]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
65659bd55a4e638a7c2d62cd7e83b50c7d7647a6
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 kfree(cache->free_space_ctl);
146 kfree(cache);
147 }
148 }
149
150 /*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group_cache *block_group)
156 {
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188 }
189
190 /*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197 {
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
226 if (ret) {
227 btrfs_get_block_group(ret);
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234 }
235
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237 u64 start, u64 num_bytes)
238 {
239 u64 end = start + num_bytes - 1;
240 set_extent_bits(&fs_info->freed_extents[0],
241 start, end, EXTENT_UPTODATE);
242 set_extent_bits(&fs_info->freed_extents[1],
243 start, end, EXTENT_UPTODATE);
244 return 0;
245 }
246
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 start, end;
251
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
255 clear_extent_bits(&fs_info->freed_extents[0],
256 start, end, EXTENT_UPTODATE);
257 clear_extent_bits(&fs_info->freed_extents[1],
258 start, end, EXTENT_UPTODATE);
259 }
260
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262 struct btrfs_block_group_cache *cache)
263 {
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(fs_info, cache->key.objectid,
273 stripe_len);
274 if (ret)
275 return ret;
276 }
277
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281 bytenr, 0, &logical, &nr, &stripe_len);
282 if (ret)
283 return ret;
284
285 while (nr--) {
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
306 ret = add_excluded_extent(fs_info, start, len);
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
311 }
312
313 kfree(logical);
314 }
315 return 0;
316 }
317
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 refcount_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (refcount_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344 struct btrfs_fs_info *fs_info = block_group->fs_info;
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348 fs_info->nodesize : fs_info->sectorsize;
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359 }
360 #endif
361
362 /*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370 u64 extent_start, extent_end, size, total_added = 0;
371 int ret;
372
373 while (start < end) {
374 ret = find_first_extent_bit(info->pinned_extents, start,
375 &extent_start, &extent_end,
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
378 if (ret)
379 break;
380
381 if (extent_start <= start) {
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
385 total_added += size;
386 ret = btrfs_add_free_space(block_group, start,
387 size);
388 BUG_ON(ret); /* -ENOMEM or logic error */
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
397 total_added += size;
398 ret = btrfs_add_free_space(block_group, start, size);
399 BUG_ON(ret); /* -ENOMEM or logic error */
400 }
401
402 return total_added;
403 }
404
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
410 struct btrfs_path *path;
411 struct extent_buffer *leaf;
412 struct btrfs_key key;
413 u64 total_found = 0;
414 u64 last = 0;
415 u32 nritems;
416 int ret;
417 bool wakeup = true;
418
419 path = btrfs_alloc_path();
420 if (!path)
421 return -ENOMEM;
422
423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424
425 #ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(block_group))
432 wakeup = false;
433 #endif
434 /*
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
439 */
440 path->skip_locking = 1;
441 path->search_commit_root = 1;
442 path->reada = READA_FORWARD;
443
444 key.objectid = last;
445 key.offset = 0;
446 key.type = BTRFS_EXTENT_ITEM_KEY;
447
448 next:
449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450 if (ret < 0)
451 goto out;
452
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
456 while (1) {
457 if (btrfs_fs_closing(fs_info) > 1) {
458 last = (u64)-1;
459 break;
460 }
461
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
467 break;
468
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info->commit_root_sem)) {
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 up_read(&fs_info->commit_root_sem);
475 mutex_unlock(&caching_ctl->mutex);
476 cond_resched();
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
480 }
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
484 goto out;
485 if (ret)
486 break;
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
490 }
491
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
497 if (wakeup)
498 caching_ctl->progress = last;
499 btrfs_release_path(path);
500 goto next;
501 }
502
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
505 continue;
506 }
507
508 if (key.objectid >= block_group->key.objectid +
509 block_group->key.offset)
510 break;
511
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
519 fs_info->nodesize;
520 else
521 last = key.objectid + key.offset;
522
523 if (total_found > CACHING_CTL_WAKE_UP) {
524 total_found = 0;
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
527 }
528 }
529 path->slots[0]++;
530 }
531 ret = 0;
532
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
536 caching_ctl->progress = (u64)-1;
537
538 out:
539 btrfs_free_path(path);
540 return ret;
541 }
542
543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
548 struct btrfs_root *extent_root;
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
554 extent_root = fs_info->extent_root;
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
563
564 spin_lock(&block_group->lock);
565 block_group->caching_ctl = NULL;
566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567 spin_unlock(&block_group->lock);
568
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group)) {
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
580 fragment_free_space(block_group);
581 }
582 #endif
583
584 caching_ctl->progress = (u64)-1;
585
586 up_read(&fs_info->commit_root_sem);
587 free_excluded_extents(fs_info, block_group);
588 mutex_unlock(&caching_ctl->mutex);
589
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
593 btrfs_put_block_group(block_group);
594 }
595
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597 int load_cache_only)
598 {
599 DEFINE_WAIT(wait);
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
602 int ret = 0;
603
604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605 if (!caching_ctl)
606 return -ENOMEM;
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
613 refcount_set(&caching_ctl->count, 1);
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
634 refcount_inc(&ctl->count);
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
648 return 0;
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
654
655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656 mutex_lock(&caching_ctl->mutex);
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
664 caching_ctl->progress = (u64)-1;
665 } else {
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
671 cache->has_caching_ctl = 1;
672 }
673 }
674 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
677 btrfs_should_fragment_free_space(cache)) {
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
687 fragment_free_space(cache);
688 }
689 #endif
690 mutex_unlock(&caching_ctl->mutex);
691
692 wake_up(&caching_ctl->wait);
693 if (ret == 1) {
694 put_caching_control(caching_ctl);
695 free_excluded_extents(fs_info, cache);
696 return 0;
697 }
698 } else {
699 /*
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
709 cache->has_caching_ctl = 1;
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
713 }
714
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
717 return 0;
718 }
719
720 down_write(&fs_info->commit_root_sem);
721 refcount_inc(&caching_ctl->count);
722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723 up_write(&fs_info->commit_root_sem);
724
725 btrfs_get_block_group(cache);
726
727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728
729 return ret;
730 }
731
732 /*
733 * return the block group that starts at or after bytenr
734 */
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738 return block_group_cache_tree_search(info, bytenr, 0);
739 }
740
741 /*
742 * return the block group that contains the given bytenr
743 */
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
747 {
748 return block_group_cache_tree_search(info, bytenr, 1);
749 }
750
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
753 {
754 struct list_head *head = &info->space_info;
755 struct btrfs_space_info *found;
756
757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
761 if (found->flags & flags) {
762 rcu_read_unlock();
763 return found;
764 }
765 }
766 rcu_read_unlock();
767 return NULL;
768 }
769
770 /*
771 * after adding space to the filesystem, we need to clear the full flags
772 * on all the space infos.
773 */
774 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
775 {
776 struct list_head *head = &info->space_info;
777 struct btrfs_space_info *found;
778
779 rcu_read_lock();
780 list_for_each_entry_rcu(found, head, list)
781 found->full = 0;
782 rcu_read_unlock();
783 }
784
785 /* simple helper to search for an existing data extent at a given offset */
786 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
787 {
788 int ret;
789 struct btrfs_key key;
790 struct btrfs_path *path;
791
792 path = btrfs_alloc_path();
793 if (!path)
794 return -ENOMEM;
795
796 key.objectid = start;
797 key.offset = len;
798 key.type = BTRFS_EXTENT_ITEM_KEY;
799 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
800 btrfs_free_path(path);
801 return ret;
802 }
803
804 /*
805 * helper function to lookup reference count and flags of a tree block.
806 *
807 * the head node for delayed ref is used to store the sum of all the
808 * reference count modifications queued up in the rbtree. the head
809 * node may also store the extent flags to set. This way you can check
810 * to see what the reference count and extent flags would be if all of
811 * the delayed refs are not processed.
812 */
813 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
814 struct btrfs_fs_info *fs_info, u64 bytenr,
815 u64 offset, int metadata, u64 *refs, u64 *flags)
816 {
817 struct btrfs_delayed_ref_head *head;
818 struct btrfs_delayed_ref_root *delayed_refs;
819 struct btrfs_path *path;
820 struct btrfs_extent_item *ei;
821 struct extent_buffer *leaf;
822 struct btrfs_key key;
823 u32 item_size;
824 u64 num_refs;
825 u64 extent_flags;
826 int ret;
827
828 /*
829 * If we don't have skinny metadata, don't bother doing anything
830 * different
831 */
832 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
833 offset = fs_info->nodesize;
834 metadata = 0;
835 }
836
837 path = btrfs_alloc_path();
838 if (!path)
839 return -ENOMEM;
840
841 if (!trans) {
842 path->skip_locking = 1;
843 path->search_commit_root = 1;
844 }
845
846 search_again:
847 key.objectid = bytenr;
848 key.offset = offset;
849 if (metadata)
850 key.type = BTRFS_METADATA_ITEM_KEY;
851 else
852 key.type = BTRFS_EXTENT_ITEM_KEY;
853
854 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
855 if (ret < 0)
856 goto out_free;
857
858 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
859 if (path->slots[0]) {
860 path->slots[0]--;
861 btrfs_item_key_to_cpu(path->nodes[0], &key,
862 path->slots[0]);
863 if (key.objectid == bytenr &&
864 key.type == BTRFS_EXTENT_ITEM_KEY &&
865 key.offset == fs_info->nodesize)
866 ret = 0;
867 }
868 }
869
870 if (ret == 0) {
871 leaf = path->nodes[0];
872 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
873 if (item_size >= sizeof(*ei)) {
874 ei = btrfs_item_ptr(leaf, path->slots[0],
875 struct btrfs_extent_item);
876 num_refs = btrfs_extent_refs(leaf, ei);
877 extent_flags = btrfs_extent_flags(leaf, ei);
878 } else {
879 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
880 struct btrfs_extent_item_v0 *ei0;
881 BUG_ON(item_size != sizeof(*ei0));
882 ei0 = btrfs_item_ptr(leaf, path->slots[0],
883 struct btrfs_extent_item_v0);
884 num_refs = btrfs_extent_refs_v0(leaf, ei0);
885 /* FIXME: this isn't correct for data */
886 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
887 #else
888 BUG();
889 #endif
890 }
891 BUG_ON(num_refs == 0);
892 } else {
893 num_refs = 0;
894 extent_flags = 0;
895 ret = 0;
896 }
897
898 if (!trans)
899 goto out;
900
901 delayed_refs = &trans->transaction->delayed_refs;
902 spin_lock(&delayed_refs->lock);
903 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
904 if (head) {
905 if (!mutex_trylock(&head->mutex)) {
906 refcount_inc(&head->node.refs);
907 spin_unlock(&delayed_refs->lock);
908
909 btrfs_release_path(path);
910
911 /*
912 * Mutex was contended, block until it's released and try
913 * again
914 */
915 mutex_lock(&head->mutex);
916 mutex_unlock(&head->mutex);
917 btrfs_put_delayed_ref(&head->node);
918 goto search_again;
919 }
920 spin_lock(&head->lock);
921 if (head->extent_op && head->extent_op->update_flags)
922 extent_flags |= head->extent_op->flags_to_set;
923 else
924 BUG_ON(num_refs == 0);
925
926 num_refs += head->node.ref_mod;
927 spin_unlock(&head->lock);
928 mutex_unlock(&head->mutex);
929 }
930 spin_unlock(&delayed_refs->lock);
931 out:
932 WARN_ON(num_refs == 0);
933 if (refs)
934 *refs = num_refs;
935 if (flags)
936 *flags = extent_flags;
937 out_free:
938 btrfs_free_path(path);
939 return ret;
940 }
941
942 /*
943 * Back reference rules. Back refs have three main goals:
944 *
945 * 1) differentiate between all holders of references to an extent so that
946 * when a reference is dropped we can make sure it was a valid reference
947 * before freeing the extent.
948 *
949 * 2) Provide enough information to quickly find the holders of an extent
950 * if we notice a given block is corrupted or bad.
951 *
952 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
953 * maintenance. This is actually the same as #2, but with a slightly
954 * different use case.
955 *
956 * There are two kinds of back refs. The implicit back refs is optimized
957 * for pointers in non-shared tree blocks. For a given pointer in a block,
958 * back refs of this kind provide information about the block's owner tree
959 * and the pointer's key. These information allow us to find the block by
960 * b-tree searching. The full back refs is for pointers in tree blocks not
961 * referenced by their owner trees. The location of tree block is recorded
962 * in the back refs. Actually the full back refs is generic, and can be
963 * used in all cases the implicit back refs is used. The major shortcoming
964 * of the full back refs is its overhead. Every time a tree block gets
965 * COWed, we have to update back refs entry for all pointers in it.
966 *
967 * For a newly allocated tree block, we use implicit back refs for
968 * pointers in it. This means most tree related operations only involve
969 * implicit back refs. For a tree block created in old transaction, the
970 * only way to drop a reference to it is COW it. So we can detect the
971 * event that tree block loses its owner tree's reference and do the
972 * back refs conversion.
973 *
974 * When a tree block is COWed through a tree, there are four cases:
975 *
976 * The reference count of the block is one and the tree is the block's
977 * owner tree. Nothing to do in this case.
978 *
979 * The reference count of the block is one and the tree is not the
980 * block's owner tree. In this case, full back refs is used for pointers
981 * in the block. Remove these full back refs, add implicit back refs for
982 * every pointers in the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * the block's owner tree. In this case, implicit back refs is used for
986 * pointers in the block. Add full back refs for every pointers in the
987 * block, increase lower level extents' reference counts. The original
988 * implicit back refs are entailed to the new block.
989 *
990 * The reference count of the block is greater than one and the tree is
991 * not the block's owner tree. Add implicit back refs for every pointer in
992 * the new block, increase lower level extents' reference count.
993 *
994 * Back Reference Key composing:
995 *
996 * The key objectid corresponds to the first byte in the extent,
997 * The key type is used to differentiate between types of back refs.
998 * There are different meanings of the key offset for different types
999 * of back refs.
1000 *
1001 * File extents can be referenced by:
1002 *
1003 * - multiple snapshots, subvolumes, or different generations in one subvol
1004 * - different files inside a single subvolume
1005 * - different offsets inside a file (bookend extents in file.c)
1006 *
1007 * The extent ref structure for the implicit back refs has fields for:
1008 *
1009 * - Objectid of the subvolume root
1010 * - objectid of the file holding the reference
1011 * - original offset in the file
1012 * - how many bookend extents
1013 *
1014 * The key offset for the implicit back refs is hash of the first
1015 * three fields.
1016 *
1017 * The extent ref structure for the full back refs has field for:
1018 *
1019 * - number of pointers in the tree leaf
1020 *
1021 * The key offset for the implicit back refs is the first byte of
1022 * the tree leaf
1023 *
1024 * When a file extent is allocated, The implicit back refs is used.
1025 * the fields are filled in:
1026 *
1027 * (root_key.objectid, inode objectid, offset in file, 1)
1028 *
1029 * When a file extent is removed file truncation, we find the
1030 * corresponding implicit back refs and check the following fields:
1031 *
1032 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1033 *
1034 * Btree extents can be referenced by:
1035 *
1036 * - Different subvolumes
1037 *
1038 * Both the implicit back refs and the full back refs for tree blocks
1039 * only consist of key. The key offset for the implicit back refs is
1040 * objectid of block's owner tree. The key offset for the full back refs
1041 * is the first byte of parent block.
1042 *
1043 * When implicit back refs is used, information about the lowest key and
1044 * level of the tree block are required. These information are stored in
1045 * tree block info structure.
1046 */
1047
1048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1049 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1050 struct btrfs_fs_info *fs_info,
1051 struct btrfs_path *path,
1052 u64 owner, u32 extra_size)
1053 {
1054 struct btrfs_root *root = fs_info->extent_root;
1055 struct btrfs_extent_item *item;
1056 struct btrfs_extent_item_v0 *ei0;
1057 struct btrfs_extent_ref_v0 *ref0;
1058 struct btrfs_tree_block_info *bi;
1059 struct extent_buffer *leaf;
1060 struct btrfs_key key;
1061 struct btrfs_key found_key;
1062 u32 new_size = sizeof(*item);
1063 u64 refs;
1064 int ret;
1065
1066 leaf = path->nodes[0];
1067 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1068
1069 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1070 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1071 struct btrfs_extent_item_v0);
1072 refs = btrfs_extent_refs_v0(leaf, ei0);
1073
1074 if (owner == (u64)-1) {
1075 while (1) {
1076 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1077 ret = btrfs_next_leaf(root, path);
1078 if (ret < 0)
1079 return ret;
1080 BUG_ON(ret > 0); /* Corruption */
1081 leaf = path->nodes[0];
1082 }
1083 btrfs_item_key_to_cpu(leaf, &found_key,
1084 path->slots[0]);
1085 BUG_ON(key.objectid != found_key.objectid);
1086 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1087 path->slots[0]++;
1088 continue;
1089 }
1090 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_ref_v0);
1092 owner = btrfs_ref_objectid_v0(leaf, ref0);
1093 break;
1094 }
1095 }
1096 btrfs_release_path(path);
1097
1098 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1099 new_size += sizeof(*bi);
1100
1101 new_size -= sizeof(*ei0);
1102 ret = btrfs_search_slot(trans, root, &key, path,
1103 new_size + extra_size, 1);
1104 if (ret < 0)
1105 return ret;
1106 BUG_ON(ret); /* Corruption */
1107
1108 btrfs_extend_item(fs_info, path, new_size);
1109
1110 leaf = path->nodes[0];
1111 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1112 btrfs_set_extent_refs(leaf, item, refs);
1113 /* FIXME: get real generation */
1114 btrfs_set_extent_generation(leaf, item, 0);
1115 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1116 btrfs_set_extent_flags(leaf, item,
1117 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1118 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1119 bi = (struct btrfs_tree_block_info *)(item + 1);
1120 /* FIXME: get first key of the block */
1121 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1122 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1123 } else {
1124 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1125 }
1126 btrfs_mark_buffer_dirty(leaf);
1127 return 0;
1128 }
1129 #endif
1130
1131 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1132 {
1133 u32 high_crc = ~(u32)0;
1134 u32 low_crc = ~(u32)0;
1135 __le64 lenum;
1136
1137 lenum = cpu_to_le64(root_objectid);
1138 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1139 lenum = cpu_to_le64(owner);
1140 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1141 lenum = cpu_to_le64(offset);
1142 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1143
1144 return ((u64)high_crc << 31) ^ (u64)low_crc;
1145 }
1146
1147 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1148 struct btrfs_extent_data_ref *ref)
1149 {
1150 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1151 btrfs_extent_data_ref_objectid(leaf, ref),
1152 btrfs_extent_data_ref_offset(leaf, ref));
1153 }
1154
1155 static int match_extent_data_ref(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref,
1157 u64 root_objectid, u64 owner, u64 offset)
1158 {
1159 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1160 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1161 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1162 return 0;
1163 return 1;
1164 }
1165
1166 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1167 struct btrfs_fs_info *fs_info,
1168 struct btrfs_path *path,
1169 u64 bytenr, u64 parent,
1170 u64 root_objectid,
1171 u64 owner, u64 offset)
1172 {
1173 struct btrfs_root *root = fs_info->extent_root;
1174 struct btrfs_key key;
1175 struct btrfs_extent_data_ref *ref;
1176 struct extent_buffer *leaf;
1177 u32 nritems;
1178 int ret;
1179 int recow;
1180 int err = -ENOENT;
1181
1182 key.objectid = bytenr;
1183 if (parent) {
1184 key.type = BTRFS_SHARED_DATA_REF_KEY;
1185 key.offset = parent;
1186 } else {
1187 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1188 key.offset = hash_extent_data_ref(root_objectid,
1189 owner, offset);
1190 }
1191 again:
1192 recow = 0;
1193 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1194 if (ret < 0) {
1195 err = ret;
1196 goto fail;
1197 }
1198
1199 if (parent) {
1200 if (!ret)
1201 return 0;
1202 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1203 key.type = BTRFS_EXTENT_REF_V0_KEY;
1204 btrfs_release_path(path);
1205 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1206 if (ret < 0) {
1207 err = ret;
1208 goto fail;
1209 }
1210 if (!ret)
1211 return 0;
1212 #endif
1213 goto fail;
1214 }
1215
1216 leaf = path->nodes[0];
1217 nritems = btrfs_header_nritems(leaf);
1218 while (1) {
1219 if (path->slots[0] >= nritems) {
1220 ret = btrfs_next_leaf(root, path);
1221 if (ret < 0)
1222 err = ret;
1223 if (ret)
1224 goto fail;
1225
1226 leaf = path->nodes[0];
1227 nritems = btrfs_header_nritems(leaf);
1228 recow = 1;
1229 }
1230
1231 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1232 if (key.objectid != bytenr ||
1233 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1234 goto fail;
1235
1236 ref = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238
1239 if (match_extent_data_ref(leaf, ref, root_objectid,
1240 owner, offset)) {
1241 if (recow) {
1242 btrfs_release_path(path);
1243 goto again;
1244 }
1245 err = 0;
1246 break;
1247 }
1248 path->slots[0]++;
1249 }
1250 fail:
1251 return err;
1252 }
1253
1254 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1255 struct btrfs_fs_info *fs_info,
1256 struct btrfs_path *path,
1257 u64 bytenr, u64 parent,
1258 u64 root_objectid, u64 owner,
1259 u64 offset, int refs_to_add)
1260 {
1261 struct btrfs_root *root = fs_info->extent_root;
1262 struct btrfs_key key;
1263 struct extent_buffer *leaf;
1264 u32 size;
1265 u32 num_refs;
1266 int ret;
1267
1268 key.objectid = bytenr;
1269 if (parent) {
1270 key.type = BTRFS_SHARED_DATA_REF_KEY;
1271 key.offset = parent;
1272 size = sizeof(struct btrfs_shared_data_ref);
1273 } else {
1274 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1275 key.offset = hash_extent_data_ref(root_objectid,
1276 owner, offset);
1277 size = sizeof(struct btrfs_extent_data_ref);
1278 }
1279
1280 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1281 if (ret && ret != -EEXIST)
1282 goto fail;
1283
1284 leaf = path->nodes[0];
1285 if (parent) {
1286 struct btrfs_shared_data_ref *ref;
1287 ref = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_shared_data_ref);
1289 if (ret == 0) {
1290 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1291 } else {
1292 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1295 }
1296 } else {
1297 struct btrfs_extent_data_ref *ref;
1298 while (ret == -EEXIST) {
1299 ref = btrfs_item_ptr(leaf, path->slots[0],
1300 struct btrfs_extent_data_ref);
1301 if (match_extent_data_ref(leaf, ref, root_objectid,
1302 owner, offset))
1303 break;
1304 btrfs_release_path(path);
1305 key.offset++;
1306 ret = btrfs_insert_empty_item(trans, root, path, &key,
1307 size);
1308 if (ret && ret != -EEXIST)
1309 goto fail;
1310
1311 leaf = path->nodes[0];
1312 }
1313 ref = btrfs_item_ptr(leaf, path->slots[0],
1314 struct btrfs_extent_data_ref);
1315 if (ret == 0) {
1316 btrfs_set_extent_data_ref_root(leaf, ref,
1317 root_objectid);
1318 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1319 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1320 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1321 } else {
1322 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1323 num_refs += refs_to_add;
1324 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1325 }
1326 }
1327 btrfs_mark_buffer_dirty(leaf);
1328 ret = 0;
1329 fail:
1330 btrfs_release_path(path);
1331 return ret;
1332 }
1333
1334 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1335 struct btrfs_fs_info *fs_info,
1336 struct btrfs_path *path,
1337 int refs_to_drop, int *last_ref)
1338 {
1339 struct btrfs_key key;
1340 struct btrfs_extent_data_ref *ref1 = NULL;
1341 struct btrfs_shared_data_ref *ref2 = NULL;
1342 struct extent_buffer *leaf;
1343 u32 num_refs = 0;
1344 int ret = 0;
1345
1346 leaf = path->nodes[0];
1347 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1348
1349 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_data_ref);
1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_shared_data_ref);
1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 struct btrfs_extent_ref_v0 *ref0;
1360 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_ref_v0);
1362 num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 } else {
1365 BUG();
1366 }
1367
1368 BUG_ON(num_refs < refs_to_drop);
1369 num_refs -= refs_to_drop;
1370
1371 if (num_refs == 0) {
1372 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1373 *last_ref = 1;
1374 } else {
1375 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1376 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1377 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1378 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1379 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1380 else {
1381 struct btrfs_extent_ref_v0 *ref0;
1382 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1383 struct btrfs_extent_ref_v0);
1384 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1385 }
1386 #endif
1387 btrfs_mark_buffer_dirty(leaf);
1388 }
1389 return ret;
1390 }
1391
1392 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1393 struct btrfs_extent_inline_ref *iref)
1394 {
1395 struct btrfs_key key;
1396 struct extent_buffer *leaf;
1397 struct btrfs_extent_data_ref *ref1;
1398 struct btrfs_shared_data_ref *ref2;
1399 u32 num_refs = 0;
1400
1401 leaf = path->nodes[0];
1402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1403 if (iref) {
1404 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1405 BTRFS_EXTENT_DATA_REF_KEY) {
1406 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1407 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1408 } else {
1409 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 }
1412 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1413 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1414 struct btrfs_extent_data_ref);
1415 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1416 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1417 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1418 struct btrfs_shared_data_ref);
1419 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1420 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1421 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1422 struct btrfs_extent_ref_v0 *ref0;
1423 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_extent_ref_v0);
1425 num_refs = btrfs_ref_count_v0(leaf, ref0);
1426 #endif
1427 } else {
1428 WARN_ON(1);
1429 }
1430 return num_refs;
1431 }
1432
1433 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1434 struct btrfs_fs_info *fs_info,
1435 struct btrfs_path *path,
1436 u64 bytenr, u64 parent,
1437 u64 root_objectid)
1438 {
1439 struct btrfs_root *root = fs_info->extent_root;
1440 struct btrfs_key key;
1441 int ret;
1442
1443 key.objectid = bytenr;
1444 if (parent) {
1445 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1446 key.offset = parent;
1447 } else {
1448 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1449 key.offset = root_objectid;
1450 }
1451
1452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1453 if (ret > 0)
1454 ret = -ENOENT;
1455 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1456 if (ret == -ENOENT && parent) {
1457 btrfs_release_path(path);
1458 key.type = BTRFS_EXTENT_REF_V0_KEY;
1459 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1460 if (ret > 0)
1461 ret = -ENOENT;
1462 }
1463 #endif
1464 return ret;
1465 }
1466
1467 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1468 struct btrfs_fs_info *fs_info,
1469 struct btrfs_path *path,
1470 u64 bytenr, u64 parent,
1471 u64 root_objectid)
1472 {
1473 struct btrfs_key key;
1474 int ret;
1475
1476 key.objectid = bytenr;
1477 if (parent) {
1478 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1479 key.offset = parent;
1480 } else {
1481 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1482 key.offset = root_objectid;
1483 }
1484
1485 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1486 path, &key, 0);
1487 btrfs_release_path(path);
1488 return ret;
1489 }
1490
1491 static inline int extent_ref_type(u64 parent, u64 owner)
1492 {
1493 int type;
1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 if (parent > 0)
1496 type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 else
1498 type = BTRFS_TREE_BLOCK_REF_KEY;
1499 } else {
1500 if (parent > 0)
1501 type = BTRFS_SHARED_DATA_REF_KEY;
1502 else
1503 type = BTRFS_EXTENT_DATA_REF_KEY;
1504 }
1505 return type;
1506 }
1507
1508 static int find_next_key(struct btrfs_path *path, int level,
1509 struct btrfs_key *key)
1510
1511 {
1512 for (; level < BTRFS_MAX_LEVEL; level++) {
1513 if (!path->nodes[level])
1514 break;
1515 if (path->slots[level] + 1 >=
1516 btrfs_header_nritems(path->nodes[level]))
1517 continue;
1518 if (level == 0)
1519 btrfs_item_key_to_cpu(path->nodes[level], key,
1520 path->slots[level] + 1);
1521 else
1522 btrfs_node_key_to_cpu(path->nodes[level], key,
1523 path->slots[level] + 1);
1524 return 0;
1525 }
1526 return 1;
1527 }
1528
1529 /*
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1532 *
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1535 *
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1538 *
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1541 */
1542 static noinline_for_stack
1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 struct btrfs_fs_info *fs_info,
1545 struct btrfs_path *path,
1546 struct btrfs_extent_inline_ref **ref_ret,
1547 u64 bytenr, u64 num_bytes,
1548 u64 parent, u64 root_objectid,
1549 u64 owner, u64 offset, int insert)
1550 {
1551 struct btrfs_root *root = fs_info->extent_root;
1552 struct btrfs_key key;
1553 struct extent_buffer *leaf;
1554 struct btrfs_extent_item *ei;
1555 struct btrfs_extent_inline_ref *iref;
1556 u64 flags;
1557 u64 item_size;
1558 unsigned long ptr;
1559 unsigned long end;
1560 int extra_size;
1561 int type;
1562 int want;
1563 int ret;
1564 int err = 0;
1565 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1566
1567 key.objectid = bytenr;
1568 key.type = BTRFS_EXTENT_ITEM_KEY;
1569 key.offset = num_bytes;
1570
1571 want = extent_ref_type(parent, owner);
1572 if (insert) {
1573 extra_size = btrfs_extent_inline_ref_size(want);
1574 path->keep_locks = 1;
1575 } else
1576 extra_size = -1;
1577
1578 /*
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1581 */
1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 key.type = BTRFS_METADATA_ITEM_KEY;
1584 key.offset = owner;
1585 }
1586
1587 again:
1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1589 if (ret < 0) {
1590 err = ret;
1591 goto out;
1592 }
1593
1594 /*
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1597 */
1598 if (ret > 0 && skinny_metadata) {
1599 skinny_metadata = false;
1600 if (path->slots[0]) {
1601 path->slots[0]--;
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 path->slots[0]);
1604 if (key.objectid == bytenr &&
1605 key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 key.offset == num_bytes)
1607 ret = 0;
1608 }
1609 if (ret) {
1610 key.objectid = bytenr;
1611 key.type = BTRFS_EXTENT_ITEM_KEY;
1612 key.offset = num_bytes;
1613 btrfs_release_path(path);
1614 goto again;
1615 }
1616 }
1617
1618 if (ret && !insert) {
1619 err = -ENOENT;
1620 goto out;
1621 } else if (WARN_ON(ret)) {
1622 err = -EIO;
1623 goto out;
1624 }
1625
1626 leaf = path->nodes[0];
1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size < sizeof(*ei)) {
1630 if (!insert) {
1631 err = -ENOENT;
1632 goto out;
1633 }
1634 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1635 extra_size);
1636 if (ret < 0) {
1637 err = ret;
1638 goto out;
1639 }
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 }
1643 #endif
1644 BUG_ON(item_size < sizeof(*ei));
1645
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 flags = btrfs_extent_flags(leaf, ei);
1648
1649 ptr = (unsigned long)(ei + 1);
1650 end = (unsigned long)ei + item_size;
1651
1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1653 ptr += sizeof(struct btrfs_tree_block_info);
1654 BUG_ON(ptr > end);
1655 }
1656
1657 err = -ENOENT;
1658 while (1) {
1659 if (ptr >= end) {
1660 WARN_ON(ptr > end);
1661 break;
1662 }
1663 iref = (struct btrfs_extent_inline_ref *)ptr;
1664 type = btrfs_extent_inline_ref_type(leaf, iref);
1665 if (want < type)
1666 break;
1667 if (want > type) {
1668 ptr += btrfs_extent_inline_ref_size(type);
1669 continue;
1670 }
1671
1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 struct btrfs_extent_data_ref *dref;
1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 if (match_extent_data_ref(leaf, dref, root_objectid,
1676 owner, offset)) {
1677 err = 0;
1678 break;
1679 }
1680 if (hash_extent_data_ref_item(leaf, dref) <
1681 hash_extent_data_ref(root_objectid, owner, offset))
1682 break;
1683 } else {
1684 u64 ref_offset;
1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1686 if (parent > 0) {
1687 if (parent == ref_offset) {
1688 err = 0;
1689 break;
1690 }
1691 if (ref_offset < parent)
1692 break;
1693 } else {
1694 if (root_objectid == ref_offset) {
1695 err = 0;
1696 break;
1697 }
1698 if (ref_offset < root_objectid)
1699 break;
1700 }
1701 }
1702 ptr += btrfs_extent_inline_ref_size(type);
1703 }
1704 if (err == -ENOENT && insert) {
1705 if (item_size + extra_size >=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 /*
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1715 */
1716 if (find_next_key(path, 0, &key) == 0 &&
1717 key.objectid == bytenr &&
1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1719 err = -EAGAIN;
1720 goto out;
1721 }
1722 }
1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1724 out:
1725 if (insert) {
1726 path->keep_locks = 0;
1727 btrfs_unlock_up_safe(path, 1);
1728 }
1729 return err;
1730 }
1731
1732 /*
1733 * helper to add new inline back ref
1734 */
1735 static noinline_for_stack
1736 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1737 struct btrfs_path *path,
1738 struct btrfs_extent_inline_ref *iref,
1739 u64 parent, u64 root_objectid,
1740 u64 owner, u64 offset, int refs_to_add,
1741 struct btrfs_delayed_extent_op *extent_op)
1742 {
1743 struct extent_buffer *leaf;
1744 struct btrfs_extent_item *ei;
1745 unsigned long ptr;
1746 unsigned long end;
1747 unsigned long item_offset;
1748 u64 refs;
1749 int size;
1750 int type;
1751
1752 leaf = path->nodes[0];
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 item_offset = (unsigned long)iref - (unsigned long)ei;
1755
1756 type = extent_ref_type(parent, owner);
1757 size = btrfs_extent_inline_ref_size(type);
1758
1759 btrfs_extend_item(fs_info, path, size);
1760
1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 refs = btrfs_extent_refs(leaf, ei);
1763 refs += refs_to_add;
1764 btrfs_set_extent_refs(leaf, ei, refs);
1765 if (extent_op)
1766 __run_delayed_extent_op(extent_op, leaf, ei);
1767
1768 ptr = (unsigned long)ei + item_offset;
1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 if (ptr < end - size)
1771 memmove_extent_buffer(leaf, ptr + size, ptr,
1772 end - size - ptr);
1773
1774 iref = (struct btrfs_extent_inline_ref *)ptr;
1775 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 struct btrfs_extent_data_ref *dref;
1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 struct btrfs_shared_data_ref *sref;
1785 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1790 } else {
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1792 }
1793 btrfs_mark_buffer_dirty(leaf);
1794 }
1795
1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 struct btrfs_fs_info *fs_info,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref **ref_ret,
1800 u64 bytenr, u64 num_bytes, u64 parent,
1801 u64 root_objectid, u64 owner, u64 offset)
1802 {
1803 int ret;
1804
1805 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1806 bytenr, num_bytes, parent,
1807 root_objectid, owner, offset, 0);
1808 if (ret != -ENOENT)
1809 return ret;
1810
1811 btrfs_release_path(path);
1812 *ref_ret = NULL;
1813
1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1816 parent, root_objectid);
1817 } else {
1818 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1819 parent, root_objectid, owner,
1820 offset);
1821 }
1822 return ret;
1823 }
1824
1825 /*
1826 * helper to update/remove inline back ref
1827 */
1828 static noinline_for_stack
1829 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1830 struct btrfs_path *path,
1831 struct btrfs_extent_inline_ref *iref,
1832 int refs_to_mod,
1833 struct btrfs_delayed_extent_op *extent_op,
1834 int *last_ref)
1835 {
1836 struct extent_buffer *leaf;
1837 struct btrfs_extent_item *ei;
1838 struct btrfs_extent_data_ref *dref = NULL;
1839 struct btrfs_shared_data_ref *sref = NULL;
1840 unsigned long ptr;
1841 unsigned long end;
1842 u32 item_size;
1843 int size;
1844 int type;
1845 u64 refs;
1846
1847 leaf = path->nodes[0];
1848 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1849 refs = btrfs_extent_refs(leaf, ei);
1850 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1851 refs += refs_to_mod;
1852 btrfs_set_extent_refs(leaf, ei, refs);
1853 if (extent_op)
1854 __run_delayed_extent_op(extent_op, leaf, ei);
1855
1856 type = btrfs_extent_inline_ref_type(leaf, iref);
1857
1858 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1859 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1860 refs = btrfs_extent_data_ref_count(leaf, dref);
1861 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1862 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1863 refs = btrfs_shared_data_ref_count(leaf, sref);
1864 } else {
1865 refs = 1;
1866 BUG_ON(refs_to_mod != -1);
1867 }
1868
1869 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1870 refs += refs_to_mod;
1871
1872 if (refs > 0) {
1873 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1874 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1875 else
1876 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1877 } else {
1878 *last_ref = 1;
1879 size = btrfs_extent_inline_ref_size(type);
1880 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1881 ptr = (unsigned long)iref;
1882 end = (unsigned long)ei + item_size;
1883 if (ptr + size < end)
1884 memmove_extent_buffer(leaf, ptr, ptr + size,
1885 end - ptr - size);
1886 item_size -= size;
1887 btrfs_truncate_item(fs_info, path, item_size, 1);
1888 }
1889 btrfs_mark_buffer_dirty(leaf);
1890 }
1891
1892 static noinline_for_stack
1893 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1894 struct btrfs_fs_info *fs_info,
1895 struct btrfs_path *path,
1896 u64 bytenr, u64 num_bytes, u64 parent,
1897 u64 root_objectid, u64 owner,
1898 u64 offset, int refs_to_add,
1899 struct btrfs_delayed_extent_op *extent_op)
1900 {
1901 struct btrfs_extent_inline_ref *iref;
1902 int ret;
1903
1904 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1905 bytenr, num_bytes, parent,
1906 root_objectid, owner, offset, 1);
1907 if (ret == 0) {
1908 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1909 update_inline_extent_backref(fs_info, path, iref,
1910 refs_to_add, extent_op, NULL);
1911 } else if (ret == -ENOENT) {
1912 setup_inline_extent_backref(fs_info, path, iref, parent,
1913 root_objectid, owner, offset,
1914 refs_to_add, extent_op);
1915 ret = 0;
1916 }
1917 return ret;
1918 }
1919
1920 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1921 struct btrfs_fs_info *fs_info,
1922 struct btrfs_path *path,
1923 u64 bytenr, u64 parent, u64 root_objectid,
1924 u64 owner, u64 offset, int refs_to_add)
1925 {
1926 int ret;
1927 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1928 BUG_ON(refs_to_add != 1);
1929 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1930 parent, root_objectid);
1931 } else {
1932 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1933 parent, root_objectid,
1934 owner, offset, refs_to_add);
1935 }
1936 return ret;
1937 }
1938
1939 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1940 struct btrfs_fs_info *fs_info,
1941 struct btrfs_path *path,
1942 struct btrfs_extent_inline_ref *iref,
1943 int refs_to_drop, int is_data, int *last_ref)
1944 {
1945 int ret = 0;
1946
1947 BUG_ON(!is_data && refs_to_drop != 1);
1948 if (iref) {
1949 update_inline_extent_backref(fs_info, path, iref,
1950 -refs_to_drop, NULL, last_ref);
1951 } else if (is_data) {
1952 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1953 last_ref);
1954 } else {
1955 *last_ref = 1;
1956 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1957 }
1958 return ret;
1959 }
1960
1961 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1962 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1963 u64 *discarded_bytes)
1964 {
1965 int j, ret = 0;
1966 u64 bytes_left, end;
1967 u64 aligned_start = ALIGN(start, 1 << 9);
1968
1969 if (WARN_ON(start != aligned_start)) {
1970 len -= aligned_start - start;
1971 len = round_down(len, 1 << 9);
1972 start = aligned_start;
1973 }
1974
1975 *discarded_bytes = 0;
1976
1977 if (!len)
1978 return 0;
1979
1980 end = start + len;
1981 bytes_left = len;
1982
1983 /* Skip any superblocks on this device. */
1984 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1985 u64 sb_start = btrfs_sb_offset(j);
1986 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1987 u64 size = sb_start - start;
1988
1989 if (!in_range(sb_start, start, bytes_left) &&
1990 !in_range(sb_end, start, bytes_left) &&
1991 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1992 continue;
1993
1994 /*
1995 * Superblock spans beginning of range. Adjust start and
1996 * try again.
1997 */
1998 if (sb_start <= start) {
1999 start += sb_end - start;
2000 if (start > end) {
2001 bytes_left = 0;
2002 break;
2003 }
2004 bytes_left = end - start;
2005 continue;
2006 }
2007
2008 if (size) {
2009 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2010 GFP_NOFS, 0);
2011 if (!ret)
2012 *discarded_bytes += size;
2013 else if (ret != -EOPNOTSUPP)
2014 return ret;
2015 }
2016
2017 start = sb_end;
2018 if (start > end) {
2019 bytes_left = 0;
2020 break;
2021 }
2022 bytes_left = end - start;
2023 }
2024
2025 if (bytes_left) {
2026 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2027 GFP_NOFS, 0);
2028 if (!ret)
2029 *discarded_bytes += bytes_left;
2030 }
2031 return ret;
2032 }
2033
2034 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2035 u64 num_bytes, u64 *actual_bytes)
2036 {
2037 int ret;
2038 u64 discarded_bytes = 0;
2039 struct btrfs_bio *bbio = NULL;
2040
2041
2042 /*
2043 * Avoid races with device replace and make sure our bbio has devices
2044 * associated to its stripes that don't go away while we are discarding.
2045 */
2046 btrfs_bio_counter_inc_blocked(fs_info);
2047 /* Tell the block device(s) that the sectors can be discarded */
2048 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2049 &bbio, 0);
2050 /* Error condition is -ENOMEM */
2051 if (!ret) {
2052 struct btrfs_bio_stripe *stripe = bbio->stripes;
2053 int i;
2054
2055
2056 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2057 u64 bytes;
2058 if (!stripe->dev->can_discard)
2059 continue;
2060
2061 ret = btrfs_issue_discard(stripe->dev->bdev,
2062 stripe->physical,
2063 stripe->length,
2064 &bytes);
2065 if (!ret)
2066 discarded_bytes += bytes;
2067 else if (ret != -EOPNOTSUPP)
2068 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2069
2070 /*
2071 * Just in case we get back EOPNOTSUPP for some reason,
2072 * just ignore the return value so we don't screw up
2073 * people calling discard_extent.
2074 */
2075 ret = 0;
2076 }
2077 btrfs_put_bbio(bbio);
2078 }
2079 btrfs_bio_counter_dec(fs_info);
2080
2081 if (actual_bytes)
2082 *actual_bytes = discarded_bytes;
2083
2084
2085 if (ret == -EOPNOTSUPP)
2086 ret = 0;
2087 return ret;
2088 }
2089
2090 /* Can return -ENOMEM */
2091 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2092 struct btrfs_fs_info *fs_info,
2093 u64 bytenr, u64 num_bytes, u64 parent,
2094 u64 root_objectid, u64 owner, u64 offset)
2095 {
2096 int ret;
2097
2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2100
2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2103 num_bytes,
2104 parent, root_objectid, (int)owner,
2105 BTRFS_ADD_DELAYED_REF, NULL);
2106 } else {
2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2108 num_bytes, parent, root_objectid,
2109 owner, offset, 0,
2110 BTRFS_ADD_DELAYED_REF);
2111 }
2112 return ret;
2113 }
2114
2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 struct btrfs_fs_info *fs_info,
2117 struct btrfs_delayed_ref_node *node,
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2121 {
2122 struct btrfs_path *path;
2123 struct extent_buffer *leaf;
2124 struct btrfs_extent_item *item;
2125 struct btrfs_key key;
2126 u64 bytenr = node->bytenr;
2127 u64 num_bytes = node->num_bytes;
2128 u64 refs;
2129 int ret;
2130
2131 path = btrfs_alloc_path();
2132 if (!path)
2133 return -ENOMEM;
2134
2135 path->reada = READA_FORWARD;
2136 path->leave_spinning = 1;
2137 /* this will setup the path even if it fails to insert the back ref */
2138 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2139 num_bytes, parent, root_objectid,
2140 owner, offset,
2141 refs_to_add, extent_op);
2142 if ((ret < 0 && ret != -EAGAIN) || !ret)
2143 goto out;
2144
2145 /*
2146 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 * inline extent ref, so just update the reference count and add a
2148 * normal backref.
2149 */
2150 leaf = path->nodes[0];
2151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 refs = btrfs_extent_refs(leaf, item);
2154 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 if (extent_op)
2156 __run_delayed_extent_op(extent_op, leaf, item);
2157
2158 btrfs_mark_buffer_dirty(leaf);
2159 btrfs_release_path(path);
2160
2161 path->reada = READA_FORWARD;
2162 path->leave_spinning = 1;
2163 /* now insert the actual backref */
2164 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2165 root_objectid, owner, offset, refs_to_add);
2166 if (ret)
2167 btrfs_abort_transaction(trans, ret);
2168 out:
2169 btrfs_free_path(path);
2170 return ret;
2171 }
2172
2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 struct btrfs_fs_info *fs_info,
2175 struct btrfs_delayed_ref_node *node,
2176 struct btrfs_delayed_extent_op *extent_op,
2177 int insert_reserved)
2178 {
2179 int ret = 0;
2180 struct btrfs_delayed_data_ref *ref;
2181 struct btrfs_key ins;
2182 u64 parent = 0;
2183 u64 ref_root = 0;
2184 u64 flags = 0;
2185
2186 ins.objectid = node->bytenr;
2187 ins.offset = node->num_bytes;
2188 ins.type = BTRFS_EXTENT_ITEM_KEY;
2189
2190 ref = btrfs_delayed_node_to_data_ref(node);
2191 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2192
2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194 parent = ref->parent;
2195 ref_root = ref->root;
2196
2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2198 if (extent_op)
2199 flags |= extent_op->flags_to_set;
2200 ret = alloc_reserved_file_extent(trans, fs_info,
2201 parent, ref_root, flags,
2202 ref->objectid, ref->offset,
2203 &ins, node->ref_mod);
2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2205 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2206 ref_root, ref->objectid,
2207 ref->offset, node->ref_mod,
2208 extent_op);
2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2210 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2211 ref_root, ref->objectid,
2212 ref->offset, node->ref_mod,
2213 extent_op);
2214 } else {
2215 BUG();
2216 }
2217 return ret;
2218 }
2219
2220 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221 struct extent_buffer *leaf,
2222 struct btrfs_extent_item *ei)
2223 {
2224 u64 flags = btrfs_extent_flags(leaf, ei);
2225 if (extent_op->update_flags) {
2226 flags |= extent_op->flags_to_set;
2227 btrfs_set_extent_flags(leaf, ei, flags);
2228 }
2229
2230 if (extent_op->update_key) {
2231 struct btrfs_tree_block_info *bi;
2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233 bi = (struct btrfs_tree_block_info *)(ei + 1);
2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235 }
2236 }
2237
2238 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239 struct btrfs_fs_info *fs_info,
2240 struct btrfs_delayed_ref_node *node,
2241 struct btrfs_delayed_extent_op *extent_op)
2242 {
2243 struct btrfs_key key;
2244 struct btrfs_path *path;
2245 struct btrfs_extent_item *ei;
2246 struct extent_buffer *leaf;
2247 u32 item_size;
2248 int ret;
2249 int err = 0;
2250 int metadata = !extent_op->is_data;
2251
2252 if (trans->aborted)
2253 return 0;
2254
2255 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2256 metadata = 0;
2257
2258 path = btrfs_alloc_path();
2259 if (!path)
2260 return -ENOMEM;
2261
2262 key.objectid = node->bytenr;
2263
2264 if (metadata) {
2265 key.type = BTRFS_METADATA_ITEM_KEY;
2266 key.offset = extent_op->level;
2267 } else {
2268 key.type = BTRFS_EXTENT_ITEM_KEY;
2269 key.offset = node->num_bytes;
2270 }
2271
2272 again:
2273 path->reada = READA_FORWARD;
2274 path->leave_spinning = 1;
2275 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2276 if (ret < 0) {
2277 err = ret;
2278 goto out;
2279 }
2280 if (ret > 0) {
2281 if (metadata) {
2282 if (path->slots[0] > 0) {
2283 path->slots[0]--;
2284 btrfs_item_key_to_cpu(path->nodes[0], &key,
2285 path->slots[0]);
2286 if (key.objectid == node->bytenr &&
2287 key.type == BTRFS_EXTENT_ITEM_KEY &&
2288 key.offset == node->num_bytes)
2289 ret = 0;
2290 }
2291 if (ret > 0) {
2292 btrfs_release_path(path);
2293 metadata = 0;
2294
2295 key.objectid = node->bytenr;
2296 key.offset = node->num_bytes;
2297 key.type = BTRFS_EXTENT_ITEM_KEY;
2298 goto again;
2299 }
2300 } else {
2301 err = -EIO;
2302 goto out;
2303 }
2304 }
2305
2306 leaf = path->nodes[0];
2307 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2309 if (item_size < sizeof(*ei)) {
2310 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2311 if (ret < 0) {
2312 err = ret;
2313 goto out;
2314 }
2315 leaf = path->nodes[0];
2316 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2317 }
2318 #endif
2319 BUG_ON(item_size < sizeof(*ei));
2320 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2321 __run_delayed_extent_op(extent_op, leaf, ei);
2322
2323 btrfs_mark_buffer_dirty(leaf);
2324 out:
2325 btrfs_free_path(path);
2326 return err;
2327 }
2328
2329 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2330 struct btrfs_fs_info *fs_info,
2331 struct btrfs_delayed_ref_node *node,
2332 struct btrfs_delayed_extent_op *extent_op,
2333 int insert_reserved)
2334 {
2335 int ret = 0;
2336 struct btrfs_delayed_tree_ref *ref;
2337 struct btrfs_key ins;
2338 u64 parent = 0;
2339 u64 ref_root = 0;
2340 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2341
2342 ref = btrfs_delayed_node_to_tree_ref(node);
2343 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2344
2345 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2346 parent = ref->parent;
2347 ref_root = ref->root;
2348
2349 ins.objectid = node->bytenr;
2350 if (skinny_metadata) {
2351 ins.offset = ref->level;
2352 ins.type = BTRFS_METADATA_ITEM_KEY;
2353 } else {
2354 ins.offset = node->num_bytes;
2355 ins.type = BTRFS_EXTENT_ITEM_KEY;
2356 }
2357
2358 if (node->ref_mod != 1) {
2359 btrfs_err(fs_info,
2360 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2361 node->bytenr, node->ref_mod, node->action, ref_root,
2362 parent);
2363 return -EIO;
2364 }
2365 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2366 BUG_ON(!extent_op || !extent_op->update_flags);
2367 ret = alloc_reserved_tree_block(trans, fs_info,
2368 parent, ref_root,
2369 extent_op->flags_to_set,
2370 &extent_op->key,
2371 ref->level, &ins);
2372 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2373 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2374 parent, ref_root,
2375 ref->level, 0, 1,
2376 extent_op);
2377 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2378 ret = __btrfs_free_extent(trans, fs_info, node,
2379 parent, ref_root,
2380 ref->level, 0, 1, extent_op);
2381 } else {
2382 BUG();
2383 }
2384 return ret;
2385 }
2386
2387 /* helper function to actually process a single delayed ref entry */
2388 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2389 struct btrfs_fs_info *fs_info,
2390 struct btrfs_delayed_ref_node *node,
2391 struct btrfs_delayed_extent_op *extent_op,
2392 int insert_reserved)
2393 {
2394 int ret = 0;
2395
2396 if (trans->aborted) {
2397 if (insert_reserved)
2398 btrfs_pin_extent(fs_info, node->bytenr,
2399 node->num_bytes, 1);
2400 return 0;
2401 }
2402
2403 if (btrfs_delayed_ref_is_head(node)) {
2404 struct btrfs_delayed_ref_head *head;
2405 /*
2406 * we've hit the end of the chain and we were supposed
2407 * to insert this extent into the tree. But, it got
2408 * deleted before we ever needed to insert it, so all
2409 * we have to do is clean up the accounting
2410 */
2411 BUG_ON(extent_op);
2412 head = btrfs_delayed_node_to_head(node);
2413 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2414
2415 if (insert_reserved) {
2416 btrfs_pin_extent(fs_info, node->bytenr,
2417 node->num_bytes, 1);
2418 if (head->is_data) {
2419 ret = btrfs_del_csums(trans, fs_info,
2420 node->bytenr,
2421 node->num_bytes);
2422 }
2423 }
2424
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2427 head->qgroup_reserved);
2428 return ret;
2429 }
2430
2431 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2432 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2433 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2434 insert_reserved);
2435 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2436 node->type == BTRFS_SHARED_DATA_REF_KEY)
2437 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2438 insert_reserved);
2439 else
2440 BUG();
2441 return ret;
2442 }
2443
2444 static inline struct btrfs_delayed_ref_node *
2445 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2446 {
2447 struct btrfs_delayed_ref_node *ref;
2448
2449 if (list_empty(&head->ref_list))
2450 return NULL;
2451
2452 /*
2453 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2454 * This is to prevent a ref count from going down to zero, which deletes
2455 * the extent item from the extent tree, when there still are references
2456 * to add, which would fail because they would not find the extent item.
2457 */
2458 if (!list_empty(&head->ref_add_list))
2459 return list_first_entry(&head->ref_add_list,
2460 struct btrfs_delayed_ref_node, add_list);
2461
2462 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2463 list);
2464 ASSERT(list_empty(&ref->add_list));
2465 return ref;
2466 }
2467
2468 /*
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2471 */
2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 struct btrfs_fs_info *fs_info,
2474 unsigned long nr)
2475 {
2476 struct btrfs_delayed_ref_root *delayed_refs;
2477 struct btrfs_delayed_ref_node *ref;
2478 struct btrfs_delayed_ref_head *locked_ref = NULL;
2479 struct btrfs_delayed_extent_op *extent_op;
2480 ktime_t start = ktime_get();
2481 int ret;
2482 unsigned long count = 0;
2483 unsigned long actual_count = 0;
2484 int must_insert_reserved = 0;
2485
2486 delayed_refs = &trans->transaction->delayed_refs;
2487 while (1) {
2488 if (!locked_ref) {
2489 if (count >= nr)
2490 break;
2491
2492 spin_lock(&delayed_refs->lock);
2493 locked_ref = btrfs_select_ref_head(trans);
2494 if (!locked_ref) {
2495 spin_unlock(&delayed_refs->lock);
2496 break;
2497 }
2498
2499 /* grab the lock that says we are going to process
2500 * all the refs for this head */
2501 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2502 spin_unlock(&delayed_refs->lock);
2503 /*
2504 * we may have dropped the spin lock to get the head
2505 * mutex lock, and that might have given someone else
2506 * time to free the head. If that's true, it has been
2507 * removed from our list and we can move on.
2508 */
2509 if (ret == -EAGAIN) {
2510 locked_ref = NULL;
2511 count++;
2512 continue;
2513 }
2514 }
2515
2516 /*
2517 * We need to try and merge add/drops of the same ref since we
2518 * can run into issues with relocate dropping the implicit ref
2519 * and then it being added back again before the drop can
2520 * finish. If we merged anything we need to re-loop so we can
2521 * get a good ref.
2522 * Or we can get node references of the same type that weren't
2523 * merged when created due to bumps in the tree mod seq, and
2524 * we need to merge them to prevent adding an inline extent
2525 * backref before dropping it (triggering a BUG_ON at
2526 * insert_inline_extent_backref()).
2527 */
2528 spin_lock(&locked_ref->lock);
2529 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2530 locked_ref);
2531
2532 /*
2533 * locked_ref is the head node, so we have to go one
2534 * node back for any delayed ref updates
2535 */
2536 ref = select_delayed_ref(locked_ref);
2537
2538 if (ref && ref->seq &&
2539 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2540 spin_unlock(&locked_ref->lock);
2541 spin_lock(&delayed_refs->lock);
2542 locked_ref->processing = 0;
2543 delayed_refs->num_heads_ready++;
2544 spin_unlock(&delayed_refs->lock);
2545 btrfs_delayed_ref_unlock(locked_ref);
2546 locked_ref = NULL;
2547 cond_resched();
2548 count++;
2549 continue;
2550 }
2551
2552 /*
2553 * record the must insert reserved flag before we
2554 * drop the spin lock.
2555 */
2556 must_insert_reserved = locked_ref->must_insert_reserved;
2557 locked_ref->must_insert_reserved = 0;
2558
2559 extent_op = locked_ref->extent_op;
2560 locked_ref->extent_op = NULL;
2561
2562 if (!ref) {
2563
2564
2565 /* All delayed refs have been processed, Go ahead
2566 * and send the head node to run_one_delayed_ref,
2567 * so that any accounting fixes can happen
2568 */
2569 ref = &locked_ref->node;
2570
2571 if (extent_op && must_insert_reserved) {
2572 btrfs_free_delayed_extent_op(extent_op);
2573 extent_op = NULL;
2574 }
2575
2576 if (extent_op) {
2577 spin_unlock(&locked_ref->lock);
2578 ret = run_delayed_extent_op(trans, fs_info,
2579 ref, extent_op);
2580 btrfs_free_delayed_extent_op(extent_op);
2581
2582 if (ret) {
2583 /*
2584 * Need to reset must_insert_reserved if
2585 * there was an error so the abort stuff
2586 * can cleanup the reserved space
2587 * properly.
2588 */
2589 if (must_insert_reserved)
2590 locked_ref->must_insert_reserved = 1;
2591 spin_lock(&delayed_refs->lock);
2592 locked_ref->processing = 0;
2593 delayed_refs->num_heads_ready++;
2594 spin_unlock(&delayed_refs->lock);
2595 btrfs_debug(fs_info,
2596 "run_delayed_extent_op returned %d",
2597 ret);
2598 btrfs_delayed_ref_unlock(locked_ref);
2599 return ret;
2600 }
2601 continue;
2602 }
2603
2604 /*
2605 * Need to drop our head ref lock and re-acquire the
2606 * delayed ref lock and then re-check to make sure
2607 * nobody got added.
2608 */
2609 spin_unlock(&locked_ref->lock);
2610 spin_lock(&delayed_refs->lock);
2611 spin_lock(&locked_ref->lock);
2612 if (!list_empty(&locked_ref->ref_list) ||
2613 locked_ref->extent_op) {
2614 spin_unlock(&locked_ref->lock);
2615 spin_unlock(&delayed_refs->lock);
2616 continue;
2617 }
2618 ref->in_tree = 0;
2619 delayed_refs->num_heads--;
2620 rb_erase(&locked_ref->href_node,
2621 &delayed_refs->href_root);
2622 spin_unlock(&delayed_refs->lock);
2623 } else {
2624 actual_count++;
2625 ref->in_tree = 0;
2626 list_del(&ref->list);
2627 if (!list_empty(&ref->add_list))
2628 list_del(&ref->add_list);
2629 }
2630 atomic_dec(&delayed_refs->num_entries);
2631
2632 if (!btrfs_delayed_ref_is_head(ref)) {
2633 /*
2634 * when we play the delayed ref, also correct the
2635 * ref_mod on head
2636 */
2637 switch (ref->action) {
2638 case BTRFS_ADD_DELAYED_REF:
2639 case BTRFS_ADD_DELAYED_EXTENT:
2640 locked_ref->node.ref_mod -= ref->ref_mod;
2641 break;
2642 case BTRFS_DROP_DELAYED_REF:
2643 locked_ref->node.ref_mod += ref->ref_mod;
2644 break;
2645 default:
2646 WARN_ON(1);
2647 }
2648 }
2649 spin_unlock(&locked_ref->lock);
2650
2651 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2652 must_insert_reserved);
2653
2654 btrfs_free_delayed_extent_op(extent_op);
2655 if (ret) {
2656 spin_lock(&delayed_refs->lock);
2657 locked_ref->processing = 0;
2658 delayed_refs->num_heads_ready++;
2659 spin_unlock(&delayed_refs->lock);
2660 btrfs_delayed_ref_unlock(locked_ref);
2661 btrfs_put_delayed_ref(ref);
2662 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2663 ret);
2664 return ret;
2665 }
2666
2667 /*
2668 * If this node is a head, that means all the refs in this head
2669 * have been dealt with, and we will pick the next head to deal
2670 * with, so we must unlock the head and drop it from the cluster
2671 * list before we release it.
2672 */
2673 if (btrfs_delayed_ref_is_head(ref)) {
2674 if (locked_ref->is_data &&
2675 locked_ref->total_ref_mod < 0) {
2676 spin_lock(&delayed_refs->lock);
2677 delayed_refs->pending_csums -= ref->num_bytes;
2678 spin_unlock(&delayed_refs->lock);
2679 }
2680 btrfs_delayed_ref_unlock(locked_ref);
2681 locked_ref = NULL;
2682 }
2683 btrfs_put_delayed_ref(ref);
2684 count++;
2685 cond_resched();
2686 }
2687
2688 /*
2689 * We don't want to include ref heads since we can have empty ref heads
2690 * and those will drastically skew our runtime down since we just do
2691 * accounting, no actual extent tree updates.
2692 */
2693 if (actual_count > 0) {
2694 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2695 u64 avg;
2696
2697 /*
2698 * We weigh the current average higher than our current runtime
2699 * to avoid large swings in the average.
2700 */
2701 spin_lock(&delayed_refs->lock);
2702 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2703 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2704 spin_unlock(&delayed_refs->lock);
2705 }
2706 return 0;
2707 }
2708
2709 #ifdef SCRAMBLE_DELAYED_REFS
2710 /*
2711 * Normally delayed refs get processed in ascending bytenr order. This
2712 * correlates in most cases to the order added. To expose dependencies on this
2713 * order, we start to process the tree in the middle instead of the beginning
2714 */
2715 static u64 find_middle(struct rb_root *root)
2716 {
2717 struct rb_node *n = root->rb_node;
2718 struct btrfs_delayed_ref_node *entry;
2719 int alt = 1;
2720 u64 middle;
2721 u64 first = 0, last = 0;
2722
2723 n = rb_first(root);
2724 if (n) {
2725 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2726 first = entry->bytenr;
2727 }
2728 n = rb_last(root);
2729 if (n) {
2730 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2731 last = entry->bytenr;
2732 }
2733 n = root->rb_node;
2734
2735 while (n) {
2736 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2737 WARN_ON(!entry->in_tree);
2738
2739 middle = entry->bytenr;
2740
2741 if (alt)
2742 n = n->rb_left;
2743 else
2744 n = n->rb_right;
2745
2746 alt = 1 - alt;
2747 }
2748 return middle;
2749 }
2750 #endif
2751
2752 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2753 {
2754 u64 num_bytes;
2755
2756 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2757 sizeof(struct btrfs_extent_inline_ref));
2758 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2759 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2760
2761 /*
2762 * We don't ever fill up leaves all the way so multiply by 2 just to be
2763 * closer to what we're really going to want to use.
2764 */
2765 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2766 }
2767
2768 /*
2769 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2770 * would require to store the csums for that many bytes.
2771 */
2772 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2773 {
2774 u64 csum_size;
2775 u64 num_csums_per_leaf;
2776 u64 num_csums;
2777
2778 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2779 num_csums_per_leaf = div64_u64(csum_size,
2780 (u64)btrfs_super_csum_size(fs_info->super_copy));
2781 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2782 num_csums += num_csums_per_leaf - 1;
2783 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2784 return num_csums;
2785 }
2786
2787 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2788 struct btrfs_fs_info *fs_info)
2789 {
2790 struct btrfs_block_rsv *global_rsv;
2791 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2792 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2793 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2794 u64 num_bytes, num_dirty_bgs_bytes;
2795 int ret = 0;
2796
2797 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2798 num_heads = heads_to_leaves(fs_info, num_heads);
2799 if (num_heads > 1)
2800 num_bytes += (num_heads - 1) * fs_info->nodesize;
2801 num_bytes <<= 1;
2802 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2803 fs_info->nodesize;
2804 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2805 num_dirty_bgs);
2806 global_rsv = &fs_info->global_block_rsv;
2807
2808 /*
2809 * If we can't allocate any more chunks lets make sure we have _lots_ of
2810 * wiggle room since running delayed refs can create more delayed refs.
2811 */
2812 if (global_rsv->space_info->full) {
2813 num_dirty_bgs_bytes <<= 1;
2814 num_bytes <<= 1;
2815 }
2816
2817 spin_lock(&global_rsv->lock);
2818 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2819 ret = 1;
2820 spin_unlock(&global_rsv->lock);
2821 return ret;
2822 }
2823
2824 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2825 struct btrfs_fs_info *fs_info)
2826 {
2827 u64 num_entries =
2828 atomic_read(&trans->transaction->delayed_refs.num_entries);
2829 u64 avg_runtime;
2830 u64 val;
2831
2832 smp_mb();
2833 avg_runtime = fs_info->avg_delayed_ref_runtime;
2834 val = num_entries * avg_runtime;
2835 if (val >= NSEC_PER_SEC)
2836 return 1;
2837 if (val >= NSEC_PER_SEC / 2)
2838 return 2;
2839
2840 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2841 }
2842
2843 struct async_delayed_refs {
2844 struct btrfs_root *root;
2845 u64 transid;
2846 int count;
2847 int error;
2848 int sync;
2849 struct completion wait;
2850 struct btrfs_work work;
2851 };
2852
2853 static inline struct async_delayed_refs *
2854 to_async_delayed_refs(struct btrfs_work *work)
2855 {
2856 return container_of(work, struct async_delayed_refs, work);
2857 }
2858
2859 static void delayed_ref_async_start(struct btrfs_work *work)
2860 {
2861 struct async_delayed_refs *async = to_async_delayed_refs(work);
2862 struct btrfs_trans_handle *trans;
2863 struct btrfs_fs_info *fs_info = async->root->fs_info;
2864 int ret;
2865
2866 /* if the commit is already started, we don't need to wait here */
2867 if (btrfs_transaction_blocked(fs_info))
2868 goto done;
2869
2870 trans = btrfs_join_transaction(async->root);
2871 if (IS_ERR(trans)) {
2872 async->error = PTR_ERR(trans);
2873 goto done;
2874 }
2875
2876 /*
2877 * trans->sync means that when we call end_transaction, we won't
2878 * wait on delayed refs
2879 */
2880 trans->sync = true;
2881
2882 /* Don't bother flushing if we got into a different transaction */
2883 if (trans->transid > async->transid)
2884 goto end;
2885
2886 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2887 if (ret)
2888 async->error = ret;
2889 end:
2890 ret = btrfs_end_transaction(trans);
2891 if (ret && !async->error)
2892 async->error = ret;
2893 done:
2894 if (async->sync)
2895 complete(&async->wait);
2896 else
2897 kfree(async);
2898 }
2899
2900 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2901 unsigned long count, u64 transid, int wait)
2902 {
2903 struct async_delayed_refs *async;
2904 int ret;
2905
2906 async = kmalloc(sizeof(*async), GFP_NOFS);
2907 if (!async)
2908 return -ENOMEM;
2909
2910 async->root = fs_info->tree_root;
2911 async->count = count;
2912 async->error = 0;
2913 async->transid = transid;
2914 if (wait)
2915 async->sync = 1;
2916 else
2917 async->sync = 0;
2918 init_completion(&async->wait);
2919
2920 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2921 delayed_ref_async_start, NULL, NULL);
2922
2923 btrfs_queue_work(fs_info->extent_workers, &async->work);
2924
2925 if (wait) {
2926 wait_for_completion(&async->wait);
2927 ret = async->error;
2928 kfree(async);
2929 return ret;
2930 }
2931 return 0;
2932 }
2933
2934 /*
2935 * this starts processing the delayed reference count updates and
2936 * extent insertions we have queued up so far. count can be
2937 * 0, which means to process everything in the tree at the start
2938 * of the run (but not newly added entries), or it can be some target
2939 * number you'd like to process.
2940 *
2941 * Returns 0 on success or if called with an aborted transaction
2942 * Returns <0 on error and aborts the transaction
2943 */
2944 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2945 struct btrfs_fs_info *fs_info, unsigned long count)
2946 {
2947 struct rb_node *node;
2948 struct btrfs_delayed_ref_root *delayed_refs;
2949 struct btrfs_delayed_ref_head *head;
2950 int ret;
2951 int run_all = count == (unsigned long)-1;
2952 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2953
2954 /* We'll clean this up in btrfs_cleanup_transaction */
2955 if (trans->aborted)
2956 return 0;
2957
2958 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2959 return 0;
2960
2961 delayed_refs = &trans->transaction->delayed_refs;
2962 if (count == 0)
2963 count = atomic_read(&delayed_refs->num_entries) * 2;
2964
2965 again:
2966 #ifdef SCRAMBLE_DELAYED_REFS
2967 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2968 #endif
2969 trans->can_flush_pending_bgs = false;
2970 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2971 if (ret < 0) {
2972 btrfs_abort_transaction(trans, ret);
2973 return ret;
2974 }
2975
2976 if (run_all) {
2977 if (!list_empty(&trans->new_bgs))
2978 btrfs_create_pending_block_groups(trans, fs_info);
2979
2980 spin_lock(&delayed_refs->lock);
2981 node = rb_first(&delayed_refs->href_root);
2982 if (!node) {
2983 spin_unlock(&delayed_refs->lock);
2984 goto out;
2985 }
2986
2987 while (node) {
2988 head = rb_entry(node, struct btrfs_delayed_ref_head,
2989 href_node);
2990 if (btrfs_delayed_ref_is_head(&head->node)) {
2991 struct btrfs_delayed_ref_node *ref;
2992
2993 ref = &head->node;
2994 refcount_inc(&ref->refs);
2995
2996 spin_unlock(&delayed_refs->lock);
2997 /*
2998 * Mutex was contended, block until it's
2999 * released and try again
3000 */
3001 mutex_lock(&head->mutex);
3002 mutex_unlock(&head->mutex);
3003
3004 btrfs_put_delayed_ref(ref);
3005 cond_resched();
3006 goto again;
3007 } else {
3008 WARN_ON(1);
3009 }
3010 node = rb_next(node);
3011 }
3012 spin_unlock(&delayed_refs->lock);
3013 cond_resched();
3014 goto again;
3015 }
3016 out:
3017 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3018 return 0;
3019 }
3020
3021 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3022 struct btrfs_fs_info *fs_info,
3023 u64 bytenr, u64 num_bytes, u64 flags,
3024 int level, int is_data)
3025 {
3026 struct btrfs_delayed_extent_op *extent_op;
3027 int ret;
3028
3029 extent_op = btrfs_alloc_delayed_extent_op();
3030 if (!extent_op)
3031 return -ENOMEM;
3032
3033 extent_op->flags_to_set = flags;
3034 extent_op->update_flags = true;
3035 extent_op->update_key = false;
3036 extent_op->is_data = is_data ? true : false;
3037 extent_op->level = level;
3038
3039 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3040 num_bytes, extent_op);
3041 if (ret)
3042 btrfs_free_delayed_extent_op(extent_op);
3043 return ret;
3044 }
3045
3046 static noinline int check_delayed_ref(struct btrfs_root *root,
3047 struct btrfs_path *path,
3048 u64 objectid, u64 offset, u64 bytenr)
3049 {
3050 struct btrfs_delayed_ref_head *head;
3051 struct btrfs_delayed_ref_node *ref;
3052 struct btrfs_delayed_data_ref *data_ref;
3053 struct btrfs_delayed_ref_root *delayed_refs;
3054 struct btrfs_transaction *cur_trans;
3055 int ret = 0;
3056
3057 cur_trans = root->fs_info->running_transaction;
3058 if (!cur_trans)
3059 return 0;
3060
3061 delayed_refs = &cur_trans->delayed_refs;
3062 spin_lock(&delayed_refs->lock);
3063 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3064 if (!head) {
3065 spin_unlock(&delayed_refs->lock);
3066 return 0;
3067 }
3068
3069 if (!mutex_trylock(&head->mutex)) {
3070 refcount_inc(&head->node.refs);
3071 spin_unlock(&delayed_refs->lock);
3072
3073 btrfs_release_path(path);
3074
3075 /*
3076 * Mutex was contended, block until it's released and let
3077 * caller try again
3078 */
3079 mutex_lock(&head->mutex);
3080 mutex_unlock(&head->mutex);
3081 btrfs_put_delayed_ref(&head->node);
3082 return -EAGAIN;
3083 }
3084 spin_unlock(&delayed_refs->lock);
3085
3086 spin_lock(&head->lock);
3087 list_for_each_entry(ref, &head->ref_list, list) {
3088 /* If it's a shared ref we know a cross reference exists */
3089 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3090 ret = 1;
3091 break;
3092 }
3093
3094 data_ref = btrfs_delayed_node_to_data_ref(ref);
3095
3096 /*
3097 * If our ref doesn't match the one we're currently looking at
3098 * then we have a cross reference.
3099 */
3100 if (data_ref->root != root->root_key.objectid ||
3101 data_ref->objectid != objectid ||
3102 data_ref->offset != offset) {
3103 ret = 1;
3104 break;
3105 }
3106 }
3107 spin_unlock(&head->lock);
3108 mutex_unlock(&head->mutex);
3109 return ret;
3110 }
3111
3112 static noinline int check_committed_ref(struct btrfs_root *root,
3113 struct btrfs_path *path,
3114 u64 objectid, u64 offset, u64 bytenr)
3115 {
3116 struct btrfs_fs_info *fs_info = root->fs_info;
3117 struct btrfs_root *extent_root = fs_info->extent_root;
3118 struct extent_buffer *leaf;
3119 struct btrfs_extent_data_ref *ref;
3120 struct btrfs_extent_inline_ref *iref;
3121 struct btrfs_extent_item *ei;
3122 struct btrfs_key key;
3123 u32 item_size;
3124 int ret;
3125
3126 key.objectid = bytenr;
3127 key.offset = (u64)-1;
3128 key.type = BTRFS_EXTENT_ITEM_KEY;
3129
3130 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3131 if (ret < 0)
3132 goto out;
3133 BUG_ON(ret == 0); /* Corruption */
3134
3135 ret = -ENOENT;
3136 if (path->slots[0] == 0)
3137 goto out;
3138
3139 path->slots[0]--;
3140 leaf = path->nodes[0];
3141 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3142
3143 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3144 goto out;
3145
3146 ret = 1;
3147 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3148 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3149 if (item_size < sizeof(*ei)) {
3150 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3151 goto out;
3152 }
3153 #endif
3154 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3155
3156 if (item_size != sizeof(*ei) +
3157 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3158 goto out;
3159
3160 if (btrfs_extent_generation(leaf, ei) <=
3161 btrfs_root_last_snapshot(&root->root_item))
3162 goto out;
3163
3164 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3165 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3166 BTRFS_EXTENT_DATA_REF_KEY)
3167 goto out;
3168
3169 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3170 if (btrfs_extent_refs(leaf, ei) !=
3171 btrfs_extent_data_ref_count(leaf, ref) ||
3172 btrfs_extent_data_ref_root(leaf, ref) !=
3173 root->root_key.objectid ||
3174 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3175 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3176 goto out;
3177
3178 ret = 0;
3179 out:
3180 return ret;
3181 }
3182
3183 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3184 u64 bytenr)
3185 {
3186 struct btrfs_path *path;
3187 int ret;
3188 int ret2;
3189
3190 path = btrfs_alloc_path();
3191 if (!path)
3192 return -ENOENT;
3193
3194 do {
3195 ret = check_committed_ref(root, path, objectid,
3196 offset, bytenr);
3197 if (ret && ret != -ENOENT)
3198 goto out;
3199
3200 ret2 = check_delayed_ref(root, path, objectid,
3201 offset, bytenr);
3202 } while (ret2 == -EAGAIN);
3203
3204 if (ret2 && ret2 != -ENOENT) {
3205 ret = ret2;
3206 goto out;
3207 }
3208
3209 if (ret != -ENOENT || ret2 != -ENOENT)
3210 ret = 0;
3211 out:
3212 btrfs_free_path(path);
3213 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3214 WARN_ON(ret > 0);
3215 return ret;
3216 }
3217
3218 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3219 struct btrfs_root *root,
3220 struct extent_buffer *buf,
3221 int full_backref, int inc)
3222 {
3223 struct btrfs_fs_info *fs_info = root->fs_info;
3224 u64 bytenr;
3225 u64 num_bytes;
3226 u64 parent;
3227 u64 ref_root;
3228 u32 nritems;
3229 struct btrfs_key key;
3230 struct btrfs_file_extent_item *fi;
3231 int i;
3232 int level;
3233 int ret = 0;
3234 int (*process_func)(struct btrfs_trans_handle *,
3235 struct btrfs_fs_info *,
3236 u64, u64, u64, u64, u64, u64);
3237
3238
3239 if (btrfs_is_testing(fs_info))
3240 return 0;
3241
3242 ref_root = btrfs_header_owner(buf);
3243 nritems = btrfs_header_nritems(buf);
3244 level = btrfs_header_level(buf);
3245
3246 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3247 return 0;
3248
3249 if (inc)
3250 process_func = btrfs_inc_extent_ref;
3251 else
3252 process_func = btrfs_free_extent;
3253
3254 if (full_backref)
3255 parent = buf->start;
3256 else
3257 parent = 0;
3258
3259 for (i = 0; i < nritems; i++) {
3260 if (level == 0) {
3261 btrfs_item_key_to_cpu(buf, &key, i);
3262 if (key.type != BTRFS_EXTENT_DATA_KEY)
3263 continue;
3264 fi = btrfs_item_ptr(buf, i,
3265 struct btrfs_file_extent_item);
3266 if (btrfs_file_extent_type(buf, fi) ==
3267 BTRFS_FILE_EXTENT_INLINE)
3268 continue;
3269 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3270 if (bytenr == 0)
3271 continue;
3272
3273 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3274 key.offset -= btrfs_file_extent_offset(buf, fi);
3275 ret = process_func(trans, fs_info, bytenr, num_bytes,
3276 parent, ref_root, key.objectid,
3277 key.offset);
3278 if (ret)
3279 goto fail;
3280 } else {
3281 bytenr = btrfs_node_blockptr(buf, i);
3282 num_bytes = fs_info->nodesize;
3283 ret = process_func(trans, fs_info, bytenr, num_bytes,
3284 parent, ref_root, level - 1, 0);
3285 if (ret)
3286 goto fail;
3287 }
3288 }
3289 return 0;
3290 fail:
3291 return ret;
3292 }
3293
3294 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3295 struct extent_buffer *buf, int full_backref)
3296 {
3297 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3298 }
3299
3300 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3301 struct extent_buffer *buf, int full_backref)
3302 {
3303 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3304 }
3305
3306 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3307 struct btrfs_fs_info *fs_info,
3308 struct btrfs_path *path,
3309 struct btrfs_block_group_cache *cache)
3310 {
3311 int ret;
3312 struct btrfs_root *extent_root = fs_info->extent_root;
3313 unsigned long bi;
3314 struct extent_buffer *leaf;
3315
3316 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3317 if (ret) {
3318 if (ret > 0)
3319 ret = -ENOENT;
3320 goto fail;
3321 }
3322
3323 leaf = path->nodes[0];
3324 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3325 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3326 btrfs_mark_buffer_dirty(leaf);
3327 fail:
3328 btrfs_release_path(path);
3329 return ret;
3330
3331 }
3332
3333 static struct btrfs_block_group_cache *
3334 next_block_group(struct btrfs_fs_info *fs_info,
3335 struct btrfs_block_group_cache *cache)
3336 {
3337 struct rb_node *node;
3338
3339 spin_lock(&fs_info->block_group_cache_lock);
3340
3341 /* If our block group was removed, we need a full search. */
3342 if (RB_EMPTY_NODE(&cache->cache_node)) {
3343 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3344
3345 spin_unlock(&fs_info->block_group_cache_lock);
3346 btrfs_put_block_group(cache);
3347 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3348 }
3349 node = rb_next(&cache->cache_node);
3350 btrfs_put_block_group(cache);
3351 if (node) {
3352 cache = rb_entry(node, struct btrfs_block_group_cache,
3353 cache_node);
3354 btrfs_get_block_group(cache);
3355 } else
3356 cache = NULL;
3357 spin_unlock(&fs_info->block_group_cache_lock);
3358 return cache;
3359 }
3360
3361 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3362 struct btrfs_trans_handle *trans,
3363 struct btrfs_path *path)
3364 {
3365 struct btrfs_fs_info *fs_info = block_group->fs_info;
3366 struct btrfs_root *root = fs_info->tree_root;
3367 struct inode *inode = NULL;
3368 u64 alloc_hint = 0;
3369 int dcs = BTRFS_DC_ERROR;
3370 u64 num_pages = 0;
3371 int retries = 0;
3372 int ret = 0;
3373
3374 /*
3375 * If this block group is smaller than 100 megs don't bother caching the
3376 * block group.
3377 */
3378 if (block_group->key.offset < (100 * SZ_1M)) {
3379 spin_lock(&block_group->lock);
3380 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3381 spin_unlock(&block_group->lock);
3382 return 0;
3383 }
3384
3385 if (trans->aborted)
3386 return 0;
3387 again:
3388 inode = lookup_free_space_inode(fs_info, block_group, path);
3389 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3390 ret = PTR_ERR(inode);
3391 btrfs_release_path(path);
3392 goto out;
3393 }
3394
3395 if (IS_ERR(inode)) {
3396 BUG_ON(retries);
3397 retries++;
3398
3399 if (block_group->ro)
3400 goto out_free;
3401
3402 ret = create_free_space_inode(fs_info, trans, block_group,
3403 path);
3404 if (ret)
3405 goto out_free;
3406 goto again;
3407 }
3408
3409 /* We've already setup this transaction, go ahead and exit */
3410 if (block_group->cache_generation == trans->transid &&
3411 i_size_read(inode)) {
3412 dcs = BTRFS_DC_SETUP;
3413 goto out_put;
3414 }
3415
3416 /*
3417 * We want to set the generation to 0, that way if anything goes wrong
3418 * from here on out we know not to trust this cache when we load up next
3419 * time.
3420 */
3421 BTRFS_I(inode)->generation = 0;
3422 ret = btrfs_update_inode(trans, root, inode);
3423 if (ret) {
3424 /*
3425 * So theoretically we could recover from this, simply set the
3426 * super cache generation to 0 so we know to invalidate the
3427 * cache, but then we'd have to keep track of the block groups
3428 * that fail this way so we know we _have_ to reset this cache
3429 * before the next commit or risk reading stale cache. So to
3430 * limit our exposure to horrible edge cases lets just abort the
3431 * transaction, this only happens in really bad situations
3432 * anyway.
3433 */
3434 btrfs_abort_transaction(trans, ret);
3435 goto out_put;
3436 }
3437 WARN_ON(ret);
3438
3439 if (i_size_read(inode) > 0) {
3440 ret = btrfs_check_trunc_cache_free_space(fs_info,
3441 &fs_info->global_block_rsv);
3442 if (ret)
3443 goto out_put;
3444
3445 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3446 if (ret)
3447 goto out_put;
3448 }
3449
3450 spin_lock(&block_group->lock);
3451 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3452 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3453 /*
3454 * don't bother trying to write stuff out _if_
3455 * a) we're not cached,
3456 * b) we're with nospace_cache mount option,
3457 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3458 */
3459 dcs = BTRFS_DC_WRITTEN;
3460 spin_unlock(&block_group->lock);
3461 goto out_put;
3462 }
3463 spin_unlock(&block_group->lock);
3464
3465 /*
3466 * We hit an ENOSPC when setting up the cache in this transaction, just
3467 * skip doing the setup, we've already cleared the cache so we're safe.
3468 */
3469 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3470 ret = -ENOSPC;
3471 goto out_put;
3472 }
3473
3474 /*
3475 * Try to preallocate enough space based on how big the block group is.
3476 * Keep in mind this has to include any pinned space which could end up
3477 * taking up quite a bit since it's not folded into the other space
3478 * cache.
3479 */
3480 num_pages = div_u64(block_group->key.offset, SZ_256M);
3481 if (!num_pages)
3482 num_pages = 1;
3483
3484 num_pages *= 16;
3485 num_pages *= PAGE_SIZE;
3486
3487 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3488 if (ret)
3489 goto out_put;
3490
3491 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3492 num_pages, num_pages,
3493 &alloc_hint);
3494 /*
3495 * Our cache requires contiguous chunks so that we don't modify a bunch
3496 * of metadata or split extents when writing the cache out, which means
3497 * we can enospc if we are heavily fragmented in addition to just normal
3498 * out of space conditions. So if we hit this just skip setting up any
3499 * other block groups for this transaction, maybe we'll unpin enough
3500 * space the next time around.
3501 */
3502 if (!ret)
3503 dcs = BTRFS_DC_SETUP;
3504 else if (ret == -ENOSPC)
3505 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3506
3507 out_put:
3508 iput(inode);
3509 out_free:
3510 btrfs_release_path(path);
3511 out:
3512 spin_lock(&block_group->lock);
3513 if (!ret && dcs == BTRFS_DC_SETUP)
3514 block_group->cache_generation = trans->transid;
3515 block_group->disk_cache_state = dcs;
3516 spin_unlock(&block_group->lock);
3517
3518 return ret;
3519 }
3520
3521 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3522 struct btrfs_fs_info *fs_info)
3523 {
3524 struct btrfs_block_group_cache *cache, *tmp;
3525 struct btrfs_transaction *cur_trans = trans->transaction;
3526 struct btrfs_path *path;
3527
3528 if (list_empty(&cur_trans->dirty_bgs) ||
3529 !btrfs_test_opt(fs_info, SPACE_CACHE))
3530 return 0;
3531
3532 path = btrfs_alloc_path();
3533 if (!path)
3534 return -ENOMEM;
3535
3536 /* Could add new block groups, use _safe just in case */
3537 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3538 dirty_list) {
3539 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3540 cache_save_setup(cache, trans, path);
3541 }
3542
3543 btrfs_free_path(path);
3544 return 0;
3545 }
3546
3547 /*
3548 * transaction commit does final block group cache writeback during a
3549 * critical section where nothing is allowed to change the FS. This is
3550 * required in order for the cache to actually match the block group,
3551 * but can introduce a lot of latency into the commit.
3552 *
3553 * So, btrfs_start_dirty_block_groups is here to kick off block group
3554 * cache IO. There's a chance we'll have to redo some of it if the
3555 * block group changes again during the commit, but it greatly reduces
3556 * the commit latency by getting rid of the easy block groups while
3557 * we're still allowing others to join the commit.
3558 */
3559 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3560 struct btrfs_fs_info *fs_info)
3561 {
3562 struct btrfs_block_group_cache *cache;
3563 struct btrfs_transaction *cur_trans = trans->transaction;
3564 int ret = 0;
3565 int should_put;
3566 struct btrfs_path *path = NULL;
3567 LIST_HEAD(dirty);
3568 struct list_head *io = &cur_trans->io_bgs;
3569 int num_started = 0;
3570 int loops = 0;
3571
3572 spin_lock(&cur_trans->dirty_bgs_lock);
3573 if (list_empty(&cur_trans->dirty_bgs)) {
3574 spin_unlock(&cur_trans->dirty_bgs_lock);
3575 return 0;
3576 }
3577 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3578 spin_unlock(&cur_trans->dirty_bgs_lock);
3579
3580 again:
3581 /*
3582 * make sure all the block groups on our dirty list actually
3583 * exist
3584 */
3585 btrfs_create_pending_block_groups(trans, fs_info);
3586
3587 if (!path) {
3588 path = btrfs_alloc_path();
3589 if (!path)
3590 return -ENOMEM;
3591 }
3592
3593 /*
3594 * cache_write_mutex is here only to save us from balance or automatic
3595 * removal of empty block groups deleting this block group while we are
3596 * writing out the cache
3597 */
3598 mutex_lock(&trans->transaction->cache_write_mutex);
3599 while (!list_empty(&dirty)) {
3600 cache = list_first_entry(&dirty,
3601 struct btrfs_block_group_cache,
3602 dirty_list);
3603 /*
3604 * this can happen if something re-dirties a block
3605 * group that is already under IO. Just wait for it to
3606 * finish and then do it all again
3607 */
3608 if (!list_empty(&cache->io_list)) {
3609 list_del_init(&cache->io_list);
3610 btrfs_wait_cache_io(trans, cache, path);
3611 btrfs_put_block_group(cache);
3612 }
3613
3614
3615 /*
3616 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3617 * if it should update the cache_state. Don't delete
3618 * until after we wait.
3619 *
3620 * Since we're not running in the commit critical section
3621 * we need the dirty_bgs_lock to protect from update_block_group
3622 */
3623 spin_lock(&cur_trans->dirty_bgs_lock);
3624 list_del_init(&cache->dirty_list);
3625 spin_unlock(&cur_trans->dirty_bgs_lock);
3626
3627 should_put = 1;
3628
3629 cache_save_setup(cache, trans, path);
3630
3631 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3632 cache->io_ctl.inode = NULL;
3633 ret = btrfs_write_out_cache(fs_info, trans,
3634 cache, path);
3635 if (ret == 0 && cache->io_ctl.inode) {
3636 num_started++;
3637 should_put = 0;
3638
3639 /*
3640 * the cache_write_mutex is protecting
3641 * the io_list
3642 */
3643 list_add_tail(&cache->io_list, io);
3644 } else {
3645 /*
3646 * if we failed to write the cache, the
3647 * generation will be bad and life goes on
3648 */
3649 ret = 0;
3650 }
3651 }
3652 if (!ret) {
3653 ret = write_one_cache_group(trans, fs_info,
3654 path, cache);
3655 /*
3656 * Our block group might still be attached to the list
3657 * of new block groups in the transaction handle of some
3658 * other task (struct btrfs_trans_handle->new_bgs). This
3659 * means its block group item isn't yet in the extent
3660 * tree. If this happens ignore the error, as we will
3661 * try again later in the critical section of the
3662 * transaction commit.
3663 */
3664 if (ret == -ENOENT) {
3665 ret = 0;
3666 spin_lock(&cur_trans->dirty_bgs_lock);
3667 if (list_empty(&cache->dirty_list)) {
3668 list_add_tail(&cache->dirty_list,
3669 &cur_trans->dirty_bgs);
3670 btrfs_get_block_group(cache);
3671 }
3672 spin_unlock(&cur_trans->dirty_bgs_lock);
3673 } else if (ret) {
3674 btrfs_abort_transaction(trans, ret);
3675 }
3676 }
3677
3678 /* if its not on the io list, we need to put the block group */
3679 if (should_put)
3680 btrfs_put_block_group(cache);
3681
3682 if (ret)
3683 break;
3684
3685 /*
3686 * Avoid blocking other tasks for too long. It might even save
3687 * us from writing caches for block groups that are going to be
3688 * removed.
3689 */
3690 mutex_unlock(&trans->transaction->cache_write_mutex);
3691 mutex_lock(&trans->transaction->cache_write_mutex);
3692 }
3693 mutex_unlock(&trans->transaction->cache_write_mutex);
3694
3695 /*
3696 * go through delayed refs for all the stuff we've just kicked off
3697 * and then loop back (just once)
3698 */
3699 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3700 if (!ret && loops == 0) {
3701 loops++;
3702 spin_lock(&cur_trans->dirty_bgs_lock);
3703 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3704 /*
3705 * dirty_bgs_lock protects us from concurrent block group
3706 * deletes too (not just cache_write_mutex).
3707 */
3708 if (!list_empty(&dirty)) {
3709 spin_unlock(&cur_trans->dirty_bgs_lock);
3710 goto again;
3711 }
3712 spin_unlock(&cur_trans->dirty_bgs_lock);
3713 } else if (ret < 0) {
3714 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3715 }
3716
3717 btrfs_free_path(path);
3718 return ret;
3719 }
3720
3721 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3722 struct btrfs_fs_info *fs_info)
3723 {
3724 struct btrfs_block_group_cache *cache;
3725 struct btrfs_transaction *cur_trans = trans->transaction;
3726 int ret = 0;
3727 int should_put;
3728 struct btrfs_path *path;
3729 struct list_head *io = &cur_trans->io_bgs;
3730 int num_started = 0;
3731
3732 path = btrfs_alloc_path();
3733 if (!path)
3734 return -ENOMEM;
3735
3736 /*
3737 * Even though we are in the critical section of the transaction commit,
3738 * we can still have concurrent tasks adding elements to this
3739 * transaction's list of dirty block groups. These tasks correspond to
3740 * endio free space workers started when writeback finishes for a
3741 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3742 * allocate new block groups as a result of COWing nodes of the root
3743 * tree when updating the free space inode. The writeback for the space
3744 * caches is triggered by an earlier call to
3745 * btrfs_start_dirty_block_groups() and iterations of the following
3746 * loop.
3747 * Also we want to do the cache_save_setup first and then run the
3748 * delayed refs to make sure we have the best chance at doing this all
3749 * in one shot.
3750 */
3751 spin_lock(&cur_trans->dirty_bgs_lock);
3752 while (!list_empty(&cur_trans->dirty_bgs)) {
3753 cache = list_first_entry(&cur_trans->dirty_bgs,
3754 struct btrfs_block_group_cache,
3755 dirty_list);
3756
3757 /*
3758 * this can happen if cache_save_setup re-dirties a block
3759 * group that is already under IO. Just wait for it to
3760 * finish and then do it all again
3761 */
3762 if (!list_empty(&cache->io_list)) {
3763 spin_unlock(&cur_trans->dirty_bgs_lock);
3764 list_del_init(&cache->io_list);
3765 btrfs_wait_cache_io(trans, cache, path);
3766 btrfs_put_block_group(cache);
3767 spin_lock(&cur_trans->dirty_bgs_lock);
3768 }
3769
3770 /*
3771 * don't remove from the dirty list until after we've waited
3772 * on any pending IO
3773 */
3774 list_del_init(&cache->dirty_list);
3775 spin_unlock(&cur_trans->dirty_bgs_lock);
3776 should_put = 1;
3777
3778 cache_save_setup(cache, trans, path);
3779
3780 if (!ret)
3781 ret = btrfs_run_delayed_refs(trans, fs_info,
3782 (unsigned long) -1);
3783
3784 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3785 cache->io_ctl.inode = NULL;
3786 ret = btrfs_write_out_cache(fs_info, trans,
3787 cache, path);
3788 if (ret == 0 && cache->io_ctl.inode) {
3789 num_started++;
3790 should_put = 0;
3791 list_add_tail(&cache->io_list, io);
3792 } else {
3793 /*
3794 * if we failed to write the cache, the
3795 * generation will be bad and life goes on
3796 */
3797 ret = 0;
3798 }
3799 }
3800 if (!ret) {
3801 ret = write_one_cache_group(trans, fs_info,
3802 path, cache);
3803 /*
3804 * One of the free space endio workers might have
3805 * created a new block group while updating a free space
3806 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3807 * and hasn't released its transaction handle yet, in
3808 * which case the new block group is still attached to
3809 * its transaction handle and its creation has not
3810 * finished yet (no block group item in the extent tree
3811 * yet, etc). If this is the case, wait for all free
3812 * space endio workers to finish and retry. This is a
3813 * a very rare case so no need for a more efficient and
3814 * complex approach.
3815 */
3816 if (ret == -ENOENT) {
3817 wait_event(cur_trans->writer_wait,
3818 atomic_read(&cur_trans->num_writers) == 1);
3819 ret = write_one_cache_group(trans, fs_info,
3820 path, cache);
3821 }
3822 if (ret)
3823 btrfs_abort_transaction(trans, ret);
3824 }
3825
3826 /* if its not on the io list, we need to put the block group */
3827 if (should_put)
3828 btrfs_put_block_group(cache);
3829 spin_lock(&cur_trans->dirty_bgs_lock);
3830 }
3831 spin_unlock(&cur_trans->dirty_bgs_lock);
3832
3833 while (!list_empty(io)) {
3834 cache = list_first_entry(io, struct btrfs_block_group_cache,
3835 io_list);
3836 list_del_init(&cache->io_list);
3837 btrfs_wait_cache_io(trans, cache, path);
3838 btrfs_put_block_group(cache);
3839 }
3840
3841 btrfs_free_path(path);
3842 return ret;
3843 }
3844
3845 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3846 {
3847 struct btrfs_block_group_cache *block_group;
3848 int readonly = 0;
3849
3850 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3851 if (!block_group || block_group->ro)
3852 readonly = 1;
3853 if (block_group)
3854 btrfs_put_block_group(block_group);
3855 return readonly;
3856 }
3857
3858 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3859 {
3860 struct btrfs_block_group_cache *bg;
3861 bool ret = true;
3862
3863 bg = btrfs_lookup_block_group(fs_info, bytenr);
3864 if (!bg)
3865 return false;
3866
3867 spin_lock(&bg->lock);
3868 if (bg->ro)
3869 ret = false;
3870 else
3871 atomic_inc(&bg->nocow_writers);
3872 spin_unlock(&bg->lock);
3873
3874 /* no put on block group, done by btrfs_dec_nocow_writers */
3875 if (!ret)
3876 btrfs_put_block_group(bg);
3877
3878 return ret;
3879
3880 }
3881
3882 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3883 {
3884 struct btrfs_block_group_cache *bg;
3885
3886 bg = btrfs_lookup_block_group(fs_info, bytenr);
3887 ASSERT(bg);
3888 if (atomic_dec_and_test(&bg->nocow_writers))
3889 wake_up_atomic_t(&bg->nocow_writers);
3890 /*
3891 * Once for our lookup and once for the lookup done by a previous call
3892 * to btrfs_inc_nocow_writers()
3893 */
3894 btrfs_put_block_group(bg);
3895 btrfs_put_block_group(bg);
3896 }
3897
3898 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3899 {
3900 schedule();
3901 return 0;
3902 }
3903
3904 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3905 {
3906 wait_on_atomic_t(&bg->nocow_writers,
3907 btrfs_wait_nocow_writers_atomic_t,
3908 TASK_UNINTERRUPTIBLE);
3909 }
3910
3911 static const char *alloc_name(u64 flags)
3912 {
3913 switch (flags) {
3914 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3915 return "mixed";
3916 case BTRFS_BLOCK_GROUP_METADATA:
3917 return "metadata";
3918 case BTRFS_BLOCK_GROUP_DATA:
3919 return "data";
3920 case BTRFS_BLOCK_GROUP_SYSTEM:
3921 return "system";
3922 default:
3923 WARN_ON(1);
3924 return "invalid-combination";
3925 };
3926 }
3927
3928 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3929 struct btrfs_space_info **new)
3930 {
3931
3932 struct btrfs_space_info *space_info;
3933 int i;
3934 int ret;
3935
3936 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3937 if (!space_info)
3938 return -ENOMEM;
3939
3940 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3941 GFP_KERNEL);
3942 if (ret) {
3943 kfree(space_info);
3944 return ret;
3945 }
3946
3947 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3948 INIT_LIST_HEAD(&space_info->block_groups[i]);
3949 init_rwsem(&space_info->groups_sem);
3950 spin_lock_init(&space_info->lock);
3951 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3952 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3953 init_waitqueue_head(&space_info->wait);
3954 INIT_LIST_HEAD(&space_info->ro_bgs);
3955 INIT_LIST_HEAD(&space_info->tickets);
3956 INIT_LIST_HEAD(&space_info->priority_tickets);
3957
3958 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3959 info->space_info_kobj, "%s",
3960 alloc_name(space_info->flags));
3961 if (ret) {
3962 percpu_counter_destroy(&space_info->total_bytes_pinned);
3963 kfree(space_info);
3964 return ret;
3965 }
3966
3967 *new = space_info;
3968 list_add_rcu(&space_info->list, &info->space_info);
3969 if (flags & BTRFS_BLOCK_GROUP_DATA)
3970 info->data_sinfo = space_info;
3971
3972 return ret;
3973 }
3974
3975 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3976 u64 total_bytes, u64 bytes_used,
3977 u64 bytes_readonly,
3978 struct btrfs_space_info **space_info)
3979 {
3980 struct btrfs_space_info *found;
3981 int factor;
3982
3983 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3984 BTRFS_BLOCK_GROUP_RAID10))
3985 factor = 2;
3986 else
3987 factor = 1;
3988
3989 found = __find_space_info(info, flags);
3990 ASSERT(found);
3991 spin_lock(&found->lock);
3992 found->total_bytes += total_bytes;
3993 found->disk_total += total_bytes * factor;
3994 found->bytes_used += bytes_used;
3995 found->disk_used += bytes_used * factor;
3996 found->bytes_readonly += bytes_readonly;
3997 if (total_bytes > 0)
3998 found->full = 0;
3999 space_info_add_new_bytes(info, found, total_bytes -
4000 bytes_used - bytes_readonly);
4001 spin_unlock(&found->lock);
4002 *space_info = found;
4003 }
4004
4005 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4006 {
4007 u64 extra_flags = chunk_to_extended(flags) &
4008 BTRFS_EXTENDED_PROFILE_MASK;
4009
4010 write_seqlock(&fs_info->profiles_lock);
4011 if (flags & BTRFS_BLOCK_GROUP_DATA)
4012 fs_info->avail_data_alloc_bits |= extra_flags;
4013 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4014 fs_info->avail_metadata_alloc_bits |= extra_flags;
4015 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4016 fs_info->avail_system_alloc_bits |= extra_flags;
4017 write_sequnlock(&fs_info->profiles_lock);
4018 }
4019
4020 /*
4021 * returns target flags in extended format or 0 if restripe for this
4022 * chunk_type is not in progress
4023 *
4024 * should be called with either volume_mutex or balance_lock held
4025 */
4026 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4027 {
4028 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4029 u64 target = 0;
4030
4031 if (!bctl)
4032 return 0;
4033
4034 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4035 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4036 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4037 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4038 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4039 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4040 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4041 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4042 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4043 }
4044
4045 return target;
4046 }
4047
4048 /*
4049 * @flags: available profiles in extended format (see ctree.h)
4050 *
4051 * Returns reduced profile in chunk format. If profile changing is in
4052 * progress (either running or paused) picks the target profile (if it's
4053 * already available), otherwise falls back to plain reducing.
4054 */
4055 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4056 {
4057 u64 num_devices = fs_info->fs_devices->rw_devices;
4058 u64 target;
4059 u64 raid_type;
4060 u64 allowed = 0;
4061
4062 /*
4063 * see if restripe for this chunk_type is in progress, if so
4064 * try to reduce to the target profile
4065 */
4066 spin_lock(&fs_info->balance_lock);
4067 target = get_restripe_target(fs_info, flags);
4068 if (target) {
4069 /* pick target profile only if it's already available */
4070 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4071 spin_unlock(&fs_info->balance_lock);
4072 return extended_to_chunk(target);
4073 }
4074 }
4075 spin_unlock(&fs_info->balance_lock);
4076
4077 /* First, mask out the RAID levels which aren't possible */
4078 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4079 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4080 allowed |= btrfs_raid_group[raid_type];
4081 }
4082 allowed &= flags;
4083
4084 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4085 allowed = BTRFS_BLOCK_GROUP_RAID6;
4086 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4087 allowed = BTRFS_BLOCK_GROUP_RAID5;
4088 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4089 allowed = BTRFS_BLOCK_GROUP_RAID10;
4090 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4091 allowed = BTRFS_BLOCK_GROUP_RAID1;
4092 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4093 allowed = BTRFS_BLOCK_GROUP_RAID0;
4094
4095 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4096
4097 return extended_to_chunk(flags | allowed);
4098 }
4099
4100 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4101 {
4102 unsigned seq;
4103 u64 flags;
4104
4105 do {
4106 flags = orig_flags;
4107 seq = read_seqbegin(&fs_info->profiles_lock);
4108
4109 if (flags & BTRFS_BLOCK_GROUP_DATA)
4110 flags |= fs_info->avail_data_alloc_bits;
4111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4112 flags |= fs_info->avail_system_alloc_bits;
4113 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4114 flags |= fs_info->avail_metadata_alloc_bits;
4115 } while (read_seqretry(&fs_info->profiles_lock, seq));
4116
4117 return btrfs_reduce_alloc_profile(fs_info, flags);
4118 }
4119
4120 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4121 {
4122 struct btrfs_fs_info *fs_info = root->fs_info;
4123 u64 flags;
4124 u64 ret;
4125
4126 if (data)
4127 flags = BTRFS_BLOCK_GROUP_DATA;
4128 else if (root == fs_info->chunk_root)
4129 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4130 else
4131 flags = BTRFS_BLOCK_GROUP_METADATA;
4132
4133 ret = get_alloc_profile(fs_info, flags);
4134 return ret;
4135 }
4136
4137 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4138 {
4139 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4140 }
4141
4142 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4143 {
4144 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4145 }
4146
4147 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4148 {
4149 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4150 }
4151
4152 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4153 bool may_use_included)
4154 {
4155 ASSERT(s_info);
4156 return s_info->bytes_used + s_info->bytes_reserved +
4157 s_info->bytes_pinned + s_info->bytes_readonly +
4158 (may_use_included ? s_info->bytes_may_use : 0);
4159 }
4160
4161 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4162 {
4163 struct btrfs_space_info *data_sinfo;
4164 struct btrfs_root *root = inode->root;
4165 struct btrfs_fs_info *fs_info = root->fs_info;
4166 u64 used;
4167 int ret = 0;
4168 int need_commit = 2;
4169 int have_pinned_space;
4170
4171 /* make sure bytes are sectorsize aligned */
4172 bytes = ALIGN(bytes, fs_info->sectorsize);
4173
4174 if (btrfs_is_free_space_inode(inode)) {
4175 need_commit = 0;
4176 ASSERT(current->journal_info);
4177 }
4178
4179 data_sinfo = fs_info->data_sinfo;
4180 if (!data_sinfo)
4181 goto alloc;
4182
4183 again:
4184 /* make sure we have enough space to handle the data first */
4185 spin_lock(&data_sinfo->lock);
4186 used = btrfs_space_info_used(data_sinfo, true);
4187
4188 if (used + bytes > data_sinfo->total_bytes) {
4189 struct btrfs_trans_handle *trans;
4190
4191 /*
4192 * if we don't have enough free bytes in this space then we need
4193 * to alloc a new chunk.
4194 */
4195 if (!data_sinfo->full) {
4196 u64 alloc_target;
4197
4198 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4199 spin_unlock(&data_sinfo->lock);
4200 alloc:
4201 alloc_target = btrfs_data_alloc_profile(fs_info);
4202 /*
4203 * It is ugly that we don't call nolock join
4204 * transaction for the free space inode case here.
4205 * But it is safe because we only do the data space
4206 * reservation for the free space cache in the
4207 * transaction context, the common join transaction
4208 * just increase the counter of the current transaction
4209 * handler, doesn't try to acquire the trans_lock of
4210 * the fs.
4211 */
4212 trans = btrfs_join_transaction(root);
4213 if (IS_ERR(trans))
4214 return PTR_ERR(trans);
4215
4216 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4217 CHUNK_ALLOC_NO_FORCE);
4218 btrfs_end_transaction(trans);
4219 if (ret < 0) {
4220 if (ret != -ENOSPC)
4221 return ret;
4222 else {
4223 have_pinned_space = 1;
4224 goto commit_trans;
4225 }
4226 }
4227
4228 if (!data_sinfo)
4229 data_sinfo = fs_info->data_sinfo;
4230
4231 goto again;
4232 }
4233
4234 /*
4235 * If we don't have enough pinned space to deal with this
4236 * allocation, and no removed chunk in current transaction,
4237 * don't bother committing the transaction.
4238 */
4239 have_pinned_space = percpu_counter_compare(
4240 &data_sinfo->total_bytes_pinned,
4241 used + bytes - data_sinfo->total_bytes);
4242 spin_unlock(&data_sinfo->lock);
4243
4244 /* commit the current transaction and try again */
4245 commit_trans:
4246 if (need_commit &&
4247 !atomic_read(&fs_info->open_ioctl_trans)) {
4248 need_commit--;
4249
4250 if (need_commit > 0) {
4251 btrfs_start_delalloc_roots(fs_info, 0, -1);
4252 btrfs_wait_ordered_roots(fs_info, -1, 0,
4253 (u64)-1);
4254 }
4255
4256 trans = btrfs_join_transaction(root);
4257 if (IS_ERR(trans))
4258 return PTR_ERR(trans);
4259 if (have_pinned_space >= 0 ||
4260 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4261 &trans->transaction->flags) ||
4262 need_commit > 0) {
4263 ret = btrfs_commit_transaction(trans);
4264 if (ret)
4265 return ret;
4266 /*
4267 * The cleaner kthread might still be doing iput
4268 * operations. Wait for it to finish so that
4269 * more space is released.
4270 */
4271 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4272 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4273 goto again;
4274 } else {
4275 btrfs_end_transaction(trans);
4276 }
4277 }
4278
4279 trace_btrfs_space_reservation(fs_info,
4280 "space_info:enospc",
4281 data_sinfo->flags, bytes, 1);
4282 return -ENOSPC;
4283 }
4284 data_sinfo->bytes_may_use += bytes;
4285 trace_btrfs_space_reservation(fs_info, "space_info",
4286 data_sinfo->flags, bytes, 1);
4287 spin_unlock(&data_sinfo->lock);
4288
4289 return ret;
4290 }
4291
4292 /*
4293 * New check_data_free_space() with ability for precious data reservation
4294 * Will replace old btrfs_check_data_free_space(), but for patch split,
4295 * add a new function first and then replace it.
4296 */
4297 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4298 {
4299 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4300 int ret;
4301
4302 /* align the range */
4303 len = round_up(start + len, fs_info->sectorsize) -
4304 round_down(start, fs_info->sectorsize);
4305 start = round_down(start, fs_info->sectorsize);
4306
4307 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4308 if (ret < 0)
4309 return ret;
4310
4311 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4312 ret = btrfs_qgroup_reserve_data(inode, start, len);
4313 if (ret)
4314 btrfs_free_reserved_data_space_noquota(inode, start, len);
4315 return ret;
4316 }
4317
4318 /*
4319 * Called if we need to clear a data reservation for this inode
4320 * Normally in a error case.
4321 *
4322 * This one will *NOT* use accurate qgroup reserved space API, just for case
4323 * which we can't sleep and is sure it won't affect qgroup reserved space.
4324 * Like clear_bit_hook().
4325 */
4326 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4327 u64 len)
4328 {
4329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4330 struct btrfs_space_info *data_sinfo;
4331
4332 /* Make sure the range is aligned to sectorsize */
4333 len = round_up(start + len, fs_info->sectorsize) -
4334 round_down(start, fs_info->sectorsize);
4335 start = round_down(start, fs_info->sectorsize);
4336
4337 data_sinfo = fs_info->data_sinfo;
4338 spin_lock(&data_sinfo->lock);
4339 if (WARN_ON(data_sinfo->bytes_may_use < len))
4340 data_sinfo->bytes_may_use = 0;
4341 else
4342 data_sinfo->bytes_may_use -= len;
4343 trace_btrfs_space_reservation(fs_info, "space_info",
4344 data_sinfo->flags, len, 0);
4345 spin_unlock(&data_sinfo->lock);
4346 }
4347
4348 /*
4349 * Called if we need to clear a data reservation for this inode
4350 * Normally in a error case.
4351 *
4352 * This one will handle the per-inode data rsv map for accurate reserved
4353 * space framework.
4354 */
4355 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4356 {
4357 struct btrfs_root *root = BTRFS_I(inode)->root;
4358
4359 /* Make sure the range is aligned to sectorsize */
4360 len = round_up(start + len, root->fs_info->sectorsize) -
4361 round_down(start, root->fs_info->sectorsize);
4362 start = round_down(start, root->fs_info->sectorsize);
4363
4364 btrfs_free_reserved_data_space_noquota(inode, start, len);
4365 btrfs_qgroup_free_data(inode, start, len);
4366 }
4367
4368 static void force_metadata_allocation(struct btrfs_fs_info *info)
4369 {
4370 struct list_head *head = &info->space_info;
4371 struct btrfs_space_info *found;
4372
4373 rcu_read_lock();
4374 list_for_each_entry_rcu(found, head, list) {
4375 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4376 found->force_alloc = CHUNK_ALLOC_FORCE;
4377 }
4378 rcu_read_unlock();
4379 }
4380
4381 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4382 {
4383 return (global->size << 1);
4384 }
4385
4386 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4387 struct btrfs_space_info *sinfo, int force)
4388 {
4389 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4390 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4391 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4392 u64 thresh;
4393
4394 if (force == CHUNK_ALLOC_FORCE)
4395 return 1;
4396
4397 /*
4398 * We need to take into account the global rsv because for all intents
4399 * and purposes it's used space. Don't worry about locking the
4400 * global_rsv, it doesn't change except when the transaction commits.
4401 */
4402 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4403 num_allocated += calc_global_rsv_need_space(global_rsv);
4404
4405 /*
4406 * in limited mode, we want to have some free space up to
4407 * about 1% of the FS size.
4408 */
4409 if (force == CHUNK_ALLOC_LIMITED) {
4410 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4411 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4412
4413 if (num_bytes - num_allocated < thresh)
4414 return 1;
4415 }
4416
4417 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4418 return 0;
4419 return 1;
4420 }
4421
4422 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4423 {
4424 u64 num_dev;
4425
4426 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4427 BTRFS_BLOCK_GROUP_RAID0 |
4428 BTRFS_BLOCK_GROUP_RAID5 |
4429 BTRFS_BLOCK_GROUP_RAID6))
4430 num_dev = fs_info->fs_devices->rw_devices;
4431 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4432 num_dev = 2;
4433 else
4434 num_dev = 1; /* DUP or single */
4435
4436 return num_dev;
4437 }
4438
4439 /*
4440 * If @is_allocation is true, reserve space in the system space info necessary
4441 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4442 * removing a chunk.
4443 */
4444 void check_system_chunk(struct btrfs_trans_handle *trans,
4445 struct btrfs_fs_info *fs_info, u64 type)
4446 {
4447 struct btrfs_space_info *info;
4448 u64 left;
4449 u64 thresh;
4450 int ret = 0;
4451 u64 num_devs;
4452
4453 /*
4454 * Needed because we can end up allocating a system chunk and for an
4455 * atomic and race free space reservation in the chunk block reserve.
4456 */
4457 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4458
4459 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4460 spin_lock(&info->lock);
4461 left = info->total_bytes - btrfs_space_info_used(info, true);
4462 spin_unlock(&info->lock);
4463
4464 num_devs = get_profile_num_devs(fs_info, type);
4465
4466 /* num_devs device items to update and 1 chunk item to add or remove */
4467 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4468 btrfs_calc_trans_metadata_size(fs_info, 1);
4469
4470 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4471 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4472 left, thresh, type);
4473 dump_space_info(fs_info, info, 0, 0);
4474 }
4475
4476 if (left < thresh) {
4477 u64 flags = btrfs_system_alloc_profile(fs_info);
4478
4479 /*
4480 * Ignore failure to create system chunk. We might end up not
4481 * needing it, as we might not need to COW all nodes/leafs from
4482 * the paths we visit in the chunk tree (they were already COWed
4483 * or created in the current transaction for example).
4484 */
4485 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4486 }
4487
4488 if (!ret) {
4489 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4490 &fs_info->chunk_block_rsv,
4491 thresh, BTRFS_RESERVE_NO_FLUSH);
4492 if (!ret)
4493 trans->chunk_bytes_reserved += thresh;
4494 }
4495 }
4496
4497 /*
4498 * If force is CHUNK_ALLOC_FORCE:
4499 * - return 1 if it successfully allocates a chunk,
4500 * - return errors including -ENOSPC otherwise.
4501 * If force is NOT CHUNK_ALLOC_FORCE:
4502 * - return 0 if it doesn't need to allocate a new chunk,
4503 * - return 1 if it successfully allocates a chunk,
4504 * - return errors including -ENOSPC otherwise.
4505 */
4506 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4507 struct btrfs_fs_info *fs_info, u64 flags, int force)
4508 {
4509 struct btrfs_space_info *space_info;
4510 int wait_for_alloc = 0;
4511 int ret = 0;
4512
4513 /* Don't re-enter if we're already allocating a chunk */
4514 if (trans->allocating_chunk)
4515 return -ENOSPC;
4516
4517 space_info = __find_space_info(fs_info, flags);
4518 if (!space_info) {
4519 ret = create_space_info(fs_info, flags, &space_info);
4520 if (ret)
4521 return ret;
4522 }
4523
4524 again:
4525 spin_lock(&space_info->lock);
4526 if (force < space_info->force_alloc)
4527 force = space_info->force_alloc;
4528 if (space_info->full) {
4529 if (should_alloc_chunk(fs_info, space_info, force))
4530 ret = -ENOSPC;
4531 else
4532 ret = 0;
4533 spin_unlock(&space_info->lock);
4534 return ret;
4535 }
4536
4537 if (!should_alloc_chunk(fs_info, space_info, force)) {
4538 spin_unlock(&space_info->lock);
4539 return 0;
4540 } else if (space_info->chunk_alloc) {
4541 wait_for_alloc = 1;
4542 } else {
4543 space_info->chunk_alloc = 1;
4544 }
4545
4546 spin_unlock(&space_info->lock);
4547
4548 mutex_lock(&fs_info->chunk_mutex);
4549
4550 /*
4551 * The chunk_mutex is held throughout the entirety of a chunk
4552 * allocation, so once we've acquired the chunk_mutex we know that the
4553 * other guy is done and we need to recheck and see if we should
4554 * allocate.
4555 */
4556 if (wait_for_alloc) {
4557 mutex_unlock(&fs_info->chunk_mutex);
4558 wait_for_alloc = 0;
4559 goto again;
4560 }
4561
4562 trans->allocating_chunk = true;
4563
4564 /*
4565 * If we have mixed data/metadata chunks we want to make sure we keep
4566 * allocating mixed chunks instead of individual chunks.
4567 */
4568 if (btrfs_mixed_space_info(space_info))
4569 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4570
4571 /*
4572 * if we're doing a data chunk, go ahead and make sure that
4573 * we keep a reasonable number of metadata chunks allocated in the
4574 * FS as well.
4575 */
4576 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4577 fs_info->data_chunk_allocations++;
4578 if (!(fs_info->data_chunk_allocations %
4579 fs_info->metadata_ratio))
4580 force_metadata_allocation(fs_info);
4581 }
4582
4583 /*
4584 * Check if we have enough space in SYSTEM chunk because we may need
4585 * to update devices.
4586 */
4587 check_system_chunk(trans, fs_info, flags);
4588
4589 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4590 trans->allocating_chunk = false;
4591
4592 spin_lock(&space_info->lock);
4593 if (ret < 0 && ret != -ENOSPC)
4594 goto out;
4595 if (ret)
4596 space_info->full = 1;
4597 else
4598 ret = 1;
4599
4600 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4601 out:
4602 space_info->chunk_alloc = 0;
4603 spin_unlock(&space_info->lock);
4604 mutex_unlock(&fs_info->chunk_mutex);
4605 /*
4606 * When we allocate a new chunk we reserve space in the chunk block
4607 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4608 * add new nodes/leafs to it if we end up needing to do it when
4609 * inserting the chunk item and updating device items as part of the
4610 * second phase of chunk allocation, performed by
4611 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4612 * large number of new block groups to create in our transaction
4613 * handle's new_bgs list to avoid exhausting the chunk block reserve
4614 * in extreme cases - like having a single transaction create many new
4615 * block groups when starting to write out the free space caches of all
4616 * the block groups that were made dirty during the lifetime of the
4617 * transaction.
4618 */
4619 if (trans->can_flush_pending_bgs &&
4620 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4621 btrfs_create_pending_block_groups(trans, fs_info);
4622 btrfs_trans_release_chunk_metadata(trans);
4623 }
4624 return ret;
4625 }
4626
4627 static int can_overcommit(struct btrfs_fs_info *fs_info,
4628 struct btrfs_space_info *space_info, u64 bytes,
4629 enum btrfs_reserve_flush_enum flush,
4630 bool system_chunk)
4631 {
4632 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4633 u64 profile;
4634 u64 space_size;
4635 u64 avail;
4636 u64 used;
4637
4638 /* Don't overcommit when in mixed mode. */
4639 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4640 return 0;
4641
4642 if (system_chunk)
4643 profile = btrfs_system_alloc_profile(fs_info);
4644 else
4645 profile = btrfs_metadata_alloc_profile(fs_info);
4646
4647 used = btrfs_space_info_used(space_info, false);
4648
4649 /*
4650 * We only want to allow over committing if we have lots of actual space
4651 * free, but if we don't have enough space to handle the global reserve
4652 * space then we could end up having a real enospc problem when trying
4653 * to allocate a chunk or some other such important allocation.
4654 */
4655 spin_lock(&global_rsv->lock);
4656 space_size = calc_global_rsv_need_space(global_rsv);
4657 spin_unlock(&global_rsv->lock);
4658 if (used + space_size >= space_info->total_bytes)
4659 return 0;
4660
4661 used += space_info->bytes_may_use;
4662
4663 avail = atomic64_read(&fs_info->free_chunk_space);
4664
4665 /*
4666 * If we have dup, raid1 or raid10 then only half of the free
4667 * space is actually useable. For raid56, the space info used
4668 * doesn't include the parity drive, so we don't have to
4669 * change the math
4670 */
4671 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4672 BTRFS_BLOCK_GROUP_RAID1 |
4673 BTRFS_BLOCK_GROUP_RAID10))
4674 avail >>= 1;
4675
4676 /*
4677 * If we aren't flushing all things, let us overcommit up to
4678 * 1/2th of the space. If we can flush, don't let us overcommit
4679 * too much, let it overcommit up to 1/8 of the space.
4680 */
4681 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4682 avail >>= 3;
4683 else
4684 avail >>= 1;
4685
4686 if (used + bytes < space_info->total_bytes + avail)
4687 return 1;
4688 return 0;
4689 }
4690
4691 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4692 unsigned long nr_pages, int nr_items)
4693 {
4694 struct super_block *sb = fs_info->sb;
4695
4696 if (down_read_trylock(&sb->s_umount)) {
4697 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4698 up_read(&sb->s_umount);
4699 } else {
4700 /*
4701 * We needn't worry the filesystem going from r/w to r/o though
4702 * we don't acquire ->s_umount mutex, because the filesystem
4703 * should guarantee the delalloc inodes list be empty after
4704 * the filesystem is readonly(all dirty pages are written to
4705 * the disk).
4706 */
4707 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4708 if (!current->journal_info)
4709 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4710 }
4711 }
4712
4713 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4714 u64 to_reclaim)
4715 {
4716 u64 bytes;
4717 int nr;
4718
4719 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4720 nr = (int)div64_u64(to_reclaim, bytes);
4721 if (!nr)
4722 nr = 1;
4723 return nr;
4724 }
4725
4726 #define EXTENT_SIZE_PER_ITEM SZ_256K
4727
4728 /*
4729 * shrink metadata reservation for delalloc
4730 */
4731 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4732 u64 orig, bool wait_ordered)
4733 {
4734 struct btrfs_block_rsv *block_rsv;
4735 struct btrfs_space_info *space_info;
4736 struct btrfs_trans_handle *trans;
4737 u64 delalloc_bytes;
4738 u64 max_reclaim;
4739 long time_left;
4740 unsigned long nr_pages;
4741 int loops;
4742 int items;
4743 enum btrfs_reserve_flush_enum flush;
4744
4745 /* Calc the number of the pages we need flush for space reservation */
4746 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4747 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4748
4749 trans = (struct btrfs_trans_handle *)current->journal_info;
4750 block_rsv = &fs_info->delalloc_block_rsv;
4751 space_info = block_rsv->space_info;
4752
4753 delalloc_bytes = percpu_counter_sum_positive(
4754 &fs_info->delalloc_bytes);
4755 if (delalloc_bytes == 0) {
4756 if (trans)
4757 return;
4758 if (wait_ordered)
4759 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4760 return;
4761 }
4762
4763 loops = 0;
4764 while (delalloc_bytes && loops < 3) {
4765 max_reclaim = min(delalloc_bytes, to_reclaim);
4766 nr_pages = max_reclaim >> PAGE_SHIFT;
4767 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4768 /*
4769 * We need to wait for the async pages to actually start before
4770 * we do anything.
4771 */
4772 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4773 if (!max_reclaim)
4774 goto skip_async;
4775
4776 if (max_reclaim <= nr_pages)
4777 max_reclaim = 0;
4778 else
4779 max_reclaim -= nr_pages;
4780
4781 wait_event(fs_info->async_submit_wait,
4782 atomic_read(&fs_info->async_delalloc_pages) <=
4783 (int)max_reclaim);
4784 skip_async:
4785 if (!trans)
4786 flush = BTRFS_RESERVE_FLUSH_ALL;
4787 else
4788 flush = BTRFS_RESERVE_NO_FLUSH;
4789 spin_lock(&space_info->lock);
4790 if (can_overcommit(fs_info, space_info, orig, flush, false)) {
4791 spin_unlock(&space_info->lock);
4792 break;
4793 }
4794 if (list_empty(&space_info->tickets) &&
4795 list_empty(&space_info->priority_tickets)) {
4796 spin_unlock(&space_info->lock);
4797 break;
4798 }
4799 spin_unlock(&space_info->lock);
4800
4801 loops++;
4802 if (wait_ordered && !trans) {
4803 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4804 } else {
4805 time_left = schedule_timeout_killable(1);
4806 if (time_left)
4807 break;
4808 }
4809 delalloc_bytes = percpu_counter_sum_positive(
4810 &fs_info->delalloc_bytes);
4811 }
4812 }
4813
4814 /**
4815 * maybe_commit_transaction - possibly commit the transaction if its ok to
4816 * @root - the root we're allocating for
4817 * @bytes - the number of bytes we want to reserve
4818 * @force - force the commit
4819 *
4820 * This will check to make sure that committing the transaction will actually
4821 * get us somewhere and then commit the transaction if it does. Otherwise it
4822 * will return -ENOSPC.
4823 */
4824 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4825 struct btrfs_space_info *space_info,
4826 u64 bytes, int force)
4827 {
4828 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4829 struct btrfs_trans_handle *trans;
4830
4831 trans = (struct btrfs_trans_handle *)current->journal_info;
4832 if (trans)
4833 return -EAGAIN;
4834
4835 if (force)
4836 goto commit;
4837
4838 /* See if there is enough pinned space to make this reservation */
4839 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4840 bytes) >= 0)
4841 goto commit;
4842
4843 /*
4844 * See if there is some space in the delayed insertion reservation for
4845 * this reservation.
4846 */
4847 if (space_info != delayed_rsv->space_info)
4848 return -ENOSPC;
4849
4850 spin_lock(&delayed_rsv->lock);
4851 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4852 bytes - delayed_rsv->size) < 0) {
4853 spin_unlock(&delayed_rsv->lock);
4854 return -ENOSPC;
4855 }
4856 spin_unlock(&delayed_rsv->lock);
4857
4858 commit:
4859 trans = btrfs_join_transaction(fs_info->extent_root);
4860 if (IS_ERR(trans))
4861 return -ENOSPC;
4862
4863 return btrfs_commit_transaction(trans);
4864 }
4865
4866 struct reserve_ticket {
4867 u64 bytes;
4868 int error;
4869 struct list_head list;
4870 wait_queue_head_t wait;
4871 };
4872
4873 static int flush_space(struct btrfs_fs_info *fs_info,
4874 struct btrfs_space_info *space_info, u64 num_bytes,
4875 u64 orig_bytes, int state)
4876 {
4877 struct btrfs_root *root = fs_info->extent_root;
4878 struct btrfs_trans_handle *trans;
4879 int nr;
4880 int ret = 0;
4881
4882 switch (state) {
4883 case FLUSH_DELAYED_ITEMS_NR:
4884 case FLUSH_DELAYED_ITEMS:
4885 if (state == FLUSH_DELAYED_ITEMS_NR)
4886 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4887 else
4888 nr = -1;
4889
4890 trans = btrfs_join_transaction(root);
4891 if (IS_ERR(trans)) {
4892 ret = PTR_ERR(trans);
4893 break;
4894 }
4895 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4896 btrfs_end_transaction(trans);
4897 break;
4898 case FLUSH_DELALLOC:
4899 case FLUSH_DELALLOC_WAIT:
4900 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
4901 state == FLUSH_DELALLOC_WAIT);
4902 break;
4903 case ALLOC_CHUNK:
4904 trans = btrfs_join_transaction(root);
4905 if (IS_ERR(trans)) {
4906 ret = PTR_ERR(trans);
4907 break;
4908 }
4909 ret = do_chunk_alloc(trans, fs_info,
4910 btrfs_metadata_alloc_profile(fs_info),
4911 CHUNK_ALLOC_NO_FORCE);
4912 btrfs_end_transaction(trans);
4913 if (ret > 0 || ret == -ENOSPC)
4914 ret = 0;
4915 break;
4916 case COMMIT_TRANS:
4917 ret = may_commit_transaction(fs_info, space_info,
4918 orig_bytes, 0);
4919 break;
4920 default:
4921 ret = -ENOSPC;
4922 break;
4923 }
4924
4925 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4926 orig_bytes, state, ret);
4927 return ret;
4928 }
4929
4930 static inline u64
4931 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4932 struct btrfs_space_info *space_info,
4933 bool system_chunk)
4934 {
4935 struct reserve_ticket *ticket;
4936 u64 used;
4937 u64 expected;
4938 u64 to_reclaim = 0;
4939
4940 list_for_each_entry(ticket, &space_info->tickets, list)
4941 to_reclaim += ticket->bytes;
4942 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4943 to_reclaim += ticket->bytes;
4944 if (to_reclaim)
4945 return to_reclaim;
4946
4947 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4948 if (can_overcommit(fs_info, space_info, to_reclaim,
4949 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4950 return 0;
4951
4952 used = btrfs_space_info_used(space_info, true);
4953
4954 if (can_overcommit(fs_info, space_info, SZ_1M,
4955 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4956 expected = div_factor_fine(space_info->total_bytes, 95);
4957 else
4958 expected = div_factor_fine(space_info->total_bytes, 90);
4959
4960 if (used > expected)
4961 to_reclaim = used - expected;
4962 else
4963 to_reclaim = 0;
4964 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4965 space_info->bytes_reserved);
4966 return to_reclaim;
4967 }
4968
4969 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4970 struct btrfs_space_info *space_info,
4971 u64 used, bool system_chunk)
4972 {
4973 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4974
4975 /* If we're just plain full then async reclaim just slows us down. */
4976 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4977 return 0;
4978
4979 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4980 system_chunk))
4981 return 0;
4982
4983 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4984 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4985 }
4986
4987 static void wake_all_tickets(struct list_head *head)
4988 {
4989 struct reserve_ticket *ticket;
4990
4991 while (!list_empty(head)) {
4992 ticket = list_first_entry(head, struct reserve_ticket, list);
4993 list_del_init(&ticket->list);
4994 ticket->error = -ENOSPC;
4995 wake_up(&ticket->wait);
4996 }
4997 }
4998
4999 /*
5000 * This is for normal flushers, we can wait all goddamned day if we want to. We
5001 * will loop and continuously try to flush as long as we are making progress.
5002 * We count progress as clearing off tickets each time we have to loop.
5003 */
5004 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5005 {
5006 struct btrfs_fs_info *fs_info;
5007 struct btrfs_space_info *space_info;
5008 u64 to_reclaim;
5009 int flush_state;
5010 int commit_cycles = 0;
5011 u64 last_tickets_id;
5012
5013 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5014 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5015
5016 spin_lock(&space_info->lock);
5017 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5018 false);
5019 if (!to_reclaim) {
5020 space_info->flush = 0;
5021 spin_unlock(&space_info->lock);
5022 return;
5023 }
5024 last_tickets_id = space_info->tickets_id;
5025 spin_unlock(&space_info->lock);
5026
5027 flush_state = FLUSH_DELAYED_ITEMS_NR;
5028 do {
5029 struct reserve_ticket *ticket;
5030 int ret;
5031
5032 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5033 flush_state);
5034 spin_lock(&space_info->lock);
5035 if (list_empty(&space_info->tickets)) {
5036 space_info->flush = 0;
5037 spin_unlock(&space_info->lock);
5038 return;
5039 }
5040 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5041 space_info,
5042 false);
5043 ticket = list_first_entry(&space_info->tickets,
5044 struct reserve_ticket, list);
5045 if (last_tickets_id == space_info->tickets_id) {
5046 flush_state++;
5047 } else {
5048 last_tickets_id = space_info->tickets_id;
5049 flush_state = FLUSH_DELAYED_ITEMS_NR;
5050 if (commit_cycles)
5051 commit_cycles--;
5052 }
5053
5054 if (flush_state > COMMIT_TRANS) {
5055 commit_cycles++;
5056 if (commit_cycles > 2) {
5057 wake_all_tickets(&space_info->tickets);
5058 space_info->flush = 0;
5059 } else {
5060 flush_state = FLUSH_DELAYED_ITEMS_NR;
5061 }
5062 }
5063 spin_unlock(&space_info->lock);
5064 } while (flush_state <= COMMIT_TRANS);
5065 }
5066
5067 void btrfs_init_async_reclaim_work(struct work_struct *work)
5068 {
5069 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5070 }
5071
5072 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5073 struct btrfs_space_info *space_info,
5074 struct reserve_ticket *ticket)
5075 {
5076 u64 to_reclaim;
5077 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5078
5079 spin_lock(&space_info->lock);
5080 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5081 false);
5082 if (!to_reclaim) {
5083 spin_unlock(&space_info->lock);
5084 return;
5085 }
5086 spin_unlock(&space_info->lock);
5087
5088 do {
5089 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5090 flush_state);
5091 flush_state++;
5092 spin_lock(&space_info->lock);
5093 if (ticket->bytes == 0) {
5094 spin_unlock(&space_info->lock);
5095 return;
5096 }
5097 spin_unlock(&space_info->lock);
5098
5099 /*
5100 * Priority flushers can't wait on delalloc without
5101 * deadlocking.
5102 */
5103 if (flush_state == FLUSH_DELALLOC ||
5104 flush_state == FLUSH_DELALLOC_WAIT)
5105 flush_state = ALLOC_CHUNK;
5106 } while (flush_state < COMMIT_TRANS);
5107 }
5108
5109 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5110 struct btrfs_space_info *space_info,
5111 struct reserve_ticket *ticket, u64 orig_bytes)
5112
5113 {
5114 DEFINE_WAIT(wait);
5115 int ret = 0;
5116
5117 spin_lock(&space_info->lock);
5118 while (ticket->bytes > 0 && ticket->error == 0) {
5119 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5120 if (ret) {
5121 ret = -EINTR;
5122 break;
5123 }
5124 spin_unlock(&space_info->lock);
5125
5126 schedule();
5127
5128 finish_wait(&ticket->wait, &wait);
5129 spin_lock(&space_info->lock);
5130 }
5131 if (!ret)
5132 ret = ticket->error;
5133 if (!list_empty(&ticket->list))
5134 list_del_init(&ticket->list);
5135 if (ticket->bytes && ticket->bytes < orig_bytes) {
5136 u64 num_bytes = orig_bytes - ticket->bytes;
5137 space_info->bytes_may_use -= num_bytes;
5138 trace_btrfs_space_reservation(fs_info, "space_info",
5139 space_info->flags, num_bytes, 0);
5140 }
5141 spin_unlock(&space_info->lock);
5142
5143 return ret;
5144 }
5145
5146 /**
5147 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5148 * @root - the root we're allocating for
5149 * @space_info - the space info we want to allocate from
5150 * @orig_bytes - the number of bytes we want
5151 * @flush - whether or not we can flush to make our reservation
5152 *
5153 * This will reserve orig_bytes number of bytes from the space info associated
5154 * with the block_rsv. If there is not enough space it will make an attempt to
5155 * flush out space to make room. It will do this by flushing delalloc if
5156 * possible or committing the transaction. If flush is 0 then no attempts to
5157 * regain reservations will be made and this will fail if there is not enough
5158 * space already.
5159 */
5160 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5161 struct btrfs_space_info *space_info,
5162 u64 orig_bytes,
5163 enum btrfs_reserve_flush_enum flush,
5164 bool system_chunk)
5165 {
5166 struct reserve_ticket ticket;
5167 u64 used;
5168 int ret = 0;
5169
5170 ASSERT(orig_bytes);
5171 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5172
5173 spin_lock(&space_info->lock);
5174 ret = -ENOSPC;
5175 used = btrfs_space_info_used(space_info, true);
5176
5177 /*
5178 * If we have enough space then hooray, make our reservation and carry
5179 * on. If not see if we can overcommit, and if we can, hooray carry on.
5180 * If not things get more complicated.
5181 */
5182 if (used + orig_bytes <= space_info->total_bytes) {
5183 space_info->bytes_may_use += orig_bytes;
5184 trace_btrfs_space_reservation(fs_info, "space_info",
5185 space_info->flags, orig_bytes, 1);
5186 ret = 0;
5187 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5188 system_chunk)) {
5189 space_info->bytes_may_use += orig_bytes;
5190 trace_btrfs_space_reservation(fs_info, "space_info",
5191 space_info->flags, orig_bytes, 1);
5192 ret = 0;
5193 }
5194
5195 /*
5196 * If we couldn't make a reservation then setup our reservation ticket
5197 * and kick the async worker if it's not already running.
5198 *
5199 * If we are a priority flusher then we just need to add our ticket to
5200 * the list and we will do our own flushing further down.
5201 */
5202 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5203 ticket.bytes = orig_bytes;
5204 ticket.error = 0;
5205 init_waitqueue_head(&ticket.wait);
5206 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5207 list_add_tail(&ticket.list, &space_info->tickets);
5208 if (!space_info->flush) {
5209 space_info->flush = 1;
5210 trace_btrfs_trigger_flush(fs_info,
5211 space_info->flags,
5212 orig_bytes, flush,
5213 "enospc");
5214 queue_work(system_unbound_wq,
5215 &fs_info->async_reclaim_work);
5216 }
5217 } else {
5218 list_add_tail(&ticket.list,
5219 &space_info->priority_tickets);
5220 }
5221 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5222 used += orig_bytes;
5223 /*
5224 * We will do the space reservation dance during log replay,
5225 * which means we won't have fs_info->fs_root set, so don't do
5226 * the async reclaim as we will panic.
5227 */
5228 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5229 need_do_async_reclaim(fs_info, space_info,
5230 used, system_chunk) &&
5231 !work_busy(&fs_info->async_reclaim_work)) {
5232 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5233 orig_bytes, flush, "preempt");
5234 queue_work(system_unbound_wq,
5235 &fs_info->async_reclaim_work);
5236 }
5237 }
5238 spin_unlock(&space_info->lock);
5239 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5240 return ret;
5241
5242 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5243 return wait_reserve_ticket(fs_info, space_info, &ticket,
5244 orig_bytes);
5245
5246 ret = 0;
5247 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5248 spin_lock(&space_info->lock);
5249 if (ticket.bytes) {
5250 if (ticket.bytes < orig_bytes) {
5251 u64 num_bytes = orig_bytes - ticket.bytes;
5252 space_info->bytes_may_use -= num_bytes;
5253 trace_btrfs_space_reservation(fs_info, "space_info",
5254 space_info->flags,
5255 num_bytes, 0);
5256
5257 }
5258 list_del_init(&ticket.list);
5259 ret = -ENOSPC;
5260 }
5261 spin_unlock(&space_info->lock);
5262 ASSERT(list_empty(&ticket.list));
5263 return ret;
5264 }
5265
5266 /**
5267 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5268 * @root - the root we're allocating for
5269 * @block_rsv - the block_rsv we're allocating for
5270 * @orig_bytes - the number of bytes we want
5271 * @flush - whether or not we can flush to make our reservation
5272 *
5273 * This will reserve orgi_bytes number of bytes from the space info associated
5274 * with the block_rsv. If there is not enough space it will make an attempt to
5275 * flush out space to make room. It will do this by flushing delalloc if
5276 * possible or committing the transaction. If flush is 0 then no attempts to
5277 * regain reservations will be made and this will fail if there is not enough
5278 * space already.
5279 */
5280 static int reserve_metadata_bytes(struct btrfs_root *root,
5281 struct btrfs_block_rsv *block_rsv,
5282 u64 orig_bytes,
5283 enum btrfs_reserve_flush_enum flush)
5284 {
5285 struct btrfs_fs_info *fs_info = root->fs_info;
5286 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5287 int ret;
5288 bool system_chunk = (root == fs_info->chunk_root);
5289
5290 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5291 orig_bytes, flush, system_chunk);
5292 if (ret == -ENOSPC &&
5293 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5294 if (block_rsv != global_rsv &&
5295 !block_rsv_use_bytes(global_rsv, orig_bytes))
5296 ret = 0;
5297 }
5298 if (ret == -ENOSPC)
5299 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5300 block_rsv->space_info->flags,
5301 orig_bytes, 1);
5302 return ret;
5303 }
5304
5305 static struct btrfs_block_rsv *get_block_rsv(
5306 const struct btrfs_trans_handle *trans,
5307 const struct btrfs_root *root)
5308 {
5309 struct btrfs_fs_info *fs_info = root->fs_info;
5310 struct btrfs_block_rsv *block_rsv = NULL;
5311
5312 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5313 (root == fs_info->csum_root && trans->adding_csums) ||
5314 (root == fs_info->uuid_root))
5315 block_rsv = trans->block_rsv;
5316
5317 if (!block_rsv)
5318 block_rsv = root->block_rsv;
5319
5320 if (!block_rsv)
5321 block_rsv = &fs_info->empty_block_rsv;
5322
5323 return block_rsv;
5324 }
5325
5326 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5327 u64 num_bytes)
5328 {
5329 int ret = -ENOSPC;
5330 spin_lock(&block_rsv->lock);
5331 if (block_rsv->reserved >= num_bytes) {
5332 block_rsv->reserved -= num_bytes;
5333 if (block_rsv->reserved < block_rsv->size)
5334 block_rsv->full = 0;
5335 ret = 0;
5336 }
5337 spin_unlock(&block_rsv->lock);
5338 return ret;
5339 }
5340
5341 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5342 u64 num_bytes, int update_size)
5343 {
5344 spin_lock(&block_rsv->lock);
5345 block_rsv->reserved += num_bytes;
5346 if (update_size)
5347 block_rsv->size += num_bytes;
5348 else if (block_rsv->reserved >= block_rsv->size)
5349 block_rsv->full = 1;
5350 spin_unlock(&block_rsv->lock);
5351 }
5352
5353 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5354 struct btrfs_block_rsv *dest, u64 num_bytes,
5355 int min_factor)
5356 {
5357 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5358 u64 min_bytes;
5359
5360 if (global_rsv->space_info != dest->space_info)
5361 return -ENOSPC;
5362
5363 spin_lock(&global_rsv->lock);
5364 min_bytes = div_factor(global_rsv->size, min_factor);
5365 if (global_rsv->reserved < min_bytes + num_bytes) {
5366 spin_unlock(&global_rsv->lock);
5367 return -ENOSPC;
5368 }
5369 global_rsv->reserved -= num_bytes;
5370 if (global_rsv->reserved < global_rsv->size)
5371 global_rsv->full = 0;
5372 spin_unlock(&global_rsv->lock);
5373
5374 block_rsv_add_bytes(dest, num_bytes, 1);
5375 return 0;
5376 }
5377
5378 /*
5379 * This is for space we already have accounted in space_info->bytes_may_use, so
5380 * basically when we're returning space from block_rsv's.
5381 */
5382 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5383 struct btrfs_space_info *space_info,
5384 u64 num_bytes)
5385 {
5386 struct reserve_ticket *ticket;
5387 struct list_head *head;
5388 u64 used;
5389 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5390 bool check_overcommit = false;
5391
5392 spin_lock(&space_info->lock);
5393 head = &space_info->priority_tickets;
5394
5395 /*
5396 * If we are over our limit then we need to check and see if we can
5397 * overcommit, and if we can't then we just need to free up our space
5398 * and not satisfy any requests.
5399 */
5400 used = btrfs_space_info_used(space_info, true);
5401 if (used - num_bytes >= space_info->total_bytes)
5402 check_overcommit = true;
5403 again:
5404 while (!list_empty(head) && num_bytes) {
5405 ticket = list_first_entry(head, struct reserve_ticket,
5406 list);
5407 /*
5408 * We use 0 bytes because this space is already reserved, so
5409 * adding the ticket space would be a double count.
5410 */
5411 if (check_overcommit &&
5412 !can_overcommit(fs_info, space_info, 0, flush, false))
5413 break;
5414 if (num_bytes >= ticket->bytes) {
5415 list_del_init(&ticket->list);
5416 num_bytes -= ticket->bytes;
5417 ticket->bytes = 0;
5418 space_info->tickets_id++;
5419 wake_up(&ticket->wait);
5420 } else {
5421 ticket->bytes -= num_bytes;
5422 num_bytes = 0;
5423 }
5424 }
5425
5426 if (num_bytes && head == &space_info->priority_tickets) {
5427 head = &space_info->tickets;
5428 flush = BTRFS_RESERVE_FLUSH_ALL;
5429 goto again;
5430 }
5431 space_info->bytes_may_use -= num_bytes;
5432 trace_btrfs_space_reservation(fs_info, "space_info",
5433 space_info->flags, num_bytes, 0);
5434 spin_unlock(&space_info->lock);
5435 }
5436
5437 /*
5438 * This is for newly allocated space that isn't accounted in
5439 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5440 * we use this helper.
5441 */
5442 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5443 struct btrfs_space_info *space_info,
5444 u64 num_bytes)
5445 {
5446 struct reserve_ticket *ticket;
5447 struct list_head *head = &space_info->priority_tickets;
5448
5449 again:
5450 while (!list_empty(head) && num_bytes) {
5451 ticket = list_first_entry(head, struct reserve_ticket,
5452 list);
5453 if (num_bytes >= ticket->bytes) {
5454 trace_btrfs_space_reservation(fs_info, "space_info",
5455 space_info->flags,
5456 ticket->bytes, 1);
5457 list_del_init(&ticket->list);
5458 num_bytes -= ticket->bytes;
5459 space_info->bytes_may_use += ticket->bytes;
5460 ticket->bytes = 0;
5461 space_info->tickets_id++;
5462 wake_up(&ticket->wait);
5463 } else {
5464 trace_btrfs_space_reservation(fs_info, "space_info",
5465 space_info->flags,
5466 num_bytes, 1);
5467 space_info->bytes_may_use += num_bytes;
5468 ticket->bytes -= num_bytes;
5469 num_bytes = 0;
5470 }
5471 }
5472
5473 if (num_bytes && head == &space_info->priority_tickets) {
5474 head = &space_info->tickets;
5475 goto again;
5476 }
5477 }
5478
5479 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5480 struct btrfs_block_rsv *block_rsv,
5481 struct btrfs_block_rsv *dest, u64 num_bytes)
5482 {
5483 struct btrfs_space_info *space_info = block_rsv->space_info;
5484
5485 spin_lock(&block_rsv->lock);
5486 if (num_bytes == (u64)-1)
5487 num_bytes = block_rsv->size;
5488 block_rsv->size -= num_bytes;
5489 if (block_rsv->reserved >= block_rsv->size) {
5490 num_bytes = block_rsv->reserved - block_rsv->size;
5491 block_rsv->reserved = block_rsv->size;
5492 block_rsv->full = 1;
5493 } else {
5494 num_bytes = 0;
5495 }
5496 spin_unlock(&block_rsv->lock);
5497
5498 if (num_bytes > 0) {
5499 if (dest) {
5500 spin_lock(&dest->lock);
5501 if (!dest->full) {
5502 u64 bytes_to_add;
5503
5504 bytes_to_add = dest->size - dest->reserved;
5505 bytes_to_add = min(num_bytes, bytes_to_add);
5506 dest->reserved += bytes_to_add;
5507 if (dest->reserved >= dest->size)
5508 dest->full = 1;
5509 num_bytes -= bytes_to_add;
5510 }
5511 spin_unlock(&dest->lock);
5512 }
5513 if (num_bytes)
5514 space_info_add_old_bytes(fs_info, space_info,
5515 num_bytes);
5516 }
5517 }
5518
5519 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5520 struct btrfs_block_rsv *dst, u64 num_bytes,
5521 int update_size)
5522 {
5523 int ret;
5524
5525 ret = block_rsv_use_bytes(src, num_bytes);
5526 if (ret)
5527 return ret;
5528
5529 block_rsv_add_bytes(dst, num_bytes, update_size);
5530 return 0;
5531 }
5532
5533 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5534 {
5535 memset(rsv, 0, sizeof(*rsv));
5536 spin_lock_init(&rsv->lock);
5537 rsv->type = type;
5538 }
5539
5540 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5541 unsigned short type)
5542 {
5543 struct btrfs_block_rsv *block_rsv;
5544
5545 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5546 if (!block_rsv)
5547 return NULL;
5548
5549 btrfs_init_block_rsv(block_rsv, type);
5550 block_rsv->space_info = __find_space_info(fs_info,
5551 BTRFS_BLOCK_GROUP_METADATA);
5552 return block_rsv;
5553 }
5554
5555 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5556 struct btrfs_block_rsv *rsv)
5557 {
5558 if (!rsv)
5559 return;
5560 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5561 kfree(rsv);
5562 }
5563
5564 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5565 {
5566 kfree(rsv);
5567 }
5568
5569 int btrfs_block_rsv_add(struct btrfs_root *root,
5570 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5571 enum btrfs_reserve_flush_enum flush)
5572 {
5573 int ret;
5574
5575 if (num_bytes == 0)
5576 return 0;
5577
5578 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5579 if (!ret) {
5580 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5581 return 0;
5582 }
5583
5584 return ret;
5585 }
5586
5587 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5588 {
5589 u64 num_bytes = 0;
5590 int ret = -ENOSPC;
5591
5592 if (!block_rsv)
5593 return 0;
5594
5595 spin_lock(&block_rsv->lock);
5596 num_bytes = div_factor(block_rsv->size, min_factor);
5597 if (block_rsv->reserved >= num_bytes)
5598 ret = 0;
5599 spin_unlock(&block_rsv->lock);
5600
5601 return ret;
5602 }
5603
5604 int btrfs_block_rsv_refill(struct btrfs_root *root,
5605 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5606 enum btrfs_reserve_flush_enum flush)
5607 {
5608 u64 num_bytes = 0;
5609 int ret = -ENOSPC;
5610
5611 if (!block_rsv)
5612 return 0;
5613
5614 spin_lock(&block_rsv->lock);
5615 num_bytes = min_reserved;
5616 if (block_rsv->reserved >= num_bytes)
5617 ret = 0;
5618 else
5619 num_bytes -= block_rsv->reserved;
5620 spin_unlock(&block_rsv->lock);
5621
5622 if (!ret)
5623 return 0;
5624
5625 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5626 if (!ret) {
5627 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5628 return 0;
5629 }
5630
5631 return ret;
5632 }
5633
5634 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5635 struct btrfs_block_rsv *block_rsv,
5636 u64 num_bytes)
5637 {
5638 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5639
5640 if (global_rsv == block_rsv ||
5641 block_rsv->space_info != global_rsv->space_info)
5642 global_rsv = NULL;
5643 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5644 }
5645
5646 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5647 {
5648 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5649 struct btrfs_space_info *sinfo = block_rsv->space_info;
5650 u64 num_bytes;
5651
5652 /*
5653 * The global block rsv is based on the size of the extent tree, the
5654 * checksum tree and the root tree. If the fs is empty we want to set
5655 * it to a minimal amount for safety.
5656 */
5657 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5658 btrfs_root_used(&fs_info->csum_root->root_item) +
5659 btrfs_root_used(&fs_info->tree_root->root_item);
5660 num_bytes = max_t(u64, num_bytes, SZ_16M);
5661
5662 spin_lock(&sinfo->lock);
5663 spin_lock(&block_rsv->lock);
5664
5665 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5666
5667 if (block_rsv->reserved < block_rsv->size) {
5668 num_bytes = btrfs_space_info_used(sinfo, true);
5669 if (sinfo->total_bytes > num_bytes) {
5670 num_bytes = sinfo->total_bytes - num_bytes;
5671 num_bytes = min(num_bytes,
5672 block_rsv->size - block_rsv->reserved);
5673 block_rsv->reserved += num_bytes;
5674 sinfo->bytes_may_use += num_bytes;
5675 trace_btrfs_space_reservation(fs_info, "space_info",
5676 sinfo->flags, num_bytes,
5677 1);
5678 }
5679 } else if (block_rsv->reserved > block_rsv->size) {
5680 num_bytes = block_rsv->reserved - block_rsv->size;
5681 sinfo->bytes_may_use -= num_bytes;
5682 trace_btrfs_space_reservation(fs_info, "space_info",
5683 sinfo->flags, num_bytes, 0);
5684 block_rsv->reserved = block_rsv->size;
5685 }
5686
5687 if (block_rsv->reserved == block_rsv->size)
5688 block_rsv->full = 1;
5689 else
5690 block_rsv->full = 0;
5691
5692 spin_unlock(&block_rsv->lock);
5693 spin_unlock(&sinfo->lock);
5694 }
5695
5696 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5697 {
5698 struct btrfs_space_info *space_info;
5699
5700 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5701 fs_info->chunk_block_rsv.space_info = space_info;
5702
5703 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5704 fs_info->global_block_rsv.space_info = space_info;
5705 fs_info->delalloc_block_rsv.space_info = space_info;
5706 fs_info->trans_block_rsv.space_info = space_info;
5707 fs_info->empty_block_rsv.space_info = space_info;
5708 fs_info->delayed_block_rsv.space_info = space_info;
5709
5710 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5711 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5712 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5713 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5714 if (fs_info->quota_root)
5715 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5716 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5717
5718 update_global_block_rsv(fs_info);
5719 }
5720
5721 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5722 {
5723 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5724 (u64)-1);
5725 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5726 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5727 WARN_ON(fs_info->trans_block_rsv.size > 0);
5728 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5729 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5730 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5731 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5732 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5733 }
5734
5735 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5736 struct btrfs_fs_info *fs_info)
5737 {
5738 if (!trans->block_rsv)
5739 return;
5740
5741 if (!trans->bytes_reserved)
5742 return;
5743
5744 trace_btrfs_space_reservation(fs_info, "transaction",
5745 trans->transid, trans->bytes_reserved, 0);
5746 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5747 trans->bytes_reserved);
5748 trans->bytes_reserved = 0;
5749 }
5750
5751 /*
5752 * To be called after all the new block groups attached to the transaction
5753 * handle have been created (btrfs_create_pending_block_groups()).
5754 */
5755 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5756 {
5757 struct btrfs_fs_info *fs_info = trans->fs_info;
5758
5759 if (!trans->chunk_bytes_reserved)
5760 return;
5761
5762 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5763
5764 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5765 trans->chunk_bytes_reserved);
5766 trans->chunk_bytes_reserved = 0;
5767 }
5768
5769 /* Can only return 0 or -ENOSPC */
5770 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5771 struct btrfs_inode *inode)
5772 {
5773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5774 struct btrfs_root *root = inode->root;
5775 /*
5776 * We always use trans->block_rsv here as we will have reserved space
5777 * for our orphan when starting the transaction, using get_block_rsv()
5778 * here will sometimes make us choose the wrong block rsv as we could be
5779 * doing a reloc inode for a non refcounted root.
5780 */
5781 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5782 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5783
5784 /*
5785 * We need to hold space in order to delete our orphan item once we've
5786 * added it, so this takes the reservation so we can release it later
5787 * when we are truly done with the orphan item.
5788 */
5789 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5790
5791 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5792 num_bytes, 1);
5793 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5794 }
5795
5796 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5797 {
5798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5799 struct btrfs_root *root = inode->root;
5800 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5801
5802 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5803 num_bytes, 0);
5804 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5805 }
5806
5807 /*
5808 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5809 * root: the root of the parent directory
5810 * rsv: block reservation
5811 * items: the number of items that we need do reservation
5812 * qgroup_reserved: used to return the reserved size in qgroup
5813 *
5814 * This function is used to reserve the space for snapshot/subvolume
5815 * creation and deletion. Those operations are different with the
5816 * common file/directory operations, they change two fs/file trees
5817 * and root tree, the number of items that the qgroup reserves is
5818 * different with the free space reservation. So we can not use
5819 * the space reservation mechanism in start_transaction().
5820 */
5821 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5822 struct btrfs_block_rsv *rsv,
5823 int items,
5824 u64 *qgroup_reserved,
5825 bool use_global_rsv)
5826 {
5827 u64 num_bytes;
5828 int ret;
5829 struct btrfs_fs_info *fs_info = root->fs_info;
5830 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5831
5832 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5833 /* One for parent inode, two for dir entries */
5834 num_bytes = 3 * fs_info->nodesize;
5835 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5836 if (ret)
5837 return ret;
5838 } else {
5839 num_bytes = 0;
5840 }
5841
5842 *qgroup_reserved = num_bytes;
5843
5844 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5845 rsv->space_info = __find_space_info(fs_info,
5846 BTRFS_BLOCK_GROUP_METADATA);
5847 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5848 BTRFS_RESERVE_FLUSH_ALL);
5849
5850 if (ret == -ENOSPC && use_global_rsv)
5851 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5852
5853 if (ret && *qgroup_reserved)
5854 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5855
5856 return ret;
5857 }
5858
5859 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5860 struct btrfs_block_rsv *rsv)
5861 {
5862 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5863 }
5864
5865 /**
5866 * drop_outstanding_extent - drop an outstanding extent
5867 * @inode: the inode we're dropping the extent for
5868 * @num_bytes: the number of bytes we're releasing.
5869 *
5870 * This is called when we are freeing up an outstanding extent, either called
5871 * after an error or after an extent is written. This will return the number of
5872 * reserved extents that need to be freed. This must be called with
5873 * BTRFS_I(inode)->lock held.
5874 */
5875 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5876 u64 num_bytes)
5877 {
5878 unsigned drop_inode_space = 0;
5879 unsigned dropped_extents = 0;
5880 unsigned num_extents;
5881
5882 num_extents = count_max_extents(num_bytes);
5883 ASSERT(num_extents);
5884 ASSERT(inode->outstanding_extents >= num_extents);
5885 inode->outstanding_extents -= num_extents;
5886
5887 if (inode->outstanding_extents == 0 &&
5888 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5889 &inode->runtime_flags))
5890 drop_inode_space = 1;
5891
5892 /*
5893 * If we have more or the same amount of outstanding extents than we have
5894 * reserved then we need to leave the reserved extents count alone.
5895 */
5896 if (inode->outstanding_extents >= inode->reserved_extents)
5897 return drop_inode_space;
5898
5899 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5900 inode->reserved_extents -= dropped_extents;
5901 return dropped_extents + drop_inode_space;
5902 }
5903
5904 /**
5905 * calc_csum_metadata_size - return the amount of metadata space that must be
5906 * reserved/freed for the given bytes.
5907 * @inode: the inode we're manipulating
5908 * @num_bytes: the number of bytes in question
5909 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5910 *
5911 * This adjusts the number of csum_bytes in the inode and then returns the
5912 * correct amount of metadata that must either be reserved or freed. We
5913 * calculate how many checksums we can fit into one leaf and then divide the
5914 * number of bytes that will need to be checksumed by this value to figure out
5915 * how many checksums will be required. If we are adding bytes then the number
5916 * may go up and we will return the number of additional bytes that must be
5917 * reserved. If it is going down we will return the number of bytes that must
5918 * be freed.
5919 *
5920 * This must be called with BTRFS_I(inode)->lock held.
5921 */
5922 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5923 int reserve)
5924 {
5925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5926 u64 old_csums, num_csums;
5927
5928 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5929 return 0;
5930
5931 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5932 if (reserve)
5933 inode->csum_bytes += num_bytes;
5934 else
5935 inode->csum_bytes -= num_bytes;
5936 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5937
5938 /* No change, no need to reserve more */
5939 if (old_csums == num_csums)
5940 return 0;
5941
5942 if (reserve)
5943 return btrfs_calc_trans_metadata_size(fs_info,
5944 num_csums - old_csums);
5945
5946 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5947 }
5948
5949 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5950 {
5951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5952 struct btrfs_root *root = inode->root;
5953 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5954 u64 to_reserve = 0;
5955 u64 csum_bytes;
5956 unsigned nr_extents;
5957 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5958 int ret = 0;
5959 bool delalloc_lock = true;
5960 u64 to_free = 0;
5961 unsigned dropped;
5962 bool release_extra = false;
5963
5964 /* If we are a free space inode we need to not flush since we will be in
5965 * the middle of a transaction commit. We also don't need the delalloc
5966 * mutex since we won't race with anybody. We need this mostly to make
5967 * lockdep shut its filthy mouth.
5968 *
5969 * If we have a transaction open (can happen if we call truncate_block
5970 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5971 */
5972 if (btrfs_is_free_space_inode(inode)) {
5973 flush = BTRFS_RESERVE_NO_FLUSH;
5974 delalloc_lock = false;
5975 } else if (current->journal_info) {
5976 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5977 }
5978
5979 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5980 btrfs_transaction_in_commit(fs_info))
5981 schedule_timeout(1);
5982
5983 if (delalloc_lock)
5984 mutex_lock(&inode->delalloc_mutex);
5985
5986 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5987
5988 spin_lock(&inode->lock);
5989 nr_extents = count_max_extents(num_bytes);
5990 inode->outstanding_extents += nr_extents;
5991
5992 nr_extents = 0;
5993 if (inode->outstanding_extents > inode->reserved_extents)
5994 nr_extents += inode->outstanding_extents -
5995 inode->reserved_extents;
5996
5997 /* We always want to reserve a slot for updating the inode. */
5998 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5999 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6000 csum_bytes = inode->csum_bytes;
6001 spin_unlock(&inode->lock);
6002
6003 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6004 ret = btrfs_qgroup_reserve_meta(root,
6005 nr_extents * fs_info->nodesize, true);
6006 if (ret)
6007 goto out_fail;
6008 }
6009
6010 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6011 if (unlikely(ret)) {
6012 btrfs_qgroup_free_meta(root,
6013 nr_extents * fs_info->nodesize);
6014 goto out_fail;
6015 }
6016
6017 spin_lock(&inode->lock);
6018 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6019 &inode->runtime_flags)) {
6020 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6021 release_extra = true;
6022 }
6023 inode->reserved_extents += nr_extents;
6024 spin_unlock(&inode->lock);
6025
6026 if (delalloc_lock)
6027 mutex_unlock(&inode->delalloc_mutex);
6028
6029 if (to_reserve)
6030 trace_btrfs_space_reservation(fs_info, "delalloc",
6031 btrfs_ino(inode), to_reserve, 1);
6032 if (release_extra)
6033 btrfs_block_rsv_release(fs_info, block_rsv,
6034 btrfs_calc_trans_metadata_size(fs_info, 1));
6035 return 0;
6036
6037 out_fail:
6038 spin_lock(&inode->lock);
6039 dropped = drop_outstanding_extent(inode, num_bytes);
6040 /*
6041 * If the inodes csum_bytes is the same as the original
6042 * csum_bytes then we know we haven't raced with any free()ers
6043 * so we can just reduce our inodes csum bytes and carry on.
6044 */
6045 if (inode->csum_bytes == csum_bytes) {
6046 calc_csum_metadata_size(inode, num_bytes, 0);
6047 } else {
6048 u64 orig_csum_bytes = inode->csum_bytes;
6049 u64 bytes;
6050
6051 /*
6052 * This is tricky, but first we need to figure out how much we
6053 * freed from any free-ers that occurred during this
6054 * reservation, so we reset ->csum_bytes to the csum_bytes
6055 * before we dropped our lock, and then call the free for the
6056 * number of bytes that were freed while we were trying our
6057 * reservation.
6058 */
6059 bytes = csum_bytes - inode->csum_bytes;
6060 inode->csum_bytes = csum_bytes;
6061 to_free = calc_csum_metadata_size(inode, bytes, 0);
6062
6063
6064 /*
6065 * Now we need to see how much we would have freed had we not
6066 * been making this reservation and our ->csum_bytes were not
6067 * artificially inflated.
6068 */
6069 inode->csum_bytes = csum_bytes - num_bytes;
6070 bytes = csum_bytes - orig_csum_bytes;
6071 bytes = calc_csum_metadata_size(inode, bytes, 0);
6072
6073 /*
6074 * Now reset ->csum_bytes to what it should be. If bytes is
6075 * more than to_free then we would have freed more space had we
6076 * not had an artificially high ->csum_bytes, so we need to free
6077 * the remainder. If bytes is the same or less then we don't
6078 * need to do anything, the other free-ers did the correct
6079 * thing.
6080 */
6081 inode->csum_bytes = orig_csum_bytes - num_bytes;
6082 if (bytes > to_free)
6083 to_free = bytes - to_free;
6084 else
6085 to_free = 0;
6086 }
6087 spin_unlock(&inode->lock);
6088 if (dropped)
6089 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6090
6091 if (to_free) {
6092 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6093 trace_btrfs_space_reservation(fs_info, "delalloc",
6094 btrfs_ino(inode), to_free, 0);
6095 }
6096 if (delalloc_lock)
6097 mutex_unlock(&inode->delalloc_mutex);
6098 return ret;
6099 }
6100
6101 /**
6102 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6103 * @inode: the inode to release the reservation for
6104 * @num_bytes: the number of bytes we're releasing
6105 *
6106 * This will release the metadata reservation for an inode. This can be called
6107 * once we complete IO for a given set of bytes to release their metadata
6108 * reservations.
6109 */
6110 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6111 {
6112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6113 u64 to_free = 0;
6114 unsigned dropped;
6115
6116 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6117 spin_lock(&inode->lock);
6118 dropped = drop_outstanding_extent(inode, num_bytes);
6119
6120 if (num_bytes)
6121 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6122 spin_unlock(&inode->lock);
6123 if (dropped > 0)
6124 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6125
6126 if (btrfs_is_testing(fs_info))
6127 return;
6128
6129 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6130 to_free, 0);
6131
6132 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6133 }
6134
6135 /**
6136 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6137 * delalloc
6138 * @inode: inode we're writing to
6139 * @start: start range we are writing to
6140 * @len: how long the range we are writing to
6141 *
6142 * This will do the following things
6143 *
6144 * o reserve space in data space info for num bytes
6145 * and reserve precious corresponding qgroup space
6146 * (Done in check_data_free_space)
6147 *
6148 * o reserve space for metadata space, based on the number of outstanding
6149 * extents and how much csums will be needed
6150 * also reserve metadata space in a per root over-reserve method.
6151 * o add to the inodes->delalloc_bytes
6152 * o add it to the fs_info's delalloc inodes list.
6153 * (Above 3 all done in delalloc_reserve_metadata)
6154 *
6155 * Return 0 for success
6156 * Return <0 for error(-ENOSPC or -EQUOT)
6157 */
6158 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6159 {
6160 int ret;
6161
6162 ret = btrfs_check_data_free_space(inode, start, len);
6163 if (ret < 0)
6164 return ret;
6165 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6166 if (ret < 0)
6167 btrfs_free_reserved_data_space(inode, start, len);
6168 return ret;
6169 }
6170
6171 /**
6172 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6173 * @inode: inode we're releasing space for
6174 * @start: start position of the space already reserved
6175 * @len: the len of the space already reserved
6176 *
6177 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6178 * called in the case that we don't need the metadata AND data reservations
6179 * anymore. So if there is an error or we insert an inline extent.
6180 *
6181 * This function will release the metadata space that was not used and will
6182 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6183 * list if there are no delalloc bytes left.
6184 * Also it will handle the qgroup reserved space.
6185 */
6186 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6187 {
6188 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6189 btrfs_free_reserved_data_space(inode, start, len);
6190 }
6191
6192 static int update_block_group(struct btrfs_trans_handle *trans,
6193 struct btrfs_fs_info *info, u64 bytenr,
6194 u64 num_bytes, int alloc)
6195 {
6196 struct btrfs_block_group_cache *cache = NULL;
6197 u64 total = num_bytes;
6198 u64 old_val;
6199 u64 byte_in_group;
6200 int factor;
6201
6202 /* block accounting for super block */
6203 spin_lock(&info->delalloc_root_lock);
6204 old_val = btrfs_super_bytes_used(info->super_copy);
6205 if (alloc)
6206 old_val += num_bytes;
6207 else
6208 old_val -= num_bytes;
6209 btrfs_set_super_bytes_used(info->super_copy, old_val);
6210 spin_unlock(&info->delalloc_root_lock);
6211
6212 while (total) {
6213 cache = btrfs_lookup_block_group(info, bytenr);
6214 if (!cache)
6215 return -ENOENT;
6216 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6217 BTRFS_BLOCK_GROUP_RAID1 |
6218 BTRFS_BLOCK_GROUP_RAID10))
6219 factor = 2;
6220 else
6221 factor = 1;
6222 /*
6223 * If this block group has free space cache written out, we
6224 * need to make sure to load it if we are removing space. This
6225 * is because we need the unpinning stage to actually add the
6226 * space back to the block group, otherwise we will leak space.
6227 */
6228 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6229 cache_block_group(cache, 1);
6230
6231 byte_in_group = bytenr - cache->key.objectid;
6232 WARN_ON(byte_in_group > cache->key.offset);
6233
6234 spin_lock(&cache->space_info->lock);
6235 spin_lock(&cache->lock);
6236
6237 if (btrfs_test_opt(info, SPACE_CACHE) &&
6238 cache->disk_cache_state < BTRFS_DC_CLEAR)
6239 cache->disk_cache_state = BTRFS_DC_CLEAR;
6240
6241 old_val = btrfs_block_group_used(&cache->item);
6242 num_bytes = min(total, cache->key.offset - byte_in_group);
6243 if (alloc) {
6244 old_val += num_bytes;
6245 btrfs_set_block_group_used(&cache->item, old_val);
6246 cache->reserved -= num_bytes;
6247 cache->space_info->bytes_reserved -= num_bytes;
6248 cache->space_info->bytes_used += num_bytes;
6249 cache->space_info->disk_used += num_bytes * factor;
6250 spin_unlock(&cache->lock);
6251 spin_unlock(&cache->space_info->lock);
6252 } else {
6253 old_val -= num_bytes;
6254 btrfs_set_block_group_used(&cache->item, old_val);
6255 cache->pinned += num_bytes;
6256 cache->space_info->bytes_pinned += num_bytes;
6257 cache->space_info->bytes_used -= num_bytes;
6258 cache->space_info->disk_used -= num_bytes * factor;
6259 spin_unlock(&cache->lock);
6260 spin_unlock(&cache->space_info->lock);
6261
6262 trace_btrfs_space_reservation(info, "pinned",
6263 cache->space_info->flags,
6264 num_bytes, 1);
6265 set_extent_dirty(info->pinned_extents,
6266 bytenr, bytenr + num_bytes - 1,
6267 GFP_NOFS | __GFP_NOFAIL);
6268 }
6269
6270 spin_lock(&trans->transaction->dirty_bgs_lock);
6271 if (list_empty(&cache->dirty_list)) {
6272 list_add_tail(&cache->dirty_list,
6273 &trans->transaction->dirty_bgs);
6274 trans->transaction->num_dirty_bgs++;
6275 btrfs_get_block_group(cache);
6276 }
6277 spin_unlock(&trans->transaction->dirty_bgs_lock);
6278
6279 /*
6280 * No longer have used bytes in this block group, queue it for
6281 * deletion. We do this after adding the block group to the
6282 * dirty list to avoid races between cleaner kthread and space
6283 * cache writeout.
6284 */
6285 if (!alloc && old_val == 0) {
6286 spin_lock(&info->unused_bgs_lock);
6287 if (list_empty(&cache->bg_list)) {
6288 btrfs_get_block_group(cache);
6289 list_add_tail(&cache->bg_list,
6290 &info->unused_bgs);
6291 }
6292 spin_unlock(&info->unused_bgs_lock);
6293 }
6294
6295 btrfs_put_block_group(cache);
6296 total -= num_bytes;
6297 bytenr += num_bytes;
6298 }
6299 return 0;
6300 }
6301
6302 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6303 {
6304 struct btrfs_block_group_cache *cache;
6305 u64 bytenr;
6306
6307 spin_lock(&fs_info->block_group_cache_lock);
6308 bytenr = fs_info->first_logical_byte;
6309 spin_unlock(&fs_info->block_group_cache_lock);
6310
6311 if (bytenr < (u64)-1)
6312 return bytenr;
6313
6314 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6315 if (!cache)
6316 return 0;
6317
6318 bytenr = cache->key.objectid;
6319 btrfs_put_block_group(cache);
6320
6321 return bytenr;
6322 }
6323
6324 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6325 struct btrfs_block_group_cache *cache,
6326 u64 bytenr, u64 num_bytes, int reserved)
6327 {
6328 spin_lock(&cache->space_info->lock);
6329 spin_lock(&cache->lock);
6330 cache->pinned += num_bytes;
6331 cache->space_info->bytes_pinned += num_bytes;
6332 if (reserved) {
6333 cache->reserved -= num_bytes;
6334 cache->space_info->bytes_reserved -= num_bytes;
6335 }
6336 spin_unlock(&cache->lock);
6337 spin_unlock(&cache->space_info->lock);
6338
6339 trace_btrfs_space_reservation(fs_info, "pinned",
6340 cache->space_info->flags, num_bytes, 1);
6341 set_extent_dirty(fs_info->pinned_extents, bytenr,
6342 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6343 return 0;
6344 }
6345
6346 /*
6347 * this function must be called within transaction
6348 */
6349 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6350 u64 bytenr, u64 num_bytes, int reserved)
6351 {
6352 struct btrfs_block_group_cache *cache;
6353
6354 cache = btrfs_lookup_block_group(fs_info, bytenr);
6355 BUG_ON(!cache); /* Logic error */
6356
6357 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6358
6359 btrfs_put_block_group(cache);
6360 return 0;
6361 }
6362
6363 /*
6364 * this function must be called within transaction
6365 */
6366 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6367 u64 bytenr, u64 num_bytes)
6368 {
6369 struct btrfs_block_group_cache *cache;
6370 int ret;
6371
6372 cache = btrfs_lookup_block_group(fs_info, bytenr);
6373 if (!cache)
6374 return -EINVAL;
6375
6376 /*
6377 * pull in the free space cache (if any) so that our pin
6378 * removes the free space from the cache. We have load_only set
6379 * to one because the slow code to read in the free extents does check
6380 * the pinned extents.
6381 */
6382 cache_block_group(cache, 1);
6383
6384 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6385
6386 /* remove us from the free space cache (if we're there at all) */
6387 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6388 btrfs_put_block_group(cache);
6389 return ret;
6390 }
6391
6392 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6393 u64 start, u64 num_bytes)
6394 {
6395 int ret;
6396 struct btrfs_block_group_cache *block_group;
6397 struct btrfs_caching_control *caching_ctl;
6398
6399 block_group = btrfs_lookup_block_group(fs_info, start);
6400 if (!block_group)
6401 return -EINVAL;
6402
6403 cache_block_group(block_group, 0);
6404 caching_ctl = get_caching_control(block_group);
6405
6406 if (!caching_ctl) {
6407 /* Logic error */
6408 BUG_ON(!block_group_cache_done(block_group));
6409 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6410 } else {
6411 mutex_lock(&caching_ctl->mutex);
6412
6413 if (start >= caching_ctl->progress) {
6414 ret = add_excluded_extent(fs_info, start, num_bytes);
6415 } else if (start + num_bytes <= caching_ctl->progress) {
6416 ret = btrfs_remove_free_space(block_group,
6417 start, num_bytes);
6418 } else {
6419 num_bytes = caching_ctl->progress - start;
6420 ret = btrfs_remove_free_space(block_group,
6421 start, num_bytes);
6422 if (ret)
6423 goto out_lock;
6424
6425 num_bytes = (start + num_bytes) -
6426 caching_ctl->progress;
6427 start = caching_ctl->progress;
6428 ret = add_excluded_extent(fs_info, start, num_bytes);
6429 }
6430 out_lock:
6431 mutex_unlock(&caching_ctl->mutex);
6432 put_caching_control(caching_ctl);
6433 }
6434 btrfs_put_block_group(block_group);
6435 return ret;
6436 }
6437
6438 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6439 struct extent_buffer *eb)
6440 {
6441 struct btrfs_file_extent_item *item;
6442 struct btrfs_key key;
6443 int found_type;
6444 int i;
6445
6446 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6447 return 0;
6448
6449 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6450 btrfs_item_key_to_cpu(eb, &key, i);
6451 if (key.type != BTRFS_EXTENT_DATA_KEY)
6452 continue;
6453 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6454 found_type = btrfs_file_extent_type(eb, item);
6455 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6456 continue;
6457 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6458 continue;
6459 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6460 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6461 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6462 }
6463
6464 return 0;
6465 }
6466
6467 static void
6468 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6469 {
6470 atomic_inc(&bg->reservations);
6471 }
6472
6473 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6474 const u64 start)
6475 {
6476 struct btrfs_block_group_cache *bg;
6477
6478 bg = btrfs_lookup_block_group(fs_info, start);
6479 ASSERT(bg);
6480 if (atomic_dec_and_test(&bg->reservations))
6481 wake_up_atomic_t(&bg->reservations);
6482 btrfs_put_block_group(bg);
6483 }
6484
6485 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6486 {
6487 schedule();
6488 return 0;
6489 }
6490
6491 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6492 {
6493 struct btrfs_space_info *space_info = bg->space_info;
6494
6495 ASSERT(bg->ro);
6496
6497 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6498 return;
6499
6500 /*
6501 * Our block group is read only but before we set it to read only,
6502 * some task might have had allocated an extent from it already, but it
6503 * has not yet created a respective ordered extent (and added it to a
6504 * root's list of ordered extents).
6505 * Therefore wait for any task currently allocating extents, since the
6506 * block group's reservations counter is incremented while a read lock
6507 * on the groups' semaphore is held and decremented after releasing
6508 * the read access on that semaphore and creating the ordered extent.
6509 */
6510 down_write(&space_info->groups_sem);
6511 up_write(&space_info->groups_sem);
6512
6513 wait_on_atomic_t(&bg->reservations,
6514 btrfs_wait_bg_reservations_atomic_t,
6515 TASK_UNINTERRUPTIBLE);
6516 }
6517
6518 /**
6519 * btrfs_add_reserved_bytes - update the block_group and space info counters
6520 * @cache: The cache we are manipulating
6521 * @ram_bytes: The number of bytes of file content, and will be same to
6522 * @num_bytes except for the compress path.
6523 * @num_bytes: The number of bytes in question
6524 * @delalloc: The blocks are allocated for the delalloc write
6525 *
6526 * This is called by the allocator when it reserves space. If this is a
6527 * reservation and the block group has become read only we cannot make the
6528 * reservation and return -EAGAIN, otherwise this function always succeeds.
6529 */
6530 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6531 u64 ram_bytes, u64 num_bytes, int delalloc)
6532 {
6533 struct btrfs_space_info *space_info = cache->space_info;
6534 int ret = 0;
6535
6536 spin_lock(&space_info->lock);
6537 spin_lock(&cache->lock);
6538 if (cache->ro) {
6539 ret = -EAGAIN;
6540 } else {
6541 cache->reserved += num_bytes;
6542 space_info->bytes_reserved += num_bytes;
6543
6544 trace_btrfs_space_reservation(cache->fs_info,
6545 "space_info", space_info->flags,
6546 ram_bytes, 0);
6547 space_info->bytes_may_use -= ram_bytes;
6548 if (delalloc)
6549 cache->delalloc_bytes += num_bytes;
6550 }
6551 spin_unlock(&cache->lock);
6552 spin_unlock(&space_info->lock);
6553 return ret;
6554 }
6555
6556 /**
6557 * btrfs_free_reserved_bytes - update the block_group and space info counters
6558 * @cache: The cache we are manipulating
6559 * @num_bytes: The number of bytes in question
6560 * @delalloc: The blocks are allocated for the delalloc write
6561 *
6562 * This is called by somebody who is freeing space that was never actually used
6563 * on disk. For example if you reserve some space for a new leaf in transaction
6564 * A and before transaction A commits you free that leaf, you call this with
6565 * reserve set to 0 in order to clear the reservation.
6566 */
6567
6568 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6569 u64 num_bytes, int delalloc)
6570 {
6571 struct btrfs_space_info *space_info = cache->space_info;
6572 int ret = 0;
6573
6574 spin_lock(&space_info->lock);
6575 spin_lock(&cache->lock);
6576 if (cache->ro)
6577 space_info->bytes_readonly += num_bytes;
6578 cache->reserved -= num_bytes;
6579 space_info->bytes_reserved -= num_bytes;
6580
6581 if (delalloc)
6582 cache->delalloc_bytes -= num_bytes;
6583 spin_unlock(&cache->lock);
6584 spin_unlock(&space_info->lock);
6585 return ret;
6586 }
6587 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6588 {
6589 struct btrfs_caching_control *next;
6590 struct btrfs_caching_control *caching_ctl;
6591 struct btrfs_block_group_cache *cache;
6592
6593 down_write(&fs_info->commit_root_sem);
6594
6595 list_for_each_entry_safe(caching_ctl, next,
6596 &fs_info->caching_block_groups, list) {
6597 cache = caching_ctl->block_group;
6598 if (block_group_cache_done(cache)) {
6599 cache->last_byte_to_unpin = (u64)-1;
6600 list_del_init(&caching_ctl->list);
6601 put_caching_control(caching_ctl);
6602 } else {
6603 cache->last_byte_to_unpin = caching_ctl->progress;
6604 }
6605 }
6606
6607 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6608 fs_info->pinned_extents = &fs_info->freed_extents[1];
6609 else
6610 fs_info->pinned_extents = &fs_info->freed_extents[0];
6611
6612 up_write(&fs_info->commit_root_sem);
6613
6614 update_global_block_rsv(fs_info);
6615 }
6616
6617 /*
6618 * Returns the free cluster for the given space info and sets empty_cluster to
6619 * what it should be based on the mount options.
6620 */
6621 static struct btrfs_free_cluster *
6622 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6623 struct btrfs_space_info *space_info, u64 *empty_cluster)
6624 {
6625 struct btrfs_free_cluster *ret = NULL;
6626 bool ssd = btrfs_test_opt(fs_info, SSD);
6627
6628 *empty_cluster = 0;
6629 if (btrfs_mixed_space_info(space_info))
6630 return ret;
6631
6632 if (ssd)
6633 *empty_cluster = SZ_2M;
6634 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6635 ret = &fs_info->meta_alloc_cluster;
6636 if (!ssd)
6637 *empty_cluster = SZ_64K;
6638 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6639 ret = &fs_info->data_alloc_cluster;
6640 }
6641
6642 return ret;
6643 }
6644
6645 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6646 u64 start, u64 end,
6647 const bool return_free_space)
6648 {
6649 struct btrfs_block_group_cache *cache = NULL;
6650 struct btrfs_space_info *space_info;
6651 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6652 struct btrfs_free_cluster *cluster = NULL;
6653 u64 len;
6654 u64 total_unpinned = 0;
6655 u64 empty_cluster = 0;
6656 bool readonly;
6657
6658 while (start <= end) {
6659 readonly = false;
6660 if (!cache ||
6661 start >= cache->key.objectid + cache->key.offset) {
6662 if (cache)
6663 btrfs_put_block_group(cache);
6664 total_unpinned = 0;
6665 cache = btrfs_lookup_block_group(fs_info, start);
6666 BUG_ON(!cache); /* Logic error */
6667
6668 cluster = fetch_cluster_info(fs_info,
6669 cache->space_info,
6670 &empty_cluster);
6671 empty_cluster <<= 1;
6672 }
6673
6674 len = cache->key.objectid + cache->key.offset - start;
6675 len = min(len, end + 1 - start);
6676
6677 if (start < cache->last_byte_to_unpin) {
6678 len = min(len, cache->last_byte_to_unpin - start);
6679 if (return_free_space)
6680 btrfs_add_free_space(cache, start, len);
6681 }
6682
6683 start += len;
6684 total_unpinned += len;
6685 space_info = cache->space_info;
6686
6687 /*
6688 * If this space cluster has been marked as fragmented and we've
6689 * unpinned enough in this block group to potentially allow a
6690 * cluster to be created inside of it go ahead and clear the
6691 * fragmented check.
6692 */
6693 if (cluster && cluster->fragmented &&
6694 total_unpinned > empty_cluster) {
6695 spin_lock(&cluster->lock);
6696 cluster->fragmented = 0;
6697 spin_unlock(&cluster->lock);
6698 }
6699
6700 spin_lock(&space_info->lock);
6701 spin_lock(&cache->lock);
6702 cache->pinned -= len;
6703 space_info->bytes_pinned -= len;
6704
6705 trace_btrfs_space_reservation(fs_info, "pinned",
6706 space_info->flags, len, 0);
6707 space_info->max_extent_size = 0;
6708 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6709 if (cache->ro) {
6710 space_info->bytes_readonly += len;
6711 readonly = true;
6712 }
6713 spin_unlock(&cache->lock);
6714 if (!readonly && return_free_space &&
6715 global_rsv->space_info == space_info) {
6716 u64 to_add = len;
6717 WARN_ON(!return_free_space);
6718 spin_lock(&global_rsv->lock);
6719 if (!global_rsv->full) {
6720 to_add = min(len, global_rsv->size -
6721 global_rsv->reserved);
6722 global_rsv->reserved += to_add;
6723 space_info->bytes_may_use += to_add;
6724 if (global_rsv->reserved >= global_rsv->size)
6725 global_rsv->full = 1;
6726 trace_btrfs_space_reservation(fs_info,
6727 "space_info",
6728 space_info->flags,
6729 to_add, 1);
6730 len -= to_add;
6731 }
6732 spin_unlock(&global_rsv->lock);
6733 /* Add to any tickets we may have */
6734 if (len)
6735 space_info_add_new_bytes(fs_info, space_info,
6736 len);
6737 }
6738 spin_unlock(&space_info->lock);
6739 }
6740
6741 if (cache)
6742 btrfs_put_block_group(cache);
6743 return 0;
6744 }
6745
6746 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6747 struct btrfs_fs_info *fs_info)
6748 {
6749 struct btrfs_block_group_cache *block_group, *tmp;
6750 struct list_head *deleted_bgs;
6751 struct extent_io_tree *unpin;
6752 u64 start;
6753 u64 end;
6754 int ret;
6755
6756 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6757 unpin = &fs_info->freed_extents[1];
6758 else
6759 unpin = &fs_info->freed_extents[0];
6760
6761 while (!trans->aborted) {
6762 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6763 ret = find_first_extent_bit(unpin, 0, &start, &end,
6764 EXTENT_DIRTY, NULL);
6765 if (ret) {
6766 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6767 break;
6768 }
6769
6770 if (btrfs_test_opt(fs_info, DISCARD))
6771 ret = btrfs_discard_extent(fs_info, start,
6772 end + 1 - start, NULL);
6773
6774 clear_extent_dirty(unpin, start, end);
6775 unpin_extent_range(fs_info, start, end, true);
6776 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6777 cond_resched();
6778 }
6779
6780 /*
6781 * Transaction is finished. We don't need the lock anymore. We
6782 * do need to clean up the block groups in case of a transaction
6783 * abort.
6784 */
6785 deleted_bgs = &trans->transaction->deleted_bgs;
6786 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6787 u64 trimmed = 0;
6788
6789 ret = -EROFS;
6790 if (!trans->aborted)
6791 ret = btrfs_discard_extent(fs_info,
6792 block_group->key.objectid,
6793 block_group->key.offset,
6794 &trimmed);
6795
6796 list_del_init(&block_group->bg_list);
6797 btrfs_put_block_group_trimming(block_group);
6798 btrfs_put_block_group(block_group);
6799
6800 if (ret) {
6801 const char *errstr = btrfs_decode_error(ret);
6802 btrfs_warn(fs_info,
6803 "Discard failed while removing blockgroup: errno=%d %s\n",
6804 ret, errstr);
6805 }
6806 }
6807
6808 return 0;
6809 }
6810
6811 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6812 u64 owner, u64 root_objectid)
6813 {
6814 struct btrfs_space_info *space_info;
6815 u64 flags;
6816
6817 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6818 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6819 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6820 else
6821 flags = BTRFS_BLOCK_GROUP_METADATA;
6822 } else {
6823 flags = BTRFS_BLOCK_GROUP_DATA;
6824 }
6825
6826 space_info = __find_space_info(fs_info, flags);
6827 BUG_ON(!space_info); /* Logic bug */
6828 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6829 }
6830
6831
6832 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6833 struct btrfs_fs_info *info,
6834 struct btrfs_delayed_ref_node *node, u64 parent,
6835 u64 root_objectid, u64 owner_objectid,
6836 u64 owner_offset, int refs_to_drop,
6837 struct btrfs_delayed_extent_op *extent_op)
6838 {
6839 struct btrfs_key key;
6840 struct btrfs_path *path;
6841 struct btrfs_root *extent_root = info->extent_root;
6842 struct extent_buffer *leaf;
6843 struct btrfs_extent_item *ei;
6844 struct btrfs_extent_inline_ref *iref;
6845 int ret;
6846 int is_data;
6847 int extent_slot = 0;
6848 int found_extent = 0;
6849 int num_to_del = 1;
6850 u32 item_size;
6851 u64 refs;
6852 u64 bytenr = node->bytenr;
6853 u64 num_bytes = node->num_bytes;
6854 int last_ref = 0;
6855 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6856
6857 path = btrfs_alloc_path();
6858 if (!path)
6859 return -ENOMEM;
6860
6861 path->reada = READA_FORWARD;
6862 path->leave_spinning = 1;
6863
6864 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6865 BUG_ON(!is_data && refs_to_drop != 1);
6866
6867 if (is_data)
6868 skinny_metadata = 0;
6869
6870 ret = lookup_extent_backref(trans, info, path, &iref,
6871 bytenr, num_bytes, parent,
6872 root_objectid, owner_objectid,
6873 owner_offset);
6874 if (ret == 0) {
6875 extent_slot = path->slots[0];
6876 while (extent_slot >= 0) {
6877 btrfs_item_key_to_cpu(path->nodes[0], &key,
6878 extent_slot);
6879 if (key.objectid != bytenr)
6880 break;
6881 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6882 key.offset == num_bytes) {
6883 found_extent = 1;
6884 break;
6885 }
6886 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6887 key.offset == owner_objectid) {
6888 found_extent = 1;
6889 break;
6890 }
6891 if (path->slots[0] - extent_slot > 5)
6892 break;
6893 extent_slot--;
6894 }
6895 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6896 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6897 if (found_extent && item_size < sizeof(*ei))
6898 found_extent = 0;
6899 #endif
6900 if (!found_extent) {
6901 BUG_ON(iref);
6902 ret = remove_extent_backref(trans, info, path, NULL,
6903 refs_to_drop,
6904 is_data, &last_ref);
6905 if (ret) {
6906 btrfs_abort_transaction(trans, ret);
6907 goto out;
6908 }
6909 btrfs_release_path(path);
6910 path->leave_spinning = 1;
6911
6912 key.objectid = bytenr;
6913 key.type = BTRFS_EXTENT_ITEM_KEY;
6914 key.offset = num_bytes;
6915
6916 if (!is_data && skinny_metadata) {
6917 key.type = BTRFS_METADATA_ITEM_KEY;
6918 key.offset = owner_objectid;
6919 }
6920
6921 ret = btrfs_search_slot(trans, extent_root,
6922 &key, path, -1, 1);
6923 if (ret > 0 && skinny_metadata && path->slots[0]) {
6924 /*
6925 * Couldn't find our skinny metadata item,
6926 * see if we have ye olde extent item.
6927 */
6928 path->slots[0]--;
6929 btrfs_item_key_to_cpu(path->nodes[0], &key,
6930 path->slots[0]);
6931 if (key.objectid == bytenr &&
6932 key.type == BTRFS_EXTENT_ITEM_KEY &&
6933 key.offset == num_bytes)
6934 ret = 0;
6935 }
6936
6937 if (ret > 0 && skinny_metadata) {
6938 skinny_metadata = false;
6939 key.objectid = bytenr;
6940 key.type = BTRFS_EXTENT_ITEM_KEY;
6941 key.offset = num_bytes;
6942 btrfs_release_path(path);
6943 ret = btrfs_search_slot(trans, extent_root,
6944 &key, path, -1, 1);
6945 }
6946
6947 if (ret) {
6948 btrfs_err(info,
6949 "umm, got %d back from search, was looking for %llu",
6950 ret, bytenr);
6951 if (ret > 0)
6952 btrfs_print_leaf(info, path->nodes[0]);
6953 }
6954 if (ret < 0) {
6955 btrfs_abort_transaction(trans, ret);
6956 goto out;
6957 }
6958 extent_slot = path->slots[0];
6959 }
6960 } else if (WARN_ON(ret == -ENOENT)) {
6961 btrfs_print_leaf(info, path->nodes[0]);
6962 btrfs_err(info,
6963 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6964 bytenr, parent, root_objectid, owner_objectid,
6965 owner_offset);
6966 btrfs_abort_transaction(trans, ret);
6967 goto out;
6968 } else {
6969 btrfs_abort_transaction(trans, ret);
6970 goto out;
6971 }
6972
6973 leaf = path->nodes[0];
6974 item_size = btrfs_item_size_nr(leaf, extent_slot);
6975 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6976 if (item_size < sizeof(*ei)) {
6977 BUG_ON(found_extent || extent_slot != path->slots[0]);
6978 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6979 0);
6980 if (ret < 0) {
6981 btrfs_abort_transaction(trans, ret);
6982 goto out;
6983 }
6984
6985 btrfs_release_path(path);
6986 path->leave_spinning = 1;
6987
6988 key.objectid = bytenr;
6989 key.type = BTRFS_EXTENT_ITEM_KEY;
6990 key.offset = num_bytes;
6991
6992 ret = btrfs_search_slot(trans, extent_root, &key, path,
6993 -1, 1);
6994 if (ret) {
6995 btrfs_err(info,
6996 "umm, got %d back from search, was looking for %llu",
6997 ret, bytenr);
6998 btrfs_print_leaf(info, path->nodes[0]);
6999 }
7000 if (ret < 0) {
7001 btrfs_abort_transaction(trans, ret);
7002 goto out;
7003 }
7004
7005 extent_slot = path->slots[0];
7006 leaf = path->nodes[0];
7007 item_size = btrfs_item_size_nr(leaf, extent_slot);
7008 }
7009 #endif
7010 BUG_ON(item_size < sizeof(*ei));
7011 ei = btrfs_item_ptr(leaf, extent_slot,
7012 struct btrfs_extent_item);
7013 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7014 key.type == BTRFS_EXTENT_ITEM_KEY) {
7015 struct btrfs_tree_block_info *bi;
7016 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7017 bi = (struct btrfs_tree_block_info *)(ei + 1);
7018 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7019 }
7020
7021 refs = btrfs_extent_refs(leaf, ei);
7022 if (refs < refs_to_drop) {
7023 btrfs_err(info,
7024 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7025 refs_to_drop, refs, bytenr);
7026 ret = -EINVAL;
7027 btrfs_abort_transaction(trans, ret);
7028 goto out;
7029 }
7030 refs -= refs_to_drop;
7031
7032 if (refs > 0) {
7033 if (extent_op)
7034 __run_delayed_extent_op(extent_op, leaf, ei);
7035 /*
7036 * In the case of inline back ref, reference count will
7037 * be updated by remove_extent_backref
7038 */
7039 if (iref) {
7040 BUG_ON(!found_extent);
7041 } else {
7042 btrfs_set_extent_refs(leaf, ei, refs);
7043 btrfs_mark_buffer_dirty(leaf);
7044 }
7045 if (found_extent) {
7046 ret = remove_extent_backref(trans, info, path,
7047 iref, refs_to_drop,
7048 is_data, &last_ref);
7049 if (ret) {
7050 btrfs_abort_transaction(trans, ret);
7051 goto out;
7052 }
7053 }
7054 add_pinned_bytes(info, -num_bytes, owner_objectid,
7055 root_objectid);
7056 } else {
7057 if (found_extent) {
7058 BUG_ON(is_data && refs_to_drop !=
7059 extent_data_ref_count(path, iref));
7060 if (iref) {
7061 BUG_ON(path->slots[0] != extent_slot);
7062 } else {
7063 BUG_ON(path->slots[0] != extent_slot + 1);
7064 path->slots[0] = extent_slot;
7065 num_to_del = 2;
7066 }
7067 }
7068
7069 last_ref = 1;
7070 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7071 num_to_del);
7072 if (ret) {
7073 btrfs_abort_transaction(trans, ret);
7074 goto out;
7075 }
7076 btrfs_release_path(path);
7077
7078 if (is_data) {
7079 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7080 if (ret) {
7081 btrfs_abort_transaction(trans, ret);
7082 goto out;
7083 }
7084 }
7085
7086 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7087 if (ret) {
7088 btrfs_abort_transaction(trans, ret);
7089 goto out;
7090 }
7091
7092 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7093 if (ret) {
7094 btrfs_abort_transaction(trans, ret);
7095 goto out;
7096 }
7097 }
7098 btrfs_release_path(path);
7099
7100 out:
7101 btrfs_free_path(path);
7102 return ret;
7103 }
7104
7105 /*
7106 * when we free an block, it is possible (and likely) that we free the last
7107 * delayed ref for that extent as well. This searches the delayed ref tree for
7108 * a given extent, and if there are no other delayed refs to be processed, it
7109 * removes it from the tree.
7110 */
7111 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7112 u64 bytenr)
7113 {
7114 struct btrfs_delayed_ref_head *head;
7115 struct btrfs_delayed_ref_root *delayed_refs;
7116 int ret = 0;
7117
7118 delayed_refs = &trans->transaction->delayed_refs;
7119 spin_lock(&delayed_refs->lock);
7120 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7121 if (!head)
7122 goto out_delayed_unlock;
7123
7124 spin_lock(&head->lock);
7125 if (!list_empty(&head->ref_list))
7126 goto out;
7127
7128 if (head->extent_op) {
7129 if (!head->must_insert_reserved)
7130 goto out;
7131 btrfs_free_delayed_extent_op(head->extent_op);
7132 head->extent_op = NULL;
7133 }
7134
7135 /*
7136 * waiting for the lock here would deadlock. If someone else has it
7137 * locked they are already in the process of dropping it anyway
7138 */
7139 if (!mutex_trylock(&head->mutex))
7140 goto out;
7141
7142 /*
7143 * at this point we have a head with no other entries. Go
7144 * ahead and process it.
7145 */
7146 head->node.in_tree = 0;
7147 rb_erase(&head->href_node, &delayed_refs->href_root);
7148
7149 atomic_dec(&delayed_refs->num_entries);
7150
7151 /*
7152 * we don't take a ref on the node because we're removing it from the
7153 * tree, so we just steal the ref the tree was holding.
7154 */
7155 delayed_refs->num_heads--;
7156 if (head->processing == 0)
7157 delayed_refs->num_heads_ready--;
7158 head->processing = 0;
7159 spin_unlock(&head->lock);
7160 spin_unlock(&delayed_refs->lock);
7161
7162 BUG_ON(head->extent_op);
7163 if (head->must_insert_reserved)
7164 ret = 1;
7165
7166 mutex_unlock(&head->mutex);
7167 btrfs_put_delayed_ref(&head->node);
7168 return ret;
7169 out:
7170 spin_unlock(&head->lock);
7171
7172 out_delayed_unlock:
7173 spin_unlock(&delayed_refs->lock);
7174 return 0;
7175 }
7176
7177 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7178 struct btrfs_root *root,
7179 struct extent_buffer *buf,
7180 u64 parent, int last_ref)
7181 {
7182 struct btrfs_fs_info *fs_info = root->fs_info;
7183 int pin = 1;
7184 int ret;
7185
7186 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7187 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7188 buf->start, buf->len,
7189 parent,
7190 root->root_key.objectid,
7191 btrfs_header_level(buf),
7192 BTRFS_DROP_DELAYED_REF, NULL);
7193 BUG_ON(ret); /* -ENOMEM */
7194 }
7195
7196 if (!last_ref)
7197 return;
7198
7199 if (btrfs_header_generation(buf) == trans->transid) {
7200 struct btrfs_block_group_cache *cache;
7201
7202 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7203 ret = check_ref_cleanup(trans, buf->start);
7204 if (!ret)
7205 goto out;
7206 }
7207
7208 cache = btrfs_lookup_block_group(fs_info, buf->start);
7209
7210 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7211 pin_down_extent(fs_info, cache, buf->start,
7212 buf->len, 1);
7213 btrfs_put_block_group(cache);
7214 goto out;
7215 }
7216
7217 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7218
7219 btrfs_add_free_space(cache, buf->start, buf->len);
7220 btrfs_free_reserved_bytes(cache, buf->len, 0);
7221 btrfs_put_block_group(cache);
7222 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7223 pin = 0;
7224 }
7225 out:
7226 if (pin)
7227 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7228 root->root_key.objectid);
7229
7230 /*
7231 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7232 * anymore.
7233 */
7234 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7235 }
7236
7237 /* Can return -ENOMEM */
7238 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7239 struct btrfs_fs_info *fs_info,
7240 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7241 u64 owner, u64 offset)
7242 {
7243 int ret;
7244
7245 if (btrfs_is_testing(fs_info))
7246 return 0;
7247
7248 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7249
7250 /*
7251 * tree log blocks never actually go into the extent allocation
7252 * tree, just update pinning info and exit early.
7253 */
7254 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7255 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7256 /* unlocks the pinned mutex */
7257 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7258 ret = 0;
7259 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7260 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7261 num_bytes,
7262 parent, root_objectid, (int)owner,
7263 BTRFS_DROP_DELAYED_REF, NULL);
7264 } else {
7265 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7266 num_bytes,
7267 parent, root_objectid, owner,
7268 offset, 0,
7269 BTRFS_DROP_DELAYED_REF);
7270 }
7271 return ret;
7272 }
7273
7274 /*
7275 * when we wait for progress in the block group caching, its because
7276 * our allocation attempt failed at least once. So, we must sleep
7277 * and let some progress happen before we try again.
7278 *
7279 * This function will sleep at least once waiting for new free space to
7280 * show up, and then it will check the block group free space numbers
7281 * for our min num_bytes. Another option is to have it go ahead
7282 * and look in the rbtree for a free extent of a given size, but this
7283 * is a good start.
7284 *
7285 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7286 * any of the information in this block group.
7287 */
7288 static noinline void
7289 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7290 u64 num_bytes)
7291 {
7292 struct btrfs_caching_control *caching_ctl;
7293
7294 caching_ctl = get_caching_control(cache);
7295 if (!caching_ctl)
7296 return;
7297
7298 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7299 (cache->free_space_ctl->free_space >= num_bytes));
7300
7301 put_caching_control(caching_ctl);
7302 }
7303
7304 static noinline int
7305 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7306 {
7307 struct btrfs_caching_control *caching_ctl;
7308 int ret = 0;
7309
7310 caching_ctl = get_caching_control(cache);
7311 if (!caching_ctl)
7312 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7313
7314 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7315 if (cache->cached == BTRFS_CACHE_ERROR)
7316 ret = -EIO;
7317 put_caching_control(caching_ctl);
7318 return ret;
7319 }
7320
7321 int __get_raid_index(u64 flags)
7322 {
7323 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7324 return BTRFS_RAID_RAID10;
7325 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7326 return BTRFS_RAID_RAID1;
7327 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7328 return BTRFS_RAID_DUP;
7329 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7330 return BTRFS_RAID_RAID0;
7331 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7332 return BTRFS_RAID_RAID5;
7333 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7334 return BTRFS_RAID_RAID6;
7335
7336 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7337 }
7338
7339 int get_block_group_index(struct btrfs_block_group_cache *cache)
7340 {
7341 return __get_raid_index(cache->flags);
7342 }
7343
7344 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7345 [BTRFS_RAID_RAID10] = "raid10",
7346 [BTRFS_RAID_RAID1] = "raid1",
7347 [BTRFS_RAID_DUP] = "dup",
7348 [BTRFS_RAID_RAID0] = "raid0",
7349 [BTRFS_RAID_SINGLE] = "single",
7350 [BTRFS_RAID_RAID5] = "raid5",
7351 [BTRFS_RAID_RAID6] = "raid6",
7352 };
7353
7354 static const char *get_raid_name(enum btrfs_raid_types type)
7355 {
7356 if (type >= BTRFS_NR_RAID_TYPES)
7357 return NULL;
7358
7359 return btrfs_raid_type_names[type];
7360 }
7361
7362 enum btrfs_loop_type {
7363 LOOP_CACHING_NOWAIT = 0,
7364 LOOP_CACHING_WAIT = 1,
7365 LOOP_ALLOC_CHUNK = 2,
7366 LOOP_NO_EMPTY_SIZE = 3,
7367 };
7368
7369 static inline void
7370 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7371 int delalloc)
7372 {
7373 if (delalloc)
7374 down_read(&cache->data_rwsem);
7375 }
7376
7377 static inline void
7378 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7379 int delalloc)
7380 {
7381 btrfs_get_block_group(cache);
7382 if (delalloc)
7383 down_read(&cache->data_rwsem);
7384 }
7385
7386 static struct btrfs_block_group_cache *
7387 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7388 struct btrfs_free_cluster *cluster,
7389 int delalloc)
7390 {
7391 struct btrfs_block_group_cache *used_bg = NULL;
7392
7393 spin_lock(&cluster->refill_lock);
7394 while (1) {
7395 used_bg = cluster->block_group;
7396 if (!used_bg)
7397 return NULL;
7398
7399 if (used_bg == block_group)
7400 return used_bg;
7401
7402 btrfs_get_block_group(used_bg);
7403
7404 if (!delalloc)
7405 return used_bg;
7406
7407 if (down_read_trylock(&used_bg->data_rwsem))
7408 return used_bg;
7409
7410 spin_unlock(&cluster->refill_lock);
7411
7412 /* We should only have one-level nested. */
7413 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7414
7415 spin_lock(&cluster->refill_lock);
7416 if (used_bg == cluster->block_group)
7417 return used_bg;
7418
7419 up_read(&used_bg->data_rwsem);
7420 btrfs_put_block_group(used_bg);
7421 }
7422 }
7423
7424 static inline void
7425 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7426 int delalloc)
7427 {
7428 if (delalloc)
7429 up_read(&cache->data_rwsem);
7430 btrfs_put_block_group(cache);
7431 }
7432
7433 /*
7434 * walks the btree of allocated extents and find a hole of a given size.
7435 * The key ins is changed to record the hole:
7436 * ins->objectid == start position
7437 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7438 * ins->offset == the size of the hole.
7439 * Any available blocks before search_start are skipped.
7440 *
7441 * If there is no suitable free space, we will record the max size of
7442 * the free space extent currently.
7443 */
7444 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7445 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7446 u64 hint_byte, struct btrfs_key *ins,
7447 u64 flags, int delalloc)
7448 {
7449 int ret = 0;
7450 struct btrfs_root *root = fs_info->extent_root;
7451 struct btrfs_free_cluster *last_ptr = NULL;
7452 struct btrfs_block_group_cache *block_group = NULL;
7453 u64 search_start = 0;
7454 u64 max_extent_size = 0;
7455 u64 empty_cluster = 0;
7456 struct btrfs_space_info *space_info;
7457 int loop = 0;
7458 int index = __get_raid_index(flags);
7459 bool failed_cluster_refill = false;
7460 bool failed_alloc = false;
7461 bool use_cluster = true;
7462 bool have_caching_bg = false;
7463 bool orig_have_caching_bg = false;
7464 bool full_search = false;
7465
7466 WARN_ON(num_bytes < fs_info->sectorsize);
7467 ins->type = BTRFS_EXTENT_ITEM_KEY;
7468 ins->objectid = 0;
7469 ins->offset = 0;
7470
7471 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7472
7473 space_info = __find_space_info(fs_info, flags);
7474 if (!space_info) {
7475 btrfs_err(fs_info, "No space info for %llu", flags);
7476 return -ENOSPC;
7477 }
7478
7479 /*
7480 * If our free space is heavily fragmented we may not be able to make
7481 * big contiguous allocations, so instead of doing the expensive search
7482 * for free space, simply return ENOSPC with our max_extent_size so we
7483 * can go ahead and search for a more manageable chunk.
7484 *
7485 * If our max_extent_size is large enough for our allocation simply
7486 * disable clustering since we will likely not be able to find enough
7487 * space to create a cluster and induce latency trying.
7488 */
7489 if (unlikely(space_info->max_extent_size)) {
7490 spin_lock(&space_info->lock);
7491 if (space_info->max_extent_size &&
7492 num_bytes > space_info->max_extent_size) {
7493 ins->offset = space_info->max_extent_size;
7494 spin_unlock(&space_info->lock);
7495 return -ENOSPC;
7496 } else if (space_info->max_extent_size) {
7497 use_cluster = false;
7498 }
7499 spin_unlock(&space_info->lock);
7500 }
7501
7502 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7503 if (last_ptr) {
7504 spin_lock(&last_ptr->lock);
7505 if (last_ptr->block_group)
7506 hint_byte = last_ptr->window_start;
7507 if (last_ptr->fragmented) {
7508 /*
7509 * We still set window_start so we can keep track of the
7510 * last place we found an allocation to try and save
7511 * some time.
7512 */
7513 hint_byte = last_ptr->window_start;
7514 use_cluster = false;
7515 }
7516 spin_unlock(&last_ptr->lock);
7517 }
7518
7519 search_start = max(search_start, first_logical_byte(fs_info, 0));
7520 search_start = max(search_start, hint_byte);
7521 if (search_start == hint_byte) {
7522 block_group = btrfs_lookup_block_group(fs_info, search_start);
7523 /*
7524 * we don't want to use the block group if it doesn't match our
7525 * allocation bits, or if its not cached.
7526 *
7527 * However if we are re-searching with an ideal block group
7528 * picked out then we don't care that the block group is cached.
7529 */
7530 if (block_group && block_group_bits(block_group, flags) &&
7531 block_group->cached != BTRFS_CACHE_NO) {
7532 down_read(&space_info->groups_sem);
7533 if (list_empty(&block_group->list) ||
7534 block_group->ro) {
7535 /*
7536 * someone is removing this block group,
7537 * we can't jump into the have_block_group
7538 * target because our list pointers are not
7539 * valid
7540 */
7541 btrfs_put_block_group(block_group);
7542 up_read(&space_info->groups_sem);
7543 } else {
7544 index = get_block_group_index(block_group);
7545 btrfs_lock_block_group(block_group, delalloc);
7546 goto have_block_group;
7547 }
7548 } else if (block_group) {
7549 btrfs_put_block_group(block_group);
7550 }
7551 }
7552 search:
7553 have_caching_bg = false;
7554 if (index == 0 || index == __get_raid_index(flags))
7555 full_search = true;
7556 down_read(&space_info->groups_sem);
7557 list_for_each_entry(block_group, &space_info->block_groups[index],
7558 list) {
7559 u64 offset;
7560 int cached;
7561
7562 btrfs_grab_block_group(block_group, delalloc);
7563 search_start = block_group->key.objectid;
7564
7565 /*
7566 * this can happen if we end up cycling through all the
7567 * raid types, but we want to make sure we only allocate
7568 * for the proper type.
7569 */
7570 if (!block_group_bits(block_group, flags)) {
7571 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7572 BTRFS_BLOCK_GROUP_RAID1 |
7573 BTRFS_BLOCK_GROUP_RAID5 |
7574 BTRFS_BLOCK_GROUP_RAID6 |
7575 BTRFS_BLOCK_GROUP_RAID10;
7576
7577 /*
7578 * if they asked for extra copies and this block group
7579 * doesn't provide them, bail. This does allow us to
7580 * fill raid0 from raid1.
7581 */
7582 if ((flags & extra) && !(block_group->flags & extra))
7583 goto loop;
7584 }
7585
7586 have_block_group:
7587 cached = block_group_cache_done(block_group);
7588 if (unlikely(!cached)) {
7589 have_caching_bg = true;
7590 ret = cache_block_group(block_group, 0);
7591 BUG_ON(ret < 0);
7592 ret = 0;
7593 }
7594
7595 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7596 goto loop;
7597 if (unlikely(block_group->ro))
7598 goto loop;
7599
7600 /*
7601 * Ok we want to try and use the cluster allocator, so
7602 * lets look there
7603 */
7604 if (last_ptr && use_cluster) {
7605 struct btrfs_block_group_cache *used_block_group;
7606 unsigned long aligned_cluster;
7607 /*
7608 * the refill lock keeps out other
7609 * people trying to start a new cluster
7610 */
7611 used_block_group = btrfs_lock_cluster(block_group,
7612 last_ptr,
7613 delalloc);
7614 if (!used_block_group)
7615 goto refill_cluster;
7616
7617 if (used_block_group != block_group &&
7618 (used_block_group->ro ||
7619 !block_group_bits(used_block_group, flags)))
7620 goto release_cluster;
7621
7622 offset = btrfs_alloc_from_cluster(used_block_group,
7623 last_ptr,
7624 num_bytes,
7625 used_block_group->key.objectid,
7626 &max_extent_size);
7627 if (offset) {
7628 /* we have a block, we're done */
7629 spin_unlock(&last_ptr->refill_lock);
7630 trace_btrfs_reserve_extent_cluster(fs_info,
7631 used_block_group,
7632 search_start, num_bytes);
7633 if (used_block_group != block_group) {
7634 btrfs_release_block_group(block_group,
7635 delalloc);
7636 block_group = used_block_group;
7637 }
7638 goto checks;
7639 }
7640
7641 WARN_ON(last_ptr->block_group != used_block_group);
7642 release_cluster:
7643 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7644 * set up a new clusters, so lets just skip it
7645 * and let the allocator find whatever block
7646 * it can find. If we reach this point, we
7647 * will have tried the cluster allocator
7648 * plenty of times and not have found
7649 * anything, so we are likely way too
7650 * fragmented for the clustering stuff to find
7651 * anything.
7652 *
7653 * However, if the cluster is taken from the
7654 * current block group, release the cluster
7655 * first, so that we stand a better chance of
7656 * succeeding in the unclustered
7657 * allocation. */
7658 if (loop >= LOOP_NO_EMPTY_SIZE &&
7659 used_block_group != block_group) {
7660 spin_unlock(&last_ptr->refill_lock);
7661 btrfs_release_block_group(used_block_group,
7662 delalloc);
7663 goto unclustered_alloc;
7664 }
7665
7666 /*
7667 * this cluster didn't work out, free it and
7668 * start over
7669 */
7670 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7671
7672 if (used_block_group != block_group)
7673 btrfs_release_block_group(used_block_group,
7674 delalloc);
7675 refill_cluster:
7676 if (loop >= LOOP_NO_EMPTY_SIZE) {
7677 spin_unlock(&last_ptr->refill_lock);
7678 goto unclustered_alloc;
7679 }
7680
7681 aligned_cluster = max_t(unsigned long,
7682 empty_cluster + empty_size,
7683 block_group->full_stripe_len);
7684
7685 /* allocate a cluster in this block group */
7686 ret = btrfs_find_space_cluster(fs_info, block_group,
7687 last_ptr, search_start,
7688 num_bytes,
7689 aligned_cluster);
7690 if (ret == 0) {
7691 /*
7692 * now pull our allocation out of this
7693 * cluster
7694 */
7695 offset = btrfs_alloc_from_cluster(block_group,
7696 last_ptr,
7697 num_bytes,
7698 search_start,
7699 &max_extent_size);
7700 if (offset) {
7701 /* we found one, proceed */
7702 spin_unlock(&last_ptr->refill_lock);
7703 trace_btrfs_reserve_extent_cluster(fs_info,
7704 block_group, search_start,
7705 num_bytes);
7706 goto checks;
7707 }
7708 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7709 && !failed_cluster_refill) {
7710 spin_unlock(&last_ptr->refill_lock);
7711
7712 failed_cluster_refill = true;
7713 wait_block_group_cache_progress(block_group,
7714 num_bytes + empty_cluster + empty_size);
7715 goto have_block_group;
7716 }
7717
7718 /*
7719 * at this point we either didn't find a cluster
7720 * or we weren't able to allocate a block from our
7721 * cluster. Free the cluster we've been trying
7722 * to use, and go to the next block group
7723 */
7724 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7725 spin_unlock(&last_ptr->refill_lock);
7726 goto loop;
7727 }
7728
7729 unclustered_alloc:
7730 /*
7731 * We are doing an unclustered alloc, set the fragmented flag so
7732 * we don't bother trying to setup a cluster again until we get
7733 * more space.
7734 */
7735 if (unlikely(last_ptr)) {
7736 spin_lock(&last_ptr->lock);
7737 last_ptr->fragmented = 1;
7738 spin_unlock(&last_ptr->lock);
7739 }
7740 if (cached) {
7741 struct btrfs_free_space_ctl *ctl =
7742 block_group->free_space_ctl;
7743
7744 spin_lock(&ctl->tree_lock);
7745 if (ctl->free_space <
7746 num_bytes + empty_cluster + empty_size) {
7747 if (ctl->free_space > max_extent_size)
7748 max_extent_size = ctl->free_space;
7749 spin_unlock(&ctl->tree_lock);
7750 goto loop;
7751 }
7752 spin_unlock(&ctl->tree_lock);
7753 }
7754
7755 offset = btrfs_find_space_for_alloc(block_group, search_start,
7756 num_bytes, empty_size,
7757 &max_extent_size);
7758 /*
7759 * If we didn't find a chunk, and we haven't failed on this
7760 * block group before, and this block group is in the middle of
7761 * caching and we are ok with waiting, then go ahead and wait
7762 * for progress to be made, and set failed_alloc to true.
7763 *
7764 * If failed_alloc is true then we've already waited on this
7765 * block group once and should move on to the next block group.
7766 */
7767 if (!offset && !failed_alloc && !cached &&
7768 loop > LOOP_CACHING_NOWAIT) {
7769 wait_block_group_cache_progress(block_group,
7770 num_bytes + empty_size);
7771 failed_alloc = true;
7772 goto have_block_group;
7773 } else if (!offset) {
7774 goto loop;
7775 }
7776 checks:
7777 search_start = ALIGN(offset, fs_info->stripesize);
7778
7779 /* move on to the next group */
7780 if (search_start + num_bytes >
7781 block_group->key.objectid + block_group->key.offset) {
7782 btrfs_add_free_space(block_group, offset, num_bytes);
7783 goto loop;
7784 }
7785
7786 if (offset < search_start)
7787 btrfs_add_free_space(block_group, offset,
7788 search_start - offset);
7789 BUG_ON(offset > search_start);
7790
7791 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7792 num_bytes, delalloc);
7793 if (ret == -EAGAIN) {
7794 btrfs_add_free_space(block_group, offset, num_bytes);
7795 goto loop;
7796 }
7797 btrfs_inc_block_group_reservations(block_group);
7798
7799 /* we are all good, lets return */
7800 ins->objectid = search_start;
7801 ins->offset = num_bytes;
7802
7803 trace_btrfs_reserve_extent(fs_info, block_group,
7804 search_start, num_bytes);
7805 btrfs_release_block_group(block_group, delalloc);
7806 break;
7807 loop:
7808 failed_cluster_refill = false;
7809 failed_alloc = false;
7810 BUG_ON(index != get_block_group_index(block_group));
7811 btrfs_release_block_group(block_group, delalloc);
7812 }
7813 up_read(&space_info->groups_sem);
7814
7815 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7816 && !orig_have_caching_bg)
7817 orig_have_caching_bg = true;
7818
7819 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7820 goto search;
7821
7822 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7823 goto search;
7824
7825 /*
7826 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7827 * caching kthreads as we move along
7828 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7829 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7830 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7831 * again
7832 */
7833 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7834 index = 0;
7835 if (loop == LOOP_CACHING_NOWAIT) {
7836 /*
7837 * We want to skip the LOOP_CACHING_WAIT step if we
7838 * don't have any uncached bgs and we've already done a
7839 * full search through.
7840 */
7841 if (orig_have_caching_bg || !full_search)
7842 loop = LOOP_CACHING_WAIT;
7843 else
7844 loop = LOOP_ALLOC_CHUNK;
7845 } else {
7846 loop++;
7847 }
7848
7849 if (loop == LOOP_ALLOC_CHUNK) {
7850 struct btrfs_trans_handle *trans;
7851 int exist = 0;
7852
7853 trans = current->journal_info;
7854 if (trans)
7855 exist = 1;
7856 else
7857 trans = btrfs_join_transaction(root);
7858
7859 if (IS_ERR(trans)) {
7860 ret = PTR_ERR(trans);
7861 goto out;
7862 }
7863
7864 ret = do_chunk_alloc(trans, fs_info, flags,
7865 CHUNK_ALLOC_FORCE);
7866
7867 /*
7868 * If we can't allocate a new chunk we've already looped
7869 * through at least once, move on to the NO_EMPTY_SIZE
7870 * case.
7871 */
7872 if (ret == -ENOSPC)
7873 loop = LOOP_NO_EMPTY_SIZE;
7874
7875 /*
7876 * Do not bail out on ENOSPC since we
7877 * can do more things.
7878 */
7879 if (ret < 0 && ret != -ENOSPC)
7880 btrfs_abort_transaction(trans, ret);
7881 else
7882 ret = 0;
7883 if (!exist)
7884 btrfs_end_transaction(trans);
7885 if (ret)
7886 goto out;
7887 }
7888
7889 if (loop == LOOP_NO_EMPTY_SIZE) {
7890 /*
7891 * Don't loop again if we already have no empty_size and
7892 * no empty_cluster.
7893 */
7894 if (empty_size == 0 &&
7895 empty_cluster == 0) {
7896 ret = -ENOSPC;
7897 goto out;
7898 }
7899 empty_size = 0;
7900 empty_cluster = 0;
7901 }
7902
7903 goto search;
7904 } else if (!ins->objectid) {
7905 ret = -ENOSPC;
7906 } else if (ins->objectid) {
7907 if (!use_cluster && last_ptr) {
7908 spin_lock(&last_ptr->lock);
7909 last_ptr->window_start = ins->objectid;
7910 spin_unlock(&last_ptr->lock);
7911 }
7912 ret = 0;
7913 }
7914 out:
7915 if (ret == -ENOSPC) {
7916 spin_lock(&space_info->lock);
7917 space_info->max_extent_size = max_extent_size;
7918 spin_unlock(&space_info->lock);
7919 ins->offset = max_extent_size;
7920 }
7921 return ret;
7922 }
7923
7924 static void dump_space_info(struct btrfs_fs_info *fs_info,
7925 struct btrfs_space_info *info, u64 bytes,
7926 int dump_block_groups)
7927 {
7928 struct btrfs_block_group_cache *cache;
7929 int index = 0;
7930
7931 spin_lock(&info->lock);
7932 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7933 info->flags,
7934 info->total_bytes - btrfs_space_info_used(info, true),
7935 info->full ? "" : "not ");
7936 btrfs_info(fs_info,
7937 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7938 info->total_bytes, info->bytes_used, info->bytes_pinned,
7939 info->bytes_reserved, info->bytes_may_use,
7940 info->bytes_readonly);
7941 spin_unlock(&info->lock);
7942
7943 if (!dump_block_groups)
7944 return;
7945
7946 down_read(&info->groups_sem);
7947 again:
7948 list_for_each_entry(cache, &info->block_groups[index], list) {
7949 spin_lock(&cache->lock);
7950 btrfs_info(fs_info,
7951 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7952 cache->key.objectid, cache->key.offset,
7953 btrfs_block_group_used(&cache->item), cache->pinned,
7954 cache->reserved, cache->ro ? "[readonly]" : "");
7955 btrfs_dump_free_space(cache, bytes);
7956 spin_unlock(&cache->lock);
7957 }
7958 if (++index < BTRFS_NR_RAID_TYPES)
7959 goto again;
7960 up_read(&info->groups_sem);
7961 }
7962
7963 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7964 u64 num_bytes, u64 min_alloc_size,
7965 u64 empty_size, u64 hint_byte,
7966 struct btrfs_key *ins, int is_data, int delalloc)
7967 {
7968 struct btrfs_fs_info *fs_info = root->fs_info;
7969 bool final_tried = num_bytes == min_alloc_size;
7970 u64 flags;
7971 int ret;
7972
7973 flags = get_alloc_profile_by_root(root, is_data);
7974 again:
7975 WARN_ON(num_bytes < fs_info->sectorsize);
7976 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7977 hint_byte, ins, flags, delalloc);
7978 if (!ret && !is_data) {
7979 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7980 } else if (ret == -ENOSPC) {
7981 if (!final_tried && ins->offset) {
7982 num_bytes = min(num_bytes >> 1, ins->offset);
7983 num_bytes = round_down(num_bytes,
7984 fs_info->sectorsize);
7985 num_bytes = max(num_bytes, min_alloc_size);
7986 ram_bytes = num_bytes;
7987 if (num_bytes == min_alloc_size)
7988 final_tried = true;
7989 goto again;
7990 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7991 struct btrfs_space_info *sinfo;
7992
7993 sinfo = __find_space_info(fs_info, flags);
7994 btrfs_err(fs_info,
7995 "allocation failed flags %llu, wanted %llu",
7996 flags, num_bytes);
7997 if (sinfo)
7998 dump_space_info(fs_info, sinfo, num_bytes, 1);
7999 }
8000 }
8001
8002 return ret;
8003 }
8004
8005 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8006 u64 start, u64 len,
8007 int pin, int delalloc)
8008 {
8009 struct btrfs_block_group_cache *cache;
8010 int ret = 0;
8011
8012 cache = btrfs_lookup_block_group(fs_info, start);
8013 if (!cache) {
8014 btrfs_err(fs_info, "Unable to find block group for %llu",
8015 start);
8016 return -ENOSPC;
8017 }
8018
8019 if (pin)
8020 pin_down_extent(fs_info, cache, start, len, 1);
8021 else {
8022 if (btrfs_test_opt(fs_info, DISCARD))
8023 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8024 btrfs_add_free_space(cache, start, len);
8025 btrfs_free_reserved_bytes(cache, len, delalloc);
8026 trace_btrfs_reserved_extent_free(fs_info, start, len);
8027 }
8028
8029 btrfs_put_block_group(cache);
8030 return ret;
8031 }
8032
8033 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8034 u64 start, u64 len, int delalloc)
8035 {
8036 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8037 }
8038
8039 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8040 u64 start, u64 len)
8041 {
8042 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8043 }
8044
8045 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8046 struct btrfs_fs_info *fs_info,
8047 u64 parent, u64 root_objectid,
8048 u64 flags, u64 owner, u64 offset,
8049 struct btrfs_key *ins, int ref_mod)
8050 {
8051 int ret;
8052 struct btrfs_extent_item *extent_item;
8053 struct btrfs_extent_inline_ref *iref;
8054 struct btrfs_path *path;
8055 struct extent_buffer *leaf;
8056 int type;
8057 u32 size;
8058
8059 if (parent > 0)
8060 type = BTRFS_SHARED_DATA_REF_KEY;
8061 else
8062 type = BTRFS_EXTENT_DATA_REF_KEY;
8063
8064 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8065
8066 path = btrfs_alloc_path();
8067 if (!path)
8068 return -ENOMEM;
8069
8070 path->leave_spinning = 1;
8071 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8072 ins, size);
8073 if (ret) {
8074 btrfs_free_path(path);
8075 return ret;
8076 }
8077
8078 leaf = path->nodes[0];
8079 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8080 struct btrfs_extent_item);
8081 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8082 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8083 btrfs_set_extent_flags(leaf, extent_item,
8084 flags | BTRFS_EXTENT_FLAG_DATA);
8085
8086 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8087 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8088 if (parent > 0) {
8089 struct btrfs_shared_data_ref *ref;
8090 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8091 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8092 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8093 } else {
8094 struct btrfs_extent_data_ref *ref;
8095 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8096 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8097 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8098 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8099 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8100 }
8101
8102 btrfs_mark_buffer_dirty(path->nodes[0]);
8103 btrfs_free_path(path);
8104
8105 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8106 ins->offset);
8107 if (ret)
8108 return ret;
8109
8110 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8111 if (ret) { /* -ENOENT, logic error */
8112 btrfs_err(fs_info, "update block group failed for %llu %llu",
8113 ins->objectid, ins->offset);
8114 BUG();
8115 }
8116 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8117 return ret;
8118 }
8119
8120 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8121 struct btrfs_fs_info *fs_info,
8122 u64 parent, u64 root_objectid,
8123 u64 flags, struct btrfs_disk_key *key,
8124 int level, struct btrfs_key *ins)
8125 {
8126 int ret;
8127 struct btrfs_extent_item *extent_item;
8128 struct btrfs_tree_block_info *block_info;
8129 struct btrfs_extent_inline_ref *iref;
8130 struct btrfs_path *path;
8131 struct extent_buffer *leaf;
8132 u32 size = sizeof(*extent_item) + sizeof(*iref);
8133 u64 num_bytes = ins->offset;
8134 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8135
8136 if (!skinny_metadata)
8137 size += sizeof(*block_info);
8138
8139 path = btrfs_alloc_path();
8140 if (!path) {
8141 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8142 fs_info->nodesize);
8143 return -ENOMEM;
8144 }
8145
8146 path->leave_spinning = 1;
8147 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8148 ins, size);
8149 if (ret) {
8150 btrfs_free_path(path);
8151 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8152 fs_info->nodesize);
8153 return ret;
8154 }
8155
8156 leaf = path->nodes[0];
8157 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8158 struct btrfs_extent_item);
8159 btrfs_set_extent_refs(leaf, extent_item, 1);
8160 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8161 btrfs_set_extent_flags(leaf, extent_item,
8162 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8163
8164 if (skinny_metadata) {
8165 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8166 num_bytes = fs_info->nodesize;
8167 } else {
8168 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8169 btrfs_set_tree_block_key(leaf, block_info, key);
8170 btrfs_set_tree_block_level(leaf, block_info, level);
8171 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8172 }
8173
8174 if (parent > 0) {
8175 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8176 btrfs_set_extent_inline_ref_type(leaf, iref,
8177 BTRFS_SHARED_BLOCK_REF_KEY);
8178 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8179 } else {
8180 btrfs_set_extent_inline_ref_type(leaf, iref,
8181 BTRFS_TREE_BLOCK_REF_KEY);
8182 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8183 }
8184
8185 btrfs_mark_buffer_dirty(leaf);
8186 btrfs_free_path(path);
8187
8188 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8189 num_bytes);
8190 if (ret)
8191 return ret;
8192
8193 ret = update_block_group(trans, fs_info, ins->objectid,
8194 fs_info->nodesize, 1);
8195 if (ret) { /* -ENOENT, logic error */
8196 btrfs_err(fs_info, "update block group failed for %llu %llu",
8197 ins->objectid, ins->offset);
8198 BUG();
8199 }
8200
8201 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8202 fs_info->nodesize);
8203 return ret;
8204 }
8205
8206 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8207 u64 root_objectid, u64 owner,
8208 u64 offset, u64 ram_bytes,
8209 struct btrfs_key *ins)
8210 {
8211 struct btrfs_fs_info *fs_info = trans->fs_info;
8212 int ret;
8213
8214 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8215
8216 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8217 ins->offset, 0,
8218 root_objectid, owner, offset,
8219 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8220 return ret;
8221 }
8222
8223 /*
8224 * this is used by the tree logging recovery code. It records that
8225 * an extent has been allocated and makes sure to clear the free
8226 * space cache bits as well
8227 */
8228 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8229 struct btrfs_fs_info *fs_info,
8230 u64 root_objectid, u64 owner, u64 offset,
8231 struct btrfs_key *ins)
8232 {
8233 int ret;
8234 struct btrfs_block_group_cache *block_group;
8235 struct btrfs_space_info *space_info;
8236
8237 /*
8238 * Mixed block groups will exclude before processing the log so we only
8239 * need to do the exclude dance if this fs isn't mixed.
8240 */
8241 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8242 ret = __exclude_logged_extent(fs_info, ins->objectid,
8243 ins->offset);
8244 if (ret)
8245 return ret;
8246 }
8247
8248 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8249 if (!block_group)
8250 return -EINVAL;
8251
8252 space_info = block_group->space_info;
8253 spin_lock(&space_info->lock);
8254 spin_lock(&block_group->lock);
8255 space_info->bytes_reserved += ins->offset;
8256 block_group->reserved += ins->offset;
8257 spin_unlock(&block_group->lock);
8258 spin_unlock(&space_info->lock);
8259
8260 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8261 0, owner, offset, ins, 1);
8262 btrfs_put_block_group(block_group);
8263 return ret;
8264 }
8265
8266 static struct extent_buffer *
8267 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8268 u64 bytenr, int level)
8269 {
8270 struct btrfs_fs_info *fs_info = root->fs_info;
8271 struct extent_buffer *buf;
8272
8273 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8274 if (IS_ERR(buf))
8275 return buf;
8276
8277 btrfs_set_header_generation(buf, trans->transid);
8278 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8279 btrfs_tree_lock(buf);
8280 clean_tree_block(fs_info, buf);
8281 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8282
8283 btrfs_set_lock_blocking(buf);
8284 set_extent_buffer_uptodate(buf);
8285
8286 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8287 buf->log_index = root->log_transid % 2;
8288 /*
8289 * we allow two log transactions at a time, use different
8290 * EXENT bit to differentiate dirty pages.
8291 */
8292 if (buf->log_index == 0)
8293 set_extent_dirty(&root->dirty_log_pages, buf->start,
8294 buf->start + buf->len - 1, GFP_NOFS);
8295 else
8296 set_extent_new(&root->dirty_log_pages, buf->start,
8297 buf->start + buf->len - 1);
8298 } else {
8299 buf->log_index = -1;
8300 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8301 buf->start + buf->len - 1, GFP_NOFS);
8302 }
8303 trans->dirty = true;
8304 /* this returns a buffer locked for blocking */
8305 return buf;
8306 }
8307
8308 static struct btrfs_block_rsv *
8309 use_block_rsv(struct btrfs_trans_handle *trans,
8310 struct btrfs_root *root, u32 blocksize)
8311 {
8312 struct btrfs_fs_info *fs_info = root->fs_info;
8313 struct btrfs_block_rsv *block_rsv;
8314 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8315 int ret;
8316 bool global_updated = false;
8317
8318 block_rsv = get_block_rsv(trans, root);
8319
8320 if (unlikely(block_rsv->size == 0))
8321 goto try_reserve;
8322 again:
8323 ret = block_rsv_use_bytes(block_rsv, blocksize);
8324 if (!ret)
8325 return block_rsv;
8326
8327 if (block_rsv->failfast)
8328 return ERR_PTR(ret);
8329
8330 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8331 global_updated = true;
8332 update_global_block_rsv(fs_info);
8333 goto again;
8334 }
8335
8336 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8337 static DEFINE_RATELIMIT_STATE(_rs,
8338 DEFAULT_RATELIMIT_INTERVAL * 10,
8339 /*DEFAULT_RATELIMIT_BURST*/ 1);
8340 if (__ratelimit(&_rs))
8341 WARN(1, KERN_DEBUG
8342 "BTRFS: block rsv returned %d\n", ret);
8343 }
8344 try_reserve:
8345 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8346 BTRFS_RESERVE_NO_FLUSH);
8347 if (!ret)
8348 return block_rsv;
8349 /*
8350 * If we couldn't reserve metadata bytes try and use some from
8351 * the global reserve if its space type is the same as the global
8352 * reservation.
8353 */
8354 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8355 block_rsv->space_info == global_rsv->space_info) {
8356 ret = block_rsv_use_bytes(global_rsv, blocksize);
8357 if (!ret)
8358 return global_rsv;
8359 }
8360 return ERR_PTR(ret);
8361 }
8362
8363 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8364 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8365 {
8366 block_rsv_add_bytes(block_rsv, blocksize, 0);
8367 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8368 }
8369
8370 /*
8371 * finds a free extent and does all the dirty work required for allocation
8372 * returns the tree buffer or an ERR_PTR on error.
8373 */
8374 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8375 struct btrfs_root *root,
8376 u64 parent, u64 root_objectid,
8377 const struct btrfs_disk_key *key,
8378 int level, u64 hint,
8379 u64 empty_size)
8380 {
8381 struct btrfs_fs_info *fs_info = root->fs_info;
8382 struct btrfs_key ins;
8383 struct btrfs_block_rsv *block_rsv;
8384 struct extent_buffer *buf;
8385 struct btrfs_delayed_extent_op *extent_op;
8386 u64 flags = 0;
8387 int ret;
8388 u32 blocksize = fs_info->nodesize;
8389 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8390
8391 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8392 if (btrfs_is_testing(fs_info)) {
8393 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8394 level);
8395 if (!IS_ERR(buf))
8396 root->alloc_bytenr += blocksize;
8397 return buf;
8398 }
8399 #endif
8400
8401 block_rsv = use_block_rsv(trans, root, blocksize);
8402 if (IS_ERR(block_rsv))
8403 return ERR_CAST(block_rsv);
8404
8405 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8406 empty_size, hint, &ins, 0, 0);
8407 if (ret)
8408 goto out_unuse;
8409
8410 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8411 if (IS_ERR(buf)) {
8412 ret = PTR_ERR(buf);
8413 goto out_free_reserved;
8414 }
8415
8416 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8417 if (parent == 0)
8418 parent = ins.objectid;
8419 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8420 } else
8421 BUG_ON(parent > 0);
8422
8423 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8424 extent_op = btrfs_alloc_delayed_extent_op();
8425 if (!extent_op) {
8426 ret = -ENOMEM;
8427 goto out_free_buf;
8428 }
8429 if (key)
8430 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8431 else
8432 memset(&extent_op->key, 0, sizeof(extent_op->key));
8433 extent_op->flags_to_set = flags;
8434 extent_op->update_key = skinny_metadata ? false : true;
8435 extent_op->update_flags = true;
8436 extent_op->is_data = false;
8437 extent_op->level = level;
8438
8439 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8440 ins.objectid, ins.offset,
8441 parent, root_objectid, level,
8442 BTRFS_ADD_DELAYED_EXTENT,
8443 extent_op);
8444 if (ret)
8445 goto out_free_delayed;
8446 }
8447 return buf;
8448
8449 out_free_delayed:
8450 btrfs_free_delayed_extent_op(extent_op);
8451 out_free_buf:
8452 free_extent_buffer(buf);
8453 out_free_reserved:
8454 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8455 out_unuse:
8456 unuse_block_rsv(fs_info, block_rsv, blocksize);
8457 return ERR_PTR(ret);
8458 }
8459
8460 struct walk_control {
8461 u64 refs[BTRFS_MAX_LEVEL];
8462 u64 flags[BTRFS_MAX_LEVEL];
8463 struct btrfs_key update_progress;
8464 int stage;
8465 int level;
8466 int shared_level;
8467 int update_ref;
8468 int keep_locks;
8469 int reada_slot;
8470 int reada_count;
8471 int for_reloc;
8472 };
8473
8474 #define DROP_REFERENCE 1
8475 #define UPDATE_BACKREF 2
8476
8477 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8478 struct btrfs_root *root,
8479 struct walk_control *wc,
8480 struct btrfs_path *path)
8481 {
8482 struct btrfs_fs_info *fs_info = root->fs_info;
8483 u64 bytenr;
8484 u64 generation;
8485 u64 refs;
8486 u64 flags;
8487 u32 nritems;
8488 struct btrfs_key key;
8489 struct extent_buffer *eb;
8490 int ret;
8491 int slot;
8492 int nread = 0;
8493
8494 if (path->slots[wc->level] < wc->reada_slot) {
8495 wc->reada_count = wc->reada_count * 2 / 3;
8496 wc->reada_count = max(wc->reada_count, 2);
8497 } else {
8498 wc->reada_count = wc->reada_count * 3 / 2;
8499 wc->reada_count = min_t(int, wc->reada_count,
8500 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8501 }
8502
8503 eb = path->nodes[wc->level];
8504 nritems = btrfs_header_nritems(eb);
8505
8506 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8507 if (nread >= wc->reada_count)
8508 break;
8509
8510 cond_resched();
8511 bytenr = btrfs_node_blockptr(eb, slot);
8512 generation = btrfs_node_ptr_generation(eb, slot);
8513
8514 if (slot == path->slots[wc->level])
8515 goto reada;
8516
8517 if (wc->stage == UPDATE_BACKREF &&
8518 generation <= root->root_key.offset)
8519 continue;
8520
8521 /* We don't lock the tree block, it's OK to be racy here */
8522 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8523 wc->level - 1, 1, &refs,
8524 &flags);
8525 /* We don't care about errors in readahead. */
8526 if (ret < 0)
8527 continue;
8528 BUG_ON(refs == 0);
8529
8530 if (wc->stage == DROP_REFERENCE) {
8531 if (refs == 1)
8532 goto reada;
8533
8534 if (wc->level == 1 &&
8535 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8536 continue;
8537 if (!wc->update_ref ||
8538 generation <= root->root_key.offset)
8539 continue;
8540 btrfs_node_key_to_cpu(eb, &key, slot);
8541 ret = btrfs_comp_cpu_keys(&key,
8542 &wc->update_progress);
8543 if (ret < 0)
8544 continue;
8545 } else {
8546 if (wc->level == 1 &&
8547 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8548 continue;
8549 }
8550 reada:
8551 readahead_tree_block(fs_info, bytenr);
8552 nread++;
8553 }
8554 wc->reada_slot = slot;
8555 }
8556
8557 /*
8558 * helper to process tree block while walking down the tree.
8559 *
8560 * when wc->stage == UPDATE_BACKREF, this function updates
8561 * back refs for pointers in the block.
8562 *
8563 * NOTE: return value 1 means we should stop walking down.
8564 */
8565 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8566 struct btrfs_root *root,
8567 struct btrfs_path *path,
8568 struct walk_control *wc, int lookup_info)
8569 {
8570 struct btrfs_fs_info *fs_info = root->fs_info;
8571 int level = wc->level;
8572 struct extent_buffer *eb = path->nodes[level];
8573 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8574 int ret;
8575
8576 if (wc->stage == UPDATE_BACKREF &&
8577 btrfs_header_owner(eb) != root->root_key.objectid)
8578 return 1;
8579
8580 /*
8581 * when reference count of tree block is 1, it won't increase
8582 * again. once full backref flag is set, we never clear it.
8583 */
8584 if (lookup_info &&
8585 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8586 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8587 BUG_ON(!path->locks[level]);
8588 ret = btrfs_lookup_extent_info(trans, fs_info,
8589 eb->start, level, 1,
8590 &wc->refs[level],
8591 &wc->flags[level]);
8592 BUG_ON(ret == -ENOMEM);
8593 if (ret)
8594 return ret;
8595 BUG_ON(wc->refs[level] == 0);
8596 }
8597
8598 if (wc->stage == DROP_REFERENCE) {
8599 if (wc->refs[level] > 1)
8600 return 1;
8601
8602 if (path->locks[level] && !wc->keep_locks) {
8603 btrfs_tree_unlock_rw(eb, path->locks[level]);
8604 path->locks[level] = 0;
8605 }
8606 return 0;
8607 }
8608
8609 /* wc->stage == UPDATE_BACKREF */
8610 if (!(wc->flags[level] & flag)) {
8611 BUG_ON(!path->locks[level]);
8612 ret = btrfs_inc_ref(trans, root, eb, 1);
8613 BUG_ON(ret); /* -ENOMEM */
8614 ret = btrfs_dec_ref(trans, root, eb, 0);
8615 BUG_ON(ret); /* -ENOMEM */
8616 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8617 eb->len, flag,
8618 btrfs_header_level(eb), 0);
8619 BUG_ON(ret); /* -ENOMEM */
8620 wc->flags[level] |= flag;
8621 }
8622
8623 /*
8624 * the block is shared by multiple trees, so it's not good to
8625 * keep the tree lock
8626 */
8627 if (path->locks[level] && level > 0) {
8628 btrfs_tree_unlock_rw(eb, path->locks[level]);
8629 path->locks[level] = 0;
8630 }
8631 return 0;
8632 }
8633
8634 /*
8635 * helper to process tree block pointer.
8636 *
8637 * when wc->stage == DROP_REFERENCE, this function checks
8638 * reference count of the block pointed to. if the block
8639 * is shared and we need update back refs for the subtree
8640 * rooted at the block, this function changes wc->stage to
8641 * UPDATE_BACKREF. if the block is shared and there is no
8642 * need to update back, this function drops the reference
8643 * to the block.
8644 *
8645 * NOTE: return value 1 means we should stop walking down.
8646 */
8647 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8648 struct btrfs_root *root,
8649 struct btrfs_path *path,
8650 struct walk_control *wc, int *lookup_info)
8651 {
8652 struct btrfs_fs_info *fs_info = root->fs_info;
8653 u64 bytenr;
8654 u64 generation;
8655 u64 parent;
8656 u32 blocksize;
8657 struct btrfs_key key;
8658 struct extent_buffer *next;
8659 int level = wc->level;
8660 int reada = 0;
8661 int ret = 0;
8662 bool need_account = false;
8663
8664 generation = btrfs_node_ptr_generation(path->nodes[level],
8665 path->slots[level]);
8666 /*
8667 * if the lower level block was created before the snapshot
8668 * was created, we know there is no need to update back refs
8669 * for the subtree
8670 */
8671 if (wc->stage == UPDATE_BACKREF &&
8672 generation <= root->root_key.offset) {
8673 *lookup_info = 1;
8674 return 1;
8675 }
8676
8677 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8678 blocksize = fs_info->nodesize;
8679
8680 next = find_extent_buffer(fs_info, bytenr);
8681 if (!next) {
8682 next = btrfs_find_create_tree_block(fs_info, bytenr);
8683 if (IS_ERR(next))
8684 return PTR_ERR(next);
8685
8686 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8687 level - 1);
8688 reada = 1;
8689 }
8690 btrfs_tree_lock(next);
8691 btrfs_set_lock_blocking(next);
8692
8693 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8694 &wc->refs[level - 1],
8695 &wc->flags[level - 1]);
8696 if (ret < 0)
8697 goto out_unlock;
8698
8699 if (unlikely(wc->refs[level - 1] == 0)) {
8700 btrfs_err(fs_info, "Missing references.");
8701 ret = -EIO;
8702 goto out_unlock;
8703 }
8704 *lookup_info = 0;
8705
8706 if (wc->stage == DROP_REFERENCE) {
8707 if (wc->refs[level - 1] > 1) {
8708 need_account = true;
8709 if (level == 1 &&
8710 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8711 goto skip;
8712
8713 if (!wc->update_ref ||
8714 generation <= root->root_key.offset)
8715 goto skip;
8716
8717 btrfs_node_key_to_cpu(path->nodes[level], &key,
8718 path->slots[level]);
8719 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8720 if (ret < 0)
8721 goto skip;
8722
8723 wc->stage = UPDATE_BACKREF;
8724 wc->shared_level = level - 1;
8725 }
8726 } else {
8727 if (level == 1 &&
8728 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8729 goto skip;
8730 }
8731
8732 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8733 btrfs_tree_unlock(next);
8734 free_extent_buffer(next);
8735 next = NULL;
8736 *lookup_info = 1;
8737 }
8738
8739 if (!next) {
8740 if (reada && level == 1)
8741 reada_walk_down(trans, root, wc, path);
8742 next = read_tree_block(fs_info, bytenr, generation);
8743 if (IS_ERR(next)) {
8744 return PTR_ERR(next);
8745 } else if (!extent_buffer_uptodate(next)) {
8746 free_extent_buffer(next);
8747 return -EIO;
8748 }
8749 btrfs_tree_lock(next);
8750 btrfs_set_lock_blocking(next);
8751 }
8752
8753 level--;
8754 ASSERT(level == btrfs_header_level(next));
8755 if (level != btrfs_header_level(next)) {
8756 btrfs_err(root->fs_info, "mismatched level");
8757 ret = -EIO;
8758 goto out_unlock;
8759 }
8760 path->nodes[level] = next;
8761 path->slots[level] = 0;
8762 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8763 wc->level = level;
8764 if (wc->level == 1)
8765 wc->reada_slot = 0;
8766 return 0;
8767 skip:
8768 wc->refs[level - 1] = 0;
8769 wc->flags[level - 1] = 0;
8770 if (wc->stage == DROP_REFERENCE) {
8771 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8772 parent = path->nodes[level]->start;
8773 } else {
8774 ASSERT(root->root_key.objectid ==
8775 btrfs_header_owner(path->nodes[level]));
8776 if (root->root_key.objectid !=
8777 btrfs_header_owner(path->nodes[level])) {
8778 btrfs_err(root->fs_info,
8779 "mismatched block owner");
8780 ret = -EIO;
8781 goto out_unlock;
8782 }
8783 parent = 0;
8784 }
8785
8786 if (need_account) {
8787 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8788 generation, level - 1);
8789 if (ret) {
8790 btrfs_err_rl(fs_info,
8791 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8792 ret);
8793 }
8794 }
8795 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8796 parent, root->root_key.objectid,
8797 level - 1, 0);
8798 if (ret)
8799 goto out_unlock;
8800 }
8801
8802 *lookup_info = 1;
8803 ret = 1;
8804
8805 out_unlock:
8806 btrfs_tree_unlock(next);
8807 free_extent_buffer(next);
8808
8809 return ret;
8810 }
8811
8812 /*
8813 * helper to process tree block while walking up the tree.
8814 *
8815 * when wc->stage == DROP_REFERENCE, this function drops
8816 * reference count on the block.
8817 *
8818 * when wc->stage == UPDATE_BACKREF, this function changes
8819 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8820 * to UPDATE_BACKREF previously while processing the block.
8821 *
8822 * NOTE: return value 1 means we should stop walking up.
8823 */
8824 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8825 struct btrfs_root *root,
8826 struct btrfs_path *path,
8827 struct walk_control *wc)
8828 {
8829 struct btrfs_fs_info *fs_info = root->fs_info;
8830 int ret;
8831 int level = wc->level;
8832 struct extent_buffer *eb = path->nodes[level];
8833 u64 parent = 0;
8834
8835 if (wc->stage == UPDATE_BACKREF) {
8836 BUG_ON(wc->shared_level < level);
8837 if (level < wc->shared_level)
8838 goto out;
8839
8840 ret = find_next_key(path, level + 1, &wc->update_progress);
8841 if (ret > 0)
8842 wc->update_ref = 0;
8843
8844 wc->stage = DROP_REFERENCE;
8845 wc->shared_level = -1;
8846 path->slots[level] = 0;
8847
8848 /*
8849 * check reference count again if the block isn't locked.
8850 * we should start walking down the tree again if reference
8851 * count is one.
8852 */
8853 if (!path->locks[level]) {
8854 BUG_ON(level == 0);
8855 btrfs_tree_lock(eb);
8856 btrfs_set_lock_blocking(eb);
8857 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8858
8859 ret = btrfs_lookup_extent_info(trans, fs_info,
8860 eb->start, level, 1,
8861 &wc->refs[level],
8862 &wc->flags[level]);
8863 if (ret < 0) {
8864 btrfs_tree_unlock_rw(eb, path->locks[level]);
8865 path->locks[level] = 0;
8866 return ret;
8867 }
8868 BUG_ON(wc->refs[level] == 0);
8869 if (wc->refs[level] == 1) {
8870 btrfs_tree_unlock_rw(eb, path->locks[level]);
8871 path->locks[level] = 0;
8872 return 1;
8873 }
8874 }
8875 }
8876
8877 /* wc->stage == DROP_REFERENCE */
8878 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8879
8880 if (wc->refs[level] == 1) {
8881 if (level == 0) {
8882 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8883 ret = btrfs_dec_ref(trans, root, eb, 1);
8884 else
8885 ret = btrfs_dec_ref(trans, root, eb, 0);
8886 BUG_ON(ret); /* -ENOMEM */
8887 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8888 if (ret) {
8889 btrfs_err_rl(fs_info,
8890 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8891 ret);
8892 }
8893 }
8894 /* make block locked assertion in clean_tree_block happy */
8895 if (!path->locks[level] &&
8896 btrfs_header_generation(eb) == trans->transid) {
8897 btrfs_tree_lock(eb);
8898 btrfs_set_lock_blocking(eb);
8899 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8900 }
8901 clean_tree_block(fs_info, eb);
8902 }
8903
8904 if (eb == root->node) {
8905 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8906 parent = eb->start;
8907 else
8908 BUG_ON(root->root_key.objectid !=
8909 btrfs_header_owner(eb));
8910 } else {
8911 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8912 parent = path->nodes[level + 1]->start;
8913 else
8914 BUG_ON(root->root_key.objectid !=
8915 btrfs_header_owner(path->nodes[level + 1]));
8916 }
8917
8918 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8919 out:
8920 wc->refs[level] = 0;
8921 wc->flags[level] = 0;
8922 return 0;
8923 }
8924
8925 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8926 struct btrfs_root *root,
8927 struct btrfs_path *path,
8928 struct walk_control *wc)
8929 {
8930 int level = wc->level;
8931 int lookup_info = 1;
8932 int ret;
8933
8934 while (level >= 0) {
8935 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8936 if (ret > 0)
8937 break;
8938
8939 if (level == 0)
8940 break;
8941
8942 if (path->slots[level] >=
8943 btrfs_header_nritems(path->nodes[level]))
8944 break;
8945
8946 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8947 if (ret > 0) {
8948 path->slots[level]++;
8949 continue;
8950 } else if (ret < 0)
8951 return ret;
8952 level = wc->level;
8953 }
8954 return 0;
8955 }
8956
8957 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8958 struct btrfs_root *root,
8959 struct btrfs_path *path,
8960 struct walk_control *wc, int max_level)
8961 {
8962 int level = wc->level;
8963 int ret;
8964
8965 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8966 while (level < max_level && path->nodes[level]) {
8967 wc->level = level;
8968 if (path->slots[level] + 1 <
8969 btrfs_header_nritems(path->nodes[level])) {
8970 path->slots[level]++;
8971 return 0;
8972 } else {
8973 ret = walk_up_proc(trans, root, path, wc);
8974 if (ret > 0)
8975 return 0;
8976
8977 if (path->locks[level]) {
8978 btrfs_tree_unlock_rw(path->nodes[level],
8979 path->locks[level]);
8980 path->locks[level] = 0;
8981 }
8982 free_extent_buffer(path->nodes[level]);
8983 path->nodes[level] = NULL;
8984 level++;
8985 }
8986 }
8987 return 1;
8988 }
8989
8990 /*
8991 * drop a subvolume tree.
8992 *
8993 * this function traverses the tree freeing any blocks that only
8994 * referenced by the tree.
8995 *
8996 * when a shared tree block is found. this function decreases its
8997 * reference count by one. if update_ref is true, this function
8998 * also make sure backrefs for the shared block and all lower level
8999 * blocks are properly updated.
9000 *
9001 * If called with for_reloc == 0, may exit early with -EAGAIN
9002 */
9003 int btrfs_drop_snapshot(struct btrfs_root *root,
9004 struct btrfs_block_rsv *block_rsv, int update_ref,
9005 int for_reloc)
9006 {
9007 struct btrfs_fs_info *fs_info = root->fs_info;
9008 struct btrfs_path *path;
9009 struct btrfs_trans_handle *trans;
9010 struct btrfs_root *tree_root = fs_info->tree_root;
9011 struct btrfs_root_item *root_item = &root->root_item;
9012 struct walk_control *wc;
9013 struct btrfs_key key;
9014 int err = 0;
9015 int ret;
9016 int level;
9017 bool root_dropped = false;
9018
9019 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9020
9021 path = btrfs_alloc_path();
9022 if (!path) {
9023 err = -ENOMEM;
9024 goto out;
9025 }
9026
9027 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9028 if (!wc) {
9029 btrfs_free_path(path);
9030 err = -ENOMEM;
9031 goto out;
9032 }
9033
9034 trans = btrfs_start_transaction(tree_root, 0);
9035 if (IS_ERR(trans)) {
9036 err = PTR_ERR(trans);
9037 goto out_free;
9038 }
9039
9040 if (block_rsv)
9041 trans->block_rsv = block_rsv;
9042
9043 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9044 level = btrfs_header_level(root->node);
9045 path->nodes[level] = btrfs_lock_root_node(root);
9046 btrfs_set_lock_blocking(path->nodes[level]);
9047 path->slots[level] = 0;
9048 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9049 memset(&wc->update_progress, 0,
9050 sizeof(wc->update_progress));
9051 } else {
9052 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9053 memcpy(&wc->update_progress, &key,
9054 sizeof(wc->update_progress));
9055
9056 level = root_item->drop_level;
9057 BUG_ON(level == 0);
9058 path->lowest_level = level;
9059 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9060 path->lowest_level = 0;
9061 if (ret < 0) {
9062 err = ret;
9063 goto out_end_trans;
9064 }
9065 WARN_ON(ret > 0);
9066
9067 /*
9068 * unlock our path, this is safe because only this
9069 * function is allowed to delete this snapshot
9070 */
9071 btrfs_unlock_up_safe(path, 0);
9072
9073 level = btrfs_header_level(root->node);
9074 while (1) {
9075 btrfs_tree_lock(path->nodes[level]);
9076 btrfs_set_lock_blocking(path->nodes[level]);
9077 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9078
9079 ret = btrfs_lookup_extent_info(trans, fs_info,
9080 path->nodes[level]->start,
9081 level, 1, &wc->refs[level],
9082 &wc->flags[level]);
9083 if (ret < 0) {
9084 err = ret;
9085 goto out_end_trans;
9086 }
9087 BUG_ON(wc->refs[level] == 0);
9088
9089 if (level == root_item->drop_level)
9090 break;
9091
9092 btrfs_tree_unlock(path->nodes[level]);
9093 path->locks[level] = 0;
9094 WARN_ON(wc->refs[level] != 1);
9095 level--;
9096 }
9097 }
9098
9099 wc->level = level;
9100 wc->shared_level = -1;
9101 wc->stage = DROP_REFERENCE;
9102 wc->update_ref = update_ref;
9103 wc->keep_locks = 0;
9104 wc->for_reloc = for_reloc;
9105 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9106
9107 while (1) {
9108
9109 ret = walk_down_tree(trans, root, path, wc);
9110 if (ret < 0) {
9111 err = ret;
9112 break;
9113 }
9114
9115 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9116 if (ret < 0) {
9117 err = ret;
9118 break;
9119 }
9120
9121 if (ret > 0) {
9122 BUG_ON(wc->stage != DROP_REFERENCE);
9123 break;
9124 }
9125
9126 if (wc->stage == DROP_REFERENCE) {
9127 level = wc->level;
9128 btrfs_node_key(path->nodes[level],
9129 &root_item->drop_progress,
9130 path->slots[level]);
9131 root_item->drop_level = level;
9132 }
9133
9134 BUG_ON(wc->level == 0);
9135 if (btrfs_should_end_transaction(trans) ||
9136 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9137 ret = btrfs_update_root(trans, tree_root,
9138 &root->root_key,
9139 root_item);
9140 if (ret) {
9141 btrfs_abort_transaction(trans, ret);
9142 err = ret;
9143 goto out_end_trans;
9144 }
9145
9146 btrfs_end_transaction_throttle(trans);
9147 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9148 btrfs_debug(fs_info,
9149 "drop snapshot early exit");
9150 err = -EAGAIN;
9151 goto out_free;
9152 }
9153
9154 trans = btrfs_start_transaction(tree_root, 0);
9155 if (IS_ERR(trans)) {
9156 err = PTR_ERR(trans);
9157 goto out_free;
9158 }
9159 if (block_rsv)
9160 trans->block_rsv = block_rsv;
9161 }
9162 }
9163 btrfs_release_path(path);
9164 if (err)
9165 goto out_end_trans;
9166
9167 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9168 if (ret) {
9169 btrfs_abort_transaction(trans, ret);
9170 goto out_end_trans;
9171 }
9172
9173 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9174 ret = btrfs_find_root(tree_root, &root->root_key, path,
9175 NULL, NULL);
9176 if (ret < 0) {
9177 btrfs_abort_transaction(trans, ret);
9178 err = ret;
9179 goto out_end_trans;
9180 } else if (ret > 0) {
9181 /* if we fail to delete the orphan item this time
9182 * around, it'll get picked up the next time.
9183 *
9184 * The most common failure here is just -ENOENT.
9185 */
9186 btrfs_del_orphan_item(trans, tree_root,
9187 root->root_key.objectid);
9188 }
9189 }
9190
9191 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9192 btrfs_add_dropped_root(trans, root);
9193 } else {
9194 free_extent_buffer(root->node);
9195 free_extent_buffer(root->commit_root);
9196 btrfs_put_fs_root(root);
9197 }
9198 root_dropped = true;
9199 out_end_trans:
9200 btrfs_end_transaction_throttle(trans);
9201 out_free:
9202 kfree(wc);
9203 btrfs_free_path(path);
9204 out:
9205 /*
9206 * So if we need to stop dropping the snapshot for whatever reason we
9207 * need to make sure to add it back to the dead root list so that we
9208 * keep trying to do the work later. This also cleans up roots if we
9209 * don't have it in the radix (like when we recover after a power fail
9210 * or unmount) so we don't leak memory.
9211 */
9212 if (!for_reloc && root_dropped == false)
9213 btrfs_add_dead_root(root);
9214 if (err && err != -EAGAIN)
9215 btrfs_handle_fs_error(fs_info, err, NULL);
9216 return err;
9217 }
9218
9219 /*
9220 * drop subtree rooted at tree block 'node'.
9221 *
9222 * NOTE: this function will unlock and release tree block 'node'
9223 * only used by relocation code
9224 */
9225 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9226 struct btrfs_root *root,
9227 struct extent_buffer *node,
9228 struct extent_buffer *parent)
9229 {
9230 struct btrfs_fs_info *fs_info = root->fs_info;
9231 struct btrfs_path *path;
9232 struct walk_control *wc;
9233 int level;
9234 int parent_level;
9235 int ret = 0;
9236 int wret;
9237
9238 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9239
9240 path = btrfs_alloc_path();
9241 if (!path)
9242 return -ENOMEM;
9243
9244 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9245 if (!wc) {
9246 btrfs_free_path(path);
9247 return -ENOMEM;
9248 }
9249
9250 btrfs_assert_tree_locked(parent);
9251 parent_level = btrfs_header_level(parent);
9252 extent_buffer_get(parent);
9253 path->nodes[parent_level] = parent;
9254 path->slots[parent_level] = btrfs_header_nritems(parent);
9255
9256 btrfs_assert_tree_locked(node);
9257 level = btrfs_header_level(node);
9258 path->nodes[level] = node;
9259 path->slots[level] = 0;
9260 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9261
9262 wc->refs[parent_level] = 1;
9263 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9264 wc->level = level;
9265 wc->shared_level = -1;
9266 wc->stage = DROP_REFERENCE;
9267 wc->update_ref = 0;
9268 wc->keep_locks = 1;
9269 wc->for_reloc = 1;
9270 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9271
9272 while (1) {
9273 wret = walk_down_tree(trans, root, path, wc);
9274 if (wret < 0) {
9275 ret = wret;
9276 break;
9277 }
9278
9279 wret = walk_up_tree(trans, root, path, wc, parent_level);
9280 if (wret < 0)
9281 ret = wret;
9282 if (wret != 0)
9283 break;
9284 }
9285
9286 kfree(wc);
9287 btrfs_free_path(path);
9288 return ret;
9289 }
9290
9291 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9292 {
9293 u64 num_devices;
9294 u64 stripped;
9295
9296 /*
9297 * if restripe for this chunk_type is on pick target profile and
9298 * return, otherwise do the usual balance
9299 */
9300 stripped = get_restripe_target(fs_info, flags);
9301 if (stripped)
9302 return extended_to_chunk(stripped);
9303
9304 num_devices = fs_info->fs_devices->rw_devices;
9305
9306 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9307 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9308 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9309
9310 if (num_devices == 1) {
9311 stripped |= BTRFS_BLOCK_GROUP_DUP;
9312 stripped = flags & ~stripped;
9313
9314 /* turn raid0 into single device chunks */
9315 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9316 return stripped;
9317
9318 /* turn mirroring into duplication */
9319 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9320 BTRFS_BLOCK_GROUP_RAID10))
9321 return stripped | BTRFS_BLOCK_GROUP_DUP;
9322 } else {
9323 /* they already had raid on here, just return */
9324 if (flags & stripped)
9325 return flags;
9326
9327 stripped |= BTRFS_BLOCK_GROUP_DUP;
9328 stripped = flags & ~stripped;
9329
9330 /* switch duplicated blocks with raid1 */
9331 if (flags & BTRFS_BLOCK_GROUP_DUP)
9332 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9333
9334 /* this is drive concat, leave it alone */
9335 }
9336
9337 return flags;
9338 }
9339
9340 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9341 {
9342 struct btrfs_space_info *sinfo = cache->space_info;
9343 u64 num_bytes;
9344 u64 min_allocable_bytes;
9345 int ret = -ENOSPC;
9346
9347 /*
9348 * We need some metadata space and system metadata space for
9349 * allocating chunks in some corner cases until we force to set
9350 * it to be readonly.
9351 */
9352 if ((sinfo->flags &
9353 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9354 !force)
9355 min_allocable_bytes = SZ_1M;
9356 else
9357 min_allocable_bytes = 0;
9358
9359 spin_lock(&sinfo->lock);
9360 spin_lock(&cache->lock);
9361
9362 if (cache->ro) {
9363 cache->ro++;
9364 ret = 0;
9365 goto out;
9366 }
9367
9368 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9369 cache->bytes_super - btrfs_block_group_used(&cache->item);
9370
9371 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9372 min_allocable_bytes <= sinfo->total_bytes) {
9373 sinfo->bytes_readonly += num_bytes;
9374 cache->ro++;
9375 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9376 ret = 0;
9377 }
9378 out:
9379 spin_unlock(&cache->lock);
9380 spin_unlock(&sinfo->lock);
9381 return ret;
9382 }
9383
9384 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9385 struct btrfs_block_group_cache *cache)
9386
9387 {
9388 struct btrfs_trans_handle *trans;
9389 u64 alloc_flags;
9390 int ret;
9391
9392 again:
9393 trans = btrfs_join_transaction(fs_info->extent_root);
9394 if (IS_ERR(trans))
9395 return PTR_ERR(trans);
9396
9397 /*
9398 * we're not allowed to set block groups readonly after the dirty
9399 * block groups cache has started writing. If it already started,
9400 * back off and let this transaction commit
9401 */
9402 mutex_lock(&fs_info->ro_block_group_mutex);
9403 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9404 u64 transid = trans->transid;
9405
9406 mutex_unlock(&fs_info->ro_block_group_mutex);
9407 btrfs_end_transaction(trans);
9408
9409 ret = btrfs_wait_for_commit(fs_info, transid);
9410 if (ret)
9411 return ret;
9412 goto again;
9413 }
9414
9415 /*
9416 * if we are changing raid levels, try to allocate a corresponding
9417 * block group with the new raid level.
9418 */
9419 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9420 if (alloc_flags != cache->flags) {
9421 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9422 CHUNK_ALLOC_FORCE);
9423 /*
9424 * ENOSPC is allowed here, we may have enough space
9425 * already allocated at the new raid level to
9426 * carry on
9427 */
9428 if (ret == -ENOSPC)
9429 ret = 0;
9430 if (ret < 0)
9431 goto out;
9432 }
9433
9434 ret = inc_block_group_ro(cache, 0);
9435 if (!ret)
9436 goto out;
9437 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9438 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9439 CHUNK_ALLOC_FORCE);
9440 if (ret < 0)
9441 goto out;
9442 ret = inc_block_group_ro(cache, 0);
9443 out:
9444 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9445 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9446 mutex_lock(&fs_info->chunk_mutex);
9447 check_system_chunk(trans, fs_info, alloc_flags);
9448 mutex_unlock(&fs_info->chunk_mutex);
9449 }
9450 mutex_unlock(&fs_info->ro_block_group_mutex);
9451
9452 btrfs_end_transaction(trans);
9453 return ret;
9454 }
9455
9456 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9457 struct btrfs_fs_info *fs_info, u64 type)
9458 {
9459 u64 alloc_flags = get_alloc_profile(fs_info, type);
9460
9461 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9462 }
9463
9464 /*
9465 * helper to account the unused space of all the readonly block group in the
9466 * space_info. takes mirrors into account.
9467 */
9468 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9469 {
9470 struct btrfs_block_group_cache *block_group;
9471 u64 free_bytes = 0;
9472 int factor;
9473
9474 /* It's df, we don't care if it's racy */
9475 if (list_empty(&sinfo->ro_bgs))
9476 return 0;
9477
9478 spin_lock(&sinfo->lock);
9479 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9480 spin_lock(&block_group->lock);
9481
9482 if (!block_group->ro) {
9483 spin_unlock(&block_group->lock);
9484 continue;
9485 }
9486
9487 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9488 BTRFS_BLOCK_GROUP_RAID10 |
9489 BTRFS_BLOCK_GROUP_DUP))
9490 factor = 2;
9491 else
9492 factor = 1;
9493
9494 free_bytes += (block_group->key.offset -
9495 btrfs_block_group_used(&block_group->item)) *
9496 factor;
9497
9498 spin_unlock(&block_group->lock);
9499 }
9500 spin_unlock(&sinfo->lock);
9501
9502 return free_bytes;
9503 }
9504
9505 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9506 {
9507 struct btrfs_space_info *sinfo = cache->space_info;
9508 u64 num_bytes;
9509
9510 BUG_ON(!cache->ro);
9511
9512 spin_lock(&sinfo->lock);
9513 spin_lock(&cache->lock);
9514 if (!--cache->ro) {
9515 num_bytes = cache->key.offset - cache->reserved -
9516 cache->pinned - cache->bytes_super -
9517 btrfs_block_group_used(&cache->item);
9518 sinfo->bytes_readonly -= num_bytes;
9519 list_del_init(&cache->ro_list);
9520 }
9521 spin_unlock(&cache->lock);
9522 spin_unlock(&sinfo->lock);
9523 }
9524
9525 /*
9526 * checks to see if its even possible to relocate this block group.
9527 *
9528 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9529 * ok to go ahead and try.
9530 */
9531 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9532 {
9533 struct btrfs_root *root = fs_info->extent_root;
9534 struct btrfs_block_group_cache *block_group;
9535 struct btrfs_space_info *space_info;
9536 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9537 struct btrfs_device *device;
9538 struct btrfs_trans_handle *trans;
9539 u64 min_free;
9540 u64 dev_min = 1;
9541 u64 dev_nr = 0;
9542 u64 target;
9543 int debug;
9544 int index;
9545 int full = 0;
9546 int ret = 0;
9547
9548 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9549
9550 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9551
9552 /* odd, couldn't find the block group, leave it alone */
9553 if (!block_group) {
9554 if (debug)
9555 btrfs_warn(fs_info,
9556 "can't find block group for bytenr %llu",
9557 bytenr);
9558 return -1;
9559 }
9560
9561 min_free = btrfs_block_group_used(&block_group->item);
9562
9563 /* no bytes used, we're good */
9564 if (!min_free)
9565 goto out;
9566
9567 space_info = block_group->space_info;
9568 spin_lock(&space_info->lock);
9569
9570 full = space_info->full;
9571
9572 /*
9573 * if this is the last block group we have in this space, we can't
9574 * relocate it unless we're able to allocate a new chunk below.
9575 *
9576 * Otherwise, we need to make sure we have room in the space to handle
9577 * all of the extents from this block group. If we can, we're good
9578 */
9579 if ((space_info->total_bytes != block_group->key.offset) &&
9580 (btrfs_space_info_used(space_info, false) + min_free <
9581 space_info->total_bytes)) {
9582 spin_unlock(&space_info->lock);
9583 goto out;
9584 }
9585 spin_unlock(&space_info->lock);
9586
9587 /*
9588 * ok we don't have enough space, but maybe we have free space on our
9589 * devices to allocate new chunks for relocation, so loop through our
9590 * alloc devices and guess if we have enough space. if this block
9591 * group is going to be restriped, run checks against the target
9592 * profile instead of the current one.
9593 */
9594 ret = -1;
9595
9596 /*
9597 * index:
9598 * 0: raid10
9599 * 1: raid1
9600 * 2: dup
9601 * 3: raid0
9602 * 4: single
9603 */
9604 target = get_restripe_target(fs_info, block_group->flags);
9605 if (target) {
9606 index = __get_raid_index(extended_to_chunk(target));
9607 } else {
9608 /*
9609 * this is just a balance, so if we were marked as full
9610 * we know there is no space for a new chunk
9611 */
9612 if (full) {
9613 if (debug)
9614 btrfs_warn(fs_info,
9615 "no space to alloc new chunk for block group %llu",
9616 block_group->key.objectid);
9617 goto out;
9618 }
9619
9620 index = get_block_group_index(block_group);
9621 }
9622
9623 if (index == BTRFS_RAID_RAID10) {
9624 dev_min = 4;
9625 /* Divide by 2 */
9626 min_free >>= 1;
9627 } else if (index == BTRFS_RAID_RAID1) {
9628 dev_min = 2;
9629 } else if (index == BTRFS_RAID_DUP) {
9630 /* Multiply by 2 */
9631 min_free <<= 1;
9632 } else if (index == BTRFS_RAID_RAID0) {
9633 dev_min = fs_devices->rw_devices;
9634 min_free = div64_u64(min_free, dev_min);
9635 }
9636
9637 /* We need to do this so that we can look at pending chunks */
9638 trans = btrfs_join_transaction(root);
9639 if (IS_ERR(trans)) {
9640 ret = PTR_ERR(trans);
9641 goto out;
9642 }
9643
9644 mutex_lock(&fs_info->chunk_mutex);
9645 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9646 u64 dev_offset;
9647
9648 /*
9649 * check to make sure we can actually find a chunk with enough
9650 * space to fit our block group in.
9651 */
9652 if (device->total_bytes > device->bytes_used + min_free &&
9653 !device->is_tgtdev_for_dev_replace) {
9654 ret = find_free_dev_extent(trans, device, min_free,
9655 &dev_offset, NULL);
9656 if (!ret)
9657 dev_nr++;
9658
9659 if (dev_nr >= dev_min)
9660 break;
9661
9662 ret = -1;
9663 }
9664 }
9665 if (debug && ret == -1)
9666 btrfs_warn(fs_info,
9667 "no space to allocate a new chunk for block group %llu",
9668 block_group->key.objectid);
9669 mutex_unlock(&fs_info->chunk_mutex);
9670 btrfs_end_transaction(trans);
9671 out:
9672 btrfs_put_block_group(block_group);
9673 return ret;
9674 }
9675
9676 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9677 struct btrfs_path *path,
9678 struct btrfs_key *key)
9679 {
9680 struct btrfs_root *root = fs_info->extent_root;
9681 int ret = 0;
9682 struct btrfs_key found_key;
9683 struct extent_buffer *leaf;
9684 int slot;
9685
9686 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9687 if (ret < 0)
9688 goto out;
9689
9690 while (1) {
9691 slot = path->slots[0];
9692 leaf = path->nodes[0];
9693 if (slot >= btrfs_header_nritems(leaf)) {
9694 ret = btrfs_next_leaf(root, path);
9695 if (ret == 0)
9696 continue;
9697 if (ret < 0)
9698 goto out;
9699 break;
9700 }
9701 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9702
9703 if (found_key.objectid >= key->objectid &&
9704 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9705 struct extent_map_tree *em_tree;
9706 struct extent_map *em;
9707
9708 em_tree = &root->fs_info->mapping_tree.map_tree;
9709 read_lock(&em_tree->lock);
9710 em = lookup_extent_mapping(em_tree, found_key.objectid,
9711 found_key.offset);
9712 read_unlock(&em_tree->lock);
9713 if (!em) {
9714 btrfs_err(fs_info,
9715 "logical %llu len %llu found bg but no related chunk",
9716 found_key.objectid, found_key.offset);
9717 ret = -ENOENT;
9718 } else {
9719 ret = 0;
9720 }
9721 free_extent_map(em);
9722 goto out;
9723 }
9724 path->slots[0]++;
9725 }
9726 out:
9727 return ret;
9728 }
9729
9730 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9731 {
9732 struct btrfs_block_group_cache *block_group;
9733 u64 last = 0;
9734
9735 while (1) {
9736 struct inode *inode;
9737
9738 block_group = btrfs_lookup_first_block_group(info, last);
9739 while (block_group) {
9740 spin_lock(&block_group->lock);
9741 if (block_group->iref)
9742 break;
9743 spin_unlock(&block_group->lock);
9744 block_group = next_block_group(info, block_group);
9745 }
9746 if (!block_group) {
9747 if (last == 0)
9748 break;
9749 last = 0;
9750 continue;
9751 }
9752
9753 inode = block_group->inode;
9754 block_group->iref = 0;
9755 block_group->inode = NULL;
9756 spin_unlock(&block_group->lock);
9757 ASSERT(block_group->io_ctl.inode == NULL);
9758 iput(inode);
9759 last = block_group->key.objectid + block_group->key.offset;
9760 btrfs_put_block_group(block_group);
9761 }
9762 }
9763
9764 /*
9765 * Must be called only after stopping all workers, since we could have block
9766 * group caching kthreads running, and therefore they could race with us if we
9767 * freed the block groups before stopping them.
9768 */
9769 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9770 {
9771 struct btrfs_block_group_cache *block_group;
9772 struct btrfs_space_info *space_info;
9773 struct btrfs_caching_control *caching_ctl;
9774 struct rb_node *n;
9775
9776 down_write(&info->commit_root_sem);
9777 while (!list_empty(&info->caching_block_groups)) {
9778 caching_ctl = list_entry(info->caching_block_groups.next,
9779 struct btrfs_caching_control, list);
9780 list_del(&caching_ctl->list);
9781 put_caching_control(caching_ctl);
9782 }
9783 up_write(&info->commit_root_sem);
9784
9785 spin_lock(&info->unused_bgs_lock);
9786 while (!list_empty(&info->unused_bgs)) {
9787 block_group = list_first_entry(&info->unused_bgs,
9788 struct btrfs_block_group_cache,
9789 bg_list);
9790 list_del_init(&block_group->bg_list);
9791 btrfs_put_block_group(block_group);
9792 }
9793 spin_unlock(&info->unused_bgs_lock);
9794
9795 spin_lock(&info->block_group_cache_lock);
9796 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9797 block_group = rb_entry(n, struct btrfs_block_group_cache,
9798 cache_node);
9799 rb_erase(&block_group->cache_node,
9800 &info->block_group_cache_tree);
9801 RB_CLEAR_NODE(&block_group->cache_node);
9802 spin_unlock(&info->block_group_cache_lock);
9803
9804 down_write(&block_group->space_info->groups_sem);
9805 list_del(&block_group->list);
9806 up_write(&block_group->space_info->groups_sem);
9807
9808 /*
9809 * We haven't cached this block group, which means we could
9810 * possibly have excluded extents on this block group.
9811 */
9812 if (block_group->cached == BTRFS_CACHE_NO ||
9813 block_group->cached == BTRFS_CACHE_ERROR)
9814 free_excluded_extents(info, block_group);
9815
9816 btrfs_remove_free_space_cache(block_group);
9817 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9818 ASSERT(list_empty(&block_group->dirty_list));
9819 ASSERT(list_empty(&block_group->io_list));
9820 ASSERT(list_empty(&block_group->bg_list));
9821 ASSERT(atomic_read(&block_group->count) == 1);
9822 btrfs_put_block_group(block_group);
9823
9824 spin_lock(&info->block_group_cache_lock);
9825 }
9826 spin_unlock(&info->block_group_cache_lock);
9827
9828 /* now that all the block groups are freed, go through and
9829 * free all the space_info structs. This is only called during
9830 * the final stages of unmount, and so we know nobody is
9831 * using them. We call synchronize_rcu() once before we start,
9832 * just to be on the safe side.
9833 */
9834 synchronize_rcu();
9835
9836 release_global_block_rsv(info);
9837
9838 while (!list_empty(&info->space_info)) {
9839 int i;
9840
9841 space_info = list_entry(info->space_info.next,
9842 struct btrfs_space_info,
9843 list);
9844
9845 /*
9846 * Do not hide this behind enospc_debug, this is actually
9847 * important and indicates a real bug if this happens.
9848 */
9849 if (WARN_ON(space_info->bytes_pinned > 0 ||
9850 space_info->bytes_reserved > 0 ||
9851 space_info->bytes_may_use > 0))
9852 dump_space_info(info, space_info, 0, 0);
9853 list_del(&space_info->list);
9854 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9855 struct kobject *kobj;
9856 kobj = space_info->block_group_kobjs[i];
9857 space_info->block_group_kobjs[i] = NULL;
9858 if (kobj) {
9859 kobject_del(kobj);
9860 kobject_put(kobj);
9861 }
9862 }
9863 kobject_del(&space_info->kobj);
9864 kobject_put(&space_info->kobj);
9865 }
9866 return 0;
9867 }
9868
9869 static void __link_block_group(struct btrfs_space_info *space_info,
9870 struct btrfs_block_group_cache *cache)
9871 {
9872 int index = get_block_group_index(cache);
9873 bool first = false;
9874
9875 down_write(&space_info->groups_sem);
9876 if (list_empty(&space_info->block_groups[index]))
9877 first = true;
9878 list_add_tail(&cache->list, &space_info->block_groups[index]);
9879 up_write(&space_info->groups_sem);
9880
9881 if (first) {
9882 struct raid_kobject *rkobj;
9883 int ret;
9884
9885 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9886 if (!rkobj)
9887 goto out_err;
9888 rkobj->raid_type = index;
9889 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9890 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9891 "%s", get_raid_name(index));
9892 if (ret) {
9893 kobject_put(&rkobj->kobj);
9894 goto out_err;
9895 }
9896 space_info->block_group_kobjs[index] = &rkobj->kobj;
9897 }
9898
9899 return;
9900 out_err:
9901 btrfs_warn(cache->fs_info,
9902 "failed to add kobject for block cache, ignoring");
9903 }
9904
9905 static struct btrfs_block_group_cache *
9906 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9907 u64 start, u64 size)
9908 {
9909 struct btrfs_block_group_cache *cache;
9910
9911 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9912 if (!cache)
9913 return NULL;
9914
9915 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9916 GFP_NOFS);
9917 if (!cache->free_space_ctl) {
9918 kfree(cache);
9919 return NULL;
9920 }
9921
9922 cache->key.objectid = start;
9923 cache->key.offset = size;
9924 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9925
9926 cache->sectorsize = fs_info->sectorsize;
9927 cache->fs_info = fs_info;
9928 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9929 &fs_info->mapping_tree,
9930 start);
9931 set_free_space_tree_thresholds(cache);
9932
9933 atomic_set(&cache->count, 1);
9934 spin_lock_init(&cache->lock);
9935 init_rwsem(&cache->data_rwsem);
9936 INIT_LIST_HEAD(&cache->list);
9937 INIT_LIST_HEAD(&cache->cluster_list);
9938 INIT_LIST_HEAD(&cache->bg_list);
9939 INIT_LIST_HEAD(&cache->ro_list);
9940 INIT_LIST_HEAD(&cache->dirty_list);
9941 INIT_LIST_HEAD(&cache->io_list);
9942 btrfs_init_free_space_ctl(cache);
9943 atomic_set(&cache->trimming, 0);
9944 mutex_init(&cache->free_space_lock);
9945 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9946
9947 return cache;
9948 }
9949
9950 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9951 {
9952 struct btrfs_path *path;
9953 int ret;
9954 struct btrfs_block_group_cache *cache;
9955 struct btrfs_space_info *space_info;
9956 struct btrfs_key key;
9957 struct btrfs_key found_key;
9958 struct extent_buffer *leaf;
9959 int need_clear = 0;
9960 u64 cache_gen;
9961 u64 feature;
9962 int mixed;
9963
9964 feature = btrfs_super_incompat_flags(info->super_copy);
9965 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9966
9967 key.objectid = 0;
9968 key.offset = 0;
9969 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9970 path = btrfs_alloc_path();
9971 if (!path)
9972 return -ENOMEM;
9973 path->reada = READA_FORWARD;
9974
9975 cache_gen = btrfs_super_cache_generation(info->super_copy);
9976 if (btrfs_test_opt(info, SPACE_CACHE) &&
9977 btrfs_super_generation(info->super_copy) != cache_gen)
9978 need_clear = 1;
9979 if (btrfs_test_opt(info, CLEAR_CACHE))
9980 need_clear = 1;
9981
9982 while (1) {
9983 ret = find_first_block_group(info, path, &key);
9984 if (ret > 0)
9985 break;
9986 if (ret != 0)
9987 goto error;
9988
9989 leaf = path->nodes[0];
9990 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9991
9992 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9993 found_key.offset);
9994 if (!cache) {
9995 ret = -ENOMEM;
9996 goto error;
9997 }
9998
9999 if (need_clear) {
10000 /*
10001 * When we mount with old space cache, we need to
10002 * set BTRFS_DC_CLEAR and set dirty flag.
10003 *
10004 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10005 * truncate the old free space cache inode and
10006 * setup a new one.
10007 * b) Setting 'dirty flag' makes sure that we flush
10008 * the new space cache info onto disk.
10009 */
10010 if (btrfs_test_opt(info, SPACE_CACHE))
10011 cache->disk_cache_state = BTRFS_DC_CLEAR;
10012 }
10013
10014 read_extent_buffer(leaf, &cache->item,
10015 btrfs_item_ptr_offset(leaf, path->slots[0]),
10016 sizeof(cache->item));
10017 cache->flags = btrfs_block_group_flags(&cache->item);
10018 if (!mixed &&
10019 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10020 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10021 btrfs_err(info,
10022 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10023 cache->key.objectid);
10024 ret = -EINVAL;
10025 goto error;
10026 }
10027
10028 key.objectid = found_key.objectid + found_key.offset;
10029 btrfs_release_path(path);
10030
10031 /*
10032 * We need to exclude the super stripes now so that the space
10033 * info has super bytes accounted for, otherwise we'll think
10034 * we have more space than we actually do.
10035 */
10036 ret = exclude_super_stripes(info, cache);
10037 if (ret) {
10038 /*
10039 * We may have excluded something, so call this just in
10040 * case.
10041 */
10042 free_excluded_extents(info, cache);
10043 btrfs_put_block_group(cache);
10044 goto error;
10045 }
10046
10047 /*
10048 * check for two cases, either we are full, and therefore
10049 * don't need to bother with the caching work since we won't
10050 * find any space, or we are empty, and we can just add all
10051 * the space in and be done with it. This saves us _alot_ of
10052 * time, particularly in the full case.
10053 */
10054 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10055 cache->last_byte_to_unpin = (u64)-1;
10056 cache->cached = BTRFS_CACHE_FINISHED;
10057 free_excluded_extents(info, cache);
10058 } else if (btrfs_block_group_used(&cache->item) == 0) {
10059 cache->last_byte_to_unpin = (u64)-1;
10060 cache->cached = BTRFS_CACHE_FINISHED;
10061 add_new_free_space(cache, info,
10062 found_key.objectid,
10063 found_key.objectid +
10064 found_key.offset);
10065 free_excluded_extents(info, cache);
10066 }
10067
10068 ret = btrfs_add_block_group_cache(info, cache);
10069 if (ret) {
10070 btrfs_remove_free_space_cache(cache);
10071 btrfs_put_block_group(cache);
10072 goto error;
10073 }
10074
10075 trace_btrfs_add_block_group(info, cache, 0);
10076 update_space_info(info, cache->flags, found_key.offset,
10077 btrfs_block_group_used(&cache->item),
10078 cache->bytes_super, &space_info);
10079
10080 cache->space_info = space_info;
10081
10082 __link_block_group(space_info, cache);
10083
10084 set_avail_alloc_bits(info, cache->flags);
10085 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10086 inc_block_group_ro(cache, 1);
10087 } else if (btrfs_block_group_used(&cache->item) == 0) {
10088 spin_lock(&info->unused_bgs_lock);
10089 /* Should always be true but just in case. */
10090 if (list_empty(&cache->bg_list)) {
10091 btrfs_get_block_group(cache);
10092 list_add_tail(&cache->bg_list,
10093 &info->unused_bgs);
10094 }
10095 spin_unlock(&info->unused_bgs_lock);
10096 }
10097 }
10098
10099 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10100 if (!(get_alloc_profile(info, space_info->flags) &
10101 (BTRFS_BLOCK_GROUP_RAID10 |
10102 BTRFS_BLOCK_GROUP_RAID1 |
10103 BTRFS_BLOCK_GROUP_RAID5 |
10104 BTRFS_BLOCK_GROUP_RAID6 |
10105 BTRFS_BLOCK_GROUP_DUP)))
10106 continue;
10107 /*
10108 * avoid allocating from un-mirrored block group if there are
10109 * mirrored block groups.
10110 */
10111 list_for_each_entry(cache,
10112 &space_info->block_groups[BTRFS_RAID_RAID0],
10113 list)
10114 inc_block_group_ro(cache, 1);
10115 list_for_each_entry(cache,
10116 &space_info->block_groups[BTRFS_RAID_SINGLE],
10117 list)
10118 inc_block_group_ro(cache, 1);
10119 }
10120
10121 init_global_block_rsv(info);
10122 ret = 0;
10123 error:
10124 btrfs_free_path(path);
10125 return ret;
10126 }
10127
10128 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10129 struct btrfs_fs_info *fs_info)
10130 {
10131 struct btrfs_block_group_cache *block_group, *tmp;
10132 struct btrfs_root *extent_root = fs_info->extent_root;
10133 struct btrfs_block_group_item item;
10134 struct btrfs_key key;
10135 int ret = 0;
10136 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10137
10138 trans->can_flush_pending_bgs = false;
10139 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10140 if (ret)
10141 goto next;
10142
10143 spin_lock(&block_group->lock);
10144 memcpy(&item, &block_group->item, sizeof(item));
10145 memcpy(&key, &block_group->key, sizeof(key));
10146 spin_unlock(&block_group->lock);
10147
10148 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10149 sizeof(item));
10150 if (ret)
10151 btrfs_abort_transaction(trans, ret);
10152 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10153 key.offset);
10154 if (ret)
10155 btrfs_abort_transaction(trans, ret);
10156 add_block_group_free_space(trans, fs_info, block_group);
10157 /* already aborted the transaction if it failed. */
10158 next:
10159 list_del_init(&block_group->bg_list);
10160 }
10161 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10162 }
10163
10164 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10165 struct btrfs_fs_info *fs_info, u64 bytes_used,
10166 u64 type, u64 chunk_objectid, u64 chunk_offset,
10167 u64 size)
10168 {
10169 struct btrfs_block_group_cache *cache;
10170 int ret;
10171
10172 btrfs_set_log_full_commit(fs_info, trans);
10173
10174 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10175 if (!cache)
10176 return -ENOMEM;
10177
10178 btrfs_set_block_group_used(&cache->item, bytes_used);
10179 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10180 btrfs_set_block_group_flags(&cache->item, type);
10181
10182 cache->flags = type;
10183 cache->last_byte_to_unpin = (u64)-1;
10184 cache->cached = BTRFS_CACHE_FINISHED;
10185 cache->needs_free_space = 1;
10186 ret = exclude_super_stripes(fs_info, cache);
10187 if (ret) {
10188 /*
10189 * We may have excluded something, so call this just in
10190 * case.
10191 */
10192 free_excluded_extents(fs_info, cache);
10193 btrfs_put_block_group(cache);
10194 return ret;
10195 }
10196
10197 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10198
10199 free_excluded_extents(fs_info, cache);
10200
10201 #ifdef CONFIG_BTRFS_DEBUG
10202 if (btrfs_should_fragment_free_space(cache)) {
10203 u64 new_bytes_used = size - bytes_used;
10204
10205 bytes_used += new_bytes_used >> 1;
10206 fragment_free_space(cache);
10207 }
10208 #endif
10209 /*
10210 * Ensure the corresponding space_info object is created and
10211 * assigned to our block group. We want our bg to be added to the rbtree
10212 * with its ->space_info set.
10213 */
10214 cache->space_info = __find_space_info(fs_info, cache->flags);
10215 if (!cache->space_info) {
10216 ret = create_space_info(fs_info, cache->flags,
10217 &cache->space_info);
10218 if (ret) {
10219 btrfs_remove_free_space_cache(cache);
10220 btrfs_put_block_group(cache);
10221 return ret;
10222 }
10223 }
10224
10225 ret = btrfs_add_block_group_cache(fs_info, cache);
10226 if (ret) {
10227 btrfs_remove_free_space_cache(cache);
10228 btrfs_put_block_group(cache);
10229 return ret;
10230 }
10231
10232 /*
10233 * Now that our block group has its ->space_info set and is inserted in
10234 * the rbtree, update the space info's counters.
10235 */
10236 trace_btrfs_add_block_group(fs_info, cache, 1);
10237 update_space_info(fs_info, cache->flags, size, bytes_used,
10238 cache->bytes_super, &cache->space_info);
10239 update_global_block_rsv(fs_info);
10240
10241 __link_block_group(cache->space_info, cache);
10242
10243 list_add_tail(&cache->bg_list, &trans->new_bgs);
10244
10245 set_avail_alloc_bits(fs_info, type);
10246 return 0;
10247 }
10248
10249 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10250 {
10251 u64 extra_flags = chunk_to_extended(flags) &
10252 BTRFS_EXTENDED_PROFILE_MASK;
10253
10254 write_seqlock(&fs_info->profiles_lock);
10255 if (flags & BTRFS_BLOCK_GROUP_DATA)
10256 fs_info->avail_data_alloc_bits &= ~extra_flags;
10257 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10258 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10259 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10260 fs_info->avail_system_alloc_bits &= ~extra_flags;
10261 write_sequnlock(&fs_info->profiles_lock);
10262 }
10263
10264 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10265 struct btrfs_fs_info *fs_info, u64 group_start,
10266 struct extent_map *em)
10267 {
10268 struct btrfs_root *root = fs_info->extent_root;
10269 struct btrfs_path *path;
10270 struct btrfs_block_group_cache *block_group;
10271 struct btrfs_free_cluster *cluster;
10272 struct btrfs_root *tree_root = fs_info->tree_root;
10273 struct btrfs_key key;
10274 struct inode *inode;
10275 struct kobject *kobj = NULL;
10276 int ret;
10277 int index;
10278 int factor;
10279 struct btrfs_caching_control *caching_ctl = NULL;
10280 bool remove_em;
10281
10282 block_group = btrfs_lookup_block_group(fs_info, group_start);
10283 BUG_ON(!block_group);
10284 BUG_ON(!block_group->ro);
10285
10286 /*
10287 * Free the reserved super bytes from this block group before
10288 * remove it.
10289 */
10290 free_excluded_extents(fs_info, block_group);
10291
10292 memcpy(&key, &block_group->key, sizeof(key));
10293 index = get_block_group_index(block_group);
10294 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10295 BTRFS_BLOCK_GROUP_RAID1 |
10296 BTRFS_BLOCK_GROUP_RAID10))
10297 factor = 2;
10298 else
10299 factor = 1;
10300
10301 /* make sure this block group isn't part of an allocation cluster */
10302 cluster = &fs_info->data_alloc_cluster;
10303 spin_lock(&cluster->refill_lock);
10304 btrfs_return_cluster_to_free_space(block_group, cluster);
10305 spin_unlock(&cluster->refill_lock);
10306
10307 /*
10308 * make sure this block group isn't part of a metadata
10309 * allocation cluster
10310 */
10311 cluster = &fs_info->meta_alloc_cluster;
10312 spin_lock(&cluster->refill_lock);
10313 btrfs_return_cluster_to_free_space(block_group, cluster);
10314 spin_unlock(&cluster->refill_lock);
10315
10316 path = btrfs_alloc_path();
10317 if (!path) {
10318 ret = -ENOMEM;
10319 goto out;
10320 }
10321
10322 /*
10323 * get the inode first so any iput calls done for the io_list
10324 * aren't the final iput (no unlinks allowed now)
10325 */
10326 inode = lookup_free_space_inode(fs_info, block_group, path);
10327
10328 mutex_lock(&trans->transaction->cache_write_mutex);
10329 /*
10330 * make sure our free spache cache IO is done before remove the
10331 * free space inode
10332 */
10333 spin_lock(&trans->transaction->dirty_bgs_lock);
10334 if (!list_empty(&block_group->io_list)) {
10335 list_del_init(&block_group->io_list);
10336
10337 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10338
10339 spin_unlock(&trans->transaction->dirty_bgs_lock);
10340 btrfs_wait_cache_io(trans, block_group, path);
10341 btrfs_put_block_group(block_group);
10342 spin_lock(&trans->transaction->dirty_bgs_lock);
10343 }
10344
10345 if (!list_empty(&block_group->dirty_list)) {
10346 list_del_init(&block_group->dirty_list);
10347 btrfs_put_block_group(block_group);
10348 }
10349 spin_unlock(&trans->transaction->dirty_bgs_lock);
10350 mutex_unlock(&trans->transaction->cache_write_mutex);
10351
10352 if (!IS_ERR(inode)) {
10353 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10354 if (ret) {
10355 btrfs_add_delayed_iput(inode);
10356 goto out;
10357 }
10358 clear_nlink(inode);
10359 /* One for the block groups ref */
10360 spin_lock(&block_group->lock);
10361 if (block_group->iref) {
10362 block_group->iref = 0;
10363 block_group->inode = NULL;
10364 spin_unlock(&block_group->lock);
10365 iput(inode);
10366 } else {
10367 spin_unlock(&block_group->lock);
10368 }
10369 /* One for our lookup ref */
10370 btrfs_add_delayed_iput(inode);
10371 }
10372
10373 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10374 key.offset = block_group->key.objectid;
10375 key.type = 0;
10376
10377 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10378 if (ret < 0)
10379 goto out;
10380 if (ret > 0)
10381 btrfs_release_path(path);
10382 if (ret == 0) {
10383 ret = btrfs_del_item(trans, tree_root, path);
10384 if (ret)
10385 goto out;
10386 btrfs_release_path(path);
10387 }
10388
10389 spin_lock(&fs_info->block_group_cache_lock);
10390 rb_erase(&block_group->cache_node,
10391 &fs_info->block_group_cache_tree);
10392 RB_CLEAR_NODE(&block_group->cache_node);
10393
10394 if (fs_info->first_logical_byte == block_group->key.objectid)
10395 fs_info->first_logical_byte = (u64)-1;
10396 spin_unlock(&fs_info->block_group_cache_lock);
10397
10398 down_write(&block_group->space_info->groups_sem);
10399 /*
10400 * we must use list_del_init so people can check to see if they
10401 * are still on the list after taking the semaphore
10402 */
10403 list_del_init(&block_group->list);
10404 if (list_empty(&block_group->space_info->block_groups[index])) {
10405 kobj = block_group->space_info->block_group_kobjs[index];
10406 block_group->space_info->block_group_kobjs[index] = NULL;
10407 clear_avail_alloc_bits(fs_info, block_group->flags);
10408 }
10409 up_write(&block_group->space_info->groups_sem);
10410 if (kobj) {
10411 kobject_del(kobj);
10412 kobject_put(kobj);
10413 }
10414
10415 if (block_group->has_caching_ctl)
10416 caching_ctl = get_caching_control(block_group);
10417 if (block_group->cached == BTRFS_CACHE_STARTED)
10418 wait_block_group_cache_done(block_group);
10419 if (block_group->has_caching_ctl) {
10420 down_write(&fs_info->commit_root_sem);
10421 if (!caching_ctl) {
10422 struct btrfs_caching_control *ctl;
10423
10424 list_for_each_entry(ctl,
10425 &fs_info->caching_block_groups, list)
10426 if (ctl->block_group == block_group) {
10427 caching_ctl = ctl;
10428 refcount_inc(&caching_ctl->count);
10429 break;
10430 }
10431 }
10432 if (caching_ctl)
10433 list_del_init(&caching_ctl->list);
10434 up_write(&fs_info->commit_root_sem);
10435 if (caching_ctl) {
10436 /* Once for the caching bgs list and once for us. */
10437 put_caching_control(caching_ctl);
10438 put_caching_control(caching_ctl);
10439 }
10440 }
10441
10442 spin_lock(&trans->transaction->dirty_bgs_lock);
10443 if (!list_empty(&block_group->dirty_list)) {
10444 WARN_ON(1);
10445 }
10446 if (!list_empty(&block_group->io_list)) {
10447 WARN_ON(1);
10448 }
10449 spin_unlock(&trans->transaction->dirty_bgs_lock);
10450 btrfs_remove_free_space_cache(block_group);
10451
10452 spin_lock(&block_group->space_info->lock);
10453 list_del_init(&block_group->ro_list);
10454
10455 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10456 WARN_ON(block_group->space_info->total_bytes
10457 < block_group->key.offset);
10458 WARN_ON(block_group->space_info->bytes_readonly
10459 < block_group->key.offset);
10460 WARN_ON(block_group->space_info->disk_total
10461 < block_group->key.offset * factor);
10462 }
10463 block_group->space_info->total_bytes -= block_group->key.offset;
10464 block_group->space_info->bytes_readonly -= block_group->key.offset;
10465 block_group->space_info->disk_total -= block_group->key.offset * factor;
10466
10467 spin_unlock(&block_group->space_info->lock);
10468
10469 memcpy(&key, &block_group->key, sizeof(key));
10470
10471 mutex_lock(&fs_info->chunk_mutex);
10472 if (!list_empty(&em->list)) {
10473 /* We're in the transaction->pending_chunks list. */
10474 free_extent_map(em);
10475 }
10476 spin_lock(&block_group->lock);
10477 block_group->removed = 1;
10478 /*
10479 * At this point trimming can't start on this block group, because we
10480 * removed the block group from the tree fs_info->block_group_cache_tree
10481 * so no one can't find it anymore and even if someone already got this
10482 * block group before we removed it from the rbtree, they have already
10483 * incremented block_group->trimming - if they didn't, they won't find
10484 * any free space entries because we already removed them all when we
10485 * called btrfs_remove_free_space_cache().
10486 *
10487 * And we must not remove the extent map from the fs_info->mapping_tree
10488 * to prevent the same logical address range and physical device space
10489 * ranges from being reused for a new block group. This is because our
10490 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10491 * completely transactionless, so while it is trimming a range the
10492 * currently running transaction might finish and a new one start,
10493 * allowing for new block groups to be created that can reuse the same
10494 * physical device locations unless we take this special care.
10495 *
10496 * There may also be an implicit trim operation if the file system
10497 * is mounted with -odiscard. The same protections must remain
10498 * in place until the extents have been discarded completely when
10499 * the transaction commit has completed.
10500 */
10501 remove_em = (atomic_read(&block_group->trimming) == 0);
10502 /*
10503 * Make sure a trimmer task always sees the em in the pinned_chunks list
10504 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10505 * before checking block_group->removed).
10506 */
10507 if (!remove_em) {
10508 /*
10509 * Our em might be in trans->transaction->pending_chunks which
10510 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10511 * and so is the fs_info->pinned_chunks list.
10512 *
10513 * So at this point we must be holding the chunk_mutex to avoid
10514 * any races with chunk allocation (more specifically at
10515 * volumes.c:contains_pending_extent()), to ensure it always
10516 * sees the em, either in the pending_chunks list or in the
10517 * pinned_chunks list.
10518 */
10519 list_move_tail(&em->list, &fs_info->pinned_chunks);
10520 }
10521 spin_unlock(&block_group->lock);
10522
10523 if (remove_em) {
10524 struct extent_map_tree *em_tree;
10525
10526 em_tree = &fs_info->mapping_tree.map_tree;
10527 write_lock(&em_tree->lock);
10528 /*
10529 * The em might be in the pending_chunks list, so make sure the
10530 * chunk mutex is locked, since remove_extent_mapping() will
10531 * delete us from that list.
10532 */
10533 remove_extent_mapping(em_tree, em);
10534 write_unlock(&em_tree->lock);
10535 /* once for the tree */
10536 free_extent_map(em);
10537 }
10538
10539 mutex_unlock(&fs_info->chunk_mutex);
10540
10541 ret = remove_block_group_free_space(trans, fs_info, block_group);
10542 if (ret)
10543 goto out;
10544
10545 btrfs_put_block_group(block_group);
10546 btrfs_put_block_group(block_group);
10547
10548 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10549 if (ret > 0)
10550 ret = -EIO;
10551 if (ret < 0)
10552 goto out;
10553
10554 ret = btrfs_del_item(trans, root, path);
10555 out:
10556 btrfs_free_path(path);
10557 return ret;
10558 }
10559
10560 struct btrfs_trans_handle *
10561 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10562 const u64 chunk_offset)
10563 {
10564 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10565 struct extent_map *em;
10566 struct map_lookup *map;
10567 unsigned int num_items;
10568
10569 read_lock(&em_tree->lock);
10570 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10571 read_unlock(&em_tree->lock);
10572 ASSERT(em && em->start == chunk_offset);
10573
10574 /*
10575 * We need to reserve 3 + N units from the metadata space info in order
10576 * to remove a block group (done at btrfs_remove_chunk() and at
10577 * btrfs_remove_block_group()), which are used for:
10578 *
10579 * 1 unit for adding the free space inode's orphan (located in the tree
10580 * of tree roots).
10581 * 1 unit for deleting the block group item (located in the extent
10582 * tree).
10583 * 1 unit for deleting the free space item (located in tree of tree
10584 * roots).
10585 * N units for deleting N device extent items corresponding to each
10586 * stripe (located in the device tree).
10587 *
10588 * In order to remove a block group we also need to reserve units in the
10589 * system space info in order to update the chunk tree (update one or
10590 * more device items and remove one chunk item), but this is done at
10591 * btrfs_remove_chunk() through a call to check_system_chunk().
10592 */
10593 map = em->map_lookup;
10594 num_items = 3 + map->num_stripes;
10595 free_extent_map(em);
10596
10597 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10598 num_items, 1);
10599 }
10600
10601 /*
10602 * Process the unused_bgs list and remove any that don't have any allocated
10603 * space inside of them.
10604 */
10605 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10606 {
10607 struct btrfs_block_group_cache *block_group;
10608 struct btrfs_space_info *space_info;
10609 struct btrfs_trans_handle *trans;
10610 int ret = 0;
10611
10612 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10613 return;
10614
10615 spin_lock(&fs_info->unused_bgs_lock);
10616 while (!list_empty(&fs_info->unused_bgs)) {
10617 u64 start, end;
10618 int trimming;
10619
10620 block_group = list_first_entry(&fs_info->unused_bgs,
10621 struct btrfs_block_group_cache,
10622 bg_list);
10623 list_del_init(&block_group->bg_list);
10624
10625 space_info = block_group->space_info;
10626
10627 if (ret || btrfs_mixed_space_info(space_info)) {
10628 btrfs_put_block_group(block_group);
10629 continue;
10630 }
10631 spin_unlock(&fs_info->unused_bgs_lock);
10632
10633 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10634
10635 /* Don't want to race with allocators so take the groups_sem */
10636 down_write(&space_info->groups_sem);
10637 spin_lock(&block_group->lock);
10638 if (block_group->reserved ||
10639 btrfs_block_group_used(&block_group->item) ||
10640 block_group->ro ||
10641 list_is_singular(&block_group->list)) {
10642 /*
10643 * We want to bail if we made new allocations or have
10644 * outstanding allocations in this block group. We do
10645 * the ro check in case balance is currently acting on
10646 * this block group.
10647 */
10648 spin_unlock(&block_group->lock);
10649 up_write(&space_info->groups_sem);
10650 goto next;
10651 }
10652 spin_unlock(&block_group->lock);
10653
10654 /* We don't want to force the issue, only flip if it's ok. */
10655 ret = inc_block_group_ro(block_group, 0);
10656 up_write(&space_info->groups_sem);
10657 if (ret < 0) {
10658 ret = 0;
10659 goto next;
10660 }
10661
10662 /*
10663 * Want to do this before we do anything else so we can recover
10664 * properly if we fail to join the transaction.
10665 */
10666 trans = btrfs_start_trans_remove_block_group(fs_info,
10667 block_group->key.objectid);
10668 if (IS_ERR(trans)) {
10669 btrfs_dec_block_group_ro(block_group);
10670 ret = PTR_ERR(trans);
10671 goto next;
10672 }
10673
10674 /*
10675 * We could have pending pinned extents for this block group,
10676 * just delete them, we don't care about them anymore.
10677 */
10678 start = block_group->key.objectid;
10679 end = start + block_group->key.offset - 1;
10680 /*
10681 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10682 * btrfs_finish_extent_commit(). If we are at transaction N,
10683 * another task might be running finish_extent_commit() for the
10684 * previous transaction N - 1, and have seen a range belonging
10685 * to the block group in freed_extents[] before we were able to
10686 * clear the whole block group range from freed_extents[]. This
10687 * means that task can lookup for the block group after we
10688 * unpinned it from freed_extents[] and removed it, leading to
10689 * a BUG_ON() at btrfs_unpin_extent_range().
10690 */
10691 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10692 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10693 EXTENT_DIRTY);
10694 if (ret) {
10695 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10696 btrfs_dec_block_group_ro(block_group);
10697 goto end_trans;
10698 }
10699 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10700 EXTENT_DIRTY);
10701 if (ret) {
10702 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10703 btrfs_dec_block_group_ro(block_group);
10704 goto end_trans;
10705 }
10706 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10707
10708 /* Reset pinned so btrfs_put_block_group doesn't complain */
10709 spin_lock(&space_info->lock);
10710 spin_lock(&block_group->lock);
10711
10712 space_info->bytes_pinned -= block_group->pinned;
10713 space_info->bytes_readonly += block_group->pinned;
10714 percpu_counter_add(&space_info->total_bytes_pinned,
10715 -block_group->pinned);
10716 block_group->pinned = 0;
10717
10718 spin_unlock(&block_group->lock);
10719 spin_unlock(&space_info->lock);
10720
10721 /* DISCARD can flip during remount */
10722 trimming = btrfs_test_opt(fs_info, DISCARD);
10723
10724 /* Implicit trim during transaction commit. */
10725 if (trimming)
10726 btrfs_get_block_group_trimming(block_group);
10727
10728 /*
10729 * Btrfs_remove_chunk will abort the transaction if things go
10730 * horribly wrong.
10731 */
10732 ret = btrfs_remove_chunk(trans, fs_info,
10733 block_group->key.objectid);
10734
10735 if (ret) {
10736 if (trimming)
10737 btrfs_put_block_group_trimming(block_group);
10738 goto end_trans;
10739 }
10740
10741 /*
10742 * If we're not mounted with -odiscard, we can just forget
10743 * about this block group. Otherwise we'll need to wait
10744 * until transaction commit to do the actual discard.
10745 */
10746 if (trimming) {
10747 spin_lock(&fs_info->unused_bgs_lock);
10748 /*
10749 * A concurrent scrub might have added us to the list
10750 * fs_info->unused_bgs, so use a list_move operation
10751 * to add the block group to the deleted_bgs list.
10752 */
10753 list_move(&block_group->bg_list,
10754 &trans->transaction->deleted_bgs);
10755 spin_unlock(&fs_info->unused_bgs_lock);
10756 btrfs_get_block_group(block_group);
10757 }
10758 end_trans:
10759 btrfs_end_transaction(trans);
10760 next:
10761 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10762 btrfs_put_block_group(block_group);
10763 spin_lock(&fs_info->unused_bgs_lock);
10764 }
10765 spin_unlock(&fs_info->unused_bgs_lock);
10766 }
10767
10768 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10769 {
10770 struct btrfs_space_info *space_info;
10771 struct btrfs_super_block *disk_super;
10772 u64 features;
10773 u64 flags;
10774 int mixed = 0;
10775 int ret;
10776
10777 disk_super = fs_info->super_copy;
10778 if (!btrfs_super_root(disk_super))
10779 return -EINVAL;
10780
10781 features = btrfs_super_incompat_flags(disk_super);
10782 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10783 mixed = 1;
10784
10785 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10786 ret = create_space_info(fs_info, flags, &space_info);
10787 if (ret)
10788 goto out;
10789
10790 if (mixed) {
10791 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10792 ret = create_space_info(fs_info, flags, &space_info);
10793 } else {
10794 flags = BTRFS_BLOCK_GROUP_METADATA;
10795 ret = create_space_info(fs_info, flags, &space_info);
10796 if (ret)
10797 goto out;
10798
10799 flags = BTRFS_BLOCK_GROUP_DATA;
10800 ret = create_space_info(fs_info, flags, &space_info);
10801 }
10802 out:
10803 return ret;
10804 }
10805
10806 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10807 u64 start, u64 end)
10808 {
10809 return unpin_extent_range(fs_info, start, end, false);
10810 }
10811
10812 /*
10813 * It used to be that old block groups would be left around forever.
10814 * Iterating over them would be enough to trim unused space. Since we
10815 * now automatically remove them, we also need to iterate over unallocated
10816 * space.
10817 *
10818 * We don't want a transaction for this since the discard may take a
10819 * substantial amount of time. We don't require that a transaction be
10820 * running, but we do need to take a running transaction into account
10821 * to ensure that we're not discarding chunks that were released in
10822 * the current transaction.
10823 *
10824 * Holding the chunks lock will prevent other threads from allocating
10825 * or releasing chunks, but it won't prevent a running transaction
10826 * from committing and releasing the memory that the pending chunks
10827 * list head uses. For that, we need to take a reference to the
10828 * transaction.
10829 */
10830 static int btrfs_trim_free_extents(struct btrfs_device *device,
10831 u64 minlen, u64 *trimmed)
10832 {
10833 u64 start = 0, len = 0;
10834 int ret;
10835
10836 *trimmed = 0;
10837
10838 /* Not writeable = nothing to do. */
10839 if (!device->writeable)
10840 return 0;
10841
10842 /* No free space = nothing to do. */
10843 if (device->total_bytes <= device->bytes_used)
10844 return 0;
10845
10846 ret = 0;
10847
10848 while (1) {
10849 struct btrfs_fs_info *fs_info = device->fs_info;
10850 struct btrfs_transaction *trans;
10851 u64 bytes;
10852
10853 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10854 if (ret)
10855 return ret;
10856
10857 down_read(&fs_info->commit_root_sem);
10858
10859 spin_lock(&fs_info->trans_lock);
10860 trans = fs_info->running_transaction;
10861 if (trans)
10862 refcount_inc(&trans->use_count);
10863 spin_unlock(&fs_info->trans_lock);
10864
10865 ret = find_free_dev_extent_start(trans, device, minlen, start,
10866 &start, &len);
10867 if (trans)
10868 btrfs_put_transaction(trans);
10869
10870 if (ret) {
10871 up_read(&fs_info->commit_root_sem);
10872 mutex_unlock(&fs_info->chunk_mutex);
10873 if (ret == -ENOSPC)
10874 ret = 0;
10875 break;
10876 }
10877
10878 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10879 up_read(&fs_info->commit_root_sem);
10880 mutex_unlock(&fs_info->chunk_mutex);
10881
10882 if (ret)
10883 break;
10884
10885 start += len;
10886 *trimmed += bytes;
10887
10888 if (fatal_signal_pending(current)) {
10889 ret = -ERESTARTSYS;
10890 break;
10891 }
10892
10893 cond_resched();
10894 }
10895
10896 return ret;
10897 }
10898
10899 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10900 {
10901 struct btrfs_block_group_cache *cache = NULL;
10902 struct btrfs_device *device;
10903 struct list_head *devices;
10904 u64 group_trimmed;
10905 u64 start;
10906 u64 end;
10907 u64 trimmed = 0;
10908 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10909 int ret = 0;
10910
10911 /*
10912 * try to trim all FS space, our block group may start from non-zero.
10913 */
10914 if (range->len == total_bytes)
10915 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10916 else
10917 cache = btrfs_lookup_block_group(fs_info, range->start);
10918
10919 while (cache) {
10920 if (cache->key.objectid >= (range->start + range->len)) {
10921 btrfs_put_block_group(cache);
10922 break;
10923 }
10924
10925 start = max(range->start, cache->key.objectid);
10926 end = min(range->start + range->len,
10927 cache->key.objectid + cache->key.offset);
10928
10929 if (end - start >= range->minlen) {
10930 if (!block_group_cache_done(cache)) {
10931 ret = cache_block_group(cache, 0);
10932 if (ret) {
10933 btrfs_put_block_group(cache);
10934 break;
10935 }
10936 ret = wait_block_group_cache_done(cache);
10937 if (ret) {
10938 btrfs_put_block_group(cache);
10939 break;
10940 }
10941 }
10942 ret = btrfs_trim_block_group(cache,
10943 &group_trimmed,
10944 start,
10945 end,
10946 range->minlen);
10947
10948 trimmed += group_trimmed;
10949 if (ret) {
10950 btrfs_put_block_group(cache);
10951 break;
10952 }
10953 }
10954
10955 cache = next_block_group(fs_info, cache);
10956 }
10957
10958 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10959 devices = &fs_info->fs_devices->alloc_list;
10960 list_for_each_entry(device, devices, dev_alloc_list) {
10961 ret = btrfs_trim_free_extents(device, range->minlen,
10962 &group_trimmed);
10963 if (ret)
10964 break;
10965
10966 trimmed += group_trimmed;
10967 }
10968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10969
10970 range->len = trimmed;
10971 return ret;
10972 }
10973
10974 /*
10975 * btrfs_{start,end}_write_no_snapshoting() are similar to
10976 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10977 * data into the page cache through nocow before the subvolume is snapshoted,
10978 * but flush the data into disk after the snapshot creation, or to prevent
10979 * operations while snapshoting is ongoing and that cause the snapshot to be
10980 * inconsistent (writes followed by expanding truncates for example).
10981 */
10982 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10983 {
10984 percpu_counter_dec(&root->subv_writers->counter);
10985 /*
10986 * Make sure counter is updated before we wake up waiters.
10987 */
10988 smp_mb();
10989 if (waitqueue_active(&root->subv_writers->wait))
10990 wake_up(&root->subv_writers->wait);
10991 }
10992
10993 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10994 {
10995 if (atomic_read(&root->will_be_snapshoted))
10996 return 0;
10997
10998 percpu_counter_inc(&root->subv_writers->counter);
10999 /*
11000 * Make sure counter is updated before we check for snapshot creation.
11001 */
11002 smp_mb();
11003 if (atomic_read(&root->will_be_snapshoted)) {
11004 btrfs_end_write_no_snapshoting(root);
11005 return 0;
11006 }
11007 return 1;
11008 }
11009
11010 static int wait_snapshoting_atomic_t(atomic_t *a)
11011 {
11012 schedule();
11013 return 0;
11014 }
11015
11016 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11017 {
11018 while (true) {
11019 int ret;
11020
11021 ret = btrfs_start_write_no_snapshoting(root);
11022 if (ret)
11023 break;
11024 wait_on_atomic_t(&root->will_be_snapshoted,
11025 wait_snapshoting_atomic_t,
11026 TASK_UNINTERRUPTIBLE);
11027 }
11028 }