]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/btrfs/extent-tree.c
tracing: Fix compile error when static ftrace is enabled
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
40 *
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 *
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
48 *
49 */
50 enum {
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
54 };
55
56 /*
57 * Control how reservations are dealt with.
58 *
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61 * ENOSPC accounting
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
64 */
65 enum {
66 RESERVE_FREE = 0,
67 RESERVE_ALLOC = 1,
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
69 };
70
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
102
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 smp_mb();
107 return cache->cached == BTRFS_CACHE_FINISHED;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 return (cache->flags & bits) == bits;
113 }
114
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
126 kfree(cache);
127 }
128 }
129
130 /*
131 * this adds the block group to the fs_info rb tree for the block group
132 * cache
133 */
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
136 {
137 struct rb_node **p;
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
140
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
143
144 while (*p) {
145 parent = *p;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
147 cache_node);
148 if (block_group->key.objectid < cache->key.objectid) {
149 p = &(*p)->rb_left;
150 } else if (block_group->key.objectid > cache->key.objectid) {
151 p = &(*p)->rb_right;
152 } else {
153 spin_unlock(&info->block_group_cache_lock);
154 return -EEXIST;
155 }
156 }
157
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164 }
165
166 /*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173 {
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
202 if (ret)
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 return 0;
218 }
219
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
222 {
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 }
233
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
236 {
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
246 stripe_len);
247 BUG_ON(ret);
248 }
249
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
255 BUG_ON(ret);
256
257 while (nr--) {
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
260 stripe_len);
261 BUG_ON(ret);
262 }
263
264 kfree(logical);
265 }
266 return 0;
267 }
268
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
271 {
272 struct btrfs_caching_control *ctl;
273
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
277 return NULL;
278 }
279
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
283 return NULL;
284 }
285
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
289 return ctl;
290 }
291
292 static void put_caching_control(struct btrfs_caching_control *ctl)
293 {
294 if (atomic_dec_and_test(&ctl->count))
295 kfree(ctl);
296 }
297
298 /*
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
302 */
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
305 {
306 u64 extent_start, extent_end, size, total_added = 0;
307 int ret;
308
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
313 if (ret)
314 break;
315
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
320 total_added += size;
321 ret = btrfs_add_free_space(block_group, start,
322 size);
323 BUG_ON(ret);
324 start = extent_end + 1;
325 } else {
326 break;
327 }
328 }
329
330 if (start < end) {
331 size = end - start;
332 total_added += size;
333 ret = btrfs_add_free_space(block_group, start, size);
334 BUG_ON(ret);
335 }
336
337 return total_added;
338 }
339
340 static noinline void caching_thread(struct btrfs_work *work)
341 {
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
349 u64 total_found = 0;
350 u64 last = 0;
351 u32 nritems;
352 int ret = 0;
353
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
358
359 path = btrfs_alloc_path();
360 if (!path)
361 goto out;
362
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
364
365 /*
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
370 */
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
373 path->reada = 1;
374
375 key.objectid = last;
376 key.offset = 0;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
382
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 if (ret < 0)
385 goto err;
386
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
389
390 while (1) {
391 if (btrfs_fs_closing(fs_info) > 1) {
392 last = (u64)-1;
393 break;
394 }
395
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 } else {
399 ret = find_next_key(path, 0, &key);
400 if (ret)
401 break;
402
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
409 cond_resched();
410 goto again;
411 }
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
414 continue;
415 }
416
417 if (key.objectid < block_group->key.objectid) {
418 path->slots[0]++;
419 continue;
420 }
421
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
424 break;
425
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
428 fs_info, last,
429 key.objectid);
430 last = key.objectid + key.offset;
431
432 if (total_found > (1024 * 1024 * 2)) {
433 total_found = 0;
434 wake_up(&caching_ctl->wait);
435 }
436 }
437 path->slots[0]++;
438 }
439 ret = 0;
440
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
445
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
450
451 err:
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
454
455 free_excluded_extents(extent_root, block_group);
456
457 mutex_unlock(&caching_ctl->mutex);
458 out:
459 wake_up(&caching_ctl->wait);
460
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
463 }
464
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
468 int load_cache_only)
469 {
470 struct btrfs_fs_info *fs_info = cache->fs_info;
471 struct btrfs_caching_control *caching_ctl;
472 int ret = 0;
473
474 smp_mb();
475 if (cache->cached != BTRFS_CACHE_NO)
476 return 0;
477
478 /*
479 * We can't do the read from on-disk cache during a commit since we need
480 * to have the normal tree locking. Also if we are currently trying to
481 * allocate blocks for the tree root we can't do the fast caching since
482 * we likely hold important locks.
483 */
484 if (trans && (!trans->transaction->in_commit) &&
485 (root && root != root->fs_info->tree_root) &&
486 btrfs_test_opt(root, SPACE_CACHE)) {
487 spin_lock(&cache->lock);
488 if (cache->cached != BTRFS_CACHE_NO) {
489 spin_unlock(&cache->lock);
490 return 0;
491 }
492 cache->cached = BTRFS_CACHE_STARTED;
493 spin_unlock(&cache->lock);
494
495 ret = load_free_space_cache(fs_info, cache);
496
497 spin_lock(&cache->lock);
498 if (ret == 1) {
499 cache->cached = BTRFS_CACHE_FINISHED;
500 cache->last_byte_to_unpin = (u64)-1;
501 } else {
502 cache->cached = BTRFS_CACHE_NO;
503 }
504 spin_unlock(&cache->lock);
505 if (ret == 1) {
506 free_excluded_extents(fs_info->extent_root, cache);
507 return 0;
508 }
509 }
510
511 if (load_cache_only)
512 return 0;
513
514 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
515 BUG_ON(!caching_ctl);
516
517 INIT_LIST_HEAD(&caching_ctl->list);
518 mutex_init(&caching_ctl->mutex);
519 init_waitqueue_head(&caching_ctl->wait);
520 caching_ctl->block_group = cache;
521 caching_ctl->progress = cache->key.objectid;
522 /* one for caching kthread, one for caching block group list */
523 atomic_set(&caching_ctl->count, 2);
524 caching_ctl->work.func = caching_thread;
525
526 spin_lock(&cache->lock);
527 if (cache->cached != BTRFS_CACHE_NO) {
528 spin_unlock(&cache->lock);
529 kfree(caching_ctl);
530 return 0;
531 }
532 cache->caching_ctl = caching_ctl;
533 cache->cached = BTRFS_CACHE_STARTED;
534 spin_unlock(&cache->lock);
535
536 down_write(&fs_info->extent_commit_sem);
537 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
538 up_write(&fs_info->extent_commit_sem);
539
540 btrfs_get_block_group(cache);
541
542 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
543
544 return ret;
545 }
546
547 /*
548 * return the block group that starts at or after bytenr
549 */
550 static struct btrfs_block_group_cache *
551 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
552 {
553 struct btrfs_block_group_cache *cache;
554
555 cache = block_group_cache_tree_search(info, bytenr, 0);
556
557 return cache;
558 }
559
560 /*
561 * return the block group that contains the given bytenr
562 */
563 struct btrfs_block_group_cache *btrfs_lookup_block_group(
564 struct btrfs_fs_info *info,
565 u64 bytenr)
566 {
567 struct btrfs_block_group_cache *cache;
568
569 cache = block_group_cache_tree_search(info, bytenr, 1);
570
571 return cache;
572 }
573
574 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
575 u64 flags)
576 {
577 struct list_head *head = &info->space_info;
578 struct btrfs_space_info *found;
579
580 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
581 BTRFS_BLOCK_GROUP_METADATA;
582
583 rcu_read_lock();
584 list_for_each_entry_rcu(found, head, list) {
585 if (found->flags & flags) {
586 rcu_read_unlock();
587 return found;
588 }
589 }
590 rcu_read_unlock();
591 return NULL;
592 }
593
594 /*
595 * after adding space to the filesystem, we need to clear the full flags
596 * on all the space infos.
597 */
598 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
599 {
600 struct list_head *head = &info->space_info;
601 struct btrfs_space_info *found;
602
603 rcu_read_lock();
604 list_for_each_entry_rcu(found, head, list)
605 found->full = 0;
606 rcu_read_unlock();
607 }
608
609 static u64 div_factor(u64 num, int factor)
610 {
611 if (factor == 10)
612 return num;
613 num *= factor;
614 do_div(num, 10);
615 return num;
616 }
617
618 static u64 div_factor_fine(u64 num, int factor)
619 {
620 if (factor == 100)
621 return num;
622 num *= factor;
623 do_div(num, 100);
624 return num;
625 }
626
627 u64 btrfs_find_block_group(struct btrfs_root *root,
628 u64 search_start, u64 search_hint, int owner)
629 {
630 struct btrfs_block_group_cache *cache;
631 u64 used;
632 u64 last = max(search_hint, search_start);
633 u64 group_start = 0;
634 int full_search = 0;
635 int factor = 9;
636 int wrapped = 0;
637 again:
638 while (1) {
639 cache = btrfs_lookup_first_block_group(root->fs_info, last);
640 if (!cache)
641 break;
642
643 spin_lock(&cache->lock);
644 last = cache->key.objectid + cache->key.offset;
645 used = btrfs_block_group_used(&cache->item);
646
647 if ((full_search || !cache->ro) &&
648 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
649 if (used + cache->pinned + cache->reserved <
650 div_factor(cache->key.offset, factor)) {
651 group_start = cache->key.objectid;
652 spin_unlock(&cache->lock);
653 btrfs_put_block_group(cache);
654 goto found;
655 }
656 }
657 spin_unlock(&cache->lock);
658 btrfs_put_block_group(cache);
659 cond_resched();
660 }
661 if (!wrapped) {
662 last = search_start;
663 wrapped = 1;
664 goto again;
665 }
666 if (!full_search && factor < 10) {
667 last = search_start;
668 full_search = 1;
669 factor = 10;
670 goto again;
671 }
672 found:
673 return group_start;
674 }
675
676 /* simple helper to search for an existing extent at a given offset */
677 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
678 {
679 int ret;
680 struct btrfs_key key;
681 struct btrfs_path *path;
682
683 path = btrfs_alloc_path();
684 if (!path)
685 return -ENOMEM;
686
687 key.objectid = start;
688 key.offset = len;
689 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
690 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
691 0, 0);
692 btrfs_free_path(path);
693 return ret;
694 }
695
696 /*
697 * helper function to lookup reference count and flags of extent.
698 *
699 * the head node for delayed ref is used to store the sum of all the
700 * reference count modifications queued up in the rbtree. the head
701 * node may also store the extent flags to set. This way you can check
702 * to see what the reference count and extent flags would be if all of
703 * the delayed refs are not processed.
704 */
705 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
706 struct btrfs_root *root, u64 bytenr,
707 u64 num_bytes, u64 *refs, u64 *flags)
708 {
709 struct btrfs_delayed_ref_head *head;
710 struct btrfs_delayed_ref_root *delayed_refs;
711 struct btrfs_path *path;
712 struct btrfs_extent_item *ei;
713 struct extent_buffer *leaf;
714 struct btrfs_key key;
715 u32 item_size;
716 u64 num_refs;
717 u64 extent_flags;
718 int ret;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = bytenr;
725 key.type = BTRFS_EXTENT_ITEM_KEY;
726 key.offset = num_bytes;
727 if (!trans) {
728 path->skip_locking = 1;
729 path->search_commit_root = 1;
730 }
731 again:
732 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
733 &key, path, 0, 0);
734 if (ret < 0)
735 goto out_free;
736
737 if (ret == 0) {
738 leaf = path->nodes[0];
739 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
740 if (item_size >= sizeof(*ei)) {
741 ei = btrfs_item_ptr(leaf, path->slots[0],
742 struct btrfs_extent_item);
743 num_refs = btrfs_extent_refs(leaf, ei);
744 extent_flags = btrfs_extent_flags(leaf, ei);
745 } else {
746 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
747 struct btrfs_extent_item_v0 *ei0;
748 BUG_ON(item_size != sizeof(*ei0));
749 ei0 = btrfs_item_ptr(leaf, path->slots[0],
750 struct btrfs_extent_item_v0);
751 num_refs = btrfs_extent_refs_v0(leaf, ei0);
752 /* FIXME: this isn't correct for data */
753 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
754 #else
755 BUG();
756 #endif
757 }
758 BUG_ON(num_refs == 0);
759 } else {
760 num_refs = 0;
761 extent_flags = 0;
762 ret = 0;
763 }
764
765 if (!trans)
766 goto out;
767
768 delayed_refs = &trans->transaction->delayed_refs;
769 spin_lock(&delayed_refs->lock);
770 head = btrfs_find_delayed_ref_head(trans, bytenr);
771 if (head) {
772 if (!mutex_trylock(&head->mutex)) {
773 atomic_inc(&head->node.refs);
774 spin_unlock(&delayed_refs->lock);
775
776 btrfs_release_path(path);
777
778 /*
779 * Mutex was contended, block until it's released and try
780 * again
781 */
782 mutex_lock(&head->mutex);
783 mutex_unlock(&head->mutex);
784 btrfs_put_delayed_ref(&head->node);
785 goto again;
786 }
787 if (head->extent_op && head->extent_op->update_flags)
788 extent_flags |= head->extent_op->flags_to_set;
789 else
790 BUG_ON(num_refs == 0);
791
792 num_refs += head->node.ref_mod;
793 mutex_unlock(&head->mutex);
794 }
795 spin_unlock(&delayed_refs->lock);
796 out:
797 WARN_ON(num_refs == 0);
798 if (refs)
799 *refs = num_refs;
800 if (flags)
801 *flags = extent_flags;
802 out_free:
803 btrfs_free_path(path);
804 return ret;
805 }
806
807 /*
808 * Back reference rules. Back refs have three main goals:
809 *
810 * 1) differentiate between all holders of references to an extent so that
811 * when a reference is dropped we can make sure it was a valid reference
812 * before freeing the extent.
813 *
814 * 2) Provide enough information to quickly find the holders of an extent
815 * if we notice a given block is corrupted or bad.
816 *
817 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
818 * maintenance. This is actually the same as #2, but with a slightly
819 * different use case.
820 *
821 * There are two kinds of back refs. The implicit back refs is optimized
822 * for pointers in non-shared tree blocks. For a given pointer in a block,
823 * back refs of this kind provide information about the block's owner tree
824 * and the pointer's key. These information allow us to find the block by
825 * b-tree searching. The full back refs is for pointers in tree blocks not
826 * referenced by their owner trees. The location of tree block is recorded
827 * in the back refs. Actually the full back refs is generic, and can be
828 * used in all cases the implicit back refs is used. The major shortcoming
829 * of the full back refs is its overhead. Every time a tree block gets
830 * COWed, we have to update back refs entry for all pointers in it.
831 *
832 * For a newly allocated tree block, we use implicit back refs for
833 * pointers in it. This means most tree related operations only involve
834 * implicit back refs. For a tree block created in old transaction, the
835 * only way to drop a reference to it is COW it. So we can detect the
836 * event that tree block loses its owner tree's reference and do the
837 * back refs conversion.
838 *
839 * When a tree block is COW'd through a tree, there are four cases:
840 *
841 * The reference count of the block is one and the tree is the block's
842 * owner tree. Nothing to do in this case.
843 *
844 * The reference count of the block is one and the tree is not the
845 * block's owner tree. In this case, full back refs is used for pointers
846 * in the block. Remove these full back refs, add implicit back refs for
847 * every pointers in the new block.
848 *
849 * The reference count of the block is greater than one and the tree is
850 * the block's owner tree. In this case, implicit back refs is used for
851 * pointers in the block. Add full back refs for every pointers in the
852 * block, increase lower level extents' reference counts. The original
853 * implicit back refs are entailed to the new block.
854 *
855 * The reference count of the block is greater than one and the tree is
856 * not the block's owner tree. Add implicit back refs for every pointer in
857 * the new block, increase lower level extents' reference count.
858 *
859 * Back Reference Key composing:
860 *
861 * The key objectid corresponds to the first byte in the extent,
862 * The key type is used to differentiate between types of back refs.
863 * There are different meanings of the key offset for different types
864 * of back refs.
865 *
866 * File extents can be referenced by:
867 *
868 * - multiple snapshots, subvolumes, or different generations in one subvol
869 * - different files inside a single subvolume
870 * - different offsets inside a file (bookend extents in file.c)
871 *
872 * The extent ref structure for the implicit back refs has fields for:
873 *
874 * - Objectid of the subvolume root
875 * - objectid of the file holding the reference
876 * - original offset in the file
877 * - how many bookend extents
878 *
879 * The key offset for the implicit back refs is hash of the first
880 * three fields.
881 *
882 * The extent ref structure for the full back refs has field for:
883 *
884 * - number of pointers in the tree leaf
885 *
886 * The key offset for the implicit back refs is the first byte of
887 * the tree leaf
888 *
889 * When a file extent is allocated, The implicit back refs is used.
890 * the fields are filled in:
891 *
892 * (root_key.objectid, inode objectid, offset in file, 1)
893 *
894 * When a file extent is removed file truncation, we find the
895 * corresponding implicit back refs and check the following fields:
896 *
897 * (btrfs_header_owner(leaf), inode objectid, offset in file)
898 *
899 * Btree extents can be referenced by:
900 *
901 * - Different subvolumes
902 *
903 * Both the implicit back refs and the full back refs for tree blocks
904 * only consist of key. The key offset for the implicit back refs is
905 * objectid of block's owner tree. The key offset for the full back refs
906 * is the first byte of parent block.
907 *
908 * When implicit back refs is used, information about the lowest key and
909 * level of the tree block are required. These information are stored in
910 * tree block info structure.
911 */
912
913 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
914 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
915 struct btrfs_root *root,
916 struct btrfs_path *path,
917 u64 owner, u32 extra_size)
918 {
919 struct btrfs_extent_item *item;
920 struct btrfs_extent_item_v0 *ei0;
921 struct btrfs_extent_ref_v0 *ref0;
922 struct btrfs_tree_block_info *bi;
923 struct extent_buffer *leaf;
924 struct btrfs_key key;
925 struct btrfs_key found_key;
926 u32 new_size = sizeof(*item);
927 u64 refs;
928 int ret;
929
930 leaf = path->nodes[0];
931 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
932
933 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
934 ei0 = btrfs_item_ptr(leaf, path->slots[0],
935 struct btrfs_extent_item_v0);
936 refs = btrfs_extent_refs_v0(leaf, ei0);
937
938 if (owner == (u64)-1) {
939 while (1) {
940 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
941 ret = btrfs_next_leaf(root, path);
942 if (ret < 0)
943 return ret;
944 BUG_ON(ret > 0);
945 leaf = path->nodes[0];
946 }
947 btrfs_item_key_to_cpu(leaf, &found_key,
948 path->slots[0]);
949 BUG_ON(key.objectid != found_key.objectid);
950 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
951 path->slots[0]++;
952 continue;
953 }
954 ref0 = btrfs_item_ptr(leaf, path->slots[0],
955 struct btrfs_extent_ref_v0);
956 owner = btrfs_ref_objectid_v0(leaf, ref0);
957 break;
958 }
959 }
960 btrfs_release_path(path);
961
962 if (owner < BTRFS_FIRST_FREE_OBJECTID)
963 new_size += sizeof(*bi);
964
965 new_size -= sizeof(*ei0);
966 ret = btrfs_search_slot(trans, root, &key, path,
967 new_size + extra_size, 1);
968 if (ret < 0)
969 return ret;
970 BUG_ON(ret);
971
972 ret = btrfs_extend_item(trans, root, path, new_size);
973
974 leaf = path->nodes[0];
975 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
976 btrfs_set_extent_refs(leaf, item, refs);
977 /* FIXME: get real generation */
978 btrfs_set_extent_generation(leaf, item, 0);
979 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
980 btrfs_set_extent_flags(leaf, item,
981 BTRFS_EXTENT_FLAG_TREE_BLOCK |
982 BTRFS_BLOCK_FLAG_FULL_BACKREF);
983 bi = (struct btrfs_tree_block_info *)(item + 1);
984 /* FIXME: get first key of the block */
985 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
986 btrfs_set_tree_block_level(leaf, bi, (int)owner);
987 } else {
988 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
989 }
990 btrfs_mark_buffer_dirty(leaf);
991 return 0;
992 }
993 #endif
994
995 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
996 {
997 u32 high_crc = ~(u32)0;
998 u32 low_crc = ~(u32)0;
999 __le64 lenum;
1000
1001 lenum = cpu_to_le64(root_objectid);
1002 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1003 lenum = cpu_to_le64(owner);
1004 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1005 lenum = cpu_to_le64(offset);
1006 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1007
1008 return ((u64)high_crc << 31) ^ (u64)low_crc;
1009 }
1010
1011 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1012 struct btrfs_extent_data_ref *ref)
1013 {
1014 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1015 btrfs_extent_data_ref_objectid(leaf, ref),
1016 btrfs_extent_data_ref_offset(leaf, ref));
1017 }
1018
1019 static int match_extent_data_ref(struct extent_buffer *leaf,
1020 struct btrfs_extent_data_ref *ref,
1021 u64 root_objectid, u64 owner, u64 offset)
1022 {
1023 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1024 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1025 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1026 return 0;
1027 return 1;
1028 }
1029
1030 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 u64 bytenr, u64 parent,
1034 u64 root_objectid,
1035 u64 owner, u64 offset)
1036 {
1037 struct btrfs_key key;
1038 struct btrfs_extent_data_ref *ref;
1039 struct extent_buffer *leaf;
1040 u32 nritems;
1041 int ret;
1042 int recow;
1043 int err = -ENOENT;
1044
1045 key.objectid = bytenr;
1046 if (parent) {
1047 key.type = BTRFS_SHARED_DATA_REF_KEY;
1048 key.offset = parent;
1049 } else {
1050 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1051 key.offset = hash_extent_data_ref(root_objectid,
1052 owner, offset);
1053 }
1054 again:
1055 recow = 0;
1056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1057 if (ret < 0) {
1058 err = ret;
1059 goto fail;
1060 }
1061
1062 if (parent) {
1063 if (!ret)
1064 return 0;
1065 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1066 key.type = BTRFS_EXTENT_REF_V0_KEY;
1067 btrfs_release_path(path);
1068 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1069 if (ret < 0) {
1070 err = ret;
1071 goto fail;
1072 }
1073 if (!ret)
1074 return 0;
1075 #endif
1076 goto fail;
1077 }
1078
1079 leaf = path->nodes[0];
1080 nritems = btrfs_header_nritems(leaf);
1081 while (1) {
1082 if (path->slots[0] >= nritems) {
1083 ret = btrfs_next_leaf(root, path);
1084 if (ret < 0)
1085 err = ret;
1086 if (ret)
1087 goto fail;
1088
1089 leaf = path->nodes[0];
1090 nritems = btrfs_header_nritems(leaf);
1091 recow = 1;
1092 }
1093
1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1095 if (key.objectid != bytenr ||
1096 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1097 goto fail;
1098
1099 ref = btrfs_item_ptr(leaf, path->slots[0],
1100 struct btrfs_extent_data_ref);
1101
1102 if (match_extent_data_ref(leaf, ref, root_objectid,
1103 owner, offset)) {
1104 if (recow) {
1105 btrfs_release_path(path);
1106 goto again;
1107 }
1108 err = 0;
1109 break;
1110 }
1111 path->slots[0]++;
1112 }
1113 fail:
1114 return err;
1115 }
1116
1117 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1118 struct btrfs_root *root,
1119 struct btrfs_path *path,
1120 u64 bytenr, u64 parent,
1121 u64 root_objectid, u64 owner,
1122 u64 offset, int refs_to_add)
1123 {
1124 struct btrfs_key key;
1125 struct extent_buffer *leaf;
1126 u32 size;
1127 u32 num_refs;
1128 int ret;
1129
1130 key.objectid = bytenr;
1131 if (parent) {
1132 key.type = BTRFS_SHARED_DATA_REF_KEY;
1133 key.offset = parent;
1134 size = sizeof(struct btrfs_shared_data_ref);
1135 } else {
1136 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1137 key.offset = hash_extent_data_ref(root_objectid,
1138 owner, offset);
1139 size = sizeof(struct btrfs_extent_data_ref);
1140 }
1141
1142 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1143 if (ret && ret != -EEXIST)
1144 goto fail;
1145
1146 leaf = path->nodes[0];
1147 if (parent) {
1148 struct btrfs_shared_data_ref *ref;
1149 ref = btrfs_item_ptr(leaf, path->slots[0],
1150 struct btrfs_shared_data_ref);
1151 if (ret == 0) {
1152 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1153 } else {
1154 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1155 num_refs += refs_to_add;
1156 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1157 }
1158 } else {
1159 struct btrfs_extent_data_ref *ref;
1160 while (ret == -EEXIST) {
1161 ref = btrfs_item_ptr(leaf, path->slots[0],
1162 struct btrfs_extent_data_ref);
1163 if (match_extent_data_ref(leaf, ref, root_objectid,
1164 owner, offset))
1165 break;
1166 btrfs_release_path(path);
1167 key.offset++;
1168 ret = btrfs_insert_empty_item(trans, root, path, &key,
1169 size);
1170 if (ret && ret != -EEXIST)
1171 goto fail;
1172
1173 leaf = path->nodes[0];
1174 }
1175 ref = btrfs_item_ptr(leaf, path->slots[0],
1176 struct btrfs_extent_data_ref);
1177 if (ret == 0) {
1178 btrfs_set_extent_data_ref_root(leaf, ref,
1179 root_objectid);
1180 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1181 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1182 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1183 } else {
1184 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1185 num_refs += refs_to_add;
1186 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1187 }
1188 }
1189 btrfs_mark_buffer_dirty(leaf);
1190 ret = 0;
1191 fail:
1192 btrfs_release_path(path);
1193 return ret;
1194 }
1195
1196 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1197 struct btrfs_root *root,
1198 struct btrfs_path *path,
1199 int refs_to_drop)
1200 {
1201 struct btrfs_key key;
1202 struct btrfs_extent_data_ref *ref1 = NULL;
1203 struct btrfs_shared_data_ref *ref2 = NULL;
1204 struct extent_buffer *leaf;
1205 u32 num_refs = 0;
1206 int ret = 0;
1207
1208 leaf = path->nodes[0];
1209 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1210
1211 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1212 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1213 struct btrfs_extent_data_ref);
1214 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1215 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1216 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_shared_data_ref);
1218 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1219 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1221 struct btrfs_extent_ref_v0 *ref0;
1222 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_extent_ref_v0);
1224 num_refs = btrfs_ref_count_v0(leaf, ref0);
1225 #endif
1226 } else {
1227 BUG();
1228 }
1229
1230 BUG_ON(num_refs < refs_to_drop);
1231 num_refs -= refs_to_drop;
1232
1233 if (num_refs == 0) {
1234 ret = btrfs_del_item(trans, root, path);
1235 } else {
1236 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1237 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1238 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1239 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1240 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1241 else {
1242 struct btrfs_extent_ref_v0 *ref0;
1243 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_ref_v0);
1245 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1246 }
1247 #endif
1248 btrfs_mark_buffer_dirty(leaf);
1249 }
1250 return ret;
1251 }
1252
1253 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1254 struct btrfs_path *path,
1255 struct btrfs_extent_inline_ref *iref)
1256 {
1257 struct btrfs_key key;
1258 struct extent_buffer *leaf;
1259 struct btrfs_extent_data_ref *ref1;
1260 struct btrfs_shared_data_ref *ref2;
1261 u32 num_refs = 0;
1262
1263 leaf = path->nodes[0];
1264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1265 if (iref) {
1266 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1267 BTRFS_EXTENT_DATA_REF_KEY) {
1268 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1269 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1270 } else {
1271 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1272 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1273 }
1274 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1275 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1276 struct btrfs_extent_data_ref);
1277 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1278 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1279 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1280 struct btrfs_shared_data_ref);
1281 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 num_refs = btrfs_ref_count_v0(leaf, ref0);
1288 #endif
1289 } else {
1290 WARN_ON(1);
1291 }
1292 return num_refs;
1293 }
1294
1295 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1296 struct btrfs_root *root,
1297 struct btrfs_path *path,
1298 u64 bytenr, u64 parent,
1299 u64 root_objectid)
1300 {
1301 struct btrfs_key key;
1302 int ret;
1303
1304 key.objectid = bytenr;
1305 if (parent) {
1306 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1307 key.offset = parent;
1308 } else {
1309 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1310 key.offset = root_objectid;
1311 }
1312
1313 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1314 if (ret > 0)
1315 ret = -ENOENT;
1316 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1317 if (ret == -ENOENT && parent) {
1318 btrfs_release_path(path);
1319 key.type = BTRFS_EXTENT_REF_V0_KEY;
1320 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1321 if (ret > 0)
1322 ret = -ENOENT;
1323 }
1324 #endif
1325 return ret;
1326 }
1327
1328 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1329 struct btrfs_root *root,
1330 struct btrfs_path *path,
1331 u64 bytenr, u64 parent,
1332 u64 root_objectid)
1333 {
1334 struct btrfs_key key;
1335 int ret;
1336
1337 key.objectid = bytenr;
1338 if (parent) {
1339 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1340 key.offset = parent;
1341 } else {
1342 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1343 key.offset = root_objectid;
1344 }
1345
1346 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1347 btrfs_release_path(path);
1348 return ret;
1349 }
1350
1351 static inline int extent_ref_type(u64 parent, u64 owner)
1352 {
1353 int type;
1354 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1355 if (parent > 0)
1356 type = BTRFS_SHARED_BLOCK_REF_KEY;
1357 else
1358 type = BTRFS_TREE_BLOCK_REF_KEY;
1359 } else {
1360 if (parent > 0)
1361 type = BTRFS_SHARED_DATA_REF_KEY;
1362 else
1363 type = BTRFS_EXTENT_DATA_REF_KEY;
1364 }
1365 return type;
1366 }
1367
1368 static int find_next_key(struct btrfs_path *path, int level,
1369 struct btrfs_key *key)
1370
1371 {
1372 for (; level < BTRFS_MAX_LEVEL; level++) {
1373 if (!path->nodes[level])
1374 break;
1375 if (path->slots[level] + 1 >=
1376 btrfs_header_nritems(path->nodes[level]))
1377 continue;
1378 if (level == 0)
1379 btrfs_item_key_to_cpu(path->nodes[level], key,
1380 path->slots[level] + 1);
1381 else
1382 btrfs_node_key_to_cpu(path->nodes[level], key,
1383 path->slots[level] + 1);
1384 return 0;
1385 }
1386 return 1;
1387 }
1388
1389 /*
1390 * look for inline back ref. if back ref is found, *ref_ret is set
1391 * to the address of inline back ref, and 0 is returned.
1392 *
1393 * if back ref isn't found, *ref_ret is set to the address where it
1394 * should be inserted, and -ENOENT is returned.
1395 *
1396 * if insert is true and there are too many inline back refs, the path
1397 * points to the extent item, and -EAGAIN is returned.
1398 *
1399 * NOTE: inline back refs are ordered in the same way that back ref
1400 * items in the tree are ordered.
1401 */
1402 static noinline_for_stack
1403 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 struct btrfs_extent_inline_ref **ref_ret,
1407 u64 bytenr, u64 num_bytes,
1408 u64 parent, u64 root_objectid,
1409 u64 owner, u64 offset, int insert)
1410 {
1411 struct btrfs_key key;
1412 struct extent_buffer *leaf;
1413 struct btrfs_extent_item *ei;
1414 struct btrfs_extent_inline_ref *iref;
1415 u64 flags;
1416 u64 item_size;
1417 unsigned long ptr;
1418 unsigned long end;
1419 int extra_size;
1420 int type;
1421 int want;
1422 int ret;
1423 int err = 0;
1424
1425 key.objectid = bytenr;
1426 key.type = BTRFS_EXTENT_ITEM_KEY;
1427 key.offset = num_bytes;
1428
1429 want = extent_ref_type(parent, owner);
1430 if (insert) {
1431 extra_size = btrfs_extent_inline_ref_size(want);
1432 path->keep_locks = 1;
1433 } else
1434 extra_size = -1;
1435 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1436 if (ret < 0) {
1437 err = ret;
1438 goto out;
1439 }
1440 BUG_ON(ret);
1441
1442 leaf = path->nodes[0];
1443 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (item_size < sizeof(*ei)) {
1446 if (!insert) {
1447 err = -ENOENT;
1448 goto out;
1449 }
1450 ret = convert_extent_item_v0(trans, root, path, owner,
1451 extra_size);
1452 if (ret < 0) {
1453 err = ret;
1454 goto out;
1455 }
1456 leaf = path->nodes[0];
1457 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1458 }
1459 #endif
1460 BUG_ON(item_size < sizeof(*ei));
1461
1462 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1463 flags = btrfs_extent_flags(leaf, ei);
1464
1465 ptr = (unsigned long)(ei + 1);
1466 end = (unsigned long)ei + item_size;
1467
1468 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1469 ptr += sizeof(struct btrfs_tree_block_info);
1470 BUG_ON(ptr > end);
1471 } else {
1472 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1473 }
1474
1475 err = -ENOENT;
1476 while (1) {
1477 if (ptr >= end) {
1478 WARN_ON(ptr > end);
1479 break;
1480 }
1481 iref = (struct btrfs_extent_inline_ref *)ptr;
1482 type = btrfs_extent_inline_ref_type(leaf, iref);
1483 if (want < type)
1484 break;
1485 if (want > type) {
1486 ptr += btrfs_extent_inline_ref_size(type);
1487 continue;
1488 }
1489
1490 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1491 struct btrfs_extent_data_ref *dref;
1492 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1493 if (match_extent_data_ref(leaf, dref, root_objectid,
1494 owner, offset)) {
1495 err = 0;
1496 break;
1497 }
1498 if (hash_extent_data_ref_item(leaf, dref) <
1499 hash_extent_data_ref(root_objectid, owner, offset))
1500 break;
1501 } else {
1502 u64 ref_offset;
1503 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1504 if (parent > 0) {
1505 if (parent == ref_offset) {
1506 err = 0;
1507 break;
1508 }
1509 if (ref_offset < parent)
1510 break;
1511 } else {
1512 if (root_objectid == ref_offset) {
1513 err = 0;
1514 break;
1515 }
1516 if (ref_offset < root_objectid)
1517 break;
1518 }
1519 }
1520 ptr += btrfs_extent_inline_ref_size(type);
1521 }
1522 if (err == -ENOENT && insert) {
1523 if (item_size + extra_size >=
1524 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1525 err = -EAGAIN;
1526 goto out;
1527 }
1528 /*
1529 * To add new inline back ref, we have to make sure
1530 * there is no corresponding back ref item.
1531 * For simplicity, we just do not add new inline back
1532 * ref if there is any kind of item for this block
1533 */
1534 if (find_next_key(path, 0, &key) == 0 &&
1535 key.objectid == bytenr &&
1536 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1537 err = -EAGAIN;
1538 goto out;
1539 }
1540 }
1541 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1542 out:
1543 if (insert) {
1544 path->keep_locks = 0;
1545 btrfs_unlock_up_safe(path, 1);
1546 }
1547 return err;
1548 }
1549
1550 /*
1551 * helper to add new inline back ref
1552 */
1553 static noinline_for_stack
1554 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1555 struct btrfs_root *root,
1556 struct btrfs_path *path,
1557 struct btrfs_extent_inline_ref *iref,
1558 u64 parent, u64 root_objectid,
1559 u64 owner, u64 offset, int refs_to_add,
1560 struct btrfs_delayed_extent_op *extent_op)
1561 {
1562 struct extent_buffer *leaf;
1563 struct btrfs_extent_item *ei;
1564 unsigned long ptr;
1565 unsigned long end;
1566 unsigned long item_offset;
1567 u64 refs;
1568 int size;
1569 int type;
1570 int ret;
1571
1572 leaf = path->nodes[0];
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 item_offset = (unsigned long)iref - (unsigned long)ei;
1575
1576 type = extent_ref_type(parent, owner);
1577 size = btrfs_extent_inline_ref_size(type);
1578
1579 ret = btrfs_extend_item(trans, root, path, size);
1580
1581 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1582 refs = btrfs_extent_refs(leaf, ei);
1583 refs += refs_to_add;
1584 btrfs_set_extent_refs(leaf, ei, refs);
1585 if (extent_op)
1586 __run_delayed_extent_op(extent_op, leaf, ei);
1587
1588 ptr = (unsigned long)ei + item_offset;
1589 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1590 if (ptr < end - size)
1591 memmove_extent_buffer(leaf, ptr + size, ptr,
1592 end - size - ptr);
1593
1594 iref = (struct btrfs_extent_inline_ref *)ptr;
1595 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1596 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1597 struct btrfs_extent_data_ref *dref;
1598 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1599 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1600 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1601 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1602 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1603 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1604 struct btrfs_shared_data_ref *sref;
1605 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1606 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1607 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1608 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1609 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1610 } else {
1611 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1612 }
1613 btrfs_mark_buffer_dirty(leaf);
1614 return 0;
1615 }
1616
1617 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1618 struct btrfs_root *root,
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes, u64 parent,
1622 u64 root_objectid, u64 owner, u64 offset)
1623 {
1624 int ret;
1625
1626 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1627 bytenr, num_bytes, parent,
1628 root_objectid, owner, offset, 0);
1629 if (ret != -ENOENT)
1630 return ret;
1631
1632 btrfs_release_path(path);
1633 *ref_ret = NULL;
1634
1635 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1636 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1637 root_objectid);
1638 } else {
1639 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1640 root_objectid, owner, offset);
1641 }
1642 return ret;
1643 }
1644
1645 /*
1646 * helper to update/remove inline back ref
1647 */
1648 static noinline_for_stack
1649 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1650 struct btrfs_root *root,
1651 struct btrfs_path *path,
1652 struct btrfs_extent_inline_ref *iref,
1653 int refs_to_mod,
1654 struct btrfs_delayed_extent_op *extent_op)
1655 {
1656 struct extent_buffer *leaf;
1657 struct btrfs_extent_item *ei;
1658 struct btrfs_extent_data_ref *dref = NULL;
1659 struct btrfs_shared_data_ref *sref = NULL;
1660 unsigned long ptr;
1661 unsigned long end;
1662 u32 item_size;
1663 int size;
1664 int type;
1665 int ret;
1666 u64 refs;
1667
1668 leaf = path->nodes[0];
1669 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1670 refs = btrfs_extent_refs(leaf, ei);
1671 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1672 refs += refs_to_mod;
1673 btrfs_set_extent_refs(leaf, ei, refs);
1674 if (extent_op)
1675 __run_delayed_extent_op(extent_op, leaf, ei);
1676
1677 type = btrfs_extent_inline_ref_type(leaf, iref);
1678
1679 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1680 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1681 refs = btrfs_extent_data_ref_count(leaf, dref);
1682 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1683 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1684 refs = btrfs_shared_data_ref_count(leaf, sref);
1685 } else {
1686 refs = 1;
1687 BUG_ON(refs_to_mod != -1);
1688 }
1689
1690 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1691 refs += refs_to_mod;
1692
1693 if (refs > 0) {
1694 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1695 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1696 else
1697 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1698 } else {
1699 size = btrfs_extent_inline_ref_size(type);
1700 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1701 ptr = (unsigned long)iref;
1702 end = (unsigned long)ei + item_size;
1703 if (ptr + size < end)
1704 memmove_extent_buffer(leaf, ptr, ptr + size,
1705 end - ptr - size);
1706 item_size -= size;
1707 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1708 }
1709 btrfs_mark_buffer_dirty(leaf);
1710 return 0;
1711 }
1712
1713 static noinline_for_stack
1714 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1715 struct btrfs_root *root,
1716 struct btrfs_path *path,
1717 u64 bytenr, u64 num_bytes, u64 parent,
1718 u64 root_objectid, u64 owner,
1719 u64 offset, int refs_to_add,
1720 struct btrfs_delayed_extent_op *extent_op)
1721 {
1722 struct btrfs_extent_inline_ref *iref;
1723 int ret;
1724
1725 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1726 bytenr, num_bytes, parent,
1727 root_objectid, owner, offset, 1);
1728 if (ret == 0) {
1729 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1730 ret = update_inline_extent_backref(trans, root, path, iref,
1731 refs_to_add, extent_op);
1732 } else if (ret == -ENOENT) {
1733 ret = setup_inline_extent_backref(trans, root, path, iref,
1734 parent, root_objectid,
1735 owner, offset, refs_to_add,
1736 extent_op);
1737 }
1738 return ret;
1739 }
1740
1741 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct btrfs_path *path,
1744 u64 bytenr, u64 parent, u64 root_objectid,
1745 u64 owner, u64 offset, int refs_to_add)
1746 {
1747 int ret;
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 BUG_ON(refs_to_add != 1);
1750 ret = insert_tree_block_ref(trans, root, path, bytenr,
1751 parent, root_objectid);
1752 } else {
1753 ret = insert_extent_data_ref(trans, root, path, bytenr,
1754 parent, root_objectid,
1755 owner, offset, refs_to_add);
1756 }
1757 return ret;
1758 }
1759
1760 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1761 struct btrfs_root *root,
1762 struct btrfs_path *path,
1763 struct btrfs_extent_inline_ref *iref,
1764 int refs_to_drop, int is_data)
1765 {
1766 int ret;
1767
1768 BUG_ON(!is_data && refs_to_drop != 1);
1769 if (iref) {
1770 ret = update_inline_extent_backref(trans, root, path, iref,
1771 -refs_to_drop, NULL);
1772 } else if (is_data) {
1773 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1774 } else {
1775 ret = btrfs_del_item(trans, root, path);
1776 }
1777 return ret;
1778 }
1779
1780 static int btrfs_issue_discard(struct block_device *bdev,
1781 u64 start, u64 len)
1782 {
1783 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1784 }
1785
1786 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1787 u64 num_bytes, u64 *actual_bytes)
1788 {
1789 int ret;
1790 u64 discarded_bytes = 0;
1791 struct btrfs_bio *bbio = NULL;
1792
1793
1794 /* Tell the block device(s) that the sectors can be discarded */
1795 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1796 bytenr, &num_bytes, &bbio, 0);
1797 if (!ret) {
1798 struct btrfs_bio_stripe *stripe = bbio->stripes;
1799 int i;
1800
1801
1802 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1803 if (!stripe->dev->can_discard)
1804 continue;
1805
1806 ret = btrfs_issue_discard(stripe->dev->bdev,
1807 stripe->physical,
1808 stripe->length);
1809 if (!ret)
1810 discarded_bytes += stripe->length;
1811 else if (ret != -EOPNOTSUPP)
1812 break;
1813
1814 /*
1815 * Just in case we get back EOPNOTSUPP for some reason,
1816 * just ignore the return value so we don't screw up
1817 * people calling discard_extent.
1818 */
1819 ret = 0;
1820 }
1821 kfree(bbio);
1822 }
1823
1824 if (actual_bytes)
1825 *actual_bytes = discarded_bytes;
1826
1827
1828 return ret;
1829 }
1830
1831 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1832 struct btrfs_root *root,
1833 u64 bytenr, u64 num_bytes, u64 parent,
1834 u64 root_objectid, u64 owner, u64 offset)
1835 {
1836 int ret;
1837 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1838 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1839
1840 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1841 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1842 parent, root_objectid, (int)owner,
1843 BTRFS_ADD_DELAYED_REF, NULL);
1844 } else {
1845 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1846 parent, root_objectid, owner, offset,
1847 BTRFS_ADD_DELAYED_REF, NULL);
1848 }
1849 return ret;
1850 }
1851
1852 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 u64 bytenr, u64 num_bytes,
1855 u64 parent, u64 root_objectid,
1856 u64 owner, u64 offset, int refs_to_add,
1857 struct btrfs_delayed_extent_op *extent_op)
1858 {
1859 struct btrfs_path *path;
1860 struct extent_buffer *leaf;
1861 struct btrfs_extent_item *item;
1862 u64 refs;
1863 int ret;
1864 int err = 0;
1865
1866 path = btrfs_alloc_path();
1867 if (!path)
1868 return -ENOMEM;
1869
1870 path->reada = 1;
1871 path->leave_spinning = 1;
1872 /* this will setup the path even if it fails to insert the back ref */
1873 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1874 path, bytenr, num_bytes, parent,
1875 root_objectid, owner, offset,
1876 refs_to_add, extent_op);
1877 if (ret == 0)
1878 goto out;
1879
1880 if (ret != -EAGAIN) {
1881 err = ret;
1882 goto out;
1883 }
1884
1885 leaf = path->nodes[0];
1886 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1887 refs = btrfs_extent_refs(leaf, item);
1888 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1889 if (extent_op)
1890 __run_delayed_extent_op(extent_op, leaf, item);
1891
1892 btrfs_mark_buffer_dirty(leaf);
1893 btrfs_release_path(path);
1894
1895 path->reada = 1;
1896 path->leave_spinning = 1;
1897
1898 /* now insert the actual backref */
1899 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1900 path, bytenr, parent, root_objectid,
1901 owner, offset, refs_to_add);
1902 BUG_ON(ret);
1903 out:
1904 btrfs_free_path(path);
1905 return err;
1906 }
1907
1908 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 struct btrfs_delayed_ref_node *node,
1911 struct btrfs_delayed_extent_op *extent_op,
1912 int insert_reserved)
1913 {
1914 int ret = 0;
1915 struct btrfs_delayed_data_ref *ref;
1916 struct btrfs_key ins;
1917 u64 parent = 0;
1918 u64 ref_root = 0;
1919 u64 flags = 0;
1920
1921 ins.objectid = node->bytenr;
1922 ins.offset = node->num_bytes;
1923 ins.type = BTRFS_EXTENT_ITEM_KEY;
1924
1925 ref = btrfs_delayed_node_to_data_ref(node);
1926 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1927 parent = ref->parent;
1928 else
1929 ref_root = ref->root;
1930
1931 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1932 if (extent_op) {
1933 BUG_ON(extent_op->update_key);
1934 flags |= extent_op->flags_to_set;
1935 }
1936 ret = alloc_reserved_file_extent(trans, root,
1937 parent, ref_root, flags,
1938 ref->objectid, ref->offset,
1939 &ins, node->ref_mod);
1940 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1941 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1942 node->num_bytes, parent,
1943 ref_root, ref->objectid,
1944 ref->offset, node->ref_mod,
1945 extent_op);
1946 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1947 ret = __btrfs_free_extent(trans, root, node->bytenr,
1948 node->num_bytes, parent,
1949 ref_root, ref->objectid,
1950 ref->offset, node->ref_mod,
1951 extent_op);
1952 } else {
1953 BUG();
1954 }
1955 return ret;
1956 }
1957
1958 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1959 struct extent_buffer *leaf,
1960 struct btrfs_extent_item *ei)
1961 {
1962 u64 flags = btrfs_extent_flags(leaf, ei);
1963 if (extent_op->update_flags) {
1964 flags |= extent_op->flags_to_set;
1965 btrfs_set_extent_flags(leaf, ei, flags);
1966 }
1967
1968 if (extent_op->update_key) {
1969 struct btrfs_tree_block_info *bi;
1970 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1971 bi = (struct btrfs_tree_block_info *)(ei + 1);
1972 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1973 }
1974 }
1975
1976 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1977 struct btrfs_root *root,
1978 struct btrfs_delayed_ref_node *node,
1979 struct btrfs_delayed_extent_op *extent_op)
1980 {
1981 struct btrfs_key key;
1982 struct btrfs_path *path;
1983 struct btrfs_extent_item *ei;
1984 struct extent_buffer *leaf;
1985 u32 item_size;
1986 int ret;
1987 int err = 0;
1988
1989 path = btrfs_alloc_path();
1990 if (!path)
1991 return -ENOMEM;
1992
1993 key.objectid = node->bytenr;
1994 key.type = BTRFS_EXTENT_ITEM_KEY;
1995 key.offset = node->num_bytes;
1996
1997 path->reada = 1;
1998 path->leave_spinning = 1;
1999 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2000 path, 0, 1);
2001 if (ret < 0) {
2002 err = ret;
2003 goto out;
2004 }
2005 if (ret > 0) {
2006 err = -EIO;
2007 goto out;
2008 }
2009
2010 leaf = path->nodes[0];
2011 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2012 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2013 if (item_size < sizeof(*ei)) {
2014 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2015 path, (u64)-1, 0);
2016 if (ret < 0) {
2017 err = ret;
2018 goto out;
2019 }
2020 leaf = path->nodes[0];
2021 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2022 }
2023 #endif
2024 BUG_ON(item_size < sizeof(*ei));
2025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2026 __run_delayed_extent_op(extent_op, leaf, ei);
2027
2028 btrfs_mark_buffer_dirty(leaf);
2029 out:
2030 btrfs_free_path(path);
2031 return err;
2032 }
2033
2034 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2035 struct btrfs_root *root,
2036 struct btrfs_delayed_ref_node *node,
2037 struct btrfs_delayed_extent_op *extent_op,
2038 int insert_reserved)
2039 {
2040 int ret = 0;
2041 struct btrfs_delayed_tree_ref *ref;
2042 struct btrfs_key ins;
2043 u64 parent = 0;
2044 u64 ref_root = 0;
2045
2046 ins.objectid = node->bytenr;
2047 ins.offset = node->num_bytes;
2048 ins.type = BTRFS_EXTENT_ITEM_KEY;
2049
2050 ref = btrfs_delayed_node_to_tree_ref(node);
2051 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2052 parent = ref->parent;
2053 else
2054 ref_root = ref->root;
2055
2056 BUG_ON(node->ref_mod != 1);
2057 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2058 BUG_ON(!extent_op || !extent_op->update_flags ||
2059 !extent_op->update_key);
2060 ret = alloc_reserved_tree_block(trans, root,
2061 parent, ref_root,
2062 extent_op->flags_to_set,
2063 &extent_op->key,
2064 ref->level, &ins);
2065 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2066 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2067 node->num_bytes, parent, ref_root,
2068 ref->level, 0, 1, extent_op);
2069 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2070 ret = __btrfs_free_extent(trans, root, node->bytenr,
2071 node->num_bytes, parent, ref_root,
2072 ref->level, 0, 1, extent_op);
2073 } else {
2074 BUG();
2075 }
2076 return ret;
2077 }
2078
2079 /* helper function to actually process a single delayed ref entry */
2080 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2081 struct btrfs_root *root,
2082 struct btrfs_delayed_ref_node *node,
2083 struct btrfs_delayed_extent_op *extent_op,
2084 int insert_reserved)
2085 {
2086 int ret;
2087 if (btrfs_delayed_ref_is_head(node)) {
2088 struct btrfs_delayed_ref_head *head;
2089 /*
2090 * we've hit the end of the chain and we were supposed
2091 * to insert this extent into the tree. But, it got
2092 * deleted before we ever needed to insert it, so all
2093 * we have to do is clean up the accounting
2094 */
2095 BUG_ON(extent_op);
2096 head = btrfs_delayed_node_to_head(node);
2097 if (insert_reserved) {
2098 btrfs_pin_extent(root, node->bytenr,
2099 node->num_bytes, 1);
2100 if (head->is_data) {
2101 ret = btrfs_del_csums(trans, root,
2102 node->bytenr,
2103 node->num_bytes);
2104 BUG_ON(ret);
2105 }
2106 }
2107 mutex_unlock(&head->mutex);
2108 return 0;
2109 }
2110
2111 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2112 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2113 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2114 insert_reserved);
2115 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2116 node->type == BTRFS_SHARED_DATA_REF_KEY)
2117 ret = run_delayed_data_ref(trans, root, node, extent_op,
2118 insert_reserved);
2119 else
2120 BUG();
2121 return ret;
2122 }
2123
2124 static noinline struct btrfs_delayed_ref_node *
2125 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2126 {
2127 struct rb_node *node;
2128 struct btrfs_delayed_ref_node *ref;
2129 int action = BTRFS_ADD_DELAYED_REF;
2130 again:
2131 /*
2132 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2133 * this prevents ref count from going down to zero when
2134 * there still are pending delayed ref.
2135 */
2136 node = rb_prev(&head->node.rb_node);
2137 while (1) {
2138 if (!node)
2139 break;
2140 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2141 rb_node);
2142 if (ref->bytenr != head->node.bytenr)
2143 break;
2144 if (ref->action == action)
2145 return ref;
2146 node = rb_prev(node);
2147 }
2148 if (action == BTRFS_ADD_DELAYED_REF) {
2149 action = BTRFS_DROP_DELAYED_REF;
2150 goto again;
2151 }
2152 return NULL;
2153 }
2154
2155 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2156 struct btrfs_root *root,
2157 struct list_head *cluster)
2158 {
2159 struct btrfs_delayed_ref_root *delayed_refs;
2160 struct btrfs_delayed_ref_node *ref;
2161 struct btrfs_delayed_ref_head *locked_ref = NULL;
2162 struct btrfs_delayed_extent_op *extent_op;
2163 int ret;
2164 int count = 0;
2165 int must_insert_reserved = 0;
2166
2167 delayed_refs = &trans->transaction->delayed_refs;
2168 while (1) {
2169 if (!locked_ref) {
2170 /* pick a new head ref from the cluster list */
2171 if (list_empty(cluster))
2172 break;
2173
2174 locked_ref = list_entry(cluster->next,
2175 struct btrfs_delayed_ref_head, cluster);
2176
2177 /* grab the lock that says we are going to process
2178 * all the refs for this head */
2179 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2180
2181 /*
2182 * we may have dropped the spin lock to get the head
2183 * mutex lock, and that might have given someone else
2184 * time to free the head. If that's true, it has been
2185 * removed from our list and we can move on.
2186 */
2187 if (ret == -EAGAIN) {
2188 locked_ref = NULL;
2189 count++;
2190 continue;
2191 }
2192 }
2193
2194 /*
2195 * record the must insert reserved flag before we
2196 * drop the spin lock.
2197 */
2198 must_insert_reserved = locked_ref->must_insert_reserved;
2199 locked_ref->must_insert_reserved = 0;
2200
2201 extent_op = locked_ref->extent_op;
2202 locked_ref->extent_op = NULL;
2203
2204 /*
2205 * locked_ref is the head node, so we have to go one
2206 * node back for any delayed ref updates
2207 */
2208 ref = select_delayed_ref(locked_ref);
2209 if (!ref) {
2210 /* All delayed refs have been processed, Go ahead
2211 * and send the head node to run_one_delayed_ref,
2212 * so that any accounting fixes can happen
2213 */
2214 ref = &locked_ref->node;
2215
2216 if (extent_op && must_insert_reserved) {
2217 kfree(extent_op);
2218 extent_op = NULL;
2219 }
2220
2221 if (extent_op) {
2222 spin_unlock(&delayed_refs->lock);
2223
2224 ret = run_delayed_extent_op(trans, root,
2225 ref, extent_op);
2226 BUG_ON(ret);
2227 kfree(extent_op);
2228
2229 cond_resched();
2230 spin_lock(&delayed_refs->lock);
2231 continue;
2232 }
2233
2234 list_del_init(&locked_ref->cluster);
2235 locked_ref = NULL;
2236 }
2237
2238 ref->in_tree = 0;
2239 rb_erase(&ref->rb_node, &delayed_refs->root);
2240 delayed_refs->num_entries--;
2241
2242 spin_unlock(&delayed_refs->lock);
2243
2244 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2245 must_insert_reserved);
2246 BUG_ON(ret);
2247
2248 btrfs_put_delayed_ref(ref);
2249 kfree(extent_op);
2250 count++;
2251
2252 cond_resched();
2253 spin_lock(&delayed_refs->lock);
2254 }
2255 return count;
2256 }
2257
2258 /*
2259 * this starts processing the delayed reference count updates and
2260 * extent insertions we have queued up so far. count can be
2261 * 0, which means to process everything in the tree at the start
2262 * of the run (but not newly added entries), or it can be some target
2263 * number you'd like to process.
2264 */
2265 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2266 struct btrfs_root *root, unsigned long count)
2267 {
2268 struct rb_node *node;
2269 struct btrfs_delayed_ref_root *delayed_refs;
2270 struct btrfs_delayed_ref_node *ref;
2271 struct list_head cluster;
2272 int ret;
2273 int run_all = count == (unsigned long)-1;
2274 int run_most = 0;
2275
2276 if (root == root->fs_info->extent_root)
2277 root = root->fs_info->tree_root;
2278
2279 delayed_refs = &trans->transaction->delayed_refs;
2280 INIT_LIST_HEAD(&cluster);
2281 again:
2282 spin_lock(&delayed_refs->lock);
2283 if (count == 0) {
2284 count = delayed_refs->num_entries * 2;
2285 run_most = 1;
2286 }
2287 while (1) {
2288 if (!(run_all || run_most) &&
2289 delayed_refs->num_heads_ready < 64)
2290 break;
2291
2292 /*
2293 * go find something we can process in the rbtree. We start at
2294 * the beginning of the tree, and then build a cluster
2295 * of refs to process starting at the first one we are able to
2296 * lock
2297 */
2298 ret = btrfs_find_ref_cluster(trans, &cluster,
2299 delayed_refs->run_delayed_start);
2300 if (ret)
2301 break;
2302
2303 ret = run_clustered_refs(trans, root, &cluster);
2304 BUG_ON(ret < 0);
2305
2306 count -= min_t(unsigned long, ret, count);
2307
2308 if (count == 0)
2309 break;
2310 }
2311
2312 if (run_all) {
2313 node = rb_first(&delayed_refs->root);
2314 if (!node)
2315 goto out;
2316 count = (unsigned long)-1;
2317
2318 while (node) {
2319 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2320 rb_node);
2321 if (btrfs_delayed_ref_is_head(ref)) {
2322 struct btrfs_delayed_ref_head *head;
2323
2324 head = btrfs_delayed_node_to_head(ref);
2325 atomic_inc(&ref->refs);
2326
2327 spin_unlock(&delayed_refs->lock);
2328 /*
2329 * Mutex was contended, block until it's
2330 * released and try again
2331 */
2332 mutex_lock(&head->mutex);
2333 mutex_unlock(&head->mutex);
2334
2335 btrfs_put_delayed_ref(ref);
2336 cond_resched();
2337 goto again;
2338 }
2339 node = rb_next(node);
2340 }
2341 spin_unlock(&delayed_refs->lock);
2342 schedule_timeout(1);
2343 goto again;
2344 }
2345 out:
2346 spin_unlock(&delayed_refs->lock);
2347 return 0;
2348 }
2349
2350 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2351 struct btrfs_root *root,
2352 u64 bytenr, u64 num_bytes, u64 flags,
2353 int is_data)
2354 {
2355 struct btrfs_delayed_extent_op *extent_op;
2356 int ret;
2357
2358 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2359 if (!extent_op)
2360 return -ENOMEM;
2361
2362 extent_op->flags_to_set = flags;
2363 extent_op->update_flags = 1;
2364 extent_op->update_key = 0;
2365 extent_op->is_data = is_data ? 1 : 0;
2366
2367 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2368 if (ret)
2369 kfree(extent_op);
2370 return ret;
2371 }
2372
2373 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2374 struct btrfs_root *root,
2375 struct btrfs_path *path,
2376 u64 objectid, u64 offset, u64 bytenr)
2377 {
2378 struct btrfs_delayed_ref_head *head;
2379 struct btrfs_delayed_ref_node *ref;
2380 struct btrfs_delayed_data_ref *data_ref;
2381 struct btrfs_delayed_ref_root *delayed_refs;
2382 struct rb_node *node;
2383 int ret = 0;
2384
2385 ret = -ENOENT;
2386 delayed_refs = &trans->transaction->delayed_refs;
2387 spin_lock(&delayed_refs->lock);
2388 head = btrfs_find_delayed_ref_head(trans, bytenr);
2389 if (!head)
2390 goto out;
2391
2392 if (!mutex_trylock(&head->mutex)) {
2393 atomic_inc(&head->node.refs);
2394 spin_unlock(&delayed_refs->lock);
2395
2396 btrfs_release_path(path);
2397
2398 /*
2399 * Mutex was contended, block until it's released and let
2400 * caller try again
2401 */
2402 mutex_lock(&head->mutex);
2403 mutex_unlock(&head->mutex);
2404 btrfs_put_delayed_ref(&head->node);
2405 return -EAGAIN;
2406 }
2407
2408 node = rb_prev(&head->node.rb_node);
2409 if (!node)
2410 goto out_unlock;
2411
2412 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2413
2414 if (ref->bytenr != bytenr)
2415 goto out_unlock;
2416
2417 ret = 1;
2418 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2419 goto out_unlock;
2420
2421 data_ref = btrfs_delayed_node_to_data_ref(ref);
2422
2423 node = rb_prev(node);
2424 if (node) {
2425 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2426 if (ref->bytenr == bytenr)
2427 goto out_unlock;
2428 }
2429
2430 if (data_ref->root != root->root_key.objectid ||
2431 data_ref->objectid != objectid || data_ref->offset != offset)
2432 goto out_unlock;
2433
2434 ret = 0;
2435 out_unlock:
2436 mutex_unlock(&head->mutex);
2437 out:
2438 spin_unlock(&delayed_refs->lock);
2439 return ret;
2440 }
2441
2442 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2443 struct btrfs_root *root,
2444 struct btrfs_path *path,
2445 u64 objectid, u64 offset, u64 bytenr)
2446 {
2447 struct btrfs_root *extent_root = root->fs_info->extent_root;
2448 struct extent_buffer *leaf;
2449 struct btrfs_extent_data_ref *ref;
2450 struct btrfs_extent_inline_ref *iref;
2451 struct btrfs_extent_item *ei;
2452 struct btrfs_key key;
2453 u32 item_size;
2454 int ret;
2455
2456 key.objectid = bytenr;
2457 key.offset = (u64)-1;
2458 key.type = BTRFS_EXTENT_ITEM_KEY;
2459
2460 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2461 if (ret < 0)
2462 goto out;
2463 BUG_ON(ret == 0);
2464
2465 ret = -ENOENT;
2466 if (path->slots[0] == 0)
2467 goto out;
2468
2469 path->slots[0]--;
2470 leaf = path->nodes[0];
2471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2472
2473 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2474 goto out;
2475
2476 ret = 1;
2477 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2478 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2479 if (item_size < sizeof(*ei)) {
2480 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2481 goto out;
2482 }
2483 #endif
2484 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2485
2486 if (item_size != sizeof(*ei) +
2487 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2488 goto out;
2489
2490 if (btrfs_extent_generation(leaf, ei) <=
2491 btrfs_root_last_snapshot(&root->root_item))
2492 goto out;
2493
2494 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2495 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2496 BTRFS_EXTENT_DATA_REF_KEY)
2497 goto out;
2498
2499 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2500 if (btrfs_extent_refs(leaf, ei) !=
2501 btrfs_extent_data_ref_count(leaf, ref) ||
2502 btrfs_extent_data_ref_root(leaf, ref) !=
2503 root->root_key.objectid ||
2504 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2505 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2506 goto out;
2507
2508 ret = 0;
2509 out:
2510 return ret;
2511 }
2512
2513 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2514 struct btrfs_root *root,
2515 u64 objectid, u64 offset, u64 bytenr)
2516 {
2517 struct btrfs_path *path;
2518 int ret;
2519 int ret2;
2520
2521 path = btrfs_alloc_path();
2522 if (!path)
2523 return -ENOENT;
2524
2525 do {
2526 ret = check_committed_ref(trans, root, path, objectid,
2527 offset, bytenr);
2528 if (ret && ret != -ENOENT)
2529 goto out;
2530
2531 ret2 = check_delayed_ref(trans, root, path, objectid,
2532 offset, bytenr);
2533 } while (ret2 == -EAGAIN);
2534
2535 if (ret2 && ret2 != -ENOENT) {
2536 ret = ret2;
2537 goto out;
2538 }
2539
2540 if (ret != -ENOENT || ret2 != -ENOENT)
2541 ret = 0;
2542 out:
2543 btrfs_free_path(path);
2544 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2545 WARN_ON(ret > 0);
2546 return ret;
2547 }
2548
2549 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2550 struct btrfs_root *root,
2551 struct extent_buffer *buf,
2552 int full_backref, int inc)
2553 {
2554 u64 bytenr;
2555 u64 num_bytes;
2556 u64 parent;
2557 u64 ref_root;
2558 u32 nritems;
2559 struct btrfs_key key;
2560 struct btrfs_file_extent_item *fi;
2561 int i;
2562 int level;
2563 int ret = 0;
2564 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2565 u64, u64, u64, u64, u64, u64);
2566
2567 ref_root = btrfs_header_owner(buf);
2568 nritems = btrfs_header_nritems(buf);
2569 level = btrfs_header_level(buf);
2570
2571 if (!root->ref_cows && level == 0)
2572 return 0;
2573
2574 if (inc)
2575 process_func = btrfs_inc_extent_ref;
2576 else
2577 process_func = btrfs_free_extent;
2578
2579 if (full_backref)
2580 parent = buf->start;
2581 else
2582 parent = 0;
2583
2584 for (i = 0; i < nritems; i++) {
2585 if (level == 0) {
2586 btrfs_item_key_to_cpu(buf, &key, i);
2587 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2588 continue;
2589 fi = btrfs_item_ptr(buf, i,
2590 struct btrfs_file_extent_item);
2591 if (btrfs_file_extent_type(buf, fi) ==
2592 BTRFS_FILE_EXTENT_INLINE)
2593 continue;
2594 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2595 if (bytenr == 0)
2596 continue;
2597
2598 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2599 key.offset -= btrfs_file_extent_offset(buf, fi);
2600 ret = process_func(trans, root, bytenr, num_bytes,
2601 parent, ref_root, key.objectid,
2602 key.offset);
2603 if (ret)
2604 goto fail;
2605 } else {
2606 bytenr = btrfs_node_blockptr(buf, i);
2607 num_bytes = btrfs_level_size(root, level - 1);
2608 ret = process_func(trans, root, bytenr, num_bytes,
2609 parent, ref_root, level - 1, 0);
2610 if (ret)
2611 goto fail;
2612 }
2613 }
2614 return 0;
2615 fail:
2616 BUG();
2617 return ret;
2618 }
2619
2620 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2621 struct extent_buffer *buf, int full_backref)
2622 {
2623 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2624 }
2625
2626 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2627 struct extent_buffer *buf, int full_backref)
2628 {
2629 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2630 }
2631
2632 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2633 struct btrfs_root *root,
2634 struct btrfs_path *path,
2635 struct btrfs_block_group_cache *cache)
2636 {
2637 int ret;
2638 struct btrfs_root *extent_root = root->fs_info->extent_root;
2639 unsigned long bi;
2640 struct extent_buffer *leaf;
2641
2642 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2643 if (ret < 0)
2644 goto fail;
2645 BUG_ON(ret);
2646
2647 leaf = path->nodes[0];
2648 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2649 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2650 btrfs_mark_buffer_dirty(leaf);
2651 btrfs_release_path(path);
2652 fail:
2653 if (ret)
2654 return ret;
2655 return 0;
2656
2657 }
2658
2659 static struct btrfs_block_group_cache *
2660 next_block_group(struct btrfs_root *root,
2661 struct btrfs_block_group_cache *cache)
2662 {
2663 struct rb_node *node;
2664 spin_lock(&root->fs_info->block_group_cache_lock);
2665 node = rb_next(&cache->cache_node);
2666 btrfs_put_block_group(cache);
2667 if (node) {
2668 cache = rb_entry(node, struct btrfs_block_group_cache,
2669 cache_node);
2670 btrfs_get_block_group(cache);
2671 } else
2672 cache = NULL;
2673 spin_unlock(&root->fs_info->block_group_cache_lock);
2674 return cache;
2675 }
2676
2677 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2678 struct btrfs_trans_handle *trans,
2679 struct btrfs_path *path)
2680 {
2681 struct btrfs_root *root = block_group->fs_info->tree_root;
2682 struct inode *inode = NULL;
2683 u64 alloc_hint = 0;
2684 int dcs = BTRFS_DC_ERROR;
2685 int num_pages = 0;
2686 int retries = 0;
2687 int ret = 0;
2688
2689 /*
2690 * If this block group is smaller than 100 megs don't bother caching the
2691 * block group.
2692 */
2693 if (block_group->key.offset < (100 * 1024 * 1024)) {
2694 spin_lock(&block_group->lock);
2695 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2696 spin_unlock(&block_group->lock);
2697 return 0;
2698 }
2699
2700 again:
2701 inode = lookup_free_space_inode(root, block_group, path);
2702 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2703 ret = PTR_ERR(inode);
2704 btrfs_release_path(path);
2705 goto out;
2706 }
2707
2708 if (IS_ERR(inode)) {
2709 BUG_ON(retries);
2710 retries++;
2711
2712 if (block_group->ro)
2713 goto out_free;
2714
2715 ret = create_free_space_inode(root, trans, block_group, path);
2716 if (ret)
2717 goto out_free;
2718 goto again;
2719 }
2720
2721 /* We've already setup this transaction, go ahead and exit */
2722 if (block_group->cache_generation == trans->transid &&
2723 i_size_read(inode)) {
2724 dcs = BTRFS_DC_SETUP;
2725 goto out_put;
2726 }
2727
2728 /*
2729 * We want to set the generation to 0, that way if anything goes wrong
2730 * from here on out we know not to trust this cache when we load up next
2731 * time.
2732 */
2733 BTRFS_I(inode)->generation = 0;
2734 ret = btrfs_update_inode(trans, root, inode);
2735 WARN_ON(ret);
2736
2737 if (i_size_read(inode) > 0) {
2738 ret = btrfs_truncate_free_space_cache(root, trans, path,
2739 inode);
2740 if (ret)
2741 goto out_put;
2742 }
2743
2744 spin_lock(&block_group->lock);
2745 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2746 /* We're not cached, don't bother trying to write stuff out */
2747 dcs = BTRFS_DC_WRITTEN;
2748 spin_unlock(&block_group->lock);
2749 goto out_put;
2750 }
2751 spin_unlock(&block_group->lock);
2752
2753 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2754 if (!num_pages)
2755 num_pages = 1;
2756
2757 /*
2758 * Just to make absolutely sure we have enough space, we're going to
2759 * preallocate 12 pages worth of space for each block group. In
2760 * practice we ought to use at most 8, but we need extra space so we can
2761 * add our header and have a terminator between the extents and the
2762 * bitmaps.
2763 */
2764 num_pages *= 16;
2765 num_pages *= PAGE_CACHE_SIZE;
2766
2767 ret = btrfs_check_data_free_space(inode, num_pages);
2768 if (ret)
2769 goto out_put;
2770
2771 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2772 num_pages, num_pages,
2773 &alloc_hint);
2774 if (!ret)
2775 dcs = BTRFS_DC_SETUP;
2776 btrfs_free_reserved_data_space(inode, num_pages);
2777
2778 out_put:
2779 iput(inode);
2780 out_free:
2781 btrfs_release_path(path);
2782 out:
2783 spin_lock(&block_group->lock);
2784 if (!ret)
2785 block_group->cache_generation = trans->transid;
2786 block_group->disk_cache_state = dcs;
2787 spin_unlock(&block_group->lock);
2788
2789 return ret;
2790 }
2791
2792 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2793 struct btrfs_root *root)
2794 {
2795 struct btrfs_block_group_cache *cache;
2796 int err = 0;
2797 struct btrfs_path *path;
2798 u64 last = 0;
2799
2800 path = btrfs_alloc_path();
2801 if (!path)
2802 return -ENOMEM;
2803
2804 again:
2805 while (1) {
2806 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2807 while (cache) {
2808 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2809 break;
2810 cache = next_block_group(root, cache);
2811 }
2812 if (!cache) {
2813 if (last == 0)
2814 break;
2815 last = 0;
2816 continue;
2817 }
2818 err = cache_save_setup(cache, trans, path);
2819 last = cache->key.objectid + cache->key.offset;
2820 btrfs_put_block_group(cache);
2821 }
2822
2823 while (1) {
2824 if (last == 0) {
2825 err = btrfs_run_delayed_refs(trans, root,
2826 (unsigned long)-1);
2827 BUG_ON(err);
2828 }
2829
2830 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2831 while (cache) {
2832 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2833 btrfs_put_block_group(cache);
2834 goto again;
2835 }
2836
2837 if (cache->dirty)
2838 break;
2839 cache = next_block_group(root, cache);
2840 }
2841 if (!cache) {
2842 if (last == 0)
2843 break;
2844 last = 0;
2845 continue;
2846 }
2847
2848 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2849 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2850 cache->dirty = 0;
2851 last = cache->key.objectid + cache->key.offset;
2852
2853 err = write_one_cache_group(trans, root, path, cache);
2854 BUG_ON(err);
2855 btrfs_put_block_group(cache);
2856 }
2857
2858 while (1) {
2859 /*
2860 * I don't think this is needed since we're just marking our
2861 * preallocated extent as written, but just in case it can't
2862 * hurt.
2863 */
2864 if (last == 0) {
2865 err = btrfs_run_delayed_refs(trans, root,
2866 (unsigned long)-1);
2867 BUG_ON(err);
2868 }
2869
2870 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2871 while (cache) {
2872 /*
2873 * Really this shouldn't happen, but it could if we
2874 * couldn't write the entire preallocated extent and
2875 * splitting the extent resulted in a new block.
2876 */
2877 if (cache->dirty) {
2878 btrfs_put_block_group(cache);
2879 goto again;
2880 }
2881 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2882 break;
2883 cache = next_block_group(root, cache);
2884 }
2885 if (!cache) {
2886 if (last == 0)
2887 break;
2888 last = 0;
2889 continue;
2890 }
2891
2892 btrfs_write_out_cache(root, trans, cache, path);
2893
2894 /*
2895 * If we didn't have an error then the cache state is still
2896 * NEED_WRITE, so we can set it to WRITTEN.
2897 */
2898 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2899 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2900 last = cache->key.objectid + cache->key.offset;
2901 btrfs_put_block_group(cache);
2902 }
2903
2904 btrfs_free_path(path);
2905 return 0;
2906 }
2907
2908 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2909 {
2910 struct btrfs_block_group_cache *block_group;
2911 int readonly = 0;
2912
2913 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2914 if (!block_group || block_group->ro)
2915 readonly = 1;
2916 if (block_group)
2917 btrfs_put_block_group(block_group);
2918 return readonly;
2919 }
2920
2921 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2922 u64 total_bytes, u64 bytes_used,
2923 struct btrfs_space_info **space_info)
2924 {
2925 struct btrfs_space_info *found;
2926 int i;
2927 int factor;
2928
2929 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2930 BTRFS_BLOCK_GROUP_RAID10))
2931 factor = 2;
2932 else
2933 factor = 1;
2934
2935 found = __find_space_info(info, flags);
2936 if (found) {
2937 spin_lock(&found->lock);
2938 found->total_bytes += total_bytes;
2939 found->disk_total += total_bytes * factor;
2940 found->bytes_used += bytes_used;
2941 found->disk_used += bytes_used * factor;
2942 found->full = 0;
2943 spin_unlock(&found->lock);
2944 *space_info = found;
2945 return 0;
2946 }
2947 found = kzalloc(sizeof(*found), GFP_NOFS);
2948 if (!found)
2949 return -ENOMEM;
2950
2951 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2952 INIT_LIST_HEAD(&found->block_groups[i]);
2953 init_rwsem(&found->groups_sem);
2954 spin_lock_init(&found->lock);
2955 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2956 BTRFS_BLOCK_GROUP_SYSTEM |
2957 BTRFS_BLOCK_GROUP_METADATA);
2958 found->total_bytes = total_bytes;
2959 found->disk_total = total_bytes * factor;
2960 found->bytes_used = bytes_used;
2961 found->disk_used = bytes_used * factor;
2962 found->bytes_pinned = 0;
2963 found->bytes_reserved = 0;
2964 found->bytes_readonly = 0;
2965 found->bytes_may_use = 0;
2966 found->full = 0;
2967 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2968 found->chunk_alloc = 0;
2969 found->flush = 0;
2970 init_waitqueue_head(&found->wait);
2971 *space_info = found;
2972 list_add_rcu(&found->list, &info->space_info);
2973 return 0;
2974 }
2975
2976 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2977 {
2978 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2979 BTRFS_BLOCK_GROUP_RAID1 |
2980 BTRFS_BLOCK_GROUP_RAID10 |
2981 BTRFS_BLOCK_GROUP_DUP);
2982 if (extra_flags) {
2983 if (flags & BTRFS_BLOCK_GROUP_DATA)
2984 fs_info->avail_data_alloc_bits |= extra_flags;
2985 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2986 fs_info->avail_metadata_alloc_bits |= extra_flags;
2987 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2988 fs_info->avail_system_alloc_bits |= extra_flags;
2989 }
2990 }
2991
2992 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2993 {
2994 /*
2995 * we add in the count of missing devices because we want
2996 * to make sure that any RAID levels on a degraded FS
2997 * continue to be honored.
2998 */
2999 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3000 root->fs_info->fs_devices->missing_devices;
3001
3002 if (num_devices == 1)
3003 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3004 if (num_devices < 4)
3005 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3006
3007 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3008 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3009 BTRFS_BLOCK_GROUP_RAID10))) {
3010 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3011 }
3012
3013 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3014 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3015 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3016 }
3017
3018 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3019 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3020 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3021 (flags & BTRFS_BLOCK_GROUP_DUP)))
3022 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3023 return flags;
3024 }
3025
3026 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3027 {
3028 if (flags & BTRFS_BLOCK_GROUP_DATA)
3029 flags |= root->fs_info->avail_data_alloc_bits &
3030 root->fs_info->data_alloc_profile;
3031 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3032 flags |= root->fs_info->avail_system_alloc_bits &
3033 root->fs_info->system_alloc_profile;
3034 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3035 flags |= root->fs_info->avail_metadata_alloc_bits &
3036 root->fs_info->metadata_alloc_profile;
3037 return btrfs_reduce_alloc_profile(root, flags);
3038 }
3039
3040 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3041 {
3042 u64 flags;
3043
3044 if (data)
3045 flags = BTRFS_BLOCK_GROUP_DATA;
3046 else if (root == root->fs_info->chunk_root)
3047 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3048 else
3049 flags = BTRFS_BLOCK_GROUP_METADATA;
3050
3051 return get_alloc_profile(root, flags);
3052 }
3053
3054 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3055 {
3056 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3057 BTRFS_BLOCK_GROUP_DATA);
3058 }
3059
3060 /*
3061 * This will check the space that the inode allocates from to make sure we have
3062 * enough space for bytes.
3063 */
3064 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3065 {
3066 struct btrfs_space_info *data_sinfo;
3067 struct btrfs_root *root = BTRFS_I(inode)->root;
3068 u64 used;
3069 int ret = 0, committed = 0, alloc_chunk = 1;
3070
3071 /* make sure bytes are sectorsize aligned */
3072 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3073
3074 if (root == root->fs_info->tree_root ||
3075 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3076 alloc_chunk = 0;
3077 committed = 1;
3078 }
3079
3080 data_sinfo = BTRFS_I(inode)->space_info;
3081 if (!data_sinfo)
3082 goto alloc;
3083
3084 again:
3085 /* make sure we have enough space to handle the data first */
3086 spin_lock(&data_sinfo->lock);
3087 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3088 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3089 data_sinfo->bytes_may_use;
3090
3091 if (used + bytes > data_sinfo->total_bytes) {
3092 struct btrfs_trans_handle *trans;
3093
3094 /*
3095 * if we don't have enough free bytes in this space then we need
3096 * to alloc a new chunk.
3097 */
3098 if (!data_sinfo->full && alloc_chunk) {
3099 u64 alloc_target;
3100
3101 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3102 spin_unlock(&data_sinfo->lock);
3103 alloc:
3104 alloc_target = btrfs_get_alloc_profile(root, 1);
3105 trans = btrfs_join_transaction(root);
3106 if (IS_ERR(trans))
3107 return PTR_ERR(trans);
3108
3109 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3110 bytes + 2 * 1024 * 1024,
3111 alloc_target,
3112 CHUNK_ALLOC_NO_FORCE);
3113 btrfs_end_transaction(trans, root);
3114 if (ret < 0) {
3115 if (ret != -ENOSPC)
3116 return ret;
3117 else
3118 goto commit_trans;
3119 }
3120
3121 if (!data_sinfo) {
3122 btrfs_set_inode_space_info(root, inode);
3123 data_sinfo = BTRFS_I(inode)->space_info;
3124 }
3125 goto again;
3126 }
3127
3128 /*
3129 * If we have less pinned bytes than we want to allocate then
3130 * don't bother committing the transaction, it won't help us.
3131 */
3132 if (data_sinfo->bytes_pinned < bytes)
3133 committed = 1;
3134 spin_unlock(&data_sinfo->lock);
3135
3136 /* commit the current transaction and try again */
3137 commit_trans:
3138 if (!committed &&
3139 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3140 committed = 1;
3141 trans = btrfs_join_transaction(root);
3142 if (IS_ERR(trans))
3143 return PTR_ERR(trans);
3144 ret = btrfs_commit_transaction(trans, root);
3145 if (ret)
3146 return ret;
3147 goto again;
3148 }
3149
3150 return -ENOSPC;
3151 }
3152 data_sinfo->bytes_may_use += bytes;
3153 spin_unlock(&data_sinfo->lock);
3154
3155 return 0;
3156 }
3157
3158 /*
3159 * Called if we need to clear a data reservation for this inode.
3160 */
3161 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3162 {
3163 struct btrfs_root *root = BTRFS_I(inode)->root;
3164 struct btrfs_space_info *data_sinfo;
3165
3166 /* make sure bytes are sectorsize aligned */
3167 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3168
3169 data_sinfo = BTRFS_I(inode)->space_info;
3170 spin_lock(&data_sinfo->lock);
3171 data_sinfo->bytes_may_use -= bytes;
3172 spin_unlock(&data_sinfo->lock);
3173 }
3174
3175 static void force_metadata_allocation(struct btrfs_fs_info *info)
3176 {
3177 struct list_head *head = &info->space_info;
3178 struct btrfs_space_info *found;
3179
3180 rcu_read_lock();
3181 list_for_each_entry_rcu(found, head, list) {
3182 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3183 found->force_alloc = CHUNK_ALLOC_FORCE;
3184 }
3185 rcu_read_unlock();
3186 }
3187
3188 static int should_alloc_chunk(struct btrfs_root *root,
3189 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3190 int force)
3191 {
3192 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3193 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3194 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3195 u64 thresh;
3196
3197 if (force == CHUNK_ALLOC_FORCE)
3198 return 1;
3199
3200 /*
3201 * We need to take into account the global rsv because for all intents
3202 * and purposes it's used space. Don't worry about locking the
3203 * global_rsv, it doesn't change except when the transaction commits.
3204 */
3205 num_allocated += global_rsv->size;
3206
3207 /*
3208 * in limited mode, we want to have some free space up to
3209 * about 1% of the FS size.
3210 */
3211 if (force == CHUNK_ALLOC_LIMITED) {
3212 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3213 thresh = max_t(u64, 64 * 1024 * 1024,
3214 div_factor_fine(thresh, 1));
3215
3216 if (num_bytes - num_allocated < thresh)
3217 return 1;
3218 }
3219
3220 /*
3221 * we have two similar checks here, one based on percentage
3222 * and once based on a hard number of 256MB. The idea
3223 * is that if we have a good amount of free
3224 * room, don't allocate a chunk. A good mount is
3225 * less than 80% utilized of the chunks we have allocated,
3226 * or more than 256MB free
3227 */
3228 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3229 return 0;
3230
3231 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3232 return 0;
3233
3234 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3235
3236 /* 256MB or 5% of the FS */
3237 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3238
3239 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3240 return 0;
3241 return 1;
3242 }
3243
3244 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3245 struct btrfs_root *extent_root, u64 alloc_bytes,
3246 u64 flags, int force)
3247 {
3248 struct btrfs_space_info *space_info;
3249 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3250 int wait_for_alloc = 0;
3251 int ret = 0;
3252
3253 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3254
3255 space_info = __find_space_info(extent_root->fs_info, flags);
3256 if (!space_info) {
3257 ret = update_space_info(extent_root->fs_info, flags,
3258 0, 0, &space_info);
3259 BUG_ON(ret);
3260 }
3261 BUG_ON(!space_info);
3262
3263 again:
3264 spin_lock(&space_info->lock);
3265 if (space_info->force_alloc)
3266 force = space_info->force_alloc;
3267 if (space_info->full) {
3268 spin_unlock(&space_info->lock);
3269 return 0;
3270 }
3271
3272 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3273 spin_unlock(&space_info->lock);
3274 return 0;
3275 } else if (space_info->chunk_alloc) {
3276 wait_for_alloc = 1;
3277 } else {
3278 space_info->chunk_alloc = 1;
3279 }
3280
3281 spin_unlock(&space_info->lock);
3282
3283 mutex_lock(&fs_info->chunk_mutex);
3284
3285 /*
3286 * The chunk_mutex is held throughout the entirety of a chunk
3287 * allocation, so once we've acquired the chunk_mutex we know that the
3288 * other guy is done and we need to recheck and see if we should
3289 * allocate.
3290 */
3291 if (wait_for_alloc) {
3292 mutex_unlock(&fs_info->chunk_mutex);
3293 wait_for_alloc = 0;
3294 goto again;
3295 }
3296
3297 /*
3298 * If we have mixed data/metadata chunks we want to make sure we keep
3299 * allocating mixed chunks instead of individual chunks.
3300 */
3301 if (btrfs_mixed_space_info(space_info))
3302 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3303
3304 /*
3305 * if we're doing a data chunk, go ahead and make sure that
3306 * we keep a reasonable number of metadata chunks allocated in the
3307 * FS as well.
3308 */
3309 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3310 fs_info->data_chunk_allocations++;
3311 if (!(fs_info->data_chunk_allocations %
3312 fs_info->metadata_ratio))
3313 force_metadata_allocation(fs_info);
3314 }
3315
3316 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3317 if (ret < 0 && ret != -ENOSPC)
3318 goto out;
3319
3320 spin_lock(&space_info->lock);
3321 if (ret)
3322 space_info->full = 1;
3323 else
3324 ret = 1;
3325
3326 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3327 space_info->chunk_alloc = 0;
3328 spin_unlock(&space_info->lock);
3329 out:
3330 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3331 return ret;
3332 }
3333
3334 /*
3335 * shrink metadata reservation for delalloc
3336 */
3337 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3338 bool wait_ordered)
3339 {
3340 struct btrfs_block_rsv *block_rsv;
3341 struct btrfs_space_info *space_info;
3342 struct btrfs_trans_handle *trans;
3343 u64 reserved;
3344 u64 max_reclaim;
3345 u64 reclaimed = 0;
3346 long time_left;
3347 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3348 int loops = 0;
3349 unsigned long progress;
3350
3351 trans = (struct btrfs_trans_handle *)current->journal_info;
3352 block_rsv = &root->fs_info->delalloc_block_rsv;
3353 space_info = block_rsv->space_info;
3354
3355 smp_mb();
3356 reserved = space_info->bytes_may_use;
3357 progress = space_info->reservation_progress;
3358
3359 if (reserved == 0)
3360 return 0;
3361
3362 smp_mb();
3363 if (root->fs_info->delalloc_bytes == 0) {
3364 if (trans)
3365 return 0;
3366 btrfs_wait_ordered_extents(root, 0, 0);
3367 return 0;
3368 }
3369
3370 max_reclaim = min(reserved, to_reclaim);
3371 nr_pages = max_t(unsigned long, nr_pages,
3372 max_reclaim >> PAGE_CACHE_SHIFT);
3373 while (loops < 1024) {
3374 /* have the flusher threads jump in and do some IO */
3375 smp_mb();
3376 nr_pages = min_t(unsigned long, nr_pages,
3377 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3378 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3379 WB_REASON_FS_FREE_SPACE);
3380
3381 spin_lock(&space_info->lock);
3382 if (reserved > space_info->bytes_may_use)
3383 reclaimed += reserved - space_info->bytes_may_use;
3384 reserved = space_info->bytes_may_use;
3385 spin_unlock(&space_info->lock);
3386
3387 loops++;
3388
3389 if (reserved == 0 || reclaimed >= max_reclaim)
3390 break;
3391
3392 if (trans && trans->transaction->blocked)
3393 return -EAGAIN;
3394
3395 if (wait_ordered && !trans) {
3396 btrfs_wait_ordered_extents(root, 0, 0);
3397 } else {
3398 time_left = schedule_timeout_interruptible(1);
3399
3400 /* We were interrupted, exit */
3401 if (time_left)
3402 break;
3403 }
3404
3405 /* we've kicked the IO a few times, if anything has been freed,
3406 * exit. There is no sense in looping here for a long time
3407 * when we really need to commit the transaction, or there are
3408 * just too many writers without enough free space
3409 */
3410
3411 if (loops > 3) {
3412 smp_mb();
3413 if (progress != space_info->reservation_progress)
3414 break;
3415 }
3416
3417 }
3418
3419 return reclaimed >= to_reclaim;
3420 }
3421
3422 /**
3423 * maybe_commit_transaction - possibly commit the transaction if its ok to
3424 * @root - the root we're allocating for
3425 * @bytes - the number of bytes we want to reserve
3426 * @force - force the commit
3427 *
3428 * This will check to make sure that committing the transaction will actually
3429 * get us somewhere and then commit the transaction if it does. Otherwise it
3430 * will return -ENOSPC.
3431 */
3432 static int may_commit_transaction(struct btrfs_root *root,
3433 struct btrfs_space_info *space_info,
3434 u64 bytes, int force)
3435 {
3436 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3437 struct btrfs_trans_handle *trans;
3438
3439 trans = (struct btrfs_trans_handle *)current->journal_info;
3440 if (trans)
3441 return -EAGAIN;
3442
3443 if (force)
3444 goto commit;
3445
3446 /* See if there is enough pinned space to make this reservation */
3447 spin_lock(&space_info->lock);
3448 if (space_info->bytes_pinned >= bytes) {
3449 spin_unlock(&space_info->lock);
3450 goto commit;
3451 }
3452 spin_unlock(&space_info->lock);
3453
3454 /*
3455 * See if there is some space in the delayed insertion reservation for
3456 * this reservation.
3457 */
3458 if (space_info != delayed_rsv->space_info)
3459 return -ENOSPC;
3460
3461 spin_lock(&delayed_rsv->lock);
3462 if (delayed_rsv->size < bytes) {
3463 spin_unlock(&delayed_rsv->lock);
3464 return -ENOSPC;
3465 }
3466 spin_unlock(&delayed_rsv->lock);
3467
3468 commit:
3469 trans = btrfs_join_transaction(root);
3470 if (IS_ERR(trans))
3471 return -ENOSPC;
3472
3473 return btrfs_commit_transaction(trans, root);
3474 }
3475
3476 /**
3477 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3478 * @root - the root we're allocating for
3479 * @block_rsv - the block_rsv we're allocating for
3480 * @orig_bytes - the number of bytes we want
3481 * @flush - wether or not we can flush to make our reservation
3482 *
3483 * This will reserve orgi_bytes number of bytes from the space info associated
3484 * with the block_rsv. If there is not enough space it will make an attempt to
3485 * flush out space to make room. It will do this by flushing delalloc if
3486 * possible or committing the transaction. If flush is 0 then no attempts to
3487 * regain reservations will be made and this will fail if there is not enough
3488 * space already.
3489 */
3490 static int reserve_metadata_bytes(struct btrfs_root *root,
3491 struct btrfs_block_rsv *block_rsv,
3492 u64 orig_bytes, int flush)
3493 {
3494 struct btrfs_space_info *space_info = block_rsv->space_info;
3495 u64 used;
3496 u64 num_bytes = orig_bytes;
3497 int retries = 0;
3498 int ret = 0;
3499 bool committed = false;
3500 bool flushing = false;
3501 bool wait_ordered = false;
3502
3503 again:
3504 ret = 0;
3505 spin_lock(&space_info->lock);
3506 /*
3507 * We only want to wait if somebody other than us is flushing and we are
3508 * actually alloed to flush.
3509 */
3510 while (flush && !flushing && space_info->flush) {
3511 spin_unlock(&space_info->lock);
3512 /*
3513 * If we have a trans handle we can't wait because the flusher
3514 * may have to commit the transaction, which would mean we would
3515 * deadlock since we are waiting for the flusher to finish, but
3516 * hold the current transaction open.
3517 */
3518 if (current->journal_info)
3519 return -EAGAIN;
3520 ret = wait_event_interruptible(space_info->wait,
3521 !space_info->flush);
3522 /* Must have been interrupted, return */
3523 if (ret)
3524 return -EINTR;
3525
3526 spin_lock(&space_info->lock);
3527 }
3528
3529 ret = -ENOSPC;
3530 used = space_info->bytes_used + space_info->bytes_reserved +
3531 space_info->bytes_pinned + space_info->bytes_readonly +
3532 space_info->bytes_may_use;
3533
3534 /*
3535 * The idea here is that we've not already over-reserved the block group
3536 * then we can go ahead and save our reservation first and then start
3537 * flushing if we need to. Otherwise if we've already overcommitted
3538 * lets start flushing stuff first and then come back and try to make
3539 * our reservation.
3540 */
3541 if (used <= space_info->total_bytes) {
3542 if (used + orig_bytes <= space_info->total_bytes) {
3543 space_info->bytes_may_use += orig_bytes;
3544 ret = 0;
3545 } else {
3546 /*
3547 * Ok set num_bytes to orig_bytes since we aren't
3548 * overocmmitted, this way we only try and reclaim what
3549 * we need.
3550 */
3551 num_bytes = orig_bytes;
3552 }
3553 } else {
3554 /*
3555 * Ok we're over committed, set num_bytes to the overcommitted
3556 * amount plus the amount of bytes that we need for this
3557 * reservation.
3558 */
3559 wait_ordered = true;
3560 num_bytes = used - space_info->total_bytes +
3561 (orig_bytes * (retries + 1));
3562 }
3563
3564 if (ret) {
3565 u64 profile = btrfs_get_alloc_profile(root, 0);
3566 u64 avail;
3567
3568 /*
3569 * If we have a lot of space that's pinned, don't bother doing
3570 * the overcommit dance yet and just commit the transaction.
3571 */
3572 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3573 do_div(avail, 10);
3574 if (space_info->bytes_pinned >= avail && flush && !committed) {
3575 space_info->flush = 1;
3576 flushing = true;
3577 spin_unlock(&space_info->lock);
3578 ret = may_commit_transaction(root, space_info,
3579 orig_bytes, 1);
3580 if (ret)
3581 goto out;
3582 committed = true;
3583 goto again;
3584 }
3585
3586 spin_lock(&root->fs_info->free_chunk_lock);
3587 avail = root->fs_info->free_chunk_space;
3588
3589 /*
3590 * If we have dup, raid1 or raid10 then only half of the free
3591 * space is actually useable.
3592 */
3593 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3594 BTRFS_BLOCK_GROUP_RAID1 |
3595 BTRFS_BLOCK_GROUP_RAID10))
3596 avail >>= 1;
3597
3598 /*
3599 * If we aren't flushing don't let us overcommit too much, say
3600 * 1/8th of the space. If we can flush, let it overcommit up to
3601 * 1/2 of the space.
3602 */
3603 if (flush)
3604 avail >>= 3;
3605 else
3606 avail >>= 1;
3607 spin_unlock(&root->fs_info->free_chunk_lock);
3608
3609 if (used + num_bytes < space_info->total_bytes + avail) {
3610 space_info->bytes_may_use += orig_bytes;
3611 ret = 0;
3612 } else {
3613 wait_ordered = true;
3614 }
3615 }
3616
3617 /*
3618 * Couldn't make our reservation, save our place so while we're trying
3619 * to reclaim space we can actually use it instead of somebody else
3620 * stealing it from us.
3621 */
3622 if (ret && flush) {
3623 flushing = true;
3624 space_info->flush = 1;
3625 }
3626
3627 spin_unlock(&space_info->lock);
3628
3629 if (!ret || !flush)
3630 goto out;
3631
3632 /*
3633 * We do synchronous shrinking since we don't actually unreserve
3634 * metadata until after the IO is completed.
3635 */
3636 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3637 if (ret < 0)
3638 goto out;
3639
3640 ret = 0;
3641
3642 /*
3643 * So if we were overcommitted it's possible that somebody else flushed
3644 * out enough space and we simply didn't have enough space to reclaim,
3645 * so go back around and try again.
3646 */
3647 if (retries < 2) {
3648 wait_ordered = true;
3649 retries++;
3650 goto again;
3651 }
3652
3653 ret = -ENOSPC;
3654 if (committed)
3655 goto out;
3656
3657 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3658 if (!ret) {
3659 committed = true;
3660 goto again;
3661 }
3662
3663 out:
3664 if (flushing) {
3665 spin_lock(&space_info->lock);
3666 space_info->flush = 0;
3667 wake_up_all(&space_info->wait);
3668 spin_unlock(&space_info->lock);
3669 }
3670 return ret;
3671 }
3672
3673 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3674 struct btrfs_root *root)
3675 {
3676 struct btrfs_block_rsv *block_rsv = NULL;
3677
3678 if (root->ref_cows || root == root->fs_info->csum_root)
3679 block_rsv = trans->block_rsv;
3680
3681 if (!block_rsv)
3682 block_rsv = root->block_rsv;
3683
3684 if (!block_rsv)
3685 block_rsv = &root->fs_info->empty_block_rsv;
3686
3687 return block_rsv;
3688 }
3689
3690 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3691 u64 num_bytes)
3692 {
3693 int ret = -ENOSPC;
3694 spin_lock(&block_rsv->lock);
3695 if (block_rsv->reserved >= num_bytes) {
3696 block_rsv->reserved -= num_bytes;
3697 if (block_rsv->reserved < block_rsv->size)
3698 block_rsv->full = 0;
3699 ret = 0;
3700 }
3701 spin_unlock(&block_rsv->lock);
3702 return ret;
3703 }
3704
3705 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3706 u64 num_bytes, int update_size)
3707 {
3708 spin_lock(&block_rsv->lock);
3709 block_rsv->reserved += num_bytes;
3710 if (update_size)
3711 block_rsv->size += num_bytes;
3712 else if (block_rsv->reserved >= block_rsv->size)
3713 block_rsv->full = 1;
3714 spin_unlock(&block_rsv->lock);
3715 }
3716
3717 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3718 struct btrfs_block_rsv *dest, u64 num_bytes)
3719 {
3720 struct btrfs_space_info *space_info = block_rsv->space_info;
3721
3722 spin_lock(&block_rsv->lock);
3723 if (num_bytes == (u64)-1)
3724 num_bytes = block_rsv->size;
3725 block_rsv->size -= num_bytes;
3726 if (block_rsv->reserved >= block_rsv->size) {
3727 num_bytes = block_rsv->reserved - block_rsv->size;
3728 block_rsv->reserved = block_rsv->size;
3729 block_rsv->full = 1;
3730 } else {
3731 num_bytes = 0;
3732 }
3733 spin_unlock(&block_rsv->lock);
3734
3735 if (num_bytes > 0) {
3736 if (dest) {
3737 spin_lock(&dest->lock);
3738 if (!dest->full) {
3739 u64 bytes_to_add;
3740
3741 bytes_to_add = dest->size - dest->reserved;
3742 bytes_to_add = min(num_bytes, bytes_to_add);
3743 dest->reserved += bytes_to_add;
3744 if (dest->reserved >= dest->size)
3745 dest->full = 1;
3746 num_bytes -= bytes_to_add;
3747 }
3748 spin_unlock(&dest->lock);
3749 }
3750 if (num_bytes) {
3751 spin_lock(&space_info->lock);
3752 space_info->bytes_may_use -= num_bytes;
3753 space_info->reservation_progress++;
3754 spin_unlock(&space_info->lock);
3755 }
3756 }
3757 }
3758
3759 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3760 struct btrfs_block_rsv *dst, u64 num_bytes)
3761 {
3762 int ret;
3763
3764 ret = block_rsv_use_bytes(src, num_bytes);
3765 if (ret)
3766 return ret;
3767
3768 block_rsv_add_bytes(dst, num_bytes, 1);
3769 return 0;
3770 }
3771
3772 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3773 {
3774 memset(rsv, 0, sizeof(*rsv));
3775 spin_lock_init(&rsv->lock);
3776 }
3777
3778 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3779 {
3780 struct btrfs_block_rsv *block_rsv;
3781 struct btrfs_fs_info *fs_info = root->fs_info;
3782
3783 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3784 if (!block_rsv)
3785 return NULL;
3786
3787 btrfs_init_block_rsv(block_rsv);
3788 block_rsv->space_info = __find_space_info(fs_info,
3789 BTRFS_BLOCK_GROUP_METADATA);
3790 return block_rsv;
3791 }
3792
3793 void btrfs_free_block_rsv(struct btrfs_root *root,
3794 struct btrfs_block_rsv *rsv)
3795 {
3796 btrfs_block_rsv_release(root, rsv, (u64)-1);
3797 kfree(rsv);
3798 }
3799
3800 static inline int __block_rsv_add(struct btrfs_root *root,
3801 struct btrfs_block_rsv *block_rsv,
3802 u64 num_bytes, int flush)
3803 {
3804 int ret;
3805
3806 if (num_bytes == 0)
3807 return 0;
3808
3809 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3810 if (!ret) {
3811 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3812 return 0;
3813 }
3814
3815 return ret;
3816 }
3817
3818 int btrfs_block_rsv_add(struct btrfs_root *root,
3819 struct btrfs_block_rsv *block_rsv,
3820 u64 num_bytes)
3821 {
3822 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3823 }
3824
3825 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3826 struct btrfs_block_rsv *block_rsv,
3827 u64 num_bytes)
3828 {
3829 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3830 }
3831
3832 int btrfs_block_rsv_check(struct btrfs_root *root,
3833 struct btrfs_block_rsv *block_rsv, int min_factor)
3834 {
3835 u64 num_bytes = 0;
3836 int ret = -ENOSPC;
3837
3838 if (!block_rsv)
3839 return 0;
3840
3841 spin_lock(&block_rsv->lock);
3842 num_bytes = div_factor(block_rsv->size, min_factor);
3843 if (block_rsv->reserved >= num_bytes)
3844 ret = 0;
3845 spin_unlock(&block_rsv->lock);
3846
3847 return ret;
3848 }
3849
3850 int btrfs_block_rsv_refill(struct btrfs_root *root,
3851 struct btrfs_block_rsv *block_rsv,
3852 u64 min_reserved)
3853 {
3854 u64 num_bytes = 0;
3855 int ret = -ENOSPC;
3856
3857 if (!block_rsv)
3858 return 0;
3859
3860 spin_lock(&block_rsv->lock);
3861 num_bytes = min_reserved;
3862 if (block_rsv->reserved >= num_bytes)
3863 ret = 0;
3864 else
3865 num_bytes -= block_rsv->reserved;
3866 spin_unlock(&block_rsv->lock);
3867
3868 if (!ret)
3869 return 0;
3870
3871 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, 1);
3872 if (!ret) {
3873 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3874 return 0;
3875 }
3876
3877 return ret;
3878 }
3879
3880 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3881 struct btrfs_block_rsv *dst_rsv,
3882 u64 num_bytes)
3883 {
3884 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3885 }
3886
3887 void btrfs_block_rsv_release(struct btrfs_root *root,
3888 struct btrfs_block_rsv *block_rsv,
3889 u64 num_bytes)
3890 {
3891 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3892 if (global_rsv->full || global_rsv == block_rsv ||
3893 block_rsv->space_info != global_rsv->space_info)
3894 global_rsv = NULL;
3895 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3896 }
3897
3898 /*
3899 * helper to calculate size of global block reservation.
3900 * the desired value is sum of space used by extent tree,
3901 * checksum tree and root tree
3902 */
3903 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3904 {
3905 struct btrfs_space_info *sinfo;
3906 u64 num_bytes;
3907 u64 meta_used;
3908 u64 data_used;
3909 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
3910
3911 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3912 spin_lock(&sinfo->lock);
3913 data_used = sinfo->bytes_used;
3914 spin_unlock(&sinfo->lock);
3915
3916 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3917 spin_lock(&sinfo->lock);
3918 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3919 data_used = 0;
3920 meta_used = sinfo->bytes_used;
3921 spin_unlock(&sinfo->lock);
3922
3923 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3924 csum_size * 2;
3925 num_bytes += div64_u64(data_used + meta_used, 50);
3926
3927 if (num_bytes * 3 > meta_used)
3928 num_bytes = div64_u64(meta_used, 3);
3929
3930 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3931 }
3932
3933 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3934 {
3935 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3936 struct btrfs_space_info *sinfo = block_rsv->space_info;
3937 u64 num_bytes;
3938
3939 num_bytes = calc_global_metadata_size(fs_info);
3940
3941 spin_lock(&block_rsv->lock);
3942 spin_lock(&sinfo->lock);
3943
3944 block_rsv->size = num_bytes;
3945
3946 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3947 sinfo->bytes_reserved + sinfo->bytes_readonly +
3948 sinfo->bytes_may_use;
3949
3950 if (sinfo->total_bytes > num_bytes) {
3951 num_bytes = sinfo->total_bytes - num_bytes;
3952 block_rsv->reserved += num_bytes;
3953 sinfo->bytes_may_use += num_bytes;
3954 }
3955
3956 if (block_rsv->reserved >= block_rsv->size) {
3957 num_bytes = block_rsv->reserved - block_rsv->size;
3958 sinfo->bytes_may_use -= num_bytes;
3959 sinfo->reservation_progress++;
3960 block_rsv->reserved = block_rsv->size;
3961 block_rsv->full = 1;
3962 }
3963
3964 spin_unlock(&sinfo->lock);
3965 spin_unlock(&block_rsv->lock);
3966 }
3967
3968 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3969 {
3970 struct btrfs_space_info *space_info;
3971
3972 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3973 fs_info->chunk_block_rsv.space_info = space_info;
3974
3975 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3976 fs_info->global_block_rsv.space_info = space_info;
3977 fs_info->delalloc_block_rsv.space_info = space_info;
3978 fs_info->trans_block_rsv.space_info = space_info;
3979 fs_info->empty_block_rsv.space_info = space_info;
3980 fs_info->delayed_block_rsv.space_info = space_info;
3981
3982 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3983 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3984 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3985 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3986 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3987
3988 update_global_block_rsv(fs_info);
3989 }
3990
3991 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3992 {
3993 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3994 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3995 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3996 WARN_ON(fs_info->trans_block_rsv.size > 0);
3997 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3998 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3999 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4000 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4001 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4002 }
4003
4004 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4005 struct btrfs_root *root)
4006 {
4007 if (!trans->bytes_reserved)
4008 return;
4009
4010 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4011 trans->bytes_reserved = 0;
4012 }
4013
4014 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4015 struct inode *inode)
4016 {
4017 struct btrfs_root *root = BTRFS_I(inode)->root;
4018 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4019 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4020
4021 /*
4022 * We need to hold space in order to delete our orphan item once we've
4023 * added it, so this takes the reservation so we can release it later
4024 * when we are truly done with the orphan item.
4025 */
4026 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4027 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4028 }
4029
4030 void btrfs_orphan_release_metadata(struct inode *inode)
4031 {
4032 struct btrfs_root *root = BTRFS_I(inode)->root;
4033 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4034 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4035 }
4036
4037 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4038 struct btrfs_pending_snapshot *pending)
4039 {
4040 struct btrfs_root *root = pending->root;
4041 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4042 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4043 /*
4044 * two for root back/forward refs, two for directory entries
4045 * and one for root of the snapshot.
4046 */
4047 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4048 dst_rsv->space_info = src_rsv->space_info;
4049 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4050 }
4051
4052 /**
4053 * drop_outstanding_extent - drop an outstanding extent
4054 * @inode: the inode we're dropping the extent for
4055 *
4056 * This is called when we are freeing up an outstanding extent, either called
4057 * after an error or after an extent is written. This will return the number of
4058 * reserved extents that need to be freed. This must be called with
4059 * BTRFS_I(inode)->lock held.
4060 */
4061 static unsigned drop_outstanding_extent(struct inode *inode)
4062 {
4063 unsigned drop_inode_space = 0;
4064 unsigned dropped_extents = 0;
4065
4066 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4067 BTRFS_I(inode)->outstanding_extents--;
4068
4069 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4070 BTRFS_I(inode)->delalloc_meta_reserved) {
4071 drop_inode_space = 1;
4072 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4073 }
4074
4075 /*
4076 * If we have more or the same amount of outsanding extents than we have
4077 * reserved then we need to leave the reserved extents count alone.
4078 */
4079 if (BTRFS_I(inode)->outstanding_extents >=
4080 BTRFS_I(inode)->reserved_extents)
4081 return drop_inode_space;
4082
4083 dropped_extents = BTRFS_I(inode)->reserved_extents -
4084 BTRFS_I(inode)->outstanding_extents;
4085 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4086 return dropped_extents + drop_inode_space;
4087 }
4088
4089 /**
4090 * calc_csum_metadata_size - return the amount of metada space that must be
4091 * reserved/free'd for the given bytes.
4092 * @inode: the inode we're manipulating
4093 * @num_bytes: the number of bytes in question
4094 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4095 *
4096 * This adjusts the number of csum_bytes in the inode and then returns the
4097 * correct amount of metadata that must either be reserved or freed. We
4098 * calculate how many checksums we can fit into one leaf and then divide the
4099 * number of bytes that will need to be checksumed by this value to figure out
4100 * how many checksums will be required. If we are adding bytes then the number
4101 * may go up and we will return the number of additional bytes that must be
4102 * reserved. If it is going down we will return the number of bytes that must
4103 * be freed.
4104 *
4105 * This must be called with BTRFS_I(inode)->lock held.
4106 */
4107 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4108 int reserve)
4109 {
4110 struct btrfs_root *root = BTRFS_I(inode)->root;
4111 u64 csum_size;
4112 int num_csums_per_leaf;
4113 int num_csums;
4114 int old_csums;
4115
4116 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4117 BTRFS_I(inode)->csum_bytes == 0)
4118 return 0;
4119
4120 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4121 if (reserve)
4122 BTRFS_I(inode)->csum_bytes += num_bytes;
4123 else
4124 BTRFS_I(inode)->csum_bytes -= num_bytes;
4125 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4126 num_csums_per_leaf = (int)div64_u64(csum_size,
4127 sizeof(struct btrfs_csum_item) +
4128 sizeof(struct btrfs_disk_key));
4129 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4130 num_csums = num_csums + num_csums_per_leaf - 1;
4131 num_csums = num_csums / num_csums_per_leaf;
4132
4133 old_csums = old_csums + num_csums_per_leaf - 1;
4134 old_csums = old_csums / num_csums_per_leaf;
4135
4136 /* No change, no need to reserve more */
4137 if (old_csums == num_csums)
4138 return 0;
4139
4140 if (reserve)
4141 return btrfs_calc_trans_metadata_size(root,
4142 num_csums - old_csums);
4143
4144 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4145 }
4146
4147 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4148 {
4149 struct btrfs_root *root = BTRFS_I(inode)->root;
4150 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4151 u64 to_reserve = 0;
4152 unsigned nr_extents = 0;
4153 int flush = 1;
4154 int ret;
4155
4156 if (btrfs_is_free_space_inode(root, inode))
4157 flush = 0;
4158
4159 if (flush && btrfs_transaction_in_commit(root->fs_info))
4160 schedule_timeout(1);
4161
4162 num_bytes = ALIGN(num_bytes, root->sectorsize);
4163
4164 spin_lock(&BTRFS_I(inode)->lock);
4165 BTRFS_I(inode)->outstanding_extents++;
4166
4167 if (BTRFS_I(inode)->outstanding_extents >
4168 BTRFS_I(inode)->reserved_extents) {
4169 nr_extents = BTRFS_I(inode)->outstanding_extents -
4170 BTRFS_I(inode)->reserved_extents;
4171 BTRFS_I(inode)->reserved_extents += nr_extents;
4172 }
4173
4174 /*
4175 * Add an item to reserve for updating the inode when we complete the
4176 * delalloc io.
4177 */
4178 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4179 nr_extents++;
4180 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4181 }
4182
4183 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4184 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4185 spin_unlock(&BTRFS_I(inode)->lock);
4186
4187 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4188 if (ret) {
4189 u64 to_free = 0;
4190 unsigned dropped;
4191
4192 spin_lock(&BTRFS_I(inode)->lock);
4193 dropped = drop_outstanding_extent(inode);
4194 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4195 spin_unlock(&BTRFS_I(inode)->lock);
4196 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4197
4198 /*
4199 * Somebody could have come in and twiddled with the
4200 * reservation, so if we have to free more than we would have
4201 * reserved from this reservation go ahead and release those
4202 * bytes.
4203 */
4204 to_free -= to_reserve;
4205 if (to_free)
4206 btrfs_block_rsv_release(root, block_rsv, to_free);
4207 return ret;
4208 }
4209
4210 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4211
4212 return 0;
4213 }
4214
4215 /**
4216 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4217 * @inode: the inode to release the reservation for
4218 * @num_bytes: the number of bytes we're releasing
4219 *
4220 * This will release the metadata reservation for an inode. This can be called
4221 * once we complete IO for a given set of bytes to release their metadata
4222 * reservations.
4223 */
4224 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4225 {
4226 struct btrfs_root *root = BTRFS_I(inode)->root;
4227 u64 to_free = 0;
4228 unsigned dropped;
4229
4230 num_bytes = ALIGN(num_bytes, root->sectorsize);
4231 spin_lock(&BTRFS_I(inode)->lock);
4232 dropped = drop_outstanding_extent(inode);
4233
4234 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4235 spin_unlock(&BTRFS_I(inode)->lock);
4236 if (dropped > 0)
4237 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4238
4239 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4240 to_free);
4241 }
4242
4243 /**
4244 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4245 * @inode: inode we're writing to
4246 * @num_bytes: the number of bytes we want to allocate
4247 *
4248 * This will do the following things
4249 *
4250 * o reserve space in the data space info for num_bytes
4251 * o reserve space in the metadata space info based on number of outstanding
4252 * extents and how much csums will be needed
4253 * o add to the inodes ->delalloc_bytes
4254 * o add it to the fs_info's delalloc inodes list.
4255 *
4256 * This will return 0 for success and -ENOSPC if there is no space left.
4257 */
4258 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4259 {
4260 int ret;
4261
4262 ret = btrfs_check_data_free_space(inode, num_bytes);
4263 if (ret)
4264 return ret;
4265
4266 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4267 if (ret) {
4268 btrfs_free_reserved_data_space(inode, num_bytes);
4269 return ret;
4270 }
4271
4272 return 0;
4273 }
4274
4275 /**
4276 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4277 * @inode: inode we're releasing space for
4278 * @num_bytes: the number of bytes we want to free up
4279 *
4280 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4281 * called in the case that we don't need the metadata AND data reservations
4282 * anymore. So if there is an error or we insert an inline extent.
4283 *
4284 * This function will release the metadata space that was not used and will
4285 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4286 * list if there are no delalloc bytes left.
4287 */
4288 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4289 {
4290 btrfs_delalloc_release_metadata(inode, num_bytes);
4291 btrfs_free_reserved_data_space(inode, num_bytes);
4292 }
4293
4294 static int update_block_group(struct btrfs_trans_handle *trans,
4295 struct btrfs_root *root,
4296 u64 bytenr, u64 num_bytes, int alloc)
4297 {
4298 struct btrfs_block_group_cache *cache = NULL;
4299 struct btrfs_fs_info *info = root->fs_info;
4300 u64 total = num_bytes;
4301 u64 old_val;
4302 u64 byte_in_group;
4303 int factor;
4304
4305 /* block accounting for super block */
4306 spin_lock(&info->delalloc_lock);
4307 old_val = btrfs_super_bytes_used(info->super_copy);
4308 if (alloc)
4309 old_val += num_bytes;
4310 else
4311 old_val -= num_bytes;
4312 btrfs_set_super_bytes_used(info->super_copy, old_val);
4313 spin_unlock(&info->delalloc_lock);
4314
4315 while (total) {
4316 cache = btrfs_lookup_block_group(info, bytenr);
4317 if (!cache)
4318 return -1;
4319 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4320 BTRFS_BLOCK_GROUP_RAID1 |
4321 BTRFS_BLOCK_GROUP_RAID10))
4322 factor = 2;
4323 else
4324 factor = 1;
4325 /*
4326 * If this block group has free space cache written out, we
4327 * need to make sure to load it if we are removing space. This
4328 * is because we need the unpinning stage to actually add the
4329 * space back to the block group, otherwise we will leak space.
4330 */
4331 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4332 cache_block_group(cache, trans, NULL, 1);
4333
4334 byte_in_group = bytenr - cache->key.objectid;
4335 WARN_ON(byte_in_group > cache->key.offset);
4336
4337 spin_lock(&cache->space_info->lock);
4338 spin_lock(&cache->lock);
4339
4340 if (btrfs_test_opt(root, SPACE_CACHE) &&
4341 cache->disk_cache_state < BTRFS_DC_CLEAR)
4342 cache->disk_cache_state = BTRFS_DC_CLEAR;
4343
4344 cache->dirty = 1;
4345 old_val = btrfs_block_group_used(&cache->item);
4346 num_bytes = min(total, cache->key.offset - byte_in_group);
4347 if (alloc) {
4348 old_val += num_bytes;
4349 btrfs_set_block_group_used(&cache->item, old_val);
4350 cache->reserved -= num_bytes;
4351 cache->space_info->bytes_reserved -= num_bytes;
4352 cache->space_info->bytes_used += num_bytes;
4353 cache->space_info->disk_used += num_bytes * factor;
4354 spin_unlock(&cache->lock);
4355 spin_unlock(&cache->space_info->lock);
4356 } else {
4357 old_val -= num_bytes;
4358 btrfs_set_block_group_used(&cache->item, old_val);
4359 cache->pinned += num_bytes;
4360 cache->space_info->bytes_pinned += num_bytes;
4361 cache->space_info->bytes_used -= num_bytes;
4362 cache->space_info->disk_used -= num_bytes * factor;
4363 spin_unlock(&cache->lock);
4364 spin_unlock(&cache->space_info->lock);
4365
4366 set_extent_dirty(info->pinned_extents,
4367 bytenr, bytenr + num_bytes - 1,
4368 GFP_NOFS | __GFP_NOFAIL);
4369 }
4370 btrfs_put_block_group(cache);
4371 total -= num_bytes;
4372 bytenr += num_bytes;
4373 }
4374 return 0;
4375 }
4376
4377 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4378 {
4379 struct btrfs_block_group_cache *cache;
4380 u64 bytenr;
4381
4382 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4383 if (!cache)
4384 return 0;
4385
4386 bytenr = cache->key.objectid;
4387 btrfs_put_block_group(cache);
4388
4389 return bytenr;
4390 }
4391
4392 static int pin_down_extent(struct btrfs_root *root,
4393 struct btrfs_block_group_cache *cache,
4394 u64 bytenr, u64 num_bytes, int reserved)
4395 {
4396 spin_lock(&cache->space_info->lock);
4397 spin_lock(&cache->lock);
4398 cache->pinned += num_bytes;
4399 cache->space_info->bytes_pinned += num_bytes;
4400 if (reserved) {
4401 cache->reserved -= num_bytes;
4402 cache->space_info->bytes_reserved -= num_bytes;
4403 }
4404 spin_unlock(&cache->lock);
4405 spin_unlock(&cache->space_info->lock);
4406
4407 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4408 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4409 return 0;
4410 }
4411
4412 /*
4413 * this function must be called within transaction
4414 */
4415 int btrfs_pin_extent(struct btrfs_root *root,
4416 u64 bytenr, u64 num_bytes, int reserved)
4417 {
4418 struct btrfs_block_group_cache *cache;
4419
4420 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4421 BUG_ON(!cache);
4422
4423 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4424
4425 btrfs_put_block_group(cache);
4426 return 0;
4427 }
4428
4429 /*
4430 * this function must be called within transaction
4431 */
4432 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4433 struct btrfs_root *root,
4434 u64 bytenr, u64 num_bytes)
4435 {
4436 struct btrfs_block_group_cache *cache;
4437
4438 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4439 BUG_ON(!cache);
4440
4441 /*
4442 * pull in the free space cache (if any) so that our pin
4443 * removes the free space from the cache. We have load_only set
4444 * to one because the slow code to read in the free extents does check
4445 * the pinned extents.
4446 */
4447 cache_block_group(cache, trans, root, 1);
4448
4449 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4450
4451 /* remove us from the free space cache (if we're there at all) */
4452 btrfs_remove_free_space(cache, bytenr, num_bytes);
4453 btrfs_put_block_group(cache);
4454 return 0;
4455 }
4456
4457 /**
4458 * btrfs_update_reserved_bytes - update the block_group and space info counters
4459 * @cache: The cache we are manipulating
4460 * @num_bytes: The number of bytes in question
4461 * @reserve: One of the reservation enums
4462 *
4463 * This is called by the allocator when it reserves space, or by somebody who is
4464 * freeing space that was never actually used on disk. For example if you
4465 * reserve some space for a new leaf in transaction A and before transaction A
4466 * commits you free that leaf, you call this with reserve set to 0 in order to
4467 * clear the reservation.
4468 *
4469 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4470 * ENOSPC accounting. For data we handle the reservation through clearing the
4471 * delalloc bits in the io_tree. We have to do this since we could end up
4472 * allocating less disk space for the amount of data we have reserved in the
4473 * case of compression.
4474 *
4475 * If this is a reservation and the block group has become read only we cannot
4476 * make the reservation and return -EAGAIN, otherwise this function always
4477 * succeeds.
4478 */
4479 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4480 u64 num_bytes, int reserve)
4481 {
4482 struct btrfs_space_info *space_info = cache->space_info;
4483 int ret = 0;
4484 spin_lock(&space_info->lock);
4485 spin_lock(&cache->lock);
4486 if (reserve != RESERVE_FREE) {
4487 if (cache->ro) {
4488 ret = -EAGAIN;
4489 } else {
4490 cache->reserved += num_bytes;
4491 space_info->bytes_reserved += num_bytes;
4492 if (reserve == RESERVE_ALLOC) {
4493 BUG_ON(space_info->bytes_may_use < num_bytes);
4494 space_info->bytes_may_use -= num_bytes;
4495 }
4496 }
4497 } else {
4498 if (cache->ro)
4499 space_info->bytes_readonly += num_bytes;
4500 cache->reserved -= num_bytes;
4501 space_info->bytes_reserved -= num_bytes;
4502 space_info->reservation_progress++;
4503 }
4504 spin_unlock(&cache->lock);
4505 spin_unlock(&space_info->lock);
4506 return ret;
4507 }
4508
4509 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4510 struct btrfs_root *root)
4511 {
4512 struct btrfs_fs_info *fs_info = root->fs_info;
4513 struct btrfs_caching_control *next;
4514 struct btrfs_caching_control *caching_ctl;
4515 struct btrfs_block_group_cache *cache;
4516
4517 down_write(&fs_info->extent_commit_sem);
4518
4519 list_for_each_entry_safe(caching_ctl, next,
4520 &fs_info->caching_block_groups, list) {
4521 cache = caching_ctl->block_group;
4522 if (block_group_cache_done(cache)) {
4523 cache->last_byte_to_unpin = (u64)-1;
4524 list_del_init(&caching_ctl->list);
4525 put_caching_control(caching_ctl);
4526 } else {
4527 cache->last_byte_to_unpin = caching_ctl->progress;
4528 }
4529 }
4530
4531 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4532 fs_info->pinned_extents = &fs_info->freed_extents[1];
4533 else
4534 fs_info->pinned_extents = &fs_info->freed_extents[0];
4535
4536 up_write(&fs_info->extent_commit_sem);
4537
4538 update_global_block_rsv(fs_info);
4539 return 0;
4540 }
4541
4542 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4543 {
4544 struct btrfs_fs_info *fs_info = root->fs_info;
4545 struct btrfs_block_group_cache *cache = NULL;
4546 u64 len;
4547
4548 while (start <= end) {
4549 if (!cache ||
4550 start >= cache->key.objectid + cache->key.offset) {
4551 if (cache)
4552 btrfs_put_block_group(cache);
4553 cache = btrfs_lookup_block_group(fs_info, start);
4554 BUG_ON(!cache);
4555 }
4556
4557 len = cache->key.objectid + cache->key.offset - start;
4558 len = min(len, end + 1 - start);
4559
4560 if (start < cache->last_byte_to_unpin) {
4561 len = min(len, cache->last_byte_to_unpin - start);
4562 btrfs_add_free_space(cache, start, len);
4563 }
4564
4565 start += len;
4566
4567 spin_lock(&cache->space_info->lock);
4568 spin_lock(&cache->lock);
4569 cache->pinned -= len;
4570 cache->space_info->bytes_pinned -= len;
4571 if (cache->ro)
4572 cache->space_info->bytes_readonly += len;
4573 spin_unlock(&cache->lock);
4574 spin_unlock(&cache->space_info->lock);
4575 }
4576
4577 if (cache)
4578 btrfs_put_block_group(cache);
4579 return 0;
4580 }
4581
4582 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4583 struct btrfs_root *root)
4584 {
4585 struct btrfs_fs_info *fs_info = root->fs_info;
4586 struct extent_io_tree *unpin;
4587 u64 start;
4588 u64 end;
4589 int ret;
4590
4591 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4592 unpin = &fs_info->freed_extents[1];
4593 else
4594 unpin = &fs_info->freed_extents[0];
4595
4596 while (1) {
4597 ret = find_first_extent_bit(unpin, 0, &start, &end,
4598 EXTENT_DIRTY);
4599 if (ret)
4600 break;
4601
4602 if (btrfs_test_opt(root, DISCARD))
4603 ret = btrfs_discard_extent(root, start,
4604 end + 1 - start, NULL);
4605
4606 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4607 unpin_extent_range(root, start, end);
4608 cond_resched();
4609 }
4610
4611 return 0;
4612 }
4613
4614 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4615 struct btrfs_root *root,
4616 u64 bytenr, u64 num_bytes, u64 parent,
4617 u64 root_objectid, u64 owner_objectid,
4618 u64 owner_offset, int refs_to_drop,
4619 struct btrfs_delayed_extent_op *extent_op)
4620 {
4621 struct btrfs_key key;
4622 struct btrfs_path *path;
4623 struct btrfs_fs_info *info = root->fs_info;
4624 struct btrfs_root *extent_root = info->extent_root;
4625 struct extent_buffer *leaf;
4626 struct btrfs_extent_item *ei;
4627 struct btrfs_extent_inline_ref *iref;
4628 int ret;
4629 int is_data;
4630 int extent_slot = 0;
4631 int found_extent = 0;
4632 int num_to_del = 1;
4633 u32 item_size;
4634 u64 refs;
4635
4636 path = btrfs_alloc_path();
4637 if (!path)
4638 return -ENOMEM;
4639
4640 path->reada = 1;
4641 path->leave_spinning = 1;
4642
4643 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4644 BUG_ON(!is_data && refs_to_drop != 1);
4645
4646 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4647 bytenr, num_bytes, parent,
4648 root_objectid, owner_objectid,
4649 owner_offset);
4650 if (ret == 0) {
4651 extent_slot = path->slots[0];
4652 while (extent_slot >= 0) {
4653 btrfs_item_key_to_cpu(path->nodes[0], &key,
4654 extent_slot);
4655 if (key.objectid != bytenr)
4656 break;
4657 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4658 key.offset == num_bytes) {
4659 found_extent = 1;
4660 break;
4661 }
4662 if (path->slots[0] - extent_slot > 5)
4663 break;
4664 extent_slot--;
4665 }
4666 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4667 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4668 if (found_extent && item_size < sizeof(*ei))
4669 found_extent = 0;
4670 #endif
4671 if (!found_extent) {
4672 BUG_ON(iref);
4673 ret = remove_extent_backref(trans, extent_root, path,
4674 NULL, refs_to_drop,
4675 is_data);
4676 BUG_ON(ret);
4677 btrfs_release_path(path);
4678 path->leave_spinning = 1;
4679
4680 key.objectid = bytenr;
4681 key.type = BTRFS_EXTENT_ITEM_KEY;
4682 key.offset = num_bytes;
4683
4684 ret = btrfs_search_slot(trans, extent_root,
4685 &key, path, -1, 1);
4686 if (ret) {
4687 printk(KERN_ERR "umm, got %d back from search"
4688 ", was looking for %llu\n", ret,
4689 (unsigned long long)bytenr);
4690 if (ret > 0)
4691 btrfs_print_leaf(extent_root,
4692 path->nodes[0]);
4693 }
4694 BUG_ON(ret);
4695 extent_slot = path->slots[0];
4696 }
4697 } else {
4698 btrfs_print_leaf(extent_root, path->nodes[0]);
4699 WARN_ON(1);
4700 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4701 "parent %llu root %llu owner %llu offset %llu\n",
4702 (unsigned long long)bytenr,
4703 (unsigned long long)parent,
4704 (unsigned long long)root_objectid,
4705 (unsigned long long)owner_objectid,
4706 (unsigned long long)owner_offset);
4707 }
4708
4709 leaf = path->nodes[0];
4710 item_size = btrfs_item_size_nr(leaf, extent_slot);
4711 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4712 if (item_size < sizeof(*ei)) {
4713 BUG_ON(found_extent || extent_slot != path->slots[0]);
4714 ret = convert_extent_item_v0(trans, extent_root, path,
4715 owner_objectid, 0);
4716 BUG_ON(ret < 0);
4717
4718 btrfs_release_path(path);
4719 path->leave_spinning = 1;
4720
4721 key.objectid = bytenr;
4722 key.type = BTRFS_EXTENT_ITEM_KEY;
4723 key.offset = num_bytes;
4724
4725 ret = btrfs_search_slot(trans, extent_root, &key, path,
4726 -1, 1);
4727 if (ret) {
4728 printk(KERN_ERR "umm, got %d back from search"
4729 ", was looking for %llu\n", ret,
4730 (unsigned long long)bytenr);
4731 btrfs_print_leaf(extent_root, path->nodes[0]);
4732 }
4733 BUG_ON(ret);
4734 extent_slot = path->slots[0];
4735 leaf = path->nodes[0];
4736 item_size = btrfs_item_size_nr(leaf, extent_slot);
4737 }
4738 #endif
4739 BUG_ON(item_size < sizeof(*ei));
4740 ei = btrfs_item_ptr(leaf, extent_slot,
4741 struct btrfs_extent_item);
4742 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4743 struct btrfs_tree_block_info *bi;
4744 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4745 bi = (struct btrfs_tree_block_info *)(ei + 1);
4746 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4747 }
4748
4749 refs = btrfs_extent_refs(leaf, ei);
4750 BUG_ON(refs < refs_to_drop);
4751 refs -= refs_to_drop;
4752
4753 if (refs > 0) {
4754 if (extent_op)
4755 __run_delayed_extent_op(extent_op, leaf, ei);
4756 /*
4757 * In the case of inline back ref, reference count will
4758 * be updated by remove_extent_backref
4759 */
4760 if (iref) {
4761 BUG_ON(!found_extent);
4762 } else {
4763 btrfs_set_extent_refs(leaf, ei, refs);
4764 btrfs_mark_buffer_dirty(leaf);
4765 }
4766 if (found_extent) {
4767 ret = remove_extent_backref(trans, extent_root, path,
4768 iref, refs_to_drop,
4769 is_data);
4770 BUG_ON(ret);
4771 }
4772 } else {
4773 if (found_extent) {
4774 BUG_ON(is_data && refs_to_drop !=
4775 extent_data_ref_count(root, path, iref));
4776 if (iref) {
4777 BUG_ON(path->slots[0] != extent_slot);
4778 } else {
4779 BUG_ON(path->slots[0] != extent_slot + 1);
4780 path->slots[0] = extent_slot;
4781 num_to_del = 2;
4782 }
4783 }
4784
4785 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4786 num_to_del);
4787 BUG_ON(ret);
4788 btrfs_release_path(path);
4789
4790 if (is_data) {
4791 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4792 BUG_ON(ret);
4793 } else {
4794 invalidate_mapping_pages(info->btree_inode->i_mapping,
4795 bytenr >> PAGE_CACHE_SHIFT,
4796 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4797 }
4798
4799 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4800 BUG_ON(ret);
4801 }
4802 btrfs_free_path(path);
4803 return ret;
4804 }
4805
4806 /*
4807 * when we free an block, it is possible (and likely) that we free the last
4808 * delayed ref for that extent as well. This searches the delayed ref tree for
4809 * a given extent, and if there are no other delayed refs to be processed, it
4810 * removes it from the tree.
4811 */
4812 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4813 struct btrfs_root *root, u64 bytenr)
4814 {
4815 struct btrfs_delayed_ref_head *head;
4816 struct btrfs_delayed_ref_root *delayed_refs;
4817 struct btrfs_delayed_ref_node *ref;
4818 struct rb_node *node;
4819 int ret = 0;
4820
4821 delayed_refs = &trans->transaction->delayed_refs;
4822 spin_lock(&delayed_refs->lock);
4823 head = btrfs_find_delayed_ref_head(trans, bytenr);
4824 if (!head)
4825 goto out;
4826
4827 node = rb_prev(&head->node.rb_node);
4828 if (!node)
4829 goto out;
4830
4831 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4832
4833 /* there are still entries for this ref, we can't drop it */
4834 if (ref->bytenr == bytenr)
4835 goto out;
4836
4837 if (head->extent_op) {
4838 if (!head->must_insert_reserved)
4839 goto out;
4840 kfree(head->extent_op);
4841 head->extent_op = NULL;
4842 }
4843
4844 /*
4845 * waiting for the lock here would deadlock. If someone else has it
4846 * locked they are already in the process of dropping it anyway
4847 */
4848 if (!mutex_trylock(&head->mutex))
4849 goto out;
4850
4851 /*
4852 * at this point we have a head with no other entries. Go
4853 * ahead and process it.
4854 */
4855 head->node.in_tree = 0;
4856 rb_erase(&head->node.rb_node, &delayed_refs->root);
4857
4858 delayed_refs->num_entries--;
4859
4860 /*
4861 * we don't take a ref on the node because we're removing it from the
4862 * tree, so we just steal the ref the tree was holding.
4863 */
4864 delayed_refs->num_heads--;
4865 if (list_empty(&head->cluster))
4866 delayed_refs->num_heads_ready--;
4867
4868 list_del_init(&head->cluster);
4869 spin_unlock(&delayed_refs->lock);
4870
4871 BUG_ON(head->extent_op);
4872 if (head->must_insert_reserved)
4873 ret = 1;
4874
4875 mutex_unlock(&head->mutex);
4876 btrfs_put_delayed_ref(&head->node);
4877 return ret;
4878 out:
4879 spin_unlock(&delayed_refs->lock);
4880 return 0;
4881 }
4882
4883 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4884 struct btrfs_root *root,
4885 struct extent_buffer *buf,
4886 u64 parent, int last_ref)
4887 {
4888 struct btrfs_block_group_cache *cache = NULL;
4889 int ret;
4890
4891 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4892 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4893 parent, root->root_key.objectid,
4894 btrfs_header_level(buf),
4895 BTRFS_DROP_DELAYED_REF, NULL);
4896 BUG_ON(ret);
4897 }
4898
4899 if (!last_ref)
4900 return;
4901
4902 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4903
4904 if (btrfs_header_generation(buf) == trans->transid) {
4905 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4906 ret = check_ref_cleanup(trans, root, buf->start);
4907 if (!ret)
4908 goto out;
4909 }
4910
4911 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4912 pin_down_extent(root, cache, buf->start, buf->len, 1);
4913 goto out;
4914 }
4915
4916 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4917
4918 btrfs_add_free_space(cache, buf->start, buf->len);
4919 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4920 }
4921 out:
4922 /*
4923 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4924 * anymore.
4925 */
4926 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4927 btrfs_put_block_group(cache);
4928 }
4929
4930 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4931 struct btrfs_root *root,
4932 u64 bytenr, u64 num_bytes, u64 parent,
4933 u64 root_objectid, u64 owner, u64 offset)
4934 {
4935 int ret;
4936
4937 /*
4938 * tree log blocks never actually go into the extent allocation
4939 * tree, just update pinning info and exit early.
4940 */
4941 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4942 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4943 /* unlocks the pinned mutex */
4944 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4945 ret = 0;
4946 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4947 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4948 parent, root_objectid, (int)owner,
4949 BTRFS_DROP_DELAYED_REF, NULL);
4950 BUG_ON(ret);
4951 } else {
4952 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4953 parent, root_objectid, owner,
4954 offset, BTRFS_DROP_DELAYED_REF, NULL);
4955 BUG_ON(ret);
4956 }
4957 return ret;
4958 }
4959
4960 static u64 stripe_align(struct btrfs_root *root, u64 val)
4961 {
4962 u64 mask = ((u64)root->stripesize - 1);
4963 u64 ret = (val + mask) & ~mask;
4964 return ret;
4965 }
4966
4967 /*
4968 * when we wait for progress in the block group caching, its because
4969 * our allocation attempt failed at least once. So, we must sleep
4970 * and let some progress happen before we try again.
4971 *
4972 * This function will sleep at least once waiting for new free space to
4973 * show up, and then it will check the block group free space numbers
4974 * for our min num_bytes. Another option is to have it go ahead
4975 * and look in the rbtree for a free extent of a given size, but this
4976 * is a good start.
4977 */
4978 static noinline int
4979 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4980 u64 num_bytes)
4981 {
4982 struct btrfs_caching_control *caching_ctl;
4983 DEFINE_WAIT(wait);
4984
4985 caching_ctl = get_caching_control(cache);
4986 if (!caching_ctl)
4987 return 0;
4988
4989 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4990 (cache->free_space_ctl->free_space >= num_bytes));
4991
4992 put_caching_control(caching_ctl);
4993 return 0;
4994 }
4995
4996 static noinline int
4997 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4998 {
4999 struct btrfs_caching_control *caching_ctl;
5000 DEFINE_WAIT(wait);
5001
5002 caching_ctl = get_caching_control(cache);
5003 if (!caching_ctl)
5004 return 0;
5005
5006 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5007
5008 put_caching_control(caching_ctl);
5009 return 0;
5010 }
5011
5012 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5013 {
5014 int index;
5015 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5016 index = 0;
5017 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5018 index = 1;
5019 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5020 index = 2;
5021 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5022 index = 3;
5023 else
5024 index = 4;
5025 return index;
5026 }
5027
5028 enum btrfs_loop_type {
5029 LOOP_FIND_IDEAL = 0,
5030 LOOP_CACHING_NOWAIT = 1,
5031 LOOP_CACHING_WAIT = 2,
5032 LOOP_ALLOC_CHUNK = 3,
5033 LOOP_NO_EMPTY_SIZE = 4,
5034 };
5035
5036 /*
5037 * walks the btree of allocated extents and find a hole of a given size.
5038 * The key ins is changed to record the hole:
5039 * ins->objectid == block start
5040 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5041 * ins->offset == number of blocks
5042 * Any available blocks before search_start are skipped.
5043 */
5044 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5045 struct btrfs_root *orig_root,
5046 u64 num_bytes, u64 empty_size,
5047 u64 search_start, u64 search_end,
5048 u64 hint_byte, struct btrfs_key *ins,
5049 u64 data)
5050 {
5051 int ret = 0;
5052 struct btrfs_root *root = orig_root->fs_info->extent_root;
5053 struct btrfs_free_cluster *last_ptr = NULL;
5054 struct btrfs_block_group_cache *block_group = NULL;
5055 int empty_cluster = 2 * 1024 * 1024;
5056 int allowed_chunk_alloc = 0;
5057 int done_chunk_alloc = 0;
5058 struct btrfs_space_info *space_info;
5059 int last_ptr_loop = 0;
5060 int loop = 0;
5061 int index = 0;
5062 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5063 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5064 bool found_uncached_bg = false;
5065 bool failed_cluster_refill = false;
5066 bool failed_alloc = false;
5067 bool use_cluster = true;
5068 bool have_caching_bg = false;
5069 u64 ideal_cache_percent = 0;
5070 u64 ideal_cache_offset = 0;
5071
5072 WARN_ON(num_bytes < root->sectorsize);
5073 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5074 ins->objectid = 0;
5075 ins->offset = 0;
5076
5077 space_info = __find_space_info(root->fs_info, data);
5078 if (!space_info) {
5079 printk(KERN_ERR "No space info for %llu\n", data);
5080 return -ENOSPC;
5081 }
5082
5083 /*
5084 * If the space info is for both data and metadata it means we have a
5085 * small filesystem and we can't use the clustering stuff.
5086 */
5087 if (btrfs_mixed_space_info(space_info))
5088 use_cluster = false;
5089
5090 if (orig_root->ref_cows || empty_size)
5091 allowed_chunk_alloc = 1;
5092
5093 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5094 last_ptr = &root->fs_info->meta_alloc_cluster;
5095 if (!btrfs_test_opt(root, SSD))
5096 empty_cluster = 64 * 1024;
5097 }
5098
5099 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5100 btrfs_test_opt(root, SSD)) {
5101 last_ptr = &root->fs_info->data_alloc_cluster;
5102 }
5103
5104 if (last_ptr) {
5105 spin_lock(&last_ptr->lock);
5106 if (last_ptr->block_group)
5107 hint_byte = last_ptr->window_start;
5108 spin_unlock(&last_ptr->lock);
5109 }
5110
5111 search_start = max(search_start, first_logical_byte(root, 0));
5112 search_start = max(search_start, hint_byte);
5113
5114 if (!last_ptr)
5115 empty_cluster = 0;
5116
5117 if (search_start == hint_byte) {
5118 ideal_cache:
5119 block_group = btrfs_lookup_block_group(root->fs_info,
5120 search_start);
5121 /*
5122 * we don't want to use the block group if it doesn't match our
5123 * allocation bits, or if its not cached.
5124 *
5125 * However if we are re-searching with an ideal block group
5126 * picked out then we don't care that the block group is cached.
5127 */
5128 if (block_group && block_group_bits(block_group, data) &&
5129 (block_group->cached != BTRFS_CACHE_NO ||
5130 search_start == ideal_cache_offset)) {
5131 down_read(&space_info->groups_sem);
5132 if (list_empty(&block_group->list) ||
5133 block_group->ro) {
5134 /*
5135 * someone is removing this block group,
5136 * we can't jump into the have_block_group
5137 * target because our list pointers are not
5138 * valid
5139 */
5140 btrfs_put_block_group(block_group);
5141 up_read(&space_info->groups_sem);
5142 } else {
5143 index = get_block_group_index(block_group);
5144 goto have_block_group;
5145 }
5146 } else if (block_group) {
5147 btrfs_put_block_group(block_group);
5148 }
5149 }
5150 search:
5151 have_caching_bg = false;
5152 down_read(&space_info->groups_sem);
5153 list_for_each_entry(block_group, &space_info->block_groups[index],
5154 list) {
5155 u64 offset;
5156 int cached;
5157
5158 btrfs_get_block_group(block_group);
5159 search_start = block_group->key.objectid;
5160
5161 /*
5162 * this can happen if we end up cycling through all the
5163 * raid types, but we want to make sure we only allocate
5164 * for the proper type.
5165 */
5166 if (!block_group_bits(block_group, data)) {
5167 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5168 BTRFS_BLOCK_GROUP_RAID1 |
5169 BTRFS_BLOCK_GROUP_RAID10;
5170
5171 /*
5172 * if they asked for extra copies and this block group
5173 * doesn't provide them, bail. This does allow us to
5174 * fill raid0 from raid1.
5175 */
5176 if ((data & extra) && !(block_group->flags & extra))
5177 goto loop;
5178 }
5179
5180 have_block_group:
5181 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5182 u64 free_percent;
5183
5184 ret = cache_block_group(block_group, trans,
5185 orig_root, 1);
5186 if (block_group->cached == BTRFS_CACHE_FINISHED)
5187 goto have_block_group;
5188
5189 free_percent = btrfs_block_group_used(&block_group->item);
5190 free_percent *= 100;
5191 free_percent = div64_u64(free_percent,
5192 block_group->key.offset);
5193 free_percent = 100 - free_percent;
5194 if (free_percent > ideal_cache_percent &&
5195 likely(!block_group->ro)) {
5196 ideal_cache_offset = block_group->key.objectid;
5197 ideal_cache_percent = free_percent;
5198 }
5199
5200 /*
5201 * The caching workers are limited to 2 threads, so we
5202 * can queue as much work as we care to.
5203 */
5204 if (loop > LOOP_FIND_IDEAL) {
5205 ret = cache_block_group(block_group, trans,
5206 orig_root, 0);
5207 BUG_ON(ret);
5208 }
5209 found_uncached_bg = true;
5210
5211 /*
5212 * If loop is set for cached only, try the next block
5213 * group.
5214 */
5215 if (loop == LOOP_FIND_IDEAL)
5216 goto loop;
5217 }
5218
5219 cached = block_group_cache_done(block_group);
5220 if (unlikely(!cached))
5221 found_uncached_bg = true;
5222
5223 if (unlikely(block_group->ro))
5224 goto loop;
5225
5226 spin_lock(&block_group->free_space_ctl->tree_lock);
5227 if (cached &&
5228 block_group->free_space_ctl->free_space <
5229 num_bytes + empty_size) {
5230 spin_unlock(&block_group->free_space_ctl->tree_lock);
5231 goto loop;
5232 }
5233 spin_unlock(&block_group->free_space_ctl->tree_lock);
5234
5235 /*
5236 * Ok we want to try and use the cluster allocator, so lets look
5237 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5238 * have tried the cluster allocator plenty of times at this
5239 * point and not have found anything, so we are likely way too
5240 * fragmented for the clustering stuff to find anything, so lets
5241 * just skip it and let the allocator find whatever block it can
5242 * find
5243 */
5244 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5245 /*
5246 * the refill lock keeps out other
5247 * people trying to start a new cluster
5248 */
5249 spin_lock(&last_ptr->refill_lock);
5250 if (last_ptr->block_group &&
5251 (last_ptr->block_group->ro ||
5252 !block_group_bits(last_ptr->block_group, data))) {
5253 offset = 0;
5254 goto refill_cluster;
5255 }
5256
5257 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5258 num_bytes, search_start);
5259 if (offset) {
5260 /* we have a block, we're done */
5261 spin_unlock(&last_ptr->refill_lock);
5262 goto checks;
5263 }
5264
5265 spin_lock(&last_ptr->lock);
5266 /*
5267 * whoops, this cluster doesn't actually point to
5268 * this block group. Get a ref on the block
5269 * group is does point to and try again
5270 */
5271 if (!last_ptr_loop && last_ptr->block_group &&
5272 last_ptr->block_group != block_group &&
5273 index <=
5274 get_block_group_index(last_ptr->block_group)) {
5275
5276 btrfs_put_block_group(block_group);
5277 block_group = last_ptr->block_group;
5278 btrfs_get_block_group(block_group);
5279 spin_unlock(&last_ptr->lock);
5280 spin_unlock(&last_ptr->refill_lock);
5281
5282 last_ptr_loop = 1;
5283 search_start = block_group->key.objectid;
5284 /*
5285 * we know this block group is properly
5286 * in the list because
5287 * btrfs_remove_block_group, drops the
5288 * cluster before it removes the block
5289 * group from the list
5290 */
5291 goto have_block_group;
5292 }
5293 spin_unlock(&last_ptr->lock);
5294 refill_cluster:
5295 /*
5296 * this cluster didn't work out, free it and
5297 * start over
5298 */
5299 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5300
5301 last_ptr_loop = 0;
5302
5303 /* allocate a cluster in this block group */
5304 ret = btrfs_find_space_cluster(trans, root,
5305 block_group, last_ptr,
5306 offset, num_bytes,
5307 empty_cluster + empty_size);
5308 if (ret == 0) {
5309 /*
5310 * now pull our allocation out of this
5311 * cluster
5312 */
5313 offset = btrfs_alloc_from_cluster(block_group,
5314 last_ptr, num_bytes,
5315 search_start);
5316 if (offset) {
5317 /* we found one, proceed */
5318 spin_unlock(&last_ptr->refill_lock);
5319 goto checks;
5320 }
5321 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5322 && !failed_cluster_refill) {
5323 spin_unlock(&last_ptr->refill_lock);
5324
5325 failed_cluster_refill = true;
5326 wait_block_group_cache_progress(block_group,
5327 num_bytes + empty_cluster + empty_size);
5328 goto have_block_group;
5329 }
5330
5331 /*
5332 * at this point we either didn't find a cluster
5333 * or we weren't able to allocate a block from our
5334 * cluster. Free the cluster we've been trying
5335 * to use, and go to the next block group
5336 */
5337 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5338 spin_unlock(&last_ptr->refill_lock);
5339 goto loop;
5340 }
5341
5342 offset = btrfs_find_space_for_alloc(block_group, search_start,
5343 num_bytes, empty_size);
5344 /*
5345 * If we didn't find a chunk, and we haven't failed on this
5346 * block group before, and this block group is in the middle of
5347 * caching and we are ok with waiting, then go ahead and wait
5348 * for progress to be made, and set failed_alloc to true.
5349 *
5350 * If failed_alloc is true then we've already waited on this
5351 * block group once and should move on to the next block group.
5352 */
5353 if (!offset && !failed_alloc && !cached &&
5354 loop > LOOP_CACHING_NOWAIT) {
5355 wait_block_group_cache_progress(block_group,
5356 num_bytes + empty_size);
5357 failed_alloc = true;
5358 goto have_block_group;
5359 } else if (!offset) {
5360 if (!cached)
5361 have_caching_bg = true;
5362 goto loop;
5363 }
5364 checks:
5365 search_start = stripe_align(root, offset);
5366 /* move on to the next group */
5367 if (search_start + num_bytes >= search_end) {
5368 btrfs_add_free_space(block_group, offset, num_bytes);
5369 goto loop;
5370 }
5371
5372 /* move on to the next group */
5373 if (search_start + num_bytes >
5374 block_group->key.objectid + block_group->key.offset) {
5375 btrfs_add_free_space(block_group, offset, num_bytes);
5376 goto loop;
5377 }
5378
5379 ins->objectid = search_start;
5380 ins->offset = num_bytes;
5381
5382 if (offset < search_start)
5383 btrfs_add_free_space(block_group, offset,
5384 search_start - offset);
5385 BUG_ON(offset > search_start);
5386
5387 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
5388 alloc_type);
5389 if (ret == -EAGAIN) {
5390 btrfs_add_free_space(block_group, offset, num_bytes);
5391 goto loop;
5392 }
5393
5394 /* we are all good, lets return */
5395 ins->objectid = search_start;
5396 ins->offset = num_bytes;
5397
5398 if (offset < search_start)
5399 btrfs_add_free_space(block_group, offset,
5400 search_start - offset);
5401 BUG_ON(offset > search_start);
5402 btrfs_put_block_group(block_group);
5403 break;
5404 loop:
5405 failed_cluster_refill = false;
5406 failed_alloc = false;
5407 BUG_ON(index != get_block_group_index(block_group));
5408 btrfs_put_block_group(block_group);
5409 }
5410 up_read(&space_info->groups_sem);
5411
5412 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5413 goto search;
5414
5415 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5416 goto search;
5417
5418 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5419 * for them to make caching progress. Also
5420 * determine the best possible bg to cache
5421 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5422 * caching kthreads as we move along
5423 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5424 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5425 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5426 * again
5427 */
5428 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5429 index = 0;
5430 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5431 found_uncached_bg = false;
5432 loop++;
5433 if (!ideal_cache_percent)
5434 goto search;
5435
5436 /*
5437 * 1 of the following 2 things have happened so far
5438 *
5439 * 1) We found an ideal block group for caching that
5440 * is mostly full and will cache quickly, so we might
5441 * as well wait for it.
5442 *
5443 * 2) We searched for cached only and we didn't find
5444 * anything, and we didn't start any caching kthreads
5445 * either, so chances are we will loop through and
5446 * start a couple caching kthreads, and then come back
5447 * around and just wait for them. This will be slower
5448 * because we will have 2 caching kthreads reading at
5449 * the same time when we could have just started one
5450 * and waited for it to get far enough to give us an
5451 * allocation, so go ahead and go to the wait caching
5452 * loop.
5453 */
5454 loop = LOOP_CACHING_WAIT;
5455 search_start = ideal_cache_offset;
5456 ideal_cache_percent = 0;
5457 goto ideal_cache;
5458 } else if (loop == LOOP_FIND_IDEAL) {
5459 /*
5460 * Didn't find a uncached bg, wait on anything we find
5461 * next.
5462 */
5463 loop = LOOP_CACHING_WAIT;
5464 goto search;
5465 }
5466
5467 loop++;
5468
5469 if (loop == LOOP_ALLOC_CHUNK) {
5470 if (allowed_chunk_alloc) {
5471 ret = do_chunk_alloc(trans, root, num_bytes +
5472 2 * 1024 * 1024, data,
5473 CHUNK_ALLOC_LIMITED);
5474 allowed_chunk_alloc = 0;
5475 if (ret == 1)
5476 done_chunk_alloc = 1;
5477 } else if (!done_chunk_alloc &&
5478 space_info->force_alloc ==
5479 CHUNK_ALLOC_NO_FORCE) {
5480 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5481 }
5482
5483 /*
5484 * We didn't allocate a chunk, go ahead and drop the
5485 * empty size and loop again.
5486 */
5487 if (!done_chunk_alloc)
5488 loop = LOOP_NO_EMPTY_SIZE;
5489 }
5490
5491 if (loop == LOOP_NO_EMPTY_SIZE) {
5492 empty_size = 0;
5493 empty_cluster = 0;
5494 }
5495
5496 goto search;
5497 } else if (!ins->objectid) {
5498 ret = -ENOSPC;
5499 } else if (ins->objectid) {
5500 ret = 0;
5501 }
5502
5503 return ret;
5504 }
5505
5506 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5507 int dump_block_groups)
5508 {
5509 struct btrfs_block_group_cache *cache;
5510 int index = 0;
5511
5512 spin_lock(&info->lock);
5513 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5514 (unsigned long long)info->flags,
5515 (unsigned long long)(info->total_bytes - info->bytes_used -
5516 info->bytes_pinned - info->bytes_reserved -
5517 info->bytes_readonly),
5518 (info->full) ? "" : "not ");
5519 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5520 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5521 (unsigned long long)info->total_bytes,
5522 (unsigned long long)info->bytes_used,
5523 (unsigned long long)info->bytes_pinned,
5524 (unsigned long long)info->bytes_reserved,
5525 (unsigned long long)info->bytes_may_use,
5526 (unsigned long long)info->bytes_readonly);
5527 spin_unlock(&info->lock);
5528
5529 if (!dump_block_groups)
5530 return;
5531
5532 down_read(&info->groups_sem);
5533 again:
5534 list_for_each_entry(cache, &info->block_groups[index], list) {
5535 spin_lock(&cache->lock);
5536 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5537 "%llu pinned %llu reserved\n",
5538 (unsigned long long)cache->key.objectid,
5539 (unsigned long long)cache->key.offset,
5540 (unsigned long long)btrfs_block_group_used(&cache->item),
5541 (unsigned long long)cache->pinned,
5542 (unsigned long long)cache->reserved);
5543 btrfs_dump_free_space(cache, bytes);
5544 spin_unlock(&cache->lock);
5545 }
5546 if (++index < BTRFS_NR_RAID_TYPES)
5547 goto again;
5548 up_read(&info->groups_sem);
5549 }
5550
5551 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5552 struct btrfs_root *root,
5553 u64 num_bytes, u64 min_alloc_size,
5554 u64 empty_size, u64 hint_byte,
5555 u64 search_end, struct btrfs_key *ins,
5556 u64 data)
5557 {
5558 int ret;
5559 u64 search_start = 0;
5560
5561 data = btrfs_get_alloc_profile(root, data);
5562 again:
5563 /*
5564 * the only place that sets empty_size is btrfs_realloc_node, which
5565 * is not called recursively on allocations
5566 */
5567 if (empty_size || root->ref_cows)
5568 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5569 num_bytes + 2 * 1024 * 1024, data,
5570 CHUNK_ALLOC_NO_FORCE);
5571
5572 WARN_ON(num_bytes < root->sectorsize);
5573 ret = find_free_extent(trans, root, num_bytes, empty_size,
5574 search_start, search_end, hint_byte,
5575 ins, data);
5576
5577 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5578 num_bytes = num_bytes >> 1;
5579 num_bytes = num_bytes & ~(root->sectorsize - 1);
5580 num_bytes = max(num_bytes, min_alloc_size);
5581 do_chunk_alloc(trans, root->fs_info->extent_root,
5582 num_bytes, data, CHUNK_ALLOC_FORCE);
5583 goto again;
5584 }
5585 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5586 struct btrfs_space_info *sinfo;
5587
5588 sinfo = __find_space_info(root->fs_info, data);
5589 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5590 "wanted %llu\n", (unsigned long long)data,
5591 (unsigned long long)num_bytes);
5592 dump_space_info(sinfo, num_bytes, 1);
5593 }
5594
5595 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5596
5597 return ret;
5598 }
5599
5600 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5601 u64 start, u64 len, int pin)
5602 {
5603 struct btrfs_block_group_cache *cache;
5604 int ret = 0;
5605
5606 cache = btrfs_lookup_block_group(root->fs_info, start);
5607 if (!cache) {
5608 printk(KERN_ERR "Unable to find block group for %llu\n",
5609 (unsigned long long)start);
5610 return -ENOSPC;
5611 }
5612
5613 if (btrfs_test_opt(root, DISCARD))
5614 ret = btrfs_discard_extent(root, start, len, NULL);
5615
5616 if (pin)
5617 pin_down_extent(root, cache, start, len, 1);
5618 else {
5619 btrfs_add_free_space(cache, start, len);
5620 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5621 }
5622 btrfs_put_block_group(cache);
5623
5624 trace_btrfs_reserved_extent_free(root, start, len);
5625
5626 return ret;
5627 }
5628
5629 int btrfs_free_reserved_extent(struct btrfs_root *root,
5630 u64 start, u64 len)
5631 {
5632 return __btrfs_free_reserved_extent(root, start, len, 0);
5633 }
5634
5635 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5636 u64 start, u64 len)
5637 {
5638 return __btrfs_free_reserved_extent(root, start, len, 1);
5639 }
5640
5641 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5642 struct btrfs_root *root,
5643 u64 parent, u64 root_objectid,
5644 u64 flags, u64 owner, u64 offset,
5645 struct btrfs_key *ins, int ref_mod)
5646 {
5647 int ret;
5648 struct btrfs_fs_info *fs_info = root->fs_info;
5649 struct btrfs_extent_item *extent_item;
5650 struct btrfs_extent_inline_ref *iref;
5651 struct btrfs_path *path;
5652 struct extent_buffer *leaf;
5653 int type;
5654 u32 size;
5655
5656 if (parent > 0)
5657 type = BTRFS_SHARED_DATA_REF_KEY;
5658 else
5659 type = BTRFS_EXTENT_DATA_REF_KEY;
5660
5661 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5662
5663 path = btrfs_alloc_path();
5664 if (!path)
5665 return -ENOMEM;
5666
5667 path->leave_spinning = 1;
5668 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5669 ins, size);
5670 BUG_ON(ret);
5671
5672 leaf = path->nodes[0];
5673 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5674 struct btrfs_extent_item);
5675 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5676 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5677 btrfs_set_extent_flags(leaf, extent_item,
5678 flags | BTRFS_EXTENT_FLAG_DATA);
5679
5680 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5681 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5682 if (parent > 0) {
5683 struct btrfs_shared_data_ref *ref;
5684 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5685 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5686 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5687 } else {
5688 struct btrfs_extent_data_ref *ref;
5689 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5690 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5691 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5692 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5693 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5694 }
5695
5696 btrfs_mark_buffer_dirty(path->nodes[0]);
5697 btrfs_free_path(path);
5698
5699 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5700 if (ret) {
5701 printk(KERN_ERR "btrfs update block group failed for %llu "
5702 "%llu\n", (unsigned long long)ins->objectid,
5703 (unsigned long long)ins->offset);
5704 BUG();
5705 }
5706 return ret;
5707 }
5708
5709 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5710 struct btrfs_root *root,
5711 u64 parent, u64 root_objectid,
5712 u64 flags, struct btrfs_disk_key *key,
5713 int level, struct btrfs_key *ins)
5714 {
5715 int ret;
5716 struct btrfs_fs_info *fs_info = root->fs_info;
5717 struct btrfs_extent_item *extent_item;
5718 struct btrfs_tree_block_info *block_info;
5719 struct btrfs_extent_inline_ref *iref;
5720 struct btrfs_path *path;
5721 struct extent_buffer *leaf;
5722 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5723
5724 path = btrfs_alloc_path();
5725 if (!path)
5726 return -ENOMEM;
5727
5728 path->leave_spinning = 1;
5729 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5730 ins, size);
5731 BUG_ON(ret);
5732
5733 leaf = path->nodes[0];
5734 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5735 struct btrfs_extent_item);
5736 btrfs_set_extent_refs(leaf, extent_item, 1);
5737 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5738 btrfs_set_extent_flags(leaf, extent_item,
5739 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5740 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5741
5742 btrfs_set_tree_block_key(leaf, block_info, key);
5743 btrfs_set_tree_block_level(leaf, block_info, level);
5744
5745 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5746 if (parent > 0) {
5747 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5748 btrfs_set_extent_inline_ref_type(leaf, iref,
5749 BTRFS_SHARED_BLOCK_REF_KEY);
5750 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5751 } else {
5752 btrfs_set_extent_inline_ref_type(leaf, iref,
5753 BTRFS_TREE_BLOCK_REF_KEY);
5754 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5755 }
5756
5757 btrfs_mark_buffer_dirty(leaf);
5758 btrfs_free_path(path);
5759
5760 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5761 if (ret) {
5762 printk(KERN_ERR "btrfs update block group failed for %llu "
5763 "%llu\n", (unsigned long long)ins->objectid,
5764 (unsigned long long)ins->offset);
5765 BUG();
5766 }
5767 return ret;
5768 }
5769
5770 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5771 struct btrfs_root *root,
5772 u64 root_objectid, u64 owner,
5773 u64 offset, struct btrfs_key *ins)
5774 {
5775 int ret;
5776
5777 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5778
5779 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5780 0, root_objectid, owner, offset,
5781 BTRFS_ADD_DELAYED_EXTENT, NULL);
5782 return ret;
5783 }
5784
5785 /*
5786 * this is used by the tree logging recovery code. It records that
5787 * an extent has been allocated and makes sure to clear the free
5788 * space cache bits as well
5789 */
5790 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5791 struct btrfs_root *root,
5792 u64 root_objectid, u64 owner, u64 offset,
5793 struct btrfs_key *ins)
5794 {
5795 int ret;
5796 struct btrfs_block_group_cache *block_group;
5797 struct btrfs_caching_control *caching_ctl;
5798 u64 start = ins->objectid;
5799 u64 num_bytes = ins->offset;
5800
5801 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5802 cache_block_group(block_group, trans, NULL, 0);
5803 caching_ctl = get_caching_control(block_group);
5804
5805 if (!caching_ctl) {
5806 BUG_ON(!block_group_cache_done(block_group));
5807 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5808 BUG_ON(ret);
5809 } else {
5810 mutex_lock(&caching_ctl->mutex);
5811
5812 if (start >= caching_ctl->progress) {
5813 ret = add_excluded_extent(root, start, num_bytes);
5814 BUG_ON(ret);
5815 } else if (start + num_bytes <= caching_ctl->progress) {
5816 ret = btrfs_remove_free_space(block_group,
5817 start, num_bytes);
5818 BUG_ON(ret);
5819 } else {
5820 num_bytes = caching_ctl->progress - start;
5821 ret = btrfs_remove_free_space(block_group,
5822 start, num_bytes);
5823 BUG_ON(ret);
5824
5825 start = caching_ctl->progress;
5826 num_bytes = ins->objectid + ins->offset -
5827 caching_ctl->progress;
5828 ret = add_excluded_extent(root, start, num_bytes);
5829 BUG_ON(ret);
5830 }
5831
5832 mutex_unlock(&caching_ctl->mutex);
5833 put_caching_control(caching_ctl);
5834 }
5835
5836 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5837 RESERVE_ALLOC_NO_ACCOUNT);
5838 BUG_ON(ret);
5839 btrfs_put_block_group(block_group);
5840 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5841 0, owner, offset, ins, 1);
5842 return ret;
5843 }
5844
5845 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5846 struct btrfs_root *root,
5847 u64 bytenr, u32 blocksize,
5848 int level)
5849 {
5850 struct extent_buffer *buf;
5851
5852 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5853 if (!buf)
5854 return ERR_PTR(-ENOMEM);
5855 btrfs_set_header_generation(buf, trans->transid);
5856 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5857 btrfs_tree_lock(buf);
5858 clean_tree_block(trans, root, buf);
5859
5860 btrfs_set_lock_blocking(buf);
5861 btrfs_set_buffer_uptodate(buf);
5862
5863 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5864 /*
5865 * we allow two log transactions at a time, use different
5866 * EXENT bit to differentiate dirty pages.
5867 */
5868 if (root->log_transid % 2 == 0)
5869 set_extent_dirty(&root->dirty_log_pages, buf->start,
5870 buf->start + buf->len - 1, GFP_NOFS);
5871 else
5872 set_extent_new(&root->dirty_log_pages, buf->start,
5873 buf->start + buf->len - 1, GFP_NOFS);
5874 } else {
5875 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5876 buf->start + buf->len - 1, GFP_NOFS);
5877 }
5878 trans->blocks_used++;
5879 /* this returns a buffer locked for blocking */
5880 return buf;
5881 }
5882
5883 static struct btrfs_block_rsv *
5884 use_block_rsv(struct btrfs_trans_handle *trans,
5885 struct btrfs_root *root, u32 blocksize)
5886 {
5887 struct btrfs_block_rsv *block_rsv;
5888 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5889 int ret;
5890
5891 block_rsv = get_block_rsv(trans, root);
5892
5893 if (block_rsv->size == 0) {
5894 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5895 /*
5896 * If we couldn't reserve metadata bytes try and use some from
5897 * the global reserve.
5898 */
5899 if (ret && block_rsv != global_rsv) {
5900 ret = block_rsv_use_bytes(global_rsv, blocksize);
5901 if (!ret)
5902 return global_rsv;
5903 return ERR_PTR(ret);
5904 } else if (ret) {
5905 return ERR_PTR(ret);
5906 }
5907 return block_rsv;
5908 }
5909
5910 ret = block_rsv_use_bytes(block_rsv, blocksize);
5911 if (!ret)
5912 return block_rsv;
5913 if (ret) {
5914 static DEFINE_RATELIMIT_STATE(_rs,
5915 DEFAULT_RATELIMIT_INTERVAL,
5916 /*DEFAULT_RATELIMIT_BURST*/ 2);
5917 if (__ratelimit(&_rs)) {
5918 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
5919 WARN_ON(1);
5920 }
5921 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5922 if (!ret) {
5923 return block_rsv;
5924 } else if (ret && block_rsv != global_rsv) {
5925 ret = block_rsv_use_bytes(global_rsv, blocksize);
5926 if (!ret)
5927 return global_rsv;
5928 }
5929 }
5930
5931 return ERR_PTR(-ENOSPC);
5932 }
5933
5934 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5935 {
5936 block_rsv_add_bytes(block_rsv, blocksize, 0);
5937 block_rsv_release_bytes(block_rsv, NULL, 0);
5938 }
5939
5940 /*
5941 * finds a free extent and does all the dirty work required for allocation
5942 * returns the key for the extent through ins, and a tree buffer for
5943 * the first block of the extent through buf.
5944 *
5945 * returns the tree buffer or NULL.
5946 */
5947 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5948 struct btrfs_root *root, u32 blocksize,
5949 u64 parent, u64 root_objectid,
5950 struct btrfs_disk_key *key, int level,
5951 u64 hint, u64 empty_size)
5952 {
5953 struct btrfs_key ins;
5954 struct btrfs_block_rsv *block_rsv;
5955 struct extent_buffer *buf;
5956 u64 flags = 0;
5957 int ret;
5958
5959
5960 block_rsv = use_block_rsv(trans, root, blocksize);
5961 if (IS_ERR(block_rsv))
5962 return ERR_CAST(block_rsv);
5963
5964 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5965 empty_size, hint, (u64)-1, &ins, 0);
5966 if (ret) {
5967 unuse_block_rsv(block_rsv, blocksize);
5968 return ERR_PTR(ret);
5969 }
5970
5971 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5972 blocksize, level);
5973 BUG_ON(IS_ERR(buf));
5974
5975 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5976 if (parent == 0)
5977 parent = ins.objectid;
5978 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5979 } else
5980 BUG_ON(parent > 0);
5981
5982 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5983 struct btrfs_delayed_extent_op *extent_op;
5984 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5985 BUG_ON(!extent_op);
5986 if (key)
5987 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5988 else
5989 memset(&extent_op->key, 0, sizeof(extent_op->key));
5990 extent_op->flags_to_set = flags;
5991 extent_op->update_key = 1;
5992 extent_op->update_flags = 1;
5993 extent_op->is_data = 0;
5994
5995 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5996 ins.offset, parent, root_objectid,
5997 level, BTRFS_ADD_DELAYED_EXTENT,
5998 extent_op);
5999 BUG_ON(ret);
6000 }
6001 return buf;
6002 }
6003
6004 struct walk_control {
6005 u64 refs[BTRFS_MAX_LEVEL];
6006 u64 flags[BTRFS_MAX_LEVEL];
6007 struct btrfs_key update_progress;
6008 int stage;
6009 int level;
6010 int shared_level;
6011 int update_ref;
6012 int keep_locks;
6013 int reada_slot;
6014 int reada_count;
6015 };
6016
6017 #define DROP_REFERENCE 1
6018 #define UPDATE_BACKREF 2
6019
6020 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6021 struct btrfs_root *root,
6022 struct walk_control *wc,
6023 struct btrfs_path *path)
6024 {
6025 u64 bytenr;
6026 u64 generation;
6027 u64 refs;
6028 u64 flags;
6029 u32 nritems;
6030 u32 blocksize;
6031 struct btrfs_key key;
6032 struct extent_buffer *eb;
6033 int ret;
6034 int slot;
6035 int nread = 0;
6036
6037 if (path->slots[wc->level] < wc->reada_slot) {
6038 wc->reada_count = wc->reada_count * 2 / 3;
6039 wc->reada_count = max(wc->reada_count, 2);
6040 } else {
6041 wc->reada_count = wc->reada_count * 3 / 2;
6042 wc->reada_count = min_t(int, wc->reada_count,
6043 BTRFS_NODEPTRS_PER_BLOCK(root));
6044 }
6045
6046 eb = path->nodes[wc->level];
6047 nritems = btrfs_header_nritems(eb);
6048 blocksize = btrfs_level_size(root, wc->level - 1);
6049
6050 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6051 if (nread >= wc->reada_count)
6052 break;
6053
6054 cond_resched();
6055 bytenr = btrfs_node_blockptr(eb, slot);
6056 generation = btrfs_node_ptr_generation(eb, slot);
6057
6058 if (slot == path->slots[wc->level])
6059 goto reada;
6060
6061 if (wc->stage == UPDATE_BACKREF &&
6062 generation <= root->root_key.offset)
6063 continue;
6064
6065 /* We don't lock the tree block, it's OK to be racy here */
6066 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6067 &refs, &flags);
6068 BUG_ON(ret);
6069 BUG_ON(refs == 0);
6070
6071 if (wc->stage == DROP_REFERENCE) {
6072 if (refs == 1)
6073 goto reada;
6074
6075 if (wc->level == 1 &&
6076 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6077 continue;
6078 if (!wc->update_ref ||
6079 generation <= root->root_key.offset)
6080 continue;
6081 btrfs_node_key_to_cpu(eb, &key, slot);
6082 ret = btrfs_comp_cpu_keys(&key,
6083 &wc->update_progress);
6084 if (ret < 0)
6085 continue;
6086 } else {
6087 if (wc->level == 1 &&
6088 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6089 continue;
6090 }
6091 reada:
6092 ret = readahead_tree_block(root, bytenr, blocksize,
6093 generation);
6094 if (ret)
6095 break;
6096 nread++;
6097 }
6098 wc->reada_slot = slot;
6099 }
6100
6101 /*
6102 * hepler to process tree block while walking down the tree.
6103 *
6104 * when wc->stage == UPDATE_BACKREF, this function updates
6105 * back refs for pointers in the block.
6106 *
6107 * NOTE: return value 1 means we should stop walking down.
6108 */
6109 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6110 struct btrfs_root *root,
6111 struct btrfs_path *path,
6112 struct walk_control *wc, int lookup_info)
6113 {
6114 int level = wc->level;
6115 struct extent_buffer *eb = path->nodes[level];
6116 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6117 int ret;
6118
6119 if (wc->stage == UPDATE_BACKREF &&
6120 btrfs_header_owner(eb) != root->root_key.objectid)
6121 return 1;
6122
6123 /*
6124 * when reference count of tree block is 1, it won't increase
6125 * again. once full backref flag is set, we never clear it.
6126 */
6127 if (lookup_info &&
6128 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6129 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6130 BUG_ON(!path->locks[level]);
6131 ret = btrfs_lookup_extent_info(trans, root,
6132 eb->start, eb->len,
6133 &wc->refs[level],
6134 &wc->flags[level]);
6135 BUG_ON(ret);
6136 BUG_ON(wc->refs[level] == 0);
6137 }
6138
6139 if (wc->stage == DROP_REFERENCE) {
6140 if (wc->refs[level] > 1)
6141 return 1;
6142
6143 if (path->locks[level] && !wc->keep_locks) {
6144 btrfs_tree_unlock_rw(eb, path->locks[level]);
6145 path->locks[level] = 0;
6146 }
6147 return 0;
6148 }
6149
6150 /* wc->stage == UPDATE_BACKREF */
6151 if (!(wc->flags[level] & flag)) {
6152 BUG_ON(!path->locks[level]);
6153 ret = btrfs_inc_ref(trans, root, eb, 1);
6154 BUG_ON(ret);
6155 ret = btrfs_dec_ref(trans, root, eb, 0);
6156 BUG_ON(ret);
6157 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6158 eb->len, flag, 0);
6159 BUG_ON(ret);
6160 wc->flags[level] |= flag;
6161 }
6162
6163 /*
6164 * the block is shared by multiple trees, so it's not good to
6165 * keep the tree lock
6166 */
6167 if (path->locks[level] && level > 0) {
6168 btrfs_tree_unlock_rw(eb, path->locks[level]);
6169 path->locks[level] = 0;
6170 }
6171 return 0;
6172 }
6173
6174 /*
6175 * hepler to process tree block pointer.
6176 *
6177 * when wc->stage == DROP_REFERENCE, this function checks
6178 * reference count of the block pointed to. if the block
6179 * is shared and we need update back refs for the subtree
6180 * rooted at the block, this function changes wc->stage to
6181 * UPDATE_BACKREF. if the block is shared and there is no
6182 * need to update back, this function drops the reference
6183 * to the block.
6184 *
6185 * NOTE: return value 1 means we should stop walking down.
6186 */
6187 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6188 struct btrfs_root *root,
6189 struct btrfs_path *path,
6190 struct walk_control *wc, int *lookup_info)
6191 {
6192 u64 bytenr;
6193 u64 generation;
6194 u64 parent;
6195 u32 blocksize;
6196 struct btrfs_key key;
6197 struct extent_buffer *next;
6198 int level = wc->level;
6199 int reada = 0;
6200 int ret = 0;
6201
6202 generation = btrfs_node_ptr_generation(path->nodes[level],
6203 path->slots[level]);
6204 /*
6205 * if the lower level block was created before the snapshot
6206 * was created, we know there is no need to update back refs
6207 * for the subtree
6208 */
6209 if (wc->stage == UPDATE_BACKREF &&
6210 generation <= root->root_key.offset) {
6211 *lookup_info = 1;
6212 return 1;
6213 }
6214
6215 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6216 blocksize = btrfs_level_size(root, level - 1);
6217
6218 next = btrfs_find_tree_block(root, bytenr, blocksize);
6219 if (!next) {
6220 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6221 if (!next)
6222 return -ENOMEM;
6223 reada = 1;
6224 }
6225 btrfs_tree_lock(next);
6226 btrfs_set_lock_blocking(next);
6227
6228 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6229 &wc->refs[level - 1],
6230 &wc->flags[level - 1]);
6231 BUG_ON(ret);
6232 BUG_ON(wc->refs[level - 1] == 0);
6233 *lookup_info = 0;
6234
6235 if (wc->stage == DROP_REFERENCE) {
6236 if (wc->refs[level - 1] > 1) {
6237 if (level == 1 &&
6238 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6239 goto skip;
6240
6241 if (!wc->update_ref ||
6242 generation <= root->root_key.offset)
6243 goto skip;
6244
6245 btrfs_node_key_to_cpu(path->nodes[level], &key,
6246 path->slots[level]);
6247 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6248 if (ret < 0)
6249 goto skip;
6250
6251 wc->stage = UPDATE_BACKREF;
6252 wc->shared_level = level - 1;
6253 }
6254 } else {
6255 if (level == 1 &&
6256 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6257 goto skip;
6258 }
6259
6260 if (!btrfs_buffer_uptodate(next, generation)) {
6261 btrfs_tree_unlock(next);
6262 free_extent_buffer(next);
6263 next = NULL;
6264 *lookup_info = 1;
6265 }
6266
6267 if (!next) {
6268 if (reada && level == 1)
6269 reada_walk_down(trans, root, wc, path);
6270 next = read_tree_block(root, bytenr, blocksize, generation);
6271 if (!next)
6272 return -EIO;
6273 btrfs_tree_lock(next);
6274 btrfs_set_lock_blocking(next);
6275 }
6276
6277 level--;
6278 BUG_ON(level != btrfs_header_level(next));
6279 path->nodes[level] = next;
6280 path->slots[level] = 0;
6281 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6282 wc->level = level;
6283 if (wc->level == 1)
6284 wc->reada_slot = 0;
6285 return 0;
6286 skip:
6287 wc->refs[level - 1] = 0;
6288 wc->flags[level - 1] = 0;
6289 if (wc->stage == DROP_REFERENCE) {
6290 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6291 parent = path->nodes[level]->start;
6292 } else {
6293 BUG_ON(root->root_key.objectid !=
6294 btrfs_header_owner(path->nodes[level]));
6295 parent = 0;
6296 }
6297
6298 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6299 root->root_key.objectid, level - 1, 0);
6300 BUG_ON(ret);
6301 }
6302 btrfs_tree_unlock(next);
6303 free_extent_buffer(next);
6304 *lookup_info = 1;
6305 return 1;
6306 }
6307
6308 /*
6309 * hepler to process tree block while walking up the tree.
6310 *
6311 * when wc->stage == DROP_REFERENCE, this function drops
6312 * reference count on the block.
6313 *
6314 * when wc->stage == UPDATE_BACKREF, this function changes
6315 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6316 * to UPDATE_BACKREF previously while processing the block.
6317 *
6318 * NOTE: return value 1 means we should stop walking up.
6319 */
6320 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6321 struct btrfs_root *root,
6322 struct btrfs_path *path,
6323 struct walk_control *wc)
6324 {
6325 int ret;
6326 int level = wc->level;
6327 struct extent_buffer *eb = path->nodes[level];
6328 u64 parent = 0;
6329
6330 if (wc->stage == UPDATE_BACKREF) {
6331 BUG_ON(wc->shared_level < level);
6332 if (level < wc->shared_level)
6333 goto out;
6334
6335 ret = find_next_key(path, level + 1, &wc->update_progress);
6336 if (ret > 0)
6337 wc->update_ref = 0;
6338
6339 wc->stage = DROP_REFERENCE;
6340 wc->shared_level = -1;
6341 path->slots[level] = 0;
6342
6343 /*
6344 * check reference count again if the block isn't locked.
6345 * we should start walking down the tree again if reference
6346 * count is one.
6347 */
6348 if (!path->locks[level]) {
6349 BUG_ON(level == 0);
6350 btrfs_tree_lock(eb);
6351 btrfs_set_lock_blocking(eb);
6352 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6353
6354 ret = btrfs_lookup_extent_info(trans, root,
6355 eb->start, eb->len,
6356 &wc->refs[level],
6357 &wc->flags[level]);
6358 BUG_ON(ret);
6359 BUG_ON(wc->refs[level] == 0);
6360 if (wc->refs[level] == 1) {
6361 btrfs_tree_unlock_rw(eb, path->locks[level]);
6362 return 1;
6363 }
6364 }
6365 }
6366
6367 /* wc->stage == DROP_REFERENCE */
6368 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6369
6370 if (wc->refs[level] == 1) {
6371 if (level == 0) {
6372 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6373 ret = btrfs_dec_ref(trans, root, eb, 1);
6374 else
6375 ret = btrfs_dec_ref(trans, root, eb, 0);
6376 BUG_ON(ret);
6377 }
6378 /* make block locked assertion in clean_tree_block happy */
6379 if (!path->locks[level] &&
6380 btrfs_header_generation(eb) == trans->transid) {
6381 btrfs_tree_lock(eb);
6382 btrfs_set_lock_blocking(eb);
6383 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6384 }
6385 clean_tree_block(trans, root, eb);
6386 }
6387
6388 if (eb == root->node) {
6389 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6390 parent = eb->start;
6391 else
6392 BUG_ON(root->root_key.objectid !=
6393 btrfs_header_owner(eb));
6394 } else {
6395 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6396 parent = path->nodes[level + 1]->start;
6397 else
6398 BUG_ON(root->root_key.objectid !=
6399 btrfs_header_owner(path->nodes[level + 1]));
6400 }
6401
6402 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6403 out:
6404 wc->refs[level] = 0;
6405 wc->flags[level] = 0;
6406 return 0;
6407 }
6408
6409 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6410 struct btrfs_root *root,
6411 struct btrfs_path *path,
6412 struct walk_control *wc)
6413 {
6414 int level = wc->level;
6415 int lookup_info = 1;
6416 int ret;
6417
6418 while (level >= 0) {
6419 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6420 if (ret > 0)
6421 break;
6422
6423 if (level == 0)
6424 break;
6425
6426 if (path->slots[level] >=
6427 btrfs_header_nritems(path->nodes[level]))
6428 break;
6429
6430 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6431 if (ret > 0) {
6432 path->slots[level]++;
6433 continue;
6434 } else if (ret < 0)
6435 return ret;
6436 level = wc->level;
6437 }
6438 return 0;
6439 }
6440
6441 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6442 struct btrfs_root *root,
6443 struct btrfs_path *path,
6444 struct walk_control *wc, int max_level)
6445 {
6446 int level = wc->level;
6447 int ret;
6448
6449 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6450 while (level < max_level && path->nodes[level]) {
6451 wc->level = level;
6452 if (path->slots[level] + 1 <
6453 btrfs_header_nritems(path->nodes[level])) {
6454 path->slots[level]++;
6455 return 0;
6456 } else {
6457 ret = walk_up_proc(trans, root, path, wc);
6458 if (ret > 0)
6459 return 0;
6460
6461 if (path->locks[level]) {
6462 btrfs_tree_unlock_rw(path->nodes[level],
6463 path->locks[level]);
6464 path->locks[level] = 0;
6465 }
6466 free_extent_buffer(path->nodes[level]);
6467 path->nodes[level] = NULL;
6468 level++;
6469 }
6470 }
6471 return 1;
6472 }
6473
6474 /*
6475 * drop a subvolume tree.
6476 *
6477 * this function traverses the tree freeing any blocks that only
6478 * referenced by the tree.
6479 *
6480 * when a shared tree block is found. this function decreases its
6481 * reference count by one. if update_ref is true, this function
6482 * also make sure backrefs for the shared block and all lower level
6483 * blocks are properly updated.
6484 */
6485 void btrfs_drop_snapshot(struct btrfs_root *root,
6486 struct btrfs_block_rsv *block_rsv, int update_ref)
6487 {
6488 struct btrfs_path *path;
6489 struct btrfs_trans_handle *trans;
6490 struct btrfs_root *tree_root = root->fs_info->tree_root;
6491 struct btrfs_root_item *root_item = &root->root_item;
6492 struct walk_control *wc;
6493 struct btrfs_key key;
6494 int err = 0;
6495 int ret;
6496 int level;
6497
6498 path = btrfs_alloc_path();
6499 if (!path) {
6500 err = -ENOMEM;
6501 goto out;
6502 }
6503
6504 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6505 if (!wc) {
6506 btrfs_free_path(path);
6507 err = -ENOMEM;
6508 goto out;
6509 }
6510
6511 trans = btrfs_start_transaction(tree_root, 0);
6512 BUG_ON(IS_ERR(trans));
6513
6514 if (block_rsv)
6515 trans->block_rsv = block_rsv;
6516
6517 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6518 level = btrfs_header_level(root->node);
6519 path->nodes[level] = btrfs_lock_root_node(root);
6520 btrfs_set_lock_blocking(path->nodes[level]);
6521 path->slots[level] = 0;
6522 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6523 memset(&wc->update_progress, 0,
6524 sizeof(wc->update_progress));
6525 } else {
6526 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6527 memcpy(&wc->update_progress, &key,
6528 sizeof(wc->update_progress));
6529
6530 level = root_item->drop_level;
6531 BUG_ON(level == 0);
6532 path->lowest_level = level;
6533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6534 path->lowest_level = 0;
6535 if (ret < 0) {
6536 err = ret;
6537 goto out_free;
6538 }
6539 WARN_ON(ret > 0);
6540
6541 /*
6542 * unlock our path, this is safe because only this
6543 * function is allowed to delete this snapshot
6544 */
6545 btrfs_unlock_up_safe(path, 0);
6546
6547 level = btrfs_header_level(root->node);
6548 while (1) {
6549 btrfs_tree_lock(path->nodes[level]);
6550 btrfs_set_lock_blocking(path->nodes[level]);
6551
6552 ret = btrfs_lookup_extent_info(trans, root,
6553 path->nodes[level]->start,
6554 path->nodes[level]->len,
6555 &wc->refs[level],
6556 &wc->flags[level]);
6557 BUG_ON(ret);
6558 BUG_ON(wc->refs[level] == 0);
6559
6560 if (level == root_item->drop_level)
6561 break;
6562
6563 btrfs_tree_unlock(path->nodes[level]);
6564 WARN_ON(wc->refs[level] != 1);
6565 level--;
6566 }
6567 }
6568
6569 wc->level = level;
6570 wc->shared_level = -1;
6571 wc->stage = DROP_REFERENCE;
6572 wc->update_ref = update_ref;
6573 wc->keep_locks = 0;
6574 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6575
6576 while (1) {
6577 ret = walk_down_tree(trans, root, path, wc);
6578 if (ret < 0) {
6579 err = ret;
6580 break;
6581 }
6582
6583 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6584 if (ret < 0) {
6585 err = ret;
6586 break;
6587 }
6588
6589 if (ret > 0) {
6590 BUG_ON(wc->stage != DROP_REFERENCE);
6591 break;
6592 }
6593
6594 if (wc->stage == DROP_REFERENCE) {
6595 level = wc->level;
6596 btrfs_node_key(path->nodes[level],
6597 &root_item->drop_progress,
6598 path->slots[level]);
6599 root_item->drop_level = level;
6600 }
6601
6602 BUG_ON(wc->level == 0);
6603 if (btrfs_should_end_transaction(trans, tree_root)) {
6604 ret = btrfs_update_root(trans, tree_root,
6605 &root->root_key,
6606 root_item);
6607 BUG_ON(ret);
6608
6609 btrfs_end_transaction_throttle(trans, tree_root);
6610 trans = btrfs_start_transaction(tree_root, 0);
6611 BUG_ON(IS_ERR(trans));
6612 if (block_rsv)
6613 trans->block_rsv = block_rsv;
6614 }
6615 }
6616 btrfs_release_path(path);
6617 BUG_ON(err);
6618
6619 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6620 BUG_ON(ret);
6621
6622 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6623 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6624 NULL, NULL);
6625 BUG_ON(ret < 0);
6626 if (ret > 0) {
6627 /* if we fail to delete the orphan item this time
6628 * around, it'll get picked up the next time.
6629 *
6630 * The most common failure here is just -ENOENT.
6631 */
6632 btrfs_del_orphan_item(trans, tree_root,
6633 root->root_key.objectid);
6634 }
6635 }
6636
6637 if (root->in_radix) {
6638 btrfs_free_fs_root(tree_root->fs_info, root);
6639 } else {
6640 free_extent_buffer(root->node);
6641 free_extent_buffer(root->commit_root);
6642 kfree(root);
6643 }
6644 out_free:
6645 btrfs_end_transaction_throttle(trans, tree_root);
6646 kfree(wc);
6647 btrfs_free_path(path);
6648 out:
6649 if (err)
6650 btrfs_std_error(root->fs_info, err);
6651 return;
6652 }
6653
6654 /*
6655 * drop subtree rooted at tree block 'node'.
6656 *
6657 * NOTE: this function will unlock and release tree block 'node'
6658 */
6659 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6660 struct btrfs_root *root,
6661 struct extent_buffer *node,
6662 struct extent_buffer *parent)
6663 {
6664 struct btrfs_path *path;
6665 struct walk_control *wc;
6666 int level;
6667 int parent_level;
6668 int ret = 0;
6669 int wret;
6670
6671 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6672
6673 path = btrfs_alloc_path();
6674 if (!path)
6675 return -ENOMEM;
6676
6677 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6678 if (!wc) {
6679 btrfs_free_path(path);
6680 return -ENOMEM;
6681 }
6682
6683 btrfs_assert_tree_locked(parent);
6684 parent_level = btrfs_header_level(parent);
6685 extent_buffer_get(parent);
6686 path->nodes[parent_level] = parent;
6687 path->slots[parent_level] = btrfs_header_nritems(parent);
6688
6689 btrfs_assert_tree_locked(node);
6690 level = btrfs_header_level(node);
6691 path->nodes[level] = node;
6692 path->slots[level] = 0;
6693 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6694
6695 wc->refs[parent_level] = 1;
6696 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6697 wc->level = level;
6698 wc->shared_level = -1;
6699 wc->stage = DROP_REFERENCE;
6700 wc->update_ref = 0;
6701 wc->keep_locks = 1;
6702 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6703
6704 while (1) {
6705 wret = walk_down_tree(trans, root, path, wc);
6706 if (wret < 0) {
6707 ret = wret;
6708 break;
6709 }
6710
6711 wret = walk_up_tree(trans, root, path, wc, parent_level);
6712 if (wret < 0)
6713 ret = wret;
6714 if (wret != 0)
6715 break;
6716 }
6717
6718 kfree(wc);
6719 btrfs_free_path(path);
6720 return ret;
6721 }
6722
6723 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6724 {
6725 u64 num_devices;
6726 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6727 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6728
6729 /*
6730 * we add in the count of missing devices because we want
6731 * to make sure that any RAID levels on a degraded FS
6732 * continue to be honored.
6733 */
6734 num_devices = root->fs_info->fs_devices->rw_devices +
6735 root->fs_info->fs_devices->missing_devices;
6736
6737 if (num_devices == 1) {
6738 stripped |= BTRFS_BLOCK_GROUP_DUP;
6739 stripped = flags & ~stripped;
6740
6741 /* turn raid0 into single device chunks */
6742 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6743 return stripped;
6744
6745 /* turn mirroring into duplication */
6746 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6747 BTRFS_BLOCK_GROUP_RAID10))
6748 return stripped | BTRFS_BLOCK_GROUP_DUP;
6749 return flags;
6750 } else {
6751 /* they already had raid on here, just return */
6752 if (flags & stripped)
6753 return flags;
6754
6755 stripped |= BTRFS_BLOCK_GROUP_DUP;
6756 stripped = flags & ~stripped;
6757
6758 /* switch duplicated blocks with raid1 */
6759 if (flags & BTRFS_BLOCK_GROUP_DUP)
6760 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6761
6762 /* turn single device chunks into raid0 */
6763 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6764 }
6765 return flags;
6766 }
6767
6768 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6769 {
6770 struct btrfs_space_info *sinfo = cache->space_info;
6771 u64 num_bytes;
6772 u64 min_allocable_bytes;
6773 int ret = -ENOSPC;
6774
6775
6776 /*
6777 * We need some metadata space and system metadata space for
6778 * allocating chunks in some corner cases until we force to set
6779 * it to be readonly.
6780 */
6781 if ((sinfo->flags &
6782 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6783 !force)
6784 min_allocable_bytes = 1 * 1024 * 1024;
6785 else
6786 min_allocable_bytes = 0;
6787
6788 spin_lock(&sinfo->lock);
6789 spin_lock(&cache->lock);
6790
6791 if (cache->ro) {
6792 ret = 0;
6793 goto out;
6794 }
6795
6796 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6797 cache->bytes_super - btrfs_block_group_used(&cache->item);
6798
6799 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6800 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6801 min_allocable_bytes <= sinfo->total_bytes) {
6802 sinfo->bytes_readonly += num_bytes;
6803 cache->ro = 1;
6804 ret = 0;
6805 }
6806 out:
6807 spin_unlock(&cache->lock);
6808 spin_unlock(&sinfo->lock);
6809 return ret;
6810 }
6811
6812 int btrfs_set_block_group_ro(struct btrfs_root *root,
6813 struct btrfs_block_group_cache *cache)
6814
6815 {
6816 struct btrfs_trans_handle *trans;
6817 u64 alloc_flags;
6818 int ret;
6819
6820 BUG_ON(cache->ro);
6821
6822 trans = btrfs_join_transaction(root);
6823 BUG_ON(IS_ERR(trans));
6824
6825 alloc_flags = update_block_group_flags(root, cache->flags);
6826 if (alloc_flags != cache->flags)
6827 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6828 CHUNK_ALLOC_FORCE);
6829
6830 ret = set_block_group_ro(cache, 0);
6831 if (!ret)
6832 goto out;
6833 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6834 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6835 CHUNK_ALLOC_FORCE);
6836 if (ret < 0)
6837 goto out;
6838 ret = set_block_group_ro(cache, 0);
6839 out:
6840 btrfs_end_transaction(trans, root);
6841 return ret;
6842 }
6843
6844 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6845 struct btrfs_root *root, u64 type)
6846 {
6847 u64 alloc_flags = get_alloc_profile(root, type);
6848 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6849 CHUNK_ALLOC_FORCE);
6850 }
6851
6852 /*
6853 * helper to account the unused space of all the readonly block group in the
6854 * list. takes mirrors into account.
6855 */
6856 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6857 {
6858 struct btrfs_block_group_cache *block_group;
6859 u64 free_bytes = 0;
6860 int factor;
6861
6862 list_for_each_entry(block_group, groups_list, list) {
6863 spin_lock(&block_group->lock);
6864
6865 if (!block_group->ro) {
6866 spin_unlock(&block_group->lock);
6867 continue;
6868 }
6869
6870 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6871 BTRFS_BLOCK_GROUP_RAID10 |
6872 BTRFS_BLOCK_GROUP_DUP))
6873 factor = 2;
6874 else
6875 factor = 1;
6876
6877 free_bytes += (block_group->key.offset -
6878 btrfs_block_group_used(&block_group->item)) *
6879 factor;
6880
6881 spin_unlock(&block_group->lock);
6882 }
6883
6884 return free_bytes;
6885 }
6886
6887 /*
6888 * helper to account the unused space of all the readonly block group in the
6889 * space_info. takes mirrors into account.
6890 */
6891 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6892 {
6893 int i;
6894 u64 free_bytes = 0;
6895
6896 spin_lock(&sinfo->lock);
6897
6898 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6899 if (!list_empty(&sinfo->block_groups[i]))
6900 free_bytes += __btrfs_get_ro_block_group_free_space(
6901 &sinfo->block_groups[i]);
6902
6903 spin_unlock(&sinfo->lock);
6904
6905 return free_bytes;
6906 }
6907
6908 int btrfs_set_block_group_rw(struct btrfs_root *root,
6909 struct btrfs_block_group_cache *cache)
6910 {
6911 struct btrfs_space_info *sinfo = cache->space_info;
6912 u64 num_bytes;
6913
6914 BUG_ON(!cache->ro);
6915
6916 spin_lock(&sinfo->lock);
6917 spin_lock(&cache->lock);
6918 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6919 cache->bytes_super - btrfs_block_group_used(&cache->item);
6920 sinfo->bytes_readonly -= num_bytes;
6921 cache->ro = 0;
6922 spin_unlock(&cache->lock);
6923 spin_unlock(&sinfo->lock);
6924 return 0;
6925 }
6926
6927 /*
6928 * checks to see if its even possible to relocate this block group.
6929 *
6930 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6931 * ok to go ahead and try.
6932 */
6933 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6934 {
6935 struct btrfs_block_group_cache *block_group;
6936 struct btrfs_space_info *space_info;
6937 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6938 struct btrfs_device *device;
6939 u64 min_free;
6940 u64 dev_min = 1;
6941 u64 dev_nr = 0;
6942 int index;
6943 int full = 0;
6944 int ret = 0;
6945
6946 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6947
6948 /* odd, couldn't find the block group, leave it alone */
6949 if (!block_group)
6950 return -1;
6951
6952 min_free = btrfs_block_group_used(&block_group->item);
6953
6954 /* no bytes used, we're good */
6955 if (!min_free)
6956 goto out;
6957
6958 space_info = block_group->space_info;
6959 spin_lock(&space_info->lock);
6960
6961 full = space_info->full;
6962
6963 /*
6964 * if this is the last block group we have in this space, we can't
6965 * relocate it unless we're able to allocate a new chunk below.
6966 *
6967 * Otherwise, we need to make sure we have room in the space to handle
6968 * all of the extents from this block group. If we can, we're good
6969 */
6970 if ((space_info->total_bytes != block_group->key.offset) &&
6971 (space_info->bytes_used + space_info->bytes_reserved +
6972 space_info->bytes_pinned + space_info->bytes_readonly +
6973 min_free < space_info->total_bytes)) {
6974 spin_unlock(&space_info->lock);
6975 goto out;
6976 }
6977 spin_unlock(&space_info->lock);
6978
6979 /*
6980 * ok we don't have enough space, but maybe we have free space on our
6981 * devices to allocate new chunks for relocation, so loop through our
6982 * alloc devices and guess if we have enough space. However, if we
6983 * were marked as full, then we know there aren't enough chunks, and we
6984 * can just return.
6985 */
6986 ret = -1;
6987 if (full)
6988 goto out;
6989
6990 /*
6991 * index:
6992 * 0: raid10
6993 * 1: raid1
6994 * 2: dup
6995 * 3: raid0
6996 * 4: single
6997 */
6998 index = get_block_group_index(block_group);
6999 if (index == 0) {
7000 dev_min = 4;
7001 /* Divide by 2 */
7002 min_free >>= 1;
7003 } else if (index == 1) {
7004 dev_min = 2;
7005 } else if (index == 2) {
7006 /* Multiply by 2 */
7007 min_free <<= 1;
7008 } else if (index == 3) {
7009 dev_min = fs_devices->rw_devices;
7010 do_div(min_free, dev_min);
7011 }
7012
7013 mutex_lock(&root->fs_info->chunk_mutex);
7014 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7015 u64 dev_offset;
7016
7017 /*
7018 * check to make sure we can actually find a chunk with enough
7019 * space to fit our block group in.
7020 */
7021 if (device->total_bytes > device->bytes_used + min_free) {
7022 ret = find_free_dev_extent(NULL, device, min_free,
7023 &dev_offset, NULL);
7024 if (!ret)
7025 dev_nr++;
7026
7027 if (dev_nr >= dev_min)
7028 break;
7029
7030 ret = -1;
7031 }
7032 }
7033 mutex_unlock(&root->fs_info->chunk_mutex);
7034 out:
7035 btrfs_put_block_group(block_group);
7036 return ret;
7037 }
7038
7039 static int find_first_block_group(struct btrfs_root *root,
7040 struct btrfs_path *path, struct btrfs_key *key)
7041 {
7042 int ret = 0;
7043 struct btrfs_key found_key;
7044 struct extent_buffer *leaf;
7045 int slot;
7046
7047 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7048 if (ret < 0)
7049 goto out;
7050
7051 while (1) {
7052 slot = path->slots[0];
7053 leaf = path->nodes[0];
7054 if (slot >= btrfs_header_nritems(leaf)) {
7055 ret = btrfs_next_leaf(root, path);
7056 if (ret == 0)
7057 continue;
7058 if (ret < 0)
7059 goto out;
7060 break;
7061 }
7062 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7063
7064 if (found_key.objectid >= key->objectid &&
7065 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7066 ret = 0;
7067 goto out;
7068 }
7069 path->slots[0]++;
7070 }
7071 out:
7072 return ret;
7073 }
7074
7075 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7076 {
7077 struct btrfs_block_group_cache *block_group;
7078 u64 last = 0;
7079
7080 while (1) {
7081 struct inode *inode;
7082
7083 block_group = btrfs_lookup_first_block_group(info, last);
7084 while (block_group) {
7085 spin_lock(&block_group->lock);
7086 if (block_group->iref)
7087 break;
7088 spin_unlock(&block_group->lock);
7089 block_group = next_block_group(info->tree_root,
7090 block_group);
7091 }
7092 if (!block_group) {
7093 if (last == 0)
7094 break;
7095 last = 0;
7096 continue;
7097 }
7098
7099 inode = block_group->inode;
7100 block_group->iref = 0;
7101 block_group->inode = NULL;
7102 spin_unlock(&block_group->lock);
7103 iput(inode);
7104 last = block_group->key.objectid + block_group->key.offset;
7105 btrfs_put_block_group(block_group);
7106 }
7107 }
7108
7109 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7110 {
7111 struct btrfs_block_group_cache *block_group;
7112 struct btrfs_space_info *space_info;
7113 struct btrfs_caching_control *caching_ctl;
7114 struct rb_node *n;
7115
7116 down_write(&info->extent_commit_sem);
7117 while (!list_empty(&info->caching_block_groups)) {
7118 caching_ctl = list_entry(info->caching_block_groups.next,
7119 struct btrfs_caching_control, list);
7120 list_del(&caching_ctl->list);
7121 put_caching_control(caching_ctl);
7122 }
7123 up_write(&info->extent_commit_sem);
7124
7125 spin_lock(&info->block_group_cache_lock);
7126 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7127 block_group = rb_entry(n, struct btrfs_block_group_cache,
7128 cache_node);
7129 rb_erase(&block_group->cache_node,
7130 &info->block_group_cache_tree);
7131 spin_unlock(&info->block_group_cache_lock);
7132
7133 down_write(&block_group->space_info->groups_sem);
7134 list_del(&block_group->list);
7135 up_write(&block_group->space_info->groups_sem);
7136
7137 if (block_group->cached == BTRFS_CACHE_STARTED)
7138 wait_block_group_cache_done(block_group);
7139
7140 /*
7141 * We haven't cached this block group, which means we could
7142 * possibly have excluded extents on this block group.
7143 */
7144 if (block_group->cached == BTRFS_CACHE_NO)
7145 free_excluded_extents(info->extent_root, block_group);
7146
7147 btrfs_remove_free_space_cache(block_group);
7148 btrfs_put_block_group(block_group);
7149
7150 spin_lock(&info->block_group_cache_lock);
7151 }
7152 spin_unlock(&info->block_group_cache_lock);
7153
7154 /* now that all the block groups are freed, go through and
7155 * free all the space_info structs. This is only called during
7156 * the final stages of unmount, and so we know nobody is
7157 * using them. We call synchronize_rcu() once before we start,
7158 * just to be on the safe side.
7159 */
7160 synchronize_rcu();
7161
7162 release_global_block_rsv(info);
7163
7164 while(!list_empty(&info->space_info)) {
7165 space_info = list_entry(info->space_info.next,
7166 struct btrfs_space_info,
7167 list);
7168 if (space_info->bytes_pinned > 0 ||
7169 space_info->bytes_reserved > 0 ||
7170 space_info->bytes_may_use > 0) {
7171 WARN_ON(1);
7172 dump_space_info(space_info, 0, 0);
7173 }
7174 list_del(&space_info->list);
7175 kfree(space_info);
7176 }
7177 return 0;
7178 }
7179
7180 static void __link_block_group(struct btrfs_space_info *space_info,
7181 struct btrfs_block_group_cache *cache)
7182 {
7183 int index = get_block_group_index(cache);
7184
7185 down_write(&space_info->groups_sem);
7186 list_add_tail(&cache->list, &space_info->block_groups[index]);
7187 up_write(&space_info->groups_sem);
7188 }
7189
7190 int btrfs_read_block_groups(struct btrfs_root *root)
7191 {
7192 struct btrfs_path *path;
7193 int ret;
7194 struct btrfs_block_group_cache *cache;
7195 struct btrfs_fs_info *info = root->fs_info;
7196 struct btrfs_space_info *space_info;
7197 struct btrfs_key key;
7198 struct btrfs_key found_key;
7199 struct extent_buffer *leaf;
7200 int need_clear = 0;
7201 u64 cache_gen;
7202
7203 root = info->extent_root;
7204 key.objectid = 0;
7205 key.offset = 0;
7206 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7207 path = btrfs_alloc_path();
7208 if (!path)
7209 return -ENOMEM;
7210 path->reada = 1;
7211
7212 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7213 if (btrfs_test_opt(root, SPACE_CACHE) &&
7214 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7215 need_clear = 1;
7216 if (btrfs_test_opt(root, CLEAR_CACHE))
7217 need_clear = 1;
7218
7219 while (1) {
7220 ret = find_first_block_group(root, path, &key);
7221 if (ret > 0)
7222 break;
7223 if (ret != 0)
7224 goto error;
7225 leaf = path->nodes[0];
7226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7227 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7228 if (!cache) {
7229 ret = -ENOMEM;
7230 goto error;
7231 }
7232 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7233 GFP_NOFS);
7234 if (!cache->free_space_ctl) {
7235 kfree(cache);
7236 ret = -ENOMEM;
7237 goto error;
7238 }
7239
7240 atomic_set(&cache->count, 1);
7241 spin_lock_init(&cache->lock);
7242 cache->fs_info = info;
7243 INIT_LIST_HEAD(&cache->list);
7244 INIT_LIST_HEAD(&cache->cluster_list);
7245
7246 if (need_clear)
7247 cache->disk_cache_state = BTRFS_DC_CLEAR;
7248
7249 read_extent_buffer(leaf, &cache->item,
7250 btrfs_item_ptr_offset(leaf, path->slots[0]),
7251 sizeof(cache->item));
7252 memcpy(&cache->key, &found_key, sizeof(found_key));
7253
7254 key.objectid = found_key.objectid + found_key.offset;
7255 btrfs_release_path(path);
7256 cache->flags = btrfs_block_group_flags(&cache->item);
7257 cache->sectorsize = root->sectorsize;
7258
7259 btrfs_init_free_space_ctl(cache);
7260
7261 /*
7262 * We need to exclude the super stripes now so that the space
7263 * info has super bytes accounted for, otherwise we'll think
7264 * we have more space than we actually do.
7265 */
7266 exclude_super_stripes(root, cache);
7267
7268 /*
7269 * check for two cases, either we are full, and therefore
7270 * don't need to bother with the caching work since we won't
7271 * find any space, or we are empty, and we can just add all
7272 * the space in and be done with it. This saves us _alot_ of
7273 * time, particularly in the full case.
7274 */
7275 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7276 cache->last_byte_to_unpin = (u64)-1;
7277 cache->cached = BTRFS_CACHE_FINISHED;
7278 free_excluded_extents(root, cache);
7279 } else if (btrfs_block_group_used(&cache->item) == 0) {
7280 cache->last_byte_to_unpin = (u64)-1;
7281 cache->cached = BTRFS_CACHE_FINISHED;
7282 add_new_free_space(cache, root->fs_info,
7283 found_key.objectid,
7284 found_key.objectid +
7285 found_key.offset);
7286 free_excluded_extents(root, cache);
7287 }
7288
7289 ret = update_space_info(info, cache->flags, found_key.offset,
7290 btrfs_block_group_used(&cache->item),
7291 &space_info);
7292 BUG_ON(ret);
7293 cache->space_info = space_info;
7294 spin_lock(&cache->space_info->lock);
7295 cache->space_info->bytes_readonly += cache->bytes_super;
7296 spin_unlock(&cache->space_info->lock);
7297
7298 __link_block_group(space_info, cache);
7299
7300 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7301 BUG_ON(ret);
7302
7303 set_avail_alloc_bits(root->fs_info, cache->flags);
7304 if (btrfs_chunk_readonly(root, cache->key.objectid))
7305 set_block_group_ro(cache, 1);
7306 }
7307
7308 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7309 if (!(get_alloc_profile(root, space_info->flags) &
7310 (BTRFS_BLOCK_GROUP_RAID10 |
7311 BTRFS_BLOCK_GROUP_RAID1 |
7312 BTRFS_BLOCK_GROUP_DUP)))
7313 continue;
7314 /*
7315 * avoid allocating from un-mirrored block group if there are
7316 * mirrored block groups.
7317 */
7318 list_for_each_entry(cache, &space_info->block_groups[3], list)
7319 set_block_group_ro(cache, 1);
7320 list_for_each_entry(cache, &space_info->block_groups[4], list)
7321 set_block_group_ro(cache, 1);
7322 }
7323
7324 init_global_block_rsv(info);
7325 ret = 0;
7326 error:
7327 btrfs_free_path(path);
7328 return ret;
7329 }
7330
7331 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7332 struct btrfs_root *root, u64 bytes_used,
7333 u64 type, u64 chunk_objectid, u64 chunk_offset,
7334 u64 size)
7335 {
7336 int ret;
7337 struct btrfs_root *extent_root;
7338 struct btrfs_block_group_cache *cache;
7339
7340 extent_root = root->fs_info->extent_root;
7341
7342 root->fs_info->last_trans_log_full_commit = trans->transid;
7343
7344 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7345 if (!cache)
7346 return -ENOMEM;
7347 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7348 GFP_NOFS);
7349 if (!cache->free_space_ctl) {
7350 kfree(cache);
7351 return -ENOMEM;
7352 }
7353
7354 cache->key.objectid = chunk_offset;
7355 cache->key.offset = size;
7356 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7357 cache->sectorsize = root->sectorsize;
7358 cache->fs_info = root->fs_info;
7359
7360 atomic_set(&cache->count, 1);
7361 spin_lock_init(&cache->lock);
7362 INIT_LIST_HEAD(&cache->list);
7363 INIT_LIST_HEAD(&cache->cluster_list);
7364
7365 btrfs_init_free_space_ctl(cache);
7366
7367 btrfs_set_block_group_used(&cache->item, bytes_used);
7368 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7369 cache->flags = type;
7370 btrfs_set_block_group_flags(&cache->item, type);
7371
7372 cache->last_byte_to_unpin = (u64)-1;
7373 cache->cached = BTRFS_CACHE_FINISHED;
7374 exclude_super_stripes(root, cache);
7375
7376 add_new_free_space(cache, root->fs_info, chunk_offset,
7377 chunk_offset + size);
7378
7379 free_excluded_extents(root, cache);
7380
7381 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7382 &cache->space_info);
7383 BUG_ON(ret);
7384
7385 spin_lock(&cache->space_info->lock);
7386 cache->space_info->bytes_readonly += cache->bytes_super;
7387 spin_unlock(&cache->space_info->lock);
7388
7389 __link_block_group(cache->space_info, cache);
7390
7391 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7392 BUG_ON(ret);
7393
7394 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7395 sizeof(cache->item));
7396 BUG_ON(ret);
7397
7398 set_avail_alloc_bits(extent_root->fs_info, type);
7399
7400 return 0;
7401 }
7402
7403 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7404 struct btrfs_root *root, u64 group_start)
7405 {
7406 struct btrfs_path *path;
7407 struct btrfs_block_group_cache *block_group;
7408 struct btrfs_free_cluster *cluster;
7409 struct btrfs_root *tree_root = root->fs_info->tree_root;
7410 struct btrfs_key key;
7411 struct inode *inode;
7412 int ret;
7413 int factor;
7414
7415 root = root->fs_info->extent_root;
7416
7417 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7418 BUG_ON(!block_group);
7419 BUG_ON(!block_group->ro);
7420
7421 /*
7422 * Free the reserved super bytes from this block group before
7423 * remove it.
7424 */
7425 free_excluded_extents(root, block_group);
7426
7427 memcpy(&key, &block_group->key, sizeof(key));
7428 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7429 BTRFS_BLOCK_GROUP_RAID1 |
7430 BTRFS_BLOCK_GROUP_RAID10))
7431 factor = 2;
7432 else
7433 factor = 1;
7434
7435 /* make sure this block group isn't part of an allocation cluster */
7436 cluster = &root->fs_info->data_alloc_cluster;
7437 spin_lock(&cluster->refill_lock);
7438 btrfs_return_cluster_to_free_space(block_group, cluster);
7439 spin_unlock(&cluster->refill_lock);
7440
7441 /*
7442 * make sure this block group isn't part of a metadata
7443 * allocation cluster
7444 */
7445 cluster = &root->fs_info->meta_alloc_cluster;
7446 spin_lock(&cluster->refill_lock);
7447 btrfs_return_cluster_to_free_space(block_group, cluster);
7448 spin_unlock(&cluster->refill_lock);
7449
7450 path = btrfs_alloc_path();
7451 if (!path) {
7452 ret = -ENOMEM;
7453 goto out;
7454 }
7455
7456 inode = lookup_free_space_inode(tree_root, block_group, path);
7457 if (!IS_ERR(inode)) {
7458 ret = btrfs_orphan_add(trans, inode);
7459 BUG_ON(ret);
7460 clear_nlink(inode);
7461 /* One for the block groups ref */
7462 spin_lock(&block_group->lock);
7463 if (block_group->iref) {
7464 block_group->iref = 0;
7465 block_group->inode = NULL;
7466 spin_unlock(&block_group->lock);
7467 iput(inode);
7468 } else {
7469 spin_unlock(&block_group->lock);
7470 }
7471 /* One for our lookup ref */
7472 btrfs_add_delayed_iput(inode);
7473 }
7474
7475 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7476 key.offset = block_group->key.objectid;
7477 key.type = 0;
7478
7479 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7480 if (ret < 0)
7481 goto out;
7482 if (ret > 0)
7483 btrfs_release_path(path);
7484 if (ret == 0) {
7485 ret = btrfs_del_item(trans, tree_root, path);
7486 if (ret)
7487 goto out;
7488 btrfs_release_path(path);
7489 }
7490
7491 spin_lock(&root->fs_info->block_group_cache_lock);
7492 rb_erase(&block_group->cache_node,
7493 &root->fs_info->block_group_cache_tree);
7494 spin_unlock(&root->fs_info->block_group_cache_lock);
7495
7496 down_write(&block_group->space_info->groups_sem);
7497 /*
7498 * we must use list_del_init so people can check to see if they
7499 * are still on the list after taking the semaphore
7500 */
7501 list_del_init(&block_group->list);
7502 up_write(&block_group->space_info->groups_sem);
7503
7504 if (block_group->cached == BTRFS_CACHE_STARTED)
7505 wait_block_group_cache_done(block_group);
7506
7507 btrfs_remove_free_space_cache(block_group);
7508
7509 spin_lock(&block_group->space_info->lock);
7510 block_group->space_info->total_bytes -= block_group->key.offset;
7511 block_group->space_info->bytes_readonly -= block_group->key.offset;
7512 block_group->space_info->disk_total -= block_group->key.offset * factor;
7513 spin_unlock(&block_group->space_info->lock);
7514
7515 memcpy(&key, &block_group->key, sizeof(key));
7516
7517 btrfs_clear_space_info_full(root->fs_info);
7518
7519 btrfs_put_block_group(block_group);
7520 btrfs_put_block_group(block_group);
7521
7522 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7523 if (ret > 0)
7524 ret = -EIO;
7525 if (ret < 0)
7526 goto out;
7527
7528 ret = btrfs_del_item(trans, root, path);
7529 out:
7530 btrfs_free_path(path);
7531 return ret;
7532 }
7533
7534 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7535 {
7536 struct btrfs_space_info *space_info;
7537 struct btrfs_super_block *disk_super;
7538 u64 features;
7539 u64 flags;
7540 int mixed = 0;
7541 int ret;
7542
7543 disk_super = fs_info->super_copy;
7544 if (!btrfs_super_root(disk_super))
7545 return 1;
7546
7547 features = btrfs_super_incompat_flags(disk_super);
7548 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7549 mixed = 1;
7550
7551 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7552 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7553 if (ret)
7554 goto out;
7555
7556 if (mixed) {
7557 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7558 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7559 } else {
7560 flags = BTRFS_BLOCK_GROUP_METADATA;
7561 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7562 if (ret)
7563 goto out;
7564
7565 flags = BTRFS_BLOCK_GROUP_DATA;
7566 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7567 }
7568 out:
7569 return ret;
7570 }
7571
7572 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7573 {
7574 return unpin_extent_range(root, start, end);
7575 }
7576
7577 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7578 u64 num_bytes, u64 *actual_bytes)
7579 {
7580 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7581 }
7582
7583 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7584 {
7585 struct btrfs_fs_info *fs_info = root->fs_info;
7586 struct btrfs_block_group_cache *cache = NULL;
7587 u64 group_trimmed;
7588 u64 start;
7589 u64 end;
7590 u64 trimmed = 0;
7591 int ret = 0;
7592
7593 cache = btrfs_lookup_block_group(fs_info, range->start);
7594
7595 while (cache) {
7596 if (cache->key.objectid >= (range->start + range->len)) {
7597 btrfs_put_block_group(cache);
7598 break;
7599 }
7600
7601 start = max(range->start, cache->key.objectid);
7602 end = min(range->start + range->len,
7603 cache->key.objectid + cache->key.offset);
7604
7605 if (end - start >= range->minlen) {
7606 if (!block_group_cache_done(cache)) {
7607 ret = cache_block_group(cache, NULL, root, 0);
7608 if (!ret)
7609 wait_block_group_cache_done(cache);
7610 }
7611 ret = btrfs_trim_block_group(cache,
7612 &group_trimmed,
7613 start,
7614 end,
7615 range->minlen);
7616
7617 trimmed += group_trimmed;
7618 if (ret) {
7619 btrfs_put_block_group(cache);
7620 break;
7621 }
7622 }
7623
7624 cache = next_block_group(fs_info->tree_root, cache);
7625 }
7626
7627 range->len = trimmed;
7628 return ret;
7629 }