&block_rsv->lock);
3911 return ret;
3912 }
3913
3914 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3915 u64 num_bytes, int update_size)
3916 {
3917 spin_lock(&block_rsv->lock);
3918 block_rsv->reserved += num_bytes;
3919 if (update_size)
3920 block_rsv->size += num_bytes;
3921 else if (block_rsv->reserved >= block_rsv->size)
3922 block_rsv->full = 1;
3923 spin_unlock(&block_rsv->lock);
3924 }
3925
3926 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3927 struct btrfs_block_rsv *block_rsv,
3928 struct btrfs_block_rsv *dest, u64 num_bytes)
3929 {
3930 struct btrfs_space_info *space_info = block_rsv->space_info;
3931
3932 spin_lock(&block_rsv->lock);
3933 if (num_bytes == (u64)-1)
3934 num_bytes = block_rsv->size;
3935 block_rsv->size -= num_bytes;
3936 if (block_rsv->reserved >= block_rsv->size) {
3937 num_bytes = block_rsv->reserved - block_rsv->size;
3938 block_rsv->reserved = block_rsv->size;
3939 block_rsv->full = 1;
3940 } else {
3941 num_bytes = 0;
3942 }
3943 spin_unlock(&block_rsv->lock);
3944
3945 if (num_bytes > 0) {
3946 if (dest) {
3947 spin_lock(&dest->lock);
3948 if (!dest->full) {
3949 u64 bytes_to_add;
3950
3951 bytes_to_add = dest->size - dest->reserved;
3952 bytes_to_add = min(num_bytes, bytes_to_add);
3953 dest->reserved += bytes_to_add;
3954 if (dest->reserved >= dest->size)
3955 dest->full = 1;
3956 num_bytes -= bytes_to_add;
3957 }
3958 spin_unlock(&dest->lock);
3959 }
3960 if (num_bytes) {
3961 spin_lock(&space_info->lock);
3962 space_info->bytes_may_use -= num_bytes;
3963 trace_btrfs_space_reservation(fs_info, "space_info",
3964 (u64)(unsigned long)space_info,
3965 num_bytes, 0);
3966 space_info->reservation_progress++;
3967 spin_unlock(&space_info->lock);
3968 }
3969 }
3970 }
3971
3972 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3973 struct btrfs_block_rsv *dst, u64 num_bytes)
3974 {
3975 int ret;
3976
3977 ret = block_rsv_use_bytes(src, num_bytes);
3978 if (ret)
3979 return ret;
3980
3981 block_rsv_add_bytes(dst, num_bytes, 1);
3982 return 0;
3983 }
3984
3985 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3986 {
3987 memset(rsv, 0, sizeof(*rsv));
3988 spin_lock_init(&rsv->lock);
3989 }
3990
3991 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3992 {
3993 struct btrfs_block_rsv *block_rsv;
3994 struct btrfs_fs_info *fs_info = root->fs_info;
3995
3996 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3997 if (!block_rsv)
3998 return NULL;
3999
4000 btrfs_init_block_rsv(block_rsv);
4001 block_rsv->space_info = __find_space_info(fs_info,
4002 BTRFS_BLOCK_GROUP_METADATA);
4003 return block_rsv;
4004 }
4005
4006 void btrfs_free_block_rsv(struct btrfs_root *root,
4007 struct btrfs_block_rsv *rsv)
4008 {
4009 btrfs_block_rsv_release(root, rsv, (u64)-1);
4010 kfree(rsv);
4011 }
4012
4013 static inline int __block_rsv_add(struct btrfs_root *root,
4014 struct btrfs_block_rsv *block_rsv,
4015 u64 num_bytes, int flush)
4016 {
4017 int ret;
4018
4019 if (num_bytes == 0)
4020 return 0;
4021
4022 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4023 if (!ret) {
4024 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4025 return 0;
4026 }
4027
4028 return ret;
4029 }
4030
4031 int btrfs_block_rsv_add(struct btrfs_root *root,
4032 struct btrfs_block_rsv *block_rsv,
4033 u64 num_bytes)
4034 {
4035 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4036 }
4037
4038 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4039 struct btrfs_block_rsv *block_rsv,
4040 u64 num_bytes)
4041 {
4042 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4043 }
4044
4045 int btrfs_block_rsv_check(struct btrfs_root *root,
4046 struct btrfs_block_rsv *block_rsv, int min_factor)
4047 {
4048 u64 num_bytes = 0;
4049 int ret = -ENOSPC;
4050
4051 if (!block_rsv)
4052 return 0;
4053
4054 spin_lock(&block_rsv->lock);
4055 num_bytes = div_factor(block_rsv->size, min_factor);
4056 if (block_rsv->reserved >= num_bytes)
4057 ret = 0;
4058 spin_unlock(&block_rsv->lock);
4059
4060 return ret;
4061 }
4062
4063 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4064 struct btrfs_block_rsv *block_rsv,
4065 u64 min_reserved, int flush)
4066 {
4067 u64 num_bytes = 0;
4068 int ret = -ENOSPC;
4069
4070 if (!block_rsv)
4071 return 0;
4072
4073 spin_lock(&block_rsv->lock);
4074 num_bytes = min_reserved;
4075 if (block_rsv->reserved >= num_bytes)
4076 ret = 0;
4077 else
4078 num_bytes -= block_rsv->reserved;
4079 spin_unlock(&block_rsv->lock);
4080
4081 if (!ret)
4082 return 0;
4083
4084 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4085 if (!ret) {
4086 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4087 return 0;
4088 }
4089
4090 return ret;
4091 }
4092
4093 int btrfs_block_rsv_refill(struct btrfs_root *root,
4094 struct btrfs_block_rsv *block_rsv,
4095 u64 min_reserved)
4096 {
4097 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4098 }
4099
4100 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4101 struct btrfs_block_rsv *block_rsv,
4102 u64 min_reserved)
4103 {
4104 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4105 }
4106
4107 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4108 struct btrfs_block_rsv *dst_rsv,
4109 u64 num_bytes)
4110 {
4111 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4112 }
4113
4114 void btrfs_block_rsv_release(struct btrfs_root *root,
4115 struct btrfs_block_rsv *block_rsv,
4116 u64 num_bytes)
4117 {
4118 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4119 if (global_rsv->full || global_rsv == block_rsv ||
4120 block_rsv->space_info != global_rsv->space_info)
4121 global_rsv = NULL;
4122 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4123 num_bytes);
4124 }
4125
4126 /*
4127 * helper to calculate size of global block reservation.
4128 * the desired value is sum of space used by extent tree,
4129 * checksum tree and root tree
4130 */
4131 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4132 {
4133 struct btrfs_space_info *sinfo;
4134 u64 num_bytes;
4135 u64 meta_used;
4136 u64 data_used;
4137 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4138
4139 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4140 spin_lock(&sinfo->lock);
4141 data_used = sinfo->bytes_used;
4142 spin_unlock(&sinfo->lock);
4143
4144 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4145 spin_lock(&sinfo->lock);
4146 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4147 data_used = 0;
4148 meta_used = sinfo->bytes_used;
4149 spin_unlock(&sinfo->lock);
4150
4151 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4152 csum_size * 2;
4153 num_bytes += div64_u64(data_used + meta_used, 50);
4154
4155 if (num_bytes * 3 > meta_used)
4156 num_bytes = div64_u64(meta_used, 3) * 2;
4157
4158 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4159 }
4160
4161 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4162 {
4163 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4164 struct btrfs_space_info *sinfo = block_rsv->space_info;
4165 u64 num_bytes;
4166
4167 num_bytes = calc_global_metadata_size(fs_info);
4168
4169 spin_lock(&block_rsv->lock);
4170 spin_lock(&sinfo->lock);
4171
4172 block_rsv->size = num_bytes;
4173
4174 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4175 sinfo->bytes_reserved + sinfo->bytes_readonly +
4176 sinfo->bytes_may_use;
4177
4178 if (sinfo->total_bytes > num_bytes) {
4179 num_bytes = sinfo->total_bytes - num_bytes;
4180 block_rsv->reserved += num_bytes;
4181 sinfo->bytes_may_use += num_bytes;
4182 trace_btrfs_space_reservation(fs_info, "space_info",
4183 (u64)(unsigned long)sinfo, num_bytes, 1);
4184 }
4185
4186 if (block_rsv->reserved >= block_rsv->size) {
4187 num_bytes = block_rsv->reserved - block_rsv->size;
4188 sinfo->bytes_may_use -= num_bytes;
4189 trace_btrfs_space_reservation(fs_info, "space_info",
4190 (u64)(unsigned long)sinfo, num_bytes, 0);
4191 sinfo->reservation_progress++;
4192 block_rsv->reserved = block_rsv->size;
4193 block_rsv->full = 1;
4194 }
4195
4196 spin_unlock(&sinfo->lock);
4197 spin_unlock(&block_rsv->lock);
4198 }
4199
4200 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4201 {
4202 struct btrfs_space_info *space_info;
4203
4204 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4205 fs_info->chunk_block_rsv.space_info = space_info;
4206
4207 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4208 fs_info->global_block_rsv.space_info = space_info;
4209 fs_info->delalloc_block_rsv.space_info = space_info;
4210 fs_info->trans_block_rsv.space_info = space_info;
4211 fs_info->empty_block_rsv.space_info = space_info;
4212 fs_info->delayed_block_rsv.space_info = space_info;
4213
4214 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4215 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4216 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4217 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4218 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4219
4220 update_global_block_rsv(fs_info);
4221 }
4222
4223 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4224 {
4225 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4226 (u64)-1);
4227 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4228 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4229 WARN_ON(fs_info->trans_block_rsv.size > 0);
4230 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4231 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4232 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4233 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4234 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4235 }
4236
4237 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4238 struct btrfs_root *root)
4239 {
4240 if (!trans->bytes_reserved)
4241 return;
4242
4243 trace_btrfs_space_reservation(root->fs_info, "transaction",
4244 (u64)(unsigned long)trans,
4245 trans->bytes_reserved, 0);
4246 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4247 trans->bytes_reserved = 0;
4248 }
4249
4250 /* Can only return 0 or -ENOSPC */
4251 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4252 struct inode *inode)
4253 {
4254 struct btrfs_root *root = BTRFS_I(inode)->root;
4255 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4256 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4257
4258 /*
4259 * We need to hold space in order to delete our orphan item once we've
4260 * added it, so this takes the reservation so we can release it later
4261 * when we are truly done with the orphan item.
4262 */
4263 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4264 trace_btrfs_space_reservation(root->fs_info, "orphan",
4265 btrfs_ino(inode), num_bytes, 1);
4266 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4267 }
4268
4269 void btrfs_orphan_release_metadata(struct inode *inode)
4270 {
4271 struct btrfs_root *root = BTRFS_I(inode)->root;
4272 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4273 trace_btrfs_space_reservation(root->fs_info, "orphan",
4274 btrfs_ino(inode), num_bytes, 0);
4275 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4276 }
4277
4278 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4279 struct btrfs_pending_snapshot *pending)
4280 {
4281 struct btrfs_root *root = pending->root;
4282 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4283 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4284 /*
4285 * two for root back/forward refs, two for directory entries
4286 * and one for root of the snapshot.
4287 */
4288 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4289 dst_rsv->space_info = src_rsv->space_info;
4290 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4291 }
4292
4293 /**
4294 * drop_outstanding_extent - drop an outstanding extent
4295 * @inode: the inode we're dropping the extent for
4296 *
4297 * This is called when we are freeing up an outstanding extent, either called
4298 * after an error or after an extent is written. This will return the number of
4299 * reserved extents that need to be freed. This must be called with
4300 * BTRFS_I(inode)->lock held.
4301 */
4302 static unsigned drop_outstanding_extent(struct inode *inode)
4303 {
4304 unsigned drop_inode_space = 0;
4305 unsigned dropped_extents = 0;
4306
4307 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4308 BTRFS_I(inode)->outstanding_extents--;
4309
4310 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4311 BTRFS_I(inode)->delalloc_meta_reserved) {
4312 drop_inode_space = 1;
4313 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4314 }
4315
4316 /*
4317 * If we have more or the same amount of outsanding extents than we have
4318 * reserved then we need to leave the reserved extents count alone.
4319 */
4320 if (BTRFS_I(inode)->outstanding_extents >=
4321 BTRFS_I(inode)->reserved_extents)
4322 return drop_inode_space;
4323
4324 dropped_extents = BTRFS_I(inode)->reserved_extents -
4325 BTRFS_I(inode)->outstanding_extents;
4326 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4327 return dropped_extents + drop_inode_space;
4328 }
4329
4330 /**
4331 * calc_csum_metadata_size - return the amount of metada space that must be
4332 * reserved/free'd for the given bytes.
4333 * @inode: the inode we're manipulating
4334 * @num_bytes: the number of bytes in question
4335 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4336 *
4337 * This adjusts the number of csum_bytes in the inode and then returns the
4338 * correct amount of metadata that must either be reserved or freed. We
4339 * calculate how many checksums we can fit into one leaf and then divide the
4340 * number of bytes that will need to be checksumed by this value to figure out
4341 * how many checksums will be required. If we are adding bytes then the number
4342 * may go up and we will return the number of additional bytes that must be
4343 * reserved. If it is going down we will return the number of bytes that must
4344 * be freed.
4345 *
4346 * This must be called with BTRFS_I(inode)->lock held.
4347 */
4348 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4349 int reserve)
4350 {
4351 struct btrfs_root *root = BTRFS_I(inode)->root;
4352 u64 csum_size;
4353 int num_csums_per_leaf;
4354 int num_csums;
4355 int old_csums;
4356
4357 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4358 BTRFS_I(inode)->csum_bytes == 0)
4359 return 0;
4360
4361 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4362 if (reserve)
4363 BTRFS_I(inode)->csum_bytes += num_bytes;
4364 else
4365 BTRFS_I(inode)->csum_bytes -= num_bytes;
4366 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4367 num_csums_per_leaf = (int)div64_u64(csum_size,
4368 sizeof(struct btrfs_csum_item) +
4369 sizeof(struct btrfs_disk_key));
4370 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4371 num_csums = num_csums + num_csums_per_leaf - 1;
4372 num_csums = num_csums / num_csums_per_leaf;
4373
4374 old_csums = old_csums + num_csums_per_leaf - 1;
4375 old_csums = old_csums / num_csums_per_leaf;
4376
4377 /* No change, no need to reserve more */
4378 if (old_csums == num_csums)
4379 return 0;
4380
4381 if (reserve)
4382 return btrfs_calc_trans_metadata_size(root,
4383 num_csums - old_csums);
4384
4385 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4386 }
4387
4388 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4389 {
4390 struct btrfs_root *root = BTRFS_I(inode)->root;
4391 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4392 u64 to_reserve = 0;
4393 u64 csum_bytes;
4394 unsigned nr_extents = 0;
4395 int extra_reserve = 0;
4396 int flush = 1;
4397 int ret;
4398
4399 /* Need to be holding the i_mutex here if we aren't free space cache */
4400 if (btrfs_is_free_space_inode(root, inode))
4401 flush = 0;
4402
4403 if (flush && btrfs_transaction_in_commit(root->fs_info))
4404 schedule_timeout(1);
4405
4406 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4407 num_bytes = ALIGN(num_bytes, root->sectorsize);
4408
4409 spin_lock(&BTRFS_I(inode)->lock);
4410 BTRFS_I(inode)->outstanding_extents++;
4411
4412 if (BTRFS_I(inode)->outstanding_extents >
4413 BTRFS_I(inode)->reserved_extents)
4414 nr_extents = BTRFS_I(inode)->outstanding_extents -
4415 BTRFS_I(inode)->reserved_extents;
4416
4417 /*
4418 * Add an item to reserve for updating the inode when we complete the
4419 * delalloc io.
4420 */
4421 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4422 nr_extents++;
4423 extra_reserve = 1;
4424 }
4425
4426 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4427 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4428 csum_bytes = BTRFS_I(inode)->csum_bytes;
4429 spin_unlock(&BTRFS_I(inode)->lock);
4430
4431 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4432 if (ret) {
4433 u64 to_free = 0;
4434 unsigned dropped;
4435
4436 spin_lock(&BTRFS_I(inode)->lock);
4437 dropped = drop_outstanding_extent(inode);
4438 /*
4439 * If the inodes csum_bytes is the same as the original
4440 * csum_bytes then we know we haven't raced with any free()ers
4441 * so we can just reduce our inodes csum bytes and carry on.
4442 * Otherwise we have to do the normal free thing to account for
4443 * the case that the free side didn't free up its reserve
4444 * because of this outstanding reservation.
4445 */
4446 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4447 calc_csum_metadata_size(inode, num_bytes, 0);
4448 else
4449 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4450 spin_unlock(&BTRFS_I(inode)->lock);
4451 if (dropped)
4452 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4453
4454 if (to_free) {
4455 btrfs_block_rsv_release(root, block_rsv, to_free);
4456 trace_btrfs_space_reservation(root->fs_info,
4457 "delalloc",
4458 btrfs_ino(inode),
4459 to_free, 0);
4460 }
4461 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4462 return ret;
4463 }
4464
4465 spin_lock(&BTRFS_I(inode)->lock);
4466 if (extra_reserve) {
4467 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4468 nr_extents--;
4469 }
4470 BTRFS_I(inode)->reserved_extents += nr_extents;
4471 spin_unlock(&BTRFS_I(inode)->lock);
4472 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4473
4474 if (to_reserve)
4475 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4476 btrfs_ino(inode), to_reserve, 1);
4477 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4478
4479 return 0;
4480 }
4481
4482 /**
4483 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4484 * @inode: the inode to release the reservation for
4485 * @num_bytes: the number of bytes we're releasing
4486 *
4487 * This will release the metadata reservation for an inode. This can be called
4488 * once we complete IO for a given set of bytes to release their metadata
4489 * reservations.
4490 */
4491 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4492 {
4493 struct btrfs_root *root = BTRFS_I(inode)->root;
4494 u64 to_free = 0;
4495 unsigned dropped;
4496
4497 num_bytes = ALIGN(num_bytes, root->sectorsize);
4498 spin_lock(&BTRFS_I(inode)->lock);
4499 dropped = drop_outstanding_extent(inode);
4500
4501 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4502 spin_unlock(&BTRFS_I(inode)->lock);
4503 if (dropped > 0)
4504 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4505
4506 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4507 btrfs_ino(inode), to_free, 0);
4508 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4509 to_free);
4510 }
4511
4512 /**
4513 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4514 * @inode: inode we're writing to
4515 * @num_bytes: the number of bytes we want to allocate
4516 *
4517 * This will do the following things
4518 *
4519 * o reserve space in the data space info for num_bytes
4520 * o reserve space in the metadata space info based on number of outstanding
4521 * extents and how much csums will be needed
4522 * o add to the inodes ->delalloc_bytes
4523 * o add it to the fs_info's delalloc inodes list.
4524 *
4525 * This will return 0 for success and -ENOSPC if there is no space left.
4526 */
4527 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4528 {
4529 int ret;
4530
4531 ret = btrfs_check_data_free_space(inode, num_bytes);
4532 if (ret)
4533 return ret;
4534
4535 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4536 if (ret) {
4537 btrfs_free_reserved_data_space(inode, num_bytes);
4538 return ret;
4539 }
4540
4541 return 0;
4542 }
4543
4544 /**
4545 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4546 * @inode: inode we're releasing space for
4547 * @num_bytes: the number of bytes we want to free up
4548 *
4549 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4550 * called in the case that we don't need the metadata AND data reservations
4551 * anymore. So if there is an error or we insert an inline extent.
4552 *
4553 * This function will release the metadata space that was not used and will
4554 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4555 * list if there are no delalloc bytes left.
4556 */
4557 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4558 {
4559 btrfs_delalloc_release_metadata(inode, num_bytes);
4560 btrfs_free_reserved_data_space(inode, num_bytes);
4561 }
4562
4563 static int update_block_group(struct btrfs_trans_handle *trans,
4564 struct btrfs_root *root,
4565 u64 bytenr, u64 num_bytes, int alloc)
4566 {
4567 struct btrfs_block_group_cache *cache = NULL;
4568 struct btrfs_fs_info *info = root->fs_info;
4569 u64 total = num_bytes;
4570 u64 old_val;
4571 u64 byte_in_group;
4572 int factor;
4573
4574 /* block accounting for super block */
4575 spin_lock(&info->delalloc_lock);
4576 old_val = btrfs_super_bytes_used(info->super_copy);
4577 if (alloc)
4578 old_val += num_bytes;
4579 else
4580 old_val -= num_bytes;
4581 btrfs_set_super_bytes_used(info->super_copy, old_val);
4582 spin_unlock(&info->delalloc_lock);
4583
4584 while (total) {
4585 cache = btrfs_lookup_block_group(info, bytenr);
4586 if (!cache)
4587 return -ENOENT;
4588 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4589 BTRFS_BLOCK_GROUP_RAID1 |
4590 BTRFS_BLOCK_GROUP_RAID10))
4591 factor = 2;
4592 else
4593 factor = 1;
4594 /*
4595 * If this block group has free space cache written out, we
4596 * need to make sure to load it if we are removing space. This
4597 * is because we need the unpinning stage to actually add the
4598 * space back to the block group, otherwise we will leak space.
4599 */
4600 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4601 cache_block_group(cache, trans, NULL, 1);
4602
4603 byte_in_group = bytenr - cache->key.objectid;
4604 WARN_ON(byte_in_group > cache->key.offset);
4605
4606 spin_lock(&cache->space_info->lock);
4607 spin_lock(&cache->lock);
4608
4609 if (btrfs_test_opt(root, SPACE_CACHE) &&
4610 cache->disk_cache_state < BTRFS_DC_CLEAR)
4611 cache->disk_cache_state = BTRFS_DC_CLEAR;
4612
4613 cache->dirty = 1;
4614 old_val = btrfs_block_group_used(&cache->item);
4615 num_bytes = min(total, cache->key.offset - byte_in_group);
4616 if (alloc) {
4617 old_val += num_bytes;
4618 btrfs_set_block_group_used(&cache->item, old_val);
4619 cache->reserved -= num_bytes;
4620 cache->space_info->bytes_reserved -= num_bytes;
4621 cache->space_info->bytes_used += num_bytes;
4622 cache->space_info->disk_used += num_bytes * factor;
4623 spin_unlock(&cache->lock);
4624 spin_unlock(&cache->space_info->lock);
4625 } else {
4626 old_val -= num_bytes;
4627 btrfs_set_block_group_used(&cache->item, old_val);
4628 cache->pinned += num_bytes;
4629 cache->space_info->bytes_pinned += num_bytes;
4630 cache->space_info->bytes_used -= num_bytes;
4631 cache->space_info->disk_used -= num_bytes * factor;
4632 spin_unlock(&cache->lock);
4633 spin_unlock(&cache->space_info->lock);
4634
4635 set_extent_dirty(info->pinned_extents,
4636 bytenr, bytenr + num_bytes - 1,
4637 GFP_NOFS | __GFP_NOFAIL);
4638 }
4639 btrfs_put_block_group(cache);
4640 total -= num_bytes;
4641 bytenr += num_bytes;
4642 }
4643 return 0;
4644 }
4645
4646 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4647 {
4648 struct btrfs_block_group_cache *cache;
4649 u64 bytenr;
4650
4651 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4652 if (!cache)
4653 return 0;
4654
4655 bytenr = cache->key.objectid;
4656 btrfs_put_block_group(cache);
4657
4658 return bytenr;
4659 }
4660
4661 static int pin_down_extent(struct btrfs_root *root,
4662 struct btrfs_block_group_cache *cache,
4663 u64 bytenr, u64 num_bytes, int reserved)
4664 {
4665 spin_lock(&cache->space_info->lock);
4666 spin_lock(&cache->lock);
4667 cache->pinned += num_bytes;
4668 cache->space_info->bytes_pinned += num_bytes;
4669 if (reserved) {
4670 cache->reserved -= num_bytes;
4671 cache->space_info->bytes_reserved -= num_bytes;
4672 }
4673 spin_unlock(&cache->lock);
4674 spin_unlock(&cache->space_info->lock);
4675
4676 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4677 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4678 return 0;
4679 }
4680
4681 /*
4682 * this function must be called within transaction
4683 */
4684 int btrfs_pin_extent(struct btrfs_root *root,
4685 u64 bytenr, u64 num_bytes, int reserved)
4686 {
4687 struct btrfs_block_group_cache *cache;
4688
4689 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4690 BUG_ON(!cache); /* Logic error */
4691
4692 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4693
4694 btrfs_put_block_group(cache);
4695 return 0;
4696 }
4697
4698 /*
4699 * this function must be called within transaction
4700 */
4701 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4702 struct btrfs_root *root,
4703 u64 bytenr, u64 num_bytes)
4704 {
4705 struct btrfs_block_group_cache *cache;
4706
4707 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4708 BUG_ON(!cache); /* Logic error */
4709
4710 /*
4711 * pull in the free space cache (if any) so that our pin
4712 * removes the free space from the cache. We have load_only set
4713 * to one because the slow code to read in the free extents does check
4714 * the pinned extents.
4715 */
4716 cache_block_group(cache, trans, root, 1);
4717
4718 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4719
4720 /* remove us from the free space cache (if we're there at all) */
4721 btrfs_remove_free_space(cache, bytenr, num_bytes);
4722 btrfs_put_block_group(cache);
4723 return 0;
4724 }
4725
4726 /**
4727 * btrfs_update_reserved_bytes - update the block_group and space info counters
4728 * @cache: The cache we are manipulating
4729 * @num_bytes: The number of bytes in question
4730 * @reserve: One of the reservation enums
4731 *
4732 * This is called by the allocator when it reserves space, or by somebody who is
4733 * freeing space that was never actually used on disk. For example if you
4734 * reserve some space for a new leaf in transaction A and before transaction A
4735 * commits you free that leaf, you call this with reserve set to 0 in order to
4736 * clear the reservation.
4737 *
4738 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4739 * ENOSPC accounting. For data we handle the reservation through clearing the
4740 * delalloc bits in the io_tree. We have to do this since we could end up
4741 * allocating less disk space for the amount of data we have reserved in the
4742 * case of compression.
4743 *
4744 * If this is a reservation and the block group has become read only we cannot
4745 * make the reservation and return -EAGAIN, otherwise this function always
4746 * succeeds.
4747 */
4748 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4749 u64 num_bytes, int reserve)
4750 {
4751 struct btrfs_space_info *space_info = cache->space_info;
4752 int ret = 0;
4753
4754 spin_lock(&space_info->lock);
4755 spin_lock(&cache->lock);
4756 if (reserve != RESERVE_FREE) {
4757 if (cache->ro) {
4758 ret = -EAGAIN;
4759 } else {
4760 cache->reserved += num_bytes;
4761 space_info->bytes_reserved += num_bytes;
4762 if (reserve == RESERVE_ALLOC) {
4763 trace_btrfs_space_reservation(cache->fs_info,
4764 "space_info",
4765 (u64)(unsigned long)space_info,
4766 num_bytes, 0);
4767 space_info->bytes_may_use -= num_bytes;
4768 }
4769 }
4770 } else {
4771 if (cache->ro)
4772 space_info->bytes_readonly += num_bytes;
4773 cache->reserved -= num_bytes;
4774 space_info->bytes_reserved -= num_bytes;
4775 space_info->reservation_progress++;
4776 }
4777 spin_unlock(&cache->lock);
4778 spin_unlock(&space_info->lock);
4779 return ret;
4780 }
4781
4782 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4783 struct btrfs_root *root)
4784 {
4785 struct btrfs_fs_info *fs_info = root->fs_info;
4786 struct btrfs_caching_control *next;
4787 struct btrfs_caching_control *caching_ctl;
4788 struct btrfs_block_group_cache *cache;
4789
4790 down_write(&fs_info->extent_commit_sem);
4791
4792 list_for_each_entry_safe(caching_ctl, next,
4793 &fs_info->caching_block_groups, list) {
4794 cache = caching_ctl->block_group;
4795 if (block_group_cache_done(cache)) {
4796 cache->last_byte_to_unpin = (u64)-1;
4797 list_del_init(&caching_ctl->list);
4798 put_caching_control(caching_ctl);
4799 } else {
4800 cache->last_byte_to_unpin = caching_ctl->progress;
4801 }
4802 }
4803
4804 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4805 fs_info->pinned_extents = &fs_info->freed_extents[1];
4806 else
4807 fs_info->pinned_extents = &fs_info->freed_extents[0];
4808
4809 up_write(&fs_info->extent_commit_sem);
4810
4811 update_global_block_rsv(fs_info);
4812 }
4813
4814 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4815 {
4816 struct btrfs_fs_info *fs_info = root->fs_info;
4817 struct btrfs_block_group_cache *cache = NULL;
4818 u64 len;
4819
4820 while (start <= end) {
4821 if (!cache ||
4822 start >= cache->key.objectid + cache->key.offset) {
4823 if (cache)
4824 btrfs_put_block_group(cache);
4825 cache = btrfs_lookup_block_group(fs_info, start);
4826 BUG_ON(!cache); /* Logic error */
4827 }
4828
4829 len = cache->key.objectid + cache->key.offset - start;
4830 len = min(len, end + 1 - start);
4831
4832 if (start < cache->last_byte_to_unpin) {
4833 len = min(len, cache->last_byte_to_unpin - start);
4834 btrfs_add_free_space(cache, start, len);
4835 }
4836
4837 start += len;
4838
4839 spin_lock(&cache->space_info->lock);
4840 spin_lock(&cache->lock);
4841 cache->pinned -= len;
4842 cache->space_info->bytes_pinned -= len;
4843 if (cache->ro)
4844 cache->space_info->bytes_readonly += len;
4845 spin_unlock(&cache->lock);
4846 spin_unlock(&cache->space_info->lock);
4847 }
4848
4849 if (cache)
4850 btrfs_put_block_group(cache);
4851 return 0;
4852 }
4853
4854 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4855 struct btrfs_root *root)
4856 {
4857 struct btrfs_fs_info *fs_info = root->fs_info;
4858 struct extent_io_tree *unpin;
4859 u64 start;
4860 u64 end;
4861 int ret;
4862
4863 if (trans->aborted)
4864 return 0;
4865
4866 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4867 unpin = &fs_info->freed_extents[1];
4868 else
4869 unpin = &fs_info->freed_extents[0];
4870
4871 while (1) {
4872 ret = find_first_extent_bit(unpin, 0, &start, &end,
4873 EXTENT_DIRTY);
4874 if (ret)
4875 break;
4876
4877 if (btrfs_test_opt(root, DISCARD))
4878 ret = btrfs_discard_extent(root, start,
4879 end + 1 - start, NULL);
4880
4881 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4882 unpin_extent_range(root, start, end);
4883 cond_resched();
4884 }
4885
4886 return 0;
4887 }
4888
4889 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4890 struct btrfs_root *root,
4891 u64 bytenr, u64 num_bytes, u64 parent,
4892 u64 root_objectid, u64 owner_objectid,
4893 u64 owner_offset, int refs_to_drop,
4894 struct btrfs_delayed_extent_op *extent_op)
4895 {
4896 struct btrfs_key key;
4897 struct btrfs_path *path;
4898 struct btrfs_fs_info *info = root->fs_info;
4899 struct btrfs_root *extent_root = info->extent_root;
4900 struct extent_buffer *leaf;
4901 struct btrfs_extent_item *ei;
4902 struct btrfs_extent_inline_ref *iref;
4903 int ret;
4904 int is_data;
4905 int extent_slot = 0;
4906 int found_extent = 0;
4907 int num_to_del = 1;
4908 u32 item_size;
4909 u64 refs;
4910
4911 path = btrfs_alloc_path();
4912 if (!path)
4913 return -ENOMEM;
4914
4915 path->reada = 1;
4916 path->leave_spinning = 1;
4917
4918 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4919 BUG_ON(!is_data && refs_to_drop != 1);
4920
4921 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4922 bytenr, num_bytes, parent,
4923 root_objectid, owner_objectid,
4924 owner_offset);
4925 if (ret == 0) {
4926 extent_slot = path->slots[0];
4927 while (extent_slot >= 0) {
4928 btrfs_item_key_to_cpu(path->nodes[0], &key,
4929 extent_slot);
4930 if (key.objectid != bytenr)
4931 break;
4932 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4933 key.offset == num_bytes) {
4934 found_extent = 1;
4935 break;
4936 }
4937 if (path->slots[0] - extent_slot > 5)
4938 break;
4939 extent_slot--;
4940 }
4941 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4942 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4943 if (found_extent && item_size < sizeof(*ei))
4944 found_extent = 0;
4945 #endif
4946 if (!found_extent) {
4947 BUG_ON(iref);
4948 ret = remove_extent_backref(trans, extent_root, path,
4949 NULL, refs_to_drop,
4950 is_data);
4951 if (ret)
4952 goto abort;
4953 btrfs_release_path(path);
4954 path->leave_spinning = 1;
4955
4956 key.objectid = bytenr;
4957 key.type = BTRFS_EXTENT_ITEM_KEY;
4958 key.offset = num_bytes;
4959
4960 ret = btrfs_search_slot(trans, extent_root,
4961 &key, path, -1, 1);
4962 if (ret) {
4963 printk(KERN_ERR "umm, got %d back from search"
4964 ", was looking for %llu\n", ret,
4965 (unsigned long long)bytenr);
4966 if (ret > 0)
4967 btrfs_print_leaf(extent_root,
4968 path->nodes[0]);
4969 }
4970 if (ret < 0)
4971 goto abort;
4972 extent_slot = path->slots[0];
4973 }
4974 } else if (ret == -ENOENT) {
4975 btrfs_print_leaf(extent_root, path->nodes[0]);
4976 WARN_ON(1);
4977 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4978 "parent %llu root %llu owner %llu offset %llu\n",
4979 (unsigned long long)bytenr,
4980 (unsigned long long)parent,
4981 (unsigned long long)root_objectid,
4982 (unsigned long long)owner_objectid,
4983 (unsigned long long)owner_offset);
4984 } else {
4985 goto abort;
4986 }
4987
4988 leaf = path->nodes[0];
4989 item_size = btrfs_item_size_nr(leaf, extent_slot);
4990 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4991 if (item_size < sizeof(*ei)) {
4992 BUG_ON(found_extent || extent_slot != path->slots[0]);
4993 ret = convert_extent_item_v0(trans, extent_root, path,
4994 owner_objectid, 0);
4995 if (ret < 0)
4996 goto abort;
4997
4998 btrfs_release_path(path);
4999 path->leave_spinning = 1;
5000
5001 key.objectid = bytenr;
5002 key.type = BTRFS_EXTENT_ITEM_KEY;
5003 key.offset = num_bytes;
5004
5005 ret = btrfs_search_slot(trans, extent_root, &key, path,
5006 -1, 1);
5007 if (ret) {
5008 printk(KERN_ERR "umm, got %d back from search"
5009 ", was looking for %llu\n", ret,
5010 (unsigned long long)bytenr);
5011 btrfs_print_leaf(extent_root, path->nodes[0]);
5012 }
5013 if (ret < 0)
5014 goto abort;
5015 extent_slot = path->slots[0];
5016 leaf = path->nodes[0];
5017 item_size = btrfs_item_size_nr(leaf, extent_slot);
5018 }
5019 #endif
5020 BUG_ON(item_size < sizeof(*ei));
5021 ei = btrfs_item_ptr(leaf, extent_slot,
5022 struct btrfs_extent_item);
5023 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5024 struct btrfs_tree_block_info *bi;
5025 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5026 bi = (struct btrfs_tree_block_info *)(ei + 1);
5027 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5028 }
5029
5030 refs = btrfs_extent_refs(leaf, ei);
5031 BUG_ON(refs < refs_to_drop);
5032 refs -= refs_to_drop;
5033
5034 if (refs > 0) {
5035 if (extent_op)
5036 __run_delayed_extent_op(extent_op, leaf, ei);
5037 /*
5038 * In the case of inline back ref, reference count will
5039 * be updated by remove_extent_backref
5040 */
5041 if (iref) {
5042 BUG_ON(!found_extent);
5043 } else {
5044 btrfs_set_extent_refs(leaf, ei, refs);
5045 btrfs_mark_buffer_dirty(leaf);
5046 }
5047 if (found_extent) {
5048 ret = remove_extent_backref(trans, extent_root, path,
5049 iref, refs_to_drop,
5050 is_data);
5051 if (ret)
5052 goto abort;
5053 }
5054 } else {
5055 if (found_extent) {
5056 BUG_ON(is_data && refs_to_drop !=
5057 extent_data_ref_count(root, path, iref));
5058 if (iref) {
5059 BUG_ON(path->slots[0] != extent_slot);
5060 } else {
5061 BUG_ON(path->slots[0] != extent_slot + 1);
5062 path->slots[0] = extent_slot;
5063 num_to_del = 2;
5064 }
5065 }
5066
5067 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5068 num_to_del);
5069 if (ret)
5070 goto abort;
5071 btrfs_release_path(path);
5072
5073 if (is_data) {
5074 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5075 if (ret)
5076 goto abort;
5077 } else {
5078 invalidate_mapping_pages(info->btree_inode->i_mapping,
5079 bytenr >> PAGE_CACHE_SHIFT,
5080 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
5081 }
5082
5083 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5084 if (ret)
5085 goto abort;
5086 }
5087 out:
5088 btrfs_free_path(path);
5089 return ret;
5090
5091 abort:
5092 btrfs_abort_transaction(trans, extent_root, ret);
5093 goto out;
5094 }
5095
5096 /*
5097 * when we free an block, it is possible (and likely) that we free the last
5098 * delayed ref for that extent as well. This searches the delayed ref tree for
5099 * a given extent, and if there are no other delayed refs to be processed, it
5100 * removes it from the tree.
5101 */
5102 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5103 struct btrfs_root *root, u64 bytenr)
5104 {
5105 struct btrfs_delayed_ref_head *head;
5106 struct btrfs_delayed_ref_root *delayed_refs;
5107 struct btrfs_delayed_ref_node *ref;
5108 struct rb_node *node;
5109 int ret = 0;
5110
5111 delayed_refs = &trans->transaction->delayed_refs;
5112 spin_lock(&delayed_refs->lock);
5113 head = btrfs_find_delayed_ref_head(trans, bytenr);
5114 if (!head)
5115 goto out;
5116
5117 node = rb_prev(&head->node.rb_node);
5118 if (!node)
5119 goto out;
5120
5121 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5122
5123 /* there are still entries for this ref, we can't drop it */
5124 if (ref->bytenr == bytenr)
5125 goto out;
5126
5127 if (head->extent_op) {
5128 if (!head->must_insert_reserved)
5129 goto out;
5130 kfree(head->extent_op);
5131 head->extent_op = NULL;
5132 }
5133
5134 /*
5135 * waiting for the lock here would deadlock. If someone else has it
5136 * locked they are already in the process of dropping it anyway
5137 */
5138 if (!mutex_trylock(&head->mutex))
5139 goto out;
5140
5141 /*
5142 * at this point we have a head with no other entries. Go
5143 * ahead and process it.
5144 */
5145 head->node.in_tree = 0;
5146 rb_erase(&head->node.rb_node, &delayed_refs->root);
5147
5148 delayed_refs->num_entries--;
5149 if (waitqueue_active(&delayed_refs->seq_wait))
5150 wake_up(&delayed_refs->seq_wait);
5151
5152 /*
5153 * we don't take a ref on the node because we're removing it from the
5154 * tree, so we just steal the ref the tree was holding.
5155 */
5156 delayed_refs->num_heads--;
5157 if (list_empty(&head->cluster))
5158 delayed_refs->num_heads_ready--;
5159
5160 list_del_init(&head->cluster);
5161 spin_unlock(&delayed_refs->lock);
5162
5163 BUG_ON(head->extent_op);
5164 if (head->must_insert_reserved)
5165 ret = 1;
5166
5167 mutex_unlock(&head->mutex);
5168 btrfs_put_delayed_ref(&head->node);
5169 return ret;
5170 out:
5171 spin_unlock(&delayed_refs->lock);
5172 return 0;
5173 }
5174
5175 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5176 struct btrfs_root *root,
5177 struct extent_buffer *buf,
5178 u64 parent, int last_ref, int for_cow)
5179 {
5180 struct btrfs_block_group_cache *cache = NULL;
5181 int ret;
5182
5183 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5184 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5185 buf->start, buf->len,
5186 parent, root->root_key.objectid,
5187 btrfs_header_level(buf),
5188 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5189 BUG_ON(ret); /* -ENOMEM */
5190 }
5191
5192 if (!last_ref)
5193 return;
5194
5195 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5196
5197 if (btrfs_header_generation(buf) == trans->transid) {
5198 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5199 ret = check_ref_cleanup(trans, root, buf->start);
5200 if (!ret)
5201 goto out;
5202 }
5203
5204 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5205 pin_down_extent(root, cache, buf->start, buf->len, 1);
5206 goto out;
5207 }
5208
5209 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5210
5211 btrfs_add_free_space(cache, buf->start, buf->len);
5212 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5213 }
5214 out:
5215 /*
5216 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5217 * anymore.
5218 */
5219 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5220 btrfs_put_block_group(cache);
5221 }
5222
5223 /* Can return -ENOMEM */
5224 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5225 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5226 u64 owner, u64 offset, int for_cow)
5227 {
5228 int ret;
5229 struct btrfs_fs_info *fs_info = root->fs_info;
5230
5231 /*
5232 * tree log blocks never actually go into the extent allocation
5233 * tree, just update pinning info and exit early.
5234 */
5235 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5236 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5237 /* unlocks the pinned mutex */
5238 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5239 ret = 0;
5240 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5241 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5242 num_bytes,
5243 parent, root_objectid, (int)owner,
5244 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5245 } else {
5246 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5247 num_bytes,
5248 parent, root_objectid, owner,
5249 offset, BTRFS_DROP_DELAYED_REF,
5250 NULL, for_cow);
5251 }
5252 return ret;
5253 }
5254
5255 static u64 stripe_align(struct btrfs_root *root, u64 val)
5256 {
5257 u64 mask = ((u64)root->stripesize - 1);
5258 u64 ret = (val + mask) & ~mask;
5259 return ret;
5260 }
5261
5262 /*
5263 * when we wait for progress in the block group caching, its because
5264 * our allocation attempt failed at least once. So, we must sleep
5265 * and let some progress happen before we try again.
5266 *
5267 * This function will sleep at least once waiting for new free space to
5268 * show up, and then it will check the block group free space numbers
5269 * for our min num_bytes. Another option is to have it go ahead
5270 * and look in the rbtree for a free extent of a given size, but this
5271 * is a good start.
5272 */
5273 static noinline int
5274 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5275 u64 num_bytes)
5276 {
5277 struct btrfs_caching_control *caching_ctl;
5278 DEFINE_WAIT(wait);
5279
5280 caching_ctl = get_caching_control(cache);
5281 if (!caching_ctl)
5282 return 0;
5283
5284 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5285 (cache->free_space_ctl->free_space >= num_bytes));
5286
5287 put_caching_control(caching_ctl);
5288 return 0;
5289 }
5290
5291 static noinline int
5292 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5293 {
5294 struct btrfs_caching_control *caching_ctl;
5295 DEFINE_WAIT(wait);
5296
5297 caching_ctl = get_caching_control(cache);
5298 if (!caching_ctl)
5299 return 0;
5300
5301 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5302
5303 put_caching_control(caching_ctl);
5304 return 0;
5305 }
5306
5307 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5308 {
5309 int index;
5310 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5311 index = 0;
5312 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5313 index = 1;
5314 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5315 index = 2;
5316 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5317 index = 3;
5318 else
5319 index = 4;
5320 return index;
5321 }
5322
5323 enum btrfs_loop_type {
5324 LOOP_FIND_IDEAL = 0,
5325 LOOP_CACHING_NOWAIT = 1,
5326 LOOP_CACHING_WAIT = 2,
5327 LOOP_ALLOC_CHUNK = 3,
5328 LOOP_NO_EMPTY_SIZE = 4,
5329 };
5330
5331 /*
5332 * walks the btree of allocated extents and find a hole of a given size.
5333 * The key ins is changed to record the hole:
5334 * ins->objectid == block start
5335 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5336 * ins->offset == number of blocks
5337 * Any available blocks before search_start are skipped.
5338 */
5339 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5340 struct btrfs_root *orig_root,
5341 u64 num_bytes, u64 empty_size,
5342 u64 search_start, u64 search_end,
5343 u64 hint_byte, struct btrfs_key *ins,
5344 u64 data)
5345 {
5346 int ret = 0;
5347 struct btrfs_root *root = orig_root->fs_info->extent_root;
5348 struct btrfs_free_cluster *last_ptr = NULL;
5349 struct btrfs_block_group_cache *block_group = NULL;
5350 struct btrfs_block_group_cache *used_block_group;
5351 int empty_cluster = 2 * 1024 * 1024;
5352 int allowed_chunk_alloc = 0;
5353 int done_chunk_alloc = 0;
5354 struct btrfs_space_info *space_info;
5355 int loop = 0;
5356 int index = 0;
5357 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5358 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5359 bool found_uncached_bg = false;
5360 bool failed_cluster_refill = false;
5361 bool failed_alloc = false;
5362 bool use_cluster = true;
5363 bool have_caching_bg = false;
5364 u64 ideal_cache_percent = 0;
5365 u64 ideal_cache_offset = 0;
5366
5367 WARN_ON(num_bytes < root->sectorsize);
5368 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5369 ins->objectid = 0;
5370 ins->offset = 0;
5371
5372 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5373
5374 space_info = __find_space_info(root->fs_info, data);
5375 if (!space_info) {
5376 printk(KERN_ERR "No space info for %llu\n", data);
5377 return -ENOSPC;
5378 }
5379
5380 /*
5381 * If the space info is for both data and metadata it means we have a
5382 * small filesystem and we can't use the clustering stuff.
5383 */
5384 if (btrfs_mixed_space_info(space_info))
5385 use_cluster = false;
5386
5387 if (orig_root->ref_cows || empty_size)
5388 allowed_chunk_alloc = 1;
5389
5390 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5391 last_ptr = &root->fs_info->meta_alloc_cluster;
5392 if (!btrfs_test_opt(root, SSD))
5393 empty_cluster = 64 * 1024;
5394 }
5395
5396 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5397 btrfs_test_opt(root, SSD)) {
5398 last_ptr = &root->fs_info->data_alloc_cluster;
5399 }
5400
5401 if (last_ptr) {
5402 spin_lock(&last_ptr->lock);
5403 if (last_ptr->block_group)
5404 hint_byte = last_ptr->window_start;
5405 spin_unlock(&last_ptr->lock);
5406 }
5407
5408 search_start = max(search_start, first_logical_byte(root, 0));
5409 search_start = max(search_start, hint_byte);
5410
5411 if (!last_ptr)
5412 empty_cluster = 0;
5413
5414 if (search_start == hint_byte) {
5415 ideal_cache:
5416 block_group = btrfs_lookup_block_group(root->fs_info,
5417 search_start);
5418 used_block_group = block_group;
5419 /*
5420 * we don't want to use the block group if it doesn't match our
5421 * allocation bits, or if its not cached.
5422 *
5423 * However if we are re-searching with an ideal block group
5424 * picked out then we don't care that the block group is cached.
5425 */
5426 if (block_group && block_group_bits(block_group, data) &&
5427 (block_group->cached != BTRFS_CACHE_NO ||
5428 search_start == ideal_cache_offset)) {
5429 down_read(&space_info->groups_sem);
5430 if (list_empty(&block_group->list) ||
5431 block_group->ro) {
5432 /*
5433 * someone is removing this block group,
5434 * we can't jump into the have_block_group
5435 * target because our list pointers are not
5436 * valid
5437 */
5438 btrfs_put_block_group(block_group);
5439 up_read(&space_info->groups_sem);
5440 } else {
5441 index = get_block_group_index(block_group);
5442 goto have_block_group;
5443 }
5444 } else if (block_group) {
5445 btrfs_put_block_group(block_group);
5446 }
5447 }
5448 search:
5449 have_caching_bg = false;
5450 down_read(&space_info->groups_sem);
5451 list_for_each_entry(block_group, &space_info->block_groups[index],
5452 list) {
5453 u64 offset;
5454 int cached;
5455
5456 used_block_group = block_group;
5457 btrfs_get_block_group(block_group);
5458 search_start = block_group->key.objectid;
5459
5460 /*
5461 * this can happen if we end up cycling through all the
5462 * raid types, but we want to make sure we only allocate
5463 * for the proper type.
5464 */
5465 if (!block_group_bits(block_group, data)) {
5466 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5467 BTRFS_BLOCK_GROUP_RAID1 |
5468 BTRFS_BLOCK_GROUP_RAID10;
5469
5470 /*
5471 * if they asked for extra copies and this block group
5472 * doesn't provide them, bail. This does allow us to
5473 * fill raid0 from raid1.
5474 */
5475 if ((data & extra) && !(block_group->flags & extra))
5476 goto loop;
5477 }
5478
5479 have_block_group:
5480 cached = block_group_cache_done(block_group);
5481 if (unlikely(!cached)) {
5482 u64 free_percent;
5483
5484 found_uncached_bg = true;
5485 ret = cache_block_group(block_group, trans,
5486 orig_root, 1);
5487 BUG_ON(ret < 0); /* -ENOMEM */
5488 if (block_group->cached == BTRFS_CACHE_FINISHED)
5489 goto alloc;
5490
5491 free_percent = btrfs_block_group_used(&block_group->item);
5492 free_percent *= 100;
5493 free_percent = div64_u64(free_percent,
5494 block_group->key.offset);
5495 free_percent = 100 - free_percent;
5496 if (free_percent > ideal_cache_percent &&
5497 likely(!block_group->ro)) {
5498 ideal_cache_offset = block_group->key.objectid;
5499 ideal_cache_percent = free_percent;
5500 }
5501
5502 /*
5503 * The caching workers are limited to 2 threads, so we
5504 * can queue as much work as we care to.
5505 */
5506 if (loop > LOOP_FIND_IDEAL) {
5507 ret = cache_block_group(block_group, trans,
5508 orig_root, 0);
5509 BUG_ON(ret); /* -ENOMEM */
5510 }
5511
5512 /*
5513 * If loop is set for cached only, try the next block
5514 * group.
5515 */
5516 if (loop == LOOP_FIND_IDEAL)
5517 goto loop;
5518 }
5519
5520 alloc:
5521 if (unlikely(block_group->ro))
5522 goto loop;
5523
5524 /*
5525 * Ok we want to try and use the cluster allocator, so
5526 * lets look there
5527 */
5528 if (last_ptr) {
5529 /*
5530 * the refill lock keeps out other
5531 * people trying to start a new cluster
5532 */
5533 spin_lock(&last_ptr->refill_lock);
5534 used_block_group = last_ptr->block_group;
5535 if (used_block_group != block_group &&
5536 (!used_block_group ||
5537 used_block_group->ro ||
5538 !block_group_bits(used_block_group, data))) {
5539 used_block_group = block_group;
5540 goto refill_cluster;
5541 }
5542
5543 if (used_block_group != block_group)
5544 btrfs_get_block_group(used_block_group);
5545
5546 offset = btrfs_alloc_from_cluster(used_block_group,
5547 last_ptr, num_bytes, used_block_group->key.objectid);
5548 if (offset) {
5549 /* we have a block, we're done */
5550 spin_unlock(&last_ptr->refill_lock);
5551 trace_btrfs_reserve_extent_cluster(root,
5552 block_group, search_start, num_bytes);
5553 goto checks;
5554 }
5555
5556 WARN_ON(last_ptr->block_group != used_block_group);
5557 if (used_block_group != block_group) {
5558 btrfs_put_block_group(used_block_group);
5559 used_block_group = block_group;
5560 }
5561 refill_cluster:
5562 BUG_ON(used_block_group != block_group);
5563 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5564 * set up a new clusters, so lets just skip it
5565 * and let the allocator find whatever block
5566 * it can find. If we reach this point, we
5567 * will have tried the cluster allocator
5568 * plenty of times and not have found
5569 * anything, so we are likely way too
5570 * fragmented for the clustering stuff to find
5571 * anything.
5572 *
5573 * However, if the cluster is taken from the
5574 * current block group, release the cluster
5575 * first, so that we stand a better chance of
5576 * succeeding in the unclustered
5577 * allocation. */
5578 if (loop >= LOOP_NO_EMPTY_SIZE &&
5579 last_ptr->block_group != block_group) {
5580 spin_unlock(&last_ptr->refill_lock);
5581 goto unclustered_alloc;
5582 }
5583
5584 /*
5585 * this cluster didn't work out, free it and
5586 * start over
5587 */
5588 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5589
5590 if (loop >= LOOP_NO_EMPTY_SIZE) {
5591 spin_unlock(&last_ptr->refill_lock);
5592 goto unclustered_alloc;
5593 }
5594
5595 /* allocate a cluster in this block group */
5596 ret = btrfs_find_space_cluster(trans, root,
5597 block_group, last_ptr,
5598 search_start, num_bytes,
5599 empty_cluster + empty_size);
5600 if (ret == 0) {
5601 /*
5602 * now pull our allocation out of this
5603 * cluster
5604 */
5605 offset = btrfs_alloc_from_cluster(block_group,
5606 last_ptr, num_bytes,
5607 search_start);
5608 if (offset) {
5609 /* we found one, proceed */
5610 spin_unlock(&last_ptr->refill_lock);
5611 trace_btrfs_reserve_extent_cluster(root,
5612 block_group, search_start,
5613 num_bytes);
5614 goto checks;
5615 }
5616 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5617 && !failed_cluster_refill) {
5618 spin_unlock(&last_ptr->refill_lock);
5619
5620 failed_cluster_refill = true;
5621 wait_block_group_cache_progress(block_group,
5622 num_bytes + empty_cluster + empty_size);
5623 goto have_block_group;
5624 }
5625
5626 /*
5627 * at this point we either didn't find a cluster
5628 * or we weren't able to allocate a block from our
5629 * cluster. Free the cluster we've been trying
5630 * to use, and go to the next block group
5631 */
5632 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5633 spin_unlock(&last_ptr->refill_lock);
5634 goto loop;
5635 }
5636
5637 unclustered_alloc:
5638 spin_lock(&block_group->free_space_ctl->tree_lock);
5639 if (cached &&
5640 block_group->free_space_ctl->free_space <
5641 num_bytes + empty_cluster + empty_size) {
5642 spin_unlock(&block_group->free_space_ctl->tree_lock);
5643 goto loop;
5644 }
5645 spin_unlock(&block_group->free_space_ctl->tree_lock);
5646
5647 offset = btrfs_find_space_for_alloc(block_group, search_start,
5648 num_bytes, empty_size);
5649 /*
5650 * If we didn't find a chunk, and we haven't failed on this
5651 * block group before, and this block group is in the middle of
5652 * caching and we are ok with waiting, then go ahead and wait
5653 * for progress to be made, and set failed_alloc to true.
5654 *
5655 * If failed_alloc is true then we've already waited on this
5656 * block group once and should move on to the next block group.
5657 */
5658 if (!offset && !failed_alloc && !cached &&
5659 loop > LOOP_CACHING_NOWAIT) {
5660 wait_block_group_cache_progress(block_group,
5661 num_bytes + empty_size);
5662 failed_alloc = true;
5663 goto have_block_group;
5664 } else if (!offset) {
5665 if (!cached)
5666 have_caching_bg = true;
5667 goto loop;
5668 }
5669 checks:
5670 search_start = stripe_align(root, offset);
5671 /* move on to the next group */
5672 if (search_start + num_bytes >= search_end) {
5673 btrfs_add_free_space(used_block_group, offset, num_bytes);
5674 goto loop;
5675 }
5676
5677 /* move on to the next group */
5678 if (search_start + num_bytes >
5679 used_block_group->key.objectid + used_block_group->key.offset) {
5680 btrfs_add_free_space(used_block_group, offset, num_bytes);
5681 goto loop;
5682 }
5683
5684 if (offset < search_start)
5685 btrfs_add_free_space(used_block_group, offset,
5686 search_start - offset);
5687 BUG_ON(offset > search_start);
5688
5689 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5690 alloc_type);
5691 if (ret == -EAGAIN) {
5692 btrfs_add_free_space(used_block_group, offset, num_bytes);
5693 goto loop;
5694 }
5695
5696 /* we are all good, lets return */
5697 ins->objectid = search_start;
5698 ins->offset = num_bytes;
5699
5700 trace_btrfs_reserve_extent(orig_root, block_group,
5701 search_start, num_bytes);
5702 if (offset < search_start)
5703 btrfs_add_free_space(used_block_group, offset,
5704 search_start - offset);
5705 BUG_ON(offset > search_start);
5706 if (used_block_group != block_group)
5707 btrfs_put_block_group(used_block_group);
5708 btrfs_put_block_group(block_group);
5709 break;
5710 loop:
5711 failed_cluster_refill = false;
5712 failed_alloc = false;
5713 BUG_ON(index != get_block_group_index(block_group));
5714 if (used_block_group != block_group)
5715 btrfs_put_block_group(used_block_group);
5716 btrfs_put_block_group(block_group);
5717 }
5718 up_read(&space_info->groups_sem);
5719
5720 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5721 goto search;
5722
5723 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5724 goto search;
5725
5726 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5727 * for them to make caching progress. Also
5728 * determine the best possible bg to cache
5729 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5730 * caching kthreads as we move along
5731 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5732 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5733 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5734 * again
5735 */
5736 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5737 index = 0;
5738 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5739 found_uncached_bg = false;
5740 loop++;
5741 if (!ideal_cache_percent)
5742 goto search;
5743
5744 /*
5745 * 1 of the following 2 things have happened so far
5746 *
5747 * 1) We found an ideal block group for caching that
5748 * is mostly full and will cache quickly, so we might
5749 * as well wait for it.
5750 *
5751 * 2) We searched for cached only and we didn't find
5752 * anything, and we didn't start any caching kthreads
5753 * either, so chances are we will loop through and
5754 * start a couple caching kthreads, and then come back
5755 * around and just wait for them. This will be slower
5756 * because we will have 2 caching kthreads reading at
5757 * the same time when we could have just started one
5758 * and waited for it to get far enough to give us an
5759 * allocation, so go ahead and go to the wait caching
5760 * loop.
5761 */
5762 loop = LOOP_CACHING_WAIT;
5763 search_start = ideal_cache_offset;
5764 ideal_cache_percent = 0;
5765 goto ideal_cache;
5766 } else if (loop == LOOP_FIND_IDEAL) {
5767 /*
5768 * Didn't find a uncached bg, wait on anything we find
5769 * next.
5770 */
5771 loop = LOOP_CACHING_WAIT;
5772 goto search;
5773 }
5774
5775 loop++;
5776
5777 if (loop == LOOP_ALLOC_CHUNK) {
5778 if (allowed_chunk_alloc) {
5779 ret = do_chunk_alloc(trans, root, num_bytes +
5780 2 * 1024 * 1024, data,
5781 CHUNK_ALLOC_LIMITED);
5782 if (ret < 0) {
5783 btrfs_abort_transaction(trans,
5784 root, ret);
5785 goto out;
5786 }
5787 allowed_chunk_alloc = 0;
5788 if (ret == 1)
5789 done_chunk_alloc = 1;
5790 } else if (!done_chunk_alloc &&
5791 space_info->force_alloc ==
5792 CHUNK_ALLOC_NO_FORCE) {
5793 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5794 }
5795
5796 /*
5797 * We didn't allocate a chunk, go ahead and drop the
5798 * empty size and loop again.
5799 */
5800 if (!done_chunk_alloc)
5801 loop = LOOP_NO_EMPTY_SIZE;
5802 }
5803
5804 if (loop == LOOP_NO_EMPTY_SIZE) {
5805 empty_size = 0;
5806 empty_cluster = 0;
5807 }
5808
5809 goto search;
5810 } else if (!ins->objectid) {
5811 ret = -ENOSPC;
5812 } else if (ins->objectid) {
5813 ret = 0;
5814 }
5815 out:
5816
5817 return ret;
5818 }
5819
5820 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5821 int dump_block_groups)
5822 {
5823 struct btrfs_block_group_cache *cache;
5824 int index = 0;
5825
5826 spin_lock(&info->lock);
5827 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5828 (unsigned long long)info->flags,
5829 (unsigned long long)(info->total_bytes - info->bytes_used -
5830 info->bytes_pinned - info->bytes_reserved -
5831 info->bytes_readonly),
5832 (info->full) ? "" : "not ");
5833 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5834 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5835 (unsigned long long)info->total_bytes,
5836 (unsigned long long)info->bytes_used,
5837 (unsigned long long)info->bytes_pinned,
5838 (unsigned long long)info->bytes_reserved,
5839 (unsigned long long)info->bytes_may_use,
5840 (unsigned long long)info->bytes_readonly);
5841 spin_unlock(&info->lock);
5842
5843 if (!dump_block_groups)
5844 return;
5845
5846 down_read(&info->groups_sem);
5847 again:
5848 list_for_each_entry(cache, &info->block_groups[index], list) {
5849 spin_lock(&cache->lock);
5850 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5851 "%llu pinned %llu reserved\n",
5852 (unsigned long long)cache->key.objectid,
5853 (unsigned long long)cache->key.offset,
5854 (unsigned long long)btrfs_block_group_used(&cache->item),
5855 (unsigned long long)cache->pinned,
5856 (unsigned long long)cache->reserved);
5857 btrfs_dump_free_space(cache, bytes);
5858 spin_unlock(&cache->lock);
5859 }
5860 if (++index < BTRFS_NR_RAID_TYPES)
5861 goto again;
5862 up_read(&info->groups_sem);
5863 }
5864
5865 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5866 struct btrfs_root *root,
5867 u64 num_bytes, u64 min_alloc_size,
5868 u64 empty_size, u64 hint_byte,
5869 u64 search_end, struct btrfs_key *ins,
5870 u64 data)
5871 {
5872 bool final_tried = false;
5873 int ret;
5874 u64 search_start = 0;
5875
5876 data = btrfs_get_alloc_profile(root, data);
5877 again:
5878 /*
5879 * the only place that sets empty_size is btrfs_realloc_node, which
5880 * is not called recursively on allocations
5881 */
5882 if (empty_size || root->ref_cows) {
5883 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5884 num_bytes + 2 * 1024 * 1024, data,
5885 CHUNK_ALLOC_NO_FORCE);
5886 if (ret < 0 && ret != -ENOSPC) {
5887 btrfs_abort_transaction(trans, root, ret);
5888 return ret;
5889 }
5890 }
5891
5892 WARN_ON(num_bytes < root->sectorsize);
5893 ret = find_free_extent(trans, root, num_bytes, empty_size,
5894 search_start, search_end, hint_byte,
5895 ins, data);
5896
5897 if (ret == -ENOSPC) {
5898 if (!final_tried) {
5899 num_bytes = num_bytes >> 1;
5900 num_bytes = num_bytes & ~(root->sectorsize - 1);
5901 num_bytes = max(num_bytes, min_alloc_size);
5902 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5903 num_bytes, data, CHUNK_ALLOC_FORCE);
5904 if (ret < 0 && ret != -ENOSPC) {
5905 btrfs_abort_transaction(trans, root, ret);
5906 return ret;
5907 }
5908 if (num_bytes == min_alloc_size)
5909 final_tried = true;
5910 goto again;
5911 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5912 struct btrfs_space_info *sinfo;
5913
5914 sinfo = __find_space_info(root->fs_info, data);
5915 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5916 "wanted %llu\n", (unsigned long long)data,
5917 (unsigned long long)num_bytes);
5918 if (sinfo)
5919 dump_space_info(sinfo, num_bytes, 1);
5920 }
5921 }
5922
5923 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5924
5925 return ret;
5926 }
5927
5928 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5929 u64 start, u64 len, int pin)
5930 {
5931 struct btrfs_block_group_cache *cache;
5932 int ret = 0;
5933
5934 cache = btrfs_lookup_block_group(root->fs_info, start);
5935 if (!cache) {
5936 printk(KERN_ERR "Unable to find block group for %llu\n",
5937 (unsigned long long)start);
5938 return -ENOSPC;
5939 }
5940
5941 if (btrfs_test_opt(root, DISCARD))
5942 ret = btrfs_discard_extent(root, start, len, NULL);
5943
5944 if (pin)
5945 pin_down_extent(root, cache, start, len, 1);
5946 else {
5947 btrfs_add_free_space(cache, start, len);
5948 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5949 }
5950 btrfs_put_block_group(cache);
5951
5952 trace_btrfs_reserved_extent_free(root, start, len);
5953
5954 return ret;
5955 }
5956
5957 int btrfs_free_reserved_extent(struct btrfs_root *root,
5958 u64 start, u64 len)
5959 {
5960 return __btrfs_free_reserved_extent(root, start, len, 0);
5961 }
5962
5963 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5964 u64 start, u64 len)
5965 {
5966 return __btrfs_free_reserved_extent(root, start, len, 1);
5967 }
5968
5969 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5970 struct btrfs_root *root,
5971 u64 parent, u64 root_objectid,
5972 u64 flags, u64 owner, u64 offset,
5973 struct btrfs_key *ins, int ref_mod)
5974 {
5975 int ret;
5976 struct btrfs_fs_info *fs_info = root->fs_info;
5977 struct btrfs_extent_item *extent_item;
5978 struct btrfs_extent_inline_ref *iref;
5979 struct btrfs_path *path;
5980 struct extent_buffer *leaf;
5981 int type;
5982 u32 size;
5983
5984 if (parent > 0)
5985 type = BTRFS_SHARED_DATA_REF_KEY;
5986 else
5987 type = BTRFS_EXTENT_DATA_REF_KEY;
5988
5989 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5990
5991 path = btrfs_alloc_path();
5992 if (!path)
5993 return -ENOMEM;
5994
5995 path->leave_spinning = 1;
5996 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5997 ins, size);
5998 if (ret) {
5999 btrfs_free_path(path);
6000 return ret;
6001 }
6002
6003 leaf = path->nodes[0];
6004 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6005 struct btrfs_extent_item);
6006 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6007 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6008 btrfs_set_extent_flags(leaf, extent_item,
6009 flags | BTRFS_EXTENT_FLAG_DATA);
6010
6011 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6012 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6013 if (parent > 0) {
6014 struct btrfs_shared_data_ref *ref;
6015 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6016 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6017 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6018 } else {
6019 struct btrfs_extent_data_ref *ref;
6020 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6021 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6022 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6023 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6024 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6025 }
6026
6027 btrfs_mark_buffer_dirty(path->nodes[0]);
6028 btrfs_free_path(path);
6029
6030 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6031 if (ret) { /* -ENOENT, logic error */
6032 printk(KERN_ERR "btrfs update block group failed for %llu "
6033 "%llu\n", (unsigned long long)ins->objectid,
6034 (unsigned long long)ins->offset);
6035 BUG();
6036 }
6037 return ret;
6038 }
6039
6040 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6041 struct btrfs_root *root,
6042 u64 parent, u64 root_objectid,
6043 u64 flags, struct btrfs_disk_key *key,
6044 int level, struct btrfs_key *ins)
6045 {
6046 int ret;
6047 struct btrfs_fs_info *fs_info = root->fs_info;
6048 struct btrfs_extent_item *extent_item;
6049 struct btrfs_tree_block_info *block_info;
6050 struct btrfs_extent_inline_ref *iref;
6051 struct btrfs_path *path;
6052 struct extent_buffer *leaf;
6053 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6054
6055 path = btrfs_alloc_path();
6056 if (!path)
6057 return -ENOMEM;
6058
6059 path->leave_spinning = 1;
6060 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6061 ins, size);
6062 if (ret) {
6063 btrfs_free_path(path);
6064 return ret;
6065 }
6066
6067 leaf = path->nodes[0];
6068 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6069 struct btrfs_extent_item);
6070 btrfs_set_extent_refs(leaf, extent_item, 1);
6071 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6072 btrfs_set_extent_flags(leaf, extent_item,
6073 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6074 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6075
6076 btrfs_set_tree_block_key(leaf, block_info, key);
6077 btrfs_set_tree_block_level(leaf, block_info, level);
6078
6079 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6080 if (parent > 0) {
6081 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6082 btrfs_set_extent_inline_ref_type(leaf, iref,
6083 BTRFS_SHARED_BLOCK_REF_KEY);
6084 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6085 } else {
6086 btrfs_set_extent_inline_ref_type(leaf, iref,
6087 BTRFS_TREE_BLOCK_REF_KEY);
6088 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6089 }
6090
6091 btrfs_mark_buffer_dirty(leaf);
6092 btrfs_free_path(path);
6093
6094 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6095 if (ret) { /* -ENOENT, logic error */
6096 printk(KERN_ERR "btrfs update block group failed for %llu "
6097 "%llu\n", (unsigned long long)ins->objectid,
6098 (unsigned long long)ins->offset);
6099 BUG();
6100 }
6101 return ret;
6102 }
6103
6104 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6105 struct btrfs_root *root,
6106 u64 root_objectid, u64 owner,
6107 u64 offset, struct btrfs_key *ins)
6108 {
6109 int ret;
6110
6111 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6112
6113 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6114 ins->offset, 0,
6115 root_objectid, owner, offset,
6116 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6117 return ret;
6118 }
6119
6120 /*
6121 * this is used by the tree logging recovery code. It records that
6122 * an extent has been allocated and makes sure to clear the free
6123 * space cache bits as well
6124 */
6125 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6126 struct btrfs_root *root,
6127 u64 root_objectid, u64 owner, u64 offset,
6128 struct btrfs_key *ins)
6129 {
6130 int ret;
6131 struct btrfs_block_group_cache *block_group;
6132 struct btrfs_caching_control *caching_ctl;
6133 u64 start = ins->objectid;
6134 u64 num_bytes = ins->offset;
6135
6136 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6137 cache_block_group(block_group, trans, NULL, 0);
6138 caching_ctl = get_caching_control(block_group);
6139
6140 if (!caching_ctl) {
6141 BUG_ON(!block_group_cache_done(block_group));
6142 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6143 BUG_ON(ret); /* -ENOMEM */
6144 } else {
6145 mutex_lock(&caching_ctl->mutex);
6146
6147 if (start >= caching_ctl->progress) {
6148 ret = add_excluded_extent(root, start, num_bytes);
6149 BUG_ON(ret); /* -ENOMEM */
6150 } else if (start + num_bytes <= caching_ctl->progress) {
6151 ret = btrfs_remove_free_space(block_group,
6152 start, num_bytes);
6153 BUG_ON(ret); /* -ENOMEM */
6154 } else {
6155 num_bytes = caching_ctl->progress - start;
6156 ret = btrfs_remove_free_space(block_group,
6157 start, num_bytes);
6158 BUG_ON(ret); /* -ENOMEM */
6159
6160 start = caching_ctl->progress;
6161 num_bytes = ins->objectid + ins->offset -
6162 caching_ctl->progress;
6163 ret = add_excluded_extent(root, start, num_bytes);
6164 BUG_ON(ret); /* -ENOMEM */
6165 }
6166
6167 mutex_unlock(&caching_ctl->mutex);
6168 put_caching_control(caching_ctl);
6169 }
6170
6171 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6172 RESERVE_ALLOC_NO_ACCOUNT);
6173 BUG_ON(ret); /* logic error */
6174 btrfs_put_block_group(block_group);
6175 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6176 0, owner, offset, ins, 1);
6177 return ret;
6178 }
6179
6180 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6181 struct btrfs_root *root,
6182 u64 bytenr, u32 blocksize,
6183 int level)
6184 {
6185 struct extent_buffer *buf;
6186
6187 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6188 if (!buf)
6189 return ERR_PTR(-ENOMEM);
6190 btrfs_set_header_generation(buf, trans->transid);
6191 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6192 btrfs_tree_lock(buf);
6193 clean_tree_block(trans, root, buf);
6194
6195 btrfs_set_lock_blocking(buf);
6196 btrfs_set_buffer_uptodate(buf);
6197
6198 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6199 /*
6200 * we allow two log transactions at a time, use different
6201 * EXENT bit to differentiate dirty pages.
6202 */
6203 if (root->log_transid % 2 == 0)
6204 set_extent_dirty(&root->dirty_log_pages, buf->start,
6205 buf->start + buf->len - 1, GFP_NOFS);
6206 else
6207 set_extent_new(&root->dirty_log_pages, buf->start,
6208 buf->start + buf->len - 1, GFP_NOFS);
6209 } else {
6210 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6211 buf->start + buf->len - 1, GFP_NOFS);
6212 }
6213 trans->blocks_used++;
6214 /* this returns a buffer locked for blocking */
6215 return buf;
6216 }
6217
6218 static struct btrfs_block_rsv *
6219 use_block_rsv(struct btrfs_trans_handle *trans,
6220 struct btrfs_root *root, u32 blocksize)
6221 {
6222 struct btrfs_block_rsv *block_rsv;
6223 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6224 int ret;
6225
6226 block_rsv = get_block_rsv(trans, root);
6227
6228 if (block_rsv->size == 0) {
6229 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6230 /*
6231 * If we couldn't reserve metadata bytes try and use some from
6232 * the global reserve.
6233 */
6234 if (ret && block_rsv != global_rsv) {
6235 ret = block_rsv_use_bytes(global_rsv, blocksize);
6236 if (!ret)
6237 return global_rsv;
6238 return ERR_PTR(ret);
6239 } else if (ret) {
6240 return ERR_PTR(ret);
6241 }
6242 return block_rsv;
6243 }
6244
6245 ret = block_rsv_use_bytes(block_rsv, blocksize);
6246 if (!ret)
6247 return block_rsv;
6248 if (ret) {
6249 static DEFINE_RATELIMIT_STATE(_rs,
6250 DEFAULT_RATELIMIT_INTERVAL,
6251 /*DEFAULT_RATELIMIT_BURST*/ 2);
6252 if (__ratelimit(&_rs)) {
6253 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6254 WARN_ON(1);
6255 }
6256 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6257 if (!ret) {
6258 return block_rsv;
6259 } else if (ret && block_rsv != global_rsv) {
6260 ret = block_rsv_use_bytes(global_rsv, blocksize);
6261 if (!ret)
6262 return global_rsv;
6263 }
6264 }
6265
6266 return ERR_PTR(-ENOSPC);
6267 }
6268
6269 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6270 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6271 {
6272 block_rsv_add_bytes(block_rsv, blocksize, 0);
6273 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6274 }
6275
6276 /*
6277 * finds a free extent and does all the dirty work required for allocation
6278 * returns the key for the extent through ins, and a tree buffer for
6279 * the first block of the extent through buf.
6280 *
6281 * returns the tree buffer or NULL.
6282 */
6283 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6284 struct btrfs_root *root, u32 blocksize,
6285 u64 parent, u64 root_objectid,
6286 struct btrfs_disk_key *key, int level,
6287 u64 hint, u64 empty_size, int for_cow)
6288 {
6289 struct btrfs_key ins;
6290 struct btrfs_block_rsv *block_rsv;
6291 struct extent_buffer *buf;
6292 u64 flags = 0;
6293 int ret;
6294
6295
6296 block_rsv = use_block_rsv(trans, root, blocksize);
6297 if (IS_ERR(block_rsv))
6298 return ERR_CAST(block_rsv);
6299
6300 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6301 empty_size, hint, (u64)-1, &ins, 0);
6302 if (ret) {
6303 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6304 return ERR_PTR(ret);
6305 }
6306
6307 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6308 blocksize, level);
6309 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6310
6311 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6312 if (parent == 0)
6313 parent = ins.objectid;
6314 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6315 } else
6316 BUG_ON(parent > 0);
6317
6318 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6319 struct btrfs_delayed_extent_op *extent_op;
6320 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6321 BUG_ON(!extent_op); /* -ENOMEM */
6322 if (key)
6323 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6324 else
6325 memset(&extent_op->key, 0, sizeof(extent_op->key));
6326 extent_op->flags_to_set = flags;
6327 extent_op->update_key = 1;
6328 extent_op->update_flags = 1;
6329 extent_op->is_data = 0;
6330
6331 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6332 ins.objectid,
6333 ins.offset, parent, root_objectid,
6334 level, BTRFS_ADD_DELAYED_EXTENT,
6335 extent_op, for_cow);
6336 BUG_ON(ret); /* -ENOMEM */
6337 }
6338 return buf;
6339 }
6340
6341 struct walk_control {
6342 u64 refs[BTRFS_MAX_LEVEL];
6343 u64 flags[BTRFS_MAX_LEVEL];
6344 struct btrfs_key update_progress;
6345 int stage;
6346 int level;
6347 int shared_level;
6348 int update_ref;
6349 int keep_locks;
6350 int reada_slot;
6351 int reada_count;
6352 int for_reloc;
6353 };
6354
6355 #define DROP_REFERENCE 1
6356 #define UPDATE_BACKREF 2
6357
6358 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6359 struct btrfs_root *root,
6360 struct walk_control *wc,
6361 struct btrfs_path *path)
6362 {
6363 u64 bytenr;
6364 u64 generation;
6365 u64 refs;
6366 u64 flags;
6367 u32 nritems;
6368 u32 blocksize;
6369 struct btrfs_key key;
6370 struct extent_buffer *eb;
6371 int ret;
6372 int slot;
6373 int nread = 0;
6374
6375 if (path->slots[wc->level] < wc->reada_slot) {
6376 wc->reada_count = wc->reada_count * 2 / 3;
6377 wc->reada_count = max(wc->reada_count, 2);
6378 } else {
6379 wc->reada_count = wc->reada_count * 3 / 2;
6380 wc->reada_count = min_t(int, wc->reada_count,
6381 BTRFS_NODEPTRS_PER_BLOCK(root));
6382 }
6383
6384 eb = path->nodes[wc->level];
6385 nritems = btrfs_header_nritems(eb);
6386 blocksize = btrfs_level_size(root, wc->level - 1);
6387
6388 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6389 if (nread >= wc->reada_count)
6390 break;
6391
6392 cond_resched();
6393 bytenr = btrfs_node_blockptr(eb, slot);
6394 generation = btrfs_node_ptr_generation(eb, slot);
6395
6396 if (slot == path->slots[wc->level])
6397 goto reada;
6398
6399 if (wc->stage == UPDATE_BACKREF &&
6400 generation <= root->root_key.offset)
6401 continue;
6402
6403 /* We don't lock the tree block, it's OK to be racy here */
6404 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6405 &refs, &flags);
6406 /* We don't care about errors in readahead. */
6407 if (ret < 0)
6408 continue;
6409 BUG_ON(refs == 0);
6410
6411 if (wc->stage == DROP_REFERENCE) {
6412 if (refs == 1)
6413 goto reada;
6414
6415 if (wc->level == 1 &&
6416 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6417 continue;
6418 if (!wc->update_ref ||
6419 generation <= root->root_key.offset)
6420 continue;
6421 btrfs_node_key_to_cpu(eb, &key, slot);
6422 ret = btrfs_comp_cpu_keys(&key,
6423 &wc->update_progress);
6424 if (ret < 0)
6425 continue;
6426 } else {
6427 if (wc->level == 1 &&
6428 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6429 continue;
6430 }
6431 reada:
6432 ret = readahead_tree_block(root, bytenr, blocksize,
6433 generation);
6434 if (ret)
6435 break;
6436 nread++;
6437 }
6438 wc->reada_slot = slot;
6439 }
6440
6441 /*
6442 * hepler to process tree block while walking down the tree.
6443 *
6444 * when wc->stage == UPDATE_BACKREF, this function updates
6445 * back refs for pointers in the block.
6446 *
6447 * NOTE: return value 1 means we should stop walking down.
6448 */
6449 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6450 struct btrfs_root *root,
6451 struct btrfs_path *path,
6452 struct walk_control *wc, int lookup_info)
6453 {
6454 int level = wc->level;
6455 struct extent_buffer *eb = path->nodes[level];
6456 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6457 int ret;
6458
6459 if (wc->stage == UPDATE_BACKREF &&
6460 btrfs_header_owner(eb) != root->root_key.objectid)
6461 return 1;
6462
6463 /*
6464 * when reference count of tree block is 1, it won't increase
6465 * again. once full backref flag is set, we never clear it.
6466 */
6467 if (lookup_info &&
6468 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6469 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6470 BUG_ON(!path->locks[level]);
6471 ret = btrfs_lookup_extent_info(trans, root,
6472 eb->start, eb->len,
6473 &wc->refs[level],
6474 &wc->flags[level]);
6475 BUG_ON(ret == -ENOMEM);
6476 if (ret)
6477 return ret;
6478 BUG_ON(wc->refs[level] == 0);
6479 }
6480
6481 if (wc->stage == DROP_REFERENCE) {
6482 if (wc->refs[level] > 1)
6483 return 1;
6484
6485 if (path->locks[level] && !wc->keep_locks) {
6486 btrfs_tree_unlock_rw(eb, path->locks[level]);
6487 path->locks[level] = 0;
6488 }
6489 return 0;
6490 }
6491
6492 /* wc->stage == UPDATE_BACKREF */
6493 if (!(wc->flags[level] & flag)) {
6494 BUG_ON(!path->locks[level]);
6495 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6496 BUG_ON(ret); /* -ENOMEM */
6497 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6498 BUG_ON(ret); /* -ENOMEM */
6499 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6500 eb->len, flag, 0);
6501 BUG_ON(ret); /* -ENOMEM */
6502 wc->flags[level] |= flag;
6503 }
6504
6505 /*
6506 * the block is shared by multiple trees, so it's not good to
6507 * keep the tree lock
6508 */
6509 if (path->locks[level] && level > 0) {
6510 btrfs_tree_unlock_rw(eb, path->locks[level]);
6511 path->locks[level] = 0;
6512 }
6513 return 0;
6514 }
6515
6516 /*
6517 * hepler to process tree block pointer.
6518 *
6519 * when wc->stage == DROP_REFERENCE, this function checks
6520 * reference count of the block pointed to. if the block
6521 * is shared and we need update back refs for the subtree
6522 * rooted at the block, this function changes wc->stage to
6523 * UPDATE_BACKREF. if the block is shared and there is no
6524 * need to update back, this function drops the reference
6525 * to the block.
6526 *
6527 * NOTE: return value 1 means we should stop walking down.
6528 */
6529 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6530 struct btrfs_root *root,
6531 struct btrfs_path *path,
6532 struct walk_control *wc, int *lookup_info)
6533 {
6534 u64 bytenr;
6535 u64 generation;
6536 u64 parent;
6537 u32 blocksize;
6538 struct btrfs_key key;
6539 struct extent_buffer *next;
6540 int level = wc->level;
6541 int reada = 0;
6542 int ret = 0;
6543
6544 generation = btrfs_node_ptr_generation(path->nodes[level],
6545 path->slots[level]);
6546 /*
6547 * if the lower level block was created before the snapshot
6548 * was created, we know there is no need to update back refs
6549 * for the subtree
6550 */
6551 if (wc->stage == UPDATE_BACKREF &&
6552 generation <= root->root_key.offset) {
6553 *lookup_info = 1;
6554 return 1;
6555 }
6556
6557 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6558 blocksize = btrfs_level_size(root, level - 1);
6559
6560 next = btrfs_find_tree_block(root, bytenr, blocksize);
6561 if (!next) {
6562 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6563 if (!next)
6564 return -ENOMEM;
6565 reada = 1;
6566 }
6567 btrfs_tree_lock(next);
6568 btrfs_set_lock_blocking(next);
6569
6570 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6571 &wc->refs[level - 1],
6572 &wc->flags[level - 1]);
6573 if (ret < 0) {
6574 btrfs_tree_unlock(next);
6575 return ret;
6576 }
6577
6578 BUG_ON(wc->refs[level - 1] == 0);
6579 *lookup_info = 0;
6580
6581 if (wc->stage == DROP_REFERENCE) {
6582 if (wc->refs[level - 1] > 1) {
6583 if (level == 1 &&
6584 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6585 goto skip;
6586
6587 if (!wc->update_ref ||
6588 generation <= root->root_key.offset)
6589 goto skip;
6590
6591 btrfs_node_key_to_cpu(path->nodes[level], &key,
6592 path->slots[level]);
6593 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6594 if (ret < 0)
6595 goto skip;
6596
6597 wc->stage = UPDATE_BACKREF;
6598 wc->shared_level = level - 1;
6599 }
6600 } else {
6601 if (level == 1 &&
6602 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6603 goto skip;
6604 }
6605
6606 if (!btrfs_buffer_uptodate(next, generation)) {
6607 btrfs_tree_unlock(next);
6608 free_extent_buffer(next);
6609 next = NULL;
6610 *lookup_info = 1;
6611 }
6612
6613 if (!next) {
6614 if (reada && level == 1)
6615 reada_walk_down(trans, root, wc, path);
6616 next = read_tree_block(root, bytenr, blocksize, generation);
6617 if (!next)
6618 return -EIO;
6619 btrfs_tree_lock(next);
6620 btrfs_set_lock_blocking(next);
6621 }
6622
6623 level--;
6624 BUG_ON(level != btrfs_header_level(next));
6625 path->nodes[level] = next;
6626 path->slots[level] = 0;
6627 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6628 wc->level = level;
6629 if (wc->level == 1)
6630 wc->reada_slot = 0;
6631 return 0;
6632 skip:
6633 wc->refs[level - 1] = 0;
6634 wc->flags[level - 1] = 0;
6635 if (wc->stage == DROP_REFERENCE) {
6636 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6637 parent = path->nodes[level]->start;
6638 } else {
6639 BUG_ON(root->root_key.objectid !=
6640 btrfs_header_owner(path->nodes[level]));
6641 parent = 0;
6642 }
6643
6644 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6645 root->root_key.objectid, level - 1, 0, 0);
6646 BUG_ON(ret); /* -ENOMEM */
6647 }
6648 btrfs_tree_unlock(next);
6649 free_extent_buffer(next);
6650 *lookup_info = 1;
6651 return 1;
6652 }
6653
6654 /*
6655 * hepler to process tree block while walking up the tree.
6656 *
6657 * when wc->stage == DROP_REFERENCE, this function drops
6658 * reference count on the block.
6659 *
6660 * when wc->stage == UPDATE_BACKREF, this function changes
6661 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6662 * to UPDATE_BACKREF previously while processing the block.
6663 *
6664 * NOTE: return value 1 means we should stop walking up.
6665 */
6666 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6667 struct btrfs_root *root,
6668 struct btrfs_path *path,
6669 struct walk_control *wc)
6670 {
6671 int ret;
6672 int level = wc->level;
6673 struct extent_buffer *eb = path->nodes[level];
6674 u64 parent = 0;
6675
6676 if (wc->stage == UPDATE_BACKREF) {
6677 BUG_ON(wc->shared_level < level);
6678 if (level < wc->shared_level)
6679 goto out;
6680
6681 ret = find_next_key(path, level + 1, &wc->update_progress);
6682 if (ret > 0)
6683 wc->update_ref = 0;
6684
6685 wc->stage = DROP_REFERENCE;
6686 wc->shared_level = -1;
6687 path->slots[level] = 0;
6688
6689 /*
6690 * check reference count again if the block isn't locked.
6691 * we should start walking down the tree again if reference
6692 * count is one.
6693 */
6694 if (!path->locks[level]) {
6695 BUG_ON(level == 0);
6696 btrfs_tree_lock(eb);
6697 btrfs_set_lock_blocking(eb);
6698 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6699
6700 ret = btrfs_lookup_extent_info(trans, root,
6701 eb->start, eb->len,
6702 &wc->refs[level],
6703 &wc->flags[level]);
6704 if (ret < 0) {
6705 btrfs_tree_unlock_rw(eb, path->locks[level]);
6706 return ret;
6707 }
6708 BUG_ON(wc->refs[level] == 0);
6709 if (wc->refs[level] == 1) {
6710 btrfs_tree_unlock_rw(eb, path->locks[level]);
6711 return 1;
6712 }
6713 }
6714 }
6715
6716 /* wc->stage == DROP_REFERENCE */
6717 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6718
6719 if (wc->refs[level] == 1) {
6720 if (level == 0) {
6721 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6722 ret = btrfs_dec_ref(trans, root, eb, 1,
6723 wc->for_reloc);
6724 else
6725 ret = btrfs_dec_ref(trans, root, eb, 0,
6726 wc->for_reloc);
6727 BUG_ON(ret); /* -ENOMEM */
6728 }
6729 /* make block locked assertion in clean_tree_block happy */
6730 if (!path->locks[level] &&
6731 btrfs_header_generation(eb) == trans->transid) {
6732 btrfs_tree_lock(eb);
6733 btrfs_set_lock_blocking(eb);
6734 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6735 }
6736 clean_tree_block(trans, root, eb);
6737 }
6738
6739 if (eb == root->node) {
6740 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6741 parent = eb->start;
6742 else
6743 BUG_ON(root->root_key.objectid !=
6744 btrfs_header_owner(eb));
6745 } else {
6746 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6747 parent = path->nodes[level + 1]->start;
6748 else
6749 BUG_ON(root->root_key.objectid !=
6750 btrfs_header_owner(path->nodes[level + 1]));
6751 }
6752
6753 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6754 out:
6755 wc->refs[level] = 0;
6756 wc->flags[level] = 0;
6757 return 0;
6758 }
6759
6760 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6761 struct btrfs_root *root,
6762 struct btrfs_path *path,
6763 struct walk_control *wc)
6764 {
6765 int level = wc->level;
6766 int lookup_info = 1;
6767 int ret;
6768
6769 while (level >= 0) {
6770 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6771 if (ret > 0)
6772 break;
6773
6774 if (level == 0)
6775 break;
6776
6777 if (path->slots[level] >=
6778 btrfs_header_nritems(path->nodes[level]))
6779 break;
6780
6781 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6782 if (ret > 0) {
6783 path->slots[level]++;
6784 continue;
6785 } else if (ret < 0)
6786 return ret;
6787 level = wc->level;
6788 }
6789 return 0;
6790 }
6791
6792 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6793 struct btrfs_root *root,
6794 struct btrfs_path *path,
6795 struct walk_control *wc, int max_level)
6796 {
6797 int level = wc->level;
6798 int ret;
6799
6800 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6801 while (level < max_level && path->nodes[level]) {
6802 wc->level = level;
6803 if (path->slots[level] + 1 <
6804 btrfs_header_nritems(path->nodes[level])) {
6805 path->slots[level]++;
6806 return 0;
6807 } else {
6808 ret = walk_up_proc(trans, root, path, wc);
6809 if (ret > 0)
6810 return 0;
6811
6812 if (path->locks[level]) {
6813 btrfs_tree_unlock_rw(path->nodes[level],
6814 path->locks[level]);
6815 path->locks[level] = 0;
6816 }
6817 free_extent_buffer(path->nodes[level]);
6818 path->nodes[level] = NULL;
6819 level++;
6820 }
6821 }
6822 return 1;
6823 }
6824
6825 /*
6826 * drop a subvolume tree.
6827 *
6828 * this function traverses the tree freeing any blocks that only
6829 * referenced by the tree.
6830 *
6831 * when a shared tree block is found. this function decreases its
6832 * reference count by one. if update_ref is true, this function
6833 * also make sure backrefs for the shared block and all lower level
6834 * blocks are properly updated.
6835 */
6836 int btrfs_drop_snapshot(struct btrfs_root *root,
6837 struct btrfs_block_rsv *block_rsv, int update_ref,
6838 int for_reloc)
6839 {
6840 struct btrfs_path *path;
6841 struct btrfs_trans_handle *trans;
6842 struct btrfs_root *tree_root = root->fs_info->tree_root;
6843 struct btrfs_root_item *root_item = &root->root_item;
6844 struct walk_control *wc;
6845 struct btrfs_key key;
6846 int err = 0;
6847 int ret;
6848 int level;
6849
6850 path = btrfs_alloc_path();
6851 if (!path) {
6852 err = -ENOMEM;
6853 goto out;
6854 }
6855
6856 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6857 if (!wc) {
6858 btrfs_free_path(path);
6859 err = -ENOMEM;
6860 goto out;
6861 }
6862
6863 trans = btrfs_start_transaction(tree_root, 0);
6864 if (IS_ERR(trans)) {
6865 err = PTR_ERR(trans);
6866 goto out_free;
6867 }
6868
6869 if (block_rsv)
6870 trans->block_rsv = block_rsv;
6871
6872 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6873 level = btrfs_header_level(root->node);
6874 path->nodes[level] = btrfs_lock_root_node(root);
6875 btrfs_set_lock_blocking(path->nodes[level]);
6876 path->slots[level] = 0;
6877 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6878 memset(&wc->update_progress, 0,
6879 sizeof(wc->update_progress));
6880 } else {
6881 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6882 memcpy(&wc->update_progress, &key,
6883 sizeof(wc->update_progress));
6884
6885 level = root_item->drop_level;
6886 BUG_ON(level == 0);
6887 path->lowest_level = level;
6888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6889 path->lowest_level = 0;
6890 if (ret < 0) {
6891 err = ret;
6892 goto out_end_trans;
6893 }
6894 WARN_ON(ret > 0);
6895
6896 /*
6897 * unlock our path, this is safe because only this
6898 * function is allowed to delete this snapshot
6899 */
6900 btrfs_unlock_up_safe(path, 0);
6901
6902 level = btrfs_header_level(root->node);
6903 while (1) {
6904 btrfs_tree_lock(path->nodes[level]);
6905 btrfs_set_lock_blocking(path->nodes[level]);
6906
6907 ret = btrfs_lookup_extent_info(trans, root,
6908 path->nodes[level]->start,
6909 path->nodes[level]->len,
6910 &wc->refs[level],
6911 &wc->flags[level]);
6912 if (ret < 0) {
6913 err = ret;
6914 goto out_end_trans;
6915 }
6916 BUG_ON(wc->refs[level] == 0);
6917
6918 if (level == root_item->drop_level)
6919 break;
6920
6921 btrfs_tree_unlock(path->nodes[level]);
6922 WARN_ON(wc->refs[level] != 1);
6923 level--;
6924 }
6925 }
6926
6927 wc->level = level;
6928 wc->shared_level = -1;
6929 wc->stage = DROP_REFERENCE;
6930 wc->update_ref = update_ref;
6931 wc->keep_locks = 0;
6932 wc->for_reloc = for_reloc;
6933 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6934
6935 while (1) {
6936 ret = walk_down_tree(trans, root, path, wc);
6937 if (ret < 0) {
6938 err = ret;
6939 break;
6940 }
6941
6942 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6943 if (ret < 0) {
6944 err = ret;
6945 break;
6946 }
6947
6948 if (ret > 0) {
6949 BUG_ON(wc->stage != DROP_REFERENCE);
6950 break;
6951 }
6952
6953 if (wc->stage == DROP_REFERENCE) {
6954 level = wc->level;
6955 btrfs_node_key(path->nodes[level],
6956 &root_item->drop_progress,
6957 path->slots[level]);
6958 root_item->drop_level = level;
6959 }
6960
6961 BUG_ON(wc->level == 0);
6962 if (btrfs_should_end_transaction(trans, tree_root)) {
6963 ret = btrfs_update_root(trans, tree_root,
6964 &root->root_key,
6965 root_item);
6966 if (ret) {
6967 btrfs_abort_transaction(trans, tree_root, ret);
6968 err = ret;
6969 goto out_end_trans;
6970 }
6971
6972 btrfs_end_transaction_throttle(trans, tree_root);
6973 trans = btrfs_start_transaction(tree_root, 0);
6974 if (IS_ERR(trans)) {
6975 err = PTR_ERR(trans);
6976 goto out_free;
6977 }
6978 if (block_rsv)
6979 trans->block_rsv = block_rsv;
6980 }
6981 }
6982 btrfs_release_path(path);
6983 if (err)
6984 goto out_end_trans;
6985
6986 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6987 if (ret) {
6988 btrfs_abort_transaction(trans, tree_root, ret);
6989 goto out_end_trans;
6990 }
6991
6992 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6993 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6994 NULL, NULL);
6995 if (ret < 0) {
6996 btrfs_abort_transaction(trans, tree_root, ret);
6997 err = ret;
6998 goto out_end_trans;
6999 } else if (ret > 0) {
7000 /* if we fail to delete the orphan item this time
7001 * around, it'll get picked up the next time.
7002 *
7003 * The most common failure here is just -ENOENT.
7004 */
7005 btrfs_del_orphan_item(trans, tree_root,
7006 root->root_key.objectid);
7007 }
7008 }
7009
7010 if (root->in_radix) {
7011 btrfs_free_fs_root(tree_root->fs_info, root);
7012 } else {
7013 free_extent_buffer(root->node);
7014 free_extent_buffer(root->commit_root);
7015 kfree(root);
7016 }
7017 out_end_trans:
7018 btrfs_end_transaction_throttle(trans, tree_root);
7019 out_free:
7020 kfree(wc);
7021 btrfs_free_path(path);
7022 out:
7023 if (err)
7024 btrfs_std_error(root->fs_info, err);
7025 return err;
7026 }
7027
7028 /*
7029 * drop subtree rooted at tree block 'node'.
7030 *
7031 * NOTE: this function will unlock and release tree block 'node'
7032 * only used by relocation code
7033 */
7034 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7035 struct btrfs_root *root,
7036 struct extent_buffer *node,
7037 struct extent_buffer *parent)
7038 {
7039 struct btrfs_path *path;
7040 struct walk_control *wc;
7041 int level;
7042 int parent_level;
7043 int ret = 0;
7044 int wret;
7045
7046 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7047
7048 path = btrfs_alloc_path();
7049 if (!path)
7050 return -ENOMEM;
7051
7052 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7053 if (!wc) {
7054 btrfs_free_path(path);
7055 return -ENOMEM;
7056 }
7057
7058 btrfs_assert_tree_locked(parent);
7059 parent_level = btrfs_header_level(parent);
7060 extent_buffer_get(parent);
7061 path->nodes[parent_level] = parent;
7062 path->slots[parent_level] = btrfs_header_nritems(parent);
7063
7064 btrfs_assert_tree_locked(node);
7065 level = btrfs_header_level(node);
7066 path->nodes[level] = node;
7067 path->slots[level] = 0;
7068 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7069
7070 wc->refs[parent_level] = 1;
7071 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7072 wc->level = level;
7073 wc->shared_level = -1;
7074 wc->stage = DROP_REFERENCE;
7075 wc->update_ref = 0;
7076 wc->keep_locks = 1;
7077 wc->for_reloc = 1;
7078 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7079
7080 while (1) {
7081 wret = walk_down_tree(trans, root, path, wc);
7082 if (wret < 0) {
7083 ret = wret;
7084 break;
7085 }
7086
7087 wret = walk_up_tree(trans, root, path, wc, parent_level);
7088 if (wret < 0)
7089 ret = wret;
7090 if (wret != 0)
7091 break;
7092 }
7093
7094 kfree(wc);
7095 btrfs_free_path(path);
7096 return ret;
7097 }
7098
7099 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7100 {
7101 u64 num_devices;
7102 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7103 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7104
7105 if (root->fs_info->balance_ctl) {
7106 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
7107 u64 tgt = 0;
7108
7109 /* pick restriper's target profile and return */
7110 if (flags & BTRFS_BLOCK_GROUP_DATA &&
7111 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
7112 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
7113 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
7114 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
7115 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
7116 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
7117 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
7118 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
7119 }
7120
7121 if (tgt) {
7122 /* extended -> chunk profile */
7123 tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7124 return tgt;
7125 }
7126 }
7127
7128 /*
7129 * we add in the count of missing devices because we want
7130 * to make sure that any RAID levels on a degraded FS
7131 * continue to be honored.
7132 */
7133 num_devices = root->fs_info->fs_devices->rw_devices +
7134 root->fs_info->fs_devices->missing_devices;
7135
7136 if (num_devices == 1) {
7137 stripped |= BTRFS_BLOCK_GROUP_DUP;
7138 stripped = flags & ~stripped;
7139
7140 /* turn raid0 into single device chunks */
7141 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7142 return stripped;
7143
7144 /* turn mirroring into duplication */
7145 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7146 BTRFS_BLOCK_GROUP_RAID10))
7147 return stripped | BTRFS_BLOCK_GROUP_DUP;
7148 return flags;
7149 } else {
7150 /* they already had raid on here, just return */
7151 if (flags & stripped)
7152 return flags;
7153
7154 stripped |= BTRFS_BLOCK_GROUP_DUP;
7155 stripped = flags & ~stripped;
7156
7157 /* switch duplicated blocks with raid1 */
7158 if (flags & BTRFS_BLOCK_GROUP_DUP)
7159 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7160
7161 /* turn single device chunks into raid0 */
7162 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7163 }
7164 return flags;
7165 }
7166
7167 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7168 {
7169 struct btrfs_space_info *sinfo = cache->space_info;
7170 u64 num_bytes;
7171 u64 min_allocable_bytes;
7172 int ret = -ENOSPC;
7173
7174
7175 /*
7176 * We need some metadata space and system metadata space for
7177 * allocating chunks in some corner cases until we force to set
7178 * it to be readonly.
7179 */
7180 if ((sinfo->flags &
7181 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7182 !force)
7183 min_allocable_bytes = 1 * 1024 * 1024;
7184 else
7185 min_allocable_bytes = 0;
7186
7187 spin_lock(&sinfo->lock);
7188 spin_lock(&cache->lock);
7189
7190 if (cache->ro) {
7191 ret = 0;
7192 goto out;
7193 }
7194
7195 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7196 cache->bytes_super - btrfs_block_group_used(&cache->item);
7197
7198 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7199 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7200 min_allocable_bytes <= sinfo->total_bytes) {
7201 sinfo->bytes_readonly += num_bytes;
7202 cache->ro = 1;
7203 ret = 0;
7204 }
7205 out:
7206 spin_unlock(&cache->lock);
7207 spin_unlock(&sinfo->lock);
7208 return ret;
7209 }
7210
7211 int btrfs_set_block_group_ro(struct btrfs_root *root,
7212 struct btrfs_block_group_cache *cache)
7213
7214 {
7215 struct btrfs_trans_handle *trans;
7216 u64 alloc_flags;
7217 int ret;
7218
7219 BUG_ON(cache->ro);
7220
7221 trans = btrfs_join_transaction(root);
7222 if (IS_ERR(trans))
7223 return PTR_ERR(trans);
7224
7225 alloc_flags = update_block_group_flags(root, cache->flags);
7226 if (alloc_flags != cache->flags) {
7227 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7228 CHUNK_ALLOC_FORCE);
7229 if (ret < 0)
7230 goto out;
7231 }
7232
7233 ret = set_block_group_ro(cache, 0);
7234 if (!ret)
7235 goto out;
7236 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7237 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7238 CHUNK_ALLOC_FORCE);
7239 if (ret < 0)
7240 goto out;
7241 ret = set_block_group_ro(cache, 0);
7242 out:
7243 btrfs_end_transaction(trans, root);
7244 return ret;
7245 }
7246
7247 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7248 struct btrfs_root *root, u64 type)
7249 {
7250 u64 alloc_flags = get_alloc_profile(root, type);
7251 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7252 CHUNK_ALLOC_FORCE);
7253 }
7254
7255 /*
7256 * helper to account the unused space of all the readonly block group in the
7257 * list. takes mirrors into account.
7258 */
7259 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7260 {
7261 struct btrfs_block_group_cache *block_group;
7262 u64 free_bytes = 0;
7263 int factor;
7264
7265 list_for_each_entry(block_group, groups_list, list) {
7266 spin_lock(&block_group->lock);
7267
7268 if (!block_group->ro) {
7269 spin_unlock(&block_group->lock);
7270 continue;
7271 }
7272
7273 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7274 BTRFS_BLOCK_GROUP_RAID10 |
7275 BTRFS_BLOCK_GROUP_DUP))
7276 factor = 2;
7277 else
7278 factor = 1;
7279
7280 free_bytes += (block_group->key.offset -
7281 btrfs_block_group_used(&block_group->item)) *
7282 factor;
7283
7284 spin_unlock(&block_group->lock);
7285 }
7286
7287 return free_bytes;
7288 }
7289
7290 /*
7291 * helper to account the unused space of all the readonly block group in the
7292 * space_info. takes mirrors into account.
7293 */
7294 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7295 {
7296 int i;
7297 u64 free_bytes = 0;
7298
7299 spin_lock(&sinfo->lock);
7300
7301 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7302 if (!list_empty(&sinfo->block_groups[i]))
7303 free_bytes += __btrfs_get_ro_block_group_free_space(
7304 &sinfo->block_groups[i]);
7305
7306 spin_unlock(&sinfo->lock);
7307
7308 return free_bytes;
7309 }
7310
7311 void btrfs_set_block_group_rw(struct btrfs_root *root,
7312 struct btrfs_block_group_cache *cache)
7313 {
7314 struct btrfs_space_info *sinfo = cache->space_info;
7315 u64 num_bytes;
7316
7317 BUG_ON(!cache->ro);
7318
7319 spin_lock(&sinfo->lock);
7320 spin_lock(&cache->lock);
7321 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7322 cache->bytes_super - btrfs_block_group_used(&cache->item);
7323 sinfo->bytes_readonly -= num_bytes;
7324 cache->ro = 0;
7325 spin_unlock(&cache->lock);
7326 spin_unlock(&sinfo->lock);
7327 }
7328
7329 /*
7330 * checks to see if its even possible to relocate this block group.
7331 *
7332 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7333 * ok to go ahead and try.
7334 */
7335 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7336 {
7337 struct btrfs_block_group_cache *block_group;
7338 struct btrfs_space_info *space_info;
7339 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7340 struct btrfs_device *device;
7341 u64 min_free;
7342 u64 dev_min = 1;
7343 u64 dev_nr = 0;
7344 int index;
7345 int full = 0;
7346 int ret = 0;
7347
7348 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7349
7350 /* odd, couldn't find the block group, leave it alone */
7351 if (!block_group)
7352 return -1;
7353
7354 min_free = btrfs_block_group_used(&block_group->item);
7355
7356 /* no bytes used, we're good */
7357 if (!min_free)
7358 goto out;
7359
7360 space_info = block_group->space_info;
7361 spin_lock(&space_info->lock);
7362
7363 full = space_info->full;
7364
7365 /*
7366 * if this is the last block group we have in this space, we can't
7367 * relocate it unless we're able to allocate a new chunk below.
7368 *
7369 * Otherwise, we need to make sure we have room in the space to handle
7370 * all of the extents from this block group. If we can, we're good
7371 */
7372 if ((space_info->total_bytes != block_group->key.offset) &&
7373 (space_info->bytes_used + space_info->bytes_reserved +
7374 space_info->bytes_pinned + space_info->bytes_readonly +
7375 min_free < space_info->total_bytes)) {
7376 spin_unlock(&space_info->lock);
7377 goto out;
7378 }
7379 spin_unlock(&space_info->lock);
7380
7381 /*
7382 * ok we don't have enough space, but maybe we have free space on our
7383 * devices to allocate new chunks for relocation, so loop through our
7384 * alloc devices and guess if we have enough space. However, if we
7385 * were marked as full, then we know there aren't enough chunks, and we
7386 * can just return.
7387 */
7388 ret = -1;
7389 if (full)
7390 goto out;
7391
7392 /*
7393 * index:
7394 * 0: raid10
7395 * 1: raid1
7396 * 2: dup
7397 * 3: raid0
7398 * 4: single
7399 */
7400 index = get_block_group_index(block_group);
7401 if (index == 0) {
7402 dev_min = 4;
7403 /* Divide by 2 */
7404 min_free >>= 1;
7405 } else if (index == 1) {
7406 dev_min = 2;
7407 } else if (index == 2) {
7408 /* Multiply by 2 */
7409 min_free <<= 1;
7410 } else if (index == 3) {
7411 dev_min = fs_devices->rw_devices;
7412 do_div(min_free, dev_min);
7413 }
7414
7415 mutex_lock(&root->fs_info->chunk_mutex);
7416 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7417 u64 dev_offset;
7418
7419 /*
7420 * check to make sure we can actually find a chunk with enough
7421 * space to fit our block group in.
7422 */
7423 if (device->total_bytes > device->bytes_used + min_free) {
7424 ret = find_free_dev_extent(device, min_free,
7425 &dev_offset, NULL);
7426 if (!ret)
7427 dev_nr++;
7428
7429 if (dev_nr >= dev_min)
7430 break;
7431
7432 ret = -1;
7433 }
7434 }
7435 mutex_unlock(&root->fs_info->chunk_mutex);
7436 out:
7437 btrfs_put_block_group(block_group);
7438 return ret;
7439 }
7440
7441 static int find_first_block_group(struct btrfs_root *root,
7442 struct btrfs_path *path, struct btrfs_key *key)
7443 {
7444 int ret = 0;
7445 struct btrfs_key found_key;
7446 struct extent_buffer *leaf;
7447 int slot;
7448
7449 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7450 if (ret < 0)
7451 goto out;
7452
7453 while (1) {
7454 slot = path->slots[0];
7455 leaf = path->nodes[0];
7456 if (slot >= btrfs_header_nritems(leaf)) {
7457 ret = btrfs_next_leaf(root, path);
7458 if (ret == 0)
7459 continue;
7460 if (ret < 0)
7461 goto out;
7462 break;
7463 }
7464 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7465
7466 if (found_key.objectid >= key->objectid &&
7467 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7468 ret = 0;
7469 goto out;
7470 }
7471 path->slots[0]++;
7472 }
7473 out:
7474 return ret;
7475 }
7476
7477 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7478 {
7479 struct btrfs_block_group_cache *block_group;
7480 u64 last = 0;
7481
7482 while (1) {
7483 struct inode *inode;
7484
7485 block_group = btrfs_lookup_first_block_group(info, last);
7486 while (block_group) {
7487 spin_lock(&block_group->lock);
7488 if (block_group->iref)
7489 break;
7490 spin_unlock(&block_group->lock);
7491 block_group = next_block_group(info->tree_root,
7492 block_group);
7493 }
7494 if (!block_group) {
7495 if (last == 0)
7496 break;
7497 last = 0;
7498 continue;
7499 }
7500
7501 inode = block_group->inode;
7502 block_group->iref = 0;
7503 block_group->inode = NULL;
7504 spin_unlock(&block_group->lock);
7505 iput(inode);
7506 last = block_group->key.objectid + block_group->key.offset;
7507 btrfs_put_block_group(block_group);
7508 }
7509 }
7510
7511 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7512 {
7513 struct btrfs_block_group_cache *block_group;
7514 struct btrfs_space_info *space_info;
7515 struct btrfs_caching_control *caching_ctl;
7516 struct rb_node *n;
7517
7518 down_write(&info->extent_commit_sem);
7519 while (!list_empty(&info->caching_block_groups)) {
7520 caching_ctl = list_entry(info->caching_block_groups.next,
7521 struct btrfs_caching_control, list);
7522 list_del(&caching_ctl->list);
7523 put_caching_control(caching_ctl);
7524 }
7525 up_write(&info->extent_commit_sem);
7526
7527 spin_lock(&info->block_group_cache_lock);
7528 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7529 block_group = rb_entry(n, struct btrfs_block_group_cache,
7530 cache_node);
7531 rb_erase(&block_group->cache_node,
7532 &info->block_group_cache_tree);
7533 spin_unlock(&info->block_group_cache_lock);
7534
7535 down_write(&block_group->space_info->groups_sem);
7536 list_del(&block_group->list);
7537 up_write(&block_group->space_info->groups_sem);
7538
7539 if (block_group->cached == BTRFS_CACHE_STARTED)
7540 wait_block_group_cache_done(block_group);
7541
7542 /*
7543 * We haven't cached this block group, which means we could
7544 * possibly have excluded extents on this block group.
7545 */
7546 if (block_group->cached == BTRFS_CACHE_NO)
7547 free_excluded_extents(info->extent_root, block_group);
7548
7549 btrfs_remove_free_space_cache(block_group);
7550 btrfs_put_block_group(block_group);
7551
7552 spin_lock(&info->block_group_cache_lock);
7553 }
7554 spin_unlock(&info->block_group_cache_lock);
7555
7556 /* now that all the block groups are freed, go through and
7557 * free all the space_info structs. This is only called during
7558 * the final stages of unmount, and so we know nobody is
7559 * using them. We call synchronize_rcu() once before we start,
7560 * just to be on the safe side.
7561 */
7562 synchronize_rcu();
7563
7564 release_global_block_rsv(info);
7565
7566 while(!list_empty(&info->space_info)) {
7567 space_info = list_entry(info->space_info.next,
7568 struct btrfs_space_info,
7569 list);
7570 if (space_info->bytes_pinned > 0 ||
7571 space_info->bytes_reserved > 0 ||
7572 space_info->bytes_may_use > 0) {
7573 WARN_ON(1);
7574 dump_space_info(space_info, 0, 0);
7575 }
7576 list_del(&space_info->list);
7577 kfree(space_info);
7578 }
7579 return 0;
7580 }
7581
7582 static void __link_block_group(struct btrfs_space_info *space_info,
7583 struct btrfs_block_group_cache *cache)
7584 {
7585 int index = get_block_group_index(cache);
7586
7587 down_write(&space_info->groups_sem);
7588 list_add_tail(&cache->list, &space_info->block_groups[index]);
7589 up_write(&space_info->groups_sem);
7590 }
7591
7592 int btrfs_read_block_groups(struct btrfs_root *root)
7593 {
7594 struct btrfs_path *path;
7595 int ret;
7596 struct btrfs_block_group_cache *cache;
7597 struct btrfs_fs_info *info = root->fs_info;
7598 struct btrfs_space_info *space_info;
7599 struct btrfs_key key;
7600 struct btrfs_key found_key;
7601 struct extent_buffer *leaf;
7602 int need_clear = 0;
7603 u64 cache_gen;
7604
7605 root = info->extent_root;
7606 key.objectid = 0;
7607 key.offset = 0;
7608 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7609 path = btrfs_alloc_path();
7610 if (!path)
7611 return -ENOMEM;
7612 path->reada = 1;
7613
7614 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7615 if (btrfs_test_opt(root, SPACE_CACHE) &&
7616 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7617 need_clear = 1;
7618 if (btrfs_test_opt(root, CLEAR_CACHE))
7619 need_clear = 1;
7620
7621 while (1) {
7622 ret = find_first_block_group(root, path, &key);
7623 if (ret > 0)
7624 break;
7625 if (ret != 0)
7626 goto error;
7627 leaf = path->nodes[0];
7628 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7629 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7630 if (!cache) {
7631 ret = -ENOMEM;
7632 goto error;
7633 }
7634 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7635 GFP_NOFS);
7636 if (!cache->free_space_ctl) {
7637 kfree(cache);
7638 ret = -ENOMEM;
7639 goto error;
7640 }
7641
7642 atomic_set(&cache->count, 1);
7643 spin_lock_init(&cache->lock);
7644 cache->fs_info = info;
7645 INIT_LIST_HEAD(&cache->list);
7646 INIT_LIST_HEAD(&cache->cluster_list);
7647
7648 if (need_clear)
7649 cache->disk_cache_state = BTRFS_DC_CLEAR;
7650
7651 read_extent_buffer(leaf, &cache->item,
7652 btrfs_item_ptr_offset(leaf, path->slots[0]),
7653 sizeof(cache->item));
7654 memcpy(&cache->key, &found_key, sizeof(found_key));
7655
7656 key.objectid = found_key.objectid + found_key.offset;
7657 btrfs_release_path(path);
7658 cache->flags = btrfs_block_group_flags(&cache->item);
7659 cache->sectorsize = root->sectorsize;
7660
7661 btrfs_init_free_space_ctl(cache);
7662
7663 /*
7664 * We need to exclude the super stripes now so that the space
7665 * info has super bytes accounted for, otherwise we'll think
7666 * we have more space than we actually do.
7667 */
7668 exclude_super_stripes(root, cache);
7669
7670 /*
7671 * check for two cases, either we are full, and therefore
7672 * don't need to bother with the caching work since we won't
7673 * find any space, or we are empty, and we can just add all
7674 * the space in and be done with it. This saves us _alot_ of
7675 * time, particularly in the full case.
7676 */
7677 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7678 cache->last_byte_to_unpin = (u64)-1;
7679 cache->cached = BTRFS_CACHE_FINISHED;
7680 free_excluded_extents(root, cache);
7681 } else if (btrfs_block_group_used(&cache->item) == 0) {
7682 cache->last_byte_to_unpin = (u64)-1;
7683 cache->cached = BTRFS_CACHE_FINISHED;
7684 add_new_free_space(cache, root->fs_info,
7685 found_key.objectid,
7686 found_key.objectid +
7687 found_key.offset);
7688 free_excluded_extents(root, cache);
7689 }
7690
7691 ret = update_space_info(info, cache->flags, found_key.offset,
7692 btrfs_block_group_used(&cache->item),
7693 &space_info);
7694 BUG_ON(ret); /* -ENOMEM */
7695 cache->space_info = space_info;
7696 spin_lock(&cache->space_info->lock);
7697 cache->space_info->bytes_readonly += cache->bytes_super;
7698 spin_unlock(&cache->space_info->lock);
7699
7700 __link_block_group(space_info, cache);
7701
7702 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7703 BUG_ON(ret); /* Logic error */
7704
7705 set_avail_alloc_bits(root->fs_info, cache->flags);
7706 if (btrfs_chunk_readonly(root, cache->key.objectid))
7707 set_block_group_ro(cache, 1);
7708 }
7709
7710 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7711 if (!(get_alloc_profile(root, space_info->flags) &
7712 (BTRFS_BLOCK_GROUP_RAID10 |
7713 BTRFS_BLOCK_GROUP_RAID1 |
7714 BTRFS_BLOCK_GROUP_DUP)))
7715 continue;
7716 /*
7717 * avoid allocating from un-mirrored block group if there are
7718 * mirrored block groups.
7719 */
7720 list_for_each_entry(cache, &space_info->block_groups[3], list)
7721 set_block_group_ro(cache, 1);
7722 list_for_each_entry(cache, &space_info->block_groups[4], list)
7723 set_block_group_ro(cache, 1);
7724 }
7725
7726 init_global_block_rsv(info);
7727 ret = 0;
7728 error:
7729 btrfs_free_path(path);
7730 return ret;
7731 }
7732
7733 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7734 struct btrfs_root *root, u64 bytes_used,
7735 u64 type, u64 chunk_objectid, u64 chunk_offset,
7736 u64 size)
7737 {
7738 int ret;
7739 struct btrfs_root *extent_root;
7740 struct btrfs_block_group_cache *cache;
7741
7742 extent_root = root->fs_info->extent_root;
7743
7744 root->fs_info->last_trans_log_full_commit = trans->transid;
7745
7746 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7747 if (!cache)
7748 return -ENOMEM;
7749 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7750 GFP_NOFS);
7751 if (!cache->free_space_ctl) {
7752 kfree(cache);
7753 return -ENOMEM;
7754 }
7755
7756 cache->key.objectid = chunk_offset;
7757 cache->key.offset = size;
7758 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7759 cache->sectorsize = root->sectorsize;
7760 cache->fs_info = root->fs_info;
7761
7762 atomic_set(&cache->count, 1);
7763 spin_lock_init(&cache->lock);
7764 INIT_LIST_HEAD(&cache->list);
7765 INIT_LIST_HEAD(&cache->cluster_list);
7766
7767 btrfs_init_free_space_ctl(cache);
7768
7769 btrfs_set_block_group_used(&cache->item, bytes_used);
7770 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7771 cache->flags = type;
7772 btrfs_set_block_group_flags(&cache->item, type);
7773
7774 cache->last_byte_to_unpin = (u64)-1;
7775 cache->cached = BTRFS_CACHE_FINISHED;
7776 exclude_super_stripes(root, cache);
7777
7778 add_new_free_space(cache, root->fs_info, chunk_offset,
7779 chunk_offset + size);
7780
7781 free_excluded_extents(root, cache);
7782
7783 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7784 &cache->space_info);
7785 BUG_ON(ret); /* -ENOMEM */
7786 update_global_block_rsv(root->fs_info);
7787
7788 spin_lock(&cache->space_info->lock);
7789 cache->space_info->bytes_readonly += cache->bytes_super;
7790 spin_unlock(&cache->space_info->lock);
7791
7792 __link_block_group(cache->space_info, cache);
7793
7794 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7795 BUG_ON(ret); /* Logic error */
7796
7797 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7798 sizeof(cache->item));
7799 if (ret) {
7800 btrfs_abort_transaction(trans, extent_root, ret);
7801 return ret;
7802 }
7803
7804 set_avail_alloc_bits(extent_root->fs_info, type);
7805
7806 return 0;
7807 }
7808
7809 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7810 {
7811 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7812
7813 /* chunk -> extended profile */
7814 if (extra_flags == 0)
7815 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7816
7817 if (flags & BTRFS_BLOCK_GROUP_DATA)
7818 fs_info->avail_data_alloc_bits &= ~extra_flags;
7819 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7820 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7821 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7822 fs_info->avail_system_alloc_bits &= ~extra_flags;
7823 }
7824
7825 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7826 struct btrfs_root *root, u64 group_start)
7827 {
7828 struct btrfs_path *path;
7829 struct btrfs_block_group_cache *block_group;
7830 struct btrfs_free_cluster *cluster;
7831 struct btrfs_root *tree_root = root->fs_info->tree_root;
7832 struct btrfs_key key;
7833 struct inode *inode;
7834 int ret;
7835 int index;
7836 int factor;
7837
7838 root = root->fs_info->extent_root;
7839
7840 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7841 BUG_ON(!block_group);
7842 BUG_ON(!block_group->ro);
7843
7844 /*
7845 * Free the reserved super bytes from this block group before
7846 * remove it.
7847 */
7848 free_excluded_extents(root, block_group);
7849
7850 memcpy(&key, &block_group->key, sizeof(key));
7851 index = get_block_group_index(block_group);
7852 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7853 BTRFS_BLOCK_GROUP_RAID1 |
7854 BTRFS_BLOCK_GROUP_RAID10))
7855 factor = 2;
7856 else
7857 factor = 1;
7858
7859 /* make sure this block group isn't part of an allocation cluster */
7860 cluster = &root->fs_info->data_alloc_cluster;
7861 spin_lock(&cluster->refill_lock);
7862 btrfs_return_cluster_to_free_space(block_group, cluster);
7863 spin_unlock(&cluster->refill_lock);
7864
7865 /*
7866 * make sure this block group isn't part of a metadata
7867 * allocation cluster
7868 */
7869 cluster = &root->fs_info->meta_alloc_cluster;
7870 spin_lock(&cluster->refill_lock);
7871 btrfs_return_cluster_to_free_space(block_group, cluster);
7872 spin_unlock(&cluster->refill_lock);
7873
7874 path = btrfs_alloc_path();
7875 if (!path) {
7876 ret = -ENOMEM;
7877 goto out;
7878 }
7879
7880 inode = lookup_free_space_inode(tree_root, block_group, path);
7881 if (!IS_ERR(inode)) {
7882 ret = btrfs_orphan_add(trans, inode);
7883 if (ret) {
7884 btrfs_add_delayed_iput(inode);
7885 goto out;
7886 }
7887 clear_nlink(inode);
7888 /* One for the block groups ref */
7889 spin_lock(&block_group->lock);
7890 if (block_group->iref) {
7891 block_group->iref = 0;
7892 block_group->inode = NULL;
7893 spin_unlock(&block_group->lock);
7894 iput(inode);
7895 } else {
7896 spin_unlock(&block_group->lock);
7897 }
7898 /* One for our lookup ref */
7899 btrfs_add_delayed_iput(inode);
7900 }
7901
7902 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7903 key.offset = block_group->key.objectid;
7904 key.type = 0;
7905
7906 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7907 if (ret < 0)
7908 goto out;
7909 if (ret > 0)
7910 btrfs_release_path(path);
7911 if (ret == 0) {
7912 ret = btrfs_del_item(trans, tree_root, path);
7913 if (ret)
7914 goto out;
7915 btrfs_release_path(path);
7916 }
7917
7918 spin_lock(&root->fs_info->block_group_cache_lock);
7919 rb_erase(&block_group->cache_node,
7920 &root->fs_info->block_group_cache_tree);
7921 spin_unlock(&root->fs_info->block_group_cache_lock);
7922
7923 down_write(&block_group->space_info->groups_sem);
7924 /*
7925 * we must use list_del_init so people can check to see if they
7926 * are still on the list after taking the semaphore
7927 */
7928 list_del_init(&block_group->list);
7929 if (list_empty(&block_group->space_info->block_groups[index]))
7930 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7931 up_write(&block_group->space_info->groups_sem);
7932
7933 if (block_group->cached == BTRFS_CACHE_STARTED)
7934 wait_block_group_cache_done(block_group);
7935
7936 btrfs_remove_free_space_cache(block_group);
7937
7938 spin_lock(&block_group->space_info->lock);
7939 block_group->space_info->total_bytes -= block_group->key.offset;
7940 block_group->space_info->bytes_readonly -= block_group->key.offset;
7941 block_group->space_info->disk_total -= block_group->key.offset * factor;
7942 spin_unlock(&block_group->space_info->lock);
7943
7944 memcpy(&key, &block_group->key, sizeof(key));
7945
7946 btrfs_clear_space_info_full(root->fs_info);
7947
7948 btrfs_put_block_group(block_group);
7949 btrfs_put_block_group(block_group);
7950
7951 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7952 if (ret > 0)
7953 ret = -EIO;
7954 if (ret < 0)
7955 goto out;
7956
7957 ret = btrfs_del_item(trans, root, path);
7958 out:
7959 btrfs_free_path(path);
7960 return ret;
7961 }
7962
7963 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7964 {
7965 struct btrfs_space_info *space_info;
7966 struct btrfs_super_block *disk_super;
7967 u64 features;
7968 u64 flags;
7969 int mixed = 0;
7970 int ret;
7971
7972 disk_super = fs_info->super_copy;
7973 if (!btrfs_super_root(disk_super))
7974 return 1;
7975
7976 features = btrfs_super_incompat_flags(disk_super);
7977 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7978 mixed = 1;
7979
7980 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7981 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7982 if (ret)
7983 goto out;
7984
7985 if (mixed) {
7986 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7987 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7988 } else {
7989 flags = BTRFS_BLOCK_GROUP_METADATA;
7990 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7991 if (ret)
7992 goto out;
7993
7994 flags = BTRFS_BLOCK_GROUP_DATA;
7995 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7996 }
7997 out:
7998 return ret;
7999 }
8000
8001 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8002 {
8003 return unpin_extent_range(root, start, end);
8004 }
8005
8006 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8007 u64 num_bytes, u64 *actual_bytes)
8008 {
8009 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8010 }
8011
8012 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8013 {
8014 struct btrfs_fs_info *fs_info = root->fs_info;
8015 struct btrfs_block_group_cache *cache = NULL;
8016 u64 group_trimmed;
8017 u64 start;
8018 u64 end;
8019 u64 trimmed = 0;
8020 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8021 int ret = 0;
8022
8023 /*
8024 * try to trim all FS space, our block group may start from non-zero.
8025 */
8026 if (range->len == total_bytes)
8027 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8028 else
8029 cache = btrfs_lookup_block_group(fs_info, range->start);
8030
8031 while (cache) {
8032 if (cache->key.objectid >= (range->start + range->len)) {
8033 btrfs_put_block_group(cache);
8034 break;
8035 }
8036
8037 start = max(range->start, cache->key.objectid);
8038 end = min(range->start + range->len,
8039 cache->key.objectid + cache->key.offset);
8040
8041 if (end - start >= range->minlen) {
8042 if (!block_group_cache_done(cache)) {
8043 ret = cache_block_group(cache, NULL, root, 0);
8044 if (!ret)
8045 wait_block_group_cache_done(cache);
8046 }
8047 ret = btrfs_trim_block_group(cache,
8048 &group_trimmed,
8049 start,
8050 end,
8051 range->minlen);
8052
8053 trimmed += group_trimmed;
8054 if (ret) {
8055 btrfs_put_block_group(cache);
8056 break;
8057 }
8058 }
8059
8060 cache = next_block_group(fs_info->tree_root, cache);
8061 }
8062
8063 range->len = trimmed;
8064 return ret;
8065 }