]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/extent-tree.c
btrfs: Remove fs_info from cleanup_ref_head
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48 enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
70 struct btrfs_fs_info *fs_info, u64 flags,
71 int force);
72 static int find_next_key(struct btrfs_path *path, int level,
73 struct btrfs_key *key);
74 static void dump_space_info(struct btrfs_fs_info *fs_info,
75 struct btrfs_space_info *info, u64 bytes,
76 int dump_block_groups);
77 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
78 u64 num_bytes);
79 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
80 struct btrfs_space_info *space_info,
81 u64 num_bytes);
82 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
83 struct btrfs_space_info *space_info,
84 u64 num_bytes);
85
86 static noinline int
87 block_group_cache_done(struct btrfs_block_group_cache *cache)
88 {
89 smp_mb();
90 return cache->cached == BTRFS_CACHE_FINISHED ||
91 cache->cached == BTRFS_CACHE_ERROR;
92 }
93
94 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
95 {
96 return (cache->flags & bits) == bits;
97 }
98
99 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
100 {
101 atomic_inc(&cache->count);
102 }
103
104 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
105 {
106 if (atomic_dec_and_test(&cache->count)) {
107 WARN_ON(cache->pinned > 0);
108 WARN_ON(cache->reserved > 0);
109
110 /*
111 * If not empty, someone is still holding mutex of
112 * full_stripe_lock, which can only be released by caller.
113 * And it will definitely cause use-after-free when caller
114 * tries to release full stripe lock.
115 *
116 * No better way to resolve, but only to warn.
117 */
118 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
119 kfree(cache->free_space_ctl);
120 kfree(cache);
121 }
122 }
123
124 /*
125 * this adds the block group to the fs_info rb tree for the block group
126 * cache
127 */
128 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
129 struct btrfs_block_group_cache *block_group)
130 {
131 struct rb_node **p;
132 struct rb_node *parent = NULL;
133 struct btrfs_block_group_cache *cache;
134
135 spin_lock(&info->block_group_cache_lock);
136 p = &info->block_group_cache_tree.rb_node;
137
138 while (*p) {
139 parent = *p;
140 cache = rb_entry(parent, struct btrfs_block_group_cache,
141 cache_node);
142 if (block_group->key.objectid < cache->key.objectid) {
143 p = &(*p)->rb_left;
144 } else if (block_group->key.objectid > cache->key.objectid) {
145 p = &(*p)->rb_right;
146 } else {
147 spin_unlock(&info->block_group_cache_lock);
148 return -EEXIST;
149 }
150 }
151
152 rb_link_node(&block_group->cache_node, parent, p);
153 rb_insert_color(&block_group->cache_node,
154 &info->block_group_cache_tree);
155
156 if (info->first_logical_byte > block_group->key.objectid)
157 info->first_logical_byte = block_group->key.objectid;
158
159 spin_unlock(&info->block_group_cache_lock);
160
161 return 0;
162 }
163
164 /*
165 * This will return the block group at or after bytenr if contains is 0, else
166 * it will return the block group that contains the bytenr
167 */
168 static struct btrfs_block_group_cache *
169 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
170 int contains)
171 {
172 struct btrfs_block_group_cache *cache, *ret = NULL;
173 struct rb_node *n;
174 u64 end, start;
175
176 spin_lock(&info->block_group_cache_lock);
177 n = info->block_group_cache_tree.rb_node;
178
179 while (n) {
180 cache = rb_entry(n, struct btrfs_block_group_cache,
181 cache_node);
182 end = cache->key.objectid + cache->key.offset - 1;
183 start = cache->key.objectid;
184
185 if (bytenr < start) {
186 if (!contains && (!ret || start < ret->key.objectid))
187 ret = cache;
188 n = n->rb_left;
189 } else if (bytenr > start) {
190 if (contains && bytenr <= end) {
191 ret = cache;
192 break;
193 }
194 n = n->rb_right;
195 } else {
196 ret = cache;
197 break;
198 }
199 }
200 if (ret) {
201 btrfs_get_block_group(ret);
202 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
203 info->first_logical_byte = ret->key.objectid;
204 }
205 spin_unlock(&info->block_group_cache_lock);
206
207 return ret;
208 }
209
210 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
211 u64 start, u64 num_bytes)
212 {
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE);
216 set_extent_bits(&fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE);
218 return 0;
219 }
220
221 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
222 struct btrfs_block_group_cache *cache)
223 {
224 u64 start, end;
225
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
228
229 clear_extent_bits(&fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE);
231 clear_extent_bits(&fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE);
233 }
234
235 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
236 struct btrfs_block_group_cache *cache)
237 {
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
242
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(fs_info, cache->key.objectid,
247 stripe_len);
248 if (ret)
249 return ret;
250 }
251
252 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
253 bytenr = btrfs_sb_offset(i);
254 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
255 bytenr, &logical, &nr, &stripe_len);
256 if (ret)
257 return ret;
258
259 while (nr--) {
260 u64 start, len;
261
262 if (logical[nr] > cache->key.objectid +
263 cache->key.offset)
264 continue;
265
266 if (logical[nr] + stripe_len <= cache->key.objectid)
267 continue;
268
269 start = logical[nr];
270 if (start < cache->key.objectid) {
271 start = cache->key.objectid;
272 len = (logical[nr] + stripe_len) - start;
273 } else {
274 len = min_t(u64, stripe_len,
275 cache->key.objectid +
276 cache->key.offset - start);
277 }
278
279 cache->bytes_super += len;
280 ret = add_excluded_extent(fs_info, start, len);
281 if (ret) {
282 kfree(logical);
283 return ret;
284 }
285 }
286
287 kfree(logical);
288 }
289 return 0;
290 }
291
292 static struct btrfs_caching_control *
293 get_caching_control(struct btrfs_block_group_cache *cache)
294 {
295 struct btrfs_caching_control *ctl;
296
297 spin_lock(&cache->lock);
298 if (!cache->caching_ctl) {
299 spin_unlock(&cache->lock);
300 return NULL;
301 }
302
303 ctl = cache->caching_ctl;
304 refcount_inc(&ctl->count);
305 spin_unlock(&cache->lock);
306 return ctl;
307 }
308
309 static void put_caching_control(struct btrfs_caching_control *ctl)
310 {
311 if (refcount_dec_and_test(&ctl->count))
312 kfree(ctl);
313 }
314
315 #ifdef CONFIG_BTRFS_DEBUG
316 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
317 {
318 struct btrfs_fs_info *fs_info = block_group->fs_info;
319 u64 start = block_group->key.objectid;
320 u64 len = block_group->key.offset;
321 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
322 fs_info->nodesize : fs_info->sectorsize;
323 u64 step = chunk << 1;
324
325 while (len > chunk) {
326 btrfs_remove_free_space(block_group, start, chunk);
327 start += step;
328 if (len < step)
329 len = 0;
330 else
331 len -= step;
332 }
333 }
334 #endif
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 u64 start, u64 end)
343 {
344 struct btrfs_fs_info *info = block_group->fs_info;
345 u64 extent_start, extent_end, size, total_added = 0;
346 int ret;
347
348 while (start < end) {
349 ret = find_first_extent_bit(info->pinned_extents, start,
350 &extent_start, &extent_end,
351 EXTENT_DIRTY | EXTENT_UPTODATE,
352 NULL);
353 if (ret)
354 break;
355
356 if (extent_start <= start) {
357 start = extent_end + 1;
358 } else if (extent_start > start && extent_start < end) {
359 size = extent_start - start;
360 total_added += size;
361 ret = btrfs_add_free_space(block_group, start,
362 size);
363 BUG_ON(ret); /* -ENOMEM or logic error */
364 start = extent_end + 1;
365 } else {
366 break;
367 }
368 }
369
370 if (start < end) {
371 size = end - start;
372 total_added += size;
373 ret = btrfs_add_free_space(block_group, start, size);
374 BUG_ON(ret); /* -ENOMEM or logic error */
375 }
376
377 return total_added;
378 }
379
380 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
381 {
382 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
383 struct btrfs_fs_info *fs_info = block_group->fs_info;
384 struct btrfs_root *extent_root = fs_info->extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret;
392 bool wakeup = true;
393
394 path = btrfs_alloc_path();
395 if (!path)
396 return -ENOMEM;
397
398 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
399
400 #ifdef CONFIG_BTRFS_DEBUG
401 /*
402 * If we're fragmenting we don't want to make anybody think we can
403 * allocate from this block group until we've had a chance to fragment
404 * the free space.
405 */
406 if (btrfs_should_fragment_free_space(block_group))
407 wakeup = false;
408 #endif
409 /*
410 * We don't want to deadlock with somebody trying to allocate a new
411 * extent for the extent root while also trying to search the extent
412 * root to add free space. So we skip locking and search the commit
413 * root, since its read-only
414 */
415 path->skip_locking = 1;
416 path->search_commit_root = 1;
417 path->reada = READA_FORWARD;
418
419 key.objectid = last;
420 key.offset = 0;
421 key.type = BTRFS_EXTENT_ITEM_KEY;
422
423 next:
424 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
425 if (ret < 0)
426 goto out;
427
428 leaf = path->nodes[0];
429 nritems = btrfs_header_nritems(leaf);
430
431 while (1) {
432 if (btrfs_fs_closing(fs_info) > 1) {
433 last = (u64)-1;
434 break;
435 }
436
437 if (path->slots[0] < nritems) {
438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 } else {
440 ret = find_next_key(path, 0, &key);
441 if (ret)
442 break;
443
444 if (need_resched() ||
445 rwsem_is_contended(&fs_info->commit_root_sem)) {
446 if (wakeup)
447 caching_ctl->progress = last;
448 btrfs_release_path(path);
449 up_read(&fs_info->commit_root_sem);
450 mutex_unlock(&caching_ctl->mutex);
451 cond_resched();
452 mutex_lock(&caching_ctl->mutex);
453 down_read(&fs_info->commit_root_sem);
454 goto next;
455 }
456
457 ret = btrfs_next_leaf(extent_root, path);
458 if (ret < 0)
459 goto out;
460 if (ret)
461 break;
462 leaf = path->nodes[0];
463 nritems = btrfs_header_nritems(leaf);
464 continue;
465 }
466
467 if (key.objectid < last) {
468 key.objectid = last;
469 key.offset = 0;
470 key.type = BTRFS_EXTENT_ITEM_KEY;
471
472 if (wakeup)
473 caching_ctl->progress = last;
474 btrfs_release_path(path);
475 goto next;
476 }
477
478 if (key.objectid < block_group->key.objectid) {
479 path->slots[0]++;
480 continue;
481 }
482
483 if (key.objectid >= block_group->key.objectid +
484 block_group->key.offset)
485 break;
486
487 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 key.type == BTRFS_METADATA_ITEM_KEY) {
489 total_found += add_new_free_space(block_group, last,
490 key.objectid);
491 if (key.type == BTRFS_METADATA_ITEM_KEY)
492 last = key.objectid +
493 fs_info->nodesize;
494 else
495 last = key.objectid + key.offset;
496
497 if (total_found > CACHING_CTL_WAKE_UP) {
498 total_found = 0;
499 if (wakeup)
500 wake_up(&caching_ctl->wait);
501 }
502 }
503 path->slots[0]++;
504 }
505 ret = 0;
506
507 total_found += add_new_free_space(block_group, last,
508 block_group->key.objectid +
509 block_group->key.offset);
510 caching_ctl->progress = (u64)-1;
511
512 out:
513 btrfs_free_path(path);
514 return ret;
515 }
516
517 static noinline void caching_thread(struct btrfs_work *work)
518 {
519 struct btrfs_block_group_cache *block_group;
520 struct btrfs_fs_info *fs_info;
521 struct btrfs_caching_control *caching_ctl;
522 int ret;
523
524 caching_ctl = container_of(work, struct btrfs_caching_control, work);
525 block_group = caching_ctl->block_group;
526 fs_info = block_group->fs_info;
527
528 mutex_lock(&caching_ctl->mutex);
529 down_read(&fs_info->commit_root_sem);
530
531 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
532 ret = load_free_space_tree(caching_ctl);
533 else
534 ret = load_extent_tree_free(caching_ctl);
535
536 spin_lock(&block_group->lock);
537 block_group->caching_ctl = NULL;
538 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
539 spin_unlock(&block_group->lock);
540
541 #ifdef CONFIG_BTRFS_DEBUG
542 if (btrfs_should_fragment_free_space(block_group)) {
543 u64 bytes_used;
544
545 spin_lock(&block_group->space_info->lock);
546 spin_lock(&block_group->lock);
547 bytes_used = block_group->key.offset -
548 btrfs_block_group_used(&block_group->item);
549 block_group->space_info->bytes_used += bytes_used >> 1;
550 spin_unlock(&block_group->lock);
551 spin_unlock(&block_group->space_info->lock);
552 fragment_free_space(block_group);
553 }
554 #endif
555
556 caching_ctl->progress = (u64)-1;
557
558 up_read(&fs_info->commit_root_sem);
559 free_excluded_extents(fs_info, block_group);
560 mutex_unlock(&caching_ctl->mutex);
561
562 wake_up(&caching_ctl->wait);
563
564 put_caching_control(caching_ctl);
565 btrfs_put_block_group(block_group);
566 }
567
568 static int cache_block_group(struct btrfs_block_group_cache *cache,
569 int load_cache_only)
570 {
571 DEFINE_WAIT(wait);
572 struct btrfs_fs_info *fs_info = cache->fs_info;
573 struct btrfs_caching_control *caching_ctl;
574 int ret = 0;
575
576 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
577 if (!caching_ctl)
578 return -ENOMEM;
579
580 INIT_LIST_HEAD(&caching_ctl->list);
581 mutex_init(&caching_ctl->mutex);
582 init_waitqueue_head(&caching_ctl->wait);
583 caching_ctl->block_group = cache;
584 caching_ctl->progress = cache->key.objectid;
585 refcount_set(&caching_ctl->count, 1);
586 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
587 caching_thread, NULL, NULL);
588
589 spin_lock(&cache->lock);
590 /*
591 * This should be a rare occasion, but this could happen I think in the
592 * case where one thread starts to load the space cache info, and then
593 * some other thread starts a transaction commit which tries to do an
594 * allocation while the other thread is still loading the space cache
595 * info. The previous loop should have kept us from choosing this block
596 * group, but if we've moved to the state where we will wait on caching
597 * block groups we need to first check if we're doing a fast load here,
598 * so we can wait for it to finish, otherwise we could end up allocating
599 * from a block group who's cache gets evicted for one reason or
600 * another.
601 */
602 while (cache->cached == BTRFS_CACHE_FAST) {
603 struct btrfs_caching_control *ctl;
604
605 ctl = cache->caching_ctl;
606 refcount_inc(&ctl->count);
607 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
608 spin_unlock(&cache->lock);
609
610 schedule();
611
612 finish_wait(&ctl->wait, &wait);
613 put_caching_control(ctl);
614 spin_lock(&cache->lock);
615 }
616
617 if (cache->cached != BTRFS_CACHE_NO) {
618 spin_unlock(&cache->lock);
619 kfree(caching_ctl);
620 return 0;
621 }
622 WARN_ON(cache->caching_ctl);
623 cache->caching_ctl = caching_ctl;
624 cache->cached = BTRFS_CACHE_FAST;
625 spin_unlock(&cache->lock);
626
627 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
628 mutex_lock(&caching_ctl->mutex);
629 ret = load_free_space_cache(fs_info, cache);
630
631 spin_lock(&cache->lock);
632 if (ret == 1) {
633 cache->caching_ctl = NULL;
634 cache->cached = BTRFS_CACHE_FINISHED;
635 cache->last_byte_to_unpin = (u64)-1;
636 caching_ctl->progress = (u64)-1;
637 } else {
638 if (load_cache_only) {
639 cache->caching_ctl = NULL;
640 cache->cached = BTRFS_CACHE_NO;
641 } else {
642 cache->cached = BTRFS_CACHE_STARTED;
643 cache->has_caching_ctl = 1;
644 }
645 }
646 spin_unlock(&cache->lock);
647 #ifdef CONFIG_BTRFS_DEBUG
648 if (ret == 1 &&
649 btrfs_should_fragment_free_space(cache)) {
650 u64 bytes_used;
651
652 spin_lock(&cache->space_info->lock);
653 spin_lock(&cache->lock);
654 bytes_used = cache->key.offset -
655 btrfs_block_group_used(&cache->item);
656 cache->space_info->bytes_used += bytes_used >> 1;
657 spin_unlock(&cache->lock);
658 spin_unlock(&cache->space_info->lock);
659 fragment_free_space(cache);
660 }
661 #endif
662 mutex_unlock(&caching_ctl->mutex);
663
664 wake_up(&caching_ctl->wait);
665 if (ret == 1) {
666 put_caching_control(caching_ctl);
667 free_excluded_extents(fs_info, cache);
668 return 0;
669 }
670 } else {
671 /*
672 * We're either using the free space tree or no caching at all.
673 * Set cached to the appropriate value and wakeup any waiters.
674 */
675 spin_lock(&cache->lock);
676 if (load_cache_only) {
677 cache->caching_ctl = NULL;
678 cache->cached = BTRFS_CACHE_NO;
679 } else {
680 cache->cached = BTRFS_CACHE_STARTED;
681 cache->has_caching_ctl = 1;
682 }
683 spin_unlock(&cache->lock);
684 wake_up(&caching_ctl->wait);
685 }
686
687 if (load_cache_only) {
688 put_caching_control(caching_ctl);
689 return 0;
690 }
691
692 down_write(&fs_info->commit_root_sem);
693 refcount_inc(&caching_ctl->count);
694 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
695 up_write(&fs_info->commit_root_sem);
696
697 btrfs_get_block_group(cache);
698
699 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
700
701 return ret;
702 }
703
704 /*
705 * return the block group that starts at or after bytenr
706 */
707 static struct btrfs_block_group_cache *
708 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
709 {
710 return block_group_cache_tree_search(info, bytenr, 0);
711 }
712
713 /*
714 * return the block group that contains the given bytenr
715 */
716 struct btrfs_block_group_cache *btrfs_lookup_block_group(
717 struct btrfs_fs_info *info,
718 u64 bytenr)
719 {
720 return block_group_cache_tree_search(info, bytenr, 1);
721 }
722
723 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
724 u64 flags)
725 {
726 struct list_head *head = &info->space_info;
727 struct btrfs_space_info *found;
728
729 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
730
731 rcu_read_lock();
732 list_for_each_entry_rcu(found, head, list) {
733 if (found->flags & flags) {
734 rcu_read_unlock();
735 return found;
736 }
737 }
738 rcu_read_unlock();
739 return NULL;
740 }
741
742 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
743 bool metadata, u64 root_objectid)
744 {
745 struct btrfs_space_info *space_info;
746 u64 flags;
747
748 if (metadata) {
749 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
750 flags = BTRFS_BLOCK_GROUP_SYSTEM;
751 else
752 flags = BTRFS_BLOCK_GROUP_METADATA;
753 } else {
754 flags = BTRFS_BLOCK_GROUP_DATA;
755 }
756
757 space_info = __find_space_info(fs_info, flags);
758 ASSERT(space_info);
759 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
760 }
761
762 /*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775 }
776
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 if (ret < 0)
848 goto out_free;
849
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
858 ret = 0;
859 }
860 }
861
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
871 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
872 struct btrfs_extent_item_v0 *ei0;
873 BUG_ON(item_size != sizeof(*ei0));
874 ei0 = btrfs_item_ptr(leaf, path->slots[0],
875 struct btrfs_extent_item_v0);
876 num_refs = btrfs_extent_refs_v0(leaf, ei0);
877 /* FIXME: this isn't correct for data */
878 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879 #else
880 BUG();
881 #endif
882 }
883 BUG_ON(num_refs == 0);
884 } else {
885 num_refs = 0;
886 extent_flags = 0;
887 ret = 0;
888 }
889
890 if (!trans)
891 goto out;
892
893 delayed_refs = &trans->transaction->delayed_refs;
894 spin_lock(&delayed_refs->lock);
895 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
896 if (head) {
897 if (!mutex_trylock(&head->mutex)) {
898 refcount_inc(&head->refs);
899 spin_unlock(&delayed_refs->lock);
900
901 btrfs_release_path(path);
902
903 /*
904 * Mutex was contended, block until it's released and try
905 * again
906 */
907 mutex_lock(&head->mutex);
908 mutex_unlock(&head->mutex);
909 btrfs_put_delayed_ref_head(head);
910 goto search_again;
911 }
912 spin_lock(&head->lock);
913 if (head->extent_op && head->extent_op->update_flags)
914 extent_flags |= head->extent_op->flags_to_set;
915 else
916 BUG_ON(num_refs == 0);
917
918 num_refs += head->ref_mod;
919 spin_unlock(&head->lock);
920 mutex_unlock(&head->mutex);
921 }
922 spin_unlock(&delayed_refs->lock);
923 out:
924 WARN_ON(num_refs == 0);
925 if (refs)
926 *refs = num_refs;
927 if (flags)
928 *flags = extent_flags;
929 out_free:
930 btrfs_free_path(path);
931 return ret;
932 }
933
934 /*
935 * Back reference rules. Back refs have three main goals:
936 *
937 * 1) differentiate between all holders of references to an extent so that
938 * when a reference is dropped we can make sure it was a valid reference
939 * before freeing the extent.
940 *
941 * 2) Provide enough information to quickly find the holders of an extent
942 * if we notice a given block is corrupted or bad.
943 *
944 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
945 * maintenance. This is actually the same as #2, but with a slightly
946 * different use case.
947 *
948 * There are two kinds of back refs. The implicit back refs is optimized
949 * for pointers in non-shared tree blocks. For a given pointer in a block,
950 * back refs of this kind provide information about the block's owner tree
951 * and the pointer's key. These information allow us to find the block by
952 * b-tree searching. The full back refs is for pointers in tree blocks not
953 * referenced by their owner trees. The location of tree block is recorded
954 * in the back refs. Actually the full back refs is generic, and can be
955 * used in all cases the implicit back refs is used. The major shortcoming
956 * of the full back refs is its overhead. Every time a tree block gets
957 * COWed, we have to update back refs entry for all pointers in it.
958 *
959 * For a newly allocated tree block, we use implicit back refs for
960 * pointers in it. This means most tree related operations only involve
961 * implicit back refs. For a tree block created in old transaction, the
962 * only way to drop a reference to it is COW it. So we can detect the
963 * event that tree block loses its owner tree's reference and do the
964 * back refs conversion.
965 *
966 * When a tree block is COWed through a tree, there are four cases:
967 *
968 * The reference count of the block is one and the tree is the block's
969 * owner tree. Nothing to do in this case.
970 *
971 * The reference count of the block is one and the tree is not the
972 * block's owner tree. In this case, full back refs is used for pointers
973 * in the block. Remove these full back refs, add implicit back refs for
974 * every pointers in the new block.
975 *
976 * The reference count of the block is greater than one and the tree is
977 * the block's owner tree. In this case, implicit back refs is used for
978 * pointers in the block. Add full back refs for every pointers in the
979 * block, increase lower level extents' reference counts. The original
980 * implicit back refs are entailed to the new block.
981 *
982 * The reference count of the block is greater than one and the tree is
983 * not the block's owner tree. Add implicit back refs for every pointer in
984 * the new block, increase lower level extents' reference count.
985 *
986 * Back Reference Key composing:
987 *
988 * The key objectid corresponds to the first byte in the extent,
989 * The key type is used to differentiate between types of back refs.
990 * There are different meanings of the key offset for different types
991 * of back refs.
992 *
993 * File extents can be referenced by:
994 *
995 * - multiple snapshots, subvolumes, or different generations in one subvol
996 * - different files inside a single subvolume
997 * - different offsets inside a file (bookend extents in file.c)
998 *
999 * The extent ref structure for the implicit back refs has fields for:
1000 *
1001 * - Objectid of the subvolume root
1002 * - objectid of the file holding the reference
1003 * - original offset in the file
1004 * - how many bookend extents
1005 *
1006 * The key offset for the implicit back refs is hash of the first
1007 * three fields.
1008 *
1009 * The extent ref structure for the full back refs has field for:
1010 *
1011 * - number of pointers in the tree leaf
1012 *
1013 * The key offset for the implicit back refs is the first byte of
1014 * the tree leaf
1015 *
1016 * When a file extent is allocated, The implicit back refs is used.
1017 * the fields are filled in:
1018 *
1019 * (root_key.objectid, inode objectid, offset in file, 1)
1020 *
1021 * When a file extent is removed file truncation, we find the
1022 * corresponding implicit back refs and check the following fields:
1023 *
1024 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1025 *
1026 * Btree extents can be referenced by:
1027 *
1028 * - Different subvolumes
1029 *
1030 * Both the implicit back refs and the full back refs for tree blocks
1031 * only consist of key. The key offset for the implicit back refs is
1032 * objectid of block's owner tree. The key offset for the full back refs
1033 * is the first byte of parent block.
1034 *
1035 * When implicit back refs is used, information about the lowest key and
1036 * level of the tree block are required. These information are stored in
1037 * tree block info structure.
1038 */
1039
1040 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1041 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1042 struct btrfs_fs_info *fs_info,
1043 struct btrfs_path *path,
1044 u64 owner, u32 extra_size)
1045 {
1046 struct btrfs_root *root = fs_info->extent_root;
1047 struct btrfs_extent_item *item;
1048 struct btrfs_extent_item_v0 *ei0;
1049 struct btrfs_extent_ref_v0 *ref0;
1050 struct btrfs_tree_block_info *bi;
1051 struct extent_buffer *leaf;
1052 struct btrfs_key key;
1053 struct btrfs_key found_key;
1054 u32 new_size = sizeof(*item);
1055 u64 refs;
1056 int ret;
1057
1058 leaf = path->nodes[0];
1059 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060
1061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_extent_item_v0);
1064 refs = btrfs_extent_refs_v0(leaf, ei0);
1065
1066 if (owner == (u64)-1) {
1067 while (1) {
1068 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069 ret = btrfs_next_leaf(root, path);
1070 if (ret < 0)
1071 return ret;
1072 BUG_ON(ret > 0); /* Corruption */
1073 leaf = path->nodes[0];
1074 }
1075 btrfs_item_key_to_cpu(leaf, &found_key,
1076 path->slots[0]);
1077 BUG_ON(key.objectid != found_key.objectid);
1078 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079 path->slots[0]++;
1080 continue;
1081 }
1082 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083 struct btrfs_extent_ref_v0);
1084 owner = btrfs_ref_objectid_v0(leaf, ref0);
1085 break;
1086 }
1087 }
1088 btrfs_release_path(path);
1089
1090 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091 new_size += sizeof(*bi);
1092
1093 new_size -= sizeof(*ei0);
1094 ret = btrfs_search_slot(trans, root, &key, path,
1095 new_size + extra_size, 1);
1096 if (ret < 0)
1097 return ret;
1098 BUG_ON(ret); /* Corruption */
1099
1100 btrfs_extend_item(fs_info, path, new_size);
1101
1102 leaf = path->nodes[0];
1103 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 btrfs_set_extent_refs(leaf, item, refs);
1105 /* FIXME: get real generation */
1106 btrfs_set_extent_generation(leaf, item, 0);
1107 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108 btrfs_set_extent_flags(leaf, item,
1109 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111 bi = (struct btrfs_tree_block_info *)(item + 1);
1112 /* FIXME: get first key of the block */
1113 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1114 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115 } else {
1116 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117 }
1118 btrfs_mark_buffer_dirty(leaf);
1119 return 0;
1120 }
1121 #endif
1122
1123 /*
1124 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1125 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1126 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1127 */
1128 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1129 struct btrfs_extent_inline_ref *iref,
1130 enum btrfs_inline_ref_type is_data)
1131 {
1132 int type = btrfs_extent_inline_ref_type(eb, iref);
1133 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1134
1135 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1136 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1137 type == BTRFS_SHARED_DATA_REF_KEY ||
1138 type == BTRFS_EXTENT_DATA_REF_KEY) {
1139 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1140 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1141 return type;
1142 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1143 ASSERT(eb->fs_info);
1144 /*
1145 * Every shared one has parent tree
1146 * block, which must be aligned to
1147 * nodesize.
1148 */
1149 if (offset &&
1150 IS_ALIGNED(offset, eb->fs_info->nodesize))
1151 return type;
1152 }
1153 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1154 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1155 return type;
1156 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1157 ASSERT(eb->fs_info);
1158 /*
1159 * Every shared one has parent tree
1160 * block, which must be aligned to
1161 * nodesize.
1162 */
1163 if (offset &&
1164 IS_ALIGNED(offset, eb->fs_info->nodesize))
1165 return type;
1166 }
1167 } else {
1168 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1169 return type;
1170 }
1171 }
1172
1173 btrfs_print_leaf((struct extent_buffer *)eb);
1174 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1175 eb->start, type);
1176 WARN_ON(1);
1177
1178 return BTRFS_REF_TYPE_INVALID;
1179 }
1180
1181 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1182 {
1183 u32 high_crc = ~(u32)0;
1184 u32 low_crc = ~(u32)0;
1185 __le64 lenum;
1186
1187 lenum = cpu_to_le64(root_objectid);
1188 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1189 lenum = cpu_to_le64(owner);
1190 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1191 lenum = cpu_to_le64(offset);
1192 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1193
1194 return ((u64)high_crc << 31) ^ (u64)low_crc;
1195 }
1196
1197 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1198 struct btrfs_extent_data_ref *ref)
1199 {
1200 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1201 btrfs_extent_data_ref_objectid(leaf, ref),
1202 btrfs_extent_data_ref_offset(leaf, ref));
1203 }
1204
1205 static int match_extent_data_ref(struct extent_buffer *leaf,
1206 struct btrfs_extent_data_ref *ref,
1207 u64 root_objectid, u64 owner, u64 offset)
1208 {
1209 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1210 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1211 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1212 return 0;
1213 return 1;
1214 }
1215
1216 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1217 struct btrfs_path *path,
1218 u64 bytenr, u64 parent,
1219 u64 root_objectid,
1220 u64 owner, u64 offset)
1221 {
1222 struct btrfs_root *root = trans->fs_info->extent_root;
1223 struct btrfs_key key;
1224 struct btrfs_extent_data_ref *ref;
1225 struct extent_buffer *leaf;
1226 u32 nritems;
1227 int ret;
1228 int recow;
1229 int err = -ENOENT;
1230
1231 key.objectid = bytenr;
1232 if (parent) {
1233 key.type = BTRFS_SHARED_DATA_REF_KEY;
1234 key.offset = parent;
1235 } else {
1236 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1237 key.offset = hash_extent_data_ref(root_objectid,
1238 owner, offset);
1239 }
1240 again:
1241 recow = 0;
1242 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1243 if (ret < 0) {
1244 err = ret;
1245 goto fail;
1246 }
1247
1248 if (parent) {
1249 if (!ret)
1250 return 0;
1251 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1252 key.type = BTRFS_EXTENT_REF_V0_KEY;
1253 btrfs_release_path(path);
1254 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1255 if (ret < 0) {
1256 err = ret;
1257 goto fail;
1258 }
1259 if (!ret)
1260 return 0;
1261 #endif
1262 goto fail;
1263 }
1264
1265 leaf = path->nodes[0];
1266 nritems = btrfs_header_nritems(leaf);
1267 while (1) {
1268 if (path->slots[0] >= nritems) {
1269 ret = btrfs_next_leaf(root, path);
1270 if (ret < 0)
1271 err = ret;
1272 if (ret)
1273 goto fail;
1274
1275 leaf = path->nodes[0];
1276 nritems = btrfs_header_nritems(leaf);
1277 recow = 1;
1278 }
1279
1280 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1281 if (key.objectid != bytenr ||
1282 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1283 goto fail;
1284
1285 ref = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_data_ref);
1287
1288 if (match_extent_data_ref(leaf, ref, root_objectid,
1289 owner, offset)) {
1290 if (recow) {
1291 btrfs_release_path(path);
1292 goto again;
1293 }
1294 err = 0;
1295 break;
1296 }
1297 path->slots[0]++;
1298 }
1299 fail:
1300 return err;
1301 }
1302
1303 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1304 struct btrfs_path *path,
1305 u64 bytenr, u64 parent,
1306 u64 root_objectid, u64 owner,
1307 u64 offset, int refs_to_add)
1308 {
1309 struct btrfs_root *root = trans->fs_info->extent_root;
1310 struct btrfs_key key;
1311 struct extent_buffer *leaf;
1312 u32 size;
1313 u32 num_refs;
1314 int ret;
1315
1316 key.objectid = bytenr;
1317 if (parent) {
1318 key.type = BTRFS_SHARED_DATA_REF_KEY;
1319 key.offset = parent;
1320 size = sizeof(struct btrfs_shared_data_ref);
1321 } else {
1322 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1323 key.offset = hash_extent_data_ref(root_objectid,
1324 owner, offset);
1325 size = sizeof(struct btrfs_extent_data_ref);
1326 }
1327
1328 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1329 if (ret && ret != -EEXIST)
1330 goto fail;
1331
1332 leaf = path->nodes[0];
1333 if (parent) {
1334 struct btrfs_shared_data_ref *ref;
1335 ref = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_shared_data_ref);
1337 if (ret == 0) {
1338 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1339 } else {
1340 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1341 num_refs += refs_to_add;
1342 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1343 }
1344 } else {
1345 struct btrfs_extent_data_ref *ref;
1346 while (ret == -EEXIST) {
1347 ref = btrfs_item_ptr(leaf, path->slots[0],
1348 struct btrfs_extent_data_ref);
1349 if (match_extent_data_ref(leaf, ref, root_objectid,
1350 owner, offset))
1351 break;
1352 btrfs_release_path(path);
1353 key.offset++;
1354 ret = btrfs_insert_empty_item(trans, root, path, &key,
1355 size);
1356 if (ret && ret != -EEXIST)
1357 goto fail;
1358
1359 leaf = path->nodes[0];
1360 }
1361 ref = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 if (ret == 0) {
1364 btrfs_set_extent_data_ref_root(leaf, ref,
1365 root_objectid);
1366 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1367 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1368 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1369 } else {
1370 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1371 num_refs += refs_to_add;
1372 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1373 }
1374 }
1375 btrfs_mark_buffer_dirty(leaf);
1376 ret = 0;
1377 fail:
1378 btrfs_release_path(path);
1379 return ret;
1380 }
1381
1382 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1383 struct btrfs_path *path,
1384 int refs_to_drop, int *last_ref)
1385 {
1386 struct btrfs_key key;
1387 struct btrfs_extent_data_ref *ref1 = NULL;
1388 struct btrfs_shared_data_ref *ref2 = NULL;
1389 struct extent_buffer *leaf;
1390 u32 num_refs = 0;
1391 int ret = 0;
1392
1393 leaf = path->nodes[0];
1394 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1395
1396 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1397 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1398 struct btrfs_extent_data_ref);
1399 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1400 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1401 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1402 struct btrfs_shared_data_ref);
1403 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1404 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1405 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1406 struct btrfs_extent_ref_v0 *ref0;
1407 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_extent_ref_v0);
1409 num_refs = btrfs_ref_count_v0(leaf, ref0);
1410 #endif
1411 } else {
1412 BUG();
1413 }
1414
1415 BUG_ON(num_refs < refs_to_drop);
1416 num_refs -= refs_to_drop;
1417
1418 if (num_refs == 0) {
1419 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1420 *last_ref = 1;
1421 } else {
1422 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1423 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1424 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1425 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 else {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1432 }
1433 #endif
1434 btrfs_mark_buffer_dirty(leaf);
1435 }
1436 return ret;
1437 }
1438
1439 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1440 struct btrfs_extent_inline_ref *iref)
1441 {
1442 struct btrfs_key key;
1443 struct extent_buffer *leaf;
1444 struct btrfs_extent_data_ref *ref1;
1445 struct btrfs_shared_data_ref *ref2;
1446 u32 num_refs = 0;
1447 int type;
1448
1449 leaf = path->nodes[0];
1450 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1451 if (iref) {
1452 /*
1453 * If type is invalid, we should have bailed out earlier than
1454 * this call.
1455 */
1456 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1457 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1458 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1459 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1460 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1461 } else {
1462 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1463 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1464 }
1465 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1466 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1467 struct btrfs_extent_data_ref);
1468 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1469 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1470 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1471 struct btrfs_shared_data_ref);
1472 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1473 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1474 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1475 struct btrfs_extent_ref_v0 *ref0;
1476 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1477 struct btrfs_extent_ref_v0);
1478 num_refs = btrfs_ref_count_v0(leaf, ref0);
1479 #endif
1480 } else {
1481 WARN_ON(1);
1482 }
1483 return num_refs;
1484 }
1485
1486 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1487 struct btrfs_path *path,
1488 u64 bytenr, u64 parent,
1489 u64 root_objectid)
1490 {
1491 struct btrfs_root *root = trans->fs_info->extent_root;
1492 struct btrfs_key key;
1493 int ret;
1494
1495 key.objectid = bytenr;
1496 if (parent) {
1497 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1498 key.offset = parent;
1499 } else {
1500 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1501 key.offset = root_objectid;
1502 }
1503
1504 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1505 if (ret > 0)
1506 ret = -ENOENT;
1507 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1508 if (ret == -ENOENT && parent) {
1509 btrfs_release_path(path);
1510 key.type = BTRFS_EXTENT_REF_V0_KEY;
1511 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1512 if (ret > 0)
1513 ret = -ENOENT;
1514 }
1515 #endif
1516 return ret;
1517 }
1518
1519 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1520 struct btrfs_path *path,
1521 u64 bytenr, u64 parent,
1522 u64 root_objectid)
1523 {
1524 struct btrfs_key key;
1525 int ret;
1526
1527 key.objectid = bytenr;
1528 if (parent) {
1529 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1530 key.offset = parent;
1531 } else {
1532 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1533 key.offset = root_objectid;
1534 }
1535
1536 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1537 path, &key, 0);
1538 btrfs_release_path(path);
1539 return ret;
1540 }
1541
1542 static inline int extent_ref_type(u64 parent, u64 owner)
1543 {
1544 int type;
1545 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1546 if (parent > 0)
1547 type = BTRFS_SHARED_BLOCK_REF_KEY;
1548 else
1549 type = BTRFS_TREE_BLOCK_REF_KEY;
1550 } else {
1551 if (parent > 0)
1552 type = BTRFS_SHARED_DATA_REF_KEY;
1553 else
1554 type = BTRFS_EXTENT_DATA_REF_KEY;
1555 }
1556 return type;
1557 }
1558
1559 static int find_next_key(struct btrfs_path *path, int level,
1560 struct btrfs_key *key)
1561
1562 {
1563 for (; level < BTRFS_MAX_LEVEL; level++) {
1564 if (!path->nodes[level])
1565 break;
1566 if (path->slots[level] + 1 >=
1567 btrfs_header_nritems(path->nodes[level]))
1568 continue;
1569 if (level == 0)
1570 btrfs_item_key_to_cpu(path->nodes[level], key,
1571 path->slots[level] + 1);
1572 else
1573 btrfs_node_key_to_cpu(path->nodes[level], key,
1574 path->slots[level] + 1);
1575 return 0;
1576 }
1577 return 1;
1578 }
1579
1580 /*
1581 * look for inline back ref. if back ref is found, *ref_ret is set
1582 * to the address of inline back ref, and 0 is returned.
1583 *
1584 * if back ref isn't found, *ref_ret is set to the address where it
1585 * should be inserted, and -ENOENT is returned.
1586 *
1587 * if insert is true and there are too many inline back refs, the path
1588 * points to the extent item, and -EAGAIN is returned.
1589 *
1590 * NOTE: inline back refs are ordered in the same way that back ref
1591 * items in the tree are ordered.
1592 */
1593 static noinline_for_stack
1594 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1595 struct btrfs_path *path,
1596 struct btrfs_extent_inline_ref **ref_ret,
1597 u64 bytenr, u64 num_bytes,
1598 u64 parent, u64 root_objectid,
1599 u64 owner, u64 offset, int insert)
1600 {
1601 struct btrfs_fs_info *fs_info = trans->fs_info;
1602 struct btrfs_root *root = fs_info->extent_root;
1603 struct btrfs_key key;
1604 struct extent_buffer *leaf;
1605 struct btrfs_extent_item *ei;
1606 struct btrfs_extent_inline_ref *iref;
1607 u64 flags;
1608 u64 item_size;
1609 unsigned long ptr;
1610 unsigned long end;
1611 int extra_size;
1612 int type;
1613 int want;
1614 int ret;
1615 int err = 0;
1616 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1617 int needed;
1618
1619 key.objectid = bytenr;
1620 key.type = BTRFS_EXTENT_ITEM_KEY;
1621 key.offset = num_bytes;
1622
1623 want = extent_ref_type(parent, owner);
1624 if (insert) {
1625 extra_size = btrfs_extent_inline_ref_size(want);
1626 path->keep_locks = 1;
1627 } else
1628 extra_size = -1;
1629
1630 /*
1631 * Owner is our level, so we can just add one to get the level for the
1632 * block we are interested in.
1633 */
1634 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1635 key.type = BTRFS_METADATA_ITEM_KEY;
1636 key.offset = owner;
1637 }
1638
1639 again:
1640 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1641 if (ret < 0) {
1642 err = ret;
1643 goto out;
1644 }
1645
1646 /*
1647 * We may be a newly converted file system which still has the old fat
1648 * extent entries for metadata, so try and see if we have one of those.
1649 */
1650 if (ret > 0 && skinny_metadata) {
1651 skinny_metadata = false;
1652 if (path->slots[0]) {
1653 path->slots[0]--;
1654 btrfs_item_key_to_cpu(path->nodes[0], &key,
1655 path->slots[0]);
1656 if (key.objectid == bytenr &&
1657 key.type == BTRFS_EXTENT_ITEM_KEY &&
1658 key.offset == num_bytes)
1659 ret = 0;
1660 }
1661 if (ret) {
1662 key.objectid = bytenr;
1663 key.type = BTRFS_EXTENT_ITEM_KEY;
1664 key.offset = num_bytes;
1665 btrfs_release_path(path);
1666 goto again;
1667 }
1668 }
1669
1670 if (ret && !insert) {
1671 err = -ENOENT;
1672 goto out;
1673 } else if (WARN_ON(ret)) {
1674 err = -EIO;
1675 goto out;
1676 }
1677
1678 leaf = path->nodes[0];
1679 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1680 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1681 if (item_size < sizeof(*ei)) {
1682 if (!insert) {
1683 err = -ENOENT;
1684 goto out;
1685 }
1686 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1687 extra_size);
1688 if (ret < 0) {
1689 err = ret;
1690 goto out;
1691 }
1692 leaf = path->nodes[0];
1693 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1694 }
1695 #endif
1696 BUG_ON(item_size < sizeof(*ei));
1697
1698 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1699 flags = btrfs_extent_flags(leaf, ei);
1700
1701 ptr = (unsigned long)(ei + 1);
1702 end = (unsigned long)ei + item_size;
1703
1704 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1705 ptr += sizeof(struct btrfs_tree_block_info);
1706 BUG_ON(ptr > end);
1707 }
1708
1709 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1710 needed = BTRFS_REF_TYPE_DATA;
1711 else
1712 needed = BTRFS_REF_TYPE_BLOCK;
1713
1714 err = -ENOENT;
1715 while (1) {
1716 if (ptr >= end) {
1717 WARN_ON(ptr > end);
1718 break;
1719 }
1720 iref = (struct btrfs_extent_inline_ref *)ptr;
1721 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1722 if (type == BTRFS_REF_TYPE_INVALID) {
1723 err = -EINVAL;
1724 goto out;
1725 }
1726
1727 if (want < type)
1728 break;
1729 if (want > type) {
1730 ptr += btrfs_extent_inline_ref_size(type);
1731 continue;
1732 }
1733
1734 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1735 struct btrfs_extent_data_ref *dref;
1736 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1737 if (match_extent_data_ref(leaf, dref, root_objectid,
1738 owner, offset)) {
1739 err = 0;
1740 break;
1741 }
1742 if (hash_extent_data_ref_item(leaf, dref) <
1743 hash_extent_data_ref(root_objectid, owner, offset))
1744 break;
1745 } else {
1746 u64 ref_offset;
1747 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1748 if (parent > 0) {
1749 if (parent == ref_offset) {
1750 err = 0;
1751 break;
1752 }
1753 if (ref_offset < parent)
1754 break;
1755 } else {
1756 if (root_objectid == ref_offset) {
1757 err = 0;
1758 break;
1759 }
1760 if (ref_offset < root_objectid)
1761 break;
1762 }
1763 }
1764 ptr += btrfs_extent_inline_ref_size(type);
1765 }
1766 if (err == -ENOENT && insert) {
1767 if (item_size + extra_size >=
1768 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1769 err = -EAGAIN;
1770 goto out;
1771 }
1772 /*
1773 * To add new inline back ref, we have to make sure
1774 * there is no corresponding back ref item.
1775 * For simplicity, we just do not add new inline back
1776 * ref if there is any kind of item for this block
1777 */
1778 if (find_next_key(path, 0, &key) == 0 &&
1779 key.objectid == bytenr &&
1780 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1781 err = -EAGAIN;
1782 goto out;
1783 }
1784 }
1785 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1786 out:
1787 if (insert) {
1788 path->keep_locks = 0;
1789 btrfs_unlock_up_safe(path, 1);
1790 }
1791 return err;
1792 }
1793
1794 /*
1795 * helper to add new inline back ref
1796 */
1797 static noinline_for_stack
1798 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1799 struct btrfs_path *path,
1800 struct btrfs_extent_inline_ref *iref,
1801 u64 parent, u64 root_objectid,
1802 u64 owner, u64 offset, int refs_to_add,
1803 struct btrfs_delayed_extent_op *extent_op)
1804 {
1805 struct extent_buffer *leaf;
1806 struct btrfs_extent_item *ei;
1807 unsigned long ptr;
1808 unsigned long end;
1809 unsigned long item_offset;
1810 u64 refs;
1811 int size;
1812 int type;
1813
1814 leaf = path->nodes[0];
1815 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1816 item_offset = (unsigned long)iref - (unsigned long)ei;
1817
1818 type = extent_ref_type(parent, owner);
1819 size = btrfs_extent_inline_ref_size(type);
1820
1821 btrfs_extend_item(fs_info, path, size);
1822
1823 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1824 refs = btrfs_extent_refs(leaf, ei);
1825 refs += refs_to_add;
1826 btrfs_set_extent_refs(leaf, ei, refs);
1827 if (extent_op)
1828 __run_delayed_extent_op(extent_op, leaf, ei);
1829
1830 ptr = (unsigned long)ei + item_offset;
1831 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1832 if (ptr < end - size)
1833 memmove_extent_buffer(leaf, ptr + size, ptr,
1834 end - size - ptr);
1835
1836 iref = (struct btrfs_extent_inline_ref *)ptr;
1837 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1838 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1839 struct btrfs_extent_data_ref *dref;
1840 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1841 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1842 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1843 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1844 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1845 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1846 struct btrfs_shared_data_ref *sref;
1847 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1848 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1849 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1850 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1851 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1852 } else {
1853 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1854 }
1855 btrfs_mark_buffer_dirty(leaf);
1856 }
1857
1858 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1859 struct btrfs_path *path,
1860 struct btrfs_extent_inline_ref **ref_ret,
1861 u64 bytenr, u64 num_bytes, u64 parent,
1862 u64 root_objectid, u64 owner, u64 offset)
1863 {
1864 int ret;
1865
1866 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1867 num_bytes, parent, root_objectid,
1868 owner, offset, 0);
1869 if (ret != -ENOENT)
1870 return ret;
1871
1872 btrfs_release_path(path);
1873 *ref_ret = NULL;
1874
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1877 root_objectid);
1878 } else {
1879 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1880 root_objectid, owner, offset);
1881 }
1882 return ret;
1883 }
1884
1885 /*
1886 * helper to update/remove inline back ref
1887 */
1888 static noinline_for_stack
1889 void update_inline_extent_backref(struct btrfs_path *path,
1890 struct btrfs_extent_inline_ref *iref,
1891 int refs_to_mod,
1892 struct btrfs_delayed_extent_op *extent_op,
1893 int *last_ref)
1894 {
1895 struct extent_buffer *leaf = path->nodes[0];
1896 struct btrfs_fs_info *fs_info = leaf->fs_info;
1897 struct btrfs_extent_item *ei;
1898 struct btrfs_extent_data_ref *dref = NULL;
1899 struct btrfs_shared_data_ref *sref = NULL;
1900 unsigned long ptr;
1901 unsigned long end;
1902 u32 item_size;
1903 int size;
1904 int type;
1905 u64 refs;
1906
1907 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1908 refs = btrfs_extent_refs(leaf, ei);
1909 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1910 refs += refs_to_mod;
1911 btrfs_set_extent_refs(leaf, ei, refs);
1912 if (extent_op)
1913 __run_delayed_extent_op(extent_op, leaf, ei);
1914
1915 /*
1916 * If type is invalid, we should have bailed out after
1917 * lookup_inline_extent_backref().
1918 */
1919 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1920 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1921
1922 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1923 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1924 refs = btrfs_extent_data_ref_count(leaf, dref);
1925 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1926 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1927 refs = btrfs_shared_data_ref_count(leaf, sref);
1928 } else {
1929 refs = 1;
1930 BUG_ON(refs_to_mod != -1);
1931 }
1932
1933 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1934 refs += refs_to_mod;
1935
1936 if (refs > 0) {
1937 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1938 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1939 else
1940 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1941 } else {
1942 *last_ref = 1;
1943 size = btrfs_extent_inline_ref_size(type);
1944 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1945 ptr = (unsigned long)iref;
1946 end = (unsigned long)ei + item_size;
1947 if (ptr + size < end)
1948 memmove_extent_buffer(leaf, ptr, ptr + size,
1949 end - ptr - size);
1950 item_size -= size;
1951 btrfs_truncate_item(fs_info, path, item_size, 1);
1952 }
1953 btrfs_mark_buffer_dirty(leaf);
1954 }
1955
1956 static noinline_for_stack
1957 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1958 struct btrfs_fs_info *fs_info,
1959 struct btrfs_path *path,
1960 u64 bytenr, u64 num_bytes, u64 parent,
1961 u64 root_objectid, u64 owner,
1962 u64 offset, int refs_to_add,
1963 struct btrfs_delayed_extent_op *extent_op)
1964 {
1965 struct btrfs_extent_inline_ref *iref;
1966 int ret;
1967
1968 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1969 num_bytes, parent, root_objectid,
1970 owner, offset, 1);
1971 if (ret == 0) {
1972 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1973 update_inline_extent_backref(path, iref, refs_to_add,
1974 extent_op, NULL);
1975 } else if (ret == -ENOENT) {
1976 setup_inline_extent_backref(fs_info, path, iref, parent,
1977 root_objectid, owner, offset,
1978 refs_to_add, extent_op);
1979 ret = 0;
1980 }
1981 return ret;
1982 }
1983
1984 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 parent, u64 root_objectid,
1987 u64 owner, u64 offset, int refs_to_add)
1988 {
1989 int ret;
1990 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1991 BUG_ON(refs_to_add != 1);
1992 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1993 root_objectid);
1994 } else {
1995 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1996 root_objectid, owner, offset,
1997 refs_to_add);
1998 }
1999 return ret;
2000 }
2001
2002 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2003 struct btrfs_fs_info *fs_info,
2004 struct btrfs_path *path,
2005 struct btrfs_extent_inline_ref *iref,
2006 int refs_to_drop, int is_data, int *last_ref)
2007 {
2008 int ret = 0;
2009
2010 BUG_ON(!is_data && refs_to_drop != 1);
2011 if (iref) {
2012 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
2013 last_ref);
2014 } else if (is_data) {
2015 ret = remove_extent_data_ref(trans, path, refs_to_drop,
2016 last_ref);
2017 } else {
2018 *last_ref = 1;
2019 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2020 }
2021 return ret;
2022 }
2023
2024 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2025 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2026 u64 *discarded_bytes)
2027 {
2028 int j, ret = 0;
2029 u64 bytes_left, end;
2030 u64 aligned_start = ALIGN(start, 1 << 9);
2031
2032 if (WARN_ON(start != aligned_start)) {
2033 len -= aligned_start - start;
2034 len = round_down(len, 1 << 9);
2035 start = aligned_start;
2036 }
2037
2038 *discarded_bytes = 0;
2039
2040 if (!len)
2041 return 0;
2042
2043 end = start + len;
2044 bytes_left = len;
2045
2046 /* Skip any superblocks on this device. */
2047 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2048 u64 sb_start = btrfs_sb_offset(j);
2049 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2050 u64 size = sb_start - start;
2051
2052 if (!in_range(sb_start, start, bytes_left) &&
2053 !in_range(sb_end, start, bytes_left) &&
2054 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2055 continue;
2056
2057 /*
2058 * Superblock spans beginning of range. Adjust start and
2059 * try again.
2060 */
2061 if (sb_start <= start) {
2062 start += sb_end - start;
2063 if (start > end) {
2064 bytes_left = 0;
2065 break;
2066 }
2067 bytes_left = end - start;
2068 continue;
2069 }
2070
2071 if (size) {
2072 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2073 GFP_NOFS, 0);
2074 if (!ret)
2075 *discarded_bytes += size;
2076 else if (ret != -EOPNOTSUPP)
2077 return ret;
2078 }
2079
2080 start = sb_end;
2081 if (start > end) {
2082 bytes_left = 0;
2083 break;
2084 }
2085 bytes_left = end - start;
2086 }
2087
2088 if (bytes_left) {
2089 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2090 GFP_NOFS, 0);
2091 if (!ret)
2092 *discarded_bytes += bytes_left;
2093 }
2094 return ret;
2095 }
2096
2097 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2098 u64 num_bytes, u64 *actual_bytes)
2099 {
2100 int ret;
2101 u64 discarded_bytes = 0;
2102 struct btrfs_bio *bbio = NULL;
2103
2104
2105 /*
2106 * Avoid races with device replace and make sure our bbio has devices
2107 * associated to its stripes that don't go away while we are discarding.
2108 */
2109 btrfs_bio_counter_inc_blocked(fs_info);
2110 /* Tell the block device(s) that the sectors can be discarded */
2111 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2112 &bbio, 0);
2113 /* Error condition is -ENOMEM */
2114 if (!ret) {
2115 struct btrfs_bio_stripe *stripe = bbio->stripes;
2116 int i;
2117
2118
2119 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2120 u64 bytes;
2121 struct request_queue *req_q;
2122
2123 if (!stripe->dev->bdev) {
2124 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2125 continue;
2126 }
2127 req_q = bdev_get_queue(stripe->dev->bdev);
2128 if (!blk_queue_discard(req_q))
2129 continue;
2130
2131 ret = btrfs_issue_discard(stripe->dev->bdev,
2132 stripe->physical,
2133 stripe->length,
2134 &bytes);
2135 if (!ret)
2136 discarded_bytes += bytes;
2137 else if (ret != -EOPNOTSUPP)
2138 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2139
2140 /*
2141 * Just in case we get back EOPNOTSUPP for some reason,
2142 * just ignore the return value so we don't screw up
2143 * people calling discard_extent.
2144 */
2145 ret = 0;
2146 }
2147 btrfs_put_bbio(bbio);
2148 }
2149 btrfs_bio_counter_dec(fs_info);
2150
2151 if (actual_bytes)
2152 *actual_bytes = discarded_bytes;
2153
2154
2155 if (ret == -EOPNOTSUPP)
2156 ret = 0;
2157 return ret;
2158 }
2159
2160 /* Can return -ENOMEM */
2161 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2162 struct btrfs_root *root,
2163 u64 bytenr, u64 num_bytes, u64 parent,
2164 u64 root_objectid, u64 owner, u64 offset)
2165 {
2166 struct btrfs_fs_info *fs_info = root->fs_info;
2167 int old_ref_mod, new_ref_mod;
2168 int ret;
2169
2170 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2171 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2172
2173 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2174 owner, offset, BTRFS_ADD_DELAYED_REF);
2175
2176 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2177 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2178 num_bytes, parent,
2179 root_objectid, (int)owner,
2180 BTRFS_ADD_DELAYED_REF, NULL,
2181 &old_ref_mod, &new_ref_mod);
2182 } else {
2183 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2184 num_bytes, parent,
2185 root_objectid, owner, offset,
2186 0, BTRFS_ADD_DELAYED_REF,
2187 &old_ref_mod, &new_ref_mod);
2188 }
2189
2190 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2191 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2192
2193 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2194 }
2195
2196 return ret;
2197 }
2198
2199 /*
2200 * __btrfs_inc_extent_ref - insert backreference for a given extent
2201 *
2202 * @trans: Handle of transaction
2203 *
2204 * @node: The delayed ref node used to get the bytenr/length for
2205 * extent whose references are incremented.
2206 *
2207 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2208 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2209 * bytenr of the parent block. Since new extents are always
2210 * created with indirect references, this will only be the case
2211 * when relocating a shared extent. In that case, root_objectid
2212 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2213 * be 0
2214 *
2215 * @root_objectid: The id of the root where this modification has originated,
2216 * this can be either one of the well-known metadata trees or
2217 * the subvolume id which references this extent.
2218 *
2219 * @owner: For data extents it is the inode number of the owning file.
2220 * For metadata extents this parameter holds the level in the
2221 * tree of the extent.
2222 *
2223 * @offset: For metadata extents the offset is ignored and is currently
2224 * always passed as 0. For data extents it is the fileoffset
2225 * this extent belongs to.
2226 *
2227 * @refs_to_add Number of references to add
2228 *
2229 * @extent_op Pointer to a structure, holding information necessary when
2230 * updating a tree block's flags
2231 *
2232 */
2233 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2234 struct btrfs_delayed_ref_node *node,
2235 u64 parent, u64 root_objectid,
2236 u64 owner, u64 offset, int refs_to_add,
2237 struct btrfs_delayed_extent_op *extent_op)
2238 {
2239 struct btrfs_fs_info *fs_info = trans->fs_info;
2240 struct btrfs_path *path;
2241 struct extent_buffer *leaf;
2242 struct btrfs_extent_item *item;
2243 struct btrfs_key key;
2244 u64 bytenr = node->bytenr;
2245 u64 num_bytes = node->num_bytes;
2246 u64 refs;
2247 int ret;
2248
2249 path = btrfs_alloc_path();
2250 if (!path)
2251 return -ENOMEM;
2252
2253 path->reada = READA_FORWARD;
2254 path->leave_spinning = 1;
2255 /* this will setup the path even if it fails to insert the back ref */
2256 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2257 num_bytes, parent, root_objectid,
2258 owner, offset,
2259 refs_to_add, extent_op);
2260 if ((ret < 0 && ret != -EAGAIN) || !ret)
2261 goto out;
2262
2263 /*
2264 * Ok we had -EAGAIN which means we didn't have space to insert and
2265 * inline extent ref, so just update the reference count and add a
2266 * normal backref.
2267 */
2268 leaf = path->nodes[0];
2269 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2270 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2271 refs = btrfs_extent_refs(leaf, item);
2272 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2273 if (extent_op)
2274 __run_delayed_extent_op(extent_op, leaf, item);
2275
2276 btrfs_mark_buffer_dirty(leaf);
2277 btrfs_release_path(path);
2278
2279 path->reada = READA_FORWARD;
2280 path->leave_spinning = 1;
2281 /* now insert the actual backref */
2282 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2283 owner, offset, refs_to_add);
2284 if (ret)
2285 btrfs_abort_transaction(trans, ret);
2286 out:
2287 btrfs_free_path(path);
2288 return ret;
2289 }
2290
2291 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2292 struct btrfs_delayed_ref_node *node,
2293 struct btrfs_delayed_extent_op *extent_op,
2294 int insert_reserved)
2295 {
2296 int ret = 0;
2297 struct btrfs_delayed_data_ref *ref;
2298 struct btrfs_key ins;
2299 u64 parent = 0;
2300 u64 ref_root = 0;
2301 u64 flags = 0;
2302
2303 ins.objectid = node->bytenr;
2304 ins.offset = node->num_bytes;
2305 ins.type = BTRFS_EXTENT_ITEM_KEY;
2306
2307 ref = btrfs_delayed_node_to_data_ref(node);
2308 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2309
2310 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2311 parent = ref->parent;
2312 ref_root = ref->root;
2313
2314 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2315 if (extent_op)
2316 flags |= extent_op->flags_to_set;
2317 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2318 flags, ref->objectid,
2319 ref->offset, &ins,
2320 node->ref_mod);
2321 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2322 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2323 ref->objectid, ref->offset,
2324 node->ref_mod, extent_op);
2325 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2326 ret = __btrfs_free_extent(trans, node, parent,
2327 ref_root, ref->objectid,
2328 ref->offset, node->ref_mod,
2329 extent_op);
2330 } else {
2331 BUG();
2332 }
2333 return ret;
2334 }
2335
2336 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2337 struct extent_buffer *leaf,
2338 struct btrfs_extent_item *ei)
2339 {
2340 u64 flags = btrfs_extent_flags(leaf, ei);
2341 if (extent_op->update_flags) {
2342 flags |= extent_op->flags_to_set;
2343 btrfs_set_extent_flags(leaf, ei, flags);
2344 }
2345
2346 if (extent_op->update_key) {
2347 struct btrfs_tree_block_info *bi;
2348 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2349 bi = (struct btrfs_tree_block_info *)(ei + 1);
2350 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2351 }
2352 }
2353
2354 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2355 struct btrfs_delayed_ref_head *head,
2356 struct btrfs_delayed_extent_op *extent_op)
2357 {
2358 struct btrfs_fs_info *fs_info = trans->fs_info;
2359 struct btrfs_key key;
2360 struct btrfs_path *path;
2361 struct btrfs_extent_item *ei;
2362 struct extent_buffer *leaf;
2363 u32 item_size;
2364 int ret;
2365 int err = 0;
2366 int metadata = !extent_op->is_data;
2367
2368 if (trans->aborted)
2369 return 0;
2370
2371 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2372 metadata = 0;
2373
2374 path = btrfs_alloc_path();
2375 if (!path)
2376 return -ENOMEM;
2377
2378 key.objectid = head->bytenr;
2379
2380 if (metadata) {
2381 key.type = BTRFS_METADATA_ITEM_KEY;
2382 key.offset = extent_op->level;
2383 } else {
2384 key.type = BTRFS_EXTENT_ITEM_KEY;
2385 key.offset = head->num_bytes;
2386 }
2387
2388 again:
2389 path->reada = READA_FORWARD;
2390 path->leave_spinning = 1;
2391 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2392 if (ret < 0) {
2393 err = ret;
2394 goto out;
2395 }
2396 if (ret > 0) {
2397 if (metadata) {
2398 if (path->slots[0] > 0) {
2399 path->slots[0]--;
2400 btrfs_item_key_to_cpu(path->nodes[0], &key,
2401 path->slots[0]);
2402 if (key.objectid == head->bytenr &&
2403 key.type == BTRFS_EXTENT_ITEM_KEY &&
2404 key.offset == head->num_bytes)
2405 ret = 0;
2406 }
2407 if (ret > 0) {
2408 btrfs_release_path(path);
2409 metadata = 0;
2410
2411 key.objectid = head->bytenr;
2412 key.offset = head->num_bytes;
2413 key.type = BTRFS_EXTENT_ITEM_KEY;
2414 goto again;
2415 }
2416 } else {
2417 err = -EIO;
2418 goto out;
2419 }
2420 }
2421
2422 leaf = path->nodes[0];
2423 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2424 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2425 if (item_size < sizeof(*ei)) {
2426 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2427 if (ret < 0) {
2428 err = ret;
2429 goto out;
2430 }
2431 leaf = path->nodes[0];
2432 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2433 }
2434 #endif
2435 BUG_ON(item_size < sizeof(*ei));
2436 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2437 __run_delayed_extent_op(extent_op, leaf, ei);
2438
2439 btrfs_mark_buffer_dirty(leaf);
2440 out:
2441 btrfs_free_path(path);
2442 return err;
2443 }
2444
2445 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2446 struct btrfs_fs_info *fs_info,
2447 struct btrfs_delayed_ref_node *node,
2448 struct btrfs_delayed_extent_op *extent_op,
2449 int insert_reserved)
2450 {
2451 int ret = 0;
2452 struct btrfs_delayed_tree_ref *ref;
2453 u64 parent = 0;
2454 u64 ref_root = 0;
2455
2456 ref = btrfs_delayed_node_to_tree_ref(node);
2457 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2458
2459 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2460 parent = ref->parent;
2461 ref_root = ref->root;
2462
2463 if (node->ref_mod != 1) {
2464 btrfs_err(fs_info,
2465 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2466 node->bytenr, node->ref_mod, node->action, ref_root,
2467 parent);
2468 return -EIO;
2469 }
2470 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2471 BUG_ON(!extent_op || !extent_op->update_flags);
2472 ret = alloc_reserved_tree_block(trans, node, extent_op);
2473 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2474 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2475 ref->level, 0, 1, extent_op);
2476 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2477 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2478 ref->level, 0, 1, extent_op);
2479 } else {
2480 BUG();
2481 }
2482 return ret;
2483 }
2484
2485 /* helper function to actually process a single delayed ref entry */
2486 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2487 struct btrfs_fs_info *fs_info,
2488 struct btrfs_delayed_ref_node *node,
2489 struct btrfs_delayed_extent_op *extent_op,
2490 int insert_reserved)
2491 {
2492 int ret = 0;
2493
2494 if (trans->aborted) {
2495 if (insert_reserved)
2496 btrfs_pin_extent(fs_info, node->bytenr,
2497 node->num_bytes, 1);
2498 return 0;
2499 }
2500
2501 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2502 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2503 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2504 insert_reserved);
2505 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2506 node->type == BTRFS_SHARED_DATA_REF_KEY)
2507 ret = run_delayed_data_ref(trans, node, extent_op,
2508 insert_reserved);
2509 else
2510 BUG();
2511 return ret;
2512 }
2513
2514 static inline struct btrfs_delayed_ref_node *
2515 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2516 {
2517 struct btrfs_delayed_ref_node *ref;
2518
2519 if (RB_EMPTY_ROOT(&head->ref_tree))
2520 return NULL;
2521
2522 /*
2523 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2524 * This is to prevent a ref count from going down to zero, which deletes
2525 * the extent item from the extent tree, when there still are references
2526 * to add, which would fail because they would not find the extent item.
2527 */
2528 if (!list_empty(&head->ref_add_list))
2529 return list_first_entry(&head->ref_add_list,
2530 struct btrfs_delayed_ref_node, add_list);
2531
2532 ref = rb_entry(rb_first(&head->ref_tree),
2533 struct btrfs_delayed_ref_node, ref_node);
2534 ASSERT(list_empty(&ref->add_list));
2535 return ref;
2536 }
2537
2538 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2539 struct btrfs_delayed_ref_head *head)
2540 {
2541 spin_lock(&delayed_refs->lock);
2542 head->processing = 0;
2543 delayed_refs->num_heads_ready++;
2544 spin_unlock(&delayed_refs->lock);
2545 btrfs_delayed_ref_unlock(head);
2546 }
2547
2548 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2549 struct btrfs_delayed_ref_head *head)
2550 {
2551 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2552 int ret;
2553
2554 if (!extent_op)
2555 return 0;
2556 head->extent_op = NULL;
2557 if (head->must_insert_reserved) {
2558 btrfs_free_delayed_extent_op(extent_op);
2559 return 0;
2560 }
2561 spin_unlock(&head->lock);
2562 ret = run_delayed_extent_op(trans, head, extent_op);
2563 btrfs_free_delayed_extent_op(extent_op);
2564 return ret ? ret : 1;
2565 }
2566
2567 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2568 struct btrfs_delayed_ref_head *head)
2569 {
2570
2571 struct btrfs_fs_info *fs_info = trans->fs_info;
2572 struct btrfs_delayed_ref_root *delayed_refs;
2573 int ret;
2574
2575 delayed_refs = &trans->transaction->delayed_refs;
2576
2577 ret = cleanup_extent_op(trans, head);
2578 if (ret < 0) {
2579 unselect_delayed_ref_head(delayed_refs, head);
2580 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2581 return ret;
2582 } else if (ret) {
2583 return ret;
2584 }
2585
2586 /*
2587 * Need to drop our head ref lock and re-acquire the delayed ref lock
2588 * and then re-check to make sure nobody got added.
2589 */
2590 spin_unlock(&head->lock);
2591 spin_lock(&delayed_refs->lock);
2592 spin_lock(&head->lock);
2593 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2594 spin_unlock(&head->lock);
2595 spin_unlock(&delayed_refs->lock);
2596 return 1;
2597 }
2598 delayed_refs->num_heads--;
2599 rb_erase(&head->href_node, &delayed_refs->href_root);
2600 RB_CLEAR_NODE(&head->href_node);
2601 spin_unlock(&head->lock);
2602 spin_unlock(&delayed_refs->lock);
2603 atomic_dec(&delayed_refs->num_entries);
2604
2605 trace_run_delayed_ref_head(fs_info, head, 0);
2606
2607 if (head->total_ref_mod < 0) {
2608 struct btrfs_space_info *space_info;
2609 u64 flags;
2610
2611 if (head->is_data)
2612 flags = BTRFS_BLOCK_GROUP_DATA;
2613 else if (head->is_system)
2614 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2615 else
2616 flags = BTRFS_BLOCK_GROUP_METADATA;
2617 space_info = __find_space_info(fs_info, flags);
2618 ASSERT(space_info);
2619 percpu_counter_add(&space_info->total_bytes_pinned,
2620 -head->num_bytes);
2621
2622 if (head->is_data) {
2623 spin_lock(&delayed_refs->lock);
2624 delayed_refs->pending_csums -= head->num_bytes;
2625 spin_unlock(&delayed_refs->lock);
2626 }
2627 }
2628
2629 if (head->must_insert_reserved) {
2630 btrfs_pin_extent(fs_info, head->bytenr,
2631 head->num_bytes, 1);
2632 if (head->is_data) {
2633 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2634 head->num_bytes);
2635 }
2636 }
2637
2638 /* Also free its reserved qgroup space */
2639 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2640 head->qgroup_reserved);
2641 btrfs_delayed_ref_unlock(head);
2642 btrfs_put_delayed_ref_head(head);
2643 return 0;
2644 }
2645
2646 /*
2647 * Returns 0 on success or if called with an already aborted transaction.
2648 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2649 */
2650 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2651 unsigned long nr)
2652 {
2653 struct btrfs_fs_info *fs_info = trans->fs_info;
2654 struct btrfs_delayed_ref_root *delayed_refs;
2655 struct btrfs_delayed_ref_node *ref;
2656 struct btrfs_delayed_ref_head *locked_ref = NULL;
2657 struct btrfs_delayed_extent_op *extent_op;
2658 ktime_t start = ktime_get();
2659 int ret;
2660 unsigned long count = 0;
2661 unsigned long actual_count = 0;
2662 int must_insert_reserved = 0;
2663
2664 delayed_refs = &trans->transaction->delayed_refs;
2665 while (1) {
2666 if (!locked_ref) {
2667 if (count >= nr)
2668 break;
2669
2670 spin_lock(&delayed_refs->lock);
2671 locked_ref = btrfs_select_ref_head(trans);
2672 if (!locked_ref) {
2673 spin_unlock(&delayed_refs->lock);
2674 break;
2675 }
2676
2677 /* grab the lock that says we are going to process
2678 * all the refs for this head */
2679 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2680 spin_unlock(&delayed_refs->lock);
2681 /*
2682 * we may have dropped the spin lock to get the head
2683 * mutex lock, and that might have given someone else
2684 * time to free the head. If that's true, it has been
2685 * removed from our list and we can move on.
2686 */
2687 if (ret == -EAGAIN) {
2688 locked_ref = NULL;
2689 count++;
2690 continue;
2691 }
2692 }
2693
2694 /*
2695 * We need to try and merge add/drops of the same ref since we
2696 * can run into issues with relocate dropping the implicit ref
2697 * and then it being added back again before the drop can
2698 * finish. If we merged anything we need to re-loop so we can
2699 * get a good ref.
2700 * Or we can get node references of the same type that weren't
2701 * merged when created due to bumps in the tree mod seq, and
2702 * we need to merge them to prevent adding an inline extent
2703 * backref before dropping it (triggering a BUG_ON at
2704 * insert_inline_extent_backref()).
2705 */
2706 spin_lock(&locked_ref->lock);
2707 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2708
2709 ref = select_delayed_ref(locked_ref);
2710
2711 if (ref && ref->seq &&
2712 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2713 spin_unlock(&locked_ref->lock);
2714 unselect_delayed_ref_head(delayed_refs, locked_ref);
2715 locked_ref = NULL;
2716 cond_resched();
2717 count++;
2718 continue;
2719 }
2720
2721 /*
2722 * We're done processing refs in this ref_head, clean everything
2723 * up and move on to the next ref_head.
2724 */
2725 if (!ref) {
2726 ret = cleanup_ref_head(trans, locked_ref);
2727 if (ret > 0 ) {
2728 /* We dropped our lock, we need to loop. */
2729 ret = 0;
2730 continue;
2731 } else if (ret) {
2732 return ret;
2733 }
2734 locked_ref = NULL;
2735 count++;
2736 continue;
2737 }
2738
2739 actual_count++;
2740 ref->in_tree = 0;
2741 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2742 RB_CLEAR_NODE(&ref->ref_node);
2743 if (!list_empty(&ref->add_list))
2744 list_del(&ref->add_list);
2745 /*
2746 * When we play the delayed ref, also correct the ref_mod on
2747 * head
2748 */
2749 switch (ref->action) {
2750 case BTRFS_ADD_DELAYED_REF:
2751 case BTRFS_ADD_DELAYED_EXTENT:
2752 locked_ref->ref_mod -= ref->ref_mod;
2753 break;
2754 case BTRFS_DROP_DELAYED_REF:
2755 locked_ref->ref_mod += ref->ref_mod;
2756 break;
2757 default:
2758 WARN_ON(1);
2759 }
2760 atomic_dec(&delayed_refs->num_entries);
2761
2762 /*
2763 * Record the must-insert_reserved flag before we drop the spin
2764 * lock.
2765 */
2766 must_insert_reserved = locked_ref->must_insert_reserved;
2767 locked_ref->must_insert_reserved = 0;
2768
2769 extent_op = locked_ref->extent_op;
2770 locked_ref->extent_op = NULL;
2771 spin_unlock(&locked_ref->lock);
2772
2773 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2774 must_insert_reserved);
2775
2776 btrfs_free_delayed_extent_op(extent_op);
2777 if (ret) {
2778 unselect_delayed_ref_head(delayed_refs, locked_ref);
2779 btrfs_put_delayed_ref(ref);
2780 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2781 ret);
2782 return ret;
2783 }
2784
2785 btrfs_put_delayed_ref(ref);
2786 count++;
2787 cond_resched();
2788 }
2789
2790 /*
2791 * We don't want to include ref heads since we can have empty ref heads
2792 * and those will drastically skew our runtime down since we just do
2793 * accounting, no actual extent tree updates.
2794 */
2795 if (actual_count > 0) {
2796 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2797 u64 avg;
2798
2799 /*
2800 * We weigh the current average higher than our current runtime
2801 * to avoid large swings in the average.
2802 */
2803 spin_lock(&delayed_refs->lock);
2804 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2805 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2806 spin_unlock(&delayed_refs->lock);
2807 }
2808 return 0;
2809 }
2810
2811 #ifdef SCRAMBLE_DELAYED_REFS
2812 /*
2813 * Normally delayed refs get processed in ascending bytenr order. This
2814 * correlates in most cases to the order added. To expose dependencies on this
2815 * order, we start to process the tree in the middle instead of the beginning
2816 */
2817 static u64 find_middle(struct rb_root *root)
2818 {
2819 struct rb_node *n = root->rb_node;
2820 struct btrfs_delayed_ref_node *entry;
2821 int alt = 1;
2822 u64 middle;
2823 u64 first = 0, last = 0;
2824
2825 n = rb_first(root);
2826 if (n) {
2827 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2828 first = entry->bytenr;
2829 }
2830 n = rb_last(root);
2831 if (n) {
2832 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2833 last = entry->bytenr;
2834 }
2835 n = root->rb_node;
2836
2837 while (n) {
2838 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2839 WARN_ON(!entry->in_tree);
2840
2841 middle = entry->bytenr;
2842
2843 if (alt)
2844 n = n->rb_left;
2845 else
2846 n = n->rb_right;
2847
2848 alt = 1 - alt;
2849 }
2850 return middle;
2851 }
2852 #endif
2853
2854 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2855 {
2856 u64 num_bytes;
2857
2858 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2859 sizeof(struct btrfs_extent_inline_ref));
2860 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2861 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2862
2863 /*
2864 * We don't ever fill up leaves all the way so multiply by 2 just to be
2865 * closer to what we're really going to want to use.
2866 */
2867 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2868 }
2869
2870 /*
2871 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2872 * would require to store the csums for that many bytes.
2873 */
2874 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2875 {
2876 u64 csum_size;
2877 u64 num_csums_per_leaf;
2878 u64 num_csums;
2879
2880 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2881 num_csums_per_leaf = div64_u64(csum_size,
2882 (u64)btrfs_super_csum_size(fs_info->super_copy));
2883 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2884 num_csums += num_csums_per_leaf - 1;
2885 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2886 return num_csums;
2887 }
2888
2889 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2890 struct btrfs_fs_info *fs_info)
2891 {
2892 struct btrfs_block_rsv *global_rsv;
2893 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2894 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2895 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2896 u64 num_bytes, num_dirty_bgs_bytes;
2897 int ret = 0;
2898
2899 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2900 num_heads = heads_to_leaves(fs_info, num_heads);
2901 if (num_heads > 1)
2902 num_bytes += (num_heads - 1) * fs_info->nodesize;
2903 num_bytes <<= 1;
2904 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2905 fs_info->nodesize;
2906 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2907 num_dirty_bgs);
2908 global_rsv = &fs_info->global_block_rsv;
2909
2910 /*
2911 * If we can't allocate any more chunks lets make sure we have _lots_ of
2912 * wiggle room since running delayed refs can create more delayed refs.
2913 */
2914 if (global_rsv->space_info->full) {
2915 num_dirty_bgs_bytes <<= 1;
2916 num_bytes <<= 1;
2917 }
2918
2919 spin_lock(&global_rsv->lock);
2920 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2921 ret = 1;
2922 spin_unlock(&global_rsv->lock);
2923 return ret;
2924 }
2925
2926 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2927 struct btrfs_fs_info *fs_info)
2928 {
2929 u64 num_entries =
2930 atomic_read(&trans->transaction->delayed_refs.num_entries);
2931 u64 avg_runtime;
2932 u64 val;
2933
2934 smp_mb();
2935 avg_runtime = fs_info->avg_delayed_ref_runtime;
2936 val = num_entries * avg_runtime;
2937 if (val >= NSEC_PER_SEC)
2938 return 1;
2939 if (val >= NSEC_PER_SEC / 2)
2940 return 2;
2941
2942 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2943 }
2944
2945 struct async_delayed_refs {
2946 struct btrfs_root *root;
2947 u64 transid;
2948 int count;
2949 int error;
2950 int sync;
2951 struct completion wait;
2952 struct btrfs_work work;
2953 };
2954
2955 static inline struct async_delayed_refs *
2956 to_async_delayed_refs(struct btrfs_work *work)
2957 {
2958 return container_of(work, struct async_delayed_refs, work);
2959 }
2960
2961 static void delayed_ref_async_start(struct btrfs_work *work)
2962 {
2963 struct async_delayed_refs *async = to_async_delayed_refs(work);
2964 struct btrfs_trans_handle *trans;
2965 struct btrfs_fs_info *fs_info = async->root->fs_info;
2966 int ret;
2967
2968 /* if the commit is already started, we don't need to wait here */
2969 if (btrfs_transaction_blocked(fs_info))
2970 goto done;
2971
2972 trans = btrfs_join_transaction(async->root);
2973 if (IS_ERR(trans)) {
2974 async->error = PTR_ERR(trans);
2975 goto done;
2976 }
2977
2978 /*
2979 * trans->sync means that when we call end_transaction, we won't
2980 * wait on delayed refs
2981 */
2982 trans->sync = true;
2983
2984 /* Don't bother flushing if we got into a different transaction */
2985 if (trans->transid > async->transid)
2986 goto end;
2987
2988 ret = btrfs_run_delayed_refs(trans, async->count);
2989 if (ret)
2990 async->error = ret;
2991 end:
2992 ret = btrfs_end_transaction(trans);
2993 if (ret && !async->error)
2994 async->error = ret;
2995 done:
2996 if (async->sync)
2997 complete(&async->wait);
2998 else
2999 kfree(async);
3000 }
3001
3002 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3003 unsigned long count, u64 transid, int wait)
3004 {
3005 struct async_delayed_refs *async;
3006 int ret;
3007
3008 async = kmalloc(sizeof(*async), GFP_NOFS);
3009 if (!async)
3010 return -ENOMEM;
3011
3012 async->root = fs_info->tree_root;
3013 async->count = count;
3014 async->error = 0;
3015 async->transid = transid;
3016 if (wait)
3017 async->sync = 1;
3018 else
3019 async->sync = 0;
3020 init_completion(&async->wait);
3021
3022 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3023 delayed_ref_async_start, NULL, NULL);
3024
3025 btrfs_queue_work(fs_info->extent_workers, &async->work);
3026
3027 if (wait) {
3028 wait_for_completion(&async->wait);
3029 ret = async->error;
3030 kfree(async);
3031 return ret;
3032 }
3033 return 0;
3034 }
3035
3036 /*
3037 * this starts processing the delayed reference count updates and
3038 * extent insertions we have queued up so far. count can be
3039 * 0, which means to process everything in the tree at the start
3040 * of the run (but not newly added entries), or it can be some target
3041 * number you'd like to process.
3042 *
3043 * Returns 0 on success or if called with an aborted transaction
3044 * Returns <0 on error and aborts the transaction
3045 */
3046 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3047 unsigned long count)
3048 {
3049 struct btrfs_fs_info *fs_info = trans->fs_info;
3050 struct rb_node *node;
3051 struct btrfs_delayed_ref_root *delayed_refs;
3052 struct btrfs_delayed_ref_head *head;
3053 int ret;
3054 int run_all = count == (unsigned long)-1;
3055 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3056
3057 /* We'll clean this up in btrfs_cleanup_transaction */
3058 if (trans->aborted)
3059 return 0;
3060
3061 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3062 return 0;
3063
3064 delayed_refs = &trans->transaction->delayed_refs;
3065 if (count == 0)
3066 count = atomic_read(&delayed_refs->num_entries) * 2;
3067
3068 again:
3069 #ifdef SCRAMBLE_DELAYED_REFS
3070 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3071 #endif
3072 trans->can_flush_pending_bgs = false;
3073 ret = __btrfs_run_delayed_refs(trans, count);
3074 if (ret < 0) {
3075 btrfs_abort_transaction(trans, ret);
3076 return ret;
3077 }
3078
3079 if (run_all) {
3080 if (!list_empty(&trans->new_bgs))
3081 btrfs_create_pending_block_groups(trans);
3082
3083 spin_lock(&delayed_refs->lock);
3084 node = rb_first(&delayed_refs->href_root);
3085 if (!node) {
3086 spin_unlock(&delayed_refs->lock);
3087 goto out;
3088 }
3089 head = rb_entry(node, struct btrfs_delayed_ref_head,
3090 href_node);
3091 refcount_inc(&head->refs);
3092 spin_unlock(&delayed_refs->lock);
3093
3094 /* Mutex was contended, block until it's released and retry. */
3095 mutex_lock(&head->mutex);
3096 mutex_unlock(&head->mutex);
3097
3098 btrfs_put_delayed_ref_head(head);
3099 cond_resched();
3100 goto again;
3101 }
3102 out:
3103 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3104 return 0;
3105 }
3106
3107 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3108 struct btrfs_fs_info *fs_info,
3109 u64 bytenr, u64 num_bytes, u64 flags,
3110 int level, int is_data)
3111 {
3112 struct btrfs_delayed_extent_op *extent_op;
3113 int ret;
3114
3115 extent_op = btrfs_alloc_delayed_extent_op();
3116 if (!extent_op)
3117 return -ENOMEM;
3118
3119 extent_op->flags_to_set = flags;
3120 extent_op->update_flags = true;
3121 extent_op->update_key = false;
3122 extent_op->is_data = is_data ? true : false;
3123 extent_op->level = level;
3124
3125 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3126 num_bytes, extent_op);
3127 if (ret)
3128 btrfs_free_delayed_extent_op(extent_op);
3129 return ret;
3130 }
3131
3132 static noinline int check_delayed_ref(struct btrfs_root *root,
3133 struct btrfs_path *path,
3134 u64 objectid, u64 offset, u64 bytenr)
3135 {
3136 struct btrfs_delayed_ref_head *head;
3137 struct btrfs_delayed_ref_node *ref;
3138 struct btrfs_delayed_data_ref *data_ref;
3139 struct btrfs_delayed_ref_root *delayed_refs;
3140 struct btrfs_transaction *cur_trans;
3141 struct rb_node *node;
3142 int ret = 0;
3143
3144 spin_lock(&root->fs_info->trans_lock);
3145 cur_trans = root->fs_info->running_transaction;
3146 if (cur_trans)
3147 refcount_inc(&cur_trans->use_count);
3148 spin_unlock(&root->fs_info->trans_lock);
3149 if (!cur_trans)
3150 return 0;
3151
3152 delayed_refs = &cur_trans->delayed_refs;
3153 spin_lock(&delayed_refs->lock);
3154 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3155 if (!head) {
3156 spin_unlock(&delayed_refs->lock);
3157 btrfs_put_transaction(cur_trans);
3158 return 0;
3159 }
3160
3161 if (!mutex_trylock(&head->mutex)) {
3162 refcount_inc(&head->refs);
3163 spin_unlock(&delayed_refs->lock);
3164
3165 btrfs_release_path(path);
3166
3167 /*
3168 * Mutex was contended, block until it's released and let
3169 * caller try again
3170 */
3171 mutex_lock(&head->mutex);
3172 mutex_unlock(&head->mutex);
3173 btrfs_put_delayed_ref_head(head);
3174 btrfs_put_transaction(cur_trans);
3175 return -EAGAIN;
3176 }
3177 spin_unlock(&delayed_refs->lock);
3178
3179 spin_lock(&head->lock);
3180 /*
3181 * XXX: We should replace this with a proper search function in the
3182 * future.
3183 */
3184 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3185 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3186 /* If it's a shared ref we know a cross reference exists */
3187 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3188 ret = 1;
3189 break;
3190 }
3191
3192 data_ref = btrfs_delayed_node_to_data_ref(ref);
3193
3194 /*
3195 * If our ref doesn't match the one we're currently looking at
3196 * then we have a cross reference.
3197 */
3198 if (data_ref->root != root->root_key.objectid ||
3199 data_ref->objectid != objectid ||
3200 data_ref->offset != offset) {
3201 ret = 1;
3202 break;
3203 }
3204 }
3205 spin_unlock(&head->lock);
3206 mutex_unlock(&head->mutex);
3207 btrfs_put_transaction(cur_trans);
3208 return ret;
3209 }
3210
3211 static noinline int check_committed_ref(struct btrfs_root *root,
3212 struct btrfs_path *path,
3213 u64 objectid, u64 offset, u64 bytenr)
3214 {
3215 struct btrfs_fs_info *fs_info = root->fs_info;
3216 struct btrfs_root *extent_root = fs_info->extent_root;
3217 struct extent_buffer *leaf;
3218 struct btrfs_extent_data_ref *ref;
3219 struct btrfs_extent_inline_ref *iref;
3220 struct btrfs_extent_item *ei;
3221 struct btrfs_key key;
3222 u32 item_size;
3223 int type;
3224 int ret;
3225
3226 key.objectid = bytenr;
3227 key.offset = (u64)-1;
3228 key.type = BTRFS_EXTENT_ITEM_KEY;
3229
3230 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3231 if (ret < 0)
3232 goto out;
3233 BUG_ON(ret == 0); /* Corruption */
3234
3235 ret = -ENOENT;
3236 if (path->slots[0] == 0)
3237 goto out;
3238
3239 path->slots[0]--;
3240 leaf = path->nodes[0];
3241 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3242
3243 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3244 goto out;
3245
3246 ret = 1;
3247 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3248 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3249 if (item_size < sizeof(*ei)) {
3250 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3251 goto out;
3252 }
3253 #endif
3254 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3255
3256 if (item_size != sizeof(*ei) +
3257 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3258 goto out;
3259
3260 if (btrfs_extent_generation(leaf, ei) <=
3261 btrfs_root_last_snapshot(&root->root_item))
3262 goto out;
3263
3264 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3265
3266 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3267 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3268 goto out;
3269
3270 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3271 if (btrfs_extent_refs(leaf, ei) !=
3272 btrfs_extent_data_ref_count(leaf, ref) ||
3273 btrfs_extent_data_ref_root(leaf, ref) !=
3274 root->root_key.objectid ||
3275 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3276 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3277 goto out;
3278
3279 ret = 0;
3280 out:
3281 return ret;
3282 }
3283
3284 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3285 u64 bytenr)
3286 {
3287 struct btrfs_path *path;
3288 int ret;
3289 int ret2;
3290
3291 path = btrfs_alloc_path();
3292 if (!path)
3293 return -ENOMEM;
3294
3295 do {
3296 ret = check_committed_ref(root, path, objectid,
3297 offset, bytenr);
3298 if (ret && ret != -ENOENT)
3299 goto out;
3300
3301 ret2 = check_delayed_ref(root, path, objectid,
3302 offset, bytenr);
3303 } while (ret2 == -EAGAIN);
3304
3305 if (ret2 && ret2 != -ENOENT) {
3306 ret = ret2;
3307 goto out;
3308 }
3309
3310 if (ret != -ENOENT || ret2 != -ENOENT)
3311 ret = 0;
3312 out:
3313 btrfs_free_path(path);
3314 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3315 WARN_ON(ret > 0);
3316 return ret;
3317 }
3318
3319 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3320 struct btrfs_root *root,
3321 struct extent_buffer *buf,
3322 int full_backref, int inc)
3323 {
3324 struct btrfs_fs_info *fs_info = root->fs_info;
3325 u64 bytenr;
3326 u64 num_bytes;
3327 u64 parent;
3328 u64 ref_root;
3329 u32 nritems;
3330 struct btrfs_key key;
3331 struct btrfs_file_extent_item *fi;
3332 int i;
3333 int level;
3334 int ret = 0;
3335 int (*process_func)(struct btrfs_trans_handle *,
3336 struct btrfs_root *,
3337 u64, u64, u64, u64, u64, u64);
3338
3339
3340 if (btrfs_is_testing(fs_info))
3341 return 0;
3342
3343 ref_root = btrfs_header_owner(buf);
3344 nritems = btrfs_header_nritems(buf);
3345 level = btrfs_header_level(buf);
3346
3347 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3348 return 0;
3349
3350 if (inc)
3351 process_func = btrfs_inc_extent_ref;
3352 else
3353 process_func = btrfs_free_extent;
3354
3355 if (full_backref)
3356 parent = buf->start;
3357 else
3358 parent = 0;
3359
3360 for (i = 0; i < nritems; i++) {
3361 if (level == 0) {
3362 btrfs_item_key_to_cpu(buf, &key, i);
3363 if (key.type != BTRFS_EXTENT_DATA_KEY)
3364 continue;
3365 fi = btrfs_item_ptr(buf, i,
3366 struct btrfs_file_extent_item);
3367 if (btrfs_file_extent_type(buf, fi) ==
3368 BTRFS_FILE_EXTENT_INLINE)
3369 continue;
3370 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3371 if (bytenr == 0)
3372 continue;
3373
3374 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3375 key.offset -= btrfs_file_extent_offset(buf, fi);
3376 ret = process_func(trans, root, bytenr, num_bytes,
3377 parent, ref_root, key.objectid,
3378 key.offset);
3379 if (ret)
3380 goto fail;
3381 } else {
3382 bytenr = btrfs_node_blockptr(buf, i);
3383 num_bytes = fs_info->nodesize;
3384 ret = process_func(trans, root, bytenr, num_bytes,
3385 parent, ref_root, level - 1, 0);
3386 if (ret)
3387 goto fail;
3388 }
3389 }
3390 return 0;
3391 fail:
3392 return ret;
3393 }
3394
3395 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396 struct extent_buffer *buf, int full_backref)
3397 {
3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3399 }
3400
3401 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3402 struct extent_buffer *buf, int full_backref)
3403 {
3404 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3405 }
3406
3407 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3408 struct btrfs_fs_info *fs_info,
3409 struct btrfs_path *path,
3410 struct btrfs_block_group_cache *cache)
3411 {
3412 int ret;
3413 struct btrfs_root *extent_root = fs_info->extent_root;
3414 unsigned long bi;
3415 struct extent_buffer *leaf;
3416
3417 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3418 if (ret) {
3419 if (ret > 0)
3420 ret = -ENOENT;
3421 goto fail;
3422 }
3423
3424 leaf = path->nodes[0];
3425 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3426 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3427 btrfs_mark_buffer_dirty(leaf);
3428 fail:
3429 btrfs_release_path(path);
3430 return ret;
3431
3432 }
3433
3434 static struct btrfs_block_group_cache *
3435 next_block_group(struct btrfs_fs_info *fs_info,
3436 struct btrfs_block_group_cache *cache)
3437 {
3438 struct rb_node *node;
3439
3440 spin_lock(&fs_info->block_group_cache_lock);
3441
3442 /* If our block group was removed, we need a full search. */
3443 if (RB_EMPTY_NODE(&cache->cache_node)) {
3444 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3445
3446 spin_unlock(&fs_info->block_group_cache_lock);
3447 btrfs_put_block_group(cache);
3448 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3449 }
3450 node = rb_next(&cache->cache_node);
3451 btrfs_put_block_group(cache);
3452 if (node) {
3453 cache = rb_entry(node, struct btrfs_block_group_cache,
3454 cache_node);
3455 btrfs_get_block_group(cache);
3456 } else
3457 cache = NULL;
3458 spin_unlock(&fs_info->block_group_cache_lock);
3459 return cache;
3460 }
3461
3462 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3463 struct btrfs_trans_handle *trans,
3464 struct btrfs_path *path)
3465 {
3466 struct btrfs_fs_info *fs_info = block_group->fs_info;
3467 struct btrfs_root *root = fs_info->tree_root;
3468 struct inode *inode = NULL;
3469 struct extent_changeset *data_reserved = NULL;
3470 u64 alloc_hint = 0;
3471 int dcs = BTRFS_DC_ERROR;
3472 u64 num_pages = 0;
3473 int retries = 0;
3474 int ret = 0;
3475
3476 /*
3477 * If this block group is smaller than 100 megs don't bother caching the
3478 * block group.
3479 */
3480 if (block_group->key.offset < (100 * SZ_1M)) {
3481 spin_lock(&block_group->lock);
3482 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3483 spin_unlock(&block_group->lock);
3484 return 0;
3485 }
3486
3487 if (trans->aborted)
3488 return 0;
3489 again:
3490 inode = lookup_free_space_inode(fs_info, block_group, path);
3491 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3492 ret = PTR_ERR(inode);
3493 btrfs_release_path(path);
3494 goto out;
3495 }
3496
3497 if (IS_ERR(inode)) {
3498 BUG_ON(retries);
3499 retries++;
3500
3501 if (block_group->ro)
3502 goto out_free;
3503
3504 ret = create_free_space_inode(fs_info, trans, block_group,
3505 path);
3506 if (ret)
3507 goto out_free;
3508 goto again;
3509 }
3510
3511 /*
3512 * We want to set the generation to 0, that way if anything goes wrong
3513 * from here on out we know not to trust this cache when we load up next
3514 * time.
3515 */
3516 BTRFS_I(inode)->generation = 0;
3517 ret = btrfs_update_inode(trans, root, inode);
3518 if (ret) {
3519 /*
3520 * So theoretically we could recover from this, simply set the
3521 * super cache generation to 0 so we know to invalidate the
3522 * cache, but then we'd have to keep track of the block groups
3523 * that fail this way so we know we _have_ to reset this cache
3524 * before the next commit or risk reading stale cache. So to
3525 * limit our exposure to horrible edge cases lets just abort the
3526 * transaction, this only happens in really bad situations
3527 * anyway.
3528 */
3529 btrfs_abort_transaction(trans, ret);
3530 goto out_put;
3531 }
3532 WARN_ON(ret);
3533
3534 /* We've already setup this transaction, go ahead and exit */
3535 if (block_group->cache_generation == trans->transid &&
3536 i_size_read(inode)) {
3537 dcs = BTRFS_DC_SETUP;
3538 goto out_put;
3539 }
3540
3541 if (i_size_read(inode) > 0) {
3542 ret = btrfs_check_trunc_cache_free_space(fs_info,
3543 &fs_info->global_block_rsv);
3544 if (ret)
3545 goto out_put;
3546
3547 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3548 if (ret)
3549 goto out_put;
3550 }
3551
3552 spin_lock(&block_group->lock);
3553 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3554 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3555 /*
3556 * don't bother trying to write stuff out _if_
3557 * a) we're not cached,
3558 * b) we're with nospace_cache mount option,
3559 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3560 */
3561 dcs = BTRFS_DC_WRITTEN;
3562 spin_unlock(&block_group->lock);
3563 goto out_put;
3564 }
3565 spin_unlock(&block_group->lock);
3566
3567 /*
3568 * We hit an ENOSPC when setting up the cache in this transaction, just
3569 * skip doing the setup, we've already cleared the cache so we're safe.
3570 */
3571 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3572 ret = -ENOSPC;
3573 goto out_put;
3574 }
3575
3576 /*
3577 * Try to preallocate enough space based on how big the block group is.
3578 * Keep in mind this has to include any pinned space which could end up
3579 * taking up quite a bit since it's not folded into the other space
3580 * cache.
3581 */
3582 num_pages = div_u64(block_group->key.offset, SZ_256M);
3583 if (!num_pages)
3584 num_pages = 1;
3585
3586 num_pages *= 16;
3587 num_pages *= PAGE_SIZE;
3588
3589 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3590 if (ret)
3591 goto out_put;
3592
3593 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3594 num_pages, num_pages,
3595 &alloc_hint);
3596 /*
3597 * Our cache requires contiguous chunks so that we don't modify a bunch
3598 * of metadata or split extents when writing the cache out, which means
3599 * we can enospc if we are heavily fragmented in addition to just normal
3600 * out of space conditions. So if we hit this just skip setting up any
3601 * other block groups for this transaction, maybe we'll unpin enough
3602 * space the next time around.
3603 */
3604 if (!ret)
3605 dcs = BTRFS_DC_SETUP;
3606 else if (ret == -ENOSPC)
3607 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3608
3609 out_put:
3610 iput(inode);
3611 out_free:
3612 btrfs_release_path(path);
3613 out:
3614 spin_lock(&block_group->lock);
3615 if (!ret && dcs == BTRFS_DC_SETUP)
3616 block_group->cache_generation = trans->transid;
3617 block_group->disk_cache_state = dcs;
3618 spin_unlock(&block_group->lock);
3619
3620 extent_changeset_free(data_reserved);
3621 return ret;
3622 }
3623
3624 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3625 struct btrfs_fs_info *fs_info)
3626 {
3627 struct btrfs_block_group_cache *cache, *tmp;
3628 struct btrfs_transaction *cur_trans = trans->transaction;
3629 struct btrfs_path *path;
3630
3631 if (list_empty(&cur_trans->dirty_bgs) ||
3632 !btrfs_test_opt(fs_info, SPACE_CACHE))
3633 return 0;
3634
3635 path = btrfs_alloc_path();
3636 if (!path)
3637 return -ENOMEM;
3638
3639 /* Could add new block groups, use _safe just in case */
3640 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3641 dirty_list) {
3642 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3643 cache_save_setup(cache, trans, path);
3644 }
3645
3646 btrfs_free_path(path);
3647 return 0;
3648 }
3649
3650 /*
3651 * transaction commit does final block group cache writeback during a
3652 * critical section where nothing is allowed to change the FS. This is
3653 * required in order for the cache to actually match the block group,
3654 * but can introduce a lot of latency into the commit.
3655 *
3656 * So, btrfs_start_dirty_block_groups is here to kick off block group
3657 * cache IO. There's a chance we'll have to redo some of it if the
3658 * block group changes again during the commit, but it greatly reduces
3659 * the commit latency by getting rid of the easy block groups while
3660 * we're still allowing others to join the commit.
3661 */
3662 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3663 {
3664 struct btrfs_fs_info *fs_info = trans->fs_info;
3665 struct btrfs_block_group_cache *cache;
3666 struct btrfs_transaction *cur_trans = trans->transaction;
3667 int ret = 0;
3668 int should_put;
3669 struct btrfs_path *path = NULL;
3670 LIST_HEAD(dirty);
3671 struct list_head *io = &cur_trans->io_bgs;
3672 int num_started = 0;
3673 int loops = 0;
3674
3675 spin_lock(&cur_trans->dirty_bgs_lock);
3676 if (list_empty(&cur_trans->dirty_bgs)) {
3677 spin_unlock(&cur_trans->dirty_bgs_lock);
3678 return 0;
3679 }
3680 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3681 spin_unlock(&cur_trans->dirty_bgs_lock);
3682
3683 again:
3684 /*
3685 * make sure all the block groups on our dirty list actually
3686 * exist
3687 */
3688 btrfs_create_pending_block_groups(trans);
3689
3690 if (!path) {
3691 path = btrfs_alloc_path();
3692 if (!path)
3693 return -ENOMEM;
3694 }
3695
3696 /*
3697 * cache_write_mutex is here only to save us from balance or automatic
3698 * removal of empty block groups deleting this block group while we are
3699 * writing out the cache
3700 */
3701 mutex_lock(&trans->transaction->cache_write_mutex);
3702 while (!list_empty(&dirty)) {
3703 cache = list_first_entry(&dirty,
3704 struct btrfs_block_group_cache,
3705 dirty_list);
3706 /*
3707 * this can happen if something re-dirties a block
3708 * group that is already under IO. Just wait for it to
3709 * finish and then do it all again
3710 */
3711 if (!list_empty(&cache->io_list)) {
3712 list_del_init(&cache->io_list);
3713 btrfs_wait_cache_io(trans, cache, path);
3714 btrfs_put_block_group(cache);
3715 }
3716
3717
3718 /*
3719 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3720 * if it should update the cache_state. Don't delete
3721 * until after we wait.
3722 *
3723 * Since we're not running in the commit critical section
3724 * we need the dirty_bgs_lock to protect from update_block_group
3725 */
3726 spin_lock(&cur_trans->dirty_bgs_lock);
3727 list_del_init(&cache->dirty_list);
3728 spin_unlock(&cur_trans->dirty_bgs_lock);
3729
3730 should_put = 1;
3731
3732 cache_save_setup(cache, trans, path);
3733
3734 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3735 cache->io_ctl.inode = NULL;
3736 ret = btrfs_write_out_cache(fs_info, trans,
3737 cache, path);
3738 if (ret == 0 && cache->io_ctl.inode) {
3739 num_started++;
3740 should_put = 0;
3741
3742 /*
3743 * The cache_write_mutex is protecting the
3744 * io_list, also refer to the definition of
3745 * btrfs_transaction::io_bgs for more details
3746 */
3747 list_add_tail(&cache->io_list, io);
3748 } else {
3749 /*
3750 * if we failed to write the cache, the
3751 * generation will be bad and life goes on
3752 */
3753 ret = 0;
3754 }
3755 }
3756 if (!ret) {
3757 ret = write_one_cache_group(trans, fs_info,
3758 path, cache);
3759 /*
3760 * Our block group might still be attached to the list
3761 * of new block groups in the transaction handle of some
3762 * other task (struct btrfs_trans_handle->new_bgs). This
3763 * means its block group item isn't yet in the extent
3764 * tree. If this happens ignore the error, as we will
3765 * try again later in the critical section of the
3766 * transaction commit.
3767 */
3768 if (ret == -ENOENT) {
3769 ret = 0;
3770 spin_lock(&cur_trans->dirty_bgs_lock);
3771 if (list_empty(&cache->dirty_list)) {
3772 list_add_tail(&cache->dirty_list,
3773 &cur_trans->dirty_bgs);
3774 btrfs_get_block_group(cache);
3775 }
3776 spin_unlock(&cur_trans->dirty_bgs_lock);
3777 } else if (ret) {
3778 btrfs_abort_transaction(trans, ret);
3779 }
3780 }
3781
3782 /* if its not on the io list, we need to put the block group */
3783 if (should_put)
3784 btrfs_put_block_group(cache);
3785
3786 if (ret)
3787 break;
3788
3789 /*
3790 * Avoid blocking other tasks for too long. It might even save
3791 * us from writing caches for block groups that are going to be
3792 * removed.
3793 */
3794 mutex_unlock(&trans->transaction->cache_write_mutex);
3795 mutex_lock(&trans->transaction->cache_write_mutex);
3796 }
3797 mutex_unlock(&trans->transaction->cache_write_mutex);
3798
3799 /*
3800 * go through delayed refs for all the stuff we've just kicked off
3801 * and then loop back (just once)
3802 */
3803 ret = btrfs_run_delayed_refs(trans, 0);
3804 if (!ret && loops == 0) {
3805 loops++;
3806 spin_lock(&cur_trans->dirty_bgs_lock);
3807 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3808 /*
3809 * dirty_bgs_lock protects us from concurrent block group
3810 * deletes too (not just cache_write_mutex).
3811 */
3812 if (!list_empty(&dirty)) {
3813 spin_unlock(&cur_trans->dirty_bgs_lock);
3814 goto again;
3815 }
3816 spin_unlock(&cur_trans->dirty_bgs_lock);
3817 } else if (ret < 0) {
3818 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3819 }
3820
3821 btrfs_free_path(path);
3822 return ret;
3823 }
3824
3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3826 struct btrfs_fs_info *fs_info)
3827 {
3828 struct btrfs_block_group_cache *cache;
3829 struct btrfs_transaction *cur_trans = trans->transaction;
3830 int ret = 0;
3831 int should_put;
3832 struct btrfs_path *path;
3833 struct list_head *io = &cur_trans->io_bgs;
3834 int num_started = 0;
3835
3836 path = btrfs_alloc_path();
3837 if (!path)
3838 return -ENOMEM;
3839
3840 /*
3841 * Even though we are in the critical section of the transaction commit,
3842 * we can still have concurrent tasks adding elements to this
3843 * transaction's list of dirty block groups. These tasks correspond to
3844 * endio free space workers started when writeback finishes for a
3845 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846 * allocate new block groups as a result of COWing nodes of the root
3847 * tree when updating the free space inode. The writeback for the space
3848 * caches is triggered by an earlier call to
3849 * btrfs_start_dirty_block_groups() and iterations of the following
3850 * loop.
3851 * Also we want to do the cache_save_setup first and then run the
3852 * delayed refs to make sure we have the best chance at doing this all
3853 * in one shot.
3854 */
3855 spin_lock(&cur_trans->dirty_bgs_lock);
3856 while (!list_empty(&cur_trans->dirty_bgs)) {
3857 cache = list_first_entry(&cur_trans->dirty_bgs,
3858 struct btrfs_block_group_cache,
3859 dirty_list);
3860
3861 /*
3862 * this can happen if cache_save_setup re-dirties a block
3863 * group that is already under IO. Just wait for it to
3864 * finish and then do it all again
3865 */
3866 if (!list_empty(&cache->io_list)) {
3867 spin_unlock(&cur_trans->dirty_bgs_lock);
3868 list_del_init(&cache->io_list);
3869 btrfs_wait_cache_io(trans, cache, path);
3870 btrfs_put_block_group(cache);
3871 spin_lock(&cur_trans->dirty_bgs_lock);
3872 }
3873
3874 /*
3875 * don't remove from the dirty list until after we've waited
3876 * on any pending IO
3877 */
3878 list_del_init(&cache->dirty_list);
3879 spin_unlock(&cur_trans->dirty_bgs_lock);
3880 should_put = 1;
3881
3882 cache_save_setup(cache, trans, path);
3883
3884 if (!ret)
3885 ret = btrfs_run_delayed_refs(trans,
3886 (unsigned long) -1);
3887
3888 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889 cache->io_ctl.inode = NULL;
3890 ret = btrfs_write_out_cache(fs_info, trans,
3891 cache, path);
3892 if (ret == 0 && cache->io_ctl.inode) {
3893 num_started++;
3894 should_put = 0;
3895 list_add_tail(&cache->io_list, io);
3896 } else {
3897 /*
3898 * if we failed to write the cache, the
3899 * generation will be bad and life goes on
3900 */
3901 ret = 0;
3902 }
3903 }
3904 if (!ret) {
3905 ret = write_one_cache_group(trans, fs_info,
3906 path, cache);
3907 /*
3908 * One of the free space endio workers might have
3909 * created a new block group while updating a free space
3910 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911 * and hasn't released its transaction handle yet, in
3912 * which case the new block group is still attached to
3913 * its transaction handle and its creation has not
3914 * finished yet (no block group item in the extent tree
3915 * yet, etc). If this is the case, wait for all free
3916 * space endio workers to finish and retry. This is a
3917 * a very rare case so no need for a more efficient and
3918 * complex approach.
3919 */
3920 if (ret == -ENOENT) {
3921 wait_event(cur_trans->writer_wait,
3922 atomic_read(&cur_trans->num_writers) == 1);
3923 ret = write_one_cache_group(trans, fs_info,
3924 path, cache);
3925 }
3926 if (ret)
3927 btrfs_abort_transaction(trans, ret);
3928 }
3929
3930 /* if its not on the io list, we need to put the block group */
3931 if (should_put)
3932 btrfs_put_block_group(cache);
3933 spin_lock(&cur_trans->dirty_bgs_lock);
3934 }
3935 spin_unlock(&cur_trans->dirty_bgs_lock);
3936
3937 /*
3938 * Refer to the definition of io_bgs member for details why it's safe
3939 * to use it without any locking
3940 */
3941 while (!list_empty(io)) {
3942 cache = list_first_entry(io, struct btrfs_block_group_cache,
3943 io_list);
3944 list_del_init(&cache->io_list);
3945 btrfs_wait_cache_io(trans, cache, path);
3946 btrfs_put_block_group(cache);
3947 }
3948
3949 btrfs_free_path(path);
3950 return ret;
3951 }
3952
3953 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3954 {
3955 struct btrfs_block_group_cache *block_group;
3956 int readonly = 0;
3957
3958 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3959 if (!block_group || block_group->ro)
3960 readonly = 1;
3961 if (block_group)
3962 btrfs_put_block_group(block_group);
3963 return readonly;
3964 }
3965
3966 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3967 {
3968 struct btrfs_block_group_cache *bg;
3969 bool ret = true;
3970
3971 bg = btrfs_lookup_block_group(fs_info, bytenr);
3972 if (!bg)
3973 return false;
3974
3975 spin_lock(&bg->lock);
3976 if (bg->ro)
3977 ret = false;
3978 else
3979 atomic_inc(&bg->nocow_writers);
3980 spin_unlock(&bg->lock);
3981
3982 /* no put on block group, done by btrfs_dec_nocow_writers */
3983 if (!ret)
3984 btrfs_put_block_group(bg);
3985
3986 return ret;
3987
3988 }
3989
3990 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3991 {
3992 struct btrfs_block_group_cache *bg;
3993
3994 bg = btrfs_lookup_block_group(fs_info, bytenr);
3995 ASSERT(bg);
3996 if (atomic_dec_and_test(&bg->nocow_writers))
3997 wake_up_var(&bg->nocow_writers);
3998 /*
3999 * Once for our lookup and once for the lookup done by a previous call
4000 * to btrfs_inc_nocow_writers()
4001 */
4002 btrfs_put_block_group(bg);
4003 btrfs_put_block_group(bg);
4004 }
4005
4006 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4007 {
4008 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4009 }
4010
4011 static const char *alloc_name(u64 flags)
4012 {
4013 switch (flags) {
4014 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4015 return "mixed";
4016 case BTRFS_BLOCK_GROUP_METADATA:
4017 return "metadata";
4018 case BTRFS_BLOCK_GROUP_DATA:
4019 return "data";
4020 case BTRFS_BLOCK_GROUP_SYSTEM:
4021 return "system";
4022 default:
4023 WARN_ON(1);
4024 return "invalid-combination";
4025 };
4026 }
4027
4028 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
4029 {
4030
4031 struct btrfs_space_info *space_info;
4032 int i;
4033 int ret;
4034
4035 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4036 if (!space_info)
4037 return -ENOMEM;
4038
4039 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4040 GFP_KERNEL);
4041 if (ret) {
4042 kfree(space_info);
4043 return ret;
4044 }
4045
4046 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4047 INIT_LIST_HEAD(&space_info->block_groups[i]);
4048 init_rwsem(&space_info->groups_sem);
4049 spin_lock_init(&space_info->lock);
4050 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4051 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4052 init_waitqueue_head(&space_info->wait);
4053 INIT_LIST_HEAD(&space_info->ro_bgs);
4054 INIT_LIST_HEAD(&space_info->tickets);
4055 INIT_LIST_HEAD(&space_info->priority_tickets);
4056
4057 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4058 info->space_info_kobj, "%s",
4059 alloc_name(space_info->flags));
4060 if (ret) {
4061 percpu_counter_destroy(&space_info->total_bytes_pinned);
4062 kfree(space_info);
4063 return ret;
4064 }
4065
4066 list_add_rcu(&space_info->list, &info->space_info);
4067 if (flags & BTRFS_BLOCK_GROUP_DATA)
4068 info->data_sinfo = space_info;
4069
4070 return ret;
4071 }
4072
4073 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4074 u64 total_bytes, u64 bytes_used,
4075 u64 bytes_readonly,
4076 struct btrfs_space_info **space_info)
4077 {
4078 struct btrfs_space_info *found;
4079 int factor;
4080
4081 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4082 BTRFS_BLOCK_GROUP_RAID10))
4083 factor = 2;
4084 else
4085 factor = 1;
4086
4087 found = __find_space_info(info, flags);
4088 ASSERT(found);
4089 spin_lock(&found->lock);
4090 found->total_bytes += total_bytes;
4091 found->disk_total += total_bytes * factor;
4092 found->bytes_used += bytes_used;
4093 found->disk_used += bytes_used * factor;
4094 found->bytes_readonly += bytes_readonly;
4095 if (total_bytes > 0)
4096 found->full = 0;
4097 space_info_add_new_bytes(info, found, total_bytes -
4098 bytes_used - bytes_readonly);
4099 spin_unlock(&found->lock);
4100 *space_info = found;
4101 }
4102
4103 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4104 {
4105 u64 extra_flags = chunk_to_extended(flags) &
4106 BTRFS_EXTENDED_PROFILE_MASK;
4107
4108 write_seqlock(&fs_info->profiles_lock);
4109 if (flags & BTRFS_BLOCK_GROUP_DATA)
4110 fs_info->avail_data_alloc_bits |= extra_flags;
4111 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4112 fs_info->avail_metadata_alloc_bits |= extra_flags;
4113 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4114 fs_info->avail_system_alloc_bits |= extra_flags;
4115 write_sequnlock(&fs_info->profiles_lock);
4116 }
4117
4118 /*
4119 * returns target flags in extended format or 0 if restripe for this
4120 * chunk_type is not in progress
4121 *
4122 * should be called with balance_lock held
4123 */
4124 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4125 {
4126 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4127 u64 target = 0;
4128
4129 if (!bctl)
4130 return 0;
4131
4132 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4133 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4134 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4135 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4136 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4137 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4138 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4139 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4140 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4141 }
4142
4143 return target;
4144 }
4145
4146 /*
4147 * @flags: available profiles in extended format (see ctree.h)
4148 *
4149 * Returns reduced profile in chunk format. If profile changing is in
4150 * progress (either running or paused) picks the target profile (if it's
4151 * already available), otherwise falls back to plain reducing.
4152 */
4153 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4154 {
4155 u64 num_devices = fs_info->fs_devices->rw_devices;
4156 u64 target;
4157 u64 raid_type;
4158 u64 allowed = 0;
4159
4160 /*
4161 * see if restripe for this chunk_type is in progress, if so
4162 * try to reduce to the target profile
4163 */
4164 spin_lock(&fs_info->balance_lock);
4165 target = get_restripe_target(fs_info, flags);
4166 if (target) {
4167 /* pick target profile only if it's already available */
4168 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4169 spin_unlock(&fs_info->balance_lock);
4170 return extended_to_chunk(target);
4171 }
4172 }
4173 spin_unlock(&fs_info->balance_lock);
4174
4175 /* First, mask out the RAID levels which aren't possible */
4176 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4177 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4178 allowed |= btrfs_raid_array[raid_type].bg_flag;
4179 }
4180 allowed &= flags;
4181
4182 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4183 allowed = BTRFS_BLOCK_GROUP_RAID6;
4184 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4185 allowed = BTRFS_BLOCK_GROUP_RAID5;
4186 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4187 allowed = BTRFS_BLOCK_GROUP_RAID10;
4188 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4189 allowed = BTRFS_BLOCK_GROUP_RAID1;
4190 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4191 allowed = BTRFS_BLOCK_GROUP_RAID0;
4192
4193 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4194
4195 return extended_to_chunk(flags | allowed);
4196 }
4197
4198 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4199 {
4200 unsigned seq;
4201 u64 flags;
4202
4203 do {
4204 flags = orig_flags;
4205 seq = read_seqbegin(&fs_info->profiles_lock);
4206
4207 if (flags & BTRFS_BLOCK_GROUP_DATA)
4208 flags |= fs_info->avail_data_alloc_bits;
4209 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4210 flags |= fs_info->avail_system_alloc_bits;
4211 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4212 flags |= fs_info->avail_metadata_alloc_bits;
4213 } while (read_seqretry(&fs_info->profiles_lock, seq));
4214
4215 return btrfs_reduce_alloc_profile(fs_info, flags);
4216 }
4217
4218 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4219 {
4220 struct btrfs_fs_info *fs_info = root->fs_info;
4221 u64 flags;
4222 u64 ret;
4223
4224 if (data)
4225 flags = BTRFS_BLOCK_GROUP_DATA;
4226 else if (root == fs_info->chunk_root)
4227 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4228 else
4229 flags = BTRFS_BLOCK_GROUP_METADATA;
4230
4231 ret = get_alloc_profile(fs_info, flags);
4232 return ret;
4233 }
4234
4235 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4236 {
4237 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4238 }
4239
4240 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4241 {
4242 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4243 }
4244
4245 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4246 {
4247 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4248 }
4249
4250 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4251 bool may_use_included)
4252 {
4253 ASSERT(s_info);
4254 return s_info->bytes_used + s_info->bytes_reserved +
4255 s_info->bytes_pinned + s_info->bytes_readonly +
4256 (may_use_included ? s_info->bytes_may_use : 0);
4257 }
4258
4259 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4260 {
4261 struct btrfs_root *root = inode->root;
4262 struct btrfs_fs_info *fs_info = root->fs_info;
4263 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4264 u64 used;
4265 int ret = 0;
4266 int need_commit = 2;
4267 int have_pinned_space;
4268
4269 /* make sure bytes are sectorsize aligned */
4270 bytes = ALIGN(bytes, fs_info->sectorsize);
4271
4272 if (btrfs_is_free_space_inode(inode)) {
4273 need_commit = 0;
4274 ASSERT(current->journal_info);
4275 }
4276
4277 again:
4278 /* make sure we have enough space to handle the data first */
4279 spin_lock(&data_sinfo->lock);
4280 used = btrfs_space_info_used(data_sinfo, true);
4281
4282 if (used + bytes > data_sinfo->total_bytes) {
4283 struct btrfs_trans_handle *trans;
4284
4285 /*
4286 * if we don't have enough free bytes in this space then we need
4287 * to alloc a new chunk.
4288 */
4289 if (!data_sinfo->full) {
4290 u64 alloc_target;
4291
4292 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4293 spin_unlock(&data_sinfo->lock);
4294
4295 alloc_target = btrfs_data_alloc_profile(fs_info);
4296 /*
4297 * It is ugly that we don't call nolock join
4298 * transaction for the free space inode case here.
4299 * But it is safe because we only do the data space
4300 * reservation for the free space cache in the
4301 * transaction context, the common join transaction
4302 * just increase the counter of the current transaction
4303 * handler, doesn't try to acquire the trans_lock of
4304 * the fs.
4305 */
4306 trans = btrfs_join_transaction(root);
4307 if (IS_ERR(trans))
4308 return PTR_ERR(trans);
4309
4310 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4311 CHUNK_ALLOC_NO_FORCE);
4312 btrfs_end_transaction(trans);
4313 if (ret < 0) {
4314 if (ret != -ENOSPC)
4315 return ret;
4316 else {
4317 have_pinned_space = 1;
4318 goto commit_trans;
4319 }
4320 }
4321
4322 goto again;
4323 }
4324
4325 /*
4326 * If we don't have enough pinned space to deal with this
4327 * allocation, and no removed chunk in current transaction,
4328 * don't bother committing the transaction.
4329 */
4330 have_pinned_space = percpu_counter_compare(
4331 &data_sinfo->total_bytes_pinned,
4332 used + bytes - data_sinfo->total_bytes);
4333 spin_unlock(&data_sinfo->lock);
4334
4335 /* commit the current transaction and try again */
4336 commit_trans:
4337 if (need_commit) {
4338 need_commit--;
4339
4340 if (need_commit > 0) {
4341 btrfs_start_delalloc_roots(fs_info, -1);
4342 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4343 (u64)-1);
4344 }
4345
4346 trans = btrfs_join_transaction(root);
4347 if (IS_ERR(trans))
4348 return PTR_ERR(trans);
4349 if (have_pinned_space >= 0 ||
4350 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4351 &trans->transaction->flags) ||
4352 need_commit > 0) {
4353 ret = btrfs_commit_transaction(trans);
4354 if (ret)
4355 return ret;
4356 /*
4357 * The cleaner kthread might still be doing iput
4358 * operations. Wait for it to finish so that
4359 * more space is released.
4360 */
4361 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4362 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4363 goto again;
4364 } else {
4365 btrfs_end_transaction(trans);
4366 }
4367 }
4368
4369 trace_btrfs_space_reservation(fs_info,
4370 "space_info:enospc",
4371 data_sinfo->flags, bytes, 1);
4372 return -ENOSPC;
4373 }
4374 data_sinfo->bytes_may_use += bytes;
4375 trace_btrfs_space_reservation(fs_info, "space_info",
4376 data_sinfo->flags, bytes, 1);
4377 spin_unlock(&data_sinfo->lock);
4378
4379 return ret;
4380 }
4381
4382 int btrfs_check_data_free_space(struct inode *inode,
4383 struct extent_changeset **reserved, u64 start, u64 len)
4384 {
4385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4386 int ret;
4387
4388 /* align the range */
4389 len = round_up(start + len, fs_info->sectorsize) -
4390 round_down(start, fs_info->sectorsize);
4391 start = round_down(start, fs_info->sectorsize);
4392
4393 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4394 if (ret < 0)
4395 return ret;
4396
4397 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4398 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4399 if (ret < 0)
4400 btrfs_free_reserved_data_space_noquota(inode, start, len);
4401 else
4402 ret = 0;
4403 return ret;
4404 }
4405
4406 /*
4407 * Called if we need to clear a data reservation for this inode
4408 * Normally in a error case.
4409 *
4410 * This one will *NOT* use accurate qgroup reserved space API, just for case
4411 * which we can't sleep and is sure it won't affect qgroup reserved space.
4412 * Like clear_bit_hook().
4413 */
4414 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4415 u64 len)
4416 {
4417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4418 struct btrfs_space_info *data_sinfo;
4419
4420 /* Make sure the range is aligned to sectorsize */
4421 len = round_up(start + len, fs_info->sectorsize) -
4422 round_down(start, fs_info->sectorsize);
4423 start = round_down(start, fs_info->sectorsize);
4424
4425 data_sinfo = fs_info->data_sinfo;
4426 spin_lock(&data_sinfo->lock);
4427 if (WARN_ON(data_sinfo->bytes_may_use < len))
4428 data_sinfo->bytes_may_use = 0;
4429 else
4430 data_sinfo->bytes_may_use -= len;
4431 trace_btrfs_space_reservation(fs_info, "space_info",
4432 data_sinfo->flags, len, 0);
4433 spin_unlock(&data_sinfo->lock);
4434 }
4435
4436 /*
4437 * Called if we need to clear a data reservation for this inode
4438 * Normally in a error case.
4439 *
4440 * This one will handle the per-inode data rsv map for accurate reserved
4441 * space framework.
4442 */
4443 void btrfs_free_reserved_data_space(struct inode *inode,
4444 struct extent_changeset *reserved, u64 start, u64 len)
4445 {
4446 struct btrfs_root *root = BTRFS_I(inode)->root;
4447
4448 /* Make sure the range is aligned to sectorsize */
4449 len = round_up(start + len, root->fs_info->sectorsize) -
4450 round_down(start, root->fs_info->sectorsize);
4451 start = round_down(start, root->fs_info->sectorsize);
4452
4453 btrfs_free_reserved_data_space_noquota(inode, start, len);
4454 btrfs_qgroup_free_data(inode, reserved, start, len);
4455 }
4456
4457 static void force_metadata_allocation(struct btrfs_fs_info *info)
4458 {
4459 struct list_head *head = &info->space_info;
4460 struct btrfs_space_info *found;
4461
4462 rcu_read_lock();
4463 list_for_each_entry_rcu(found, head, list) {
4464 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4465 found->force_alloc = CHUNK_ALLOC_FORCE;
4466 }
4467 rcu_read_unlock();
4468 }
4469
4470 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4471 {
4472 return (global->size << 1);
4473 }
4474
4475 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4476 struct btrfs_space_info *sinfo, int force)
4477 {
4478 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4479 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4480 u64 thresh;
4481
4482 if (force == CHUNK_ALLOC_FORCE)
4483 return 1;
4484
4485 /*
4486 * We need to take into account the global rsv because for all intents
4487 * and purposes it's used space. Don't worry about locking the
4488 * global_rsv, it doesn't change except when the transaction commits.
4489 */
4490 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4491 bytes_used += calc_global_rsv_need_space(global_rsv);
4492
4493 /*
4494 * in limited mode, we want to have some free space up to
4495 * about 1% of the FS size.
4496 */
4497 if (force == CHUNK_ALLOC_LIMITED) {
4498 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4499 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4500
4501 if (sinfo->total_bytes - bytes_used < thresh)
4502 return 1;
4503 }
4504
4505 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4506 return 0;
4507 return 1;
4508 }
4509
4510 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4511 {
4512 u64 num_dev;
4513
4514 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4515 BTRFS_BLOCK_GROUP_RAID0 |
4516 BTRFS_BLOCK_GROUP_RAID5 |
4517 BTRFS_BLOCK_GROUP_RAID6))
4518 num_dev = fs_info->fs_devices->rw_devices;
4519 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4520 num_dev = 2;
4521 else
4522 num_dev = 1; /* DUP or single */
4523
4524 return num_dev;
4525 }
4526
4527 /*
4528 * If @is_allocation is true, reserve space in the system space info necessary
4529 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4530 * removing a chunk.
4531 */
4532 void check_system_chunk(struct btrfs_trans_handle *trans,
4533 struct btrfs_fs_info *fs_info, u64 type)
4534 {
4535 struct btrfs_space_info *info;
4536 u64 left;
4537 u64 thresh;
4538 int ret = 0;
4539 u64 num_devs;
4540
4541 /*
4542 * Needed because we can end up allocating a system chunk and for an
4543 * atomic and race free space reservation in the chunk block reserve.
4544 */
4545 lockdep_assert_held(&fs_info->chunk_mutex);
4546
4547 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4548 spin_lock(&info->lock);
4549 left = info->total_bytes - btrfs_space_info_used(info, true);
4550 spin_unlock(&info->lock);
4551
4552 num_devs = get_profile_num_devs(fs_info, type);
4553
4554 /* num_devs device items to update and 1 chunk item to add or remove */
4555 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4556 btrfs_calc_trans_metadata_size(fs_info, 1);
4557
4558 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4560 left, thresh, type);
4561 dump_space_info(fs_info, info, 0, 0);
4562 }
4563
4564 if (left < thresh) {
4565 u64 flags = btrfs_system_alloc_profile(fs_info);
4566
4567 /*
4568 * Ignore failure to create system chunk. We might end up not
4569 * needing it, as we might not need to COW all nodes/leafs from
4570 * the paths we visit in the chunk tree (they were already COWed
4571 * or created in the current transaction for example).
4572 */
4573 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4574 }
4575
4576 if (!ret) {
4577 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4578 &fs_info->chunk_block_rsv,
4579 thresh, BTRFS_RESERVE_NO_FLUSH);
4580 if (!ret)
4581 trans->chunk_bytes_reserved += thresh;
4582 }
4583 }
4584
4585 /*
4586 * If force is CHUNK_ALLOC_FORCE:
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4589 * If force is NOT CHUNK_ALLOC_FORCE:
4590 * - return 0 if it doesn't need to allocate a new chunk,
4591 * - return 1 if it successfully allocates a chunk,
4592 * - return errors including -ENOSPC otherwise.
4593 */
4594 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4595 struct btrfs_fs_info *fs_info, u64 flags, int force)
4596 {
4597 struct btrfs_space_info *space_info;
4598 int wait_for_alloc = 0;
4599 int ret = 0;
4600
4601 /* Don't re-enter if we're already allocating a chunk */
4602 if (trans->allocating_chunk)
4603 return -ENOSPC;
4604
4605 space_info = __find_space_info(fs_info, flags);
4606 ASSERT(space_info);
4607
4608 again:
4609 spin_lock(&space_info->lock);
4610 if (force < space_info->force_alloc)
4611 force = space_info->force_alloc;
4612 if (space_info->full) {
4613 if (should_alloc_chunk(fs_info, space_info, force))
4614 ret = -ENOSPC;
4615 else
4616 ret = 0;
4617 spin_unlock(&space_info->lock);
4618 return ret;
4619 }
4620
4621 if (!should_alloc_chunk(fs_info, space_info, force)) {
4622 spin_unlock(&space_info->lock);
4623 return 0;
4624 } else if (space_info->chunk_alloc) {
4625 wait_for_alloc = 1;
4626 } else {
4627 space_info->chunk_alloc = 1;
4628 }
4629
4630 spin_unlock(&space_info->lock);
4631
4632 mutex_lock(&fs_info->chunk_mutex);
4633
4634 /*
4635 * The chunk_mutex is held throughout the entirety of a chunk
4636 * allocation, so once we've acquired the chunk_mutex we know that the
4637 * other guy is done and we need to recheck and see if we should
4638 * allocate.
4639 */
4640 if (wait_for_alloc) {
4641 mutex_unlock(&fs_info->chunk_mutex);
4642 wait_for_alloc = 0;
4643 cond_resched();
4644 goto again;
4645 }
4646
4647 trans->allocating_chunk = true;
4648
4649 /*
4650 * If we have mixed data/metadata chunks we want to make sure we keep
4651 * allocating mixed chunks instead of individual chunks.
4652 */
4653 if (btrfs_mixed_space_info(space_info))
4654 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4655
4656 /*
4657 * if we're doing a data chunk, go ahead and make sure that
4658 * we keep a reasonable number of metadata chunks allocated in the
4659 * FS as well.
4660 */
4661 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4662 fs_info->data_chunk_allocations++;
4663 if (!(fs_info->data_chunk_allocations %
4664 fs_info->metadata_ratio))
4665 force_metadata_allocation(fs_info);
4666 }
4667
4668 /*
4669 * Check if we have enough space in SYSTEM chunk because we may need
4670 * to update devices.
4671 */
4672 check_system_chunk(trans, fs_info, flags);
4673
4674 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4675 trans->allocating_chunk = false;
4676
4677 spin_lock(&space_info->lock);
4678 if (ret < 0) {
4679 if (ret == -ENOSPC)
4680 space_info->full = 1;
4681 else
4682 goto out;
4683 } else {
4684 ret = 1;
4685 }
4686
4687 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4688 out:
4689 space_info->chunk_alloc = 0;
4690 spin_unlock(&space_info->lock);
4691 mutex_unlock(&fs_info->chunk_mutex);
4692 /*
4693 * When we allocate a new chunk we reserve space in the chunk block
4694 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4695 * add new nodes/leafs to it if we end up needing to do it when
4696 * inserting the chunk item and updating device items as part of the
4697 * second phase of chunk allocation, performed by
4698 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4699 * large number of new block groups to create in our transaction
4700 * handle's new_bgs list to avoid exhausting the chunk block reserve
4701 * in extreme cases - like having a single transaction create many new
4702 * block groups when starting to write out the free space caches of all
4703 * the block groups that were made dirty during the lifetime of the
4704 * transaction.
4705 */
4706 if (trans->can_flush_pending_bgs &&
4707 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4708 btrfs_create_pending_block_groups(trans);
4709 btrfs_trans_release_chunk_metadata(trans);
4710 }
4711 return ret;
4712 }
4713
4714 static int can_overcommit(struct btrfs_fs_info *fs_info,
4715 struct btrfs_space_info *space_info, u64 bytes,
4716 enum btrfs_reserve_flush_enum flush,
4717 bool system_chunk)
4718 {
4719 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4720 u64 profile;
4721 u64 space_size;
4722 u64 avail;
4723 u64 used;
4724
4725 /* Don't overcommit when in mixed mode. */
4726 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4727 return 0;
4728
4729 if (system_chunk)
4730 profile = btrfs_system_alloc_profile(fs_info);
4731 else
4732 profile = btrfs_metadata_alloc_profile(fs_info);
4733
4734 used = btrfs_space_info_used(space_info, false);
4735
4736 /*
4737 * We only want to allow over committing if we have lots of actual space
4738 * free, but if we don't have enough space to handle the global reserve
4739 * space then we could end up having a real enospc problem when trying
4740 * to allocate a chunk or some other such important allocation.
4741 */
4742 spin_lock(&global_rsv->lock);
4743 space_size = calc_global_rsv_need_space(global_rsv);
4744 spin_unlock(&global_rsv->lock);
4745 if (used + space_size >= space_info->total_bytes)
4746 return 0;
4747
4748 used += space_info->bytes_may_use;
4749
4750 avail = atomic64_read(&fs_info->free_chunk_space);
4751
4752 /*
4753 * If we have dup, raid1 or raid10 then only half of the free
4754 * space is actually useable. For raid56, the space info used
4755 * doesn't include the parity drive, so we don't have to
4756 * change the math
4757 */
4758 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4759 BTRFS_BLOCK_GROUP_RAID1 |
4760 BTRFS_BLOCK_GROUP_RAID10))
4761 avail >>= 1;
4762
4763 /*
4764 * If we aren't flushing all things, let us overcommit up to
4765 * 1/2th of the space. If we can flush, don't let us overcommit
4766 * too much, let it overcommit up to 1/8 of the space.
4767 */
4768 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4769 avail >>= 3;
4770 else
4771 avail >>= 1;
4772
4773 if (used + bytes < space_info->total_bytes + avail)
4774 return 1;
4775 return 0;
4776 }
4777
4778 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4779 unsigned long nr_pages, int nr_items)
4780 {
4781 struct super_block *sb = fs_info->sb;
4782
4783 if (down_read_trylock(&sb->s_umount)) {
4784 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4785 up_read(&sb->s_umount);
4786 } else {
4787 /*
4788 * We needn't worry the filesystem going from r/w to r/o though
4789 * we don't acquire ->s_umount mutex, because the filesystem
4790 * should guarantee the delalloc inodes list be empty after
4791 * the filesystem is readonly(all dirty pages are written to
4792 * the disk).
4793 */
4794 btrfs_start_delalloc_roots(fs_info, nr_items);
4795 if (!current->journal_info)
4796 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4797 }
4798 }
4799
4800 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4801 u64 to_reclaim)
4802 {
4803 u64 bytes;
4804 u64 nr;
4805
4806 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4807 nr = div64_u64(to_reclaim, bytes);
4808 if (!nr)
4809 nr = 1;
4810 return nr;
4811 }
4812
4813 #define EXTENT_SIZE_PER_ITEM SZ_256K
4814
4815 /*
4816 * shrink metadata reservation for delalloc
4817 */
4818 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4819 u64 orig, bool wait_ordered)
4820 {
4821 struct btrfs_space_info *space_info;
4822 struct btrfs_trans_handle *trans;
4823 u64 delalloc_bytes;
4824 u64 max_reclaim;
4825 u64 items;
4826 long time_left;
4827 unsigned long nr_pages;
4828 int loops;
4829
4830 /* Calc the number of the pages we need flush for space reservation */
4831 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4832 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4833
4834 trans = (struct btrfs_trans_handle *)current->journal_info;
4835 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4836
4837 delalloc_bytes = percpu_counter_sum_positive(
4838 &fs_info->delalloc_bytes);
4839 if (delalloc_bytes == 0) {
4840 if (trans)
4841 return;
4842 if (wait_ordered)
4843 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4844 return;
4845 }
4846
4847 loops = 0;
4848 while (delalloc_bytes && loops < 3) {
4849 max_reclaim = min(delalloc_bytes, to_reclaim);
4850 nr_pages = max_reclaim >> PAGE_SHIFT;
4851 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4852 /*
4853 * We need to wait for the async pages to actually start before
4854 * we do anything.
4855 */
4856 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4857 if (!max_reclaim)
4858 goto skip_async;
4859
4860 if (max_reclaim <= nr_pages)
4861 max_reclaim = 0;
4862 else
4863 max_reclaim -= nr_pages;
4864
4865 wait_event(fs_info->async_submit_wait,
4866 atomic_read(&fs_info->async_delalloc_pages) <=
4867 (int)max_reclaim);
4868 skip_async:
4869 spin_lock(&space_info->lock);
4870 if (list_empty(&space_info->tickets) &&
4871 list_empty(&space_info->priority_tickets)) {
4872 spin_unlock(&space_info->lock);
4873 break;
4874 }
4875 spin_unlock(&space_info->lock);
4876
4877 loops++;
4878 if (wait_ordered && !trans) {
4879 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4880 } else {
4881 time_left = schedule_timeout_killable(1);
4882 if (time_left)
4883 break;
4884 }
4885 delalloc_bytes = percpu_counter_sum_positive(
4886 &fs_info->delalloc_bytes);
4887 }
4888 }
4889
4890 struct reserve_ticket {
4891 u64 bytes;
4892 int error;
4893 struct list_head list;
4894 wait_queue_head_t wait;
4895 };
4896
4897 /**
4898 * maybe_commit_transaction - possibly commit the transaction if its ok to
4899 * @root - the root we're allocating for
4900 * @bytes - the number of bytes we want to reserve
4901 * @force - force the commit
4902 *
4903 * This will check to make sure that committing the transaction will actually
4904 * get us somewhere and then commit the transaction if it does. Otherwise it
4905 * will return -ENOSPC.
4906 */
4907 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4908 struct btrfs_space_info *space_info)
4909 {
4910 struct reserve_ticket *ticket = NULL;
4911 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4912 struct btrfs_trans_handle *trans;
4913 u64 bytes;
4914
4915 trans = (struct btrfs_trans_handle *)current->journal_info;
4916 if (trans)
4917 return -EAGAIN;
4918
4919 spin_lock(&space_info->lock);
4920 if (!list_empty(&space_info->priority_tickets))
4921 ticket = list_first_entry(&space_info->priority_tickets,
4922 struct reserve_ticket, list);
4923 else if (!list_empty(&space_info->tickets))
4924 ticket = list_first_entry(&space_info->tickets,
4925 struct reserve_ticket, list);
4926 bytes = (ticket) ? ticket->bytes : 0;
4927 spin_unlock(&space_info->lock);
4928
4929 if (!bytes)
4930 return 0;
4931
4932 /* See if there is enough pinned space to make this reservation */
4933 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4934 bytes) >= 0)
4935 goto commit;
4936
4937 /*
4938 * See if there is some space in the delayed insertion reservation for
4939 * this reservation.
4940 */
4941 if (space_info != delayed_rsv->space_info)
4942 return -ENOSPC;
4943
4944 spin_lock(&delayed_rsv->lock);
4945 if (delayed_rsv->size > bytes)
4946 bytes = 0;
4947 else
4948 bytes -= delayed_rsv->size;
4949 spin_unlock(&delayed_rsv->lock);
4950
4951 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4952 bytes) < 0) {
4953 return -ENOSPC;
4954 }
4955
4956 commit:
4957 trans = btrfs_join_transaction(fs_info->extent_root);
4958 if (IS_ERR(trans))
4959 return -ENOSPC;
4960
4961 return btrfs_commit_transaction(trans);
4962 }
4963
4964 /*
4965 * Try to flush some data based on policy set by @state. This is only advisory
4966 * and may fail for various reasons. The caller is supposed to examine the
4967 * state of @space_info to detect the outcome.
4968 */
4969 static void flush_space(struct btrfs_fs_info *fs_info,
4970 struct btrfs_space_info *space_info, u64 num_bytes,
4971 int state)
4972 {
4973 struct btrfs_root *root = fs_info->extent_root;
4974 struct btrfs_trans_handle *trans;
4975 int nr;
4976 int ret = 0;
4977
4978 switch (state) {
4979 case FLUSH_DELAYED_ITEMS_NR:
4980 case FLUSH_DELAYED_ITEMS:
4981 if (state == FLUSH_DELAYED_ITEMS_NR)
4982 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4983 else
4984 nr = -1;
4985
4986 trans = btrfs_join_transaction(root);
4987 if (IS_ERR(trans)) {
4988 ret = PTR_ERR(trans);
4989 break;
4990 }
4991 ret = btrfs_run_delayed_items_nr(trans, nr);
4992 btrfs_end_transaction(trans);
4993 break;
4994 case FLUSH_DELALLOC:
4995 case FLUSH_DELALLOC_WAIT:
4996 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4997 state == FLUSH_DELALLOC_WAIT);
4998 break;
4999 case ALLOC_CHUNK:
5000 trans = btrfs_join_transaction(root);
5001 if (IS_ERR(trans)) {
5002 ret = PTR_ERR(trans);
5003 break;
5004 }
5005 ret = do_chunk_alloc(trans, fs_info,
5006 btrfs_metadata_alloc_profile(fs_info),
5007 CHUNK_ALLOC_NO_FORCE);
5008 btrfs_end_transaction(trans);
5009 if (ret > 0 || ret == -ENOSPC)
5010 ret = 0;
5011 break;
5012 case COMMIT_TRANS:
5013 ret = may_commit_transaction(fs_info, space_info);
5014 break;
5015 default:
5016 ret = -ENOSPC;
5017 break;
5018 }
5019
5020 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5021 ret);
5022 return;
5023 }
5024
5025 static inline u64
5026 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5027 struct btrfs_space_info *space_info,
5028 bool system_chunk)
5029 {
5030 struct reserve_ticket *ticket;
5031 u64 used;
5032 u64 expected;
5033 u64 to_reclaim = 0;
5034
5035 list_for_each_entry(ticket, &space_info->tickets, list)
5036 to_reclaim += ticket->bytes;
5037 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5038 to_reclaim += ticket->bytes;
5039 if (to_reclaim)
5040 return to_reclaim;
5041
5042 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5043 if (can_overcommit(fs_info, space_info, to_reclaim,
5044 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5045 return 0;
5046
5047 used = btrfs_space_info_used(space_info, true);
5048
5049 if (can_overcommit(fs_info, space_info, SZ_1M,
5050 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5051 expected = div_factor_fine(space_info->total_bytes, 95);
5052 else
5053 expected = div_factor_fine(space_info->total_bytes, 90);
5054
5055 if (used > expected)
5056 to_reclaim = used - expected;
5057 else
5058 to_reclaim = 0;
5059 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5060 space_info->bytes_reserved);
5061 return to_reclaim;
5062 }
5063
5064 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5065 struct btrfs_space_info *space_info,
5066 u64 used, bool system_chunk)
5067 {
5068 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5069
5070 /* If we're just plain full then async reclaim just slows us down. */
5071 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5072 return 0;
5073
5074 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5075 system_chunk))
5076 return 0;
5077
5078 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5079 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5080 }
5081
5082 static void wake_all_tickets(struct list_head *head)
5083 {
5084 struct reserve_ticket *ticket;
5085
5086 while (!list_empty(head)) {
5087 ticket = list_first_entry(head, struct reserve_ticket, list);
5088 list_del_init(&ticket->list);
5089 ticket->error = -ENOSPC;
5090 wake_up(&ticket->wait);
5091 }
5092 }
5093
5094 /*
5095 * This is for normal flushers, we can wait all goddamned day if we want to. We
5096 * will loop and continuously try to flush as long as we are making progress.
5097 * We count progress as clearing off tickets each time we have to loop.
5098 */
5099 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5100 {
5101 struct btrfs_fs_info *fs_info;
5102 struct btrfs_space_info *space_info;
5103 u64 to_reclaim;
5104 int flush_state;
5105 int commit_cycles = 0;
5106 u64 last_tickets_id;
5107
5108 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5109 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5110
5111 spin_lock(&space_info->lock);
5112 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5113 false);
5114 if (!to_reclaim) {
5115 space_info->flush = 0;
5116 spin_unlock(&space_info->lock);
5117 return;
5118 }
5119 last_tickets_id = space_info->tickets_id;
5120 spin_unlock(&space_info->lock);
5121
5122 flush_state = FLUSH_DELAYED_ITEMS_NR;
5123 do {
5124 flush_space(fs_info, space_info, to_reclaim, flush_state);
5125 spin_lock(&space_info->lock);
5126 if (list_empty(&space_info->tickets)) {
5127 space_info->flush = 0;
5128 spin_unlock(&space_info->lock);
5129 return;
5130 }
5131 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5132 space_info,
5133 false);
5134 if (last_tickets_id == space_info->tickets_id) {
5135 flush_state++;
5136 } else {
5137 last_tickets_id = space_info->tickets_id;
5138 flush_state = FLUSH_DELAYED_ITEMS_NR;
5139 if (commit_cycles)
5140 commit_cycles--;
5141 }
5142
5143 if (flush_state > COMMIT_TRANS) {
5144 commit_cycles++;
5145 if (commit_cycles > 2) {
5146 wake_all_tickets(&space_info->tickets);
5147 space_info->flush = 0;
5148 } else {
5149 flush_state = FLUSH_DELAYED_ITEMS_NR;
5150 }
5151 }
5152 spin_unlock(&space_info->lock);
5153 } while (flush_state <= COMMIT_TRANS);
5154 }
5155
5156 void btrfs_init_async_reclaim_work(struct work_struct *work)
5157 {
5158 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5159 }
5160
5161 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5162 struct btrfs_space_info *space_info,
5163 struct reserve_ticket *ticket)
5164 {
5165 u64 to_reclaim;
5166 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5167
5168 spin_lock(&space_info->lock);
5169 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5170 false);
5171 if (!to_reclaim) {
5172 spin_unlock(&space_info->lock);
5173 return;
5174 }
5175 spin_unlock(&space_info->lock);
5176
5177 do {
5178 flush_space(fs_info, space_info, to_reclaim, flush_state);
5179 flush_state++;
5180 spin_lock(&space_info->lock);
5181 if (ticket->bytes == 0) {
5182 spin_unlock(&space_info->lock);
5183 return;
5184 }
5185 spin_unlock(&space_info->lock);
5186
5187 /*
5188 * Priority flushers can't wait on delalloc without
5189 * deadlocking.
5190 */
5191 if (flush_state == FLUSH_DELALLOC ||
5192 flush_state == FLUSH_DELALLOC_WAIT)
5193 flush_state = ALLOC_CHUNK;
5194 } while (flush_state < COMMIT_TRANS);
5195 }
5196
5197 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5198 struct btrfs_space_info *space_info,
5199 struct reserve_ticket *ticket, u64 orig_bytes)
5200
5201 {
5202 DEFINE_WAIT(wait);
5203 int ret = 0;
5204
5205 spin_lock(&space_info->lock);
5206 while (ticket->bytes > 0 && ticket->error == 0) {
5207 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5208 if (ret) {
5209 ret = -EINTR;
5210 break;
5211 }
5212 spin_unlock(&space_info->lock);
5213
5214 schedule();
5215
5216 finish_wait(&ticket->wait, &wait);
5217 spin_lock(&space_info->lock);
5218 }
5219 if (!ret)
5220 ret = ticket->error;
5221 if (!list_empty(&ticket->list))
5222 list_del_init(&ticket->list);
5223 if (ticket->bytes && ticket->bytes < orig_bytes) {
5224 u64 num_bytes = orig_bytes - ticket->bytes;
5225 space_info->bytes_may_use -= num_bytes;
5226 trace_btrfs_space_reservation(fs_info, "space_info",
5227 space_info->flags, num_bytes, 0);
5228 }
5229 spin_unlock(&space_info->lock);
5230
5231 return ret;
5232 }
5233
5234 /**
5235 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5236 * @root - the root we're allocating for
5237 * @space_info - the space info we want to allocate from
5238 * @orig_bytes - the number of bytes we want
5239 * @flush - whether or not we can flush to make our reservation
5240 *
5241 * This will reserve orig_bytes number of bytes from the space info associated
5242 * with the block_rsv. If there is not enough space it will make an attempt to
5243 * flush out space to make room. It will do this by flushing delalloc if
5244 * possible or committing the transaction. If flush is 0 then no attempts to
5245 * regain reservations will be made and this will fail if there is not enough
5246 * space already.
5247 */
5248 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5249 struct btrfs_space_info *space_info,
5250 u64 orig_bytes,
5251 enum btrfs_reserve_flush_enum flush,
5252 bool system_chunk)
5253 {
5254 struct reserve_ticket ticket;
5255 u64 used;
5256 int ret = 0;
5257
5258 ASSERT(orig_bytes);
5259 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5260
5261 spin_lock(&space_info->lock);
5262 ret = -ENOSPC;
5263 used = btrfs_space_info_used(space_info, true);
5264
5265 /*
5266 * If we have enough space then hooray, make our reservation and carry
5267 * on. If not see if we can overcommit, and if we can, hooray carry on.
5268 * If not things get more complicated.
5269 */
5270 if (used + orig_bytes <= space_info->total_bytes) {
5271 space_info->bytes_may_use += orig_bytes;
5272 trace_btrfs_space_reservation(fs_info, "space_info",
5273 space_info->flags, orig_bytes, 1);
5274 ret = 0;
5275 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5276 system_chunk)) {
5277 space_info->bytes_may_use += orig_bytes;
5278 trace_btrfs_space_reservation(fs_info, "space_info",
5279 space_info->flags, orig_bytes, 1);
5280 ret = 0;
5281 }
5282
5283 /*
5284 * If we couldn't make a reservation then setup our reservation ticket
5285 * and kick the async worker if it's not already running.
5286 *
5287 * If we are a priority flusher then we just need to add our ticket to
5288 * the list and we will do our own flushing further down.
5289 */
5290 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5291 ticket.bytes = orig_bytes;
5292 ticket.error = 0;
5293 init_waitqueue_head(&ticket.wait);
5294 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5295 list_add_tail(&ticket.list, &space_info->tickets);
5296 if (!space_info->flush) {
5297 space_info->flush = 1;
5298 trace_btrfs_trigger_flush(fs_info,
5299 space_info->flags,
5300 orig_bytes, flush,
5301 "enospc");
5302 queue_work(system_unbound_wq,
5303 &fs_info->async_reclaim_work);
5304 }
5305 } else {
5306 list_add_tail(&ticket.list,
5307 &space_info->priority_tickets);
5308 }
5309 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5310 used += orig_bytes;
5311 /*
5312 * We will do the space reservation dance during log replay,
5313 * which means we won't have fs_info->fs_root set, so don't do
5314 * the async reclaim as we will panic.
5315 */
5316 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5317 need_do_async_reclaim(fs_info, space_info,
5318 used, system_chunk) &&
5319 !work_busy(&fs_info->async_reclaim_work)) {
5320 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5321 orig_bytes, flush, "preempt");
5322 queue_work(system_unbound_wq,
5323 &fs_info->async_reclaim_work);
5324 }
5325 }
5326 spin_unlock(&space_info->lock);
5327 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5328 return ret;
5329
5330 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5331 return wait_reserve_ticket(fs_info, space_info, &ticket,
5332 orig_bytes);
5333
5334 ret = 0;
5335 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5336 spin_lock(&space_info->lock);
5337 if (ticket.bytes) {
5338 if (ticket.bytes < orig_bytes) {
5339 u64 num_bytes = orig_bytes - ticket.bytes;
5340 space_info->bytes_may_use -= num_bytes;
5341 trace_btrfs_space_reservation(fs_info, "space_info",
5342 space_info->flags,
5343 num_bytes, 0);
5344
5345 }
5346 list_del_init(&ticket.list);
5347 ret = -ENOSPC;
5348 }
5349 spin_unlock(&space_info->lock);
5350 ASSERT(list_empty(&ticket.list));
5351 return ret;
5352 }
5353
5354 /**
5355 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5356 * @root - the root we're allocating for
5357 * @block_rsv - the block_rsv we're allocating for
5358 * @orig_bytes - the number of bytes we want
5359 * @flush - whether or not we can flush to make our reservation
5360 *
5361 * This will reserve orgi_bytes number of bytes from the space info associated
5362 * with the block_rsv. If there is not enough space it will make an attempt to
5363 * flush out space to make room. It will do this by flushing delalloc if
5364 * possible or committing the transaction. If flush is 0 then no attempts to
5365 * regain reservations will be made and this will fail if there is not enough
5366 * space already.
5367 */
5368 static int reserve_metadata_bytes(struct btrfs_root *root,
5369 struct btrfs_block_rsv *block_rsv,
5370 u64 orig_bytes,
5371 enum btrfs_reserve_flush_enum flush)
5372 {
5373 struct btrfs_fs_info *fs_info = root->fs_info;
5374 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5375 int ret;
5376 bool system_chunk = (root == fs_info->chunk_root);
5377
5378 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5379 orig_bytes, flush, system_chunk);
5380 if (ret == -ENOSPC &&
5381 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5382 if (block_rsv != global_rsv &&
5383 !block_rsv_use_bytes(global_rsv, orig_bytes))
5384 ret = 0;
5385 }
5386 if (ret == -ENOSPC) {
5387 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5388 block_rsv->space_info->flags,
5389 orig_bytes, 1);
5390
5391 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5392 dump_space_info(fs_info, block_rsv->space_info,
5393 orig_bytes, 0);
5394 }
5395 return ret;
5396 }
5397
5398 static struct btrfs_block_rsv *get_block_rsv(
5399 const struct btrfs_trans_handle *trans,
5400 const struct btrfs_root *root)
5401 {
5402 struct btrfs_fs_info *fs_info = root->fs_info;
5403 struct btrfs_block_rsv *block_rsv = NULL;
5404
5405 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5406 (root == fs_info->csum_root && trans->adding_csums) ||
5407 (root == fs_info->uuid_root))
5408 block_rsv = trans->block_rsv;
5409
5410 if (!block_rsv)
5411 block_rsv = root->block_rsv;
5412
5413 if (!block_rsv)
5414 block_rsv = &fs_info->empty_block_rsv;
5415
5416 return block_rsv;
5417 }
5418
5419 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5420 u64 num_bytes)
5421 {
5422 int ret = -ENOSPC;
5423 spin_lock(&block_rsv->lock);
5424 if (block_rsv->reserved >= num_bytes) {
5425 block_rsv->reserved -= num_bytes;
5426 if (block_rsv->reserved < block_rsv->size)
5427 block_rsv->full = 0;
5428 ret = 0;
5429 }
5430 spin_unlock(&block_rsv->lock);
5431 return ret;
5432 }
5433
5434 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5435 u64 num_bytes, int update_size)
5436 {
5437 spin_lock(&block_rsv->lock);
5438 block_rsv->reserved += num_bytes;
5439 if (update_size)
5440 block_rsv->size += num_bytes;
5441 else if (block_rsv->reserved >= block_rsv->size)
5442 block_rsv->full = 1;
5443 spin_unlock(&block_rsv->lock);
5444 }
5445
5446 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5447 struct btrfs_block_rsv *dest, u64 num_bytes,
5448 int min_factor)
5449 {
5450 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5451 u64 min_bytes;
5452
5453 if (global_rsv->space_info != dest->space_info)
5454 return -ENOSPC;
5455
5456 spin_lock(&global_rsv->lock);
5457 min_bytes = div_factor(global_rsv->size, min_factor);
5458 if (global_rsv->reserved < min_bytes + num_bytes) {
5459 spin_unlock(&global_rsv->lock);
5460 return -ENOSPC;
5461 }
5462 global_rsv->reserved -= num_bytes;
5463 if (global_rsv->reserved < global_rsv->size)
5464 global_rsv->full = 0;
5465 spin_unlock(&global_rsv->lock);
5466
5467 block_rsv_add_bytes(dest, num_bytes, 1);
5468 return 0;
5469 }
5470
5471 /*
5472 * This is for space we already have accounted in space_info->bytes_may_use, so
5473 * basically when we're returning space from block_rsv's.
5474 */
5475 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5476 struct btrfs_space_info *space_info,
5477 u64 num_bytes)
5478 {
5479 struct reserve_ticket *ticket;
5480 struct list_head *head;
5481 u64 used;
5482 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5483 bool check_overcommit = false;
5484
5485 spin_lock(&space_info->lock);
5486 head = &space_info->priority_tickets;
5487
5488 /*
5489 * If we are over our limit then we need to check and see if we can
5490 * overcommit, and if we can't then we just need to free up our space
5491 * and not satisfy any requests.
5492 */
5493 used = btrfs_space_info_used(space_info, true);
5494 if (used - num_bytes >= space_info->total_bytes)
5495 check_overcommit = true;
5496 again:
5497 while (!list_empty(head) && num_bytes) {
5498 ticket = list_first_entry(head, struct reserve_ticket,
5499 list);
5500 /*
5501 * We use 0 bytes because this space is already reserved, so
5502 * adding the ticket space would be a double count.
5503 */
5504 if (check_overcommit &&
5505 !can_overcommit(fs_info, space_info, 0, flush, false))
5506 break;
5507 if (num_bytes >= ticket->bytes) {
5508 list_del_init(&ticket->list);
5509 num_bytes -= ticket->bytes;
5510 ticket->bytes = 0;
5511 space_info->tickets_id++;
5512 wake_up(&ticket->wait);
5513 } else {
5514 ticket->bytes -= num_bytes;
5515 num_bytes = 0;
5516 }
5517 }
5518
5519 if (num_bytes && head == &space_info->priority_tickets) {
5520 head = &space_info->tickets;
5521 flush = BTRFS_RESERVE_FLUSH_ALL;
5522 goto again;
5523 }
5524 space_info->bytes_may_use -= num_bytes;
5525 trace_btrfs_space_reservation(fs_info, "space_info",
5526 space_info->flags, num_bytes, 0);
5527 spin_unlock(&space_info->lock);
5528 }
5529
5530 /*
5531 * This is for newly allocated space that isn't accounted in
5532 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5533 * we use this helper.
5534 */
5535 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5536 struct btrfs_space_info *space_info,
5537 u64 num_bytes)
5538 {
5539 struct reserve_ticket *ticket;
5540 struct list_head *head = &space_info->priority_tickets;
5541
5542 again:
5543 while (!list_empty(head) && num_bytes) {
5544 ticket = list_first_entry(head, struct reserve_ticket,
5545 list);
5546 if (num_bytes >= ticket->bytes) {
5547 trace_btrfs_space_reservation(fs_info, "space_info",
5548 space_info->flags,
5549 ticket->bytes, 1);
5550 list_del_init(&ticket->list);
5551 num_bytes -= ticket->bytes;
5552 space_info->bytes_may_use += ticket->bytes;
5553 ticket->bytes = 0;
5554 space_info->tickets_id++;
5555 wake_up(&ticket->wait);
5556 } else {
5557 trace_btrfs_space_reservation(fs_info, "space_info",
5558 space_info->flags,
5559 num_bytes, 1);
5560 space_info->bytes_may_use += num_bytes;
5561 ticket->bytes -= num_bytes;
5562 num_bytes = 0;
5563 }
5564 }
5565
5566 if (num_bytes && head == &space_info->priority_tickets) {
5567 head = &space_info->tickets;
5568 goto again;
5569 }
5570 }
5571
5572 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5573 struct btrfs_block_rsv *block_rsv,
5574 struct btrfs_block_rsv *dest, u64 num_bytes,
5575 u64 *qgroup_to_release_ret)
5576 {
5577 struct btrfs_space_info *space_info = block_rsv->space_info;
5578 u64 qgroup_to_release = 0;
5579 u64 ret;
5580
5581 spin_lock(&block_rsv->lock);
5582 if (num_bytes == (u64)-1) {
5583 num_bytes = block_rsv->size;
5584 qgroup_to_release = block_rsv->qgroup_rsv_size;
5585 }
5586 block_rsv->size -= num_bytes;
5587 if (block_rsv->reserved >= block_rsv->size) {
5588 num_bytes = block_rsv->reserved - block_rsv->size;
5589 block_rsv->reserved = block_rsv->size;
5590 block_rsv->full = 1;
5591 } else {
5592 num_bytes = 0;
5593 }
5594 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5595 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5596 block_rsv->qgroup_rsv_size;
5597 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5598 } else {
5599 qgroup_to_release = 0;
5600 }
5601 spin_unlock(&block_rsv->lock);
5602
5603 ret = num_bytes;
5604 if (num_bytes > 0) {
5605 if (dest) {
5606 spin_lock(&dest->lock);
5607 if (!dest->full) {
5608 u64 bytes_to_add;
5609
5610 bytes_to_add = dest->size - dest->reserved;
5611 bytes_to_add = min(num_bytes, bytes_to_add);
5612 dest->reserved += bytes_to_add;
5613 if (dest->reserved >= dest->size)
5614 dest->full = 1;
5615 num_bytes -= bytes_to_add;
5616 }
5617 spin_unlock(&dest->lock);
5618 }
5619 if (num_bytes)
5620 space_info_add_old_bytes(fs_info, space_info,
5621 num_bytes);
5622 }
5623 if (qgroup_to_release_ret)
5624 *qgroup_to_release_ret = qgroup_to_release;
5625 return ret;
5626 }
5627
5628 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5629 struct btrfs_block_rsv *dst, u64 num_bytes,
5630 int update_size)
5631 {
5632 int ret;
5633
5634 ret = block_rsv_use_bytes(src, num_bytes);
5635 if (ret)
5636 return ret;
5637
5638 block_rsv_add_bytes(dst, num_bytes, update_size);
5639 return 0;
5640 }
5641
5642 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5643 {
5644 memset(rsv, 0, sizeof(*rsv));
5645 spin_lock_init(&rsv->lock);
5646 rsv->type = type;
5647 }
5648
5649 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5650 struct btrfs_block_rsv *rsv,
5651 unsigned short type)
5652 {
5653 btrfs_init_block_rsv(rsv, type);
5654 rsv->space_info = __find_space_info(fs_info,
5655 BTRFS_BLOCK_GROUP_METADATA);
5656 }
5657
5658 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5659 unsigned short type)
5660 {
5661 struct btrfs_block_rsv *block_rsv;
5662
5663 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5664 if (!block_rsv)
5665 return NULL;
5666
5667 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5668 return block_rsv;
5669 }
5670
5671 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5672 struct btrfs_block_rsv *rsv)
5673 {
5674 if (!rsv)
5675 return;
5676 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5677 kfree(rsv);
5678 }
5679
5680 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5681 {
5682 kfree(rsv);
5683 }
5684
5685 int btrfs_block_rsv_add(struct btrfs_root *root,
5686 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5687 enum btrfs_reserve_flush_enum flush)
5688 {
5689 int ret;
5690
5691 if (num_bytes == 0)
5692 return 0;
5693
5694 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5695 if (!ret) {
5696 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5697 return 0;
5698 }
5699
5700 return ret;
5701 }
5702
5703 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5704 {
5705 u64 num_bytes = 0;
5706 int ret = -ENOSPC;
5707
5708 if (!block_rsv)
5709 return 0;
5710
5711 spin_lock(&block_rsv->lock);
5712 num_bytes = div_factor(block_rsv->size, min_factor);
5713 if (block_rsv->reserved >= num_bytes)
5714 ret = 0;
5715 spin_unlock(&block_rsv->lock);
5716
5717 return ret;
5718 }
5719
5720 int btrfs_block_rsv_refill(struct btrfs_root *root,
5721 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5722 enum btrfs_reserve_flush_enum flush)
5723 {
5724 u64 num_bytes = 0;
5725 int ret = -ENOSPC;
5726
5727 if (!block_rsv)
5728 return 0;
5729
5730 spin_lock(&block_rsv->lock);
5731 num_bytes = min_reserved;
5732 if (block_rsv->reserved >= num_bytes)
5733 ret = 0;
5734 else
5735 num_bytes -= block_rsv->reserved;
5736 spin_unlock(&block_rsv->lock);
5737
5738 if (!ret)
5739 return 0;
5740
5741 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5742 if (!ret) {
5743 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5744 return 0;
5745 }
5746
5747 return ret;
5748 }
5749
5750 /**
5751 * btrfs_inode_rsv_refill - refill the inode block rsv.
5752 * @inode - the inode we are refilling.
5753 * @flush - the flusing restriction.
5754 *
5755 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5756 * block_rsv->size as the minimum size. We'll either refill the missing amount
5757 * or return if we already have enough space. This will also handle the resreve
5758 * tracepoint for the reserved amount.
5759 */
5760 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5761 enum btrfs_reserve_flush_enum flush)
5762 {
5763 struct btrfs_root *root = inode->root;
5764 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5765 u64 num_bytes = 0;
5766 u64 qgroup_num_bytes = 0;
5767 int ret = -ENOSPC;
5768
5769 spin_lock(&block_rsv->lock);
5770 if (block_rsv->reserved < block_rsv->size)
5771 num_bytes = block_rsv->size - block_rsv->reserved;
5772 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5773 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5774 block_rsv->qgroup_rsv_reserved;
5775 spin_unlock(&block_rsv->lock);
5776
5777 if (num_bytes == 0)
5778 return 0;
5779
5780 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5781 if (ret)
5782 return ret;
5783 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5784 if (!ret) {
5785 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5786 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5787 btrfs_ino(inode), num_bytes, 1);
5788
5789 /* Don't forget to increase qgroup_rsv_reserved */
5790 spin_lock(&block_rsv->lock);
5791 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5792 spin_unlock(&block_rsv->lock);
5793 } else
5794 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5795 return ret;
5796 }
5797
5798 /**
5799 * btrfs_inode_rsv_release - release any excessive reservation.
5800 * @inode - the inode we need to release from.
5801 * @qgroup_free - free or convert qgroup meta.
5802 * Unlike normal operation, qgroup meta reservation needs to know if we are
5803 * freeing qgroup reservation or just converting it into per-trans. Normally
5804 * @qgroup_free is true for error handling, and false for normal release.
5805 *
5806 * This is the same as btrfs_block_rsv_release, except that it handles the
5807 * tracepoint for the reservation.
5808 */
5809 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5810 {
5811 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5812 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5813 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5814 u64 released = 0;
5815 u64 qgroup_to_release = 0;
5816
5817 /*
5818 * Since we statically set the block_rsv->size we just want to say we
5819 * are releasing 0 bytes, and then we'll just get the reservation over
5820 * the size free'd.
5821 */
5822 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5823 &qgroup_to_release);
5824 if (released > 0)
5825 trace_btrfs_space_reservation(fs_info, "delalloc",
5826 btrfs_ino(inode), released, 0);
5827 if (qgroup_free)
5828 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5829 else
5830 btrfs_qgroup_convert_reserved_meta(inode->root,
5831 qgroup_to_release);
5832 }
5833
5834 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5835 struct btrfs_block_rsv *block_rsv,
5836 u64 num_bytes)
5837 {
5838 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5839
5840 if (global_rsv == block_rsv ||
5841 block_rsv->space_info != global_rsv->space_info)
5842 global_rsv = NULL;
5843 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5844 }
5845
5846 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5847 {
5848 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5849 struct btrfs_space_info *sinfo = block_rsv->space_info;
5850 u64 num_bytes;
5851
5852 /*
5853 * The global block rsv is based on the size of the extent tree, the
5854 * checksum tree and the root tree. If the fs is empty we want to set
5855 * it to a minimal amount for safety.
5856 */
5857 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5858 btrfs_root_used(&fs_info->csum_root->root_item) +
5859 btrfs_root_used(&fs_info->tree_root->root_item);
5860 num_bytes = max_t(u64, num_bytes, SZ_16M);
5861
5862 spin_lock(&sinfo->lock);
5863 spin_lock(&block_rsv->lock);
5864
5865 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5866
5867 if (block_rsv->reserved < block_rsv->size) {
5868 num_bytes = btrfs_space_info_used(sinfo, true);
5869 if (sinfo->total_bytes > num_bytes) {
5870 num_bytes = sinfo->total_bytes - num_bytes;
5871 num_bytes = min(num_bytes,
5872 block_rsv->size - block_rsv->reserved);
5873 block_rsv->reserved += num_bytes;
5874 sinfo->bytes_may_use += num_bytes;
5875 trace_btrfs_space_reservation(fs_info, "space_info",
5876 sinfo->flags, num_bytes,
5877 1);
5878 }
5879 } else if (block_rsv->reserved > block_rsv->size) {
5880 num_bytes = block_rsv->reserved - block_rsv->size;
5881 sinfo->bytes_may_use -= num_bytes;
5882 trace_btrfs_space_reservation(fs_info, "space_info",
5883 sinfo->flags, num_bytes, 0);
5884 block_rsv->reserved = block_rsv->size;
5885 }
5886
5887 if (block_rsv->reserved == block_rsv->size)
5888 block_rsv->full = 1;
5889 else
5890 block_rsv->full = 0;
5891
5892 spin_unlock(&block_rsv->lock);
5893 spin_unlock(&sinfo->lock);
5894 }
5895
5896 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5897 {
5898 struct btrfs_space_info *space_info;
5899
5900 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5901 fs_info->chunk_block_rsv.space_info = space_info;
5902
5903 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5904 fs_info->global_block_rsv.space_info = space_info;
5905 fs_info->trans_block_rsv.space_info = space_info;
5906 fs_info->empty_block_rsv.space_info = space_info;
5907 fs_info->delayed_block_rsv.space_info = space_info;
5908
5909 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5910 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5911 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5912 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5913 if (fs_info->quota_root)
5914 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5915 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5916
5917 update_global_block_rsv(fs_info);
5918 }
5919
5920 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5921 {
5922 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5923 (u64)-1, NULL);
5924 WARN_ON(fs_info->trans_block_rsv.size > 0);
5925 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5926 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5927 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5928 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5929 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5930 }
5931
5932
5933 /*
5934 * To be called after all the new block groups attached to the transaction
5935 * handle have been created (btrfs_create_pending_block_groups()).
5936 */
5937 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5938 {
5939 struct btrfs_fs_info *fs_info = trans->fs_info;
5940
5941 if (!trans->chunk_bytes_reserved)
5942 return;
5943
5944 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5945
5946 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5947 trans->chunk_bytes_reserved, NULL);
5948 trans->chunk_bytes_reserved = 0;
5949 }
5950
5951 /*
5952 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5953 * root: the root of the parent directory
5954 * rsv: block reservation
5955 * items: the number of items that we need do reservation
5956 * qgroup_reserved: used to return the reserved size in qgroup
5957 *
5958 * This function is used to reserve the space for snapshot/subvolume
5959 * creation and deletion. Those operations are different with the
5960 * common file/directory operations, they change two fs/file trees
5961 * and root tree, the number of items that the qgroup reserves is
5962 * different with the free space reservation. So we can not use
5963 * the space reservation mechanism in start_transaction().
5964 */
5965 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5966 struct btrfs_block_rsv *rsv,
5967 int items,
5968 bool use_global_rsv)
5969 {
5970 u64 num_bytes;
5971 int ret;
5972 struct btrfs_fs_info *fs_info = root->fs_info;
5973 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5974
5975 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5976 /* One for parent inode, two for dir entries */
5977 num_bytes = 3 * fs_info->nodesize;
5978 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
5979 if (ret)
5980 return ret;
5981 } else {
5982 num_bytes = 0;
5983 }
5984
5985 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5986 rsv->space_info = __find_space_info(fs_info,
5987 BTRFS_BLOCK_GROUP_METADATA);
5988 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5989 BTRFS_RESERVE_FLUSH_ALL);
5990
5991 if (ret == -ENOSPC && use_global_rsv)
5992 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5993
5994 if (ret && num_bytes)
5995 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
5996
5997 return ret;
5998 }
5999
6000 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6001 struct btrfs_block_rsv *rsv)
6002 {
6003 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6004 }
6005
6006 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6007 struct btrfs_inode *inode)
6008 {
6009 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6010 u64 reserve_size = 0;
6011 u64 qgroup_rsv_size = 0;
6012 u64 csum_leaves;
6013 unsigned outstanding_extents;
6014
6015 lockdep_assert_held(&inode->lock);
6016 outstanding_extents = inode->outstanding_extents;
6017 if (outstanding_extents)
6018 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6019 outstanding_extents + 1);
6020 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6021 inode->csum_bytes);
6022 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6023 csum_leaves);
6024 /*
6025 * For qgroup rsv, the calculation is very simple:
6026 * account one nodesize for each outstanding extent
6027 *
6028 * This is overestimating in most cases.
6029 */
6030 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6031
6032 spin_lock(&block_rsv->lock);
6033 block_rsv->size = reserve_size;
6034 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6035 spin_unlock(&block_rsv->lock);
6036 }
6037
6038 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6039 {
6040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6041 unsigned nr_extents;
6042 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6043 int ret = 0;
6044 bool delalloc_lock = true;
6045
6046 /* If we are a free space inode we need to not flush since we will be in
6047 * the middle of a transaction commit. We also don't need the delalloc
6048 * mutex since we won't race with anybody. We need this mostly to make
6049 * lockdep shut its filthy mouth.
6050 *
6051 * If we have a transaction open (can happen if we call truncate_block
6052 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6053 */
6054 if (btrfs_is_free_space_inode(inode)) {
6055 flush = BTRFS_RESERVE_NO_FLUSH;
6056 delalloc_lock = false;
6057 } else {
6058 if (current->journal_info)
6059 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6060
6061 if (btrfs_transaction_in_commit(fs_info))
6062 schedule_timeout(1);
6063 }
6064
6065 if (delalloc_lock)
6066 mutex_lock(&inode->delalloc_mutex);
6067
6068 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6069
6070 /* Add our new extents and calculate the new rsv size. */
6071 spin_lock(&inode->lock);
6072 nr_extents = count_max_extents(num_bytes);
6073 btrfs_mod_outstanding_extents(inode, nr_extents);
6074 inode->csum_bytes += num_bytes;
6075 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6076 spin_unlock(&inode->lock);
6077
6078 ret = btrfs_inode_rsv_refill(inode, flush);
6079 if (unlikely(ret))
6080 goto out_fail;
6081
6082 if (delalloc_lock)
6083 mutex_unlock(&inode->delalloc_mutex);
6084 return 0;
6085
6086 out_fail:
6087 spin_lock(&inode->lock);
6088 nr_extents = count_max_extents(num_bytes);
6089 btrfs_mod_outstanding_extents(inode, -nr_extents);
6090 inode->csum_bytes -= num_bytes;
6091 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6092 spin_unlock(&inode->lock);
6093
6094 btrfs_inode_rsv_release(inode, true);
6095 if (delalloc_lock)
6096 mutex_unlock(&inode->delalloc_mutex);
6097 return ret;
6098 }
6099
6100 /**
6101 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6102 * @inode: the inode to release the reservation for.
6103 * @num_bytes: the number of bytes we are releasing.
6104 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6105 *
6106 * This will release the metadata reservation for an inode. This can be called
6107 * once we complete IO for a given set of bytes to release their metadata
6108 * reservations, or on error for the same reason.
6109 */
6110 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6111 bool qgroup_free)
6112 {
6113 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6114
6115 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6116 spin_lock(&inode->lock);
6117 inode->csum_bytes -= num_bytes;
6118 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6119 spin_unlock(&inode->lock);
6120
6121 if (btrfs_is_testing(fs_info))
6122 return;
6123
6124 btrfs_inode_rsv_release(inode, qgroup_free);
6125 }
6126
6127 /**
6128 * btrfs_delalloc_release_extents - release our outstanding_extents
6129 * @inode: the inode to balance the reservation for.
6130 * @num_bytes: the number of bytes we originally reserved with
6131 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6132 *
6133 * When we reserve space we increase outstanding_extents for the extents we may
6134 * add. Once we've set the range as delalloc or created our ordered extents we
6135 * have outstanding_extents to track the real usage, so we use this to free our
6136 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6137 * with btrfs_delalloc_reserve_metadata.
6138 */
6139 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6140 bool qgroup_free)
6141 {
6142 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6143 unsigned num_extents;
6144
6145 spin_lock(&inode->lock);
6146 num_extents = count_max_extents(num_bytes);
6147 btrfs_mod_outstanding_extents(inode, -num_extents);
6148 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6149 spin_unlock(&inode->lock);
6150
6151 if (btrfs_is_testing(fs_info))
6152 return;
6153
6154 btrfs_inode_rsv_release(inode, qgroup_free);
6155 }
6156
6157 /**
6158 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6159 * delalloc
6160 * @inode: inode we're writing to
6161 * @start: start range we are writing to
6162 * @len: how long the range we are writing to
6163 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6164 * current reservation.
6165 *
6166 * This will do the following things
6167 *
6168 * o reserve space in data space info for num bytes
6169 * and reserve precious corresponding qgroup space
6170 * (Done in check_data_free_space)
6171 *
6172 * o reserve space for metadata space, based on the number of outstanding
6173 * extents and how much csums will be needed
6174 * also reserve metadata space in a per root over-reserve method.
6175 * o add to the inodes->delalloc_bytes
6176 * o add it to the fs_info's delalloc inodes list.
6177 * (Above 3 all done in delalloc_reserve_metadata)
6178 *
6179 * Return 0 for success
6180 * Return <0 for error(-ENOSPC or -EQUOT)
6181 */
6182 int btrfs_delalloc_reserve_space(struct inode *inode,
6183 struct extent_changeset **reserved, u64 start, u64 len)
6184 {
6185 int ret;
6186
6187 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6188 if (ret < 0)
6189 return ret;
6190 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6191 if (ret < 0)
6192 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6193 return ret;
6194 }
6195
6196 /**
6197 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6198 * @inode: inode we're releasing space for
6199 * @start: start position of the space already reserved
6200 * @len: the len of the space already reserved
6201 * @release_bytes: the len of the space we consumed or didn't use
6202 *
6203 * This function will release the metadata space that was not used and will
6204 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6205 * list if there are no delalloc bytes left.
6206 * Also it will handle the qgroup reserved space.
6207 */
6208 void btrfs_delalloc_release_space(struct inode *inode,
6209 struct extent_changeset *reserved,
6210 u64 start, u64 len, bool qgroup_free)
6211 {
6212 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6213 btrfs_free_reserved_data_space(inode, reserved, start, len);
6214 }
6215
6216 static int update_block_group(struct btrfs_trans_handle *trans,
6217 struct btrfs_fs_info *info, u64 bytenr,
6218 u64 num_bytes, int alloc)
6219 {
6220 struct btrfs_block_group_cache *cache = NULL;
6221 u64 total = num_bytes;
6222 u64 old_val;
6223 u64 byte_in_group;
6224 int factor;
6225
6226 /* block accounting for super block */
6227 spin_lock(&info->delalloc_root_lock);
6228 old_val = btrfs_super_bytes_used(info->super_copy);
6229 if (alloc)
6230 old_val += num_bytes;
6231 else
6232 old_val -= num_bytes;
6233 btrfs_set_super_bytes_used(info->super_copy, old_val);
6234 spin_unlock(&info->delalloc_root_lock);
6235
6236 while (total) {
6237 cache = btrfs_lookup_block_group(info, bytenr);
6238 if (!cache)
6239 return -ENOENT;
6240 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6241 BTRFS_BLOCK_GROUP_RAID1 |
6242 BTRFS_BLOCK_GROUP_RAID10))
6243 factor = 2;
6244 else
6245 factor = 1;
6246 /*
6247 * If this block group has free space cache written out, we
6248 * need to make sure to load it if we are removing space. This
6249 * is because we need the unpinning stage to actually add the
6250 * space back to the block group, otherwise we will leak space.
6251 */
6252 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6253 cache_block_group(cache, 1);
6254
6255 byte_in_group = bytenr - cache->key.objectid;
6256 WARN_ON(byte_in_group > cache->key.offset);
6257
6258 spin_lock(&cache->space_info->lock);
6259 spin_lock(&cache->lock);
6260
6261 if (btrfs_test_opt(info, SPACE_CACHE) &&
6262 cache->disk_cache_state < BTRFS_DC_CLEAR)
6263 cache->disk_cache_state = BTRFS_DC_CLEAR;
6264
6265 old_val = btrfs_block_group_used(&cache->item);
6266 num_bytes = min(total, cache->key.offset - byte_in_group);
6267 if (alloc) {
6268 old_val += num_bytes;
6269 btrfs_set_block_group_used(&cache->item, old_val);
6270 cache->reserved -= num_bytes;
6271 cache->space_info->bytes_reserved -= num_bytes;
6272 cache->space_info->bytes_used += num_bytes;
6273 cache->space_info->disk_used += num_bytes * factor;
6274 spin_unlock(&cache->lock);
6275 spin_unlock(&cache->space_info->lock);
6276 } else {
6277 old_val -= num_bytes;
6278 btrfs_set_block_group_used(&cache->item, old_val);
6279 cache->pinned += num_bytes;
6280 cache->space_info->bytes_pinned += num_bytes;
6281 cache->space_info->bytes_used -= num_bytes;
6282 cache->space_info->disk_used -= num_bytes * factor;
6283 spin_unlock(&cache->lock);
6284 spin_unlock(&cache->space_info->lock);
6285
6286 trace_btrfs_space_reservation(info, "pinned",
6287 cache->space_info->flags,
6288 num_bytes, 1);
6289 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6290 num_bytes);
6291 set_extent_dirty(info->pinned_extents,
6292 bytenr, bytenr + num_bytes - 1,
6293 GFP_NOFS | __GFP_NOFAIL);
6294 }
6295
6296 spin_lock(&trans->transaction->dirty_bgs_lock);
6297 if (list_empty(&cache->dirty_list)) {
6298 list_add_tail(&cache->dirty_list,
6299 &trans->transaction->dirty_bgs);
6300 trans->transaction->num_dirty_bgs++;
6301 btrfs_get_block_group(cache);
6302 }
6303 spin_unlock(&trans->transaction->dirty_bgs_lock);
6304
6305 /*
6306 * No longer have used bytes in this block group, queue it for
6307 * deletion. We do this after adding the block group to the
6308 * dirty list to avoid races between cleaner kthread and space
6309 * cache writeout.
6310 */
6311 if (!alloc && old_val == 0) {
6312 spin_lock(&info->unused_bgs_lock);
6313 if (list_empty(&cache->bg_list)) {
6314 btrfs_get_block_group(cache);
6315 trace_btrfs_add_unused_block_group(cache);
6316 list_add_tail(&cache->bg_list,
6317 &info->unused_bgs);
6318 }
6319 spin_unlock(&info->unused_bgs_lock);
6320 }
6321
6322 btrfs_put_block_group(cache);
6323 total -= num_bytes;
6324 bytenr += num_bytes;
6325 }
6326 return 0;
6327 }
6328
6329 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6330 {
6331 struct btrfs_block_group_cache *cache;
6332 u64 bytenr;
6333
6334 spin_lock(&fs_info->block_group_cache_lock);
6335 bytenr = fs_info->first_logical_byte;
6336 spin_unlock(&fs_info->block_group_cache_lock);
6337
6338 if (bytenr < (u64)-1)
6339 return bytenr;
6340
6341 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6342 if (!cache)
6343 return 0;
6344
6345 bytenr = cache->key.objectid;
6346 btrfs_put_block_group(cache);
6347
6348 return bytenr;
6349 }
6350
6351 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6352 struct btrfs_block_group_cache *cache,
6353 u64 bytenr, u64 num_bytes, int reserved)
6354 {
6355 spin_lock(&cache->space_info->lock);
6356 spin_lock(&cache->lock);
6357 cache->pinned += num_bytes;
6358 cache->space_info->bytes_pinned += num_bytes;
6359 if (reserved) {
6360 cache->reserved -= num_bytes;
6361 cache->space_info->bytes_reserved -= num_bytes;
6362 }
6363 spin_unlock(&cache->lock);
6364 spin_unlock(&cache->space_info->lock);
6365
6366 trace_btrfs_space_reservation(fs_info, "pinned",
6367 cache->space_info->flags, num_bytes, 1);
6368 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6369 set_extent_dirty(fs_info->pinned_extents, bytenr,
6370 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6371 return 0;
6372 }
6373
6374 /*
6375 * this function must be called within transaction
6376 */
6377 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6378 u64 bytenr, u64 num_bytes, int reserved)
6379 {
6380 struct btrfs_block_group_cache *cache;
6381
6382 cache = btrfs_lookup_block_group(fs_info, bytenr);
6383 BUG_ON(!cache); /* Logic error */
6384
6385 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6386
6387 btrfs_put_block_group(cache);
6388 return 0;
6389 }
6390
6391 /*
6392 * this function must be called within transaction
6393 */
6394 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6395 u64 bytenr, u64 num_bytes)
6396 {
6397 struct btrfs_block_group_cache *cache;
6398 int ret;
6399
6400 cache = btrfs_lookup_block_group(fs_info, bytenr);
6401 if (!cache)
6402 return -EINVAL;
6403
6404 /*
6405 * pull in the free space cache (if any) so that our pin
6406 * removes the free space from the cache. We have load_only set
6407 * to one because the slow code to read in the free extents does check
6408 * the pinned extents.
6409 */
6410 cache_block_group(cache, 1);
6411
6412 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6413
6414 /* remove us from the free space cache (if we're there at all) */
6415 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6416 btrfs_put_block_group(cache);
6417 return ret;
6418 }
6419
6420 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6421 u64 start, u64 num_bytes)
6422 {
6423 int ret;
6424 struct btrfs_block_group_cache *block_group;
6425 struct btrfs_caching_control *caching_ctl;
6426
6427 block_group = btrfs_lookup_block_group(fs_info, start);
6428 if (!block_group)
6429 return -EINVAL;
6430
6431 cache_block_group(block_group, 0);
6432 caching_ctl = get_caching_control(block_group);
6433
6434 if (!caching_ctl) {
6435 /* Logic error */
6436 BUG_ON(!block_group_cache_done(block_group));
6437 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6438 } else {
6439 mutex_lock(&caching_ctl->mutex);
6440
6441 if (start >= caching_ctl->progress) {
6442 ret = add_excluded_extent(fs_info, start, num_bytes);
6443 } else if (start + num_bytes <= caching_ctl->progress) {
6444 ret = btrfs_remove_free_space(block_group,
6445 start, num_bytes);
6446 } else {
6447 num_bytes = caching_ctl->progress - start;
6448 ret = btrfs_remove_free_space(block_group,
6449 start, num_bytes);
6450 if (ret)
6451 goto out_lock;
6452
6453 num_bytes = (start + num_bytes) -
6454 caching_ctl->progress;
6455 start = caching_ctl->progress;
6456 ret = add_excluded_extent(fs_info, start, num_bytes);
6457 }
6458 out_lock:
6459 mutex_unlock(&caching_ctl->mutex);
6460 put_caching_control(caching_ctl);
6461 }
6462 btrfs_put_block_group(block_group);
6463 return ret;
6464 }
6465
6466 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6467 struct extent_buffer *eb)
6468 {
6469 struct btrfs_file_extent_item *item;
6470 struct btrfs_key key;
6471 int found_type;
6472 int i;
6473 int ret = 0;
6474
6475 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6476 return 0;
6477
6478 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6479 btrfs_item_key_to_cpu(eb, &key, i);
6480 if (key.type != BTRFS_EXTENT_DATA_KEY)
6481 continue;
6482 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6483 found_type = btrfs_file_extent_type(eb, item);
6484 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6485 continue;
6486 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6487 continue;
6488 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6489 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6490 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6491 if (ret)
6492 break;
6493 }
6494
6495 return ret;
6496 }
6497
6498 static void
6499 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6500 {
6501 atomic_inc(&bg->reservations);
6502 }
6503
6504 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6505 const u64 start)
6506 {
6507 struct btrfs_block_group_cache *bg;
6508
6509 bg = btrfs_lookup_block_group(fs_info, start);
6510 ASSERT(bg);
6511 if (atomic_dec_and_test(&bg->reservations))
6512 wake_up_var(&bg->reservations);
6513 btrfs_put_block_group(bg);
6514 }
6515
6516 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6517 {
6518 struct btrfs_space_info *space_info = bg->space_info;
6519
6520 ASSERT(bg->ro);
6521
6522 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6523 return;
6524
6525 /*
6526 * Our block group is read only but before we set it to read only,
6527 * some task might have had allocated an extent from it already, but it
6528 * has not yet created a respective ordered extent (and added it to a
6529 * root's list of ordered extents).
6530 * Therefore wait for any task currently allocating extents, since the
6531 * block group's reservations counter is incremented while a read lock
6532 * on the groups' semaphore is held and decremented after releasing
6533 * the read access on that semaphore and creating the ordered extent.
6534 */
6535 down_write(&space_info->groups_sem);
6536 up_write(&space_info->groups_sem);
6537
6538 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6539 }
6540
6541 /**
6542 * btrfs_add_reserved_bytes - update the block_group and space info counters
6543 * @cache: The cache we are manipulating
6544 * @ram_bytes: The number of bytes of file content, and will be same to
6545 * @num_bytes except for the compress path.
6546 * @num_bytes: The number of bytes in question
6547 * @delalloc: The blocks are allocated for the delalloc write
6548 *
6549 * This is called by the allocator when it reserves space. If this is a
6550 * reservation and the block group has become read only we cannot make the
6551 * reservation and return -EAGAIN, otherwise this function always succeeds.
6552 */
6553 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6554 u64 ram_bytes, u64 num_bytes, int delalloc)
6555 {
6556 struct btrfs_space_info *space_info = cache->space_info;
6557 int ret = 0;
6558
6559 spin_lock(&space_info->lock);
6560 spin_lock(&cache->lock);
6561 if (cache->ro) {
6562 ret = -EAGAIN;
6563 } else {
6564 cache->reserved += num_bytes;
6565 space_info->bytes_reserved += num_bytes;
6566
6567 trace_btrfs_space_reservation(cache->fs_info,
6568 "space_info", space_info->flags,
6569 ram_bytes, 0);
6570 space_info->bytes_may_use -= ram_bytes;
6571 if (delalloc)
6572 cache->delalloc_bytes += num_bytes;
6573 }
6574 spin_unlock(&cache->lock);
6575 spin_unlock(&space_info->lock);
6576 return ret;
6577 }
6578
6579 /**
6580 * btrfs_free_reserved_bytes - update the block_group and space info counters
6581 * @cache: The cache we are manipulating
6582 * @num_bytes: The number of bytes in question
6583 * @delalloc: The blocks are allocated for the delalloc write
6584 *
6585 * This is called by somebody who is freeing space that was never actually used
6586 * on disk. For example if you reserve some space for a new leaf in transaction
6587 * A and before transaction A commits you free that leaf, you call this with
6588 * reserve set to 0 in order to clear the reservation.
6589 */
6590
6591 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6592 u64 num_bytes, int delalloc)
6593 {
6594 struct btrfs_space_info *space_info = cache->space_info;
6595 int ret = 0;
6596
6597 spin_lock(&space_info->lock);
6598 spin_lock(&cache->lock);
6599 if (cache->ro)
6600 space_info->bytes_readonly += num_bytes;
6601 cache->reserved -= num_bytes;
6602 space_info->bytes_reserved -= num_bytes;
6603
6604 if (delalloc)
6605 cache->delalloc_bytes -= num_bytes;
6606 spin_unlock(&cache->lock);
6607 spin_unlock(&space_info->lock);
6608 return ret;
6609 }
6610 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6611 {
6612 struct btrfs_caching_control *next;
6613 struct btrfs_caching_control *caching_ctl;
6614 struct btrfs_block_group_cache *cache;
6615
6616 down_write(&fs_info->commit_root_sem);
6617
6618 list_for_each_entry_safe(caching_ctl, next,
6619 &fs_info->caching_block_groups, list) {
6620 cache = caching_ctl->block_group;
6621 if (block_group_cache_done(cache)) {
6622 cache->last_byte_to_unpin = (u64)-1;
6623 list_del_init(&caching_ctl->list);
6624 put_caching_control(caching_ctl);
6625 } else {
6626 cache->last_byte_to_unpin = caching_ctl->progress;
6627 }
6628 }
6629
6630 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6631 fs_info->pinned_extents = &fs_info->freed_extents[1];
6632 else
6633 fs_info->pinned_extents = &fs_info->freed_extents[0];
6634
6635 up_write(&fs_info->commit_root_sem);
6636
6637 update_global_block_rsv(fs_info);
6638 }
6639
6640 /*
6641 * Returns the free cluster for the given space info and sets empty_cluster to
6642 * what it should be based on the mount options.
6643 */
6644 static struct btrfs_free_cluster *
6645 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6646 struct btrfs_space_info *space_info, u64 *empty_cluster)
6647 {
6648 struct btrfs_free_cluster *ret = NULL;
6649
6650 *empty_cluster = 0;
6651 if (btrfs_mixed_space_info(space_info))
6652 return ret;
6653
6654 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6655 ret = &fs_info->meta_alloc_cluster;
6656 if (btrfs_test_opt(fs_info, SSD))
6657 *empty_cluster = SZ_2M;
6658 else
6659 *empty_cluster = SZ_64K;
6660 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6661 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6662 *empty_cluster = SZ_2M;
6663 ret = &fs_info->data_alloc_cluster;
6664 }
6665
6666 return ret;
6667 }
6668
6669 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6670 u64 start, u64 end,
6671 const bool return_free_space)
6672 {
6673 struct btrfs_block_group_cache *cache = NULL;
6674 struct btrfs_space_info *space_info;
6675 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6676 struct btrfs_free_cluster *cluster = NULL;
6677 u64 len;
6678 u64 total_unpinned = 0;
6679 u64 empty_cluster = 0;
6680 bool readonly;
6681
6682 while (start <= end) {
6683 readonly = false;
6684 if (!cache ||
6685 start >= cache->key.objectid + cache->key.offset) {
6686 if (cache)
6687 btrfs_put_block_group(cache);
6688 total_unpinned = 0;
6689 cache = btrfs_lookup_block_group(fs_info, start);
6690 BUG_ON(!cache); /* Logic error */
6691
6692 cluster = fetch_cluster_info(fs_info,
6693 cache->space_info,
6694 &empty_cluster);
6695 empty_cluster <<= 1;
6696 }
6697
6698 len = cache->key.objectid + cache->key.offset - start;
6699 len = min(len, end + 1 - start);
6700
6701 if (start < cache->last_byte_to_unpin) {
6702 len = min(len, cache->last_byte_to_unpin - start);
6703 if (return_free_space)
6704 btrfs_add_free_space(cache, start, len);
6705 }
6706
6707 start += len;
6708 total_unpinned += len;
6709 space_info = cache->space_info;
6710
6711 /*
6712 * If this space cluster has been marked as fragmented and we've
6713 * unpinned enough in this block group to potentially allow a
6714 * cluster to be created inside of it go ahead and clear the
6715 * fragmented check.
6716 */
6717 if (cluster && cluster->fragmented &&
6718 total_unpinned > empty_cluster) {
6719 spin_lock(&cluster->lock);
6720 cluster->fragmented = 0;
6721 spin_unlock(&cluster->lock);
6722 }
6723
6724 spin_lock(&space_info->lock);
6725 spin_lock(&cache->lock);
6726 cache->pinned -= len;
6727 space_info->bytes_pinned -= len;
6728
6729 trace_btrfs_space_reservation(fs_info, "pinned",
6730 space_info->flags, len, 0);
6731 space_info->max_extent_size = 0;
6732 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6733 if (cache->ro) {
6734 space_info->bytes_readonly += len;
6735 readonly = true;
6736 }
6737 spin_unlock(&cache->lock);
6738 if (!readonly && return_free_space &&
6739 global_rsv->space_info == space_info) {
6740 u64 to_add = len;
6741
6742 spin_lock(&global_rsv->lock);
6743 if (!global_rsv->full) {
6744 to_add = min(len, global_rsv->size -
6745 global_rsv->reserved);
6746 global_rsv->reserved += to_add;
6747 space_info->bytes_may_use += to_add;
6748 if (global_rsv->reserved >= global_rsv->size)
6749 global_rsv->full = 1;
6750 trace_btrfs_space_reservation(fs_info,
6751 "space_info",
6752 space_info->flags,
6753 to_add, 1);
6754 len -= to_add;
6755 }
6756 spin_unlock(&global_rsv->lock);
6757 /* Add to any tickets we may have */
6758 if (len)
6759 space_info_add_new_bytes(fs_info, space_info,
6760 len);
6761 }
6762 spin_unlock(&space_info->lock);
6763 }
6764
6765 if (cache)
6766 btrfs_put_block_group(cache);
6767 return 0;
6768 }
6769
6770 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6771 {
6772 struct btrfs_fs_info *fs_info = trans->fs_info;
6773 struct btrfs_block_group_cache *block_group, *tmp;
6774 struct list_head *deleted_bgs;
6775 struct extent_io_tree *unpin;
6776 u64 start;
6777 u64 end;
6778 int ret;
6779
6780 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6781 unpin = &fs_info->freed_extents[1];
6782 else
6783 unpin = &fs_info->freed_extents[0];
6784
6785 while (!trans->aborted) {
6786 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6787 ret = find_first_extent_bit(unpin, 0, &start, &end,
6788 EXTENT_DIRTY, NULL);
6789 if (ret) {
6790 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6791 break;
6792 }
6793
6794 if (btrfs_test_opt(fs_info, DISCARD))
6795 ret = btrfs_discard_extent(fs_info, start,
6796 end + 1 - start, NULL);
6797
6798 clear_extent_dirty(unpin, start, end);
6799 unpin_extent_range(fs_info, start, end, true);
6800 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6801 cond_resched();
6802 }
6803
6804 /*
6805 * Transaction is finished. We don't need the lock anymore. We
6806 * do need to clean up the block groups in case of a transaction
6807 * abort.
6808 */
6809 deleted_bgs = &trans->transaction->deleted_bgs;
6810 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6811 u64 trimmed = 0;
6812
6813 ret = -EROFS;
6814 if (!trans->aborted)
6815 ret = btrfs_discard_extent(fs_info,
6816 block_group->key.objectid,
6817 block_group->key.offset,
6818 &trimmed);
6819
6820 list_del_init(&block_group->bg_list);
6821 btrfs_put_block_group_trimming(block_group);
6822 btrfs_put_block_group(block_group);
6823
6824 if (ret) {
6825 const char *errstr = btrfs_decode_error(ret);
6826 btrfs_warn(fs_info,
6827 "discard failed while removing blockgroup: errno=%d %s",
6828 ret, errstr);
6829 }
6830 }
6831
6832 return 0;
6833 }
6834
6835 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6836 struct btrfs_delayed_ref_node *node, u64 parent,
6837 u64 root_objectid, u64 owner_objectid,
6838 u64 owner_offset, int refs_to_drop,
6839 struct btrfs_delayed_extent_op *extent_op)
6840 {
6841 struct btrfs_fs_info *info = trans->fs_info;
6842 struct btrfs_key key;
6843 struct btrfs_path *path;
6844 struct btrfs_root *extent_root = info->extent_root;
6845 struct extent_buffer *leaf;
6846 struct btrfs_extent_item *ei;
6847 struct btrfs_extent_inline_ref *iref;
6848 int ret;
6849 int is_data;
6850 int extent_slot = 0;
6851 int found_extent = 0;
6852 int num_to_del = 1;
6853 u32 item_size;
6854 u64 refs;
6855 u64 bytenr = node->bytenr;
6856 u64 num_bytes = node->num_bytes;
6857 int last_ref = 0;
6858 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6859
6860 path = btrfs_alloc_path();
6861 if (!path)
6862 return -ENOMEM;
6863
6864 path->reada = READA_FORWARD;
6865 path->leave_spinning = 1;
6866
6867 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6868 BUG_ON(!is_data && refs_to_drop != 1);
6869
6870 if (is_data)
6871 skinny_metadata = false;
6872
6873 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6874 parent, root_objectid, owner_objectid,
6875 owner_offset);
6876 if (ret == 0) {
6877 extent_slot = path->slots[0];
6878 while (extent_slot >= 0) {
6879 btrfs_item_key_to_cpu(path->nodes[0], &key,
6880 extent_slot);
6881 if (key.objectid != bytenr)
6882 break;
6883 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6884 key.offset == num_bytes) {
6885 found_extent = 1;
6886 break;
6887 }
6888 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6889 key.offset == owner_objectid) {
6890 found_extent = 1;
6891 break;
6892 }
6893 if (path->slots[0] - extent_slot > 5)
6894 break;
6895 extent_slot--;
6896 }
6897 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6898 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6899 if (found_extent && item_size < sizeof(*ei))
6900 found_extent = 0;
6901 #endif
6902 if (!found_extent) {
6903 BUG_ON(iref);
6904 ret = remove_extent_backref(trans, info, path, NULL,
6905 refs_to_drop,
6906 is_data, &last_ref);
6907 if (ret) {
6908 btrfs_abort_transaction(trans, ret);
6909 goto out;
6910 }
6911 btrfs_release_path(path);
6912 path->leave_spinning = 1;
6913
6914 key.objectid = bytenr;
6915 key.type = BTRFS_EXTENT_ITEM_KEY;
6916 key.offset = num_bytes;
6917
6918 if (!is_data && skinny_metadata) {
6919 key.type = BTRFS_METADATA_ITEM_KEY;
6920 key.offset = owner_objectid;
6921 }
6922
6923 ret = btrfs_search_slot(trans, extent_root,
6924 &key, path, -1, 1);
6925 if (ret > 0 && skinny_metadata && path->slots[0]) {
6926 /*
6927 * Couldn't find our skinny metadata item,
6928 * see if we have ye olde extent item.
6929 */
6930 path->slots[0]--;
6931 btrfs_item_key_to_cpu(path->nodes[0], &key,
6932 path->slots[0]);
6933 if (key.objectid == bytenr &&
6934 key.type == BTRFS_EXTENT_ITEM_KEY &&
6935 key.offset == num_bytes)
6936 ret = 0;
6937 }
6938
6939 if (ret > 0 && skinny_metadata) {
6940 skinny_metadata = false;
6941 key.objectid = bytenr;
6942 key.type = BTRFS_EXTENT_ITEM_KEY;
6943 key.offset = num_bytes;
6944 btrfs_release_path(path);
6945 ret = btrfs_search_slot(trans, extent_root,
6946 &key, path, -1, 1);
6947 }
6948
6949 if (ret) {
6950 btrfs_err(info,
6951 "umm, got %d back from search, was looking for %llu",
6952 ret, bytenr);
6953 if (ret > 0)
6954 btrfs_print_leaf(path->nodes[0]);
6955 }
6956 if (ret < 0) {
6957 btrfs_abort_transaction(trans, ret);
6958 goto out;
6959 }
6960 extent_slot = path->slots[0];
6961 }
6962 } else if (WARN_ON(ret == -ENOENT)) {
6963 btrfs_print_leaf(path->nodes[0]);
6964 btrfs_err(info,
6965 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6966 bytenr, parent, root_objectid, owner_objectid,
6967 owner_offset);
6968 btrfs_abort_transaction(trans, ret);
6969 goto out;
6970 } else {
6971 btrfs_abort_transaction(trans, ret);
6972 goto out;
6973 }
6974
6975 leaf = path->nodes[0];
6976 item_size = btrfs_item_size_nr(leaf, extent_slot);
6977 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6978 if (item_size < sizeof(*ei)) {
6979 BUG_ON(found_extent || extent_slot != path->slots[0]);
6980 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6981 0);
6982 if (ret < 0) {
6983 btrfs_abort_transaction(trans, ret);
6984 goto out;
6985 }
6986
6987 btrfs_release_path(path);
6988 path->leave_spinning = 1;
6989
6990 key.objectid = bytenr;
6991 key.type = BTRFS_EXTENT_ITEM_KEY;
6992 key.offset = num_bytes;
6993
6994 ret = btrfs_search_slot(trans, extent_root, &key, path,
6995 -1, 1);
6996 if (ret) {
6997 btrfs_err(info,
6998 "umm, got %d back from search, was looking for %llu",
6999 ret, bytenr);
7000 btrfs_print_leaf(path->nodes[0]);
7001 }
7002 if (ret < 0) {
7003 btrfs_abort_transaction(trans, ret);
7004 goto out;
7005 }
7006
7007 extent_slot = path->slots[0];
7008 leaf = path->nodes[0];
7009 item_size = btrfs_item_size_nr(leaf, extent_slot);
7010 }
7011 #endif
7012 BUG_ON(item_size < sizeof(*ei));
7013 ei = btrfs_item_ptr(leaf, extent_slot,
7014 struct btrfs_extent_item);
7015 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7016 key.type == BTRFS_EXTENT_ITEM_KEY) {
7017 struct btrfs_tree_block_info *bi;
7018 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7019 bi = (struct btrfs_tree_block_info *)(ei + 1);
7020 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7021 }
7022
7023 refs = btrfs_extent_refs(leaf, ei);
7024 if (refs < refs_to_drop) {
7025 btrfs_err(info,
7026 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7027 refs_to_drop, refs, bytenr);
7028 ret = -EINVAL;
7029 btrfs_abort_transaction(trans, ret);
7030 goto out;
7031 }
7032 refs -= refs_to_drop;
7033
7034 if (refs > 0) {
7035 if (extent_op)
7036 __run_delayed_extent_op(extent_op, leaf, ei);
7037 /*
7038 * In the case of inline back ref, reference count will
7039 * be updated by remove_extent_backref
7040 */
7041 if (iref) {
7042 BUG_ON(!found_extent);
7043 } else {
7044 btrfs_set_extent_refs(leaf, ei, refs);
7045 btrfs_mark_buffer_dirty(leaf);
7046 }
7047 if (found_extent) {
7048 ret = remove_extent_backref(trans, info, path,
7049 iref, refs_to_drop,
7050 is_data, &last_ref);
7051 if (ret) {
7052 btrfs_abort_transaction(trans, ret);
7053 goto out;
7054 }
7055 }
7056 } else {
7057 if (found_extent) {
7058 BUG_ON(is_data && refs_to_drop !=
7059 extent_data_ref_count(path, iref));
7060 if (iref) {
7061 BUG_ON(path->slots[0] != extent_slot);
7062 } else {
7063 BUG_ON(path->slots[0] != extent_slot + 1);
7064 path->slots[0] = extent_slot;
7065 num_to_del = 2;
7066 }
7067 }
7068
7069 last_ref = 1;
7070 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7071 num_to_del);
7072 if (ret) {
7073 btrfs_abort_transaction(trans, ret);
7074 goto out;
7075 }
7076 btrfs_release_path(path);
7077
7078 if (is_data) {
7079 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7080 if (ret) {
7081 btrfs_abort_transaction(trans, ret);
7082 goto out;
7083 }
7084 }
7085
7086 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
7087 if (ret) {
7088 btrfs_abort_transaction(trans, ret);
7089 goto out;
7090 }
7091
7092 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7093 if (ret) {
7094 btrfs_abort_transaction(trans, ret);
7095 goto out;
7096 }
7097 }
7098 btrfs_release_path(path);
7099
7100 out:
7101 btrfs_free_path(path);
7102 return ret;
7103 }
7104
7105 /*
7106 * when we free an block, it is possible (and likely) that we free the last
7107 * delayed ref for that extent as well. This searches the delayed ref tree for
7108 * a given extent, and if there are no other delayed refs to be processed, it
7109 * removes it from the tree.
7110 */
7111 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7112 u64 bytenr)
7113 {
7114 struct btrfs_delayed_ref_head *head;
7115 struct btrfs_delayed_ref_root *delayed_refs;
7116 int ret = 0;
7117
7118 delayed_refs = &trans->transaction->delayed_refs;
7119 spin_lock(&delayed_refs->lock);
7120 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7121 if (!head)
7122 goto out_delayed_unlock;
7123
7124 spin_lock(&head->lock);
7125 if (!RB_EMPTY_ROOT(&head->ref_tree))
7126 goto out;
7127
7128 if (head->extent_op) {
7129 if (!head->must_insert_reserved)
7130 goto out;
7131 btrfs_free_delayed_extent_op(head->extent_op);
7132 head->extent_op = NULL;
7133 }
7134
7135 /*
7136 * waiting for the lock here would deadlock. If someone else has it
7137 * locked they are already in the process of dropping it anyway
7138 */
7139 if (!mutex_trylock(&head->mutex))
7140 goto out;
7141
7142 /*
7143 * at this point we have a head with no other entries. Go
7144 * ahead and process it.
7145 */
7146 rb_erase(&head->href_node, &delayed_refs->href_root);
7147 RB_CLEAR_NODE(&head->href_node);
7148 atomic_dec(&delayed_refs->num_entries);
7149
7150 /*
7151 * we don't take a ref on the node because we're removing it from the
7152 * tree, so we just steal the ref the tree was holding.
7153 */
7154 delayed_refs->num_heads--;
7155 if (head->processing == 0)
7156 delayed_refs->num_heads_ready--;
7157 head->processing = 0;
7158 spin_unlock(&head->lock);
7159 spin_unlock(&delayed_refs->lock);
7160
7161 BUG_ON(head->extent_op);
7162 if (head->must_insert_reserved)
7163 ret = 1;
7164
7165 mutex_unlock(&head->mutex);
7166 btrfs_put_delayed_ref_head(head);
7167 return ret;
7168 out:
7169 spin_unlock(&head->lock);
7170
7171 out_delayed_unlock:
7172 spin_unlock(&delayed_refs->lock);
7173 return 0;
7174 }
7175
7176 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7177 struct btrfs_root *root,
7178 struct extent_buffer *buf,
7179 u64 parent, int last_ref)
7180 {
7181 struct btrfs_fs_info *fs_info = root->fs_info;
7182 int pin = 1;
7183 int ret;
7184
7185 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7186 int old_ref_mod, new_ref_mod;
7187
7188 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7189 root->root_key.objectid,
7190 btrfs_header_level(buf), 0,
7191 BTRFS_DROP_DELAYED_REF);
7192 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7193 buf->len, parent,
7194 root->root_key.objectid,
7195 btrfs_header_level(buf),
7196 BTRFS_DROP_DELAYED_REF, NULL,
7197 &old_ref_mod, &new_ref_mod);
7198 BUG_ON(ret); /* -ENOMEM */
7199 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7200 }
7201
7202 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7203 struct btrfs_block_group_cache *cache;
7204
7205 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7206 ret = check_ref_cleanup(trans, buf->start);
7207 if (!ret)
7208 goto out;
7209 }
7210
7211 pin = 0;
7212 cache = btrfs_lookup_block_group(fs_info, buf->start);
7213
7214 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7215 pin_down_extent(fs_info, cache, buf->start,
7216 buf->len, 1);
7217 btrfs_put_block_group(cache);
7218 goto out;
7219 }
7220
7221 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7222
7223 btrfs_add_free_space(cache, buf->start, buf->len);
7224 btrfs_free_reserved_bytes(cache, buf->len, 0);
7225 btrfs_put_block_group(cache);
7226 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7227 }
7228 out:
7229 if (pin)
7230 add_pinned_bytes(fs_info, buf->len, true,
7231 root->root_key.objectid);
7232
7233 if (last_ref) {
7234 /*
7235 * Deleting the buffer, clear the corrupt flag since it doesn't
7236 * matter anymore.
7237 */
7238 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7239 }
7240 }
7241
7242 /* Can return -ENOMEM */
7243 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7244 struct btrfs_root *root,
7245 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7246 u64 owner, u64 offset)
7247 {
7248 struct btrfs_fs_info *fs_info = root->fs_info;
7249 int old_ref_mod, new_ref_mod;
7250 int ret;
7251
7252 if (btrfs_is_testing(fs_info))
7253 return 0;
7254
7255 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7256 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7257 root_objectid, owner, offset,
7258 BTRFS_DROP_DELAYED_REF);
7259
7260 /*
7261 * tree log blocks never actually go into the extent allocation
7262 * tree, just update pinning info and exit early.
7263 */
7264 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7265 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7266 /* unlocks the pinned mutex */
7267 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7268 old_ref_mod = new_ref_mod = 0;
7269 ret = 0;
7270 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7271 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7272 num_bytes, parent,
7273 root_objectid, (int)owner,
7274 BTRFS_DROP_DELAYED_REF, NULL,
7275 &old_ref_mod, &new_ref_mod);
7276 } else {
7277 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7278 num_bytes, parent,
7279 root_objectid, owner, offset,
7280 0, BTRFS_DROP_DELAYED_REF,
7281 &old_ref_mod, &new_ref_mod);
7282 }
7283
7284 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7285 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7286
7287 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7288 }
7289
7290 return ret;
7291 }
7292
7293 /*
7294 * when we wait for progress in the block group caching, its because
7295 * our allocation attempt failed at least once. So, we must sleep
7296 * and let some progress happen before we try again.
7297 *
7298 * This function will sleep at least once waiting for new free space to
7299 * show up, and then it will check the block group free space numbers
7300 * for our min num_bytes. Another option is to have it go ahead
7301 * and look in the rbtree for a free extent of a given size, but this
7302 * is a good start.
7303 *
7304 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7305 * any of the information in this block group.
7306 */
7307 static noinline void
7308 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7309 u64 num_bytes)
7310 {
7311 struct btrfs_caching_control *caching_ctl;
7312
7313 caching_ctl = get_caching_control(cache);
7314 if (!caching_ctl)
7315 return;
7316
7317 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7318 (cache->free_space_ctl->free_space >= num_bytes));
7319
7320 put_caching_control(caching_ctl);
7321 }
7322
7323 static noinline int
7324 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7325 {
7326 struct btrfs_caching_control *caching_ctl;
7327 int ret = 0;
7328
7329 caching_ctl = get_caching_control(cache);
7330 if (!caching_ctl)
7331 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7332
7333 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7334 if (cache->cached == BTRFS_CACHE_ERROR)
7335 ret = -EIO;
7336 put_caching_control(caching_ctl);
7337 return ret;
7338 }
7339
7340 enum btrfs_loop_type {
7341 LOOP_CACHING_NOWAIT = 0,
7342 LOOP_CACHING_WAIT = 1,
7343 LOOP_ALLOC_CHUNK = 2,
7344 LOOP_NO_EMPTY_SIZE = 3,
7345 };
7346
7347 static inline void
7348 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7349 int delalloc)
7350 {
7351 if (delalloc)
7352 down_read(&cache->data_rwsem);
7353 }
7354
7355 static inline void
7356 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7357 int delalloc)
7358 {
7359 btrfs_get_block_group(cache);
7360 if (delalloc)
7361 down_read(&cache->data_rwsem);
7362 }
7363
7364 static struct btrfs_block_group_cache *
7365 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7366 struct btrfs_free_cluster *cluster,
7367 int delalloc)
7368 {
7369 struct btrfs_block_group_cache *used_bg = NULL;
7370
7371 spin_lock(&cluster->refill_lock);
7372 while (1) {
7373 used_bg = cluster->block_group;
7374 if (!used_bg)
7375 return NULL;
7376
7377 if (used_bg == block_group)
7378 return used_bg;
7379
7380 btrfs_get_block_group(used_bg);
7381
7382 if (!delalloc)
7383 return used_bg;
7384
7385 if (down_read_trylock(&used_bg->data_rwsem))
7386 return used_bg;
7387
7388 spin_unlock(&cluster->refill_lock);
7389
7390 /* We should only have one-level nested. */
7391 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7392
7393 spin_lock(&cluster->refill_lock);
7394 if (used_bg == cluster->block_group)
7395 return used_bg;
7396
7397 up_read(&used_bg->data_rwsem);
7398 btrfs_put_block_group(used_bg);
7399 }
7400 }
7401
7402 static inline void
7403 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7404 int delalloc)
7405 {
7406 if (delalloc)
7407 up_read(&cache->data_rwsem);
7408 btrfs_put_block_group(cache);
7409 }
7410
7411 /*
7412 * walks the btree of allocated extents and find a hole of a given size.
7413 * The key ins is changed to record the hole:
7414 * ins->objectid == start position
7415 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7416 * ins->offset == the size of the hole.
7417 * Any available blocks before search_start are skipped.
7418 *
7419 * If there is no suitable free space, we will record the max size of
7420 * the free space extent currently.
7421 */
7422 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7423 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7424 u64 hint_byte, struct btrfs_key *ins,
7425 u64 flags, int delalloc)
7426 {
7427 int ret = 0;
7428 struct btrfs_root *root = fs_info->extent_root;
7429 struct btrfs_free_cluster *last_ptr = NULL;
7430 struct btrfs_block_group_cache *block_group = NULL;
7431 u64 search_start = 0;
7432 u64 max_extent_size = 0;
7433 u64 empty_cluster = 0;
7434 struct btrfs_space_info *space_info;
7435 int loop = 0;
7436 int index = btrfs_bg_flags_to_raid_index(flags);
7437 bool failed_cluster_refill = false;
7438 bool failed_alloc = false;
7439 bool use_cluster = true;
7440 bool have_caching_bg = false;
7441 bool orig_have_caching_bg = false;
7442 bool full_search = false;
7443
7444 WARN_ON(num_bytes < fs_info->sectorsize);
7445 ins->type = BTRFS_EXTENT_ITEM_KEY;
7446 ins->objectid = 0;
7447 ins->offset = 0;
7448
7449 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7450
7451 space_info = __find_space_info(fs_info, flags);
7452 if (!space_info) {
7453 btrfs_err(fs_info, "No space info for %llu", flags);
7454 return -ENOSPC;
7455 }
7456
7457 /*
7458 * If our free space is heavily fragmented we may not be able to make
7459 * big contiguous allocations, so instead of doing the expensive search
7460 * for free space, simply return ENOSPC with our max_extent_size so we
7461 * can go ahead and search for a more manageable chunk.
7462 *
7463 * If our max_extent_size is large enough for our allocation simply
7464 * disable clustering since we will likely not be able to find enough
7465 * space to create a cluster and induce latency trying.
7466 */
7467 if (unlikely(space_info->max_extent_size)) {
7468 spin_lock(&space_info->lock);
7469 if (space_info->max_extent_size &&
7470 num_bytes > space_info->max_extent_size) {
7471 ins->offset = space_info->max_extent_size;
7472 spin_unlock(&space_info->lock);
7473 return -ENOSPC;
7474 } else if (space_info->max_extent_size) {
7475 use_cluster = false;
7476 }
7477 spin_unlock(&space_info->lock);
7478 }
7479
7480 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7481 if (last_ptr) {
7482 spin_lock(&last_ptr->lock);
7483 if (last_ptr->block_group)
7484 hint_byte = last_ptr->window_start;
7485 if (last_ptr->fragmented) {
7486 /*
7487 * We still set window_start so we can keep track of the
7488 * last place we found an allocation to try and save
7489 * some time.
7490 */
7491 hint_byte = last_ptr->window_start;
7492 use_cluster = false;
7493 }
7494 spin_unlock(&last_ptr->lock);
7495 }
7496
7497 search_start = max(search_start, first_logical_byte(fs_info, 0));
7498 search_start = max(search_start, hint_byte);
7499 if (search_start == hint_byte) {
7500 block_group = btrfs_lookup_block_group(fs_info, search_start);
7501 /*
7502 * we don't want to use the block group if it doesn't match our
7503 * allocation bits, or if its not cached.
7504 *
7505 * However if we are re-searching with an ideal block group
7506 * picked out then we don't care that the block group is cached.
7507 */
7508 if (block_group && block_group_bits(block_group, flags) &&
7509 block_group->cached != BTRFS_CACHE_NO) {
7510 down_read(&space_info->groups_sem);
7511 if (list_empty(&block_group->list) ||
7512 block_group->ro) {
7513 /*
7514 * someone is removing this block group,
7515 * we can't jump into the have_block_group
7516 * target because our list pointers are not
7517 * valid
7518 */
7519 btrfs_put_block_group(block_group);
7520 up_read(&space_info->groups_sem);
7521 } else {
7522 index = btrfs_bg_flags_to_raid_index(
7523 block_group->flags);
7524 btrfs_lock_block_group(block_group, delalloc);
7525 goto have_block_group;
7526 }
7527 } else if (block_group) {
7528 btrfs_put_block_group(block_group);
7529 }
7530 }
7531 search:
7532 have_caching_bg = false;
7533 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7534 full_search = true;
7535 down_read(&space_info->groups_sem);
7536 list_for_each_entry(block_group, &space_info->block_groups[index],
7537 list) {
7538 u64 offset;
7539 int cached;
7540
7541 /* If the block group is read-only, we can skip it entirely. */
7542 if (unlikely(block_group->ro))
7543 continue;
7544
7545 btrfs_grab_block_group(block_group, delalloc);
7546 search_start = block_group->key.objectid;
7547
7548 /*
7549 * this can happen if we end up cycling through all the
7550 * raid types, but we want to make sure we only allocate
7551 * for the proper type.
7552 */
7553 if (!block_group_bits(block_group, flags)) {
7554 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7555 BTRFS_BLOCK_GROUP_RAID1 |
7556 BTRFS_BLOCK_GROUP_RAID5 |
7557 BTRFS_BLOCK_GROUP_RAID6 |
7558 BTRFS_BLOCK_GROUP_RAID10;
7559
7560 /*
7561 * if they asked for extra copies and this block group
7562 * doesn't provide them, bail. This does allow us to
7563 * fill raid0 from raid1.
7564 */
7565 if ((flags & extra) && !(block_group->flags & extra))
7566 goto loop;
7567 }
7568
7569 have_block_group:
7570 cached = block_group_cache_done(block_group);
7571 if (unlikely(!cached)) {
7572 have_caching_bg = true;
7573 ret = cache_block_group(block_group, 0);
7574 BUG_ON(ret < 0);
7575 ret = 0;
7576 }
7577
7578 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7579 goto loop;
7580
7581 /*
7582 * Ok we want to try and use the cluster allocator, so
7583 * lets look there
7584 */
7585 if (last_ptr && use_cluster) {
7586 struct btrfs_block_group_cache *used_block_group;
7587 unsigned long aligned_cluster;
7588 /*
7589 * the refill lock keeps out other
7590 * people trying to start a new cluster
7591 */
7592 used_block_group = btrfs_lock_cluster(block_group,
7593 last_ptr,
7594 delalloc);
7595 if (!used_block_group)
7596 goto refill_cluster;
7597
7598 if (used_block_group != block_group &&
7599 (used_block_group->ro ||
7600 !block_group_bits(used_block_group, flags)))
7601 goto release_cluster;
7602
7603 offset = btrfs_alloc_from_cluster(used_block_group,
7604 last_ptr,
7605 num_bytes,
7606 used_block_group->key.objectid,
7607 &max_extent_size);
7608 if (offset) {
7609 /* we have a block, we're done */
7610 spin_unlock(&last_ptr->refill_lock);
7611 trace_btrfs_reserve_extent_cluster(
7612 used_block_group,
7613 search_start, num_bytes);
7614 if (used_block_group != block_group) {
7615 btrfs_release_block_group(block_group,
7616 delalloc);
7617 block_group = used_block_group;
7618 }
7619 goto checks;
7620 }
7621
7622 WARN_ON(last_ptr->block_group != used_block_group);
7623 release_cluster:
7624 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7625 * set up a new clusters, so lets just skip it
7626 * and let the allocator find whatever block
7627 * it can find. If we reach this point, we
7628 * will have tried the cluster allocator
7629 * plenty of times and not have found
7630 * anything, so we are likely way too
7631 * fragmented for the clustering stuff to find
7632 * anything.
7633 *
7634 * However, if the cluster is taken from the
7635 * current block group, release the cluster
7636 * first, so that we stand a better chance of
7637 * succeeding in the unclustered
7638 * allocation. */
7639 if (loop >= LOOP_NO_EMPTY_SIZE &&
7640 used_block_group != block_group) {
7641 spin_unlock(&last_ptr->refill_lock);
7642 btrfs_release_block_group(used_block_group,
7643 delalloc);
7644 goto unclustered_alloc;
7645 }
7646
7647 /*
7648 * this cluster didn't work out, free it and
7649 * start over
7650 */
7651 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7652
7653 if (used_block_group != block_group)
7654 btrfs_release_block_group(used_block_group,
7655 delalloc);
7656 refill_cluster:
7657 if (loop >= LOOP_NO_EMPTY_SIZE) {
7658 spin_unlock(&last_ptr->refill_lock);
7659 goto unclustered_alloc;
7660 }
7661
7662 aligned_cluster = max_t(unsigned long,
7663 empty_cluster + empty_size,
7664 block_group->full_stripe_len);
7665
7666 /* allocate a cluster in this block group */
7667 ret = btrfs_find_space_cluster(fs_info, block_group,
7668 last_ptr, search_start,
7669 num_bytes,
7670 aligned_cluster);
7671 if (ret == 0) {
7672 /*
7673 * now pull our allocation out of this
7674 * cluster
7675 */
7676 offset = btrfs_alloc_from_cluster(block_group,
7677 last_ptr,
7678 num_bytes,
7679 search_start,
7680 &max_extent_size);
7681 if (offset) {
7682 /* we found one, proceed */
7683 spin_unlock(&last_ptr->refill_lock);
7684 trace_btrfs_reserve_extent_cluster(
7685 block_group, search_start,
7686 num_bytes);
7687 goto checks;
7688 }
7689 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7690 && !failed_cluster_refill) {
7691 spin_unlock(&last_ptr->refill_lock);
7692
7693 failed_cluster_refill = true;
7694 wait_block_group_cache_progress(block_group,
7695 num_bytes + empty_cluster + empty_size);
7696 goto have_block_group;
7697 }
7698
7699 /*
7700 * at this point we either didn't find a cluster
7701 * or we weren't able to allocate a block from our
7702 * cluster. Free the cluster we've been trying
7703 * to use, and go to the next block group
7704 */
7705 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7706 spin_unlock(&last_ptr->refill_lock);
7707 goto loop;
7708 }
7709
7710 unclustered_alloc:
7711 /*
7712 * We are doing an unclustered alloc, set the fragmented flag so
7713 * we don't bother trying to setup a cluster again until we get
7714 * more space.
7715 */
7716 if (unlikely(last_ptr)) {
7717 spin_lock(&last_ptr->lock);
7718 last_ptr->fragmented = 1;
7719 spin_unlock(&last_ptr->lock);
7720 }
7721 if (cached) {
7722 struct btrfs_free_space_ctl *ctl =
7723 block_group->free_space_ctl;
7724
7725 spin_lock(&ctl->tree_lock);
7726 if (ctl->free_space <
7727 num_bytes + empty_cluster + empty_size) {
7728 if (ctl->free_space > max_extent_size)
7729 max_extent_size = ctl->free_space;
7730 spin_unlock(&ctl->tree_lock);
7731 goto loop;
7732 }
7733 spin_unlock(&ctl->tree_lock);
7734 }
7735
7736 offset = btrfs_find_space_for_alloc(block_group, search_start,
7737 num_bytes, empty_size,
7738 &max_extent_size);
7739 /*
7740 * If we didn't find a chunk, and we haven't failed on this
7741 * block group before, and this block group is in the middle of
7742 * caching and we are ok with waiting, then go ahead and wait
7743 * for progress to be made, and set failed_alloc to true.
7744 *
7745 * If failed_alloc is true then we've already waited on this
7746 * block group once and should move on to the next block group.
7747 */
7748 if (!offset && !failed_alloc && !cached &&
7749 loop > LOOP_CACHING_NOWAIT) {
7750 wait_block_group_cache_progress(block_group,
7751 num_bytes + empty_size);
7752 failed_alloc = true;
7753 goto have_block_group;
7754 } else if (!offset) {
7755 goto loop;
7756 }
7757 checks:
7758 search_start = ALIGN(offset, fs_info->stripesize);
7759
7760 /* move on to the next group */
7761 if (search_start + num_bytes >
7762 block_group->key.objectid + block_group->key.offset) {
7763 btrfs_add_free_space(block_group, offset, num_bytes);
7764 goto loop;
7765 }
7766
7767 if (offset < search_start)
7768 btrfs_add_free_space(block_group, offset,
7769 search_start - offset);
7770 BUG_ON(offset > search_start);
7771
7772 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7773 num_bytes, delalloc);
7774 if (ret == -EAGAIN) {
7775 btrfs_add_free_space(block_group, offset, num_bytes);
7776 goto loop;
7777 }
7778 btrfs_inc_block_group_reservations(block_group);
7779
7780 /* we are all good, lets return */
7781 ins->objectid = search_start;
7782 ins->offset = num_bytes;
7783
7784 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7785 btrfs_release_block_group(block_group, delalloc);
7786 break;
7787 loop:
7788 failed_cluster_refill = false;
7789 failed_alloc = false;
7790 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7791 index);
7792 btrfs_release_block_group(block_group, delalloc);
7793 cond_resched();
7794 }
7795 up_read(&space_info->groups_sem);
7796
7797 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7798 && !orig_have_caching_bg)
7799 orig_have_caching_bg = true;
7800
7801 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7802 goto search;
7803
7804 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7805 goto search;
7806
7807 /*
7808 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7809 * caching kthreads as we move along
7810 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7811 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7812 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7813 * again
7814 */
7815 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7816 index = 0;
7817 if (loop == LOOP_CACHING_NOWAIT) {
7818 /*
7819 * We want to skip the LOOP_CACHING_WAIT step if we
7820 * don't have any uncached bgs and we've already done a
7821 * full search through.
7822 */
7823 if (orig_have_caching_bg || !full_search)
7824 loop = LOOP_CACHING_WAIT;
7825 else
7826 loop = LOOP_ALLOC_CHUNK;
7827 } else {
7828 loop++;
7829 }
7830
7831 if (loop == LOOP_ALLOC_CHUNK) {
7832 struct btrfs_trans_handle *trans;
7833 int exist = 0;
7834
7835 trans = current->journal_info;
7836 if (trans)
7837 exist = 1;
7838 else
7839 trans = btrfs_join_transaction(root);
7840
7841 if (IS_ERR(trans)) {
7842 ret = PTR_ERR(trans);
7843 goto out;
7844 }
7845
7846 ret = do_chunk_alloc(trans, fs_info, flags,
7847 CHUNK_ALLOC_FORCE);
7848
7849 /*
7850 * If we can't allocate a new chunk we've already looped
7851 * through at least once, move on to the NO_EMPTY_SIZE
7852 * case.
7853 */
7854 if (ret == -ENOSPC)
7855 loop = LOOP_NO_EMPTY_SIZE;
7856
7857 /*
7858 * Do not bail out on ENOSPC since we
7859 * can do more things.
7860 */
7861 if (ret < 0 && ret != -ENOSPC)
7862 btrfs_abort_transaction(trans, ret);
7863 else
7864 ret = 0;
7865 if (!exist)
7866 btrfs_end_transaction(trans);
7867 if (ret)
7868 goto out;
7869 }
7870
7871 if (loop == LOOP_NO_EMPTY_SIZE) {
7872 /*
7873 * Don't loop again if we already have no empty_size and
7874 * no empty_cluster.
7875 */
7876 if (empty_size == 0 &&
7877 empty_cluster == 0) {
7878 ret = -ENOSPC;
7879 goto out;
7880 }
7881 empty_size = 0;
7882 empty_cluster = 0;
7883 }
7884
7885 goto search;
7886 } else if (!ins->objectid) {
7887 ret = -ENOSPC;
7888 } else if (ins->objectid) {
7889 if (!use_cluster && last_ptr) {
7890 spin_lock(&last_ptr->lock);
7891 last_ptr->window_start = ins->objectid;
7892 spin_unlock(&last_ptr->lock);
7893 }
7894 ret = 0;
7895 }
7896 out:
7897 if (ret == -ENOSPC) {
7898 spin_lock(&space_info->lock);
7899 space_info->max_extent_size = max_extent_size;
7900 spin_unlock(&space_info->lock);
7901 ins->offset = max_extent_size;
7902 }
7903 return ret;
7904 }
7905
7906 static void dump_space_info(struct btrfs_fs_info *fs_info,
7907 struct btrfs_space_info *info, u64 bytes,
7908 int dump_block_groups)
7909 {
7910 struct btrfs_block_group_cache *cache;
7911 int index = 0;
7912
7913 spin_lock(&info->lock);
7914 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7915 info->flags,
7916 info->total_bytes - btrfs_space_info_used(info, true),
7917 info->full ? "" : "not ");
7918 btrfs_info(fs_info,
7919 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7920 info->total_bytes, info->bytes_used, info->bytes_pinned,
7921 info->bytes_reserved, info->bytes_may_use,
7922 info->bytes_readonly);
7923 spin_unlock(&info->lock);
7924
7925 if (!dump_block_groups)
7926 return;
7927
7928 down_read(&info->groups_sem);
7929 again:
7930 list_for_each_entry(cache, &info->block_groups[index], list) {
7931 spin_lock(&cache->lock);
7932 btrfs_info(fs_info,
7933 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7934 cache->key.objectid, cache->key.offset,
7935 btrfs_block_group_used(&cache->item), cache->pinned,
7936 cache->reserved, cache->ro ? "[readonly]" : "");
7937 btrfs_dump_free_space(cache, bytes);
7938 spin_unlock(&cache->lock);
7939 }
7940 if (++index < BTRFS_NR_RAID_TYPES)
7941 goto again;
7942 up_read(&info->groups_sem);
7943 }
7944
7945 /*
7946 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7947 * hole that is at least as big as @num_bytes.
7948 *
7949 * @root - The root that will contain this extent
7950 *
7951 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7952 * is used for accounting purposes. This value differs
7953 * from @num_bytes only in the case of compressed extents.
7954 *
7955 * @num_bytes - Number of bytes to allocate on-disk.
7956 *
7957 * @min_alloc_size - Indicates the minimum amount of space that the
7958 * allocator should try to satisfy. In some cases
7959 * @num_bytes may be larger than what is required and if
7960 * the filesystem is fragmented then allocation fails.
7961 * However, the presence of @min_alloc_size gives a
7962 * chance to try and satisfy the smaller allocation.
7963 *
7964 * @empty_size - A hint that you plan on doing more COW. This is the
7965 * size in bytes the allocator should try to find free
7966 * next to the block it returns. This is just a hint and
7967 * may be ignored by the allocator.
7968 *
7969 * @hint_byte - Hint to the allocator to start searching above the byte
7970 * address passed. It might be ignored.
7971 *
7972 * @ins - This key is modified to record the found hole. It will
7973 * have the following values:
7974 * ins->objectid == start position
7975 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7976 * ins->offset == the size of the hole.
7977 *
7978 * @is_data - Boolean flag indicating whether an extent is
7979 * allocated for data (true) or metadata (false)
7980 *
7981 * @delalloc - Boolean flag indicating whether this allocation is for
7982 * delalloc or not. If 'true' data_rwsem of block groups
7983 * is going to be acquired.
7984 *
7985 *
7986 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7987 * case -ENOSPC is returned then @ins->offset will contain the size of the
7988 * largest available hole the allocator managed to find.
7989 */
7990 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7991 u64 num_bytes, u64 min_alloc_size,
7992 u64 empty_size, u64 hint_byte,
7993 struct btrfs_key *ins, int is_data, int delalloc)
7994 {
7995 struct btrfs_fs_info *fs_info = root->fs_info;
7996 bool final_tried = num_bytes == min_alloc_size;
7997 u64 flags;
7998 int ret;
7999
8000 flags = get_alloc_profile_by_root(root, is_data);
8001 again:
8002 WARN_ON(num_bytes < fs_info->sectorsize);
8003 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8004 hint_byte, ins, flags, delalloc);
8005 if (!ret && !is_data) {
8006 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8007 } else if (ret == -ENOSPC) {
8008 if (!final_tried && ins->offset) {
8009 num_bytes = min(num_bytes >> 1, ins->offset);
8010 num_bytes = round_down(num_bytes,
8011 fs_info->sectorsize);
8012 num_bytes = max(num_bytes, min_alloc_size);
8013 ram_bytes = num_bytes;
8014 if (num_bytes == min_alloc_size)
8015 final_tried = true;
8016 goto again;
8017 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8018 struct btrfs_space_info *sinfo;
8019
8020 sinfo = __find_space_info(fs_info, flags);
8021 btrfs_err(fs_info,
8022 "allocation failed flags %llu, wanted %llu",
8023 flags, num_bytes);
8024 if (sinfo)
8025 dump_space_info(fs_info, sinfo, num_bytes, 1);
8026 }
8027 }
8028
8029 return ret;
8030 }
8031
8032 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8033 u64 start, u64 len,
8034 int pin, int delalloc)
8035 {
8036 struct btrfs_block_group_cache *cache;
8037 int ret = 0;
8038
8039 cache = btrfs_lookup_block_group(fs_info, start);
8040 if (!cache) {
8041 btrfs_err(fs_info, "Unable to find block group for %llu",
8042 start);
8043 return -ENOSPC;
8044 }
8045
8046 if (pin)
8047 pin_down_extent(fs_info, cache, start, len, 1);
8048 else {
8049 if (btrfs_test_opt(fs_info, DISCARD))
8050 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8051 btrfs_add_free_space(cache, start, len);
8052 btrfs_free_reserved_bytes(cache, len, delalloc);
8053 trace_btrfs_reserved_extent_free(fs_info, start, len);
8054 }
8055
8056 btrfs_put_block_group(cache);
8057 return ret;
8058 }
8059
8060 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8061 u64 start, u64 len, int delalloc)
8062 {
8063 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8064 }
8065
8066 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8067 u64 start, u64 len)
8068 {
8069 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8070 }
8071
8072 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8073 u64 parent, u64 root_objectid,
8074 u64 flags, u64 owner, u64 offset,
8075 struct btrfs_key *ins, int ref_mod)
8076 {
8077 struct btrfs_fs_info *fs_info = trans->fs_info;
8078 int ret;
8079 struct btrfs_extent_item *extent_item;
8080 struct btrfs_extent_inline_ref *iref;
8081 struct btrfs_path *path;
8082 struct extent_buffer *leaf;
8083 int type;
8084 u32 size;
8085
8086 if (parent > 0)
8087 type = BTRFS_SHARED_DATA_REF_KEY;
8088 else
8089 type = BTRFS_EXTENT_DATA_REF_KEY;
8090
8091 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8092
8093 path = btrfs_alloc_path();
8094 if (!path)
8095 return -ENOMEM;
8096
8097 path->leave_spinning = 1;
8098 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8099 ins, size);
8100 if (ret) {
8101 btrfs_free_path(path);
8102 return ret;
8103 }
8104
8105 leaf = path->nodes[0];
8106 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8107 struct btrfs_extent_item);
8108 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8109 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8110 btrfs_set_extent_flags(leaf, extent_item,
8111 flags | BTRFS_EXTENT_FLAG_DATA);
8112
8113 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8114 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8115 if (parent > 0) {
8116 struct btrfs_shared_data_ref *ref;
8117 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8118 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8119 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8120 } else {
8121 struct btrfs_extent_data_ref *ref;
8122 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8123 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8124 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8125 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8126 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8127 }
8128
8129 btrfs_mark_buffer_dirty(path->nodes[0]);
8130 btrfs_free_path(path);
8131
8132 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
8133 if (ret)
8134 return ret;
8135
8136 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8137 if (ret) { /* -ENOENT, logic error */
8138 btrfs_err(fs_info, "update block group failed for %llu %llu",
8139 ins->objectid, ins->offset);
8140 BUG();
8141 }
8142 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8143 return ret;
8144 }
8145
8146 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8147 struct btrfs_delayed_ref_node *node,
8148 struct btrfs_delayed_extent_op *extent_op)
8149 {
8150 struct btrfs_fs_info *fs_info = trans->fs_info;
8151 int ret;
8152 struct btrfs_extent_item *extent_item;
8153 struct btrfs_key extent_key;
8154 struct btrfs_tree_block_info *block_info;
8155 struct btrfs_extent_inline_ref *iref;
8156 struct btrfs_path *path;
8157 struct extent_buffer *leaf;
8158 struct btrfs_delayed_tree_ref *ref;
8159 u32 size = sizeof(*extent_item) + sizeof(*iref);
8160 u64 num_bytes;
8161 u64 flags = extent_op->flags_to_set;
8162 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8163
8164 ref = btrfs_delayed_node_to_tree_ref(node);
8165
8166 extent_key.objectid = node->bytenr;
8167 if (skinny_metadata) {
8168 extent_key.offset = ref->level;
8169 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8170 num_bytes = fs_info->nodesize;
8171 } else {
8172 extent_key.offset = node->num_bytes;
8173 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8174 size += sizeof(*block_info);
8175 num_bytes = node->num_bytes;
8176 }
8177
8178 path = btrfs_alloc_path();
8179 if (!path) {
8180 btrfs_free_and_pin_reserved_extent(fs_info,
8181 extent_key.objectid,
8182 fs_info->nodesize);
8183 return -ENOMEM;
8184 }
8185
8186 path->leave_spinning = 1;
8187 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8188 &extent_key, size);
8189 if (ret) {
8190 btrfs_free_path(path);
8191 btrfs_free_and_pin_reserved_extent(fs_info,
8192 extent_key.objectid,
8193 fs_info->nodesize);
8194 return ret;
8195 }
8196
8197 leaf = path->nodes[0];
8198 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8199 struct btrfs_extent_item);
8200 btrfs_set_extent_refs(leaf, extent_item, 1);
8201 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8202 btrfs_set_extent_flags(leaf, extent_item,
8203 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8204
8205 if (skinny_metadata) {
8206 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8207 } else {
8208 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8209 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8210 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8211 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8212 }
8213
8214 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8215 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8216 btrfs_set_extent_inline_ref_type(leaf, iref,
8217 BTRFS_SHARED_BLOCK_REF_KEY);
8218 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8219 } else {
8220 btrfs_set_extent_inline_ref_type(leaf, iref,
8221 BTRFS_TREE_BLOCK_REF_KEY);
8222 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8223 }
8224
8225 btrfs_mark_buffer_dirty(leaf);
8226 btrfs_free_path(path);
8227
8228 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8229 num_bytes);
8230 if (ret)
8231 return ret;
8232
8233 ret = update_block_group(trans, fs_info, extent_key.objectid,
8234 fs_info->nodesize, 1);
8235 if (ret) { /* -ENOENT, logic error */
8236 btrfs_err(fs_info, "update block group failed for %llu %llu",
8237 extent_key.objectid, extent_key.offset);
8238 BUG();
8239 }
8240
8241 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8242 fs_info->nodesize);
8243 return ret;
8244 }
8245
8246 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8247 struct btrfs_root *root, u64 owner,
8248 u64 offset, u64 ram_bytes,
8249 struct btrfs_key *ins)
8250 {
8251 int ret;
8252
8253 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8254
8255 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8256 root->root_key.objectid, owner, offset,
8257 BTRFS_ADD_DELAYED_EXTENT);
8258
8259 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8260 ins->offset, 0,
8261 root->root_key.objectid, owner,
8262 offset, ram_bytes,
8263 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8264 return ret;
8265 }
8266
8267 /*
8268 * this is used by the tree logging recovery code. It records that
8269 * an extent has been allocated and makes sure to clear the free
8270 * space cache bits as well
8271 */
8272 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8273 struct btrfs_fs_info *fs_info,
8274 u64 root_objectid, u64 owner, u64 offset,
8275 struct btrfs_key *ins)
8276 {
8277 int ret;
8278 struct btrfs_block_group_cache *block_group;
8279 struct btrfs_space_info *space_info;
8280
8281 /*
8282 * Mixed block groups will exclude before processing the log so we only
8283 * need to do the exclude dance if this fs isn't mixed.
8284 */
8285 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8286 ret = __exclude_logged_extent(fs_info, ins->objectid,
8287 ins->offset);
8288 if (ret)
8289 return ret;
8290 }
8291
8292 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8293 if (!block_group)
8294 return -EINVAL;
8295
8296 space_info = block_group->space_info;
8297 spin_lock(&space_info->lock);
8298 spin_lock(&block_group->lock);
8299 space_info->bytes_reserved += ins->offset;
8300 block_group->reserved += ins->offset;
8301 spin_unlock(&block_group->lock);
8302 spin_unlock(&space_info->lock);
8303
8304 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8305 offset, ins, 1);
8306 btrfs_put_block_group(block_group);
8307 return ret;
8308 }
8309
8310 static struct extent_buffer *
8311 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8312 u64 bytenr, int level)
8313 {
8314 struct btrfs_fs_info *fs_info = root->fs_info;
8315 struct extent_buffer *buf;
8316
8317 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8318 if (IS_ERR(buf))
8319 return buf;
8320
8321 btrfs_set_header_generation(buf, trans->transid);
8322 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8323 btrfs_tree_lock(buf);
8324 clean_tree_block(fs_info, buf);
8325 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8326
8327 btrfs_set_lock_blocking(buf);
8328 set_extent_buffer_uptodate(buf);
8329
8330 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8331 buf->log_index = root->log_transid % 2;
8332 /*
8333 * we allow two log transactions at a time, use different
8334 * EXENT bit to differentiate dirty pages.
8335 */
8336 if (buf->log_index == 0)
8337 set_extent_dirty(&root->dirty_log_pages, buf->start,
8338 buf->start + buf->len - 1, GFP_NOFS);
8339 else
8340 set_extent_new(&root->dirty_log_pages, buf->start,
8341 buf->start + buf->len - 1);
8342 } else {
8343 buf->log_index = -1;
8344 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8345 buf->start + buf->len - 1, GFP_NOFS);
8346 }
8347 trans->dirty = true;
8348 /* this returns a buffer locked for blocking */
8349 return buf;
8350 }
8351
8352 static struct btrfs_block_rsv *
8353 use_block_rsv(struct btrfs_trans_handle *trans,
8354 struct btrfs_root *root, u32 blocksize)
8355 {
8356 struct btrfs_fs_info *fs_info = root->fs_info;
8357 struct btrfs_block_rsv *block_rsv;
8358 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8359 int ret;
8360 bool global_updated = false;
8361
8362 block_rsv = get_block_rsv(trans, root);
8363
8364 if (unlikely(block_rsv->size == 0))
8365 goto try_reserve;
8366 again:
8367 ret = block_rsv_use_bytes(block_rsv, blocksize);
8368 if (!ret)
8369 return block_rsv;
8370
8371 if (block_rsv->failfast)
8372 return ERR_PTR(ret);
8373
8374 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8375 global_updated = true;
8376 update_global_block_rsv(fs_info);
8377 goto again;
8378 }
8379
8380 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8381 static DEFINE_RATELIMIT_STATE(_rs,
8382 DEFAULT_RATELIMIT_INTERVAL * 10,
8383 /*DEFAULT_RATELIMIT_BURST*/ 1);
8384 if (__ratelimit(&_rs))
8385 WARN(1, KERN_DEBUG
8386 "BTRFS: block rsv returned %d\n", ret);
8387 }
8388 try_reserve:
8389 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8390 BTRFS_RESERVE_NO_FLUSH);
8391 if (!ret)
8392 return block_rsv;
8393 /*
8394 * If we couldn't reserve metadata bytes try and use some from
8395 * the global reserve if its space type is the same as the global
8396 * reservation.
8397 */
8398 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8399 block_rsv->space_info == global_rsv->space_info) {
8400 ret = block_rsv_use_bytes(global_rsv, blocksize);
8401 if (!ret)
8402 return global_rsv;
8403 }
8404 return ERR_PTR(ret);
8405 }
8406
8407 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8408 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8409 {
8410 block_rsv_add_bytes(block_rsv, blocksize, 0);
8411 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8412 }
8413
8414 /*
8415 * finds a free extent and does all the dirty work required for allocation
8416 * returns the tree buffer or an ERR_PTR on error.
8417 */
8418 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8419 struct btrfs_root *root,
8420 u64 parent, u64 root_objectid,
8421 const struct btrfs_disk_key *key,
8422 int level, u64 hint,
8423 u64 empty_size)
8424 {
8425 struct btrfs_fs_info *fs_info = root->fs_info;
8426 struct btrfs_key ins;
8427 struct btrfs_block_rsv *block_rsv;
8428 struct extent_buffer *buf;
8429 struct btrfs_delayed_extent_op *extent_op;
8430 u64 flags = 0;
8431 int ret;
8432 u32 blocksize = fs_info->nodesize;
8433 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8434
8435 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8436 if (btrfs_is_testing(fs_info)) {
8437 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8438 level);
8439 if (!IS_ERR(buf))
8440 root->alloc_bytenr += blocksize;
8441 return buf;
8442 }
8443 #endif
8444
8445 block_rsv = use_block_rsv(trans, root, blocksize);
8446 if (IS_ERR(block_rsv))
8447 return ERR_CAST(block_rsv);
8448
8449 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8450 empty_size, hint, &ins, 0, 0);
8451 if (ret)
8452 goto out_unuse;
8453
8454 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8455 if (IS_ERR(buf)) {
8456 ret = PTR_ERR(buf);
8457 goto out_free_reserved;
8458 }
8459
8460 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8461 if (parent == 0)
8462 parent = ins.objectid;
8463 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8464 } else
8465 BUG_ON(parent > 0);
8466
8467 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8468 extent_op = btrfs_alloc_delayed_extent_op();
8469 if (!extent_op) {
8470 ret = -ENOMEM;
8471 goto out_free_buf;
8472 }
8473 if (key)
8474 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8475 else
8476 memset(&extent_op->key, 0, sizeof(extent_op->key));
8477 extent_op->flags_to_set = flags;
8478 extent_op->update_key = skinny_metadata ? false : true;
8479 extent_op->update_flags = true;
8480 extent_op->is_data = false;
8481 extent_op->level = level;
8482
8483 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8484 root_objectid, level, 0,
8485 BTRFS_ADD_DELAYED_EXTENT);
8486 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8487 ins.offset, parent,
8488 root_objectid, level,
8489 BTRFS_ADD_DELAYED_EXTENT,
8490 extent_op, NULL, NULL);
8491 if (ret)
8492 goto out_free_delayed;
8493 }
8494 return buf;
8495
8496 out_free_delayed:
8497 btrfs_free_delayed_extent_op(extent_op);
8498 out_free_buf:
8499 free_extent_buffer(buf);
8500 out_free_reserved:
8501 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8502 out_unuse:
8503 unuse_block_rsv(fs_info, block_rsv, blocksize);
8504 return ERR_PTR(ret);
8505 }
8506
8507 struct walk_control {
8508 u64 refs[BTRFS_MAX_LEVEL];
8509 u64 flags[BTRFS_MAX_LEVEL];
8510 struct btrfs_key update_progress;
8511 int stage;
8512 int level;
8513 int shared_level;
8514 int update_ref;
8515 int keep_locks;
8516 int reada_slot;
8517 int reada_count;
8518 int for_reloc;
8519 };
8520
8521 #define DROP_REFERENCE 1
8522 #define UPDATE_BACKREF 2
8523
8524 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8525 struct btrfs_root *root,
8526 struct walk_control *wc,
8527 struct btrfs_path *path)
8528 {
8529 struct btrfs_fs_info *fs_info = root->fs_info;
8530 u64 bytenr;
8531 u64 generation;
8532 u64 refs;
8533 u64 flags;
8534 u32 nritems;
8535 struct btrfs_key key;
8536 struct extent_buffer *eb;
8537 int ret;
8538 int slot;
8539 int nread = 0;
8540
8541 if (path->slots[wc->level] < wc->reada_slot) {
8542 wc->reada_count = wc->reada_count * 2 / 3;
8543 wc->reada_count = max(wc->reada_count, 2);
8544 } else {
8545 wc->reada_count = wc->reada_count * 3 / 2;
8546 wc->reada_count = min_t(int, wc->reada_count,
8547 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8548 }
8549
8550 eb = path->nodes[wc->level];
8551 nritems = btrfs_header_nritems(eb);
8552
8553 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8554 if (nread >= wc->reada_count)
8555 break;
8556
8557 cond_resched();
8558 bytenr = btrfs_node_blockptr(eb, slot);
8559 generation = btrfs_node_ptr_generation(eb, slot);
8560
8561 if (slot == path->slots[wc->level])
8562 goto reada;
8563
8564 if (wc->stage == UPDATE_BACKREF &&
8565 generation <= root->root_key.offset)
8566 continue;
8567
8568 /* We don't lock the tree block, it's OK to be racy here */
8569 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8570 wc->level - 1, 1, &refs,
8571 &flags);
8572 /* We don't care about errors in readahead. */
8573 if (ret < 0)
8574 continue;
8575 BUG_ON(refs == 0);
8576
8577 if (wc->stage == DROP_REFERENCE) {
8578 if (refs == 1)
8579 goto reada;
8580
8581 if (wc->level == 1 &&
8582 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8583 continue;
8584 if (!wc->update_ref ||
8585 generation <= root->root_key.offset)
8586 continue;
8587 btrfs_node_key_to_cpu(eb, &key, slot);
8588 ret = btrfs_comp_cpu_keys(&key,
8589 &wc->update_progress);
8590 if (ret < 0)
8591 continue;
8592 } else {
8593 if (wc->level == 1 &&
8594 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8595 continue;
8596 }
8597 reada:
8598 readahead_tree_block(fs_info, bytenr);
8599 nread++;
8600 }
8601 wc->reada_slot = slot;
8602 }
8603
8604 /*
8605 * helper to process tree block while walking down the tree.
8606 *
8607 * when wc->stage == UPDATE_BACKREF, this function updates
8608 * back refs for pointers in the block.
8609 *
8610 * NOTE: return value 1 means we should stop walking down.
8611 */
8612 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8613 struct btrfs_root *root,
8614 struct btrfs_path *path,
8615 struct walk_control *wc, int lookup_info)
8616 {
8617 struct btrfs_fs_info *fs_info = root->fs_info;
8618 int level = wc->level;
8619 struct extent_buffer *eb = path->nodes[level];
8620 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8621 int ret;
8622
8623 if (wc->stage == UPDATE_BACKREF &&
8624 btrfs_header_owner(eb) != root->root_key.objectid)
8625 return 1;
8626
8627 /*
8628 * when reference count of tree block is 1, it won't increase
8629 * again. once full backref flag is set, we never clear it.
8630 */
8631 if (lookup_info &&
8632 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8633 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8634 BUG_ON(!path->locks[level]);
8635 ret = btrfs_lookup_extent_info(trans, fs_info,
8636 eb->start, level, 1,
8637 &wc->refs[level],
8638 &wc->flags[level]);
8639 BUG_ON(ret == -ENOMEM);
8640 if (ret)
8641 return ret;
8642 BUG_ON(wc->refs[level] == 0);
8643 }
8644
8645 if (wc->stage == DROP_REFERENCE) {
8646 if (wc->refs[level] > 1)
8647 return 1;
8648
8649 if (path->locks[level] && !wc->keep_locks) {
8650 btrfs_tree_unlock_rw(eb, path->locks[level]);
8651 path->locks[level] = 0;
8652 }
8653 return 0;
8654 }
8655
8656 /* wc->stage == UPDATE_BACKREF */
8657 if (!(wc->flags[level] & flag)) {
8658 BUG_ON(!path->locks[level]);
8659 ret = btrfs_inc_ref(trans, root, eb, 1);
8660 BUG_ON(ret); /* -ENOMEM */
8661 ret = btrfs_dec_ref(trans, root, eb, 0);
8662 BUG_ON(ret); /* -ENOMEM */
8663 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8664 eb->len, flag,
8665 btrfs_header_level(eb), 0);
8666 BUG_ON(ret); /* -ENOMEM */
8667 wc->flags[level] |= flag;
8668 }
8669
8670 /*
8671 * the block is shared by multiple trees, so it's not good to
8672 * keep the tree lock
8673 */
8674 if (path->locks[level] && level > 0) {
8675 btrfs_tree_unlock_rw(eb, path->locks[level]);
8676 path->locks[level] = 0;
8677 }
8678 return 0;
8679 }
8680
8681 /*
8682 * helper to process tree block pointer.
8683 *
8684 * when wc->stage == DROP_REFERENCE, this function checks
8685 * reference count of the block pointed to. if the block
8686 * is shared and we need update back refs for the subtree
8687 * rooted at the block, this function changes wc->stage to
8688 * UPDATE_BACKREF. if the block is shared and there is no
8689 * need to update back, this function drops the reference
8690 * to the block.
8691 *
8692 * NOTE: return value 1 means we should stop walking down.
8693 */
8694 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8695 struct btrfs_root *root,
8696 struct btrfs_path *path,
8697 struct walk_control *wc, int *lookup_info)
8698 {
8699 struct btrfs_fs_info *fs_info = root->fs_info;
8700 u64 bytenr;
8701 u64 generation;
8702 u64 parent;
8703 u32 blocksize;
8704 struct btrfs_key key;
8705 struct btrfs_key first_key;
8706 struct extent_buffer *next;
8707 int level = wc->level;
8708 int reada = 0;
8709 int ret = 0;
8710 bool need_account = false;
8711
8712 generation = btrfs_node_ptr_generation(path->nodes[level],
8713 path->slots[level]);
8714 /*
8715 * if the lower level block was created before the snapshot
8716 * was created, we know there is no need to update back refs
8717 * for the subtree
8718 */
8719 if (wc->stage == UPDATE_BACKREF &&
8720 generation <= root->root_key.offset) {
8721 *lookup_info = 1;
8722 return 1;
8723 }
8724
8725 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8726 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8727 path->slots[level]);
8728 blocksize = fs_info->nodesize;
8729
8730 next = find_extent_buffer(fs_info, bytenr);
8731 if (!next) {
8732 next = btrfs_find_create_tree_block(fs_info, bytenr);
8733 if (IS_ERR(next))
8734 return PTR_ERR(next);
8735
8736 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8737 level - 1);
8738 reada = 1;
8739 }
8740 btrfs_tree_lock(next);
8741 btrfs_set_lock_blocking(next);
8742
8743 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8744 &wc->refs[level - 1],
8745 &wc->flags[level - 1]);
8746 if (ret < 0)
8747 goto out_unlock;
8748
8749 if (unlikely(wc->refs[level - 1] == 0)) {
8750 btrfs_err(fs_info, "Missing references.");
8751 ret = -EIO;
8752 goto out_unlock;
8753 }
8754 *lookup_info = 0;
8755
8756 if (wc->stage == DROP_REFERENCE) {
8757 if (wc->refs[level - 1] > 1) {
8758 need_account = true;
8759 if (level == 1 &&
8760 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8761 goto skip;
8762
8763 if (!wc->update_ref ||
8764 generation <= root->root_key.offset)
8765 goto skip;
8766
8767 btrfs_node_key_to_cpu(path->nodes[level], &key,
8768 path->slots[level]);
8769 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8770 if (ret < 0)
8771 goto skip;
8772
8773 wc->stage = UPDATE_BACKREF;
8774 wc->shared_level = level - 1;
8775 }
8776 } else {
8777 if (level == 1 &&
8778 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8779 goto skip;
8780 }
8781
8782 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8783 btrfs_tree_unlock(next);
8784 free_extent_buffer(next);
8785 next = NULL;
8786 *lookup_info = 1;
8787 }
8788
8789 if (!next) {
8790 if (reada && level == 1)
8791 reada_walk_down(trans, root, wc, path);
8792 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8793 &first_key);
8794 if (IS_ERR(next)) {
8795 return PTR_ERR(next);
8796 } else if (!extent_buffer_uptodate(next)) {
8797 free_extent_buffer(next);
8798 return -EIO;
8799 }
8800 btrfs_tree_lock(next);
8801 btrfs_set_lock_blocking(next);
8802 }
8803
8804 level--;
8805 ASSERT(level == btrfs_header_level(next));
8806 if (level != btrfs_header_level(next)) {
8807 btrfs_err(root->fs_info, "mismatched level");
8808 ret = -EIO;
8809 goto out_unlock;
8810 }
8811 path->nodes[level] = next;
8812 path->slots[level] = 0;
8813 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8814 wc->level = level;
8815 if (wc->level == 1)
8816 wc->reada_slot = 0;
8817 return 0;
8818 skip:
8819 wc->refs[level - 1] = 0;
8820 wc->flags[level - 1] = 0;
8821 if (wc->stage == DROP_REFERENCE) {
8822 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8823 parent = path->nodes[level]->start;
8824 } else {
8825 ASSERT(root->root_key.objectid ==
8826 btrfs_header_owner(path->nodes[level]));
8827 if (root->root_key.objectid !=
8828 btrfs_header_owner(path->nodes[level])) {
8829 btrfs_err(root->fs_info,
8830 "mismatched block owner");
8831 ret = -EIO;
8832 goto out_unlock;
8833 }
8834 parent = 0;
8835 }
8836
8837 if (need_account) {
8838 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8839 generation, level - 1);
8840 if (ret) {
8841 btrfs_err_rl(fs_info,
8842 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8843 ret);
8844 }
8845 }
8846 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8847 parent, root->root_key.objectid,
8848 level - 1, 0);
8849 if (ret)
8850 goto out_unlock;
8851 }
8852
8853 *lookup_info = 1;
8854 ret = 1;
8855
8856 out_unlock:
8857 btrfs_tree_unlock(next);
8858 free_extent_buffer(next);
8859
8860 return ret;
8861 }
8862
8863 /*
8864 * helper to process tree block while walking up the tree.
8865 *
8866 * when wc->stage == DROP_REFERENCE, this function drops
8867 * reference count on the block.
8868 *
8869 * when wc->stage == UPDATE_BACKREF, this function changes
8870 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8871 * to UPDATE_BACKREF previously while processing the block.
8872 *
8873 * NOTE: return value 1 means we should stop walking up.
8874 */
8875 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8876 struct btrfs_root *root,
8877 struct btrfs_path *path,
8878 struct walk_control *wc)
8879 {
8880 struct btrfs_fs_info *fs_info = root->fs_info;
8881 int ret;
8882 int level = wc->level;
8883 struct extent_buffer *eb = path->nodes[level];
8884 u64 parent = 0;
8885
8886 if (wc->stage == UPDATE_BACKREF) {
8887 BUG_ON(wc->shared_level < level);
8888 if (level < wc->shared_level)
8889 goto out;
8890
8891 ret = find_next_key(path, level + 1, &wc->update_progress);
8892 if (ret > 0)
8893 wc->update_ref = 0;
8894
8895 wc->stage = DROP_REFERENCE;
8896 wc->shared_level = -1;
8897 path->slots[level] = 0;
8898
8899 /*
8900 * check reference count again if the block isn't locked.
8901 * we should start walking down the tree again if reference
8902 * count is one.
8903 */
8904 if (!path->locks[level]) {
8905 BUG_ON(level == 0);
8906 btrfs_tree_lock(eb);
8907 btrfs_set_lock_blocking(eb);
8908 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8909
8910 ret = btrfs_lookup_extent_info(trans, fs_info,
8911 eb->start, level, 1,
8912 &wc->refs[level],
8913 &wc->flags[level]);
8914 if (ret < 0) {
8915 btrfs_tree_unlock_rw(eb, path->locks[level]);
8916 path->locks[level] = 0;
8917 return ret;
8918 }
8919 BUG_ON(wc->refs[level] == 0);
8920 if (wc->refs[level] == 1) {
8921 btrfs_tree_unlock_rw(eb, path->locks[level]);
8922 path->locks[level] = 0;
8923 return 1;
8924 }
8925 }
8926 }
8927
8928 /* wc->stage == DROP_REFERENCE */
8929 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8930
8931 if (wc->refs[level] == 1) {
8932 if (level == 0) {
8933 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8934 ret = btrfs_dec_ref(trans, root, eb, 1);
8935 else
8936 ret = btrfs_dec_ref(trans, root, eb, 0);
8937 BUG_ON(ret); /* -ENOMEM */
8938 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8939 if (ret) {
8940 btrfs_err_rl(fs_info,
8941 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8942 ret);
8943 }
8944 }
8945 /* make block locked assertion in clean_tree_block happy */
8946 if (!path->locks[level] &&
8947 btrfs_header_generation(eb) == trans->transid) {
8948 btrfs_tree_lock(eb);
8949 btrfs_set_lock_blocking(eb);
8950 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8951 }
8952 clean_tree_block(fs_info, eb);
8953 }
8954
8955 if (eb == root->node) {
8956 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8957 parent = eb->start;
8958 else
8959 BUG_ON(root->root_key.objectid !=
8960 btrfs_header_owner(eb));
8961 } else {
8962 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8963 parent = path->nodes[level + 1]->start;
8964 else
8965 BUG_ON(root->root_key.objectid !=
8966 btrfs_header_owner(path->nodes[level + 1]));
8967 }
8968
8969 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8970 out:
8971 wc->refs[level] = 0;
8972 wc->flags[level] = 0;
8973 return 0;
8974 }
8975
8976 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8977 struct btrfs_root *root,
8978 struct btrfs_path *path,
8979 struct walk_control *wc)
8980 {
8981 int level = wc->level;
8982 int lookup_info = 1;
8983 int ret;
8984
8985 while (level >= 0) {
8986 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8987 if (ret > 0)
8988 break;
8989
8990 if (level == 0)
8991 break;
8992
8993 if (path->slots[level] >=
8994 btrfs_header_nritems(path->nodes[level]))
8995 break;
8996
8997 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8998 if (ret > 0) {
8999 path->slots[level]++;
9000 continue;
9001 } else if (ret < 0)
9002 return ret;
9003 level = wc->level;
9004 }
9005 return 0;
9006 }
9007
9008 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9009 struct btrfs_root *root,
9010 struct btrfs_path *path,
9011 struct walk_control *wc, int max_level)
9012 {
9013 int level = wc->level;
9014 int ret;
9015
9016 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9017 while (level < max_level && path->nodes[level]) {
9018 wc->level = level;
9019 if (path->slots[level] + 1 <
9020 btrfs_header_nritems(path->nodes[level])) {
9021 path->slots[level]++;
9022 return 0;
9023 } else {
9024 ret = walk_up_proc(trans, root, path, wc);
9025 if (ret > 0)
9026 return 0;
9027
9028 if (path->locks[level]) {
9029 btrfs_tree_unlock_rw(path->nodes[level],
9030 path->locks[level]);
9031 path->locks[level] = 0;
9032 }
9033 free_extent_buffer(path->nodes[level]);
9034 path->nodes[level] = NULL;
9035 level++;
9036 }
9037 }
9038 return 1;
9039 }
9040
9041 /*
9042 * drop a subvolume tree.
9043 *
9044 * this function traverses the tree freeing any blocks that only
9045 * referenced by the tree.
9046 *
9047 * when a shared tree block is found. this function decreases its
9048 * reference count by one. if update_ref is true, this function
9049 * also make sure backrefs for the shared block and all lower level
9050 * blocks are properly updated.
9051 *
9052 * If called with for_reloc == 0, may exit early with -EAGAIN
9053 */
9054 int btrfs_drop_snapshot(struct btrfs_root *root,
9055 struct btrfs_block_rsv *block_rsv, int update_ref,
9056 int for_reloc)
9057 {
9058 struct btrfs_fs_info *fs_info = root->fs_info;
9059 struct btrfs_path *path;
9060 struct btrfs_trans_handle *trans;
9061 struct btrfs_root *tree_root = fs_info->tree_root;
9062 struct btrfs_root_item *root_item = &root->root_item;
9063 struct walk_control *wc;
9064 struct btrfs_key key;
9065 int err = 0;
9066 int ret;
9067 int level;
9068 bool root_dropped = false;
9069
9070 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9071
9072 path = btrfs_alloc_path();
9073 if (!path) {
9074 err = -ENOMEM;
9075 goto out;
9076 }
9077
9078 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9079 if (!wc) {
9080 btrfs_free_path(path);
9081 err = -ENOMEM;
9082 goto out;
9083 }
9084
9085 trans = btrfs_start_transaction(tree_root, 0);
9086 if (IS_ERR(trans)) {
9087 err = PTR_ERR(trans);
9088 goto out_free;
9089 }
9090
9091 if (block_rsv)
9092 trans->block_rsv = block_rsv;
9093
9094 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9095 level = btrfs_header_level(root->node);
9096 path->nodes[level] = btrfs_lock_root_node(root);
9097 btrfs_set_lock_blocking(path->nodes[level]);
9098 path->slots[level] = 0;
9099 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9100 memset(&wc->update_progress, 0,
9101 sizeof(wc->update_progress));
9102 } else {
9103 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9104 memcpy(&wc->update_progress, &key,
9105 sizeof(wc->update_progress));
9106
9107 level = root_item->drop_level;
9108 BUG_ON(level == 0);
9109 path->lowest_level = level;
9110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9111 path->lowest_level = 0;
9112 if (ret < 0) {
9113 err = ret;
9114 goto out_end_trans;
9115 }
9116 WARN_ON(ret > 0);
9117
9118 /*
9119 * unlock our path, this is safe because only this
9120 * function is allowed to delete this snapshot
9121 */
9122 btrfs_unlock_up_safe(path, 0);
9123
9124 level = btrfs_header_level(root->node);
9125 while (1) {
9126 btrfs_tree_lock(path->nodes[level]);
9127 btrfs_set_lock_blocking(path->nodes[level]);
9128 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9129
9130 ret = btrfs_lookup_extent_info(trans, fs_info,
9131 path->nodes[level]->start,
9132 level, 1, &wc->refs[level],
9133 &wc->flags[level]);
9134 if (ret < 0) {
9135 err = ret;
9136 goto out_end_trans;
9137 }
9138 BUG_ON(wc->refs[level] == 0);
9139
9140 if (level == root_item->drop_level)
9141 break;
9142
9143 btrfs_tree_unlock(path->nodes[level]);
9144 path->locks[level] = 0;
9145 WARN_ON(wc->refs[level] != 1);
9146 level--;
9147 }
9148 }
9149
9150 wc->level = level;
9151 wc->shared_level = -1;
9152 wc->stage = DROP_REFERENCE;
9153 wc->update_ref = update_ref;
9154 wc->keep_locks = 0;
9155 wc->for_reloc = for_reloc;
9156 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9157
9158 while (1) {
9159
9160 ret = walk_down_tree(trans, root, path, wc);
9161 if (ret < 0) {
9162 err = ret;
9163 break;
9164 }
9165
9166 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9167 if (ret < 0) {
9168 err = ret;
9169 break;
9170 }
9171
9172 if (ret > 0) {
9173 BUG_ON(wc->stage != DROP_REFERENCE);
9174 break;
9175 }
9176
9177 if (wc->stage == DROP_REFERENCE) {
9178 level = wc->level;
9179 btrfs_node_key(path->nodes[level],
9180 &root_item->drop_progress,
9181 path->slots[level]);
9182 root_item->drop_level = level;
9183 }
9184
9185 BUG_ON(wc->level == 0);
9186 if (btrfs_should_end_transaction(trans) ||
9187 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9188 ret = btrfs_update_root(trans, tree_root,
9189 &root->root_key,
9190 root_item);
9191 if (ret) {
9192 btrfs_abort_transaction(trans, ret);
9193 err = ret;
9194 goto out_end_trans;
9195 }
9196
9197 btrfs_end_transaction_throttle(trans);
9198 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9199 btrfs_debug(fs_info,
9200 "drop snapshot early exit");
9201 err = -EAGAIN;
9202 goto out_free;
9203 }
9204
9205 trans = btrfs_start_transaction(tree_root, 0);
9206 if (IS_ERR(trans)) {
9207 err = PTR_ERR(trans);
9208 goto out_free;
9209 }
9210 if (block_rsv)
9211 trans->block_rsv = block_rsv;
9212 }
9213 }
9214 btrfs_release_path(path);
9215 if (err)
9216 goto out_end_trans;
9217
9218 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9219 if (ret) {
9220 btrfs_abort_transaction(trans, ret);
9221 err = ret;
9222 goto out_end_trans;
9223 }
9224
9225 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9226 ret = btrfs_find_root(tree_root, &root->root_key, path,
9227 NULL, NULL);
9228 if (ret < 0) {
9229 btrfs_abort_transaction(trans, ret);
9230 err = ret;
9231 goto out_end_trans;
9232 } else if (ret > 0) {
9233 /* if we fail to delete the orphan item this time
9234 * around, it'll get picked up the next time.
9235 *
9236 * The most common failure here is just -ENOENT.
9237 */
9238 btrfs_del_orphan_item(trans, tree_root,
9239 root->root_key.objectid);
9240 }
9241 }
9242
9243 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9244 btrfs_add_dropped_root(trans, root);
9245 } else {
9246 free_extent_buffer(root->node);
9247 free_extent_buffer(root->commit_root);
9248 btrfs_put_fs_root(root);
9249 }
9250 root_dropped = true;
9251 out_end_trans:
9252 btrfs_end_transaction_throttle(trans);
9253 out_free:
9254 kfree(wc);
9255 btrfs_free_path(path);
9256 out:
9257 /*
9258 * So if we need to stop dropping the snapshot for whatever reason we
9259 * need to make sure to add it back to the dead root list so that we
9260 * keep trying to do the work later. This also cleans up roots if we
9261 * don't have it in the radix (like when we recover after a power fail
9262 * or unmount) so we don't leak memory.
9263 */
9264 if (!for_reloc && !root_dropped)
9265 btrfs_add_dead_root(root);
9266 if (err && err != -EAGAIN)
9267 btrfs_handle_fs_error(fs_info, err, NULL);
9268 return err;
9269 }
9270
9271 /*
9272 * drop subtree rooted at tree block 'node'.
9273 *
9274 * NOTE: this function will unlock and release tree block 'node'
9275 * only used by relocation code
9276 */
9277 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9278 struct btrfs_root *root,
9279 struct extent_buffer *node,
9280 struct extent_buffer *parent)
9281 {
9282 struct btrfs_fs_info *fs_info = root->fs_info;
9283 struct btrfs_path *path;
9284 struct walk_control *wc;
9285 int level;
9286 int parent_level;
9287 int ret = 0;
9288 int wret;
9289
9290 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9291
9292 path = btrfs_alloc_path();
9293 if (!path)
9294 return -ENOMEM;
9295
9296 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9297 if (!wc) {
9298 btrfs_free_path(path);
9299 return -ENOMEM;
9300 }
9301
9302 btrfs_assert_tree_locked(parent);
9303 parent_level = btrfs_header_level(parent);
9304 extent_buffer_get(parent);
9305 path->nodes[parent_level] = parent;
9306 path->slots[parent_level] = btrfs_header_nritems(parent);
9307
9308 btrfs_assert_tree_locked(node);
9309 level = btrfs_header_level(node);
9310 path->nodes[level] = node;
9311 path->slots[level] = 0;
9312 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9313
9314 wc->refs[parent_level] = 1;
9315 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9316 wc->level = level;
9317 wc->shared_level = -1;
9318 wc->stage = DROP_REFERENCE;
9319 wc->update_ref = 0;
9320 wc->keep_locks = 1;
9321 wc->for_reloc = 1;
9322 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9323
9324 while (1) {
9325 wret = walk_down_tree(trans, root, path, wc);
9326 if (wret < 0) {
9327 ret = wret;
9328 break;
9329 }
9330
9331 wret = walk_up_tree(trans, root, path, wc, parent_level);
9332 if (wret < 0)
9333 ret = wret;
9334 if (wret != 0)
9335 break;
9336 }
9337
9338 kfree(wc);
9339 btrfs_free_path(path);
9340 return ret;
9341 }
9342
9343 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9344 {
9345 u64 num_devices;
9346 u64 stripped;
9347
9348 /*
9349 * if restripe for this chunk_type is on pick target profile and
9350 * return, otherwise do the usual balance
9351 */
9352 stripped = get_restripe_target(fs_info, flags);
9353 if (stripped)
9354 return extended_to_chunk(stripped);
9355
9356 num_devices = fs_info->fs_devices->rw_devices;
9357
9358 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9359 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9360 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9361
9362 if (num_devices == 1) {
9363 stripped |= BTRFS_BLOCK_GROUP_DUP;
9364 stripped = flags & ~stripped;
9365
9366 /* turn raid0 into single device chunks */
9367 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9368 return stripped;
9369
9370 /* turn mirroring into duplication */
9371 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9372 BTRFS_BLOCK_GROUP_RAID10))
9373 return stripped | BTRFS_BLOCK_GROUP_DUP;
9374 } else {
9375 /* they already had raid on here, just return */
9376 if (flags & stripped)
9377 return flags;
9378
9379 stripped |= BTRFS_BLOCK_GROUP_DUP;
9380 stripped = flags & ~stripped;
9381
9382 /* switch duplicated blocks with raid1 */
9383 if (flags & BTRFS_BLOCK_GROUP_DUP)
9384 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9385
9386 /* this is drive concat, leave it alone */
9387 }
9388
9389 return flags;
9390 }
9391
9392 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9393 {
9394 struct btrfs_space_info *sinfo = cache->space_info;
9395 u64 num_bytes;
9396 u64 min_allocable_bytes;
9397 int ret = -ENOSPC;
9398
9399 /*
9400 * We need some metadata space and system metadata space for
9401 * allocating chunks in some corner cases until we force to set
9402 * it to be readonly.
9403 */
9404 if ((sinfo->flags &
9405 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9406 !force)
9407 min_allocable_bytes = SZ_1M;
9408 else
9409 min_allocable_bytes = 0;
9410
9411 spin_lock(&sinfo->lock);
9412 spin_lock(&cache->lock);
9413
9414 if (cache->ro) {
9415 cache->ro++;
9416 ret = 0;
9417 goto out;
9418 }
9419
9420 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9421 cache->bytes_super - btrfs_block_group_used(&cache->item);
9422
9423 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9424 min_allocable_bytes <= sinfo->total_bytes) {
9425 sinfo->bytes_readonly += num_bytes;
9426 cache->ro++;
9427 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9428 ret = 0;
9429 }
9430 out:
9431 spin_unlock(&cache->lock);
9432 spin_unlock(&sinfo->lock);
9433 return ret;
9434 }
9435
9436 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9437 struct btrfs_block_group_cache *cache)
9438
9439 {
9440 struct btrfs_trans_handle *trans;
9441 u64 alloc_flags;
9442 int ret;
9443
9444 again:
9445 trans = btrfs_join_transaction(fs_info->extent_root);
9446 if (IS_ERR(trans))
9447 return PTR_ERR(trans);
9448
9449 /*
9450 * we're not allowed to set block groups readonly after the dirty
9451 * block groups cache has started writing. If it already started,
9452 * back off and let this transaction commit
9453 */
9454 mutex_lock(&fs_info->ro_block_group_mutex);
9455 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9456 u64 transid = trans->transid;
9457
9458 mutex_unlock(&fs_info->ro_block_group_mutex);
9459 btrfs_end_transaction(trans);
9460
9461 ret = btrfs_wait_for_commit(fs_info, transid);
9462 if (ret)
9463 return ret;
9464 goto again;
9465 }
9466
9467 /*
9468 * if we are changing raid levels, try to allocate a corresponding
9469 * block group with the new raid level.
9470 */
9471 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9472 if (alloc_flags != cache->flags) {
9473 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9474 CHUNK_ALLOC_FORCE);
9475 /*
9476 * ENOSPC is allowed here, we may have enough space
9477 * already allocated at the new raid level to
9478 * carry on
9479 */
9480 if (ret == -ENOSPC)
9481 ret = 0;
9482 if (ret < 0)
9483 goto out;
9484 }
9485
9486 ret = inc_block_group_ro(cache, 0);
9487 if (!ret)
9488 goto out;
9489 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9490 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9491 CHUNK_ALLOC_FORCE);
9492 if (ret < 0)
9493 goto out;
9494 ret = inc_block_group_ro(cache, 0);
9495 out:
9496 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9497 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9498 mutex_lock(&fs_info->chunk_mutex);
9499 check_system_chunk(trans, fs_info, alloc_flags);
9500 mutex_unlock(&fs_info->chunk_mutex);
9501 }
9502 mutex_unlock(&fs_info->ro_block_group_mutex);
9503
9504 btrfs_end_transaction(trans);
9505 return ret;
9506 }
9507
9508 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9509 struct btrfs_fs_info *fs_info, u64 type)
9510 {
9511 u64 alloc_flags = get_alloc_profile(fs_info, type);
9512
9513 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9514 }
9515
9516 /*
9517 * helper to account the unused space of all the readonly block group in the
9518 * space_info. takes mirrors into account.
9519 */
9520 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9521 {
9522 struct btrfs_block_group_cache *block_group;
9523 u64 free_bytes = 0;
9524 int factor;
9525
9526 /* It's df, we don't care if it's racy */
9527 if (list_empty(&sinfo->ro_bgs))
9528 return 0;
9529
9530 spin_lock(&sinfo->lock);
9531 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9532 spin_lock(&block_group->lock);
9533
9534 if (!block_group->ro) {
9535 spin_unlock(&block_group->lock);
9536 continue;
9537 }
9538
9539 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9540 BTRFS_BLOCK_GROUP_RAID10 |
9541 BTRFS_BLOCK_GROUP_DUP))
9542 factor = 2;
9543 else
9544 factor = 1;
9545
9546 free_bytes += (block_group->key.offset -
9547 btrfs_block_group_used(&block_group->item)) *
9548 factor;
9549
9550 spin_unlock(&block_group->lock);
9551 }
9552 spin_unlock(&sinfo->lock);
9553
9554 return free_bytes;
9555 }
9556
9557 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9558 {
9559 struct btrfs_space_info *sinfo = cache->space_info;
9560 u64 num_bytes;
9561
9562 BUG_ON(!cache->ro);
9563
9564 spin_lock(&sinfo->lock);
9565 spin_lock(&cache->lock);
9566 if (!--cache->ro) {
9567 num_bytes = cache->key.offset - cache->reserved -
9568 cache->pinned - cache->bytes_super -
9569 btrfs_block_group_used(&cache->item);
9570 sinfo->bytes_readonly -= num_bytes;
9571 list_del_init(&cache->ro_list);
9572 }
9573 spin_unlock(&cache->lock);
9574 spin_unlock(&sinfo->lock);
9575 }
9576
9577 /*
9578 * checks to see if its even possible to relocate this block group.
9579 *
9580 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9581 * ok to go ahead and try.
9582 */
9583 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9584 {
9585 struct btrfs_root *root = fs_info->extent_root;
9586 struct btrfs_block_group_cache *block_group;
9587 struct btrfs_space_info *space_info;
9588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9589 struct btrfs_device *device;
9590 struct btrfs_trans_handle *trans;
9591 u64 min_free;
9592 u64 dev_min = 1;
9593 u64 dev_nr = 0;
9594 u64 target;
9595 int debug;
9596 int index;
9597 int full = 0;
9598 int ret = 0;
9599
9600 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9601
9602 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9603
9604 /* odd, couldn't find the block group, leave it alone */
9605 if (!block_group) {
9606 if (debug)
9607 btrfs_warn(fs_info,
9608 "can't find block group for bytenr %llu",
9609 bytenr);
9610 return -1;
9611 }
9612
9613 min_free = btrfs_block_group_used(&block_group->item);
9614
9615 /* no bytes used, we're good */
9616 if (!min_free)
9617 goto out;
9618
9619 space_info = block_group->space_info;
9620 spin_lock(&space_info->lock);
9621
9622 full = space_info->full;
9623
9624 /*
9625 * if this is the last block group we have in this space, we can't
9626 * relocate it unless we're able to allocate a new chunk below.
9627 *
9628 * Otherwise, we need to make sure we have room in the space to handle
9629 * all of the extents from this block group. If we can, we're good
9630 */
9631 if ((space_info->total_bytes != block_group->key.offset) &&
9632 (btrfs_space_info_used(space_info, false) + min_free <
9633 space_info->total_bytes)) {
9634 spin_unlock(&space_info->lock);
9635 goto out;
9636 }
9637 spin_unlock(&space_info->lock);
9638
9639 /*
9640 * ok we don't have enough space, but maybe we have free space on our
9641 * devices to allocate new chunks for relocation, so loop through our
9642 * alloc devices and guess if we have enough space. if this block
9643 * group is going to be restriped, run checks against the target
9644 * profile instead of the current one.
9645 */
9646 ret = -1;
9647
9648 /*
9649 * index:
9650 * 0: raid10
9651 * 1: raid1
9652 * 2: dup
9653 * 3: raid0
9654 * 4: single
9655 */
9656 target = get_restripe_target(fs_info, block_group->flags);
9657 if (target) {
9658 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9659 } else {
9660 /*
9661 * this is just a balance, so if we were marked as full
9662 * we know there is no space for a new chunk
9663 */
9664 if (full) {
9665 if (debug)
9666 btrfs_warn(fs_info,
9667 "no space to alloc new chunk for block group %llu",
9668 block_group->key.objectid);
9669 goto out;
9670 }
9671
9672 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9673 }
9674
9675 if (index == BTRFS_RAID_RAID10) {
9676 dev_min = 4;
9677 /* Divide by 2 */
9678 min_free >>= 1;
9679 } else if (index == BTRFS_RAID_RAID1) {
9680 dev_min = 2;
9681 } else if (index == BTRFS_RAID_DUP) {
9682 /* Multiply by 2 */
9683 min_free <<= 1;
9684 } else if (index == BTRFS_RAID_RAID0) {
9685 dev_min = fs_devices->rw_devices;
9686 min_free = div64_u64(min_free, dev_min);
9687 }
9688
9689 /* We need to do this so that we can look at pending chunks */
9690 trans = btrfs_join_transaction(root);
9691 if (IS_ERR(trans)) {
9692 ret = PTR_ERR(trans);
9693 goto out;
9694 }
9695
9696 mutex_lock(&fs_info->chunk_mutex);
9697 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9698 u64 dev_offset;
9699
9700 /*
9701 * check to make sure we can actually find a chunk with enough
9702 * space to fit our block group in.
9703 */
9704 if (device->total_bytes > device->bytes_used + min_free &&
9705 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9706 ret = find_free_dev_extent(trans, device, min_free,
9707 &dev_offset, NULL);
9708 if (!ret)
9709 dev_nr++;
9710
9711 if (dev_nr >= dev_min)
9712 break;
9713
9714 ret = -1;
9715 }
9716 }
9717 if (debug && ret == -1)
9718 btrfs_warn(fs_info,
9719 "no space to allocate a new chunk for block group %llu",
9720 block_group->key.objectid);
9721 mutex_unlock(&fs_info->chunk_mutex);
9722 btrfs_end_transaction(trans);
9723 out:
9724 btrfs_put_block_group(block_group);
9725 return ret;
9726 }
9727
9728 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9729 struct btrfs_path *path,
9730 struct btrfs_key *key)
9731 {
9732 struct btrfs_root *root = fs_info->extent_root;
9733 int ret = 0;
9734 struct btrfs_key found_key;
9735 struct extent_buffer *leaf;
9736 int slot;
9737
9738 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9739 if (ret < 0)
9740 goto out;
9741
9742 while (1) {
9743 slot = path->slots[0];
9744 leaf = path->nodes[0];
9745 if (slot >= btrfs_header_nritems(leaf)) {
9746 ret = btrfs_next_leaf(root, path);
9747 if (ret == 0)
9748 continue;
9749 if (ret < 0)
9750 goto out;
9751 break;
9752 }
9753 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9754
9755 if (found_key.objectid >= key->objectid &&
9756 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9757 struct extent_map_tree *em_tree;
9758 struct extent_map *em;
9759
9760 em_tree = &root->fs_info->mapping_tree.map_tree;
9761 read_lock(&em_tree->lock);
9762 em = lookup_extent_mapping(em_tree, found_key.objectid,
9763 found_key.offset);
9764 read_unlock(&em_tree->lock);
9765 if (!em) {
9766 btrfs_err(fs_info,
9767 "logical %llu len %llu found bg but no related chunk",
9768 found_key.objectid, found_key.offset);
9769 ret = -ENOENT;
9770 } else {
9771 ret = 0;
9772 }
9773 free_extent_map(em);
9774 goto out;
9775 }
9776 path->slots[0]++;
9777 }
9778 out:
9779 return ret;
9780 }
9781
9782 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9783 {
9784 struct btrfs_block_group_cache *block_group;
9785 u64 last = 0;
9786
9787 while (1) {
9788 struct inode *inode;
9789
9790 block_group = btrfs_lookup_first_block_group(info, last);
9791 while (block_group) {
9792 spin_lock(&block_group->lock);
9793 if (block_group->iref)
9794 break;
9795 spin_unlock(&block_group->lock);
9796 block_group = next_block_group(info, block_group);
9797 }
9798 if (!block_group) {
9799 if (last == 0)
9800 break;
9801 last = 0;
9802 continue;
9803 }
9804
9805 inode = block_group->inode;
9806 block_group->iref = 0;
9807 block_group->inode = NULL;
9808 spin_unlock(&block_group->lock);
9809 ASSERT(block_group->io_ctl.inode == NULL);
9810 iput(inode);
9811 last = block_group->key.objectid + block_group->key.offset;
9812 btrfs_put_block_group(block_group);
9813 }
9814 }
9815
9816 /*
9817 * Must be called only after stopping all workers, since we could have block
9818 * group caching kthreads running, and therefore they could race with us if we
9819 * freed the block groups before stopping them.
9820 */
9821 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9822 {
9823 struct btrfs_block_group_cache *block_group;
9824 struct btrfs_space_info *space_info;
9825 struct btrfs_caching_control *caching_ctl;
9826 struct rb_node *n;
9827
9828 down_write(&info->commit_root_sem);
9829 while (!list_empty(&info->caching_block_groups)) {
9830 caching_ctl = list_entry(info->caching_block_groups.next,
9831 struct btrfs_caching_control, list);
9832 list_del(&caching_ctl->list);
9833 put_caching_control(caching_ctl);
9834 }
9835 up_write(&info->commit_root_sem);
9836
9837 spin_lock(&info->unused_bgs_lock);
9838 while (!list_empty(&info->unused_bgs)) {
9839 block_group = list_first_entry(&info->unused_bgs,
9840 struct btrfs_block_group_cache,
9841 bg_list);
9842 list_del_init(&block_group->bg_list);
9843 btrfs_put_block_group(block_group);
9844 }
9845 spin_unlock(&info->unused_bgs_lock);
9846
9847 spin_lock(&info->block_group_cache_lock);
9848 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9849 block_group = rb_entry(n, struct btrfs_block_group_cache,
9850 cache_node);
9851 rb_erase(&block_group->cache_node,
9852 &info->block_group_cache_tree);
9853 RB_CLEAR_NODE(&block_group->cache_node);
9854 spin_unlock(&info->block_group_cache_lock);
9855
9856 down_write(&block_group->space_info->groups_sem);
9857 list_del(&block_group->list);
9858 up_write(&block_group->space_info->groups_sem);
9859
9860 /*
9861 * We haven't cached this block group, which means we could
9862 * possibly have excluded extents on this block group.
9863 */
9864 if (block_group->cached == BTRFS_CACHE_NO ||
9865 block_group->cached == BTRFS_CACHE_ERROR)
9866 free_excluded_extents(info, block_group);
9867
9868 btrfs_remove_free_space_cache(block_group);
9869 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9870 ASSERT(list_empty(&block_group->dirty_list));
9871 ASSERT(list_empty(&block_group->io_list));
9872 ASSERT(list_empty(&block_group->bg_list));
9873 ASSERT(atomic_read(&block_group->count) == 1);
9874 btrfs_put_block_group(block_group);
9875
9876 spin_lock(&info->block_group_cache_lock);
9877 }
9878 spin_unlock(&info->block_group_cache_lock);
9879
9880 /* now that all the block groups are freed, go through and
9881 * free all the space_info structs. This is only called during
9882 * the final stages of unmount, and so we know nobody is
9883 * using them. We call synchronize_rcu() once before we start,
9884 * just to be on the safe side.
9885 */
9886 synchronize_rcu();
9887
9888 release_global_block_rsv(info);
9889
9890 while (!list_empty(&info->space_info)) {
9891 int i;
9892
9893 space_info = list_entry(info->space_info.next,
9894 struct btrfs_space_info,
9895 list);
9896
9897 /*
9898 * Do not hide this behind enospc_debug, this is actually
9899 * important and indicates a real bug if this happens.
9900 */
9901 if (WARN_ON(space_info->bytes_pinned > 0 ||
9902 space_info->bytes_reserved > 0 ||
9903 space_info->bytes_may_use > 0))
9904 dump_space_info(info, space_info, 0, 0);
9905 list_del(&space_info->list);
9906 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9907 struct kobject *kobj;
9908 kobj = space_info->block_group_kobjs[i];
9909 space_info->block_group_kobjs[i] = NULL;
9910 if (kobj) {
9911 kobject_del(kobj);
9912 kobject_put(kobj);
9913 }
9914 }
9915 kobject_del(&space_info->kobj);
9916 kobject_put(&space_info->kobj);
9917 }
9918 return 0;
9919 }
9920
9921 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9922 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9923 {
9924 struct btrfs_space_info *space_info;
9925 struct raid_kobject *rkobj;
9926 LIST_HEAD(list);
9927 int index;
9928 int ret = 0;
9929
9930 spin_lock(&fs_info->pending_raid_kobjs_lock);
9931 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9932 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9933
9934 list_for_each_entry(rkobj, &list, list) {
9935 space_info = __find_space_info(fs_info, rkobj->flags);
9936 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9937
9938 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9939 "%s", get_raid_name(index));
9940 if (ret) {
9941 kobject_put(&rkobj->kobj);
9942 break;
9943 }
9944 }
9945 if (ret)
9946 btrfs_warn(fs_info,
9947 "failed to add kobject for block cache, ignoring");
9948 }
9949
9950 static void link_block_group(struct btrfs_block_group_cache *cache)
9951 {
9952 struct btrfs_space_info *space_info = cache->space_info;
9953 struct btrfs_fs_info *fs_info = cache->fs_info;
9954 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9955 bool first = false;
9956
9957 down_write(&space_info->groups_sem);
9958 if (list_empty(&space_info->block_groups[index]))
9959 first = true;
9960 list_add_tail(&cache->list, &space_info->block_groups[index]);
9961 up_write(&space_info->groups_sem);
9962
9963 if (first) {
9964 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9965 if (!rkobj) {
9966 btrfs_warn(cache->fs_info,
9967 "couldn't alloc memory for raid level kobject");
9968 return;
9969 }
9970 rkobj->flags = cache->flags;
9971 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9972
9973 spin_lock(&fs_info->pending_raid_kobjs_lock);
9974 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9975 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9976 space_info->block_group_kobjs[index] = &rkobj->kobj;
9977 }
9978 }
9979
9980 static struct btrfs_block_group_cache *
9981 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9982 u64 start, u64 size)
9983 {
9984 struct btrfs_block_group_cache *cache;
9985
9986 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9987 if (!cache)
9988 return NULL;
9989
9990 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9991 GFP_NOFS);
9992 if (!cache->free_space_ctl) {
9993 kfree(cache);
9994 return NULL;
9995 }
9996
9997 cache->key.objectid = start;
9998 cache->key.offset = size;
9999 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10000
10001 cache->fs_info = fs_info;
10002 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10003 set_free_space_tree_thresholds(cache);
10004
10005 atomic_set(&cache->count, 1);
10006 spin_lock_init(&cache->lock);
10007 init_rwsem(&cache->data_rwsem);
10008 INIT_LIST_HEAD(&cache->list);
10009 INIT_LIST_HEAD(&cache->cluster_list);
10010 INIT_LIST_HEAD(&cache->bg_list);
10011 INIT_LIST_HEAD(&cache->ro_list);
10012 INIT_LIST_HEAD(&cache->dirty_list);
10013 INIT_LIST_HEAD(&cache->io_list);
10014 btrfs_init_free_space_ctl(cache);
10015 atomic_set(&cache->trimming, 0);
10016 mutex_init(&cache->free_space_lock);
10017 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10018
10019 return cache;
10020 }
10021
10022 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10023 {
10024 struct btrfs_path *path;
10025 int ret;
10026 struct btrfs_block_group_cache *cache;
10027 struct btrfs_space_info *space_info;
10028 struct btrfs_key key;
10029 struct btrfs_key found_key;
10030 struct extent_buffer *leaf;
10031 int need_clear = 0;
10032 u64 cache_gen;
10033 u64 feature;
10034 int mixed;
10035
10036 feature = btrfs_super_incompat_flags(info->super_copy);
10037 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10038
10039 key.objectid = 0;
10040 key.offset = 0;
10041 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10042 path = btrfs_alloc_path();
10043 if (!path)
10044 return -ENOMEM;
10045 path->reada = READA_FORWARD;
10046
10047 cache_gen = btrfs_super_cache_generation(info->super_copy);
10048 if (btrfs_test_opt(info, SPACE_CACHE) &&
10049 btrfs_super_generation(info->super_copy) != cache_gen)
10050 need_clear = 1;
10051 if (btrfs_test_opt(info, CLEAR_CACHE))
10052 need_clear = 1;
10053
10054 while (1) {
10055 ret = find_first_block_group(info, path, &key);
10056 if (ret > 0)
10057 break;
10058 if (ret != 0)
10059 goto error;
10060
10061 leaf = path->nodes[0];
10062 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10063
10064 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10065 found_key.offset);
10066 if (!cache) {
10067 ret = -ENOMEM;
10068 goto error;
10069 }
10070
10071 if (need_clear) {
10072 /*
10073 * When we mount with old space cache, we need to
10074 * set BTRFS_DC_CLEAR and set dirty flag.
10075 *
10076 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10077 * truncate the old free space cache inode and
10078 * setup a new one.
10079 * b) Setting 'dirty flag' makes sure that we flush
10080 * the new space cache info onto disk.
10081 */
10082 if (btrfs_test_opt(info, SPACE_CACHE))
10083 cache->disk_cache_state = BTRFS_DC_CLEAR;
10084 }
10085
10086 read_extent_buffer(leaf, &cache->item,
10087 btrfs_item_ptr_offset(leaf, path->slots[0]),
10088 sizeof(cache->item));
10089 cache->flags = btrfs_block_group_flags(&cache->item);
10090 if (!mixed &&
10091 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10092 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10093 btrfs_err(info,
10094 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10095 cache->key.objectid);
10096 ret = -EINVAL;
10097 goto error;
10098 }
10099
10100 key.objectid = found_key.objectid + found_key.offset;
10101 btrfs_release_path(path);
10102
10103 /*
10104 * We need to exclude the super stripes now so that the space
10105 * info has super bytes accounted for, otherwise we'll think
10106 * we have more space than we actually do.
10107 */
10108 ret = exclude_super_stripes(info, cache);
10109 if (ret) {
10110 /*
10111 * We may have excluded something, so call this just in
10112 * case.
10113 */
10114 free_excluded_extents(info, cache);
10115 btrfs_put_block_group(cache);
10116 goto error;
10117 }
10118
10119 /*
10120 * check for two cases, either we are full, and therefore
10121 * don't need to bother with the caching work since we won't
10122 * find any space, or we are empty, and we can just add all
10123 * the space in and be done with it. This saves us _alot_ of
10124 * time, particularly in the full case.
10125 */
10126 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10127 cache->last_byte_to_unpin = (u64)-1;
10128 cache->cached = BTRFS_CACHE_FINISHED;
10129 free_excluded_extents(info, cache);
10130 } else if (btrfs_block_group_used(&cache->item) == 0) {
10131 cache->last_byte_to_unpin = (u64)-1;
10132 cache->cached = BTRFS_CACHE_FINISHED;
10133 add_new_free_space(cache, found_key.objectid,
10134 found_key.objectid +
10135 found_key.offset);
10136 free_excluded_extents(info, cache);
10137 }
10138
10139 ret = btrfs_add_block_group_cache(info, cache);
10140 if (ret) {
10141 btrfs_remove_free_space_cache(cache);
10142 btrfs_put_block_group(cache);
10143 goto error;
10144 }
10145
10146 trace_btrfs_add_block_group(info, cache, 0);
10147 update_space_info(info, cache->flags, found_key.offset,
10148 btrfs_block_group_used(&cache->item),
10149 cache->bytes_super, &space_info);
10150
10151 cache->space_info = space_info;
10152
10153 link_block_group(cache);
10154
10155 set_avail_alloc_bits(info, cache->flags);
10156 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10157 inc_block_group_ro(cache, 1);
10158 } else if (btrfs_block_group_used(&cache->item) == 0) {
10159 spin_lock(&info->unused_bgs_lock);
10160 /* Should always be true but just in case. */
10161 if (list_empty(&cache->bg_list)) {
10162 btrfs_get_block_group(cache);
10163 trace_btrfs_add_unused_block_group(cache);
10164 list_add_tail(&cache->bg_list,
10165 &info->unused_bgs);
10166 }
10167 spin_unlock(&info->unused_bgs_lock);
10168 }
10169 }
10170
10171 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10172 if (!(get_alloc_profile(info, space_info->flags) &
10173 (BTRFS_BLOCK_GROUP_RAID10 |
10174 BTRFS_BLOCK_GROUP_RAID1 |
10175 BTRFS_BLOCK_GROUP_RAID5 |
10176 BTRFS_BLOCK_GROUP_RAID6 |
10177 BTRFS_BLOCK_GROUP_DUP)))
10178 continue;
10179 /*
10180 * avoid allocating from un-mirrored block group if there are
10181 * mirrored block groups.
10182 */
10183 list_for_each_entry(cache,
10184 &space_info->block_groups[BTRFS_RAID_RAID0],
10185 list)
10186 inc_block_group_ro(cache, 1);
10187 list_for_each_entry(cache,
10188 &space_info->block_groups[BTRFS_RAID_SINGLE],
10189 list)
10190 inc_block_group_ro(cache, 1);
10191 }
10192
10193 btrfs_add_raid_kobjects(info);
10194 init_global_block_rsv(info);
10195 ret = 0;
10196 error:
10197 btrfs_free_path(path);
10198 return ret;
10199 }
10200
10201 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10202 {
10203 struct btrfs_fs_info *fs_info = trans->fs_info;
10204 struct btrfs_block_group_cache *block_group, *tmp;
10205 struct btrfs_root *extent_root = fs_info->extent_root;
10206 struct btrfs_block_group_item item;
10207 struct btrfs_key key;
10208 int ret = 0;
10209 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10210
10211 trans->can_flush_pending_bgs = false;
10212 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10213 if (ret)
10214 goto next;
10215
10216 spin_lock(&block_group->lock);
10217 memcpy(&item, &block_group->item, sizeof(item));
10218 memcpy(&key, &block_group->key, sizeof(key));
10219 spin_unlock(&block_group->lock);
10220
10221 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10222 sizeof(item));
10223 if (ret)
10224 btrfs_abort_transaction(trans, ret);
10225 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10226 key.offset);
10227 if (ret)
10228 btrfs_abort_transaction(trans, ret);
10229 add_block_group_free_space(trans, block_group);
10230 /* already aborted the transaction if it failed. */
10231 next:
10232 list_del_init(&block_group->bg_list);
10233 }
10234 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10235 }
10236
10237 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10238 u64 type, u64 chunk_offset, u64 size)
10239 {
10240 struct btrfs_fs_info *fs_info = trans->fs_info;
10241 struct btrfs_block_group_cache *cache;
10242 int ret;
10243
10244 btrfs_set_log_full_commit(fs_info, trans);
10245
10246 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10247 if (!cache)
10248 return -ENOMEM;
10249
10250 btrfs_set_block_group_used(&cache->item, bytes_used);
10251 btrfs_set_block_group_chunk_objectid(&cache->item,
10252 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10253 btrfs_set_block_group_flags(&cache->item, type);
10254
10255 cache->flags = type;
10256 cache->last_byte_to_unpin = (u64)-1;
10257 cache->cached = BTRFS_CACHE_FINISHED;
10258 cache->needs_free_space = 1;
10259 ret = exclude_super_stripes(fs_info, cache);
10260 if (ret) {
10261 /*
10262 * We may have excluded something, so call this just in
10263 * case.
10264 */
10265 free_excluded_extents(fs_info, cache);
10266 btrfs_put_block_group(cache);
10267 return ret;
10268 }
10269
10270 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10271
10272 free_excluded_extents(fs_info, cache);
10273
10274 #ifdef CONFIG_BTRFS_DEBUG
10275 if (btrfs_should_fragment_free_space(cache)) {
10276 u64 new_bytes_used = size - bytes_used;
10277
10278 bytes_used += new_bytes_used >> 1;
10279 fragment_free_space(cache);
10280 }
10281 #endif
10282 /*
10283 * Ensure the corresponding space_info object is created and
10284 * assigned to our block group. We want our bg to be added to the rbtree
10285 * with its ->space_info set.
10286 */
10287 cache->space_info = __find_space_info(fs_info, cache->flags);
10288 ASSERT(cache->space_info);
10289
10290 ret = btrfs_add_block_group_cache(fs_info, cache);
10291 if (ret) {
10292 btrfs_remove_free_space_cache(cache);
10293 btrfs_put_block_group(cache);
10294 return ret;
10295 }
10296
10297 /*
10298 * Now that our block group has its ->space_info set and is inserted in
10299 * the rbtree, update the space info's counters.
10300 */
10301 trace_btrfs_add_block_group(fs_info, cache, 1);
10302 update_space_info(fs_info, cache->flags, size, bytes_used,
10303 cache->bytes_super, &cache->space_info);
10304 update_global_block_rsv(fs_info);
10305
10306 link_block_group(cache);
10307
10308 list_add_tail(&cache->bg_list, &trans->new_bgs);
10309
10310 set_avail_alloc_bits(fs_info, type);
10311 return 0;
10312 }
10313
10314 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10315 {
10316 u64 extra_flags = chunk_to_extended(flags) &
10317 BTRFS_EXTENDED_PROFILE_MASK;
10318
10319 write_seqlock(&fs_info->profiles_lock);
10320 if (flags & BTRFS_BLOCK_GROUP_DATA)
10321 fs_info->avail_data_alloc_bits &= ~extra_flags;
10322 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10323 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10324 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10325 fs_info->avail_system_alloc_bits &= ~extra_flags;
10326 write_sequnlock(&fs_info->profiles_lock);
10327 }
10328
10329 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10330 u64 group_start, struct extent_map *em)
10331 {
10332 struct btrfs_fs_info *fs_info = trans->fs_info;
10333 struct btrfs_root *root = fs_info->extent_root;
10334 struct btrfs_path *path;
10335 struct btrfs_block_group_cache *block_group;
10336 struct btrfs_free_cluster *cluster;
10337 struct btrfs_root *tree_root = fs_info->tree_root;
10338 struct btrfs_key key;
10339 struct inode *inode;
10340 struct kobject *kobj = NULL;
10341 int ret;
10342 int index;
10343 int factor;
10344 struct btrfs_caching_control *caching_ctl = NULL;
10345 bool remove_em;
10346
10347 block_group = btrfs_lookup_block_group(fs_info, group_start);
10348 BUG_ON(!block_group);
10349 BUG_ON(!block_group->ro);
10350
10351 trace_btrfs_remove_block_group(block_group);
10352 /*
10353 * Free the reserved super bytes from this block group before
10354 * remove it.
10355 */
10356 free_excluded_extents(fs_info, block_group);
10357 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10358 block_group->key.offset);
10359
10360 memcpy(&key, &block_group->key, sizeof(key));
10361 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10362 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10363 BTRFS_BLOCK_GROUP_RAID1 |
10364 BTRFS_BLOCK_GROUP_RAID10))
10365 factor = 2;
10366 else
10367 factor = 1;
10368
10369 /* make sure this block group isn't part of an allocation cluster */
10370 cluster = &fs_info->data_alloc_cluster;
10371 spin_lock(&cluster->refill_lock);
10372 btrfs_return_cluster_to_free_space(block_group, cluster);
10373 spin_unlock(&cluster->refill_lock);
10374
10375 /*
10376 * make sure this block group isn't part of a metadata
10377 * allocation cluster
10378 */
10379 cluster = &fs_info->meta_alloc_cluster;
10380 spin_lock(&cluster->refill_lock);
10381 btrfs_return_cluster_to_free_space(block_group, cluster);
10382 spin_unlock(&cluster->refill_lock);
10383
10384 path = btrfs_alloc_path();
10385 if (!path) {
10386 ret = -ENOMEM;
10387 goto out;
10388 }
10389
10390 /*
10391 * get the inode first so any iput calls done for the io_list
10392 * aren't the final iput (no unlinks allowed now)
10393 */
10394 inode = lookup_free_space_inode(fs_info, block_group, path);
10395
10396 mutex_lock(&trans->transaction->cache_write_mutex);
10397 /*
10398 * make sure our free spache cache IO is done before remove the
10399 * free space inode
10400 */
10401 spin_lock(&trans->transaction->dirty_bgs_lock);
10402 if (!list_empty(&block_group->io_list)) {
10403 list_del_init(&block_group->io_list);
10404
10405 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10406
10407 spin_unlock(&trans->transaction->dirty_bgs_lock);
10408 btrfs_wait_cache_io(trans, block_group, path);
10409 btrfs_put_block_group(block_group);
10410 spin_lock(&trans->transaction->dirty_bgs_lock);
10411 }
10412
10413 if (!list_empty(&block_group->dirty_list)) {
10414 list_del_init(&block_group->dirty_list);
10415 btrfs_put_block_group(block_group);
10416 }
10417 spin_unlock(&trans->transaction->dirty_bgs_lock);
10418 mutex_unlock(&trans->transaction->cache_write_mutex);
10419
10420 if (!IS_ERR(inode)) {
10421 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10422 if (ret) {
10423 btrfs_add_delayed_iput(inode);
10424 goto out;
10425 }
10426 clear_nlink(inode);
10427 /* One for the block groups ref */
10428 spin_lock(&block_group->lock);
10429 if (block_group->iref) {
10430 block_group->iref = 0;
10431 block_group->inode = NULL;
10432 spin_unlock(&block_group->lock);
10433 iput(inode);
10434 } else {
10435 spin_unlock(&block_group->lock);
10436 }
10437 /* One for our lookup ref */
10438 btrfs_add_delayed_iput(inode);
10439 }
10440
10441 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10442 key.offset = block_group->key.objectid;
10443 key.type = 0;
10444
10445 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10446 if (ret < 0)
10447 goto out;
10448 if (ret > 0)
10449 btrfs_release_path(path);
10450 if (ret == 0) {
10451 ret = btrfs_del_item(trans, tree_root, path);
10452 if (ret)
10453 goto out;
10454 btrfs_release_path(path);
10455 }
10456
10457 spin_lock(&fs_info->block_group_cache_lock);
10458 rb_erase(&block_group->cache_node,
10459 &fs_info->block_group_cache_tree);
10460 RB_CLEAR_NODE(&block_group->cache_node);
10461
10462 if (fs_info->first_logical_byte == block_group->key.objectid)
10463 fs_info->first_logical_byte = (u64)-1;
10464 spin_unlock(&fs_info->block_group_cache_lock);
10465
10466 down_write(&block_group->space_info->groups_sem);
10467 /*
10468 * we must use list_del_init so people can check to see if they
10469 * are still on the list after taking the semaphore
10470 */
10471 list_del_init(&block_group->list);
10472 if (list_empty(&block_group->space_info->block_groups[index])) {
10473 kobj = block_group->space_info->block_group_kobjs[index];
10474 block_group->space_info->block_group_kobjs[index] = NULL;
10475 clear_avail_alloc_bits(fs_info, block_group->flags);
10476 }
10477 up_write(&block_group->space_info->groups_sem);
10478 if (kobj) {
10479 kobject_del(kobj);
10480 kobject_put(kobj);
10481 }
10482
10483 if (block_group->has_caching_ctl)
10484 caching_ctl = get_caching_control(block_group);
10485 if (block_group->cached == BTRFS_CACHE_STARTED)
10486 wait_block_group_cache_done(block_group);
10487 if (block_group->has_caching_ctl) {
10488 down_write(&fs_info->commit_root_sem);
10489 if (!caching_ctl) {
10490 struct btrfs_caching_control *ctl;
10491
10492 list_for_each_entry(ctl,
10493 &fs_info->caching_block_groups, list)
10494 if (ctl->block_group == block_group) {
10495 caching_ctl = ctl;
10496 refcount_inc(&caching_ctl->count);
10497 break;
10498 }
10499 }
10500 if (caching_ctl)
10501 list_del_init(&caching_ctl->list);
10502 up_write(&fs_info->commit_root_sem);
10503 if (caching_ctl) {
10504 /* Once for the caching bgs list and once for us. */
10505 put_caching_control(caching_ctl);
10506 put_caching_control(caching_ctl);
10507 }
10508 }
10509
10510 spin_lock(&trans->transaction->dirty_bgs_lock);
10511 if (!list_empty(&block_group->dirty_list)) {
10512 WARN_ON(1);
10513 }
10514 if (!list_empty(&block_group->io_list)) {
10515 WARN_ON(1);
10516 }
10517 spin_unlock(&trans->transaction->dirty_bgs_lock);
10518 btrfs_remove_free_space_cache(block_group);
10519
10520 spin_lock(&block_group->space_info->lock);
10521 list_del_init(&block_group->ro_list);
10522
10523 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10524 WARN_ON(block_group->space_info->total_bytes
10525 < block_group->key.offset);
10526 WARN_ON(block_group->space_info->bytes_readonly
10527 < block_group->key.offset);
10528 WARN_ON(block_group->space_info->disk_total
10529 < block_group->key.offset * factor);
10530 }
10531 block_group->space_info->total_bytes -= block_group->key.offset;
10532 block_group->space_info->bytes_readonly -= block_group->key.offset;
10533 block_group->space_info->disk_total -= block_group->key.offset * factor;
10534
10535 spin_unlock(&block_group->space_info->lock);
10536
10537 memcpy(&key, &block_group->key, sizeof(key));
10538
10539 mutex_lock(&fs_info->chunk_mutex);
10540 if (!list_empty(&em->list)) {
10541 /* We're in the transaction->pending_chunks list. */
10542 free_extent_map(em);
10543 }
10544 spin_lock(&block_group->lock);
10545 block_group->removed = 1;
10546 /*
10547 * At this point trimming can't start on this block group, because we
10548 * removed the block group from the tree fs_info->block_group_cache_tree
10549 * so no one can't find it anymore and even if someone already got this
10550 * block group before we removed it from the rbtree, they have already
10551 * incremented block_group->trimming - if they didn't, they won't find
10552 * any free space entries because we already removed them all when we
10553 * called btrfs_remove_free_space_cache().
10554 *
10555 * And we must not remove the extent map from the fs_info->mapping_tree
10556 * to prevent the same logical address range and physical device space
10557 * ranges from being reused for a new block group. This is because our
10558 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10559 * completely transactionless, so while it is trimming a range the
10560 * currently running transaction might finish and a new one start,
10561 * allowing for new block groups to be created that can reuse the same
10562 * physical device locations unless we take this special care.
10563 *
10564 * There may also be an implicit trim operation if the file system
10565 * is mounted with -odiscard. The same protections must remain
10566 * in place until the extents have been discarded completely when
10567 * the transaction commit has completed.
10568 */
10569 remove_em = (atomic_read(&block_group->trimming) == 0);
10570 /*
10571 * Make sure a trimmer task always sees the em in the pinned_chunks list
10572 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10573 * before checking block_group->removed).
10574 */
10575 if (!remove_em) {
10576 /*
10577 * Our em might be in trans->transaction->pending_chunks which
10578 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10579 * and so is the fs_info->pinned_chunks list.
10580 *
10581 * So at this point we must be holding the chunk_mutex to avoid
10582 * any races with chunk allocation (more specifically at
10583 * volumes.c:contains_pending_extent()), to ensure it always
10584 * sees the em, either in the pending_chunks list or in the
10585 * pinned_chunks list.
10586 */
10587 list_move_tail(&em->list, &fs_info->pinned_chunks);
10588 }
10589 spin_unlock(&block_group->lock);
10590
10591 if (remove_em) {
10592 struct extent_map_tree *em_tree;
10593
10594 em_tree = &fs_info->mapping_tree.map_tree;
10595 write_lock(&em_tree->lock);
10596 /*
10597 * The em might be in the pending_chunks list, so make sure the
10598 * chunk mutex is locked, since remove_extent_mapping() will
10599 * delete us from that list.
10600 */
10601 remove_extent_mapping(em_tree, em);
10602 write_unlock(&em_tree->lock);
10603 /* once for the tree */
10604 free_extent_map(em);
10605 }
10606
10607 mutex_unlock(&fs_info->chunk_mutex);
10608
10609 ret = remove_block_group_free_space(trans, block_group);
10610 if (ret)
10611 goto out;
10612
10613 btrfs_put_block_group(block_group);
10614 btrfs_put_block_group(block_group);
10615
10616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10617 if (ret > 0)
10618 ret = -EIO;
10619 if (ret < 0)
10620 goto out;
10621
10622 ret = btrfs_del_item(trans, root, path);
10623 out:
10624 btrfs_free_path(path);
10625 return ret;
10626 }
10627
10628 struct btrfs_trans_handle *
10629 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10630 const u64 chunk_offset)
10631 {
10632 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10633 struct extent_map *em;
10634 struct map_lookup *map;
10635 unsigned int num_items;
10636
10637 read_lock(&em_tree->lock);
10638 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10639 read_unlock(&em_tree->lock);
10640 ASSERT(em && em->start == chunk_offset);
10641
10642 /*
10643 * We need to reserve 3 + N units from the metadata space info in order
10644 * to remove a block group (done at btrfs_remove_chunk() and at
10645 * btrfs_remove_block_group()), which are used for:
10646 *
10647 * 1 unit for adding the free space inode's orphan (located in the tree
10648 * of tree roots).
10649 * 1 unit for deleting the block group item (located in the extent
10650 * tree).
10651 * 1 unit for deleting the free space item (located in tree of tree
10652 * roots).
10653 * N units for deleting N device extent items corresponding to each
10654 * stripe (located in the device tree).
10655 *
10656 * In order to remove a block group we also need to reserve units in the
10657 * system space info in order to update the chunk tree (update one or
10658 * more device items and remove one chunk item), but this is done at
10659 * btrfs_remove_chunk() through a call to check_system_chunk().
10660 */
10661 map = em->map_lookup;
10662 num_items = 3 + map->num_stripes;
10663 free_extent_map(em);
10664
10665 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10666 num_items, 1);
10667 }
10668
10669 /*
10670 * Process the unused_bgs list and remove any that don't have any allocated
10671 * space inside of them.
10672 */
10673 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10674 {
10675 struct btrfs_block_group_cache *block_group;
10676 struct btrfs_space_info *space_info;
10677 struct btrfs_trans_handle *trans;
10678 int ret = 0;
10679
10680 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10681 return;
10682
10683 spin_lock(&fs_info->unused_bgs_lock);
10684 while (!list_empty(&fs_info->unused_bgs)) {
10685 u64 start, end;
10686 int trimming;
10687
10688 block_group = list_first_entry(&fs_info->unused_bgs,
10689 struct btrfs_block_group_cache,
10690 bg_list);
10691 list_del_init(&block_group->bg_list);
10692
10693 space_info = block_group->space_info;
10694
10695 if (ret || btrfs_mixed_space_info(space_info)) {
10696 btrfs_put_block_group(block_group);
10697 continue;
10698 }
10699 spin_unlock(&fs_info->unused_bgs_lock);
10700
10701 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10702
10703 /* Don't want to race with allocators so take the groups_sem */
10704 down_write(&space_info->groups_sem);
10705 spin_lock(&block_group->lock);
10706 if (block_group->reserved ||
10707 btrfs_block_group_used(&block_group->item) ||
10708 block_group->ro ||
10709 list_is_singular(&block_group->list)) {
10710 /*
10711 * We want to bail if we made new allocations or have
10712 * outstanding allocations in this block group. We do
10713 * the ro check in case balance is currently acting on
10714 * this block group.
10715 */
10716 trace_btrfs_skip_unused_block_group(block_group);
10717 spin_unlock(&block_group->lock);
10718 up_write(&space_info->groups_sem);
10719 goto next;
10720 }
10721 spin_unlock(&block_group->lock);
10722
10723 /* We don't want to force the issue, only flip if it's ok. */
10724 ret = inc_block_group_ro(block_group, 0);
10725 up_write(&space_info->groups_sem);
10726 if (ret < 0) {
10727 ret = 0;
10728 goto next;
10729 }
10730
10731 /*
10732 * Want to do this before we do anything else so we can recover
10733 * properly if we fail to join the transaction.
10734 */
10735 trans = btrfs_start_trans_remove_block_group(fs_info,
10736 block_group->key.objectid);
10737 if (IS_ERR(trans)) {
10738 btrfs_dec_block_group_ro(block_group);
10739 ret = PTR_ERR(trans);
10740 goto next;
10741 }
10742
10743 /*
10744 * We could have pending pinned extents for this block group,
10745 * just delete them, we don't care about them anymore.
10746 */
10747 start = block_group->key.objectid;
10748 end = start + block_group->key.offset - 1;
10749 /*
10750 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10751 * btrfs_finish_extent_commit(). If we are at transaction N,
10752 * another task might be running finish_extent_commit() for the
10753 * previous transaction N - 1, and have seen a range belonging
10754 * to the block group in freed_extents[] before we were able to
10755 * clear the whole block group range from freed_extents[]. This
10756 * means that task can lookup for the block group after we
10757 * unpinned it from freed_extents[] and removed it, leading to
10758 * a BUG_ON() at btrfs_unpin_extent_range().
10759 */
10760 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10761 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10762 EXTENT_DIRTY);
10763 if (ret) {
10764 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10765 btrfs_dec_block_group_ro(block_group);
10766 goto end_trans;
10767 }
10768 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10769 EXTENT_DIRTY);
10770 if (ret) {
10771 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10772 btrfs_dec_block_group_ro(block_group);
10773 goto end_trans;
10774 }
10775 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10776
10777 /* Reset pinned so btrfs_put_block_group doesn't complain */
10778 spin_lock(&space_info->lock);
10779 spin_lock(&block_group->lock);
10780
10781 space_info->bytes_pinned -= block_group->pinned;
10782 space_info->bytes_readonly += block_group->pinned;
10783 percpu_counter_add(&space_info->total_bytes_pinned,
10784 -block_group->pinned);
10785 block_group->pinned = 0;
10786
10787 spin_unlock(&block_group->lock);
10788 spin_unlock(&space_info->lock);
10789
10790 /* DISCARD can flip during remount */
10791 trimming = btrfs_test_opt(fs_info, DISCARD);
10792
10793 /* Implicit trim during transaction commit. */
10794 if (trimming)
10795 btrfs_get_block_group_trimming(block_group);
10796
10797 /*
10798 * Btrfs_remove_chunk will abort the transaction if things go
10799 * horribly wrong.
10800 */
10801 ret = btrfs_remove_chunk(trans, fs_info,
10802 block_group->key.objectid);
10803
10804 if (ret) {
10805 if (trimming)
10806 btrfs_put_block_group_trimming(block_group);
10807 goto end_trans;
10808 }
10809
10810 /*
10811 * If we're not mounted with -odiscard, we can just forget
10812 * about this block group. Otherwise we'll need to wait
10813 * until transaction commit to do the actual discard.
10814 */
10815 if (trimming) {
10816 spin_lock(&fs_info->unused_bgs_lock);
10817 /*
10818 * A concurrent scrub might have added us to the list
10819 * fs_info->unused_bgs, so use a list_move operation
10820 * to add the block group to the deleted_bgs list.
10821 */
10822 list_move(&block_group->bg_list,
10823 &trans->transaction->deleted_bgs);
10824 spin_unlock(&fs_info->unused_bgs_lock);
10825 btrfs_get_block_group(block_group);
10826 }
10827 end_trans:
10828 btrfs_end_transaction(trans);
10829 next:
10830 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10831 btrfs_put_block_group(block_group);
10832 spin_lock(&fs_info->unused_bgs_lock);
10833 }
10834 spin_unlock(&fs_info->unused_bgs_lock);
10835 }
10836
10837 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10838 {
10839 struct btrfs_super_block *disk_super;
10840 u64 features;
10841 u64 flags;
10842 int mixed = 0;
10843 int ret;
10844
10845 disk_super = fs_info->super_copy;
10846 if (!btrfs_super_root(disk_super))
10847 return -EINVAL;
10848
10849 features = btrfs_super_incompat_flags(disk_super);
10850 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10851 mixed = 1;
10852
10853 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10854 ret = create_space_info(fs_info, flags);
10855 if (ret)
10856 goto out;
10857
10858 if (mixed) {
10859 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10860 ret = create_space_info(fs_info, flags);
10861 } else {
10862 flags = BTRFS_BLOCK_GROUP_METADATA;
10863 ret = create_space_info(fs_info, flags);
10864 if (ret)
10865 goto out;
10866
10867 flags = BTRFS_BLOCK_GROUP_DATA;
10868 ret = create_space_info(fs_info, flags);
10869 }
10870 out:
10871 return ret;
10872 }
10873
10874 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10875 u64 start, u64 end)
10876 {
10877 return unpin_extent_range(fs_info, start, end, false);
10878 }
10879
10880 /*
10881 * It used to be that old block groups would be left around forever.
10882 * Iterating over them would be enough to trim unused space. Since we
10883 * now automatically remove them, we also need to iterate over unallocated
10884 * space.
10885 *
10886 * We don't want a transaction for this since the discard may take a
10887 * substantial amount of time. We don't require that a transaction be
10888 * running, but we do need to take a running transaction into account
10889 * to ensure that we're not discarding chunks that were released in
10890 * the current transaction.
10891 *
10892 * Holding the chunks lock will prevent other threads from allocating
10893 * or releasing chunks, but it won't prevent a running transaction
10894 * from committing and releasing the memory that the pending chunks
10895 * list head uses. For that, we need to take a reference to the
10896 * transaction.
10897 */
10898 static int btrfs_trim_free_extents(struct btrfs_device *device,
10899 u64 minlen, u64 *trimmed)
10900 {
10901 u64 start = 0, len = 0;
10902 int ret;
10903
10904 *trimmed = 0;
10905
10906 /* Not writeable = nothing to do. */
10907 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10908 return 0;
10909
10910 /* No free space = nothing to do. */
10911 if (device->total_bytes <= device->bytes_used)
10912 return 0;
10913
10914 ret = 0;
10915
10916 while (1) {
10917 struct btrfs_fs_info *fs_info = device->fs_info;
10918 struct btrfs_transaction *trans;
10919 u64 bytes;
10920
10921 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10922 if (ret)
10923 return ret;
10924
10925 down_read(&fs_info->commit_root_sem);
10926
10927 spin_lock(&fs_info->trans_lock);
10928 trans = fs_info->running_transaction;
10929 if (trans)
10930 refcount_inc(&trans->use_count);
10931 spin_unlock(&fs_info->trans_lock);
10932
10933 ret = find_free_dev_extent_start(trans, device, minlen, start,
10934 &start, &len);
10935 if (trans)
10936 btrfs_put_transaction(trans);
10937
10938 if (ret) {
10939 up_read(&fs_info->commit_root_sem);
10940 mutex_unlock(&fs_info->chunk_mutex);
10941 if (ret == -ENOSPC)
10942 ret = 0;
10943 break;
10944 }
10945
10946 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10947 up_read(&fs_info->commit_root_sem);
10948 mutex_unlock(&fs_info->chunk_mutex);
10949
10950 if (ret)
10951 break;
10952
10953 start += len;
10954 *trimmed += bytes;
10955
10956 if (fatal_signal_pending(current)) {
10957 ret = -ERESTARTSYS;
10958 break;
10959 }
10960
10961 cond_resched();
10962 }
10963
10964 return ret;
10965 }
10966
10967 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10968 {
10969 struct btrfs_block_group_cache *cache = NULL;
10970 struct btrfs_device *device;
10971 struct list_head *devices;
10972 u64 group_trimmed;
10973 u64 start;
10974 u64 end;
10975 u64 trimmed = 0;
10976 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10977 int ret = 0;
10978
10979 /*
10980 * try to trim all FS space, our block group may start from non-zero.
10981 */
10982 if (range->len == total_bytes)
10983 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10984 else
10985 cache = btrfs_lookup_block_group(fs_info, range->start);
10986
10987 while (cache) {
10988 if (cache->key.objectid >= (range->start + range->len)) {
10989 btrfs_put_block_group(cache);
10990 break;
10991 }
10992
10993 start = max(range->start, cache->key.objectid);
10994 end = min(range->start + range->len,
10995 cache->key.objectid + cache->key.offset);
10996
10997 if (end - start >= range->minlen) {
10998 if (!block_group_cache_done(cache)) {
10999 ret = cache_block_group(cache, 0);
11000 if (ret) {
11001 btrfs_put_block_group(cache);
11002 break;
11003 }
11004 ret = wait_block_group_cache_done(cache);
11005 if (ret) {
11006 btrfs_put_block_group(cache);
11007 break;
11008 }
11009 }
11010 ret = btrfs_trim_block_group(cache,
11011 &group_trimmed,
11012 start,
11013 end,
11014 range->minlen);
11015
11016 trimmed += group_trimmed;
11017 if (ret) {
11018 btrfs_put_block_group(cache);
11019 break;
11020 }
11021 }
11022
11023 cache = next_block_group(fs_info, cache);
11024 }
11025
11026 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11027 devices = &fs_info->fs_devices->alloc_list;
11028 list_for_each_entry(device, devices, dev_alloc_list) {
11029 ret = btrfs_trim_free_extents(device, range->minlen,
11030 &group_trimmed);
11031 if (ret)
11032 break;
11033
11034 trimmed += group_trimmed;
11035 }
11036 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11037
11038 range->len = trimmed;
11039 return ret;
11040 }
11041
11042 /*
11043 * btrfs_{start,end}_write_no_snapshotting() are similar to
11044 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11045 * data into the page cache through nocow before the subvolume is snapshoted,
11046 * but flush the data into disk after the snapshot creation, or to prevent
11047 * operations while snapshotting is ongoing and that cause the snapshot to be
11048 * inconsistent (writes followed by expanding truncates for example).
11049 */
11050 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11051 {
11052 percpu_counter_dec(&root->subv_writers->counter);
11053 cond_wake_up(&root->subv_writers->wait);
11054 }
11055
11056 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11057 {
11058 if (atomic_read(&root->will_be_snapshotted))
11059 return 0;
11060
11061 percpu_counter_inc(&root->subv_writers->counter);
11062 /*
11063 * Make sure counter is updated before we check for snapshot creation.
11064 */
11065 smp_mb();
11066 if (atomic_read(&root->will_be_snapshotted)) {
11067 btrfs_end_write_no_snapshotting(root);
11068 return 0;
11069 }
11070 return 1;
11071 }
11072
11073 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11074 {
11075 while (true) {
11076 int ret;
11077
11078 ret = btrfs_start_write_no_snapshotting(root);
11079 if (ret)
11080 break;
11081 wait_var_event(&root->will_be_snapshotted,
11082 !atomic_read(&root->will_be_snapshotted));
11083 }
11084 }