]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/btrfs/extent-tree.c
Btrfs: record first logical byte in memory
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37
38 #undef SCRAMBLE_DELAYED_REFS
39
40 /*
41 * control flags for do_chunk_alloc's force field
42 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
43 * if we really need one.
44 *
45 * CHUNK_ALLOC_LIMITED means to only try and allocate one
46 * if we have very few chunks already allocated. This is
47 * used as part of the clustering code to help make sure
48 * we have a good pool of storage to cluster in, without
49 * filling the FS with empty chunks
50 *
51 * CHUNK_ALLOC_FORCE means it must try to allocate one
52 *
53 */
54 enum {
55 CHUNK_ALLOC_NO_FORCE = 0,
56 CHUNK_ALLOC_LIMITED = 1,
57 CHUNK_ALLOC_FORCE = 2,
58 };
59
60 /*
61 * Control how reservations are dealt with.
62 *
63 * RESERVE_FREE - freeing a reservation.
64 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
65 * ENOSPC accounting
66 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
67 * bytes_may_use as the ENOSPC accounting is done elsewhere
68 */
69 enum {
70 RESERVE_FREE = 0,
71 RESERVE_ALLOC = 1,
72 RESERVE_ALLOC_NO_ACCOUNT = 2,
73 };
74
75 static int update_block_group(struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, int alloc);
77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root,
79 u64 bytenr, u64 num_bytes, u64 parent,
80 u64 root_objectid, u64 owner_objectid,
81 u64 owner_offset, int refs_to_drop,
82 struct btrfs_delayed_extent_op *extra_op);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 struct extent_buffer *leaf,
85 struct btrfs_extent_item *ei);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 struct btrfs_root *root,
88 u64 parent, u64 root_objectid,
89 u64 flags, u64 owner, u64 offset,
90 struct btrfs_key *ins, int ref_mod);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 struct btrfs_root *root,
93 u64 parent, u64 root_objectid,
94 u64 flags, struct btrfs_disk_key *key,
95 int level, struct btrfs_key *ins);
96 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 struct btrfs_root *extent_root, u64 flags,
98 int force);
99 static int find_next_key(struct btrfs_path *path, int level,
100 struct btrfs_key *key);
101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 int dump_block_groups);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 u64 num_bytes, int reserve);
105
106 static noinline int
107 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 {
109 smp_mb();
110 return cache->cached == BTRFS_CACHE_FINISHED;
111 }
112
113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114 {
115 return (cache->flags & bits) == bits;
116 }
117
118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119 {
120 atomic_inc(&cache->count);
121 }
122
123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124 {
125 if (atomic_dec_and_test(&cache->count)) {
126 WARN_ON(cache->pinned > 0);
127 WARN_ON(cache->reserved > 0);
128 kfree(cache->free_space_ctl);
129 kfree(cache);
130 }
131 }
132
133 /*
134 * this adds the block group to the fs_info rb tree for the block group
135 * cache
136 */
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 struct btrfs_block_group_cache *block_group)
139 {
140 struct rb_node **p;
141 struct rb_node *parent = NULL;
142 struct btrfs_block_group_cache *cache;
143
144 spin_lock(&info->block_group_cache_lock);
145 p = &info->block_group_cache_tree.rb_node;
146
147 while (*p) {
148 parent = *p;
149 cache = rb_entry(parent, struct btrfs_block_group_cache,
150 cache_node);
151 if (block_group->key.objectid < cache->key.objectid) {
152 p = &(*p)->rb_left;
153 } else if (block_group->key.objectid > cache->key.objectid) {
154 p = &(*p)->rb_right;
155 } else {
156 spin_unlock(&info->block_group_cache_lock);
157 return -EEXIST;
158 }
159 }
160
161 rb_link_node(&block_group->cache_node, parent, p);
162 rb_insert_color(&block_group->cache_node,
163 &info->block_group_cache_tree);
164
165 if (info->first_logical_byte > block_group->key.objectid)
166 info->first_logical_byte = block_group->key.objectid;
167
168 spin_unlock(&info->block_group_cache_lock);
169
170 return 0;
171 }
172
173 /*
174 * This will return the block group at or after bytenr if contains is 0, else
175 * it will return the block group that contains the bytenr
176 */
177 static struct btrfs_block_group_cache *
178 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
179 int contains)
180 {
181 struct btrfs_block_group_cache *cache, *ret = NULL;
182 struct rb_node *n;
183 u64 end, start;
184
185 spin_lock(&info->block_group_cache_lock);
186 n = info->block_group_cache_tree.rb_node;
187
188 while (n) {
189 cache = rb_entry(n, struct btrfs_block_group_cache,
190 cache_node);
191 end = cache->key.objectid + cache->key.offset - 1;
192 start = cache->key.objectid;
193
194 if (bytenr < start) {
195 if (!contains && (!ret || start < ret->key.objectid))
196 ret = cache;
197 n = n->rb_left;
198 } else if (bytenr > start) {
199 if (contains && bytenr <= end) {
200 ret = cache;
201 break;
202 }
203 n = n->rb_right;
204 } else {
205 ret = cache;
206 break;
207 }
208 }
209 if (ret) {
210 btrfs_get_block_group(ret);
211 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
212 info->first_logical_byte = ret->key.objectid;
213 }
214 spin_unlock(&info->block_group_cache_lock);
215
216 return ret;
217 }
218
219 static int add_excluded_extent(struct btrfs_root *root,
220 u64 start, u64 num_bytes)
221 {
222 u64 end = start + num_bytes - 1;
223 set_extent_bits(&root->fs_info->freed_extents[0],
224 start, end, EXTENT_UPTODATE, GFP_NOFS);
225 set_extent_bits(&root->fs_info->freed_extents[1],
226 start, end, EXTENT_UPTODATE, GFP_NOFS);
227 return 0;
228 }
229
230 static void free_excluded_extents(struct btrfs_root *root,
231 struct btrfs_block_group_cache *cache)
232 {
233 u64 start, end;
234
235 start = cache->key.objectid;
236 end = start + cache->key.offset - 1;
237
238 clear_extent_bits(&root->fs_info->freed_extents[0],
239 start, end, EXTENT_UPTODATE, GFP_NOFS);
240 clear_extent_bits(&root->fs_info->freed_extents[1],
241 start, end, EXTENT_UPTODATE, GFP_NOFS);
242 }
243
244 static int exclude_super_stripes(struct btrfs_root *root,
245 struct btrfs_block_group_cache *cache)
246 {
247 u64 bytenr;
248 u64 *logical;
249 int stripe_len;
250 int i, nr, ret;
251
252 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
253 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
254 cache->bytes_super += stripe_len;
255 ret = add_excluded_extent(root, cache->key.objectid,
256 stripe_len);
257 BUG_ON(ret); /* -ENOMEM */
258 }
259
260 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
261 bytenr = btrfs_sb_offset(i);
262 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
263 cache->key.objectid, bytenr,
264 0, &logical, &nr, &stripe_len);
265 BUG_ON(ret); /* -ENOMEM */
266
267 while (nr--) {
268 cache->bytes_super += stripe_len;
269 ret = add_excluded_extent(root, logical[nr],
270 stripe_len);
271 BUG_ON(ret); /* -ENOMEM */
272 }
273
274 kfree(logical);
275 }
276 return 0;
277 }
278
279 static struct btrfs_caching_control *
280 get_caching_control(struct btrfs_block_group_cache *cache)
281 {
282 struct btrfs_caching_control *ctl;
283
284 spin_lock(&cache->lock);
285 if (cache->cached != BTRFS_CACHE_STARTED) {
286 spin_unlock(&cache->lock);
287 return NULL;
288 }
289
290 /* We're loading it the fast way, so we don't have a caching_ctl. */
291 if (!cache->caching_ctl) {
292 spin_unlock(&cache->lock);
293 return NULL;
294 }
295
296 ctl = cache->caching_ctl;
297 atomic_inc(&ctl->count);
298 spin_unlock(&cache->lock);
299 return ctl;
300 }
301
302 static void put_caching_control(struct btrfs_caching_control *ctl)
303 {
304 if (atomic_dec_and_test(&ctl->count))
305 kfree(ctl);
306 }
307
308 /*
309 * this is only called by cache_block_group, since we could have freed extents
310 * we need to check the pinned_extents for any extents that can't be used yet
311 * since their free space will be released as soon as the transaction commits.
312 */
313 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
314 struct btrfs_fs_info *info, u64 start, u64 end)
315 {
316 u64 extent_start, extent_end, size, total_added = 0;
317 int ret;
318
319 while (start < end) {
320 ret = find_first_extent_bit(info->pinned_extents, start,
321 &extent_start, &extent_end,
322 EXTENT_DIRTY | EXTENT_UPTODATE,
323 NULL);
324 if (ret)
325 break;
326
327 if (extent_start <= start) {
328 start = extent_end + 1;
329 } else if (extent_start > start && extent_start < end) {
330 size = extent_start - start;
331 total_added += size;
332 ret = btrfs_add_free_space(block_group, start,
333 size);
334 BUG_ON(ret); /* -ENOMEM or logic error */
335 start = extent_end + 1;
336 } else {
337 break;
338 }
339 }
340
341 if (start < end) {
342 size = end - start;
343 total_added += size;
344 ret = btrfs_add_free_space(block_group, start, size);
345 BUG_ON(ret); /* -ENOMEM or logic error */
346 }
347
348 return total_added;
349 }
350
351 static noinline void caching_thread(struct btrfs_work *work)
352 {
353 struct btrfs_block_group_cache *block_group;
354 struct btrfs_fs_info *fs_info;
355 struct btrfs_caching_control *caching_ctl;
356 struct btrfs_root *extent_root;
357 struct btrfs_path *path;
358 struct extent_buffer *leaf;
359 struct btrfs_key key;
360 u64 total_found = 0;
361 u64 last = 0;
362 u32 nritems;
363 int ret = 0;
364
365 caching_ctl = container_of(work, struct btrfs_caching_control, work);
366 block_group = caching_ctl->block_group;
367 fs_info = block_group->fs_info;
368 extent_root = fs_info->extent_root;
369
370 path = btrfs_alloc_path();
371 if (!path)
372 goto out;
373
374 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
375
376 /*
377 * We don't want to deadlock with somebody trying to allocate a new
378 * extent for the extent root while also trying to search the extent
379 * root to add free space. So we skip locking and search the commit
380 * root, since its read-only
381 */
382 path->skip_locking = 1;
383 path->search_commit_root = 1;
384 path->reada = 1;
385
386 key.objectid = last;
387 key.offset = 0;
388 key.type = BTRFS_EXTENT_ITEM_KEY;
389 again:
390 mutex_lock(&caching_ctl->mutex);
391 /* need to make sure the commit_root doesn't disappear */
392 down_read(&fs_info->extent_commit_sem);
393
394 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
395 if (ret < 0)
396 goto err;
397
398 leaf = path->nodes[0];
399 nritems = btrfs_header_nritems(leaf);
400
401 while (1) {
402 if (btrfs_fs_closing(fs_info) > 1) {
403 last = (u64)-1;
404 break;
405 }
406
407 if (path->slots[0] < nritems) {
408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
409 } else {
410 ret = find_next_key(path, 0, &key);
411 if (ret)
412 break;
413
414 if (need_resched() ||
415 btrfs_next_leaf(extent_root, path)) {
416 caching_ctl->progress = last;
417 btrfs_release_path(path);
418 up_read(&fs_info->extent_commit_sem);
419 mutex_unlock(&caching_ctl->mutex);
420 cond_resched();
421 goto again;
422 }
423 leaf = path->nodes[0];
424 nritems = btrfs_header_nritems(leaf);
425 continue;
426 }
427
428 if (key.objectid < block_group->key.objectid) {
429 path->slots[0]++;
430 continue;
431 }
432
433 if (key.objectid >= block_group->key.objectid +
434 block_group->key.offset)
435 break;
436
437 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
438 total_found += add_new_free_space(block_group,
439 fs_info, last,
440 key.objectid);
441 last = key.objectid + key.offset;
442
443 if (total_found > (1024 * 1024 * 2)) {
444 total_found = 0;
445 wake_up(&caching_ctl->wait);
446 }
447 }
448 path->slots[0]++;
449 }
450 ret = 0;
451
452 total_found += add_new_free_space(block_group, fs_info, last,
453 block_group->key.objectid +
454 block_group->key.offset);
455 caching_ctl->progress = (u64)-1;
456
457 spin_lock(&block_group->lock);
458 block_group->caching_ctl = NULL;
459 block_group->cached = BTRFS_CACHE_FINISHED;
460 spin_unlock(&block_group->lock);
461
462 err:
463 btrfs_free_path(path);
464 up_read(&fs_info->extent_commit_sem);
465
466 free_excluded_extents(extent_root, block_group);
467
468 mutex_unlock(&caching_ctl->mutex);
469 out:
470 wake_up(&caching_ctl->wait);
471
472 put_caching_control(caching_ctl);
473 btrfs_put_block_group(block_group);
474 }
475
476 static int cache_block_group(struct btrfs_block_group_cache *cache,
477 int load_cache_only)
478 {
479 DEFINE_WAIT(wait);
480 struct btrfs_fs_info *fs_info = cache->fs_info;
481 struct btrfs_caching_control *caching_ctl;
482 int ret = 0;
483
484 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
485 if (!caching_ctl)
486 return -ENOMEM;
487
488 INIT_LIST_HEAD(&caching_ctl->list);
489 mutex_init(&caching_ctl->mutex);
490 init_waitqueue_head(&caching_ctl->wait);
491 caching_ctl->block_group = cache;
492 caching_ctl->progress = cache->key.objectid;
493 atomic_set(&caching_ctl->count, 1);
494 caching_ctl->work.func = caching_thread;
495
496 spin_lock(&cache->lock);
497 /*
498 * This should be a rare occasion, but this could happen I think in the
499 * case where one thread starts to load the space cache info, and then
500 * some other thread starts a transaction commit which tries to do an
501 * allocation while the other thread is still loading the space cache
502 * info. The previous loop should have kept us from choosing this block
503 * group, but if we've moved to the state where we will wait on caching
504 * block groups we need to first check if we're doing a fast load here,
505 * so we can wait for it to finish, otherwise we could end up allocating
506 * from a block group who's cache gets evicted for one reason or
507 * another.
508 */
509 while (cache->cached == BTRFS_CACHE_FAST) {
510 struct btrfs_caching_control *ctl;
511
512 ctl = cache->caching_ctl;
513 atomic_inc(&ctl->count);
514 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
515 spin_unlock(&cache->lock);
516
517 schedule();
518
519 finish_wait(&ctl->wait, &wait);
520 put_caching_control(ctl);
521 spin_lock(&cache->lock);
522 }
523
524 if (cache->cached != BTRFS_CACHE_NO) {
525 spin_unlock(&cache->lock);
526 kfree(caching_ctl);
527 return 0;
528 }
529 WARN_ON(cache->caching_ctl);
530 cache->caching_ctl = caching_ctl;
531 cache->cached = BTRFS_CACHE_FAST;
532 spin_unlock(&cache->lock);
533
534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 u64 btrfs_find_block_group(struct btrfs_root *root,
652 u64 search_start, u64 search_hint, int owner)
653 {
654 struct btrfs_block_group_cache *cache;
655 u64 used;
656 u64 last = max(search_hint, search_start);
657 u64 group_start = 0;
658 int full_search = 0;
659 int factor = 9;
660 int wrapped = 0;
661 again:
662 while (1) {
663 cache = btrfs_lookup_first_block_group(root->fs_info, last);
664 if (!cache)
665 break;
666
667 spin_lock(&cache->lock);
668 last = cache->key.objectid + cache->key.offset;
669 used = btrfs_block_group_used(&cache->item);
670
671 if ((full_search || !cache->ro) &&
672 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
673 if (used + cache->pinned + cache->reserved <
674 div_factor(cache->key.offset, factor)) {
675 group_start = cache->key.objectid;
676 spin_unlock(&cache->lock);
677 btrfs_put_block_group(cache);
678 goto found;
679 }
680 }
681 spin_unlock(&cache->lock);
682 btrfs_put_block_group(cache);
683 cond_resched();
684 }
685 if (!wrapped) {
686 last = search_start;
687 wrapped = 1;
688 goto again;
689 }
690 if (!full_search && factor < 10) {
691 last = search_start;
692 full_search = 1;
693 factor = 10;
694 goto again;
695 }
696 found:
697 return group_start;
698 }
699
700 /* simple helper to search for an existing extent at a given offset */
701 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
702 {
703 int ret;
704 struct btrfs_key key;
705 struct btrfs_path *path;
706
707 path = btrfs_alloc_path();
708 if (!path)
709 return -ENOMEM;
710
711 key.objectid = start;
712 key.offset = len;
713 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
714 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
715 0, 0);
716 btrfs_free_path(path);
717 return ret;
718 }
719
720 /*
721 * helper function to lookup reference count and flags of extent.
722 *
723 * the head node for delayed ref is used to store the sum of all the
724 * reference count modifications queued up in the rbtree. the head
725 * node may also store the extent flags to set. This way you can check
726 * to see what the reference count and extent flags would be if all of
727 * the delayed refs are not processed.
728 */
729 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
730 struct btrfs_root *root, u64 bytenr,
731 u64 num_bytes, u64 *refs, u64 *flags)
732 {
733 struct btrfs_delayed_ref_head *head;
734 struct btrfs_delayed_ref_root *delayed_refs;
735 struct btrfs_path *path;
736 struct btrfs_extent_item *ei;
737 struct extent_buffer *leaf;
738 struct btrfs_key key;
739 u32 item_size;
740 u64 num_refs;
741 u64 extent_flags;
742 int ret;
743
744 path = btrfs_alloc_path();
745 if (!path)
746 return -ENOMEM;
747
748 key.objectid = bytenr;
749 key.type = BTRFS_EXTENT_ITEM_KEY;
750 key.offset = num_bytes;
751 if (!trans) {
752 path->skip_locking = 1;
753 path->search_commit_root = 1;
754 }
755 again:
756 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
757 &key, path, 0, 0);
758 if (ret < 0)
759 goto out_free;
760
761 if (ret == 0) {
762 leaf = path->nodes[0];
763 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
764 if (item_size >= sizeof(*ei)) {
765 ei = btrfs_item_ptr(leaf, path->slots[0],
766 struct btrfs_extent_item);
767 num_refs = btrfs_extent_refs(leaf, ei);
768 extent_flags = btrfs_extent_flags(leaf, ei);
769 } else {
770 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
771 struct btrfs_extent_item_v0 *ei0;
772 BUG_ON(item_size != sizeof(*ei0));
773 ei0 = btrfs_item_ptr(leaf, path->slots[0],
774 struct btrfs_extent_item_v0);
775 num_refs = btrfs_extent_refs_v0(leaf, ei0);
776 /* FIXME: this isn't correct for data */
777 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
778 #else
779 BUG();
780 #endif
781 }
782 BUG_ON(num_refs == 0);
783 } else {
784 num_refs = 0;
785 extent_flags = 0;
786 ret = 0;
787 }
788
789 if (!trans)
790 goto out;
791
792 delayed_refs = &trans->transaction->delayed_refs;
793 spin_lock(&delayed_refs->lock);
794 head = btrfs_find_delayed_ref_head(trans, bytenr);
795 if (head) {
796 if (!mutex_trylock(&head->mutex)) {
797 atomic_inc(&head->node.refs);
798 spin_unlock(&delayed_refs->lock);
799
800 btrfs_release_path(path);
801
802 /*
803 * Mutex was contended, block until it's released and try
804 * again
805 */
806 mutex_lock(&head->mutex);
807 mutex_unlock(&head->mutex);
808 btrfs_put_delayed_ref(&head->node);
809 goto again;
810 }
811 if (head->extent_op && head->extent_op->update_flags)
812 extent_flags |= head->extent_op->flags_to_set;
813 else
814 BUG_ON(num_refs == 0);
815
816 num_refs += head->node.ref_mod;
817 mutex_unlock(&head->mutex);
818 }
819 spin_unlock(&delayed_refs->lock);
820 out:
821 WARN_ON(num_refs == 0);
822 if (refs)
823 *refs = num_refs;
824 if (flags)
825 *flags = extent_flags;
826 out_free:
827 btrfs_free_path(path);
828 return ret;
829 }
830
831 /*
832 * Back reference rules. Back refs have three main goals:
833 *
834 * 1) differentiate between all holders of references to an extent so that
835 * when a reference is dropped we can make sure it was a valid reference
836 * before freeing the extent.
837 *
838 * 2) Provide enough information to quickly find the holders of an extent
839 * if we notice a given block is corrupted or bad.
840 *
841 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
842 * maintenance. This is actually the same as #2, but with a slightly
843 * different use case.
844 *
845 * There are two kinds of back refs. The implicit back refs is optimized
846 * for pointers in non-shared tree blocks. For a given pointer in a block,
847 * back refs of this kind provide information about the block's owner tree
848 * and the pointer's key. These information allow us to find the block by
849 * b-tree searching. The full back refs is for pointers in tree blocks not
850 * referenced by their owner trees. The location of tree block is recorded
851 * in the back refs. Actually the full back refs is generic, and can be
852 * used in all cases the implicit back refs is used. The major shortcoming
853 * of the full back refs is its overhead. Every time a tree block gets
854 * COWed, we have to update back refs entry for all pointers in it.
855 *
856 * For a newly allocated tree block, we use implicit back refs for
857 * pointers in it. This means most tree related operations only involve
858 * implicit back refs. For a tree block created in old transaction, the
859 * only way to drop a reference to it is COW it. So we can detect the
860 * event that tree block loses its owner tree's reference and do the
861 * back refs conversion.
862 *
863 * When a tree block is COW'd through a tree, there are four cases:
864 *
865 * The reference count of the block is one and the tree is the block's
866 * owner tree. Nothing to do in this case.
867 *
868 * The reference count of the block is one and the tree is not the
869 * block's owner tree. In this case, full back refs is used for pointers
870 * in the block. Remove these full back refs, add implicit back refs for
871 * every pointers in the new block.
872 *
873 * The reference count of the block is greater than one and the tree is
874 * the block's owner tree. In this case, implicit back refs is used for
875 * pointers in the block. Add full back refs for every pointers in the
876 * block, increase lower level extents' reference counts. The original
877 * implicit back refs are entailed to the new block.
878 *
879 * The reference count of the block is greater than one and the tree is
880 * not the block's owner tree. Add implicit back refs for every pointer in
881 * the new block, increase lower level extents' reference count.
882 *
883 * Back Reference Key composing:
884 *
885 * The key objectid corresponds to the first byte in the extent,
886 * The key type is used to differentiate between types of back refs.
887 * There are different meanings of the key offset for different types
888 * of back refs.
889 *
890 * File extents can be referenced by:
891 *
892 * - multiple snapshots, subvolumes, or different generations in one subvol
893 * - different files inside a single subvolume
894 * - different offsets inside a file (bookend extents in file.c)
895 *
896 * The extent ref structure for the implicit back refs has fields for:
897 *
898 * - Objectid of the subvolume root
899 * - objectid of the file holding the reference
900 * - original offset in the file
901 * - how many bookend extents
902 *
903 * The key offset for the implicit back refs is hash of the first
904 * three fields.
905 *
906 * The extent ref structure for the full back refs has field for:
907 *
908 * - number of pointers in the tree leaf
909 *
910 * The key offset for the implicit back refs is the first byte of
911 * the tree leaf
912 *
913 * When a file extent is allocated, The implicit back refs is used.
914 * the fields are filled in:
915 *
916 * (root_key.objectid, inode objectid, offset in file, 1)
917 *
918 * When a file extent is removed file truncation, we find the
919 * corresponding implicit back refs and check the following fields:
920 *
921 * (btrfs_header_owner(leaf), inode objectid, offset in file)
922 *
923 * Btree extents can be referenced by:
924 *
925 * - Different subvolumes
926 *
927 * Both the implicit back refs and the full back refs for tree blocks
928 * only consist of key. The key offset for the implicit back refs is
929 * objectid of block's owner tree. The key offset for the full back refs
930 * is the first byte of parent block.
931 *
932 * When implicit back refs is used, information about the lowest key and
933 * level of the tree block are required. These information are stored in
934 * tree block info structure.
935 */
936
937 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
938 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
939 struct btrfs_root *root,
940 struct btrfs_path *path,
941 u64 owner, u32 extra_size)
942 {
943 struct btrfs_extent_item *item;
944 struct btrfs_extent_item_v0 *ei0;
945 struct btrfs_extent_ref_v0 *ref0;
946 struct btrfs_tree_block_info *bi;
947 struct extent_buffer *leaf;
948 struct btrfs_key key;
949 struct btrfs_key found_key;
950 u32 new_size = sizeof(*item);
951 u64 refs;
952 int ret;
953
954 leaf = path->nodes[0];
955 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
956
957 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
958 ei0 = btrfs_item_ptr(leaf, path->slots[0],
959 struct btrfs_extent_item_v0);
960 refs = btrfs_extent_refs_v0(leaf, ei0);
961
962 if (owner == (u64)-1) {
963 while (1) {
964 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
965 ret = btrfs_next_leaf(root, path);
966 if (ret < 0)
967 return ret;
968 BUG_ON(ret > 0); /* Corruption */
969 leaf = path->nodes[0];
970 }
971 btrfs_item_key_to_cpu(leaf, &found_key,
972 path->slots[0]);
973 BUG_ON(key.objectid != found_key.objectid);
974 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
975 path->slots[0]++;
976 continue;
977 }
978 ref0 = btrfs_item_ptr(leaf, path->slots[0],
979 struct btrfs_extent_ref_v0);
980 owner = btrfs_ref_objectid_v0(leaf, ref0);
981 break;
982 }
983 }
984 btrfs_release_path(path);
985
986 if (owner < BTRFS_FIRST_FREE_OBJECTID)
987 new_size += sizeof(*bi);
988
989 new_size -= sizeof(*ei0);
990 ret = btrfs_search_slot(trans, root, &key, path,
991 new_size + extra_size, 1);
992 if (ret < 0)
993 return ret;
994 BUG_ON(ret); /* Corruption */
995
996 btrfs_extend_item(trans, root, path, new_size);
997
998 leaf = path->nodes[0];
999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1000 btrfs_set_extent_refs(leaf, item, refs);
1001 /* FIXME: get real generation */
1002 btrfs_set_extent_generation(leaf, item, 0);
1003 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1004 btrfs_set_extent_flags(leaf, item,
1005 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1006 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1007 bi = (struct btrfs_tree_block_info *)(item + 1);
1008 /* FIXME: get first key of the block */
1009 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1010 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1011 } else {
1012 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1013 }
1014 btrfs_mark_buffer_dirty(leaf);
1015 return 0;
1016 }
1017 #endif
1018
1019 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1020 {
1021 u32 high_crc = ~(u32)0;
1022 u32 low_crc = ~(u32)0;
1023 __le64 lenum;
1024
1025 lenum = cpu_to_le64(root_objectid);
1026 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1027 lenum = cpu_to_le64(owner);
1028 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1029 lenum = cpu_to_le64(offset);
1030 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1031
1032 return ((u64)high_crc << 31) ^ (u64)low_crc;
1033 }
1034
1035 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1036 struct btrfs_extent_data_ref *ref)
1037 {
1038 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1039 btrfs_extent_data_ref_objectid(leaf, ref),
1040 btrfs_extent_data_ref_offset(leaf, ref));
1041 }
1042
1043 static int match_extent_data_ref(struct extent_buffer *leaf,
1044 struct btrfs_extent_data_ref *ref,
1045 u64 root_objectid, u64 owner, u64 offset)
1046 {
1047 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1048 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1049 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1050 return 0;
1051 return 1;
1052 }
1053
1054 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 bytenr, u64 parent,
1058 u64 root_objectid,
1059 u64 owner, u64 offset)
1060 {
1061 struct btrfs_key key;
1062 struct btrfs_extent_data_ref *ref;
1063 struct extent_buffer *leaf;
1064 u32 nritems;
1065 int ret;
1066 int recow;
1067 int err = -ENOENT;
1068
1069 key.objectid = bytenr;
1070 if (parent) {
1071 key.type = BTRFS_SHARED_DATA_REF_KEY;
1072 key.offset = parent;
1073 } else {
1074 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1075 key.offset = hash_extent_data_ref(root_objectid,
1076 owner, offset);
1077 }
1078 again:
1079 recow = 0;
1080 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1081 if (ret < 0) {
1082 err = ret;
1083 goto fail;
1084 }
1085
1086 if (parent) {
1087 if (!ret)
1088 return 0;
1089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1090 key.type = BTRFS_EXTENT_REF_V0_KEY;
1091 btrfs_release_path(path);
1092 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1093 if (ret < 0) {
1094 err = ret;
1095 goto fail;
1096 }
1097 if (!ret)
1098 return 0;
1099 #endif
1100 goto fail;
1101 }
1102
1103 leaf = path->nodes[0];
1104 nritems = btrfs_header_nritems(leaf);
1105 while (1) {
1106 if (path->slots[0] >= nritems) {
1107 ret = btrfs_next_leaf(root, path);
1108 if (ret < 0)
1109 err = ret;
1110 if (ret)
1111 goto fail;
1112
1113 leaf = path->nodes[0];
1114 nritems = btrfs_header_nritems(leaf);
1115 recow = 1;
1116 }
1117
1118 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1119 if (key.objectid != bytenr ||
1120 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1121 goto fail;
1122
1123 ref = btrfs_item_ptr(leaf, path->slots[0],
1124 struct btrfs_extent_data_ref);
1125
1126 if (match_extent_data_ref(leaf, ref, root_objectid,
1127 owner, offset)) {
1128 if (recow) {
1129 btrfs_release_path(path);
1130 goto again;
1131 }
1132 err = 0;
1133 break;
1134 }
1135 path->slots[0]++;
1136 }
1137 fail:
1138 return err;
1139 }
1140
1141 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_path *path,
1144 u64 bytenr, u64 parent,
1145 u64 root_objectid, u64 owner,
1146 u64 offset, int refs_to_add)
1147 {
1148 struct btrfs_key key;
1149 struct extent_buffer *leaf;
1150 u32 size;
1151 u32 num_refs;
1152 int ret;
1153
1154 key.objectid = bytenr;
1155 if (parent) {
1156 key.type = BTRFS_SHARED_DATA_REF_KEY;
1157 key.offset = parent;
1158 size = sizeof(struct btrfs_shared_data_ref);
1159 } else {
1160 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1161 key.offset = hash_extent_data_ref(root_objectid,
1162 owner, offset);
1163 size = sizeof(struct btrfs_extent_data_ref);
1164 }
1165
1166 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1167 if (ret && ret != -EEXIST)
1168 goto fail;
1169
1170 leaf = path->nodes[0];
1171 if (parent) {
1172 struct btrfs_shared_data_ref *ref;
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_shared_data_ref);
1175 if (ret == 0) {
1176 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1177 } else {
1178 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1179 num_refs += refs_to_add;
1180 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1181 }
1182 } else {
1183 struct btrfs_extent_data_ref *ref;
1184 while (ret == -EEXIST) {
1185 ref = btrfs_item_ptr(leaf, path->slots[0],
1186 struct btrfs_extent_data_ref);
1187 if (match_extent_data_ref(leaf, ref, root_objectid,
1188 owner, offset))
1189 break;
1190 btrfs_release_path(path);
1191 key.offset++;
1192 ret = btrfs_insert_empty_item(trans, root, path, &key,
1193 size);
1194 if (ret && ret != -EEXIST)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 }
1199 ref = btrfs_item_ptr(leaf, path->slots[0],
1200 struct btrfs_extent_data_ref);
1201 if (ret == 0) {
1202 btrfs_set_extent_data_ref_root(leaf, ref,
1203 root_objectid);
1204 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1205 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1206 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1207 } else {
1208 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1209 num_refs += refs_to_add;
1210 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1211 }
1212 }
1213 btrfs_mark_buffer_dirty(leaf);
1214 ret = 0;
1215 fail:
1216 btrfs_release_path(path);
1217 return ret;
1218 }
1219
1220 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1221 struct btrfs_root *root,
1222 struct btrfs_path *path,
1223 int refs_to_drop)
1224 {
1225 struct btrfs_key key;
1226 struct btrfs_extent_data_ref *ref1 = NULL;
1227 struct btrfs_shared_data_ref *ref2 = NULL;
1228 struct extent_buffer *leaf;
1229 u32 num_refs = 0;
1230 int ret = 0;
1231
1232 leaf = path->nodes[0];
1233 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1234
1235 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1236 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1239 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1240 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_shared_data_ref);
1242 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1245 struct btrfs_extent_ref_v0 *ref0;
1246 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_extent_ref_v0);
1248 num_refs = btrfs_ref_count_v0(leaf, ref0);
1249 #endif
1250 } else {
1251 BUG();
1252 }
1253
1254 BUG_ON(num_refs < refs_to_drop);
1255 num_refs -= refs_to_drop;
1256
1257 if (num_refs == 0) {
1258 ret = btrfs_del_item(trans, root, path);
1259 } else {
1260 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1261 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1262 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1263 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1264 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1265 else {
1266 struct btrfs_extent_ref_v0 *ref0;
1267 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1268 struct btrfs_extent_ref_v0);
1269 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1270 }
1271 #endif
1272 btrfs_mark_buffer_dirty(leaf);
1273 }
1274 return ret;
1275 }
1276
1277 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1278 struct btrfs_path *path,
1279 struct btrfs_extent_inline_ref *iref)
1280 {
1281 struct btrfs_key key;
1282 struct extent_buffer *leaf;
1283 struct btrfs_extent_data_ref *ref1;
1284 struct btrfs_shared_data_ref *ref2;
1285 u32 num_refs = 0;
1286
1287 leaf = path->nodes[0];
1288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1289 if (iref) {
1290 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1291 BTRFS_EXTENT_DATA_REF_KEY) {
1292 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1293 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1294 } else {
1295 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1296 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1297 }
1298 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1299 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1300 struct btrfs_extent_data_ref);
1301 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1302 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1303 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1304 struct btrfs_shared_data_ref);
1305 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 num_refs = btrfs_ref_count_v0(leaf, ref0);
1312 #endif
1313 } else {
1314 WARN_ON(1);
1315 }
1316 return num_refs;
1317 }
1318
1319 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 u64 bytenr, u64 parent,
1323 u64 root_objectid)
1324 {
1325 struct btrfs_key key;
1326 int ret;
1327
1328 key.objectid = bytenr;
1329 if (parent) {
1330 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1331 key.offset = parent;
1332 } else {
1333 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1334 key.offset = root_objectid;
1335 }
1336
1337 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1338 if (ret > 0)
1339 ret = -ENOENT;
1340 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1341 if (ret == -ENOENT && parent) {
1342 btrfs_release_path(path);
1343 key.type = BTRFS_EXTENT_REF_V0_KEY;
1344 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1345 if (ret > 0)
1346 ret = -ENOENT;
1347 }
1348 #endif
1349 return ret;
1350 }
1351
1352 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root,
1354 struct btrfs_path *path,
1355 u64 bytenr, u64 parent,
1356 u64 root_objectid)
1357 {
1358 struct btrfs_key key;
1359 int ret;
1360
1361 key.objectid = bytenr;
1362 if (parent) {
1363 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1364 key.offset = parent;
1365 } else {
1366 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1367 key.offset = root_objectid;
1368 }
1369
1370 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1371 btrfs_release_path(path);
1372 return ret;
1373 }
1374
1375 static inline int extent_ref_type(u64 parent, u64 owner)
1376 {
1377 int type;
1378 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1379 if (parent > 0)
1380 type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 else
1382 type = BTRFS_TREE_BLOCK_REF_KEY;
1383 } else {
1384 if (parent > 0)
1385 type = BTRFS_SHARED_DATA_REF_KEY;
1386 else
1387 type = BTRFS_EXTENT_DATA_REF_KEY;
1388 }
1389 return type;
1390 }
1391
1392 static int find_next_key(struct btrfs_path *path, int level,
1393 struct btrfs_key *key)
1394
1395 {
1396 for (; level < BTRFS_MAX_LEVEL; level++) {
1397 if (!path->nodes[level])
1398 break;
1399 if (path->slots[level] + 1 >=
1400 btrfs_header_nritems(path->nodes[level]))
1401 continue;
1402 if (level == 0)
1403 btrfs_item_key_to_cpu(path->nodes[level], key,
1404 path->slots[level] + 1);
1405 else
1406 btrfs_node_key_to_cpu(path->nodes[level], key,
1407 path->slots[level] + 1);
1408 return 0;
1409 }
1410 return 1;
1411 }
1412
1413 /*
1414 * look for inline back ref. if back ref is found, *ref_ret is set
1415 * to the address of inline back ref, and 0 is returned.
1416 *
1417 * if back ref isn't found, *ref_ret is set to the address where it
1418 * should be inserted, and -ENOENT is returned.
1419 *
1420 * if insert is true and there are too many inline back refs, the path
1421 * points to the extent item, and -EAGAIN is returned.
1422 *
1423 * NOTE: inline back refs are ordered in the same way that back ref
1424 * items in the tree are ordered.
1425 */
1426 static noinline_for_stack
1427 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path,
1430 struct btrfs_extent_inline_ref **ref_ret,
1431 u64 bytenr, u64 num_bytes,
1432 u64 parent, u64 root_objectid,
1433 u64 owner, u64 offset, int insert)
1434 {
1435 struct btrfs_key key;
1436 struct extent_buffer *leaf;
1437 struct btrfs_extent_item *ei;
1438 struct btrfs_extent_inline_ref *iref;
1439 u64 flags;
1440 u64 item_size;
1441 unsigned long ptr;
1442 unsigned long end;
1443 int extra_size;
1444 int type;
1445 int want;
1446 int ret;
1447 int err = 0;
1448
1449 key.objectid = bytenr;
1450 key.type = BTRFS_EXTENT_ITEM_KEY;
1451 key.offset = num_bytes;
1452
1453 want = extent_ref_type(parent, owner);
1454 if (insert) {
1455 extra_size = btrfs_extent_inline_ref_size(want);
1456 path->keep_locks = 1;
1457 } else
1458 extra_size = -1;
1459 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1460 if (ret < 0) {
1461 err = ret;
1462 goto out;
1463 }
1464 if (ret && !insert) {
1465 err = -ENOENT;
1466 goto out;
1467 }
1468 BUG_ON(ret); /* Corruption */
1469
1470 leaf = path->nodes[0];
1471 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1472 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1473 if (item_size < sizeof(*ei)) {
1474 if (!insert) {
1475 err = -ENOENT;
1476 goto out;
1477 }
1478 ret = convert_extent_item_v0(trans, root, path, owner,
1479 extra_size);
1480 if (ret < 0) {
1481 err = ret;
1482 goto out;
1483 }
1484 leaf = path->nodes[0];
1485 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1486 }
1487 #endif
1488 BUG_ON(item_size < sizeof(*ei));
1489
1490 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1491 flags = btrfs_extent_flags(leaf, ei);
1492
1493 ptr = (unsigned long)(ei + 1);
1494 end = (unsigned long)ei + item_size;
1495
1496 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1497 ptr += sizeof(struct btrfs_tree_block_info);
1498 BUG_ON(ptr > end);
1499 } else {
1500 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1501 }
1502
1503 err = -ENOENT;
1504 while (1) {
1505 if (ptr >= end) {
1506 WARN_ON(ptr > end);
1507 break;
1508 }
1509 iref = (struct btrfs_extent_inline_ref *)ptr;
1510 type = btrfs_extent_inline_ref_type(leaf, iref);
1511 if (want < type)
1512 break;
1513 if (want > type) {
1514 ptr += btrfs_extent_inline_ref_size(type);
1515 continue;
1516 }
1517
1518 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1519 struct btrfs_extent_data_ref *dref;
1520 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1521 if (match_extent_data_ref(leaf, dref, root_objectid,
1522 owner, offset)) {
1523 err = 0;
1524 break;
1525 }
1526 if (hash_extent_data_ref_item(leaf, dref) <
1527 hash_extent_data_ref(root_objectid, owner, offset))
1528 break;
1529 } else {
1530 u64 ref_offset;
1531 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1532 if (parent > 0) {
1533 if (parent == ref_offset) {
1534 err = 0;
1535 break;
1536 }
1537 if (ref_offset < parent)
1538 break;
1539 } else {
1540 if (root_objectid == ref_offset) {
1541 err = 0;
1542 break;
1543 }
1544 if (ref_offset < root_objectid)
1545 break;
1546 }
1547 }
1548 ptr += btrfs_extent_inline_ref_size(type);
1549 }
1550 if (err == -ENOENT && insert) {
1551 if (item_size + extra_size >=
1552 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1553 err = -EAGAIN;
1554 goto out;
1555 }
1556 /*
1557 * To add new inline back ref, we have to make sure
1558 * there is no corresponding back ref item.
1559 * For simplicity, we just do not add new inline back
1560 * ref if there is any kind of item for this block
1561 */
1562 if (find_next_key(path, 0, &key) == 0 &&
1563 key.objectid == bytenr &&
1564 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1565 err = -EAGAIN;
1566 goto out;
1567 }
1568 }
1569 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1570 out:
1571 if (insert) {
1572 path->keep_locks = 0;
1573 btrfs_unlock_up_safe(path, 1);
1574 }
1575 return err;
1576 }
1577
1578 /*
1579 * helper to add new inline back ref
1580 */
1581 static noinline_for_stack
1582 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1583 struct btrfs_root *root,
1584 struct btrfs_path *path,
1585 struct btrfs_extent_inline_ref *iref,
1586 u64 parent, u64 root_objectid,
1587 u64 owner, u64 offset, int refs_to_add,
1588 struct btrfs_delayed_extent_op *extent_op)
1589 {
1590 struct extent_buffer *leaf;
1591 struct btrfs_extent_item *ei;
1592 unsigned long ptr;
1593 unsigned long end;
1594 unsigned long item_offset;
1595 u64 refs;
1596 int size;
1597 int type;
1598
1599 leaf = path->nodes[0];
1600 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1601 item_offset = (unsigned long)iref - (unsigned long)ei;
1602
1603 type = extent_ref_type(parent, owner);
1604 size = btrfs_extent_inline_ref_size(type);
1605
1606 btrfs_extend_item(trans, root, path, size);
1607
1608 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1609 refs = btrfs_extent_refs(leaf, ei);
1610 refs += refs_to_add;
1611 btrfs_set_extent_refs(leaf, ei, refs);
1612 if (extent_op)
1613 __run_delayed_extent_op(extent_op, leaf, ei);
1614
1615 ptr = (unsigned long)ei + item_offset;
1616 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1617 if (ptr < end - size)
1618 memmove_extent_buffer(leaf, ptr + size, ptr,
1619 end - size - ptr);
1620
1621 iref = (struct btrfs_extent_inline_ref *)ptr;
1622 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1623 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1624 struct btrfs_extent_data_ref *dref;
1625 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1626 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1627 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1628 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1629 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1630 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1631 struct btrfs_shared_data_ref *sref;
1632 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1633 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1634 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1635 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1636 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1637 } else {
1638 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1639 }
1640 btrfs_mark_buffer_dirty(leaf);
1641 }
1642
1643 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1644 struct btrfs_root *root,
1645 struct btrfs_path *path,
1646 struct btrfs_extent_inline_ref **ref_ret,
1647 u64 bytenr, u64 num_bytes, u64 parent,
1648 u64 root_objectid, u64 owner, u64 offset)
1649 {
1650 int ret;
1651
1652 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1653 bytenr, num_bytes, parent,
1654 root_objectid, owner, offset, 0);
1655 if (ret != -ENOENT)
1656 return ret;
1657
1658 btrfs_release_path(path);
1659 *ref_ret = NULL;
1660
1661 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1662 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1663 root_objectid);
1664 } else {
1665 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1666 root_objectid, owner, offset);
1667 }
1668 return ret;
1669 }
1670
1671 /*
1672 * helper to update/remove inline back ref
1673 */
1674 static noinline_for_stack
1675 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 int refs_to_mod,
1680 struct btrfs_delayed_extent_op *extent_op)
1681 {
1682 struct extent_buffer *leaf;
1683 struct btrfs_extent_item *ei;
1684 struct btrfs_extent_data_ref *dref = NULL;
1685 struct btrfs_shared_data_ref *sref = NULL;
1686 unsigned long ptr;
1687 unsigned long end;
1688 u32 item_size;
1689 int size;
1690 int type;
1691 u64 refs;
1692
1693 leaf = path->nodes[0];
1694 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1695 refs = btrfs_extent_refs(leaf, ei);
1696 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1697 refs += refs_to_mod;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 type = btrfs_extent_inline_ref_type(leaf, iref);
1703
1704 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 refs = btrfs_extent_data_ref_count(leaf, dref);
1707 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1708 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1709 refs = btrfs_shared_data_ref_count(leaf, sref);
1710 } else {
1711 refs = 1;
1712 BUG_ON(refs_to_mod != -1);
1713 }
1714
1715 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1716 refs += refs_to_mod;
1717
1718 if (refs > 0) {
1719 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1720 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1721 else
1722 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1723 } else {
1724 size = btrfs_extent_inline_ref_size(type);
1725 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1726 ptr = (unsigned long)iref;
1727 end = (unsigned long)ei + item_size;
1728 if (ptr + size < end)
1729 memmove_extent_buffer(leaf, ptr, ptr + size,
1730 end - ptr - size);
1731 item_size -= size;
1732 btrfs_truncate_item(trans, root, path, item_size, 1);
1733 }
1734 btrfs_mark_buffer_dirty(leaf);
1735 }
1736
1737 static noinline_for_stack
1738 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *root,
1740 struct btrfs_path *path,
1741 u64 bytenr, u64 num_bytes, u64 parent,
1742 u64 root_objectid, u64 owner,
1743 u64 offset, int refs_to_add,
1744 struct btrfs_delayed_extent_op *extent_op)
1745 {
1746 struct btrfs_extent_inline_ref *iref;
1747 int ret;
1748
1749 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1750 bytenr, num_bytes, parent,
1751 root_objectid, owner, offset, 1);
1752 if (ret == 0) {
1753 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1754 update_inline_extent_backref(trans, root, path, iref,
1755 refs_to_add, extent_op);
1756 } else if (ret == -ENOENT) {
1757 setup_inline_extent_backref(trans, root, path, iref, parent,
1758 root_objectid, owner, offset,
1759 refs_to_add, extent_op);
1760 ret = 0;
1761 }
1762 return ret;
1763 }
1764
1765 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1766 struct btrfs_root *root,
1767 struct btrfs_path *path,
1768 u64 bytenr, u64 parent, u64 root_objectid,
1769 u64 owner, u64 offset, int refs_to_add)
1770 {
1771 int ret;
1772 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1773 BUG_ON(refs_to_add != 1);
1774 ret = insert_tree_block_ref(trans, root, path, bytenr,
1775 parent, root_objectid);
1776 } else {
1777 ret = insert_extent_data_ref(trans, root, path, bytenr,
1778 parent, root_objectid,
1779 owner, offset, refs_to_add);
1780 }
1781 return ret;
1782 }
1783
1784 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1785 struct btrfs_root *root,
1786 struct btrfs_path *path,
1787 struct btrfs_extent_inline_ref *iref,
1788 int refs_to_drop, int is_data)
1789 {
1790 int ret = 0;
1791
1792 BUG_ON(!is_data && refs_to_drop != 1);
1793 if (iref) {
1794 update_inline_extent_backref(trans, root, path, iref,
1795 -refs_to_drop, NULL);
1796 } else if (is_data) {
1797 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1798 } else {
1799 ret = btrfs_del_item(trans, root, path);
1800 }
1801 return ret;
1802 }
1803
1804 static int btrfs_issue_discard(struct block_device *bdev,
1805 u64 start, u64 len)
1806 {
1807 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1808 }
1809
1810 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1811 u64 num_bytes, u64 *actual_bytes)
1812 {
1813 int ret;
1814 u64 discarded_bytes = 0;
1815 struct btrfs_bio *bbio = NULL;
1816
1817
1818 /* Tell the block device(s) that the sectors can be discarded */
1819 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1820 bytenr, &num_bytes, &bbio, 0);
1821 /* Error condition is -ENOMEM */
1822 if (!ret) {
1823 struct btrfs_bio_stripe *stripe = bbio->stripes;
1824 int i;
1825
1826
1827 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1828 if (!stripe->dev->can_discard)
1829 continue;
1830
1831 ret = btrfs_issue_discard(stripe->dev->bdev,
1832 stripe->physical,
1833 stripe->length);
1834 if (!ret)
1835 discarded_bytes += stripe->length;
1836 else if (ret != -EOPNOTSUPP)
1837 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1838
1839 /*
1840 * Just in case we get back EOPNOTSUPP for some reason,
1841 * just ignore the return value so we don't screw up
1842 * people calling discard_extent.
1843 */
1844 ret = 0;
1845 }
1846 kfree(bbio);
1847 }
1848
1849 if (actual_bytes)
1850 *actual_bytes = discarded_bytes;
1851
1852
1853 return ret;
1854 }
1855
1856 /* Can return -ENOMEM */
1857 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
1859 u64 bytenr, u64 num_bytes, u64 parent,
1860 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1861 {
1862 int ret;
1863 struct btrfs_fs_info *fs_info = root->fs_info;
1864
1865 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1866 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1867
1868 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1869 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1870 num_bytes,
1871 parent, root_objectid, (int)owner,
1872 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1873 } else {
1874 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1875 num_bytes,
1876 parent, root_objectid, owner, offset,
1877 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1878 }
1879 return ret;
1880 }
1881
1882 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1883 struct btrfs_root *root,
1884 u64 bytenr, u64 num_bytes,
1885 u64 parent, u64 root_objectid,
1886 u64 owner, u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1888 {
1889 struct btrfs_path *path;
1890 struct extent_buffer *leaf;
1891 struct btrfs_extent_item *item;
1892 u64 refs;
1893 int ret;
1894 int err = 0;
1895
1896 path = btrfs_alloc_path();
1897 if (!path)
1898 return -ENOMEM;
1899
1900 path->reada = 1;
1901 path->leave_spinning = 1;
1902 /* this will setup the path even if it fails to insert the back ref */
1903 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1904 path, bytenr, num_bytes, parent,
1905 root_objectid, owner, offset,
1906 refs_to_add, extent_op);
1907 if (ret == 0)
1908 goto out;
1909
1910 if (ret != -EAGAIN) {
1911 err = ret;
1912 goto out;
1913 }
1914
1915 leaf = path->nodes[0];
1916 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1917 refs = btrfs_extent_refs(leaf, item);
1918 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1919 if (extent_op)
1920 __run_delayed_extent_op(extent_op, leaf, item);
1921
1922 btrfs_mark_buffer_dirty(leaf);
1923 btrfs_release_path(path);
1924
1925 path->reada = 1;
1926 path->leave_spinning = 1;
1927
1928 /* now insert the actual backref */
1929 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1930 path, bytenr, parent, root_objectid,
1931 owner, offset, refs_to_add);
1932 if (ret)
1933 btrfs_abort_transaction(trans, root, ret);
1934 out:
1935 btrfs_free_path(path);
1936 return err;
1937 }
1938
1939 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1940 struct btrfs_root *root,
1941 struct btrfs_delayed_ref_node *node,
1942 struct btrfs_delayed_extent_op *extent_op,
1943 int insert_reserved)
1944 {
1945 int ret = 0;
1946 struct btrfs_delayed_data_ref *ref;
1947 struct btrfs_key ins;
1948 u64 parent = 0;
1949 u64 ref_root = 0;
1950 u64 flags = 0;
1951
1952 ins.objectid = node->bytenr;
1953 ins.offset = node->num_bytes;
1954 ins.type = BTRFS_EXTENT_ITEM_KEY;
1955
1956 ref = btrfs_delayed_node_to_data_ref(node);
1957 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1958 parent = ref->parent;
1959 else
1960 ref_root = ref->root;
1961
1962 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1963 if (extent_op) {
1964 BUG_ON(extent_op->update_key);
1965 flags |= extent_op->flags_to_set;
1966 }
1967 ret = alloc_reserved_file_extent(trans, root,
1968 parent, ref_root, flags,
1969 ref->objectid, ref->offset,
1970 &ins, node->ref_mod);
1971 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1972 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1973 node->num_bytes, parent,
1974 ref_root, ref->objectid,
1975 ref->offset, node->ref_mod,
1976 extent_op);
1977 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1978 ret = __btrfs_free_extent(trans, root, node->bytenr,
1979 node->num_bytes, parent,
1980 ref_root, ref->objectid,
1981 ref->offset, node->ref_mod,
1982 extent_op);
1983 } else {
1984 BUG();
1985 }
1986 return ret;
1987 }
1988
1989 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1990 struct extent_buffer *leaf,
1991 struct btrfs_extent_item *ei)
1992 {
1993 u64 flags = btrfs_extent_flags(leaf, ei);
1994 if (extent_op->update_flags) {
1995 flags |= extent_op->flags_to_set;
1996 btrfs_set_extent_flags(leaf, ei, flags);
1997 }
1998
1999 if (extent_op->update_key) {
2000 struct btrfs_tree_block_info *bi;
2001 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2002 bi = (struct btrfs_tree_block_info *)(ei + 1);
2003 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2004 }
2005 }
2006
2007 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2008 struct btrfs_root *root,
2009 struct btrfs_delayed_ref_node *node,
2010 struct btrfs_delayed_extent_op *extent_op)
2011 {
2012 struct btrfs_key key;
2013 struct btrfs_path *path;
2014 struct btrfs_extent_item *ei;
2015 struct extent_buffer *leaf;
2016 u32 item_size;
2017 int ret;
2018 int err = 0;
2019
2020 if (trans->aborted)
2021 return 0;
2022
2023 path = btrfs_alloc_path();
2024 if (!path)
2025 return -ENOMEM;
2026
2027 key.objectid = node->bytenr;
2028 key.type = BTRFS_EXTENT_ITEM_KEY;
2029 key.offset = node->num_bytes;
2030
2031 path->reada = 1;
2032 path->leave_spinning = 1;
2033 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2034 path, 0, 1);
2035 if (ret < 0) {
2036 err = ret;
2037 goto out;
2038 }
2039 if (ret > 0) {
2040 err = -EIO;
2041 goto out;
2042 }
2043
2044 leaf = path->nodes[0];
2045 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2046 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2047 if (item_size < sizeof(*ei)) {
2048 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2049 path, (u64)-1, 0);
2050 if (ret < 0) {
2051 err = ret;
2052 goto out;
2053 }
2054 leaf = path->nodes[0];
2055 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2056 }
2057 #endif
2058 BUG_ON(item_size < sizeof(*ei));
2059 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2060 __run_delayed_extent_op(extent_op, leaf, ei);
2061
2062 btrfs_mark_buffer_dirty(leaf);
2063 out:
2064 btrfs_free_path(path);
2065 return err;
2066 }
2067
2068 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2069 struct btrfs_root *root,
2070 struct btrfs_delayed_ref_node *node,
2071 struct btrfs_delayed_extent_op *extent_op,
2072 int insert_reserved)
2073 {
2074 int ret = 0;
2075 struct btrfs_delayed_tree_ref *ref;
2076 struct btrfs_key ins;
2077 u64 parent = 0;
2078 u64 ref_root = 0;
2079
2080 ins.objectid = node->bytenr;
2081 ins.offset = node->num_bytes;
2082 ins.type = BTRFS_EXTENT_ITEM_KEY;
2083
2084 ref = btrfs_delayed_node_to_tree_ref(node);
2085 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2086 parent = ref->parent;
2087 else
2088 ref_root = ref->root;
2089
2090 BUG_ON(node->ref_mod != 1);
2091 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2092 BUG_ON(!extent_op || !extent_op->update_flags ||
2093 !extent_op->update_key);
2094 ret = alloc_reserved_tree_block(trans, root,
2095 parent, ref_root,
2096 extent_op->flags_to_set,
2097 &extent_op->key,
2098 ref->level, &ins);
2099 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2100 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2101 node->num_bytes, parent, ref_root,
2102 ref->level, 0, 1, extent_op);
2103 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2104 ret = __btrfs_free_extent(trans, root, node->bytenr,
2105 node->num_bytes, parent, ref_root,
2106 ref->level, 0, 1, extent_op);
2107 } else {
2108 BUG();
2109 }
2110 return ret;
2111 }
2112
2113 /* helper function to actually process a single delayed ref entry */
2114 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2115 struct btrfs_root *root,
2116 struct btrfs_delayed_ref_node *node,
2117 struct btrfs_delayed_extent_op *extent_op,
2118 int insert_reserved)
2119 {
2120 int ret = 0;
2121
2122 if (trans->aborted)
2123 return 0;
2124
2125 if (btrfs_delayed_ref_is_head(node)) {
2126 struct btrfs_delayed_ref_head *head;
2127 /*
2128 * we've hit the end of the chain and we were supposed
2129 * to insert this extent into the tree. But, it got
2130 * deleted before we ever needed to insert it, so all
2131 * we have to do is clean up the accounting
2132 */
2133 BUG_ON(extent_op);
2134 head = btrfs_delayed_node_to_head(node);
2135 if (insert_reserved) {
2136 btrfs_pin_extent(root, node->bytenr,
2137 node->num_bytes, 1);
2138 if (head->is_data) {
2139 ret = btrfs_del_csums(trans, root,
2140 node->bytenr,
2141 node->num_bytes);
2142 }
2143 }
2144 return ret;
2145 }
2146
2147 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2148 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2149 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2150 insert_reserved);
2151 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2152 node->type == BTRFS_SHARED_DATA_REF_KEY)
2153 ret = run_delayed_data_ref(trans, root, node, extent_op,
2154 insert_reserved);
2155 else
2156 BUG();
2157 return ret;
2158 }
2159
2160 static noinline struct btrfs_delayed_ref_node *
2161 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2162 {
2163 struct rb_node *node;
2164 struct btrfs_delayed_ref_node *ref;
2165 int action = BTRFS_ADD_DELAYED_REF;
2166 again:
2167 /*
2168 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2169 * this prevents ref count from going down to zero when
2170 * there still are pending delayed ref.
2171 */
2172 node = rb_prev(&head->node.rb_node);
2173 while (1) {
2174 if (!node)
2175 break;
2176 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2177 rb_node);
2178 if (ref->bytenr != head->node.bytenr)
2179 break;
2180 if (ref->action == action)
2181 return ref;
2182 node = rb_prev(node);
2183 }
2184 if (action == BTRFS_ADD_DELAYED_REF) {
2185 action = BTRFS_DROP_DELAYED_REF;
2186 goto again;
2187 }
2188 return NULL;
2189 }
2190
2191 /*
2192 * Returns 0 on success or if called with an already aborted transaction.
2193 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2194 */
2195 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2196 struct btrfs_root *root,
2197 struct list_head *cluster)
2198 {
2199 struct btrfs_delayed_ref_root *delayed_refs;
2200 struct btrfs_delayed_ref_node *ref;
2201 struct btrfs_delayed_ref_head *locked_ref = NULL;
2202 struct btrfs_delayed_extent_op *extent_op;
2203 struct btrfs_fs_info *fs_info = root->fs_info;
2204 int ret;
2205 int count = 0;
2206 int must_insert_reserved = 0;
2207
2208 delayed_refs = &trans->transaction->delayed_refs;
2209 while (1) {
2210 if (!locked_ref) {
2211 /* pick a new head ref from the cluster list */
2212 if (list_empty(cluster))
2213 break;
2214
2215 locked_ref = list_entry(cluster->next,
2216 struct btrfs_delayed_ref_head, cluster);
2217
2218 /* grab the lock that says we are going to process
2219 * all the refs for this head */
2220 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2221
2222 /*
2223 * we may have dropped the spin lock to get the head
2224 * mutex lock, and that might have given someone else
2225 * time to free the head. If that's true, it has been
2226 * removed from our list and we can move on.
2227 */
2228 if (ret == -EAGAIN) {
2229 locked_ref = NULL;
2230 count++;
2231 continue;
2232 }
2233 }
2234
2235 /*
2236 * We need to try and merge add/drops of the same ref since we
2237 * can run into issues with relocate dropping the implicit ref
2238 * and then it being added back again before the drop can
2239 * finish. If we merged anything we need to re-loop so we can
2240 * get a good ref.
2241 */
2242 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2243 locked_ref);
2244
2245 /*
2246 * locked_ref is the head node, so we have to go one
2247 * node back for any delayed ref updates
2248 */
2249 ref = select_delayed_ref(locked_ref);
2250
2251 if (ref && ref->seq &&
2252 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2253 /*
2254 * there are still refs with lower seq numbers in the
2255 * process of being added. Don't run this ref yet.
2256 */
2257 list_del_init(&locked_ref->cluster);
2258 btrfs_delayed_ref_unlock(locked_ref);
2259 locked_ref = NULL;
2260 delayed_refs->num_heads_ready++;
2261 spin_unlock(&delayed_refs->lock);
2262 cond_resched();
2263 spin_lock(&delayed_refs->lock);
2264 continue;
2265 }
2266
2267 /*
2268 * record the must insert reserved flag before we
2269 * drop the spin lock.
2270 */
2271 must_insert_reserved = locked_ref->must_insert_reserved;
2272 locked_ref->must_insert_reserved = 0;
2273
2274 extent_op = locked_ref->extent_op;
2275 locked_ref->extent_op = NULL;
2276
2277 if (!ref) {
2278 /* All delayed refs have been processed, Go ahead
2279 * and send the head node to run_one_delayed_ref,
2280 * so that any accounting fixes can happen
2281 */
2282 ref = &locked_ref->node;
2283
2284 if (extent_op && must_insert_reserved) {
2285 btrfs_free_delayed_extent_op(extent_op);
2286 extent_op = NULL;
2287 }
2288
2289 if (extent_op) {
2290 spin_unlock(&delayed_refs->lock);
2291
2292 ret = run_delayed_extent_op(trans, root,
2293 ref, extent_op);
2294 btrfs_free_delayed_extent_op(extent_op);
2295
2296 if (ret) {
2297 printk(KERN_DEBUG
2298 "btrfs: run_delayed_extent_op "
2299 "returned %d\n", ret);
2300 spin_lock(&delayed_refs->lock);
2301 btrfs_delayed_ref_unlock(locked_ref);
2302 return ret;
2303 }
2304
2305 goto next;
2306 }
2307 }
2308
2309 ref->in_tree = 0;
2310 rb_erase(&ref->rb_node, &delayed_refs->root);
2311 delayed_refs->num_entries--;
2312 if (!btrfs_delayed_ref_is_head(ref)) {
2313 /*
2314 * when we play the delayed ref, also correct the
2315 * ref_mod on head
2316 */
2317 switch (ref->action) {
2318 case BTRFS_ADD_DELAYED_REF:
2319 case BTRFS_ADD_DELAYED_EXTENT:
2320 locked_ref->node.ref_mod -= ref->ref_mod;
2321 break;
2322 case BTRFS_DROP_DELAYED_REF:
2323 locked_ref->node.ref_mod += ref->ref_mod;
2324 break;
2325 default:
2326 WARN_ON(1);
2327 }
2328 }
2329 spin_unlock(&delayed_refs->lock);
2330
2331 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2332 must_insert_reserved);
2333
2334 btrfs_free_delayed_extent_op(extent_op);
2335 if (ret) {
2336 btrfs_delayed_ref_unlock(locked_ref);
2337 btrfs_put_delayed_ref(ref);
2338 printk(KERN_DEBUG
2339 "btrfs: run_one_delayed_ref returned %d\n", ret);
2340 spin_lock(&delayed_refs->lock);
2341 return ret;
2342 }
2343
2344 /*
2345 * If this node is a head, that means all the refs in this head
2346 * have been dealt with, and we will pick the next head to deal
2347 * with, so we must unlock the head and drop it from the cluster
2348 * list before we release it.
2349 */
2350 if (btrfs_delayed_ref_is_head(ref)) {
2351 list_del_init(&locked_ref->cluster);
2352 btrfs_delayed_ref_unlock(locked_ref);
2353 locked_ref = NULL;
2354 }
2355 btrfs_put_delayed_ref(ref);
2356 count++;
2357 next:
2358 cond_resched();
2359 spin_lock(&delayed_refs->lock);
2360 }
2361 return count;
2362 }
2363
2364 #ifdef SCRAMBLE_DELAYED_REFS
2365 /*
2366 * Normally delayed refs get processed in ascending bytenr order. This
2367 * correlates in most cases to the order added. To expose dependencies on this
2368 * order, we start to process the tree in the middle instead of the beginning
2369 */
2370 static u64 find_middle(struct rb_root *root)
2371 {
2372 struct rb_node *n = root->rb_node;
2373 struct btrfs_delayed_ref_node *entry;
2374 int alt = 1;
2375 u64 middle;
2376 u64 first = 0, last = 0;
2377
2378 n = rb_first(root);
2379 if (n) {
2380 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2381 first = entry->bytenr;
2382 }
2383 n = rb_last(root);
2384 if (n) {
2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2386 last = entry->bytenr;
2387 }
2388 n = root->rb_node;
2389
2390 while (n) {
2391 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2392 WARN_ON(!entry->in_tree);
2393
2394 middle = entry->bytenr;
2395
2396 if (alt)
2397 n = n->rb_left;
2398 else
2399 n = n->rb_right;
2400
2401 alt = 1 - alt;
2402 }
2403 return middle;
2404 }
2405 #endif
2406
2407 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2408 struct btrfs_fs_info *fs_info)
2409 {
2410 struct qgroup_update *qgroup_update;
2411 int ret = 0;
2412
2413 if (list_empty(&trans->qgroup_ref_list) !=
2414 !trans->delayed_ref_elem.seq) {
2415 /* list without seq or seq without list */
2416 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2417 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2418 trans->delayed_ref_elem.seq);
2419 BUG();
2420 }
2421
2422 if (!trans->delayed_ref_elem.seq)
2423 return 0;
2424
2425 while (!list_empty(&trans->qgroup_ref_list)) {
2426 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2427 struct qgroup_update, list);
2428 list_del(&qgroup_update->list);
2429 if (!ret)
2430 ret = btrfs_qgroup_account_ref(
2431 trans, fs_info, qgroup_update->node,
2432 qgroup_update->extent_op);
2433 kfree(qgroup_update);
2434 }
2435
2436 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2437
2438 return ret;
2439 }
2440
2441 /*
2442 * this starts processing the delayed reference count updates and
2443 * extent insertions we have queued up so far. count can be
2444 * 0, which means to process everything in the tree at the start
2445 * of the run (but not newly added entries), or it can be some target
2446 * number you'd like to process.
2447 *
2448 * Returns 0 on success or if called with an aborted transaction
2449 * Returns <0 on error and aborts the transaction
2450 */
2451 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2452 struct btrfs_root *root, unsigned long count)
2453 {
2454 struct rb_node *node;
2455 struct btrfs_delayed_ref_root *delayed_refs;
2456 struct btrfs_delayed_ref_node *ref;
2457 struct list_head cluster;
2458 int ret;
2459 u64 delayed_start;
2460 int run_all = count == (unsigned long)-1;
2461 int run_most = 0;
2462 int loops;
2463
2464 /* We'll clean this up in btrfs_cleanup_transaction */
2465 if (trans->aborted)
2466 return 0;
2467
2468 if (root == root->fs_info->extent_root)
2469 root = root->fs_info->tree_root;
2470
2471 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2472
2473 delayed_refs = &trans->transaction->delayed_refs;
2474 INIT_LIST_HEAD(&cluster);
2475 again:
2476 loops = 0;
2477 spin_lock(&delayed_refs->lock);
2478
2479 #ifdef SCRAMBLE_DELAYED_REFS
2480 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2481 #endif
2482
2483 if (count == 0) {
2484 count = delayed_refs->num_entries * 2;
2485 run_most = 1;
2486 }
2487 while (1) {
2488 if (!(run_all || run_most) &&
2489 delayed_refs->num_heads_ready < 64)
2490 break;
2491
2492 /*
2493 * go find something we can process in the rbtree. We start at
2494 * the beginning of the tree, and then build a cluster
2495 * of refs to process starting at the first one we are able to
2496 * lock
2497 */
2498 delayed_start = delayed_refs->run_delayed_start;
2499 ret = btrfs_find_ref_cluster(trans, &cluster,
2500 delayed_refs->run_delayed_start);
2501 if (ret)
2502 break;
2503
2504 ret = run_clustered_refs(trans, root, &cluster);
2505 if (ret < 0) {
2506 btrfs_release_ref_cluster(&cluster);
2507 spin_unlock(&delayed_refs->lock);
2508 btrfs_abort_transaction(trans, root, ret);
2509 return ret;
2510 }
2511
2512 count -= min_t(unsigned long, ret, count);
2513
2514 if (count == 0)
2515 break;
2516
2517 if (delayed_start >= delayed_refs->run_delayed_start) {
2518 if (loops == 0) {
2519 /*
2520 * btrfs_find_ref_cluster looped. let's do one
2521 * more cycle. if we don't run any delayed ref
2522 * during that cycle (because we can't because
2523 * all of them are blocked), bail out.
2524 */
2525 loops = 1;
2526 } else {
2527 /*
2528 * no runnable refs left, stop trying
2529 */
2530 BUG_ON(run_all);
2531 break;
2532 }
2533 }
2534 if (ret) {
2535 /* refs were run, let's reset staleness detection */
2536 loops = 0;
2537 }
2538 }
2539
2540 if (run_all) {
2541 if (!list_empty(&trans->new_bgs)) {
2542 spin_unlock(&delayed_refs->lock);
2543 btrfs_create_pending_block_groups(trans, root);
2544 spin_lock(&delayed_refs->lock);
2545 }
2546
2547 node = rb_first(&delayed_refs->root);
2548 if (!node)
2549 goto out;
2550 count = (unsigned long)-1;
2551
2552 while (node) {
2553 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2554 rb_node);
2555 if (btrfs_delayed_ref_is_head(ref)) {
2556 struct btrfs_delayed_ref_head *head;
2557
2558 head = btrfs_delayed_node_to_head(ref);
2559 atomic_inc(&ref->refs);
2560
2561 spin_unlock(&delayed_refs->lock);
2562 /*
2563 * Mutex was contended, block until it's
2564 * released and try again
2565 */
2566 mutex_lock(&head->mutex);
2567 mutex_unlock(&head->mutex);
2568
2569 btrfs_put_delayed_ref(ref);
2570 cond_resched();
2571 goto again;
2572 }
2573 node = rb_next(node);
2574 }
2575 spin_unlock(&delayed_refs->lock);
2576 schedule_timeout(1);
2577 goto again;
2578 }
2579 out:
2580 spin_unlock(&delayed_refs->lock);
2581 assert_qgroups_uptodate(trans);
2582 return 0;
2583 }
2584
2585 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2586 struct btrfs_root *root,
2587 u64 bytenr, u64 num_bytes, u64 flags,
2588 int is_data)
2589 {
2590 struct btrfs_delayed_extent_op *extent_op;
2591 int ret;
2592
2593 extent_op = btrfs_alloc_delayed_extent_op();
2594 if (!extent_op)
2595 return -ENOMEM;
2596
2597 extent_op->flags_to_set = flags;
2598 extent_op->update_flags = 1;
2599 extent_op->update_key = 0;
2600 extent_op->is_data = is_data ? 1 : 0;
2601
2602 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2603 num_bytes, extent_op);
2604 if (ret)
2605 btrfs_free_delayed_extent_op(extent_op);
2606 return ret;
2607 }
2608
2609 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2610 struct btrfs_root *root,
2611 struct btrfs_path *path,
2612 u64 objectid, u64 offset, u64 bytenr)
2613 {
2614 struct btrfs_delayed_ref_head *head;
2615 struct btrfs_delayed_ref_node *ref;
2616 struct btrfs_delayed_data_ref *data_ref;
2617 struct btrfs_delayed_ref_root *delayed_refs;
2618 struct rb_node *node;
2619 int ret = 0;
2620
2621 ret = -ENOENT;
2622 delayed_refs = &trans->transaction->delayed_refs;
2623 spin_lock(&delayed_refs->lock);
2624 head = btrfs_find_delayed_ref_head(trans, bytenr);
2625 if (!head)
2626 goto out;
2627
2628 if (!mutex_trylock(&head->mutex)) {
2629 atomic_inc(&head->node.refs);
2630 spin_unlock(&delayed_refs->lock);
2631
2632 btrfs_release_path(path);
2633
2634 /*
2635 * Mutex was contended, block until it's released and let
2636 * caller try again
2637 */
2638 mutex_lock(&head->mutex);
2639 mutex_unlock(&head->mutex);
2640 btrfs_put_delayed_ref(&head->node);
2641 return -EAGAIN;
2642 }
2643
2644 node = rb_prev(&head->node.rb_node);
2645 if (!node)
2646 goto out_unlock;
2647
2648 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2649
2650 if (ref->bytenr != bytenr)
2651 goto out_unlock;
2652
2653 ret = 1;
2654 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2655 goto out_unlock;
2656
2657 data_ref = btrfs_delayed_node_to_data_ref(ref);
2658
2659 node = rb_prev(node);
2660 if (node) {
2661 int seq = ref->seq;
2662
2663 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2664 if (ref->bytenr == bytenr && ref->seq == seq)
2665 goto out_unlock;
2666 }
2667
2668 if (data_ref->root != root->root_key.objectid ||
2669 data_ref->objectid != objectid || data_ref->offset != offset)
2670 goto out_unlock;
2671
2672 ret = 0;
2673 out_unlock:
2674 mutex_unlock(&head->mutex);
2675 out:
2676 spin_unlock(&delayed_refs->lock);
2677 return ret;
2678 }
2679
2680 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2681 struct btrfs_root *root,
2682 struct btrfs_path *path,
2683 u64 objectid, u64 offset, u64 bytenr)
2684 {
2685 struct btrfs_root *extent_root = root->fs_info->extent_root;
2686 struct extent_buffer *leaf;
2687 struct btrfs_extent_data_ref *ref;
2688 struct btrfs_extent_inline_ref *iref;
2689 struct btrfs_extent_item *ei;
2690 struct btrfs_key key;
2691 u32 item_size;
2692 int ret;
2693
2694 key.objectid = bytenr;
2695 key.offset = (u64)-1;
2696 key.type = BTRFS_EXTENT_ITEM_KEY;
2697
2698 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2699 if (ret < 0)
2700 goto out;
2701 BUG_ON(ret == 0); /* Corruption */
2702
2703 ret = -ENOENT;
2704 if (path->slots[0] == 0)
2705 goto out;
2706
2707 path->slots[0]--;
2708 leaf = path->nodes[0];
2709 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2710
2711 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2712 goto out;
2713
2714 ret = 1;
2715 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2716 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2717 if (item_size < sizeof(*ei)) {
2718 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2719 goto out;
2720 }
2721 #endif
2722 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2723
2724 if (item_size != sizeof(*ei) +
2725 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2726 goto out;
2727
2728 if (btrfs_extent_generation(leaf, ei) <=
2729 btrfs_root_last_snapshot(&root->root_item))
2730 goto out;
2731
2732 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2733 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2734 BTRFS_EXTENT_DATA_REF_KEY)
2735 goto out;
2736
2737 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2738 if (btrfs_extent_refs(leaf, ei) !=
2739 btrfs_extent_data_ref_count(leaf, ref) ||
2740 btrfs_extent_data_ref_root(leaf, ref) !=
2741 root->root_key.objectid ||
2742 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2743 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2744 goto out;
2745
2746 ret = 0;
2747 out:
2748 return ret;
2749 }
2750
2751 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root,
2753 u64 objectid, u64 offset, u64 bytenr)
2754 {
2755 struct btrfs_path *path;
2756 int ret;
2757 int ret2;
2758
2759 path = btrfs_alloc_path();
2760 if (!path)
2761 return -ENOENT;
2762
2763 do {
2764 ret = check_committed_ref(trans, root, path, objectid,
2765 offset, bytenr);
2766 if (ret && ret != -ENOENT)
2767 goto out;
2768
2769 ret2 = check_delayed_ref(trans, root, path, objectid,
2770 offset, bytenr);
2771 } while (ret2 == -EAGAIN);
2772
2773 if (ret2 && ret2 != -ENOENT) {
2774 ret = ret2;
2775 goto out;
2776 }
2777
2778 if (ret != -ENOENT || ret2 != -ENOENT)
2779 ret = 0;
2780 out:
2781 btrfs_free_path(path);
2782 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2783 WARN_ON(ret > 0);
2784 return ret;
2785 }
2786
2787 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2788 struct btrfs_root *root,
2789 struct extent_buffer *buf,
2790 int full_backref, int inc, int for_cow)
2791 {
2792 u64 bytenr;
2793 u64 num_bytes;
2794 u64 parent;
2795 u64 ref_root;
2796 u32 nritems;
2797 struct btrfs_key key;
2798 struct btrfs_file_extent_item *fi;
2799 int i;
2800 int level;
2801 int ret = 0;
2802 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2803 u64, u64, u64, u64, u64, u64, int);
2804
2805 ref_root = btrfs_header_owner(buf);
2806 nritems = btrfs_header_nritems(buf);
2807 level = btrfs_header_level(buf);
2808
2809 if (!root->ref_cows && level == 0)
2810 return 0;
2811
2812 if (inc)
2813 process_func = btrfs_inc_extent_ref;
2814 else
2815 process_func = btrfs_free_extent;
2816
2817 if (full_backref)
2818 parent = buf->start;
2819 else
2820 parent = 0;
2821
2822 for (i = 0; i < nritems; i++) {
2823 if (level == 0) {
2824 btrfs_item_key_to_cpu(buf, &key, i);
2825 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2826 continue;
2827 fi = btrfs_item_ptr(buf, i,
2828 struct btrfs_file_extent_item);
2829 if (btrfs_file_extent_type(buf, fi) ==
2830 BTRFS_FILE_EXTENT_INLINE)
2831 continue;
2832 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2833 if (bytenr == 0)
2834 continue;
2835
2836 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2837 key.offset -= btrfs_file_extent_offset(buf, fi);
2838 ret = process_func(trans, root, bytenr, num_bytes,
2839 parent, ref_root, key.objectid,
2840 key.offset, for_cow);
2841 if (ret)
2842 goto fail;
2843 } else {
2844 bytenr = btrfs_node_blockptr(buf, i);
2845 num_bytes = btrfs_level_size(root, level - 1);
2846 ret = process_func(trans, root, bytenr, num_bytes,
2847 parent, ref_root, level - 1, 0,
2848 for_cow);
2849 if (ret)
2850 goto fail;
2851 }
2852 }
2853 return 0;
2854 fail:
2855 return ret;
2856 }
2857
2858 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2859 struct extent_buffer *buf, int full_backref, int for_cow)
2860 {
2861 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2862 }
2863
2864 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2865 struct extent_buffer *buf, int full_backref, int for_cow)
2866 {
2867 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2868 }
2869
2870 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root,
2872 struct btrfs_path *path,
2873 struct btrfs_block_group_cache *cache)
2874 {
2875 int ret;
2876 struct btrfs_root *extent_root = root->fs_info->extent_root;
2877 unsigned long bi;
2878 struct extent_buffer *leaf;
2879
2880 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2881 if (ret < 0)
2882 goto fail;
2883 BUG_ON(ret); /* Corruption */
2884
2885 leaf = path->nodes[0];
2886 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2887 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2888 btrfs_mark_buffer_dirty(leaf);
2889 btrfs_release_path(path);
2890 fail:
2891 if (ret) {
2892 btrfs_abort_transaction(trans, root, ret);
2893 return ret;
2894 }
2895 return 0;
2896
2897 }
2898
2899 static struct btrfs_block_group_cache *
2900 next_block_group(struct btrfs_root *root,
2901 struct btrfs_block_group_cache *cache)
2902 {
2903 struct rb_node *node;
2904 spin_lock(&root->fs_info->block_group_cache_lock);
2905 node = rb_next(&cache->cache_node);
2906 btrfs_put_block_group(cache);
2907 if (node) {
2908 cache = rb_entry(node, struct btrfs_block_group_cache,
2909 cache_node);
2910 btrfs_get_block_group(cache);
2911 } else
2912 cache = NULL;
2913 spin_unlock(&root->fs_info->block_group_cache_lock);
2914 return cache;
2915 }
2916
2917 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2918 struct btrfs_trans_handle *trans,
2919 struct btrfs_path *path)
2920 {
2921 struct btrfs_root *root = block_group->fs_info->tree_root;
2922 struct inode *inode = NULL;
2923 u64 alloc_hint = 0;
2924 int dcs = BTRFS_DC_ERROR;
2925 int num_pages = 0;
2926 int retries = 0;
2927 int ret = 0;
2928
2929 /*
2930 * If this block group is smaller than 100 megs don't bother caching the
2931 * block group.
2932 */
2933 if (block_group->key.offset < (100 * 1024 * 1024)) {
2934 spin_lock(&block_group->lock);
2935 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2936 spin_unlock(&block_group->lock);
2937 return 0;
2938 }
2939
2940 again:
2941 inode = lookup_free_space_inode(root, block_group, path);
2942 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2943 ret = PTR_ERR(inode);
2944 btrfs_release_path(path);
2945 goto out;
2946 }
2947
2948 if (IS_ERR(inode)) {
2949 BUG_ON(retries);
2950 retries++;
2951
2952 if (block_group->ro)
2953 goto out_free;
2954
2955 ret = create_free_space_inode(root, trans, block_group, path);
2956 if (ret)
2957 goto out_free;
2958 goto again;
2959 }
2960
2961 /* We've already setup this transaction, go ahead and exit */
2962 if (block_group->cache_generation == trans->transid &&
2963 i_size_read(inode)) {
2964 dcs = BTRFS_DC_SETUP;
2965 goto out_put;
2966 }
2967
2968 /*
2969 * We want to set the generation to 0, that way if anything goes wrong
2970 * from here on out we know not to trust this cache when we load up next
2971 * time.
2972 */
2973 BTRFS_I(inode)->generation = 0;
2974 ret = btrfs_update_inode(trans, root, inode);
2975 WARN_ON(ret);
2976
2977 if (i_size_read(inode) > 0) {
2978 ret = btrfs_truncate_free_space_cache(root, trans, path,
2979 inode);
2980 if (ret)
2981 goto out_put;
2982 }
2983
2984 spin_lock(&block_group->lock);
2985 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2986 !btrfs_test_opt(root, SPACE_CACHE)) {
2987 /*
2988 * don't bother trying to write stuff out _if_
2989 * a) we're not cached,
2990 * b) we're with nospace_cache mount option.
2991 */
2992 dcs = BTRFS_DC_WRITTEN;
2993 spin_unlock(&block_group->lock);
2994 goto out_put;
2995 }
2996 spin_unlock(&block_group->lock);
2997
2998 /*
2999 * Try to preallocate enough space based on how big the block group is.
3000 * Keep in mind this has to include any pinned space which could end up
3001 * taking up quite a bit since it's not folded into the other space
3002 * cache.
3003 */
3004 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3005 if (!num_pages)
3006 num_pages = 1;
3007
3008 num_pages *= 16;
3009 num_pages *= PAGE_CACHE_SIZE;
3010
3011 ret = btrfs_check_data_free_space(inode, num_pages);
3012 if (ret)
3013 goto out_put;
3014
3015 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3016 num_pages, num_pages,
3017 &alloc_hint);
3018 if (!ret)
3019 dcs = BTRFS_DC_SETUP;
3020 btrfs_free_reserved_data_space(inode, num_pages);
3021
3022 out_put:
3023 iput(inode);
3024 out_free:
3025 btrfs_release_path(path);
3026 out:
3027 spin_lock(&block_group->lock);
3028 if (!ret && dcs == BTRFS_DC_SETUP)
3029 block_group->cache_generation = trans->transid;
3030 block_group->disk_cache_state = dcs;
3031 spin_unlock(&block_group->lock);
3032
3033 return ret;
3034 }
3035
3036 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root)
3038 {
3039 struct btrfs_block_group_cache *cache;
3040 int err = 0;
3041 struct btrfs_path *path;
3042 u64 last = 0;
3043
3044 path = btrfs_alloc_path();
3045 if (!path)
3046 return -ENOMEM;
3047
3048 again:
3049 while (1) {
3050 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3051 while (cache) {
3052 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3053 break;
3054 cache = next_block_group(root, cache);
3055 }
3056 if (!cache) {
3057 if (last == 0)
3058 break;
3059 last = 0;
3060 continue;
3061 }
3062 err = cache_save_setup(cache, trans, path);
3063 last = cache->key.objectid + cache->key.offset;
3064 btrfs_put_block_group(cache);
3065 }
3066
3067 while (1) {
3068 if (last == 0) {
3069 err = btrfs_run_delayed_refs(trans, root,
3070 (unsigned long)-1);
3071 if (err) /* File system offline */
3072 goto out;
3073 }
3074
3075 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3076 while (cache) {
3077 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3078 btrfs_put_block_group(cache);
3079 goto again;
3080 }
3081
3082 if (cache->dirty)
3083 break;
3084 cache = next_block_group(root, cache);
3085 }
3086 if (!cache) {
3087 if (last == 0)
3088 break;
3089 last = 0;
3090 continue;
3091 }
3092
3093 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3094 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3095 cache->dirty = 0;
3096 last = cache->key.objectid + cache->key.offset;
3097
3098 err = write_one_cache_group(trans, root, path, cache);
3099 if (err) /* File system offline */
3100 goto out;
3101
3102 btrfs_put_block_group(cache);
3103 }
3104
3105 while (1) {
3106 /*
3107 * I don't think this is needed since we're just marking our
3108 * preallocated extent as written, but just in case it can't
3109 * hurt.
3110 */
3111 if (last == 0) {
3112 err = btrfs_run_delayed_refs(trans, root,
3113 (unsigned long)-1);
3114 if (err) /* File system offline */
3115 goto out;
3116 }
3117
3118 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3119 while (cache) {
3120 /*
3121 * Really this shouldn't happen, but it could if we
3122 * couldn't write the entire preallocated extent and
3123 * splitting the extent resulted in a new block.
3124 */
3125 if (cache->dirty) {
3126 btrfs_put_block_group(cache);
3127 goto again;
3128 }
3129 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3130 break;
3131 cache = next_block_group(root, cache);
3132 }
3133 if (!cache) {
3134 if (last == 0)
3135 break;
3136 last = 0;
3137 continue;
3138 }
3139
3140 err = btrfs_write_out_cache(root, trans, cache, path);
3141
3142 /*
3143 * If we didn't have an error then the cache state is still
3144 * NEED_WRITE, so we can set it to WRITTEN.
3145 */
3146 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3147 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3148 last = cache->key.objectid + cache->key.offset;
3149 btrfs_put_block_group(cache);
3150 }
3151 out:
3152
3153 btrfs_free_path(path);
3154 return err;
3155 }
3156
3157 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3158 {
3159 struct btrfs_block_group_cache *block_group;
3160 int readonly = 0;
3161
3162 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3163 if (!block_group || block_group->ro)
3164 readonly = 1;
3165 if (block_group)
3166 btrfs_put_block_group(block_group);
3167 return readonly;
3168 }
3169
3170 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3171 u64 total_bytes, u64 bytes_used,
3172 struct btrfs_space_info **space_info)
3173 {
3174 struct btrfs_space_info *found;
3175 int i;
3176 int factor;
3177
3178 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3179 BTRFS_BLOCK_GROUP_RAID10))
3180 factor = 2;
3181 else
3182 factor = 1;
3183
3184 found = __find_space_info(info, flags);
3185 if (found) {
3186 spin_lock(&found->lock);
3187 found->total_bytes += total_bytes;
3188 found->disk_total += total_bytes * factor;
3189 found->bytes_used += bytes_used;
3190 found->disk_used += bytes_used * factor;
3191 found->full = 0;
3192 spin_unlock(&found->lock);
3193 *space_info = found;
3194 return 0;
3195 }
3196 found = kzalloc(sizeof(*found), GFP_NOFS);
3197 if (!found)
3198 return -ENOMEM;
3199
3200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3201 INIT_LIST_HEAD(&found->block_groups[i]);
3202 init_rwsem(&found->groups_sem);
3203 spin_lock_init(&found->lock);
3204 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3205 found->total_bytes = total_bytes;
3206 found->disk_total = total_bytes * factor;
3207 found->bytes_used = bytes_used;
3208 found->disk_used = bytes_used * factor;
3209 found->bytes_pinned = 0;
3210 found->bytes_reserved = 0;
3211 found->bytes_readonly = 0;
3212 found->bytes_may_use = 0;
3213 found->full = 0;
3214 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3215 found->chunk_alloc = 0;
3216 found->flush = 0;
3217 init_waitqueue_head(&found->wait);
3218 *space_info = found;
3219 list_add_rcu(&found->list, &info->space_info);
3220 if (flags & BTRFS_BLOCK_GROUP_DATA)
3221 info->data_sinfo = found;
3222 return 0;
3223 }
3224
3225 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3226 {
3227 u64 extra_flags = chunk_to_extended(flags) &
3228 BTRFS_EXTENDED_PROFILE_MASK;
3229
3230 if (flags & BTRFS_BLOCK_GROUP_DATA)
3231 fs_info->avail_data_alloc_bits |= extra_flags;
3232 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3233 fs_info->avail_metadata_alloc_bits |= extra_flags;
3234 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3235 fs_info->avail_system_alloc_bits |= extra_flags;
3236 }
3237
3238 /*
3239 * returns target flags in extended format or 0 if restripe for this
3240 * chunk_type is not in progress
3241 *
3242 * should be called with either volume_mutex or balance_lock held
3243 */
3244 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3245 {
3246 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3247 u64 target = 0;
3248
3249 if (!bctl)
3250 return 0;
3251
3252 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3253 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3254 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3255 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3256 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3257 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3258 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3259 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3260 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3261 }
3262
3263 return target;
3264 }
3265
3266 /*
3267 * @flags: available profiles in extended format (see ctree.h)
3268 *
3269 * Returns reduced profile in chunk format. If profile changing is in
3270 * progress (either running or paused) picks the target profile (if it's
3271 * already available), otherwise falls back to plain reducing.
3272 */
3273 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3274 {
3275 /*
3276 * we add in the count of missing devices because we want
3277 * to make sure that any RAID levels on a degraded FS
3278 * continue to be honored.
3279 */
3280 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3281 root->fs_info->fs_devices->missing_devices;
3282 u64 target;
3283
3284 /*
3285 * see if restripe for this chunk_type is in progress, if so
3286 * try to reduce to the target profile
3287 */
3288 spin_lock(&root->fs_info->balance_lock);
3289 target = get_restripe_target(root->fs_info, flags);
3290 if (target) {
3291 /* pick target profile only if it's already available */
3292 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3293 spin_unlock(&root->fs_info->balance_lock);
3294 return extended_to_chunk(target);
3295 }
3296 }
3297 spin_unlock(&root->fs_info->balance_lock);
3298
3299 if (num_devices == 1)
3300 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3301 if (num_devices < 4)
3302 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3303
3304 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3305 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3306 BTRFS_BLOCK_GROUP_RAID10))) {
3307 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3308 }
3309
3310 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3311 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3312 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3313 }
3314
3315 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3316 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3317 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3318 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3319 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3320 }
3321
3322 return extended_to_chunk(flags);
3323 }
3324
3325 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3326 {
3327 if (flags & BTRFS_BLOCK_GROUP_DATA)
3328 flags |= root->fs_info->avail_data_alloc_bits;
3329 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3330 flags |= root->fs_info->avail_system_alloc_bits;
3331 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3332 flags |= root->fs_info->avail_metadata_alloc_bits;
3333
3334 return btrfs_reduce_alloc_profile(root, flags);
3335 }
3336
3337 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3338 {
3339 u64 flags;
3340
3341 if (data)
3342 flags = BTRFS_BLOCK_GROUP_DATA;
3343 else if (root == root->fs_info->chunk_root)
3344 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3345 else
3346 flags = BTRFS_BLOCK_GROUP_METADATA;
3347
3348 return get_alloc_profile(root, flags);
3349 }
3350
3351 /*
3352 * This will check the space that the inode allocates from to make sure we have
3353 * enough space for bytes.
3354 */
3355 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3356 {
3357 struct btrfs_space_info *data_sinfo;
3358 struct btrfs_root *root = BTRFS_I(inode)->root;
3359 struct btrfs_fs_info *fs_info = root->fs_info;
3360 u64 used;
3361 int ret = 0, committed = 0, alloc_chunk = 1;
3362
3363 /* make sure bytes are sectorsize aligned */
3364 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3365
3366 if (root == root->fs_info->tree_root ||
3367 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3368 alloc_chunk = 0;
3369 committed = 1;
3370 }
3371
3372 data_sinfo = fs_info->data_sinfo;
3373 if (!data_sinfo)
3374 goto alloc;
3375
3376 again:
3377 /* make sure we have enough space to handle the data first */
3378 spin_lock(&data_sinfo->lock);
3379 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3380 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3381 data_sinfo->bytes_may_use;
3382
3383 if (used + bytes > data_sinfo->total_bytes) {
3384 struct btrfs_trans_handle *trans;
3385
3386 /*
3387 * if we don't have enough free bytes in this space then we need
3388 * to alloc a new chunk.
3389 */
3390 if (!data_sinfo->full && alloc_chunk) {
3391 u64 alloc_target;
3392
3393 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3394 spin_unlock(&data_sinfo->lock);
3395 alloc:
3396 alloc_target = btrfs_get_alloc_profile(root, 1);
3397 trans = btrfs_join_transaction(root);
3398 if (IS_ERR(trans))
3399 return PTR_ERR(trans);
3400
3401 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3402 alloc_target,
3403 CHUNK_ALLOC_NO_FORCE);
3404 btrfs_end_transaction(trans, root);
3405 if (ret < 0) {
3406 if (ret != -ENOSPC)
3407 return ret;
3408 else
3409 goto commit_trans;
3410 }
3411
3412 if (!data_sinfo)
3413 data_sinfo = fs_info->data_sinfo;
3414
3415 goto again;
3416 }
3417
3418 /*
3419 * If we have less pinned bytes than we want to allocate then
3420 * don't bother committing the transaction, it won't help us.
3421 */
3422 if (data_sinfo->bytes_pinned < bytes)
3423 committed = 1;
3424 spin_unlock(&data_sinfo->lock);
3425
3426 /* commit the current transaction and try again */
3427 commit_trans:
3428 if (!committed &&
3429 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3430 committed = 1;
3431 trans = btrfs_join_transaction(root);
3432 if (IS_ERR(trans))
3433 return PTR_ERR(trans);
3434 ret = btrfs_commit_transaction(trans, root);
3435 if (ret)
3436 return ret;
3437 goto again;
3438 }
3439
3440 return -ENOSPC;
3441 }
3442 data_sinfo->bytes_may_use += bytes;
3443 trace_btrfs_space_reservation(root->fs_info, "space_info",
3444 data_sinfo->flags, bytes, 1);
3445 spin_unlock(&data_sinfo->lock);
3446
3447 return 0;
3448 }
3449
3450 /*
3451 * Called if we need to clear a data reservation for this inode.
3452 */
3453 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3454 {
3455 struct btrfs_root *root = BTRFS_I(inode)->root;
3456 struct btrfs_space_info *data_sinfo;
3457
3458 /* make sure bytes are sectorsize aligned */
3459 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3460
3461 data_sinfo = root->fs_info->data_sinfo;
3462 spin_lock(&data_sinfo->lock);
3463 data_sinfo->bytes_may_use -= bytes;
3464 trace_btrfs_space_reservation(root->fs_info, "space_info",
3465 data_sinfo->flags, bytes, 0);
3466 spin_unlock(&data_sinfo->lock);
3467 }
3468
3469 static void force_metadata_allocation(struct btrfs_fs_info *info)
3470 {
3471 struct list_head *head = &info->space_info;
3472 struct btrfs_space_info *found;
3473
3474 rcu_read_lock();
3475 list_for_each_entry_rcu(found, head, list) {
3476 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3477 found->force_alloc = CHUNK_ALLOC_FORCE;
3478 }
3479 rcu_read_unlock();
3480 }
3481
3482 static int should_alloc_chunk(struct btrfs_root *root,
3483 struct btrfs_space_info *sinfo, int force)
3484 {
3485 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3486 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3487 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3488 u64 thresh;
3489
3490 if (force == CHUNK_ALLOC_FORCE)
3491 return 1;
3492
3493 /*
3494 * We need to take into account the global rsv because for all intents
3495 * and purposes it's used space. Don't worry about locking the
3496 * global_rsv, it doesn't change except when the transaction commits.
3497 */
3498 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3499 num_allocated += global_rsv->size;
3500
3501 /*
3502 * in limited mode, we want to have some free space up to
3503 * about 1% of the FS size.
3504 */
3505 if (force == CHUNK_ALLOC_LIMITED) {
3506 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3507 thresh = max_t(u64, 64 * 1024 * 1024,
3508 div_factor_fine(thresh, 1));
3509
3510 if (num_bytes - num_allocated < thresh)
3511 return 1;
3512 }
3513
3514 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3515 return 0;
3516 return 1;
3517 }
3518
3519 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3520 {
3521 u64 num_dev;
3522
3523 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3524 type & BTRFS_BLOCK_GROUP_RAID0)
3525 num_dev = root->fs_info->fs_devices->rw_devices;
3526 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3527 num_dev = 2;
3528 else
3529 num_dev = 1; /* DUP or single */
3530
3531 /* metadata for updaing devices and chunk tree */
3532 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3533 }
3534
3535 static void check_system_chunk(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root, u64 type)
3537 {
3538 struct btrfs_space_info *info;
3539 u64 left;
3540 u64 thresh;
3541
3542 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3543 spin_lock(&info->lock);
3544 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3545 info->bytes_reserved - info->bytes_readonly;
3546 spin_unlock(&info->lock);
3547
3548 thresh = get_system_chunk_thresh(root, type);
3549 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3550 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3551 left, thresh, type);
3552 dump_space_info(info, 0, 0);
3553 }
3554
3555 if (left < thresh) {
3556 u64 flags;
3557
3558 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3559 btrfs_alloc_chunk(trans, root, flags);
3560 }
3561 }
3562
3563 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3564 struct btrfs_root *extent_root, u64 flags, int force)
3565 {
3566 struct btrfs_space_info *space_info;
3567 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3568 int wait_for_alloc = 0;
3569 int ret = 0;
3570
3571 /* Don't re-enter if we're already allocating a chunk */
3572 if (trans->allocating_chunk)
3573 return -ENOSPC;
3574
3575 space_info = __find_space_info(extent_root->fs_info, flags);
3576 if (!space_info) {
3577 ret = update_space_info(extent_root->fs_info, flags,
3578 0, 0, &space_info);
3579 BUG_ON(ret); /* -ENOMEM */
3580 }
3581 BUG_ON(!space_info); /* Logic error */
3582
3583 again:
3584 spin_lock(&space_info->lock);
3585 if (force < space_info->force_alloc)
3586 force = space_info->force_alloc;
3587 if (space_info->full) {
3588 spin_unlock(&space_info->lock);
3589 return 0;
3590 }
3591
3592 if (!should_alloc_chunk(extent_root, space_info, force)) {
3593 spin_unlock(&space_info->lock);
3594 return 0;
3595 } else if (space_info->chunk_alloc) {
3596 wait_for_alloc = 1;
3597 } else {
3598 space_info->chunk_alloc = 1;
3599 }
3600
3601 spin_unlock(&space_info->lock);
3602
3603 mutex_lock(&fs_info->chunk_mutex);
3604
3605 /*
3606 * The chunk_mutex is held throughout the entirety of a chunk
3607 * allocation, so once we've acquired the chunk_mutex we know that the
3608 * other guy is done and we need to recheck and see if we should
3609 * allocate.
3610 */
3611 if (wait_for_alloc) {
3612 mutex_unlock(&fs_info->chunk_mutex);
3613 wait_for_alloc = 0;
3614 goto again;
3615 }
3616
3617 trans->allocating_chunk = true;
3618
3619 /*
3620 * If we have mixed data/metadata chunks we want to make sure we keep
3621 * allocating mixed chunks instead of individual chunks.
3622 */
3623 if (btrfs_mixed_space_info(space_info))
3624 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3625
3626 /*
3627 * if we're doing a data chunk, go ahead and make sure that
3628 * we keep a reasonable number of metadata chunks allocated in the
3629 * FS as well.
3630 */
3631 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3632 fs_info->data_chunk_allocations++;
3633 if (!(fs_info->data_chunk_allocations %
3634 fs_info->metadata_ratio))
3635 force_metadata_allocation(fs_info);
3636 }
3637
3638 /*
3639 * Check if we have enough space in SYSTEM chunk because we may need
3640 * to update devices.
3641 */
3642 check_system_chunk(trans, extent_root, flags);
3643
3644 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3645 trans->allocating_chunk = false;
3646 if (ret < 0 && ret != -ENOSPC)
3647 goto out;
3648
3649 spin_lock(&space_info->lock);
3650 if (ret)
3651 space_info->full = 1;
3652 else
3653 ret = 1;
3654
3655 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3656 space_info->chunk_alloc = 0;
3657 spin_unlock(&space_info->lock);
3658 out:
3659 mutex_unlock(&fs_info->chunk_mutex);
3660 return ret;
3661 }
3662
3663 static int can_overcommit(struct btrfs_root *root,
3664 struct btrfs_space_info *space_info, u64 bytes,
3665 enum btrfs_reserve_flush_enum flush)
3666 {
3667 u64 profile = btrfs_get_alloc_profile(root, 0);
3668 u64 avail;
3669 u64 used;
3670
3671 used = space_info->bytes_used + space_info->bytes_reserved +
3672 space_info->bytes_pinned + space_info->bytes_readonly +
3673 space_info->bytes_may_use;
3674
3675 spin_lock(&root->fs_info->free_chunk_lock);
3676 avail = root->fs_info->free_chunk_space;
3677 spin_unlock(&root->fs_info->free_chunk_lock);
3678
3679 /*
3680 * If we have dup, raid1 or raid10 then only half of the free
3681 * space is actually useable.
3682 */
3683 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3684 BTRFS_BLOCK_GROUP_RAID1 |
3685 BTRFS_BLOCK_GROUP_RAID10))
3686 avail >>= 1;
3687
3688 /*
3689 * If we aren't flushing all things, let us overcommit up to
3690 * 1/2th of the space. If we can flush, don't let us overcommit
3691 * too much, let it overcommit up to 1/8 of the space.
3692 */
3693 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3694 avail >>= 3;
3695 else
3696 avail >>= 1;
3697
3698 if (used + bytes < space_info->total_bytes + avail)
3699 return 1;
3700 return 0;
3701 }
3702
3703 static inline int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb,
3704 unsigned long nr_pages,
3705 enum wb_reason reason)
3706 {
3707 /* the flusher is dealing with the dirty inodes now. */
3708 if (writeback_in_progress(sb->s_bdi))
3709 return 1;
3710
3711 if (down_read_trylock(&sb->s_umount)) {
3712 writeback_inodes_sb_nr(sb, nr_pages, reason);
3713 up_read(&sb->s_umount);
3714 return 1;
3715 }
3716
3717 return 0;
3718 }
3719
3720 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3721 unsigned long nr_pages)
3722 {
3723 struct super_block *sb = root->fs_info->sb;
3724 int started;
3725
3726 /* If we can not start writeback, just sync all the delalloc file. */
3727 started = writeback_inodes_sb_nr_if_idle_safe(sb, nr_pages,
3728 WB_REASON_FS_FREE_SPACE);
3729 if (!started) {
3730 /*
3731 * We needn't worry the filesystem going from r/w to r/o though
3732 * we don't acquire ->s_umount mutex, because the filesystem
3733 * should guarantee the delalloc inodes list be empty after
3734 * the filesystem is readonly(all dirty pages are written to
3735 * the disk).
3736 */
3737 btrfs_start_delalloc_inodes(root, 0);
3738 btrfs_wait_ordered_extents(root, 0);
3739 }
3740 }
3741
3742 /*
3743 * shrink metadata reservation for delalloc
3744 */
3745 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3746 bool wait_ordered)
3747 {
3748 struct btrfs_block_rsv *block_rsv;
3749 struct btrfs_space_info *space_info;
3750 struct btrfs_trans_handle *trans;
3751 u64 delalloc_bytes;
3752 u64 max_reclaim;
3753 long time_left;
3754 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3755 int loops = 0;
3756 enum btrfs_reserve_flush_enum flush;
3757
3758 trans = (struct btrfs_trans_handle *)current->journal_info;
3759 block_rsv = &root->fs_info->delalloc_block_rsv;
3760 space_info = block_rsv->space_info;
3761
3762 smp_mb();
3763 delalloc_bytes = root->fs_info->delalloc_bytes;
3764 if (delalloc_bytes == 0) {
3765 if (trans)
3766 return;
3767 btrfs_wait_ordered_extents(root, 0);
3768 return;
3769 }
3770
3771 while (delalloc_bytes && loops < 3) {
3772 max_reclaim = min(delalloc_bytes, to_reclaim);
3773 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3774 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3775 /*
3776 * We need to wait for the async pages to actually start before
3777 * we do anything.
3778 */
3779 wait_event(root->fs_info->async_submit_wait,
3780 !atomic_read(&root->fs_info->async_delalloc_pages));
3781
3782 if (!trans)
3783 flush = BTRFS_RESERVE_FLUSH_ALL;
3784 else
3785 flush = BTRFS_RESERVE_NO_FLUSH;
3786 spin_lock(&space_info->lock);
3787 if (can_overcommit(root, space_info, orig, flush)) {
3788 spin_unlock(&space_info->lock);
3789 break;
3790 }
3791 spin_unlock(&space_info->lock);
3792
3793 loops++;
3794 if (wait_ordered && !trans) {
3795 btrfs_wait_ordered_extents(root, 0);
3796 } else {
3797 time_left = schedule_timeout_killable(1);
3798 if (time_left)
3799 break;
3800 }
3801 smp_mb();
3802 delalloc_bytes = root->fs_info->delalloc_bytes;
3803 }
3804 }
3805
3806 /**
3807 * maybe_commit_transaction - possibly commit the transaction if its ok to
3808 * @root - the root we're allocating for
3809 * @bytes - the number of bytes we want to reserve
3810 * @force - force the commit
3811 *
3812 * This will check to make sure that committing the transaction will actually
3813 * get us somewhere and then commit the transaction if it does. Otherwise it
3814 * will return -ENOSPC.
3815 */
3816 static int may_commit_transaction(struct btrfs_root *root,
3817 struct btrfs_space_info *space_info,
3818 u64 bytes, int force)
3819 {
3820 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3821 struct btrfs_trans_handle *trans;
3822
3823 trans = (struct btrfs_trans_handle *)current->journal_info;
3824 if (trans)
3825 return -EAGAIN;
3826
3827 if (force)
3828 goto commit;
3829
3830 /* See if there is enough pinned space to make this reservation */
3831 spin_lock(&space_info->lock);
3832 if (space_info->bytes_pinned >= bytes) {
3833 spin_unlock(&space_info->lock);
3834 goto commit;
3835 }
3836 spin_unlock(&space_info->lock);
3837
3838 /*
3839 * See if there is some space in the delayed insertion reservation for
3840 * this reservation.
3841 */
3842 if (space_info != delayed_rsv->space_info)
3843 return -ENOSPC;
3844
3845 spin_lock(&space_info->lock);
3846 spin_lock(&delayed_rsv->lock);
3847 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3848 spin_unlock(&delayed_rsv->lock);
3849 spin_unlock(&space_info->lock);
3850 return -ENOSPC;
3851 }
3852 spin_unlock(&delayed_rsv->lock);
3853 spin_unlock(&space_info->lock);
3854
3855 commit:
3856 trans = btrfs_join_transaction(root);
3857 if (IS_ERR(trans))
3858 return -ENOSPC;
3859
3860 return btrfs_commit_transaction(trans, root);
3861 }
3862
3863 enum flush_state {
3864 FLUSH_DELAYED_ITEMS_NR = 1,
3865 FLUSH_DELAYED_ITEMS = 2,
3866 FLUSH_DELALLOC = 3,
3867 FLUSH_DELALLOC_WAIT = 4,
3868 ALLOC_CHUNK = 5,
3869 COMMIT_TRANS = 6,
3870 };
3871
3872 static int flush_space(struct btrfs_root *root,
3873 struct btrfs_space_info *space_info, u64 num_bytes,
3874 u64 orig_bytes, int state)
3875 {
3876 struct btrfs_trans_handle *trans;
3877 int nr;
3878 int ret = 0;
3879
3880 switch (state) {
3881 case FLUSH_DELAYED_ITEMS_NR:
3882 case FLUSH_DELAYED_ITEMS:
3883 if (state == FLUSH_DELAYED_ITEMS_NR) {
3884 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3885
3886 nr = (int)div64_u64(num_bytes, bytes);
3887 if (!nr)
3888 nr = 1;
3889 nr *= 2;
3890 } else {
3891 nr = -1;
3892 }
3893 trans = btrfs_join_transaction(root);
3894 if (IS_ERR(trans)) {
3895 ret = PTR_ERR(trans);
3896 break;
3897 }
3898 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3899 btrfs_end_transaction(trans, root);
3900 break;
3901 case FLUSH_DELALLOC:
3902 case FLUSH_DELALLOC_WAIT:
3903 shrink_delalloc(root, num_bytes, orig_bytes,
3904 state == FLUSH_DELALLOC_WAIT);
3905 break;
3906 case ALLOC_CHUNK:
3907 trans = btrfs_join_transaction(root);
3908 if (IS_ERR(trans)) {
3909 ret = PTR_ERR(trans);
3910 break;
3911 }
3912 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3913 btrfs_get_alloc_profile(root, 0),
3914 CHUNK_ALLOC_NO_FORCE);
3915 btrfs_end_transaction(trans, root);
3916 if (ret == -ENOSPC)
3917 ret = 0;
3918 break;
3919 case COMMIT_TRANS:
3920 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3921 break;
3922 default:
3923 ret = -ENOSPC;
3924 break;
3925 }
3926
3927 return ret;
3928 }
3929 /**
3930 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3931 * @root - the root we're allocating for
3932 * @block_rsv - the block_rsv we're allocating for
3933 * @orig_bytes - the number of bytes we want
3934 * @flush - wether or not we can flush to make our reservation
3935 *
3936 * This will reserve orgi_bytes number of bytes from the space info associated
3937 * with the block_rsv. If there is not enough space it will make an attempt to
3938 * flush out space to make room. It will do this by flushing delalloc if
3939 * possible or committing the transaction. If flush is 0 then no attempts to
3940 * regain reservations will be made and this will fail if there is not enough
3941 * space already.
3942 */
3943 static int reserve_metadata_bytes(struct btrfs_root *root,
3944 struct btrfs_block_rsv *block_rsv,
3945 u64 orig_bytes,
3946 enum btrfs_reserve_flush_enum flush)
3947 {
3948 struct btrfs_space_info *space_info = block_rsv->space_info;
3949 u64 used;
3950 u64 num_bytes = orig_bytes;
3951 int flush_state = FLUSH_DELAYED_ITEMS_NR;
3952 int ret = 0;
3953 bool flushing = false;
3954
3955 again:
3956 ret = 0;
3957 spin_lock(&space_info->lock);
3958 /*
3959 * We only want to wait if somebody other than us is flushing and we
3960 * are actually allowed to flush all things.
3961 */
3962 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
3963 space_info->flush) {
3964 spin_unlock(&space_info->lock);
3965 /*
3966 * If we have a trans handle we can't wait because the flusher
3967 * may have to commit the transaction, which would mean we would
3968 * deadlock since we are waiting for the flusher to finish, but
3969 * hold the current transaction open.
3970 */
3971 if (current->journal_info)
3972 return -EAGAIN;
3973 ret = wait_event_killable(space_info->wait, !space_info->flush);
3974 /* Must have been killed, return */
3975 if (ret)
3976 return -EINTR;
3977
3978 spin_lock(&space_info->lock);
3979 }
3980
3981 ret = -ENOSPC;
3982 used = space_info->bytes_used + space_info->bytes_reserved +
3983 space_info->bytes_pinned + space_info->bytes_readonly +
3984 space_info->bytes_may_use;
3985
3986 /*
3987 * The idea here is that we've not already over-reserved the block group
3988 * then we can go ahead and save our reservation first and then start
3989 * flushing if we need to. Otherwise if we've already overcommitted
3990 * lets start flushing stuff first and then come back and try to make
3991 * our reservation.
3992 */
3993 if (used <= space_info->total_bytes) {
3994 if (used + orig_bytes <= space_info->total_bytes) {
3995 space_info->bytes_may_use += orig_bytes;
3996 trace_btrfs_space_reservation(root->fs_info,
3997 "space_info", space_info->flags, orig_bytes, 1);
3998 ret = 0;
3999 } else {
4000 /*
4001 * Ok set num_bytes to orig_bytes since we aren't
4002 * overocmmitted, this way we only try and reclaim what
4003 * we need.
4004 */
4005 num_bytes = orig_bytes;
4006 }
4007 } else {
4008 /*
4009 * Ok we're over committed, set num_bytes to the overcommitted
4010 * amount plus the amount of bytes that we need for this
4011 * reservation.
4012 */
4013 num_bytes = used - space_info->total_bytes +
4014 (orig_bytes * 2);
4015 }
4016
4017 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4018 space_info->bytes_may_use += orig_bytes;
4019 trace_btrfs_space_reservation(root->fs_info, "space_info",
4020 space_info->flags, orig_bytes,
4021 1);
4022 ret = 0;
4023 }
4024
4025 /*
4026 * Couldn't make our reservation, save our place so while we're trying
4027 * to reclaim space we can actually use it instead of somebody else
4028 * stealing it from us.
4029 *
4030 * We make the other tasks wait for the flush only when we can flush
4031 * all things.
4032 */
4033 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4034 flushing = true;
4035 space_info->flush = 1;
4036 }
4037
4038 spin_unlock(&space_info->lock);
4039
4040 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4041 goto out;
4042
4043 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4044 flush_state);
4045 flush_state++;
4046
4047 /*
4048 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4049 * would happen. So skip delalloc flush.
4050 */
4051 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4052 (flush_state == FLUSH_DELALLOC ||
4053 flush_state == FLUSH_DELALLOC_WAIT))
4054 flush_state = ALLOC_CHUNK;
4055
4056 if (!ret)
4057 goto again;
4058 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4059 flush_state < COMMIT_TRANS)
4060 goto again;
4061 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4062 flush_state <= COMMIT_TRANS)
4063 goto again;
4064
4065 out:
4066 if (flushing) {
4067 spin_lock(&space_info->lock);
4068 space_info->flush = 0;
4069 wake_up_all(&space_info->wait);
4070 spin_unlock(&space_info->lock);
4071 }
4072 return ret;
4073 }
4074
4075 static struct btrfs_block_rsv *get_block_rsv(
4076 const struct btrfs_trans_handle *trans,
4077 const struct btrfs_root *root)
4078 {
4079 struct btrfs_block_rsv *block_rsv = NULL;
4080
4081 if (root->ref_cows)
4082 block_rsv = trans->block_rsv;
4083
4084 if (root == root->fs_info->csum_root && trans->adding_csums)
4085 block_rsv = trans->block_rsv;
4086
4087 if (!block_rsv)
4088 block_rsv = root->block_rsv;
4089
4090 if (!block_rsv)
4091 block_rsv = &root->fs_info->empty_block_rsv;
4092
4093 return block_rsv;
4094 }
4095
4096 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4097 u64 num_bytes)
4098 {
4099 int ret = -ENOSPC;
4100 spin_lock(&block_rsv->lock);
4101 if (block_rsv->reserved >= num_bytes) {
4102 block_rsv->reserved -= num_bytes;
4103 if (block_rsv->reserved < block_rsv->size)
4104 block_rsv->full = 0;
4105 ret = 0;
4106 }
4107 spin_unlock(&block_rsv->lock);
4108 return ret;
4109 }
4110
4111 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4112 u64 num_bytes, int update_size)
4113 {
4114 spin_lock(&block_rsv->lock);
4115 block_rsv->reserved += num_bytes;
4116 if (update_size)
4117 block_rsv->size += num_bytes;
4118 else if (block_rsv->reserved >= block_rsv->size)
4119 block_rsv->full = 1;
4120 spin_unlock(&block_rsv->lock);
4121 }
4122
4123 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4124 struct btrfs_block_rsv *block_rsv,
4125 struct btrfs_block_rsv *dest, u64 num_bytes)
4126 {
4127 struct btrfs_space_info *space_info = block_rsv->space_info;
4128
4129 spin_lock(&block_rsv->lock);
4130 if (num_bytes == (u64)-1)
4131 num_bytes = block_rsv->size;
4132 block_rsv->size -= num_bytes;
4133 if (block_rsv->reserved >= block_rsv->size) {
4134 num_bytes = block_rsv->reserved - block_rsv->size;
4135 block_rsv->reserved = block_rsv->size;
4136 block_rsv->full = 1;
4137 } else {
4138 num_bytes = 0;
4139 }
4140 spin_unlock(&block_rsv->lock);
4141
4142 if (num_bytes > 0) {
4143 if (dest) {
4144 spin_lock(&dest->lock);
4145 if (!dest->full) {
4146 u64 bytes_to_add;
4147
4148 bytes_to_add = dest->size - dest->reserved;
4149 bytes_to_add = min(num_bytes, bytes_to_add);
4150 dest->reserved += bytes_to_add;
4151 if (dest->reserved >= dest->size)
4152 dest->full = 1;
4153 num_bytes -= bytes_to_add;
4154 }
4155 spin_unlock(&dest->lock);
4156 }
4157 if (num_bytes) {
4158 spin_lock(&space_info->lock);
4159 space_info->bytes_may_use -= num_bytes;
4160 trace_btrfs_space_reservation(fs_info, "space_info",
4161 space_info->flags, num_bytes, 0);
4162 space_info->reservation_progress++;
4163 spin_unlock(&space_info->lock);
4164 }
4165 }
4166 }
4167
4168 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4169 struct btrfs_block_rsv *dst, u64 num_bytes)
4170 {
4171 int ret;
4172
4173 ret = block_rsv_use_bytes(src, num_bytes);
4174 if (ret)
4175 return ret;
4176
4177 block_rsv_add_bytes(dst, num_bytes, 1);
4178 return 0;
4179 }
4180
4181 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4182 {
4183 memset(rsv, 0, sizeof(*rsv));
4184 spin_lock_init(&rsv->lock);
4185 rsv->type = type;
4186 }
4187
4188 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4189 unsigned short type)
4190 {
4191 struct btrfs_block_rsv *block_rsv;
4192 struct btrfs_fs_info *fs_info = root->fs_info;
4193
4194 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4195 if (!block_rsv)
4196 return NULL;
4197
4198 btrfs_init_block_rsv(block_rsv, type);
4199 block_rsv->space_info = __find_space_info(fs_info,
4200 BTRFS_BLOCK_GROUP_METADATA);
4201 return block_rsv;
4202 }
4203
4204 void btrfs_free_block_rsv(struct btrfs_root *root,
4205 struct btrfs_block_rsv *rsv)
4206 {
4207 if (!rsv)
4208 return;
4209 btrfs_block_rsv_release(root, rsv, (u64)-1);
4210 kfree(rsv);
4211 }
4212
4213 int btrfs_block_rsv_add(struct btrfs_root *root,
4214 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4215 enum btrfs_reserve_flush_enum flush)
4216 {
4217 int ret;
4218
4219 if (num_bytes == 0)
4220 return 0;
4221
4222 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4223 if (!ret) {
4224 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4225 return 0;
4226 }
4227
4228 return ret;
4229 }
4230
4231 int btrfs_block_rsv_check(struct btrfs_root *root,
4232 struct btrfs_block_rsv *block_rsv, int min_factor)
4233 {
4234 u64 num_bytes = 0;
4235 int ret = -ENOSPC;
4236
4237 if (!block_rsv)
4238 return 0;
4239
4240 spin_lock(&block_rsv->lock);
4241 num_bytes = div_factor(block_rsv->size, min_factor);
4242 if (block_rsv->reserved >= num_bytes)
4243 ret = 0;
4244 spin_unlock(&block_rsv->lock);
4245
4246 return ret;
4247 }
4248
4249 int btrfs_block_rsv_refill(struct btrfs_root *root,
4250 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4251 enum btrfs_reserve_flush_enum flush)
4252 {
4253 u64 num_bytes = 0;
4254 int ret = -ENOSPC;
4255
4256 if (!block_rsv)
4257 return 0;
4258
4259 spin_lock(&block_rsv->lock);
4260 num_bytes = min_reserved;
4261 if (block_rsv->reserved >= num_bytes)
4262 ret = 0;
4263 else
4264 num_bytes -= block_rsv->reserved;
4265 spin_unlock(&block_rsv->lock);
4266
4267 if (!ret)
4268 return 0;
4269
4270 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4271 if (!ret) {
4272 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4273 return 0;
4274 }
4275
4276 return ret;
4277 }
4278
4279 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4280 struct btrfs_block_rsv *dst_rsv,
4281 u64 num_bytes)
4282 {
4283 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4284 }
4285
4286 void btrfs_block_rsv_release(struct btrfs_root *root,
4287 struct btrfs_block_rsv *block_rsv,
4288 u64 num_bytes)
4289 {
4290 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4291 if (global_rsv->full || global_rsv == block_rsv ||
4292 block_rsv->space_info != global_rsv->space_info)
4293 global_rsv = NULL;
4294 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4295 num_bytes);
4296 }
4297
4298 /*
4299 * helper to calculate size of global block reservation.
4300 * the desired value is sum of space used by extent tree,
4301 * checksum tree and root tree
4302 */
4303 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4304 {
4305 struct btrfs_space_info *sinfo;
4306 u64 num_bytes;
4307 u64 meta_used;
4308 u64 data_used;
4309 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4310
4311 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4312 spin_lock(&sinfo->lock);
4313 data_used = sinfo->bytes_used;
4314 spin_unlock(&sinfo->lock);
4315
4316 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4317 spin_lock(&sinfo->lock);
4318 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4319 data_used = 0;
4320 meta_used = sinfo->bytes_used;
4321 spin_unlock(&sinfo->lock);
4322
4323 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4324 csum_size * 2;
4325 num_bytes += div64_u64(data_used + meta_used, 50);
4326
4327 if (num_bytes * 3 > meta_used)
4328 num_bytes = div64_u64(meta_used, 3);
4329
4330 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4331 }
4332
4333 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4334 {
4335 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4336 struct btrfs_space_info *sinfo = block_rsv->space_info;
4337 u64 num_bytes;
4338
4339 num_bytes = calc_global_metadata_size(fs_info);
4340
4341 spin_lock(&sinfo->lock);
4342 spin_lock(&block_rsv->lock);
4343
4344 block_rsv->size = num_bytes;
4345
4346 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4347 sinfo->bytes_reserved + sinfo->bytes_readonly +
4348 sinfo->bytes_may_use;
4349
4350 if (sinfo->total_bytes > num_bytes) {
4351 num_bytes = sinfo->total_bytes - num_bytes;
4352 block_rsv->reserved += num_bytes;
4353 sinfo->bytes_may_use += num_bytes;
4354 trace_btrfs_space_reservation(fs_info, "space_info",
4355 sinfo->flags, num_bytes, 1);
4356 }
4357
4358 if (block_rsv->reserved >= block_rsv->size) {
4359 num_bytes = block_rsv->reserved - block_rsv->size;
4360 sinfo->bytes_may_use -= num_bytes;
4361 trace_btrfs_space_reservation(fs_info, "space_info",
4362 sinfo->flags, num_bytes, 0);
4363 sinfo->reservation_progress++;
4364 block_rsv->reserved = block_rsv->size;
4365 block_rsv->full = 1;
4366 }
4367
4368 spin_unlock(&block_rsv->lock);
4369 spin_unlock(&sinfo->lock);
4370 }
4371
4372 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4373 {
4374 struct btrfs_space_info *space_info;
4375
4376 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4377 fs_info->chunk_block_rsv.space_info = space_info;
4378
4379 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4380 fs_info->global_block_rsv.space_info = space_info;
4381 fs_info->delalloc_block_rsv.space_info = space_info;
4382 fs_info->trans_block_rsv.space_info = space_info;
4383 fs_info->empty_block_rsv.space_info = space_info;
4384 fs_info->delayed_block_rsv.space_info = space_info;
4385
4386 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4387 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4388 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4389 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4390 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4391
4392 update_global_block_rsv(fs_info);
4393 }
4394
4395 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4396 {
4397 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4398 (u64)-1);
4399 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4400 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4401 WARN_ON(fs_info->trans_block_rsv.size > 0);
4402 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4403 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4404 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4405 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4406 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4407 }
4408
4409 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4410 struct btrfs_root *root)
4411 {
4412 if (!trans->block_rsv)
4413 return;
4414
4415 if (!trans->bytes_reserved)
4416 return;
4417
4418 trace_btrfs_space_reservation(root->fs_info, "transaction",
4419 trans->transid, trans->bytes_reserved, 0);
4420 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4421 trans->bytes_reserved = 0;
4422 }
4423
4424 /* Can only return 0 or -ENOSPC */
4425 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4426 struct inode *inode)
4427 {
4428 struct btrfs_root *root = BTRFS_I(inode)->root;
4429 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4430 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4431
4432 /*
4433 * We need to hold space in order to delete our orphan item once we've
4434 * added it, so this takes the reservation so we can release it later
4435 * when we are truly done with the orphan item.
4436 */
4437 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4438 trace_btrfs_space_reservation(root->fs_info, "orphan",
4439 btrfs_ino(inode), num_bytes, 1);
4440 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4441 }
4442
4443 void btrfs_orphan_release_metadata(struct inode *inode)
4444 {
4445 struct btrfs_root *root = BTRFS_I(inode)->root;
4446 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4447 trace_btrfs_space_reservation(root->fs_info, "orphan",
4448 btrfs_ino(inode), num_bytes, 0);
4449 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4450 }
4451
4452 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4453 struct btrfs_pending_snapshot *pending)
4454 {
4455 struct btrfs_root *root = pending->root;
4456 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4457 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4458 /*
4459 * two for root back/forward refs, two for directory entries,
4460 * one for root of the snapshot and one for parent inode.
4461 */
4462 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4463 dst_rsv->space_info = src_rsv->space_info;
4464 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4465 }
4466
4467 /**
4468 * drop_outstanding_extent - drop an outstanding extent
4469 * @inode: the inode we're dropping the extent for
4470 *
4471 * This is called when we are freeing up an outstanding extent, either called
4472 * after an error or after an extent is written. This will return the number of
4473 * reserved extents that need to be freed. This must be called with
4474 * BTRFS_I(inode)->lock held.
4475 */
4476 static unsigned drop_outstanding_extent(struct inode *inode)
4477 {
4478 unsigned drop_inode_space = 0;
4479 unsigned dropped_extents = 0;
4480
4481 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4482 BTRFS_I(inode)->outstanding_extents--;
4483
4484 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4485 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4486 &BTRFS_I(inode)->runtime_flags))
4487 drop_inode_space = 1;
4488
4489 /*
4490 * If we have more or the same amount of outsanding extents than we have
4491 * reserved then we need to leave the reserved extents count alone.
4492 */
4493 if (BTRFS_I(inode)->outstanding_extents >=
4494 BTRFS_I(inode)->reserved_extents)
4495 return drop_inode_space;
4496
4497 dropped_extents = BTRFS_I(inode)->reserved_extents -
4498 BTRFS_I(inode)->outstanding_extents;
4499 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4500 return dropped_extents + drop_inode_space;
4501 }
4502
4503 /**
4504 * calc_csum_metadata_size - return the amount of metada space that must be
4505 * reserved/free'd for the given bytes.
4506 * @inode: the inode we're manipulating
4507 * @num_bytes: the number of bytes in question
4508 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4509 *
4510 * This adjusts the number of csum_bytes in the inode and then returns the
4511 * correct amount of metadata that must either be reserved or freed. We
4512 * calculate how many checksums we can fit into one leaf and then divide the
4513 * number of bytes that will need to be checksumed by this value to figure out
4514 * how many checksums will be required. If we are adding bytes then the number
4515 * may go up and we will return the number of additional bytes that must be
4516 * reserved. If it is going down we will return the number of bytes that must
4517 * be freed.
4518 *
4519 * This must be called with BTRFS_I(inode)->lock held.
4520 */
4521 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4522 int reserve)
4523 {
4524 struct btrfs_root *root = BTRFS_I(inode)->root;
4525 u64 csum_size;
4526 int num_csums_per_leaf;
4527 int num_csums;
4528 int old_csums;
4529
4530 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4531 BTRFS_I(inode)->csum_bytes == 0)
4532 return 0;
4533
4534 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4535 if (reserve)
4536 BTRFS_I(inode)->csum_bytes += num_bytes;
4537 else
4538 BTRFS_I(inode)->csum_bytes -= num_bytes;
4539 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4540 num_csums_per_leaf = (int)div64_u64(csum_size,
4541 sizeof(struct btrfs_csum_item) +
4542 sizeof(struct btrfs_disk_key));
4543 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4544 num_csums = num_csums + num_csums_per_leaf - 1;
4545 num_csums = num_csums / num_csums_per_leaf;
4546
4547 old_csums = old_csums + num_csums_per_leaf - 1;
4548 old_csums = old_csums / num_csums_per_leaf;
4549
4550 /* No change, no need to reserve more */
4551 if (old_csums == num_csums)
4552 return 0;
4553
4554 if (reserve)
4555 return btrfs_calc_trans_metadata_size(root,
4556 num_csums - old_csums);
4557
4558 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4559 }
4560
4561 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4562 {
4563 struct btrfs_root *root = BTRFS_I(inode)->root;
4564 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4565 u64 to_reserve = 0;
4566 u64 csum_bytes;
4567 unsigned nr_extents = 0;
4568 int extra_reserve = 0;
4569 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4570 int ret = 0;
4571 bool delalloc_lock = true;
4572
4573 /* If we are a free space inode we need to not flush since we will be in
4574 * the middle of a transaction commit. We also don't need the delalloc
4575 * mutex since we won't race with anybody. We need this mostly to make
4576 * lockdep shut its filthy mouth.
4577 */
4578 if (btrfs_is_free_space_inode(inode)) {
4579 flush = BTRFS_RESERVE_NO_FLUSH;
4580 delalloc_lock = false;
4581 }
4582
4583 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4584 btrfs_transaction_in_commit(root->fs_info))
4585 schedule_timeout(1);
4586
4587 if (delalloc_lock)
4588 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4589
4590 num_bytes = ALIGN(num_bytes, root->sectorsize);
4591
4592 spin_lock(&BTRFS_I(inode)->lock);
4593 BTRFS_I(inode)->outstanding_extents++;
4594
4595 if (BTRFS_I(inode)->outstanding_extents >
4596 BTRFS_I(inode)->reserved_extents)
4597 nr_extents = BTRFS_I(inode)->outstanding_extents -
4598 BTRFS_I(inode)->reserved_extents;
4599
4600 /*
4601 * Add an item to reserve for updating the inode when we complete the
4602 * delalloc io.
4603 */
4604 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4605 &BTRFS_I(inode)->runtime_flags)) {
4606 nr_extents++;
4607 extra_reserve = 1;
4608 }
4609
4610 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4611 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4612 csum_bytes = BTRFS_I(inode)->csum_bytes;
4613 spin_unlock(&BTRFS_I(inode)->lock);
4614
4615 if (root->fs_info->quota_enabled)
4616 ret = btrfs_qgroup_reserve(root, num_bytes +
4617 nr_extents * root->leafsize);
4618
4619 /*
4620 * ret != 0 here means the qgroup reservation failed, we go straight to
4621 * the shared error handling then.
4622 */
4623 if (ret == 0)
4624 ret = reserve_metadata_bytes(root, block_rsv,
4625 to_reserve, flush);
4626
4627 if (ret) {
4628 u64 to_free = 0;
4629 unsigned dropped;
4630
4631 spin_lock(&BTRFS_I(inode)->lock);
4632 dropped = drop_outstanding_extent(inode);
4633 /*
4634 * If the inodes csum_bytes is the same as the original
4635 * csum_bytes then we know we haven't raced with any free()ers
4636 * so we can just reduce our inodes csum bytes and carry on.
4637 * Otherwise we have to do the normal free thing to account for
4638 * the case that the free side didn't free up its reserve
4639 * because of this outstanding reservation.
4640 */
4641 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4642 calc_csum_metadata_size(inode, num_bytes, 0);
4643 else
4644 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4645 spin_unlock(&BTRFS_I(inode)->lock);
4646 if (dropped)
4647 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4648
4649 if (to_free) {
4650 btrfs_block_rsv_release(root, block_rsv, to_free);
4651 trace_btrfs_space_reservation(root->fs_info,
4652 "delalloc",
4653 btrfs_ino(inode),
4654 to_free, 0);
4655 }
4656 if (root->fs_info->quota_enabled) {
4657 btrfs_qgroup_free(root, num_bytes +
4658 nr_extents * root->leafsize);
4659 }
4660 if (delalloc_lock)
4661 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4662 return ret;
4663 }
4664
4665 spin_lock(&BTRFS_I(inode)->lock);
4666 if (extra_reserve) {
4667 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4668 &BTRFS_I(inode)->runtime_flags);
4669 nr_extents--;
4670 }
4671 BTRFS_I(inode)->reserved_extents += nr_extents;
4672 spin_unlock(&BTRFS_I(inode)->lock);
4673
4674 if (delalloc_lock)
4675 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4676
4677 if (to_reserve)
4678 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4679 btrfs_ino(inode), to_reserve, 1);
4680 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4681
4682 return 0;
4683 }
4684
4685 /**
4686 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4687 * @inode: the inode to release the reservation for
4688 * @num_bytes: the number of bytes we're releasing
4689 *
4690 * This will release the metadata reservation for an inode. This can be called
4691 * once we complete IO for a given set of bytes to release their metadata
4692 * reservations.
4693 */
4694 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4695 {
4696 struct btrfs_root *root = BTRFS_I(inode)->root;
4697 u64 to_free = 0;
4698 unsigned dropped;
4699
4700 num_bytes = ALIGN(num_bytes, root->sectorsize);
4701 spin_lock(&BTRFS_I(inode)->lock);
4702 dropped = drop_outstanding_extent(inode);
4703
4704 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4705 spin_unlock(&BTRFS_I(inode)->lock);
4706 if (dropped > 0)
4707 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4708
4709 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4710 btrfs_ino(inode), to_free, 0);
4711 if (root->fs_info->quota_enabled) {
4712 btrfs_qgroup_free(root, num_bytes +
4713 dropped * root->leafsize);
4714 }
4715
4716 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4717 to_free);
4718 }
4719
4720 /**
4721 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4722 * @inode: inode we're writing to
4723 * @num_bytes: the number of bytes we want to allocate
4724 *
4725 * This will do the following things
4726 *
4727 * o reserve space in the data space info for num_bytes
4728 * o reserve space in the metadata space info based on number of outstanding
4729 * extents and how much csums will be needed
4730 * o add to the inodes ->delalloc_bytes
4731 * o add it to the fs_info's delalloc inodes list.
4732 *
4733 * This will return 0 for success and -ENOSPC if there is no space left.
4734 */
4735 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4736 {
4737 int ret;
4738
4739 ret = btrfs_check_data_free_space(inode, num_bytes);
4740 if (ret)
4741 return ret;
4742
4743 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4744 if (ret) {
4745 btrfs_free_reserved_data_space(inode, num_bytes);
4746 return ret;
4747 }
4748
4749 return 0;
4750 }
4751
4752 /**
4753 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4754 * @inode: inode we're releasing space for
4755 * @num_bytes: the number of bytes we want to free up
4756 *
4757 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4758 * called in the case that we don't need the metadata AND data reservations
4759 * anymore. So if there is an error or we insert an inline extent.
4760 *
4761 * This function will release the metadata space that was not used and will
4762 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4763 * list if there are no delalloc bytes left.
4764 */
4765 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4766 {
4767 btrfs_delalloc_release_metadata(inode, num_bytes);
4768 btrfs_free_reserved_data_space(inode, num_bytes);
4769 }
4770
4771 static int update_block_group(struct btrfs_root *root,
4772 u64 bytenr, u64 num_bytes, int alloc)
4773 {
4774 struct btrfs_block_group_cache *cache = NULL;
4775 struct btrfs_fs_info *info = root->fs_info;
4776 u64 total = num_bytes;
4777 u64 old_val;
4778 u64 byte_in_group;
4779 int factor;
4780
4781 /* block accounting for super block */
4782 spin_lock(&info->delalloc_lock);
4783 old_val = btrfs_super_bytes_used(info->super_copy);
4784 if (alloc)
4785 old_val += num_bytes;
4786 else
4787 old_val -= num_bytes;
4788 btrfs_set_super_bytes_used(info->super_copy, old_val);
4789 spin_unlock(&info->delalloc_lock);
4790
4791 while (total) {
4792 cache = btrfs_lookup_block_group(info, bytenr);
4793 if (!cache)
4794 return -ENOENT;
4795 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4796 BTRFS_BLOCK_GROUP_RAID1 |
4797 BTRFS_BLOCK_GROUP_RAID10))
4798 factor = 2;
4799 else
4800 factor = 1;
4801 /*
4802 * If this block group has free space cache written out, we
4803 * need to make sure to load it if we are removing space. This
4804 * is because we need the unpinning stage to actually add the
4805 * space back to the block group, otherwise we will leak space.
4806 */
4807 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4808 cache_block_group(cache, 1);
4809
4810 byte_in_group = bytenr - cache->key.objectid;
4811 WARN_ON(byte_in_group > cache->key.offset);
4812
4813 spin_lock(&cache->space_info->lock);
4814 spin_lock(&cache->lock);
4815
4816 if (btrfs_test_opt(root, SPACE_CACHE) &&
4817 cache->disk_cache_state < BTRFS_DC_CLEAR)
4818 cache->disk_cache_state = BTRFS_DC_CLEAR;
4819
4820 cache->dirty = 1;
4821 old_val = btrfs_block_group_used(&cache->item);
4822 num_bytes = min(total, cache->key.offset - byte_in_group);
4823 if (alloc) {
4824 old_val += num_bytes;
4825 btrfs_set_block_group_used(&cache->item, old_val);
4826 cache->reserved -= num_bytes;
4827 cache->space_info->bytes_reserved -= num_bytes;
4828 cache->space_info->bytes_used += num_bytes;
4829 cache->space_info->disk_used += num_bytes * factor;
4830 spin_unlock(&cache->lock);
4831 spin_unlock(&cache->space_info->lock);
4832 } else {
4833 old_val -= num_bytes;
4834 btrfs_set_block_group_used(&cache->item, old_val);
4835 cache->pinned += num_bytes;
4836 cache->space_info->bytes_pinned += num_bytes;
4837 cache->space_info->bytes_used -= num_bytes;
4838 cache->space_info->disk_used -= num_bytes * factor;
4839 spin_unlock(&cache->lock);
4840 spin_unlock(&cache->space_info->lock);
4841
4842 set_extent_dirty(info->pinned_extents,
4843 bytenr, bytenr + num_bytes - 1,
4844 GFP_NOFS | __GFP_NOFAIL);
4845 }
4846 btrfs_put_block_group(cache);
4847 total -= num_bytes;
4848 bytenr += num_bytes;
4849 }
4850 return 0;
4851 }
4852
4853 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4854 {
4855 struct btrfs_block_group_cache *cache;
4856 u64 bytenr;
4857
4858 spin_lock(&root->fs_info->block_group_cache_lock);
4859 bytenr = root->fs_info->first_logical_byte;
4860 spin_unlock(&root->fs_info->block_group_cache_lock);
4861
4862 if (bytenr < (u64)-1)
4863 return bytenr;
4864
4865 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4866 if (!cache)
4867 return 0;
4868
4869 bytenr = cache->key.objectid;
4870 btrfs_put_block_group(cache);
4871
4872 return bytenr;
4873 }
4874
4875 static int pin_down_extent(struct btrfs_root *root,
4876 struct btrfs_block_group_cache *cache,
4877 u64 bytenr, u64 num_bytes, int reserved)
4878 {
4879 spin_lock(&cache->space_info->lock);
4880 spin_lock(&cache->lock);
4881 cache->pinned += num_bytes;
4882 cache->space_info->bytes_pinned += num_bytes;
4883 if (reserved) {
4884 cache->reserved -= num_bytes;
4885 cache->space_info->bytes_reserved -= num_bytes;
4886 }
4887 spin_unlock(&cache->lock);
4888 spin_unlock(&cache->space_info->lock);
4889
4890 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4891 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4892 return 0;
4893 }
4894
4895 /*
4896 * this function must be called within transaction
4897 */
4898 int btrfs_pin_extent(struct btrfs_root *root,
4899 u64 bytenr, u64 num_bytes, int reserved)
4900 {
4901 struct btrfs_block_group_cache *cache;
4902
4903 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4904 BUG_ON(!cache); /* Logic error */
4905
4906 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4907
4908 btrfs_put_block_group(cache);
4909 return 0;
4910 }
4911
4912 /*
4913 * this function must be called within transaction
4914 */
4915 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
4916 u64 bytenr, u64 num_bytes)
4917 {
4918 struct btrfs_block_group_cache *cache;
4919
4920 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4921 BUG_ON(!cache); /* Logic error */
4922
4923 /*
4924 * pull in the free space cache (if any) so that our pin
4925 * removes the free space from the cache. We have load_only set
4926 * to one because the slow code to read in the free extents does check
4927 * the pinned extents.
4928 */
4929 cache_block_group(cache, 1);
4930
4931 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4932
4933 /* remove us from the free space cache (if we're there at all) */
4934 btrfs_remove_free_space(cache, bytenr, num_bytes);
4935 btrfs_put_block_group(cache);
4936 return 0;
4937 }
4938
4939 /**
4940 * btrfs_update_reserved_bytes - update the block_group and space info counters
4941 * @cache: The cache we are manipulating
4942 * @num_bytes: The number of bytes in question
4943 * @reserve: One of the reservation enums
4944 *
4945 * This is called by the allocator when it reserves space, or by somebody who is
4946 * freeing space that was never actually used on disk. For example if you
4947 * reserve some space for a new leaf in transaction A and before transaction A
4948 * commits you free that leaf, you call this with reserve set to 0 in order to
4949 * clear the reservation.
4950 *
4951 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4952 * ENOSPC accounting. For data we handle the reservation through clearing the
4953 * delalloc bits in the io_tree. We have to do this since we could end up
4954 * allocating less disk space for the amount of data we have reserved in the
4955 * case of compression.
4956 *
4957 * If this is a reservation and the block group has become read only we cannot
4958 * make the reservation and return -EAGAIN, otherwise this function always
4959 * succeeds.
4960 */
4961 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4962 u64 num_bytes, int reserve)
4963 {
4964 struct btrfs_space_info *space_info = cache->space_info;
4965 int ret = 0;
4966
4967 spin_lock(&space_info->lock);
4968 spin_lock(&cache->lock);
4969 if (reserve != RESERVE_FREE) {
4970 if (cache->ro) {
4971 ret = -EAGAIN;
4972 } else {
4973 cache->reserved += num_bytes;
4974 space_info->bytes_reserved += num_bytes;
4975 if (reserve == RESERVE_ALLOC) {
4976 trace_btrfs_space_reservation(cache->fs_info,
4977 "space_info", space_info->flags,
4978 num_bytes, 0);
4979 space_info->bytes_may_use -= num_bytes;
4980 }
4981 }
4982 } else {
4983 if (cache->ro)
4984 space_info->bytes_readonly += num_bytes;
4985 cache->reserved -= num_bytes;
4986 space_info->bytes_reserved -= num_bytes;
4987 space_info->reservation_progress++;
4988 }
4989 spin_unlock(&cache->lock);
4990 spin_unlock(&space_info->lock);
4991 return ret;
4992 }
4993
4994 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4995 struct btrfs_root *root)
4996 {
4997 struct btrfs_fs_info *fs_info = root->fs_info;
4998 struct btrfs_caching_control *next;
4999 struct btrfs_caching_control *caching_ctl;
5000 struct btrfs_block_group_cache *cache;
5001
5002 down_write(&fs_info->extent_commit_sem);
5003
5004 list_for_each_entry_safe(caching_ctl, next,
5005 &fs_info->caching_block_groups, list) {
5006 cache = caching_ctl->block_group;
5007 if (block_group_cache_done(cache)) {
5008 cache->last_byte_to_unpin = (u64)-1;
5009 list_del_init(&caching_ctl->list);
5010 put_caching_control(caching_ctl);
5011 } else {
5012 cache->last_byte_to_unpin = caching_ctl->progress;
5013 }
5014 }
5015
5016 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5017 fs_info->pinned_extents = &fs_info->freed_extents[1];
5018 else
5019 fs_info->pinned_extents = &fs_info->freed_extents[0];
5020
5021 up_write(&fs_info->extent_commit_sem);
5022
5023 update_global_block_rsv(fs_info);
5024 }
5025
5026 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5027 {
5028 struct btrfs_fs_info *fs_info = root->fs_info;
5029 struct btrfs_block_group_cache *cache = NULL;
5030 struct btrfs_space_info *space_info;
5031 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5032 u64 len;
5033 bool readonly;
5034
5035 while (start <= end) {
5036 readonly = false;
5037 if (!cache ||
5038 start >= cache->key.objectid + cache->key.offset) {
5039 if (cache)
5040 btrfs_put_block_group(cache);
5041 cache = btrfs_lookup_block_group(fs_info, start);
5042 BUG_ON(!cache); /* Logic error */
5043 }
5044
5045 len = cache->key.objectid + cache->key.offset - start;
5046 len = min(len, end + 1 - start);
5047
5048 if (start < cache->last_byte_to_unpin) {
5049 len = min(len, cache->last_byte_to_unpin - start);
5050 btrfs_add_free_space(cache, start, len);
5051 }
5052
5053 start += len;
5054 space_info = cache->space_info;
5055
5056 spin_lock(&space_info->lock);
5057 spin_lock(&cache->lock);
5058 cache->pinned -= len;
5059 space_info->bytes_pinned -= len;
5060 if (cache->ro) {
5061 space_info->bytes_readonly += len;
5062 readonly = true;
5063 }
5064 spin_unlock(&cache->lock);
5065 if (!readonly && global_rsv->space_info == space_info) {
5066 spin_lock(&global_rsv->lock);
5067 if (!global_rsv->full) {
5068 len = min(len, global_rsv->size -
5069 global_rsv->reserved);
5070 global_rsv->reserved += len;
5071 space_info->bytes_may_use += len;
5072 if (global_rsv->reserved >= global_rsv->size)
5073 global_rsv->full = 1;
5074 }
5075 spin_unlock(&global_rsv->lock);
5076 }
5077 spin_unlock(&space_info->lock);
5078 }
5079
5080 if (cache)
5081 btrfs_put_block_group(cache);
5082 return 0;
5083 }
5084
5085 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5086 struct btrfs_root *root)
5087 {
5088 struct btrfs_fs_info *fs_info = root->fs_info;
5089 struct extent_io_tree *unpin;
5090 u64 start;
5091 u64 end;
5092 int ret;
5093
5094 if (trans->aborted)
5095 return 0;
5096
5097 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5098 unpin = &fs_info->freed_extents[1];
5099 else
5100 unpin = &fs_info->freed_extents[0];
5101
5102 while (1) {
5103 ret = find_first_extent_bit(unpin, 0, &start, &end,
5104 EXTENT_DIRTY, NULL);
5105 if (ret)
5106 break;
5107
5108 if (btrfs_test_opt(root, DISCARD))
5109 ret = btrfs_discard_extent(root, start,
5110 end + 1 - start, NULL);
5111
5112 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5113 unpin_extent_range(root, start, end);
5114 cond_resched();
5115 }
5116
5117 return 0;
5118 }
5119
5120 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5121 struct btrfs_root *root,
5122 u64 bytenr, u64 num_bytes, u64 parent,
5123 u64 root_objectid, u64 owner_objectid,
5124 u64 owner_offset, int refs_to_drop,
5125 struct btrfs_delayed_extent_op *extent_op)
5126 {
5127 struct btrfs_key key;
5128 struct btrfs_path *path;
5129 struct btrfs_fs_info *info = root->fs_info;
5130 struct btrfs_root *extent_root = info->extent_root;
5131 struct extent_buffer *leaf;
5132 struct btrfs_extent_item *ei;
5133 struct btrfs_extent_inline_ref *iref;
5134 int ret;
5135 int is_data;
5136 int extent_slot = 0;
5137 int found_extent = 0;
5138 int num_to_del = 1;
5139 u32 item_size;
5140 u64 refs;
5141
5142 path = btrfs_alloc_path();
5143 if (!path)
5144 return -ENOMEM;
5145
5146 path->reada = 1;
5147 path->leave_spinning = 1;
5148
5149 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5150 BUG_ON(!is_data && refs_to_drop != 1);
5151
5152 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5153 bytenr, num_bytes, parent,
5154 root_objectid, owner_objectid,
5155 owner_offset);
5156 if (ret == 0) {
5157 extent_slot = path->slots[0];
5158 while (extent_slot >= 0) {
5159 btrfs_item_key_to_cpu(path->nodes[0], &key,
5160 extent_slot);
5161 if (key.objectid != bytenr)
5162 break;
5163 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5164 key.offset == num_bytes) {
5165 found_extent = 1;
5166 break;
5167 }
5168 if (path->slots[0] - extent_slot > 5)
5169 break;
5170 extent_slot--;
5171 }
5172 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5173 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5174 if (found_extent && item_size < sizeof(*ei))
5175 found_extent = 0;
5176 #endif
5177 if (!found_extent) {
5178 BUG_ON(iref);
5179 ret = remove_extent_backref(trans, extent_root, path,
5180 NULL, refs_to_drop,
5181 is_data);
5182 if (ret) {
5183 btrfs_abort_transaction(trans, extent_root, ret);
5184 goto out;
5185 }
5186 btrfs_release_path(path);
5187 path->leave_spinning = 1;
5188
5189 key.objectid = bytenr;
5190 key.type = BTRFS_EXTENT_ITEM_KEY;
5191 key.offset = num_bytes;
5192
5193 ret = btrfs_search_slot(trans, extent_root,
5194 &key, path, -1, 1);
5195 if (ret) {
5196 printk(KERN_ERR "umm, got %d back from search"
5197 ", was looking for %llu\n", ret,
5198 (unsigned long long)bytenr);
5199 if (ret > 0)
5200 btrfs_print_leaf(extent_root,
5201 path->nodes[0]);
5202 }
5203 if (ret < 0) {
5204 btrfs_abort_transaction(trans, extent_root, ret);
5205 goto out;
5206 }
5207 extent_slot = path->slots[0];
5208 }
5209 } else if (ret == -ENOENT) {
5210 btrfs_print_leaf(extent_root, path->nodes[0]);
5211 WARN_ON(1);
5212 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5213 "parent %llu root %llu owner %llu offset %llu\n",
5214 (unsigned long long)bytenr,
5215 (unsigned long long)parent,
5216 (unsigned long long)root_objectid,
5217 (unsigned long long)owner_objectid,
5218 (unsigned long long)owner_offset);
5219 } else {
5220 btrfs_abort_transaction(trans, extent_root, ret);
5221 goto out;
5222 }
5223
5224 leaf = path->nodes[0];
5225 item_size = btrfs_item_size_nr(leaf, extent_slot);
5226 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5227 if (item_size < sizeof(*ei)) {
5228 BUG_ON(found_extent || extent_slot != path->slots[0]);
5229 ret = convert_extent_item_v0(trans, extent_root, path,
5230 owner_objectid, 0);
5231 if (ret < 0) {
5232 btrfs_abort_transaction(trans, extent_root, ret);
5233 goto out;
5234 }
5235
5236 btrfs_release_path(path);
5237 path->leave_spinning = 1;
5238
5239 key.objectid = bytenr;
5240 key.type = BTRFS_EXTENT_ITEM_KEY;
5241 key.offset = num_bytes;
5242
5243 ret = btrfs_search_slot(trans, extent_root, &key, path,
5244 -1, 1);
5245 if (ret) {
5246 printk(KERN_ERR "umm, got %d back from search"
5247 ", was looking for %llu\n", ret,
5248 (unsigned long long)bytenr);
5249 btrfs_print_leaf(extent_root, path->nodes[0]);
5250 }
5251 if (ret < 0) {
5252 btrfs_abort_transaction(trans, extent_root, ret);
5253 goto out;
5254 }
5255
5256 extent_slot = path->slots[0];
5257 leaf = path->nodes[0];
5258 item_size = btrfs_item_size_nr(leaf, extent_slot);
5259 }
5260 #endif
5261 BUG_ON(item_size < sizeof(*ei));
5262 ei = btrfs_item_ptr(leaf, extent_slot,
5263 struct btrfs_extent_item);
5264 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5265 struct btrfs_tree_block_info *bi;
5266 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5267 bi = (struct btrfs_tree_block_info *)(ei + 1);
5268 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5269 }
5270
5271 refs = btrfs_extent_refs(leaf, ei);
5272 BUG_ON(refs < refs_to_drop);
5273 refs -= refs_to_drop;
5274
5275 if (refs > 0) {
5276 if (extent_op)
5277 __run_delayed_extent_op(extent_op, leaf, ei);
5278 /*
5279 * In the case of inline back ref, reference count will
5280 * be updated by remove_extent_backref
5281 */
5282 if (iref) {
5283 BUG_ON(!found_extent);
5284 } else {
5285 btrfs_set_extent_refs(leaf, ei, refs);
5286 btrfs_mark_buffer_dirty(leaf);
5287 }
5288 if (found_extent) {
5289 ret = remove_extent_backref(trans, extent_root, path,
5290 iref, refs_to_drop,
5291 is_data);
5292 if (ret) {
5293 btrfs_abort_transaction(trans, extent_root, ret);
5294 goto out;
5295 }
5296 }
5297 } else {
5298 if (found_extent) {
5299 BUG_ON(is_data && refs_to_drop !=
5300 extent_data_ref_count(root, path, iref));
5301 if (iref) {
5302 BUG_ON(path->slots[0] != extent_slot);
5303 } else {
5304 BUG_ON(path->slots[0] != extent_slot + 1);
5305 path->slots[0] = extent_slot;
5306 num_to_del = 2;
5307 }
5308 }
5309
5310 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5311 num_to_del);
5312 if (ret) {
5313 btrfs_abort_transaction(trans, extent_root, ret);
5314 goto out;
5315 }
5316 btrfs_release_path(path);
5317
5318 if (is_data) {
5319 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5320 if (ret) {
5321 btrfs_abort_transaction(trans, extent_root, ret);
5322 goto out;
5323 }
5324 }
5325
5326 ret = update_block_group(root, bytenr, num_bytes, 0);
5327 if (ret) {
5328 btrfs_abort_transaction(trans, extent_root, ret);
5329 goto out;
5330 }
5331 }
5332 out:
5333 btrfs_free_path(path);
5334 return ret;
5335 }
5336
5337 /*
5338 * when we free an block, it is possible (and likely) that we free the last
5339 * delayed ref for that extent as well. This searches the delayed ref tree for
5340 * a given extent, and if there are no other delayed refs to be processed, it
5341 * removes it from the tree.
5342 */
5343 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5344 struct btrfs_root *root, u64 bytenr)
5345 {
5346 struct btrfs_delayed_ref_head *head;
5347 struct btrfs_delayed_ref_root *delayed_refs;
5348 struct btrfs_delayed_ref_node *ref;
5349 struct rb_node *node;
5350 int ret = 0;
5351
5352 delayed_refs = &trans->transaction->delayed_refs;
5353 spin_lock(&delayed_refs->lock);
5354 head = btrfs_find_delayed_ref_head(trans, bytenr);
5355 if (!head)
5356 goto out;
5357
5358 node = rb_prev(&head->node.rb_node);
5359 if (!node)
5360 goto out;
5361
5362 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5363
5364 /* there are still entries for this ref, we can't drop it */
5365 if (ref->bytenr == bytenr)
5366 goto out;
5367
5368 if (head->extent_op) {
5369 if (!head->must_insert_reserved)
5370 goto out;
5371 btrfs_free_delayed_extent_op(head->extent_op);
5372 head->extent_op = NULL;
5373 }
5374
5375 /*
5376 * waiting for the lock here would deadlock. If someone else has it
5377 * locked they are already in the process of dropping it anyway
5378 */
5379 if (!mutex_trylock(&head->mutex))
5380 goto out;
5381
5382 /*
5383 * at this point we have a head with no other entries. Go
5384 * ahead and process it.
5385 */
5386 head->node.in_tree = 0;
5387 rb_erase(&head->node.rb_node, &delayed_refs->root);
5388
5389 delayed_refs->num_entries--;
5390
5391 /*
5392 * we don't take a ref on the node because we're removing it from the
5393 * tree, so we just steal the ref the tree was holding.
5394 */
5395 delayed_refs->num_heads--;
5396 if (list_empty(&head->cluster))
5397 delayed_refs->num_heads_ready--;
5398
5399 list_del_init(&head->cluster);
5400 spin_unlock(&delayed_refs->lock);
5401
5402 BUG_ON(head->extent_op);
5403 if (head->must_insert_reserved)
5404 ret = 1;
5405
5406 mutex_unlock(&head->mutex);
5407 btrfs_put_delayed_ref(&head->node);
5408 return ret;
5409 out:
5410 spin_unlock(&delayed_refs->lock);
5411 return 0;
5412 }
5413
5414 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5415 struct btrfs_root *root,
5416 struct extent_buffer *buf,
5417 u64 parent, int last_ref)
5418 {
5419 struct btrfs_block_group_cache *cache = NULL;
5420 int ret;
5421
5422 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5423 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5424 buf->start, buf->len,
5425 parent, root->root_key.objectid,
5426 btrfs_header_level(buf),
5427 BTRFS_DROP_DELAYED_REF, NULL, 0);
5428 BUG_ON(ret); /* -ENOMEM */
5429 }
5430
5431 if (!last_ref)
5432 return;
5433
5434 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5435
5436 if (btrfs_header_generation(buf) == trans->transid) {
5437 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5438 ret = check_ref_cleanup(trans, root, buf->start);
5439 if (!ret)
5440 goto out;
5441 }
5442
5443 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5444 pin_down_extent(root, cache, buf->start, buf->len, 1);
5445 goto out;
5446 }
5447
5448 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5449
5450 btrfs_add_free_space(cache, buf->start, buf->len);
5451 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5452 }
5453 out:
5454 /*
5455 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5456 * anymore.
5457 */
5458 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5459 btrfs_put_block_group(cache);
5460 }
5461
5462 /* Can return -ENOMEM */
5463 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5464 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5465 u64 owner, u64 offset, int for_cow)
5466 {
5467 int ret;
5468 struct btrfs_fs_info *fs_info = root->fs_info;
5469
5470 /*
5471 * tree log blocks never actually go into the extent allocation
5472 * tree, just update pinning info and exit early.
5473 */
5474 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5475 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5476 /* unlocks the pinned mutex */
5477 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5478 ret = 0;
5479 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5480 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5481 num_bytes,
5482 parent, root_objectid, (int)owner,
5483 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5484 } else {
5485 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5486 num_bytes,
5487 parent, root_objectid, owner,
5488 offset, BTRFS_DROP_DELAYED_REF,
5489 NULL, for_cow);
5490 }
5491 return ret;
5492 }
5493
5494 static u64 stripe_align(struct btrfs_root *root, u64 val)
5495 {
5496 u64 mask = ((u64)root->stripesize - 1);
5497 u64 ret = (val + mask) & ~mask;
5498 return ret;
5499 }
5500
5501 /*
5502 * when we wait for progress in the block group caching, its because
5503 * our allocation attempt failed at least once. So, we must sleep
5504 * and let some progress happen before we try again.
5505 *
5506 * This function will sleep at least once waiting for new free space to
5507 * show up, and then it will check the block group free space numbers
5508 * for our min num_bytes. Another option is to have it go ahead
5509 * and look in the rbtree for a free extent of a given size, but this
5510 * is a good start.
5511 */
5512 static noinline int
5513 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5514 u64 num_bytes)
5515 {
5516 struct btrfs_caching_control *caching_ctl;
5517 DEFINE_WAIT(wait);
5518
5519 caching_ctl = get_caching_control(cache);
5520 if (!caching_ctl)
5521 return 0;
5522
5523 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5524 (cache->free_space_ctl->free_space >= num_bytes));
5525
5526 put_caching_control(caching_ctl);
5527 return 0;
5528 }
5529
5530 static noinline int
5531 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5532 {
5533 struct btrfs_caching_control *caching_ctl;
5534 DEFINE_WAIT(wait);
5535
5536 caching_ctl = get_caching_control(cache);
5537 if (!caching_ctl)
5538 return 0;
5539
5540 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5541
5542 put_caching_control(caching_ctl);
5543 return 0;
5544 }
5545
5546 int __get_raid_index(u64 flags)
5547 {
5548 int index;
5549
5550 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5551 index = 0;
5552 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5553 index = 1;
5554 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5555 index = 2;
5556 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5557 index = 3;
5558 else
5559 index = 4;
5560
5561 return index;
5562 }
5563
5564 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5565 {
5566 return __get_raid_index(cache->flags);
5567 }
5568
5569 enum btrfs_loop_type {
5570 LOOP_CACHING_NOWAIT = 0,
5571 LOOP_CACHING_WAIT = 1,
5572 LOOP_ALLOC_CHUNK = 2,
5573 LOOP_NO_EMPTY_SIZE = 3,
5574 };
5575
5576 /*
5577 * walks the btree of allocated extents and find a hole of a given size.
5578 * The key ins is changed to record the hole:
5579 * ins->objectid == block start
5580 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5581 * ins->offset == number of blocks
5582 * Any available blocks before search_start are skipped.
5583 */
5584 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5585 struct btrfs_root *orig_root,
5586 u64 num_bytes, u64 empty_size,
5587 u64 hint_byte, struct btrfs_key *ins,
5588 u64 data)
5589 {
5590 int ret = 0;
5591 struct btrfs_root *root = orig_root->fs_info->extent_root;
5592 struct btrfs_free_cluster *last_ptr = NULL;
5593 struct btrfs_block_group_cache *block_group = NULL;
5594 struct btrfs_block_group_cache *used_block_group;
5595 u64 search_start = 0;
5596 int empty_cluster = 2 * 1024 * 1024;
5597 struct btrfs_space_info *space_info;
5598 int loop = 0;
5599 int index = __get_raid_index(data);
5600 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5601 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5602 bool found_uncached_bg = false;
5603 bool failed_cluster_refill = false;
5604 bool failed_alloc = false;
5605 bool use_cluster = true;
5606 bool have_caching_bg = false;
5607
5608 WARN_ON(num_bytes < root->sectorsize);
5609 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5610 ins->objectid = 0;
5611 ins->offset = 0;
5612
5613 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5614
5615 space_info = __find_space_info(root->fs_info, data);
5616 if (!space_info) {
5617 printk(KERN_ERR "No space info for %llu\n", data);
5618 return -ENOSPC;
5619 }
5620
5621 /*
5622 * If the space info is for both data and metadata it means we have a
5623 * small filesystem and we can't use the clustering stuff.
5624 */
5625 if (btrfs_mixed_space_info(space_info))
5626 use_cluster = false;
5627
5628 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5629 last_ptr = &root->fs_info->meta_alloc_cluster;
5630 if (!btrfs_test_opt(root, SSD))
5631 empty_cluster = 64 * 1024;
5632 }
5633
5634 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5635 btrfs_test_opt(root, SSD)) {
5636 last_ptr = &root->fs_info->data_alloc_cluster;
5637 }
5638
5639 if (last_ptr) {
5640 spin_lock(&last_ptr->lock);
5641 if (last_ptr->block_group)
5642 hint_byte = last_ptr->window_start;
5643 spin_unlock(&last_ptr->lock);
5644 }
5645
5646 search_start = max(search_start, first_logical_byte(root, 0));
5647 search_start = max(search_start, hint_byte);
5648
5649 if (!last_ptr)
5650 empty_cluster = 0;
5651
5652 if (search_start == hint_byte) {
5653 block_group = btrfs_lookup_block_group(root->fs_info,
5654 search_start);
5655 used_block_group = block_group;
5656 /*
5657 * we don't want to use the block group if it doesn't match our
5658 * allocation bits, or if its not cached.
5659 *
5660 * However if we are re-searching with an ideal block group
5661 * picked out then we don't care that the block group is cached.
5662 */
5663 if (block_group && block_group_bits(block_group, data) &&
5664 block_group->cached != BTRFS_CACHE_NO) {
5665 down_read(&space_info->groups_sem);
5666 if (list_empty(&block_group->list) ||
5667 block_group->ro) {
5668 /*
5669 * someone is removing this block group,
5670 * we can't jump into the have_block_group
5671 * target because our list pointers are not
5672 * valid
5673 */
5674 btrfs_put_block_group(block_group);
5675 up_read(&space_info->groups_sem);
5676 } else {
5677 index = get_block_group_index(block_group);
5678 goto have_block_group;
5679 }
5680 } else if (block_group) {
5681 btrfs_put_block_group(block_group);
5682 }
5683 }
5684 search:
5685 have_caching_bg = false;
5686 down_read(&space_info->groups_sem);
5687 list_for_each_entry(block_group, &space_info->block_groups[index],
5688 list) {
5689 u64 offset;
5690 int cached;
5691
5692 used_block_group = block_group;
5693 btrfs_get_block_group(block_group);
5694 search_start = block_group->key.objectid;
5695
5696 /*
5697 * this can happen if we end up cycling through all the
5698 * raid types, but we want to make sure we only allocate
5699 * for the proper type.
5700 */
5701 if (!block_group_bits(block_group, data)) {
5702 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5703 BTRFS_BLOCK_GROUP_RAID1 |
5704 BTRFS_BLOCK_GROUP_RAID10;
5705
5706 /*
5707 * if they asked for extra copies and this block group
5708 * doesn't provide them, bail. This does allow us to
5709 * fill raid0 from raid1.
5710 */
5711 if ((data & extra) && !(block_group->flags & extra))
5712 goto loop;
5713 }
5714
5715 have_block_group:
5716 cached = block_group_cache_done(block_group);
5717 if (unlikely(!cached)) {
5718 found_uncached_bg = true;
5719 ret = cache_block_group(block_group, 0);
5720 BUG_ON(ret < 0);
5721 ret = 0;
5722 }
5723
5724 if (unlikely(block_group->ro))
5725 goto loop;
5726
5727 /*
5728 * Ok we want to try and use the cluster allocator, so
5729 * lets look there
5730 */
5731 if (last_ptr) {
5732 /*
5733 * the refill lock keeps out other
5734 * people trying to start a new cluster
5735 */
5736 spin_lock(&last_ptr->refill_lock);
5737 used_block_group = last_ptr->block_group;
5738 if (used_block_group != block_group &&
5739 (!used_block_group ||
5740 used_block_group->ro ||
5741 !block_group_bits(used_block_group, data))) {
5742 used_block_group = block_group;
5743 goto refill_cluster;
5744 }
5745
5746 if (used_block_group != block_group)
5747 btrfs_get_block_group(used_block_group);
5748
5749 offset = btrfs_alloc_from_cluster(used_block_group,
5750 last_ptr, num_bytes, used_block_group->key.objectid);
5751 if (offset) {
5752 /* we have a block, we're done */
5753 spin_unlock(&last_ptr->refill_lock);
5754 trace_btrfs_reserve_extent_cluster(root,
5755 block_group, search_start, num_bytes);
5756 goto checks;
5757 }
5758
5759 WARN_ON(last_ptr->block_group != used_block_group);
5760 if (used_block_group != block_group) {
5761 btrfs_put_block_group(used_block_group);
5762 used_block_group = block_group;
5763 }
5764 refill_cluster:
5765 BUG_ON(used_block_group != block_group);
5766 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5767 * set up a new clusters, so lets just skip it
5768 * and let the allocator find whatever block
5769 * it can find. If we reach this point, we
5770 * will have tried the cluster allocator
5771 * plenty of times and not have found
5772 * anything, so we are likely way too
5773 * fragmented for the clustering stuff to find
5774 * anything.
5775 *
5776 * However, if the cluster is taken from the
5777 * current block group, release the cluster
5778 * first, so that we stand a better chance of
5779 * succeeding in the unclustered
5780 * allocation. */
5781 if (loop >= LOOP_NO_EMPTY_SIZE &&
5782 last_ptr->block_group != block_group) {
5783 spin_unlock(&last_ptr->refill_lock);
5784 goto unclustered_alloc;
5785 }
5786
5787 /*
5788 * this cluster didn't work out, free it and
5789 * start over
5790 */
5791 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5792
5793 if (loop >= LOOP_NO_EMPTY_SIZE) {
5794 spin_unlock(&last_ptr->refill_lock);
5795 goto unclustered_alloc;
5796 }
5797
5798 /* allocate a cluster in this block group */
5799 ret = btrfs_find_space_cluster(trans, root,
5800 block_group, last_ptr,
5801 search_start, num_bytes,
5802 empty_cluster + empty_size);
5803 if (ret == 0) {
5804 /*
5805 * now pull our allocation out of this
5806 * cluster
5807 */
5808 offset = btrfs_alloc_from_cluster(block_group,
5809 last_ptr, num_bytes,
5810 search_start);
5811 if (offset) {
5812 /* we found one, proceed */
5813 spin_unlock(&last_ptr->refill_lock);
5814 trace_btrfs_reserve_extent_cluster(root,
5815 block_group, search_start,
5816 num_bytes);
5817 goto checks;
5818 }
5819 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5820 && !failed_cluster_refill) {
5821 spin_unlock(&last_ptr->refill_lock);
5822
5823 failed_cluster_refill = true;
5824 wait_block_group_cache_progress(block_group,
5825 num_bytes + empty_cluster + empty_size);
5826 goto have_block_group;
5827 }
5828
5829 /*
5830 * at this point we either didn't find a cluster
5831 * or we weren't able to allocate a block from our
5832 * cluster. Free the cluster we've been trying
5833 * to use, and go to the next block group
5834 */
5835 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5836 spin_unlock(&last_ptr->refill_lock);
5837 goto loop;
5838 }
5839
5840 unclustered_alloc:
5841 spin_lock(&block_group->free_space_ctl->tree_lock);
5842 if (cached &&
5843 block_group->free_space_ctl->free_space <
5844 num_bytes + empty_cluster + empty_size) {
5845 spin_unlock(&block_group->free_space_ctl->tree_lock);
5846 goto loop;
5847 }
5848 spin_unlock(&block_group->free_space_ctl->tree_lock);
5849
5850 offset = btrfs_find_space_for_alloc(block_group, search_start,
5851 num_bytes, empty_size);
5852 /*
5853 * If we didn't find a chunk, and we haven't failed on this
5854 * block group before, and this block group is in the middle of
5855 * caching and we are ok with waiting, then go ahead and wait
5856 * for progress to be made, and set failed_alloc to true.
5857 *
5858 * If failed_alloc is true then we've already waited on this
5859 * block group once and should move on to the next block group.
5860 */
5861 if (!offset && !failed_alloc && !cached &&
5862 loop > LOOP_CACHING_NOWAIT) {
5863 wait_block_group_cache_progress(block_group,
5864 num_bytes + empty_size);
5865 failed_alloc = true;
5866 goto have_block_group;
5867 } else if (!offset) {
5868 if (!cached)
5869 have_caching_bg = true;
5870 goto loop;
5871 }
5872 checks:
5873 search_start = stripe_align(root, offset);
5874
5875 /* move on to the next group */
5876 if (search_start + num_bytes >
5877 used_block_group->key.objectid + used_block_group->key.offset) {
5878 btrfs_add_free_space(used_block_group, offset, num_bytes);
5879 goto loop;
5880 }
5881
5882 if (offset < search_start)
5883 btrfs_add_free_space(used_block_group, offset,
5884 search_start - offset);
5885 BUG_ON(offset > search_start);
5886
5887 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5888 alloc_type);
5889 if (ret == -EAGAIN) {
5890 btrfs_add_free_space(used_block_group, offset, num_bytes);
5891 goto loop;
5892 }
5893
5894 /* we are all good, lets return */
5895 ins->objectid = search_start;
5896 ins->offset = num_bytes;
5897
5898 trace_btrfs_reserve_extent(orig_root, block_group,
5899 search_start, num_bytes);
5900 if (used_block_group != block_group)
5901 btrfs_put_block_group(used_block_group);
5902 btrfs_put_block_group(block_group);
5903 break;
5904 loop:
5905 failed_cluster_refill = false;
5906 failed_alloc = false;
5907 BUG_ON(index != get_block_group_index(block_group));
5908 if (used_block_group != block_group)
5909 btrfs_put_block_group(used_block_group);
5910 btrfs_put_block_group(block_group);
5911 }
5912 up_read(&space_info->groups_sem);
5913
5914 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5915 goto search;
5916
5917 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5918 goto search;
5919
5920 /*
5921 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5922 * caching kthreads as we move along
5923 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5924 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5925 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5926 * again
5927 */
5928 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5929 index = 0;
5930 loop++;
5931 if (loop == LOOP_ALLOC_CHUNK) {
5932 ret = do_chunk_alloc(trans, root, data,
5933 CHUNK_ALLOC_FORCE);
5934 /*
5935 * Do not bail out on ENOSPC since we
5936 * can do more things.
5937 */
5938 if (ret < 0 && ret != -ENOSPC) {
5939 btrfs_abort_transaction(trans,
5940 root, ret);
5941 goto out;
5942 }
5943 }
5944
5945 if (loop == LOOP_NO_EMPTY_SIZE) {
5946 empty_size = 0;
5947 empty_cluster = 0;
5948 }
5949
5950 goto search;
5951 } else if (!ins->objectid) {
5952 ret = -ENOSPC;
5953 } else if (ins->objectid) {
5954 ret = 0;
5955 }
5956 out:
5957
5958 return ret;
5959 }
5960
5961 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5962 int dump_block_groups)
5963 {
5964 struct btrfs_block_group_cache *cache;
5965 int index = 0;
5966
5967 spin_lock(&info->lock);
5968 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5969 (unsigned long long)info->flags,
5970 (unsigned long long)(info->total_bytes - info->bytes_used -
5971 info->bytes_pinned - info->bytes_reserved -
5972 info->bytes_readonly),
5973 (info->full) ? "" : "not ");
5974 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5975 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5976 (unsigned long long)info->total_bytes,
5977 (unsigned long long)info->bytes_used,
5978 (unsigned long long)info->bytes_pinned,
5979 (unsigned long long)info->bytes_reserved,
5980 (unsigned long long)info->bytes_may_use,
5981 (unsigned long long)info->bytes_readonly);
5982 spin_unlock(&info->lock);
5983
5984 if (!dump_block_groups)
5985 return;
5986
5987 down_read(&info->groups_sem);
5988 again:
5989 list_for_each_entry(cache, &info->block_groups[index], list) {
5990 spin_lock(&cache->lock);
5991 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5992 (unsigned long long)cache->key.objectid,
5993 (unsigned long long)cache->key.offset,
5994 (unsigned long long)btrfs_block_group_used(&cache->item),
5995 (unsigned long long)cache->pinned,
5996 (unsigned long long)cache->reserved,
5997 cache->ro ? "[readonly]" : "");
5998 btrfs_dump_free_space(cache, bytes);
5999 spin_unlock(&cache->lock);
6000 }
6001 if (++index < BTRFS_NR_RAID_TYPES)
6002 goto again;
6003 up_read(&info->groups_sem);
6004 }
6005
6006 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6007 struct btrfs_root *root,
6008 u64 num_bytes, u64 min_alloc_size,
6009 u64 empty_size, u64 hint_byte,
6010 struct btrfs_key *ins, u64 data)
6011 {
6012 bool final_tried = false;
6013 int ret;
6014
6015 data = btrfs_get_alloc_profile(root, data);
6016 again:
6017 WARN_ON(num_bytes < root->sectorsize);
6018 ret = find_free_extent(trans, root, num_bytes, empty_size,
6019 hint_byte, ins, data);
6020
6021 if (ret == -ENOSPC) {
6022 if (!final_tried) {
6023 num_bytes = num_bytes >> 1;
6024 num_bytes = num_bytes & ~(root->sectorsize - 1);
6025 num_bytes = max(num_bytes, min_alloc_size);
6026 if (num_bytes == min_alloc_size)
6027 final_tried = true;
6028 goto again;
6029 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6030 struct btrfs_space_info *sinfo;
6031
6032 sinfo = __find_space_info(root->fs_info, data);
6033 printk(KERN_ERR "btrfs allocation failed flags %llu, "
6034 "wanted %llu\n", (unsigned long long)data,
6035 (unsigned long long)num_bytes);
6036 if (sinfo)
6037 dump_space_info(sinfo, num_bytes, 1);
6038 }
6039 }
6040
6041 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6042
6043 return ret;
6044 }
6045
6046 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6047 u64 start, u64 len, int pin)
6048 {
6049 struct btrfs_block_group_cache *cache;
6050 int ret = 0;
6051
6052 cache = btrfs_lookup_block_group(root->fs_info, start);
6053 if (!cache) {
6054 printk(KERN_ERR "Unable to find block group for %llu\n",
6055 (unsigned long long)start);
6056 return -ENOSPC;
6057 }
6058
6059 if (btrfs_test_opt(root, DISCARD))
6060 ret = btrfs_discard_extent(root, start, len, NULL);
6061
6062 if (pin)
6063 pin_down_extent(root, cache, start, len, 1);
6064 else {
6065 btrfs_add_free_space(cache, start, len);
6066 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6067 }
6068 btrfs_put_block_group(cache);
6069
6070 trace_btrfs_reserved_extent_free(root, start, len);
6071
6072 return ret;
6073 }
6074
6075 int btrfs_free_reserved_extent(struct btrfs_root *root,
6076 u64 start, u64 len)
6077 {
6078 return __btrfs_free_reserved_extent(root, start, len, 0);
6079 }
6080
6081 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6082 u64 start, u64 len)
6083 {
6084 return __btrfs_free_reserved_extent(root, start, len, 1);
6085 }
6086
6087 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6088 struct btrfs_root *root,
6089 u64 parent, u64 root_objectid,
6090 u64 flags, u64 owner, u64 offset,
6091 struct btrfs_key *ins, int ref_mod)
6092 {
6093 int ret;
6094 struct btrfs_fs_info *fs_info = root->fs_info;
6095 struct btrfs_extent_item *extent_item;
6096 struct btrfs_extent_inline_ref *iref;
6097 struct btrfs_path *path;
6098 struct extent_buffer *leaf;
6099 int type;
6100 u32 size;
6101
6102 if (parent > 0)
6103 type = BTRFS_SHARED_DATA_REF_KEY;
6104 else
6105 type = BTRFS_EXTENT_DATA_REF_KEY;
6106
6107 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6108
6109 path = btrfs_alloc_path();
6110 if (!path)
6111 return -ENOMEM;
6112
6113 path->leave_spinning = 1;
6114 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6115 ins, size);
6116 if (ret) {
6117 btrfs_free_path(path);
6118 return ret;
6119 }
6120
6121 leaf = path->nodes[0];
6122 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6123 struct btrfs_extent_item);
6124 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6125 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6126 btrfs_set_extent_flags(leaf, extent_item,
6127 flags | BTRFS_EXTENT_FLAG_DATA);
6128
6129 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6130 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6131 if (parent > 0) {
6132 struct btrfs_shared_data_ref *ref;
6133 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6134 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6135 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6136 } else {
6137 struct btrfs_extent_data_ref *ref;
6138 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6139 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6140 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6141 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6142 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6143 }
6144
6145 btrfs_mark_buffer_dirty(path->nodes[0]);
6146 btrfs_free_path(path);
6147
6148 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6149 if (ret) { /* -ENOENT, logic error */
6150 printk(KERN_ERR "btrfs update block group failed for %llu "
6151 "%llu\n", (unsigned long long)ins->objectid,
6152 (unsigned long long)ins->offset);
6153 BUG();
6154 }
6155 return ret;
6156 }
6157
6158 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6159 struct btrfs_root *root,
6160 u64 parent, u64 root_objectid,
6161 u64 flags, struct btrfs_disk_key *key,
6162 int level, struct btrfs_key *ins)
6163 {
6164 int ret;
6165 struct btrfs_fs_info *fs_info = root->fs_info;
6166 struct btrfs_extent_item *extent_item;
6167 struct btrfs_tree_block_info *block_info;
6168 struct btrfs_extent_inline_ref *iref;
6169 struct btrfs_path *path;
6170 struct extent_buffer *leaf;
6171 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6172
6173 path = btrfs_alloc_path();
6174 if (!path)
6175 return -ENOMEM;
6176
6177 path->leave_spinning = 1;
6178 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6179 ins, size);
6180 if (ret) {
6181 btrfs_free_path(path);
6182 return ret;
6183 }
6184
6185 leaf = path->nodes[0];
6186 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6187 struct btrfs_extent_item);
6188 btrfs_set_extent_refs(leaf, extent_item, 1);
6189 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6190 btrfs_set_extent_flags(leaf, extent_item,
6191 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6192 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6193
6194 btrfs_set_tree_block_key(leaf, block_info, key);
6195 btrfs_set_tree_block_level(leaf, block_info, level);
6196
6197 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6198 if (parent > 0) {
6199 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6200 btrfs_set_extent_inline_ref_type(leaf, iref,
6201 BTRFS_SHARED_BLOCK_REF_KEY);
6202 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6203 } else {
6204 btrfs_set_extent_inline_ref_type(leaf, iref,
6205 BTRFS_TREE_BLOCK_REF_KEY);
6206 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6207 }
6208
6209 btrfs_mark_buffer_dirty(leaf);
6210 btrfs_free_path(path);
6211
6212 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6213 if (ret) { /* -ENOENT, logic error */
6214 printk(KERN_ERR "btrfs update block group failed for %llu "
6215 "%llu\n", (unsigned long long)ins->objectid,
6216 (unsigned long long)ins->offset);
6217 BUG();
6218 }
6219 return ret;
6220 }
6221
6222 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6223 struct btrfs_root *root,
6224 u64 root_objectid, u64 owner,
6225 u64 offset, struct btrfs_key *ins)
6226 {
6227 int ret;
6228
6229 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6230
6231 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6232 ins->offset, 0,
6233 root_objectid, owner, offset,
6234 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6235 return ret;
6236 }
6237
6238 /*
6239 * this is used by the tree logging recovery code. It records that
6240 * an extent has been allocated and makes sure to clear the free
6241 * space cache bits as well
6242 */
6243 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6244 struct btrfs_root *root,
6245 u64 root_objectid, u64 owner, u64 offset,
6246 struct btrfs_key *ins)
6247 {
6248 int ret;
6249 struct btrfs_block_group_cache *block_group;
6250 struct btrfs_caching_control *caching_ctl;
6251 u64 start = ins->objectid;
6252 u64 num_bytes = ins->offset;
6253
6254 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6255 cache_block_group(block_group, 0);
6256 caching_ctl = get_caching_control(block_group);
6257
6258 if (!caching_ctl) {
6259 BUG_ON(!block_group_cache_done(block_group));
6260 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6261 BUG_ON(ret); /* -ENOMEM */
6262 } else {
6263 mutex_lock(&caching_ctl->mutex);
6264
6265 if (start >= caching_ctl->progress) {
6266 ret = add_excluded_extent(root, start, num_bytes);
6267 BUG_ON(ret); /* -ENOMEM */
6268 } else if (start + num_bytes <= caching_ctl->progress) {
6269 ret = btrfs_remove_free_space(block_group,
6270 start, num_bytes);
6271 BUG_ON(ret); /* -ENOMEM */
6272 } else {
6273 num_bytes = caching_ctl->progress - start;
6274 ret = btrfs_remove_free_space(block_group,
6275 start, num_bytes);
6276 BUG_ON(ret); /* -ENOMEM */
6277
6278 start = caching_ctl->progress;
6279 num_bytes = ins->objectid + ins->offset -
6280 caching_ctl->progress;
6281 ret = add_excluded_extent(root, start, num_bytes);
6282 BUG_ON(ret); /* -ENOMEM */
6283 }
6284
6285 mutex_unlock(&caching_ctl->mutex);
6286 put_caching_control(caching_ctl);
6287 }
6288
6289 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6290 RESERVE_ALLOC_NO_ACCOUNT);
6291 BUG_ON(ret); /* logic error */
6292 btrfs_put_block_group(block_group);
6293 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6294 0, owner, offset, ins, 1);
6295 return ret;
6296 }
6297
6298 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6299 struct btrfs_root *root,
6300 u64 bytenr, u32 blocksize,
6301 int level)
6302 {
6303 struct extent_buffer *buf;
6304
6305 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6306 if (!buf)
6307 return ERR_PTR(-ENOMEM);
6308 btrfs_set_header_generation(buf, trans->transid);
6309 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6310 btrfs_tree_lock(buf);
6311 clean_tree_block(trans, root, buf);
6312 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6313
6314 btrfs_set_lock_blocking(buf);
6315 btrfs_set_buffer_uptodate(buf);
6316
6317 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6318 /*
6319 * we allow two log transactions at a time, use different
6320 * EXENT bit to differentiate dirty pages.
6321 */
6322 if (root->log_transid % 2 == 0)
6323 set_extent_dirty(&root->dirty_log_pages, buf->start,
6324 buf->start + buf->len - 1, GFP_NOFS);
6325 else
6326 set_extent_new(&root->dirty_log_pages, buf->start,
6327 buf->start + buf->len - 1, GFP_NOFS);
6328 } else {
6329 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6330 buf->start + buf->len - 1, GFP_NOFS);
6331 }
6332 trans->blocks_used++;
6333 /* this returns a buffer locked for blocking */
6334 return buf;
6335 }
6336
6337 static struct btrfs_block_rsv *
6338 use_block_rsv(struct btrfs_trans_handle *trans,
6339 struct btrfs_root *root, u32 blocksize)
6340 {
6341 struct btrfs_block_rsv *block_rsv;
6342 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6343 int ret;
6344
6345 block_rsv = get_block_rsv(trans, root);
6346
6347 if (block_rsv->size == 0) {
6348 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6349 BTRFS_RESERVE_NO_FLUSH);
6350 /*
6351 * If we couldn't reserve metadata bytes try and use some from
6352 * the global reserve.
6353 */
6354 if (ret && block_rsv != global_rsv) {
6355 ret = block_rsv_use_bytes(global_rsv, blocksize);
6356 if (!ret)
6357 return global_rsv;
6358 return ERR_PTR(ret);
6359 } else if (ret) {
6360 return ERR_PTR(ret);
6361 }
6362 return block_rsv;
6363 }
6364
6365 ret = block_rsv_use_bytes(block_rsv, blocksize);
6366 if (!ret)
6367 return block_rsv;
6368 if (ret && !block_rsv->failfast) {
6369 static DEFINE_RATELIMIT_STATE(_rs,
6370 DEFAULT_RATELIMIT_INTERVAL,
6371 /*DEFAULT_RATELIMIT_BURST*/ 2);
6372 if (__ratelimit(&_rs))
6373 WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n",
6374 ret);
6375 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6376 BTRFS_RESERVE_NO_FLUSH);
6377 if (!ret) {
6378 return block_rsv;
6379 } else if (ret && block_rsv != global_rsv) {
6380 ret = block_rsv_use_bytes(global_rsv, blocksize);
6381 if (!ret)
6382 return global_rsv;
6383 }
6384 }
6385
6386 return ERR_PTR(-ENOSPC);
6387 }
6388
6389 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6390 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6391 {
6392 block_rsv_add_bytes(block_rsv, blocksize, 0);
6393 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6394 }
6395
6396 /*
6397 * finds a free extent and does all the dirty work required for allocation
6398 * returns the key for the extent through ins, and a tree buffer for
6399 * the first block of the extent through buf.
6400 *
6401 * returns the tree buffer or NULL.
6402 */
6403 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6404 struct btrfs_root *root, u32 blocksize,
6405 u64 parent, u64 root_objectid,
6406 struct btrfs_disk_key *key, int level,
6407 u64 hint, u64 empty_size)
6408 {
6409 struct btrfs_key ins;
6410 struct btrfs_block_rsv *block_rsv;
6411 struct extent_buffer *buf;
6412 u64 flags = 0;
6413 int ret;
6414
6415
6416 block_rsv = use_block_rsv(trans, root, blocksize);
6417 if (IS_ERR(block_rsv))
6418 return ERR_CAST(block_rsv);
6419
6420 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6421 empty_size, hint, &ins, 0);
6422 if (ret) {
6423 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6424 return ERR_PTR(ret);
6425 }
6426
6427 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6428 blocksize, level);
6429 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6430
6431 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6432 if (parent == 0)
6433 parent = ins.objectid;
6434 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6435 } else
6436 BUG_ON(parent > 0);
6437
6438 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6439 struct btrfs_delayed_extent_op *extent_op;
6440 extent_op = btrfs_alloc_delayed_extent_op();
6441 BUG_ON(!extent_op); /* -ENOMEM */
6442 if (key)
6443 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6444 else
6445 memset(&extent_op->key, 0, sizeof(extent_op->key));
6446 extent_op->flags_to_set = flags;
6447 extent_op->update_key = 1;
6448 extent_op->update_flags = 1;
6449 extent_op->is_data = 0;
6450
6451 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6452 ins.objectid,
6453 ins.offset, parent, root_objectid,
6454 level, BTRFS_ADD_DELAYED_EXTENT,
6455 extent_op, 0);
6456 BUG_ON(ret); /* -ENOMEM */
6457 }
6458 return buf;
6459 }
6460
6461 struct walk_control {
6462 u64 refs[BTRFS_MAX_LEVEL];
6463 u64 flags[BTRFS_MAX_LEVEL];
6464 struct btrfs_key update_progress;
6465 int stage;
6466 int level;
6467 int shared_level;
6468 int update_ref;
6469 int keep_locks;
6470 int reada_slot;
6471 int reada_count;
6472 int for_reloc;
6473 };
6474
6475 #define DROP_REFERENCE 1
6476 #define UPDATE_BACKREF 2
6477
6478 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6479 struct btrfs_root *root,
6480 struct walk_control *wc,
6481 struct btrfs_path *path)
6482 {
6483 u64 bytenr;
6484 u64 generation;
6485 u64 refs;
6486 u64 flags;
6487 u32 nritems;
6488 u32 blocksize;
6489 struct btrfs_key key;
6490 struct extent_buffer *eb;
6491 int ret;
6492 int slot;
6493 int nread = 0;
6494
6495 if (path->slots[wc->level] < wc->reada_slot) {
6496 wc->reada_count = wc->reada_count * 2 / 3;
6497 wc->reada_count = max(wc->reada_count, 2);
6498 } else {
6499 wc->reada_count = wc->reada_count * 3 / 2;
6500 wc->reada_count = min_t(int, wc->reada_count,
6501 BTRFS_NODEPTRS_PER_BLOCK(root));
6502 }
6503
6504 eb = path->nodes[wc->level];
6505 nritems = btrfs_header_nritems(eb);
6506 blocksize = btrfs_level_size(root, wc->level - 1);
6507
6508 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6509 if (nread >= wc->reada_count)
6510 break;
6511
6512 cond_resched();
6513 bytenr = btrfs_node_blockptr(eb, slot);
6514 generation = btrfs_node_ptr_generation(eb, slot);
6515
6516 if (slot == path->slots[wc->level])
6517 goto reada;
6518
6519 if (wc->stage == UPDATE_BACKREF &&
6520 generation <= root->root_key.offset)
6521 continue;
6522
6523 /* We don't lock the tree block, it's OK to be racy here */
6524 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6525 &refs, &flags);
6526 /* We don't care about errors in readahead. */
6527 if (ret < 0)
6528 continue;
6529 BUG_ON(refs == 0);
6530
6531 if (wc->stage == DROP_REFERENCE) {
6532 if (refs == 1)
6533 goto reada;
6534
6535 if (wc->level == 1 &&
6536 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6537 continue;
6538 if (!wc->update_ref ||
6539 generation <= root->root_key.offset)
6540 continue;
6541 btrfs_node_key_to_cpu(eb, &key, slot);
6542 ret = btrfs_comp_cpu_keys(&key,
6543 &wc->update_progress);
6544 if (ret < 0)
6545 continue;
6546 } else {
6547 if (wc->level == 1 &&
6548 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6549 continue;
6550 }
6551 reada:
6552 ret = readahead_tree_block(root, bytenr, blocksize,
6553 generation);
6554 if (ret)
6555 break;
6556 nread++;
6557 }
6558 wc->reada_slot = slot;
6559 }
6560
6561 /*
6562 * hepler to process tree block while walking down the tree.
6563 *
6564 * when wc->stage == UPDATE_BACKREF, this function updates
6565 * back refs for pointers in the block.
6566 *
6567 * NOTE: return value 1 means we should stop walking down.
6568 */
6569 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6570 struct btrfs_root *root,
6571 struct btrfs_path *path,
6572 struct walk_control *wc, int lookup_info)
6573 {
6574 int level = wc->level;
6575 struct extent_buffer *eb = path->nodes[level];
6576 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6577 int ret;
6578
6579 if (wc->stage == UPDATE_BACKREF &&
6580 btrfs_header_owner(eb) != root->root_key.objectid)
6581 return 1;
6582
6583 /*
6584 * when reference count of tree block is 1, it won't increase
6585 * again. once full backref flag is set, we never clear it.
6586 */
6587 if (lookup_info &&
6588 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6589 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6590 BUG_ON(!path->locks[level]);
6591 ret = btrfs_lookup_extent_info(trans, root,
6592 eb->start, eb->len,
6593 &wc->refs[level],
6594 &wc->flags[level]);
6595 BUG_ON(ret == -ENOMEM);
6596 if (ret)
6597 return ret;
6598 BUG_ON(wc->refs[level] == 0);
6599 }
6600
6601 if (wc->stage == DROP_REFERENCE) {
6602 if (wc->refs[level] > 1)
6603 return 1;
6604
6605 if (path->locks[level] && !wc->keep_locks) {
6606 btrfs_tree_unlock_rw(eb, path->locks[level]);
6607 path->locks[level] = 0;
6608 }
6609 return 0;
6610 }
6611
6612 /* wc->stage == UPDATE_BACKREF */
6613 if (!(wc->flags[level] & flag)) {
6614 BUG_ON(!path->locks[level]);
6615 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6616 BUG_ON(ret); /* -ENOMEM */
6617 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6618 BUG_ON(ret); /* -ENOMEM */
6619 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6620 eb->len, flag, 0);
6621 BUG_ON(ret); /* -ENOMEM */
6622 wc->flags[level] |= flag;
6623 }
6624
6625 /*
6626 * the block is shared by multiple trees, so it's not good to
6627 * keep the tree lock
6628 */
6629 if (path->locks[level] && level > 0) {
6630 btrfs_tree_unlock_rw(eb, path->locks[level]);
6631 path->locks[level] = 0;
6632 }
6633 return 0;
6634 }
6635
6636 /*
6637 * hepler to process tree block pointer.
6638 *
6639 * when wc->stage == DROP_REFERENCE, this function checks
6640 * reference count of the block pointed to. if the block
6641 * is shared and we need update back refs for the subtree
6642 * rooted at the block, this function changes wc->stage to
6643 * UPDATE_BACKREF. if the block is shared and there is no
6644 * need to update back, this function drops the reference
6645 * to the block.
6646 *
6647 * NOTE: return value 1 means we should stop walking down.
6648 */
6649 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6650 struct btrfs_root *root,
6651 struct btrfs_path *path,
6652 struct walk_control *wc, int *lookup_info)
6653 {
6654 u64 bytenr;
6655 u64 generation;
6656 u64 parent;
6657 u32 blocksize;
6658 struct btrfs_key key;
6659 struct extent_buffer *next;
6660 int level = wc->level;
6661 int reada = 0;
6662 int ret = 0;
6663
6664 generation = btrfs_node_ptr_generation(path->nodes[level],
6665 path->slots[level]);
6666 /*
6667 * if the lower level block was created before the snapshot
6668 * was created, we know there is no need to update back refs
6669 * for the subtree
6670 */
6671 if (wc->stage == UPDATE_BACKREF &&
6672 generation <= root->root_key.offset) {
6673 *lookup_info = 1;
6674 return 1;
6675 }
6676
6677 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6678 blocksize = btrfs_level_size(root, level - 1);
6679
6680 next = btrfs_find_tree_block(root, bytenr, blocksize);
6681 if (!next) {
6682 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6683 if (!next)
6684 return -ENOMEM;
6685 reada = 1;
6686 }
6687 btrfs_tree_lock(next);
6688 btrfs_set_lock_blocking(next);
6689
6690 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6691 &wc->refs[level - 1],
6692 &wc->flags[level - 1]);
6693 if (ret < 0) {
6694 btrfs_tree_unlock(next);
6695 return ret;
6696 }
6697
6698 BUG_ON(wc->refs[level - 1] == 0);
6699 *lookup_info = 0;
6700
6701 if (wc->stage == DROP_REFERENCE) {
6702 if (wc->refs[level - 1] > 1) {
6703 if (level == 1 &&
6704 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6705 goto skip;
6706
6707 if (!wc->update_ref ||
6708 generation <= root->root_key.offset)
6709 goto skip;
6710
6711 btrfs_node_key_to_cpu(path->nodes[level], &key,
6712 path->slots[level]);
6713 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6714 if (ret < 0)
6715 goto skip;
6716
6717 wc->stage = UPDATE_BACKREF;
6718 wc->shared_level = level - 1;
6719 }
6720 } else {
6721 if (level == 1 &&
6722 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6723 goto skip;
6724 }
6725
6726 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6727 btrfs_tree_unlock(next);
6728 free_extent_buffer(next);
6729 next = NULL;
6730 *lookup_info = 1;
6731 }
6732
6733 if (!next) {
6734 if (reada && level == 1)
6735 reada_walk_down(trans, root, wc, path);
6736 next = read_tree_block(root, bytenr, blocksize, generation);
6737 if (!next)
6738 return -EIO;
6739 btrfs_tree_lock(next);
6740 btrfs_set_lock_blocking(next);
6741 }
6742
6743 level--;
6744 BUG_ON(level != btrfs_header_level(next));
6745 path->nodes[level] = next;
6746 path->slots[level] = 0;
6747 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6748 wc->level = level;
6749 if (wc->level == 1)
6750 wc->reada_slot = 0;
6751 return 0;
6752 skip:
6753 wc->refs[level - 1] = 0;
6754 wc->flags[level - 1] = 0;
6755 if (wc->stage == DROP_REFERENCE) {
6756 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6757 parent = path->nodes[level]->start;
6758 } else {
6759 BUG_ON(root->root_key.objectid !=
6760 btrfs_header_owner(path->nodes[level]));
6761 parent = 0;
6762 }
6763
6764 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6765 root->root_key.objectid, level - 1, 0, 0);
6766 BUG_ON(ret); /* -ENOMEM */
6767 }
6768 btrfs_tree_unlock(next);
6769 free_extent_buffer(next);
6770 *lookup_info = 1;
6771 return 1;
6772 }
6773
6774 /*
6775 * hepler to process tree block while walking up the tree.
6776 *
6777 * when wc->stage == DROP_REFERENCE, this function drops
6778 * reference count on the block.
6779 *
6780 * when wc->stage == UPDATE_BACKREF, this function changes
6781 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6782 * to UPDATE_BACKREF previously while processing the block.
6783 *
6784 * NOTE: return value 1 means we should stop walking up.
6785 */
6786 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6787 struct btrfs_root *root,
6788 struct btrfs_path *path,
6789 struct walk_control *wc)
6790 {
6791 int ret;
6792 int level = wc->level;
6793 struct extent_buffer *eb = path->nodes[level];
6794 u64 parent = 0;
6795
6796 if (wc->stage == UPDATE_BACKREF) {
6797 BUG_ON(wc->shared_level < level);
6798 if (level < wc->shared_level)
6799 goto out;
6800
6801 ret = find_next_key(path, level + 1, &wc->update_progress);
6802 if (ret > 0)
6803 wc->update_ref = 0;
6804
6805 wc->stage = DROP_REFERENCE;
6806 wc->shared_level = -1;
6807 path->slots[level] = 0;
6808
6809 /*
6810 * check reference count again if the block isn't locked.
6811 * we should start walking down the tree again if reference
6812 * count is one.
6813 */
6814 if (!path->locks[level]) {
6815 BUG_ON(level == 0);
6816 btrfs_tree_lock(eb);
6817 btrfs_set_lock_blocking(eb);
6818 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6819
6820 ret = btrfs_lookup_extent_info(trans, root,
6821 eb->start, eb->len,
6822 &wc->refs[level],
6823 &wc->flags[level]);
6824 if (ret < 0) {
6825 btrfs_tree_unlock_rw(eb, path->locks[level]);
6826 path->locks[level] = 0;
6827 return ret;
6828 }
6829 BUG_ON(wc->refs[level] == 0);
6830 if (wc->refs[level] == 1) {
6831 btrfs_tree_unlock_rw(eb, path->locks[level]);
6832 path->locks[level] = 0;
6833 return 1;
6834 }
6835 }
6836 }
6837
6838 /* wc->stage == DROP_REFERENCE */
6839 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6840
6841 if (wc->refs[level] == 1) {
6842 if (level == 0) {
6843 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6844 ret = btrfs_dec_ref(trans, root, eb, 1,
6845 wc->for_reloc);
6846 else
6847 ret = btrfs_dec_ref(trans, root, eb, 0,
6848 wc->for_reloc);
6849 BUG_ON(ret); /* -ENOMEM */
6850 }
6851 /* make block locked assertion in clean_tree_block happy */
6852 if (!path->locks[level] &&
6853 btrfs_header_generation(eb) == trans->transid) {
6854 btrfs_tree_lock(eb);
6855 btrfs_set_lock_blocking(eb);
6856 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6857 }
6858 clean_tree_block(trans, root, eb);
6859 }
6860
6861 if (eb == root->node) {
6862 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6863 parent = eb->start;
6864 else
6865 BUG_ON(root->root_key.objectid !=
6866 btrfs_header_owner(eb));
6867 } else {
6868 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6869 parent = path->nodes[level + 1]->start;
6870 else
6871 BUG_ON(root->root_key.objectid !=
6872 btrfs_header_owner(path->nodes[level + 1]));
6873 }
6874
6875 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6876 out:
6877 wc->refs[level] = 0;
6878 wc->flags[level] = 0;
6879 return 0;
6880 }
6881
6882 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6883 struct btrfs_root *root,
6884 struct btrfs_path *path,
6885 struct walk_control *wc)
6886 {
6887 int level = wc->level;
6888 int lookup_info = 1;
6889 int ret;
6890
6891 while (level >= 0) {
6892 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6893 if (ret > 0)
6894 break;
6895
6896 if (level == 0)
6897 break;
6898
6899 if (path->slots[level] >=
6900 btrfs_header_nritems(path->nodes[level]))
6901 break;
6902
6903 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6904 if (ret > 0) {
6905 path->slots[level]++;
6906 continue;
6907 } else if (ret < 0)
6908 return ret;
6909 level = wc->level;
6910 }
6911 return 0;
6912 }
6913
6914 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6915 struct btrfs_root *root,
6916 struct btrfs_path *path,
6917 struct walk_control *wc, int max_level)
6918 {
6919 int level = wc->level;
6920 int ret;
6921
6922 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6923 while (level < max_level && path->nodes[level]) {
6924 wc->level = level;
6925 if (path->slots[level] + 1 <
6926 btrfs_header_nritems(path->nodes[level])) {
6927 path->slots[level]++;
6928 return 0;
6929 } else {
6930 ret = walk_up_proc(trans, root, path, wc);
6931 if (ret > 0)
6932 return 0;
6933
6934 if (path->locks[level]) {
6935 btrfs_tree_unlock_rw(path->nodes[level],
6936 path->locks[level]);
6937 path->locks[level] = 0;
6938 }
6939 free_extent_buffer(path->nodes[level]);
6940 path->nodes[level] = NULL;
6941 level++;
6942 }
6943 }
6944 return 1;
6945 }
6946
6947 /*
6948 * drop a subvolume tree.
6949 *
6950 * this function traverses the tree freeing any blocks that only
6951 * referenced by the tree.
6952 *
6953 * when a shared tree block is found. this function decreases its
6954 * reference count by one. if update_ref is true, this function
6955 * also make sure backrefs for the shared block and all lower level
6956 * blocks are properly updated.
6957 */
6958 int btrfs_drop_snapshot(struct btrfs_root *root,
6959 struct btrfs_block_rsv *block_rsv, int update_ref,
6960 int for_reloc)
6961 {
6962 struct btrfs_path *path;
6963 struct btrfs_trans_handle *trans;
6964 struct btrfs_root *tree_root = root->fs_info->tree_root;
6965 struct btrfs_root_item *root_item = &root->root_item;
6966 struct walk_control *wc;
6967 struct btrfs_key key;
6968 int err = 0;
6969 int ret;
6970 int level;
6971
6972 path = btrfs_alloc_path();
6973 if (!path) {
6974 err = -ENOMEM;
6975 goto out;
6976 }
6977
6978 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6979 if (!wc) {
6980 btrfs_free_path(path);
6981 err = -ENOMEM;
6982 goto out;
6983 }
6984
6985 trans = btrfs_start_transaction(tree_root, 0);
6986 if (IS_ERR(trans)) {
6987 err = PTR_ERR(trans);
6988 goto out_free;
6989 }
6990
6991 if (block_rsv)
6992 trans->block_rsv = block_rsv;
6993
6994 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6995 level = btrfs_header_level(root->node);
6996 path->nodes[level] = btrfs_lock_root_node(root);
6997 btrfs_set_lock_blocking(path->nodes[level]);
6998 path->slots[level] = 0;
6999 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7000 memset(&wc->update_progress, 0,
7001 sizeof(wc->update_progress));
7002 } else {
7003 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7004 memcpy(&wc->update_progress, &key,
7005 sizeof(wc->update_progress));
7006
7007 level = root_item->drop_level;
7008 BUG_ON(level == 0);
7009 path->lowest_level = level;
7010 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7011 path->lowest_level = 0;
7012 if (ret < 0) {
7013 err = ret;
7014 goto out_end_trans;
7015 }
7016 WARN_ON(ret > 0);
7017
7018 /*
7019 * unlock our path, this is safe because only this
7020 * function is allowed to delete this snapshot
7021 */
7022 btrfs_unlock_up_safe(path, 0);
7023
7024 level = btrfs_header_level(root->node);
7025 while (1) {
7026 btrfs_tree_lock(path->nodes[level]);
7027 btrfs_set_lock_blocking(path->nodes[level]);
7028
7029 ret = btrfs_lookup_extent_info(trans, root,
7030 path->nodes[level]->start,
7031 path->nodes[level]->len,
7032 &wc->refs[level],
7033 &wc->flags[level]);
7034 if (ret < 0) {
7035 err = ret;
7036 goto out_end_trans;
7037 }
7038 BUG_ON(wc->refs[level] == 0);
7039
7040 if (level == root_item->drop_level)
7041 break;
7042
7043 btrfs_tree_unlock(path->nodes[level]);
7044 WARN_ON(wc->refs[level] != 1);
7045 level--;
7046 }
7047 }
7048
7049 wc->level = level;
7050 wc->shared_level = -1;
7051 wc->stage = DROP_REFERENCE;
7052 wc->update_ref = update_ref;
7053 wc->keep_locks = 0;
7054 wc->for_reloc = for_reloc;
7055 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7056
7057 while (1) {
7058 ret = walk_down_tree(trans, root, path, wc);
7059 if (ret < 0) {
7060 err = ret;
7061 break;
7062 }
7063
7064 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7065 if (ret < 0) {
7066 err = ret;
7067 break;
7068 }
7069
7070 if (ret > 0) {
7071 BUG_ON(wc->stage != DROP_REFERENCE);
7072 break;
7073 }
7074
7075 if (wc->stage == DROP_REFERENCE) {
7076 level = wc->level;
7077 btrfs_node_key(path->nodes[level],
7078 &root_item->drop_progress,
7079 path->slots[level]);
7080 root_item->drop_level = level;
7081 }
7082
7083 BUG_ON(wc->level == 0);
7084 if (btrfs_should_end_transaction(trans, tree_root)) {
7085 ret = btrfs_update_root(trans, tree_root,
7086 &root->root_key,
7087 root_item);
7088 if (ret) {
7089 btrfs_abort_transaction(trans, tree_root, ret);
7090 err = ret;
7091 goto out_end_trans;
7092 }
7093
7094 btrfs_end_transaction_throttle(trans, tree_root);
7095 trans = btrfs_start_transaction(tree_root, 0);
7096 if (IS_ERR(trans)) {
7097 err = PTR_ERR(trans);
7098 goto out_free;
7099 }
7100 if (block_rsv)
7101 trans->block_rsv = block_rsv;
7102 }
7103 }
7104 btrfs_release_path(path);
7105 if (err)
7106 goto out_end_trans;
7107
7108 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7109 if (ret) {
7110 btrfs_abort_transaction(trans, tree_root, ret);
7111 goto out_end_trans;
7112 }
7113
7114 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7115 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7116 NULL, NULL);
7117 if (ret < 0) {
7118 btrfs_abort_transaction(trans, tree_root, ret);
7119 err = ret;
7120 goto out_end_trans;
7121 } else if (ret > 0) {
7122 /* if we fail to delete the orphan item this time
7123 * around, it'll get picked up the next time.
7124 *
7125 * The most common failure here is just -ENOENT.
7126 */
7127 btrfs_del_orphan_item(trans, tree_root,
7128 root->root_key.objectid);
7129 }
7130 }
7131
7132 if (root->in_radix) {
7133 btrfs_free_fs_root(tree_root->fs_info, root);
7134 } else {
7135 free_extent_buffer(root->node);
7136 free_extent_buffer(root->commit_root);
7137 kfree(root);
7138 }
7139 out_end_trans:
7140 btrfs_end_transaction_throttle(trans, tree_root);
7141 out_free:
7142 kfree(wc);
7143 btrfs_free_path(path);
7144 out:
7145 if (err)
7146 btrfs_std_error(root->fs_info, err);
7147 return err;
7148 }
7149
7150 /*
7151 * drop subtree rooted at tree block 'node'.
7152 *
7153 * NOTE: this function will unlock and release tree block 'node'
7154 * only used by relocation code
7155 */
7156 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7157 struct btrfs_root *root,
7158 struct extent_buffer *node,
7159 struct extent_buffer *parent)
7160 {
7161 struct btrfs_path *path;
7162 struct walk_control *wc;
7163 int level;
7164 int parent_level;
7165 int ret = 0;
7166 int wret;
7167
7168 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7169
7170 path = btrfs_alloc_path();
7171 if (!path)
7172 return -ENOMEM;
7173
7174 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7175 if (!wc) {
7176 btrfs_free_path(path);
7177 return -ENOMEM;
7178 }
7179
7180 btrfs_assert_tree_locked(parent);
7181 parent_level = btrfs_header_level(parent);
7182 extent_buffer_get(parent);
7183 path->nodes[parent_level] = parent;
7184 path->slots[parent_level] = btrfs_header_nritems(parent);
7185
7186 btrfs_assert_tree_locked(node);
7187 level = btrfs_header_level(node);
7188 path->nodes[level] = node;
7189 path->slots[level] = 0;
7190 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7191
7192 wc->refs[parent_level] = 1;
7193 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7194 wc->level = level;
7195 wc->shared_level = -1;
7196 wc->stage = DROP_REFERENCE;
7197 wc->update_ref = 0;
7198 wc->keep_locks = 1;
7199 wc->for_reloc = 1;
7200 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7201
7202 while (1) {
7203 wret = walk_down_tree(trans, root, path, wc);
7204 if (wret < 0) {
7205 ret = wret;
7206 break;
7207 }
7208
7209 wret = walk_up_tree(trans, root, path, wc, parent_level);
7210 if (wret < 0)
7211 ret = wret;
7212 if (wret != 0)
7213 break;
7214 }
7215
7216 kfree(wc);
7217 btrfs_free_path(path);
7218 return ret;
7219 }
7220
7221 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7222 {
7223 u64 num_devices;
7224 u64 stripped;
7225
7226 /*
7227 * if restripe for this chunk_type is on pick target profile and
7228 * return, otherwise do the usual balance
7229 */
7230 stripped = get_restripe_target(root->fs_info, flags);
7231 if (stripped)
7232 return extended_to_chunk(stripped);
7233
7234 /*
7235 * we add in the count of missing devices because we want
7236 * to make sure that any RAID levels on a degraded FS
7237 * continue to be honored.
7238 */
7239 num_devices = root->fs_info->fs_devices->rw_devices +
7240 root->fs_info->fs_devices->missing_devices;
7241
7242 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7243 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7244
7245 if (num_devices == 1) {
7246 stripped |= BTRFS_BLOCK_GROUP_DUP;
7247 stripped = flags & ~stripped;
7248
7249 /* turn raid0 into single device chunks */
7250 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7251 return stripped;
7252
7253 /* turn mirroring into duplication */
7254 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7255 BTRFS_BLOCK_GROUP_RAID10))
7256 return stripped | BTRFS_BLOCK_GROUP_DUP;
7257 } else {
7258 /* they already had raid on here, just return */
7259 if (flags & stripped)
7260 return flags;
7261
7262 stripped |= BTRFS_BLOCK_GROUP_DUP;
7263 stripped = flags & ~stripped;
7264
7265 /* switch duplicated blocks with raid1 */
7266 if (flags & BTRFS_BLOCK_GROUP_DUP)
7267 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7268
7269 /* this is drive concat, leave it alone */
7270 }
7271
7272 return flags;
7273 }
7274
7275 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7276 {
7277 struct btrfs_space_info *sinfo = cache->space_info;
7278 u64 num_bytes;
7279 u64 min_allocable_bytes;
7280 int ret = -ENOSPC;
7281
7282
7283 /*
7284 * We need some metadata space and system metadata space for
7285 * allocating chunks in some corner cases until we force to set
7286 * it to be readonly.
7287 */
7288 if ((sinfo->flags &
7289 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7290 !force)
7291 min_allocable_bytes = 1 * 1024 * 1024;
7292 else
7293 min_allocable_bytes = 0;
7294
7295 spin_lock(&sinfo->lock);
7296 spin_lock(&cache->lock);
7297
7298 if (cache->ro) {
7299 ret = 0;
7300 goto out;
7301 }
7302
7303 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7304 cache->bytes_super - btrfs_block_group_used(&cache->item);
7305
7306 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7307 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7308 min_allocable_bytes <= sinfo->total_bytes) {
7309 sinfo->bytes_readonly += num_bytes;
7310 cache->ro = 1;
7311 ret = 0;
7312 }
7313 out:
7314 spin_unlock(&cache->lock);
7315 spin_unlock(&sinfo->lock);
7316 return ret;
7317 }
7318
7319 int btrfs_set_block_group_ro(struct btrfs_root *root,
7320 struct btrfs_block_group_cache *cache)
7321
7322 {
7323 struct btrfs_trans_handle *trans;
7324 u64 alloc_flags;
7325 int ret;
7326
7327 BUG_ON(cache->ro);
7328
7329 trans = btrfs_join_transaction(root);
7330 if (IS_ERR(trans))
7331 return PTR_ERR(trans);
7332
7333 alloc_flags = update_block_group_flags(root, cache->flags);
7334 if (alloc_flags != cache->flags) {
7335 ret = do_chunk_alloc(trans, root, alloc_flags,
7336 CHUNK_ALLOC_FORCE);
7337 if (ret < 0)
7338 goto out;
7339 }
7340
7341 ret = set_block_group_ro(cache, 0);
7342 if (!ret)
7343 goto out;
7344 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7345 ret = do_chunk_alloc(trans, root, alloc_flags,
7346 CHUNK_ALLOC_FORCE);
7347 if (ret < 0)
7348 goto out;
7349 ret = set_block_group_ro(cache, 0);
7350 out:
7351 btrfs_end_transaction(trans, root);
7352 return ret;
7353 }
7354
7355 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7356 struct btrfs_root *root, u64 type)
7357 {
7358 u64 alloc_flags = get_alloc_profile(root, type);
7359 return do_chunk_alloc(trans, root, alloc_flags,
7360 CHUNK_ALLOC_FORCE);
7361 }
7362
7363 /*
7364 * helper to account the unused space of all the readonly block group in the
7365 * list. takes mirrors into account.
7366 */
7367 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7368 {
7369 struct btrfs_block_group_cache *block_group;
7370 u64 free_bytes = 0;
7371 int factor;
7372
7373 list_for_each_entry(block_group, groups_list, list) {
7374 spin_lock(&block_group->lock);
7375
7376 if (!block_group->ro) {
7377 spin_unlock(&block_group->lock);
7378 continue;
7379 }
7380
7381 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7382 BTRFS_BLOCK_GROUP_RAID10 |
7383 BTRFS_BLOCK_GROUP_DUP))
7384 factor = 2;
7385 else
7386 factor = 1;
7387
7388 free_bytes += (block_group->key.offset -
7389 btrfs_block_group_used(&block_group->item)) *
7390 factor;
7391
7392 spin_unlock(&block_group->lock);
7393 }
7394
7395 return free_bytes;
7396 }
7397
7398 /*
7399 * helper to account the unused space of all the readonly block group in the
7400 * space_info. takes mirrors into account.
7401 */
7402 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7403 {
7404 int i;
7405 u64 free_bytes = 0;
7406
7407 spin_lock(&sinfo->lock);
7408
7409 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7410 if (!list_empty(&sinfo->block_groups[i]))
7411 free_bytes += __btrfs_get_ro_block_group_free_space(
7412 &sinfo->block_groups[i]);
7413
7414 spin_unlock(&sinfo->lock);
7415
7416 return free_bytes;
7417 }
7418
7419 void btrfs_set_block_group_rw(struct btrfs_root *root,
7420 struct btrfs_block_group_cache *cache)
7421 {
7422 struct btrfs_space_info *sinfo = cache->space_info;
7423 u64 num_bytes;
7424
7425 BUG_ON(!cache->ro);
7426
7427 spin_lock(&sinfo->lock);
7428 spin_lock(&cache->lock);
7429 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7430 cache->bytes_super - btrfs_block_group_used(&cache->item);
7431 sinfo->bytes_readonly -= num_bytes;
7432 cache->ro = 0;
7433 spin_unlock(&cache->lock);
7434 spin_unlock(&sinfo->lock);
7435 }
7436
7437 /*
7438 * checks to see if its even possible to relocate this block group.
7439 *
7440 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7441 * ok to go ahead and try.
7442 */
7443 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7444 {
7445 struct btrfs_block_group_cache *block_group;
7446 struct btrfs_space_info *space_info;
7447 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7448 struct btrfs_device *device;
7449 u64 min_free;
7450 u64 dev_min = 1;
7451 u64 dev_nr = 0;
7452 u64 target;
7453 int index;
7454 int full = 0;
7455 int ret = 0;
7456
7457 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7458
7459 /* odd, couldn't find the block group, leave it alone */
7460 if (!block_group)
7461 return -1;
7462
7463 min_free = btrfs_block_group_used(&block_group->item);
7464
7465 /* no bytes used, we're good */
7466 if (!min_free)
7467 goto out;
7468
7469 space_info = block_group->space_info;
7470 spin_lock(&space_info->lock);
7471
7472 full = space_info->full;
7473
7474 /*
7475 * if this is the last block group we have in this space, we can't
7476 * relocate it unless we're able to allocate a new chunk below.
7477 *
7478 * Otherwise, we need to make sure we have room in the space to handle
7479 * all of the extents from this block group. If we can, we're good
7480 */
7481 if ((space_info->total_bytes != block_group->key.offset) &&
7482 (space_info->bytes_used + space_info->bytes_reserved +
7483 space_info->bytes_pinned + space_info->bytes_readonly +
7484 min_free < space_info->total_bytes)) {
7485 spin_unlock(&space_info->lock);
7486 goto out;
7487 }
7488 spin_unlock(&space_info->lock);
7489
7490 /*
7491 * ok we don't have enough space, but maybe we have free space on our
7492 * devices to allocate new chunks for relocation, so loop through our
7493 * alloc devices and guess if we have enough space. if this block
7494 * group is going to be restriped, run checks against the target
7495 * profile instead of the current one.
7496 */
7497 ret = -1;
7498
7499 /*
7500 * index:
7501 * 0: raid10
7502 * 1: raid1
7503 * 2: dup
7504 * 3: raid0
7505 * 4: single
7506 */
7507 target = get_restripe_target(root->fs_info, block_group->flags);
7508 if (target) {
7509 index = __get_raid_index(extended_to_chunk(target));
7510 } else {
7511 /*
7512 * this is just a balance, so if we were marked as full
7513 * we know there is no space for a new chunk
7514 */
7515 if (full)
7516 goto out;
7517
7518 index = get_block_group_index(block_group);
7519 }
7520
7521 if (index == 0) {
7522 dev_min = 4;
7523 /* Divide by 2 */
7524 min_free >>= 1;
7525 } else if (index == 1) {
7526 dev_min = 2;
7527 } else if (index == 2) {
7528 /* Multiply by 2 */
7529 min_free <<= 1;
7530 } else if (index == 3) {
7531 dev_min = fs_devices->rw_devices;
7532 do_div(min_free, dev_min);
7533 }
7534
7535 mutex_lock(&root->fs_info->chunk_mutex);
7536 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7537 u64 dev_offset;
7538
7539 /*
7540 * check to make sure we can actually find a chunk with enough
7541 * space to fit our block group in.
7542 */
7543 if (device->total_bytes > device->bytes_used + min_free &&
7544 !device->is_tgtdev_for_dev_replace) {
7545 ret = find_free_dev_extent(device, min_free,
7546 &dev_offset, NULL);
7547 if (!ret)
7548 dev_nr++;
7549
7550 if (dev_nr >= dev_min)
7551 break;
7552
7553 ret = -1;
7554 }
7555 }
7556 mutex_unlock(&root->fs_info->chunk_mutex);
7557 out:
7558 btrfs_put_block_group(block_group);
7559 return ret;
7560 }
7561
7562 static int find_first_block_group(struct btrfs_root *root,
7563 struct btrfs_path *path, struct btrfs_key *key)
7564 {
7565 int ret = 0;
7566 struct btrfs_key found_key;
7567 struct extent_buffer *leaf;
7568 int slot;
7569
7570 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7571 if (ret < 0)
7572 goto out;
7573
7574 while (1) {
7575 slot = path->slots[0];
7576 leaf = path->nodes[0];
7577 if (slot >= btrfs_header_nritems(leaf)) {
7578 ret = btrfs_next_leaf(root, path);
7579 if (ret == 0)
7580 continue;
7581 if (ret < 0)
7582 goto out;
7583 break;
7584 }
7585 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7586
7587 if (found_key.objectid >= key->objectid &&
7588 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7589 ret = 0;
7590 goto out;
7591 }
7592 path->slots[0]++;
7593 }
7594 out:
7595 return ret;
7596 }
7597
7598 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7599 {
7600 struct btrfs_block_group_cache *block_group;
7601 u64 last = 0;
7602
7603 while (1) {
7604 struct inode *inode;
7605
7606 block_group = btrfs_lookup_first_block_group(info, last);
7607 while (block_group) {
7608 spin_lock(&block_group->lock);
7609 if (block_group->iref)
7610 break;
7611 spin_unlock(&block_group->lock);
7612 block_group = next_block_group(info->tree_root,
7613 block_group);
7614 }
7615 if (!block_group) {
7616 if (last == 0)
7617 break;
7618 last = 0;
7619 continue;
7620 }
7621
7622 inode = block_group->inode;
7623 block_group->iref = 0;
7624 block_group->inode = NULL;
7625 spin_unlock(&block_group->lock);
7626 iput(inode);
7627 last = block_group->key.objectid + block_group->key.offset;
7628 btrfs_put_block_group(block_group);
7629 }
7630 }
7631
7632 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7633 {
7634 struct btrfs_block_group_cache *block_group;
7635 struct btrfs_space_info *space_info;
7636 struct btrfs_caching_control *caching_ctl;
7637 struct rb_node *n;
7638
7639 down_write(&info->extent_commit_sem);
7640 while (!list_empty(&info->caching_block_groups)) {
7641 caching_ctl = list_entry(info->caching_block_groups.next,
7642 struct btrfs_caching_control, list);
7643 list_del(&caching_ctl->list);
7644 put_caching_control(caching_ctl);
7645 }
7646 up_write(&info->extent_commit_sem);
7647
7648 spin_lock(&info->block_group_cache_lock);
7649 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7650 block_group = rb_entry(n, struct btrfs_block_group_cache,
7651 cache_node);
7652 rb_erase(&block_group->cache_node,
7653 &info->block_group_cache_tree);
7654 spin_unlock(&info->block_group_cache_lock);
7655
7656 down_write(&block_group->space_info->groups_sem);
7657 list_del(&block_group->list);
7658 up_write(&block_group->space_info->groups_sem);
7659
7660 if (block_group->cached == BTRFS_CACHE_STARTED)
7661 wait_block_group_cache_done(block_group);
7662
7663 /*
7664 * We haven't cached this block group, which means we could
7665 * possibly have excluded extents on this block group.
7666 */
7667 if (block_group->cached == BTRFS_CACHE_NO)
7668 free_excluded_extents(info->extent_root, block_group);
7669
7670 btrfs_remove_free_space_cache(block_group);
7671 btrfs_put_block_group(block_group);
7672
7673 spin_lock(&info->block_group_cache_lock);
7674 }
7675 spin_unlock(&info->block_group_cache_lock);
7676
7677 /* now that all the block groups are freed, go through and
7678 * free all the space_info structs. This is only called during
7679 * the final stages of unmount, and so we know nobody is
7680 * using them. We call synchronize_rcu() once before we start,
7681 * just to be on the safe side.
7682 */
7683 synchronize_rcu();
7684
7685 release_global_block_rsv(info);
7686
7687 while(!list_empty(&info->space_info)) {
7688 space_info = list_entry(info->space_info.next,
7689 struct btrfs_space_info,
7690 list);
7691 if (space_info->bytes_pinned > 0 ||
7692 space_info->bytes_reserved > 0 ||
7693 space_info->bytes_may_use > 0) {
7694 WARN_ON(1);
7695 dump_space_info(space_info, 0, 0);
7696 }
7697 list_del(&space_info->list);
7698 kfree(space_info);
7699 }
7700 return 0;
7701 }
7702
7703 static void __link_block_group(struct btrfs_space_info *space_info,
7704 struct btrfs_block_group_cache *cache)
7705 {
7706 int index = get_block_group_index(cache);
7707
7708 down_write(&space_info->groups_sem);
7709 list_add_tail(&cache->list, &space_info->block_groups[index]);
7710 up_write(&space_info->groups_sem);
7711 }
7712
7713 int btrfs_read_block_groups(struct btrfs_root *root)
7714 {
7715 struct btrfs_path *path;
7716 int ret;
7717 struct btrfs_block_group_cache *cache;
7718 struct btrfs_fs_info *info = root->fs_info;
7719 struct btrfs_space_info *space_info;
7720 struct btrfs_key key;
7721 struct btrfs_key found_key;
7722 struct extent_buffer *leaf;
7723 int need_clear = 0;
7724 u64 cache_gen;
7725
7726 root = info->extent_root;
7727 key.objectid = 0;
7728 key.offset = 0;
7729 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7730 path = btrfs_alloc_path();
7731 if (!path)
7732 return -ENOMEM;
7733 path->reada = 1;
7734
7735 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7736 if (btrfs_test_opt(root, SPACE_CACHE) &&
7737 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7738 need_clear = 1;
7739 if (btrfs_test_opt(root, CLEAR_CACHE))
7740 need_clear = 1;
7741
7742 while (1) {
7743 ret = find_first_block_group(root, path, &key);
7744 if (ret > 0)
7745 break;
7746 if (ret != 0)
7747 goto error;
7748 leaf = path->nodes[0];
7749 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7750 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7751 if (!cache) {
7752 ret = -ENOMEM;
7753 goto error;
7754 }
7755 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7756 GFP_NOFS);
7757 if (!cache->free_space_ctl) {
7758 kfree(cache);
7759 ret = -ENOMEM;
7760 goto error;
7761 }
7762
7763 atomic_set(&cache->count, 1);
7764 spin_lock_init(&cache->lock);
7765 cache->fs_info = info;
7766 INIT_LIST_HEAD(&cache->list);
7767 INIT_LIST_HEAD(&cache->cluster_list);
7768
7769 if (need_clear) {
7770 /*
7771 * When we mount with old space cache, we need to
7772 * set BTRFS_DC_CLEAR and set dirty flag.
7773 *
7774 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7775 * truncate the old free space cache inode and
7776 * setup a new one.
7777 * b) Setting 'dirty flag' makes sure that we flush
7778 * the new space cache info onto disk.
7779 */
7780 cache->disk_cache_state = BTRFS_DC_CLEAR;
7781 if (btrfs_test_opt(root, SPACE_CACHE))
7782 cache->dirty = 1;
7783 }
7784
7785 read_extent_buffer(leaf, &cache->item,
7786 btrfs_item_ptr_offset(leaf, path->slots[0]),
7787 sizeof(cache->item));
7788 memcpy(&cache->key, &found_key, sizeof(found_key));
7789
7790 key.objectid = found_key.objectid + found_key.offset;
7791 btrfs_release_path(path);
7792 cache->flags = btrfs_block_group_flags(&cache->item);
7793 cache->sectorsize = root->sectorsize;
7794
7795 btrfs_init_free_space_ctl(cache);
7796
7797 /*
7798 * We need to exclude the super stripes now so that the space
7799 * info has super bytes accounted for, otherwise we'll think
7800 * we have more space than we actually do.
7801 */
7802 exclude_super_stripes(root, cache);
7803
7804 /*
7805 * check for two cases, either we are full, and therefore
7806 * don't need to bother with the caching work since we won't
7807 * find any space, or we are empty, and we can just add all
7808 * the space in and be done with it. This saves us _alot_ of
7809 * time, particularly in the full case.
7810 */
7811 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7812 cache->last_byte_to_unpin = (u64)-1;
7813 cache->cached = BTRFS_CACHE_FINISHED;
7814 free_excluded_extents(root, cache);
7815 } else if (btrfs_block_group_used(&cache->item) == 0) {
7816 cache->last_byte_to_unpin = (u64)-1;
7817 cache->cached = BTRFS_CACHE_FINISHED;
7818 add_new_free_space(cache, root->fs_info,
7819 found_key.objectid,
7820 found_key.objectid +
7821 found_key.offset);
7822 free_excluded_extents(root, cache);
7823 }
7824
7825 ret = update_space_info(info, cache->flags, found_key.offset,
7826 btrfs_block_group_used(&cache->item),
7827 &space_info);
7828 BUG_ON(ret); /* -ENOMEM */
7829 cache->space_info = space_info;
7830 spin_lock(&cache->space_info->lock);
7831 cache->space_info->bytes_readonly += cache->bytes_super;
7832 spin_unlock(&cache->space_info->lock);
7833
7834 __link_block_group(space_info, cache);
7835
7836 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7837 BUG_ON(ret); /* Logic error */
7838
7839 set_avail_alloc_bits(root->fs_info, cache->flags);
7840 if (btrfs_chunk_readonly(root, cache->key.objectid))
7841 set_block_group_ro(cache, 1);
7842 }
7843
7844 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7845 if (!(get_alloc_profile(root, space_info->flags) &
7846 (BTRFS_BLOCK_GROUP_RAID10 |
7847 BTRFS_BLOCK_GROUP_RAID1 |
7848 BTRFS_BLOCK_GROUP_DUP)))
7849 continue;
7850 /*
7851 * avoid allocating from un-mirrored block group if there are
7852 * mirrored block groups.
7853 */
7854 list_for_each_entry(cache, &space_info->block_groups[3], list)
7855 set_block_group_ro(cache, 1);
7856 list_for_each_entry(cache, &space_info->block_groups[4], list)
7857 set_block_group_ro(cache, 1);
7858 }
7859
7860 init_global_block_rsv(info);
7861 ret = 0;
7862 error:
7863 btrfs_free_path(path);
7864 return ret;
7865 }
7866
7867 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7868 struct btrfs_root *root)
7869 {
7870 struct btrfs_block_group_cache *block_group, *tmp;
7871 struct btrfs_root *extent_root = root->fs_info->extent_root;
7872 struct btrfs_block_group_item item;
7873 struct btrfs_key key;
7874 int ret = 0;
7875
7876 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
7877 new_bg_list) {
7878 list_del_init(&block_group->new_bg_list);
7879
7880 if (ret)
7881 continue;
7882
7883 spin_lock(&block_group->lock);
7884 memcpy(&item, &block_group->item, sizeof(item));
7885 memcpy(&key, &block_group->key, sizeof(key));
7886 spin_unlock(&block_group->lock);
7887
7888 ret = btrfs_insert_item(trans, extent_root, &key, &item,
7889 sizeof(item));
7890 if (ret)
7891 btrfs_abort_transaction(trans, extent_root, ret);
7892 }
7893 }
7894
7895 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7896 struct btrfs_root *root, u64 bytes_used,
7897 u64 type, u64 chunk_objectid, u64 chunk_offset,
7898 u64 size)
7899 {
7900 int ret;
7901 struct btrfs_root *extent_root;
7902 struct btrfs_block_group_cache *cache;
7903
7904 extent_root = root->fs_info->extent_root;
7905
7906 root->fs_info->last_trans_log_full_commit = trans->transid;
7907
7908 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7909 if (!cache)
7910 return -ENOMEM;
7911 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7912 GFP_NOFS);
7913 if (!cache->free_space_ctl) {
7914 kfree(cache);
7915 return -ENOMEM;
7916 }
7917
7918 cache->key.objectid = chunk_offset;
7919 cache->key.offset = size;
7920 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7921 cache->sectorsize = root->sectorsize;
7922 cache->fs_info = root->fs_info;
7923
7924 atomic_set(&cache->count, 1);
7925 spin_lock_init(&cache->lock);
7926 INIT_LIST_HEAD(&cache->list);
7927 INIT_LIST_HEAD(&cache->cluster_list);
7928 INIT_LIST_HEAD(&cache->new_bg_list);
7929
7930 btrfs_init_free_space_ctl(cache);
7931
7932 btrfs_set_block_group_used(&cache->item, bytes_used);
7933 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7934 cache->flags = type;
7935 btrfs_set_block_group_flags(&cache->item, type);
7936
7937 cache->last_byte_to_unpin = (u64)-1;
7938 cache->cached = BTRFS_CACHE_FINISHED;
7939 exclude_super_stripes(root, cache);
7940
7941 add_new_free_space(cache, root->fs_info, chunk_offset,
7942 chunk_offset + size);
7943
7944 free_excluded_extents(root, cache);
7945
7946 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7947 &cache->space_info);
7948 BUG_ON(ret); /* -ENOMEM */
7949 update_global_block_rsv(root->fs_info);
7950
7951 spin_lock(&cache->space_info->lock);
7952 cache->space_info->bytes_readonly += cache->bytes_super;
7953 spin_unlock(&cache->space_info->lock);
7954
7955 __link_block_group(cache->space_info, cache);
7956
7957 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7958 BUG_ON(ret); /* Logic error */
7959
7960 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
7961
7962 set_avail_alloc_bits(extent_root->fs_info, type);
7963
7964 return 0;
7965 }
7966
7967 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7968 {
7969 u64 extra_flags = chunk_to_extended(flags) &
7970 BTRFS_EXTENDED_PROFILE_MASK;
7971
7972 if (flags & BTRFS_BLOCK_GROUP_DATA)
7973 fs_info->avail_data_alloc_bits &= ~extra_flags;
7974 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7975 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7976 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7977 fs_info->avail_system_alloc_bits &= ~extra_flags;
7978 }
7979
7980 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7981 struct btrfs_root *root, u64 group_start)
7982 {
7983 struct btrfs_path *path;
7984 struct btrfs_block_group_cache *block_group;
7985 struct btrfs_free_cluster *cluster;
7986 struct btrfs_root *tree_root = root->fs_info->tree_root;
7987 struct btrfs_key key;
7988 struct inode *inode;
7989 int ret;
7990 int index;
7991 int factor;
7992
7993 root = root->fs_info->extent_root;
7994
7995 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7996 BUG_ON(!block_group);
7997 BUG_ON(!block_group->ro);
7998
7999 /*
8000 * Free the reserved super bytes from this block group before
8001 * remove it.
8002 */
8003 free_excluded_extents(root, block_group);
8004
8005 memcpy(&key, &block_group->key, sizeof(key));
8006 index = get_block_group_index(block_group);
8007 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8008 BTRFS_BLOCK_GROUP_RAID1 |
8009 BTRFS_BLOCK_GROUP_RAID10))
8010 factor = 2;
8011 else
8012 factor = 1;
8013
8014 /* make sure this block group isn't part of an allocation cluster */
8015 cluster = &root->fs_info->data_alloc_cluster;
8016 spin_lock(&cluster->refill_lock);
8017 btrfs_return_cluster_to_free_space(block_group, cluster);
8018 spin_unlock(&cluster->refill_lock);
8019
8020 /*
8021 * make sure this block group isn't part of a metadata
8022 * allocation cluster
8023 */
8024 cluster = &root->fs_info->meta_alloc_cluster;
8025 spin_lock(&cluster->refill_lock);
8026 btrfs_return_cluster_to_free_space(block_group, cluster);
8027 spin_unlock(&cluster->refill_lock);
8028
8029 path = btrfs_alloc_path();
8030 if (!path) {
8031 ret = -ENOMEM;
8032 goto out;
8033 }
8034
8035 inode = lookup_free_space_inode(tree_root, block_group, path);
8036 if (!IS_ERR(inode)) {
8037 ret = btrfs_orphan_add(trans, inode);
8038 if (ret) {
8039 btrfs_add_delayed_iput(inode);
8040 goto out;
8041 }
8042 clear_nlink(inode);
8043 /* One for the block groups ref */
8044 spin_lock(&block_group->lock);
8045 if (block_group->iref) {
8046 block_group->iref = 0;
8047 block_group->inode = NULL;
8048 spin_unlock(&block_group->lock);
8049 iput(inode);
8050 } else {
8051 spin_unlock(&block_group->lock);
8052 }
8053 /* One for our lookup ref */
8054 btrfs_add_delayed_iput(inode);
8055 }
8056
8057 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8058 key.offset = block_group->key.objectid;
8059 key.type = 0;
8060
8061 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8062 if (ret < 0)
8063 goto out;
8064 if (ret > 0)
8065 btrfs_release_path(path);
8066 if (ret == 0) {
8067 ret = btrfs_del_item(trans, tree_root, path);
8068 if (ret)
8069 goto out;
8070 btrfs_release_path(path);
8071 }
8072
8073 spin_lock(&root->fs_info->block_group_cache_lock);
8074 rb_erase(&block_group->cache_node,
8075 &root->fs_info->block_group_cache_tree);
8076
8077 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8078 root->fs_info->first_logical_byte = (u64)-1;
8079 spin_unlock(&root->fs_info->block_group_cache_lock);
8080
8081 down_write(&block_group->space_info->groups_sem);
8082 /*
8083 * we must use list_del_init so people can check to see if they
8084 * are still on the list after taking the semaphore
8085 */
8086 list_del_init(&block_group->list);
8087 if (list_empty(&block_group->space_info->block_groups[index]))
8088 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8089 up_write(&block_group->space_info->groups_sem);
8090
8091 if (block_group->cached == BTRFS_CACHE_STARTED)
8092 wait_block_group_cache_done(block_group);
8093
8094 btrfs_remove_free_space_cache(block_group);
8095
8096 spin_lock(&block_group->space_info->lock);
8097 block_group->space_info->total_bytes -= block_group->key.offset;
8098 block_group->space_info->bytes_readonly -= block_group->key.offset;
8099 block_group->space_info->disk_total -= block_group->key.offset * factor;
8100 spin_unlock(&block_group->space_info->lock);
8101
8102 memcpy(&key, &block_group->key, sizeof(key));
8103
8104 btrfs_clear_space_info_full(root->fs_info);
8105
8106 btrfs_put_block_group(block_group);
8107 btrfs_put_block_group(block_group);
8108
8109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8110 if (ret > 0)
8111 ret = -EIO;
8112 if (ret < 0)
8113 goto out;
8114
8115 ret = btrfs_del_item(trans, root, path);
8116 out:
8117 btrfs_free_path(path);
8118 return ret;
8119 }
8120
8121 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8122 {
8123 struct btrfs_space_info *space_info;
8124 struct btrfs_super_block *disk_super;
8125 u64 features;
8126 u64 flags;
8127 int mixed = 0;
8128 int ret;
8129
8130 disk_super = fs_info->super_copy;
8131 if (!btrfs_super_root(disk_super))
8132 return 1;
8133
8134 features = btrfs_super_incompat_flags(disk_super);
8135 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8136 mixed = 1;
8137
8138 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8139 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8140 if (ret)
8141 goto out;
8142
8143 if (mixed) {
8144 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8145 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8146 } else {
8147 flags = BTRFS_BLOCK_GROUP_METADATA;
8148 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8149 if (ret)
8150 goto out;
8151
8152 flags = BTRFS_BLOCK_GROUP_DATA;
8153 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8154 }
8155 out:
8156 return ret;
8157 }
8158
8159 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8160 {
8161 return unpin_extent_range(root, start, end);
8162 }
8163
8164 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8165 u64 num_bytes, u64 *actual_bytes)
8166 {
8167 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8168 }
8169
8170 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8171 {
8172 struct btrfs_fs_info *fs_info = root->fs_info;
8173 struct btrfs_block_group_cache *cache = NULL;
8174 u64 group_trimmed;
8175 u64 start;
8176 u64 end;
8177 u64 trimmed = 0;
8178 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8179 int ret = 0;
8180
8181 /*
8182 * try to trim all FS space, our block group may start from non-zero.
8183 */
8184 if (range->len == total_bytes)
8185 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8186 else
8187 cache = btrfs_lookup_block_group(fs_info, range->start);
8188
8189 while (cache) {
8190 if (cache->key.objectid >= (range->start + range->len)) {
8191 btrfs_put_block_group(cache);
8192 break;
8193 }
8194
8195 start = max(range->start, cache->key.objectid);
8196 end = min(range->start + range->len,
8197 cache->key.objectid + cache->key.offset);
8198
8199 if (end - start >= range->minlen) {
8200 if (!block_group_cache_done(cache)) {
8201 ret = cache_block_group(cache, 0);
8202 if (!ret)
8203 wait_block_group_cache_done(cache);
8204 }
8205 ret = btrfs_trim_block_group(cache,
8206 &group_trimmed,
8207 start,
8208 end,
8209 range->minlen);
8210
8211 trimmed += group_trimmed;
8212 if (ret) {
8213 btrfs_put_block_group(cache);
8214 break;
8215 }
8216 }
8217
8218 cache = next_block_group(fs_info->tree_root, cache);
8219 }
8220
8221 range->len = trimmed;
8222 return ret;
8223 }