]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent-tree.c
Merge remote-tracking branches 'asoc/topic/wm8904', 'asoc/topic/wm8955' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret = -ENOMEM;
391
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 goto out;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 /*
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
408 */
409 path->skip_locking = 1;
410 path->search_commit_root = 1;
411 path->reada = 1;
412
413 key.objectid = last;
414 key.offset = 0;
415 key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 mutex_lock(&caching_ctl->mutex);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info->commit_root_sem);
420
421 next:
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info->commit_root_sem)) {
444 caching_ctl->progress = last;
445 btrfs_release_path(path);
446 up_read(&fs_info->commit_root_sem);
447 mutex_unlock(&caching_ctl->mutex);
448 cond_resched();
449 goto again;
450 }
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
460 }
461
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
474 continue;
475 }
476
477 if (key.objectid >= block_group->key.objectid +
478 block_group->key.offset)
479 break;
480
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
488 fs_info->tree_root->nodesize;
489 else
490 last = key.objectid + key.offset;
491
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
496 }
497 path->slots[0]++;
498 }
499 ret = 0;
500
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
504 caching_ctl->progress = (u64)-1;
505
506 spin_lock(&block_group->lock);
507 block_group->caching_ctl = NULL;
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
510
511 err:
512 btrfs_free_path(path);
513 up_read(&fs_info->commit_root_sem);
514
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
518 out:
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
528 btrfs_put_block_group(block_group);
529 }
530
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 int load_cache_only)
533 {
534 DEFINE_WAIT(wait);
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 int ret = 0;
538
539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 if (!caching_ctl)
541 return -ENOMEM;
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 mutex_lock(&caching_ctl->mutex);
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 caching_ctl->progress = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 cache->has_caching_ctl = 1;
607 }
608 }
609 spin_unlock(&cache->lock);
610 mutex_unlock(&caching_ctl->mutex);
611
612 wake_up(&caching_ctl->wait);
613 if (ret == 1) {
614 put_caching_control(caching_ctl);
615 free_excluded_extents(fs_info->extent_root, cache);
616 return 0;
617 }
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
629 cache->has_caching_ctl = 1;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1320 struct btrfs_extent_inline_ref *iref)
1321 {
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358 }
1359
1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1365 {
1366 struct btrfs_key key;
1367 int ret;
1368
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1376 }
1377
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
1383 btrfs_release_path(path);
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1389 #endif
1390 return ret;
1391 }
1392
1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
1398 {
1399 struct btrfs_key key;
1400 int ret;
1401
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1412 btrfs_release_path(path);
1413 return ret;
1414 }
1415
1416 static inline int extent_ref_type(u64 parent, u64 owner)
1417 {
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
1431 }
1432
1433 static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
1435
1436 {
1437 for (; level < BTRFS_MAX_LEVEL; level++) {
1438 if (!path->nodes[level])
1439 break;
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452 }
1453
1454 /*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467 static noinline_for_stack
1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475 {
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
1491
1492 key.objectid = bytenr;
1493 key.type = BTRFS_EXTENT_ITEM_KEY;
1494 key.offset = num_bytes;
1495
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
1499 path->keep_locks = 1;
1500 } else
1501 extra_size = -1;
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512 again:
1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1514 if (ret < 0) {
1515 err = ret;
1516 goto out;
1517 }
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
1535 key.objectid = bytenr;
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
1546 } else if (WARN_ON(ret)) {
1547 err = -EIO;
1548 goto out;
1549 }
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568 #endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649 out:
1650 if (insert) {
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655 }
1656
1657 /*
1658 * helper to add new inline back ref
1659 */
1660 static noinline_for_stack
1661 void setup_inline_extent_backref(struct btrfs_root *root,
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
1667 {
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
1684 btrfs_extend_item(root, path, size);
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
1719 }
1720
1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727 {
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
1734 return ret;
1735
1736 btrfs_release_path(path);
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
1745 }
1746 return ret;
1747 }
1748
1749 /*
1750 * helper to update/remove inline back ref
1751 */
1752 static noinline_for_stack
1753 void update_inline_extent_backref(struct btrfs_root *root,
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
1759 {
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
1791 }
1792
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
1802 *last_ref = 1;
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
1811 btrfs_truncate_item(root, path, item_size, 1);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static noinline_for_stack
1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824 {
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1833 update_inline_extent_backref(root, path, iref,
1834 refs_to_add, extent_op, NULL);
1835 } else if (ret == -ENOENT) {
1836 setup_inline_extent_backref(root, path, iref, parent,
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
1840 }
1841 return ret;
1842 }
1843
1844 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849 {
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861 }
1862
1863 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
1867 int refs_to_drop, int is_data, int *last_ref)
1868 {
1869 int ret = 0;
1870
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
1873 update_inline_extent_backref(root, path, iref,
1874 -refs_to_drop, NULL, last_ref);
1875 } else if (is_data) {
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
1878 } else {
1879 *last_ref = 1;
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883 }
1884
1885 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
1888 {
1889 int j, ret = 0;
1890 u64 bytes_left, end;
1891 u64 aligned_start = ALIGN(start, 1 << 9);
1892
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
1898
1899 *discarded_bytes = 0;
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1951 GFP_NOFS, 0);
1952 if (!ret)
1953 *discarded_bytes += bytes_left;
1954 }
1955 return ret;
1956 }
1957
1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
1960 {
1961 int ret;
1962 u64 discarded_bytes = 0;
1963 struct btrfs_bio *bbio = NULL;
1964
1965
1966 /* Tell the block device(s) that the sectors can be discarded */
1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1968 bytenr, &num_bytes, &bbio, 0);
1969 /* Error condition is -ENOMEM */
1970 if (!ret) {
1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
1972 int i;
1973
1974
1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1976 u64 bytes;
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
1982 stripe->length,
1983 &bytes);
1984 if (!ret)
1985 discarded_bytes += bytes;
1986 else if (ret != -EOPNOTSUPP)
1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
1995 }
1996 btrfs_put_bbio(bbio);
1997 }
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
2002
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
2005 return ret;
2006 }
2007
2008 /* Can return -ENOMEM */
2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
2014 {
2015 int ret;
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
2024 parent, root_objectid, (int)owner,
2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2026 } else {
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
2029 parent, root_objectid, owner, offset,
2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2031 }
2032 return ret;
2033 }
2034
2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
2037 struct btrfs_delayed_ref_node *node,
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041 {
2042 struct btrfs_fs_info *fs_info = root->fs_info;
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
2046 struct btrfs_key key;
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
2049 u64 refs;
2050 int ret;
2051 int no_quota = node->no_quota;
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
2068 goto out;
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
2075 leaf = path->nodes[0];
2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
2082
2083 btrfs_mark_buffer_dirty(leaf);
2084 btrfs_release_path(path);
2085
2086 path->reada = 1;
2087 path->leave_spinning = 1;
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
2094 out:
2095 btrfs_free_path(path);
2096 return ret;
2097 }
2098
2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
2104 {
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
2121 ref_root = ref->root;
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2124 if (extent_op)
2125 flags |= extent_op->flags_to_set;
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
2134 extent_op);
2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2136 ret = __btrfs_free_extent(trans, root, node, parent,
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
2139 extent_op);
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144 }
2145
2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149 {
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162 }
2163
2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168 {
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
2174 int ret;
2175 int err = 0;
2176 int metadata = !extent_op->is_data;
2177
2178 if (trans->aborted)
2179 return 0;
2180
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
2189
2190 if (metadata) {
2191 key.type = BTRFS_METADATA_ITEM_KEY;
2192 key.offset = extent_op->level;
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198 again:
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
2208 if (metadata) {
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
2221
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
2230 }
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246 #endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
2250
2251 btrfs_mark_buffer_dirty(leaf);
2252 out:
2253 btrfs_free_path(path);
2254 return err;
2255 }
2256
2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
2262 {
2263 int ret = 0;
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
2270
2271 ref = btrfs_delayed_node_to_tree_ref(node);
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
2276 ref_root = ref->root;
2277
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2289 BUG_ON(!extent_op || !extent_op->update_flags);
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
2294 ref->level, &ins,
2295 node->no_quota);
2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
2300 extent_op);
2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
2305 } else {
2306 BUG();
2307 }
2308 return ret;
2309 }
2310
2311 /* helper function to actually process a single delayed ref entry */
2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
2317 {
2318 int ret = 0;
2319
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
2324 return 0;
2325 }
2326
2327 if (btrfs_delayed_ref_is_head(node)) {
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
2339 if (insert_reserved) {
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
2346 }
2347 }
2348 return ret;
2349 }
2350
2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2353 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2354 insert_reserved);
2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2356 node->type == BTRFS_SHARED_DATA_REF_KEY)
2357 ret = run_delayed_data_ref(trans, root, node, extent_op,
2358 insert_reserved);
2359 else
2360 BUG();
2361 return ret;
2362 }
2363
2364 static inline struct btrfs_delayed_ref_node *
2365 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2366 {
2367 struct btrfs_delayed_ref_node *ref;
2368
2369 if (list_empty(&head->ref_list))
2370 return NULL;
2371
2372 /*
2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2374 * This is to prevent a ref count from going down to zero, which deletes
2375 * the extent item from the extent tree, when there still are references
2376 * to add, which would fail because they would not find the extent item.
2377 */
2378 list_for_each_entry(ref, &head->ref_list, list) {
2379 if (ref->action == BTRFS_ADD_DELAYED_REF)
2380 return ref;
2381 }
2382
2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2384 list);
2385 }
2386
2387 /*
2388 * Returns 0 on success or if called with an already aborted transaction.
2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2390 */
2391 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 unsigned long nr)
2394 {
2395 struct btrfs_delayed_ref_root *delayed_refs;
2396 struct btrfs_delayed_ref_node *ref;
2397 struct btrfs_delayed_ref_head *locked_ref = NULL;
2398 struct btrfs_delayed_extent_op *extent_op;
2399 struct btrfs_fs_info *fs_info = root->fs_info;
2400 ktime_t start = ktime_get();
2401 int ret;
2402 unsigned long count = 0;
2403 unsigned long actual_count = 0;
2404 int must_insert_reserved = 0;
2405
2406 delayed_refs = &trans->transaction->delayed_refs;
2407 while (1) {
2408 if (!locked_ref) {
2409 if (count >= nr)
2410 break;
2411
2412 spin_lock(&delayed_refs->lock);
2413 locked_ref = btrfs_select_ref_head(trans);
2414 if (!locked_ref) {
2415 spin_unlock(&delayed_refs->lock);
2416 break;
2417 }
2418
2419 /* grab the lock that says we are going to process
2420 * all the refs for this head */
2421 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2422 spin_unlock(&delayed_refs->lock);
2423 /*
2424 * we may have dropped the spin lock to get the head
2425 * mutex lock, and that might have given someone else
2426 * time to free the head. If that's true, it has been
2427 * removed from our list and we can move on.
2428 */
2429 if (ret == -EAGAIN) {
2430 locked_ref = NULL;
2431 count++;
2432 continue;
2433 }
2434 }
2435
2436 spin_lock(&locked_ref->lock);
2437
2438 /*
2439 * locked_ref is the head node, so we have to go one
2440 * node back for any delayed ref updates
2441 */
2442 ref = select_delayed_ref(locked_ref);
2443
2444 if (ref && ref->seq &&
2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2446 spin_unlock(&locked_ref->lock);
2447 btrfs_delayed_ref_unlock(locked_ref);
2448 spin_lock(&delayed_refs->lock);
2449 locked_ref->processing = 0;
2450 delayed_refs->num_heads_ready++;
2451 spin_unlock(&delayed_refs->lock);
2452 locked_ref = NULL;
2453 cond_resched();
2454 count++;
2455 continue;
2456 }
2457
2458 /*
2459 * record the must insert reserved flag before we
2460 * drop the spin lock.
2461 */
2462 must_insert_reserved = locked_ref->must_insert_reserved;
2463 locked_ref->must_insert_reserved = 0;
2464
2465 extent_op = locked_ref->extent_op;
2466 locked_ref->extent_op = NULL;
2467
2468 if (!ref) {
2469
2470
2471 /* All delayed refs have been processed, Go ahead
2472 * and send the head node to run_one_delayed_ref,
2473 * so that any accounting fixes can happen
2474 */
2475 ref = &locked_ref->node;
2476
2477 if (extent_op && must_insert_reserved) {
2478 btrfs_free_delayed_extent_op(extent_op);
2479 extent_op = NULL;
2480 }
2481
2482 if (extent_op) {
2483 spin_unlock(&locked_ref->lock);
2484 ret = run_delayed_extent_op(trans, root,
2485 ref, extent_op);
2486 btrfs_free_delayed_extent_op(extent_op);
2487
2488 if (ret) {
2489 /*
2490 * Need to reset must_insert_reserved if
2491 * there was an error so the abort stuff
2492 * can cleanup the reserved space
2493 * properly.
2494 */
2495 if (must_insert_reserved)
2496 locked_ref->must_insert_reserved = 1;
2497 locked_ref->processing = 0;
2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2499 btrfs_delayed_ref_unlock(locked_ref);
2500 return ret;
2501 }
2502 continue;
2503 }
2504
2505 /*
2506 * Need to drop our head ref lock and re-aqcuire the
2507 * delayed ref lock and then re-check to make sure
2508 * nobody got added.
2509 */
2510 spin_unlock(&locked_ref->lock);
2511 spin_lock(&delayed_refs->lock);
2512 spin_lock(&locked_ref->lock);
2513 if (!list_empty(&locked_ref->ref_list) ||
2514 locked_ref->extent_op) {
2515 spin_unlock(&locked_ref->lock);
2516 spin_unlock(&delayed_refs->lock);
2517 continue;
2518 }
2519 ref->in_tree = 0;
2520 delayed_refs->num_heads--;
2521 rb_erase(&locked_ref->href_node,
2522 &delayed_refs->href_root);
2523 spin_unlock(&delayed_refs->lock);
2524 } else {
2525 actual_count++;
2526 ref->in_tree = 0;
2527 list_del(&ref->list);
2528 }
2529 atomic_dec(&delayed_refs->num_entries);
2530
2531 if (!btrfs_delayed_ref_is_head(ref)) {
2532 /*
2533 * when we play the delayed ref, also correct the
2534 * ref_mod on head
2535 */
2536 switch (ref->action) {
2537 case BTRFS_ADD_DELAYED_REF:
2538 case BTRFS_ADD_DELAYED_EXTENT:
2539 locked_ref->node.ref_mod -= ref->ref_mod;
2540 break;
2541 case BTRFS_DROP_DELAYED_REF:
2542 locked_ref->node.ref_mod += ref->ref_mod;
2543 break;
2544 default:
2545 WARN_ON(1);
2546 }
2547 }
2548 spin_unlock(&locked_ref->lock);
2549
2550 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2551 must_insert_reserved);
2552
2553 btrfs_free_delayed_extent_op(extent_op);
2554 if (ret) {
2555 locked_ref->processing = 0;
2556 btrfs_delayed_ref_unlock(locked_ref);
2557 btrfs_put_delayed_ref(ref);
2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2559 return ret;
2560 }
2561
2562 /*
2563 * If this node is a head, that means all the refs in this head
2564 * have been dealt with, and we will pick the next head to deal
2565 * with, so we must unlock the head and drop it from the cluster
2566 * list before we release it.
2567 */
2568 if (btrfs_delayed_ref_is_head(ref)) {
2569 if (locked_ref->is_data &&
2570 locked_ref->total_ref_mod < 0) {
2571 spin_lock(&delayed_refs->lock);
2572 delayed_refs->pending_csums -= ref->num_bytes;
2573 spin_unlock(&delayed_refs->lock);
2574 }
2575 btrfs_delayed_ref_unlock(locked_ref);
2576 locked_ref = NULL;
2577 }
2578 btrfs_put_delayed_ref(ref);
2579 count++;
2580 cond_resched();
2581 }
2582
2583 /*
2584 * We don't want to include ref heads since we can have empty ref heads
2585 * and those will drastically skew our runtime down since we just do
2586 * accounting, no actual extent tree updates.
2587 */
2588 if (actual_count > 0) {
2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2590 u64 avg;
2591
2592 /*
2593 * We weigh the current average higher than our current runtime
2594 * to avoid large swings in the average.
2595 */
2596 spin_lock(&delayed_refs->lock);
2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2599 spin_unlock(&delayed_refs->lock);
2600 }
2601 return 0;
2602 }
2603
2604 #ifdef SCRAMBLE_DELAYED_REFS
2605 /*
2606 * Normally delayed refs get processed in ascending bytenr order. This
2607 * correlates in most cases to the order added. To expose dependencies on this
2608 * order, we start to process the tree in the middle instead of the beginning
2609 */
2610 static u64 find_middle(struct rb_root *root)
2611 {
2612 struct rb_node *n = root->rb_node;
2613 struct btrfs_delayed_ref_node *entry;
2614 int alt = 1;
2615 u64 middle;
2616 u64 first = 0, last = 0;
2617
2618 n = rb_first(root);
2619 if (n) {
2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2621 first = entry->bytenr;
2622 }
2623 n = rb_last(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 last = entry->bytenr;
2627 }
2628 n = root->rb_node;
2629
2630 while (n) {
2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2632 WARN_ON(!entry->in_tree);
2633
2634 middle = entry->bytenr;
2635
2636 if (alt)
2637 n = n->rb_left;
2638 else
2639 n = n->rb_right;
2640
2641 alt = 1 - alt;
2642 }
2643 return middle;
2644 }
2645 #endif
2646
2647 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2648 {
2649 u64 num_bytes;
2650
2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2652 sizeof(struct btrfs_extent_inline_ref));
2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2655
2656 /*
2657 * We don't ever fill up leaves all the way so multiply by 2 just to be
2658 * closer to what we're really going to want to ouse.
2659 */
2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2661 }
2662
2663 /*
2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2665 * would require to store the csums for that many bytes.
2666 */
2667 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2668 {
2669 u64 csum_size;
2670 u64 num_csums_per_leaf;
2671 u64 num_csums;
2672
2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2674 num_csums_per_leaf = div64_u64(csum_size,
2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2676 num_csums = div64_u64(csum_bytes, root->sectorsize);
2677 num_csums += num_csums_per_leaf - 1;
2678 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2679 return num_csums;
2680 }
2681
2682 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2683 struct btrfs_root *root)
2684 {
2685 struct btrfs_block_rsv *global_rsv;
2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2689 u64 num_bytes, num_dirty_bgs_bytes;
2690 int ret = 0;
2691
2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2693 num_heads = heads_to_leaves(root, num_heads);
2694 if (num_heads > 1)
2695 num_bytes += (num_heads - 1) * root->nodesize;
2696 num_bytes <<= 1;
2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2699 num_dirty_bgs);
2700 global_rsv = &root->fs_info->global_block_rsv;
2701
2702 /*
2703 * If we can't allocate any more chunks lets make sure we have _lots_ of
2704 * wiggle room since running delayed refs can create more delayed refs.
2705 */
2706 if (global_rsv->space_info->full) {
2707 num_dirty_bgs_bytes <<= 1;
2708 num_bytes <<= 1;
2709 }
2710
2711 spin_lock(&global_rsv->lock);
2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2713 ret = 1;
2714 spin_unlock(&global_rsv->lock);
2715 return ret;
2716 }
2717
2718 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2719 struct btrfs_root *root)
2720 {
2721 struct btrfs_fs_info *fs_info = root->fs_info;
2722 u64 num_entries =
2723 atomic_read(&trans->transaction->delayed_refs.num_entries);
2724 u64 avg_runtime;
2725 u64 val;
2726
2727 smp_mb();
2728 avg_runtime = fs_info->avg_delayed_ref_runtime;
2729 val = num_entries * avg_runtime;
2730 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2731 return 1;
2732 if (val >= NSEC_PER_SEC / 2)
2733 return 2;
2734
2735 return btrfs_check_space_for_delayed_refs(trans, root);
2736 }
2737
2738 struct async_delayed_refs {
2739 struct btrfs_root *root;
2740 int count;
2741 int error;
2742 int sync;
2743 struct completion wait;
2744 struct btrfs_work work;
2745 };
2746
2747 static void delayed_ref_async_start(struct btrfs_work *work)
2748 {
2749 struct async_delayed_refs *async;
2750 struct btrfs_trans_handle *trans;
2751 int ret;
2752
2753 async = container_of(work, struct async_delayed_refs, work);
2754
2755 trans = btrfs_join_transaction(async->root);
2756 if (IS_ERR(trans)) {
2757 async->error = PTR_ERR(trans);
2758 goto done;
2759 }
2760
2761 /*
2762 * trans->sync means that when we call end_transaciton, we won't
2763 * wait on delayed refs
2764 */
2765 trans->sync = true;
2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2767 if (ret)
2768 async->error = ret;
2769
2770 ret = btrfs_end_transaction(trans, async->root);
2771 if (ret && !async->error)
2772 async->error = ret;
2773 done:
2774 if (async->sync)
2775 complete(&async->wait);
2776 else
2777 kfree(async);
2778 }
2779
2780 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2781 unsigned long count, int wait)
2782 {
2783 struct async_delayed_refs *async;
2784 int ret;
2785
2786 async = kmalloc(sizeof(*async), GFP_NOFS);
2787 if (!async)
2788 return -ENOMEM;
2789
2790 async->root = root->fs_info->tree_root;
2791 async->count = count;
2792 async->error = 0;
2793 if (wait)
2794 async->sync = 1;
2795 else
2796 async->sync = 0;
2797 init_completion(&async->wait);
2798
2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2800 delayed_ref_async_start, NULL, NULL);
2801
2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2803
2804 if (wait) {
2805 wait_for_completion(&async->wait);
2806 ret = async->error;
2807 kfree(async);
2808 return ret;
2809 }
2810 return 0;
2811 }
2812
2813 /*
2814 * this starts processing the delayed reference count updates and
2815 * extent insertions we have queued up so far. count can be
2816 * 0, which means to process everything in the tree at the start
2817 * of the run (but not newly added entries), or it can be some target
2818 * number you'd like to process.
2819 *
2820 * Returns 0 on success or if called with an aborted transaction
2821 * Returns <0 on error and aborts the transaction
2822 */
2823 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_root *root, unsigned long count)
2825 {
2826 struct rb_node *node;
2827 struct btrfs_delayed_ref_root *delayed_refs;
2828 struct btrfs_delayed_ref_head *head;
2829 int ret;
2830 int run_all = count == (unsigned long)-1;
2831 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2832
2833 /* We'll clean this up in btrfs_cleanup_transaction */
2834 if (trans->aborted)
2835 return 0;
2836
2837 if (root == root->fs_info->extent_root)
2838 root = root->fs_info->tree_root;
2839
2840 delayed_refs = &trans->transaction->delayed_refs;
2841 if (count == 0)
2842 count = atomic_read(&delayed_refs->num_entries) * 2;
2843
2844 again:
2845 #ifdef SCRAMBLE_DELAYED_REFS
2846 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2847 #endif
2848 trans->can_flush_pending_bgs = false;
2849 ret = __btrfs_run_delayed_refs(trans, root, count);
2850 if (ret < 0) {
2851 btrfs_abort_transaction(trans, root, ret);
2852 return ret;
2853 }
2854
2855 if (run_all) {
2856 if (!list_empty(&trans->new_bgs))
2857 btrfs_create_pending_block_groups(trans, root);
2858
2859 spin_lock(&delayed_refs->lock);
2860 node = rb_first(&delayed_refs->href_root);
2861 if (!node) {
2862 spin_unlock(&delayed_refs->lock);
2863 goto out;
2864 }
2865 count = (unsigned long)-1;
2866
2867 while (node) {
2868 head = rb_entry(node, struct btrfs_delayed_ref_head,
2869 href_node);
2870 if (btrfs_delayed_ref_is_head(&head->node)) {
2871 struct btrfs_delayed_ref_node *ref;
2872
2873 ref = &head->node;
2874 atomic_inc(&ref->refs);
2875
2876 spin_unlock(&delayed_refs->lock);
2877 /*
2878 * Mutex was contended, block until it's
2879 * released and try again
2880 */
2881 mutex_lock(&head->mutex);
2882 mutex_unlock(&head->mutex);
2883
2884 btrfs_put_delayed_ref(ref);
2885 cond_resched();
2886 goto again;
2887 } else {
2888 WARN_ON(1);
2889 }
2890 node = rb_next(node);
2891 }
2892 spin_unlock(&delayed_refs->lock);
2893 cond_resched();
2894 goto again;
2895 }
2896 out:
2897 assert_qgroups_uptodate(trans);
2898 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2899 return 0;
2900 }
2901
2902 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root,
2904 u64 bytenr, u64 num_bytes, u64 flags,
2905 int level, int is_data)
2906 {
2907 struct btrfs_delayed_extent_op *extent_op;
2908 int ret;
2909
2910 extent_op = btrfs_alloc_delayed_extent_op();
2911 if (!extent_op)
2912 return -ENOMEM;
2913
2914 extent_op->flags_to_set = flags;
2915 extent_op->update_flags = 1;
2916 extent_op->update_key = 0;
2917 extent_op->is_data = is_data ? 1 : 0;
2918 extent_op->level = level;
2919
2920 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2921 num_bytes, extent_op);
2922 if (ret)
2923 btrfs_free_delayed_extent_op(extent_op);
2924 return ret;
2925 }
2926
2927 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2928 struct btrfs_root *root,
2929 struct btrfs_path *path,
2930 u64 objectid, u64 offset, u64 bytenr)
2931 {
2932 struct btrfs_delayed_ref_head *head;
2933 struct btrfs_delayed_ref_node *ref;
2934 struct btrfs_delayed_data_ref *data_ref;
2935 struct btrfs_delayed_ref_root *delayed_refs;
2936 int ret = 0;
2937
2938 delayed_refs = &trans->transaction->delayed_refs;
2939 spin_lock(&delayed_refs->lock);
2940 head = btrfs_find_delayed_ref_head(trans, bytenr);
2941 if (!head) {
2942 spin_unlock(&delayed_refs->lock);
2943 return 0;
2944 }
2945
2946 if (!mutex_trylock(&head->mutex)) {
2947 atomic_inc(&head->node.refs);
2948 spin_unlock(&delayed_refs->lock);
2949
2950 btrfs_release_path(path);
2951
2952 /*
2953 * Mutex was contended, block until it's released and let
2954 * caller try again
2955 */
2956 mutex_lock(&head->mutex);
2957 mutex_unlock(&head->mutex);
2958 btrfs_put_delayed_ref(&head->node);
2959 return -EAGAIN;
2960 }
2961 spin_unlock(&delayed_refs->lock);
2962
2963 spin_lock(&head->lock);
2964 list_for_each_entry(ref, &head->ref_list, list) {
2965 /* If it's a shared ref we know a cross reference exists */
2966 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2967 ret = 1;
2968 break;
2969 }
2970
2971 data_ref = btrfs_delayed_node_to_data_ref(ref);
2972
2973 /*
2974 * If our ref doesn't match the one we're currently looking at
2975 * then we have a cross reference.
2976 */
2977 if (data_ref->root != root->root_key.objectid ||
2978 data_ref->objectid != objectid ||
2979 data_ref->offset != offset) {
2980 ret = 1;
2981 break;
2982 }
2983 }
2984 spin_unlock(&head->lock);
2985 mutex_unlock(&head->mutex);
2986 return ret;
2987 }
2988
2989 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2990 struct btrfs_root *root,
2991 struct btrfs_path *path,
2992 u64 objectid, u64 offset, u64 bytenr)
2993 {
2994 struct btrfs_root *extent_root = root->fs_info->extent_root;
2995 struct extent_buffer *leaf;
2996 struct btrfs_extent_data_ref *ref;
2997 struct btrfs_extent_inline_ref *iref;
2998 struct btrfs_extent_item *ei;
2999 struct btrfs_key key;
3000 u32 item_size;
3001 int ret;
3002
3003 key.objectid = bytenr;
3004 key.offset = (u64)-1;
3005 key.type = BTRFS_EXTENT_ITEM_KEY;
3006
3007 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3008 if (ret < 0)
3009 goto out;
3010 BUG_ON(ret == 0); /* Corruption */
3011
3012 ret = -ENOENT;
3013 if (path->slots[0] == 0)
3014 goto out;
3015
3016 path->slots[0]--;
3017 leaf = path->nodes[0];
3018 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3019
3020 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3021 goto out;
3022
3023 ret = 1;
3024 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3025 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3026 if (item_size < sizeof(*ei)) {
3027 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3028 goto out;
3029 }
3030 #endif
3031 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3032
3033 if (item_size != sizeof(*ei) +
3034 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3035 goto out;
3036
3037 if (btrfs_extent_generation(leaf, ei) <=
3038 btrfs_root_last_snapshot(&root->root_item))
3039 goto out;
3040
3041 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3042 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3043 BTRFS_EXTENT_DATA_REF_KEY)
3044 goto out;
3045
3046 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3047 if (btrfs_extent_refs(leaf, ei) !=
3048 btrfs_extent_data_ref_count(leaf, ref) ||
3049 btrfs_extent_data_ref_root(leaf, ref) !=
3050 root->root_key.objectid ||
3051 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3052 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3053 goto out;
3054
3055 ret = 0;
3056 out:
3057 return ret;
3058 }
3059
3060 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root,
3062 u64 objectid, u64 offset, u64 bytenr)
3063 {
3064 struct btrfs_path *path;
3065 int ret;
3066 int ret2;
3067
3068 path = btrfs_alloc_path();
3069 if (!path)
3070 return -ENOENT;
3071
3072 do {
3073 ret = check_committed_ref(trans, root, path, objectid,
3074 offset, bytenr);
3075 if (ret && ret != -ENOENT)
3076 goto out;
3077
3078 ret2 = check_delayed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 } while (ret2 == -EAGAIN);
3081
3082 if (ret2 && ret2 != -ENOENT) {
3083 ret = ret2;
3084 goto out;
3085 }
3086
3087 if (ret != -ENOENT || ret2 != -ENOENT)
3088 ret = 0;
3089 out:
3090 btrfs_free_path(path);
3091 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3092 WARN_ON(ret > 0);
3093 return ret;
3094 }
3095
3096 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3097 struct btrfs_root *root,
3098 struct extent_buffer *buf,
3099 int full_backref, int inc)
3100 {
3101 u64 bytenr;
3102 u64 num_bytes;
3103 u64 parent;
3104 u64 ref_root;
3105 u32 nritems;
3106 struct btrfs_key key;
3107 struct btrfs_file_extent_item *fi;
3108 int i;
3109 int level;
3110 int ret = 0;
3111 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3112 u64, u64, u64, u64, u64, u64, int);
3113
3114
3115 if (btrfs_test_is_dummy_root(root))
3116 return 0;
3117
3118 ref_root = btrfs_header_owner(buf);
3119 nritems = btrfs_header_nritems(buf);
3120 level = btrfs_header_level(buf);
3121
3122 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3123 return 0;
3124
3125 if (inc)
3126 process_func = btrfs_inc_extent_ref;
3127 else
3128 process_func = btrfs_free_extent;
3129
3130 if (full_backref)
3131 parent = buf->start;
3132 else
3133 parent = 0;
3134
3135 for (i = 0; i < nritems; i++) {
3136 if (level == 0) {
3137 btrfs_item_key_to_cpu(buf, &key, i);
3138 if (key.type != BTRFS_EXTENT_DATA_KEY)
3139 continue;
3140 fi = btrfs_item_ptr(buf, i,
3141 struct btrfs_file_extent_item);
3142 if (btrfs_file_extent_type(buf, fi) ==
3143 BTRFS_FILE_EXTENT_INLINE)
3144 continue;
3145 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3146 if (bytenr == 0)
3147 continue;
3148
3149 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3150 key.offset -= btrfs_file_extent_offset(buf, fi);
3151 ret = process_func(trans, root, bytenr, num_bytes,
3152 parent, ref_root, key.objectid,
3153 key.offset, 1);
3154 if (ret)
3155 goto fail;
3156 } else {
3157 bytenr = btrfs_node_blockptr(buf, i);
3158 num_bytes = root->nodesize;
3159 ret = process_func(trans, root, bytenr, num_bytes,
3160 parent, ref_root, level - 1, 0,
3161 1);
3162 if (ret)
3163 goto fail;
3164 }
3165 }
3166 return 0;
3167 fail:
3168 return ret;
3169 }
3170
3171 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3172 struct extent_buffer *buf, int full_backref)
3173 {
3174 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3175 }
3176
3177 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3178 struct extent_buffer *buf, int full_backref)
3179 {
3180 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3181 }
3182
3183 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root,
3185 struct btrfs_path *path,
3186 struct btrfs_block_group_cache *cache)
3187 {
3188 int ret;
3189 struct btrfs_root *extent_root = root->fs_info->extent_root;
3190 unsigned long bi;
3191 struct extent_buffer *leaf;
3192
3193 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3194 if (ret) {
3195 if (ret > 0)
3196 ret = -ENOENT;
3197 goto fail;
3198 }
3199
3200 leaf = path->nodes[0];
3201 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3202 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3203 btrfs_mark_buffer_dirty(leaf);
3204 fail:
3205 btrfs_release_path(path);
3206 return ret;
3207
3208 }
3209
3210 static struct btrfs_block_group_cache *
3211 next_block_group(struct btrfs_root *root,
3212 struct btrfs_block_group_cache *cache)
3213 {
3214 struct rb_node *node;
3215
3216 spin_lock(&root->fs_info->block_group_cache_lock);
3217
3218 /* If our block group was removed, we need a full search. */
3219 if (RB_EMPTY_NODE(&cache->cache_node)) {
3220 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3221
3222 spin_unlock(&root->fs_info->block_group_cache_lock);
3223 btrfs_put_block_group(cache);
3224 cache = btrfs_lookup_first_block_group(root->fs_info,
3225 next_bytenr);
3226 return cache;
3227 }
3228 node = rb_next(&cache->cache_node);
3229 btrfs_put_block_group(cache);
3230 if (node) {
3231 cache = rb_entry(node, struct btrfs_block_group_cache,
3232 cache_node);
3233 btrfs_get_block_group(cache);
3234 } else
3235 cache = NULL;
3236 spin_unlock(&root->fs_info->block_group_cache_lock);
3237 return cache;
3238 }
3239
3240 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3241 struct btrfs_trans_handle *trans,
3242 struct btrfs_path *path)
3243 {
3244 struct btrfs_root *root = block_group->fs_info->tree_root;
3245 struct inode *inode = NULL;
3246 u64 alloc_hint = 0;
3247 int dcs = BTRFS_DC_ERROR;
3248 u64 num_pages = 0;
3249 int retries = 0;
3250 int ret = 0;
3251
3252 /*
3253 * If this block group is smaller than 100 megs don't bother caching the
3254 * block group.
3255 */
3256 if (block_group->key.offset < (100 * 1024 * 1024)) {
3257 spin_lock(&block_group->lock);
3258 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3259 spin_unlock(&block_group->lock);
3260 return 0;
3261 }
3262
3263 if (trans->aborted)
3264 return 0;
3265 again:
3266 inode = lookup_free_space_inode(root, block_group, path);
3267 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3268 ret = PTR_ERR(inode);
3269 btrfs_release_path(path);
3270 goto out;
3271 }
3272
3273 if (IS_ERR(inode)) {
3274 BUG_ON(retries);
3275 retries++;
3276
3277 if (block_group->ro)
3278 goto out_free;
3279
3280 ret = create_free_space_inode(root, trans, block_group, path);
3281 if (ret)
3282 goto out_free;
3283 goto again;
3284 }
3285
3286 /* We've already setup this transaction, go ahead and exit */
3287 if (block_group->cache_generation == trans->transid &&
3288 i_size_read(inode)) {
3289 dcs = BTRFS_DC_SETUP;
3290 goto out_put;
3291 }
3292
3293 /*
3294 * We want to set the generation to 0, that way if anything goes wrong
3295 * from here on out we know not to trust this cache when we load up next
3296 * time.
3297 */
3298 BTRFS_I(inode)->generation = 0;
3299 ret = btrfs_update_inode(trans, root, inode);
3300 if (ret) {
3301 /*
3302 * So theoretically we could recover from this, simply set the
3303 * super cache generation to 0 so we know to invalidate the
3304 * cache, but then we'd have to keep track of the block groups
3305 * that fail this way so we know we _have_ to reset this cache
3306 * before the next commit or risk reading stale cache. So to
3307 * limit our exposure to horrible edge cases lets just abort the
3308 * transaction, this only happens in really bad situations
3309 * anyway.
3310 */
3311 btrfs_abort_transaction(trans, root, ret);
3312 goto out_put;
3313 }
3314 WARN_ON(ret);
3315
3316 if (i_size_read(inode) > 0) {
3317 ret = btrfs_check_trunc_cache_free_space(root,
3318 &root->fs_info->global_block_rsv);
3319 if (ret)
3320 goto out_put;
3321
3322 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3323 if (ret)
3324 goto out_put;
3325 }
3326
3327 spin_lock(&block_group->lock);
3328 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3329 !btrfs_test_opt(root, SPACE_CACHE)) {
3330 /*
3331 * don't bother trying to write stuff out _if_
3332 * a) we're not cached,
3333 * b) we're with nospace_cache mount option.
3334 */
3335 dcs = BTRFS_DC_WRITTEN;
3336 spin_unlock(&block_group->lock);
3337 goto out_put;
3338 }
3339 spin_unlock(&block_group->lock);
3340
3341 /*
3342 * Try to preallocate enough space based on how big the block group is.
3343 * Keep in mind this has to include any pinned space which could end up
3344 * taking up quite a bit since it's not folded into the other space
3345 * cache.
3346 */
3347 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3348 if (!num_pages)
3349 num_pages = 1;
3350
3351 num_pages *= 16;
3352 num_pages *= PAGE_CACHE_SIZE;
3353
3354 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3355 if (ret)
3356 goto out_put;
3357
3358 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3359 num_pages, num_pages,
3360 &alloc_hint);
3361 if (!ret)
3362 dcs = BTRFS_DC_SETUP;
3363 btrfs_free_reserved_data_space(inode, num_pages);
3364
3365 out_put:
3366 iput(inode);
3367 out_free:
3368 btrfs_release_path(path);
3369 out:
3370 spin_lock(&block_group->lock);
3371 if (!ret && dcs == BTRFS_DC_SETUP)
3372 block_group->cache_generation = trans->transid;
3373 block_group->disk_cache_state = dcs;
3374 spin_unlock(&block_group->lock);
3375
3376 return ret;
3377 }
3378
3379 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3380 struct btrfs_root *root)
3381 {
3382 struct btrfs_block_group_cache *cache, *tmp;
3383 struct btrfs_transaction *cur_trans = trans->transaction;
3384 struct btrfs_path *path;
3385
3386 if (list_empty(&cur_trans->dirty_bgs) ||
3387 !btrfs_test_opt(root, SPACE_CACHE))
3388 return 0;
3389
3390 path = btrfs_alloc_path();
3391 if (!path)
3392 return -ENOMEM;
3393
3394 /* Could add new block groups, use _safe just in case */
3395 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3396 dirty_list) {
3397 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3398 cache_save_setup(cache, trans, path);
3399 }
3400
3401 btrfs_free_path(path);
3402 return 0;
3403 }
3404
3405 /*
3406 * transaction commit does final block group cache writeback during a
3407 * critical section where nothing is allowed to change the FS. This is
3408 * required in order for the cache to actually match the block group,
3409 * but can introduce a lot of latency into the commit.
3410 *
3411 * So, btrfs_start_dirty_block_groups is here to kick off block group
3412 * cache IO. There's a chance we'll have to redo some of it if the
3413 * block group changes again during the commit, but it greatly reduces
3414 * the commit latency by getting rid of the easy block groups while
3415 * we're still allowing others to join the commit.
3416 */
3417 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3418 struct btrfs_root *root)
3419 {
3420 struct btrfs_block_group_cache *cache;
3421 struct btrfs_transaction *cur_trans = trans->transaction;
3422 int ret = 0;
3423 int should_put;
3424 struct btrfs_path *path = NULL;
3425 LIST_HEAD(dirty);
3426 struct list_head *io = &cur_trans->io_bgs;
3427 int num_started = 0;
3428 int loops = 0;
3429
3430 spin_lock(&cur_trans->dirty_bgs_lock);
3431 if (list_empty(&cur_trans->dirty_bgs)) {
3432 spin_unlock(&cur_trans->dirty_bgs_lock);
3433 return 0;
3434 }
3435 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3436 spin_unlock(&cur_trans->dirty_bgs_lock);
3437
3438 again:
3439 /*
3440 * make sure all the block groups on our dirty list actually
3441 * exist
3442 */
3443 btrfs_create_pending_block_groups(trans, root);
3444
3445 if (!path) {
3446 path = btrfs_alloc_path();
3447 if (!path)
3448 return -ENOMEM;
3449 }
3450
3451 /*
3452 * cache_write_mutex is here only to save us from balance or automatic
3453 * removal of empty block groups deleting this block group while we are
3454 * writing out the cache
3455 */
3456 mutex_lock(&trans->transaction->cache_write_mutex);
3457 while (!list_empty(&dirty)) {
3458 cache = list_first_entry(&dirty,
3459 struct btrfs_block_group_cache,
3460 dirty_list);
3461 /*
3462 * this can happen if something re-dirties a block
3463 * group that is already under IO. Just wait for it to
3464 * finish and then do it all again
3465 */
3466 if (!list_empty(&cache->io_list)) {
3467 list_del_init(&cache->io_list);
3468 btrfs_wait_cache_io(root, trans, cache,
3469 &cache->io_ctl, path,
3470 cache->key.objectid);
3471 btrfs_put_block_group(cache);
3472 }
3473
3474
3475 /*
3476 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3477 * if it should update the cache_state. Don't delete
3478 * until after we wait.
3479 *
3480 * Since we're not running in the commit critical section
3481 * we need the dirty_bgs_lock to protect from update_block_group
3482 */
3483 spin_lock(&cur_trans->dirty_bgs_lock);
3484 list_del_init(&cache->dirty_list);
3485 spin_unlock(&cur_trans->dirty_bgs_lock);
3486
3487 should_put = 1;
3488
3489 cache_save_setup(cache, trans, path);
3490
3491 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3492 cache->io_ctl.inode = NULL;
3493 ret = btrfs_write_out_cache(root, trans, cache, path);
3494 if (ret == 0 && cache->io_ctl.inode) {
3495 num_started++;
3496 should_put = 0;
3497
3498 /*
3499 * the cache_write_mutex is protecting
3500 * the io_list
3501 */
3502 list_add_tail(&cache->io_list, io);
3503 } else {
3504 /*
3505 * if we failed to write the cache, the
3506 * generation will be bad and life goes on
3507 */
3508 ret = 0;
3509 }
3510 }
3511 if (!ret) {
3512 ret = write_one_cache_group(trans, root, path, cache);
3513 /*
3514 * Our block group might still be attached to the list
3515 * of new block groups in the transaction handle of some
3516 * other task (struct btrfs_trans_handle->new_bgs). This
3517 * means its block group item isn't yet in the extent
3518 * tree. If this happens ignore the error, as we will
3519 * try again later in the critical section of the
3520 * transaction commit.
3521 */
3522 if (ret == -ENOENT) {
3523 ret = 0;
3524 spin_lock(&cur_trans->dirty_bgs_lock);
3525 if (list_empty(&cache->dirty_list)) {
3526 list_add_tail(&cache->dirty_list,
3527 &cur_trans->dirty_bgs);
3528 btrfs_get_block_group(cache);
3529 }
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 } else if (ret) {
3532 btrfs_abort_transaction(trans, root, ret);
3533 }
3534 }
3535
3536 /* if its not on the io list, we need to put the block group */
3537 if (should_put)
3538 btrfs_put_block_group(cache);
3539
3540 if (ret)
3541 break;
3542
3543 /*
3544 * Avoid blocking other tasks for too long. It might even save
3545 * us from writing caches for block groups that are going to be
3546 * removed.
3547 */
3548 mutex_unlock(&trans->transaction->cache_write_mutex);
3549 mutex_lock(&trans->transaction->cache_write_mutex);
3550 }
3551 mutex_unlock(&trans->transaction->cache_write_mutex);
3552
3553 /*
3554 * go through delayed refs for all the stuff we've just kicked off
3555 * and then loop back (just once)
3556 */
3557 ret = btrfs_run_delayed_refs(trans, root, 0);
3558 if (!ret && loops == 0) {
3559 loops++;
3560 spin_lock(&cur_trans->dirty_bgs_lock);
3561 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3562 /*
3563 * dirty_bgs_lock protects us from concurrent block group
3564 * deletes too (not just cache_write_mutex).
3565 */
3566 if (!list_empty(&dirty)) {
3567 spin_unlock(&cur_trans->dirty_bgs_lock);
3568 goto again;
3569 }
3570 spin_unlock(&cur_trans->dirty_bgs_lock);
3571 }
3572
3573 btrfs_free_path(path);
3574 return ret;
3575 }
3576
3577 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3578 struct btrfs_root *root)
3579 {
3580 struct btrfs_block_group_cache *cache;
3581 struct btrfs_transaction *cur_trans = trans->transaction;
3582 int ret = 0;
3583 int should_put;
3584 struct btrfs_path *path;
3585 struct list_head *io = &cur_trans->io_bgs;
3586 int num_started = 0;
3587
3588 path = btrfs_alloc_path();
3589 if (!path)
3590 return -ENOMEM;
3591
3592 /*
3593 * We don't need the lock here since we are protected by the transaction
3594 * commit. We want to do the cache_save_setup first and then run the
3595 * delayed refs to make sure we have the best chance at doing this all
3596 * in one shot.
3597 */
3598 while (!list_empty(&cur_trans->dirty_bgs)) {
3599 cache = list_first_entry(&cur_trans->dirty_bgs,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
3602
3603 /*
3604 * this can happen if cache_save_setup re-dirties a block
3605 * group that is already under IO. Just wait for it to
3606 * finish and then do it all again
3607 */
3608 if (!list_empty(&cache->io_list)) {
3609 list_del_init(&cache->io_list);
3610 btrfs_wait_cache_io(root, trans, cache,
3611 &cache->io_ctl, path,
3612 cache->key.objectid);
3613 btrfs_put_block_group(cache);
3614 }
3615
3616 /*
3617 * don't remove from the dirty list until after we've waited
3618 * on any pending IO
3619 */
3620 list_del_init(&cache->dirty_list);
3621 should_put = 1;
3622
3623 cache_save_setup(cache, trans, path);
3624
3625 if (!ret)
3626 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3627
3628 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3629 cache->io_ctl.inode = NULL;
3630 ret = btrfs_write_out_cache(root, trans, cache, path);
3631 if (ret == 0 && cache->io_ctl.inode) {
3632 num_started++;
3633 should_put = 0;
3634 list_add_tail(&cache->io_list, io);
3635 } else {
3636 /*
3637 * if we failed to write the cache, the
3638 * generation will be bad and life goes on
3639 */
3640 ret = 0;
3641 }
3642 }
3643 if (!ret) {
3644 ret = write_one_cache_group(trans, root, path, cache);
3645 if (ret)
3646 btrfs_abort_transaction(trans, root, ret);
3647 }
3648
3649 /* if its not on the io list, we need to put the block group */
3650 if (should_put)
3651 btrfs_put_block_group(cache);
3652 }
3653
3654 while (!list_empty(io)) {
3655 cache = list_first_entry(io, struct btrfs_block_group_cache,
3656 io_list);
3657 list_del_init(&cache->io_list);
3658 btrfs_wait_cache_io(root, trans, cache,
3659 &cache->io_ctl, path, cache->key.objectid);
3660 btrfs_put_block_group(cache);
3661 }
3662
3663 btrfs_free_path(path);
3664 return ret;
3665 }
3666
3667 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3668 {
3669 struct btrfs_block_group_cache *block_group;
3670 int readonly = 0;
3671
3672 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3673 if (!block_group || block_group->ro)
3674 readonly = 1;
3675 if (block_group)
3676 btrfs_put_block_group(block_group);
3677 return readonly;
3678 }
3679
3680 static const char *alloc_name(u64 flags)
3681 {
3682 switch (flags) {
3683 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3684 return "mixed";
3685 case BTRFS_BLOCK_GROUP_METADATA:
3686 return "metadata";
3687 case BTRFS_BLOCK_GROUP_DATA:
3688 return "data";
3689 case BTRFS_BLOCK_GROUP_SYSTEM:
3690 return "system";
3691 default:
3692 WARN_ON(1);
3693 return "invalid-combination";
3694 };
3695 }
3696
3697 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3698 u64 total_bytes, u64 bytes_used,
3699 struct btrfs_space_info **space_info)
3700 {
3701 struct btrfs_space_info *found;
3702 int i;
3703 int factor;
3704 int ret;
3705
3706 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3707 BTRFS_BLOCK_GROUP_RAID10))
3708 factor = 2;
3709 else
3710 factor = 1;
3711
3712 found = __find_space_info(info, flags);
3713 if (found) {
3714 spin_lock(&found->lock);
3715 found->total_bytes += total_bytes;
3716 found->disk_total += total_bytes * factor;
3717 found->bytes_used += bytes_used;
3718 found->disk_used += bytes_used * factor;
3719 if (total_bytes > 0)
3720 found->full = 0;
3721 spin_unlock(&found->lock);
3722 *space_info = found;
3723 return 0;
3724 }
3725 found = kzalloc(sizeof(*found), GFP_NOFS);
3726 if (!found)
3727 return -ENOMEM;
3728
3729 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3730 if (ret) {
3731 kfree(found);
3732 return ret;
3733 }
3734
3735 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3736 INIT_LIST_HEAD(&found->block_groups[i]);
3737 init_rwsem(&found->groups_sem);
3738 spin_lock_init(&found->lock);
3739 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3740 found->total_bytes = total_bytes;
3741 found->disk_total = total_bytes * factor;
3742 found->bytes_used = bytes_used;
3743 found->disk_used = bytes_used * factor;
3744 found->bytes_pinned = 0;
3745 found->bytes_reserved = 0;
3746 found->bytes_readonly = 0;
3747 found->bytes_may_use = 0;
3748 found->full = 0;
3749 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3750 found->chunk_alloc = 0;
3751 found->flush = 0;
3752 init_waitqueue_head(&found->wait);
3753 INIT_LIST_HEAD(&found->ro_bgs);
3754
3755 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3756 info->space_info_kobj, "%s",
3757 alloc_name(found->flags));
3758 if (ret) {
3759 kfree(found);
3760 return ret;
3761 }
3762
3763 *space_info = found;
3764 list_add_rcu(&found->list, &info->space_info);
3765 if (flags & BTRFS_BLOCK_GROUP_DATA)
3766 info->data_sinfo = found;
3767
3768 return ret;
3769 }
3770
3771 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3772 {
3773 u64 extra_flags = chunk_to_extended(flags) &
3774 BTRFS_EXTENDED_PROFILE_MASK;
3775
3776 write_seqlock(&fs_info->profiles_lock);
3777 if (flags & BTRFS_BLOCK_GROUP_DATA)
3778 fs_info->avail_data_alloc_bits |= extra_flags;
3779 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3780 fs_info->avail_metadata_alloc_bits |= extra_flags;
3781 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3782 fs_info->avail_system_alloc_bits |= extra_flags;
3783 write_sequnlock(&fs_info->profiles_lock);
3784 }
3785
3786 /*
3787 * returns target flags in extended format or 0 if restripe for this
3788 * chunk_type is not in progress
3789 *
3790 * should be called with either volume_mutex or balance_lock held
3791 */
3792 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3793 {
3794 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3795 u64 target = 0;
3796
3797 if (!bctl)
3798 return 0;
3799
3800 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3801 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3802 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3803 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3804 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3805 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3806 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3807 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3808 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3809 }
3810
3811 return target;
3812 }
3813
3814 /*
3815 * @flags: available profiles in extended format (see ctree.h)
3816 *
3817 * Returns reduced profile in chunk format. If profile changing is in
3818 * progress (either running or paused) picks the target profile (if it's
3819 * already available), otherwise falls back to plain reducing.
3820 */
3821 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3822 {
3823 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3824 u64 target;
3825 u64 tmp;
3826
3827 /*
3828 * see if restripe for this chunk_type is in progress, if so
3829 * try to reduce to the target profile
3830 */
3831 spin_lock(&root->fs_info->balance_lock);
3832 target = get_restripe_target(root->fs_info, flags);
3833 if (target) {
3834 /* pick target profile only if it's already available */
3835 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3836 spin_unlock(&root->fs_info->balance_lock);
3837 return extended_to_chunk(target);
3838 }
3839 }
3840 spin_unlock(&root->fs_info->balance_lock);
3841
3842 /* First, mask out the RAID levels which aren't possible */
3843 if (num_devices == 1)
3844 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3845 BTRFS_BLOCK_GROUP_RAID5);
3846 if (num_devices < 3)
3847 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3848 if (num_devices < 4)
3849 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3850
3851 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3852 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3853 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3854 flags &= ~tmp;
3855
3856 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3857 tmp = BTRFS_BLOCK_GROUP_RAID6;
3858 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3859 tmp = BTRFS_BLOCK_GROUP_RAID5;
3860 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3861 tmp = BTRFS_BLOCK_GROUP_RAID10;
3862 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3863 tmp = BTRFS_BLOCK_GROUP_RAID1;
3864 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3865 tmp = BTRFS_BLOCK_GROUP_RAID0;
3866
3867 return extended_to_chunk(flags | tmp);
3868 }
3869
3870 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3871 {
3872 unsigned seq;
3873 u64 flags;
3874
3875 do {
3876 flags = orig_flags;
3877 seq = read_seqbegin(&root->fs_info->profiles_lock);
3878
3879 if (flags & BTRFS_BLOCK_GROUP_DATA)
3880 flags |= root->fs_info->avail_data_alloc_bits;
3881 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3882 flags |= root->fs_info->avail_system_alloc_bits;
3883 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3884 flags |= root->fs_info->avail_metadata_alloc_bits;
3885 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3886
3887 return btrfs_reduce_alloc_profile(root, flags);
3888 }
3889
3890 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3891 {
3892 u64 flags;
3893 u64 ret;
3894
3895 if (data)
3896 flags = BTRFS_BLOCK_GROUP_DATA;
3897 else if (root == root->fs_info->chunk_root)
3898 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3899 else
3900 flags = BTRFS_BLOCK_GROUP_METADATA;
3901
3902 ret = get_alloc_profile(root, flags);
3903 return ret;
3904 }
3905
3906 /*
3907 * This will check the space that the inode allocates from to make sure we have
3908 * enough space for bytes.
3909 */
3910 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3911 {
3912 struct btrfs_space_info *data_sinfo;
3913 struct btrfs_root *root = BTRFS_I(inode)->root;
3914 struct btrfs_fs_info *fs_info = root->fs_info;
3915 u64 used;
3916 int ret = 0;
3917 int need_commit = 2;
3918 int have_pinned_space;
3919
3920 /* make sure bytes are sectorsize aligned */
3921 bytes = ALIGN(bytes, root->sectorsize);
3922
3923 if (btrfs_is_free_space_inode(inode)) {
3924 need_commit = 0;
3925 ASSERT(current->journal_info);
3926 }
3927
3928 data_sinfo = fs_info->data_sinfo;
3929 if (!data_sinfo)
3930 goto alloc;
3931
3932 again:
3933 /* make sure we have enough space to handle the data first */
3934 spin_lock(&data_sinfo->lock);
3935 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3936 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3937 data_sinfo->bytes_may_use;
3938
3939 if (used + bytes > data_sinfo->total_bytes) {
3940 struct btrfs_trans_handle *trans;
3941
3942 /*
3943 * if we don't have enough free bytes in this space then we need
3944 * to alloc a new chunk.
3945 */
3946 if (!data_sinfo->full) {
3947 u64 alloc_target;
3948
3949 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3950 spin_unlock(&data_sinfo->lock);
3951 alloc:
3952 alloc_target = btrfs_get_alloc_profile(root, 1);
3953 /*
3954 * It is ugly that we don't call nolock join
3955 * transaction for the free space inode case here.
3956 * But it is safe because we only do the data space
3957 * reservation for the free space cache in the
3958 * transaction context, the common join transaction
3959 * just increase the counter of the current transaction
3960 * handler, doesn't try to acquire the trans_lock of
3961 * the fs.
3962 */
3963 trans = btrfs_join_transaction(root);
3964 if (IS_ERR(trans))
3965 return PTR_ERR(trans);
3966
3967 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3968 alloc_target,
3969 CHUNK_ALLOC_NO_FORCE);
3970 btrfs_end_transaction(trans, root);
3971 if (ret < 0) {
3972 if (ret != -ENOSPC)
3973 return ret;
3974 else {
3975 have_pinned_space = 1;
3976 goto commit_trans;
3977 }
3978 }
3979
3980 if (!data_sinfo)
3981 data_sinfo = fs_info->data_sinfo;
3982
3983 goto again;
3984 }
3985
3986 /*
3987 * If we don't have enough pinned space to deal with this
3988 * allocation, and no removed chunk in current transaction,
3989 * don't bother committing the transaction.
3990 */
3991 have_pinned_space = percpu_counter_compare(
3992 &data_sinfo->total_bytes_pinned,
3993 used + bytes - data_sinfo->total_bytes);
3994 spin_unlock(&data_sinfo->lock);
3995
3996 /* commit the current transaction and try again */
3997 commit_trans:
3998 if (need_commit &&
3999 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4000 need_commit--;
4001
4002 if (need_commit > 0)
4003 btrfs_wait_ordered_roots(fs_info, -1);
4004
4005 trans = btrfs_join_transaction(root);
4006 if (IS_ERR(trans))
4007 return PTR_ERR(trans);
4008 if (have_pinned_space >= 0 ||
4009 trans->transaction->have_free_bgs ||
4010 need_commit > 0) {
4011 ret = btrfs_commit_transaction(trans, root);
4012 if (ret)
4013 return ret;
4014 /*
4015 * make sure that all running delayed iput are
4016 * done
4017 */
4018 down_write(&root->fs_info->delayed_iput_sem);
4019 up_write(&root->fs_info->delayed_iput_sem);
4020 goto again;
4021 } else {
4022 btrfs_end_transaction(trans, root);
4023 }
4024 }
4025
4026 trace_btrfs_space_reservation(root->fs_info,
4027 "space_info:enospc",
4028 data_sinfo->flags, bytes, 1);
4029 return -ENOSPC;
4030 }
4031 ret = btrfs_qgroup_reserve(root, write_bytes);
4032 if (ret)
4033 goto out;
4034 data_sinfo->bytes_may_use += bytes;
4035 trace_btrfs_space_reservation(root->fs_info, "space_info",
4036 data_sinfo->flags, bytes, 1);
4037 out:
4038 spin_unlock(&data_sinfo->lock);
4039
4040 return ret;
4041 }
4042
4043 /*
4044 * Called if we need to clear a data reservation for this inode.
4045 */
4046 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4047 {
4048 struct btrfs_root *root = BTRFS_I(inode)->root;
4049 struct btrfs_space_info *data_sinfo;
4050
4051 /* make sure bytes are sectorsize aligned */
4052 bytes = ALIGN(bytes, root->sectorsize);
4053
4054 data_sinfo = root->fs_info->data_sinfo;
4055 spin_lock(&data_sinfo->lock);
4056 WARN_ON(data_sinfo->bytes_may_use < bytes);
4057 data_sinfo->bytes_may_use -= bytes;
4058 trace_btrfs_space_reservation(root->fs_info, "space_info",
4059 data_sinfo->flags, bytes, 0);
4060 spin_unlock(&data_sinfo->lock);
4061 }
4062
4063 static void force_metadata_allocation(struct btrfs_fs_info *info)
4064 {
4065 struct list_head *head = &info->space_info;
4066 struct btrfs_space_info *found;
4067
4068 rcu_read_lock();
4069 list_for_each_entry_rcu(found, head, list) {
4070 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4071 found->force_alloc = CHUNK_ALLOC_FORCE;
4072 }
4073 rcu_read_unlock();
4074 }
4075
4076 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4077 {
4078 return (global->size << 1);
4079 }
4080
4081 static int should_alloc_chunk(struct btrfs_root *root,
4082 struct btrfs_space_info *sinfo, int force)
4083 {
4084 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4085 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4086 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4087 u64 thresh;
4088
4089 if (force == CHUNK_ALLOC_FORCE)
4090 return 1;
4091
4092 /*
4093 * We need to take into account the global rsv because for all intents
4094 * and purposes it's used space. Don't worry about locking the
4095 * global_rsv, it doesn't change except when the transaction commits.
4096 */
4097 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4098 num_allocated += calc_global_rsv_need_space(global_rsv);
4099
4100 /*
4101 * in limited mode, we want to have some free space up to
4102 * about 1% of the FS size.
4103 */
4104 if (force == CHUNK_ALLOC_LIMITED) {
4105 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4106 thresh = max_t(u64, 64 * 1024 * 1024,
4107 div_factor_fine(thresh, 1));
4108
4109 if (num_bytes - num_allocated < thresh)
4110 return 1;
4111 }
4112
4113 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4114 return 0;
4115 return 1;
4116 }
4117
4118 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4119 {
4120 u64 num_dev;
4121
4122 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4123 BTRFS_BLOCK_GROUP_RAID0 |
4124 BTRFS_BLOCK_GROUP_RAID5 |
4125 BTRFS_BLOCK_GROUP_RAID6))
4126 num_dev = root->fs_info->fs_devices->rw_devices;
4127 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4128 num_dev = 2;
4129 else
4130 num_dev = 1; /* DUP or single */
4131
4132 return num_dev;
4133 }
4134
4135 /*
4136 * If @is_allocation is true, reserve space in the system space info necessary
4137 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4138 * removing a chunk.
4139 */
4140 void check_system_chunk(struct btrfs_trans_handle *trans,
4141 struct btrfs_root *root,
4142 u64 type)
4143 {
4144 struct btrfs_space_info *info;
4145 u64 left;
4146 u64 thresh;
4147 int ret = 0;
4148 u64 num_devs;
4149
4150 /*
4151 * Needed because we can end up allocating a system chunk and for an
4152 * atomic and race free space reservation in the chunk block reserve.
4153 */
4154 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4155
4156 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4157 spin_lock(&info->lock);
4158 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4159 info->bytes_reserved - info->bytes_readonly -
4160 info->bytes_may_use;
4161 spin_unlock(&info->lock);
4162
4163 num_devs = get_profile_num_devs(root, type);
4164
4165 /* num_devs device items to update and 1 chunk item to add or remove */
4166 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4167 btrfs_calc_trans_metadata_size(root, 1);
4168
4169 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4170 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4171 left, thresh, type);
4172 dump_space_info(info, 0, 0);
4173 }
4174
4175 if (left < thresh) {
4176 u64 flags;
4177
4178 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4179 /*
4180 * Ignore failure to create system chunk. We might end up not
4181 * needing it, as we might not need to COW all nodes/leafs from
4182 * the paths we visit in the chunk tree (they were already COWed
4183 * or created in the current transaction for example).
4184 */
4185 ret = btrfs_alloc_chunk(trans, root, flags);
4186 }
4187
4188 if (!ret) {
4189 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4190 &root->fs_info->chunk_block_rsv,
4191 thresh, BTRFS_RESERVE_NO_FLUSH);
4192 if (!ret)
4193 trans->chunk_bytes_reserved += thresh;
4194 }
4195 }
4196
4197 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4198 struct btrfs_root *extent_root, u64 flags, int force)
4199 {
4200 struct btrfs_space_info *space_info;
4201 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4202 int wait_for_alloc = 0;
4203 int ret = 0;
4204
4205 /* Don't re-enter if we're already allocating a chunk */
4206 if (trans->allocating_chunk)
4207 return -ENOSPC;
4208
4209 space_info = __find_space_info(extent_root->fs_info, flags);
4210 if (!space_info) {
4211 ret = update_space_info(extent_root->fs_info, flags,
4212 0, 0, &space_info);
4213 BUG_ON(ret); /* -ENOMEM */
4214 }
4215 BUG_ON(!space_info); /* Logic error */
4216
4217 again:
4218 spin_lock(&space_info->lock);
4219 if (force < space_info->force_alloc)
4220 force = space_info->force_alloc;
4221 if (space_info->full) {
4222 if (should_alloc_chunk(extent_root, space_info, force))
4223 ret = -ENOSPC;
4224 else
4225 ret = 0;
4226 spin_unlock(&space_info->lock);
4227 return ret;
4228 }
4229
4230 if (!should_alloc_chunk(extent_root, space_info, force)) {
4231 spin_unlock(&space_info->lock);
4232 return 0;
4233 } else if (space_info->chunk_alloc) {
4234 wait_for_alloc = 1;
4235 } else {
4236 space_info->chunk_alloc = 1;
4237 }
4238
4239 spin_unlock(&space_info->lock);
4240
4241 mutex_lock(&fs_info->chunk_mutex);
4242
4243 /*
4244 * The chunk_mutex is held throughout the entirety of a chunk
4245 * allocation, so once we've acquired the chunk_mutex we know that the
4246 * other guy is done and we need to recheck and see if we should
4247 * allocate.
4248 */
4249 if (wait_for_alloc) {
4250 mutex_unlock(&fs_info->chunk_mutex);
4251 wait_for_alloc = 0;
4252 goto again;
4253 }
4254
4255 trans->allocating_chunk = true;
4256
4257 /*
4258 * If we have mixed data/metadata chunks we want to make sure we keep
4259 * allocating mixed chunks instead of individual chunks.
4260 */
4261 if (btrfs_mixed_space_info(space_info))
4262 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4263
4264 /*
4265 * if we're doing a data chunk, go ahead and make sure that
4266 * we keep a reasonable number of metadata chunks allocated in the
4267 * FS as well.
4268 */
4269 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4270 fs_info->data_chunk_allocations++;
4271 if (!(fs_info->data_chunk_allocations %
4272 fs_info->metadata_ratio))
4273 force_metadata_allocation(fs_info);
4274 }
4275
4276 /*
4277 * Check if we have enough space in SYSTEM chunk because we may need
4278 * to update devices.
4279 */
4280 check_system_chunk(trans, extent_root, flags);
4281
4282 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4283 trans->allocating_chunk = false;
4284
4285 spin_lock(&space_info->lock);
4286 if (ret < 0 && ret != -ENOSPC)
4287 goto out;
4288 if (ret)
4289 space_info->full = 1;
4290 else
4291 ret = 1;
4292
4293 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4294 out:
4295 space_info->chunk_alloc = 0;
4296 spin_unlock(&space_info->lock);
4297 mutex_unlock(&fs_info->chunk_mutex);
4298 /*
4299 * When we allocate a new chunk we reserve space in the chunk block
4300 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4301 * add new nodes/leafs to it if we end up needing to do it when
4302 * inserting the chunk item and updating device items as part of the
4303 * second phase of chunk allocation, performed by
4304 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4305 * large number of new block groups to create in our transaction
4306 * handle's new_bgs list to avoid exhausting the chunk block reserve
4307 * in extreme cases - like having a single transaction create many new
4308 * block groups when starting to write out the free space caches of all
4309 * the block groups that were made dirty during the lifetime of the
4310 * transaction.
4311 */
4312 if (trans->can_flush_pending_bgs &&
4313 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4314 btrfs_create_pending_block_groups(trans, trans->root);
4315 btrfs_trans_release_chunk_metadata(trans);
4316 }
4317 return ret;
4318 }
4319
4320 static int can_overcommit(struct btrfs_root *root,
4321 struct btrfs_space_info *space_info, u64 bytes,
4322 enum btrfs_reserve_flush_enum flush)
4323 {
4324 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4325 u64 profile = btrfs_get_alloc_profile(root, 0);
4326 u64 space_size;
4327 u64 avail;
4328 u64 used;
4329
4330 used = space_info->bytes_used + space_info->bytes_reserved +
4331 space_info->bytes_pinned + space_info->bytes_readonly;
4332
4333 /*
4334 * We only want to allow over committing if we have lots of actual space
4335 * free, but if we don't have enough space to handle the global reserve
4336 * space then we could end up having a real enospc problem when trying
4337 * to allocate a chunk or some other such important allocation.
4338 */
4339 spin_lock(&global_rsv->lock);
4340 space_size = calc_global_rsv_need_space(global_rsv);
4341 spin_unlock(&global_rsv->lock);
4342 if (used + space_size >= space_info->total_bytes)
4343 return 0;
4344
4345 used += space_info->bytes_may_use;
4346
4347 spin_lock(&root->fs_info->free_chunk_lock);
4348 avail = root->fs_info->free_chunk_space;
4349 spin_unlock(&root->fs_info->free_chunk_lock);
4350
4351 /*
4352 * If we have dup, raid1 or raid10 then only half of the free
4353 * space is actually useable. For raid56, the space info used
4354 * doesn't include the parity drive, so we don't have to
4355 * change the math
4356 */
4357 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4358 BTRFS_BLOCK_GROUP_RAID1 |
4359 BTRFS_BLOCK_GROUP_RAID10))
4360 avail >>= 1;
4361
4362 /*
4363 * If we aren't flushing all things, let us overcommit up to
4364 * 1/2th of the space. If we can flush, don't let us overcommit
4365 * too much, let it overcommit up to 1/8 of the space.
4366 */
4367 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4368 avail >>= 3;
4369 else
4370 avail >>= 1;
4371
4372 if (used + bytes < space_info->total_bytes + avail)
4373 return 1;
4374 return 0;
4375 }
4376
4377 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4378 unsigned long nr_pages, int nr_items)
4379 {
4380 struct super_block *sb = root->fs_info->sb;
4381
4382 if (down_read_trylock(&sb->s_umount)) {
4383 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4384 up_read(&sb->s_umount);
4385 } else {
4386 /*
4387 * We needn't worry the filesystem going from r/w to r/o though
4388 * we don't acquire ->s_umount mutex, because the filesystem
4389 * should guarantee the delalloc inodes list be empty after
4390 * the filesystem is readonly(all dirty pages are written to
4391 * the disk).
4392 */
4393 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4394 if (!current->journal_info)
4395 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4396 }
4397 }
4398
4399 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4400 {
4401 u64 bytes;
4402 int nr;
4403
4404 bytes = btrfs_calc_trans_metadata_size(root, 1);
4405 nr = (int)div64_u64(to_reclaim, bytes);
4406 if (!nr)
4407 nr = 1;
4408 return nr;
4409 }
4410
4411 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4412
4413 /*
4414 * shrink metadata reservation for delalloc
4415 */
4416 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4417 bool wait_ordered)
4418 {
4419 struct btrfs_block_rsv *block_rsv;
4420 struct btrfs_space_info *space_info;
4421 struct btrfs_trans_handle *trans;
4422 u64 delalloc_bytes;
4423 u64 max_reclaim;
4424 long time_left;
4425 unsigned long nr_pages;
4426 int loops;
4427 int items;
4428 enum btrfs_reserve_flush_enum flush;
4429
4430 /* Calc the number of the pages we need flush for space reservation */
4431 items = calc_reclaim_items_nr(root, to_reclaim);
4432 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4433
4434 trans = (struct btrfs_trans_handle *)current->journal_info;
4435 block_rsv = &root->fs_info->delalloc_block_rsv;
4436 space_info = block_rsv->space_info;
4437
4438 delalloc_bytes = percpu_counter_sum_positive(
4439 &root->fs_info->delalloc_bytes);
4440 if (delalloc_bytes == 0) {
4441 if (trans)
4442 return;
4443 if (wait_ordered)
4444 btrfs_wait_ordered_roots(root->fs_info, items);
4445 return;
4446 }
4447
4448 loops = 0;
4449 while (delalloc_bytes && loops < 3) {
4450 max_reclaim = min(delalloc_bytes, to_reclaim);
4451 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4452 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4453 /*
4454 * We need to wait for the async pages to actually start before
4455 * we do anything.
4456 */
4457 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4458 if (!max_reclaim)
4459 goto skip_async;
4460
4461 if (max_reclaim <= nr_pages)
4462 max_reclaim = 0;
4463 else
4464 max_reclaim -= nr_pages;
4465
4466 wait_event(root->fs_info->async_submit_wait,
4467 atomic_read(&root->fs_info->async_delalloc_pages) <=
4468 (int)max_reclaim);
4469 skip_async:
4470 if (!trans)
4471 flush = BTRFS_RESERVE_FLUSH_ALL;
4472 else
4473 flush = BTRFS_RESERVE_NO_FLUSH;
4474 spin_lock(&space_info->lock);
4475 if (can_overcommit(root, space_info, orig, flush)) {
4476 spin_unlock(&space_info->lock);
4477 break;
4478 }
4479 spin_unlock(&space_info->lock);
4480
4481 loops++;
4482 if (wait_ordered && !trans) {
4483 btrfs_wait_ordered_roots(root->fs_info, items);
4484 } else {
4485 time_left = schedule_timeout_killable(1);
4486 if (time_left)
4487 break;
4488 }
4489 delalloc_bytes = percpu_counter_sum_positive(
4490 &root->fs_info->delalloc_bytes);
4491 }
4492 }
4493
4494 /**
4495 * maybe_commit_transaction - possibly commit the transaction if its ok to
4496 * @root - the root we're allocating for
4497 * @bytes - the number of bytes we want to reserve
4498 * @force - force the commit
4499 *
4500 * This will check to make sure that committing the transaction will actually
4501 * get us somewhere and then commit the transaction if it does. Otherwise it
4502 * will return -ENOSPC.
4503 */
4504 static int may_commit_transaction(struct btrfs_root *root,
4505 struct btrfs_space_info *space_info,
4506 u64 bytes, int force)
4507 {
4508 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4509 struct btrfs_trans_handle *trans;
4510
4511 trans = (struct btrfs_trans_handle *)current->journal_info;
4512 if (trans)
4513 return -EAGAIN;
4514
4515 if (force)
4516 goto commit;
4517
4518 /* See if there is enough pinned space to make this reservation */
4519 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4520 bytes) >= 0)
4521 goto commit;
4522
4523 /*
4524 * See if there is some space in the delayed insertion reservation for
4525 * this reservation.
4526 */
4527 if (space_info != delayed_rsv->space_info)
4528 return -ENOSPC;
4529
4530 spin_lock(&delayed_rsv->lock);
4531 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4532 bytes - delayed_rsv->size) >= 0) {
4533 spin_unlock(&delayed_rsv->lock);
4534 return -ENOSPC;
4535 }
4536 spin_unlock(&delayed_rsv->lock);
4537
4538 commit:
4539 trans = btrfs_join_transaction(root);
4540 if (IS_ERR(trans))
4541 return -ENOSPC;
4542
4543 return btrfs_commit_transaction(trans, root);
4544 }
4545
4546 enum flush_state {
4547 FLUSH_DELAYED_ITEMS_NR = 1,
4548 FLUSH_DELAYED_ITEMS = 2,
4549 FLUSH_DELALLOC = 3,
4550 FLUSH_DELALLOC_WAIT = 4,
4551 ALLOC_CHUNK = 5,
4552 COMMIT_TRANS = 6,
4553 };
4554
4555 static int flush_space(struct btrfs_root *root,
4556 struct btrfs_space_info *space_info, u64 num_bytes,
4557 u64 orig_bytes, int state)
4558 {
4559 struct btrfs_trans_handle *trans;
4560 int nr;
4561 int ret = 0;
4562
4563 switch (state) {
4564 case FLUSH_DELAYED_ITEMS_NR:
4565 case FLUSH_DELAYED_ITEMS:
4566 if (state == FLUSH_DELAYED_ITEMS_NR)
4567 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4568 else
4569 nr = -1;
4570
4571 trans = btrfs_join_transaction(root);
4572 if (IS_ERR(trans)) {
4573 ret = PTR_ERR(trans);
4574 break;
4575 }
4576 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4577 btrfs_end_transaction(trans, root);
4578 break;
4579 case FLUSH_DELALLOC:
4580 case FLUSH_DELALLOC_WAIT:
4581 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4582 state == FLUSH_DELALLOC_WAIT);
4583 break;
4584 case ALLOC_CHUNK:
4585 trans = btrfs_join_transaction(root);
4586 if (IS_ERR(trans)) {
4587 ret = PTR_ERR(trans);
4588 break;
4589 }
4590 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4591 btrfs_get_alloc_profile(root, 0),
4592 CHUNK_ALLOC_NO_FORCE);
4593 btrfs_end_transaction(trans, root);
4594 if (ret == -ENOSPC)
4595 ret = 0;
4596 break;
4597 case COMMIT_TRANS:
4598 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4599 break;
4600 default:
4601 ret = -ENOSPC;
4602 break;
4603 }
4604
4605 return ret;
4606 }
4607
4608 static inline u64
4609 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4610 struct btrfs_space_info *space_info)
4611 {
4612 u64 used;
4613 u64 expected;
4614 u64 to_reclaim;
4615
4616 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4617 16 * 1024 * 1024);
4618 spin_lock(&space_info->lock);
4619 if (can_overcommit(root, space_info, to_reclaim,
4620 BTRFS_RESERVE_FLUSH_ALL)) {
4621 to_reclaim = 0;
4622 goto out;
4623 }
4624
4625 used = space_info->bytes_used + space_info->bytes_reserved +
4626 space_info->bytes_pinned + space_info->bytes_readonly +
4627 space_info->bytes_may_use;
4628 if (can_overcommit(root, space_info, 1024 * 1024,
4629 BTRFS_RESERVE_FLUSH_ALL))
4630 expected = div_factor_fine(space_info->total_bytes, 95);
4631 else
4632 expected = div_factor_fine(space_info->total_bytes, 90);
4633
4634 if (used > expected)
4635 to_reclaim = used - expected;
4636 else
4637 to_reclaim = 0;
4638 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4639 space_info->bytes_reserved);
4640 out:
4641 spin_unlock(&space_info->lock);
4642
4643 return to_reclaim;
4644 }
4645
4646 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4647 struct btrfs_fs_info *fs_info, u64 used)
4648 {
4649 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4650
4651 /* If we're just plain full then async reclaim just slows us down. */
4652 if (space_info->bytes_used >= thresh)
4653 return 0;
4654
4655 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4656 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4657 }
4658
4659 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4660 struct btrfs_fs_info *fs_info,
4661 int flush_state)
4662 {
4663 u64 used;
4664
4665 spin_lock(&space_info->lock);
4666 /*
4667 * We run out of space and have not got any free space via flush_space,
4668 * so don't bother doing async reclaim.
4669 */
4670 if (flush_state > COMMIT_TRANS && space_info->full) {
4671 spin_unlock(&space_info->lock);
4672 return 0;
4673 }
4674
4675 used = space_info->bytes_used + space_info->bytes_reserved +
4676 space_info->bytes_pinned + space_info->bytes_readonly +
4677 space_info->bytes_may_use;
4678 if (need_do_async_reclaim(space_info, fs_info, used)) {
4679 spin_unlock(&space_info->lock);
4680 return 1;
4681 }
4682 spin_unlock(&space_info->lock);
4683
4684 return 0;
4685 }
4686
4687 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4688 {
4689 struct btrfs_fs_info *fs_info;
4690 struct btrfs_space_info *space_info;
4691 u64 to_reclaim;
4692 int flush_state;
4693
4694 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4695 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4696
4697 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4698 space_info);
4699 if (!to_reclaim)
4700 return;
4701
4702 flush_state = FLUSH_DELAYED_ITEMS_NR;
4703 do {
4704 flush_space(fs_info->fs_root, space_info, to_reclaim,
4705 to_reclaim, flush_state);
4706 flush_state++;
4707 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4708 flush_state))
4709 return;
4710 } while (flush_state < COMMIT_TRANS);
4711 }
4712
4713 void btrfs_init_async_reclaim_work(struct work_struct *work)
4714 {
4715 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4716 }
4717
4718 /**
4719 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4720 * @root - the root we're allocating for
4721 * @block_rsv - the block_rsv we're allocating for
4722 * @orig_bytes - the number of bytes we want
4723 * @flush - whether or not we can flush to make our reservation
4724 *
4725 * This will reserve orgi_bytes number of bytes from the space info associated
4726 * with the block_rsv. If there is not enough space it will make an attempt to
4727 * flush out space to make room. It will do this by flushing delalloc if
4728 * possible or committing the transaction. If flush is 0 then no attempts to
4729 * regain reservations will be made and this will fail if there is not enough
4730 * space already.
4731 */
4732 static int reserve_metadata_bytes(struct btrfs_root *root,
4733 struct btrfs_block_rsv *block_rsv,
4734 u64 orig_bytes,
4735 enum btrfs_reserve_flush_enum flush)
4736 {
4737 struct btrfs_space_info *space_info = block_rsv->space_info;
4738 u64 used;
4739 u64 num_bytes = orig_bytes;
4740 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4741 int ret = 0;
4742 bool flushing = false;
4743
4744 again:
4745 ret = 0;
4746 spin_lock(&space_info->lock);
4747 /*
4748 * We only want to wait if somebody other than us is flushing and we
4749 * are actually allowed to flush all things.
4750 */
4751 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4752 space_info->flush) {
4753 spin_unlock(&space_info->lock);
4754 /*
4755 * If we have a trans handle we can't wait because the flusher
4756 * may have to commit the transaction, which would mean we would
4757 * deadlock since we are waiting for the flusher to finish, but
4758 * hold the current transaction open.
4759 */
4760 if (current->journal_info)
4761 return -EAGAIN;
4762 ret = wait_event_killable(space_info->wait, !space_info->flush);
4763 /* Must have been killed, return */
4764 if (ret)
4765 return -EINTR;
4766
4767 spin_lock(&space_info->lock);
4768 }
4769
4770 ret = -ENOSPC;
4771 used = space_info->bytes_used + space_info->bytes_reserved +
4772 space_info->bytes_pinned + space_info->bytes_readonly +
4773 space_info->bytes_may_use;
4774
4775 /*
4776 * The idea here is that we've not already over-reserved the block group
4777 * then we can go ahead and save our reservation first and then start
4778 * flushing if we need to. Otherwise if we've already overcommitted
4779 * lets start flushing stuff first and then come back and try to make
4780 * our reservation.
4781 */
4782 if (used <= space_info->total_bytes) {
4783 if (used + orig_bytes <= space_info->total_bytes) {
4784 space_info->bytes_may_use += orig_bytes;
4785 trace_btrfs_space_reservation(root->fs_info,
4786 "space_info", space_info->flags, orig_bytes, 1);
4787 ret = 0;
4788 } else {
4789 /*
4790 * Ok set num_bytes to orig_bytes since we aren't
4791 * overocmmitted, this way we only try and reclaim what
4792 * we need.
4793 */
4794 num_bytes = orig_bytes;
4795 }
4796 } else {
4797 /*
4798 * Ok we're over committed, set num_bytes to the overcommitted
4799 * amount plus the amount of bytes that we need for this
4800 * reservation.
4801 */
4802 num_bytes = used - space_info->total_bytes +
4803 (orig_bytes * 2);
4804 }
4805
4806 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4807 space_info->bytes_may_use += orig_bytes;
4808 trace_btrfs_space_reservation(root->fs_info, "space_info",
4809 space_info->flags, orig_bytes,
4810 1);
4811 ret = 0;
4812 }
4813
4814 /*
4815 * Couldn't make our reservation, save our place so while we're trying
4816 * to reclaim space we can actually use it instead of somebody else
4817 * stealing it from us.
4818 *
4819 * We make the other tasks wait for the flush only when we can flush
4820 * all things.
4821 */
4822 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4823 flushing = true;
4824 space_info->flush = 1;
4825 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4826 used += orig_bytes;
4827 /*
4828 * We will do the space reservation dance during log replay,
4829 * which means we won't have fs_info->fs_root set, so don't do
4830 * the async reclaim as we will panic.
4831 */
4832 if (!root->fs_info->log_root_recovering &&
4833 need_do_async_reclaim(space_info, root->fs_info, used) &&
4834 !work_busy(&root->fs_info->async_reclaim_work))
4835 queue_work(system_unbound_wq,
4836 &root->fs_info->async_reclaim_work);
4837 }
4838 spin_unlock(&space_info->lock);
4839
4840 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4841 goto out;
4842
4843 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4844 flush_state);
4845 flush_state++;
4846
4847 /*
4848 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4849 * would happen. So skip delalloc flush.
4850 */
4851 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4852 (flush_state == FLUSH_DELALLOC ||
4853 flush_state == FLUSH_DELALLOC_WAIT))
4854 flush_state = ALLOC_CHUNK;
4855
4856 if (!ret)
4857 goto again;
4858 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4859 flush_state < COMMIT_TRANS)
4860 goto again;
4861 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4862 flush_state <= COMMIT_TRANS)
4863 goto again;
4864
4865 out:
4866 if (ret == -ENOSPC &&
4867 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4868 struct btrfs_block_rsv *global_rsv =
4869 &root->fs_info->global_block_rsv;
4870
4871 if (block_rsv != global_rsv &&
4872 !block_rsv_use_bytes(global_rsv, orig_bytes))
4873 ret = 0;
4874 }
4875 if (ret == -ENOSPC)
4876 trace_btrfs_space_reservation(root->fs_info,
4877 "space_info:enospc",
4878 space_info->flags, orig_bytes, 1);
4879 if (flushing) {
4880 spin_lock(&space_info->lock);
4881 space_info->flush = 0;
4882 wake_up_all(&space_info->wait);
4883 spin_unlock(&space_info->lock);
4884 }
4885 return ret;
4886 }
4887
4888 static struct btrfs_block_rsv *get_block_rsv(
4889 const struct btrfs_trans_handle *trans,
4890 const struct btrfs_root *root)
4891 {
4892 struct btrfs_block_rsv *block_rsv = NULL;
4893
4894 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4895 block_rsv = trans->block_rsv;
4896
4897 if (root == root->fs_info->csum_root && trans->adding_csums)
4898 block_rsv = trans->block_rsv;
4899
4900 if (root == root->fs_info->uuid_root)
4901 block_rsv = trans->block_rsv;
4902
4903 if (!block_rsv)
4904 block_rsv = root->block_rsv;
4905
4906 if (!block_rsv)
4907 block_rsv = &root->fs_info->empty_block_rsv;
4908
4909 return block_rsv;
4910 }
4911
4912 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4913 u64 num_bytes)
4914 {
4915 int ret = -ENOSPC;
4916 spin_lock(&block_rsv->lock);
4917 if (block_rsv->reserved >= num_bytes) {
4918 block_rsv->reserved -= num_bytes;
4919 if (block_rsv->reserved < block_rsv->size)
4920 block_rsv->full = 0;
4921 ret = 0;
4922 }
4923 spin_unlock(&block_rsv->lock);
4924 return ret;
4925 }
4926
4927 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4928 u64 num_bytes, int update_size)
4929 {
4930 spin_lock(&block_rsv->lock);
4931 block_rsv->reserved += num_bytes;
4932 if (update_size)
4933 block_rsv->size += num_bytes;
4934 else if (block_rsv->reserved >= block_rsv->size)
4935 block_rsv->full = 1;
4936 spin_unlock(&block_rsv->lock);
4937 }
4938
4939 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4940 struct btrfs_block_rsv *dest, u64 num_bytes,
4941 int min_factor)
4942 {
4943 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4944 u64 min_bytes;
4945
4946 if (global_rsv->space_info != dest->space_info)
4947 return -ENOSPC;
4948
4949 spin_lock(&global_rsv->lock);
4950 min_bytes = div_factor(global_rsv->size, min_factor);
4951 if (global_rsv->reserved < min_bytes + num_bytes) {
4952 spin_unlock(&global_rsv->lock);
4953 return -ENOSPC;
4954 }
4955 global_rsv->reserved -= num_bytes;
4956 if (global_rsv->reserved < global_rsv->size)
4957 global_rsv->full = 0;
4958 spin_unlock(&global_rsv->lock);
4959
4960 block_rsv_add_bytes(dest, num_bytes, 1);
4961 return 0;
4962 }
4963
4964 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4965 struct btrfs_block_rsv *block_rsv,
4966 struct btrfs_block_rsv *dest, u64 num_bytes)
4967 {
4968 struct btrfs_space_info *space_info = block_rsv->space_info;
4969
4970 spin_lock(&block_rsv->lock);
4971 if (num_bytes == (u64)-1)
4972 num_bytes = block_rsv->size;
4973 block_rsv->size -= num_bytes;
4974 if (block_rsv->reserved >= block_rsv->size) {
4975 num_bytes = block_rsv->reserved - block_rsv->size;
4976 block_rsv->reserved = block_rsv->size;
4977 block_rsv->full = 1;
4978 } else {
4979 num_bytes = 0;
4980 }
4981 spin_unlock(&block_rsv->lock);
4982
4983 if (num_bytes > 0) {
4984 if (dest) {
4985 spin_lock(&dest->lock);
4986 if (!dest->full) {
4987 u64 bytes_to_add;
4988
4989 bytes_to_add = dest->size - dest->reserved;
4990 bytes_to_add = min(num_bytes, bytes_to_add);
4991 dest->reserved += bytes_to_add;
4992 if (dest->reserved >= dest->size)
4993 dest->full = 1;
4994 num_bytes -= bytes_to_add;
4995 }
4996 spin_unlock(&dest->lock);
4997 }
4998 if (num_bytes) {
4999 spin_lock(&space_info->lock);
5000 space_info->bytes_may_use -= num_bytes;
5001 trace_btrfs_space_reservation(fs_info, "space_info",
5002 space_info->flags, num_bytes, 0);
5003 spin_unlock(&space_info->lock);
5004 }
5005 }
5006 }
5007
5008 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5009 struct btrfs_block_rsv *dst, u64 num_bytes)
5010 {
5011 int ret;
5012
5013 ret = block_rsv_use_bytes(src, num_bytes);
5014 if (ret)
5015 return ret;
5016
5017 block_rsv_add_bytes(dst, num_bytes, 1);
5018 return 0;
5019 }
5020
5021 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5022 {
5023 memset(rsv, 0, sizeof(*rsv));
5024 spin_lock_init(&rsv->lock);
5025 rsv->type = type;
5026 }
5027
5028 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5029 unsigned short type)
5030 {
5031 struct btrfs_block_rsv *block_rsv;
5032 struct btrfs_fs_info *fs_info = root->fs_info;
5033
5034 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5035 if (!block_rsv)
5036 return NULL;
5037
5038 btrfs_init_block_rsv(block_rsv, type);
5039 block_rsv->space_info = __find_space_info(fs_info,
5040 BTRFS_BLOCK_GROUP_METADATA);
5041 return block_rsv;
5042 }
5043
5044 void btrfs_free_block_rsv(struct btrfs_root *root,
5045 struct btrfs_block_rsv *rsv)
5046 {
5047 if (!rsv)
5048 return;
5049 btrfs_block_rsv_release(root, rsv, (u64)-1);
5050 kfree(rsv);
5051 }
5052
5053 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5054 {
5055 kfree(rsv);
5056 }
5057
5058 int btrfs_block_rsv_add(struct btrfs_root *root,
5059 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5060 enum btrfs_reserve_flush_enum flush)
5061 {
5062 int ret;
5063
5064 if (num_bytes == 0)
5065 return 0;
5066
5067 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5068 if (!ret) {
5069 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5070 return 0;
5071 }
5072
5073 return ret;
5074 }
5075
5076 int btrfs_block_rsv_check(struct btrfs_root *root,
5077 struct btrfs_block_rsv *block_rsv, int min_factor)
5078 {
5079 u64 num_bytes = 0;
5080 int ret = -ENOSPC;
5081
5082 if (!block_rsv)
5083 return 0;
5084
5085 spin_lock(&block_rsv->lock);
5086 num_bytes = div_factor(block_rsv->size, min_factor);
5087 if (block_rsv->reserved >= num_bytes)
5088 ret = 0;
5089 spin_unlock(&block_rsv->lock);
5090
5091 return ret;
5092 }
5093
5094 int btrfs_block_rsv_refill(struct btrfs_root *root,
5095 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5096 enum btrfs_reserve_flush_enum flush)
5097 {
5098 u64 num_bytes = 0;
5099 int ret = -ENOSPC;
5100
5101 if (!block_rsv)
5102 return 0;
5103
5104 spin_lock(&block_rsv->lock);
5105 num_bytes = min_reserved;
5106 if (block_rsv->reserved >= num_bytes)
5107 ret = 0;
5108 else
5109 num_bytes -= block_rsv->reserved;
5110 spin_unlock(&block_rsv->lock);
5111
5112 if (!ret)
5113 return 0;
5114
5115 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5116 if (!ret) {
5117 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5118 return 0;
5119 }
5120
5121 return ret;
5122 }
5123
5124 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5125 struct btrfs_block_rsv *dst_rsv,
5126 u64 num_bytes)
5127 {
5128 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5129 }
5130
5131 void btrfs_block_rsv_release(struct btrfs_root *root,
5132 struct btrfs_block_rsv *block_rsv,
5133 u64 num_bytes)
5134 {
5135 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5136 if (global_rsv == block_rsv ||
5137 block_rsv->space_info != global_rsv->space_info)
5138 global_rsv = NULL;
5139 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5140 num_bytes);
5141 }
5142
5143 /*
5144 * helper to calculate size of global block reservation.
5145 * the desired value is sum of space used by extent tree,
5146 * checksum tree and root tree
5147 */
5148 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5149 {
5150 struct btrfs_space_info *sinfo;
5151 u64 num_bytes;
5152 u64 meta_used;
5153 u64 data_used;
5154 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5155
5156 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5157 spin_lock(&sinfo->lock);
5158 data_used = sinfo->bytes_used;
5159 spin_unlock(&sinfo->lock);
5160
5161 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5162 spin_lock(&sinfo->lock);
5163 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5164 data_used = 0;
5165 meta_used = sinfo->bytes_used;
5166 spin_unlock(&sinfo->lock);
5167
5168 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5169 csum_size * 2;
5170 num_bytes += div_u64(data_used + meta_used, 50);
5171
5172 if (num_bytes * 3 > meta_used)
5173 num_bytes = div_u64(meta_used, 3);
5174
5175 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5176 }
5177
5178 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5179 {
5180 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5181 struct btrfs_space_info *sinfo = block_rsv->space_info;
5182 u64 num_bytes;
5183
5184 num_bytes = calc_global_metadata_size(fs_info);
5185
5186 spin_lock(&sinfo->lock);
5187 spin_lock(&block_rsv->lock);
5188
5189 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5190
5191 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5192 sinfo->bytes_reserved + sinfo->bytes_readonly +
5193 sinfo->bytes_may_use;
5194
5195 if (sinfo->total_bytes > num_bytes) {
5196 num_bytes = sinfo->total_bytes - num_bytes;
5197 block_rsv->reserved += num_bytes;
5198 sinfo->bytes_may_use += num_bytes;
5199 trace_btrfs_space_reservation(fs_info, "space_info",
5200 sinfo->flags, num_bytes, 1);
5201 }
5202
5203 if (block_rsv->reserved >= block_rsv->size) {
5204 num_bytes = block_rsv->reserved - block_rsv->size;
5205 sinfo->bytes_may_use -= num_bytes;
5206 trace_btrfs_space_reservation(fs_info, "space_info",
5207 sinfo->flags, num_bytes, 0);
5208 block_rsv->reserved = block_rsv->size;
5209 block_rsv->full = 1;
5210 }
5211
5212 spin_unlock(&block_rsv->lock);
5213 spin_unlock(&sinfo->lock);
5214 }
5215
5216 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5217 {
5218 struct btrfs_space_info *space_info;
5219
5220 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5221 fs_info->chunk_block_rsv.space_info = space_info;
5222
5223 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5224 fs_info->global_block_rsv.space_info = space_info;
5225 fs_info->delalloc_block_rsv.space_info = space_info;
5226 fs_info->trans_block_rsv.space_info = space_info;
5227 fs_info->empty_block_rsv.space_info = space_info;
5228 fs_info->delayed_block_rsv.space_info = space_info;
5229
5230 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5231 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5232 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5233 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5234 if (fs_info->quota_root)
5235 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5236 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5237
5238 update_global_block_rsv(fs_info);
5239 }
5240
5241 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5242 {
5243 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5244 (u64)-1);
5245 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5246 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5247 WARN_ON(fs_info->trans_block_rsv.size > 0);
5248 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5249 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5250 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5251 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5252 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5253 }
5254
5255 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5256 struct btrfs_root *root)
5257 {
5258 if (!trans->block_rsv)
5259 return;
5260
5261 if (!trans->bytes_reserved)
5262 return;
5263
5264 trace_btrfs_space_reservation(root->fs_info, "transaction",
5265 trans->transid, trans->bytes_reserved, 0);
5266 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5267 trans->bytes_reserved = 0;
5268 }
5269
5270 /*
5271 * To be called after all the new block groups attached to the transaction
5272 * handle have been created (btrfs_create_pending_block_groups()).
5273 */
5274 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5275 {
5276 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5277
5278 if (!trans->chunk_bytes_reserved)
5279 return;
5280
5281 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5282
5283 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5284 trans->chunk_bytes_reserved);
5285 trans->chunk_bytes_reserved = 0;
5286 }
5287
5288 /* Can only return 0 or -ENOSPC */
5289 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5290 struct inode *inode)
5291 {
5292 struct btrfs_root *root = BTRFS_I(inode)->root;
5293 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5294 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5295
5296 /*
5297 * We need to hold space in order to delete our orphan item once we've
5298 * added it, so this takes the reservation so we can release it later
5299 * when we are truly done with the orphan item.
5300 */
5301 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5302 trace_btrfs_space_reservation(root->fs_info, "orphan",
5303 btrfs_ino(inode), num_bytes, 1);
5304 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5305 }
5306
5307 void btrfs_orphan_release_metadata(struct inode *inode)
5308 {
5309 struct btrfs_root *root = BTRFS_I(inode)->root;
5310 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5311 trace_btrfs_space_reservation(root->fs_info, "orphan",
5312 btrfs_ino(inode), num_bytes, 0);
5313 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5314 }
5315
5316 /*
5317 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5318 * root: the root of the parent directory
5319 * rsv: block reservation
5320 * items: the number of items that we need do reservation
5321 * qgroup_reserved: used to return the reserved size in qgroup
5322 *
5323 * This function is used to reserve the space for snapshot/subvolume
5324 * creation and deletion. Those operations are different with the
5325 * common file/directory operations, they change two fs/file trees
5326 * and root tree, the number of items that the qgroup reserves is
5327 * different with the free space reservation. So we can not use
5328 * the space reseravtion mechanism in start_transaction().
5329 */
5330 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5331 struct btrfs_block_rsv *rsv,
5332 int items,
5333 u64 *qgroup_reserved,
5334 bool use_global_rsv)
5335 {
5336 u64 num_bytes;
5337 int ret;
5338 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5339
5340 if (root->fs_info->quota_enabled) {
5341 /* One for parent inode, two for dir entries */
5342 num_bytes = 3 * root->nodesize;
5343 ret = btrfs_qgroup_reserve(root, num_bytes);
5344 if (ret)
5345 return ret;
5346 } else {
5347 num_bytes = 0;
5348 }
5349
5350 *qgroup_reserved = num_bytes;
5351
5352 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5353 rsv->space_info = __find_space_info(root->fs_info,
5354 BTRFS_BLOCK_GROUP_METADATA);
5355 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5356 BTRFS_RESERVE_FLUSH_ALL);
5357
5358 if (ret == -ENOSPC && use_global_rsv)
5359 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5360
5361 if (ret) {
5362 if (*qgroup_reserved)
5363 btrfs_qgroup_free(root, *qgroup_reserved);
5364 }
5365
5366 return ret;
5367 }
5368
5369 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5370 struct btrfs_block_rsv *rsv,
5371 u64 qgroup_reserved)
5372 {
5373 btrfs_block_rsv_release(root, rsv, (u64)-1);
5374 }
5375
5376 /**
5377 * drop_outstanding_extent - drop an outstanding extent
5378 * @inode: the inode we're dropping the extent for
5379 * @num_bytes: the number of bytes we're relaseing.
5380 *
5381 * This is called when we are freeing up an outstanding extent, either called
5382 * after an error or after an extent is written. This will return the number of
5383 * reserved extents that need to be freed. This must be called with
5384 * BTRFS_I(inode)->lock held.
5385 */
5386 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5387 {
5388 unsigned drop_inode_space = 0;
5389 unsigned dropped_extents = 0;
5390 unsigned num_extents = 0;
5391
5392 num_extents = (unsigned)div64_u64(num_bytes +
5393 BTRFS_MAX_EXTENT_SIZE - 1,
5394 BTRFS_MAX_EXTENT_SIZE);
5395 ASSERT(num_extents);
5396 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5397 BTRFS_I(inode)->outstanding_extents -= num_extents;
5398
5399 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5400 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5401 &BTRFS_I(inode)->runtime_flags))
5402 drop_inode_space = 1;
5403
5404 /*
5405 * If we have more or the same amount of outsanding extents than we have
5406 * reserved then we need to leave the reserved extents count alone.
5407 */
5408 if (BTRFS_I(inode)->outstanding_extents >=
5409 BTRFS_I(inode)->reserved_extents)
5410 return drop_inode_space;
5411
5412 dropped_extents = BTRFS_I(inode)->reserved_extents -
5413 BTRFS_I(inode)->outstanding_extents;
5414 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5415 return dropped_extents + drop_inode_space;
5416 }
5417
5418 /**
5419 * calc_csum_metadata_size - return the amount of metada space that must be
5420 * reserved/free'd for the given bytes.
5421 * @inode: the inode we're manipulating
5422 * @num_bytes: the number of bytes in question
5423 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5424 *
5425 * This adjusts the number of csum_bytes in the inode and then returns the
5426 * correct amount of metadata that must either be reserved or freed. We
5427 * calculate how many checksums we can fit into one leaf and then divide the
5428 * number of bytes that will need to be checksumed by this value to figure out
5429 * how many checksums will be required. If we are adding bytes then the number
5430 * may go up and we will return the number of additional bytes that must be
5431 * reserved. If it is going down we will return the number of bytes that must
5432 * be freed.
5433 *
5434 * This must be called with BTRFS_I(inode)->lock held.
5435 */
5436 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5437 int reserve)
5438 {
5439 struct btrfs_root *root = BTRFS_I(inode)->root;
5440 u64 old_csums, num_csums;
5441
5442 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5443 BTRFS_I(inode)->csum_bytes == 0)
5444 return 0;
5445
5446 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5447 if (reserve)
5448 BTRFS_I(inode)->csum_bytes += num_bytes;
5449 else
5450 BTRFS_I(inode)->csum_bytes -= num_bytes;
5451 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5452
5453 /* No change, no need to reserve more */
5454 if (old_csums == num_csums)
5455 return 0;
5456
5457 if (reserve)
5458 return btrfs_calc_trans_metadata_size(root,
5459 num_csums - old_csums);
5460
5461 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5462 }
5463
5464 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5465 {
5466 struct btrfs_root *root = BTRFS_I(inode)->root;
5467 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5468 u64 to_reserve = 0;
5469 u64 csum_bytes;
5470 unsigned nr_extents = 0;
5471 int extra_reserve = 0;
5472 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5473 int ret = 0;
5474 bool delalloc_lock = true;
5475 u64 to_free = 0;
5476 unsigned dropped;
5477
5478 /* If we are a free space inode we need to not flush since we will be in
5479 * the middle of a transaction commit. We also don't need the delalloc
5480 * mutex since we won't race with anybody. We need this mostly to make
5481 * lockdep shut its filthy mouth.
5482 */
5483 if (btrfs_is_free_space_inode(inode)) {
5484 flush = BTRFS_RESERVE_NO_FLUSH;
5485 delalloc_lock = false;
5486 }
5487
5488 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5489 btrfs_transaction_in_commit(root->fs_info))
5490 schedule_timeout(1);
5491
5492 if (delalloc_lock)
5493 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5494
5495 num_bytes = ALIGN(num_bytes, root->sectorsize);
5496
5497 spin_lock(&BTRFS_I(inode)->lock);
5498 nr_extents = (unsigned)div64_u64(num_bytes +
5499 BTRFS_MAX_EXTENT_SIZE - 1,
5500 BTRFS_MAX_EXTENT_SIZE);
5501 BTRFS_I(inode)->outstanding_extents += nr_extents;
5502 nr_extents = 0;
5503
5504 if (BTRFS_I(inode)->outstanding_extents >
5505 BTRFS_I(inode)->reserved_extents)
5506 nr_extents = BTRFS_I(inode)->outstanding_extents -
5507 BTRFS_I(inode)->reserved_extents;
5508
5509 /*
5510 * Add an item to reserve for updating the inode when we complete the
5511 * delalloc io.
5512 */
5513 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5514 &BTRFS_I(inode)->runtime_flags)) {
5515 nr_extents++;
5516 extra_reserve = 1;
5517 }
5518
5519 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5520 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5521 csum_bytes = BTRFS_I(inode)->csum_bytes;
5522 spin_unlock(&BTRFS_I(inode)->lock);
5523
5524 if (root->fs_info->quota_enabled) {
5525 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5526 if (ret)
5527 goto out_fail;
5528 }
5529
5530 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5531 if (unlikely(ret)) {
5532 if (root->fs_info->quota_enabled)
5533 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5534 goto out_fail;
5535 }
5536
5537 spin_lock(&BTRFS_I(inode)->lock);
5538 if (extra_reserve) {
5539 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5540 &BTRFS_I(inode)->runtime_flags);
5541 nr_extents--;
5542 }
5543 BTRFS_I(inode)->reserved_extents += nr_extents;
5544 spin_unlock(&BTRFS_I(inode)->lock);
5545
5546 if (delalloc_lock)
5547 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5548
5549 if (to_reserve)
5550 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5551 btrfs_ino(inode), to_reserve, 1);
5552 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5553
5554 return 0;
5555
5556 out_fail:
5557 spin_lock(&BTRFS_I(inode)->lock);
5558 dropped = drop_outstanding_extent(inode, num_bytes);
5559 /*
5560 * If the inodes csum_bytes is the same as the original
5561 * csum_bytes then we know we haven't raced with any free()ers
5562 * so we can just reduce our inodes csum bytes and carry on.
5563 */
5564 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5565 calc_csum_metadata_size(inode, num_bytes, 0);
5566 } else {
5567 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5568 u64 bytes;
5569
5570 /*
5571 * This is tricky, but first we need to figure out how much we
5572 * free'd from any free-ers that occured during this
5573 * reservation, so we reset ->csum_bytes to the csum_bytes
5574 * before we dropped our lock, and then call the free for the
5575 * number of bytes that were freed while we were trying our
5576 * reservation.
5577 */
5578 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5579 BTRFS_I(inode)->csum_bytes = csum_bytes;
5580 to_free = calc_csum_metadata_size(inode, bytes, 0);
5581
5582
5583 /*
5584 * Now we need to see how much we would have freed had we not
5585 * been making this reservation and our ->csum_bytes were not
5586 * artificially inflated.
5587 */
5588 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5589 bytes = csum_bytes - orig_csum_bytes;
5590 bytes = calc_csum_metadata_size(inode, bytes, 0);
5591
5592 /*
5593 * Now reset ->csum_bytes to what it should be. If bytes is
5594 * more than to_free then we would have free'd more space had we
5595 * not had an artificially high ->csum_bytes, so we need to free
5596 * the remainder. If bytes is the same or less then we don't
5597 * need to do anything, the other free-ers did the correct
5598 * thing.
5599 */
5600 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5601 if (bytes > to_free)
5602 to_free = bytes - to_free;
5603 else
5604 to_free = 0;
5605 }
5606 spin_unlock(&BTRFS_I(inode)->lock);
5607 if (dropped)
5608 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5609
5610 if (to_free) {
5611 btrfs_block_rsv_release(root, block_rsv, to_free);
5612 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5613 btrfs_ino(inode), to_free, 0);
5614 }
5615 if (delalloc_lock)
5616 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5617 return ret;
5618 }
5619
5620 /**
5621 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5622 * @inode: the inode to release the reservation for
5623 * @num_bytes: the number of bytes we're releasing
5624 *
5625 * This will release the metadata reservation for an inode. This can be called
5626 * once we complete IO for a given set of bytes to release their metadata
5627 * reservations.
5628 */
5629 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5630 {
5631 struct btrfs_root *root = BTRFS_I(inode)->root;
5632 u64 to_free = 0;
5633 unsigned dropped;
5634
5635 num_bytes = ALIGN(num_bytes, root->sectorsize);
5636 spin_lock(&BTRFS_I(inode)->lock);
5637 dropped = drop_outstanding_extent(inode, num_bytes);
5638
5639 if (num_bytes)
5640 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5641 spin_unlock(&BTRFS_I(inode)->lock);
5642 if (dropped > 0)
5643 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5644
5645 if (btrfs_test_is_dummy_root(root))
5646 return;
5647
5648 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5649 btrfs_ino(inode), to_free, 0);
5650
5651 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5652 to_free);
5653 }
5654
5655 /**
5656 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5657 * @inode: inode we're writing to
5658 * @num_bytes: the number of bytes we want to allocate
5659 *
5660 * This will do the following things
5661 *
5662 * o reserve space in the data space info for num_bytes
5663 * o reserve space in the metadata space info based on number of outstanding
5664 * extents and how much csums will be needed
5665 * o add to the inodes ->delalloc_bytes
5666 * o add it to the fs_info's delalloc inodes list.
5667 *
5668 * This will return 0 for success and -ENOSPC if there is no space left.
5669 */
5670 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5671 {
5672 int ret;
5673
5674 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5675 if (ret)
5676 return ret;
5677
5678 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5679 if (ret) {
5680 btrfs_free_reserved_data_space(inode, num_bytes);
5681 return ret;
5682 }
5683
5684 return 0;
5685 }
5686
5687 /**
5688 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5689 * @inode: inode we're releasing space for
5690 * @num_bytes: the number of bytes we want to free up
5691 *
5692 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5693 * called in the case that we don't need the metadata AND data reservations
5694 * anymore. So if there is an error or we insert an inline extent.
5695 *
5696 * This function will release the metadata space that was not used and will
5697 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5698 * list if there are no delalloc bytes left.
5699 */
5700 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5701 {
5702 btrfs_delalloc_release_metadata(inode, num_bytes);
5703 btrfs_free_reserved_data_space(inode, num_bytes);
5704 }
5705
5706 static int update_block_group(struct btrfs_trans_handle *trans,
5707 struct btrfs_root *root, u64 bytenr,
5708 u64 num_bytes, int alloc)
5709 {
5710 struct btrfs_block_group_cache *cache = NULL;
5711 struct btrfs_fs_info *info = root->fs_info;
5712 u64 total = num_bytes;
5713 u64 old_val;
5714 u64 byte_in_group;
5715 int factor;
5716
5717 /* block accounting for super block */
5718 spin_lock(&info->delalloc_root_lock);
5719 old_val = btrfs_super_bytes_used(info->super_copy);
5720 if (alloc)
5721 old_val += num_bytes;
5722 else
5723 old_val -= num_bytes;
5724 btrfs_set_super_bytes_used(info->super_copy, old_val);
5725 spin_unlock(&info->delalloc_root_lock);
5726
5727 while (total) {
5728 cache = btrfs_lookup_block_group(info, bytenr);
5729 if (!cache)
5730 return -ENOENT;
5731 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5732 BTRFS_BLOCK_GROUP_RAID1 |
5733 BTRFS_BLOCK_GROUP_RAID10))
5734 factor = 2;
5735 else
5736 factor = 1;
5737 /*
5738 * If this block group has free space cache written out, we
5739 * need to make sure to load it if we are removing space. This
5740 * is because we need the unpinning stage to actually add the
5741 * space back to the block group, otherwise we will leak space.
5742 */
5743 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5744 cache_block_group(cache, 1);
5745
5746 byte_in_group = bytenr - cache->key.objectid;
5747 WARN_ON(byte_in_group > cache->key.offset);
5748
5749 spin_lock(&cache->space_info->lock);
5750 spin_lock(&cache->lock);
5751
5752 if (btrfs_test_opt(root, SPACE_CACHE) &&
5753 cache->disk_cache_state < BTRFS_DC_CLEAR)
5754 cache->disk_cache_state = BTRFS_DC_CLEAR;
5755
5756 old_val = btrfs_block_group_used(&cache->item);
5757 num_bytes = min(total, cache->key.offset - byte_in_group);
5758 if (alloc) {
5759 old_val += num_bytes;
5760 btrfs_set_block_group_used(&cache->item, old_val);
5761 cache->reserved -= num_bytes;
5762 cache->space_info->bytes_reserved -= num_bytes;
5763 cache->space_info->bytes_used += num_bytes;
5764 cache->space_info->disk_used += num_bytes * factor;
5765 spin_unlock(&cache->lock);
5766 spin_unlock(&cache->space_info->lock);
5767 } else {
5768 old_val -= num_bytes;
5769 btrfs_set_block_group_used(&cache->item, old_val);
5770 cache->pinned += num_bytes;
5771 cache->space_info->bytes_pinned += num_bytes;
5772 cache->space_info->bytes_used -= num_bytes;
5773 cache->space_info->disk_used -= num_bytes * factor;
5774 spin_unlock(&cache->lock);
5775 spin_unlock(&cache->space_info->lock);
5776
5777 set_extent_dirty(info->pinned_extents,
5778 bytenr, bytenr + num_bytes - 1,
5779 GFP_NOFS | __GFP_NOFAIL);
5780 /*
5781 * No longer have used bytes in this block group, queue
5782 * it for deletion.
5783 */
5784 if (old_val == 0) {
5785 spin_lock(&info->unused_bgs_lock);
5786 if (list_empty(&cache->bg_list)) {
5787 btrfs_get_block_group(cache);
5788 list_add_tail(&cache->bg_list,
5789 &info->unused_bgs);
5790 }
5791 spin_unlock(&info->unused_bgs_lock);
5792 }
5793 }
5794
5795 spin_lock(&trans->transaction->dirty_bgs_lock);
5796 if (list_empty(&cache->dirty_list)) {
5797 list_add_tail(&cache->dirty_list,
5798 &trans->transaction->dirty_bgs);
5799 trans->transaction->num_dirty_bgs++;
5800 btrfs_get_block_group(cache);
5801 }
5802 spin_unlock(&trans->transaction->dirty_bgs_lock);
5803
5804 btrfs_put_block_group(cache);
5805 total -= num_bytes;
5806 bytenr += num_bytes;
5807 }
5808 return 0;
5809 }
5810
5811 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5812 {
5813 struct btrfs_block_group_cache *cache;
5814 u64 bytenr;
5815
5816 spin_lock(&root->fs_info->block_group_cache_lock);
5817 bytenr = root->fs_info->first_logical_byte;
5818 spin_unlock(&root->fs_info->block_group_cache_lock);
5819
5820 if (bytenr < (u64)-1)
5821 return bytenr;
5822
5823 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5824 if (!cache)
5825 return 0;
5826
5827 bytenr = cache->key.objectid;
5828 btrfs_put_block_group(cache);
5829
5830 return bytenr;
5831 }
5832
5833 static int pin_down_extent(struct btrfs_root *root,
5834 struct btrfs_block_group_cache *cache,
5835 u64 bytenr, u64 num_bytes, int reserved)
5836 {
5837 spin_lock(&cache->space_info->lock);
5838 spin_lock(&cache->lock);
5839 cache->pinned += num_bytes;
5840 cache->space_info->bytes_pinned += num_bytes;
5841 if (reserved) {
5842 cache->reserved -= num_bytes;
5843 cache->space_info->bytes_reserved -= num_bytes;
5844 }
5845 spin_unlock(&cache->lock);
5846 spin_unlock(&cache->space_info->lock);
5847
5848 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5849 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5850 if (reserved)
5851 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5852 return 0;
5853 }
5854
5855 /*
5856 * this function must be called within transaction
5857 */
5858 int btrfs_pin_extent(struct btrfs_root *root,
5859 u64 bytenr, u64 num_bytes, int reserved)
5860 {
5861 struct btrfs_block_group_cache *cache;
5862
5863 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5864 BUG_ON(!cache); /* Logic error */
5865
5866 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5867
5868 btrfs_put_block_group(cache);
5869 return 0;
5870 }
5871
5872 /*
5873 * this function must be called within transaction
5874 */
5875 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5876 u64 bytenr, u64 num_bytes)
5877 {
5878 struct btrfs_block_group_cache *cache;
5879 int ret;
5880
5881 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5882 if (!cache)
5883 return -EINVAL;
5884
5885 /*
5886 * pull in the free space cache (if any) so that our pin
5887 * removes the free space from the cache. We have load_only set
5888 * to one because the slow code to read in the free extents does check
5889 * the pinned extents.
5890 */
5891 cache_block_group(cache, 1);
5892
5893 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5894
5895 /* remove us from the free space cache (if we're there at all) */
5896 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5897 btrfs_put_block_group(cache);
5898 return ret;
5899 }
5900
5901 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5902 {
5903 int ret;
5904 struct btrfs_block_group_cache *block_group;
5905 struct btrfs_caching_control *caching_ctl;
5906
5907 block_group = btrfs_lookup_block_group(root->fs_info, start);
5908 if (!block_group)
5909 return -EINVAL;
5910
5911 cache_block_group(block_group, 0);
5912 caching_ctl = get_caching_control(block_group);
5913
5914 if (!caching_ctl) {
5915 /* Logic error */
5916 BUG_ON(!block_group_cache_done(block_group));
5917 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5918 } else {
5919 mutex_lock(&caching_ctl->mutex);
5920
5921 if (start >= caching_ctl->progress) {
5922 ret = add_excluded_extent(root, start, num_bytes);
5923 } else if (start + num_bytes <= caching_ctl->progress) {
5924 ret = btrfs_remove_free_space(block_group,
5925 start, num_bytes);
5926 } else {
5927 num_bytes = caching_ctl->progress - start;
5928 ret = btrfs_remove_free_space(block_group,
5929 start, num_bytes);
5930 if (ret)
5931 goto out_lock;
5932
5933 num_bytes = (start + num_bytes) -
5934 caching_ctl->progress;
5935 start = caching_ctl->progress;
5936 ret = add_excluded_extent(root, start, num_bytes);
5937 }
5938 out_lock:
5939 mutex_unlock(&caching_ctl->mutex);
5940 put_caching_control(caching_ctl);
5941 }
5942 btrfs_put_block_group(block_group);
5943 return ret;
5944 }
5945
5946 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5947 struct extent_buffer *eb)
5948 {
5949 struct btrfs_file_extent_item *item;
5950 struct btrfs_key key;
5951 int found_type;
5952 int i;
5953
5954 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5955 return 0;
5956
5957 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5958 btrfs_item_key_to_cpu(eb, &key, i);
5959 if (key.type != BTRFS_EXTENT_DATA_KEY)
5960 continue;
5961 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5962 found_type = btrfs_file_extent_type(eb, item);
5963 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5964 continue;
5965 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5966 continue;
5967 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5968 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5969 __exclude_logged_extent(log, key.objectid, key.offset);
5970 }
5971
5972 return 0;
5973 }
5974
5975 /**
5976 * btrfs_update_reserved_bytes - update the block_group and space info counters
5977 * @cache: The cache we are manipulating
5978 * @num_bytes: The number of bytes in question
5979 * @reserve: One of the reservation enums
5980 * @delalloc: The blocks are allocated for the delalloc write
5981 *
5982 * This is called by the allocator when it reserves space, or by somebody who is
5983 * freeing space that was never actually used on disk. For example if you
5984 * reserve some space for a new leaf in transaction A and before transaction A
5985 * commits you free that leaf, you call this with reserve set to 0 in order to
5986 * clear the reservation.
5987 *
5988 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5989 * ENOSPC accounting. For data we handle the reservation through clearing the
5990 * delalloc bits in the io_tree. We have to do this since we could end up
5991 * allocating less disk space for the amount of data we have reserved in the
5992 * case of compression.
5993 *
5994 * If this is a reservation and the block group has become read only we cannot
5995 * make the reservation and return -EAGAIN, otherwise this function always
5996 * succeeds.
5997 */
5998 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5999 u64 num_bytes, int reserve, int delalloc)
6000 {
6001 struct btrfs_space_info *space_info = cache->space_info;
6002 int ret = 0;
6003
6004 spin_lock(&space_info->lock);
6005 spin_lock(&cache->lock);
6006 if (reserve != RESERVE_FREE) {
6007 if (cache->ro) {
6008 ret = -EAGAIN;
6009 } else {
6010 cache->reserved += num_bytes;
6011 space_info->bytes_reserved += num_bytes;
6012 if (reserve == RESERVE_ALLOC) {
6013 trace_btrfs_space_reservation(cache->fs_info,
6014 "space_info", space_info->flags,
6015 num_bytes, 0);
6016 space_info->bytes_may_use -= num_bytes;
6017 }
6018
6019 if (delalloc)
6020 cache->delalloc_bytes += num_bytes;
6021 }
6022 } else {
6023 if (cache->ro)
6024 space_info->bytes_readonly += num_bytes;
6025 cache->reserved -= num_bytes;
6026 space_info->bytes_reserved -= num_bytes;
6027
6028 if (delalloc)
6029 cache->delalloc_bytes -= num_bytes;
6030 }
6031 spin_unlock(&cache->lock);
6032 spin_unlock(&space_info->lock);
6033 return ret;
6034 }
6035
6036 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6037 struct btrfs_root *root)
6038 {
6039 struct btrfs_fs_info *fs_info = root->fs_info;
6040 struct btrfs_caching_control *next;
6041 struct btrfs_caching_control *caching_ctl;
6042 struct btrfs_block_group_cache *cache;
6043
6044 down_write(&fs_info->commit_root_sem);
6045
6046 list_for_each_entry_safe(caching_ctl, next,
6047 &fs_info->caching_block_groups, list) {
6048 cache = caching_ctl->block_group;
6049 if (block_group_cache_done(cache)) {
6050 cache->last_byte_to_unpin = (u64)-1;
6051 list_del_init(&caching_ctl->list);
6052 put_caching_control(caching_ctl);
6053 } else {
6054 cache->last_byte_to_unpin = caching_ctl->progress;
6055 }
6056 }
6057
6058 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6059 fs_info->pinned_extents = &fs_info->freed_extents[1];
6060 else
6061 fs_info->pinned_extents = &fs_info->freed_extents[0];
6062
6063 up_write(&fs_info->commit_root_sem);
6064
6065 update_global_block_rsv(fs_info);
6066 }
6067
6068 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6069 const bool return_free_space)
6070 {
6071 struct btrfs_fs_info *fs_info = root->fs_info;
6072 struct btrfs_block_group_cache *cache = NULL;
6073 struct btrfs_space_info *space_info;
6074 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6075 u64 len;
6076 bool readonly;
6077
6078 while (start <= end) {
6079 readonly = false;
6080 if (!cache ||
6081 start >= cache->key.objectid + cache->key.offset) {
6082 if (cache)
6083 btrfs_put_block_group(cache);
6084 cache = btrfs_lookup_block_group(fs_info, start);
6085 BUG_ON(!cache); /* Logic error */
6086 }
6087
6088 len = cache->key.objectid + cache->key.offset - start;
6089 len = min(len, end + 1 - start);
6090
6091 if (start < cache->last_byte_to_unpin) {
6092 len = min(len, cache->last_byte_to_unpin - start);
6093 if (return_free_space)
6094 btrfs_add_free_space(cache, start, len);
6095 }
6096
6097 start += len;
6098 space_info = cache->space_info;
6099
6100 spin_lock(&space_info->lock);
6101 spin_lock(&cache->lock);
6102 cache->pinned -= len;
6103 space_info->bytes_pinned -= len;
6104 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6105 if (cache->ro) {
6106 space_info->bytes_readonly += len;
6107 readonly = true;
6108 }
6109 spin_unlock(&cache->lock);
6110 if (!readonly && global_rsv->space_info == space_info) {
6111 spin_lock(&global_rsv->lock);
6112 if (!global_rsv->full) {
6113 len = min(len, global_rsv->size -
6114 global_rsv->reserved);
6115 global_rsv->reserved += len;
6116 space_info->bytes_may_use += len;
6117 if (global_rsv->reserved >= global_rsv->size)
6118 global_rsv->full = 1;
6119 }
6120 spin_unlock(&global_rsv->lock);
6121 }
6122 spin_unlock(&space_info->lock);
6123 }
6124
6125 if (cache)
6126 btrfs_put_block_group(cache);
6127 return 0;
6128 }
6129
6130 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6131 struct btrfs_root *root)
6132 {
6133 struct btrfs_fs_info *fs_info = root->fs_info;
6134 struct btrfs_block_group_cache *block_group, *tmp;
6135 struct list_head *deleted_bgs;
6136 struct extent_io_tree *unpin;
6137 u64 start;
6138 u64 end;
6139 int ret;
6140
6141 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6142 unpin = &fs_info->freed_extents[1];
6143 else
6144 unpin = &fs_info->freed_extents[0];
6145
6146 while (!trans->aborted) {
6147 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6148 ret = find_first_extent_bit(unpin, 0, &start, &end,
6149 EXTENT_DIRTY, NULL);
6150 if (ret) {
6151 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6152 break;
6153 }
6154
6155 if (btrfs_test_opt(root, DISCARD))
6156 ret = btrfs_discard_extent(root, start,
6157 end + 1 - start, NULL);
6158
6159 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6160 unpin_extent_range(root, start, end, true);
6161 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6162 cond_resched();
6163 }
6164
6165 /*
6166 * Transaction is finished. We don't need the lock anymore. We
6167 * do need to clean up the block groups in case of a transaction
6168 * abort.
6169 */
6170 deleted_bgs = &trans->transaction->deleted_bgs;
6171 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6172 u64 trimmed = 0;
6173
6174 ret = -EROFS;
6175 if (!trans->aborted)
6176 ret = btrfs_discard_extent(root,
6177 block_group->key.objectid,
6178 block_group->key.offset,
6179 &trimmed);
6180
6181 list_del_init(&block_group->bg_list);
6182 btrfs_put_block_group_trimming(block_group);
6183 btrfs_put_block_group(block_group);
6184
6185 if (ret) {
6186 const char *errstr = btrfs_decode_error(ret);
6187 btrfs_warn(fs_info,
6188 "Discard failed while removing blockgroup: errno=%d %s\n",
6189 ret, errstr);
6190 }
6191 }
6192
6193 return 0;
6194 }
6195
6196 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6197 u64 owner, u64 root_objectid)
6198 {
6199 struct btrfs_space_info *space_info;
6200 u64 flags;
6201
6202 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6203 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6204 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6205 else
6206 flags = BTRFS_BLOCK_GROUP_METADATA;
6207 } else {
6208 flags = BTRFS_BLOCK_GROUP_DATA;
6209 }
6210
6211 space_info = __find_space_info(fs_info, flags);
6212 BUG_ON(!space_info); /* Logic bug */
6213 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6214 }
6215
6216
6217 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6218 struct btrfs_root *root,
6219 struct btrfs_delayed_ref_node *node, u64 parent,
6220 u64 root_objectid, u64 owner_objectid,
6221 u64 owner_offset, int refs_to_drop,
6222 struct btrfs_delayed_extent_op *extent_op)
6223 {
6224 struct btrfs_key key;
6225 struct btrfs_path *path;
6226 struct btrfs_fs_info *info = root->fs_info;
6227 struct btrfs_root *extent_root = info->extent_root;
6228 struct extent_buffer *leaf;
6229 struct btrfs_extent_item *ei;
6230 struct btrfs_extent_inline_ref *iref;
6231 int ret;
6232 int is_data;
6233 int extent_slot = 0;
6234 int found_extent = 0;
6235 int num_to_del = 1;
6236 int no_quota = node->no_quota;
6237 u32 item_size;
6238 u64 refs;
6239 u64 bytenr = node->bytenr;
6240 u64 num_bytes = node->num_bytes;
6241 int last_ref = 0;
6242 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6243 SKINNY_METADATA);
6244
6245 if (!info->quota_enabled || !is_fstree(root_objectid))
6246 no_quota = 1;
6247
6248 path = btrfs_alloc_path();
6249 if (!path)
6250 return -ENOMEM;
6251
6252 path->reada = 1;
6253 path->leave_spinning = 1;
6254
6255 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6256 BUG_ON(!is_data && refs_to_drop != 1);
6257
6258 if (is_data)
6259 skinny_metadata = 0;
6260
6261 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6262 bytenr, num_bytes, parent,
6263 root_objectid, owner_objectid,
6264 owner_offset);
6265 if (ret == 0) {
6266 extent_slot = path->slots[0];
6267 while (extent_slot >= 0) {
6268 btrfs_item_key_to_cpu(path->nodes[0], &key,
6269 extent_slot);
6270 if (key.objectid != bytenr)
6271 break;
6272 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6273 key.offset == num_bytes) {
6274 found_extent = 1;
6275 break;
6276 }
6277 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6278 key.offset == owner_objectid) {
6279 found_extent = 1;
6280 break;
6281 }
6282 if (path->slots[0] - extent_slot > 5)
6283 break;
6284 extent_slot--;
6285 }
6286 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6287 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6288 if (found_extent && item_size < sizeof(*ei))
6289 found_extent = 0;
6290 #endif
6291 if (!found_extent) {
6292 BUG_ON(iref);
6293 ret = remove_extent_backref(trans, extent_root, path,
6294 NULL, refs_to_drop,
6295 is_data, &last_ref);
6296 if (ret) {
6297 btrfs_abort_transaction(trans, extent_root, ret);
6298 goto out;
6299 }
6300 btrfs_release_path(path);
6301 path->leave_spinning = 1;
6302
6303 key.objectid = bytenr;
6304 key.type = BTRFS_EXTENT_ITEM_KEY;
6305 key.offset = num_bytes;
6306
6307 if (!is_data && skinny_metadata) {
6308 key.type = BTRFS_METADATA_ITEM_KEY;
6309 key.offset = owner_objectid;
6310 }
6311
6312 ret = btrfs_search_slot(trans, extent_root,
6313 &key, path, -1, 1);
6314 if (ret > 0 && skinny_metadata && path->slots[0]) {
6315 /*
6316 * Couldn't find our skinny metadata item,
6317 * see if we have ye olde extent item.
6318 */
6319 path->slots[0]--;
6320 btrfs_item_key_to_cpu(path->nodes[0], &key,
6321 path->slots[0]);
6322 if (key.objectid == bytenr &&
6323 key.type == BTRFS_EXTENT_ITEM_KEY &&
6324 key.offset == num_bytes)
6325 ret = 0;
6326 }
6327
6328 if (ret > 0 && skinny_metadata) {
6329 skinny_metadata = false;
6330 key.objectid = bytenr;
6331 key.type = BTRFS_EXTENT_ITEM_KEY;
6332 key.offset = num_bytes;
6333 btrfs_release_path(path);
6334 ret = btrfs_search_slot(trans, extent_root,
6335 &key, path, -1, 1);
6336 }
6337
6338 if (ret) {
6339 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6340 ret, bytenr);
6341 if (ret > 0)
6342 btrfs_print_leaf(extent_root,
6343 path->nodes[0]);
6344 }
6345 if (ret < 0) {
6346 btrfs_abort_transaction(trans, extent_root, ret);
6347 goto out;
6348 }
6349 extent_slot = path->slots[0];
6350 }
6351 } else if (WARN_ON(ret == -ENOENT)) {
6352 btrfs_print_leaf(extent_root, path->nodes[0]);
6353 btrfs_err(info,
6354 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6355 bytenr, parent, root_objectid, owner_objectid,
6356 owner_offset);
6357 btrfs_abort_transaction(trans, extent_root, ret);
6358 goto out;
6359 } else {
6360 btrfs_abort_transaction(trans, extent_root, ret);
6361 goto out;
6362 }
6363
6364 leaf = path->nodes[0];
6365 item_size = btrfs_item_size_nr(leaf, extent_slot);
6366 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6367 if (item_size < sizeof(*ei)) {
6368 BUG_ON(found_extent || extent_slot != path->slots[0]);
6369 ret = convert_extent_item_v0(trans, extent_root, path,
6370 owner_objectid, 0);
6371 if (ret < 0) {
6372 btrfs_abort_transaction(trans, extent_root, ret);
6373 goto out;
6374 }
6375
6376 btrfs_release_path(path);
6377 path->leave_spinning = 1;
6378
6379 key.objectid = bytenr;
6380 key.type = BTRFS_EXTENT_ITEM_KEY;
6381 key.offset = num_bytes;
6382
6383 ret = btrfs_search_slot(trans, extent_root, &key, path,
6384 -1, 1);
6385 if (ret) {
6386 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6387 ret, bytenr);
6388 btrfs_print_leaf(extent_root, path->nodes[0]);
6389 }
6390 if (ret < 0) {
6391 btrfs_abort_transaction(trans, extent_root, ret);
6392 goto out;
6393 }
6394
6395 extent_slot = path->slots[0];
6396 leaf = path->nodes[0];
6397 item_size = btrfs_item_size_nr(leaf, extent_slot);
6398 }
6399 #endif
6400 BUG_ON(item_size < sizeof(*ei));
6401 ei = btrfs_item_ptr(leaf, extent_slot,
6402 struct btrfs_extent_item);
6403 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6404 key.type == BTRFS_EXTENT_ITEM_KEY) {
6405 struct btrfs_tree_block_info *bi;
6406 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6407 bi = (struct btrfs_tree_block_info *)(ei + 1);
6408 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6409 }
6410
6411 refs = btrfs_extent_refs(leaf, ei);
6412 if (refs < refs_to_drop) {
6413 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6414 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6415 ret = -EINVAL;
6416 btrfs_abort_transaction(trans, extent_root, ret);
6417 goto out;
6418 }
6419 refs -= refs_to_drop;
6420
6421 if (refs > 0) {
6422 if (extent_op)
6423 __run_delayed_extent_op(extent_op, leaf, ei);
6424 /*
6425 * In the case of inline back ref, reference count will
6426 * be updated by remove_extent_backref
6427 */
6428 if (iref) {
6429 BUG_ON(!found_extent);
6430 } else {
6431 btrfs_set_extent_refs(leaf, ei, refs);
6432 btrfs_mark_buffer_dirty(leaf);
6433 }
6434 if (found_extent) {
6435 ret = remove_extent_backref(trans, extent_root, path,
6436 iref, refs_to_drop,
6437 is_data, &last_ref);
6438 if (ret) {
6439 btrfs_abort_transaction(trans, extent_root, ret);
6440 goto out;
6441 }
6442 }
6443 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6444 root_objectid);
6445 } else {
6446 if (found_extent) {
6447 BUG_ON(is_data && refs_to_drop !=
6448 extent_data_ref_count(path, iref));
6449 if (iref) {
6450 BUG_ON(path->slots[0] != extent_slot);
6451 } else {
6452 BUG_ON(path->slots[0] != extent_slot + 1);
6453 path->slots[0] = extent_slot;
6454 num_to_del = 2;
6455 }
6456 }
6457
6458 last_ref = 1;
6459 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6460 num_to_del);
6461 if (ret) {
6462 btrfs_abort_transaction(trans, extent_root, ret);
6463 goto out;
6464 }
6465 btrfs_release_path(path);
6466
6467 if (is_data) {
6468 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6469 if (ret) {
6470 btrfs_abort_transaction(trans, extent_root, ret);
6471 goto out;
6472 }
6473 }
6474
6475 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6476 if (ret) {
6477 btrfs_abort_transaction(trans, extent_root, ret);
6478 goto out;
6479 }
6480 }
6481 btrfs_release_path(path);
6482
6483 out:
6484 btrfs_free_path(path);
6485 return ret;
6486 }
6487
6488 /*
6489 * when we free an block, it is possible (and likely) that we free the last
6490 * delayed ref for that extent as well. This searches the delayed ref tree for
6491 * a given extent, and if there are no other delayed refs to be processed, it
6492 * removes it from the tree.
6493 */
6494 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6495 struct btrfs_root *root, u64 bytenr)
6496 {
6497 struct btrfs_delayed_ref_head *head;
6498 struct btrfs_delayed_ref_root *delayed_refs;
6499 int ret = 0;
6500
6501 delayed_refs = &trans->transaction->delayed_refs;
6502 spin_lock(&delayed_refs->lock);
6503 head = btrfs_find_delayed_ref_head(trans, bytenr);
6504 if (!head)
6505 goto out_delayed_unlock;
6506
6507 spin_lock(&head->lock);
6508 if (!list_empty(&head->ref_list))
6509 goto out;
6510
6511 if (head->extent_op) {
6512 if (!head->must_insert_reserved)
6513 goto out;
6514 btrfs_free_delayed_extent_op(head->extent_op);
6515 head->extent_op = NULL;
6516 }
6517
6518 /*
6519 * waiting for the lock here would deadlock. If someone else has it
6520 * locked they are already in the process of dropping it anyway
6521 */
6522 if (!mutex_trylock(&head->mutex))
6523 goto out;
6524
6525 /*
6526 * at this point we have a head with no other entries. Go
6527 * ahead and process it.
6528 */
6529 head->node.in_tree = 0;
6530 rb_erase(&head->href_node, &delayed_refs->href_root);
6531
6532 atomic_dec(&delayed_refs->num_entries);
6533
6534 /*
6535 * we don't take a ref on the node because we're removing it from the
6536 * tree, so we just steal the ref the tree was holding.
6537 */
6538 delayed_refs->num_heads--;
6539 if (head->processing == 0)
6540 delayed_refs->num_heads_ready--;
6541 head->processing = 0;
6542 spin_unlock(&head->lock);
6543 spin_unlock(&delayed_refs->lock);
6544
6545 BUG_ON(head->extent_op);
6546 if (head->must_insert_reserved)
6547 ret = 1;
6548
6549 mutex_unlock(&head->mutex);
6550 btrfs_put_delayed_ref(&head->node);
6551 return ret;
6552 out:
6553 spin_unlock(&head->lock);
6554
6555 out_delayed_unlock:
6556 spin_unlock(&delayed_refs->lock);
6557 return 0;
6558 }
6559
6560 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6561 struct btrfs_root *root,
6562 struct extent_buffer *buf,
6563 u64 parent, int last_ref)
6564 {
6565 int pin = 1;
6566 int ret;
6567
6568 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6569 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6570 buf->start, buf->len,
6571 parent, root->root_key.objectid,
6572 btrfs_header_level(buf),
6573 BTRFS_DROP_DELAYED_REF, NULL, 0);
6574 BUG_ON(ret); /* -ENOMEM */
6575 }
6576
6577 if (!last_ref)
6578 return;
6579
6580 if (btrfs_header_generation(buf) == trans->transid) {
6581 struct btrfs_block_group_cache *cache;
6582
6583 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6584 ret = check_ref_cleanup(trans, root, buf->start);
6585 if (!ret)
6586 goto out;
6587 }
6588
6589 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6590
6591 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6592 pin_down_extent(root, cache, buf->start, buf->len, 1);
6593 btrfs_put_block_group(cache);
6594 goto out;
6595 }
6596
6597 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6598
6599 btrfs_add_free_space(cache, buf->start, buf->len);
6600 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6601 btrfs_put_block_group(cache);
6602 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6603 pin = 0;
6604 }
6605 out:
6606 if (pin)
6607 add_pinned_bytes(root->fs_info, buf->len,
6608 btrfs_header_level(buf),
6609 root->root_key.objectid);
6610
6611 /*
6612 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6613 * anymore.
6614 */
6615 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6616 }
6617
6618 /* Can return -ENOMEM */
6619 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6620 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6621 u64 owner, u64 offset, int no_quota)
6622 {
6623 int ret;
6624 struct btrfs_fs_info *fs_info = root->fs_info;
6625
6626 if (btrfs_test_is_dummy_root(root))
6627 return 0;
6628
6629 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6630
6631 /*
6632 * tree log blocks never actually go into the extent allocation
6633 * tree, just update pinning info and exit early.
6634 */
6635 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6636 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6637 /* unlocks the pinned mutex */
6638 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6639 ret = 0;
6640 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6641 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6642 num_bytes,
6643 parent, root_objectid, (int)owner,
6644 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6645 } else {
6646 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6647 num_bytes,
6648 parent, root_objectid, owner,
6649 offset, BTRFS_DROP_DELAYED_REF,
6650 NULL, no_quota);
6651 }
6652 return ret;
6653 }
6654
6655 /*
6656 * when we wait for progress in the block group caching, its because
6657 * our allocation attempt failed at least once. So, we must sleep
6658 * and let some progress happen before we try again.
6659 *
6660 * This function will sleep at least once waiting for new free space to
6661 * show up, and then it will check the block group free space numbers
6662 * for our min num_bytes. Another option is to have it go ahead
6663 * and look in the rbtree for a free extent of a given size, but this
6664 * is a good start.
6665 *
6666 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6667 * any of the information in this block group.
6668 */
6669 static noinline void
6670 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6671 u64 num_bytes)
6672 {
6673 struct btrfs_caching_control *caching_ctl;
6674
6675 caching_ctl = get_caching_control(cache);
6676 if (!caching_ctl)
6677 return;
6678
6679 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6680 (cache->free_space_ctl->free_space >= num_bytes));
6681
6682 put_caching_control(caching_ctl);
6683 }
6684
6685 static noinline int
6686 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6687 {
6688 struct btrfs_caching_control *caching_ctl;
6689 int ret = 0;
6690
6691 caching_ctl = get_caching_control(cache);
6692 if (!caching_ctl)
6693 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6694
6695 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6696 if (cache->cached == BTRFS_CACHE_ERROR)
6697 ret = -EIO;
6698 put_caching_control(caching_ctl);
6699 return ret;
6700 }
6701
6702 int __get_raid_index(u64 flags)
6703 {
6704 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6705 return BTRFS_RAID_RAID10;
6706 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6707 return BTRFS_RAID_RAID1;
6708 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6709 return BTRFS_RAID_DUP;
6710 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6711 return BTRFS_RAID_RAID0;
6712 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6713 return BTRFS_RAID_RAID5;
6714 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6715 return BTRFS_RAID_RAID6;
6716
6717 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6718 }
6719
6720 int get_block_group_index(struct btrfs_block_group_cache *cache)
6721 {
6722 return __get_raid_index(cache->flags);
6723 }
6724
6725 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6726 [BTRFS_RAID_RAID10] = "raid10",
6727 [BTRFS_RAID_RAID1] = "raid1",
6728 [BTRFS_RAID_DUP] = "dup",
6729 [BTRFS_RAID_RAID0] = "raid0",
6730 [BTRFS_RAID_SINGLE] = "single",
6731 [BTRFS_RAID_RAID5] = "raid5",
6732 [BTRFS_RAID_RAID6] = "raid6",
6733 };
6734
6735 static const char *get_raid_name(enum btrfs_raid_types type)
6736 {
6737 if (type >= BTRFS_NR_RAID_TYPES)
6738 return NULL;
6739
6740 return btrfs_raid_type_names[type];
6741 }
6742
6743 enum btrfs_loop_type {
6744 LOOP_CACHING_NOWAIT = 0,
6745 LOOP_CACHING_WAIT = 1,
6746 LOOP_ALLOC_CHUNK = 2,
6747 LOOP_NO_EMPTY_SIZE = 3,
6748 };
6749
6750 static inline void
6751 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6752 int delalloc)
6753 {
6754 if (delalloc)
6755 down_read(&cache->data_rwsem);
6756 }
6757
6758 static inline void
6759 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6760 int delalloc)
6761 {
6762 btrfs_get_block_group(cache);
6763 if (delalloc)
6764 down_read(&cache->data_rwsem);
6765 }
6766
6767 static struct btrfs_block_group_cache *
6768 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6769 struct btrfs_free_cluster *cluster,
6770 int delalloc)
6771 {
6772 struct btrfs_block_group_cache *used_bg;
6773 bool locked = false;
6774 again:
6775 spin_lock(&cluster->refill_lock);
6776 if (locked) {
6777 if (used_bg == cluster->block_group)
6778 return used_bg;
6779
6780 up_read(&used_bg->data_rwsem);
6781 btrfs_put_block_group(used_bg);
6782 }
6783
6784 used_bg = cluster->block_group;
6785 if (!used_bg)
6786 return NULL;
6787
6788 if (used_bg == block_group)
6789 return used_bg;
6790
6791 btrfs_get_block_group(used_bg);
6792
6793 if (!delalloc)
6794 return used_bg;
6795
6796 if (down_read_trylock(&used_bg->data_rwsem))
6797 return used_bg;
6798
6799 spin_unlock(&cluster->refill_lock);
6800 down_read(&used_bg->data_rwsem);
6801 locked = true;
6802 goto again;
6803 }
6804
6805 static inline void
6806 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6807 int delalloc)
6808 {
6809 if (delalloc)
6810 up_read(&cache->data_rwsem);
6811 btrfs_put_block_group(cache);
6812 }
6813
6814 /*
6815 * walks the btree of allocated extents and find a hole of a given size.
6816 * The key ins is changed to record the hole:
6817 * ins->objectid == start position
6818 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6819 * ins->offset == the size of the hole.
6820 * Any available blocks before search_start are skipped.
6821 *
6822 * If there is no suitable free space, we will record the max size of
6823 * the free space extent currently.
6824 */
6825 static noinline int find_free_extent(struct btrfs_root *orig_root,
6826 u64 num_bytes, u64 empty_size,
6827 u64 hint_byte, struct btrfs_key *ins,
6828 u64 flags, int delalloc)
6829 {
6830 int ret = 0;
6831 struct btrfs_root *root = orig_root->fs_info->extent_root;
6832 struct btrfs_free_cluster *last_ptr = NULL;
6833 struct btrfs_block_group_cache *block_group = NULL;
6834 u64 search_start = 0;
6835 u64 max_extent_size = 0;
6836 int empty_cluster = 2 * 1024 * 1024;
6837 struct btrfs_space_info *space_info;
6838 int loop = 0;
6839 int index = __get_raid_index(flags);
6840 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6841 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6842 bool failed_cluster_refill = false;
6843 bool failed_alloc = false;
6844 bool use_cluster = true;
6845 bool have_caching_bg = false;
6846
6847 WARN_ON(num_bytes < root->sectorsize);
6848 ins->type = BTRFS_EXTENT_ITEM_KEY;
6849 ins->objectid = 0;
6850 ins->offset = 0;
6851
6852 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6853
6854 space_info = __find_space_info(root->fs_info, flags);
6855 if (!space_info) {
6856 btrfs_err(root->fs_info, "No space info for %llu", flags);
6857 return -ENOSPC;
6858 }
6859
6860 /*
6861 * If the space info is for both data and metadata it means we have a
6862 * small filesystem and we can't use the clustering stuff.
6863 */
6864 if (btrfs_mixed_space_info(space_info))
6865 use_cluster = false;
6866
6867 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6868 last_ptr = &root->fs_info->meta_alloc_cluster;
6869 if (!btrfs_test_opt(root, SSD))
6870 empty_cluster = 64 * 1024;
6871 }
6872
6873 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6874 btrfs_test_opt(root, SSD)) {
6875 last_ptr = &root->fs_info->data_alloc_cluster;
6876 }
6877
6878 if (last_ptr) {
6879 spin_lock(&last_ptr->lock);
6880 if (last_ptr->block_group)
6881 hint_byte = last_ptr->window_start;
6882 spin_unlock(&last_ptr->lock);
6883 }
6884
6885 search_start = max(search_start, first_logical_byte(root, 0));
6886 search_start = max(search_start, hint_byte);
6887
6888 if (!last_ptr)
6889 empty_cluster = 0;
6890
6891 if (search_start == hint_byte) {
6892 block_group = btrfs_lookup_block_group(root->fs_info,
6893 search_start);
6894 /*
6895 * we don't want to use the block group if it doesn't match our
6896 * allocation bits, or if its not cached.
6897 *
6898 * However if we are re-searching with an ideal block group
6899 * picked out then we don't care that the block group is cached.
6900 */
6901 if (block_group && block_group_bits(block_group, flags) &&
6902 block_group->cached != BTRFS_CACHE_NO) {
6903 down_read(&space_info->groups_sem);
6904 if (list_empty(&block_group->list) ||
6905 block_group->ro) {
6906 /*
6907 * someone is removing this block group,
6908 * we can't jump into the have_block_group
6909 * target because our list pointers are not
6910 * valid
6911 */
6912 btrfs_put_block_group(block_group);
6913 up_read(&space_info->groups_sem);
6914 } else {
6915 index = get_block_group_index(block_group);
6916 btrfs_lock_block_group(block_group, delalloc);
6917 goto have_block_group;
6918 }
6919 } else if (block_group) {
6920 btrfs_put_block_group(block_group);
6921 }
6922 }
6923 search:
6924 have_caching_bg = false;
6925 down_read(&space_info->groups_sem);
6926 list_for_each_entry(block_group, &space_info->block_groups[index],
6927 list) {
6928 u64 offset;
6929 int cached;
6930
6931 btrfs_grab_block_group(block_group, delalloc);
6932 search_start = block_group->key.objectid;
6933
6934 /*
6935 * this can happen if we end up cycling through all the
6936 * raid types, but we want to make sure we only allocate
6937 * for the proper type.
6938 */
6939 if (!block_group_bits(block_group, flags)) {
6940 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6941 BTRFS_BLOCK_GROUP_RAID1 |
6942 BTRFS_BLOCK_GROUP_RAID5 |
6943 BTRFS_BLOCK_GROUP_RAID6 |
6944 BTRFS_BLOCK_GROUP_RAID10;
6945
6946 /*
6947 * if they asked for extra copies and this block group
6948 * doesn't provide them, bail. This does allow us to
6949 * fill raid0 from raid1.
6950 */
6951 if ((flags & extra) && !(block_group->flags & extra))
6952 goto loop;
6953 }
6954
6955 have_block_group:
6956 cached = block_group_cache_done(block_group);
6957 if (unlikely(!cached)) {
6958 ret = cache_block_group(block_group, 0);
6959 BUG_ON(ret < 0);
6960 ret = 0;
6961 }
6962
6963 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6964 goto loop;
6965 if (unlikely(block_group->ro))
6966 goto loop;
6967
6968 /*
6969 * Ok we want to try and use the cluster allocator, so
6970 * lets look there
6971 */
6972 if (last_ptr) {
6973 struct btrfs_block_group_cache *used_block_group;
6974 unsigned long aligned_cluster;
6975 /*
6976 * the refill lock keeps out other
6977 * people trying to start a new cluster
6978 */
6979 used_block_group = btrfs_lock_cluster(block_group,
6980 last_ptr,
6981 delalloc);
6982 if (!used_block_group)
6983 goto refill_cluster;
6984
6985 if (used_block_group != block_group &&
6986 (used_block_group->ro ||
6987 !block_group_bits(used_block_group, flags)))
6988 goto release_cluster;
6989
6990 offset = btrfs_alloc_from_cluster(used_block_group,
6991 last_ptr,
6992 num_bytes,
6993 used_block_group->key.objectid,
6994 &max_extent_size);
6995 if (offset) {
6996 /* we have a block, we're done */
6997 spin_unlock(&last_ptr->refill_lock);
6998 trace_btrfs_reserve_extent_cluster(root,
6999 used_block_group,
7000 search_start, num_bytes);
7001 if (used_block_group != block_group) {
7002 btrfs_release_block_group(block_group,
7003 delalloc);
7004 block_group = used_block_group;
7005 }
7006 goto checks;
7007 }
7008
7009 WARN_ON(last_ptr->block_group != used_block_group);
7010 release_cluster:
7011 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7012 * set up a new clusters, so lets just skip it
7013 * and let the allocator find whatever block
7014 * it can find. If we reach this point, we
7015 * will have tried the cluster allocator
7016 * plenty of times and not have found
7017 * anything, so we are likely way too
7018 * fragmented for the clustering stuff to find
7019 * anything.
7020 *
7021 * However, if the cluster is taken from the
7022 * current block group, release the cluster
7023 * first, so that we stand a better chance of
7024 * succeeding in the unclustered
7025 * allocation. */
7026 if (loop >= LOOP_NO_EMPTY_SIZE &&
7027 used_block_group != block_group) {
7028 spin_unlock(&last_ptr->refill_lock);
7029 btrfs_release_block_group(used_block_group,
7030 delalloc);
7031 goto unclustered_alloc;
7032 }
7033
7034 /*
7035 * this cluster didn't work out, free it and
7036 * start over
7037 */
7038 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7039
7040 if (used_block_group != block_group)
7041 btrfs_release_block_group(used_block_group,
7042 delalloc);
7043 refill_cluster:
7044 if (loop >= LOOP_NO_EMPTY_SIZE) {
7045 spin_unlock(&last_ptr->refill_lock);
7046 goto unclustered_alloc;
7047 }
7048
7049 aligned_cluster = max_t(unsigned long,
7050 empty_cluster + empty_size,
7051 block_group->full_stripe_len);
7052
7053 /* allocate a cluster in this block group */
7054 ret = btrfs_find_space_cluster(root, block_group,
7055 last_ptr, search_start,
7056 num_bytes,
7057 aligned_cluster);
7058 if (ret == 0) {
7059 /*
7060 * now pull our allocation out of this
7061 * cluster
7062 */
7063 offset = btrfs_alloc_from_cluster(block_group,
7064 last_ptr,
7065 num_bytes,
7066 search_start,
7067 &max_extent_size);
7068 if (offset) {
7069 /* we found one, proceed */
7070 spin_unlock(&last_ptr->refill_lock);
7071 trace_btrfs_reserve_extent_cluster(root,
7072 block_group, search_start,
7073 num_bytes);
7074 goto checks;
7075 }
7076 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7077 && !failed_cluster_refill) {
7078 spin_unlock(&last_ptr->refill_lock);
7079
7080 failed_cluster_refill = true;
7081 wait_block_group_cache_progress(block_group,
7082 num_bytes + empty_cluster + empty_size);
7083 goto have_block_group;
7084 }
7085
7086 /*
7087 * at this point we either didn't find a cluster
7088 * or we weren't able to allocate a block from our
7089 * cluster. Free the cluster we've been trying
7090 * to use, and go to the next block group
7091 */
7092 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7093 spin_unlock(&last_ptr->refill_lock);
7094 goto loop;
7095 }
7096
7097 unclustered_alloc:
7098 spin_lock(&block_group->free_space_ctl->tree_lock);
7099 if (cached &&
7100 block_group->free_space_ctl->free_space <
7101 num_bytes + empty_cluster + empty_size) {
7102 if (block_group->free_space_ctl->free_space >
7103 max_extent_size)
7104 max_extent_size =
7105 block_group->free_space_ctl->free_space;
7106 spin_unlock(&block_group->free_space_ctl->tree_lock);
7107 goto loop;
7108 }
7109 spin_unlock(&block_group->free_space_ctl->tree_lock);
7110
7111 offset = btrfs_find_space_for_alloc(block_group, search_start,
7112 num_bytes, empty_size,
7113 &max_extent_size);
7114 /*
7115 * If we didn't find a chunk, and we haven't failed on this
7116 * block group before, and this block group is in the middle of
7117 * caching and we are ok with waiting, then go ahead and wait
7118 * for progress to be made, and set failed_alloc to true.
7119 *
7120 * If failed_alloc is true then we've already waited on this
7121 * block group once and should move on to the next block group.
7122 */
7123 if (!offset && !failed_alloc && !cached &&
7124 loop > LOOP_CACHING_NOWAIT) {
7125 wait_block_group_cache_progress(block_group,
7126 num_bytes + empty_size);
7127 failed_alloc = true;
7128 goto have_block_group;
7129 } else if (!offset) {
7130 if (!cached)
7131 have_caching_bg = true;
7132 goto loop;
7133 }
7134 checks:
7135 search_start = ALIGN(offset, root->stripesize);
7136
7137 /* move on to the next group */
7138 if (search_start + num_bytes >
7139 block_group->key.objectid + block_group->key.offset) {
7140 btrfs_add_free_space(block_group, offset, num_bytes);
7141 goto loop;
7142 }
7143
7144 if (offset < search_start)
7145 btrfs_add_free_space(block_group, offset,
7146 search_start - offset);
7147 BUG_ON(offset > search_start);
7148
7149 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7150 alloc_type, delalloc);
7151 if (ret == -EAGAIN) {
7152 btrfs_add_free_space(block_group, offset, num_bytes);
7153 goto loop;
7154 }
7155
7156 /* we are all good, lets return */
7157 ins->objectid = search_start;
7158 ins->offset = num_bytes;
7159
7160 trace_btrfs_reserve_extent(orig_root, block_group,
7161 search_start, num_bytes);
7162 btrfs_release_block_group(block_group, delalloc);
7163 break;
7164 loop:
7165 failed_cluster_refill = false;
7166 failed_alloc = false;
7167 BUG_ON(index != get_block_group_index(block_group));
7168 btrfs_release_block_group(block_group, delalloc);
7169 }
7170 up_read(&space_info->groups_sem);
7171
7172 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7173 goto search;
7174
7175 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7176 goto search;
7177
7178 /*
7179 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7180 * caching kthreads as we move along
7181 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7182 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7183 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7184 * again
7185 */
7186 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7187 index = 0;
7188 loop++;
7189 if (loop == LOOP_ALLOC_CHUNK) {
7190 struct btrfs_trans_handle *trans;
7191 int exist = 0;
7192
7193 trans = current->journal_info;
7194 if (trans)
7195 exist = 1;
7196 else
7197 trans = btrfs_join_transaction(root);
7198
7199 if (IS_ERR(trans)) {
7200 ret = PTR_ERR(trans);
7201 goto out;
7202 }
7203
7204 ret = do_chunk_alloc(trans, root, flags,
7205 CHUNK_ALLOC_FORCE);
7206 /*
7207 * Do not bail out on ENOSPC since we
7208 * can do more things.
7209 */
7210 if (ret < 0 && ret != -ENOSPC)
7211 btrfs_abort_transaction(trans,
7212 root, ret);
7213 else
7214 ret = 0;
7215 if (!exist)
7216 btrfs_end_transaction(trans, root);
7217 if (ret)
7218 goto out;
7219 }
7220
7221 if (loop == LOOP_NO_EMPTY_SIZE) {
7222 empty_size = 0;
7223 empty_cluster = 0;
7224 }
7225
7226 goto search;
7227 } else if (!ins->objectid) {
7228 ret = -ENOSPC;
7229 } else if (ins->objectid) {
7230 ret = 0;
7231 }
7232 out:
7233 if (ret == -ENOSPC)
7234 ins->offset = max_extent_size;
7235 return ret;
7236 }
7237
7238 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7239 int dump_block_groups)
7240 {
7241 struct btrfs_block_group_cache *cache;
7242 int index = 0;
7243
7244 spin_lock(&info->lock);
7245 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7246 info->flags,
7247 info->total_bytes - info->bytes_used - info->bytes_pinned -
7248 info->bytes_reserved - info->bytes_readonly,
7249 (info->full) ? "" : "not ");
7250 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7251 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7252 info->total_bytes, info->bytes_used, info->bytes_pinned,
7253 info->bytes_reserved, info->bytes_may_use,
7254 info->bytes_readonly);
7255 spin_unlock(&info->lock);
7256
7257 if (!dump_block_groups)
7258 return;
7259
7260 down_read(&info->groups_sem);
7261 again:
7262 list_for_each_entry(cache, &info->block_groups[index], list) {
7263 spin_lock(&cache->lock);
7264 printk(KERN_INFO "BTRFS: "
7265 "block group %llu has %llu bytes, "
7266 "%llu used %llu pinned %llu reserved %s\n",
7267 cache->key.objectid, cache->key.offset,
7268 btrfs_block_group_used(&cache->item), cache->pinned,
7269 cache->reserved, cache->ro ? "[readonly]" : "");
7270 btrfs_dump_free_space(cache, bytes);
7271 spin_unlock(&cache->lock);
7272 }
7273 if (++index < BTRFS_NR_RAID_TYPES)
7274 goto again;
7275 up_read(&info->groups_sem);
7276 }
7277
7278 int btrfs_reserve_extent(struct btrfs_root *root,
7279 u64 num_bytes, u64 min_alloc_size,
7280 u64 empty_size, u64 hint_byte,
7281 struct btrfs_key *ins, int is_data, int delalloc)
7282 {
7283 bool final_tried = false;
7284 u64 flags;
7285 int ret;
7286
7287 flags = btrfs_get_alloc_profile(root, is_data);
7288 again:
7289 WARN_ON(num_bytes < root->sectorsize);
7290 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7291 flags, delalloc);
7292
7293 if (ret == -ENOSPC) {
7294 if (!final_tried && ins->offset) {
7295 num_bytes = min(num_bytes >> 1, ins->offset);
7296 num_bytes = round_down(num_bytes, root->sectorsize);
7297 num_bytes = max(num_bytes, min_alloc_size);
7298 if (num_bytes == min_alloc_size)
7299 final_tried = true;
7300 goto again;
7301 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7302 struct btrfs_space_info *sinfo;
7303
7304 sinfo = __find_space_info(root->fs_info, flags);
7305 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7306 flags, num_bytes);
7307 if (sinfo)
7308 dump_space_info(sinfo, num_bytes, 1);
7309 }
7310 }
7311
7312 return ret;
7313 }
7314
7315 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7316 u64 start, u64 len,
7317 int pin, int delalloc)
7318 {
7319 struct btrfs_block_group_cache *cache;
7320 int ret = 0;
7321
7322 cache = btrfs_lookup_block_group(root->fs_info, start);
7323 if (!cache) {
7324 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7325 start);
7326 return -ENOSPC;
7327 }
7328
7329 if (pin)
7330 pin_down_extent(root, cache, start, len, 1);
7331 else {
7332 if (btrfs_test_opt(root, DISCARD))
7333 ret = btrfs_discard_extent(root, start, len, NULL);
7334 btrfs_add_free_space(cache, start, len);
7335 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7336 }
7337
7338 btrfs_put_block_group(cache);
7339
7340 trace_btrfs_reserved_extent_free(root, start, len);
7341
7342 return ret;
7343 }
7344
7345 int btrfs_free_reserved_extent(struct btrfs_root *root,
7346 u64 start, u64 len, int delalloc)
7347 {
7348 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7349 }
7350
7351 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7352 u64 start, u64 len)
7353 {
7354 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7355 }
7356
7357 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7358 struct btrfs_root *root,
7359 u64 parent, u64 root_objectid,
7360 u64 flags, u64 owner, u64 offset,
7361 struct btrfs_key *ins, int ref_mod)
7362 {
7363 int ret;
7364 struct btrfs_fs_info *fs_info = root->fs_info;
7365 struct btrfs_extent_item *extent_item;
7366 struct btrfs_extent_inline_ref *iref;
7367 struct btrfs_path *path;
7368 struct extent_buffer *leaf;
7369 int type;
7370 u32 size;
7371
7372 if (parent > 0)
7373 type = BTRFS_SHARED_DATA_REF_KEY;
7374 else
7375 type = BTRFS_EXTENT_DATA_REF_KEY;
7376
7377 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7378
7379 path = btrfs_alloc_path();
7380 if (!path)
7381 return -ENOMEM;
7382
7383 path->leave_spinning = 1;
7384 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7385 ins, size);
7386 if (ret) {
7387 btrfs_free_path(path);
7388 return ret;
7389 }
7390
7391 leaf = path->nodes[0];
7392 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7393 struct btrfs_extent_item);
7394 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7395 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7396 btrfs_set_extent_flags(leaf, extent_item,
7397 flags | BTRFS_EXTENT_FLAG_DATA);
7398
7399 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7400 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7401 if (parent > 0) {
7402 struct btrfs_shared_data_ref *ref;
7403 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7404 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7405 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7406 } else {
7407 struct btrfs_extent_data_ref *ref;
7408 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7409 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7410 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7411 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7412 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7413 }
7414
7415 btrfs_mark_buffer_dirty(path->nodes[0]);
7416 btrfs_free_path(path);
7417
7418 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7419 if (ret) { /* -ENOENT, logic error */
7420 btrfs_err(fs_info, "update block group failed for %llu %llu",
7421 ins->objectid, ins->offset);
7422 BUG();
7423 }
7424 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7425 return ret;
7426 }
7427
7428 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7429 struct btrfs_root *root,
7430 u64 parent, u64 root_objectid,
7431 u64 flags, struct btrfs_disk_key *key,
7432 int level, struct btrfs_key *ins,
7433 int no_quota)
7434 {
7435 int ret;
7436 struct btrfs_fs_info *fs_info = root->fs_info;
7437 struct btrfs_extent_item *extent_item;
7438 struct btrfs_tree_block_info *block_info;
7439 struct btrfs_extent_inline_ref *iref;
7440 struct btrfs_path *path;
7441 struct extent_buffer *leaf;
7442 u32 size = sizeof(*extent_item) + sizeof(*iref);
7443 u64 num_bytes = ins->offset;
7444 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7445 SKINNY_METADATA);
7446
7447 if (!skinny_metadata)
7448 size += sizeof(*block_info);
7449
7450 path = btrfs_alloc_path();
7451 if (!path) {
7452 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7453 root->nodesize);
7454 return -ENOMEM;
7455 }
7456
7457 path->leave_spinning = 1;
7458 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7459 ins, size);
7460 if (ret) {
7461 btrfs_free_path(path);
7462 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7463 root->nodesize);
7464 return ret;
7465 }
7466
7467 leaf = path->nodes[0];
7468 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7469 struct btrfs_extent_item);
7470 btrfs_set_extent_refs(leaf, extent_item, 1);
7471 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7472 btrfs_set_extent_flags(leaf, extent_item,
7473 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7474
7475 if (skinny_metadata) {
7476 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7477 num_bytes = root->nodesize;
7478 } else {
7479 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7480 btrfs_set_tree_block_key(leaf, block_info, key);
7481 btrfs_set_tree_block_level(leaf, block_info, level);
7482 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7483 }
7484
7485 if (parent > 0) {
7486 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7487 btrfs_set_extent_inline_ref_type(leaf, iref,
7488 BTRFS_SHARED_BLOCK_REF_KEY);
7489 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7490 } else {
7491 btrfs_set_extent_inline_ref_type(leaf, iref,
7492 BTRFS_TREE_BLOCK_REF_KEY);
7493 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7494 }
7495
7496 btrfs_mark_buffer_dirty(leaf);
7497 btrfs_free_path(path);
7498
7499 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7500 1);
7501 if (ret) { /* -ENOENT, logic error */
7502 btrfs_err(fs_info, "update block group failed for %llu %llu",
7503 ins->objectid, ins->offset);
7504 BUG();
7505 }
7506
7507 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7508 return ret;
7509 }
7510
7511 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7512 struct btrfs_root *root,
7513 u64 root_objectid, u64 owner,
7514 u64 offset, struct btrfs_key *ins)
7515 {
7516 int ret;
7517
7518 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7519
7520 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7521 ins->offset, 0,
7522 root_objectid, owner, offset,
7523 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7524 return ret;
7525 }
7526
7527 /*
7528 * this is used by the tree logging recovery code. It records that
7529 * an extent has been allocated and makes sure to clear the free
7530 * space cache bits as well
7531 */
7532 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7533 struct btrfs_root *root,
7534 u64 root_objectid, u64 owner, u64 offset,
7535 struct btrfs_key *ins)
7536 {
7537 int ret;
7538 struct btrfs_block_group_cache *block_group;
7539
7540 /*
7541 * Mixed block groups will exclude before processing the log so we only
7542 * need to do the exlude dance if this fs isn't mixed.
7543 */
7544 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7545 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7546 if (ret)
7547 return ret;
7548 }
7549
7550 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7551 if (!block_group)
7552 return -EINVAL;
7553
7554 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7555 RESERVE_ALLOC_NO_ACCOUNT, 0);
7556 BUG_ON(ret); /* logic error */
7557 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7558 0, owner, offset, ins, 1);
7559 btrfs_put_block_group(block_group);
7560 return ret;
7561 }
7562
7563 static struct extent_buffer *
7564 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7565 u64 bytenr, int level)
7566 {
7567 struct extent_buffer *buf;
7568
7569 buf = btrfs_find_create_tree_block(root, bytenr);
7570 if (!buf)
7571 return ERR_PTR(-ENOMEM);
7572 btrfs_set_header_generation(buf, trans->transid);
7573 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7574 btrfs_tree_lock(buf);
7575 clean_tree_block(trans, root->fs_info, buf);
7576 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7577
7578 btrfs_set_lock_blocking(buf);
7579 btrfs_set_buffer_uptodate(buf);
7580
7581 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7582 buf->log_index = root->log_transid % 2;
7583 /*
7584 * we allow two log transactions at a time, use different
7585 * EXENT bit to differentiate dirty pages.
7586 */
7587 if (buf->log_index == 0)
7588 set_extent_dirty(&root->dirty_log_pages, buf->start,
7589 buf->start + buf->len - 1, GFP_NOFS);
7590 else
7591 set_extent_new(&root->dirty_log_pages, buf->start,
7592 buf->start + buf->len - 1, GFP_NOFS);
7593 } else {
7594 buf->log_index = -1;
7595 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7596 buf->start + buf->len - 1, GFP_NOFS);
7597 }
7598 trans->blocks_used++;
7599 /* this returns a buffer locked for blocking */
7600 return buf;
7601 }
7602
7603 static struct btrfs_block_rsv *
7604 use_block_rsv(struct btrfs_trans_handle *trans,
7605 struct btrfs_root *root, u32 blocksize)
7606 {
7607 struct btrfs_block_rsv *block_rsv;
7608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7609 int ret;
7610 bool global_updated = false;
7611
7612 block_rsv = get_block_rsv(trans, root);
7613
7614 if (unlikely(block_rsv->size == 0))
7615 goto try_reserve;
7616 again:
7617 ret = block_rsv_use_bytes(block_rsv, blocksize);
7618 if (!ret)
7619 return block_rsv;
7620
7621 if (block_rsv->failfast)
7622 return ERR_PTR(ret);
7623
7624 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7625 global_updated = true;
7626 update_global_block_rsv(root->fs_info);
7627 goto again;
7628 }
7629
7630 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7631 static DEFINE_RATELIMIT_STATE(_rs,
7632 DEFAULT_RATELIMIT_INTERVAL * 10,
7633 /*DEFAULT_RATELIMIT_BURST*/ 1);
7634 if (__ratelimit(&_rs))
7635 WARN(1, KERN_DEBUG
7636 "BTRFS: block rsv returned %d\n", ret);
7637 }
7638 try_reserve:
7639 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7640 BTRFS_RESERVE_NO_FLUSH);
7641 if (!ret)
7642 return block_rsv;
7643 /*
7644 * If we couldn't reserve metadata bytes try and use some from
7645 * the global reserve if its space type is the same as the global
7646 * reservation.
7647 */
7648 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7649 block_rsv->space_info == global_rsv->space_info) {
7650 ret = block_rsv_use_bytes(global_rsv, blocksize);
7651 if (!ret)
7652 return global_rsv;
7653 }
7654 return ERR_PTR(ret);
7655 }
7656
7657 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7658 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7659 {
7660 block_rsv_add_bytes(block_rsv, blocksize, 0);
7661 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7662 }
7663
7664 /*
7665 * finds a free extent and does all the dirty work required for allocation
7666 * returns the tree buffer or an ERR_PTR on error.
7667 */
7668 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7669 struct btrfs_root *root,
7670 u64 parent, u64 root_objectid,
7671 struct btrfs_disk_key *key, int level,
7672 u64 hint, u64 empty_size)
7673 {
7674 struct btrfs_key ins;
7675 struct btrfs_block_rsv *block_rsv;
7676 struct extent_buffer *buf;
7677 struct btrfs_delayed_extent_op *extent_op;
7678 u64 flags = 0;
7679 int ret;
7680 u32 blocksize = root->nodesize;
7681 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7682 SKINNY_METADATA);
7683
7684 if (btrfs_test_is_dummy_root(root)) {
7685 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7686 level);
7687 if (!IS_ERR(buf))
7688 root->alloc_bytenr += blocksize;
7689 return buf;
7690 }
7691
7692 block_rsv = use_block_rsv(trans, root, blocksize);
7693 if (IS_ERR(block_rsv))
7694 return ERR_CAST(block_rsv);
7695
7696 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7697 empty_size, hint, &ins, 0, 0);
7698 if (ret)
7699 goto out_unuse;
7700
7701 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7702 if (IS_ERR(buf)) {
7703 ret = PTR_ERR(buf);
7704 goto out_free_reserved;
7705 }
7706
7707 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7708 if (parent == 0)
7709 parent = ins.objectid;
7710 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7711 } else
7712 BUG_ON(parent > 0);
7713
7714 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7715 extent_op = btrfs_alloc_delayed_extent_op();
7716 if (!extent_op) {
7717 ret = -ENOMEM;
7718 goto out_free_buf;
7719 }
7720 if (key)
7721 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7722 else
7723 memset(&extent_op->key, 0, sizeof(extent_op->key));
7724 extent_op->flags_to_set = flags;
7725 if (skinny_metadata)
7726 extent_op->update_key = 0;
7727 else
7728 extent_op->update_key = 1;
7729 extent_op->update_flags = 1;
7730 extent_op->is_data = 0;
7731 extent_op->level = level;
7732
7733 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7734 ins.objectid, ins.offset,
7735 parent, root_objectid, level,
7736 BTRFS_ADD_DELAYED_EXTENT,
7737 extent_op, 0);
7738 if (ret)
7739 goto out_free_delayed;
7740 }
7741 return buf;
7742
7743 out_free_delayed:
7744 btrfs_free_delayed_extent_op(extent_op);
7745 out_free_buf:
7746 free_extent_buffer(buf);
7747 out_free_reserved:
7748 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7749 out_unuse:
7750 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7751 return ERR_PTR(ret);
7752 }
7753
7754 struct walk_control {
7755 u64 refs[BTRFS_MAX_LEVEL];
7756 u64 flags[BTRFS_MAX_LEVEL];
7757 struct btrfs_key update_progress;
7758 int stage;
7759 int level;
7760 int shared_level;
7761 int update_ref;
7762 int keep_locks;
7763 int reada_slot;
7764 int reada_count;
7765 int for_reloc;
7766 };
7767
7768 #define DROP_REFERENCE 1
7769 #define UPDATE_BACKREF 2
7770
7771 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7772 struct btrfs_root *root,
7773 struct walk_control *wc,
7774 struct btrfs_path *path)
7775 {
7776 u64 bytenr;
7777 u64 generation;
7778 u64 refs;
7779 u64 flags;
7780 u32 nritems;
7781 u32 blocksize;
7782 struct btrfs_key key;
7783 struct extent_buffer *eb;
7784 int ret;
7785 int slot;
7786 int nread = 0;
7787
7788 if (path->slots[wc->level] < wc->reada_slot) {
7789 wc->reada_count = wc->reada_count * 2 / 3;
7790 wc->reada_count = max(wc->reada_count, 2);
7791 } else {
7792 wc->reada_count = wc->reada_count * 3 / 2;
7793 wc->reada_count = min_t(int, wc->reada_count,
7794 BTRFS_NODEPTRS_PER_BLOCK(root));
7795 }
7796
7797 eb = path->nodes[wc->level];
7798 nritems = btrfs_header_nritems(eb);
7799 blocksize = root->nodesize;
7800
7801 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7802 if (nread >= wc->reada_count)
7803 break;
7804
7805 cond_resched();
7806 bytenr = btrfs_node_blockptr(eb, slot);
7807 generation = btrfs_node_ptr_generation(eb, slot);
7808
7809 if (slot == path->slots[wc->level])
7810 goto reada;
7811
7812 if (wc->stage == UPDATE_BACKREF &&
7813 generation <= root->root_key.offset)
7814 continue;
7815
7816 /* We don't lock the tree block, it's OK to be racy here */
7817 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7818 wc->level - 1, 1, &refs,
7819 &flags);
7820 /* We don't care about errors in readahead. */
7821 if (ret < 0)
7822 continue;
7823 BUG_ON(refs == 0);
7824
7825 if (wc->stage == DROP_REFERENCE) {
7826 if (refs == 1)
7827 goto reada;
7828
7829 if (wc->level == 1 &&
7830 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7831 continue;
7832 if (!wc->update_ref ||
7833 generation <= root->root_key.offset)
7834 continue;
7835 btrfs_node_key_to_cpu(eb, &key, slot);
7836 ret = btrfs_comp_cpu_keys(&key,
7837 &wc->update_progress);
7838 if (ret < 0)
7839 continue;
7840 } else {
7841 if (wc->level == 1 &&
7842 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7843 continue;
7844 }
7845 reada:
7846 readahead_tree_block(root, bytenr);
7847 nread++;
7848 }
7849 wc->reada_slot = slot;
7850 }
7851
7852 /*
7853 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7854 * for later qgroup accounting.
7855 *
7856 * Current, this function does nothing.
7857 */
7858 static int account_leaf_items(struct btrfs_trans_handle *trans,
7859 struct btrfs_root *root,
7860 struct extent_buffer *eb)
7861 {
7862 int nr = btrfs_header_nritems(eb);
7863 int i, extent_type;
7864 struct btrfs_key key;
7865 struct btrfs_file_extent_item *fi;
7866 u64 bytenr, num_bytes;
7867
7868 for (i = 0; i < nr; i++) {
7869 btrfs_item_key_to_cpu(eb, &key, i);
7870
7871 if (key.type != BTRFS_EXTENT_DATA_KEY)
7872 continue;
7873
7874 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7875 /* filter out non qgroup-accountable extents */
7876 extent_type = btrfs_file_extent_type(eb, fi);
7877
7878 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7879 continue;
7880
7881 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7882 if (!bytenr)
7883 continue;
7884
7885 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7886 }
7887 return 0;
7888 }
7889
7890 /*
7891 * Walk up the tree from the bottom, freeing leaves and any interior
7892 * nodes which have had all slots visited. If a node (leaf or
7893 * interior) is freed, the node above it will have it's slot
7894 * incremented. The root node will never be freed.
7895 *
7896 * At the end of this function, we should have a path which has all
7897 * slots incremented to the next position for a search. If we need to
7898 * read a new node it will be NULL and the node above it will have the
7899 * correct slot selected for a later read.
7900 *
7901 * If we increment the root nodes slot counter past the number of
7902 * elements, 1 is returned to signal completion of the search.
7903 */
7904 static int adjust_slots_upwards(struct btrfs_root *root,
7905 struct btrfs_path *path, int root_level)
7906 {
7907 int level = 0;
7908 int nr, slot;
7909 struct extent_buffer *eb;
7910
7911 if (root_level == 0)
7912 return 1;
7913
7914 while (level <= root_level) {
7915 eb = path->nodes[level];
7916 nr = btrfs_header_nritems(eb);
7917 path->slots[level]++;
7918 slot = path->slots[level];
7919 if (slot >= nr || level == 0) {
7920 /*
7921 * Don't free the root - we will detect this
7922 * condition after our loop and return a
7923 * positive value for caller to stop walking the tree.
7924 */
7925 if (level != root_level) {
7926 btrfs_tree_unlock_rw(eb, path->locks[level]);
7927 path->locks[level] = 0;
7928
7929 free_extent_buffer(eb);
7930 path->nodes[level] = NULL;
7931 path->slots[level] = 0;
7932 }
7933 } else {
7934 /*
7935 * We have a valid slot to walk back down
7936 * from. Stop here so caller can process these
7937 * new nodes.
7938 */
7939 break;
7940 }
7941
7942 level++;
7943 }
7944
7945 eb = path->nodes[root_level];
7946 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7947 return 1;
7948
7949 return 0;
7950 }
7951
7952 /*
7953 * root_eb is the subtree root and is locked before this function is called.
7954 * TODO: Modify this function to mark all (including complete shared node)
7955 * to dirty_extent_root to allow it get accounted in qgroup.
7956 */
7957 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7958 struct btrfs_root *root,
7959 struct extent_buffer *root_eb,
7960 u64 root_gen,
7961 int root_level)
7962 {
7963 int ret = 0;
7964 int level;
7965 struct extent_buffer *eb = root_eb;
7966 struct btrfs_path *path = NULL;
7967
7968 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7969 BUG_ON(root_eb == NULL);
7970
7971 if (!root->fs_info->quota_enabled)
7972 return 0;
7973
7974 if (!extent_buffer_uptodate(root_eb)) {
7975 ret = btrfs_read_buffer(root_eb, root_gen);
7976 if (ret)
7977 goto out;
7978 }
7979
7980 if (root_level == 0) {
7981 ret = account_leaf_items(trans, root, root_eb);
7982 goto out;
7983 }
7984
7985 path = btrfs_alloc_path();
7986 if (!path)
7987 return -ENOMEM;
7988
7989 /*
7990 * Walk down the tree. Missing extent blocks are filled in as
7991 * we go. Metadata is accounted every time we read a new
7992 * extent block.
7993 *
7994 * When we reach a leaf, we account for file extent items in it,
7995 * walk back up the tree (adjusting slot pointers as we go)
7996 * and restart the search process.
7997 */
7998 extent_buffer_get(root_eb); /* For path */
7999 path->nodes[root_level] = root_eb;
8000 path->slots[root_level] = 0;
8001 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8002 walk_down:
8003 level = root_level;
8004 while (level >= 0) {
8005 if (path->nodes[level] == NULL) {
8006 int parent_slot;
8007 u64 child_gen;
8008 u64 child_bytenr;
8009
8010 /* We need to get child blockptr/gen from
8011 * parent before we can read it. */
8012 eb = path->nodes[level + 1];
8013 parent_slot = path->slots[level + 1];
8014 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8015 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8016
8017 eb = read_tree_block(root, child_bytenr, child_gen);
8018 if (IS_ERR(eb)) {
8019 ret = PTR_ERR(eb);
8020 goto out;
8021 } else if (!extent_buffer_uptodate(eb)) {
8022 free_extent_buffer(eb);
8023 ret = -EIO;
8024 goto out;
8025 }
8026
8027 path->nodes[level] = eb;
8028 path->slots[level] = 0;
8029
8030 btrfs_tree_read_lock(eb);
8031 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8032 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8033 }
8034
8035 if (level == 0) {
8036 ret = account_leaf_items(trans, root, path->nodes[level]);
8037 if (ret)
8038 goto out;
8039
8040 /* Nonzero return here means we completed our search */
8041 ret = adjust_slots_upwards(root, path, root_level);
8042 if (ret)
8043 break;
8044
8045 /* Restart search with new slots */
8046 goto walk_down;
8047 }
8048
8049 level--;
8050 }
8051
8052 ret = 0;
8053 out:
8054 btrfs_free_path(path);
8055
8056 return ret;
8057 }
8058
8059 /*
8060 * helper to process tree block while walking down the tree.
8061 *
8062 * when wc->stage == UPDATE_BACKREF, this function updates
8063 * back refs for pointers in the block.
8064 *
8065 * NOTE: return value 1 means we should stop walking down.
8066 */
8067 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8068 struct btrfs_root *root,
8069 struct btrfs_path *path,
8070 struct walk_control *wc, int lookup_info)
8071 {
8072 int level = wc->level;
8073 struct extent_buffer *eb = path->nodes[level];
8074 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8075 int ret;
8076
8077 if (wc->stage == UPDATE_BACKREF &&
8078 btrfs_header_owner(eb) != root->root_key.objectid)
8079 return 1;
8080
8081 /*
8082 * when reference count of tree block is 1, it won't increase
8083 * again. once full backref flag is set, we never clear it.
8084 */
8085 if (lookup_info &&
8086 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8087 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8088 BUG_ON(!path->locks[level]);
8089 ret = btrfs_lookup_extent_info(trans, root,
8090 eb->start, level, 1,
8091 &wc->refs[level],
8092 &wc->flags[level]);
8093 BUG_ON(ret == -ENOMEM);
8094 if (ret)
8095 return ret;
8096 BUG_ON(wc->refs[level] == 0);
8097 }
8098
8099 if (wc->stage == DROP_REFERENCE) {
8100 if (wc->refs[level] > 1)
8101 return 1;
8102
8103 if (path->locks[level] && !wc->keep_locks) {
8104 btrfs_tree_unlock_rw(eb, path->locks[level]);
8105 path->locks[level] = 0;
8106 }
8107 return 0;
8108 }
8109
8110 /* wc->stage == UPDATE_BACKREF */
8111 if (!(wc->flags[level] & flag)) {
8112 BUG_ON(!path->locks[level]);
8113 ret = btrfs_inc_ref(trans, root, eb, 1);
8114 BUG_ON(ret); /* -ENOMEM */
8115 ret = btrfs_dec_ref(trans, root, eb, 0);
8116 BUG_ON(ret); /* -ENOMEM */
8117 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8118 eb->len, flag,
8119 btrfs_header_level(eb), 0);
8120 BUG_ON(ret); /* -ENOMEM */
8121 wc->flags[level] |= flag;
8122 }
8123
8124 /*
8125 * the block is shared by multiple trees, so it's not good to
8126 * keep the tree lock
8127 */
8128 if (path->locks[level] && level > 0) {
8129 btrfs_tree_unlock_rw(eb, path->locks[level]);
8130 path->locks[level] = 0;
8131 }
8132 return 0;
8133 }
8134
8135 /*
8136 * helper to process tree block pointer.
8137 *
8138 * when wc->stage == DROP_REFERENCE, this function checks
8139 * reference count of the block pointed to. if the block
8140 * is shared and we need update back refs for the subtree
8141 * rooted at the block, this function changes wc->stage to
8142 * UPDATE_BACKREF. if the block is shared and there is no
8143 * need to update back, this function drops the reference
8144 * to the block.
8145 *
8146 * NOTE: return value 1 means we should stop walking down.
8147 */
8148 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8149 struct btrfs_root *root,
8150 struct btrfs_path *path,
8151 struct walk_control *wc, int *lookup_info)
8152 {
8153 u64 bytenr;
8154 u64 generation;
8155 u64 parent;
8156 u32 blocksize;
8157 struct btrfs_key key;
8158 struct extent_buffer *next;
8159 int level = wc->level;
8160 int reada = 0;
8161 int ret = 0;
8162 bool need_account = false;
8163
8164 generation = btrfs_node_ptr_generation(path->nodes[level],
8165 path->slots[level]);
8166 /*
8167 * if the lower level block was created before the snapshot
8168 * was created, we know there is no need to update back refs
8169 * for the subtree
8170 */
8171 if (wc->stage == UPDATE_BACKREF &&
8172 generation <= root->root_key.offset) {
8173 *lookup_info = 1;
8174 return 1;
8175 }
8176
8177 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8178 blocksize = root->nodesize;
8179
8180 next = btrfs_find_tree_block(root->fs_info, bytenr);
8181 if (!next) {
8182 next = btrfs_find_create_tree_block(root, bytenr);
8183 if (!next)
8184 return -ENOMEM;
8185 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8186 level - 1);
8187 reada = 1;
8188 }
8189 btrfs_tree_lock(next);
8190 btrfs_set_lock_blocking(next);
8191
8192 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8193 &wc->refs[level - 1],
8194 &wc->flags[level - 1]);
8195 if (ret < 0) {
8196 btrfs_tree_unlock(next);
8197 return ret;
8198 }
8199
8200 if (unlikely(wc->refs[level - 1] == 0)) {
8201 btrfs_err(root->fs_info, "Missing references.");
8202 BUG();
8203 }
8204 *lookup_info = 0;
8205
8206 if (wc->stage == DROP_REFERENCE) {
8207 if (wc->refs[level - 1] > 1) {
8208 need_account = true;
8209 if (level == 1 &&
8210 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8211 goto skip;
8212
8213 if (!wc->update_ref ||
8214 generation <= root->root_key.offset)
8215 goto skip;
8216
8217 btrfs_node_key_to_cpu(path->nodes[level], &key,
8218 path->slots[level]);
8219 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8220 if (ret < 0)
8221 goto skip;
8222
8223 wc->stage = UPDATE_BACKREF;
8224 wc->shared_level = level - 1;
8225 }
8226 } else {
8227 if (level == 1 &&
8228 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8229 goto skip;
8230 }
8231
8232 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8233 btrfs_tree_unlock(next);
8234 free_extent_buffer(next);
8235 next = NULL;
8236 *lookup_info = 1;
8237 }
8238
8239 if (!next) {
8240 if (reada && level == 1)
8241 reada_walk_down(trans, root, wc, path);
8242 next = read_tree_block(root, bytenr, generation);
8243 if (IS_ERR(next)) {
8244 return PTR_ERR(next);
8245 } else if (!extent_buffer_uptodate(next)) {
8246 free_extent_buffer(next);
8247 return -EIO;
8248 }
8249 btrfs_tree_lock(next);
8250 btrfs_set_lock_blocking(next);
8251 }
8252
8253 level--;
8254 BUG_ON(level != btrfs_header_level(next));
8255 path->nodes[level] = next;
8256 path->slots[level] = 0;
8257 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8258 wc->level = level;
8259 if (wc->level == 1)
8260 wc->reada_slot = 0;
8261 return 0;
8262 skip:
8263 wc->refs[level - 1] = 0;
8264 wc->flags[level - 1] = 0;
8265 if (wc->stage == DROP_REFERENCE) {
8266 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8267 parent = path->nodes[level]->start;
8268 } else {
8269 BUG_ON(root->root_key.objectid !=
8270 btrfs_header_owner(path->nodes[level]));
8271 parent = 0;
8272 }
8273
8274 if (need_account) {
8275 ret = account_shared_subtree(trans, root, next,
8276 generation, level - 1);
8277 if (ret) {
8278 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8279 "%d accounting shared subtree. Quota "
8280 "is out of sync, rescan required.\n",
8281 root->fs_info->sb->s_id, ret);
8282 }
8283 }
8284 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8285 root->root_key.objectid, level - 1, 0, 0);
8286 BUG_ON(ret); /* -ENOMEM */
8287 }
8288 btrfs_tree_unlock(next);
8289 free_extent_buffer(next);
8290 *lookup_info = 1;
8291 return 1;
8292 }
8293
8294 /*
8295 * helper to process tree block while walking up the tree.
8296 *
8297 * when wc->stage == DROP_REFERENCE, this function drops
8298 * reference count on the block.
8299 *
8300 * when wc->stage == UPDATE_BACKREF, this function changes
8301 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8302 * to UPDATE_BACKREF previously while processing the block.
8303 *
8304 * NOTE: return value 1 means we should stop walking up.
8305 */
8306 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8307 struct btrfs_root *root,
8308 struct btrfs_path *path,
8309 struct walk_control *wc)
8310 {
8311 int ret;
8312 int level = wc->level;
8313 struct extent_buffer *eb = path->nodes[level];
8314 u64 parent = 0;
8315
8316 if (wc->stage == UPDATE_BACKREF) {
8317 BUG_ON(wc->shared_level < level);
8318 if (level < wc->shared_level)
8319 goto out;
8320
8321 ret = find_next_key(path, level + 1, &wc->update_progress);
8322 if (ret > 0)
8323 wc->update_ref = 0;
8324
8325 wc->stage = DROP_REFERENCE;
8326 wc->shared_level = -1;
8327 path->slots[level] = 0;
8328
8329 /*
8330 * check reference count again if the block isn't locked.
8331 * we should start walking down the tree again if reference
8332 * count is one.
8333 */
8334 if (!path->locks[level]) {
8335 BUG_ON(level == 0);
8336 btrfs_tree_lock(eb);
8337 btrfs_set_lock_blocking(eb);
8338 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8339
8340 ret = btrfs_lookup_extent_info(trans, root,
8341 eb->start, level, 1,
8342 &wc->refs[level],
8343 &wc->flags[level]);
8344 if (ret < 0) {
8345 btrfs_tree_unlock_rw(eb, path->locks[level]);
8346 path->locks[level] = 0;
8347 return ret;
8348 }
8349 BUG_ON(wc->refs[level] == 0);
8350 if (wc->refs[level] == 1) {
8351 btrfs_tree_unlock_rw(eb, path->locks[level]);
8352 path->locks[level] = 0;
8353 return 1;
8354 }
8355 }
8356 }
8357
8358 /* wc->stage == DROP_REFERENCE */
8359 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8360
8361 if (wc->refs[level] == 1) {
8362 if (level == 0) {
8363 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8364 ret = btrfs_dec_ref(trans, root, eb, 1);
8365 else
8366 ret = btrfs_dec_ref(trans, root, eb, 0);
8367 BUG_ON(ret); /* -ENOMEM */
8368 ret = account_leaf_items(trans, root, eb);
8369 if (ret) {
8370 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8371 "%d accounting leaf items. Quota "
8372 "is out of sync, rescan required.\n",
8373 root->fs_info->sb->s_id, ret);
8374 }
8375 }
8376 /* make block locked assertion in clean_tree_block happy */
8377 if (!path->locks[level] &&
8378 btrfs_header_generation(eb) == trans->transid) {
8379 btrfs_tree_lock(eb);
8380 btrfs_set_lock_blocking(eb);
8381 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8382 }
8383 clean_tree_block(trans, root->fs_info, eb);
8384 }
8385
8386 if (eb == root->node) {
8387 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8388 parent = eb->start;
8389 else
8390 BUG_ON(root->root_key.objectid !=
8391 btrfs_header_owner(eb));
8392 } else {
8393 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8394 parent = path->nodes[level + 1]->start;
8395 else
8396 BUG_ON(root->root_key.objectid !=
8397 btrfs_header_owner(path->nodes[level + 1]));
8398 }
8399
8400 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8401 out:
8402 wc->refs[level] = 0;
8403 wc->flags[level] = 0;
8404 return 0;
8405 }
8406
8407 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8408 struct btrfs_root *root,
8409 struct btrfs_path *path,
8410 struct walk_control *wc)
8411 {
8412 int level = wc->level;
8413 int lookup_info = 1;
8414 int ret;
8415
8416 while (level >= 0) {
8417 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8418 if (ret > 0)
8419 break;
8420
8421 if (level == 0)
8422 break;
8423
8424 if (path->slots[level] >=
8425 btrfs_header_nritems(path->nodes[level]))
8426 break;
8427
8428 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8429 if (ret > 0) {
8430 path->slots[level]++;
8431 continue;
8432 } else if (ret < 0)
8433 return ret;
8434 level = wc->level;
8435 }
8436 return 0;
8437 }
8438
8439 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8440 struct btrfs_root *root,
8441 struct btrfs_path *path,
8442 struct walk_control *wc, int max_level)
8443 {
8444 int level = wc->level;
8445 int ret;
8446
8447 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8448 while (level < max_level && path->nodes[level]) {
8449 wc->level = level;
8450 if (path->slots[level] + 1 <
8451 btrfs_header_nritems(path->nodes[level])) {
8452 path->slots[level]++;
8453 return 0;
8454 } else {
8455 ret = walk_up_proc(trans, root, path, wc);
8456 if (ret > 0)
8457 return 0;
8458
8459 if (path->locks[level]) {
8460 btrfs_tree_unlock_rw(path->nodes[level],
8461 path->locks[level]);
8462 path->locks[level] = 0;
8463 }
8464 free_extent_buffer(path->nodes[level]);
8465 path->nodes[level] = NULL;
8466 level++;
8467 }
8468 }
8469 return 1;
8470 }
8471
8472 /*
8473 * drop a subvolume tree.
8474 *
8475 * this function traverses the tree freeing any blocks that only
8476 * referenced by the tree.
8477 *
8478 * when a shared tree block is found. this function decreases its
8479 * reference count by one. if update_ref is true, this function
8480 * also make sure backrefs for the shared block and all lower level
8481 * blocks are properly updated.
8482 *
8483 * If called with for_reloc == 0, may exit early with -EAGAIN
8484 */
8485 int btrfs_drop_snapshot(struct btrfs_root *root,
8486 struct btrfs_block_rsv *block_rsv, int update_ref,
8487 int for_reloc)
8488 {
8489 struct btrfs_path *path;
8490 struct btrfs_trans_handle *trans;
8491 struct btrfs_root *tree_root = root->fs_info->tree_root;
8492 struct btrfs_root_item *root_item = &root->root_item;
8493 struct walk_control *wc;
8494 struct btrfs_key key;
8495 int err = 0;
8496 int ret;
8497 int level;
8498 bool root_dropped = false;
8499
8500 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8501
8502 path = btrfs_alloc_path();
8503 if (!path) {
8504 err = -ENOMEM;
8505 goto out;
8506 }
8507
8508 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8509 if (!wc) {
8510 btrfs_free_path(path);
8511 err = -ENOMEM;
8512 goto out;
8513 }
8514
8515 trans = btrfs_start_transaction(tree_root, 0);
8516 if (IS_ERR(trans)) {
8517 err = PTR_ERR(trans);
8518 goto out_free;
8519 }
8520
8521 if (block_rsv)
8522 trans->block_rsv = block_rsv;
8523
8524 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8525 level = btrfs_header_level(root->node);
8526 path->nodes[level] = btrfs_lock_root_node(root);
8527 btrfs_set_lock_blocking(path->nodes[level]);
8528 path->slots[level] = 0;
8529 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8530 memset(&wc->update_progress, 0,
8531 sizeof(wc->update_progress));
8532 } else {
8533 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8534 memcpy(&wc->update_progress, &key,
8535 sizeof(wc->update_progress));
8536
8537 level = root_item->drop_level;
8538 BUG_ON(level == 0);
8539 path->lowest_level = level;
8540 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8541 path->lowest_level = 0;
8542 if (ret < 0) {
8543 err = ret;
8544 goto out_end_trans;
8545 }
8546 WARN_ON(ret > 0);
8547
8548 /*
8549 * unlock our path, this is safe because only this
8550 * function is allowed to delete this snapshot
8551 */
8552 btrfs_unlock_up_safe(path, 0);
8553
8554 level = btrfs_header_level(root->node);
8555 while (1) {
8556 btrfs_tree_lock(path->nodes[level]);
8557 btrfs_set_lock_blocking(path->nodes[level]);
8558 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8559
8560 ret = btrfs_lookup_extent_info(trans, root,
8561 path->nodes[level]->start,
8562 level, 1, &wc->refs[level],
8563 &wc->flags[level]);
8564 if (ret < 0) {
8565 err = ret;
8566 goto out_end_trans;
8567 }
8568 BUG_ON(wc->refs[level] == 0);
8569
8570 if (level == root_item->drop_level)
8571 break;
8572
8573 btrfs_tree_unlock(path->nodes[level]);
8574 path->locks[level] = 0;
8575 WARN_ON(wc->refs[level] != 1);
8576 level--;
8577 }
8578 }
8579
8580 wc->level = level;
8581 wc->shared_level = -1;
8582 wc->stage = DROP_REFERENCE;
8583 wc->update_ref = update_ref;
8584 wc->keep_locks = 0;
8585 wc->for_reloc = for_reloc;
8586 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8587
8588 while (1) {
8589
8590 ret = walk_down_tree(trans, root, path, wc);
8591 if (ret < 0) {
8592 err = ret;
8593 break;
8594 }
8595
8596 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8597 if (ret < 0) {
8598 err = ret;
8599 break;
8600 }
8601
8602 if (ret > 0) {
8603 BUG_ON(wc->stage != DROP_REFERENCE);
8604 break;
8605 }
8606
8607 if (wc->stage == DROP_REFERENCE) {
8608 level = wc->level;
8609 btrfs_node_key(path->nodes[level],
8610 &root_item->drop_progress,
8611 path->slots[level]);
8612 root_item->drop_level = level;
8613 }
8614
8615 BUG_ON(wc->level == 0);
8616 if (btrfs_should_end_transaction(trans, tree_root) ||
8617 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8618 ret = btrfs_update_root(trans, tree_root,
8619 &root->root_key,
8620 root_item);
8621 if (ret) {
8622 btrfs_abort_transaction(trans, tree_root, ret);
8623 err = ret;
8624 goto out_end_trans;
8625 }
8626
8627 btrfs_end_transaction_throttle(trans, tree_root);
8628 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8629 pr_debug("BTRFS: drop snapshot early exit\n");
8630 err = -EAGAIN;
8631 goto out_free;
8632 }
8633
8634 trans = btrfs_start_transaction(tree_root, 0);
8635 if (IS_ERR(trans)) {
8636 err = PTR_ERR(trans);
8637 goto out_free;
8638 }
8639 if (block_rsv)
8640 trans->block_rsv = block_rsv;
8641 }
8642 }
8643 btrfs_release_path(path);
8644 if (err)
8645 goto out_end_trans;
8646
8647 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8648 if (ret) {
8649 btrfs_abort_transaction(trans, tree_root, ret);
8650 goto out_end_trans;
8651 }
8652
8653 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8654 ret = btrfs_find_root(tree_root, &root->root_key, path,
8655 NULL, NULL);
8656 if (ret < 0) {
8657 btrfs_abort_transaction(trans, tree_root, ret);
8658 err = ret;
8659 goto out_end_trans;
8660 } else if (ret > 0) {
8661 /* if we fail to delete the orphan item this time
8662 * around, it'll get picked up the next time.
8663 *
8664 * The most common failure here is just -ENOENT.
8665 */
8666 btrfs_del_orphan_item(trans, tree_root,
8667 root->root_key.objectid);
8668 }
8669 }
8670
8671 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8672 btrfs_add_dropped_root(trans, root);
8673 } else {
8674 free_extent_buffer(root->node);
8675 free_extent_buffer(root->commit_root);
8676 btrfs_put_fs_root(root);
8677 }
8678 root_dropped = true;
8679 out_end_trans:
8680 btrfs_end_transaction_throttle(trans, tree_root);
8681 out_free:
8682 kfree(wc);
8683 btrfs_free_path(path);
8684 out:
8685 /*
8686 * So if we need to stop dropping the snapshot for whatever reason we
8687 * need to make sure to add it back to the dead root list so that we
8688 * keep trying to do the work later. This also cleans up roots if we
8689 * don't have it in the radix (like when we recover after a power fail
8690 * or unmount) so we don't leak memory.
8691 */
8692 if (!for_reloc && root_dropped == false)
8693 btrfs_add_dead_root(root);
8694 if (err && err != -EAGAIN)
8695 btrfs_std_error(root->fs_info, err);
8696 return err;
8697 }
8698
8699 /*
8700 * drop subtree rooted at tree block 'node'.
8701 *
8702 * NOTE: this function will unlock and release tree block 'node'
8703 * only used by relocation code
8704 */
8705 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8706 struct btrfs_root *root,
8707 struct extent_buffer *node,
8708 struct extent_buffer *parent)
8709 {
8710 struct btrfs_path *path;
8711 struct walk_control *wc;
8712 int level;
8713 int parent_level;
8714 int ret = 0;
8715 int wret;
8716
8717 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8718
8719 path = btrfs_alloc_path();
8720 if (!path)
8721 return -ENOMEM;
8722
8723 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8724 if (!wc) {
8725 btrfs_free_path(path);
8726 return -ENOMEM;
8727 }
8728
8729 btrfs_assert_tree_locked(parent);
8730 parent_level = btrfs_header_level(parent);
8731 extent_buffer_get(parent);
8732 path->nodes[parent_level] = parent;
8733 path->slots[parent_level] = btrfs_header_nritems(parent);
8734
8735 btrfs_assert_tree_locked(node);
8736 level = btrfs_header_level(node);
8737 path->nodes[level] = node;
8738 path->slots[level] = 0;
8739 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8740
8741 wc->refs[parent_level] = 1;
8742 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8743 wc->level = level;
8744 wc->shared_level = -1;
8745 wc->stage = DROP_REFERENCE;
8746 wc->update_ref = 0;
8747 wc->keep_locks = 1;
8748 wc->for_reloc = 1;
8749 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8750
8751 while (1) {
8752 wret = walk_down_tree(trans, root, path, wc);
8753 if (wret < 0) {
8754 ret = wret;
8755 break;
8756 }
8757
8758 wret = walk_up_tree(trans, root, path, wc, parent_level);
8759 if (wret < 0)
8760 ret = wret;
8761 if (wret != 0)
8762 break;
8763 }
8764
8765 kfree(wc);
8766 btrfs_free_path(path);
8767 return ret;
8768 }
8769
8770 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8771 {
8772 u64 num_devices;
8773 u64 stripped;
8774
8775 /*
8776 * if restripe for this chunk_type is on pick target profile and
8777 * return, otherwise do the usual balance
8778 */
8779 stripped = get_restripe_target(root->fs_info, flags);
8780 if (stripped)
8781 return extended_to_chunk(stripped);
8782
8783 num_devices = root->fs_info->fs_devices->rw_devices;
8784
8785 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8786 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8787 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8788
8789 if (num_devices == 1) {
8790 stripped |= BTRFS_BLOCK_GROUP_DUP;
8791 stripped = flags & ~stripped;
8792
8793 /* turn raid0 into single device chunks */
8794 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8795 return stripped;
8796
8797 /* turn mirroring into duplication */
8798 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8799 BTRFS_BLOCK_GROUP_RAID10))
8800 return stripped | BTRFS_BLOCK_GROUP_DUP;
8801 } else {
8802 /* they already had raid on here, just return */
8803 if (flags & stripped)
8804 return flags;
8805
8806 stripped |= BTRFS_BLOCK_GROUP_DUP;
8807 stripped = flags & ~stripped;
8808
8809 /* switch duplicated blocks with raid1 */
8810 if (flags & BTRFS_BLOCK_GROUP_DUP)
8811 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8812
8813 /* this is drive concat, leave it alone */
8814 }
8815
8816 return flags;
8817 }
8818
8819 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8820 {
8821 struct btrfs_space_info *sinfo = cache->space_info;
8822 u64 num_bytes;
8823 u64 min_allocable_bytes;
8824 int ret = -ENOSPC;
8825
8826 /*
8827 * We need some metadata space and system metadata space for
8828 * allocating chunks in some corner cases until we force to set
8829 * it to be readonly.
8830 */
8831 if ((sinfo->flags &
8832 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8833 !force)
8834 min_allocable_bytes = 1 * 1024 * 1024;
8835 else
8836 min_allocable_bytes = 0;
8837
8838 spin_lock(&sinfo->lock);
8839 spin_lock(&cache->lock);
8840
8841 if (cache->ro) {
8842 cache->ro++;
8843 ret = 0;
8844 goto out;
8845 }
8846
8847 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8848 cache->bytes_super - btrfs_block_group_used(&cache->item);
8849
8850 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8851 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8852 min_allocable_bytes <= sinfo->total_bytes) {
8853 sinfo->bytes_readonly += num_bytes;
8854 cache->ro++;
8855 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8856 ret = 0;
8857 }
8858 out:
8859 spin_unlock(&cache->lock);
8860 spin_unlock(&sinfo->lock);
8861 return ret;
8862 }
8863
8864 int btrfs_inc_block_group_ro(struct btrfs_root *root,
8865 struct btrfs_block_group_cache *cache)
8866
8867 {
8868 struct btrfs_trans_handle *trans;
8869 u64 alloc_flags;
8870 int ret;
8871
8872 again:
8873 trans = btrfs_join_transaction(root);
8874 if (IS_ERR(trans))
8875 return PTR_ERR(trans);
8876
8877 /*
8878 * we're not allowed to set block groups readonly after the dirty
8879 * block groups cache has started writing. If it already started,
8880 * back off and let this transaction commit
8881 */
8882 mutex_lock(&root->fs_info->ro_block_group_mutex);
8883 if (trans->transaction->dirty_bg_run) {
8884 u64 transid = trans->transid;
8885
8886 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8887 btrfs_end_transaction(trans, root);
8888
8889 ret = btrfs_wait_for_commit(root, transid);
8890 if (ret)
8891 return ret;
8892 goto again;
8893 }
8894
8895 /*
8896 * if we are changing raid levels, try to allocate a corresponding
8897 * block group with the new raid level.
8898 */
8899 alloc_flags = update_block_group_flags(root, cache->flags);
8900 if (alloc_flags != cache->flags) {
8901 ret = do_chunk_alloc(trans, root, alloc_flags,
8902 CHUNK_ALLOC_FORCE);
8903 /*
8904 * ENOSPC is allowed here, we may have enough space
8905 * already allocated at the new raid level to
8906 * carry on
8907 */
8908 if (ret == -ENOSPC)
8909 ret = 0;
8910 if (ret < 0)
8911 goto out;
8912 }
8913
8914 ret = inc_block_group_ro(cache, 0);
8915 if (!ret)
8916 goto out;
8917 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8918 ret = do_chunk_alloc(trans, root, alloc_flags,
8919 CHUNK_ALLOC_FORCE);
8920 if (ret < 0)
8921 goto out;
8922 ret = inc_block_group_ro(cache, 0);
8923 out:
8924 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8925 alloc_flags = update_block_group_flags(root, cache->flags);
8926 lock_chunks(root->fs_info->chunk_root);
8927 check_system_chunk(trans, root, alloc_flags);
8928 unlock_chunks(root->fs_info->chunk_root);
8929 }
8930 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8931
8932 btrfs_end_transaction(trans, root);
8933 return ret;
8934 }
8935
8936 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8937 struct btrfs_root *root, u64 type)
8938 {
8939 u64 alloc_flags = get_alloc_profile(root, type);
8940 return do_chunk_alloc(trans, root, alloc_flags,
8941 CHUNK_ALLOC_FORCE);
8942 }
8943
8944 /*
8945 * helper to account the unused space of all the readonly block group in the
8946 * space_info. takes mirrors into account.
8947 */
8948 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8949 {
8950 struct btrfs_block_group_cache *block_group;
8951 u64 free_bytes = 0;
8952 int factor;
8953
8954 /* It's df, we don't care if it's racey */
8955 if (list_empty(&sinfo->ro_bgs))
8956 return 0;
8957
8958 spin_lock(&sinfo->lock);
8959 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8960 spin_lock(&block_group->lock);
8961
8962 if (!block_group->ro) {
8963 spin_unlock(&block_group->lock);
8964 continue;
8965 }
8966
8967 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8968 BTRFS_BLOCK_GROUP_RAID10 |
8969 BTRFS_BLOCK_GROUP_DUP))
8970 factor = 2;
8971 else
8972 factor = 1;
8973
8974 free_bytes += (block_group->key.offset -
8975 btrfs_block_group_used(&block_group->item)) *
8976 factor;
8977
8978 spin_unlock(&block_group->lock);
8979 }
8980 spin_unlock(&sinfo->lock);
8981
8982 return free_bytes;
8983 }
8984
8985 void btrfs_dec_block_group_ro(struct btrfs_root *root,
8986 struct btrfs_block_group_cache *cache)
8987 {
8988 struct btrfs_space_info *sinfo = cache->space_info;
8989 u64 num_bytes;
8990
8991 BUG_ON(!cache->ro);
8992
8993 spin_lock(&sinfo->lock);
8994 spin_lock(&cache->lock);
8995 if (!--cache->ro) {
8996 num_bytes = cache->key.offset - cache->reserved -
8997 cache->pinned - cache->bytes_super -
8998 btrfs_block_group_used(&cache->item);
8999 sinfo->bytes_readonly -= num_bytes;
9000 list_del_init(&cache->ro_list);
9001 }
9002 spin_unlock(&cache->lock);
9003 spin_unlock(&sinfo->lock);
9004 }
9005
9006 /*
9007 * checks to see if its even possible to relocate this block group.
9008 *
9009 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9010 * ok to go ahead and try.
9011 */
9012 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9013 {
9014 struct btrfs_block_group_cache *block_group;
9015 struct btrfs_space_info *space_info;
9016 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9017 struct btrfs_device *device;
9018 struct btrfs_trans_handle *trans;
9019 u64 min_free;
9020 u64 dev_min = 1;
9021 u64 dev_nr = 0;
9022 u64 target;
9023 int index;
9024 int full = 0;
9025 int ret = 0;
9026
9027 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9028
9029 /* odd, couldn't find the block group, leave it alone */
9030 if (!block_group)
9031 return -1;
9032
9033 min_free = btrfs_block_group_used(&block_group->item);
9034
9035 /* no bytes used, we're good */
9036 if (!min_free)
9037 goto out;
9038
9039 space_info = block_group->space_info;
9040 spin_lock(&space_info->lock);
9041
9042 full = space_info->full;
9043
9044 /*
9045 * if this is the last block group we have in this space, we can't
9046 * relocate it unless we're able to allocate a new chunk below.
9047 *
9048 * Otherwise, we need to make sure we have room in the space to handle
9049 * all of the extents from this block group. If we can, we're good
9050 */
9051 if ((space_info->total_bytes != block_group->key.offset) &&
9052 (space_info->bytes_used + space_info->bytes_reserved +
9053 space_info->bytes_pinned + space_info->bytes_readonly +
9054 min_free < space_info->total_bytes)) {
9055 spin_unlock(&space_info->lock);
9056 goto out;
9057 }
9058 spin_unlock(&space_info->lock);
9059
9060 /*
9061 * ok we don't have enough space, but maybe we have free space on our
9062 * devices to allocate new chunks for relocation, so loop through our
9063 * alloc devices and guess if we have enough space. if this block
9064 * group is going to be restriped, run checks against the target
9065 * profile instead of the current one.
9066 */
9067 ret = -1;
9068
9069 /*
9070 * index:
9071 * 0: raid10
9072 * 1: raid1
9073 * 2: dup
9074 * 3: raid0
9075 * 4: single
9076 */
9077 target = get_restripe_target(root->fs_info, block_group->flags);
9078 if (target) {
9079 index = __get_raid_index(extended_to_chunk(target));
9080 } else {
9081 /*
9082 * this is just a balance, so if we were marked as full
9083 * we know there is no space for a new chunk
9084 */
9085 if (full)
9086 goto out;
9087
9088 index = get_block_group_index(block_group);
9089 }
9090
9091 if (index == BTRFS_RAID_RAID10) {
9092 dev_min = 4;
9093 /* Divide by 2 */
9094 min_free >>= 1;
9095 } else if (index == BTRFS_RAID_RAID1) {
9096 dev_min = 2;
9097 } else if (index == BTRFS_RAID_DUP) {
9098 /* Multiply by 2 */
9099 min_free <<= 1;
9100 } else if (index == BTRFS_RAID_RAID0) {
9101 dev_min = fs_devices->rw_devices;
9102 min_free = div64_u64(min_free, dev_min);
9103 }
9104
9105 /* We need to do this so that we can look at pending chunks */
9106 trans = btrfs_join_transaction(root);
9107 if (IS_ERR(trans)) {
9108 ret = PTR_ERR(trans);
9109 goto out;
9110 }
9111
9112 mutex_lock(&root->fs_info->chunk_mutex);
9113 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9114 u64 dev_offset;
9115
9116 /*
9117 * check to make sure we can actually find a chunk with enough
9118 * space to fit our block group in.
9119 */
9120 if (device->total_bytes > device->bytes_used + min_free &&
9121 !device->is_tgtdev_for_dev_replace) {
9122 ret = find_free_dev_extent(trans, device, min_free,
9123 &dev_offset, NULL);
9124 if (!ret)
9125 dev_nr++;
9126
9127 if (dev_nr >= dev_min)
9128 break;
9129
9130 ret = -1;
9131 }
9132 }
9133 mutex_unlock(&root->fs_info->chunk_mutex);
9134 btrfs_end_transaction(trans, root);
9135 out:
9136 btrfs_put_block_group(block_group);
9137 return ret;
9138 }
9139
9140 static int find_first_block_group(struct btrfs_root *root,
9141 struct btrfs_path *path, struct btrfs_key *key)
9142 {
9143 int ret = 0;
9144 struct btrfs_key found_key;
9145 struct extent_buffer *leaf;
9146 int slot;
9147
9148 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9149 if (ret < 0)
9150 goto out;
9151
9152 while (1) {
9153 slot = path->slots[0];
9154 leaf = path->nodes[0];
9155 if (slot >= btrfs_header_nritems(leaf)) {
9156 ret = btrfs_next_leaf(root, path);
9157 if (ret == 0)
9158 continue;
9159 if (ret < 0)
9160 goto out;
9161 break;
9162 }
9163 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9164
9165 if (found_key.objectid >= key->objectid &&
9166 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9167 ret = 0;
9168 goto out;
9169 }
9170 path->slots[0]++;
9171 }
9172 out:
9173 return ret;
9174 }
9175
9176 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9177 {
9178 struct btrfs_block_group_cache *block_group;
9179 u64 last = 0;
9180
9181 while (1) {
9182 struct inode *inode;
9183
9184 block_group = btrfs_lookup_first_block_group(info, last);
9185 while (block_group) {
9186 spin_lock(&block_group->lock);
9187 if (block_group->iref)
9188 break;
9189 spin_unlock(&block_group->lock);
9190 block_group = next_block_group(info->tree_root,
9191 block_group);
9192 }
9193 if (!block_group) {
9194 if (last == 0)
9195 break;
9196 last = 0;
9197 continue;
9198 }
9199
9200 inode = block_group->inode;
9201 block_group->iref = 0;
9202 block_group->inode = NULL;
9203 spin_unlock(&block_group->lock);
9204 iput(inode);
9205 last = block_group->key.objectid + block_group->key.offset;
9206 btrfs_put_block_group(block_group);
9207 }
9208 }
9209
9210 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9211 {
9212 struct btrfs_block_group_cache *block_group;
9213 struct btrfs_space_info *space_info;
9214 struct btrfs_caching_control *caching_ctl;
9215 struct rb_node *n;
9216
9217 down_write(&info->commit_root_sem);
9218 while (!list_empty(&info->caching_block_groups)) {
9219 caching_ctl = list_entry(info->caching_block_groups.next,
9220 struct btrfs_caching_control, list);
9221 list_del(&caching_ctl->list);
9222 put_caching_control(caching_ctl);
9223 }
9224 up_write(&info->commit_root_sem);
9225
9226 spin_lock(&info->unused_bgs_lock);
9227 while (!list_empty(&info->unused_bgs)) {
9228 block_group = list_first_entry(&info->unused_bgs,
9229 struct btrfs_block_group_cache,
9230 bg_list);
9231 list_del_init(&block_group->bg_list);
9232 btrfs_put_block_group(block_group);
9233 }
9234 spin_unlock(&info->unused_bgs_lock);
9235
9236 spin_lock(&info->block_group_cache_lock);
9237 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9238 block_group = rb_entry(n, struct btrfs_block_group_cache,
9239 cache_node);
9240 rb_erase(&block_group->cache_node,
9241 &info->block_group_cache_tree);
9242 RB_CLEAR_NODE(&block_group->cache_node);
9243 spin_unlock(&info->block_group_cache_lock);
9244
9245 down_write(&block_group->space_info->groups_sem);
9246 list_del(&block_group->list);
9247 up_write(&block_group->space_info->groups_sem);
9248
9249 if (block_group->cached == BTRFS_CACHE_STARTED)
9250 wait_block_group_cache_done(block_group);
9251
9252 /*
9253 * We haven't cached this block group, which means we could
9254 * possibly have excluded extents on this block group.
9255 */
9256 if (block_group->cached == BTRFS_CACHE_NO ||
9257 block_group->cached == BTRFS_CACHE_ERROR)
9258 free_excluded_extents(info->extent_root, block_group);
9259
9260 btrfs_remove_free_space_cache(block_group);
9261 btrfs_put_block_group(block_group);
9262
9263 spin_lock(&info->block_group_cache_lock);
9264 }
9265 spin_unlock(&info->block_group_cache_lock);
9266
9267 /* now that all the block groups are freed, go through and
9268 * free all the space_info structs. This is only called during
9269 * the final stages of unmount, and so we know nobody is
9270 * using them. We call synchronize_rcu() once before we start,
9271 * just to be on the safe side.
9272 */
9273 synchronize_rcu();
9274
9275 release_global_block_rsv(info);
9276
9277 while (!list_empty(&info->space_info)) {
9278 int i;
9279
9280 space_info = list_entry(info->space_info.next,
9281 struct btrfs_space_info,
9282 list);
9283 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9284 if (WARN_ON(space_info->bytes_pinned > 0 ||
9285 space_info->bytes_reserved > 0 ||
9286 space_info->bytes_may_use > 0)) {
9287 dump_space_info(space_info, 0, 0);
9288 }
9289 }
9290 list_del(&space_info->list);
9291 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9292 struct kobject *kobj;
9293 kobj = space_info->block_group_kobjs[i];
9294 space_info->block_group_kobjs[i] = NULL;
9295 if (kobj) {
9296 kobject_del(kobj);
9297 kobject_put(kobj);
9298 }
9299 }
9300 kobject_del(&space_info->kobj);
9301 kobject_put(&space_info->kobj);
9302 }
9303 return 0;
9304 }
9305
9306 static void __link_block_group(struct btrfs_space_info *space_info,
9307 struct btrfs_block_group_cache *cache)
9308 {
9309 int index = get_block_group_index(cache);
9310 bool first = false;
9311
9312 down_write(&space_info->groups_sem);
9313 if (list_empty(&space_info->block_groups[index]))
9314 first = true;
9315 list_add_tail(&cache->list, &space_info->block_groups[index]);
9316 up_write(&space_info->groups_sem);
9317
9318 if (first) {
9319 struct raid_kobject *rkobj;
9320 int ret;
9321
9322 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9323 if (!rkobj)
9324 goto out_err;
9325 rkobj->raid_type = index;
9326 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9327 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9328 "%s", get_raid_name(index));
9329 if (ret) {
9330 kobject_put(&rkobj->kobj);
9331 goto out_err;
9332 }
9333 space_info->block_group_kobjs[index] = &rkobj->kobj;
9334 }
9335
9336 return;
9337 out_err:
9338 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9339 }
9340
9341 static struct btrfs_block_group_cache *
9342 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9343 {
9344 struct btrfs_block_group_cache *cache;
9345
9346 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9347 if (!cache)
9348 return NULL;
9349
9350 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9351 GFP_NOFS);
9352 if (!cache->free_space_ctl) {
9353 kfree(cache);
9354 return NULL;
9355 }
9356
9357 cache->key.objectid = start;
9358 cache->key.offset = size;
9359 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9360
9361 cache->sectorsize = root->sectorsize;
9362 cache->fs_info = root->fs_info;
9363 cache->full_stripe_len = btrfs_full_stripe_len(root,
9364 &root->fs_info->mapping_tree,
9365 start);
9366 atomic_set(&cache->count, 1);
9367 spin_lock_init(&cache->lock);
9368 init_rwsem(&cache->data_rwsem);
9369 INIT_LIST_HEAD(&cache->list);
9370 INIT_LIST_HEAD(&cache->cluster_list);
9371 INIT_LIST_HEAD(&cache->bg_list);
9372 INIT_LIST_HEAD(&cache->ro_list);
9373 INIT_LIST_HEAD(&cache->dirty_list);
9374 INIT_LIST_HEAD(&cache->io_list);
9375 btrfs_init_free_space_ctl(cache);
9376 atomic_set(&cache->trimming, 0);
9377
9378 return cache;
9379 }
9380
9381 int btrfs_read_block_groups(struct btrfs_root *root)
9382 {
9383 struct btrfs_path *path;
9384 int ret;
9385 struct btrfs_block_group_cache *cache;
9386 struct btrfs_fs_info *info = root->fs_info;
9387 struct btrfs_space_info *space_info;
9388 struct btrfs_key key;
9389 struct btrfs_key found_key;
9390 struct extent_buffer *leaf;
9391 int need_clear = 0;
9392 u64 cache_gen;
9393
9394 root = info->extent_root;
9395 key.objectid = 0;
9396 key.offset = 0;
9397 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9398 path = btrfs_alloc_path();
9399 if (!path)
9400 return -ENOMEM;
9401 path->reada = 1;
9402
9403 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9404 if (btrfs_test_opt(root, SPACE_CACHE) &&
9405 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9406 need_clear = 1;
9407 if (btrfs_test_opt(root, CLEAR_CACHE))
9408 need_clear = 1;
9409
9410 while (1) {
9411 ret = find_first_block_group(root, path, &key);
9412 if (ret > 0)
9413 break;
9414 if (ret != 0)
9415 goto error;
9416
9417 leaf = path->nodes[0];
9418 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9419
9420 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9421 found_key.offset);
9422 if (!cache) {
9423 ret = -ENOMEM;
9424 goto error;
9425 }
9426
9427 if (need_clear) {
9428 /*
9429 * When we mount with old space cache, we need to
9430 * set BTRFS_DC_CLEAR and set dirty flag.
9431 *
9432 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9433 * truncate the old free space cache inode and
9434 * setup a new one.
9435 * b) Setting 'dirty flag' makes sure that we flush
9436 * the new space cache info onto disk.
9437 */
9438 if (btrfs_test_opt(root, SPACE_CACHE))
9439 cache->disk_cache_state = BTRFS_DC_CLEAR;
9440 }
9441
9442 read_extent_buffer(leaf, &cache->item,
9443 btrfs_item_ptr_offset(leaf, path->slots[0]),
9444 sizeof(cache->item));
9445 cache->flags = btrfs_block_group_flags(&cache->item);
9446
9447 key.objectid = found_key.objectid + found_key.offset;
9448 btrfs_release_path(path);
9449
9450 /*
9451 * We need to exclude the super stripes now so that the space
9452 * info has super bytes accounted for, otherwise we'll think
9453 * we have more space than we actually do.
9454 */
9455 ret = exclude_super_stripes(root, cache);
9456 if (ret) {
9457 /*
9458 * We may have excluded something, so call this just in
9459 * case.
9460 */
9461 free_excluded_extents(root, cache);
9462 btrfs_put_block_group(cache);
9463 goto error;
9464 }
9465
9466 /*
9467 * check for two cases, either we are full, and therefore
9468 * don't need to bother with the caching work since we won't
9469 * find any space, or we are empty, and we can just add all
9470 * the space in and be done with it. This saves us _alot_ of
9471 * time, particularly in the full case.
9472 */
9473 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9474 cache->last_byte_to_unpin = (u64)-1;
9475 cache->cached = BTRFS_CACHE_FINISHED;
9476 free_excluded_extents(root, cache);
9477 } else if (btrfs_block_group_used(&cache->item) == 0) {
9478 cache->last_byte_to_unpin = (u64)-1;
9479 cache->cached = BTRFS_CACHE_FINISHED;
9480 add_new_free_space(cache, root->fs_info,
9481 found_key.objectid,
9482 found_key.objectid +
9483 found_key.offset);
9484 free_excluded_extents(root, cache);
9485 }
9486
9487 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9488 if (ret) {
9489 btrfs_remove_free_space_cache(cache);
9490 btrfs_put_block_group(cache);
9491 goto error;
9492 }
9493
9494 ret = update_space_info(info, cache->flags, found_key.offset,
9495 btrfs_block_group_used(&cache->item),
9496 &space_info);
9497 if (ret) {
9498 btrfs_remove_free_space_cache(cache);
9499 spin_lock(&info->block_group_cache_lock);
9500 rb_erase(&cache->cache_node,
9501 &info->block_group_cache_tree);
9502 RB_CLEAR_NODE(&cache->cache_node);
9503 spin_unlock(&info->block_group_cache_lock);
9504 btrfs_put_block_group(cache);
9505 goto error;
9506 }
9507
9508 cache->space_info = space_info;
9509 spin_lock(&cache->space_info->lock);
9510 cache->space_info->bytes_readonly += cache->bytes_super;
9511 spin_unlock(&cache->space_info->lock);
9512
9513 __link_block_group(space_info, cache);
9514
9515 set_avail_alloc_bits(root->fs_info, cache->flags);
9516 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9517 inc_block_group_ro(cache, 1);
9518 } else if (btrfs_block_group_used(&cache->item) == 0) {
9519 spin_lock(&info->unused_bgs_lock);
9520 /* Should always be true but just in case. */
9521 if (list_empty(&cache->bg_list)) {
9522 btrfs_get_block_group(cache);
9523 list_add_tail(&cache->bg_list,
9524 &info->unused_bgs);
9525 }
9526 spin_unlock(&info->unused_bgs_lock);
9527 }
9528 }
9529
9530 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9531 if (!(get_alloc_profile(root, space_info->flags) &
9532 (BTRFS_BLOCK_GROUP_RAID10 |
9533 BTRFS_BLOCK_GROUP_RAID1 |
9534 BTRFS_BLOCK_GROUP_RAID5 |
9535 BTRFS_BLOCK_GROUP_RAID6 |
9536 BTRFS_BLOCK_GROUP_DUP)))
9537 continue;
9538 /*
9539 * avoid allocating from un-mirrored block group if there are
9540 * mirrored block groups.
9541 */
9542 list_for_each_entry(cache,
9543 &space_info->block_groups[BTRFS_RAID_RAID0],
9544 list)
9545 inc_block_group_ro(cache, 1);
9546 list_for_each_entry(cache,
9547 &space_info->block_groups[BTRFS_RAID_SINGLE],
9548 list)
9549 inc_block_group_ro(cache, 1);
9550 }
9551
9552 init_global_block_rsv(info);
9553 ret = 0;
9554 error:
9555 btrfs_free_path(path);
9556 return ret;
9557 }
9558
9559 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9560 struct btrfs_root *root)
9561 {
9562 struct btrfs_block_group_cache *block_group, *tmp;
9563 struct btrfs_root *extent_root = root->fs_info->extent_root;
9564 struct btrfs_block_group_item item;
9565 struct btrfs_key key;
9566 int ret = 0;
9567 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9568
9569 trans->can_flush_pending_bgs = false;
9570 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9571 if (ret)
9572 goto next;
9573
9574 spin_lock(&block_group->lock);
9575 memcpy(&item, &block_group->item, sizeof(item));
9576 memcpy(&key, &block_group->key, sizeof(key));
9577 spin_unlock(&block_group->lock);
9578
9579 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9580 sizeof(item));
9581 if (ret)
9582 btrfs_abort_transaction(trans, extent_root, ret);
9583 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9584 key.objectid, key.offset);
9585 if (ret)
9586 btrfs_abort_transaction(trans, extent_root, ret);
9587 next:
9588 list_del_init(&block_group->bg_list);
9589 }
9590 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9591 }
9592
9593 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9594 struct btrfs_root *root, u64 bytes_used,
9595 u64 type, u64 chunk_objectid, u64 chunk_offset,
9596 u64 size)
9597 {
9598 int ret;
9599 struct btrfs_root *extent_root;
9600 struct btrfs_block_group_cache *cache;
9601
9602 extent_root = root->fs_info->extent_root;
9603
9604 btrfs_set_log_full_commit(root->fs_info, trans);
9605
9606 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9607 if (!cache)
9608 return -ENOMEM;
9609
9610 btrfs_set_block_group_used(&cache->item, bytes_used);
9611 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9612 btrfs_set_block_group_flags(&cache->item, type);
9613
9614 cache->flags = type;
9615 cache->last_byte_to_unpin = (u64)-1;
9616 cache->cached = BTRFS_CACHE_FINISHED;
9617 ret = exclude_super_stripes(root, cache);
9618 if (ret) {
9619 /*
9620 * We may have excluded something, so call this just in
9621 * case.
9622 */
9623 free_excluded_extents(root, cache);
9624 btrfs_put_block_group(cache);
9625 return ret;
9626 }
9627
9628 add_new_free_space(cache, root->fs_info, chunk_offset,
9629 chunk_offset + size);
9630
9631 free_excluded_extents(root, cache);
9632
9633 /*
9634 * Call to ensure the corresponding space_info object is created and
9635 * assigned to our block group, but don't update its counters just yet.
9636 * We want our bg to be added to the rbtree with its ->space_info set.
9637 */
9638 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9639 &cache->space_info);
9640 if (ret) {
9641 btrfs_remove_free_space_cache(cache);
9642 btrfs_put_block_group(cache);
9643 return ret;
9644 }
9645
9646 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9647 if (ret) {
9648 btrfs_remove_free_space_cache(cache);
9649 btrfs_put_block_group(cache);
9650 return ret;
9651 }
9652
9653 /*
9654 * Now that our block group has its ->space_info set and is inserted in
9655 * the rbtree, update the space info's counters.
9656 */
9657 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9658 &cache->space_info);
9659 if (ret) {
9660 btrfs_remove_free_space_cache(cache);
9661 spin_lock(&root->fs_info->block_group_cache_lock);
9662 rb_erase(&cache->cache_node,
9663 &root->fs_info->block_group_cache_tree);
9664 RB_CLEAR_NODE(&cache->cache_node);
9665 spin_unlock(&root->fs_info->block_group_cache_lock);
9666 btrfs_put_block_group(cache);
9667 return ret;
9668 }
9669 update_global_block_rsv(root->fs_info);
9670
9671 spin_lock(&cache->space_info->lock);
9672 cache->space_info->bytes_readonly += cache->bytes_super;
9673 spin_unlock(&cache->space_info->lock);
9674
9675 __link_block_group(cache->space_info, cache);
9676
9677 list_add_tail(&cache->bg_list, &trans->new_bgs);
9678
9679 set_avail_alloc_bits(extent_root->fs_info, type);
9680
9681 return 0;
9682 }
9683
9684 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9685 {
9686 u64 extra_flags = chunk_to_extended(flags) &
9687 BTRFS_EXTENDED_PROFILE_MASK;
9688
9689 write_seqlock(&fs_info->profiles_lock);
9690 if (flags & BTRFS_BLOCK_GROUP_DATA)
9691 fs_info->avail_data_alloc_bits &= ~extra_flags;
9692 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9693 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9694 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9695 fs_info->avail_system_alloc_bits &= ~extra_flags;
9696 write_sequnlock(&fs_info->profiles_lock);
9697 }
9698
9699 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9700 struct btrfs_root *root, u64 group_start,
9701 struct extent_map *em)
9702 {
9703 struct btrfs_path *path;
9704 struct btrfs_block_group_cache *block_group;
9705 struct btrfs_free_cluster *cluster;
9706 struct btrfs_root *tree_root = root->fs_info->tree_root;
9707 struct btrfs_key key;
9708 struct inode *inode;
9709 struct kobject *kobj = NULL;
9710 int ret;
9711 int index;
9712 int factor;
9713 struct btrfs_caching_control *caching_ctl = NULL;
9714 bool remove_em;
9715
9716 root = root->fs_info->extent_root;
9717
9718 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9719 BUG_ON(!block_group);
9720 BUG_ON(!block_group->ro);
9721
9722 /*
9723 * Free the reserved super bytes from this block group before
9724 * remove it.
9725 */
9726 free_excluded_extents(root, block_group);
9727
9728 memcpy(&key, &block_group->key, sizeof(key));
9729 index = get_block_group_index(block_group);
9730 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9731 BTRFS_BLOCK_GROUP_RAID1 |
9732 BTRFS_BLOCK_GROUP_RAID10))
9733 factor = 2;
9734 else
9735 factor = 1;
9736
9737 /* make sure this block group isn't part of an allocation cluster */
9738 cluster = &root->fs_info->data_alloc_cluster;
9739 spin_lock(&cluster->refill_lock);
9740 btrfs_return_cluster_to_free_space(block_group, cluster);
9741 spin_unlock(&cluster->refill_lock);
9742
9743 /*
9744 * make sure this block group isn't part of a metadata
9745 * allocation cluster
9746 */
9747 cluster = &root->fs_info->meta_alloc_cluster;
9748 spin_lock(&cluster->refill_lock);
9749 btrfs_return_cluster_to_free_space(block_group, cluster);
9750 spin_unlock(&cluster->refill_lock);
9751
9752 path = btrfs_alloc_path();
9753 if (!path) {
9754 ret = -ENOMEM;
9755 goto out;
9756 }
9757
9758 /*
9759 * get the inode first so any iput calls done for the io_list
9760 * aren't the final iput (no unlinks allowed now)
9761 */
9762 inode = lookup_free_space_inode(tree_root, block_group, path);
9763
9764 mutex_lock(&trans->transaction->cache_write_mutex);
9765 /*
9766 * make sure our free spache cache IO is done before remove the
9767 * free space inode
9768 */
9769 spin_lock(&trans->transaction->dirty_bgs_lock);
9770 if (!list_empty(&block_group->io_list)) {
9771 list_del_init(&block_group->io_list);
9772
9773 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9774
9775 spin_unlock(&trans->transaction->dirty_bgs_lock);
9776 btrfs_wait_cache_io(root, trans, block_group,
9777 &block_group->io_ctl, path,
9778 block_group->key.objectid);
9779 btrfs_put_block_group(block_group);
9780 spin_lock(&trans->transaction->dirty_bgs_lock);
9781 }
9782
9783 if (!list_empty(&block_group->dirty_list)) {
9784 list_del_init(&block_group->dirty_list);
9785 btrfs_put_block_group(block_group);
9786 }
9787 spin_unlock(&trans->transaction->dirty_bgs_lock);
9788 mutex_unlock(&trans->transaction->cache_write_mutex);
9789
9790 if (!IS_ERR(inode)) {
9791 ret = btrfs_orphan_add(trans, inode);
9792 if (ret) {
9793 btrfs_add_delayed_iput(inode);
9794 goto out;
9795 }
9796 clear_nlink(inode);
9797 /* One for the block groups ref */
9798 spin_lock(&block_group->lock);
9799 if (block_group->iref) {
9800 block_group->iref = 0;
9801 block_group->inode = NULL;
9802 spin_unlock(&block_group->lock);
9803 iput(inode);
9804 } else {
9805 spin_unlock(&block_group->lock);
9806 }
9807 /* One for our lookup ref */
9808 btrfs_add_delayed_iput(inode);
9809 }
9810
9811 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9812 key.offset = block_group->key.objectid;
9813 key.type = 0;
9814
9815 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9816 if (ret < 0)
9817 goto out;
9818 if (ret > 0)
9819 btrfs_release_path(path);
9820 if (ret == 0) {
9821 ret = btrfs_del_item(trans, tree_root, path);
9822 if (ret)
9823 goto out;
9824 btrfs_release_path(path);
9825 }
9826
9827 spin_lock(&root->fs_info->block_group_cache_lock);
9828 rb_erase(&block_group->cache_node,
9829 &root->fs_info->block_group_cache_tree);
9830 RB_CLEAR_NODE(&block_group->cache_node);
9831
9832 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9833 root->fs_info->first_logical_byte = (u64)-1;
9834 spin_unlock(&root->fs_info->block_group_cache_lock);
9835
9836 down_write(&block_group->space_info->groups_sem);
9837 /*
9838 * we must use list_del_init so people can check to see if they
9839 * are still on the list after taking the semaphore
9840 */
9841 list_del_init(&block_group->list);
9842 if (list_empty(&block_group->space_info->block_groups[index])) {
9843 kobj = block_group->space_info->block_group_kobjs[index];
9844 block_group->space_info->block_group_kobjs[index] = NULL;
9845 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9846 }
9847 up_write(&block_group->space_info->groups_sem);
9848 if (kobj) {
9849 kobject_del(kobj);
9850 kobject_put(kobj);
9851 }
9852
9853 if (block_group->has_caching_ctl)
9854 caching_ctl = get_caching_control(block_group);
9855 if (block_group->cached == BTRFS_CACHE_STARTED)
9856 wait_block_group_cache_done(block_group);
9857 if (block_group->has_caching_ctl) {
9858 down_write(&root->fs_info->commit_root_sem);
9859 if (!caching_ctl) {
9860 struct btrfs_caching_control *ctl;
9861
9862 list_for_each_entry(ctl,
9863 &root->fs_info->caching_block_groups, list)
9864 if (ctl->block_group == block_group) {
9865 caching_ctl = ctl;
9866 atomic_inc(&caching_ctl->count);
9867 break;
9868 }
9869 }
9870 if (caching_ctl)
9871 list_del_init(&caching_ctl->list);
9872 up_write(&root->fs_info->commit_root_sem);
9873 if (caching_ctl) {
9874 /* Once for the caching bgs list and once for us. */
9875 put_caching_control(caching_ctl);
9876 put_caching_control(caching_ctl);
9877 }
9878 }
9879
9880 spin_lock(&trans->transaction->dirty_bgs_lock);
9881 if (!list_empty(&block_group->dirty_list)) {
9882 WARN_ON(1);
9883 }
9884 if (!list_empty(&block_group->io_list)) {
9885 WARN_ON(1);
9886 }
9887 spin_unlock(&trans->transaction->dirty_bgs_lock);
9888 btrfs_remove_free_space_cache(block_group);
9889
9890 spin_lock(&block_group->space_info->lock);
9891 list_del_init(&block_group->ro_list);
9892
9893 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9894 WARN_ON(block_group->space_info->total_bytes
9895 < block_group->key.offset);
9896 WARN_ON(block_group->space_info->bytes_readonly
9897 < block_group->key.offset);
9898 WARN_ON(block_group->space_info->disk_total
9899 < block_group->key.offset * factor);
9900 }
9901 block_group->space_info->total_bytes -= block_group->key.offset;
9902 block_group->space_info->bytes_readonly -= block_group->key.offset;
9903 block_group->space_info->disk_total -= block_group->key.offset * factor;
9904
9905 spin_unlock(&block_group->space_info->lock);
9906
9907 memcpy(&key, &block_group->key, sizeof(key));
9908
9909 lock_chunks(root);
9910 if (!list_empty(&em->list)) {
9911 /* We're in the transaction->pending_chunks list. */
9912 free_extent_map(em);
9913 }
9914 spin_lock(&block_group->lock);
9915 block_group->removed = 1;
9916 /*
9917 * At this point trimming can't start on this block group, because we
9918 * removed the block group from the tree fs_info->block_group_cache_tree
9919 * so no one can't find it anymore and even if someone already got this
9920 * block group before we removed it from the rbtree, they have already
9921 * incremented block_group->trimming - if they didn't, they won't find
9922 * any free space entries because we already removed them all when we
9923 * called btrfs_remove_free_space_cache().
9924 *
9925 * And we must not remove the extent map from the fs_info->mapping_tree
9926 * to prevent the same logical address range and physical device space
9927 * ranges from being reused for a new block group. This is because our
9928 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9929 * completely transactionless, so while it is trimming a range the
9930 * currently running transaction might finish and a new one start,
9931 * allowing for new block groups to be created that can reuse the same
9932 * physical device locations unless we take this special care.
9933 *
9934 * There may also be an implicit trim operation if the file system
9935 * is mounted with -odiscard. The same protections must remain
9936 * in place until the extents have been discarded completely when
9937 * the transaction commit has completed.
9938 */
9939 remove_em = (atomic_read(&block_group->trimming) == 0);
9940 /*
9941 * Make sure a trimmer task always sees the em in the pinned_chunks list
9942 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9943 * before checking block_group->removed).
9944 */
9945 if (!remove_em) {
9946 /*
9947 * Our em might be in trans->transaction->pending_chunks which
9948 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9949 * and so is the fs_info->pinned_chunks list.
9950 *
9951 * So at this point we must be holding the chunk_mutex to avoid
9952 * any races with chunk allocation (more specifically at
9953 * volumes.c:contains_pending_extent()), to ensure it always
9954 * sees the em, either in the pending_chunks list or in the
9955 * pinned_chunks list.
9956 */
9957 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9958 }
9959 spin_unlock(&block_group->lock);
9960
9961 if (remove_em) {
9962 struct extent_map_tree *em_tree;
9963
9964 em_tree = &root->fs_info->mapping_tree.map_tree;
9965 write_lock(&em_tree->lock);
9966 /*
9967 * The em might be in the pending_chunks list, so make sure the
9968 * chunk mutex is locked, since remove_extent_mapping() will
9969 * delete us from that list.
9970 */
9971 remove_extent_mapping(em_tree, em);
9972 write_unlock(&em_tree->lock);
9973 /* once for the tree */
9974 free_extent_map(em);
9975 }
9976
9977 unlock_chunks(root);
9978
9979 btrfs_put_block_group(block_group);
9980 btrfs_put_block_group(block_group);
9981
9982 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9983 if (ret > 0)
9984 ret = -EIO;
9985 if (ret < 0)
9986 goto out;
9987
9988 ret = btrfs_del_item(trans, root, path);
9989 out:
9990 btrfs_free_path(path);
9991 return ret;
9992 }
9993
9994 /*
9995 * Process the unused_bgs list and remove any that don't have any allocated
9996 * space inside of them.
9997 */
9998 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9999 {
10000 struct btrfs_block_group_cache *block_group;
10001 struct btrfs_space_info *space_info;
10002 struct btrfs_root *root = fs_info->extent_root;
10003 struct btrfs_trans_handle *trans;
10004 int ret = 0;
10005
10006 if (!fs_info->open)
10007 return;
10008
10009 spin_lock(&fs_info->unused_bgs_lock);
10010 while (!list_empty(&fs_info->unused_bgs)) {
10011 u64 start, end;
10012 int trimming;
10013
10014 block_group = list_first_entry(&fs_info->unused_bgs,
10015 struct btrfs_block_group_cache,
10016 bg_list);
10017 space_info = block_group->space_info;
10018 list_del_init(&block_group->bg_list);
10019 if (ret || btrfs_mixed_space_info(space_info)) {
10020 btrfs_put_block_group(block_group);
10021 continue;
10022 }
10023 spin_unlock(&fs_info->unused_bgs_lock);
10024
10025 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10026
10027 /* Don't want to race with allocators so take the groups_sem */
10028 down_write(&space_info->groups_sem);
10029 spin_lock(&block_group->lock);
10030 if (block_group->reserved ||
10031 btrfs_block_group_used(&block_group->item) ||
10032 block_group->ro) {
10033 /*
10034 * We want to bail if we made new allocations or have
10035 * outstanding allocations in this block group. We do
10036 * the ro check in case balance is currently acting on
10037 * this block group.
10038 */
10039 spin_unlock(&block_group->lock);
10040 up_write(&space_info->groups_sem);
10041 goto next;
10042 }
10043 spin_unlock(&block_group->lock);
10044
10045 /* We don't want to force the issue, only flip if it's ok. */
10046 ret = inc_block_group_ro(block_group, 0);
10047 up_write(&space_info->groups_sem);
10048 if (ret < 0) {
10049 ret = 0;
10050 goto next;
10051 }
10052
10053 /*
10054 * Want to do this before we do anything else so we can recover
10055 * properly if we fail to join the transaction.
10056 */
10057 /* 1 for btrfs_orphan_reserve_metadata() */
10058 trans = btrfs_start_transaction(root, 1);
10059 if (IS_ERR(trans)) {
10060 btrfs_dec_block_group_ro(root, block_group);
10061 ret = PTR_ERR(trans);
10062 goto next;
10063 }
10064
10065 /*
10066 * We could have pending pinned extents for this block group,
10067 * just delete them, we don't care about them anymore.
10068 */
10069 start = block_group->key.objectid;
10070 end = start + block_group->key.offset - 1;
10071 /*
10072 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10073 * btrfs_finish_extent_commit(). If we are at transaction N,
10074 * another task might be running finish_extent_commit() for the
10075 * previous transaction N - 1, and have seen a range belonging
10076 * to the block group in freed_extents[] before we were able to
10077 * clear the whole block group range from freed_extents[]. This
10078 * means that task can lookup for the block group after we
10079 * unpinned it from freed_extents[] and removed it, leading to
10080 * a BUG_ON() at btrfs_unpin_extent_range().
10081 */
10082 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10083 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10084 EXTENT_DIRTY, GFP_NOFS);
10085 if (ret) {
10086 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10087 btrfs_dec_block_group_ro(root, block_group);
10088 goto end_trans;
10089 }
10090 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10091 EXTENT_DIRTY, GFP_NOFS);
10092 if (ret) {
10093 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10094 btrfs_dec_block_group_ro(root, block_group);
10095 goto end_trans;
10096 }
10097 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10098
10099 /* Reset pinned so btrfs_put_block_group doesn't complain */
10100 spin_lock(&space_info->lock);
10101 spin_lock(&block_group->lock);
10102
10103 space_info->bytes_pinned -= block_group->pinned;
10104 space_info->bytes_readonly += block_group->pinned;
10105 percpu_counter_add(&space_info->total_bytes_pinned,
10106 -block_group->pinned);
10107 block_group->pinned = 0;
10108
10109 spin_unlock(&block_group->lock);
10110 spin_unlock(&space_info->lock);
10111
10112 /* DISCARD can flip during remount */
10113 trimming = btrfs_test_opt(root, DISCARD);
10114
10115 /* Implicit trim during transaction commit. */
10116 if (trimming)
10117 btrfs_get_block_group_trimming(block_group);
10118
10119 /*
10120 * Btrfs_remove_chunk will abort the transaction if things go
10121 * horribly wrong.
10122 */
10123 ret = btrfs_remove_chunk(trans, root,
10124 block_group->key.objectid);
10125
10126 if (ret) {
10127 if (trimming)
10128 btrfs_put_block_group_trimming(block_group);
10129 goto end_trans;
10130 }
10131
10132 /*
10133 * If we're not mounted with -odiscard, we can just forget
10134 * about this block group. Otherwise we'll need to wait
10135 * until transaction commit to do the actual discard.
10136 */
10137 if (trimming) {
10138 WARN_ON(!list_empty(&block_group->bg_list));
10139 spin_lock(&trans->transaction->deleted_bgs_lock);
10140 list_move(&block_group->bg_list,
10141 &trans->transaction->deleted_bgs);
10142 spin_unlock(&trans->transaction->deleted_bgs_lock);
10143 btrfs_get_block_group(block_group);
10144 }
10145 end_trans:
10146 btrfs_end_transaction(trans, root);
10147 next:
10148 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10149 btrfs_put_block_group(block_group);
10150 spin_lock(&fs_info->unused_bgs_lock);
10151 }
10152 spin_unlock(&fs_info->unused_bgs_lock);
10153 }
10154
10155 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10156 {
10157 struct btrfs_space_info *space_info;
10158 struct btrfs_super_block *disk_super;
10159 u64 features;
10160 u64 flags;
10161 int mixed = 0;
10162 int ret;
10163
10164 disk_super = fs_info->super_copy;
10165 if (!btrfs_super_root(disk_super))
10166 return 1;
10167
10168 features = btrfs_super_incompat_flags(disk_super);
10169 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10170 mixed = 1;
10171
10172 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10173 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10174 if (ret)
10175 goto out;
10176
10177 if (mixed) {
10178 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10179 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10180 } else {
10181 flags = BTRFS_BLOCK_GROUP_METADATA;
10182 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10183 if (ret)
10184 goto out;
10185
10186 flags = BTRFS_BLOCK_GROUP_DATA;
10187 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10188 }
10189 out:
10190 return ret;
10191 }
10192
10193 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10194 {
10195 return unpin_extent_range(root, start, end, false);
10196 }
10197
10198 /*
10199 * It used to be that old block groups would be left around forever.
10200 * Iterating over them would be enough to trim unused space. Since we
10201 * now automatically remove them, we also need to iterate over unallocated
10202 * space.
10203 *
10204 * We don't want a transaction for this since the discard may take a
10205 * substantial amount of time. We don't require that a transaction be
10206 * running, but we do need to take a running transaction into account
10207 * to ensure that we're not discarding chunks that were released in
10208 * the current transaction.
10209 *
10210 * Holding the chunks lock will prevent other threads from allocating
10211 * or releasing chunks, but it won't prevent a running transaction
10212 * from committing and releasing the memory that the pending chunks
10213 * list head uses. For that, we need to take a reference to the
10214 * transaction.
10215 */
10216 static int btrfs_trim_free_extents(struct btrfs_device *device,
10217 u64 minlen, u64 *trimmed)
10218 {
10219 u64 start = 0, len = 0;
10220 int ret;
10221
10222 *trimmed = 0;
10223
10224 /* Not writeable = nothing to do. */
10225 if (!device->writeable)
10226 return 0;
10227
10228 /* No free space = nothing to do. */
10229 if (device->total_bytes <= device->bytes_used)
10230 return 0;
10231
10232 ret = 0;
10233
10234 while (1) {
10235 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10236 struct btrfs_transaction *trans;
10237 u64 bytes;
10238
10239 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10240 if (ret)
10241 return ret;
10242
10243 down_read(&fs_info->commit_root_sem);
10244
10245 spin_lock(&fs_info->trans_lock);
10246 trans = fs_info->running_transaction;
10247 if (trans)
10248 atomic_inc(&trans->use_count);
10249 spin_unlock(&fs_info->trans_lock);
10250
10251 ret = find_free_dev_extent_start(trans, device, minlen, start,
10252 &start, &len);
10253 if (trans)
10254 btrfs_put_transaction(trans);
10255
10256 if (ret) {
10257 up_read(&fs_info->commit_root_sem);
10258 mutex_unlock(&fs_info->chunk_mutex);
10259 if (ret == -ENOSPC)
10260 ret = 0;
10261 break;
10262 }
10263
10264 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10265 up_read(&fs_info->commit_root_sem);
10266 mutex_unlock(&fs_info->chunk_mutex);
10267
10268 if (ret)
10269 break;
10270
10271 start += len;
10272 *trimmed += bytes;
10273
10274 if (fatal_signal_pending(current)) {
10275 ret = -ERESTARTSYS;
10276 break;
10277 }
10278
10279 cond_resched();
10280 }
10281
10282 return ret;
10283 }
10284
10285 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10286 {
10287 struct btrfs_fs_info *fs_info = root->fs_info;
10288 struct btrfs_block_group_cache *cache = NULL;
10289 struct btrfs_device *device;
10290 struct list_head *devices;
10291 u64 group_trimmed;
10292 u64 start;
10293 u64 end;
10294 u64 trimmed = 0;
10295 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10296 int ret = 0;
10297
10298 /*
10299 * try to trim all FS space, our block group may start from non-zero.
10300 */
10301 if (range->len == total_bytes)
10302 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10303 else
10304 cache = btrfs_lookup_block_group(fs_info, range->start);
10305
10306 while (cache) {
10307 if (cache->key.objectid >= (range->start + range->len)) {
10308 btrfs_put_block_group(cache);
10309 break;
10310 }
10311
10312 start = max(range->start, cache->key.objectid);
10313 end = min(range->start + range->len,
10314 cache->key.objectid + cache->key.offset);
10315
10316 if (end - start >= range->minlen) {
10317 if (!block_group_cache_done(cache)) {
10318 ret = cache_block_group(cache, 0);
10319 if (ret) {
10320 btrfs_put_block_group(cache);
10321 break;
10322 }
10323 ret = wait_block_group_cache_done(cache);
10324 if (ret) {
10325 btrfs_put_block_group(cache);
10326 break;
10327 }
10328 }
10329 ret = btrfs_trim_block_group(cache,
10330 &group_trimmed,
10331 start,
10332 end,
10333 range->minlen);
10334
10335 trimmed += group_trimmed;
10336 if (ret) {
10337 btrfs_put_block_group(cache);
10338 break;
10339 }
10340 }
10341
10342 cache = next_block_group(fs_info->tree_root, cache);
10343 }
10344
10345 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10346 devices = &root->fs_info->fs_devices->alloc_list;
10347 list_for_each_entry(device, devices, dev_alloc_list) {
10348 ret = btrfs_trim_free_extents(device, range->minlen,
10349 &group_trimmed);
10350 if (ret)
10351 break;
10352
10353 trimmed += group_trimmed;
10354 }
10355 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10356
10357 range->len = trimmed;
10358 return ret;
10359 }
10360
10361 /*
10362 * btrfs_{start,end}_write_no_snapshoting() are similar to
10363 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10364 * data into the page cache through nocow before the subvolume is snapshoted,
10365 * but flush the data into disk after the snapshot creation, or to prevent
10366 * operations while snapshoting is ongoing and that cause the snapshot to be
10367 * inconsistent (writes followed by expanding truncates for example).
10368 */
10369 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10370 {
10371 percpu_counter_dec(&root->subv_writers->counter);
10372 /*
10373 * Make sure counter is updated before we wake up
10374 * waiters.
10375 */
10376 smp_mb();
10377 if (waitqueue_active(&root->subv_writers->wait))
10378 wake_up(&root->subv_writers->wait);
10379 }
10380
10381 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10382 {
10383 if (atomic_read(&root->will_be_snapshoted))
10384 return 0;
10385
10386 percpu_counter_inc(&root->subv_writers->counter);
10387 /*
10388 * Make sure counter is updated before we check for snapshot creation.
10389 */
10390 smp_mb();
10391 if (atomic_read(&root->will_be_snapshoted)) {
10392 btrfs_end_write_no_snapshoting(root);
10393 return 0;
10394 }
10395 return 1;
10396 }