]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
Btrfs: refill block reserves during truncate
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2553 }
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2572 }
2573 return 0;
2574 }
2575
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616 }
2617 #endif
2618
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634
2635 /*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652 }
2653
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2656 {
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_bytes;
2661 int ret = 0;
2662
2663 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2664 num_heads = heads_to_leaves(root, num_heads);
2665 if (num_heads > 1)
2666 num_bytes += (num_heads - 1) * root->nodesize;
2667 num_bytes <<= 1;
2668 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2669 global_rsv = &root->fs_info->global_block_rsv;
2670
2671 /*
2672 * If we can't allocate any more chunks lets make sure we have _lots_ of
2673 * wiggle room since running delayed refs can create more delayed refs.
2674 */
2675 if (global_rsv->space_info->full)
2676 num_bytes <<= 1;
2677
2678 spin_lock(&global_rsv->lock);
2679 if (global_rsv->reserved <= num_bytes)
2680 ret = 1;
2681 spin_unlock(&global_rsv->lock);
2682 return ret;
2683 }
2684
2685 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root)
2687 {
2688 struct btrfs_fs_info *fs_info = root->fs_info;
2689 u64 num_entries =
2690 atomic_read(&trans->transaction->delayed_refs.num_entries);
2691 u64 avg_runtime;
2692 u64 val;
2693
2694 smp_mb();
2695 avg_runtime = fs_info->avg_delayed_ref_runtime;
2696 val = num_entries * avg_runtime;
2697 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2698 return 1;
2699 if (val >= NSEC_PER_SEC / 2)
2700 return 2;
2701
2702 return btrfs_check_space_for_delayed_refs(trans, root);
2703 }
2704
2705 struct async_delayed_refs {
2706 struct btrfs_root *root;
2707 int count;
2708 int error;
2709 int sync;
2710 struct completion wait;
2711 struct btrfs_work work;
2712 };
2713
2714 static void delayed_ref_async_start(struct btrfs_work *work)
2715 {
2716 struct async_delayed_refs *async;
2717 struct btrfs_trans_handle *trans;
2718 int ret;
2719
2720 async = container_of(work, struct async_delayed_refs, work);
2721
2722 trans = btrfs_join_transaction(async->root);
2723 if (IS_ERR(trans)) {
2724 async->error = PTR_ERR(trans);
2725 goto done;
2726 }
2727
2728 /*
2729 * trans->sync means that when we call end_transaciton, we won't
2730 * wait on delayed refs
2731 */
2732 trans->sync = true;
2733 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2734 if (ret)
2735 async->error = ret;
2736
2737 ret = btrfs_end_transaction(trans, async->root);
2738 if (ret && !async->error)
2739 async->error = ret;
2740 done:
2741 if (async->sync)
2742 complete(&async->wait);
2743 else
2744 kfree(async);
2745 }
2746
2747 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2748 unsigned long count, int wait)
2749 {
2750 struct async_delayed_refs *async;
2751 int ret;
2752
2753 async = kmalloc(sizeof(*async), GFP_NOFS);
2754 if (!async)
2755 return -ENOMEM;
2756
2757 async->root = root->fs_info->tree_root;
2758 async->count = count;
2759 async->error = 0;
2760 if (wait)
2761 async->sync = 1;
2762 else
2763 async->sync = 0;
2764 init_completion(&async->wait);
2765
2766 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2767 delayed_ref_async_start, NULL, NULL);
2768
2769 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2770
2771 if (wait) {
2772 wait_for_completion(&async->wait);
2773 ret = async->error;
2774 kfree(async);
2775 return ret;
2776 }
2777 return 0;
2778 }
2779
2780 /*
2781 * this starts processing the delayed reference count updates and
2782 * extent insertions we have queued up so far. count can be
2783 * 0, which means to process everything in the tree at the start
2784 * of the run (but not newly added entries), or it can be some target
2785 * number you'd like to process.
2786 *
2787 * Returns 0 on success or if called with an aborted transaction
2788 * Returns <0 on error and aborts the transaction
2789 */
2790 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root, unsigned long count)
2792 {
2793 struct rb_node *node;
2794 struct btrfs_delayed_ref_root *delayed_refs;
2795 struct btrfs_delayed_ref_head *head;
2796 int ret;
2797 int run_all = count == (unsigned long)-1;
2798
2799 /* We'll clean this up in btrfs_cleanup_transaction */
2800 if (trans->aborted)
2801 return 0;
2802
2803 if (root == root->fs_info->extent_root)
2804 root = root->fs_info->tree_root;
2805
2806 delayed_refs = &trans->transaction->delayed_refs;
2807 if (count == 0)
2808 count = atomic_read(&delayed_refs->num_entries) * 2;
2809
2810 again:
2811 #ifdef SCRAMBLE_DELAYED_REFS
2812 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2813 #endif
2814 ret = __btrfs_run_delayed_refs(trans, root, count);
2815 if (ret < 0) {
2816 btrfs_abort_transaction(trans, root, ret);
2817 return ret;
2818 }
2819
2820 if (run_all) {
2821 if (!list_empty(&trans->new_bgs))
2822 btrfs_create_pending_block_groups(trans, root);
2823
2824 spin_lock(&delayed_refs->lock);
2825 node = rb_first(&delayed_refs->href_root);
2826 if (!node) {
2827 spin_unlock(&delayed_refs->lock);
2828 goto out;
2829 }
2830 count = (unsigned long)-1;
2831
2832 while (node) {
2833 head = rb_entry(node, struct btrfs_delayed_ref_head,
2834 href_node);
2835 if (btrfs_delayed_ref_is_head(&head->node)) {
2836 struct btrfs_delayed_ref_node *ref;
2837
2838 ref = &head->node;
2839 atomic_inc(&ref->refs);
2840
2841 spin_unlock(&delayed_refs->lock);
2842 /*
2843 * Mutex was contended, block until it's
2844 * released and try again
2845 */
2846 mutex_lock(&head->mutex);
2847 mutex_unlock(&head->mutex);
2848
2849 btrfs_put_delayed_ref(ref);
2850 cond_resched();
2851 goto again;
2852 } else {
2853 WARN_ON(1);
2854 }
2855 node = rb_next(node);
2856 }
2857 spin_unlock(&delayed_refs->lock);
2858 cond_resched();
2859 goto again;
2860 }
2861 out:
2862 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2863 if (ret)
2864 return ret;
2865 assert_qgroups_uptodate(trans);
2866 return 0;
2867 }
2868
2869 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2870 struct btrfs_root *root,
2871 u64 bytenr, u64 num_bytes, u64 flags,
2872 int level, int is_data)
2873 {
2874 struct btrfs_delayed_extent_op *extent_op;
2875 int ret;
2876
2877 extent_op = btrfs_alloc_delayed_extent_op();
2878 if (!extent_op)
2879 return -ENOMEM;
2880
2881 extent_op->flags_to_set = flags;
2882 extent_op->update_flags = 1;
2883 extent_op->update_key = 0;
2884 extent_op->is_data = is_data ? 1 : 0;
2885 extent_op->level = level;
2886
2887 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2888 num_bytes, extent_op);
2889 if (ret)
2890 btrfs_free_delayed_extent_op(extent_op);
2891 return ret;
2892 }
2893
2894 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2895 struct btrfs_root *root,
2896 struct btrfs_path *path,
2897 u64 objectid, u64 offset, u64 bytenr)
2898 {
2899 struct btrfs_delayed_ref_head *head;
2900 struct btrfs_delayed_ref_node *ref;
2901 struct btrfs_delayed_data_ref *data_ref;
2902 struct btrfs_delayed_ref_root *delayed_refs;
2903 struct rb_node *node;
2904 int ret = 0;
2905
2906 delayed_refs = &trans->transaction->delayed_refs;
2907 spin_lock(&delayed_refs->lock);
2908 head = btrfs_find_delayed_ref_head(trans, bytenr);
2909 if (!head) {
2910 spin_unlock(&delayed_refs->lock);
2911 return 0;
2912 }
2913
2914 if (!mutex_trylock(&head->mutex)) {
2915 atomic_inc(&head->node.refs);
2916 spin_unlock(&delayed_refs->lock);
2917
2918 btrfs_release_path(path);
2919
2920 /*
2921 * Mutex was contended, block until it's released and let
2922 * caller try again
2923 */
2924 mutex_lock(&head->mutex);
2925 mutex_unlock(&head->mutex);
2926 btrfs_put_delayed_ref(&head->node);
2927 return -EAGAIN;
2928 }
2929 spin_unlock(&delayed_refs->lock);
2930
2931 spin_lock(&head->lock);
2932 node = rb_first(&head->ref_root);
2933 while (node) {
2934 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2935 node = rb_next(node);
2936
2937 /* If it's a shared ref we know a cross reference exists */
2938 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2939 ret = 1;
2940 break;
2941 }
2942
2943 data_ref = btrfs_delayed_node_to_data_ref(ref);
2944
2945 /*
2946 * If our ref doesn't match the one we're currently looking at
2947 * then we have a cross reference.
2948 */
2949 if (data_ref->root != root->root_key.objectid ||
2950 data_ref->objectid != objectid ||
2951 data_ref->offset != offset) {
2952 ret = 1;
2953 break;
2954 }
2955 }
2956 spin_unlock(&head->lock);
2957 mutex_unlock(&head->mutex);
2958 return ret;
2959 }
2960
2961 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2962 struct btrfs_root *root,
2963 struct btrfs_path *path,
2964 u64 objectid, u64 offset, u64 bytenr)
2965 {
2966 struct btrfs_root *extent_root = root->fs_info->extent_root;
2967 struct extent_buffer *leaf;
2968 struct btrfs_extent_data_ref *ref;
2969 struct btrfs_extent_inline_ref *iref;
2970 struct btrfs_extent_item *ei;
2971 struct btrfs_key key;
2972 u32 item_size;
2973 int ret;
2974
2975 key.objectid = bytenr;
2976 key.offset = (u64)-1;
2977 key.type = BTRFS_EXTENT_ITEM_KEY;
2978
2979 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2980 if (ret < 0)
2981 goto out;
2982 BUG_ON(ret == 0); /* Corruption */
2983
2984 ret = -ENOENT;
2985 if (path->slots[0] == 0)
2986 goto out;
2987
2988 path->slots[0]--;
2989 leaf = path->nodes[0];
2990 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2991
2992 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2993 goto out;
2994
2995 ret = 1;
2996 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2997 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2998 if (item_size < sizeof(*ei)) {
2999 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3000 goto out;
3001 }
3002 #endif
3003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3004
3005 if (item_size != sizeof(*ei) +
3006 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3007 goto out;
3008
3009 if (btrfs_extent_generation(leaf, ei) <=
3010 btrfs_root_last_snapshot(&root->root_item))
3011 goto out;
3012
3013 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3014 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3015 BTRFS_EXTENT_DATA_REF_KEY)
3016 goto out;
3017
3018 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3019 if (btrfs_extent_refs(leaf, ei) !=
3020 btrfs_extent_data_ref_count(leaf, ref) ||
3021 btrfs_extent_data_ref_root(leaf, ref) !=
3022 root->root_key.objectid ||
3023 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3024 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3025 goto out;
3026
3027 ret = 0;
3028 out:
3029 return ret;
3030 }
3031
3032 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3033 struct btrfs_root *root,
3034 u64 objectid, u64 offset, u64 bytenr)
3035 {
3036 struct btrfs_path *path;
3037 int ret;
3038 int ret2;
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOENT;
3043
3044 do {
3045 ret = check_committed_ref(trans, root, path, objectid,
3046 offset, bytenr);
3047 if (ret && ret != -ENOENT)
3048 goto out;
3049
3050 ret2 = check_delayed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 } while (ret2 == -EAGAIN);
3053
3054 if (ret2 && ret2 != -ENOENT) {
3055 ret = ret2;
3056 goto out;
3057 }
3058
3059 if (ret != -ENOENT || ret2 != -ENOENT)
3060 ret = 0;
3061 out:
3062 btrfs_free_path(path);
3063 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3064 WARN_ON(ret > 0);
3065 return ret;
3066 }
3067
3068 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3069 struct btrfs_root *root,
3070 struct extent_buffer *buf,
3071 int full_backref, int inc)
3072 {
3073 u64 bytenr;
3074 u64 num_bytes;
3075 u64 parent;
3076 u64 ref_root;
3077 u32 nritems;
3078 struct btrfs_key key;
3079 struct btrfs_file_extent_item *fi;
3080 int i;
3081 int level;
3082 int ret = 0;
3083 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3084 u64, u64, u64, u64, u64, u64, int);
3085
3086
3087 if (btrfs_test_is_dummy_root(root))
3088 return 0;
3089
3090 ref_root = btrfs_header_owner(buf);
3091 nritems = btrfs_header_nritems(buf);
3092 level = btrfs_header_level(buf);
3093
3094 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3095 return 0;
3096
3097 if (inc)
3098 process_func = btrfs_inc_extent_ref;
3099 else
3100 process_func = btrfs_free_extent;
3101
3102 if (full_backref)
3103 parent = buf->start;
3104 else
3105 parent = 0;
3106
3107 for (i = 0; i < nritems; i++) {
3108 if (level == 0) {
3109 btrfs_item_key_to_cpu(buf, &key, i);
3110 if (key.type != BTRFS_EXTENT_DATA_KEY)
3111 continue;
3112 fi = btrfs_item_ptr(buf, i,
3113 struct btrfs_file_extent_item);
3114 if (btrfs_file_extent_type(buf, fi) ==
3115 BTRFS_FILE_EXTENT_INLINE)
3116 continue;
3117 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3118 if (bytenr == 0)
3119 continue;
3120
3121 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3122 key.offset -= btrfs_file_extent_offset(buf, fi);
3123 ret = process_func(trans, root, bytenr, num_bytes,
3124 parent, ref_root, key.objectid,
3125 key.offset, 1);
3126 if (ret)
3127 goto fail;
3128 } else {
3129 bytenr = btrfs_node_blockptr(buf, i);
3130 num_bytes = root->nodesize;
3131 ret = process_func(trans, root, bytenr, num_bytes,
3132 parent, ref_root, level - 1, 0,
3133 1);
3134 if (ret)
3135 goto fail;
3136 }
3137 }
3138 return 0;
3139 fail:
3140 return ret;
3141 }
3142
3143 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3144 struct extent_buffer *buf, int full_backref)
3145 {
3146 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3147 }
3148
3149 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3150 struct extent_buffer *buf, int full_backref)
3151 {
3152 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3153 }
3154
3155 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3156 struct btrfs_root *root,
3157 struct btrfs_path *path,
3158 struct btrfs_block_group_cache *cache)
3159 {
3160 int ret;
3161 struct btrfs_root *extent_root = root->fs_info->extent_root;
3162 unsigned long bi;
3163 struct extent_buffer *leaf;
3164
3165 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3166 if (ret) {
3167 if (ret > 0)
3168 ret = -ENOENT;
3169 goto fail;
3170 }
3171
3172 leaf = path->nodes[0];
3173 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3174 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3175 btrfs_mark_buffer_dirty(leaf);
3176 btrfs_release_path(path);
3177 fail:
3178 if (ret)
3179 btrfs_abort_transaction(trans, root, ret);
3180 return ret;
3181
3182 }
3183
3184 static struct btrfs_block_group_cache *
3185 next_block_group(struct btrfs_root *root,
3186 struct btrfs_block_group_cache *cache)
3187 {
3188 struct rb_node *node;
3189
3190 spin_lock(&root->fs_info->block_group_cache_lock);
3191
3192 /* If our block group was removed, we need a full search. */
3193 if (RB_EMPTY_NODE(&cache->cache_node)) {
3194 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3195
3196 spin_unlock(&root->fs_info->block_group_cache_lock);
3197 btrfs_put_block_group(cache);
3198 cache = btrfs_lookup_first_block_group(root->fs_info,
3199 next_bytenr);
3200 return cache;
3201 }
3202 node = rb_next(&cache->cache_node);
3203 btrfs_put_block_group(cache);
3204 if (node) {
3205 cache = rb_entry(node, struct btrfs_block_group_cache,
3206 cache_node);
3207 btrfs_get_block_group(cache);
3208 } else
3209 cache = NULL;
3210 spin_unlock(&root->fs_info->block_group_cache_lock);
3211 return cache;
3212 }
3213
3214 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3215 struct btrfs_trans_handle *trans,
3216 struct btrfs_path *path)
3217 {
3218 struct btrfs_root *root = block_group->fs_info->tree_root;
3219 struct inode *inode = NULL;
3220 u64 alloc_hint = 0;
3221 int dcs = BTRFS_DC_ERROR;
3222 u64 num_pages = 0;
3223 int retries = 0;
3224 int ret = 0;
3225
3226 /*
3227 * If this block group is smaller than 100 megs don't bother caching the
3228 * block group.
3229 */
3230 if (block_group->key.offset < (100 * 1024 * 1024)) {
3231 spin_lock(&block_group->lock);
3232 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3233 spin_unlock(&block_group->lock);
3234 return 0;
3235 }
3236
3237 if (trans->aborted)
3238 return 0;
3239 again:
3240 inode = lookup_free_space_inode(root, block_group, path);
3241 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3242 ret = PTR_ERR(inode);
3243 btrfs_release_path(path);
3244 goto out;
3245 }
3246
3247 if (IS_ERR(inode)) {
3248 BUG_ON(retries);
3249 retries++;
3250
3251 if (block_group->ro)
3252 goto out_free;
3253
3254 ret = create_free_space_inode(root, trans, block_group, path);
3255 if (ret)
3256 goto out_free;
3257 goto again;
3258 }
3259
3260 /* We've already setup this transaction, go ahead and exit */
3261 if (block_group->cache_generation == trans->transid &&
3262 i_size_read(inode)) {
3263 dcs = BTRFS_DC_SETUP;
3264 goto out_put;
3265 }
3266
3267 /*
3268 * We want to set the generation to 0, that way if anything goes wrong
3269 * from here on out we know not to trust this cache when we load up next
3270 * time.
3271 */
3272 BTRFS_I(inode)->generation = 0;
3273 ret = btrfs_update_inode(trans, root, inode);
3274 if (ret) {
3275 /*
3276 * So theoretically we could recover from this, simply set the
3277 * super cache generation to 0 so we know to invalidate the
3278 * cache, but then we'd have to keep track of the block groups
3279 * that fail this way so we know we _have_ to reset this cache
3280 * before the next commit or risk reading stale cache. So to
3281 * limit our exposure to horrible edge cases lets just abort the
3282 * transaction, this only happens in really bad situations
3283 * anyway.
3284 */
3285 btrfs_abort_transaction(trans, root, ret);
3286 goto out_put;
3287 }
3288 WARN_ON(ret);
3289
3290 if (i_size_read(inode) > 0) {
3291 ret = btrfs_check_trunc_cache_free_space(root,
3292 &root->fs_info->global_block_rsv);
3293 if (ret)
3294 goto out_put;
3295
3296 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3297 if (ret)
3298 goto out_put;
3299 }
3300
3301 spin_lock(&block_group->lock);
3302 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3303 !btrfs_test_opt(root, SPACE_CACHE) ||
3304 block_group->delalloc_bytes) {
3305 /*
3306 * don't bother trying to write stuff out _if_
3307 * a) we're not cached,
3308 * b) we're with nospace_cache mount option.
3309 */
3310 dcs = BTRFS_DC_WRITTEN;
3311 spin_unlock(&block_group->lock);
3312 goto out_put;
3313 }
3314 spin_unlock(&block_group->lock);
3315
3316 /*
3317 * Try to preallocate enough space based on how big the block group is.
3318 * Keep in mind this has to include any pinned space which could end up
3319 * taking up quite a bit since it's not folded into the other space
3320 * cache.
3321 */
3322 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3323 if (!num_pages)
3324 num_pages = 1;
3325
3326 num_pages *= 16;
3327 num_pages *= PAGE_CACHE_SIZE;
3328
3329 ret = btrfs_check_data_free_space(inode, num_pages);
3330 if (ret)
3331 goto out_put;
3332
3333 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3334 num_pages, num_pages,
3335 &alloc_hint);
3336 if (!ret)
3337 dcs = BTRFS_DC_SETUP;
3338 btrfs_free_reserved_data_space(inode, num_pages);
3339
3340 out_put:
3341 iput(inode);
3342 out_free:
3343 btrfs_release_path(path);
3344 out:
3345 spin_lock(&block_group->lock);
3346 if (!ret && dcs == BTRFS_DC_SETUP)
3347 block_group->cache_generation = trans->transid;
3348 block_group->disk_cache_state = dcs;
3349 spin_unlock(&block_group->lock);
3350
3351 return ret;
3352 }
3353
3354 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3355 struct btrfs_root *root)
3356 {
3357 struct btrfs_block_group_cache *cache, *tmp;
3358 struct btrfs_transaction *cur_trans = trans->transaction;
3359 struct btrfs_path *path;
3360
3361 if (list_empty(&cur_trans->dirty_bgs) ||
3362 !btrfs_test_opt(root, SPACE_CACHE))
3363 return 0;
3364
3365 path = btrfs_alloc_path();
3366 if (!path)
3367 return -ENOMEM;
3368
3369 /* Could add new block groups, use _safe just in case */
3370 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3371 dirty_list) {
3372 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3373 cache_save_setup(cache, trans, path);
3374 }
3375
3376 btrfs_free_path(path);
3377 return 0;
3378 }
3379
3380 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3381 struct btrfs_root *root)
3382 {
3383 struct btrfs_block_group_cache *cache;
3384 struct btrfs_transaction *cur_trans = trans->transaction;
3385 int ret = 0;
3386 struct btrfs_path *path;
3387
3388 if (list_empty(&cur_trans->dirty_bgs))
3389 return 0;
3390
3391 path = btrfs_alloc_path();
3392 if (!path)
3393 return -ENOMEM;
3394
3395 /*
3396 * We don't need the lock here since we are protected by the transaction
3397 * commit. We want to do the cache_save_setup first and then run the
3398 * delayed refs to make sure we have the best chance at doing this all
3399 * in one shot.
3400 */
3401 while (!list_empty(&cur_trans->dirty_bgs)) {
3402 cache = list_first_entry(&cur_trans->dirty_bgs,
3403 struct btrfs_block_group_cache,
3404 dirty_list);
3405 list_del_init(&cache->dirty_list);
3406 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3407 cache_save_setup(cache, trans, path);
3408 if (!ret)
3409 ret = btrfs_run_delayed_refs(trans, root,
3410 (unsigned long) -1);
3411 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3412 btrfs_write_out_cache(root, trans, cache, path);
3413 if (!ret)
3414 ret = write_one_cache_group(trans, root, path, cache);
3415 btrfs_put_block_group(cache);
3416 }
3417
3418 btrfs_free_path(path);
3419 return ret;
3420 }
3421
3422 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3423 {
3424 struct btrfs_block_group_cache *block_group;
3425 int readonly = 0;
3426
3427 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3428 if (!block_group || block_group->ro)
3429 readonly = 1;
3430 if (block_group)
3431 btrfs_put_block_group(block_group);
3432 return readonly;
3433 }
3434
3435 static const char *alloc_name(u64 flags)
3436 {
3437 switch (flags) {
3438 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3439 return "mixed";
3440 case BTRFS_BLOCK_GROUP_METADATA:
3441 return "metadata";
3442 case BTRFS_BLOCK_GROUP_DATA:
3443 return "data";
3444 case BTRFS_BLOCK_GROUP_SYSTEM:
3445 return "system";
3446 default:
3447 WARN_ON(1);
3448 return "invalid-combination";
3449 };
3450 }
3451
3452 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3453 u64 total_bytes, u64 bytes_used,
3454 struct btrfs_space_info **space_info)
3455 {
3456 struct btrfs_space_info *found;
3457 int i;
3458 int factor;
3459 int ret;
3460
3461 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3462 BTRFS_BLOCK_GROUP_RAID10))
3463 factor = 2;
3464 else
3465 factor = 1;
3466
3467 found = __find_space_info(info, flags);
3468 if (found) {
3469 spin_lock(&found->lock);
3470 found->total_bytes += total_bytes;
3471 found->disk_total += total_bytes * factor;
3472 found->bytes_used += bytes_used;
3473 found->disk_used += bytes_used * factor;
3474 found->full = 0;
3475 spin_unlock(&found->lock);
3476 *space_info = found;
3477 return 0;
3478 }
3479 found = kzalloc(sizeof(*found), GFP_NOFS);
3480 if (!found)
3481 return -ENOMEM;
3482
3483 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3484 if (ret) {
3485 kfree(found);
3486 return ret;
3487 }
3488
3489 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3490 INIT_LIST_HEAD(&found->block_groups[i]);
3491 init_rwsem(&found->groups_sem);
3492 spin_lock_init(&found->lock);
3493 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3494 found->total_bytes = total_bytes;
3495 found->disk_total = total_bytes * factor;
3496 found->bytes_used = bytes_used;
3497 found->disk_used = bytes_used * factor;
3498 found->bytes_pinned = 0;
3499 found->bytes_reserved = 0;
3500 found->bytes_readonly = 0;
3501 found->bytes_may_use = 0;
3502 found->full = 0;
3503 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3504 found->chunk_alloc = 0;
3505 found->flush = 0;
3506 init_waitqueue_head(&found->wait);
3507 INIT_LIST_HEAD(&found->ro_bgs);
3508
3509 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3510 info->space_info_kobj, "%s",
3511 alloc_name(found->flags));
3512 if (ret) {
3513 kfree(found);
3514 return ret;
3515 }
3516
3517 *space_info = found;
3518 list_add_rcu(&found->list, &info->space_info);
3519 if (flags & BTRFS_BLOCK_GROUP_DATA)
3520 info->data_sinfo = found;
3521
3522 return ret;
3523 }
3524
3525 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3526 {
3527 u64 extra_flags = chunk_to_extended(flags) &
3528 BTRFS_EXTENDED_PROFILE_MASK;
3529
3530 write_seqlock(&fs_info->profiles_lock);
3531 if (flags & BTRFS_BLOCK_GROUP_DATA)
3532 fs_info->avail_data_alloc_bits |= extra_flags;
3533 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3534 fs_info->avail_metadata_alloc_bits |= extra_flags;
3535 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3536 fs_info->avail_system_alloc_bits |= extra_flags;
3537 write_sequnlock(&fs_info->profiles_lock);
3538 }
3539
3540 /*
3541 * returns target flags in extended format or 0 if restripe for this
3542 * chunk_type is not in progress
3543 *
3544 * should be called with either volume_mutex or balance_lock held
3545 */
3546 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3547 {
3548 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3549 u64 target = 0;
3550
3551 if (!bctl)
3552 return 0;
3553
3554 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3555 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3556 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3557 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3558 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3559 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3560 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3561 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3562 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3563 }
3564
3565 return target;
3566 }
3567
3568 /*
3569 * @flags: available profiles in extended format (see ctree.h)
3570 *
3571 * Returns reduced profile in chunk format. If profile changing is in
3572 * progress (either running or paused) picks the target profile (if it's
3573 * already available), otherwise falls back to plain reducing.
3574 */
3575 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3576 {
3577 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3578 u64 target;
3579 u64 tmp;
3580
3581 /*
3582 * see if restripe for this chunk_type is in progress, if so
3583 * try to reduce to the target profile
3584 */
3585 spin_lock(&root->fs_info->balance_lock);
3586 target = get_restripe_target(root->fs_info, flags);
3587 if (target) {
3588 /* pick target profile only if it's already available */
3589 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3590 spin_unlock(&root->fs_info->balance_lock);
3591 return extended_to_chunk(target);
3592 }
3593 }
3594 spin_unlock(&root->fs_info->balance_lock);
3595
3596 /* First, mask out the RAID levels which aren't possible */
3597 if (num_devices == 1)
3598 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3599 BTRFS_BLOCK_GROUP_RAID5);
3600 if (num_devices < 3)
3601 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3602 if (num_devices < 4)
3603 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3604
3605 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3606 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3607 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3608 flags &= ~tmp;
3609
3610 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3611 tmp = BTRFS_BLOCK_GROUP_RAID6;
3612 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3613 tmp = BTRFS_BLOCK_GROUP_RAID5;
3614 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3615 tmp = BTRFS_BLOCK_GROUP_RAID10;
3616 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3617 tmp = BTRFS_BLOCK_GROUP_RAID1;
3618 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3619 tmp = BTRFS_BLOCK_GROUP_RAID0;
3620
3621 return extended_to_chunk(flags | tmp);
3622 }
3623
3624 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3625 {
3626 unsigned seq;
3627 u64 flags;
3628
3629 do {
3630 flags = orig_flags;
3631 seq = read_seqbegin(&root->fs_info->profiles_lock);
3632
3633 if (flags & BTRFS_BLOCK_GROUP_DATA)
3634 flags |= root->fs_info->avail_data_alloc_bits;
3635 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3636 flags |= root->fs_info->avail_system_alloc_bits;
3637 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3638 flags |= root->fs_info->avail_metadata_alloc_bits;
3639 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3640
3641 return btrfs_reduce_alloc_profile(root, flags);
3642 }
3643
3644 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3645 {
3646 u64 flags;
3647 u64 ret;
3648
3649 if (data)
3650 flags = BTRFS_BLOCK_GROUP_DATA;
3651 else if (root == root->fs_info->chunk_root)
3652 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3653 else
3654 flags = BTRFS_BLOCK_GROUP_METADATA;
3655
3656 ret = get_alloc_profile(root, flags);
3657 return ret;
3658 }
3659
3660 /*
3661 * This will check the space that the inode allocates from to make sure we have
3662 * enough space for bytes.
3663 */
3664 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3665 {
3666 struct btrfs_space_info *data_sinfo;
3667 struct btrfs_root *root = BTRFS_I(inode)->root;
3668 struct btrfs_fs_info *fs_info = root->fs_info;
3669 u64 used;
3670 int ret = 0, committed = 0;
3671
3672 /* make sure bytes are sectorsize aligned */
3673 bytes = ALIGN(bytes, root->sectorsize);
3674
3675 if (btrfs_is_free_space_inode(inode)) {
3676 committed = 1;
3677 ASSERT(current->journal_info);
3678 }
3679
3680 data_sinfo = fs_info->data_sinfo;
3681 if (!data_sinfo)
3682 goto alloc;
3683
3684 again:
3685 /* make sure we have enough space to handle the data first */
3686 spin_lock(&data_sinfo->lock);
3687 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3688 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3689 data_sinfo->bytes_may_use;
3690
3691 if (used + bytes > data_sinfo->total_bytes) {
3692 struct btrfs_trans_handle *trans;
3693
3694 /*
3695 * if we don't have enough free bytes in this space then we need
3696 * to alloc a new chunk.
3697 */
3698 if (!data_sinfo->full) {
3699 u64 alloc_target;
3700
3701 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3702 spin_unlock(&data_sinfo->lock);
3703 alloc:
3704 alloc_target = btrfs_get_alloc_profile(root, 1);
3705 /*
3706 * It is ugly that we don't call nolock join
3707 * transaction for the free space inode case here.
3708 * But it is safe because we only do the data space
3709 * reservation for the free space cache in the
3710 * transaction context, the common join transaction
3711 * just increase the counter of the current transaction
3712 * handler, doesn't try to acquire the trans_lock of
3713 * the fs.
3714 */
3715 trans = btrfs_join_transaction(root);
3716 if (IS_ERR(trans))
3717 return PTR_ERR(trans);
3718
3719 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3720 alloc_target,
3721 CHUNK_ALLOC_NO_FORCE);
3722 btrfs_end_transaction(trans, root);
3723 if (ret < 0) {
3724 if (ret != -ENOSPC)
3725 return ret;
3726 else
3727 goto commit_trans;
3728 }
3729
3730 if (!data_sinfo)
3731 data_sinfo = fs_info->data_sinfo;
3732
3733 goto again;
3734 }
3735
3736 /*
3737 * If we don't have enough pinned space to deal with this
3738 * allocation don't bother committing the transaction.
3739 */
3740 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3741 bytes) < 0)
3742 committed = 1;
3743 spin_unlock(&data_sinfo->lock);
3744
3745 /* commit the current transaction and try again */
3746 commit_trans:
3747 if (!committed &&
3748 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3749 committed = 1;
3750
3751 trans = btrfs_join_transaction(root);
3752 if (IS_ERR(trans))
3753 return PTR_ERR(trans);
3754 ret = btrfs_commit_transaction(trans, root);
3755 if (ret)
3756 return ret;
3757 goto again;
3758 }
3759
3760 trace_btrfs_space_reservation(root->fs_info,
3761 "space_info:enospc",
3762 data_sinfo->flags, bytes, 1);
3763 return -ENOSPC;
3764 }
3765 data_sinfo->bytes_may_use += bytes;
3766 trace_btrfs_space_reservation(root->fs_info, "space_info",
3767 data_sinfo->flags, bytes, 1);
3768 spin_unlock(&data_sinfo->lock);
3769
3770 return 0;
3771 }
3772
3773 /*
3774 * Called if we need to clear a data reservation for this inode.
3775 */
3776 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3777 {
3778 struct btrfs_root *root = BTRFS_I(inode)->root;
3779 struct btrfs_space_info *data_sinfo;
3780
3781 /* make sure bytes are sectorsize aligned */
3782 bytes = ALIGN(bytes, root->sectorsize);
3783
3784 data_sinfo = root->fs_info->data_sinfo;
3785 spin_lock(&data_sinfo->lock);
3786 WARN_ON(data_sinfo->bytes_may_use < bytes);
3787 data_sinfo->bytes_may_use -= bytes;
3788 trace_btrfs_space_reservation(root->fs_info, "space_info",
3789 data_sinfo->flags, bytes, 0);
3790 spin_unlock(&data_sinfo->lock);
3791 }
3792
3793 static void force_metadata_allocation(struct btrfs_fs_info *info)
3794 {
3795 struct list_head *head = &info->space_info;
3796 struct btrfs_space_info *found;
3797
3798 rcu_read_lock();
3799 list_for_each_entry_rcu(found, head, list) {
3800 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3801 found->force_alloc = CHUNK_ALLOC_FORCE;
3802 }
3803 rcu_read_unlock();
3804 }
3805
3806 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3807 {
3808 return (global->size << 1);
3809 }
3810
3811 static int should_alloc_chunk(struct btrfs_root *root,
3812 struct btrfs_space_info *sinfo, int force)
3813 {
3814 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3815 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3816 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3817 u64 thresh;
3818
3819 if (force == CHUNK_ALLOC_FORCE)
3820 return 1;
3821
3822 /*
3823 * We need to take into account the global rsv because for all intents
3824 * and purposes it's used space. Don't worry about locking the
3825 * global_rsv, it doesn't change except when the transaction commits.
3826 */
3827 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3828 num_allocated += calc_global_rsv_need_space(global_rsv);
3829
3830 /*
3831 * in limited mode, we want to have some free space up to
3832 * about 1% of the FS size.
3833 */
3834 if (force == CHUNK_ALLOC_LIMITED) {
3835 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3836 thresh = max_t(u64, 64 * 1024 * 1024,
3837 div_factor_fine(thresh, 1));
3838
3839 if (num_bytes - num_allocated < thresh)
3840 return 1;
3841 }
3842
3843 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3844 return 0;
3845 return 1;
3846 }
3847
3848 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3849 {
3850 u64 num_dev;
3851
3852 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3853 BTRFS_BLOCK_GROUP_RAID0 |
3854 BTRFS_BLOCK_GROUP_RAID5 |
3855 BTRFS_BLOCK_GROUP_RAID6))
3856 num_dev = root->fs_info->fs_devices->rw_devices;
3857 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3858 num_dev = 2;
3859 else
3860 num_dev = 1; /* DUP or single */
3861
3862 /* metadata for updaing devices and chunk tree */
3863 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3864 }
3865
3866 static void check_system_chunk(struct btrfs_trans_handle *trans,
3867 struct btrfs_root *root, u64 type)
3868 {
3869 struct btrfs_space_info *info;
3870 u64 left;
3871 u64 thresh;
3872
3873 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3874 spin_lock(&info->lock);
3875 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3876 info->bytes_reserved - info->bytes_readonly;
3877 spin_unlock(&info->lock);
3878
3879 thresh = get_system_chunk_thresh(root, type);
3880 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3881 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3882 left, thresh, type);
3883 dump_space_info(info, 0, 0);
3884 }
3885
3886 if (left < thresh) {
3887 u64 flags;
3888
3889 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3890 btrfs_alloc_chunk(trans, root, flags);
3891 }
3892 }
3893
3894 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *extent_root, u64 flags, int force)
3896 {
3897 struct btrfs_space_info *space_info;
3898 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3899 int wait_for_alloc = 0;
3900 int ret = 0;
3901
3902 /* Don't re-enter if we're already allocating a chunk */
3903 if (trans->allocating_chunk)
3904 return -ENOSPC;
3905
3906 space_info = __find_space_info(extent_root->fs_info, flags);
3907 if (!space_info) {
3908 ret = update_space_info(extent_root->fs_info, flags,
3909 0, 0, &space_info);
3910 BUG_ON(ret); /* -ENOMEM */
3911 }
3912 BUG_ON(!space_info); /* Logic error */
3913
3914 again:
3915 spin_lock(&space_info->lock);
3916 if (force < space_info->force_alloc)
3917 force = space_info->force_alloc;
3918 if (space_info->full) {
3919 if (should_alloc_chunk(extent_root, space_info, force))
3920 ret = -ENOSPC;
3921 else
3922 ret = 0;
3923 spin_unlock(&space_info->lock);
3924 return ret;
3925 }
3926
3927 if (!should_alloc_chunk(extent_root, space_info, force)) {
3928 spin_unlock(&space_info->lock);
3929 return 0;
3930 } else if (space_info->chunk_alloc) {
3931 wait_for_alloc = 1;
3932 } else {
3933 space_info->chunk_alloc = 1;
3934 }
3935
3936 spin_unlock(&space_info->lock);
3937
3938 mutex_lock(&fs_info->chunk_mutex);
3939
3940 /*
3941 * The chunk_mutex is held throughout the entirety of a chunk
3942 * allocation, so once we've acquired the chunk_mutex we know that the
3943 * other guy is done and we need to recheck and see if we should
3944 * allocate.
3945 */
3946 if (wait_for_alloc) {
3947 mutex_unlock(&fs_info->chunk_mutex);
3948 wait_for_alloc = 0;
3949 goto again;
3950 }
3951
3952 trans->allocating_chunk = true;
3953
3954 /*
3955 * If we have mixed data/metadata chunks we want to make sure we keep
3956 * allocating mixed chunks instead of individual chunks.
3957 */
3958 if (btrfs_mixed_space_info(space_info))
3959 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3960
3961 /*
3962 * if we're doing a data chunk, go ahead and make sure that
3963 * we keep a reasonable number of metadata chunks allocated in the
3964 * FS as well.
3965 */
3966 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3967 fs_info->data_chunk_allocations++;
3968 if (!(fs_info->data_chunk_allocations %
3969 fs_info->metadata_ratio))
3970 force_metadata_allocation(fs_info);
3971 }
3972
3973 /*
3974 * Check if we have enough space in SYSTEM chunk because we may need
3975 * to update devices.
3976 */
3977 check_system_chunk(trans, extent_root, flags);
3978
3979 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3980 trans->allocating_chunk = false;
3981
3982 spin_lock(&space_info->lock);
3983 if (ret < 0 && ret != -ENOSPC)
3984 goto out;
3985 if (ret)
3986 space_info->full = 1;
3987 else
3988 ret = 1;
3989
3990 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3991 out:
3992 space_info->chunk_alloc = 0;
3993 spin_unlock(&space_info->lock);
3994 mutex_unlock(&fs_info->chunk_mutex);
3995 return ret;
3996 }
3997
3998 static int can_overcommit(struct btrfs_root *root,
3999 struct btrfs_space_info *space_info, u64 bytes,
4000 enum btrfs_reserve_flush_enum flush)
4001 {
4002 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4003 u64 profile = btrfs_get_alloc_profile(root, 0);
4004 u64 space_size;
4005 u64 avail;
4006 u64 used;
4007
4008 used = space_info->bytes_used + space_info->bytes_reserved +
4009 space_info->bytes_pinned + space_info->bytes_readonly;
4010
4011 /*
4012 * We only want to allow over committing if we have lots of actual space
4013 * free, but if we don't have enough space to handle the global reserve
4014 * space then we could end up having a real enospc problem when trying
4015 * to allocate a chunk or some other such important allocation.
4016 */
4017 spin_lock(&global_rsv->lock);
4018 space_size = calc_global_rsv_need_space(global_rsv);
4019 spin_unlock(&global_rsv->lock);
4020 if (used + space_size >= space_info->total_bytes)
4021 return 0;
4022
4023 used += space_info->bytes_may_use;
4024
4025 spin_lock(&root->fs_info->free_chunk_lock);
4026 avail = root->fs_info->free_chunk_space;
4027 spin_unlock(&root->fs_info->free_chunk_lock);
4028
4029 /*
4030 * If we have dup, raid1 or raid10 then only half of the free
4031 * space is actually useable. For raid56, the space info used
4032 * doesn't include the parity drive, so we don't have to
4033 * change the math
4034 */
4035 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4036 BTRFS_BLOCK_GROUP_RAID1 |
4037 BTRFS_BLOCK_GROUP_RAID10))
4038 avail >>= 1;
4039
4040 /*
4041 * If we aren't flushing all things, let us overcommit up to
4042 * 1/2th of the space. If we can flush, don't let us overcommit
4043 * too much, let it overcommit up to 1/8 of the space.
4044 */
4045 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4046 avail >>= 3;
4047 else
4048 avail >>= 1;
4049
4050 if (used + bytes < space_info->total_bytes + avail)
4051 return 1;
4052 return 0;
4053 }
4054
4055 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4056 unsigned long nr_pages, int nr_items)
4057 {
4058 struct super_block *sb = root->fs_info->sb;
4059
4060 if (down_read_trylock(&sb->s_umount)) {
4061 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4062 up_read(&sb->s_umount);
4063 } else {
4064 /*
4065 * We needn't worry the filesystem going from r/w to r/o though
4066 * we don't acquire ->s_umount mutex, because the filesystem
4067 * should guarantee the delalloc inodes list be empty after
4068 * the filesystem is readonly(all dirty pages are written to
4069 * the disk).
4070 */
4071 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4072 if (!current->journal_info)
4073 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4074 }
4075 }
4076
4077 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4078 {
4079 u64 bytes;
4080 int nr;
4081
4082 bytes = btrfs_calc_trans_metadata_size(root, 1);
4083 nr = (int)div64_u64(to_reclaim, bytes);
4084 if (!nr)
4085 nr = 1;
4086 return nr;
4087 }
4088
4089 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4090
4091 /*
4092 * shrink metadata reservation for delalloc
4093 */
4094 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4095 bool wait_ordered)
4096 {
4097 struct btrfs_block_rsv *block_rsv;
4098 struct btrfs_space_info *space_info;
4099 struct btrfs_trans_handle *trans;
4100 u64 delalloc_bytes;
4101 u64 max_reclaim;
4102 long time_left;
4103 unsigned long nr_pages;
4104 int loops;
4105 int items;
4106 enum btrfs_reserve_flush_enum flush;
4107
4108 /* Calc the number of the pages we need flush for space reservation */
4109 items = calc_reclaim_items_nr(root, to_reclaim);
4110 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4111
4112 trans = (struct btrfs_trans_handle *)current->journal_info;
4113 block_rsv = &root->fs_info->delalloc_block_rsv;
4114 space_info = block_rsv->space_info;
4115
4116 delalloc_bytes = percpu_counter_sum_positive(
4117 &root->fs_info->delalloc_bytes);
4118 if (delalloc_bytes == 0) {
4119 if (trans)
4120 return;
4121 if (wait_ordered)
4122 btrfs_wait_ordered_roots(root->fs_info, items);
4123 return;
4124 }
4125
4126 loops = 0;
4127 while (delalloc_bytes && loops < 3) {
4128 max_reclaim = min(delalloc_bytes, to_reclaim);
4129 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4130 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4131 /*
4132 * We need to wait for the async pages to actually start before
4133 * we do anything.
4134 */
4135 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4136 if (!max_reclaim)
4137 goto skip_async;
4138
4139 if (max_reclaim <= nr_pages)
4140 max_reclaim = 0;
4141 else
4142 max_reclaim -= nr_pages;
4143
4144 wait_event(root->fs_info->async_submit_wait,
4145 atomic_read(&root->fs_info->async_delalloc_pages) <=
4146 (int)max_reclaim);
4147 skip_async:
4148 if (!trans)
4149 flush = BTRFS_RESERVE_FLUSH_ALL;
4150 else
4151 flush = BTRFS_RESERVE_NO_FLUSH;
4152 spin_lock(&space_info->lock);
4153 if (can_overcommit(root, space_info, orig, flush)) {
4154 spin_unlock(&space_info->lock);
4155 break;
4156 }
4157 spin_unlock(&space_info->lock);
4158
4159 loops++;
4160 if (wait_ordered && !trans) {
4161 btrfs_wait_ordered_roots(root->fs_info, items);
4162 } else {
4163 time_left = schedule_timeout_killable(1);
4164 if (time_left)
4165 break;
4166 }
4167 delalloc_bytes = percpu_counter_sum_positive(
4168 &root->fs_info->delalloc_bytes);
4169 }
4170 }
4171
4172 /**
4173 * maybe_commit_transaction - possibly commit the transaction if its ok to
4174 * @root - the root we're allocating for
4175 * @bytes - the number of bytes we want to reserve
4176 * @force - force the commit
4177 *
4178 * This will check to make sure that committing the transaction will actually
4179 * get us somewhere and then commit the transaction if it does. Otherwise it
4180 * will return -ENOSPC.
4181 */
4182 static int may_commit_transaction(struct btrfs_root *root,
4183 struct btrfs_space_info *space_info,
4184 u64 bytes, int force)
4185 {
4186 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4187 struct btrfs_trans_handle *trans;
4188
4189 trans = (struct btrfs_trans_handle *)current->journal_info;
4190 if (trans)
4191 return -EAGAIN;
4192
4193 if (force)
4194 goto commit;
4195
4196 /* See if there is enough pinned space to make this reservation */
4197 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4198 bytes) >= 0)
4199 goto commit;
4200
4201 /*
4202 * See if there is some space in the delayed insertion reservation for
4203 * this reservation.
4204 */
4205 if (space_info != delayed_rsv->space_info)
4206 return -ENOSPC;
4207
4208 spin_lock(&delayed_rsv->lock);
4209 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4210 bytes - delayed_rsv->size) >= 0) {
4211 spin_unlock(&delayed_rsv->lock);
4212 return -ENOSPC;
4213 }
4214 spin_unlock(&delayed_rsv->lock);
4215
4216 commit:
4217 trans = btrfs_join_transaction(root);
4218 if (IS_ERR(trans))
4219 return -ENOSPC;
4220
4221 return btrfs_commit_transaction(trans, root);
4222 }
4223
4224 enum flush_state {
4225 FLUSH_DELAYED_ITEMS_NR = 1,
4226 FLUSH_DELAYED_ITEMS = 2,
4227 FLUSH_DELALLOC = 3,
4228 FLUSH_DELALLOC_WAIT = 4,
4229 ALLOC_CHUNK = 5,
4230 COMMIT_TRANS = 6,
4231 };
4232
4233 static int flush_space(struct btrfs_root *root,
4234 struct btrfs_space_info *space_info, u64 num_bytes,
4235 u64 orig_bytes, int state)
4236 {
4237 struct btrfs_trans_handle *trans;
4238 int nr;
4239 int ret = 0;
4240
4241 switch (state) {
4242 case FLUSH_DELAYED_ITEMS_NR:
4243 case FLUSH_DELAYED_ITEMS:
4244 if (state == FLUSH_DELAYED_ITEMS_NR)
4245 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4246 else
4247 nr = -1;
4248
4249 trans = btrfs_join_transaction(root);
4250 if (IS_ERR(trans)) {
4251 ret = PTR_ERR(trans);
4252 break;
4253 }
4254 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4255 btrfs_end_transaction(trans, root);
4256 break;
4257 case FLUSH_DELALLOC:
4258 case FLUSH_DELALLOC_WAIT:
4259 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4260 state == FLUSH_DELALLOC_WAIT);
4261 break;
4262 case ALLOC_CHUNK:
4263 trans = btrfs_join_transaction(root);
4264 if (IS_ERR(trans)) {
4265 ret = PTR_ERR(trans);
4266 break;
4267 }
4268 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4269 btrfs_get_alloc_profile(root, 0),
4270 CHUNK_ALLOC_NO_FORCE);
4271 btrfs_end_transaction(trans, root);
4272 if (ret == -ENOSPC)
4273 ret = 0;
4274 break;
4275 case COMMIT_TRANS:
4276 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4277 break;
4278 default:
4279 ret = -ENOSPC;
4280 break;
4281 }
4282
4283 return ret;
4284 }
4285
4286 static inline u64
4287 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4288 struct btrfs_space_info *space_info)
4289 {
4290 u64 used;
4291 u64 expected;
4292 u64 to_reclaim;
4293
4294 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4295 16 * 1024 * 1024);
4296 spin_lock(&space_info->lock);
4297 if (can_overcommit(root, space_info, to_reclaim,
4298 BTRFS_RESERVE_FLUSH_ALL)) {
4299 to_reclaim = 0;
4300 goto out;
4301 }
4302
4303 used = space_info->bytes_used + space_info->bytes_reserved +
4304 space_info->bytes_pinned + space_info->bytes_readonly +
4305 space_info->bytes_may_use;
4306 if (can_overcommit(root, space_info, 1024 * 1024,
4307 BTRFS_RESERVE_FLUSH_ALL))
4308 expected = div_factor_fine(space_info->total_bytes, 95);
4309 else
4310 expected = div_factor_fine(space_info->total_bytes, 90);
4311
4312 if (used > expected)
4313 to_reclaim = used - expected;
4314 else
4315 to_reclaim = 0;
4316 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4317 space_info->bytes_reserved);
4318 out:
4319 spin_unlock(&space_info->lock);
4320
4321 return to_reclaim;
4322 }
4323
4324 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4325 struct btrfs_fs_info *fs_info, u64 used)
4326 {
4327 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4328 !btrfs_fs_closing(fs_info) &&
4329 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4330 }
4331
4332 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4333 struct btrfs_fs_info *fs_info,
4334 int flush_state)
4335 {
4336 u64 used;
4337
4338 spin_lock(&space_info->lock);
4339 /*
4340 * We run out of space and have not got any free space via flush_space,
4341 * so don't bother doing async reclaim.
4342 */
4343 if (flush_state > COMMIT_TRANS && space_info->full) {
4344 spin_unlock(&space_info->lock);
4345 return 0;
4346 }
4347
4348 used = space_info->bytes_used + space_info->bytes_reserved +
4349 space_info->bytes_pinned + space_info->bytes_readonly +
4350 space_info->bytes_may_use;
4351 if (need_do_async_reclaim(space_info, fs_info, used)) {
4352 spin_unlock(&space_info->lock);
4353 return 1;
4354 }
4355 spin_unlock(&space_info->lock);
4356
4357 return 0;
4358 }
4359
4360 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4361 {
4362 struct btrfs_fs_info *fs_info;
4363 struct btrfs_space_info *space_info;
4364 u64 to_reclaim;
4365 int flush_state;
4366
4367 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4368 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4369
4370 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4371 space_info);
4372 if (!to_reclaim)
4373 return;
4374
4375 flush_state = FLUSH_DELAYED_ITEMS_NR;
4376 do {
4377 flush_space(fs_info->fs_root, space_info, to_reclaim,
4378 to_reclaim, flush_state);
4379 flush_state++;
4380 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4381 flush_state))
4382 return;
4383 } while (flush_state <= COMMIT_TRANS);
4384
4385 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4386 queue_work(system_unbound_wq, work);
4387 }
4388
4389 void btrfs_init_async_reclaim_work(struct work_struct *work)
4390 {
4391 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4392 }
4393
4394 /**
4395 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4396 * @root - the root we're allocating for
4397 * @block_rsv - the block_rsv we're allocating for
4398 * @orig_bytes - the number of bytes we want
4399 * @flush - whether or not we can flush to make our reservation
4400 *
4401 * This will reserve orgi_bytes number of bytes from the space info associated
4402 * with the block_rsv. If there is not enough space it will make an attempt to
4403 * flush out space to make room. It will do this by flushing delalloc if
4404 * possible or committing the transaction. If flush is 0 then no attempts to
4405 * regain reservations will be made and this will fail if there is not enough
4406 * space already.
4407 */
4408 static int reserve_metadata_bytes(struct btrfs_root *root,
4409 struct btrfs_block_rsv *block_rsv,
4410 u64 orig_bytes,
4411 enum btrfs_reserve_flush_enum flush)
4412 {
4413 struct btrfs_space_info *space_info = block_rsv->space_info;
4414 u64 used;
4415 u64 num_bytes = orig_bytes;
4416 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4417 int ret = 0;
4418 bool flushing = false;
4419
4420 again:
4421 ret = 0;
4422 spin_lock(&space_info->lock);
4423 /*
4424 * We only want to wait if somebody other than us is flushing and we
4425 * are actually allowed to flush all things.
4426 */
4427 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4428 space_info->flush) {
4429 spin_unlock(&space_info->lock);
4430 /*
4431 * If we have a trans handle we can't wait because the flusher
4432 * may have to commit the transaction, which would mean we would
4433 * deadlock since we are waiting for the flusher to finish, but
4434 * hold the current transaction open.
4435 */
4436 if (current->journal_info)
4437 return -EAGAIN;
4438 ret = wait_event_killable(space_info->wait, !space_info->flush);
4439 /* Must have been killed, return */
4440 if (ret)
4441 return -EINTR;
4442
4443 spin_lock(&space_info->lock);
4444 }
4445
4446 ret = -ENOSPC;
4447 used = space_info->bytes_used + space_info->bytes_reserved +
4448 space_info->bytes_pinned + space_info->bytes_readonly +
4449 space_info->bytes_may_use;
4450
4451 /*
4452 * The idea here is that we've not already over-reserved the block group
4453 * then we can go ahead and save our reservation first and then start
4454 * flushing if we need to. Otherwise if we've already overcommitted
4455 * lets start flushing stuff first and then come back and try to make
4456 * our reservation.
4457 */
4458 if (used <= space_info->total_bytes) {
4459 if (used + orig_bytes <= space_info->total_bytes) {
4460 space_info->bytes_may_use += orig_bytes;
4461 trace_btrfs_space_reservation(root->fs_info,
4462 "space_info", space_info->flags, orig_bytes, 1);
4463 ret = 0;
4464 } else {
4465 /*
4466 * Ok set num_bytes to orig_bytes since we aren't
4467 * overocmmitted, this way we only try and reclaim what
4468 * we need.
4469 */
4470 num_bytes = orig_bytes;
4471 }
4472 } else {
4473 /*
4474 * Ok we're over committed, set num_bytes to the overcommitted
4475 * amount plus the amount of bytes that we need for this
4476 * reservation.
4477 */
4478 num_bytes = used - space_info->total_bytes +
4479 (orig_bytes * 2);
4480 }
4481
4482 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4483 space_info->bytes_may_use += orig_bytes;
4484 trace_btrfs_space_reservation(root->fs_info, "space_info",
4485 space_info->flags, orig_bytes,
4486 1);
4487 ret = 0;
4488 }
4489
4490 /*
4491 * Couldn't make our reservation, save our place so while we're trying
4492 * to reclaim space we can actually use it instead of somebody else
4493 * stealing it from us.
4494 *
4495 * We make the other tasks wait for the flush only when we can flush
4496 * all things.
4497 */
4498 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4499 flushing = true;
4500 space_info->flush = 1;
4501 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4502 used += orig_bytes;
4503 /*
4504 * We will do the space reservation dance during log replay,
4505 * which means we won't have fs_info->fs_root set, so don't do
4506 * the async reclaim as we will panic.
4507 */
4508 if (!root->fs_info->log_root_recovering &&
4509 need_do_async_reclaim(space_info, root->fs_info, used) &&
4510 !work_busy(&root->fs_info->async_reclaim_work))
4511 queue_work(system_unbound_wq,
4512 &root->fs_info->async_reclaim_work);
4513 }
4514 spin_unlock(&space_info->lock);
4515
4516 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4517 goto out;
4518
4519 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4520 flush_state);
4521 flush_state++;
4522
4523 /*
4524 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4525 * would happen. So skip delalloc flush.
4526 */
4527 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4528 (flush_state == FLUSH_DELALLOC ||
4529 flush_state == FLUSH_DELALLOC_WAIT))
4530 flush_state = ALLOC_CHUNK;
4531
4532 if (!ret)
4533 goto again;
4534 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4535 flush_state < COMMIT_TRANS)
4536 goto again;
4537 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4538 flush_state <= COMMIT_TRANS)
4539 goto again;
4540
4541 out:
4542 if (ret == -ENOSPC &&
4543 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4544 struct btrfs_block_rsv *global_rsv =
4545 &root->fs_info->global_block_rsv;
4546
4547 if (block_rsv != global_rsv &&
4548 !block_rsv_use_bytes(global_rsv, orig_bytes))
4549 ret = 0;
4550 }
4551 if (ret == -ENOSPC)
4552 trace_btrfs_space_reservation(root->fs_info,
4553 "space_info:enospc",
4554 space_info->flags, orig_bytes, 1);
4555 if (flushing) {
4556 spin_lock(&space_info->lock);
4557 space_info->flush = 0;
4558 wake_up_all(&space_info->wait);
4559 spin_unlock(&space_info->lock);
4560 }
4561 return ret;
4562 }
4563
4564 static struct btrfs_block_rsv *get_block_rsv(
4565 const struct btrfs_trans_handle *trans,
4566 const struct btrfs_root *root)
4567 {
4568 struct btrfs_block_rsv *block_rsv = NULL;
4569
4570 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4571 block_rsv = trans->block_rsv;
4572
4573 if (root == root->fs_info->csum_root && trans->adding_csums)
4574 block_rsv = trans->block_rsv;
4575
4576 if (root == root->fs_info->uuid_root)
4577 block_rsv = trans->block_rsv;
4578
4579 if (!block_rsv)
4580 block_rsv = root->block_rsv;
4581
4582 if (!block_rsv)
4583 block_rsv = &root->fs_info->empty_block_rsv;
4584
4585 return block_rsv;
4586 }
4587
4588 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4589 u64 num_bytes)
4590 {
4591 int ret = -ENOSPC;
4592 spin_lock(&block_rsv->lock);
4593 if (block_rsv->reserved >= num_bytes) {
4594 block_rsv->reserved -= num_bytes;
4595 if (block_rsv->reserved < block_rsv->size)
4596 block_rsv->full = 0;
4597 ret = 0;
4598 }
4599 spin_unlock(&block_rsv->lock);
4600 return ret;
4601 }
4602
4603 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4604 u64 num_bytes, int update_size)
4605 {
4606 spin_lock(&block_rsv->lock);
4607 block_rsv->reserved += num_bytes;
4608 if (update_size)
4609 block_rsv->size += num_bytes;
4610 else if (block_rsv->reserved >= block_rsv->size)
4611 block_rsv->full = 1;
4612 spin_unlock(&block_rsv->lock);
4613 }
4614
4615 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4616 struct btrfs_block_rsv *dest, u64 num_bytes,
4617 int min_factor)
4618 {
4619 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4620 u64 min_bytes;
4621
4622 if (global_rsv->space_info != dest->space_info)
4623 return -ENOSPC;
4624
4625 spin_lock(&global_rsv->lock);
4626 min_bytes = div_factor(global_rsv->size, min_factor);
4627 if (global_rsv->reserved < min_bytes + num_bytes) {
4628 spin_unlock(&global_rsv->lock);
4629 return -ENOSPC;
4630 }
4631 global_rsv->reserved -= num_bytes;
4632 if (global_rsv->reserved < global_rsv->size)
4633 global_rsv->full = 0;
4634 spin_unlock(&global_rsv->lock);
4635
4636 block_rsv_add_bytes(dest, num_bytes, 1);
4637 return 0;
4638 }
4639
4640 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4641 struct btrfs_block_rsv *block_rsv,
4642 struct btrfs_block_rsv *dest, u64 num_bytes)
4643 {
4644 struct btrfs_space_info *space_info = block_rsv->space_info;
4645
4646 spin_lock(&block_rsv->lock);
4647 if (num_bytes == (u64)-1)
4648 num_bytes = block_rsv->size;
4649 block_rsv->size -= num_bytes;
4650 if (block_rsv->reserved >= block_rsv->size) {
4651 num_bytes = block_rsv->reserved - block_rsv->size;
4652 block_rsv->reserved = block_rsv->size;
4653 block_rsv->full = 1;
4654 } else {
4655 num_bytes = 0;
4656 }
4657 spin_unlock(&block_rsv->lock);
4658
4659 if (num_bytes > 0) {
4660 if (dest) {
4661 spin_lock(&dest->lock);
4662 if (!dest->full) {
4663 u64 bytes_to_add;
4664
4665 bytes_to_add = dest->size - dest->reserved;
4666 bytes_to_add = min(num_bytes, bytes_to_add);
4667 dest->reserved += bytes_to_add;
4668 if (dest->reserved >= dest->size)
4669 dest->full = 1;
4670 num_bytes -= bytes_to_add;
4671 }
4672 spin_unlock(&dest->lock);
4673 }
4674 if (num_bytes) {
4675 spin_lock(&space_info->lock);
4676 space_info->bytes_may_use -= num_bytes;
4677 trace_btrfs_space_reservation(fs_info, "space_info",
4678 space_info->flags, num_bytes, 0);
4679 spin_unlock(&space_info->lock);
4680 }
4681 }
4682 }
4683
4684 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4685 struct btrfs_block_rsv *dst, u64 num_bytes)
4686 {
4687 int ret;
4688
4689 ret = block_rsv_use_bytes(src, num_bytes);
4690 if (ret)
4691 return ret;
4692
4693 block_rsv_add_bytes(dst, num_bytes, 1);
4694 return 0;
4695 }
4696
4697 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4698 {
4699 memset(rsv, 0, sizeof(*rsv));
4700 spin_lock_init(&rsv->lock);
4701 rsv->type = type;
4702 }
4703
4704 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4705 unsigned short type)
4706 {
4707 struct btrfs_block_rsv *block_rsv;
4708 struct btrfs_fs_info *fs_info = root->fs_info;
4709
4710 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4711 if (!block_rsv)
4712 return NULL;
4713
4714 btrfs_init_block_rsv(block_rsv, type);
4715 block_rsv->space_info = __find_space_info(fs_info,
4716 BTRFS_BLOCK_GROUP_METADATA);
4717 return block_rsv;
4718 }
4719
4720 void btrfs_free_block_rsv(struct btrfs_root *root,
4721 struct btrfs_block_rsv *rsv)
4722 {
4723 if (!rsv)
4724 return;
4725 btrfs_block_rsv_release(root, rsv, (u64)-1);
4726 kfree(rsv);
4727 }
4728
4729 int btrfs_block_rsv_add(struct btrfs_root *root,
4730 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4731 enum btrfs_reserve_flush_enum flush)
4732 {
4733 int ret;
4734
4735 if (num_bytes == 0)
4736 return 0;
4737
4738 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4739 if (!ret) {
4740 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4741 return 0;
4742 }
4743
4744 return ret;
4745 }
4746
4747 int btrfs_block_rsv_check(struct btrfs_root *root,
4748 struct btrfs_block_rsv *block_rsv, int min_factor)
4749 {
4750 u64 num_bytes = 0;
4751 int ret = -ENOSPC;
4752
4753 if (!block_rsv)
4754 return 0;
4755
4756 spin_lock(&block_rsv->lock);
4757 num_bytes = div_factor(block_rsv->size, min_factor);
4758 if (block_rsv->reserved >= num_bytes)
4759 ret = 0;
4760 spin_unlock(&block_rsv->lock);
4761
4762 return ret;
4763 }
4764
4765 int btrfs_block_rsv_refill(struct btrfs_root *root,
4766 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4767 enum btrfs_reserve_flush_enum flush)
4768 {
4769 u64 num_bytes = 0;
4770 int ret = -ENOSPC;
4771
4772 if (!block_rsv)
4773 return 0;
4774
4775 spin_lock(&block_rsv->lock);
4776 num_bytes = min_reserved;
4777 if (block_rsv->reserved >= num_bytes)
4778 ret = 0;
4779 else
4780 num_bytes -= block_rsv->reserved;
4781 spin_unlock(&block_rsv->lock);
4782
4783 if (!ret)
4784 return 0;
4785
4786 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4787 if (!ret) {
4788 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4789 return 0;
4790 }
4791
4792 return ret;
4793 }
4794
4795 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4796 struct btrfs_block_rsv *dst_rsv,
4797 u64 num_bytes)
4798 {
4799 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4800 }
4801
4802 void btrfs_block_rsv_release(struct btrfs_root *root,
4803 struct btrfs_block_rsv *block_rsv,
4804 u64 num_bytes)
4805 {
4806 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4807 if (global_rsv == block_rsv ||
4808 block_rsv->space_info != global_rsv->space_info)
4809 global_rsv = NULL;
4810 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4811 num_bytes);
4812 }
4813
4814 /*
4815 * helper to calculate size of global block reservation.
4816 * the desired value is sum of space used by extent tree,
4817 * checksum tree and root tree
4818 */
4819 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4820 {
4821 struct btrfs_space_info *sinfo;
4822 u64 num_bytes;
4823 u64 meta_used;
4824 u64 data_used;
4825 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4826
4827 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4828 spin_lock(&sinfo->lock);
4829 data_used = sinfo->bytes_used;
4830 spin_unlock(&sinfo->lock);
4831
4832 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4833 spin_lock(&sinfo->lock);
4834 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4835 data_used = 0;
4836 meta_used = sinfo->bytes_used;
4837 spin_unlock(&sinfo->lock);
4838
4839 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4840 csum_size * 2;
4841 num_bytes += div_u64(data_used + meta_used, 50);
4842
4843 if (num_bytes * 3 > meta_used)
4844 num_bytes = div_u64(meta_used, 3);
4845
4846 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4847 }
4848
4849 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4850 {
4851 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4852 struct btrfs_space_info *sinfo = block_rsv->space_info;
4853 u64 num_bytes;
4854
4855 num_bytes = calc_global_metadata_size(fs_info);
4856
4857 spin_lock(&sinfo->lock);
4858 spin_lock(&block_rsv->lock);
4859
4860 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4861
4862 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4863 sinfo->bytes_reserved + sinfo->bytes_readonly +
4864 sinfo->bytes_may_use;
4865
4866 if (sinfo->total_bytes > num_bytes) {
4867 num_bytes = sinfo->total_bytes - num_bytes;
4868 block_rsv->reserved += num_bytes;
4869 sinfo->bytes_may_use += num_bytes;
4870 trace_btrfs_space_reservation(fs_info, "space_info",
4871 sinfo->flags, num_bytes, 1);
4872 }
4873
4874 if (block_rsv->reserved >= block_rsv->size) {
4875 num_bytes = block_rsv->reserved - block_rsv->size;
4876 sinfo->bytes_may_use -= num_bytes;
4877 trace_btrfs_space_reservation(fs_info, "space_info",
4878 sinfo->flags, num_bytes, 0);
4879 block_rsv->reserved = block_rsv->size;
4880 block_rsv->full = 1;
4881 }
4882
4883 spin_unlock(&block_rsv->lock);
4884 spin_unlock(&sinfo->lock);
4885 }
4886
4887 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4888 {
4889 struct btrfs_space_info *space_info;
4890
4891 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4892 fs_info->chunk_block_rsv.space_info = space_info;
4893
4894 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4895 fs_info->global_block_rsv.space_info = space_info;
4896 fs_info->delalloc_block_rsv.space_info = space_info;
4897 fs_info->trans_block_rsv.space_info = space_info;
4898 fs_info->empty_block_rsv.space_info = space_info;
4899 fs_info->delayed_block_rsv.space_info = space_info;
4900
4901 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4902 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4903 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4904 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4905 if (fs_info->quota_root)
4906 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4907 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4908
4909 update_global_block_rsv(fs_info);
4910 }
4911
4912 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4913 {
4914 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4915 (u64)-1);
4916 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4917 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4918 WARN_ON(fs_info->trans_block_rsv.size > 0);
4919 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4920 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4921 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4922 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4923 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4924 }
4925
4926 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4927 struct btrfs_root *root)
4928 {
4929 if (!trans->block_rsv)
4930 return;
4931
4932 if (!trans->bytes_reserved)
4933 return;
4934
4935 trace_btrfs_space_reservation(root->fs_info, "transaction",
4936 trans->transid, trans->bytes_reserved, 0);
4937 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4938 trans->bytes_reserved = 0;
4939 }
4940
4941 /* Can only return 0 or -ENOSPC */
4942 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4943 struct inode *inode)
4944 {
4945 struct btrfs_root *root = BTRFS_I(inode)->root;
4946 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4947 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4948
4949 /*
4950 * We need to hold space in order to delete our orphan item once we've
4951 * added it, so this takes the reservation so we can release it later
4952 * when we are truly done with the orphan item.
4953 */
4954 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4955 trace_btrfs_space_reservation(root->fs_info, "orphan",
4956 btrfs_ino(inode), num_bytes, 1);
4957 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4958 }
4959
4960 void btrfs_orphan_release_metadata(struct inode *inode)
4961 {
4962 struct btrfs_root *root = BTRFS_I(inode)->root;
4963 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4964 trace_btrfs_space_reservation(root->fs_info, "orphan",
4965 btrfs_ino(inode), num_bytes, 0);
4966 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4967 }
4968
4969 /*
4970 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4971 * root: the root of the parent directory
4972 * rsv: block reservation
4973 * items: the number of items that we need do reservation
4974 * qgroup_reserved: used to return the reserved size in qgroup
4975 *
4976 * This function is used to reserve the space for snapshot/subvolume
4977 * creation and deletion. Those operations are different with the
4978 * common file/directory operations, they change two fs/file trees
4979 * and root tree, the number of items that the qgroup reserves is
4980 * different with the free space reservation. So we can not use
4981 * the space reseravtion mechanism in start_transaction().
4982 */
4983 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4984 struct btrfs_block_rsv *rsv,
4985 int items,
4986 u64 *qgroup_reserved,
4987 bool use_global_rsv)
4988 {
4989 u64 num_bytes;
4990 int ret;
4991 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4992
4993 if (root->fs_info->quota_enabled) {
4994 /* One for parent inode, two for dir entries */
4995 num_bytes = 3 * root->nodesize;
4996 ret = btrfs_qgroup_reserve(root, num_bytes);
4997 if (ret)
4998 return ret;
4999 } else {
5000 num_bytes = 0;
5001 }
5002
5003 *qgroup_reserved = num_bytes;
5004
5005 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5006 rsv->space_info = __find_space_info(root->fs_info,
5007 BTRFS_BLOCK_GROUP_METADATA);
5008 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5009 BTRFS_RESERVE_FLUSH_ALL);
5010
5011 if (ret == -ENOSPC && use_global_rsv)
5012 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5013
5014 if (ret) {
5015 if (*qgroup_reserved)
5016 btrfs_qgroup_free(root, *qgroup_reserved);
5017 }
5018
5019 return ret;
5020 }
5021
5022 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5023 struct btrfs_block_rsv *rsv,
5024 u64 qgroup_reserved)
5025 {
5026 btrfs_block_rsv_release(root, rsv, (u64)-1);
5027 if (qgroup_reserved)
5028 btrfs_qgroup_free(root, qgroup_reserved);
5029 }
5030
5031 /**
5032 * drop_outstanding_extent - drop an outstanding extent
5033 * @inode: the inode we're dropping the extent for
5034 * @num_bytes: the number of bytes we're relaseing.
5035 *
5036 * This is called when we are freeing up an outstanding extent, either called
5037 * after an error or after an extent is written. This will return the number of
5038 * reserved extents that need to be freed. This must be called with
5039 * BTRFS_I(inode)->lock held.
5040 */
5041 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5042 {
5043 unsigned drop_inode_space = 0;
5044 unsigned dropped_extents = 0;
5045 unsigned num_extents = 0;
5046
5047 num_extents = (unsigned)div64_u64(num_bytes +
5048 BTRFS_MAX_EXTENT_SIZE - 1,
5049 BTRFS_MAX_EXTENT_SIZE);
5050 ASSERT(num_extents);
5051 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5052 BTRFS_I(inode)->outstanding_extents -= num_extents;
5053
5054 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5055 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5056 &BTRFS_I(inode)->runtime_flags))
5057 drop_inode_space = 1;
5058
5059 /*
5060 * If we have more or the same amount of outsanding extents than we have
5061 * reserved then we need to leave the reserved extents count alone.
5062 */
5063 if (BTRFS_I(inode)->outstanding_extents >=
5064 BTRFS_I(inode)->reserved_extents)
5065 return drop_inode_space;
5066
5067 dropped_extents = BTRFS_I(inode)->reserved_extents -
5068 BTRFS_I(inode)->outstanding_extents;
5069 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5070 return dropped_extents + drop_inode_space;
5071 }
5072
5073 /**
5074 * calc_csum_metadata_size - return the amount of metada space that must be
5075 * reserved/free'd for the given bytes.
5076 * @inode: the inode we're manipulating
5077 * @num_bytes: the number of bytes in question
5078 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5079 *
5080 * This adjusts the number of csum_bytes in the inode and then returns the
5081 * correct amount of metadata that must either be reserved or freed. We
5082 * calculate how many checksums we can fit into one leaf and then divide the
5083 * number of bytes that will need to be checksumed by this value to figure out
5084 * how many checksums will be required. If we are adding bytes then the number
5085 * may go up and we will return the number of additional bytes that must be
5086 * reserved. If it is going down we will return the number of bytes that must
5087 * be freed.
5088 *
5089 * This must be called with BTRFS_I(inode)->lock held.
5090 */
5091 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5092 int reserve)
5093 {
5094 struct btrfs_root *root = BTRFS_I(inode)->root;
5095 u64 old_csums, num_csums;
5096
5097 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5098 BTRFS_I(inode)->csum_bytes == 0)
5099 return 0;
5100
5101 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5102 if (reserve)
5103 BTRFS_I(inode)->csum_bytes += num_bytes;
5104 else
5105 BTRFS_I(inode)->csum_bytes -= num_bytes;
5106 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5107
5108 /* No change, no need to reserve more */
5109 if (old_csums == num_csums)
5110 return 0;
5111
5112 if (reserve)
5113 return btrfs_calc_trans_metadata_size(root,
5114 num_csums - old_csums);
5115
5116 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5117 }
5118
5119 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5120 {
5121 struct btrfs_root *root = BTRFS_I(inode)->root;
5122 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5123 u64 to_reserve = 0;
5124 u64 csum_bytes;
5125 unsigned nr_extents = 0;
5126 int extra_reserve = 0;
5127 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5128 int ret = 0;
5129 bool delalloc_lock = true;
5130 u64 to_free = 0;
5131 unsigned dropped;
5132
5133 /* If we are a free space inode we need to not flush since we will be in
5134 * the middle of a transaction commit. We also don't need the delalloc
5135 * mutex since we won't race with anybody. We need this mostly to make
5136 * lockdep shut its filthy mouth.
5137 */
5138 if (btrfs_is_free_space_inode(inode)) {
5139 flush = BTRFS_RESERVE_NO_FLUSH;
5140 delalloc_lock = false;
5141 }
5142
5143 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5144 btrfs_transaction_in_commit(root->fs_info))
5145 schedule_timeout(1);
5146
5147 if (delalloc_lock)
5148 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5149
5150 num_bytes = ALIGN(num_bytes, root->sectorsize);
5151
5152 spin_lock(&BTRFS_I(inode)->lock);
5153 nr_extents = (unsigned)div64_u64(num_bytes +
5154 BTRFS_MAX_EXTENT_SIZE - 1,
5155 BTRFS_MAX_EXTENT_SIZE);
5156 BTRFS_I(inode)->outstanding_extents += nr_extents;
5157 nr_extents = 0;
5158
5159 if (BTRFS_I(inode)->outstanding_extents >
5160 BTRFS_I(inode)->reserved_extents)
5161 nr_extents = BTRFS_I(inode)->outstanding_extents -
5162 BTRFS_I(inode)->reserved_extents;
5163
5164 /*
5165 * Add an item to reserve for updating the inode when we complete the
5166 * delalloc io.
5167 */
5168 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5169 &BTRFS_I(inode)->runtime_flags)) {
5170 nr_extents++;
5171 extra_reserve = 1;
5172 }
5173
5174 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5175 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5176 csum_bytes = BTRFS_I(inode)->csum_bytes;
5177 spin_unlock(&BTRFS_I(inode)->lock);
5178
5179 if (root->fs_info->quota_enabled) {
5180 ret = btrfs_qgroup_reserve(root, num_bytes +
5181 nr_extents * root->nodesize);
5182 if (ret)
5183 goto out_fail;
5184 }
5185
5186 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5187 if (unlikely(ret)) {
5188 if (root->fs_info->quota_enabled)
5189 btrfs_qgroup_free(root, num_bytes +
5190 nr_extents * root->nodesize);
5191 goto out_fail;
5192 }
5193
5194 spin_lock(&BTRFS_I(inode)->lock);
5195 if (extra_reserve) {
5196 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5197 &BTRFS_I(inode)->runtime_flags);
5198 nr_extents--;
5199 }
5200 BTRFS_I(inode)->reserved_extents += nr_extents;
5201 spin_unlock(&BTRFS_I(inode)->lock);
5202
5203 if (delalloc_lock)
5204 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5205
5206 if (to_reserve)
5207 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5208 btrfs_ino(inode), to_reserve, 1);
5209 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5210
5211 return 0;
5212
5213 out_fail:
5214 spin_lock(&BTRFS_I(inode)->lock);
5215 dropped = drop_outstanding_extent(inode, num_bytes);
5216 /*
5217 * If the inodes csum_bytes is the same as the original
5218 * csum_bytes then we know we haven't raced with any free()ers
5219 * so we can just reduce our inodes csum bytes and carry on.
5220 */
5221 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5222 calc_csum_metadata_size(inode, num_bytes, 0);
5223 } else {
5224 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5225 u64 bytes;
5226
5227 /*
5228 * This is tricky, but first we need to figure out how much we
5229 * free'd from any free-ers that occured during this
5230 * reservation, so we reset ->csum_bytes to the csum_bytes
5231 * before we dropped our lock, and then call the free for the
5232 * number of bytes that were freed while we were trying our
5233 * reservation.
5234 */
5235 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5236 BTRFS_I(inode)->csum_bytes = csum_bytes;
5237 to_free = calc_csum_metadata_size(inode, bytes, 0);
5238
5239
5240 /*
5241 * Now we need to see how much we would have freed had we not
5242 * been making this reservation and our ->csum_bytes were not
5243 * artificially inflated.
5244 */
5245 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5246 bytes = csum_bytes - orig_csum_bytes;
5247 bytes = calc_csum_metadata_size(inode, bytes, 0);
5248
5249 /*
5250 * Now reset ->csum_bytes to what it should be. If bytes is
5251 * more than to_free then we would have free'd more space had we
5252 * not had an artificially high ->csum_bytes, so we need to free
5253 * the remainder. If bytes is the same or less then we don't
5254 * need to do anything, the other free-ers did the correct
5255 * thing.
5256 */
5257 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5258 if (bytes > to_free)
5259 to_free = bytes - to_free;
5260 else
5261 to_free = 0;
5262 }
5263 spin_unlock(&BTRFS_I(inode)->lock);
5264 if (dropped)
5265 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5266
5267 if (to_free) {
5268 btrfs_block_rsv_release(root, block_rsv, to_free);
5269 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5270 btrfs_ino(inode), to_free, 0);
5271 }
5272 if (delalloc_lock)
5273 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5274 return ret;
5275 }
5276
5277 /**
5278 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5279 * @inode: the inode to release the reservation for
5280 * @num_bytes: the number of bytes we're releasing
5281 *
5282 * This will release the metadata reservation for an inode. This can be called
5283 * once we complete IO for a given set of bytes to release their metadata
5284 * reservations.
5285 */
5286 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5287 {
5288 struct btrfs_root *root = BTRFS_I(inode)->root;
5289 u64 to_free = 0;
5290 unsigned dropped;
5291
5292 num_bytes = ALIGN(num_bytes, root->sectorsize);
5293 spin_lock(&BTRFS_I(inode)->lock);
5294 dropped = drop_outstanding_extent(inode, num_bytes);
5295
5296 if (num_bytes)
5297 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5298 spin_unlock(&BTRFS_I(inode)->lock);
5299 if (dropped > 0)
5300 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5301
5302 if (btrfs_test_is_dummy_root(root))
5303 return;
5304
5305 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5306 btrfs_ino(inode), to_free, 0);
5307 if (root->fs_info->quota_enabled) {
5308 btrfs_qgroup_free(root, num_bytes +
5309 dropped * root->nodesize);
5310 }
5311
5312 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5313 to_free);
5314 }
5315
5316 /**
5317 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5318 * @inode: inode we're writing to
5319 * @num_bytes: the number of bytes we want to allocate
5320 *
5321 * This will do the following things
5322 *
5323 * o reserve space in the data space info for num_bytes
5324 * o reserve space in the metadata space info based on number of outstanding
5325 * extents and how much csums will be needed
5326 * o add to the inodes ->delalloc_bytes
5327 * o add it to the fs_info's delalloc inodes list.
5328 *
5329 * This will return 0 for success and -ENOSPC if there is no space left.
5330 */
5331 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5332 {
5333 int ret;
5334
5335 ret = btrfs_check_data_free_space(inode, num_bytes);
5336 if (ret)
5337 return ret;
5338
5339 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5340 if (ret) {
5341 btrfs_free_reserved_data_space(inode, num_bytes);
5342 return ret;
5343 }
5344
5345 return 0;
5346 }
5347
5348 /**
5349 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5350 * @inode: inode we're releasing space for
5351 * @num_bytes: the number of bytes we want to free up
5352 *
5353 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5354 * called in the case that we don't need the metadata AND data reservations
5355 * anymore. So if there is an error or we insert an inline extent.
5356 *
5357 * This function will release the metadata space that was not used and will
5358 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5359 * list if there are no delalloc bytes left.
5360 */
5361 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5362 {
5363 btrfs_delalloc_release_metadata(inode, num_bytes);
5364 btrfs_free_reserved_data_space(inode, num_bytes);
5365 }
5366
5367 static int update_block_group(struct btrfs_trans_handle *trans,
5368 struct btrfs_root *root, u64 bytenr,
5369 u64 num_bytes, int alloc)
5370 {
5371 struct btrfs_block_group_cache *cache = NULL;
5372 struct btrfs_fs_info *info = root->fs_info;
5373 u64 total = num_bytes;
5374 u64 old_val;
5375 u64 byte_in_group;
5376 int factor;
5377
5378 /* block accounting for super block */
5379 spin_lock(&info->delalloc_root_lock);
5380 old_val = btrfs_super_bytes_used(info->super_copy);
5381 if (alloc)
5382 old_val += num_bytes;
5383 else
5384 old_val -= num_bytes;
5385 btrfs_set_super_bytes_used(info->super_copy, old_val);
5386 spin_unlock(&info->delalloc_root_lock);
5387
5388 while (total) {
5389 cache = btrfs_lookup_block_group(info, bytenr);
5390 if (!cache)
5391 return -ENOENT;
5392 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5393 BTRFS_BLOCK_GROUP_RAID1 |
5394 BTRFS_BLOCK_GROUP_RAID10))
5395 factor = 2;
5396 else
5397 factor = 1;
5398 /*
5399 * If this block group has free space cache written out, we
5400 * need to make sure to load it if we are removing space. This
5401 * is because we need the unpinning stage to actually add the
5402 * space back to the block group, otherwise we will leak space.
5403 */
5404 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5405 cache_block_group(cache, 1);
5406
5407 spin_lock(&trans->transaction->dirty_bgs_lock);
5408 if (list_empty(&cache->dirty_list)) {
5409 list_add_tail(&cache->dirty_list,
5410 &trans->transaction->dirty_bgs);
5411 btrfs_get_block_group(cache);
5412 }
5413 spin_unlock(&trans->transaction->dirty_bgs_lock);
5414
5415 byte_in_group = bytenr - cache->key.objectid;
5416 WARN_ON(byte_in_group > cache->key.offset);
5417
5418 spin_lock(&cache->space_info->lock);
5419 spin_lock(&cache->lock);
5420
5421 if (btrfs_test_opt(root, SPACE_CACHE) &&
5422 cache->disk_cache_state < BTRFS_DC_CLEAR)
5423 cache->disk_cache_state = BTRFS_DC_CLEAR;
5424
5425 old_val = btrfs_block_group_used(&cache->item);
5426 num_bytes = min(total, cache->key.offset - byte_in_group);
5427 if (alloc) {
5428 old_val += num_bytes;
5429 btrfs_set_block_group_used(&cache->item, old_val);
5430 cache->reserved -= num_bytes;
5431 cache->space_info->bytes_reserved -= num_bytes;
5432 cache->space_info->bytes_used += num_bytes;
5433 cache->space_info->disk_used += num_bytes * factor;
5434 spin_unlock(&cache->lock);
5435 spin_unlock(&cache->space_info->lock);
5436 } else {
5437 old_val -= num_bytes;
5438 btrfs_set_block_group_used(&cache->item, old_val);
5439 cache->pinned += num_bytes;
5440 cache->space_info->bytes_pinned += num_bytes;
5441 cache->space_info->bytes_used -= num_bytes;
5442 cache->space_info->disk_used -= num_bytes * factor;
5443 spin_unlock(&cache->lock);
5444 spin_unlock(&cache->space_info->lock);
5445
5446 set_extent_dirty(info->pinned_extents,
5447 bytenr, bytenr + num_bytes - 1,
5448 GFP_NOFS | __GFP_NOFAIL);
5449 /*
5450 * No longer have used bytes in this block group, queue
5451 * it for deletion.
5452 */
5453 if (old_val == 0) {
5454 spin_lock(&info->unused_bgs_lock);
5455 if (list_empty(&cache->bg_list)) {
5456 btrfs_get_block_group(cache);
5457 list_add_tail(&cache->bg_list,
5458 &info->unused_bgs);
5459 }
5460 spin_unlock(&info->unused_bgs_lock);
5461 }
5462 }
5463 btrfs_put_block_group(cache);
5464 total -= num_bytes;
5465 bytenr += num_bytes;
5466 }
5467 return 0;
5468 }
5469
5470 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5471 {
5472 struct btrfs_block_group_cache *cache;
5473 u64 bytenr;
5474
5475 spin_lock(&root->fs_info->block_group_cache_lock);
5476 bytenr = root->fs_info->first_logical_byte;
5477 spin_unlock(&root->fs_info->block_group_cache_lock);
5478
5479 if (bytenr < (u64)-1)
5480 return bytenr;
5481
5482 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5483 if (!cache)
5484 return 0;
5485
5486 bytenr = cache->key.objectid;
5487 btrfs_put_block_group(cache);
5488
5489 return bytenr;
5490 }
5491
5492 static int pin_down_extent(struct btrfs_root *root,
5493 struct btrfs_block_group_cache *cache,
5494 u64 bytenr, u64 num_bytes, int reserved)
5495 {
5496 spin_lock(&cache->space_info->lock);
5497 spin_lock(&cache->lock);
5498 cache->pinned += num_bytes;
5499 cache->space_info->bytes_pinned += num_bytes;
5500 if (reserved) {
5501 cache->reserved -= num_bytes;
5502 cache->space_info->bytes_reserved -= num_bytes;
5503 }
5504 spin_unlock(&cache->lock);
5505 spin_unlock(&cache->space_info->lock);
5506
5507 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5508 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5509 if (reserved)
5510 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5511 return 0;
5512 }
5513
5514 /*
5515 * this function must be called within transaction
5516 */
5517 int btrfs_pin_extent(struct btrfs_root *root,
5518 u64 bytenr, u64 num_bytes, int reserved)
5519 {
5520 struct btrfs_block_group_cache *cache;
5521
5522 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5523 BUG_ON(!cache); /* Logic error */
5524
5525 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5526
5527 btrfs_put_block_group(cache);
5528 return 0;
5529 }
5530
5531 /*
5532 * this function must be called within transaction
5533 */
5534 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5535 u64 bytenr, u64 num_bytes)
5536 {
5537 struct btrfs_block_group_cache *cache;
5538 int ret;
5539
5540 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5541 if (!cache)
5542 return -EINVAL;
5543
5544 /*
5545 * pull in the free space cache (if any) so that our pin
5546 * removes the free space from the cache. We have load_only set
5547 * to one because the slow code to read in the free extents does check
5548 * the pinned extents.
5549 */
5550 cache_block_group(cache, 1);
5551
5552 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5553
5554 /* remove us from the free space cache (if we're there at all) */
5555 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5556 btrfs_put_block_group(cache);
5557 return ret;
5558 }
5559
5560 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5561 {
5562 int ret;
5563 struct btrfs_block_group_cache *block_group;
5564 struct btrfs_caching_control *caching_ctl;
5565
5566 block_group = btrfs_lookup_block_group(root->fs_info, start);
5567 if (!block_group)
5568 return -EINVAL;
5569
5570 cache_block_group(block_group, 0);
5571 caching_ctl = get_caching_control(block_group);
5572
5573 if (!caching_ctl) {
5574 /* Logic error */
5575 BUG_ON(!block_group_cache_done(block_group));
5576 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5577 } else {
5578 mutex_lock(&caching_ctl->mutex);
5579
5580 if (start >= caching_ctl->progress) {
5581 ret = add_excluded_extent(root, start, num_bytes);
5582 } else if (start + num_bytes <= caching_ctl->progress) {
5583 ret = btrfs_remove_free_space(block_group,
5584 start, num_bytes);
5585 } else {
5586 num_bytes = caching_ctl->progress - start;
5587 ret = btrfs_remove_free_space(block_group,
5588 start, num_bytes);
5589 if (ret)
5590 goto out_lock;
5591
5592 num_bytes = (start + num_bytes) -
5593 caching_ctl->progress;
5594 start = caching_ctl->progress;
5595 ret = add_excluded_extent(root, start, num_bytes);
5596 }
5597 out_lock:
5598 mutex_unlock(&caching_ctl->mutex);
5599 put_caching_control(caching_ctl);
5600 }
5601 btrfs_put_block_group(block_group);
5602 return ret;
5603 }
5604
5605 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5606 struct extent_buffer *eb)
5607 {
5608 struct btrfs_file_extent_item *item;
5609 struct btrfs_key key;
5610 int found_type;
5611 int i;
5612
5613 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5614 return 0;
5615
5616 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5617 btrfs_item_key_to_cpu(eb, &key, i);
5618 if (key.type != BTRFS_EXTENT_DATA_KEY)
5619 continue;
5620 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5621 found_type = btrfs_file_extent_type(eb, item);
5622 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5623 continue;
5624 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5625 continue;
5626 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5627 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5628 __exclude_logged_extent(log, key.objectid, key.offset);
5629 }
5630
5631 return 0;
5632 }
5633
5634 /**
5635 * btrfs_update_reserved_bytes - update the block_group and space info counters
5636 * @cache: The cache we are manipulating
5637 * @num_bytes: The number of bytes in question
5638 * @reserve: One of the reservation enums
5639 * @delalloc: The blocks are allocated for the delalloc write
5640 *
5641 * This is called by the allocator when it reserves space, or by somebody who is
5642 * freeing space that was never actually used on disk. For example if you
5643 * reserve some space for a new leaf in transaction A and before transaction A
5644 * commits you free that leaf, you call this with reserve set to 0 in order to
5645 * clear the reservation.
5646 *
5647 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5648 * ENOSPC accounting. For data we handle the reservation through clearing the
5649 * delalloc bits in the io_tree. We have to do this since we could end up
5650 * allocating less disk space for the amount of data we have reserved in the
5651 * case of compression.
5652 *
5653 * If this is a reservation and the block group has become read only we cannot
5654 * make the reservation and return -EAGAIN, otherwise this function always
5655 * succeeds.
5656 */
5657 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5658 u64 num_bytes, int reserve, int delalloc)
5659 {
5660 struct btrfs_space_info *space_info = cache->space_info;
5661 int ret = 0;
5662
5663 spin_lock(&space_info->lock);
5664 spin_lock(&cache->lock);
5665 if (reserve != RESERVE_FREE) {
5666 if (cache->ro) {
5667 ret = -EAGAIN;
5668 } else {
5669 cache->reserved += num_bytes;
5670 space_info->bytes_reserved += num_bytes;
5671 if (reserve == RESERVE_ALLOC) {
5672 trace_btrfs_space_reservation(cache->fs_info,
5673 "space_info", space_info->flags,
5674 num_bytes, 0);
5675 space_info->bytes_may_use -= num_bytes;
5676 }
5677
5678 if (delalloc)
5679 cache->delalloc_bytes += num_bytes;
5680 }
5681 } else {
5682 if (cache->ro)
5683 space_info->bytes_readonly += num_bytes;
5684 cache->reserved -= num_bytes;
5685 space_info->bytes_reserved -= num_bytes;
5686
5687 if (delalloc)
5688 cache->delalloc_bytes -= num_bytes;
5689 }
5690 spin_unlock(&cache->lock);
5691 spin_unlock(&space_info->lock);
5692 return ret;
5693 }
5694
5695 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5696 struct btrfs_root *root)
5697 {
5698 struct btrfs_fs_info *fs_info = root->fs_info;
5699 struct btrfs_caching_control *next;
5700 struct btrfs_caching_control *caching_ctl;
5701 struct btrfs_block_group_cache *cache;
5702
5703 down_write(&fs_info->commit_root_sem);
5704
5705 list_for_each_entry_safe(caching_ctl, next,
5706 &fs_info->caching_block_groups, list) {
5707 cache = caching_ctl->block_group;
5708 if (block_group_cache_done(cache)) {
5709 cache->last_byte_to_unpin = (u64)-1;
5710 list_del_init(&caching_ctl->list);
5711 put_caching_control(caching_ctl);
5712 } else {
5713 cache->last_byte_to_unpin = caching_ctl->progress;
5714 }
5715 }
5716
5717 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5718 fs_info->pinned_extents = &fs_info->freed_extents[1];
5719 else
5720 fs_info->pinned_extents = &fs_info->freed_extents[0];
5721
5722 up_write(&fs_info->commit_root_sem);
5723
5724 update_global_block_rsv(fs_info);
5725 }
5726
5727 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5728 const bool return_free_space)
5729 {
5730 struct btrfs_fs_info *fs_info = root->fs_info;
5731 struct btrfs_block_group_cache *cache = NULL;
5732 struct btrfs_space_info *space_info;
5733 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5734 u64 len;
5735 bool readonly;
5736
5737 while (start <= end) {
5738 readonly = false;
5739 if (!cache ||
5740 start >= cache->key.objectid + cache->key.offset) {
5741 if (cache)
5742 btrfs_put_block_group(cache);
5743 cache = btrfs_lookup_block_group(fs_info, start);
5744 BUG_ON(!cache); /* Logic error */
5745 }
5746
5747 len = cache->key.objectid + cache->key.offset - start;
5748 len = min(len, end + 1 - start);
5749
5750 if (start < cache->last_byte_to_unpin) {
5751 len = min(len, cache->last_byte_to_unpin - start);
5752 if (return_free_space)
5753 btrfs_add_free_space(cache, start, len);
5754 }
5755
5756 start += len;
5757 space_info = cache->space_info;
5758
5759 spin_lock(&space_info->lock);
5760 spin_lock(&cache->lock);
5761 cache->pinned -= len;
5762 space_info->bytes_pinned -= len;
5763 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5764 if (cache->ro) {
5765 space_info->bytes_readonly += len;
5766 readonly = true;
5767 }
5768 spin_unlock(&cache->lock);
5769 if (!readonly && global_rsv->space_info == space_info) {
5770 spin_lock(&global_rsv->lock);
5771 if (!global_rsv->full) {
5772 len = min(len, global_rsv->size -
5773 global_rsv->reserved);
5774 global_rsv->reserved += len;
5775 space_info->bytes_may_use += len;
5776 if (global_rsv->reserved >= global_rsv->size)
5777 global_rsv->full = 1;
5778 }
5779 spin_unlock(&global_rsv->lock);
5780 }
5781 spin_unlock(&space_info->lock);
5782 }
5783
5784 if (cache)
5785 btrfs_put_block_group(cache);
5786 return 0;
5787 }
5788
5789 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5790 struct btrfs_root *root)
5791 {
5792 struct btrfs_fs_info *fs_info = root->fs_info;
5793 struct extent_io_tree *unpin;
5794 u64 start;
5795 u64 end;
5796 int ret;
5797
5798 if (trans->aborted)
5799 return 0;
5800
5801 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5802 unpin = &fs_info->freed_extents[1];
5803 else
5804 unpin = &fs_info->freed_extents[0];
5805
5806 while (1) {
5807 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5808 ret = find_first_extent_bit(unpin, 0, &start, &end,
5809 EXTENT_DIRTY, NULL);
5810 if (ret) {
5811 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5812 break;
5813 }
5814
5815 if (btrfs_test_opt(root, DISCARD))
5816 ret = btrfs_discard_extent(root, start,
5817 end + 1 - start, NULL);
5818
5819 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5820 unpin_extent_range(root, start, end, true);
5821 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5822 cond_resched();
5823 }
5824
5825 return 0;
5826 }
5827
5828 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5829 u64 owner, u64 root_objectid)
5830 {
5831 struct btrfs_space_info *space_info;
5832 u64 flags;
5833
5834 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5835 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5836 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5837 else
5838 flags = BTRFS_BLOCK_GROUP_METADATA;
5839 } else {
5840 flags = BTRFS_BLOCK_GROUP_DATA;
5841 }
5842
5843 space_info = __find_space_info(fs_info, flags);
5844 BUG_ON(!space_info); /* Logic bug */
5845 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5846 }
5847
5848
5849 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5850 struct btrfs_root *root,
5851 u64 bytenr, u64 num_bytes, u64 parent,
5852 u64 root_objectid, u64 owner_objectid,
5853 u64 owner_offset, int refs_to_drop,
5854 struct btrfs_delayed_extent_op *extent_op,
5855 int no_quota)
5856 {
5857 struct btrfs_key key;
5858 struct btrfs_path *path;
5859 struct btrfs_fs_info *info = root->fs_info;
5860 struct btrfs_root *extent_root = info->extent_root;
5861 struct extent_buffer *leaf;
5862 struct btrfs_extent_item *ei;
5863 struct btrfs_extent_inline_ref *iref;
5864 int ret;
5865 int is_data;
5866 int extent_slot = 0;
5867 int found_extent = 0;
5868 int num_to_del = 1;
5869 u32 item_size;
5870 u64 refs;
5871 int last_ref = 0;
5872 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5873 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5874 SKINNY_METADATA);
5875
5876 if (!info->quota_enabled || !is_fstree(root_objectid))
5877 no_quota = 1;
5878
5879 path = btrfs_alloc_path();
5880 if (!path)
5881 return -ENOMEM;
5882
5883 path->reada = 1;
5884 path->leave_spinning = 1;
5885
5886 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5887 BUG_ON(!is_data && refs_to_drop != 1);
5888
5889 if (is_data)
5890 skinny_metadata = 0;
5891
5892 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5893 bytenr, num_bytes, parent,
5894 root_objectid, owner_objectid,
5895 owner_offset);
5896 if (ret == 0) {
5897 extent_slot = path->slots[0];
5898 while (extent_slot >= 0) {
5899 btrfs_item_key_to_cpu(path->nodes[0], &key,
5900 extent_slot);
5901 if (key.objectid != bytenr)
5902 break;
5903 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5904 key.offset == num_bytes) {
5905 found_extent = 1;
5906 break;
5907 }
5908 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5909 key.offset == owner_objectid) {
5910 found_extent = 1;
5911 break;
5912 }
5913 if (path->slots[0] - extent_slot > 5)
5914 break;
5915 extent_slot--;
5916 }
5917 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5918 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5919 if (found_extent && item_size < sizeof(*ei))
5920 found_extent = 0;
5921 #endif
5922 if (!found_extent) {
5923 BUG_ON(iref);
5924 ret = remove_extent_backref(trans, extent_root, path,
5925 NULL, refs_to_drop,
5926 is_data, &last_ref);
5927 if (ret) {
5928 btrfs_abort_transaction(trans, extent_root, ret);
5929 goto out;
5930 }
5931 btrfs_release_path(path);
5932 path->leave_spinning = 1;
5933
5934 key.objectid = bytenr;
5935 key.type = BTRFS_EXTENT_ITEM_KEY;
5936 key.offset = num_bytes;
5937
5938 if (!is_data && skinny_metadata) {
5939 key.type = BTRFS_METADATA_ITEM_KEY;
5940 key.offset = owner_objectid;
5941 }
5942
5943 ret = btrfs_search_slot(trans, extent_root,
5944 &key, path, -1, 1);
5945 if (ret > 0 && skinny_metadata && path->slots[0]) {
5946 /*
5947 * Couldn't find our skinny metadata item,
5948 * see if we have ye olde extent item.
5949 */
5950 path->slots[0]--;
5951 btrfs_item_key_to_cpu(path->nodes[0], &key,
5952 path->slots[0]);
5953 if (key.objectid == bytenr &&
5954 key.type == BTRFS_EXTENT_ITEM_KEY &&
5955 key.offset == num_bytes)
5956 ret = 0;
5957 }
5958
5959 if (ret > 0 && skinny_metadata) {
5960 skinny_metadata = false;
5961 key.objectid = bytenr;
5962 key.type = BTRFS_EXTENT_ITEM_KEY;
5963 key.offset = num_bytes;
5964 btrfs_release_path(path);
5965 ret = btrfs_search_slot(trans, extent_root,
5966 &key, path, -1, 1);
5967 }
5968
5969 if (ret) {
5970 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5971 ret, bytenr);
5972 if (ret > 0)
5973 btrfs_print_leaf(extent_root,
5974 path->nodes[0]);
5975 }
5976 if (ret < 0) {
5977 btrfs_abort_transaction(trans, extent_root, ret);
5978 goto out;
5979 }
5980 extent_slot = path->slots[0];
5981 }
5982 } else if (WARN_ON(ret == -ENOENT)) {
5983 btrfs_print_leaf(extent_root, path->nodes[0]);
5984 btrfs_err(info,
5985 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5986 bytenr, parent, root_objectid, owner_objectid,
5987 owner_offset);
5988 btrfs_abort_transaction(trans, extent_root, ret);
5989 goto out;
5990 } else {
5991 btrfs_abort_transaction(trans, extent_root, ret);
5992 goto out;
5993 }
5994
5995 leaf = path->nodes[0];
5996 item_size = btrfs_item_size_nr(leaf, extent_slot);
5997 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5998 if (item_size < sizeof(*ei)) {
5999 BUG_ON(found_extent || extent_slot != path->slots[0]);
6000 ret = convert_extent_item_v0(trans, extent_root, path,
6001 owner_objectid, 0);
6002 if (ret < 0) {
6003 btrfs_abort_transaction(trans, extent_root, ret);
6004 goto out;
6005 }
6006
6007 btrfs_release_path(path);
6008 path->leave_spinning = 1;
6009
6010 key.objectid = bytenr;
6011 key.type = BTRFS_EXTENT_ITEM_KEY;
6012 key.offset = num_bytes;
6013
6014 ret = btrfs_search_slot(trans, extent_root, &key, path,
6015 -1, 1);
6016 if (ret) {
6017 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6018 ret, bytenr);
6019 btrfs_print_leaf(extent_root, path->nodes[0]);
6020 }
6021 if (ret < 0) {
6022 btrfs_abort_transaction(trans, extent_root, ret);
6023 goto out;
6024 }
6025
6026 extent_slot = path->slots[0];
6027 leaf = path->nodes[0];
6028 item_size = btrfs_item_size_nr(leaf, extent_slot);
6029 }
6030 #endif
6031 BUG_ON(item_size < sizeof(*ei));
6032 ei = btrfs_item_ptr(leaf, extent_slot,
6033 struct btrfs_extent_item);
6034 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6035 key.type == BTRFS_EXTENT_ITEM_KEY) {
6036 struct btrfs_tree_block_info *bi;
6037 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6038 bi = (struct btrfs_tree_block_info *)(ei + 1);
6039 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6040 }
6041
6042 refs = btrfs_extent_refs(leaf, ei);
6043 if (refs < refs_to_drop) {
6044 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6045 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6046 ret = -EINVAL;
6047 btrfs_abort_transaction(trans, extent_root, ret);
6048 goto out;
6049 }
6050 refs -= refs_to_drop;
6051
6052 if (refs > 0) {
6053 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6054 if (extent_op)
6055 __run_delayed_extent_op(extent_op, leaf, ei);
6056 /*
6057 * In the case of inline back ref, reference count will
6058 * be updated by remove_extent_backref
6059 */
6060 if (iref) {
6061 BUG_ON(!found_extent);
6062 } else {
6063 btrfs_set_extent_refs(leaf, ei, refs);
6064 btrfs_mark_buffer_dirty(leaf);
6065 }
6066 if (found_extent) {
6067 ret = remove_extent_backref(trans, extent_root, path,
6068 iref, refs_to_drop,
6069 is_data, &last_ref);
6070 if (ret) {
6071 btrfs_abort_transaction(trans, extent_root, ret);
6072 goto out;
6073 }
6074 }
6075 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6076 root_objectid);
6077 } else {
6078 if (found_extent) {
6079 BUG_ON(is_data && refs_to_drop !=
6080 extent_data_ref_count(root, path, iref));
6081 if (iref) {
6082 BUG_ON(path->slots[0] != extent_slot);
6083 } else {
6084 BUG_ON(path->slots[0] != extent_slot + 1);
6085 path->slots[0] = extent_slot;
6086 num_to_del = 2;
6087 }
6088 }
6089
6090 last_ref = 1;
6091 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6092 num_to_del);
6093 if (ret) {
6094 btrfs_abort_transaction(trans, extent_root, ret);
6095 goto out;
6096 }
6097 btrfs_release_path(path);
6098
6099 if (is_data) {
6100 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6101 if (ret) {
6102 btrfs_abort_transaction(trans, extent_root, ret);
6103 goto out;
6104 }
6105 }
6106
6107 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6108 if (ret) {
6109 btrfs_abort_transaction(trans, extent_root, ret);
6110 goto out;
6111 }
6112 }
6113 btrfs_release_path(path);
6114
6115 /* Deal with the quota accounting */
6116 if (!ret && last_ref && !no_quota) {
6117 int mod_seq = 0;
6118
6119 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6120 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6121 mod_seq = 1;
6122
6123 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6124 bytenr, num_bytes, type,
6125 mod_seq);
6126 }
6127 out:
6128 btrfs_free_path(path);
6129 return ret;
6130 }
6131
6132 /*
6133 * when we free an block, it is possible (and likely) that we free the last
6134 * delayed ref for that extent as well. This searches the delayed ref tree for
6135 * a given extent, and if there are no other delayed refs to be processed, it
6136 * removes it from the tree.
6137 */
6138 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6139 struct btrfs_root *root, u64 bytenr)
6140 {
6141 struct btrfs_delayed_ref_head *head;
6142 struct btrfs_delayed_ref_root *delayed_refs;
6143 int ret = 0;
6144
6145 delayed_refs = &trans->transaction->delayed_refs;
6146 spin_lock(&delayed_refs->lock);
6147 head = btrfs_find_delayed_ref_head(trans, bytenr);
6148 if (!head)
6149 goto out_delayed_unlock;
6150
6151 spin_lock(&head->lock);
6152 if (rb_first(&head->ref_root))
6153 goto out;
6154
6155 if (head->extent_op) {
6156 if (!head->must_insert_reserved)
6157 goto out;
6158 btrfs_free_delayed_extent_op(head->extent_op);
6159 head->extent_op = NULL;
6160 }
6161
6162 /*
6163 * waiting for the lock here would deadlock. If someone else has it
6164 * locked they are already in the process of dropping it anyway
6165 */
6166 if (!mutex_trylock(&head->mutex))
6167 goto out;
6168
6169 /*
6170 * at this point we have a head with no other entries. Go
6171 * ahead and process it.
6172 */
6173 head->node.in_tree = 0;
6174 rb_erase(&head->href_node, &delayed_refs->href_root);
6175
6176 atomic_dec(&delayed_refs->num_entries);
6177
6178 /*
6179 * we don't take a ref on the node because we're removing it from the
6180 * tree, so we just steal the ref the tree was holding.
6181 */
6182 delayed_refs->num_heads--;
6183 if (head->processing == 0)
6184 delayed_refs->num_heads_ready--;
6185 head->processing = 0;
6186 spin_unlock(&head->lock);
6187 spin_unlock(&delayed_refs->lock);
6188
6189 BUG_ON(head->extent_op);
6190 if (head->must_insert_reserved)
6191 ret = 1;
6192
6193 mutex_unlock(&head->mutex);
6194 btrfs_put_delayed_ref(&head->node);
6195 return ret;
6196 out:
6197 spin_unlock(&head->lock);
6198
6199 out_delayed_unlock:
6200 spin_unlock(&delayed_refs->lock);
6201 return 0;
6202 }
6203
6204 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6205 struct btrfs_root *root,
6206 struct extent_buffer *buf,
6207 u64 parent, int last_ref)
6208 {
6209 int pin = 1;
6210 int ret;
6211
6212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6213 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6214 buf->start, buf->len,
6215 parent, root->root_key.objectid,
6216 btrfs_header_level(buf),
6217 BTRFS_DROP_DELAYED_REF, NULL, 0);
6218 BUG_ON(ret); /* -ENOMEM */
6219 }
6220
6221 if (!last_ref)
6222 return;
6223
6224 if (btrfs_header_generation(buf) == trans->transid) {
6225 struct btrfs_block_group_cache *cache;
6226
6227 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6228 ret = check_ref_cleanup(trans, root, buf->start);
6229 if (!ret)
6230 goto out;
6231 }
6232
6233 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6234
6235 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6236 pin_down_extent(root, cache, buf->start, buf->len, 1);
6237 btrfs_put_block_group(cache);
6238 goto out;
6239 }
6240
6241 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6242
6243 btrfs_add_free_space(cache, buf->start, buf->len);
6244 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6245 btrfs_put_block_group(cache);
6246 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6247 pin = 0;
6248 }
6249 out:
6250 if (pin)
6251 add_pinned_bytes(root->fs_info, buf->len,
6252 btrfs_header_level(buf),
6253 root->root_key.objectid);
6254
6255 /*
6256 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6257 * anymore.
6258 */
6259 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6260 }
6261
6262 /* Can return -ENOMEM */
6263 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6264 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6265 u64 owner, u64 offset, int no_quota)
6266 {
6267 int ret;
6268 struct btrfs_fs_info *fs_info = root->fs_info;
6269
6270 if (btrfs_test_is_dummy_root(root))
6271 return 0;
6272
6273 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6274
6275 /*
6276 * tree log blocks never actually go into the extent allocation
6277 * tree, just update pinning info and exit early.
6278 */
6279 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6280 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6281 /* unlocks the pinned mutex */
6282 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6283 ret = 0;
6284 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6285 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6286 num_bytes,
6287 parent, root_objectid, (int)owner,
6288 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6289 } else {
6290 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6291 num_bytes,
6292 parent, root_objectid, owner,
6293 offset, BTRFS_DROP_DELAYED_REF,
6294 NULL, no_quota);
6295 }
6296 return ret;
6297 }
6298
6299 /*
6300 * when we wait for progress in the block group caching, its because
6301 * our allocation attempt failed at least once. So, we must sleep
6302 * and let some progress happen before we try again.
6303 *
6304 * This function will sleep at least once waiting for new free space to
6305 * show up, and then it will check the block group free space numbers
6306 * for our min num_bytes. Another option is to have it go ahead
6307 * and look in the rbtree for a free extent of a given size, but this
6308 * is a good start.
6309 *
6310 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6311 * any of the information in this block group.
6312 */
6313 static noinline void
6314 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6315 u64 num_bytes)
6316 {
6317 struct btrfs_caching_control *caching_ctl;
6318
6319 caching_ctl = get_caching_control(cache);
6320 if (!caching_ctl)
6321 return;
6322
6323 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6324 (cache->free_space_ctl->free_space >= num_bytes));
6325
6326 put_caching_control(caching_ctl);
6327 }
6328
6329 static noinline int
6330 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6331 {
6332 struct btrfs_caching_control *caching_ctl;
6333 int ret = 0;
6334
6335 caching_ctl = get_caching_control(cache);
6336 if (!caching_ctl)
6337 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6338
6339 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6340 if (cache->cached == BTRFS_CACHE_ERROR)
6341 ret = -EIO;
6342 put_caching_control(caching_ctl);
6343 return ret;
6344 }
6345
6346 int __get_raid_index(u64 flags)
6347 {
6348 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6349 return BTRFS_RAID_RAID10;
6350 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6351 return BTRFS_RAID_RAID1;
6352 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6353 return BTRFS_RAID_DUP;
6354 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6355 return BTRFS_RAID_RAID0;
6356 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6357 return BTRFS_RAID_RAID5;
6358 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6359 return BTRFS_RAID_RAID6;
6360
6361 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6362 }
6363
6364 int get_block_group_index(struct btrfs_block_group_cache *cache)
6365 {
6366 return __get_raid_index(cache->flags);
6367 }
6368
6369 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6370 [BTRFS_RAID_RAID10] = "raid10",
6371 [BTRFS_RAID_RAID1] = "raid1",
6372 [BTRFS_RAID_DUP] = "dup",
6373 [BTRFS_RAID_RAID0] = "raid0",
6374 [BTRFS_RAID_SINGLE] = "single",
6375 [BTRFS_RAID_RAID5] = "raid5",
6376 [BTRFS_RAID_RAID6] = "raid6",
6377 };
6378
6379 static const char *get_raid_name(enum btrfs_raid_types type)
6380 {
6381 if (type >= BTRFS_NR_RAID_TYPES)
6382 return NULL;
6383
6384 return btrfs_raid_type_names[type];
6385 }
6386
6387 enum btrfs_loop_type {
6388 LOOP_CACHING_NOWAIT = 0,
6389 LOOP_CACHING_WAIT = 1,
6390 LOOP_ALLOC_CHUNK = 2,
6391 LOOP_NO_EMPTY_SIZE = 3,
6392 };
6393
6394 static inline void
6395 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6396 int delalloc)
6397 {
6398 if (delalloc)
6399 down_read(&cache->data_rwsem);
6400 }
6401
6402 static inline void
6403 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6404 int delalloc)
6405 {
6406 btrfs_get_block_group(cache);
6407 if (delalloc)
6408 down_read(&cache->data_rwsem);
6409 }
6410
6411 static struct btrfs_block_group_cache *
6412 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6413 struct btrfs_free_cluster *cluster,
6414 int delalloc)
6415 {
6416 struct btrfs_block_group_cache *used_bg;
6417 bool locked = false;
6418 again:
6419 spin_lock(&cluster->refill_lock);
6420 if (locked) {
6421 if (used_bg == cluster->block_group)
6422 return used_bg;
6423
6424 up_read(&used_bg->data_rwsem);
6425 btrfs_put_block_group(used_bg);
6426 }
6427
6428 used_bg = cluster->block_group;
6429 if (!used_bg)
6430 return NULL;
6431
6432 if (used_bg == block_group)
6433 return used_bg;
6434
6435 btrfs_get_block_group(used_bg);
6436
6437 if (!delalloc)
6438 return used_bg;
6439
6440 if (down_read_trylock(&used_bg->data_rwsem))
6441 return used_bg;
6442
6443 spin_unlock(&cluster->refill_lock);
6444 down_read(&used_bg->data_rwsem);
6445 locked = true;
6446 goto again;
6447 }
6448
6449 static inline void
6450 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6451 int delalloc)
6452 {
6453 if (delalloc)
6454 up_read(&cache->data_rwsem);
6455 btrfs_put_block_group(cache);
6456 }
6457
6458 /*
6459 * walks the btree of allocated extents and find a hole of a given size.
6460 * The key ins is changed to record the hole:
6461 * ins->objectid == start position
6462 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6463 * ins->offset == the size of the hole.
6464 * Any available blocks before search_start are skipped.
6465 *
6466 * If there is no suitable free space, we will record the max size of
6467 * the free space extent currently.
6468 */
6469 static noinline int find_free_extent(struct btrfs_root *orig_root,
6470 u64 num_bytes, u64 empty_size,
6471 u64 hint_byte, struct btrfs_key *ins,
6472 u64 flags, int delalloc)
6473 {
6474 int ret = 0;
6475 struct btrfs_root *root = orig_root->fs_info->extent_root;
6476 struct btrfs_free_cluster *last_ptr = NULL;
6477 struct btrfs_block_group_cache *block_group = NULL;
6478 u64 search_start = 0;
6479 u64 max_extent_size = 0;
6480 int empty_cluster = 2 * 1024 * 1024;
6481 struct btrfs_space_info *space_info;
6482 int loop = 0;
6483 int index = __get_raid_index(flags);
6484 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6485 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6486 bool failed_cluster_refill = false;
6487 bool failed_alloc = false;
6488 bool use_cluster = true;
6489 bool have_caching_bg = false;
6490
6491 WARN_ON(num_bytes < root->sectorsize);
6492 ins->type = BTRFS_EXTENT_ITEM_KEY;
6493 ins->objectid = 0;
6494 ins->offset = 0;
6495
6496 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6497
6498 space_info = __find_space_info(root->fs_info, flags);
6499 if (!space_info) {
6500 btrfs_err(root->fs_info, "No space info for %llu", flags);
6501 return -ENOSPC;
6502 }
6503
6504 /*
6505 * If the space info is for both data and metadata it means we have a
6506 * small filesystem and we can't use the clustering stuff.
6507 */
6508 if (btrfs_mixed_space_info(space_info))
6509 use_cluster = false;
6510
6511 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6512 last_ptr = &root->fs_info->meta_alloc_cluster;
6513 if (!btrfs_test_opt(root, SSD))
6514 empty_cluster = 64 * 1024;
6515 }
6516
6517 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6518 btrfs_test_opt(root, SSD)) {
6519 last_ptr = &root->fs_info->data_alloc_cluster;
6520 }
6521
6522 if (last_ptr) {
6523 spin_lock(&last_ptr->lock);
6524 if (last_ptr->block_group)
6525 hint_byte = last_ptr->window_start;
6526 spin_unlock(&last_ptr->lock);
6527 }
6528
6529 search_start = max(search_start, first_logical_byte(root, 0));
6530 search_start = max(search_start, hint_byte);
6531
6532 if (!last_ptr)
6533 empty_cluster = 0;
6534
6535 if (search_start == hint_byte) {
6536 block_group = btrfs_lookup_block_group(root->fs_info,
6537 search_start);
6538 /*
6539 * we don't want to use the block group if it doesn't match our
6540 * allocation bits, or if its not cached.
6541 *
6542 * However if we are re-searching with an ideal block group
6543 * picked out then we don't care that the block group is cached.
6544 */
6545 if (block_group && block_group_bits(block_group, flags) &&
6546 block_group->cached != BTRFS_CACHE_NO) {
6547 down_read(&space_info->groups_sem);
6548 if (list_empty(&block_group->list) ||
6549 block_group->ro) {
6550 /*
6551 * someone is removing this block group,
6552 * we can't jump into the have_block_group
6553 * target because our list pointers are not
6554 * valid
6555 */
6556 btrfs_put_block_group(block_group);
6557 up_read(&space_info->groups_sem);
6558 } else {
6559 index = get_block_group_index(block_group);
6560 btrfs_lock_block_group(block_group, delalloc);
6561 goto have_block_group;
6562 }
6563 } else if (block_group) {
6564 btrfs_put_block_group(block_group);
6565 }
6566 }
6567 search:
6568 have_caching_bg = false;
6569 down_read(&space_info->groups_sem);
6570 list_for_each_entry(block_group, &space_info->block_groups[index],
6571 list) {
6572 u64 offset;
6573 int cached;
6574
6575 btrfs_grab_block_group(block_group, delalloc);
6576 search_start = block_group->key.objectid;
6577
6578 /*
6579 * this can happen if we end up cycling through all the
6580 * raid types, but we want to make sure we only allocate
6581 * for the proper type.
6582 */
6583 if (!block_group_bits(block_group, flags)) {
6584 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6585 BTRFS_BLOCK_GROUP_RAID1 |
6586 BTRFS_BLOCK_GROUP_RAID5 |
6587 BTRFS_BLOCK_GROUP_RAID6 |
6588 BTRFS_BLOCK_GROUP_RAID10;
6589
6590 /*
6591 * if they asked for extra copies and this block group
6592 * doesn't provide them, bail. This does allow us to
6593 * fill raid0 from raid1.
6594 */
6595 if ((flags & extra) && !(block_group->flags & extra))
6596 goto loop;
6597 }
6598
6599 have_block_group:
6600 cached = block_group_cache_done(block_group);
6601 if (unlikely(!cached)) {
6602 ret = cache_block_group(block_group, 0);
6603 BUG_ON(ret < 0);
6604 ret = 0;
6605 }
6606
6607 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6608 goto loop;
6609 if (unlikely(block_group->ro))
6610 goto loop;
6611
6612 /*
6613 * Ok we want to try and use the cluster allocator, so
6614 * lets look there
6615 */
6616 if (last_ptr) {
6617 struct btrfs_block_group_cache *used_block_group;
6618 unsigned long aligned_cluster;
6619 /*
6620 * the refill lock keeps out other
6621 * people trying to start a new cluster
6622 */
6623 used_block_group = btrfs_lock_cluster(block_group,
6624 last_ptr,
6625 delalloc);
6626 if (!used_block_group)
6627 goto refill_cluster;
6628
6629 if (used_block_group != block_group &&
6630 (used_block_group->ro ||
6631 !block_group_bits(used_block_group, flags)))
6632 goto release_cluster;
6633
6634 offset = btrfs_alloc_from_cluster(used_block_group,
6635 last_ptr,
6636 num_bytes,
6637 used_block_group->key.objectid,
6638 &max_extent_size);
6639 if (offset) {
6640 /* we have a block, we're done */
6641 spin_unlock(&last_ptr->refill_lock);
6642 trace_btrfs_reserve_extent_cluster(root,
6643 used_block_group,
6644 search_start, num_bytes);
6645 if (used_block_group != block_group) {
6646 btrfs_release_block_group(block_group,
6647 delalloc);
6648 block_group = used_block_group;
6649 }
6650 goto checks;
6651 }
6652
6653 WARN_ON(last_ptr->block_group != used_block_group);
6654 release_cluster:
6655 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6656 * set up a new clusters, so lets just skip it
6657 * and let the allocator find whatever block
6658 * it can find. If we reach this point, we
6659 * will have tried the cluster allocator
6660 * plenty of times and not have found
6661 * anything, so we are likely way too
6662 * fragmented for the clustering stuff to find
6663 * anything.
6664 *
6665 * However, if the cluster is taken from the
6666 * current block group, release the cluster
6667 * first, so that we stand a better chance of
6668 * succeeding in the unclustered
6669 * allocation. */
6670 if (loop >= LOOP_NO_EMPTY_SIZE &&
6671 used_block_group != block_group) {
6672 spin_unlock(&last_ptr->refill_lock);
6673 btrfs_release_block_group(used_block_group,
6674 delalloc);
6675 goto unclustered_alloc;
6676 }
6677
6678 /*
6679 * this cluster didn't work out, free it and
6680 * start over
6681 */
6682 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6683
6684 if (used_block_group != block_group)
6685 btrfs_release_block_group(used_block_group,
6686 delalloc);
6687 refill_cluster:
6688 if (loop >= LOOP_NO_EMPTY_SIZE) {
6689 spin_unlock(&last_ptr->refill_lock);
6690 goto unclustered_alloc;
6691 }
6692
6693 aligned_cluster = max_t(unsigned long,
6694 empty_cluster + empty_size,
6695 block_group->full_stripe_len);
6696
6697 /* allocate a cluster in this block group */
6698 ret = btrfs_find_space_cluster(root, block_group,
6699 last_ptr, search_start,
6700 num_bytes,
6701 aligned_cluster);
6702 if (ret == 0) {
6703 /*
6704 * now pull our allocation out of this
6705 * cluster
6706 */
6707 offset = btrfs_alloc_from_cluster(block_group,
6708 last_ptr,
6709 num_bytes,
6710 search_start,
6711 &max_extent_size);
6712 if (offset) {
6713 /* we found one, proceed */
6714 spin_unlock(&last_ptr->refill_lock);
6715 trace_btrfs_reserve_extent_cluster(root,
6716 block_group, search_start,
6717 num_bytes);
6718 goto checks;
6719 }
6720 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6721 && !failed_cluster_refill) {
6722 spin_unlock(&last_ptr->refill_lock);
6723
6724 failed_cluster_refill = true;
6725 wait_block_group_cache_progress(block_group,
6726 num_bytes + empty_cluster + empty_size);
6727 goto have_block_group;
6728 }
6729
6730 /*
6731 * at this point we either didn't find a cluster
6732 * or we weren't able to allocate a block from our
6733 * cluster. Free the cluster we've been trying
6734 * to use, and go to the next block group
6735 */
6736 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6737 spin_unlock(&last_ptr->refill_lock);
6738 goto loop;
6739 }
6740
6741 unclustered_alloc:
6742 spin_lock(&block_group->free_space_ctl->tree_lock);
6743 if (cached &&
6744 block_group->free_space_ctl->free_space <
6745 num_bytes + empty_cluster + empty_size) {
6746 if (block_group->free_space_ctl->free_space >
6747 max_extent_size)
6748 max_extent_size =
6749 block_group->free_space_ctl->free_space;
6750 spin_unlock(&block_group->free_space_ctl->tree_lock);
6751 goto loop;
6752 }
6753 spin_unlock(&block_group->free_space_ctl->tree_lock);
6754
6755 offset = btrfs_find_space_for_alloc(block_group, search_start,
6756 num_bytes, empty_size,
6757 &max_extent_size);
6758 /*
6759 * If we didn't find a chunk, and we haven't failed on this
6760 * block group before, and this block group is in the middle of
6761 * caching and we are ok with waiting, then go ahead and wait
6762 * for progress to be made, and set failed_alloc to true.
6763 *
6764 * If failed_alloc is true then we've already waited on this
6765 * block group once and should move on to the next block group.
6766 */
6767 if (!offset && !failed_alloc && !cached &&
6768 loop > LOOP_CACHING_NOWAIT) {
6769 wait_block_group_cache_progress(block_group,
6770 num_bytes + empty_size);
6771 failed_alloc = true;
6772 goto have_block_group;
6773 } else if (!offset) {
6774 if (!cached)
6775 have_caching_bg = true;
6776 goto loop;
6777 }
6778 checks:
6779 search_start = ALIGN(offset, root->stripesize);
6780
6781 /* move on to the next group */
6782 if (search_start + num_bytes >
6783 block_group->key.objectid + block_group->key.offset) {
6784 btrfs_add_free_space(block_group, offset, num_bytes);
6785 goto loop;
6786 }
6787
6788 if (offset < search_start)
6789 btrfs_add_free_space(block_group, offset,
6790 search_start - offset);
6791 BUG_ON(offset > search_start);
6792
6793 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6794 alloc_type, delalloc);
6795 if (ret == -EAGAIN) {
6796 btrfs_add_free_space(block_group, offset, num_bytes);
6797 goto loop;
6798 }
6799
6800 /* we are all good, lets return */
6801 ins->objectid = search_start;
6802 ins->offset = num_bytes;
6803
6804 trace_btrfs_reserve_extent(orig_root, block_group,
6805 search_start, num_bytes);
6806 btrfs_release_block_group(block_group, delalloc);
6807 break;
6808 loop:
6809 failed_cluster_refill = false;
6810 failed_alloc = false;
6811 BUG_ON(index != get_block_group_index(block_group));
6812 btrfs_release_block_group(block_group, delalloc);
6813 }
6814 up_read(&space_info->groups_sem);
6815
6816 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6817 goto search;
6818
6819 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6820 goto search;
6821
6822 /*
6823 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6824 * caching kthreads as we move along
6825 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6826 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6827 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6828 * again
6829 */
6830 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6831 index = 0;
6832 loop++;
6833 if (loop == LOOP_ALLOC_CHUNK) {
6834 struct btrfs_trans_handle *trans;
6835 int exist = 0;
6836
6837 trans = current->journal_info;
6838 if (trans)
6839 exist = 1;
6840 else
6841 trans = btrfs_join_transaction(root);
6842
6843 if (IS_ERR(trans)) {
6844 ret = PTR_ERR(trans);
6845 goto out;
6846 }
6847
6848 ret = do_chunk_alloc(trans, root, flags,
6849 CHUNK_ALLOC_FORCE);
6850 /*
6851 * Do not bail out on ENOSPC since we
6852 * can do more things.
6853 */
6854 if (ret < 0 && ret != -ENOSPC)
6855 btrfs_abort_transaction(trans,
6856 root, ret);
6857 else
6858 ret = 0;
6859 if (!exist)
6860 btrfs_end_transaction(trans, root);
6861 if (ret)
6862 goto out;
6863 }
6864
6865 if (loop == LOOP_NO_EMPTY_SIZE) {
6866 empty_size = 0;
6867 empty_cluster = 0;
6868 }
6869
6870 goto search;
6871 } else if (!ins->objectid) {
6872 ret = -ENOSPC;
6873 } else if (ins->objectid) {
6874 ret = 0;
6875 }
6876 out:
6877 if (ret == -ENOSPC)
6878 ins->offset = max_extent_size;
6879 return ret;
6880 }
6881
6882 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6883 int dump_block_groups)
6884 {
6885 struct btrfs_block_group_cache *cache;
6886 int index = 0;
6887
6888 spin_lock(&info->lock);
6889 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6890 info->flags,
6891 info->total_bytes - info->bytes_used - info->bytes_pinned -
6892 info->bytes_reserved - info->bytes_readonly,
6893 (info->full) ? "" : "not ");
6894 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6895 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6896 info->total_bytes, info->bytes_used, info->bytes_pinned,
6897 info->bytes_reserved, info->bytes_may_use,
6898 info->bytes_readonly);
6899 spin_unlock(&info->lock);
6900
6901 if (!dump_block_groups)
6902 return;
6903
6904 down_read(&info->groups_sem);
6905 again:
6906 list_for_each_entry(cache, &info->block_groups[index], list) {
6907 spin_lock(&cache->lock);
6908 printk(KERN_INFO "BTRFS: "
6909 "block group %llu has %llu bytes, "
6910 "%llu used %llu pinned %llu reserved %s\n",
6911 cache->key.objectid, cache->key.offset,
6912 btrfs_block_group_used(&cache->item), cache->pinned,
6913 cache->reserved, cache->ro ? "[readonly]" : "");
6914 btrfs_dump_free_space(cache, bytes);
6915 spin_unlock(&cache->lock);
6916 }
6917 if (++index < BTRFS_NR_RAID_TYPES)
6918 goto again;
6919 up_read(&info->groups_sem);
6920 }
6921
6922 int btrfs_reserve_extent(struct btrfs_root *root,
6923 u64 num_bytes, u64 min_alloc_size,
6924 u64 empty_size, u64 hint_byte,
6925 struct btrfs_key *ins, int is_data, int delalloc)
6926 {
6927 bool final_tried = false;
6928 u64 flags;
6929 int ret;
6930
6931 flags = btrfs_get_alloc_profile(root, is_data);
6932 again:
6933 WARN_ON(num_bytes < root->sectorsize);
6934 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6935 flags, delalloc);
6936
6937 if (ret == -ENOSPC) {
6938 if (!final_tried && ins->offset) {
6939 num_bytes = min(num_bytes >> 1, ins->offset);
6940 num_bytes = round_down(num_bytes, root->sectorsize);
6941 num_bytes = max(num_bytes, min_alloc_size);
6942 if (num_bytes == min_alloc_size)
6943 final_tried = true;
6944 goto again;
6945 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6946 struct btrfs_space_info *sinfo;
6947
6948 sinfo = __find_space_info(root->fs_info, flags);
6949 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6950 flags, num_bytes);
6951 if (sinfo)
6952 dump_space_info(sinfo, num_bytes, 1);
6953 }
6954 }
6955
6956 return ret;
6957 }
6958
6959 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6960 u64 start, u64 len,
6961 int pin, int delalloc)
6962 {
6963 struct btrfs_block_group_cache *cache;
6964 int ret = 0;
6965
6966 cache = btrfs_lookup_block_group(root->fs_info, start);
6967 if (!cache) {
6968 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6969 start);
6970 return -ENOSPC;
6971 }
6972
6973 if (pin)
6974 pin_down_extent(root, cache, start, len, 1);
6975 else {
6976 if (btrfs_test_opt(root, DISCARD))
6977 ret = btrfs_discard_extent(root, start, len, NULL);
6978 btrfs_add_free_space(cache, start, len);
6979 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6980 }
6981 btrfs_put_block_group(cache);
6982
6983 trace_btrfs_reserved_extent_free(root, start, len);
6984
6985 return ret;
6986 }
6987
6988 int btrfs_free_reserved_extent(struct btrfs_root *root,
6989 u64 start, u64 len, int delalloc)
6990 {
6991 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6992 }
6993
6994 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6995 u64 start, u64 len)
6996 {
6997 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6998 }
6999
7000 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7001 struct btrfs_root *root,
7002 u64 parent, u64 root_objectid,
7003 u64 flags, u64 owner, u64 offset,
7004 struct btrfs_key *ins, int ref_mod)
7005 {
7006 int ret;
7007 struct btrfs_fs_info *fs_info = root->fs_info;
7008 struct btrfs_extent_item *extent_item;
7009 struct btrfs_extent_inline_ref *iref;
7010 struct btrfs_path *path;
7011 struct extent_buffer *leaf;
7012 int type;
7013 u32 size;
7014
7015 if (parent > 0)
7016 type = BTRFS_SHARED_DATA_REF_KEY;
7017 else
7018 type = BTRFS_EXTENT_DATA_REF_KEY;
7019
7020 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7021
7022 path = btrfs_alloc_path();
7023 if (!path)
7024 return -ENOMEM;
7025
7026 path->leave_spinning = 1;
7027 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7028 ins, size);
7029 if (ret) {
7030 btrfs_free_path(path);
7031 return ret;
7032 }
7033
7034 leaf = path->nodes[0];
7035 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7036 struct btrfs_extent_item);
7037 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7038 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7039 btrfs_set_extent_flags(leaf, extent_item,
7040 flags | BTRFS_EXTENT_FLAG_DATA);
7041
7042 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7043 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7044 if (parent > 0) {
7045 struct btrfs_shared_data_ref *ref;
7046 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7048 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7049 } else {
7050 struct btrfs_extent_data_ref *ref;
7051 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7052 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7053 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7054 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7055 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7056 }
7057
7058 btrfs_mark_buffer_dirty(path->nodes[0]);
7059 btrfs_free_path(path);
7060
7061 /* Always set parent to 0 here since its exclusive anyway. */
7062 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7063 ins->objectid, ins->offset,
7064 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7065 if (ret)
7066 return ret;
7067
7068 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7069 if (ret) { /* -ENOENT, logic error */
7070 btrfs_err(fs_info, "update block group failed for %llu %llu",
7071 ins->objectid, ins->offset);
7072 BUG();
7073 }
7074 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7075 return ret;
7076 }
7077
7078 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7079 struct btrfs_root *root,
7080 u64 parent, u64 root_objectid,
7081 u64 flags, struct btrfs_disk_key *key,
7082 int level, struct btrfs_key *ins,
7083 int no_quota)
7084 {
7085 int ret;
7086 struct btrfs_fs_info *fs_info = root->fs_info;
7087 struct btrfs_extent_item *extent_item;
7088 struct btrfs_tree_block_info *block_info;
7089 struct btrfs_extent_inline_ref *iref;
7090 struct btrfs_path *path;
7091 struct extent_buffer *leaf;
7092 u32 size = sizeof(*extent_item) + sizeof(*iref);
7093 u64 num_bytes = ins->offset;
7094 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7095 SKINNY_METADATA);
7096
7097 if (!skinny_metadata)
7098 size += sizeof(*block_info);
7099
7100 path = btrfs_alloc_path();
7101 if (!path) {
7102 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7103 root->nodesize);
7104 return -ENOMEM;
7105 }
7106
7107 path->leave_spinning = 1;
7108 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7109 ins, size);
7110 if (ret) {
7111 btrfs_free_path(path);
7112 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7113 root->nodesize);
7114 return ret;
7115 }
7116
7117 leaf = path->nodes[0];
7118 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7119 struct btrfs_extent_item);
7120 btrfs_set_extent_refs(leaf, extent_item, 1);
7121 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7122 btrfs_set_extent_flags(leaf, extent_item,
7123 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7124
7125 if (skinny_metadata) {
7126 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7127 num_bytes = root->nodesize;
7128 } else {
7129 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7130 btrfs_set_tree_block_key(leaf, block_info, key);
7131 btrfs_set_tree_block_level(leaf, block_info, level);
7132 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7133 }
7134
7135 if (parent > 0) {
7136 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7137 btrfs_set_extent_inline_ref_type(leaf, iref,
7138 BTRFS_SHARED_BLOCK_REF_KEY);
7139 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7140 } else {
7141 btrfs_set_extent_inline_ref_type(leaf, iref,
7142 BTRFS_TREE_BLOCK_REF_KEY);
7143 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7144 }
7145
7146 btrfs_mark_buffer_dirty(leaf);
7147 btrfs_free_path(path);
7148
7149 if (!no_quota) {
7150 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7151 ins->objectid, num_bytes,
7152 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7153 if (ret)
7154 return ret;
7155 }
7156
7157 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7158 1);
7159 if (ret) { /* -ENOENT, logic error */
7160 btrfs_err(fs_info, "update block group failed for %llu %llu",
7161 ins->objectid, ins->offset);
7162 BUG();
7163 }
7164
7165 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7166 return ret;
7167 }
7168
7169 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7170 struct btrfs_root *root,
7171 u64 root_objectid, u64 owner,
7172 u64 offset, struct btrfs_key *ins)
7173 {
7174 int ret;
7175
7176 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7177
7178 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7179 ins->offset, 0,
7180 root_objectid, owner, offset,
7181 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7182 return ret;
7183 }
7184
7185 /*
7186 * this is used by the tree logging recovery code. It records that
7187 * an extent has been allocated and makes sure to clear the free
7188 * space cache bits as well
7189 */
7190 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7191 struct btrfs_root *root,
7192 u64 root_objectid, u64 owner, u64 offset,
7193 struct btrfs_key *ins)
7194 {
7195 int ret;
7196 struct btrfs_block_group_cache *block_group;
7197
7198 /*
7199 * Mixed block groups will exclude before processing the log so we only
7200 * need to do the exlude dance if this fs isn't mixed.
7201 */
7202 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7203 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7204 if (ret)
7205 return ret;
7206 }
7207
7208 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7209 if (!block_group)
7210 return -EINVAL;
7211
7212 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7213 RESERVE_ALLOC_NO_ACCOUNT, 0);
7214 BUG_ON(ret); /* logic error */
7215 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7216 0, owner, offset, ins, 1);
7217 btrfs_put_block_group(block_group);
7218 return ret;
7219 }
7220
7221 static struct extent_buffer *
7222 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7223 u64 bytenr, int level)
7224 {
7225 struct extent_buffer *buf;
7226
7227 buf = btrfs_find_create_tree_block(root, bytenr);
7228 if (!buf)
7229 return ERR_PTR(-ENOMEM);
7230 btrfs_set_header_generation(buf, trans->transid);
7231 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7232 btrfs_tree_lock(buf);
7233 clean_tree_block(trans, root->fs_info, buf);
7234 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7235
7236 btrfs_set_lock_blocking(buf);
7237 btrfs_set_buffer_uptodate(buf);
7238
7239 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7240 buf->log_index = root->log_transid % 2;
7241 /*
7242 * we allow two log transactions at a time, use different
7243 * EXENT bit to differentiate dirty pages.
7244 */
7245 if (buf->log_index == 0)
7246 set_extent_dirty(&root->dirty_log_pages, buf->start,
7247 buf->start + buf->len - 1, GFP_NOFS);
7248 else
7249 set_extent_new(&root->dirty_log_pages, buf->start,
7250 buf->start + buf->len - 1, GFP_NOFS);
7251 } else {
7252 buf->log_index = -1;
7253 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7254 buf->start + buf->len - 1, GFP_NOFS);
7255 }
7256 trans->blocks_used++;
7257 /* this returns a buffer locked for blocking */
7258 return buf;
7259 }
7260
7261 static struct btrfs_block_rsv *
7262 use_block_rsv(struct btrfs_trans_handle *trans,
7263 struct btrfs_root *root, u32 blocksize)
7264 {
7265 struct btrfs_block_rsv *block_rsv;
7266 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7267 int ret;
7268 bool global_updated = false;
7269
7270 block_rsv = get_block_rsv(trans, root);
7271
7272 if (unlikely(block_rsv->size == 0))
7273 goto try_reserve;
7274 again:
7275 ret = block_rsv_use_bytes(block_rsv, blocksize);
7276 if (!ret)
7277 return block_rsv;
7278
7279 if (block_rsv->failfast)
7280 return ERR_PTR(ret);
7281
7282 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7283 global_updated = true;
7284 update_global_block_rsv(root->fs_info);
7285 goto again;
7286 }
7287
7288 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7289 static DEFINE_RATELIMIT_STATE(_rs,
7290 DEFAULT_RATELIMIT_INTERVAL * 10,
7291 /*DEFAULT_RATELIMIT_BURST*/ 1);
7292 if (__ratelimit(&_rs))
7293 WARN(1, KERN_DEBUG
7294 "BTRFS: block rsv returned %d\n", ret);
7295 }
7296 try_reserve:
7297 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7298 BTRFS_RESERVE_NO_FLUSH);
7299 if (!ret)
7300 return block_rsv;
7301 /*
7302 * If we couldn't reserve metadata bytes try and use some from
7303 * the global reserve if its space type is the same as the global
7304 * reservation.
7305 */
7306 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7307 block_rsv->space_info == global_rsv->space_info) {
7308 ret = block_rsv_use_bytes(global_rsv, blocksize);
7309 if (!ret)
7310 return global_rsv;
7311 }
7312 return ERR_PTR(ret);
7313 }
7314
7315 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7316 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7317 {
7318 block_rsv_add_bytes(block_rsv, blocksize, 0);
7319 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7320 }
7321
7322 /*
7323 * finds a free extent and does all the dirty work required for allocation
7324 * returns the key for the extent through ins, and a tree buffer for
7325 * the first block of the extent through buf.
7326 *
7327 * returns the tree buffer or NULL.
7328 */
7329 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7330 struct btrfs_root *root,
7331 u64 parent, u64 root_objectid,
7332 struct btrfs_disk_key *key, int level,
7333 u64 hint, u64 empty_size)
7334 {
7335 struct btrfs_key ins;
7336 struct btrfs_block_rsv *block_rsv;
7337 struct extent_buffer *buf;
7338 u64 flags = 0;
7339 int ret;
7340 u32 blocksize = root->nodesize;
7341 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7342 SKINNY_METADATA);
7343
7344 if (btrfs_test_is_dummy_root(root)) {
7345 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7346 level);
7347 if (!IS_ERR(buf))
7348 root->alloc_bytenr += blocksize;
7349 return buf;
7350 }
7351
7352 block_rsv = use_block_rsv(trans, root, blocksize);
7353 if (IS_ERR(block_rsv))
7354 return ERR_CAST(block_rsv);
7355
7356 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7357 empty_size, hint, &ins, 0, 0);
7358 if (ret) {
7359 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7360 return ERR_PTR(ret);
7361 }
7362
7363 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7364 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7365
7366 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7367 if (parent == 0)
7368 parent = ins.objectid;
7369 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7370 } else
7371 BUG_ON(parent > 0);
7372
7373 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7374 struct btrfs_delayed_extent_op *extent_op;
7375 extent_op = btrfs_alloc_delayed_extent_op();
7376 BUG_ON(!extent_op); /* -ENOMEM */
7377 if (key)
7378 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7379 else
7380 memset(&extent_op->key, 0, sizeof(extent_op->key));
7381 extent_op->flags_to_set = flags;
7382 if (skinny_metadata)
7383 extent_op->update_key = 0;
7384 else
7385 extent_op->update_key = 1;
7386 extent_op->update_flags = 1;
7387 extent_op->is_data = 0;
7388 extent_op->level = level;
7389
7390 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7391 ins.objectid,
7392 ins.offset, parent, root_objectid,
7393 level, BTRFS_ADD_DELAYED_EXTENT,
7394 extent_op, 0);
7395 BUG_ON(ret); /* -ENOMEM */
7396 }
7397 return buf;
7398 }
7399
7400 struct walk_control {
7401 u64 refs[BTRFS_MAX_LEVEL];
7402 u64 flags[BTRFS_MAX_LEVEL];
7403 struct btrfs_key update_progress;
7404 int stage;
7405 int level;
7406 int shared_level;
7407 int update_ref;
7408 int keep_locks;
7409 int reada_slot;
7410 int reada_count;
7411 int for_reloc;
7412 };
7413
7414 #define DROP_REFERENCE 1
7415 #define UPDATE_BACKREF 2
7416
7417 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7418 struct btrfs_root *root,
7419 struct walk_control *wc,
7420 struct btrfs_path *path)
7421 {
7422 u64 bytenr;
7423 u64 generation;
7424 u64 refs;
7425 u64 flags;
7426 u32 nritems;
7427 u32 blocksize;
7428 struct btrfs_key key;
7429 struct extent_buffer *eb;
7430 int ret;
7431 int slot;
7432 int nread = 0;
7433
7434 if (path->slots[wc->level] < wc->reada_slot) {
7435 wc->reada_count = wc->reada_count * 2 / 3;
7436 wc->reada_count = max(wc->reada_count, 2);
7437 } else {
7438 wc->reada_count = wc->reada_count * 3 / 2;
7439 wc->reada_count = min_t(int, wc->reada_count,
7440 BTRFS_NODEPTRS_PER_BLOCK(root));
7441 }
7442
7443 eb = path->nodes[wc->level];
7444 nritems = btrfs_header_nritems(eb);
7445 blocksize = root->nodesize;
7446
7447 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7448 if (nread >= wc->reada_count)
7449 break;
7450
7451 cond_resched();
7452 bytenr = btrfs_node_blockptr(eb, slot);
7453 generation = btrfs_node_ptr_generation(eb, slot);
7454
7455 if (slot == path->slots[wc->level])
7456 goto reada;
7457
7458 if (wc->stage == UPDATE_BACKREF &&
7459 generation <= root->root_key.offset)
7460 continue;
7461
7462 /* We don't lock the tree block, it's OK to be racy here */
7463 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7464 wc->level - 1, 1, &refs,
7465 &flags);
7466 /* We don't care about errors in readahead. */
7467 if (ret < 0)
7468 continue;
7469 BUG_ON(refs == 0);
7470
7471 if (wc->stage == DROP_REFERENCE) {
7472 if (refs == 1)
7473 goto reada;
7474
7475 if (wc->level == 1 &&
7476 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7477 continue;
7478 if (!wc->update_ref ||
7479 generation <= root->root_key.offset)
7480 continue;
7481 btrfs_node_key_to_cpu(eb, &key, slot);
7482 ret = btrfs_comp_cpu_keys(&key,
7483 &wc->update_progress);
7484 if (ret < 0)
7485 continue;
7486 } else {
7487 if (wc->level == 1 &&
7488 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7489 continue;
7490 }
7491 reada:
7492 readahead_tree_block(root, bytenr);
7493 nread++;
7494 }
7495 wc->reada_slot = slot;
7496 }
7497
7498 static int account_leaf_items(struct btrfs_trans_handle *trans,
7499 struct btrfs_root *root,
7500 struct extent_buffer *eb)
7501 {
7502 int nr = btrfs_header_nritems(eb);
7503 int i, extent_type, ret;
7504 struct btrfs_key key;
7505 struct btrfs_file_extent_item *fi;
7506 u64 bytenr, num_bytes;
7507
7508 for (i = 0; i < nr; i++) {
7509 btrfs_item_key_to_cpu(eb, &key, i);
7510
7511 if (key.type != BTRFS_EXTENT_DATA_KEY)
7512 continue;
7513
7514 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7515 /* filter out non qgroup-accountable extents */
7516 extent_type = btrfs_file_extent_type(eb, fi);
7517
7518 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7519 continue;
7520
7521 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7522 if (!bytenr)
7523 continue;
7524
7525 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7526
7527 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7528 root->objectid,
7529 bytenr, num_bytes,
7530 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7531 if (ret)
7532 return ret;
7533 }
7534 return 0;
7535 }
7536
7537 /*
7538 * Walk up the tree from the bottom, freeing leaves and any interior
7539 * nodes which have had all slots visited. If a node (leaf or
7540 * interior) is freed, the node above it will have it's slot
7541 * incremented. The root node will never be freed.
7542 *
7543 * At the end of this function, we should have a path which has all
7544 * slots incremented to the next position for a search. If we need to
7545 * read a new node it will be NULL and the node above it will have the
7546 * correct slot selected for a later read.
7547 *
7548 * If we increment the root nodes slot counter past the number of
7549 * elements, 1 is returned to signal completion of the search.
7550 */
7551 static int adjust_slots_upwards(struct btrfs_root *root,
7552 struct btrfs_path *path, int root_level)
7553 {
7554 int level = 0;
7555 int nr, slot;
7556 struct extent_buffer *eb;
7557
7558 if (root_level == 0)
7559 return 1;
7560
7561 while (level <= root_level) {
7562 eb = path->nodes[level];
7563 nr = btrfs_header_nritems(eb);
7564 path->slots[level]++;
7565 slot = path->slots[level];
7566 if (slot >= nr || level == 0) {
7567 /*
7568 * Don't free the root - we will detect this
7569 * condition after our loop and return a
7570 * positive value for caller to stop walking the tree.
7571 */
7572 if (level != root_level) {
7573 btrfs_tree_unlock_rw(eb, path->locks[level]);
7574 path->locks[level] = 0;
7575
7576 free_extent_buffer(eb);
7577 path->nodes[level] = NULL;
7578 path->slots[level] = 0;
7579 }
7580 } else {
7581 /*
7582 * We have a valid slot to walk back down
7583 * from. Stop here so caller can process these
7584 * new nodes.
7585 */
7586 break;
7587 }
7588
7589 level++;
7590 }
7591
7592 eb = path->nodes[root_level];
7593 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7594 return 1;
7595
7596 return 0;
7597 }
7598
7599 /*
7600 * root_eb is the subtree root and is locked before this function is called.
7601 */
7602 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7603 struct btrfs_root *root,
7604 struct extent_buffer *root_eb,
7605 u64 root_gen,
7606 int root_level)
7607 {
7608 int ret = 0;
7609 int level;
7610 struct extent_buffer *eb = root_eb;
7611 struct btrfs_path *path = NULL;
7612
7613 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7614 BUG_ON(root_eb == NULL);
7615
7616 if (!root->fs_info->quota_enabled)
7617 return 0;
7618
7619 if (!extent_buffer_uptodate(root_eb)) {
7620 ret = btrfs_read_buffer(root_eb, root_gen);
7621 if (ret)
7622 goto out;
7623 }
7624
7625 if (root_level == 0) {
7626 ret = account_leaf_items(trans, root, root_eb);
7627 goto out;
7628 }
7629
7630 path = btrfs_alloc_path();
7631 if (!path)
7632 return -ENOMEM;
7633
7634 /*
7635 * Walk down the tree. Missing extent blocks are filled in as
7636 * we go. Metadata is accounted every time we read a new
7637 * extent block.
7638 *
7639 * When we reach a leaf, we account for file extent items in it,
7640 * walk back up the tree (adjusting slot pointers as we go)
7641 * and restart the search process.
7642 */
7643 extent_buffer_get(root_eb); /* For path */
7644 path->nodes[root_level] = root_eb;
7645 path->slots[root_level] = 0;
7646 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7647 walk_down:
7648 level = root_level;
7649 while (level >= 0) {
7650 if (path->nodes[level] == NULL) {
7651 int parent_slot;
7652 u64 child_gen;
7653 u64 child_bytenr;
7654
7655 /* We need to get child blockptr/gen from
7656 * parent before we can read it. */
7657 eb = path->nodes[level + 1];
7658 parent_slot = path->slots[level + 1];
7659 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7660 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7661
7662 eb = read_tree_block(root, child_bytenr, child_gen);
7663 if (!eb || !extent_buffer_uptodate(eb)) {
7664 ret = -EIO;
7665 goto out;
7666 }
7667
7668 path->nodes[level] = eb;
7669 path->slots[level] = 0;
7670
7671 btrfs_tree_read_lock(eb);
7672 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7673 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7674
7675 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7676 root->objectid,
7677 child_bytenr,
7678 root->nodesize,
7679 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7680 0);
7681 if (ret)
7682 goto out;
7683
7684 }
7685
7686 if (level == 0) {
7687 ret = account_leaf_items(trans, root, path->nodes[level]);
7688 if (ret)
7689 goto out;
7690
7691 /* Nonzero return here means we completed our search */
7692 ret = adjust_slots_upwards(root, path, root_level);
7693 if (ret)
7694 break;
7695
7696 /* Restart search with new slots */
7697 goto walk_down;
7698 }
7699
7700 level--;
7701 }
7702
7703 ret = 0;
7704 out:
7705 btrfs_free_path(path);
7706
7707 return ret;
7708 }
7709
7710 /*
7711 * helper to process tree block while walking down the tree.
7712 *
7713 * when wc->stage == UPDATE_BACKREF, this function updates
7714 * back refs for pointers in the block.
7715 *
7716 * NOTE: return value 1 means we should stop walking down.
7717 */
7718 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7719 struct btrfs_root *root,
7720 struct btrfs_path *path,
7721 struct walk_control *wc, int lookup_info)
7722 {
7723 int level = wc->level;
7724 struct extent_buffer *eb = path->nodes[level];
7725 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7726 int ret;
7727
7728 if (wc->stage == UPDATE_BACKREF &&
7729 btrfs_header_owner(eb) != root->root_key.objectid)
7730 return 1;
7731
7732 /*
7733 * when reference count of tree block is 1, it won't increase
7734 * again. once full backref flag is set, we never clear it.
7735 */
7736 if (lookup_info &&
7737 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7738 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7739 BUG_ON(!path->locks[level]);
7740 ret = btrfs_lookup_extent_info(trans, root,
7741 eb->start, level, 1,
7742 &wc->refs[level],
7743 &wc->flags[level]);
7744 BUG_ON(ret == -ENOMEM);
7745 if (ret)
7746 return ret;
7747 BUG_ON(wc->refs[level] == 0);
7748 }
7749
7750 if (wc->stage == DROP_REFERENCE) {
7751 if (wc->refs[level] > 1)
7752 return 1;
7753
7754 if (path->locks[level] && !wc->keep_locks) {
7755 btrfs_tree_unlock_rw(eb, path->locks[level]);
7756 path->locks[level] = 0;
7757 }
7758 return 0;
7759 }
7760
7761 /* wc->stage == UPDATE_BACKREF */
7762 if (!(wc->flags[level] & flag)) {
7763 BUG_ON(!path->locks[level]);
7764 ret = btrfs_inc_ref(trans, root, eb, 1);
7765 BUG_ON(ret); /* -ENOMEM */
7766 ret = btrfs_dec_ref(trans, root, eb, 0);
7767 BUG_ON(ret); /* -ENOMEM */
7768 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7769 eb->len, flag,
7770 btrfs_header_level(eb), 0);
7771 BUG_ON(ret); /* -ENOMEM */
7772 wc->flags[level] |= flag;
7773 }
7774
7775 /*
7776 * the block is shared by multiple trees, so it's not good to
7777 * keep the tree lock
7778 */
7779 if (path->locks[level] && level > 0) {
7780 btrfs_tree_unlock_rw(eb, path->locks[level]);
7781 path->locks[level] = 0;
7782 }
7783 return 0;
7784 }
7785
7786 /*
7787 * helper to process tree block pointer.
7788 *
7789 * when wc->stage == DROP_REFERENCE, this function checks
7790 * reference count of the block pointed to. if the block
7791 * is shared and we need update back refs for the subtree
7792 * rooted at the block, this function changes wc->stage to
7793 * UPDATE_BACKREF. if the block is shared and there is no
7794 * need to update back, this function drops the reference
7795 * to the block.
7796 *
7797 * NOTE: return value 1 means we should stop walking down.
7798 */
7799 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7800 struct btrfs_root *root,
7801 struct btrfs_path *path,
7802 struct walk_control *wc, int *lookup_info)
7803 {
7804 u64 bytenr;
7805 u64 generation;
7806 u64 parent;
7807 u32 blocksize;
7808 struct btrfs_key key;
7809 struct extent_buffer *next;
7810 int level = wc->level;
7811 int reada = 0;
7812 int ret = 0;
7813 bool need_account = false;
7814
7815 generation = btrfs_node_ptr_generation(path->nodes[level],
7816 path->slots[level]);
7817 /*
7818 * if the lower level block was created before the snapshot
7819 * was created, we know there is no need to update back refs
7820 * for the subtree
7821 */
7822 if (wc->stage == UPDATE_BACKREF &&
7823 generation <= root->root_key.offset) {
7824 *lookup_info = 1;
7825 return 1;
7826 }
7827
7828 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7829 blocksize = root->nodesize;
7830
7831 next = btrfs_find_tree_block(root->fs_info, bytenr);
7832 if (!next) {
7833 next = btrfs_find_create_tree_block(root, bytenr);
7834 if (!next)
7835 return -ENOMEM;
7836 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7837 level - 1);
7838 reada = 1;
7839 }
7840 btrfs_tree_lock(next);
7841 btrfs_set_lock_blocking(next);
7842
7843 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7844 &wc->refs[level - 1],
7845 &wc->flags[level - 1]);
7846 if (ret < 0) {
7847 btrfs_tree_unlock(next);
7848 return ret;
7849 }
7850
7851 if (unlikely(wc->refs[level - 1] == 0)) {
7852 btrfs_err(root->fs_info, "Missing references.");
7853 BUG();
7854 }
7855 *lookup_info = 0;
7856
7857 if (wc->stage == DROP_REFERENCE) {
7858 if (wc->refs[level - 1] > 1) {
7859 need_account = true;
7860 if (level == 1 &&
7861 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7862 goto skip;
7863
7864 if (!wc->update_ref ||
7865 generation <= root->root_key.offset)
7866 goto skip;
7867
7868 btrfs_node_key_to_cpu(path->nodes[level], &key,
7869 path->slots[level]);
7870 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7871 if (ret < 0)
7872 goto skip;
7873
7874 wc->stage = UPDATE_BACKREF;
7875 wc->shared_level = level - 1;
7876 }
7877 } else {
7878 if (level == 1 &&
7879 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7880 goto skip;
7881 }
7882
7883 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7884 btrfs_tree_unlock(next);
7885 free_extent_buffer(next);
7886 next = NULL;
7887 *lookup_info = 1;
7888 }
7889
7890 if (!next) {
7891 if (reada && level == 1)
7892 reada_walk_down(trans, root, wc, path);
7893 next = read_tree_block(root, bytenr, generation);
7894 if (!next || !extent_buffer_uptodate(next)) {
7895 free_extent_buffer(next);
7896 return -EIO;
7897 }
7898 btrfs_tree_lock(next);
7899 btrfs_set_lock_blocking(next);
7900 }
7901
7902 level--;
7903 BUG_ON(level != btrfs_header_level(next));
7904 path->nodes[level] = next;
7905 path->slots[level] = 0;
7906 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7907 wc->level = level;
7908 if (wc->level == 1)
7909 wc->reada_slot = 0;
7910 return 0;
7911 skip:
7912 wc->refs[level - 1] = 0;
7913 wc->flags[level - 1] = 0;
7914 if (wc->stage == DROP_REFERENCE) {
7915 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7916 parent = path->nodes[level]->start;
7917 } else {
7918 BUG_ON(root->root_key.objectid !=
7919 btrfs_header_owner(path->nodes[level]));
7920 parent = 0;
7921 }
7922
7923 if (need_account) {
7924 ret = account_shared_subtree(trans, root, next,
7925 generation, level - 1);
7926 if (ret) {
7927 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7928 "%d accounting shared subtree. Quota "
7929 "is out of sync, rescan required.\n",
7930 root->fs_info->sb->s_id, ret);
7931 }
7932 }
7933 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7934 root->root_key.objectid, level - 1, 0, 0);
7935 BUG_ON(ret); /* -ENOMEM */
7936 }
7937 btrfs_tree_unlock(next);
7938 free_extent_buffer(next);
7939 *lookup_info = 1;
7940 return 1;
7941 }
7942
7943 /*
7944 * helper to process tree block while walking up the tree.
7945 *
7946 * when wc->stage == DROP_REFERENCE, this function drops
7947 * reference count on the block.
7948 *
7949 * when wc->stage == UPDATE_BACKREF, this function changes
7950 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7951 * to UPDATE_BACKREF previously while processing the block.
7952 *
7953 * NOTE: return value 1 means we should stop walking up.
7954 */
7955 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7956 struct btrfs_root *root,
7957 struct btrfs_path *path,
7958 struct walk_control *wc)
7959 {
7960 int ret;
7961 int level = wc->level;
7962 struct extent_buffer *eb = path->nodes[level];
7963 u64 parent = 0;
7964
7965 if (wc->stage == UPDATE_BACKREF) {
7966 BUG_ON(wc->shared_level < level);
7967 if (level < wc->shared_level)
7968 goto out;
7969
7970 ret = find_next_key(path, level + 1, &wc->update_progress);
7971 if (ret > 0)
7972 wc->update_ref = 0;
7973
7974 wc->stage = DROP_REFERENCE;
7975 wc->shared_level = -1;
7976 path->slots[level] = 0;
7977
7978 /*
7979 * check reference count again if the block isn't locked.
7980 * we should start walking down the tree again if reference
7981 * count is one.
7982 */
7983 if (!path->locks[level]) {
7984 BUG_ON(level == 0);
7985 btrfs_tree_lock(eb);
7986 btrfs_set_lock_blocking(eb);
7987 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7988
7989 ret = btrfs_lookup_extent_info(trans, root,
7990 eb->start, level, 1,
7991 &wc->refs[level],
7992 &wc->flags[level]);
7993 if (ret < 0) {
7994 btrfs_tree_unlock_rw(eb, path->locks[level]);
7995 path->locks[level] = 0;
7996 return ret;
7997 }
7998 BUG_ON(wc->refs[level] == 0);
7999 if (wc->refs[level] == 1) {
8000 btrfs_tree_unlock_rw(eb, path->locks[level]);
8001 path->locks[level] = 0;
8002 return 1;
8003 }
8004 }
8005 }
8006
8007 /* wc->stage == DROP_REFERENCE */
8008 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8009
8010 if (wc->refs[level] == 1) {
8011 if (level == 0) {
8012 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8013 ret = btrfs_dec_ref(trans, root, eb, 1);
8014 else
8015 ret = btrfs_dec_ref(trans, root, eb, 0);
8016 BUG_ON(ret); /* -ENOMEM */
8017 ret = account_leaf_items(trans, root, eb);
8018 if (ret) {
8019 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8020 "%d accounting leaf items. Quota "
8021 "is out of sync, rescan required.\n",
8022 root->fs_info->sb->s_id, ret);
8023 }
8024 }
8025 /* make block locked assertion in clean_tree_block happy */
8026 if (!path->locks[level] &&
8027 btrfs_header_generation(eb) == trans->transid) {
8028 btrfs_tree_lock(eb);
8029 btrfs_set_lock_blocking(eb);
8030 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8031 }
8032 clean_tree_block(trans, root->fs_info, eb);
8033 }
8034
8035 if (eb == root->node) {
8036 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8037 parent = eb->start;
8038 else
8039 BUG_ON(root->root_key.objectid !=
8040 btrfs_header_owner(eb));
8041 } else {
8042 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8043 parent = path->nodes[level + 1]->start;
8044 else
8045 BUG_ON(root->root_key.objectid !=
8046 btrfs_header_owner(path->nodes[level + 1]));
8047 }
8048
8049 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8050 out:
8051 wc->refs[level] = 0;
8052 wc->flags[level] = 0;
8053 return 0;
8054 }
8055
8056 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8057 struct btrfs_root *root,
8058 struct btrfs_path *path,
8059 struct walk_control *wc)
8060 {
8061 int level = wc->level;
8062 int lookup_info = 1;
8063 int ret;
8064
8065 while (level >= 0) {
8066 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8067 if (ret > 0)
8068 break;
8069
8070 if (level == 0)
8071 break;
8072
8073 if (path->slots[level] >=
8074 btrfs_header_nritems(path->nodes[level]))
8075 break;
8076
8077 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8078 if (ret > 0) {
8079 path->slots[level]++;
8080 continue;
8081 } else if (ret < 0)
8082 return ret;
8083 level = wc->level;
8084 }
8085 return 0;
8086 }
8087
8088 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8089 struct btrfs_root *root,
8090 struct btrfs_path *path,
8091 struct walk_control *wc, int max_level)
8092 {
8093 int level = wc->level;
8094 int ret;
8095
8096 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8097 while (level < max_level && path->nodes[level]) {
8098 wc->level = level;
8099 if (path->slots[level] + 1 <
8100 btrfs_header_nritems(path->nodes[level])) {
8101 path->slots[level]++;
8102 return 0;
8103 } else {
8104 ret = walk_up_proc(trans, root, path, wc);
8105 if (ret > 0)
8106 return 0;
8107
8108 if (path->locks[level]) {
8109 btrfs_tree_unlock_rw(path->nodes[level],
8110 path->locks[level]);
8111 path->locks[level] = 0;
8112 }
8113 free_extent_buffer(path->nodes[level]);
8114 path->nodes[level] = NULL;
8115 level++;
8116 }
8117 }
8118 return 1;
8119 }
8120
8121 /*
8122 * drop a subvolume tree.
8123 *
8124 * this function traverses the tree freeing any blocks that only
8125 * referenced by the tree.
8126 *
8127 * when a shared tree block is found. this function decreases its
8128 * reference count by one. if update_ref is true, this function
8129 * also make sure backrefs for the shared block and all lower level
8130 * blocks are properly updated.
8131 *
8132 * If called with for_reloc == 0, may exit early with -EAGAIN
8133 */
8134 int btrfs_drop_snapshot(struct btrfs_root *root,
8135 struct btrfs_block_rsv *block_rsv, int update_ref,
8136 int for_reloc)
8137 {
8138 struct btrfs_path *path;
8139 struct btrfs_trans_handle *trans;
8140 struct btrfs_root *tree_root = root->fs_info->tree_root;
8141 struct btrfs_root_item *root_item = &root->root_item;
8142 struct walk_control *wc;
8143 struct btrfs_key key;
8144 int err = 0;
8145 int ret;
8146 int level;
8147 bool root_dropped = false;
8148
8149 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8150
8151 path = btrfs_alloc_path();
8152 if (!path) {
8153 err = -ENOMEM;
8154 goto out;
8155 }
8156
8157 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8158 if (!wc) {
8159 btrfs_free_path(path);
8160 err = -ENOMEM;
8161 goto out;
8162 }
8163
8164 trans = btrfs_start_transaction(tree_root, 0);
8165 if (IS_ERR(trans)) {
8166 err = PTR_ERR(trans);
8167 goto out_free;
8168 }
8169
8170 if (block_rsv)
8171 trans->block_rsv = block_rsv;
8172
8173 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8174 level = btrfs_header_level(root->node);
8175 path->nodes[level] = btrfs_lock_root_node(root);
8176 btrfs_set_lock_blocking(path->nodes[level]);
8177 path->slots[level] = 0;
8178 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8179 memset(&wc->update_progress, 0,
8180 sizeof(wc->update_progress));
8181 } else {
8182 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8183 memcpy(&wc->update_progress, &key,
8184 sizeof(wc->update_progress));
8185
8186 level = root_item->drop_level;
8187 BUG_ON(level == 0);
8188 path->lowest_level = level;
8189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8190 path->lowest_level = 0;
8191 if (ret < 0) {
8192 err = ret;
8193 goto out_end_trans;
8194 }
8195 WARN_ON(ret > 0);
8196
8197 /*
8198 * unlock our path, this is safe because only this
8199 * function is allowed to delete this snapshot
8200 */
8201 btrfs_unlock_up_safe(path, 0);
8202
8203 level = btrfs_header_level(root->node);
8204 while (1) {
8205 btrfs_tree_lock(path->nodes[level]);
8206 btrfs_set_lock_blocking(path->nodes[level]);
8207 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8208
8209 ret = btrfs_lookup_extent_info(trans, root,
8210 path->nodes[level]->start,
8211 level, 1, &wc->refs[level],
8212 &wc->flags[level]);
8213 if (ret < 0) {
8214 err = ret;
8215 goto out_end_trans;
8216 }
8217 BUG_ON(wc->refs[level] == 0);
8218
8219 if (level == root_item->drop_level)
8220 break;
8221
8222 btrfs_tree_unlock(path->nodes[level]);
8223 path->locks[level] = 0;
8224 WARN_ON(wc->refs[level] != 1);
8225 level--;
8226 }
8227 }
8228
8229 wc->level = level;
8230 wc->shared_level = -1;
8231 wc->stage = DROP_REFERENCE;
8232 wc->update_ref = update_ref;
8233 wc->keep_locks = 0;
8234 wc->for_reloc = for_reloc;
8235 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8236
8237 while (1) {
8238
8239 ret = walk_down_tree(trans, root, path, wc);
8240 if (ret < 0) {
8241 err = ret;
8242 break;
8243 }
8244
8245 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8246 if (ret < 0) {
8247 err = ret;
8248 break;
8249 }
8250
8251 if (ret > 0) {
8252 BUG_ON(wc->stage != DROP_REFERENCE);
8253 break;
8254 }
8255
8256 if (wc->stage == DROP_REFERENCE) {
8257 level = wc->level;
8258 btrfs_node_key(path->nodes[level],
8259 &root_item->drop_progress,
8260 path->slots[level]);
8261 root_item->drop_level = level;
8262 }
8263
8264 BUG_ON(wc->level == 0);
8265 if (btrfs_should_end_transaction(trans, tree_root) ||
8266 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8267 ret = btrfs_update_root(trans, tree_root,
8268 &root->root_key,
8269 root_item);
8270 if (ret) {
8271 btrfs_abort_transaction(trans, tree_root, ret);
8272 err = ret;
8273 goto out_end_trans;
8274 }
8275
8276 /*
8277 * Qgroup update accounting is run from
8278 * delayed ref handling. This usually works
8279 * out because delayed refs are normally the
8280 * only way qgroup updates are added. However,
8281 * we may have added updates during our tree
8282 * walk so run qgroups here to make sure we
8283 * don't lose any updates.
8284 */
8285 ret = btrfs_delayed_qgroup_accounting(trans,
8286 root->fs_info);
8287 if (ret)
8288 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8289 "running qgroup updates "
8290 "during snapshot delete. "
8291 "Quota is out of sync, "
8292 "rescan required.\n", ret);
8293
8294 btrfs_end_transaction_throttle(trans, tree_root);
8295 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8296 pr_debug("BTRFS: drop snapshot early exit\n");
8297 err = -EAGAIN;
8298 goto out_free;
8299 }
8300
8301 trans = btrfs_start_transaction(tree_root, 0);
8302 if (IS_ERR(trans)) {
8303 err = PTR_ERR(trans);
8304 goto out_free;
8305 }
8306 if (block_rsv)
8307 trans->block_rsv = block_rsv;
8308 }
8309 }
8310 btrfs_release_path(path);
8311 if (err)
8312 goto out_end_trans;
8313
8314 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8315 if (ret) {
8316 btrfs_abort_transaction(trans, tree_root, ret);
8317 goto out_end_trans;
8318 }
8319
8320 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8321 ret = btrfs_find_root(tree_root, &root->root_key, path,
8322 NULL, NULL);
8323 if (ret < 0) {
8324 btrfs_abort_transaction(trans, tree_root, ret);
8325 err = ret;
8326 goto out_end_trans;
8327 } else if (ret > 0) {
8328 /* if we fail to delete the orphan item this time
8329 * around, it'll get picked up the next time.
8330 *
8331 * The most common failure here is just -ENOENT.
8332 */
8333 btrfs_del_orphan_item(trans, tree_root,
8334 root->root_key.objectid);
8335 }
8336 }
8337
8338 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8339 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8340 } else {
8341 free_extent_buffer(root->node);
8342 free_extent_buffer(root->commit_root);
8343 btrfs_put_fs_root(root);
8344 }
8345 root_dropped = true;
8346 out_end_trans:
8347 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8348 if (ret)
8349 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8350 "running qgroup updates "
8351 "during snapshot delete. "
8352 "Quota is out of sync, "
8353 "rescan required.\n", ret);
8354
8355 btrfs_end_transaction_throttle(trans, tree_root);
8356 out_free:
8357 kfree(wc);
8358 btrfs_free_path(path);
8359 out:
8360 /*
8361 * So if we need to stop dropping the snapshot for whatever reason we
8362 * need to make sure to add it back to the dead root list so that we
8363 * keep trying to do the work later. This also cleans up roots if we
8364 * don't have it in the radix (like when we recover after a power fail
8365 * or unmount) so we don't leak memory.
8366 */
8367 if (!for_reloc && root_dropped == false)
8368 btrfs_add_dead_root(root);
8369 if (err && err != -EAGAIN)
8370 btrfs_std_error(root->fs_info, err);
8371 return err;
8372 }
8373
8374 /*
8375 * drop subtree rooted at tree block 'node'.
8376 *
8377 * NOTE: this function will unlock and release tree block 'node'
8378 * only used by relocation code
8379 */
8380 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8381 struct btrfs_root *root,
8382 struct extent_buffer *node,
8383 struct extent_buffer *parent)
8384 {
8385 struct btrfs_path *path;
8386 struct walk_control *wc;
8387 int level;
8388 int parent_level;
8389 int ret = 0;
8390 int wret;
8391
8392 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8393
8394 path = btrfs_alloc_path();
8395 if (!path)
8396 return -ENOMEM;
8397
8398 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8399 if (!wc) {
8400 btrfs_free_path(path);
8401 return -ENOMEM;
8402 }
8403
8404 btrfs_assert_tree_locked(parent);
8405 parent_level = btrfs_header_level(parent);
8406 extent_buffer_get(parent);
8407 path->nodes[parent_level] = parent;
8408 path->slots[parent_level] = btrfs_header_nritems(parent);
8409
8410 btrfs_assert_tree_locked(node);
8411 level = btrfs_header_level(node);
8412 path->nodes[level] = node;
8413 path->slots[level] = 0;
8414 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8415
8416 wc->refs[parent_level] = 1;
8417 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8418 wc->level = level;
8419 wc->shared_level = -1;
8420 wc->stage = DROP_REFERENCE;
8421 wc->update_ref = 0;
8422 wc->keep_locks = 1;
8423 wc->for_reloc = 1;
8424 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8425
8426 while (1) {
8427 wret = walk_down_tree(trans, root, path, wc);
8428 if (wret < 0) {
8429 ret = wret;
8430 break;
8431 }
8432
8433 wret = walk_up_tree(trans, root, path, wc, parent_level);
8434 if (wret < 0)
8435 ret = wret;
8436 if (wret != 0)
8437 break;
8438 }
8439
8440 kfree(wc);
8441 btrfs_free_path(path);
8442 return ret;
8443 }
8444
8445 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8446 {
8447 u64 num_devices;
8448 u64 stripped;
8449
8450 /*
8451 * if restripe for this chunk_type is on pick target profile and
8452 * return, otherwise do the usual balance
8453 */
8454 stripped = get_restripe_target(root->fs_info, flags);
8455 if (stripped)
8456 return extended_to_chunk(stripped);
8457
8458 num_devices = root->fs_info->fs_devices->rw_devices;
8459
8460 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8461 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8462 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8463
8464 if (num_devices == 1) {
8465 stripped |= BTRFS_BLOCK_GROUP_DUP;
8466 stripped = flags & ~stripped;
8467
8468 /* turn raid0 into single device chunks */
8469 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8470 return stripped;
8471
8472 /* turn mirroring into duplication */
8473 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8474 BTRFS_BLOCK_GROUP_RAID10))
8475 return stripped | BTRFS_BLOCK_GROUP_DUP;
8476 } else {
8477 /* they already had raid on here, just return */
8478 if (flags & stripped)
8479 return flags;
8480
8481 stripped |= BTRFS_BLOCK_GROUP_DUP;
8482 stripped = flags & ~stripped;
8483
8484 /* switch duplicated blocks with raid1 */
8485 if (flags & BTRFS_BLOCK_GROUP_DUP)
8486 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8487
8488 /* this is drive concat, leave it alone */
8489 }
8490
8491 return flags;
8492 }
8493
8494 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8495 {
8496 struct btrfs_space_info *sinfo = cache->space_info;
8497 u64 num_bytes;
8498 u64 min_allocable_bytes;
8499 int ret = -ENOSPC;
8500
8501
8502 /*
8503 * We need some metadata space and system metadata space for
8504 * allocating chunks in some corner cases until we force to set
8505 * it to be readonly.
8506 */
8507 if ((sinfo->flags &
8508 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8509 !force)
8510 min_allocable_bytes = 1 * 1024 * 1024;
8511 else
8512 min_allocable_bytes = 0;
8513
8514 spin_lock(&sinfo->lock);
8515 spin_lock(&cache->lock);
8516
8517 if (cache->ro) {
8518 ret = 0;
8519 goto out;
8520 }
8521
8522 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8523 cache->bytes_super - btrfs_block_group_used(&cache->item);
8524
8525 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8526 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8527 min_allocable_bytes <= sinfo->total_bytes) {
8528 sinfo->bytes_readonly += num_bytes;
8529 cache->ro = 1;
8530 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8531 ret = 0;
8532 }
8533 out:
8534 spin_unlock(&cache->lock);
8535 spin_unlock(&sinfo->lock);
8536 return ret;
8537 }
8538
8539 int btrfs_set_block_group_ro(struct btrfs_root *root,
8540 struct btrfs_block_group_cache *cache)
8541
8542 {
8543 struct btrfs_trans_handle *trans;
8544 u64 alloc_flags;
8545 int ret;
8546
8547 BUG_ON(cache->ro);
8548
8549 trans = btrfs_join_transaction(root);
8550 if (IS_ERR(trans))
8551 return PTR_ERR(trans);
8552
8553 ret = set_block_group_ro(cache, 0);
8554 if (!ret)
8555 goto out;
8556 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8557 ret = do_chunk_alloc(trans, root, alloc_flags,
8558 CHUNK_ALLOC_FORCE);
8559 if (ret < 0)
8560 goto out;
8561 ret = set_block_group_ro(cache, 0);
8562 out:
8563 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8564 alloc_flags = update_block_group_flags(root, cache->flags);
8565 check_system_chunk(trans, root, alloc_flags);
8566 }
8567
8568 btrfs_end_transaction(trans, root);
8569 return ret;
8570 }
8571
8572 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8573 struct btrfs_root *root, u64 type)
8574 {
8575 u64 alloc_flags = get_alloc_profile(root, type);
8576 return do_chunk_alloc(trans, root, alloc_flags,
8577 CHUNK_ALLOC_FORCE);
8578 }
8579
8580 /*
8581 * helper to account the unused space of all the readonly block group in the
8582 * space_info. takes mirrors into account.
8583 */
8584 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8585 {
8586 struct btrfs_block_group_cache *block_group;
8587 u64 free_bytes = 0;
8588 int factor;
8589
8590 /* It's df, we don't care if it's racey */
8591 if (list_empty(&sinfo->ro_bgs))
8592 return 0;
8593
8594 spin_lock(&sinfo->lock);
8595 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8596 spin_lock(&block_group->lock);
8597
8598 if (!block_group->ro) {
8599 spin_unlock(&block_group->lock);
8600 continue;
8601 }
8602
8603 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8604 BTRFS_BLOCK_GROUP_RAID10 |
8605 BTRFS_BLOCK_GROUP_DUP))
8606 factor = 2;
8607 else
8608 factor = 1;
8609
8610 free_bytes += (block_group->key.offset -
8611 btrfs_block_group_used(&block_group->item)) *
8612 factor;
8613
8614 spin_unlock(&block_group->lock);
8615 }
8616 spin_unlock(&sinfo->lock);
8617
8618 return free_bytes;
8619 }
8620
8621 void btrfs_set_block_group_rw(struct btrfs_root *root,
8622 struct btrfs_block_group_cache *cache)
8623 {
8624 struct btrfs_space_info *sinfo = cache->space_info;
8625 u64 num_bytes;
8626
8627 BUG_ON(!cache->ro);
8628
8629 spin_lock(&sinfo->lock);
8630 spin_lock(&cache->lock);
8631 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8632 cache->bytes_super - btrfs_block_group_used(&cache->item);
8633 sinfo->bytes_readonly -= num_bytes;
8634 cache->ro = 0;
8635 list_del_init(&cache->ro_list);
8636 spin_unlock(&cache->lock);
8637 spin_unlock(&sinfo->lock);
8638 }
8639
8640 /*
8641 * checks to see if its even possible to relocate this block group.
8642 *
8643 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8644 * ok to go ahead and try.
8645 */
8646 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8647 {
8648 struct btrfs_block_group_cache *block_group;
8649 struct btrfs_space_info *space_info;
8650 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8651 struct btrfs_device *device;
8652 struct btrfs_trans_handle *trans;
8653 u64 min_free;
8654 u64 dev_min = 1;
8655 u64 dev_nr = 0;
8656 u64 target;
8657 int index;
8658 int full = 0;
8659 int ret = 0;
8660
8661 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8662
8663 /* odd, couldn't find the block group, leave it alone */
8664 if (!block_group)
8665 return -1;
8666
8667 min_free = btrfs_block_group_used(&block_group->item);
8668
8669 /* no bytes used, we're good */
8670 if (!min_free)
8671 goto out;
8672
8673 space_info = block_group->space_info;
8674 spin_lock(&space_info->lock);
8675
8676 full = space_info->full;
8677
8678 /*
8679 * if this is the last block group we have in this space, we can't
8680 * relocate it unless we're able to allocate a new chunk below.
8681 *
8682 * Otherwise, we need to make sure we have room in the space to handle
8683 * all of the extents from this block group. If we can, we're good
8684 */
8685 if ((space_info->total_bytes != block_group->key.offset) &&
8686 (space_info->bytes_used + space_info->bytes_reserved +
8687 space_info->bytes_pinned + space_info->bytes_readonly +
8688 min_free < space_info->total_bytes)) {
8689 spin_unlock(&space_info->lock);
8690 goto out;
8691 }
8692 spin_unlock(&space_info->lock);
8693
8694 /*
8695 * ok we don't have enough space, but maybe we have free space on our
8696 * devices to allocate new chunks for relocation, so loop through our
8697 * alloc devices and guess if we have enough space. if this block
8698 * group is going to be restriped, run checks against the target
8699 * profile instead of the current one.
8700 */
8701 ret = -1;
8702
8703 /*
8704 * index:
8705 * 0: raid10
8706 * 1: raid1
8707 * 2: dup
8708 * 3: raid0
8709 * 4: single
8710 */
8711 target = get_restripe_target(root->fs_info, block_group->flags);
8712 if (target) {
8713 index = __get_raid_index(extended_to_chunk(target));
8714 } else {
8715 /*
8716 * this is just a balance, so if we were marked as full
8717 * we know there is no space for a new chunk
8718 */
8719 if (full)
8720 goto out;
8721
8722 index = get_block_group_index(block_group);
8723 }
8724
8725 if (index == BTRFS_RAID_RAID10) {
8726 dev_min = 4;
8727 /* Divide by 2 */
8728 min_free >>= 1;
8729 } else if (index == BTRFS_RAID_RAID1) {
8730 dev_min = 2;
8731 } else if (index == BTRFS_RAID_DUP) {
8732 /* Multiply by 2 */
8733 min_free <<= 1;
8734 } else if (index == BTRFS_RAID_RAID0) {
8735 dev_min = fs_devices->rw_devices;
8736 min_free = div64_u64(min_free, dev_min);
8737 }
8738
8739 /* We need to do this so that we can look at pending chunks */
8740 trans = btrfs_join_transaction(root);
8741 if (IS_ERR(trans)) {
8742 ret = PTR_ERR(trans);
8743 goto out;
8744 }
8745
8746 mutex_lock(&root->fs_info->chunk_mutex);
8747 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8748 u64 dev_offset;
8749
8750 /*
8751 * check to make sure we can actually find a chunk with enough
8752 * space to fit our block group in.
8753 */
8754 if (device->total_bytes > device->bytes_used + min_free &&
8755 !device->is_tgtdev_for_dev_replace) {
8756 ret = find_free_dev_extent(trans, device, min_free,
8757 &dev_offset, NULL);
8758 if (!ret)
8759 dev_nr++;
8760
8761 if (dev_nr >= dev_min)
8762 break;
8763
8764 ret = -1;
8765 }
8766 }
8767 mutex_unlock(&root->fs_info->chunk_mutex);
8768 btrfs_end_transaction(trans, root);
8769 out:
8770 btrfs_put_block_group(block_group);
8771 return ret;
8772 }
8773
8774 static int find_first_block_group(struct btrfs_root *root,
8775 struct btrfs_path *path, struct btrfs_key *key)
8776 {
8777 int ret = 0;
8778 struct btrfs_key found_key;
8779 struct extent_buffer *leaf;
8780 int slot;
8781
8782 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8783 if (ret < 0)
8784 goto out;
8785
8786 while (1) {
8787 slot = path->slots[0];
8788 leaf = path->nodes[0];
8789 if (slot >= btrfs_header_nritems(leaf)) {
8790 ret = btrfs_next_leaf(root, path);
8791 if (ret == 0)
8792 continue;
8793 if (ret < 0)
8794 goto out;
8795 break;
8796 }
8797 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8798
8799 if (found_key.objectid >= key->objectid &&
8800 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8801 ret = 0;
8802 goto out;
8803 }
8804 path->slots[0]++;
8805 }
8806 out:
8807 return ret;
8808 }
8809
8810 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8811 {
8812 struct btrfs_block_group_cache *block_group;
8813 u64 last = 0;
8814
8815 while (1) {
8816 struct inode *inode;
8817
8818 block_group = btrfs_lookup_first_block_group(info, last);
8819 while (block_group) {
8820 spin_lock(&block_group->lock);
8821 if (block_group->iref)
8822 break;
8823 spin_unlock(&block_group->lock);
8824 block_group = next_block_group(info->tree_root,
8825 block_group);
8826 }
8827 if (!block_group) {
8828 if (last == 0)
8829 break;
8830 last = 0;
8831 continue;
8832 }
8833
8834 inode = block_group->inode;
8835 block_group->iref = 0;
8836 block_group->inode = NULL;
8837 spin_unlock(&block_group->lock);
8838 iput(inode);
8839 last = block_group->key.objectid + block_group->key.offset;
8840 btrfs_put_block_group(block_group);
8841 }
8842 }
8843
8844 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8845 {
8846 struct btrfs_block_group_cache *block_group;
8847 struct btrfs_space_info *space_info;
8848 struct btrfs_caching_control *caching_ctl;
8849 struct rb_node *n;
8850
8851 down_write(&info->commit_root_sem);
8852 while (!list_empty(&info->caching_block_groups)) {
8853 caching_ctl = list_entry(info->caching_block_groups.next,
8854 struct btrfs_caching_control, list);
8855 list_del(&caching_ctl->list);
8856 put_caching_control(caching_ctl);
8857 }
8858 up_write(&info->commit_root_sem);
8859
8860 spin_lock(&info->unused_bgs_lock);
8861 while (!list_empty(&info->unused_bgs)) {
8862 block_group = list_first_entry(&info->unused_bgs,
8863 struct btrfs_block_group_cache,
8864 bg_list);
8865 list_del_init(&block_group->bg_list);
8866 btrfs_put_block_group(block_group);
8867 }
8868 spin_unlock(&info->unused_bgs_lock);
8869
8870 spin_lock(&info->block_group_cache_lock);
8871 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8872 block_group = rb_entry(n, struct btrfs_block_group_cache,
8873 cache_node);
8874 rb_erase(&block_group->cache_node,
8875 &info->block_group_cache_tree);
8876 RB_CLEAR_NODE(&block_group->cache_node);
8877 spin_unlock(&info->block_group_cache_lock);
8878
8879 down_write(&block_group->space_info->groups_sem);
8880 list_del(&block_group->list);
8881 up_write(&block_group->space_info->groups_sem);
8882
8883 if (block_group->cached == BTRFS_CACHE_STARTED)
8884 wait_block_group_cache_done(block_group);
8885
8886 /*
8887 * We haven't cached this block group, which means we could
8888 * possibly have excluded extents on this block group.
8889 */
8890 if (block_group->cached == BTRFS_CACHE_NO ||
8891 block_group->cached == BTRFS_CACHE_ERROR)
8892 free_excluded_extents(info->extent_root, block_group);
8893
8894 btrfs_remove_free_space_cache(block_group);
8895 btrfs_put_block_group(block_group);
8896
8897 spin_lock(&info->block_group_cache_lock);
8898 }
8899 spin_unlock(&info->block_group_cache_lock);
8900
8901 /* now that all the block groups are freed, go through and
8902 * free all the space_info structs. This is only called during
8903 * the final stages of unmount, and so we know nobody is
8904 * using them. We call synchronize_rcu() once before we start,
8905 * just to be on the safe side.
8906 */
8907 synchronize_rcu();
8908
8909 release_global_block_rsv(info);
8910
8911 while (!list_empty(&info->space_info)) {
8912 int i;
8913
8914 space_info = list_entry(info->space_info.next,
8915 struct btrfs_space_info,
8916 list);
8917 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8918 if (WARN_ON(space_info->bytes_pinned > 0 ||
8919 space_info->bytes_reserved > 0 ||
8920 space_info->bytes_may_use > 0)) {
8921 dump_space_info(space_info, 0, 0);
8922 }
8923 }
8924 list_del(&space_info->list);
8925 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8926 struct kobject *kobj;
8927 kobj = space_info->block_group_kobjs[i];
8928 space_info->block_group_kobjs[i] = NULL;
8929 if (kobj) {
8930 kobject_del(kobj);
8931 kobject_put(kobj);
8932 }
8933 }
8934 kobject_del(&space_info->kobj);
8935 kobject_put(&space_info->kobj);
8936 }
8937 return 0;
8938 }
8939
8940 static void __link_block_group(struct btrfs_space_info *space_info,
8941 struct btrfs_block_group_cache *cache)
8942 {
8943 int index = get_block_group_index(cache);
8944 bool first = false;
8945
8946 down_write(&space_info->groups_sem);
8947 if (list_empty(&space_info->block_groups[index]))
8948 first = true;
8949 list_add_tail(&cache->list, &space_info->block_groups[index]);
8950 up_write(&space_info->groups_sem);
8951
8952 if (first) {
8953 struct raid_kobject *rkobj;
8954 int ret;
8955
8956 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8957 if (!rkobj)
8958 goto out_err;
8959 rkobj->raid_type = index;
8960 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8961 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8962 "%s", get_raid_name(index));
8963 if (ret) {
8964 kobject_put(&rkobj->kobj);
8965 goto out_err;
8966 }
8967 space_info->block_group_kobjs[index] = &rkobj->kobj;
8968 }
8969
8970 return;
8971 out_err:
8972 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8973 }
8974
8975 static struct btrfs_block_group_cache *
8976 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8977 {
8978 struct btrfs_block_group_cache *cache;
8979
8980 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8981 if (!cache)
8982 return NULL;
8983
8984 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8985 GFP_NOFS);
8986 if (!cache->free_space_ctl) {
8987 kfree(cache);
8988 return NULL;
8989 }
8990
8991 cache->key.objectid = start;
8992 cache->key.offset = size;
8993 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8994
8995 cache->sectorsize = root->sectorsize;
8996 cache->fs_info = root->fs_info;
8997 cache->full_stripe_len = btrfs_full_stripe_len(root,
8998 &root->fs_info->mapping_tree,
8999 start);
9000 atomic_set(&cache->count, 1);
9001 spin_lock_init(&cache->lock);
9002 init_rwsem(&cache->data_rwsem);
9003 INIT_LIST_HEAD(&cache->list);
9004 INIT_LIST_HEAD(&cache->cluster_list);
9005 INIT_LIST_HEAD(&cache->bg_list);
9006 INIT_LIST_HEAD(&cache->ro_list);
9007 INIT_LIST_HEAD(&cache->dirty_list);
9008 btrfs_init_free_space_ctl(cache);
9009 atomic_set(&cache->trimming, 0);
9010
9011 return cache;
9012 }
9013
9014 int btrfs_read_block_groups(struct btrfs_root *root)
9015 {
9016 struct btrfs_path *path;
9017 int ret;
9018 struct btrfs_block_group_cache *cache;
9019 struct btrfs_fs_info *info = root->fs_info;
9020 struct btrfs_space_info *space_info;
9021 struct btrfs_key key;
9022 struct btrfs_key found_key;
9023 struct extent_buffer *leaf;
9024 int need_clear = 0;
9025 u64 cache_gen;
9026
9027 root = info->extent_root;
9028 key.objectid = 0;
9029 key.offset = 0;
9030 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9031 path = btrfs_alloc_path();
9032 if (!path)
9033 return -ENOMEM;
9034 path->reada = 1;
9035
9036 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9037 if (btrfs_test_opt(root, SPACE_CACHE) &&
9038 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9039 need_clear = 1;
9040 if (btrfs_test_opt(root, CLEAR_CACHE))
9041 need_clear = 1;
9042
9043 while (1) {
9044 ret = find_first_block_group(root, path, &key);
9045 if (ret > 0)
9046 break;
9047 if (ret != 0)
9048 goto error;
9049
9050 leaf = path->nodes[0];
9051 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9052
9053 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9054 found_key.offset);
9055 if (!cache) {
9056 ret = -ENOMEM;
9057 goto error;
9058 }
9059
9060 if (need_clear) {
9061 /*
9062 * When we mount with old space cache, we need to
9063 * set BTRFS_DC_CLEAR and set dirty flag.
9064 *
9065 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9066 * truncate the old free space cache inode and
9067 * setup a new one.
9068 * b) Setting 'dirty flag' makes sure that we flush
9069 * the new space cache info onto disk.
9070 */
9071 if (btrfs_test_opt(root, SPACE_CACHE))
9072 cache->disk_cache_state = BTRFS_DC_CLEAR;
9073 }
9074
9075 read_extent_buffer(leaf, &cache->item,
9076 btrfs_item_ptr_offset(leaf, path->slots[0]),
9077 sizeof(cache->item));
9078 cache->flags = btrfs_block_group_flags(&cache->item);
9079
9080 key.objectid = found_key.objectid + found_key.offset;
9081 btrfs_release_path(path);
9082
9083 /*
9084 * We need to exclude the super stripes now so that the space
9085 * info has super bytes accounted for, otherwise we'll think
9086 * we have more space than we actually do.
9087 */
9088 ret = exclude_super_stripes(root, cache);
9089 if (ret) {
9090 /*
9091 * We may have excluded something, so call this just in
9092 * case.
9093 */
9094 free_excluded_extents(root, cache);
9095 btrfs_put_block_group(cache);
9096 goto error;
9097 }
9098
9099 /*
9100 * check for two cases, either we are full, and therefore
9101 * don't need to bother with the caching work since we won't
9102 * find any space, or we are empty, and we can just add all
9103 * the space in and be done with it. This saves us _alot_ of
9104 * time, particularly in the full case.
9105 */
9106 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9107 cache->last_byte_to_unpin = (u64)-1;
9108 cache->cached = BTRFS_CACHE_FINISHED;
9109 free_excluded_extents(root, cache);
9110 } else if (btrfs_block_group_used(&cache->item) == 0) {
9111 cache->last_byte_to_unpin = (u64)-1;
9112 cache->cached = BTRFS_CACHE_FINISHED;
9113 add_new_free_space(cache, root->fs_info,
9114 found_key.objectid,
9115 found_key.objectid +
9116 found_key.offset);
9117 free_excluded_extents(root, cache);
9118 }
9119
9120 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9121 if (ret) {
9122 btrfs_remove_free_space_cache(cache);
9123 btrfs_put_block_group(cache);
9124 goto error;
9125 }
9126
9127 ret = update_space_info(info, cache->flags, found_key.offset,
9128 btrfs_block_group_used(&cache->item),
9129 &space_info);
9130 if (ret) {
9131 btrfs_remove_free_space_cache(cache);
9132 spin_lock(&info->block_group_cache_lock);
9133 rb_erase(&cache->cache_node,
9134 &info->block_group_cache_tree);
9135 RB_CLEAR_NODE(&cache->cache_node);
9136 spin_unlock(&info->block_group_cache_lock);
9137 btrfs_put_block_group(cache);
9138 goto error;
9139 }
9140
9141 cache->space_info = space_info;
9142 spin_lock(&cache->space_info->lock);
9143 cache->space_info->bytes_readonly += cache->bytes_super;
9144 spin_unlock(&cache->space_info->lock);
9145
9146 __link_block_group(space_info, cache);
9147
9148 set_avail_alloc_bits(root->fs_info, cache->flags);
9149 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9150 set_block_group_ro(cache, 1);
9151 } else if (btrfs_block_group_used(&cache->item) == 0) {
9152 spin_lock(&info->unused_bgs_lock);
9153 /* Should always be true but just in case. */
9154 if (list_empty(&cache->bg_list)) {
9155 btrfs_get_block_group(cache);
9156 list_add_tail(&cache->bg_list,
9157 &info->unused_bgs);
9158 }
9159 spin_unlock(&info->unused_bgs_lock);
9160 }
9161 }
9162
9163 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9164 if (!(get_alloc_profile(root, space_info->flags) &
9165 (BTRFS_BLOCK_GROUP_RAID10 |
9166 BTRFS_BLOCK_GROUP_RAID1 |
9167 BTRFS_BLOCK_GROUP_RAID5 |
9168 BTRFS_BLOCK_GROUP_RAID6 |
9169 BTRFS_BLOCK_GROUP_DUP)))
9170 continue;
9171 /*
9172 * avoid allocating from un-mirrored block group if there are
9173 * mirrored block groups.
9174 */
9175 list_for_each_entry(cache,
9176 &space_info->block_groups[BTRFS_RAID_RAID0],
9177 list)
9178 set_block_group_ro(cache, 1);
9179 list_for_each_entry(cache,
9180 &space_info->block_groups[BTRFS_RAID_SINGLE],
9181 list)
9182 set_block_group_ro(cache, 1);
9183 }
9184
9185 init_global_block_rsv(info);
9186 ret = 0;
9187 error:
9188 btrfs_free_path(path);
9189 return ret;
9190 }
9191
9192 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9193 struct btrfs_root *root)
9194 {
9195 struct btrfs_block_group_cache *block_group, *tmp;
9196 struct btrfs_root *extent_root = root->fs_info->extent_root;
9197 struct btrfs_block_group_item item;
9198 struct btrfs_key key;
9199 int ret = 0;
9200
9201 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9202 if (ret)
9203 goto next;
9204
9205 spin_lock(&block_group->lock);
9206 memcpy(&item, &block_group->item, sizeof(item));
9207 memcpy(&key, &block_group->key, sizeof(key));
9208 spin_unlock(&block_group->lock);
9209
9210 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9211 sizeof(item));
9212 if (ret)
9213 btrfs_abort_transaction(trans, extent_root, ret);
9214 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9215 key.objectid, key.offset);
9216 if (ret)
9217 btrfs_abort_transaction(trans, extent_root, ret);
9218 next:
9219 list_del_init(&block_group->bg_list);
9220 }
9221 }
9222
9223 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9224 struct btrfs_root *root, u64 bytes_used,
9225 u64 type, u64 chunk_objectid, u64 chunk_offset,
9226 u64 size)
9227 {
9228 int ret;
9229 struct btrfs_root *extent_root;
9230 struct btrfs_block_group_cache *cache;
9231
9232 extent_root = root->fs_info->extent_root;
9233
9234 btrfs_set_log_full_commit(root->fs_info, trans);
9235
9236 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9237 if (!cache)
9238 return -ENOMEM;
9239
9240 btrfs_set_block_group_used(&cache->item, bytes_used);
9241 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9242 btrfs_set_block_group_flags(&cache->item, type);
9243
9244 cache->flags = type;
9245 cache->last_byte_to_unpin = (u64)-1;
9246 cache->cached = BTRFS_CACHE_FINISHED;
9247 ret = exclude_super_stripes(root, cache);
9248 if (ret) {
9249 /*
9250 * We may have excluded something, so call this just in
9251 * case.
9252 */
9253 free_excluded_extents(root, cache);
9254 btrfs_put_block_group(cache);
9255 return ret;
9256 }
9257
9258 add_new_free_space(cache, root->fs_info, chunk_offset,
9259 chunk_offset + size);
9260
9261 free_excluded_extents(root, cache);
9262
9263 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9264 if (ret) {
9265 btrfs_remove_free_space_cache(cache);
9266 btrfs_put_block_group(cache);
9267 return ret;
9268 }
9269
9270 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9271 &cache->space_info);
9272 if (ret) {
9273 btrfs_remove_free_space_cache(cache);
9274 spin_lock(&root->fs_info->block_group_cache_lock);
9275 rb_erase(&cache->cache_node,
9276 &root->fs_info->block_group_cache_tree);
9277 RB_CLEAR_NODE(&cache->cache_node);
9278 spin_unlock(&root->fs_info->block_group_cache_lock);
9279 btrfs_put_block_group(cache);
9280 return ret;
9281 }
9282 update_global_block_rsv(root->fs_info);
9283
9284 spin_lock(&cache->space_info->lock);
9285 cache->space_info->bytes_readonly += cache->bytes_super;
9286 spin_unlock(&cache->space_info->lock);
9287
9288 __link_block_group(cache->space_info, cache);
9289
9290 list_add_tail(&cache->bg_list, &trans->new_bgs);
9291
9292 set_avail_alloc_bits(extent_root->fs_info, type);
9293
9294 return 0;
9295 }
9296
9297 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9298 {
9299 u64 extra_flags = chunk_to_extended(flags) &
9300 BTRFS_EXTENDED_PROFILE_MASK;
9301
9302 write_seqlock(&fs_info->profiles_lock);
9303 if (flags & BTRFS_BLOCK_GROUP_DATA)
9304 fs_info->avail_data_alloc_bits &= ~extra_flags;
9305 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9306 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9307 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9308 fs_info->avail_system_alloc_bits &= ~extra_flags;
9309 write_sequnlock(&fs_info->profiles_lock);
9310 }
9311
9312 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9313 struct btrfs_root *root, u64 group_start,
9314 struct extent_map *em)
9315 {
9316 struct btrfs_path *path;
9317 struct btrfs_block_group_cache *block_group;
9318 struct btrfs_free_cluster *cluster;
9319 struct btrfs_root *tree_root = root->fs_info->tree_root;
9320 struct btrfs_key key;
9321 struct inode *inode;
9322 struct kobject *kobj = NULL;
9323 int ret;
9324 int index;
9325 int factor;
9326 struct btrfs_caching_control *caching_ctl = NULL;
9327 bool remove_em;
9328
9329 root = root->fs_info->extent_root;
9330
9331 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9332 BUG_ON(!block_group);
9333 BUG_ON(!block_group->ro);
9334
9335 /*
9336 * Free the reserved super bytes from this block group before
9337 * remove it.
9338 */
9339 free_excluded_extents(root, block_group);
9340
9341 memcpy(&key, &block_group->key, sizeof(key));
9342 index = get_block_group_index(block_group);
9343 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9344 BTRFS_BLOCK_GROUP_RAID1 |
9345 BTRFS_BLOCK_GROUP_RAID10))
9346 factor = 2;
9347 else
9348 factor = 1;
9349
9350 /* make sure this block group isn't part of an allocation cluster */
9351 cluster = &root->fs_info->data_alloc_cluster;
9352 spin_lock(&cluster->refill_lock);
9353 btrfs_return_cluster_to_free_space(block_group, cluster);
9354 spin_unlock(&cluster->refill_lock);
9355
9356 /*
9357 * make sure this block group isn't part of a metadata
9358 * allocation cluster
9359 */
9360 cluster = &root->fs_info->meta_alloc_cluster;
9361 spin_lock(&cluster->refill_lock);
9362 btrfs_return_cluster_to_free_space(block_group, cluster);
9363 spin_unlock(&cluster->refill_lock);
9364
9365 path = btrfs_alloc_path();
9366 if (!path) {
9367 ret = -ENOMEM;
9368 goto out;
9369 }
9370
9371 inode = lookup_free_space_inode(tree_root, block_group, path);
9372 if (!IS_ERR(inode)) {
9373 ret = btrfs_orphan_add(trans, inode);
9374 if (ret) {
9375 btrfs_add_delayed_iput(inode);
9376 goto out;
9377 }
9378 clear_nlink(inode);
9379 /* One for the block groups ref */
9380 spin_lock(&block_group->lock);
9381 if (block_group->iref) {
9382 block_group->iref = 0;
9383 block_group->inode = NULL;
9384 spin_unlock(&block_group->lock);
9385 iput(inode);
9386 } else {
9387 spin_unlock(&block_group->lock);
9388 }
9389 /* One for our lookup ref */
9390 btrfs_add_delayed_iput(inode);
9391 }
9392
9393 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9394 key.offset = block_group->key.objectid;
9395 key.type = 0;
9396
9397 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9398 if (ret < 0)
9399 goto out;
9400 if (ret > 0)
9401 btrfs_release_path(path);
9402 if (ret == 0) {
9403 ret = btrfs_del_item(trans, tree_root, path);
9404 if (ret)
9405 goto out;
9406 btrfs_release_path(path);
9407 }
9408
9409 spin_lock(&root->fs_info->block_group_cache_lock);
9410 rb_erase(&block_group->cache_node,
9411 &root->fs_info->block_group_cache_tree);
9412 RB_CLEAR_NODE(&block_group->cache_node);
9413
9414 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9415 root->fs_info->first_logical_byte = (u64)-1;
9416 spin_unlock(&root->fs_info->block_group_cache_lock);
9417
9418 down_write(&block_group->space_info->groups_sem);
9419 /*
9420 * we must use list_del_init so people can check to see if they
9421 * are still on the list after taking the semaphore
9422 */
9423 list_del_init(&block_group->list);
9424 if (list_empty(&block_group->space_info->block_groups[index])) {
9425 kobj = block_group->space_info->block_group_kobjs[index];
9426 block_group->space_info->block_group_kobjs[index] = NULL;
9427 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9428 }
9429 up_write(&block_group->space_info->groups_sem);
9430 if (kobj) {
9431 kobject_del(kobj);
9432 kobject_put(kobj);
9433 }
9434
9435 if (block_group->has_caching_ctl)
9436 caching_ctl = get_caching_control(block_group);
9437 if (block_group->cached == BTRFS_CACHE_STARTED)
9438 wait_block_group_cache_done(block_group);
9439 if (block_group->has_caching_ctl) {
9440 down_write(&root->fs_info->commit_root_sem);
9441 if (!caching_ctl) {
9442 struct btrfs_caching_control *ctl;
9443
9444 list_for_each_entry(ctl,
9445 &root->fs_info->caching_block_groups, list)
9446 if (ctl->block_group == block_group) {
9447 caching_ctl = ctl;
9448 atomic_inc(&caching_ctl->count);
9449 break;
9450 }
9451 }
9452 if (caching_ctl)
9453 list_del_init(&caching_ctl->list);
9454 up_write(&root->fs_info->commit_root_sem);
9455 if (caching_ctl) {
9456 /* Once for the caching bgs list and once for us. */
9457 put_caching_control(caching_ctl);
9458 put_caching_control(caching_ctl);
9459 }
9460 }
9461
9462 spin_lock(&trans->transaction->dirty_bgs_lock);
9463 if (!list_empty(&block_group->dirty_list)) {
9464 list_del_init(&block_group->dirty_list);
9465 btrfs_put_block_group(block_group);
9466 }
9467 spin_unlock(&trans->transaction->dirty_bgs_lock);
9468
9469 btrfs_remove_free_space_cache(block_group);
9470
9471 spin_lock(&block_group->space_info->lock);
9472 list_del_init(&block_group->ro_list);
9473 block_group->space_info->total_bytes -= block_group->key.offset;
9474 block_group->space_info->bytes_readonly -= block_group->key.offset;
9475 block_group->space_info->disk_total -= block_group->key.offset * factor;
9476 spin_unlock(&block_group->space_info->lock);
9477
9478 memcpy(&key, &block_group->key, sizeof(key));
9479
9480 lock_chunks(root);
9481 if (!list_empty(&em->list)) {
9482 /* We're in the transaction->pending_chunks list. */
9483 free_extent_map(em);
9484 }
9485 spin_lock(&block_group->lock);
9486 block_group->removed = 1;
9487 /*
9488 * At this point trimming can't start on this block group, because we
9489 * removed the block group from the tree fs_info->block_group_cache_tree
9490 * so no one can't find it anymore and even if someone already got this
9491 * block group before we removed it from the rbtree, they have already
9492 * incremented block_group->trimming - if they didn't, they won't find
9493 * any free space entries because we already removed them all when we
9494 * called btrfs_remove_free_space_cache().
9495 *
9496 * And we must not remove the extent map from the fs_info->mapping_tree
9497 * to prevent the same logical address range and physical device space
9498 * ranges from being reused for a new block group. This is because our
9499 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9500 * completely transactionless, so while it is trimming a range the
9501 * currently running transaction might finish and a new one start,
9502 * allowing for new block groups to be created that can reuse the same
9503 * physical device locations unless we take this special care.
9504 */
9505 remove_em = (atomic_read(&block_group->trimming) == 0);
9506 /*
9507 * Make sure a trimmer task always sees the em in the pinned_chunks list
9508 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9509 * before checking block_group->removed).
9510 */
9511 if (!remove_em) {
9512 /*
9513 * Our em might be in trans->transaction->pending_chunks which
9514 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9515 * and so is the fs_info->pinned_chunks list.
9516 *
9517 * So at this point we must be holding the chunk_mutex to avoid
9518 * any races with chunk allocation (more specifically at
9519 * volumes.c:contains_pending_extent()), to ensure it always
9520 * sees the em, either in the pending_chunks list or in the
9521 * pinned_chunks list.
9522 */
9523 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9524 }
9525 spin_unlock(&block_group->lock);
9526
9527 if (remove_em) {
9528 struct extent_map_tree *em_tree;
9529
9530 em_tree = &root->fs_info->mapping_tree.map_tree;
9531 write_lock(&em_tree->lock);
9532 /*
9533 * The em might be in the pending_chunks list, so make sure the
9534 * chunk mutex is locked, since remove_extent_mapping() will
9535 * delete us from that list.
9536 */
9537 remove_extent_mapping(em_tree, em);
9538 write_unlock(&em_tree->lock);
9539 /* once for the tree */
9540 free_extent_map(em);
9541 }
9542
9543 unlock_chunks(root);
9544
9545 btrfs_put_block_group(block_group);
9546 btrfs_put_block_group(block_group);
9547
9548 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9549 if (ret > 0)
9550 ret = -EIO;
9551 if (ret < 0)
9552 goto out;
9553
9554 ret = btrfs_del_item(trans, root, path);
9555 out:
9556 btrfs_free_path(path);
9557 return ret;
9558 }
9559
9560 /*
9561 * Process the unused_bgs list and remove any that don't have any allocated
9562 * space inside of them.
9563 */
9564 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9565 {
9566 struct btrfs_block_group_cache *block_group;
9567 struct btrfs_space_info *space_info;
9568 struct btrfs_root *root = fs_info->extent_root;
9569 struct btrfs_trans_handle *trans;
9570 int ret = 0;
9571
9572 if (!fs_info->open)
9573 return;
9574
9575 spin_lock(&fs_info->unused_bgs_lock);
9576 while (!list_empty(&fs_info->unused_bgs)) {
9577 u64 start, end;
9578
9579 block_group = list_first_entry(&fs_info->unused_bgs,
9580 struct btrfs_block_group_cache,
9581 bg_list);
9582 space_info = block_group->space_info;
9583 list_del_init(&block_group->bg_list);
9584 if (ret || btrfs_mixed_space_info(space_info)) {
9585 btrfs_put_block_group(block_group);
9586 continue;
9587 }
9588 spin_unlock(&fs_info->unused_bgs_lock);
9589
9590 /* Don't want to race with allocators so take the groups_sem */
9591 down_write(&space_info->groups_sem);
9592 spin_lock(&block_group->lock);
9593 if (block_group->reserved ||
9594 btrfs_block_group_used(&block_group->item) ||
9595 block_group->ro) {
9596 /*
9597 * We want to bail if we made new allocations or have
9598 * outstanding allocations in this block group. We do
9599 * the ro check in case balance is currently acting on
9600 * this block group.
9601 */
9602 spin_unlock(&block_group->lock);
9603 up_write(&space_info->groups_sem);
9604 goto next;
9605 }
9606 spin_unlock(&block_group->lock);
9607
9608 /* We don't want to force the issue, only flip if it's ok. */
9609 ret = set_block_group_ro(block_group, 0);
9610 up_write(&space_info->groups_sem);
9611 if (ret < 0) {
9612 ret = 0;
9613 goto next;
9614 }
9615
9616 /*
9617 * Want to do this before we do anything else so we can recover
9618 * properly if we fail to join the transaction.
9619 */
9620 /* 1 for btrfs_orphan_reserve_metadata() */
9621 trans = btrfs_start_transaction(root, 1);
9622 if (IS_ERR(trans)) {
9623 btrfs_set_block_group_rw(root, block_group);
9624 ret = PTR_ERR(trans);
9625 goto next;
9626 }
9627
9628 /*
9629 * We could have pending pinned extents for this block group,
9630 * just delete them, we don't care about them anymore.
9631 */
9632 start = block_group->key.objectid;
9633 end = start + block_group->key.offset - 1;
9634 /*
9635 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9636 * btrfs_finish_extent_commit(). If we are at transaction N,
9637 * another task might be running finish_extent_commit() for the
9638 * previous transaction N - 1, and have seen a range belonging
9639 * to the block group in freed_extents[] before we were able to
9640 * clear the whole block group range from freed_extents[]. This
9641 * means that task can lookup for the block group after we
9642 * unpinned it from freed_extents[] and removed it, leading to
9643 * a BUG_ON() at btrfs_unpin_extent_range().
9644 */
9645 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9646 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9647 EXTENT_DIRTY, GFP_NOFS);
9648 if (ret) {
9649 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9650 btrfs_set_block_group_rw(root, block_group);
9651 goto end_trans;
9652 }
9653 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9654 EXTENT_DIRTY, GFP_NOFS);
9655 if (ret) {
9656 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9657 btrfs_set_block_group_rw(root, block_group);
9658 goto end_trans;
9659 }
9660 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9661
9662 /* Reset pinned so btrfs_put_block_group doesn't complain */
9663 block_group->pinned = 0;
9664
9665 /*
9666 * Btrfs_remove_chunk will abort the transaction if things go
9667 * horribly wrong.
9668 */
9669 ret = btrfs_remove_chunk(trans, root,
9670 block_group->key.objectid);
9671 end_trans:
9672 btrfs_end_transaction(trans, root);
9673 next:
9674 btrfs_put_block_group(block_group);
9675 spin_lock(&fs_info->unused_bgs_lock);
9676 }
9677 spin_unlock(&fs_info->unused_bgs_lock);
9678 }
9679
9680 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9681 {
9682 struct btrfs_space_info *space_info;
9683 struct btrfs_super_block *disk_super;
9684 u64 features;
9685 u64 flags;
9686 int mixed = 0;
9687 int ret;
9688
9689 disk_super = fs_info->super_copy;
9690 if (!btrfs_super_root(disk_super))
9691 return 1;
9692
9693 features = btrfs_super_incompat_flags(disk_super);
9694 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9695 mixed = 1;
9696
9697 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9698 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9699 if (ret)
9700 goto out;
9701
9702 if (mixed) {
9703 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9704 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9705 } else {
9706 flags = BTRFS_BLOCK_GROUP_METADATA;
9707 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9708 if (ret)
9709 goto out;
9710
9711 flags = BTRFS_BLOCK_GROUP_DATA;
9712 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9713 }
9714 out:
9715 return ret;
9716 }
9717
9718 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9719 {
9720 return unpin_extent_range(root, start, end, false);
9721 }
9722
9723 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9724 {
9725 struct btrfs_fs_info *fs_info = root->fs_info;
9726 struct btrfs_block_group_cache *cache = NULL;
9727 u64 group_trimmed;
9728 u64 start;
9729 u64 end;
9730 u64 trimmed = 0;
9731 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9732 int ret = 0;
9733
9734 /*
9735 * try to trim all FS space, our block group may start from non-zero.
9736 */
9737 if (range->len == total_bytes)
9738 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9739 else
9740 cache = btrfs_lookup_block_group(fs_info, range->start);
9741
9742 while (cache) {
9743 if (cache->key.objectid >= (range->start + range->len)) {
9744 btrfs_put_block_group(cache);
9745 break;
9746 }
9747
9748 start = max(range->start, cache->key.objectid);
9749 end = min(range->start + range->len,
9750 cache->key.objectid + cache->key.offset);
9751
9752 if (end - start >= range->minlen) {
9753 if (!block_group_cache_done(cache)) {
9754 ret = cache_block_group(cache, 0);
9755 if (ret) {
9756 btrfs_put_block_group(cache);
9757 break;
9758 }
9759 ret = wait_block_group_cache_done(cache);
9760 if (ret) {
9761 btrfs_put_block_group(cache);
9762 break;
9763 }
9764 }
9765 ret = btrfs_trim_block_group(cache,
9766 &group_trimmed,
9767 start,
9768 end,
9769 range->minlen);
9770
9771 trimmed += group_trimmed;
9772 if (ret) {
9773 btrfs_put_block_group(cache);
9774 break;
9775 }
9776 }
9777
9778 cache = next_block_group(fs_info->tree_root, cache);
9779 }
9780
9781 range->len = trimmed;
9782 return ret;
9783 }
9784
9785 /*
9786 * btrfs_{start,end}_write_no_snapshoting() are similar to
9787 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9788 * data into the page cache through nocow before the subvolume is snapshoted,
9789 * but flush the data into disk after the snapshot creation, or to prevent
9790 * operations while snapshoting is ongoing and that cause the snapshot to be
9791 * inconsistent (writes followed by expanding truncates for example).
9792 */
9793 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9794 {
9795 percpu_counter_dec(&root->subv_writers->counter);
9796 /*
9797 * Make sure counter is updated before we wake up
9798 * waiters.
9799 */
9800 smp_mb();
9801 if (waitqueue_active(&root->subv_writers->wait))
9802 wake_up(&root->subv_writers->wait);
9803 }
9804
9805 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9806 {
9807 if (atomic_read(&root->will_be_snapshoted))
9808 return 0;
9809
9810 percpu_counter_inc(&root->subv_writers->counter);
9811 /*
9812 * Make sure counter is updated before we check for snapshot creation.
9813 */
9814 smp_mb();
9815 if (atomic_read(&root->will_be_snapshoted)) {
9816 btrfs_end_write_no_snapshoting(root);
9817 return 0;
9818 }
9819 return 1;
9820 }