]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'raid56-experimental' into for-linus-3.9
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108
109 static noinline int
110 block_group_cache_done(struct btrfs_block_group_cache *cache)
111 {
112 smp_mb();
113 return cache->cached == BTRFS_CACHE_FINISHED;
114 }
115
116 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
117 {
118 return (cache->flags & bits) == bits;
119 }
120
121 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
122 {
123 atomic_inc(&cache->count);
124 }
125
126 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
127 {
128 if (atomic_dec_and_test(&cache->count)) {
129 WARN_ON(cache->pinned > 0);
130 WARN_ON(cache->reserved > 0);
131 kfree(cache->free_space_ctl);
132 kfree(cache);
133 }
134 }
135
136 /*
137 * this adds the block group to the fs_info rb tree for the block group
138 * cache
139 */
140 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
141 struct btrfs_block_group_cache *block_group)
142 {
143 struct rb_node **p;
144 struct rb_node *parent = NULL;
145 struct btrfs_block_group_cache *cache;
146
147 spin_lock(&info->block_group_cache_lock);
148 p = &info->block_group_cache_tree.rb_node;
149
150 while (*p) {
151 parent = *p;
152 cache = rb_entry(parent, struct btrfs_block_group_cache,
153 cache_node);
154 if (block_group->key.objectid < cache->key.objectid) {
155 p = &(*p)->rb_left;
156 } else if (block_group->key.objectid > cache->key.objectid) {
157 p = &(*p)->rb_right;
158 } else {
159 spin_unlock(&info->block_group_cache_lock);
160 return -EEXIST;
161 }
162 }
163
164 rb_link_node(&block_group->cache_node, parent, p);
165 rb_insert_color(&block_group->cache_node,
166 &info->block_group_cache_tree);
167
168 if (info->first_logical_byte > block_group->key.objectid)
169 info->first_logical_byte = block_group->key.objectid;
170
171 spin_unlock(&info->block_group_cache_lock);
172
173 return 0;
174 }
175
176 /*
177 * This will return the block group at or after bytenr if contains is 0, else
178 * it will return the block group that contains the bytenr
179 */
180 static struct btrfs_block_group_cache *
181 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
182 int contains)
183 {
184 struct btrfs_block_group_cache *cache, *ret = NULL;
185 struct rb_node *n;
186 u64 end, start;
187
188 spin_lock(&info->block_group_cache_lock);
189 n = info->block_group_cache_tree.rb_node;
190
191 while (n) {
192 cache = rb_entry(n, struct btrfs_block_group_cache,
193 cache_node);
194 end = cache->key.objectid + cache->key.offset - 1;
195 start = cache->key.objectid;
196
197 if (bytenr < start) {
198 if (!contains && (!ret || start < ret->key.objectid))
199 ret = cache;
200 n = n->rb_left;
201 } else if (bytenr > start) {
202 if (contains && bytenr <= end) {
203 ret = cache;
204 break;
205 }
206 n = n->rb_right;
207 } else {
208 ret = cache;
209 break;
210 }
211 }
212 if (ret) {
213 btrfs_get_block_group(ret);
214 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
215 info->first_logical_byte = ret->key.objectid;
216 }
217 spin_unlock(&info->block_group_cache_lock);
218
219 return ret;
220 }
221
222 static int add_excluded_extent(struct btrfs_root *root,
223 u64 start, u64 num_bytes)
224 {
225 u64 end = start + num_bytes - 1;
226 set_extent_bits(&root->fs_info->freed_extents[0],
227 start, end, EXTENT_UPTODATE, GFP_NOFS);
228 set_extent_bits(&root->fs_info->freed_extents[1],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 return 0;
231 }
232
233 static void free_excluded_extents(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
235 {
236 u64 start, end;
237
238 start = cache->key.objectid;
239 end = start + cache->key.offset - 1;
240
241 clear_extent_bits(&root->fs_info->freed_extents[0],
242 start, end, EXTENT_UPTODATE, GFP_NOFS);
243 clear_extent_bits(&root->fs_info->freed_extents[1],
244 start, end, EXTENT_UPTODATE, GFP_NOFS);
245 }
246
247 static int exclude_super_stripes(struct btrfs_root *root,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 bytenr;
251 u64 *logical;
252 int stripe_len;
253 int i, nr, ret;
254
255 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
256 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, cache->key.objectid,
259 stripe_len);
260 BUG_ON(ret); /* -ENOMEM */
261 }
262
263 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
264 bytenr = btrfs_sb_offset(i);
265 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
266 cache->key.objectid, bytenr,
267 0, &logical, &nr, &stripe_len);
268 BUG_ON(ret); /* -ENOMEM */
269
270 while (nr--) {
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(root, logical[nr],
273 stripe_len);
274 BUG_ON(ret); /* -ENOMEM */
275 }
276
277 kfree(logical);
278 }
279 return 0;
280 }
281
282 static struct btrfs_caching_control *
283 get_caching_control(struct btrfs_block_group_cache *cache)
284 {
285 struct btrfs_caching_control *ctl;
286
287 spin_lock(&cache->lock);
288 if (cache->cached != BTRFS_CACHE_STARTED) {
289 spin_unlock(&cache->lock);
290 return NULL;
291 }
292
293 /* We're loading it the fast way, so we don't have a caching_ctl. */
294 if (!cache->caching_ctl) {
295 spin_unlock(&cache->lock);
296 return NULL;
297 }
298
299 ctl = cache->caching_ctl;
300 atomic_inc(&ctl->count);
301 spin_unlock(&cache->lock);
302 return ctl;
303 }
304
305 static void put_caching_control(struct btrfs_caching_control *ctl)
306 {
307 if (atomic_dec_and_test(&ctl->count))
308 kfree(ctl);
309 }
310
311 /*
312 * this is only called by cache_block_group, since we could have freed extents
313 * we need to check the pinned_extents for any extents that can't be used yet
314 * since their free space will be released as soon as the transaction commits.
315 */
316 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
317 struct btrfs_fs_info *info, u64 start, u64 end)
318 {
319 u64 extent_start, extent_end, size, total_added = 0;
320 int ret;
321
322 while (start < end) {
323 ret = find_first_extent_bit(info->pinned_extents, start,
324 &extent_start, &extent_end,
325 EXTENT_DIRTY | EXTENT_UPTODATE,
326 NULL);
327 if (ret)
328 break;
329
330 if (extent_start <= start) {
331 start = extent_end + 1;
332 } else if (extent_start > start && extent_start < end) {
333 size = extent_start - start;
334 total_added += size;
335 ret = btrfs_add_free_space(block_group, start,
336 size);
337 BUG_ON(ret); /* -ENOMEM or logic error */
338 start = extent_end + 1;
339 } else {
340 break;
341 }
342 }
343
344 if (start < end) {
345 size = end - start;
346 total_added += size;
347 ret = btrfs_add_free_space(block_group, start, size);
348 BUG_ON(ret); /* -ENOMEM or logic error */
349 }
350
351 return total_added;
352 }
353
354 static noinline void caching_thread(struct btrfs_work *work)
355 {
356 struct btrfs_block_group_cache *block_group;
357 struct btrfs_fs_info *fs_info;
358 struct btrfs_caching_control *caching_ctl;
359 struct btrfs_root *extent_root;
360 struct btrfs_path *path;
361 struct extent_buffer *leaf;
362 struct btrfs_key key;
363 u64 total_found = 0;
364 u64 last = 0;
365 u32 nritems;
366 int ret = 0;
367
368 caching_ctl = container_of(work, struct btrfs_caching_control, work);
369 block_group = caching_ctl->block_group;
370 fs_info = block_group->fs_info;
371 extent_root = fs_info->extent_root;
372
373 path = btrfs_alloc_path();
374 if (!path)
375 goto out;
376
377 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
378
379 /*
380 * We don't want to deadlock with somebody trying to allocate a new
381 * extent for the extent root while also trying to search the extent
382 * root to add free space. So we skip locking and search the commit
383 * root, since its read-only
384 */
385 path->skip_locking = 1;
386 path->search_commit_root = 1;
387 path->reada = 1;
388
389 key.objectid = last;
390 key.offset = 0;
391 key.type = BTRFS_EXTENT_ITEM_KEY;
392 again:
393 mutex_lock(&caching_ctl->mutex);
394 /* need to make sure the commit_root doesn't disappear */
395 down_read(&fs_info->extent_commit_sem);
396
397 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
398 if (ret < 0)
399 goto err;
400
401 leaf = path->nodes[0];
402 nritems = btrfs_header_nritems(leaf);
403
404 while (1) {
405 if (btrfs_fs_closing(fs_info) > 1) {
406 last = (u64)-1;
407 break;
408 }
409
410 if (path->slots[0] < nritems) {
411 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
412 } else {
413 ret = find_next_key(path, 0, &key);
414 if (ret)
415 break;
416
417 if (need_resched() ||
418 btrfs_next_leaf(extent_root, path)) {
419 caching_ctl->progress = last;
420 btrfs_release_path(path);
421 up_read(&fs_info->extent_commit_sem);
422 mutex_unlock(&caching_ctl->mutex);
423 cond_resched();
424 goto again;
425 }
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428 continue;
429 }
430
431 if (key.objectid < block_group->key.objectid) {
432 path->slots[0]++;
433 continue;
434 }
435
436 if (key.objectid >= block_group->key.objectid +
437 block_group->key.offset)
438 break;
439
440 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
441 total_found += add_new_free_space(block_group,
442 fs_info, last,
443 key.objectid);
444 last = key.objectid + key.offset;
445
446 if (total_found > (1024 * 1024 * 2)) {
447 total_found = 0;
448 wake_up(&caching_ctl->wait);
449 }
450 }
451 path->slots[0]++;
452 }
453 ret = 0;
454
455 total_found += add_new_free_space(block_group, fs_info, last,
456 block_group->key.objectid +
457 block_group->key.offset);
458 caching_ctl->progress = (u64)-1;
459
460 spin_lock(&block_group->lock);
461 block_group->caching_ctl = NULL;
462 block_group->cached = BTRFS_CACHE_FINISHED;
463 spin_unlock(&block_group->lock);
464
465 err:
466 btrfs_free_path(path);
467 up_read(&fs_info->extent_commit_sem);
468
469 free_excluded_extents(extent_root, block_group);
470
471 mutex_unlock(&caching_ctl->mutex);
472 out:
473 wake_up(&caching_ctl->wait);
474
475 put_caching_control(caching_ctl);
476 btrfs_put_block_group(block_group);
477 }
478
479 static int cache_block_group(struct btrfs_block_group_cache *cache,
480 int load_cache_only)
481 {
482 DEFINE_WAIT(wait);
483 struct btrfs_fs_info *fs_info = cache->fs_info;
484 struct btrfs_caching_control *caching_ctl;
485 int ret = 0;
486
487 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
488 if (!caching_ctl)
489 return -ENOMEM;
490
491 INIT_LIST_HEAD(&caching_ctl->list);
492 mutex_init(&caching_ctl->mutex);
493 init_waitqueue_head(&caching_ctl->wait);
494 caching_ctl->block_group = cache;
495 caching_ctl->progress = cache->key.objectid;
496 atomic_set(&caching_ctl->count, 1);
497 caching_ctl->work.func = caching_thread;
498
499 spin_lock(&cache->lock);
500 /*
501 * This should be a rare occasion, but this could happen I think in the
502 * case where one thread starts to load the space cache info, and then
503 * some other thread starts a transaction commit which tries to do an
504 * allocation while the other thread is still loading the space cache
505 * info. The previous loop should have kept us from choosing this block
506 * group, but if we've moved to the state where we will wait on caching
507 * block groups we need to first check if we're doing a fast load here,
508 * so we can wait for it to finish, otherwise we could end up allocating
509 * from a block group who's cache gets evicted for one reason or
510 * another.
511 */
512 while (cache->cached == BTRFS_CACHE_FAST) {
513 struct btrfs_caching_control *ctl;
514
515 ctl = cache->caching_ctl;
516 atomic_inc(&ctl->count);
517 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
518 spin_unlock(&cache->lock);
519
520 schedule();
521
522 finish_wait(&ctl->wait, &wait);
523 put_caching_control(ctl);
524 spin_lock(&cache->lock);
525 }
526
527 if (cache->cached != BTRFS_CACHE_NO) {
528 spin_unlock(&cache->lock);
529 kfree(caching_ctl);
530 return 0;
531 }
532 WARN_ON(cache->caching_ctl);
533 cache->caching_ctl = caching_ctl;
534 cache->cached = BTRFS_CACHE_FAST;
535 spin_unlock(&cache->lock);
536
537 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
538 ret = load_free_space_cache(fs_info, cache);
539
540 spin_lock(&cache->lock);
541 if (ret == 1) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_FINISHED;
544 cache->last_byte_to_unpin = (u64)-1;
545 } else {
546 if (load_cache_only) {
547 cache->caching_ctl = NULL;
548 cache->cached = BTRFS_CACHE_NO;
549 } else {
550 cache->cached = BTRFS_CACHE_STARTED;
551 }
552 }
553 spin_unlock(&cache->lock);
554 wake_up(&caching_ctl->wait);
555 if (ret == 1) {
556 put_caching_control(caching_ctl);
557 free_excluded_extents(fs_info->extent_root, cache);
558 return 0;
559 }
560 } else {
561 /*
562 * We are not going to do the fast caching, set cached to the
563 * appropriate value and wakeup any waiters.
564 */
565 spin_lock(&cache->lock);
566 if (load_cache_only) {
567 cache->caching_ctl = NULL;
568 cache->cached = BTRFS_CACHE_NO;
569 } else {
570 cache->cached = BTRFS_CACHE_STARTED;
571 }
572 spin_unlock(&cache->lock);
573 wake_up(&caching_ctl->wait);
574 }
575
576 if (load_cache_only) {
577 put_caching_control(caching_ctl);
578 return 0;
579 }
580
581 down_write(&fs_info->extent_commit_sem);
582 atomic_inc(&caching_ctl->count);
583 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
584 up_write(&fs_info->extent_commit_sem);
585
586 btrfs_get_block_group(cache);
587
588 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
589
590 return ret;
591 }
592
593 /*
594 * return the block group that starts at or after bytenr
595 */
596 static struct btrfs_block_group_cache *
597 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
598 {
599 struct btrfs_block_group_cache *cache;
600
601 cache = block_group_cache_tree_search(info, bytenr, 0);
602
603 return cache;
604 }
605
606 /*
607 * return the block group that contains the given bytenr
608 */
609 struct btrfs_block_group_cache *btrfs_lookup_block_group(
610 struct btrfs_fs_info *info,
611 u64 bytenr)
612 {
613 struct btrfs_block_group_cache *cache;
614
615 cache = block_group_cache_tree_search(info, bytenr, 1);
616
617 return cache;
618 }
619
620 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
621 u64 flags)
622 {
623 struct list_head *head = &info->space_info;
624 struct btrfs_space_info *found;
625
626 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
627
628 rcu_read_lock();
629 list_for_each_entry_rcu(found, head, list) {
630 if (found->flags & flags) {
631 rcu_read_unlock();
632 return found;
633 }
634 }
635 rcu_read_unlock();
636 return NULL;
637 }
638
639 /*
640 * after adding space to the filesystem, we need to clear the full flags
641 * on all the space infos.
642 */
643 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
644 {
645 struct list_head *head = &info->space_info;
646 struct btrfs_space_info *found;
647
648 rcu_read_lock();
649 list_for_each_entry_rcu(found, head, list)
650 found->full = 0;
651 rcu_read_unlock();
652 }
653
654 u64 btrfs_find_block_group(struct btrfs_root *root,
655 u64 search_start, u64 search_hint, int owner)
656 {
657 struct btrfs_block_group_cache *cache;
658 u64 used;
659 u64 last = max(search_hint, search_start);
660 u64 group_start = 0;
661 int full_search = 0;
662 int factor = 9;
663 int wrapped = 0;
664 again:
665 while (1) {
666 cache = btrfs_lookup_first_block_group(root->fs_info, last);
667 if (!cache)
668 break;
669
670 spin_lock(&cache->lock);
671 last = cache->key.objectid + cache->key.offset;
672 used = btrfs_block_group_used(&cache->item);
673
674 if ((full_search || !cache->ro) &&
675 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
676 if (used + cache->pinned + cache->reserved <
677 div_factor(cache->key.offset, factor)) {
678 group_start = cache->key.objectid;
679 spin_unlock(&cache->lock);
680 btrfs_put_block_group(cache);
681 goto found;
682 }
683 }
684 spin_unlock(&cache->lock);
685 btrfs_put_block_group(cache);
686 cond_resched();
687 }
688 if (!wrapped) {
689 last = search_start;
690 wrapped = 1;
691 goto again;
692 }
693 if (!full_search && factor < 10) {
694 last = search_start;
695 full_search = 1;
696 factor = 10;
697 goto again;
698 }
699 found:
700 return group_start;
701 }
702
703 /* simple helper to search for an existing extent at a given offset */
704 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
705 {
706 int ret;
707 struct btrfs_key key;
708 struct btrfs_path *path;
709
710 path = btrfs_alloc_path();
711 if (!path)
712 return -ENOMEM;
713
714 key.objectid = start;
715 key.offset = len;
716 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
717 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
718 0, 0);
719 btrfs_free_path(path);
720 return ret;
721 }
722
723 /*
724 * helper function to lookup reference count and flags of extent.
725 *
726 * the head node for delayed ref is used to store the sum of all the
727 * reference count modifications queued up in the rbtree. the head
728 * node may also store the extent flags to set. This way you can check
729 * to see what the reference count and extent flags would be if all of
730 * the delayed refs are not processed.
731 */
732 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
733 struct btrfs_root *root, u64 bytenr,
734 u64 num_bytes, u64 *refs, u64 *flags)
735 {
736 struct btrfs_delayed_ref_head *head;
737 struct btrfs_delayed_ref_root *delayed_refs;
738 struct btrfs_path *path;
739 struct btrfs_extent_item *ei;
740 struct extent_buffer *leaf;
741 struct btrfs_key key;
742 u32 item_size;
743 u64 num_refs;
744 u64 extent_flags;
745 int ret;
746
747 path = btrfs_alloc_path();
748 if (!path)
749 return -ENOMEM;
750
751 key.objectid = bytenr;
752 key.type = BTRFS_EXTENT_ITEM_KEY;
753 key.offset = num_bytes;
754 if (!trans) {
755 path->skip_locking = 1;
756 path->search_commit_root = 1;
757 }
758 again:
759 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
760 &key, path, 0, 0);
761 if (ret < 0)
762 goto out_free;
763
764 if (ret == 0) {
765 leaf = path->nodes[0];
766 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
767 if (item_size >= sizeof(*ei)) {
768 ei = btrfs_item_ptr(leaf, path->slots[0],
769 struct btrfs_extent_item);
770 num_refs = btrfs_extent_refs(leaf, ei);
771 extent_flags = btrfs_extent_flags(leaf, ei);
772 } else {
773 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
774 struct btrfs_extent_item_v0 *ei0;
775 BUG_ON(item_size != sizeof(*ei0));
776 ei0 = btrfs_item_ptr(leaf, path->slots[0],
777 struct btrfs_extent_item_v0);
778 num_refs = btrfs_extent_refs_v0(leaf, ei0);
779 /* FIXME: this isn't correct for data */
780 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
781 #else
782 BUG();
783 #endif
784 }
785 BUG_ON(num_refs == 0);
786 } else {
787 num_refs = 0;
788 extent_flags = 0;
789 ret = 0;
790 }
791
792 if (!trans)
793 goto out;
794
795 delayed_refs = &trans->transaction->delayed_refs;
796 spin_lock(&delayed_refs->lock);
797 head = btrfs_find_delayed_ref_head(trans, bytenr);
798 if (head) {
799 if (!mutex_trylock(&head->mutex)) {
800 atomic_inc(&head->node.refs);
801 spin_unlock(&delayed_refs->lock);
802
803 btrfs_release_path(path);
804
805 /*
806 * Mutex was contended, block until it's released and try
807 * again
808 */
809 mutex_lock(&head->mutex);
810 mutex_unlock(&head->mutex);
811 btrfs_put_delayed_ref(&head->node);
812 goto again;
813 }
814 if (head->extent_op && head->extent_op->update_flags)
815 extent_flags |= head->extent_op->flags_to_set;
816 else
817 BUG_ON(num_refs == 0);
818
819 num_refs += head->node.ref_mod;
820 mutex_unlock(&head->mutex);
821 }
822 spin_unlock(&delayed_refs->lock);
823 out:
824 WARN_ON(num_refs == 0);
825 if (refs)
826 *refs = num_refs;
827 if (flags)
828 *flags = extent_flags;
829 out_free:
830 btrfs_free_path(path);
831 return ret;
832 }
833
834 /*
835 * Back reference rules. Back refs have three main goals:
836 *
837 * 1) differentiate between all holders of references to an extent so that
838 * when a reference is dropped we can make sure it was a valid reference
839 * before freeing the extent.
840 *
841 * 2) Provide enough information to quickly find the holders of an extent
842 * if we notice a given block is corrupted or bad.
843 *
844 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
845 * maintenance. This is actually the same as #2, but with a slightly
846 * different use case.
847 *
848 * There are two kinds of back refs. The implicit back refs is optimized
849 * for pointers in non-shared tree blocks. For a given pointer in a block,
850 * back refs of this kind provide information about the block's owner tree
851 * and the pointer's key. These information allow us to find the block by
852 * b-tree searching. The full back refs is for pointers in tree blocks not
853 * referenced by their owner trees. The location of tree block is recorded
854 * in the back refs. Actually the full back refs is generic, and can be
855 * used in all cases the implicit back refs is used. The major shortcoming
856 * of the full back refs is its overhead. Every time a tree block gets
857 * COWed, we have to update back refs entry for all pointers in it.
858 *
859 * For a newly allocated tree block, we use implicit back refs for
860 * pointers in it. This means most tree related operations only involve
861 * implicit back refs. For a tree block created in old transaction, the
862 * only way to drop a reference to it is COW it. So we can detect the
863 * event that tree block loses its owner tree's reference and do the
864 * back refs conversion.
865 *
866 * When a tree block is COW'd through a tree, there are four cases:
867 *
868 * The reference count of the block is one and the tree is the block's
869 * owner tree. Nothing to do in this case.
870 *
871 * The reference count of the block is one and the tree is not the
872 * block's owner tree. In this case, full back refs is used for pointers
873 * in the block. Remove these full back refs, add implicit back refs for
874 * every pointers in the new block.
875 *
876 * The reference count of the block is greater than one and the tree is
877 * the block's owner tree. In this case, implicit back refs is used for
878 * pointers in the block. Add full back refs for every pointers in the
879 * block, increase lower level extents' reference counts. The original
880 * implicit back refs are entailed to the new block.
881 *
882 * The reference count of the block is greater than one and the tree is
883 * not the block's owner tree. Add implicit back refs for every pointer in
884 * the new block, increase lower level extents' reference count.
885 *
886 * Back Reference Key composing:
887 *
888 * The key objectid corresponds to the first byte in the extent,
889 * The key type is used to differentiate between types of back refs.
890 * There are different meanings of the key offset for different types
891 * of back refs.
892 *
893 * File extents can be referenced by:
894 *
895 * - multiple snapshots, subvolumes, or different generations in one subvol
896 * - different files inside a single subvolume
897 * - different offsets inside a file (bookend extents in file.c)
898 *
899 * The extent ref structure for the implicit back refs has fields for:
900 *
901 * - Objectid of the subvolume root
902 * - objectid of the file holding the reference
903 * - original offset in the file
904 * - how many bookend extents
905 *
906 * The key offset for the implicit back refs is hash of the first
907 * three fields.
908 *
909 * The extent ref structure for the full back refs has field for:
910 *
911 * - number of pointers in the tree leaf
912 *
913 * The key offset for the implicit back refs is the first byte of
914 * the tree leaf
915 *
916 * When a file extent is allocated, The implicit back refs is used.
917 * the fields are filled in:
918 *
919 * (root_key.objectid, inode objectid, offset in file, 1)
920 *
921 * When a file extent is removed file truncation, we find the
922 * corresponding implicit back refs and check the following fields:
923 *
924 * (btrfs_header_owner(leaf), inode objectid, offset in file)
925 *
926 * Btree extents can be referenced by:
927 *
928 * - Different subvolumes
929 *
930 * Both the implicit back refs and the full back refs for tree blocks
931 * only consist of key. The key offset for the implicit back refs is
932 * objectid of block's owner tree. The key offset for the full back refs
933 * is the first byte of parent block.
934 *
935 * When implicit back refs is used, information about the lowest key and
936 * level of the tree block are required. These information are stored in
937 * tree block info structure.
938 */
939
940 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
941 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
942 struct btrfs_root *root,
943 struct btrfs_path *path,
944 u64 owner, u32 extra_size)
945 {
946 struct btrfs_extent_item *item;
947 struct btrfs_extent_item_v0 *ei0;
948 struct btrfs_extent_ref_v0 *ref0;
949 struct btrfs_tree_block_info *bi;
950 struct extent_buffer *leaf;
951 struct btrfs_key key;
952 struct btrfs_key found_key;
953 u32 new_size = sizeof(*item);
954 u64 refs;
955 int ret;
956
957 leaf = path->nodes[0];
958 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
959
960 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
961 ei0 = btrfs_item_ptr(leaf, path->slots[0],
962 struct btrfs_extent_item_v0);
963 refs = btrfs_extent_refs_v0(leaf, ei0);
964
965 if (owner == (u64)-1) {
966 while (1) {
967 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
968 ret = btrfs_next_leaf(root, path);
969 if (ret < 0)
970 return ret;
971 BUG_ON(ret > 0); /* Corruption */
972 leaf = path->nodes[0];
973 }
974 btrfs_item_key_to_cpu(leaf, &found_key,
975 path->slots[0]);
976 BUG_ON(key.objectid != found_key.objectid);
977 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
978 path->slots[0]++;
979 continue;
980 }
981 ref0 = btrfs_item_ptr(leaf, path->slots[0],
982 struct btrfs_extent_ref_v0);
983 owner = btrfs_ref_objectid_v0(leaf, ref0);
984 break;
985 }
986 }
987 btrfs_release_path(path);
988
989 if (owner < BTRFS_FIRST_FREE_OBJECTID)
990 new_size += sizeof(*bi);
991
992 new_size -= sizeof(*ei0);
993 ret = btrfs_search_slot(trans, root, &key, path,
994 new_size + extra_size, 1);
995 if (ret < 0)
996 return ret;
997 BUG_ON(ret); /* Corruption */
998
999 btrfs_extend_item(trans, root, path, new_size);
1000
1001 leaf = path->nodes[0];
1002 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1003 btrfs_set_extent_refs(leaf, item, refs);
1004 /* FIXME: get real generation */
1005 btrfs_set_extent_generation(leaf, item, 0);
1006 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1007 btrfs_set_extent_flags(leaf, item,
1008 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1009 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1010 bi = (struct btrfs_tree_block_info *)(item + 1);
1011 /* FIXME: get first key of the block */
1012 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1013 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1014 } else {
1015 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1016 }
1017 btrfs_mark_buffer_dirty(leaf);
1018 return 0;
1019 }
1020 #endif
1021
1022 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1023 {
1024 u32 high_crc = ~(u32)0;
1025 u32 low_crc = ~(u32)0;
1026 __le64 lenum;
1027
1028 lenum = cpu_to_le64(root_objectid);
1029 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1030 lenum = cpu_to_le64(owner);
1031 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1032 lenum = cpu_to_le64(offset);
1033 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1034
1035 return ((u64)high_crc << 31) ^ (u64)low_crc;
1036 }
1037
1038 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1039 struct btrfs_extent_data_ref *ref)
1040 {
1041 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1042 btrfs_extent_data_ref_objectid(leaf, ref),
1043 btrfs_extent_data_ref_offset(leaf, ref));
1044 }
1045
1046 static int match_extent_data_ref(struct extent_buffer *leaf,
1047 struct btrfs_extent_data_ref *ref,
1048 u64 root_objectid, u64 owner, u64 offset)
1049 {
1050 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1051 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1052 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1053 return 0;
1054 return 1;
1055 }
1056
1057 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1058 struct btrfs_root *root,
1059 struct btrfs_path *path,
1060 u64 bytenr, u64 parent,
1061 u64 root_objectid,
1062 u64 owner, u64 offset)
1063 {
1064 struct btrfs_key key;
1065 struct btrfs_extent_data_ref *ref;
1066 struct extent_buffer *leaf;
1067 u32 nritems;
1068 int ret;
1069 int recow;
1070 int err = -ENOENT;
1071
1072 key.objectid = bytenr;
1073 if (parent) {
1074 key.type = BTRFS_SHARED_DATA_REF_KEY;
1075 key.offset = parent;
1076 } else {
1077 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1078 key.offset = hash_extent_data_ref(root_objectid,
1079 owner, offset);
1080 }
1081 again:
1082 recow = 0;
1083 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1084 if (ret < 0) {
1085 err = ret;
1086 goto fail;
1087 }
1088
1089 if (parent) {
1090 if (!ret)
1091 return 0;
1092 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1093 key.type = BTRFS_EXTENT_REF_V0_KEY;
1094 btrfs_release_path(path);
1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1096 if (ret < 0) {
1097 err = ret;
1098 goto fail;
1099 }
1100 if (!ret)
1101 return 0;
1102 #endif
1103 goto fail;
1104 }
1105
1106 leaf = path->nodes[0];
1107 nritems = btrfs_header_nritems(leaf);
1108 while (1) {
1109 if (path->slots[0] >= nritems) {
1110 ret = btrfs_next_leaf(root, path);
1111 if (ret < 0)
1112 err = ret;
1113 if (ret)
1114 goto fail;
1115
1116 leaf = path->nodes[0];
1117 nritems = btrfs_header_nritems(leaf);
1118 recow = 1;
1119 }
1120
1121 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1122 if (key.objectid != bytenr ||
1123 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1124 goto fail;
1125
1126 ref = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_extent_data_ref);
1128
1129 if (match_extent_data_ref(leaf, ref, root_objectid,
1130 owner, offset)) {
1131 if (recow) {
1132 btrfs_release_path(path);
1133 goto again;
1134 }
1135 err = 0;
1136 break;
1137 }
1138 path->slots[0]++;
1139 }
1140 fail:
1141 return err;
1142 }
1143
1144 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1145 struct btrfs_root *root,
1146 struct btrfs_path *path,
1147 u64 bytenr, u64 parent,
1148 u64 root_objectid, u64 owner,
1149 u64 offset, int refs_to_add)
1150 {
1151 struct btrfs_key key;
1152 struct extent_buffer *leaf;
1153 u32 size;
1154 u32 num_refs;
1155 int ret;
1156
1157 key.objectid = bytenr;
1158 if (parent) {
1159 key.type = BTRFS_SHARED_DATA_REF_KEY;
1160 key.offset = parent;
1161 size = sizeof(struct btrfs_shared_data_ref);
1162 } else {
1163 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1164 key.offset = hash_extent_data_ref(root_objectid,
1165 owner, offset);
1166 size = sizeof(struct btrfs_extent_data_ref);
1167 }
1168
1169 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1170 if (ret && ret != -EEXIST)
1171 goto fail;
1172
1173 leaf = path->nodes[0];
1174 if (parent) {
1175 struct btrfs_shared_data_ref *ref;
1176 ref = btrfs_item_ptr(leaf, path->slots[0],
1177 struct btrfs_shared_data_ref);
1178 if (ret == 0) {
1179 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1180 } else {
1181 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1182 num_refs += refs_to_add;
1183 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1184 }
1185 } else {
1186 struct btrfs_extent_data_ref *ref;
1187 while (ret == -EEXIST) {
1188 ref = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190 if (match_extent_data_ref(leaf, ref, root_objectid,
1191 owner, offset))
1192 break;
1193 btrfs_release_path(path);
1194 key.offset++;
1195 ret = btrfs_insert_empty_item(trans, root, path, &key,
1196 size);
1197 if (ret && ret != -EEXIST)
1198 goto fail;
1199
1200 leaf = path->nodes[0];
1201 }
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (ret == 0) {
1205 btrfs_set_extent_data_ref_root(leaf, ref,
1206 root_objectid);
1207 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1208 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1209 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1210 } else {
1211 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1212 num_refs += refs_to_add;
1213 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1214 }
1215 }
1216 btrfs_mark_buffer_dirty(leaf);
1217 ret = 0;
1218 fail:
1219 btrfs_release_path(path);
1220 return ret;
1221 }
1222
1223 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root,
1225 struct btrfs_path *path,
1226 int refs_to_drop)
1227 {
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref1 = NULL;
1230 struct btrfs_shared_data_ref *ref2 = NULL;
1231 struct extent_buffer *leaf;
1232 u32 num_refs = 0;
1233 int ret = 0;
1234
1235 leaf = path->nodes[0];
1236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1237
1238 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1239 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1242 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1243 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_shared_data_ref);
1245 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1246 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1247 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1248 struct btrfs_extent_ref_v0 *ref0;
1249 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_ref_v0);
1251 num_refs = btrfs_ref_count_v0(leaf, ref0);
1252 #endif
1253 } else {
1254 BUG();
1255 }
1256
1257 BUG_ON(num_refs < refs_to_drop);
1258 num_refs -= refs_to_drop;
1259
1260 if (num_refs == 0) {
1261 ret = btrfs_del_item(trans, root, path);
1262 } else {
1263 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1264 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1265 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1266 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1268 else {
1269 struct btrfs_extent_ref_v0 *ref0;
1270 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1271 struct btrfs_extent_ref_v0);
1272 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1273 }
1274 #endif
1275 btrfs_mark_buffer_dirty(leaf);
1276 }
1277 return ret;
1278 }
1279
1280 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1281 struct btrfs_path *path,
1282 struct btrfs_extent_inline_ref *iref)
1283 {
1284 struct btrfs_key key;
1285 struct extent_buffer *leaf;
1286 struct btrfs_extent_data_ref *ref1;
1287 struct btrfs_shared_data_ref *ref2;
1288 u32 num_refs = 0;
1289
1290 leaf = path->nodes[0];
1291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1292 if (iref) {
1293 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1294 BTRFS_EXTENT_DATA_REF_KEY) {
1295 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1296 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1297 } else {
1298 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1299 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1300 }
1301 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1302 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_extent_data_ref);
1304 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1305 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1306 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1307 struct btrfs_shared_data_ref);
1308 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1310 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1311 struct btrfs_extent_ref_v0 *ref0;
1312 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1313 struct btrfs_extent_ref_v0);
1314 num_refs = btrfs_ref_count_v0(leaf, ref0);
1315 #endif
1316 } else {
1317 WARN_ON(1);
1318 }
1319 return num_refs;
1320 }
1321
1322 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid)
1327 {
1328 struct btrfs_key key;
1329 int ret;
1330
1331 key.objectid = bytenr;
1332 if (parent) {
1333 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1334 key.offset = parent;
1335 } else {
1336 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1337 key.offset = root_objectid;
1338 }
1339
1340 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1341 if (ret > 0)
1342 ret = -ENOENT;
1343 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1344 if (ret == -ENOENT && parent) {
1345 btrfs_release_path(path);
1346 key.type = BTRFS_EXTENT_REF_V0_KEY;
1347 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1348 if (ret > 0)
1349 ret = -ENOENT;
1350 }
1351 #endif
1352 return ret;
1353 }
1354
1355 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root,
1357 struct btrfs_path *path,
1358 u64 bytenr, u64 parent,
1359 u64 root_objectid)
1360 {
1361 struct btrfs_key key;
1362 int ret;
1363
1364 key.objectid = bytenr;
1365 if (parent) {
1366 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1367 key.offset = parent;
1368 } else {
1369 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1370 key.offset = root_objectid;
1371 }
1372
1373 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1374 btrfs_release_path(path);
1375 return ret;
1376 }
1377
1378 static inline int extent_ref_type(u64 parent, u64 owner)
1379 {
1380 int type;
1381 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1382 if (parent > 0)
1383 type = BTRFS_SHARED_BLOCK_REF_KEY;
1384 else
1385 type = BTRFS_TREE_BLOCK_REF_KEY;
1386 } else {
1387 if (parent > 0)
1388 type = BTRFS_SHARED_DATA_REF_KEY;
1389 else
1390 type = BTRFS_EXTENT_DATA_REF_KEY;
1391 }
1392 return type;
1393 }
1394
1395 static int find_next_key(struct btrfs_path *path, int level,
1396 struct btrfs_key *key)
1397
1398 {
1399 for (; level < BTRFS_MAX_LEVEL; level++) {
1400 if (!path->nodes[level])
1401 break;
1402 if (path->slots[level] + 1 >=
1403 btrfs_header_nritems(path->nodes[level]))
1404 continue;
1405 if (level == 0)
1406 btrfs_item_key_to_cpu(path->nodes[level], key,
1407 path->slots[level] + 1);
1408 else
1409 btrfs_node_key_to_cpu(path->nodes[level], key,
1410 path->slots[level] + 1);
1411 return 0;
1412 }
1413 return 1;
1414 }
1415
1416 /*
1417 * look for inline back ref. if back ref is found, *ref_ret is set
1418 * to the address of inline back ref, and 0 is returned.
1419 *
1420 * if back ref isn't found, *ref_ret is set to the address where it
1421 * should be inserted, and -ENOENT is returned.
1422 *
1423 * if insert is true and there are too many inline back refs, the path
1424 * points to the extent item, and -EAGAIN is returned.
1425 *
1426 * NOTE: inline back refs are ordered in the same way that back ref
1427 * items in the tree are ordered.
1428 */
1429 static noinline_for_stack
1430 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1431 struct btrfs_root *root,
1432 struct btrfs_path *path,
1433 struct btrfs_extent_inline_ref **ref_ret,
1434 u64 bytenr, u64 num_bytes,
1435 u64 parent, u64 root_objectid,
1436 u64 owner, u64 offset, int insert)
1437 {
1438 struct btrfs_key key;
1439 struct extent_buffer *leaf;
1440 struct btrfs_extent_item *ei;
1441 struct btrfs_extent_inline_ref *iref;
1442 u64 flags;
1443 u64 item_size;
1444 unsigned long ptr;
1445 unsigned long end;
1446 int extra_size;
1447 int type;
1448 int want;
1449 int ret;
1450 int err = 0;
1451
1452 key.objectid = bytenr;
1453 key.type = BTRFS_EXTENT_ITEM_KEY;
1454 key.offset = num_bytes;
1455
1456 want = extent_ref_type(parent, owner);
1457 if (insert) {
1458 extra_size = btrfs_extent_inline_ref_size(want);
1459 path->keep_locks = 1;
1460 } else
1461 extra_size = -1;
1462 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1463 if (ret < 0) {
1464 err = ret;
1465 goto out;
1466 }
1467 if (ret && !insert) {
1468 err = -ENOENT;
1469 goto out;
1470 }
1471 BUG_ON(ret); /* Corruption */
1472
1473 leaf = path->nodes[0];
1474 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (item_size < sizeof(*ei)) {
1477 if (!insert) {
1478 err = -ENOENT;
1479 goto out;
1480 }
1481 ret = convert_extent_item_v0(trans, root, path, owner,
1482 extra_size);
1483 if (ret < 0) {
1484 err = ret;
1485 goto out;
1486 }
1487 leaf = path->nodes[0];
1488 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1489 }
1490 #endif
1491 BUG_ON(item_size < sizeof(*ei));
1492
1493 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1494 flags = btrfs_extent_flags(leaf, ei);
1495
1496 ptr = (unsigned long)(ei + 1);
1497 end = (unsigned long)ei + item_size;
1498
1499 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1500 ptr += sizeof(struct btrfs_tree_block_info);
1501 BUG_ON(ptr > end);
1502 } else {
1503 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1504 }
1505
1506 err = -ENOENT;
1507 while (1) {
1508 if (ptr >= end) {
1509 WARN_ON(ptr > end);
1510 break;
1511 }
1512 iref = (struct btrfs_extent_inline_ref *)ptr;
1513 type = btrfs_extent_inline_ref_type(leaf, iref);
1514 if (want < type)
1515 break;
1516 if (want > type) {
1517 ptr += btrfs_extent_inline_ref_size(type);
1518 continue;
1519 }
1520
1521 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1522 struct btrfs_extent_data_ref *dref;
1523 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1524 if (match_extent_data_ref(leaf, dref, root_objectid,
1525 owner, offset)) {
1526 err = 0;
1527 break;
1528 }
1529 if (hash_extent_data_ref_item(leaf, dref) <
1530 hash_extent_data_ref(root_objectid, owner, offset))
1531 break;
1532 } else {
1533 u64 ref_offset;
1534 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1535 if (parent > 0) {
1536 if (parent == ref_offset) {
1537 err = 0;
1538 break;
1539 }
1540 if (ref_offset < parent)
1541 break;
1542 } else {
1543 if (root_objectid == ref_offset) {
1544 err = 0;
1545 break;
1546 }
1547 if (ref_offset < root_objectid)
1548 break;
1549 }
1550 }
1551 ptr += btrfs_extent_inline_ref_size(type);
1552 }
1553 if (err == -ENOENT && insert) {
1554 if (item_size + extra_size >=
1555 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1556 err = -EAGAIN;
1557 goto out;
1558 }
1559 /*
1560 * To add new inline back ref, we have to make sure
1561 * there is no corresponding back ref item.
1562 * For simplicity, we just do not add new inline back
1563 * ref if there is any kind of item for this block
1564 */
1565 if (find_next_key(path, 0, &key) == 0 &&
1566 key.objectid == bytenr &&
1567 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1568 err = -EAGAIN;
1569 goto out;
1570 }
1571 }
1572 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1573 out:
1574 if (insert) {
1575 path->keep_locks = 0;
1576 btrfs_unlock_up_safe(path, 1);
1577 }
1578 return err;
1579 }
1580
1581 /*
1582 * helper to add new inline back ref
1583 */
1584 static noinline_for_stack
1585 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1586 struct btrfs_root *root,
1587 struct btrfs_path *path,
1588 struct btrfs_extent_inline_ref *iref,
1589 u64 parent, u64 root_objectid,
1590 u64 owner, u64 offset, int refs_to_add,
1591 struct btrfs_delayed_extent_op *extent_op)
1592 {
1593 struct extent_buffer *leaf;
1594 struct btrfs_extent_item *ei;
1595 unsigned long ptr;
1596 unsigned long end;
1597 unsigned long item_offset;
1598 u64 refs;
1599 int size;
1600 int type;
1601
1602 leaf = path->nodes[0];
1603 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1604 item_offset = (unsigned long)iref - (unsigned long)ei;
1605
1606 type = extent_ref_type(parent, owner);
1607 size = btrfs_extent_inline_ref_size(type);
1608
1609 btrfs_extend_item(trans, root, path, size);
1610
1611 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1612 refs = btrfs_extent_refs(leaf, ei);
1613 refs += refs_to_add;
1614 btrfs_set_extent_refs(leaf, ei, refs);
1615 if (extent_op)
1616 __run_delayed_extent_op(extent_op, leaf, ei);
1617
1618 ptr = (unsigned long)ei + item_offset;
1619 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1620 if (ptr < end - size)
1621 memmove_extent_buffer(leaf, ptr + size, ptr,
1622 end - size - ptr);
1623
1624 iref = (struct btrfs_extent_inline_ref *)ptr;
1625 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1626 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1627 struct btrfs_extent_data_ref *dref;
1628 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1629 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1630 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1631 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1632 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1633 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1634 struct btrfs_shared_data_ref *sref;
1635 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1636 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1637 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1638 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1639 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1640 } else {
1641 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1642 }
1643 btrfs_mark_buffer_dirty(leaf);
1644 }
1645
1646 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1647 struct btrfs_root *root,
1648 struct btrfs_path *path,
1649 struct btrfs_extent_inline_ref **ref_ret,
1650 u64 bytenr, u64 num_bytes, u64 parent,
1651 u64 root_objectid, u64 owner, u64 offset)
1652 {
1653 int ret;
1654
1655 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1656 bytenr, num_bytes, parent,
1657 root_objectid, owner, offset, 0);
1658 if (ret != -ENOENT)
1659 return ret;
1660
1661 btrfs_release_path(path);
1662 *ref_ret = NULL;
1663
1664 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1665 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1666 root_objectid);
1667 } else {
1668 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1669 root_objectid, owner, offset);
1670 }
1671 return ret;
1672 }
1673
1674 /*
1675 * helper to update/remove inline back ref
1676 */
1677 static noinline_for_stack
1678 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1679 struct btrfs_root *root,
1680 struct btrfs_path *path,
1681 struct btrfs_extent_inline_ref *iref,
1682 int refs_to_mod,
1683 struct btrfs_delayed_extent_op *extent_op)
1684 {
1685 struct extent_buffer *leaf;
1686 struct btrfs_extent_item *ei;
1687 struct btrfs_extent_data_ref *dref = NULL;
1688 struct btrfs_shared_data_ref *sref = NULL;
1689 unsigned long ptr;
1690 unsigned long end;
1691 u32 item_size;
1692 int size;
1693 int type;
1694 u64 refs;
1695
1696 leaf = path->nodes[0];
1697 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1698 refs = btrfs_extent_refs(leaf, ei);
1699 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1700 refs += refs_to_mod;
1701 btrfs_set_extent_refs(leaf, ei, refs);
1702 if (extent_op)
1703 __run_delayed_extent_op(extent_op, leaf, ei);
1704
1705 type = btrfs_extent_inline_ref_type(leaf, iref);
1706
1707 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 refs = btrfs_extent_data_ref_count(leaf, dref);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 refs = btrfs_shared_data_ref_count(leaf, sref);
1713 } else {
1714 refs = 1;
1715 BUG_ON(refs_to_mod != -1);
1716 }
1717
1718 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1719 refs += refs_to_mod;
1720
1721 if (refs > 0) {
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1723 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1724 else
1725 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1726 } else {
1727 size = btrfs_extent_inline_ref_size(type);
1728 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1729 ptr = (unsigned long)iref;
1730 end = (unsigned long)ei + item_size;
1731 if (ptr + size < end)
1732 memmove_extent_buffer(leaf, ptr, ptr + size,
1733 end - ptr - size);
1734 item_size -= size;
1735 btrfs_truncate_item(trans, root, path, item_size, 1);
1736 }
1737 btrfs_mark_buffer_dirty(leaf);
1738 }
1739
1740 static noinline_for_stack
1741 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct btrfs_path *path,
1744 u64 bytenr, u64 num_bytes, u64 parent,
1745 u64 root_objectid, u64 owner,
1746 u64 offset, int refs_to_add,
1747 struct btrfs_delayed_extent_op *extent_op)
1748 {
1749 struct btrfs_extent_inline_ref *iref;
1750 int ret;
1751
1752 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1753 bytenr, num_bytes, parent,
1754 root_objectid, owner, offset, 1);
1755 if (ret == 0) {
1756 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1757 update_inline_extent_backref(trans, root, path, iref,
1758 refs_to_add, extent_op);
1759 } else if (ret == -ENOENT) {
1760 setup_inline_extent_backref(trans, root, path, iref, parent,
1761 root_objectid, owner, offset,
1762 refs_to_add, extent_op);
1763 ret = 0;
1764 }
1765 return ret;
1766 }
1767
1768 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1769 struct btrfs_root *root,
1770 struct btrfs_path *path,
1771 u64 bytenr, u64 parent, u64 root_objectid,
1772 u64 owner, u64 offset, int refs_to_add)
1773 {
1774 int ret;
1775 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1776 BUG_ON(refs_to_add != 1);
1777 ret = insert_tree_block_ref(trans, root, path, bytenr,
1778 parent, root_objectid);
1779 } else {
1780 ret = insert_extent_data_ref(trans, root, path, bytenr,
1781 parent, root_objectid,
1782 owner, offset, refs_to_add);
1783 }
1784 return ret;
1785 }
1786
1787 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1788 struct btrfs_root *root,
1789 struct btrfs_path *path,
1790 struct btrfs_extent_inline_ref *iref,
1791 int refs_to_drop, int is_data)
1792 {
1793 int ret = 0;
1794
1795 BUG_ON(!is_data && refs_to_drop != 1);
1796 if (iref) {
1797 update_inline_extent_backref(trans, root, path, iref,
1798 -refs_to_drop, NULL);
1799 } else if (is_data) {
1800 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1801 } else {
1802 ret = btrfs_del_item(trans, root, path);
1803 }
1804 return ret;
1805 }
1806
1807 static int btrfs_issue_discard(struct block_device *bdev,
1808 u64 start, u64 len)
1809 {
1810 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1811 }
1812
1813 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1814 u64 num_bytes, u64 *actual_bytes)
1815 {
1816 int ret;
1817 u64 discarded_bytes = 0;
1818 struct btrfs_bio *bbio = NULL;
1819
1820
1821 /* Tell the block device(s) that the sectors can be discarded */
1822 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1823 bytenr, &num_bytes, &bbio, 0);
1824 /* Error condition is -ENOMEM */
1825 if (!ret) {
1826 struct btrfs_bio_stripe *stripe = bbio->stripes;
1827 int i;
1828
1829
1830 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1831 if (!stripe->dev->can_discard)
1832 continue;
1833
1834 ret = btrfs_issue_discard(stripe->dev->bdev,
1835 stripe->physical,
1836 stripe->length);
1837 if (!ret)
1838 discarded_bytes += stripe->length;
1839 else if (ret != -EOPNOTSUPP)
1840 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1841
1842 /*
1843 * Just in case we get back EOPNOTSUPP for some reason,
1844 * just ignore the return value so we don't screw up
1845 * people calling discard_extent.
1846 */
1847 ret = 0;
1848 }
1849 kfree(bbio);
1850 }
1851
1852 if (actual_bytes)
1853 *actual_bytes = discarded_bytes;
1854
1855
1856 if (ret == -EOPNOTSUPP)
1857 ret = 0;
1858 return ret;
1859 }
1860
1861 /* Can return -ENOMEM */
1862 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1863 struct btrfs_root *root,
1864 u64 bytenr, u64 num_bytes, u64 parent,
1865 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1866 {
1867 int ret;
1868 struct btrfs_fs_info *fs_info = root->fs_info;
1869
1870 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1871 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1872
1873 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1874 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1875 num_bytes,
1876 parent, root_objectid, (int)owner,
1877 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1878 } else {
1879 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1880 num_bytes,
1881 parent, root_objectid, owner, offset,
1882 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1883 }
1884 return ret;
1885 }
1886
1887 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1888 struct btrfs_root *root,
1889 u64 bytenr, u64 num_bytes,
1890 u64 parent, u64 root_objectid,
1891 u64 owner, u64 offset, int refs_to_add,
1892 struct btrfs_delayed_extent_op *extent_op)
1893 {
1894 struct btrfs_path *path;
1895 struct extent_buffer *leaf;
1896 struct btrfs_extent_item *item;
1897 u64 refs;
1898 int ret;
1899 int err = 0;
1900
1901 path = btrfs_alloc_path();
1902 if (!path)
1903 return -ENOMEM;
1904
1905 path->reada = 1;
1906 path->leave_spinning = 1;
1907 /* this will setup the path even if it fails to insert the back ref */
1908 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1909 path, bytenr, num_bytes, parent,
1910 root_objectid, owner, offset,
1911 refs_to_add, extent_op);
1912 if (ret == 0)
1913 goto out;
1914
1915 if (ret != -EAGAIN) {
1916 err = ret;
1917 goto out;
1918 }
1919
1920 leaf = path->nodes[0];
1921 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1922 refs = btrfs_extent_refs(leaf, item);
1923 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1924 if (extent_op)
1925 __run_delayed_extent_op(extent_op, leaf, item);
1926
1927 btrfs_mark_buffer_dirty(leaf);
1928 btrfs_release_path(path);
1929
1930 path->reada = 1;
1931 path->leave_spinning = 1;
1932
1933 /* now insert the actual backref */
1934 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1935 path, bytenr, parent, root_objectid,
1936 owner, offset, refs_to_add);
1937 if (ret)
1938 btrfs_abort_transaction(trans, root, ret);
1939 out:
1940 btrfs_free_path(path);
1941 return err;
1942 }
1943
1944 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1945 struct btrfs_root *root,
1946 struct btrfs_delayed_ref_node *node,
1947 struct btrfs_delayed_extent_op *extent_op,
1948 int insert_reserved)
1949 {
1950 int ret = 0;
1951 struct btrfs_delayed_data_ref *ref;
1952 struct btrfs_key ins;
1953 u64 parent = 0;
1954 u64 ref_root = 0;
1955 u64 flags = 0;
1956
1957 ins.objectid = node->bytenr;
1958 ins.offset = node->num_bytes;
1959 ins.type = BTRFS_EXTENT_ITEM_KEY;
1960
1961 ref = btrfs_delayed_node_to_data_ref(node);
1962 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1963 parent = ref->parent;
1964 else
1965 ref_root = ref->root;
1966
1967 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1968 if (extent_op) {
1969 BUG_ON(extent_op->update_key);
1970 flags |= extent_op->flags_to_set;
1971 }
1972 ret = alloc_reserved_file_extent(trans, root,
1973 parent, ref_root, flags,
1974 ref->objectid, ref->offset,
1975 &ins, node->ref_mod);
1976 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1977 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1978 node->num_bytes, parent,
1979 ref_root, ref->objectid,
1980 ref->offset, node->ref_mod,
1981 extent_op);
1982 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1983 ret = __btrfs_free_extent(trans, root, node->bytenr,
1984 node->num_bytes, parent,
1985 ref_root, ref->objectid,
1986 ref->offset, node->ref_mod,
1987 extent_op);
1988 } else {
1989 BUG();
1990 }
1991 return ret;
1992 }
1993
1994 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1995 struct extent_buffer *leaf,
1996 struct btrfs_extent_item *ei)
1997 {
1998 u64 flags = btrfs_extent_flags(leaf, ei);
1999 if (extent_op->update_flags) {
2000 flags |= extent_op->flags_to_set;
2001 btrfs_set_extent_flags(leaf, ei, flags);
2002 }
2003
2004 if (extent_op->update_key) {
2005 struct btrfs_tree_block_info *bi;
2006 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2007 bi = (struct btrfs_tree_block_info *)(ei + 1);
2008 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2009 }
2010 }
2011
2012 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2013 struct btrfs_root *root,
2014 struct btrfs_delayed_ref_node *node,
2015 struct btrfs_delayed_extent_op *extent_op)
2016 {
2017 struct btrfs_key key;
2018 struct btrfs_path *path;
2019 struct btrfs_extent_item *ei;
2020 struct extent_buffer *leaf;
2021 u32 item_size;
2022 int ret;
2023 int err = 0;
2024
2025 if (trans->aborted)
2026 return 0;
2027
2028 path = btrfs_alloc_path();
2029 if (!path)
2030 return -ENOMEM;
2031
2032 key.objectid = node->bytenr;
2033 key.type = BTRFS_EXTENT_ITEM_KEY;
2034 key.offset = node->num_bytes;
2035
2036 path->reada = 1;
2037 path->leave_spinning = 1;
2038 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2039 path, 0, 1);
2040 if (ret < 0) {
2041 err = ret;
2042 goto out;
2043 }
2044 if (ret > 0) {
2045 err = -EIO;
2046 goto out;
2047 }
2048
2049 leaf = path->nodes[0];
2050 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2051 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2052 if (item_size < sizeof(*ei)) {
2053 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2054 path, (u64)-1, 0);
2055 if (ret < 0) {
2056 err = ret;
2057 goto out;
2058 }
2059 leaf = path->nodes[0];
2060 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2061 }
2062 #endif
2063 BUG_ON(item_size < sizeof(*ei));
2064 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2065 __run_delayed_extent_op(extent_op, leaf, ei);
2066
2067 btrfs_mark_buffer_dirty(leaf);
2068 out:
2069 btrfs_free_path(path);
2070 return err;
2071 }
2072
2073 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 struct btrfs_delayed_ref_node *node,
2076 struct btrfs_delayed_extent_op *extent_op,
2077 int insert_reserved)
2078 {
2079 int ret = 0;
2080 struct btrfs_delayed_tree_ref *ref;
2081 struct btrfs_key ins;
2082 u64 parent = 0;
2083 u64 ref_root = 0;
2084
2085 ins.objectid = node->bytenr;
2086 ins.offset = node->num_bytes;
2087 ins.type = BTRFS_EXTENT_ITEM_KEY;
2088
2089 ref = btrfs_delayed_node_to_tree_ref(node);
2090 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2091 parent = ref->parent;
2092 else
2093 ref_root = ref->root;
2094
2095 BUG_ON(node->ref_mod != 1);
2096 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2097 BUG_ON(!extent_op || !extent_op->update_flags ||
2098 !extent_op->update_key);
2099 ret = alloc_reserved_tree_block(trans, root,
2100 parent, ref_root,
2101 extent_op->flags_to_set,
2102 &extent_op->key,
2103 ref->level, &ins);
2104 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2105 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2106 node->num_bytes, parent, ref_root,
2107 ref->level, 0, 1, extent_op);
2108 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2109 ret = __btrfs_free_extent(trans, root, node->bytenr,
2110 node->num_bytes, parent, ref_root,
2111 ref->level, 0, 1, extent_op);
2112 } else {
2113 BUG();
2114 }
2115 return ret;
2116 }
2117
2118 /* helper function to actually process a single delayed ref entry */
2119 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
2121 struct btrfs_delayed_ref_node *node,
2122 struct btrfs_delayed_extent_op *extent_op,
2123 int insert_reserved)
2124 {
2125 int ret = 0;
2126
2127 if (trans->aborted)
2128 return 0;
2129
2130 if (btrfs_delayed_ref_is_head(node)) {
2131 struct btrfs_delayed_ref_head *head;
2132 /*
2133 * we've hit the end of the chain and we were supposed
2134 * to insert this extent into the tree. But, it got
2135 * deleted before we ever needed to insert it, so all
2136 * we have to do is clean up the accounting
2137 */
2138 BUG_ON(extent_op);
2139 head = btrfs_delayed_node_to_head(node);
2140 if (insert_reserved) {
2141 btrfs_pin_extent(root, node->bytenr,
2142 node->num_bytes, 1);
2143 if (head->is_data) {
2144 ret = btrfs_del_csums(trans, root,
2145 node->bytenr,
2146 node->num_bytes);
2147 }
2148 }
2149 return ret;
2150 }
2151
2152 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2153 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2154 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2155 insert_reserved);
2156 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2157 node->type == BTRFS_SHARED_DATA_REF_KEY)
2158 ret = run_delayed_data_ref(trans, root, node, extent_op,
2159 insert_reserved);
2160 else
2161 BUG();
2162 return ret;
2163 }
2164
2165 static noinline struct btrfs_delayed_ref_node *
2166 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2167 {
2168 struct rb_node *node;
2169 struct btrfs_delayed_ref_node *ref;
2170 int action = BTRFS_ADD_DELAYED_REF;
2171 again:
2172 /*
2173 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2174 * this prevents ref count from going down to zero when
2175 * there still are pending delayed ref.
2176 */
2177 node = rb_prev(&head->node.rb_node);
2178 while (1) {
2179 if (!node)
2180 break;
2181 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2182 rb_node);
2183 if (ref->bytenr != head->node.bytenr)
2184 break;
2185 if (ref->action == action)
2186 return ref;
2187 node = rb_prev(node);
2188 }
2189 if (action == BTRFS_ADD_DELAYED_REF) {
2190 action = BTRFS_DROP_DELAYED_REF;
2191 goto again;
2192 }
2193 return NULL;
2194 }
2195
2196 /*
2197 * Returns 0 on success or if called with an already aborted transaction.
2198 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2199 */
2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct list_head *cluster)
2203 {
2204 struct btrfs_delayed_ref_root *delayed_refs;
2205 struct btrfs_delayed_ref_node *ref;
2206 struct btrfs_delayed_ref_head *locked_ref = NULL;
2207 struct btrfs_delayed_extent_op *extent_op;
2208 struct btrfs_fs_info *fs_info = root->fs_info;
2209 int ret;
2210 int count = 0;
2211 int must_insert_reserved = 0;
2212
2213 delayed_refs = &trans->transaction->delayed_refs;
2214 while (1) {
2215 if (!locked_ref) {
2216 /* pick a new head ref from the cluster list */
2217 if (list_empty(cluster))
2218 break;
2219
2220 locked_ref = list_entry(cluster->next,
2221 struct btrfs_delayed_ref_head, cluster);
2222
2223 /* grab the lock that says we are going to process
2224 * all the refs for this head */
2225 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2226
2227 /*
2228 * we may have dropped the spin lock to get the head
2229 * mutex lock, and that might have given someone else
2230 * time to free the head. If that's true, it has been
2231 * removed from our list and we can move on.
2232 */
2233 if (ret == -EAGAIN) {
2234 locked_ref = NULL;
2235 count++;
2236 continue;
2237 }
2238 }
2239
2240 /*
2241 * We need to try and merge add/drops of the same ref since we
2242 * can run into issues with relocate dropping the implicit ref
2243 * and then it being added back again before the drop can
2244 * finish. If we merged anything we need to re-loop so we can
2245 * get a good ref.
2246 */
2247 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2248 locked_ref);
2249
2250 /*
2251 * locked_ref is the head node, so we have to go one
2252 * node back for any delayed ref updates
2253 */
2254 ref = select_delayed_ref(locked_ref);
2255
2256 if (ref && ref->seq &&
2257 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2258 /*
2259 * there are still refs with lower seq numbers in the
2260 * process of being added. Don't run this ref yet.
2261 */
2262 list_del_init(&locked_ref->cluster);
2263 btrfs_delayed_ref_unlock(locked_ref);
2264 locked_ref = NULL;
2265 delayed_refs->num_heads_ready++;
2266 spin_unlock(&delayed_refs->lock);
2267 cond_resched();
2268 spin_lock(&delayed_refs->lock);
2269 continue;
2270 }
2271
2272 /*
2273 * record the must insert reserved flag before we
2274 * drop the spin lock.
2275 */
2276 must_insert_reserved = locked_ref->must_insert_reserved;
2277 locked_ref->must_insert_reserved = 0;
2278
2279 extent_op = locked_ref->extent_op;
2280 locked_ref->extent_op = NULL;
2281
2282 if (!ref) {
2283 /* All delayed refs have been processed, Go ahead
2284 * and send the head node to run_one_delayed_ref,
2285 * so that any accounting fixes can happen
2286 */
2287 ref = &locked_ref->node;
2288
2289 if (extent_op && must_insert_reserved) {
2290 btrfs_free_delayed_extent_op(extent_op);
2291 extent_op = NULL;
2292 }
2293
2294 if (extent_op) {
2295 spin_unlock(&delayed_refs->lock);
2296
2297 ret = run_delayed_extent_op(trans, root,
2298 ref, extent_op);
2299 btrfs_free_delayed_extent_op(extent_op);
2300
2301 if (ret) {
2302 printk(KERN_DEBUG
2303 "btrfs: run_delayed_extent_op "
2304 "returned %d\n", ret);
2305 spin_lock(&delayed_refs->lock);
2306 btrfs_delayed_ref_unlock(locked_ref);
2307 return ret;
2308 }
2309
2310 goto next;
2311 }
2312 }
2313
2314 ref->in_tree = 0;
2315 rb_erase(&ref->rb_node, &delayed_refs->root);
2316 delayed_refs->num_entries--;
2317 if (!btrfs_delayed_ref_is_head(ref)) {
2318 /*
2319 * when we play the delayed ref, also correct the
2320 * ref_mod on head
2321 */
2322 switch (ref->action) {
2323 case BTRFS_ADD_DELAYED_REF:
2324 case BTRFS_ADD_DELAYED_EXTENT:
2325 locked_ref->node.ref_mod -= ref->ref_mod;
2326 break;
2327 case BTRFS_DROP_DELAYED_REF:
2328 locked_ref->node.ref_mod += ref->ref_mod;
2329 break;
2330 default:
2331 WARN_ON(1);
2332 }
2333 }
2334 spin_unlock(&delayed_refs->lock);
2335
2336 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2337 must_insert_reserved);
2338
2339 btrfs_free_delayed_extent_op(extent_op);
2340 if (ret) {
2341 btrfs_delayed_ref_unlock(locked_ref);
2342 btrfs_put_delayed_ref(ref);
2343 printk(KERN_DEBUG
2344 "btrfs: run_one_delayed_ref returned %d\n", ret);
2345 spin_lock(&delayed_refs->lock);
2346 return ret;
2347 }
2348
2349 /*
2350 * If this node is a head, that means all the refs in this head
2351 * have been dealt with, and we will pick the next head to deal
2352 * with, so we must unlock the head and drop it from the cluster
2353 * list before we release it.
2354 */
2355 if (btrfs_delayed_ref_is_head(ref)) {
2356 list_del_init(&locked_ref->cluster);
2357 btrfs_delayed_ref_unlock(locked_ref);
2358 locked_ref = NULL;
2359 }
2360 btrfs_put_delayed_ref(ref);
2361 count++;
2362 next:
2363 cond_resched();
2364 spin_lock(&delayed_refs->lock);
2365 }
2366 return count;
2367 }
2368
2369 #ifdef SCRAMBLE_DELAYED_REFS
2370 /*
2371 * Normally delayed refs get processed in ascending bytenr order. This
2372 * correlates in most cases to the order added. To expose dependencies on this
2373 * order, we start to process the tree in the middle instead of the beginning
2374 */
2375 static u64 find_middle(struct rb_root *root)
2376 {
2377 struct rb_node *n = root->rb_node;
2378 struct btrfs_delayed_ref_node *entry;
2379 int alt = 1;
2380 u64 middle;
2381 u64 first = 0, last = 0;
2382
2383 n = rb_first(root);
2384 if (n) {
2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2386 first = entry->bytenr;
2387 }
2388 n = rb_last(root);
2389 if (n) {
2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2391 last = entry->bytenr;
2392 }
2393 n = root->rb_node;
2394
2395 while (n) {
2396 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2397 WARN_ON(!entry->in_tree);
2398
2399 middle = entry->bytenr;
2400
2401 if (alt)
2402 n = n->rb_left;
2403 else
2404 n = n->rb_right;
2405
2406 alt = 1 - alt;
2407 }
2408 return middle;
2409 }
2410 #endif
2411
2412 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2413 struct btrfs_fs_info *fs_info)
2414 {
2415 struct qgroup_update *qgroup_update;
2416 int ret = 0;
2417
2418 if (list_empty(&trans->qgroup_ref_list) !=
2419 !trans->delayed_ref_elem.seq) {
2420 /* list without seq or seq without list */
2421 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2422 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2423 trans->delayed_ref_elem.seq);
2424 BUG();
2425 }
2426
2427 if (!trans->delayed_ref_elem.seq)
2428 return 0;
2429
2430 while (!list_empty(&trans->qgroup_ref_list)) {
2431 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2432 struct qgroup_update, list);
2433 list_del(&qgroup_update->list);
2434 if (!ret)
2435 ret = btrfs_qgroup_account_ref(
2436 trans, fs_info, qgroup_update->node,
2437 qgroup_update->extent_op);
2438 kfree(qgroup_update);
2439 }
2440
2441 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2442
2443 return ret;
2444 }
2445
2446 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2447 int count)
2448 {
2449 int val = atomic_read(&delayed_refs->ref_seq);
2450
2451 if (val < seq || val >= seq + count)
2452 return 1;
2453 return 0;
2454 }
2455
2456 /*
2457 * this starts processing the delayed reference count updates and
2458 * extent insertions we have queued up so far. count can be
2459 * 0, which means to process everything in the tree at the start
2460 * of the run (but not newly added entries), or it can be some target
2461 * number you'd like to process.
2462 *
2463 * Returns 0 on success or if called with an aborted transaction
2464 * Returns <0 on error and aborts the transaction
2465 */
2466 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2467 struct btrfs_root *root, unsigned long count)
2468 {
2469 struct rb_node *node;
2470 struct btrfs_delayed_ref_root *delayed_refs;
2471 struct btrfs_delayed_ref_node *ref;
2472 struct list_head cluster;
2473 int ret;
2474 u64 delayed_start;
2475 int run_all = count == (unsigned long)-1;
2476 int run_most = 0;
2477 int loops;
2478
2479 /* We'll clean this up in btrfs_cleanup_transaction */
2480 if (trans->aborted)
2481 return 0;
2482
2483 if (root == root->fs_info->extent_root)
2484 root = root->fs_info->tree_root;
2485
2486 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2487
2488 delayed_refs = &trans->transaction->delayed_refs;
2489 INIT_LIST_HEAD(&cluster);
2490 if (count == 0) {
2491 count = delayed_refs->num_entries * 2;
2492 run_most = 1;
2493 }
2494
2495 if (!run_all && !run_most) {
2496 int old;
2497 int seq = atomic_read(&delayed_refs->ref_seq);
2498
2499 progress:
2500 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2501 if (old) {
2502 DEFINE_WAIT(__wait);
2503 if (delayed_refs->num_entries < 16348)
2504 return 0;
2505
2506 prepare_to_wait(&delayed_refs->wait, &__wait,
2507 TASK_UNINTERRUPTIBLE);
2508
2509 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2510 if (old) {
2511 schedule();
2512 finish_wait(&delayed_refs->wait, &__wait);
2513
2514 if (!refs_newer(delayed_refs, seq, 256))
2515 goto progress;
2516 else
2517 return 0;
2518 } else {
2519 finish_wait(&delayed_refs->wait, &__wait);
2520 goto again;
2521 }
2522 }
2523
2524 } else {
2525 atomic_inc(&delayed_refs->procs_running_refs);
2526 }
2527
2528 again:
2529 loops = 0;
2530 spin_lock(&delayed_refs->lock);
2531
2532 #ifdef SCRAMBLE_DELAYED_REFS
2533 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2534 #endif
2535
2536 while (1) {
2537 if (!(run_all || run_most) &&
2538 delayed_refs->num_heads_ready < 64)
2539 break;
2540
2541 /*
2542 * go find something we can process in the rbtree. We start at
2543 * the beginning of the tree, and then build a cluster
2544 * of refs to process starting at the first one we are able to
2545 * lock
2546 */
2547 delayed_start = delayed_refs->run_delayed_start;
2548 ret = btrfs_find_ref_cluster(trans, &cluster,
2549 delayed_refs->run_delayed_start);
2550 if (ret)
2551 break;
2552
2553 ret = run_clustered_refs(trans, root, &cluster);
2554 if (ret < 0) {
2555 btrfs_release_ref_cluster(&cluster);
2556 spin_unlock(&delayed_refs->lock);
2557 btrfs_abort_transaction(trans, root, ret);
2558 atomic_dec(&delayed_refs->procs_running_refs);
2559 return ret;
2560 }
2561
2562 atomic_add(ret, &delayed_refs->ref_seq);
2563
2564 count -= min_t(unsigned long, ret, count);
2565
2566 if (count == 0)
2567 break;
2568
2569 if (delayed_start >= delayed_refs->run_delayed_start) {
2570 if (loops == 0) {
2571 /*
2572 * btrfs_find_ref_cluster looped. let's do one
2573 * more cycle. if we don't run any delayed ref
2574 * during that cycle (because we can't because
2575 * all of them are blocked), bail out.
2576 */
2577 loops = 1;
2578 } else {
2579 /*
2580 * no runnable refs left, stop trying
2581 */
2582 BUG_ON(run_all);
2583 break;
2584 }
2585 }
2586 if (ret) {
2587 /* refs were run, let's reset staleness detection */
2588 loops = 0;
2589 }
2590 }
2591
2592 if (run_all) {
2593 if (!list_empty(&trans->new_bgs)) {
2594 spin_unlock(&delayed_refs->lock);
2595 btrfs_create_pending_block_groups(trans, root);
2596 spin_lock(&delayed_refs->lock);
2597 }
2598
2599 node = rb_first(&delayed_refs->root);
2600 if (!node)
2601 goto out;
2602 count = (unsigned long)-1;
2603
2604 while (node) {
2605 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2606 rb_node);
2607 if (btrfs_delayed_ref_is_head(ref)) {
2608 struct btrfs_delayed_ref_head *head;
2609
2610 head = btrfs_delayed_node_to_head(ref);
2611 atomic_inc(&ref->refs);
2612
2613 spin_unlock(&delayed_refs->lock);
2614 /*
2615 * Mutex was contended, block until it's
2616 * released and try again
2617 */
2618 mutex_lock(&head->mutex);
2619 mutex_unlock(&head->mutex);
2620
2621 btrfs_put_delayed_ref(ref);
2622 cond_resched();
2623 goto again;
2624 }
2625 node = rb_next(node);
2626 }
2627 spin_unlock(&delayed_refs->lock);
2628 schedule_timeout(1);
2629 goto again;
2630 }
2631 out:
2632 atomic_dec(&delayed_refs->procs_running_refs);
2633 smp_mb();
2634 if (waitqueue_active(&delayed_refs->wait))
2635 wake_up(&delayed_refs->wait);
2636
2637 spin_unlock(&delayed_refs->lock);
2638 assert_qgroups_uptodate(trans);
2639 return 0;
2640 }
2641
2642 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2643 struct btrfs_root *root,
2644 u64 bytenr, u64 num_bytes, u64 flags,
2645 int is_data)
2646 {
2647 struct btrfs_delayed_extent_op *extent_op;
2648 int ret;
2649
2650 extent_op = btrfs_alloc_delayed_extent_op();
2651 if (!extent_op)
2652 return -ENOMEM;
2653
2654 extent_op->flags_to_set = flags;
2655 extent_op->update_flags = 1;
2656 extent_op->update_key = 0;
2657 extent_op->is_data = is_data ? 1 : 0;
2658
2659 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2660 num_bytes, extent_op);
2661 if (ret)
2662 btrfs_free_delayed_extent_op(extent_op);
2663 return ret;
2664 }
2665
2666 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2667 struct btrfs_root *root,
2668 struct btrfs_path *path,
2669 u64 objectid, u64 offset, u64 bytenr)
2670 {
2671 struct btrfs_delayed_ref_head *head;
2672 struct btrfs_delayed_ref_node *ref;
2673 struct btrfs_delayed_data_ref *data_ref;
2674 struct btrfs_delayed_ref_root *delayed_refs;
2675 struct rb_node *node;
2676 int ret = 0;
2677
2678 ret = -ENOENT;
2679 delayed_refs = &trans->transaction->delayed_refs;
2680 spin_lock(&delayed_refs->lock);
2681 head = btrfs_find_delayed_ref_head(trans, bytenr);
2682 if (!head)
2683 goto out;
2684
2685 if (!mutex_trylock(&head->mutex)) {
2686 atomic_inc(&head->node.refs);
2687 spin_unlock(&delayed_refs->lock);
2688
2689 btrfs_release_path(path);
2690
2691 /*
2692 * Mutex was contended, block until it's released and let
2693 * caller try again
2694 */
2695 mutex_lock(&head->mutex);
2696 mutex_unlock(&head->mutex);
2697 btrfs_put_delayed_ref(&head->node);
2698 return -EAGAIN;
2699 }
2700
2701 node = rb_prev(&head->node.rb_node);
2702 if (!node)
2703 goto out_unlock;
2704
2705 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2706
2707 if (ref->bytenr != bytenr)
2708 goto out_unlock;
2709
2710 ret = 1;
2711 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2712 goto out_unlock;
2713
2714 data_ref = btrfs_delayed_node_to_data_ref(ref);
2715
2716 node = rb_prev(node);
2717 if (node) {
2718 int seq = ref->seq;
2719
2720 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2721 if (ref->bytenr == bytenr && ref->seq == seq)
2722 goto out_unlock;
2723 }
2724
2725 if (data_ref->root != root->root_key.objectid ||
2726 data_ref->objectid != objectid || data_ref->offset != offset)
2727 goto out_unlock;
2728
2729 ret = 0;
2730 out_unlock:
2731 mutex_unlock(&head->mutex);
2732 out:
2733 spin_unlock(&delayed_refs->lock);
2734 return ret;
2735 }
2736
2737 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2738 struct btrfs_root *root,
2739 struct btrfs_path *path,
2740 u64 objectid, u64 offset, u64 bytenr)
2741 {
2742 struct btrfs_root *extent_root = root->fs_info->extent_root;
2743 struct extent_buffer *leaf;
2744 struct btrfs_extent_data_ref *ref;
2745 struct btrfs_extent_inline_ref *iref;
2746 struct btrfs_extent_item *ei;
2747 struct btrfs_key key;
2748 u32 item_size;
2749 int ret;
2750
2751 key.objectid = bytenr;
2752 key.offset = (u64)-1;
2753 key.type = BTRFS_EXTENT_ITEM_KEY;
2754
2755 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2756 if (ret < 0)
2757 goto out;
2758 BUG_ON(ret == 0); /* Corruption */
2759
2760 ret = -ENOENT;
2761 if (path->slots[0] == 0)
2762 goto out;
2763
2764 path->slots[0]--;
2765 leaf = path->nodes[0];
2766 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2767
2768 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2769 goto out;
2770
2771 ret = 1;
2772 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2773 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2774 if (item_size < sizeof(*ei)) {
2775 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2776 goto out;
2777 }
2778 #endif
2779 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2780
2781 if (item_size != sizeof(*ei) +
2782 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2783 goto out;
2784
2785 if (btrfs_extent_generation(leaf, ei) <=
2786 btrfs_root_last_snapshot(&root->root_item))
2787 goto out;
2788
2789 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2790 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2791 BTRFS_EXTENT_DATA_REF_KEY)
2792 goto out;
2793
2794 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2795 if (btrfs_extent_refs(leaf, ei) !=
2796 btrfs_extent_data_ref_count(leaf, ref) ||
2797 btrfs_extent_data_ref_root(leaf, ref) !=
2798 root->root_key.objectid ||
2799 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2800 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2801 goto out;
2802
2803 ret = 0;
2804 out:
2805 return ret;
2806 }
2807
2808 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2809 struct btrfs_root *root,
2810 u64 objectid, u64 offset, u64 bytenr)
2811 {
2812 struct btrfs_path *path;
2813 int ret;
2814 int ret2;
2815
2816 path = btrfs_alloc_path();
2817 if (!path)
2818 return -ENOENT;
2819
2820 do {
2821 ret = check_committed_ref(trans, root, path, objectid,
2822 offset, bytenr);
2823 if (ret && ret != -ENOENT)
2824 goto out;
2825
2826 ret2 = check_delayed_ref(trans, root, path, objectid,
2827 offset, bytenr);
2828 } while (ret2 == -EAGAIN);
2829
2830 if (ret2 && ret2 != -ENOENT) {
2831 ret = ret2;
2832 goto out;
2833 }
2834
2835 if (ret != -ENOENT || ret2 != -ENOENT)
2836 ret = 0;
2837 out:
2838 btrfs_free_path(path);
2839 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2840 WARN_ON(ret > 0);
2841 return ret;
2842 }
2843
2844 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root,
2846 struct extent_buffer *buf,
2847 int full_backref, int inc, int for_cow)
2848 {
2849 u64 bytenr;
2850 u64 num_bytes;
2851 u64 parent;
2852 u64 ref_root;
2853 u32 nritems;
2854 struct btrfs_key key;
2855 struct btrfs_file_extent_item *fi;
2856 int i;
2857 int level;
2858 int ret = 0;
2859 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2860 u64, u64, u64, u64, u64, u64, int);
2861
2862 ref_root = btrfs_header_owner(buf);
2863 nritems = btrfs_header_nritems(buf);
2864 level = btrfs_header_level(buf);
2865
2866 if (!root->ref_cows && level == 0)
2867 return 0;
2868
2869 if (inc)
2870 process_func = btrfs_inc_extent_ref;
2871 else
2872 process_func = btrfs_free_extent;
2873
2874 if (full_backref)
2875 parent = buf->start;
2876 else
2877 parent = 0;
2878
2879 for (i = 0; i < nritems; i++) {
2880 if (level == 0) {
2881 btrfs_item_key_to_cpu(buf, &key, i);
2882 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2883 continue;
2884 fi = btrfs_item_ptr(buf, i,
2885 struct btrfs_file_extent_item);
2886 if (btrfs_file_extent_type(buf, fi) ==
2887 BTRFS_FILE_EXTENT_INLINE)
2888 continue;
2889 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2890 if (bytenr == 0)
2891 continue;
2892
2893 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2894 key.offset -= btrfs_file_extent_offset(buf, fi);
2895 ret = process_func(trans, root, bytenr, num_bytes,
2896 parent, ref_root, key.objectid,
2897 key.offset, for_cow);
2898 if (ret)
2899 goto fail;
2900 } else {
2901 bytenr = btrfs_node_blockptr(buf, i);
2902 num_bytes = btrfs_level_size(root, level - 1);
2903 ret = process_func(trans, root, bytenr, num_bytes,
2904 parent, ref_root, level - 1, 0,
2905 for_cow);
2906 if (ret)
2907 goto fail;
2908 }
2909 }
2910 return 0;
2911 fail:
2912 return ret;
2913 }
2914
2915 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2916 struct extent_buffer *buf, int full_backref, int for_cow)
2917 {
2918 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2919 }
2920
2921 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2922 struct extent_buffer *buf, int full_backref, int for_cow)
2923 {
2924 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2925 }
2926
2927 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2928 struct btrfs_root *root,
2929 struct btrfs_path *path,
2930 struct btrfs_block_group_cache *cache)
2931 {
2932 int ret;
2933 struct btrfs_root *extent_root = root->fs_info->extent_root;
2934 unsigned long bi;
2935 struct extent_buffer *leaf;
2936
2937 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2938 if (ret < 0)
2939 goto fail;
2940 BUG_ON(ret); /* Corruption */
2941
2942 leaf = path->nodes[0];
2943 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2944 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2945 btrfs_mark_buffer_dirty(leaf);
2946 btrfs_release_path(path);
2947 fail:
2948 if (ret) {
2949 btrfs_abort_transaction(trans, root, ret);
2950 return ret;
2951 }
2952 return 0;
2953
2954 }
2955
2956 static struct btrfs_block_group_cache *
2957 next_block_group(struct btrfs_root *root,
2958 struct btrfs_block_group_cache *cache)
2959 {
2960 struct rb_node *node;
2961 spin_lock(&root->fs_info->block_group_cache_lock);
2962 node = rb_next(&cache->cache_node);
2963 btrfs_put_block_group(cache);
2964 if (node) {
2965 cache = rb_entry(node, struct btrfs_block_group_cache,
2966 cache_node);
2967 btrfs_get_block_group(cache);
2968 } else
2969 cache = NULL;
2970 spin_unlock(&root->fs_info->block_group_cache_lock);
2971 return cache;
2972 }
2973
2974 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2975 struct btrfs_trans_handle *trans,
2976 struct btrfs_path *path)
2977 {
2978 struct btrfs_root *root = block_group->fs_info->tree_root;
2979 struct inode *inode = NULL;
2980 u64 alloc_hint = 0;
2981 int dcs = BTRFS_DC_ERROR;
2982 int num_pages = 0;
2983 int retries = 0;
2984 int ret = 0;
2985
2986 /*
2987 * If this block group is smaller than 100 megs don't bother caching the
2988 * block group.
2989 */
2990 if (block_group->key.offset < (100 * 1024 * 1024)) {
2991 spin_lock(&block_group->lock);
2992 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2993 spin_unlock(&block_group->lock);
2994 return 0;
2995 }
2996
2997 again:
2998 inode = lookup_free_space_inode(root, block_group, path);
2999 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3000 ret = PTR_ERR(inode);
3001 btrfs_release_path(path);
3002 goto out;
3003 }
3004
3005 if (IS_ERR(inode)) {
3006 BUG_ON(retries);
3007 retries++;
3008
3009 if (block_group->ro)
3010 goto out_free;
3011
3012 ret = create_free_space_inode(root, trans, block_group, path);
3013 if (ret)
3014 goto out_free;
3015 goto again;
3016 }
3017
3018 /* We've already setup this transaction, go ahead and exit */
3019 if (block_group->cache_generation == trans->transid &&
3020 i_size_read(inode)) {
3021 dcs = BTRFS_DC_SETUP;
3022 goto out_put;
3023 }
3024
3025 /*
3026 * We want to set the generation to 0, that way if anything goes wrong
3027 * from here on out we know not to trust this cache when we load up next
3028 * time.
3029 */
3030 BTRFS_I(inode)->generation = 0;
3031 ret = btrfs_update_inode(trans, root, inode);
3032 WARN_ON(ret);
3033
3034 if (i_size_read(inode) > 0) {
3035 ret = btrfs_truncate_free_space_cache(root, trans, path,
3036 inode);
3037 if (ret)
3038 goto out_put;
3039 }
3040
3041 spin_lock(&block_group->lock);
3042 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3043 !btrfs_test_opt(root, SPACE_CACHE)) {
3044 /*
3045 * don't bother trying to write stuff out _if_
3046 * a) we're not cached,
3047 * b) we're with nospace_cache mount option.
3048 */
3049 dcs = BTRFS_DC_WRITTEN;
3050 spin_unlock(&block_group->lock);
3051 goto out_put;
3052 }
3053 spin_unlock(&block_group->lock);
3054
3055 /*
3056 * Try to preallocate enough space based on how big the block group is.
3057 * Keep in mind this has to include any pinned space which could end up
3058 * taking up quite a bit since it's not folded into the other space
3059 * cache.
3060 */
3061 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3062 if (!num_pages)
3063 num_pages = 1;
3064
3065 num_pages *= 16;
3066 num_pages *= PAGE_CACHE_SIZE;
3067
3068 ret = btrfs_check_data_free_space(inode, num_pages);
3069 if (ret)
3070 goto out_put;
3071
3072 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3073 num_pages, num_pages,
3074 &alloc_hint);
3075 if (!ret)
3076 dcs = BTRFS_DC_SETUP;
3077 btrfs_free_reserved_data_space(inode, num_pages);
3078
3079 out_put:
3080 iput(inode);
3081 out_free:
3082 btrfs_release_path(path);
3083 out:
3084 spin_lock(&block_group->lock);
3085 if (!ret && dcs == BTRFS_DC_SETUP)
3086 block_group->cache_generation = trans->transid;
3087 block_group->disk_cache_state = dcs;
3088 spin_unlock(&block_group->lock);
3089
3090 return ret;
3091 }
3092
3093 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3094 struct btrfs_root *root)
3095 {
3096 struct btrfs_block_group_cache *cache;
3097 int err = 0;
3098 struct btrfs_path *path;
3099 u64 last = 0;
3100
3101 path = btrfs_alloc_path();
3102 if (!path)
3103 return -ENOMEM;
3104
3105 again:
3106 while (1) {
3107 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3108 while (cache) {
3109 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3110 break;
3111 cache = next_block_group(root, cache);
3112 }
3113 if (!cache) {
3114 if (last == 0)
3115 break;
3116 last = 0;
3117 continue;
3118 }
3119 err = cache_save_setup(cache, trans, path);
3120 last = cache->key.objectid + cache->key.offset;
3121 btrfs_put_block_group(cache);
3122 }
3123
3124 while (1) {
3125 if (last == 0) {
3126 err = btrfs_run_delayed_refs(trans, root,
3127 (unsigned long)-1);
3128 if (err) /* File system offline */
3129 goto out;
3130 }
3131
3132 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3133 while (cache) {
3134 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3135 btrfs_put_block_group(cache);
3136 goto again;
3137 }
3138
3139 if (cache->dirty)
3140 break;
3141 cache = next_block_group(root, cache);
3142 }
3143 if (!cache) {
3144 if (last == 0)
3145 break;
3146 last = 0;
3147 continue;
3148 }
3149
3150 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3151 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3152 cache->dirty = 0;
3153 last = cache->key.objectid + cache->key.offset;
3154
3155 err = write_one_cache_group(trans, root, path, cache);
3156 if (err) /* File system offline */
3157 goto out;
3158
3159 btrfs_put_block_group(cache);
3160 }
3161
3162 while (1) {
3163 /*
3164 * I don't think this is needed since we're just marking our
3165 * preallocated extent as written, but just in case it can't
3166 * hurt.
3167 */
3168 if (last == 0) {
3169 err = btrfs_run_delayed_refs(trans, root,
3170 (unsigned long)-1);
3171 if (err) /* File system offline */
3172 goto out;
3173 }
3174
3175 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3176 while (cache) {
3177 /*
3178 * Really this shouldn't happen, but it could if we
3179 * couldn't write the entire preallocated extent and
3180 * splitting the extent resulted in a new block.
3181 */
3182 if (cache->dirty) {
3183 btrfs_put_block_group(cache);
3184 goto again;
3185 }
3186 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3187 break;
3188 cache = next_block_group(root, cache);
3189 }
3190 if (!cache) {
3191 if (last == 0)
3192 break;
3193 last = 0;
3194 continue;
3195 }
3196
3197 err = btrfs_write_out_cache(root, trans, cache, path);
3198
3199 /*
3200 * If we didn't have an error then the cache state is still
3201 * NEED_WRITE, so we can set it to WRITTEN.
3202 */
3203 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3204 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3205 last = cache->key.objectid + cache->key.offset;
3206 btrfs_put_block_group(cache);
3207 }
3208 out:
3209
3210 btrfs_free_path(path);
3211 return err;
3212 }
3213
3214 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3215 {
3216 struct btrfs_block_group_cache *block_group;
3217 int readonly = 0;
3218
3219 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3220 if (!block_group || block_group->ro)
3221 readonly = 1;
3222 if (block_group)
3223 btrfs_put_block_group(block_group);
3224 return readonly;
3225 }
3226
3227 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3228 u64 total_bytes, u64 bytes_used,
3229 struct btrfs_space_info **space_info)
3230 {
3231 struct btrfs_space_info *found;
3232 int i;
3233 int factor;
3234
3235 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3236 BTRFS_BLOCK_GROUP_RAID10))
3237 factor = 2;
3238 else
3239 factor = 1;
3240
3241 found = __find_space_info(info, flags);
3242 if (found) {
3243 spin_lock(&found->lock);
3244 found->total_bytes += total_bytes;
3245 found->disk_total += total_bytes * factor;
3246 found->bytes_used += bytes_used;
3247 found->disk_used += bytes_used * factor;
3248 found->full = 0;
3249 spin_unlock(&found->lock);
3250 *space_info = found;
3251 return 0;
3252 }
3253 found = kzalloc(sizeof(*found), GFP_NOFS);
3254 if (!found)
3255 return -ENOMEM;
3256
3257 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3258 INIT_LIST_HEAD(&found->block_groups[i]);
3259 init_rwsem(&found->groups_sem);
3260 spin_lock_init(&found->lock);
3261 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3262 found->total_bytes = total_bytes;
3263 found->disk_total = total_bytes * factor;
3264 found->bytes_used = bytes_used;
3265 found->disk_used = bytes_used * factor;
3266 found->bytes_pinned = 0;
3267 found->bytes_reserved = 0;
3268 found->bytes_readonly = 0;
3269 found->bytes_may_use = 0;
3270 found->full = 0;
3271 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3272 found->chunk_alloc = 0;
3273 found->flush = 0;
3274 init_waitqueue_head(&found->wait);
3275 *space_info = found;
3276 list_add_rcu(&found->list, &info->space_info);
3277 if (flags & BTRFS_BLOCK_GROUP_DATA)
3278 info->data_sinfo = found;
3279 return 0;
3280 }
3281
3282 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3283 {
3284 u64 extra_flags = chunk_to_extended(flags) &
3285 BTRFS_EXTENDED_PROFILE_MASK;
3286
3287 write_seqlock(&fs_info->profiles_lock);
3288 if (flags & BTRFS_BLOCK_GROUP_DATA)
3289 fs_info->avail_data_alloc_bits |= extra_flags;
3290 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3291 fs_info->avail_metadata_alloc_bits |= extra_flags;
3292 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3293 fs_info->avail_system_alloc_bits |= extra_flags;
3294 write_sequnlock(&fs_info->profiles_lock);
3295 }
3296
3297 /*
3298 * returns target flags in extended format or 0 if restripe for this
3299 * chunk_type is not in progress
3300 *
3301 * should be called with either volume_mutex or balance_lock held
3302 */
3303 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3304 {
3305 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3306 u64 target = 0;
3307
3308 if (!bctl)
3309 return 0;
3310
3311 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3312 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3313 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3314 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3315 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3316 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3317 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3318 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3319 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3320 }
3321
3322 return target;
3323 }
3324
3325 /*
3326 * @flags: available profiles in extended format (see ctree.h)
3327 *
3328 * Returns reduced profile in chunk format. If profile changing is in
3329 * progress (either running or paused) picks the target profile (if it's
3330 * already available), otherwise falls back to plain reducing.
3331 */
3332 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3333 {
3334 /*
3335 * we add in the count of missing devices because we want
3336 * to make sure that any RAID levels on a degraded FS
3337 * continue to be honored.
3338 */
3339 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3340 root->fs_info->fs_devices->missing_devices;
3341 u64 target;
3342 u64 tmp;
3343
3344 /*
3345 * see if restripe for this chunk_type is in progress, if so
3346 * try to reduce to the target profile
3347 */
3348 spin_lock(&root->fs_info->balance_lock);
3349 target = get_restripe_target(root->fs_info, flags);
3350 if (target) {
3351 /* pick target profile only if it's already available */
3352 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3353 spin_unlock(&root->fs_info->balance_lock);
3354 return extended_to_chunk(target);
3355 }
3356 }
3357 spin_unlock(&root->fs_info->balance_lock);
3358
3359 /* First, mask out the RAID levels which aren't possible */
3360 if (num_devices == 1)
3361 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3362 BTRFS_BLOCK_GROUP_RAID5);
3363 if (num_devices < 3)
3364 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3365 if (num_devices < 4)
3366 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3367
3368 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3369 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3370 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3371 flags &= ~tmp;
3372
3373 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3374 tmp = BTRFS_BLOCK_GROUP_RAID6;
3375 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3376 tmp = BTRFS_BLOCK_GROUP_RAID5;
3377 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3378 tmp = BTRFS_BLOCK_GROUP_RAID10;
3379 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3380 tmp = BTRFS_BLOCK_GROUP_RAID1;
3381 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3382 tmp = BTRFS_BLOCK_GROUP_RAID0;
3383
3384 return extended_to_chunk(flags | tmp);
3385 }
3386
3387 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3388 {
3389 unsigned seq;
3390
3391 do {
3392 seq = read_seqbegin(&root->fs_info->profiles_lock);
3393
3394 if (flags & BTRFS_BLOCK_GROUP_DATA)
3395 flags |= root->fs_info->avail_data_alloc_bits;
3396 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3397 flags |= root->fs_info->avail_system_alloc_bits;
3398 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3399 flags |= root->fs_info->avail_metadata_alloc_bits;
3400 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3401
3402 return btrfs_reduce_alloc_profile(root, flags);
3403 }
3404
3405 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3406 {
3407 u64 flags;
3408 u64 ret;
3409
3410 if (data)
3411 flags = BTRFS_BLOCK_GROUP_DATA;
3412 else if (root == root->fs_info->chunk_root)
3413 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3414 else
3415 flags = BTRFS_BLOCK_GROUP_METADATA;
3416
3417 ret = get_alloc_profile(root, flags);
3418 return ret;
3419 }
3420
3421 /*
3422 * This will check the space that the inode allocates from to make sure we have
3423 * enough space for bytes.
3424 */
3425 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3426 {
3427 struct btrfs_space_info *data_sinfo;
3428 struct btrfs_root *root = BTRFS_I(inode)->root;
3429 struct btrfs_fs_info *fs_info = root->fs_info;
3430 u64 used;
3431 int ret = 0, committed = 0, alloc_chunk = 1;
3432
3433 /* make sure bytes are sectorsize aligned */
3434 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3435
3436 if (root == root->fs_info->tree_root ||
3437 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3438 alloc_chunk = 0;
3439 committed = 1;
3440 }
3441
3442 data_sinfo = fs_info->data_sinfo;
3443 if (!data_sinfo)
3444 goto alloc;
3445
3446 again:
3447 /* make sure we have enough space to handle the data first */
3448 spin_lock(&data_sinfo->lock);
3449 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3450 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3451 data_sinfo->bytes_may_use;
3452
3453 if (used + bytes > data_sinfo->total_bytes) {
3454 struct btrfs_trans_handle *trans;
3455
3456 /*
3457 * if we don't have enough free bytes in this space then we need
3458 * to alloc a new chunk.
3459 */
3460 if (!data_sinfo->full && alloc_chunk) {
3461 u64 alloc_target;
3462
3463 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3464 spin_unlock(&data_sinfo->lock);
3465 alloc:
3466 alloc_target = btrfs_get_alloc_profile(root, 1);
3467 trans = btrfs_join_transaction(root);
3468 if (IS_ERR(trans))
3469 return PTR_ERR(trans);
3470
3471 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3472 alloc_target,
3473 CHUNK_ALLOC_NO_FORCE);
3474 btrfs_end_transaction(trans, root);
3475 if (ret < 0) {
3476 if (ret != -ENOSPC)
3477 return ret;
3478 else
3479 goto commit_trans;
3480 }
3481
3482 if (!data_sinfo)
3483 data_sinfo = fs_info->data_sinfo;
3484
3485 goto again;
3486 }
3487
3488 /*
3489 * If we have less pinned bytes than we want to allocate then
3490 * don't bother committing the transaction, it won't help us.
3491 */
3492 if (data_sinfo->bytes_pinned < bytes)
3493 committed = 1;
3494 spin_unlock(&data_sinfo->lock);
3495
3496 /* commit the current transaction and try again */
3497 commit_trans:
3498 if (!committed &&
3499 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3500 committed = 1;
3501 trans = btrfs_join_transaction(root);
3502 if (IS_ERR(trans))
3503 return PTR_ERR(trans);
3504 ret = btrfs_commit_transaction(trans, root);
3505 if (ret)
3506 return ret;
3507 goto again;
3508 }
3509
3510 return -ENOSPC;
3511 }
3512 data_sinfo->bytes_may_use += bytes;
3513 trace_btrfs_space_reservation(root->fs_info, "space_info",
3514 data_sinfo->flags, bytes, 1);
3515 spin_unlock(&data_sinfo->lock);
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * Called if we need to clear a data reservation for this inode.
3522 */
3523 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3524 {
3525 struct btrfs_root *root = BTRFS_I(inode)->root;
3526 struct btrfs_space_info *data_sinfo;
3527
3528 /* make sure bytes are sectorsize aligned */
3529 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3530
3531 data_sinfo = root->fs_info->data_sinfo;
3532 spin_lock(&data_sinfo->lock);
3533 data_sinfo->bytes_may_use -= bytes;
3534 trace_btrfs_space_reservation(root->fs_info, "space_info",
3535 data_sinfo->flags, bytes, 0);
3536 spin_unlock(&data_sinfo->lock);
3537 }
3538
3539 static void force_metadata_allocation(struct btrfs_fs_info *info)
3540 {
3541 struct list_head *head = &info->space_info;
3542 struct btrfs_space_info *found;
3543
3544 rcu_read_lock();
3545 list_for_each_entry_rcu(found, head, list) {
3546 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3547 found->force_alloc = CHUNK_ALLOC_FORCE;
3548 }
3549 rcu_read_unlock();
3550 }
3551
3552 static int should_alloc_chunk(struct btrfs_root *root,
3553 struct btrfs_space_info *sinfo, int force)
3554 {
3555 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3556 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3557 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3558 u64 thresh;
3559
3560 if (force == CHUNK_ALLOC_FORCE)
3561 return 1;
3562
3563 /*
3564 * We need to take into account the global rsv because for all intents
3565 * and purposes it's used space. Don't worry about locking the
3566 * global_rsv, it doesn't change except when the transaction commits.
3567 */
3568 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3569 num_allocated += global_rsv->size;
3570
3571 /*
3572 * in limited mode, we want to have some free space up to
3573 * about 1% of the FS size.
3574 */
3575 if (force == CHUNK_ALLOC_LIMITED) {
3576 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3577 thresh = max_t(u64, 64 * 1024 * 1024,
3578 div_factor_fine(thresh, 1));
3579
3580 if (num_bytes - num_allocated < thresh)
3581 return 1;
3582 }
3583
3584 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3585 return 0;
3586 return 1;
3587 }
3588
3589 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3590 {
3591 u64 num_dev;
3592
3593 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3594 BTRFS_BLOCK_GROUP_RAID0 |
3595 BTRFS_BLOCK_GROUP_RAID5 |
3596 BTRFS_BLOCK_GROUP_RAID6))
3597 num_dev = root->fs_info->fs_devices->rw_devices;
3598 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3599 num_dev = 2;
3600 else
3601 num_dev = 1; /* DUP or single */
3602
3603 /* metadata for updaing devices and chunk tree */
3604 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3605 }
3606
3607 static void check_system_chunk(struct btrfs_trans_handle *trans,
3608 struct btrfs_root *root, u64 type)
3609 {
3610 struct btrfs_space_info *info;
3611 u64 left;
3612 u64 thresh;
3613
3614 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3615 spin_lock(&info->lock);
3616 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3617 info->bytes_reserved - info->bytes_readonly;
3618 spin_unlock(&info->lock);
3619
3620 thresh = get_system_chunk_thresh(root, type);
3621 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3622 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3623 left, thresh, type);
3624 dump_space_info(info, 0, 0);
3625 }
3626
3627 if (left < thresh) {
3628 u64 flags;
3629
3630 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3631 btrfs_alloc_chunk(trans, root, flags);
3632 }
3633 }
3634
3635 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3636 struct btrfs_root *extent_root, u64 flags, int force)
3637 {
3638 struct btrfs_space_info *space_info;
3639 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3640 int wait_for_alloc = 0;
3641 int ret = 0;
3642
3643 /* Don't re-enter if we're already allocating a chunk */
3644 if (trans->allocating_chunk)
3645 return -ENOSPC;
3646
3647 space_info = __find_space_info(extent_root->fs_info, flags);
3648 if (!space_info) {
3649 ret = update_space_info(extent_root->fs_info, flags,
3650 0, 0, &space_info);
3651 BUG_ON(ret); /* -ENOMEM */
3652 }
3653 BUG_ON(!space_info); /* Logic error */
3654
3655 again:
3656 spin_lock(&space_info->lock);
3657 if (force < space_info->force_alloc)
3658 force = space_info->force_alloc;
3659 if (space_info->full) {
3660 spin_unlock(&space_info->lock);
3661 return 0;
3662 }
3663
3664 if (!should_alloc_chunk(extent_root, space_info, force)) {
3665 spin_unlock(&space_info->lock);
3666 return 0;
3667 } else if (space_info->chunk_alloc) {
3668 wait_for_alloc = 1;
3669 } else {
3670 space_info->chunk_alloc = 1;
3671 }
3672
3673 spin_unlock(&space_info->lock);
3674
3675 mutex_lock(&fs_info->chunk_mutex);
3676
3677 /*
3678 * The chunk_mutex is held throughout the entirety of a chunk
3679 * allocation, so once we've acquired the chunk_mutex we know that the
3680 * other guy is done and we need to recheck and see if we should
3681 * allocate.
3682 */
3683 if (wait_for_alloc) {
3684 mutex_unlock(&fs_info->chunk_mutex);
3685 wait_for_alloc = 0;
3686 goto again;
3687 }
3688
3689 trans->allocating_chunk = true;
3690
3691 /*
3692 * If we have mixed data/metadata chunks we want to make sure we keep
3693 * allocating mixed chunks instead of individual chunks.
3694 */
3695 if (btrfs_mixed_space_info(space_info))
3696 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3697
3698 /*
3699 * if we're doing a data chunk, go ahead and make sure that
3700 * we keep a reasonable number of metadata chunks allocated in the
3701 * FS as well.
3702 */
3703 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3704 fs_info->data_chunk_allocations++;
3705 if (!(fs_info->data_chunk_allocations %
3706 fs_info->metadata_ratio))
3707 force_metadata_allocation(fs_info);
3708 }
3709
3710 /*
3711 * Check if we have enough space in SYSTEM chunk because we may need
3712 * to update devices.
3713 */
3714 check_system_chunk(trans, extent_root, flags);
3715
3716 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3717 trans->allocating_chunk = false;
3718 if (ret < 0 && ret != -ENOSPC)
3719 goto out;
3720
3721 spin_lock(&space_info->lock);
3722 if (ret)
3723 space_info->full = 1;
3724 else
3725 ret = 1;
3726
3727 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3728 space_info->chunk_alloc = 0;
3729 spin_unlock(&space_info->lock);
3730 out:
3731 mutex_unlock(&fs_info->chunk_mutex);
3732 return ret;
3733 }
3734
3735 static int can_overcommit(struct btrfs_root *root,
3736 struct btrfs_space_info *space_info, u64 bytes,
3737 enum btrfs_reserve_flush_enum flush)
3738 {
3739 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3740 u64 profile = btrfs_get_alloc_profile(root, 0);
3741 u64 rsv_size = 0;
3742 u64 avail;
3743 u64 used;
3744 u64 to_add;
3745
3746 used = space_info->bytes_used + space_info->bytes_reserved +
3747 space_info->bytes_pinned + space_info->bytes_readonly;
3748
3749 spin_lock(&global_rsv->lock);
3750 rsv_size = global_rsv->size;
3751 spin_unlock(&global_rsv->lock);
3752
3753 /*
3754 * We only want to allow over committing if we have lots of actual space
3755 * free, but if we don't have enough space to handle the global reserve
3756 * space then we could end up having a real enospc problem when trying
3757 * to allocate a chunk or some other such important allocation.
3758 */
3759 rsv_size <<= 1;
3760 if (used + rsv_size >= space_info->total_bytes)
3761 return 0;
3762
3763 used += space_info->bytes_may_use;
3764
3765 spin_lock(&root->fs_info->free_chunk_lock);
3766 avail = root->fs_info->free_chunk_space;
3767 spin_unlock(&root->fs_info->free_chunk_lock);
3768
3769 /*
3770 * If we have dup, raid1 or raid10 then only half of the free
3771 * space is actually useable. For raid56, the space info used
3772 * doesn't include the parity drive, so we don't have to
3773 * change the math
3774 */
3775 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3776 BTRFS_BLOCK_GROUP_RAID1 |
3777 BTRFS_BLOCK_GROUP_RAID10))
3778 avail >>= 1;
3779
3780 to_add = space_info->total_bytes;
3781
3782 /*
3783 * If we aren't flushing all things, let us overcommit up to
3784 * 1/2th of the space. If we can flush, don't let us overcommit
3785 * too much, let it overcommit up to 1/8 of the space.
3786 */
3787 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3788 to_add >>= 3;
3789 else
3790 to_add >>= 1;
3791
3792 /*
3793 * Limit the overcommit to the amount of free space we could possibly
3794 * allocate for chunks.
3795 */
3796 to_add = min(avail, to_add);
3797
3798 if (used + bytes < space_info->total_bytes + to_add)
3799 return 1;
3800 return 0;
3801 }
3802
3803 static inline int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb,
3804 unsigned long nr_pages,
3805 enum wb_reason reason)
3806 {
3807 /* the flusher is dealing with the dirty inodes now. */
3808 if (writeback_in_progress(sb->s_bdi))
3809 return 1;
3810
3811 if (down_read_trylock(&sb->s_umount)) {
3812 writeback_inodes_sb_nr(sb, nr_pages, reason);
3813 up_read(&sb->s_umount);
3814 return 1;
3815 }
3816
3817 return 0;
3818 }
3819
3820 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3821 unsigned long nr_pages)
3822 {
3823 struct super_block *sb = root->fs_info->sb;
3824 int started;
3825
3826 /* If we can not start writeback, just sync all the delalloc file. */
3827 started = writeback_inodes_sb_nr_if_idle_safe(sb, nr_pages,
3828 WB_REASON_FS_FREE_SPACE);
3829 if (!started) {
3830 /*
3831 * We needn't worry the filesystem going from r/w to r/o though
3832 * we don't acquire ->s_umount mutex, because the filesystem
3833 * should guarantee the delalloc inodes list be empty after
3834 * the filesystem is readonly(all dirty pages are written to
3835 * the disk).
3836 */
3837 btrfs_start_delalloc_inodes(root, 0);
3838 btrfs_wait_ordered_extents(root, 0);
3839 }
3840 }
3841
3842 /*
3843 * shrink metadata reservation for delalloc
3844 */
3845 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3846 bool wait_ordered)
3847 {
3848 struct btrfs_block_rsv *block_rsv;
3849 struct btrfs_space_info *space_info;
3850 struct btrfs_trans_handle *trans;
3851 u64 delalloc_bytes;
3852 u64 max_reclaim;
3853 long time_left;
3854 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3855 int loops = 0;
3856 enum btrfs_reserve_flush_enum flush;
3857
3858 trans = (struct btrfs_trans_handle *)current->journal_info;
3859 block_rsv = &root->fs_info->delalloc_block_rsv;
3860 space_info = block_rsv->space_info;
3861
3862 smp_mb();
3863 delalloc_bytes = percpu_counter_sum_positive(
3864 &root->fs_info->delalloc_bytes);
3865 if (delalloc_bytes == 0) {
3866 if (trans)
3867 return;
3868 btrfs_wait_ordered_extents(root, 0);
3869 return;
3870 }
3871
3872 while (delalloc_bytes && loops < 3) {
3873 max_reclaim = min(delalloc_bytes, to_reclaim);
3874 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3875 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3876 /*
3877 * We need to wait for the async pages to actually start before
3878 * we do anything.
3879 */
3880 wait_event(root->fs_info->async_submit_wait,
3881 !atomic_read(&root->fs_info->async_delalloc_pages));
3882
3883 if (!trans)
3884 flush = BTRFS_RESERVE_FLUSH_ALL;
3885 else
3886 flush = BTRFS_RESERVE_NO_FLUSH;
3887 spin_lock(&space_info->lock);
3888 if (can_overcommit(root, space_info, orig, flush)) {
3889 spin_unlock(&space_info->lock);
3890 break;
3891 }
3892 spin_unlock(&space_info->lock);
3893
3894 loops++;
3895 if (wait_ordered && !trans) {
3896 btrfs_wait_ordered_extents(root, 0);
3897 } else {
3898 time_left = schedule_timeout_killable(1);
3899 if (time_left)
3900 break;
3901 }
3902 smp_mb();
3903 delalloc_bytes = percpu_counter_sum_positive(
3904 &root->fs_info->delalloc_bytes);
3905 }
3906 }
3907
3908 /**
3909 * maybe_commit_transaction - possibly commit the transaction if its ok to
3910 * @root - the root we're allocating for
3911 * @bytes - the number of bytes we want to reserve
3912 * @force - force the commit
3913 *
3914 * This will check to make sure that committing the transaction will actually
3915 * get us somewhere and then commit the transaction if it does. Otherwise it
3916 * will return -ENOSPC.
3917 */
3918 static int may_commit_transaction(struct btrfs_root *root,
3919 struct btrfs_space_info *space_info,
3920 u64 bytes, int force)
3921 {
3922 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3923 struct btrfs_trans_handle *trans;
3924
3925 trans = (struct btrfs_trans_handle *)current->journal_info;
3926 if (trans)
3927 return -EAGAIN;
3928
3929 if (force)
3930 goto commit;
3931
3932 /* See if there is enough pinned space to make this reservation */
3933 spin_lock(&space_info->lock);
3934 if (space_info->bytes_pinned >= bytes) {
3935 spin_unlock(&space_info->lock);
3936 goto commit;
3937 }
3938 spin_unlock(&space_info->lock);
3939
3940 /*
3941 * See if there is some space in the delayed insertion reservation for
3942 * this reservation.
3943 */
3944 if (space_info != delayed_rsv->space_info)
3945 return -ENOSPC;
3946
3947 spin_lock(&space_info->lock);
3948 spin_lock(&delayed_rsv->lock);
3949 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3950 spin_unlock(&delayed_rsv->lock);
3951 spin_unlock(&space_info->lock);
3952 return -ENOSPC;
3953 }
3954 spin_unlock(&delayed_rsv->lock);
3955 spin_unlock(&space_info->lock);
3956
3957 commit:
3958 trans = btrfs_join_transaction(root);
3959 if (IS_ERR(trans))
3960 return -ENOSPC;
3961
3962 return btrfs_commit_transaction(trans, root);
3963 }
3964
3965 enum flush_state {
3966 FLUSH_DELAYED_ITEMS_NR = 1,
3967 FLUSH_DELAYED_ITEMS = 2,
3968 FLUSH_DELALLOC = 3,
3969 FLUSH_DELALLOC_WAIT = 4,
3970 ALLOC_CHUNK = 5,
3971 COMMIT_TRANS = 6,
3972 };
3973
3974 static int flush_space(struct btrfs_root *root,
3975 struct btrfs_space_info *space_info, u64 num_bytes,
3976 u64 orig_bytes, int state)
3977 {
3978 struct btrfs_trans_handle *trans;
3979 int nr;
3980 int ret = 0;
3981
3982 switch (state) {
3983 case FLUSH_DELAYED_ITEMS_NR:
3984 case FLUSH_DELAYED_ITEMS:
3985 if (state == FLUSH_DELAYED_ITEMS_NR) {
3986 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3987
3988 nr = (int)div64_u64(num_bytes, bytes);
3989 if (!nr)
3990 nr = 1;
3991 nr *= 2;
3992 } else {
3993 nr = -1;
3994 }
3995 trans = btrfs_join_transaction(root);
3996 if (IS_ERR(trans)) {
3997 ret = PTR_ERR(trans);
3998 break;
3999 }
4000 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4001 btrfs_end_transaction(trans, root);
4002 break;
4003 case FLUSH_DELALLOC:
4004 case FLUSH_DELALLOC_WAIT:
4005 shrink_delalloc(root, num_bytes, orig_bytes,
4006 state == FLUSH_DELALLOC_WAIT);
4007 break;
4008 case ALLOC_CHUNK:
4009 trans = btrfs_join_transaction(root);
4010 if (IS_ERR(trans)) {
4011 ret = PTR_ERR(trans);
4012 break;
4013 }
4014 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4015 btrfs_get_alloc_profile(root, 0),
4016 CHUNK_ALLOC_NO_FORCE);
4017 btrfs_end_transaction(trans, root);
4018 if (ret == -ENOSPC)
4019 ret = 0;
4020 break;
4021 case COMMIT_TRANS:
4022 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4023 break;
4024 default:
4025 ret = -ENOSPC;
4026 break;
4027 }
4028
4029 return ret;
4030 }
4031 /**
4032 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4033 * @root - the root we're allocating for
4034 * @block_rsv - the block_rsv we're allocating for
4035 * @orig_bytes - the number of bytes we want
4036 * @flush - whether or not we can flush to make our reservation
4037 *
4038 * This will reserve orgi_bytes number of bytes from the space info associated
4039 * with the block_rsv. If there is not enough space it will make an attempt to
4040 * flush out space to make room. It will do this by flushing delalloc if
4041 * possible or committing the transaction. If flush is 0 then no attempts to
4042 * regain reservations will be made and this will fail if there is not enough
4043 * space already.
4044 */
4045 static int reserve_metadata_bytes(struct btrfs_root *root,
4046 struct btrfs_block_rsv *block_rsv,
4047 u64 orig_bytes,
4048 enum btrfs_reserve_flush_enum flush)
4049 {
4050 struct btrfs_space_info *space_info = block_rsv->space_info;
4051 u64 used;
4052 u64 num_bytes = orig_bytes;
4053 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4054 int ret = 0;
4055 bool flushing = false;
4056
4057 again:
4058 ret = 0;
4059 spin_lock(&space_info->lock);
4060 /*
4061 * We only want to wait if somebody other than us is flushing and we
4062 * are actually allowed to flush all things.
4063 */
4064 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4065 space_info->flush) {
4066 spin_unlock(&space_info->lock);
4067 /*
4068 * If we have a trans handle we can't wait because the flusher
4069 * may have to commit the transaction, which would mean we would
4070 * deadlock since we are waiting for the flusher to finish, but
4071 * hold the current transaction open.
4072 */
4073 if (current->journal_info)
4074 return -EAGAIN;
4075 ret = wait_event_killable(space_info->wait, !space_info->flush);
4076 /* Must have been killed, return */
4077 if (ret)
4078 return -EINTR;
4079
4080 spin_lock(&space_info->lock);
4081 }
4082
4083 ret = -ENOSPC;
4084 used = space_info->bytes_used + space_info->bytes_reserved +
4085 space_info->bytes_pinned + space_info->bytes_readonly +
4086 space_info->bytes_may_use;
4087
4088 /*
4089 * The idea here is that we've not already over-reserved the block group
4090 * then we can go ahead and save our reservation first and then start
4091 * flushing if we need to. Otherwise if we've already overcommitted
4092 * lets start flushing stuff first and then come back and try to make
4093 * our reservation.
4094 */
4095 if (used <= space_info->total_bytes) {
4096 if (used + orig_bytes <= space_info->total_bytes) {
4097 space_info->bytes_may_use += orig_bytes;
4098 trace_btrfs_space_reservation(root->fs_info,
4099 "space_info", space_info->flags, orig_bytes, 1);
4100 ret = 0;
4101 } else {
4102 /*
4103 * Ok set num_bytes to orig_bytes since we aren't
4104 * overocmmitted, this way we only try and reclaim what
4105 * we need.
4106 */
4107 num_bytes = orig_bytes;
4108 }
4109 } else {
4110 /*
4111 * Ok we're over committed, set num_bytes to the overcommitted
4112 * amount plus the amount of bytes that we need for this
4113 * reservation.
4114 */
4115 num_bytes = used - space_info->total_bytes +
4116 (orig_bytes * 2);
4117 }
4118
4119 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4120 space_info->bytes_may_use += orig_bytes;
4121 trace_btrfs_space_reservation(root->fs_info, "space_info",
4122 space_info->flags, orig_bytes,
4123 1);
4124 ret = 0;
4125 }
4126
4127 /*
4128 * Couldn't make our reservation, save our place so while we're trying
4129 * to reclaim space we can actually use it instead of somebody else
4130 * stealing it from us.
4131 *
4132 * We make the other tasks wait for the flush only when we can flush
4133 * all things.
4134 */
4135 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4136 flushing = true;
4137 space_info->flush = 1;
4138 }
4139
4140 spin_unlock(&space_info->lock);
4141
4142 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4143 goto out;
4144
4145 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4146 flush_state);
4147 flush_state++;
4148
4149 /*
4150 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4151 * would happen. So skip delalloc flush.
4152 */
4153 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4154 (flush_state == FLUSH_DELALLOC ||
4155 flush_state == FLUSH_DELALLOC_WAIT))
4156 flush_state = ALLOC_CHUNK;
4157
4158 if (!ret)
4159 goto again;
4160 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4161 flush_state < COMMIT_TRANS)
4162 goto again;
4163 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4164 flush_state <= COMMIT_TRANS)
4165 goto again;
4166
4167 out:
4168 if (ret == -ENOSPC &&
4169 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4170 struct btrfs_block_rsv *global_rsv =
4171 &root->fs_info->global_block_rsv;
4172
4173 if (block_rsv != global_rsv &&
4174 !block_rsv_use_bytes(global_rsv, orig_bytes))
4175 ret = 0;
4176 }
4177 if (flushing) {
4178 spin_lock(&space_info->lock);
4179 space_info->flush = 0;
4180 wake_up_all(&space_info->wait);
4181 spin_unlock(&space_info->lock);
4182 }
4183 return ret;
4184 }
4185
4186 static struct btrfs_block_rsv *get_block_rsv(
4187 const struct btrfs_trans_handle *trans,
4188 const struct btrfs_root *root)
4189 {
4190 struct btrfs_block_rsv *block_rsv = NULL;
4191
4192 if (root->ref_cows)
4193 block_rsv = trans->block_rsv;
4194
4195 if (root == root->fs_info->csum_root && trans->adding_csums)
4196 block_rsv = trans->block_rsv;
4197
4198 if (!block_rsv)
4199 block_rsv = root->block_rsv;
4200
4201 if (!block_rsv)
4202 block_rsv = &root->fs_info->empty_block_rsv;
4203
4204 return block_rsv;
4205 }
4206
4207 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4208 u64 num_bytes)
4209 {
4210 int ret = -ENOSPC;
4211 spin_lock(&block_rsv->lock);
4212 if (block_rsv->reserved >= num_bytes) {
4213 block_rsv->reserved -= num_bytes;
4214 if (block_rsv->reserved < block_rsv->size)
4215 block_rsv->full = 0;
4216 ret = 0;
4217 }
4218 spin_unlock(&block_rsv->lock);
4219 return ret;
4220 }
4221
4222 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4223 u64 num_bytes, int update_size)
4224 {
4225 spin_lock(&block_rsv->lock);
4226 block_rsv->reserved += num_bytes;
4227 if (update_size)
4228 block_rsv->size += num_bytes;
4229 else if (block_rsv->reserved >= block_rsv->size)
4230 block_rsv->full = 1;
4231 spin_unlock(&block_rsv->lock);
4232 }
4233
4234 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4235 struct btrfs_block_rsv *block_rsv,
4236 struct btrfs_block_rsv *dest, u64 num_bytes)
4237 {
4238 struct btrfs_space_info *space_info = block_rsv->space_info;
4239
4240 spin_lock(&block_rsv->lock);
4241 if (num_bytes == (u64)-1)
4242 num_bytes = block_rsv->size;
4243 block_rsv->size -= num_bytes;
4244 if (block_rsv->reserved >= block_rsv->size) {
4245 num_bytes = block_rsv->reserved - block_rsv->size;
4246 block_rsv->reserved = block_rsv->size;
4247 block_rsv->full = 1;
4248 } else {
4249 num_bytes = 0;
4250 }
4251 spin_unlock(&block_rsv->lock);
4252
4253 if (num_bytes > 0) {
4254 if (dest) {
4255 spin_lock(&dest->lock);
4256 if (!dest->full) {
4257 u64 bytes_to_add;
4258
4259 bytes_to_add = dest->size - dest->reserved;
4260 bytes_to_add = min(num_bytes, bytes_to_add);
4261 dest->reserved += bytes_to_add;
4262 if (dest->reserved >= dest->size)
4263 dest->full = 1;
4264 num_bytes -= bytes_to_add;
4265 }
4266 spin_unlock(&dest->lock);
4267 }
4268 if (num_bytes) {
4269 spin_lock(&space_info->lock);
4270 space_info->bytes_may_use -= num_bytes;
4271 trace_btrfs_space_reservation(fs_info, "space_info",
4272 space_info->flags, num_bytes, 0);
4273 space_info->reservation_progress++;
4274 spin_unlock(&space_info->lock);
4275 }
4276 }
4277 }
4278
4279 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4280 struct btrfs_block_rsv *dst, u64 num_bytes)
4281 {
4282 int ret;
4283
4284 ret = block_rsv_use_bytes(src, num_bytes);
4285 if (ret)
4286 return ret;
4287
4288 block_rsv_add_bytes(dst, num_bytes, 1);
4289 return 0;
4290 }
4291
4292 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4293 {
4294 memset(rsv, 0, sizeof(*rsv));
4295 spin_lock_init(&rsv->lock);
4296 rsv->type = type;
4297 }
4298
4299 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4300 unsigned short type)
4301 {
4302 struct btrfs_block_rsv *block_rsv;
4303 struct btrfs_fs_info *fs_info = root->fs_info;
4304
4305 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4306 if (!block_rsv)
4307 return NULL;
4308
4309 btrfs_init_block_rsv(block_rsv, type);
4310 block_rsv->space_info = __find_space_info(fs_info,
4311 BTRFS_BLOCK_GROUP_METADATA);
4312 return block_rsv;
4313 }
4314
4315 void btrfs_free_block_rsv(struct btrfs_root *root,
4316 struct btrfs_block_rsv *rsv)
4317 {
4318 if (!rsv)
4319 return;
4320 btrfs_block_rsv_release(root, rsv, (u64)-1);
4321 kfree(rsv);
4322 }
4323
4324 int btrfs_block_rsv_add(struct btrfs_root *root,
4325 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4326 enum btrfs_reserve_flush_enum flush)
4327 {
4328 int ret;
4329
4330 if (num_bytes == 0)
4331 return 0;
4332
4333 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4334 if (!ret) {
4335 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4336 return 0;
4337 }
4338
4339 return ret;
4340 }
4341
4342 int btrfs_block_rsv_check(struct btrfs_root *root,
4343 struct btrfs_block_rsv *block_rsv, int min_factor)
4344 {
4345 u64 num_bytes = 0;
4346 int ret = -ENOSPC;
4347
4348 if (!block_rsv)
4349 return 0;
4350
4351 spin_lock(&block_rsv->lock);
4352 num_bytes = div_factor(block_rsv->size, min_factor);
4353 if (block_rsv->reserved >= num_bytes)
4354 ret = 0;
4355 spin_unlock(&block_rsv->lock);
4356
4357 return ret;
4358 }
4359
4360 int btrfs_block_rsv_refill(struct btrfs_root *root,
4361 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4362 enum btrfs_reserve_flush_enum flush)
4363 {
4364 u64 num_bytes = 0;
4365 int ret = -ENOSPC;
4366
4367 if (!block_rsv)
4368 return 0;
4369
4370 spin_lock(&block_rsv->lock);
4371 num_bytes = min_reserved;
4372 if (block_rsv->reserved >= num_bytes)
4373 ret = 0;
4374 else
4375 num_bytes -= block_rsv->reserved;
4376 spin_unlock(&block_rsv->lock);
4377
4378 if (!ret)
4379 return 0;
4380
4381 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4382 if (!ret) {
4383 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4384 return 0;
4385 }
4386
4387 return ret;
4388 }
4389
4390 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4391 struct btrfs_block_rsv *dst_rsv,
4392 u64 num_bytes)
4393 {
4394 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4395 }
4396
4397 void btrfs_block_rsv_release(struct btrfs_root *root,
4398 struct btrfs_block_rsv *block_rsv,
4399 u64 num_bytes)
4400 {
4401 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4402 if (global_rsv->full || global_rsv == block_rsv ||
4403 block_rsv->space_info != global_rsv->space_info)
4404 global_rsv = NULL;
4405 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4406 num_bytes);
4407 }
4408
4409 /*
4410 * helper to calculate size of global block reservation.
4411 * the desired value is sum of space used by extent tree,
4412 * checksum tree and root tree
4413 */
4414 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4415 {
4416 struct btrfs_space_info *sinfo;
4417 u64 num_bytes;
4418 u64 meta_used;
4419 u64 data_used;
4420 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4421
4422 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4423 spin_lock(&sinfo->lock);
4424 data_used = sinfo->bytes_used;
4425 spin_unlock(&sinfo->lock);
4426
4427 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4428 spin_lock(&sinfo->lock);
4429 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4430 data_used = 0;
4431 meta_used = sinfo->bytes_used;
4432 spin_unlock(&sinfo->lock);
4433
4434 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4435 csum_size * 2;
4436 num_bytes += div64_u64(data_used + meta_used, 50);
4437
4438 if (num_bytes * 3 > meta_used)
4439 num_bytes = div64_u64(meta_used, 3);
4440
4441 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4442 }
4443
4444 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4445 {
4446 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4447 struct btrfs_space_info *sinfo = block_rsv->space_info;
4448 u64 num_bytes;
4449
4450 num_bytes = calc_global_metadata_size(fs_info);
4451
4452 spin_lock(&sinfo->lock);
4453 spin_lock(&block_rsv->lock);
4454
4455 block_rsv->size = num_bytes;
4456
4457 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4458 sinfo->bytes_reserved + sinfo->bytes_readonly +
4459 sinfo->bytes_may_use;
4460
4461 if (sinfo->total_bytes > num_bytes) {
4462 num_bytes = sinfo->total_bytes - num_bytes;
4463 block_rsv->reserved += num_bytes;
4464 sinfo->bytes_may_use += num_bytes;
4465 trace_btrfs_space_reservation(fs_info, "space_info",
4466 sinfo->flags, num_bytes, 1);
4467 }
4468
4469 if (block_rsv->reserved >= block_rsv->size) {
4470 num_bytes = block_rsv->reserved - block_rsv->size;
4471 sinfo->bytes_may_use -= num_bytes;
4472 trace_btrfs_space_reservation(fs_info, "space_info",
4473 sinfo->flags, num_bytes, 0);
4474 sinfo->reservation_progress++;
4475 block_rsv->reserved = block_rsv->size;
4476 block_rsv->full = 1;
4477 }
4478
4479 spin_unlock(&block_rsv->lock);
4480 spin_unlock(&sinfo->lock);
4481 }
4482
4483 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4484 {
4485 struct btrfs_space_info *space_info;
4486
4487 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4488 fs_info->chunk_block_rsv.space_info = space_info;
4489
4490 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4491 fs_info->global_block_rsv.space_info = space_info;
4492 fs_info->delalloc_block_rsv.space_info = space_info;
4493 fs_info->trans_block_rsv.space_info = space_info;
4494 fs_info->empty_block_rsv.space_info = space_info;
4495 fs_info->delayed_block_rsv.space_info = space_info;
4496
4497 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4498 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4499 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4500 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4501 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4502
4503 update_global_block_rsv(fs_info);
4504 }
4505
4506 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4507 {
4508 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4509 (u64)-1);
4510 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4511 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4512 WARN_ON(fs_info->trans_block_rsv.size > 0);
4513 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4514 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4515 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4516 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4517 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4518 }
4519
4520 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4521 struct btrfs_root *root)
4522 {
4523 if (!trans->block_rsv)
4524 return;
4525
4526 if (!trans->bytes_reserved)
4527 return;
4528
4529 trace_btrfs_space_reservation(root->fs_info, "transaction",
4530 trans->transid, trans->bytes_reserved, 0);
4531 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4532 trans->bytes_reserved = 0;
4533 }
4534
4535 /* Can only return 0 or -ENOSPC */
4536 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4537 struct inode *inode)
4538 {
4539 struct btrfs_root *root = BTRFS_I(inode)->root;
4540 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4541 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4542
4543 /*
4544 * We need to hold space in order to delete our orphan item once we've
4545 * added it, so this takes the reservation so we can release it later
4546 * when we are truly done with the orphan item.
4547 */
4548 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4549 trace_btrfs_space_reservation(root->fs_info, "orphan",
4550 btrfs_ino(inode), num_bytes, 1);
4551 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4552 }
4553
4554 void btrfs_orphan_release_metadata(struct inode *inode)
4555 {
4556 struct btrfs_root *root = BTRFS_I(inode)->root;
4557 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4558 trace_btrfs_space_reservation(root->fs_info, "orphan",
4559 btrfs_ino(inode), num_bytes, 0);
4560 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4561 }
4562
4563 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4564 struct btrfs_pending_snapshot *pending)
4565 {
4566 struct btrfs_root *root = pending->root;
4567 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4568 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4569 /*
4570 * two for root back/forward refs, two for directory entries,
4571 * one for root of the snapshot and one for parent inode.
4572 */
4573 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4574 dst_rsv->space_info = src_rsv->space_info;
4575 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4576 }
4577
4578 /**
4579 * drop_outstanding_extent - drop an outstanding extent
4580 * @inode: the inode we're dropping the extent for
4581 *
4582 * This is called when we are freeing up an outstanding extent, either called
4583 * after an error or after an extent is written. This will return the number of
4584 * reserved extents that need to be freed. This must be called with
4585 * BTRFS_I(inode)->lock held.
4586 */
4587 static unsigned drop_outstanding_extent(struct inode *inode)
4588 {
4589 unsigned drop_inode_space = 0;
4590 unsigned dropped_extents = 0;
4591
4592 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4593 BTRFS_I(inode)->outstanding_extents--;
4594
4595 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4596 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4597 &BTRFS_I(inode)->runtime_flags))
4598 drop_inode_space = 1;
4599
4600 /*
4601 * If we have more or the same amount of outsanding extents than we have
4602 * reserved then we need to leave the reserved extents count alone.
4603 */
4604 if (BTRFS_I(inode)->outstanding_extents >=
4605 BTRFS_I(inode)->reserved_extents)
4606 return drop_inode_space;
4607
4608 dropped_extents = BTRFS_I(inode)->reserved_extents -
4609 BTRFS_I(inode)->outstanding_extents;
4610 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4611 return dropped_extents + drop_inode_space;
4612 }
4613
4614 /**
4615 * calc_csum_metadata_size - return the amount of metada space that must be
4616 * reserved/free'd for the given bytes.
4617 * @inode: the inode we're manipulating
4618 * @num_bytes: the number of bytes in question
4619 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4620 *
4621 * This adjusts the number of csum_bytes in the inode and then returns the
4622 * correct amount of metadata that must either be reserved or freed. We
4623 * calculate how many checksums we can fit into one leaf and then divide the
4624 * number of bytes that will need to be checksumed by this value to figure out
4625 * how many checksums will be required. If we are adding bytes then the number
4626 * may go up and we will return the number of additional bytes that must be
4627 * reserved. If it is going down we will return the number of bytes that must
4628 * be freed.
4629 *
4630 * This must be called with BTRFS_I(inode)->lock held.
4631 */
4632 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4633 int reserve)
4634 {
4635 struct btrfs_root *root = BTRFS_I(inode)->root;
4636 u64 csum_size;
4637 int num_csums_per_leaf;
4638 int num_csums;
4639 int old_csums;
4640
4641 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4642 BTRFS_I(inode)->csum_bytes == 0)
4643 return 0;
4644
4645 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4646 if (reserve)
4647 BTRFS_I(inode)->csum_bytes += num_bytes;
4648 else
4649 BTRFS_I(inode)->csum_bytes -= num_bytes;
4650 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4651 num_csums_per_leaf = (int)div64_u64(csum_size,
4652 sizeof(struct btrfs_csum_item) +
4653 sizeof(struct btrfs_disk_key));
4654 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4655 num_csums = num_csums + num_csums_per_leaf - 1;
4656 num_csums = num_csums / num_csums_per_leaf;
4657
4658 old_csums = old_csums + num_csums_per_leaf - 1;
4659 old_csums = old_csums / num_csums_per_leaf;
4660
4661 /* No change, no need to reserve more */
4662 if (old_csums == num_csums)
4663 return 0;
4664
4665 if (reserve)
4666 return btrfs_calc_trans_metadata_size(root,
4667 num_csums - old_csums);
4668
4669 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4670 }
4671
4672 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4673 {
4674 struct btrfs_root *root = BTRFS_I(inode)->root;
4675 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4676 u64 to_reserve = 0;
4677 u64 csum_bytes;
4678 unsigned nr_extents = 0;
4679 int extra_reserve = 0;
4680 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4681 int ret = 0;
4682 bool delalloc_lock = true;
4683
4684 /* If we are a free space inode we need to not flush since we will be in
4685 * the middle of a transaction commit. We also don't need the delalloc
4686 * mutex since we won't race with anybody. We need this mostly to make
4687 * lockdep shut its filthy mouth.
4688 */
4689 if (btrfs_is_free_space_inode(inode)) {
4690 flush = BTRFS_RESERVE_NO_FLUSH;
4691 delalloc_lock = false;
4692 }
4693
4694 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4695 btrfs_transaction_in_commit(root->fs_info))
4696 schedule_timeout(1);
4697
4698 if (delalloc_lock)
4699 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4700
4701 num_bytes = ALIGN(num_bytes, root->sectorsize);
4702
4703 spin_lock(&BTRFS_I(inode)->lock);
4704 BTRFS_I(inode)->outstanding_extents++;
4705
4706 if (BTRFS_I(inode)->outstanding_extents >
4707 BTRFS_I(inode)->reserved_extents)
4708 nr_extents = BTRFS_I(inode)->outstanding_extents -
4709 BTRFS_I(inode)->reserved_extents;
4710
4711 /*
4712 * Add an item to reserve for updating the inode when we complete the
4713 * delalloc io.
4714 */
4715 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4716 &BTRFS_I(inode)->runtime_flags)) {
4717 nr_extents++;
4718 extra_reserve = 1;
4719 }
4720
4721 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4722 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4723 csum_bytes = BTRFS_I(inode)->csum_bytes;
4724 spin_unlock(&BTRFS_I(inode)->lock);
4725
4726 if (root->fs_info->quota_enabled)
4727 ret = btrfs_qgroup_reserve(root, num_bytes +
4728 nr_extents * root->leafsize);
4729
4730 /*
4731 * ret != 0 here means the qgroup reservation failed, we go straight to
4732 * the shared error handling then.
4733 */
4734 if (ret == 0)
4735 ret = reserve_metadata_bytes(root, block_rsv,
4736 to_reserve, flush);
4737
4738 if (ret) {
4739 u64 to_free = 0;
4740 unsigned dropped;
4741
4742 spin_lock(&BTRFS_I(inode)->lock);
4743 dropped = drop_outstanding_extent(inode);
4744 /*
4745 * If the inodes csum_bytes is the same as the original
4746 * csum_bytes then we know we haven't raced with any free()ers
4747 * so we can just reduce our inodes csum bytes and carry on.
4748 * Otherwise we have to do the normal free thing to account for
4749 * the case that the free side didn't free up its reserve
4750 * because of this outstanding reservation.
4751 */
4752 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4753 calc_csum_metadata_size(inode, num_bytes, 0);
4754 else
4755 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4756 spin_unlock(&BTRFS_I(inode)->lock);
4757 if (dropped)
4758 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4759
4760 if (to_free) {
4761 btrfs_block_rsv_release(root, block_rsv, to_free);
4762 trace_btrfs_space_reservation(root->fs_info,
4763 "delalloc",
4764 btrfs_ino(inode),
4765 to_free, 0);
4766 }
4767 if (root->fs_info->quota_enabled) {
4768 btrfs_qgroup_free(root, num_bytes +
4769 nr_extents * root->leafsize);
4770 }
4771 if (delalloc_lock)
4772 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4773 return ret;
4774 }
4775
4776 spin_lock(&BTRFS_I(inode)->lock);
4777 if (extra_reserve) {
4778 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4779 &BTRFS_I(inode)->runtime_flags);
4780 nr_extents--;
4781 }
4782 BTRFS_I(inode)->reserved_extents += nr_extents;
4783 spin_unlock(&BTRFS_I(inode)->lock);
4784
4785 if (delalloc_lock)
4786 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4787
4788 if (to_reserve)
4789 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4790 btrfs_ino(inode), to_reserve, 1);
4791 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4792
4793 return 0;
4794 }
4795
4796 /**
4797 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4798 * @inode: the inode to release the reservation for
4799 * @num_bytes: the number of bytes we're releasing
4800 *
4801 * This will release the metadata reservation for an inode. This can be called
4802 * once we complete IO for a given set of bytes to release their metadata
4803 * reservations.
4804 */
4805 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4806 {
4807 struct btrfs_root *root = BTRFS_I(inode)->root;
4808 u64 to_free = 0;
4809 unsigned dropped;
4810
4811 num_bytes = ALIGN(num_bytes, root->sectorsize);
4812 spin_lock(&BTRFS_I(inode)->lock);
4813 dropped = drop_outstanding_extent(inode);
4814
4815 if (num_bytes)
4816 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4817 spin_unlock(&BTRFS_I(inode)->lock);
4818 if (dropped > 0)
4819 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4820
4821 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4822 btrfs_ino(inode), to_free, 0);
4823 if (root->fs_info->quota_enabled) {
4824 btrfs_qgroup_free(root, num_bytes +
4825 dropped * root->leafsize);
4826 }
4827
4828 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4829 to_free);
4830 }
4831
4832 /**
4833 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4834 * @inode: inode we're writing to
4835 * @num_bytes: the number of bytes we want to allocate
4836 *
4837 * This will do the following things
4838 *
4839 * o reserve space in the data space info for num_bytes
4840 * o reserve space in the metadata space info based on number of outstanding
4841 * extents and how much csums will be needed
4842 * o add to the inodes ->delalloc_bytes
4843 * o add it to the fs_info's delalloc inodes list.
4844 *
4845 * This will return 0 for success and -ENOSPC if there is no space left.
4846 */
4847 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4848 {
4849 int ret;
4850
4851 ret = btrfs_check_data_free_space(inode, num_bytes);
4852 if (ret)
4853 return ret;
4854
4855 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4856 if (ret) {
4857 btrfs_free_reserved_data_space(inode, num_bytes);
4858 return ret;
4859 }
4860
4861 return 0;
4862 }
4863
4864 /**
4865 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4866 * @inode: inode we're releasing space for
4867 * @num_bytes: the number of bytes we want to free up
4868 *
4869 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4870 * called in the case that we don't need the metadata AND data reservations
4871 * anymore. So if there is an error or we insert an inline extent.
4872 *
4873 * This function will release the metadata space that was not used and will
4874 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4875 * list if there are no delalloc bytes left.
4876 */
4877 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4878 {
4879 btrfs_delalloc_release_metadata(inode, num_bytes);
4880 btrfs_free_reserved_data_space(inode, num_bytes);
4881 }
4882
4883 static int update_block_group(struct btrfs_root *root,
4884 u64 bytenr, u64 num_bytes, int alloc)
4885 {
4886 struct btrfs_block_group_cache *cache = NULL;
4887 struct btrfs_fs_info *info = root->fs_info;
4888 u64 total = num_bytes;
4889 u64 old_val;
4890 u64 byte_in_group;
4891 int factor;
4892
4893 /* block accounting for super block */
4894 spin_lock(&info->delalloc_lock);
4895 old_val = btrfs_super_bytes_used(info->super_copy);
4896 if (alloc)
4897 old_val += num_bytes;
4898 else
4899 old_val -= num_bytes;
4900 btrfs_set_super_bytes_used(info->super_copy, old_val);
4901 spin_unlock(&info->delalloc_lock);
4902
4903 while (total) {
4904 cache = btrfs_lookup_block_group(info, bytenr);
4905 if (!cache)
4906 return -ENOENT;
4907 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4908 BTRFS_BLOCK_GROUP_RAID1 |
4909 BTRFS_BLOCK_GROUP_RAID10))
4910 factor = 2;
4911 else
4912 factor = 1;
4913 /*
4914 * If this block group has free space cache written out, we
4915 * need to make sure to load it if we are removing space. This
4916 * is because we need the unpinning stage to actually add the
4917 * space back to the block group, otherwise we will leak space.
4918 */
4919 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4920 cache_block_group(cache, 1);
4921
4922 byte_in_group = bytenr - cache->key.objectid;
4923 WARN_ON(byte_in_group > cache->key.offset);
4924
4925 spin_lock(&cache->space_info->lock);
4926 spin_lock(&cache->lock);
4927
4928 if (btrfs_test_opt(root, SPACE_CACHE) &&
4929 cache->disk_cache_state < BTRFS_DC_CLEAR)
4930 cache->disk_cache_state = BTRFS_DC_CLEAR;
4931
4932 cache->dirty = 1;
4933 old_val = btrfs_block_group_used(&cache->item);
4934 num_bytes = min(total, cache->key.offset - byte_in_group);
4935 if (alloc) {
4936 old_val += num_bytes;
4937 btrfs_set_block_group_used(&cache->item, old_val);
4938 cache->reserved -= num_bytes;
4939 cache->space_info->bytes_reserved -= num_bytes;
4940 cache->space_info->bytes_used += num_bytes;
4941 cache->space_info->disk_used += num_bytes * factor;
4942 spin_unlock(&cache->lock);
4943 spin_unlock(&cache->space_info->lock);
4944 } else {
4945 old_val -= num_bytes;
4946 btrfs_set_block_group_used(&cache->item, old_val);
4947 cache->pinned += num_bytes;
4948 cache->space_info->bytes_pinned += num_bytes;
4949 cache->space_info->bytes_used -= num_bytes;
4950 cache->space_info->disk_used -= num_bytes * factor;
4951 spin_unlock(&cache->lock);
4952 spin_unlock(&cache->space_info->lock);
4953
4954 set_extent_dirty(info->pinned_extents,
4955 bytenr, bytenr + num_bytes - 1,
4956 GFP_NOFS | __GFP_NOFAIL);
4957 }
4958 btrfs_put_block_group(cache);
4959 total -= num_bytes;
4960 bytenr += num_bytes;
4961 }
4962 return 0;
4963 }
4964
4965 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4966 {
4967 struct btrfs_block_group_cache *cache;
4968 u64 bytenr;
4969
4970 spin_lock(&root->fs_info->block_group_cache_lock);
4971 bytenr = root->fs_info->first_logical_byte;
4972 spin_unlock(&root->fs_info->block_group_cache_lock);
4973
4974 if (bytenr < (u64)-1)
4975 return bytenr;
4976
4977 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4978 if (!cache)
4979 return 0;
4980
4981 bytenr = cache->key.objectid;
4982 btrfs_put_block_group(cache);
4983
4984 return bytenr;
4985 }
4986
4987 static int pin_down_extent(struct btrfs_root *root,
4988 struct btrfs_block_group_cache *cache,
4989 u64 bytenr, u64 num_bytes, int reserved)
4990 {
4991 spin_lock(&cache->space_info->lock);
4992 spin_lock(&cache->lock);
4993 cache->pinned += num_bytes;
4994 cache->space_info->bytes_pinned += num_bytes;
4995 if (reserved) {
4996 cache->reserved -= num_bytes;
4997 cache->space_info->bytes_reserved -= num_bytes;
4998 }
4999 spin_unlock(&cache->lock);
5000 spin_unlock(&cache->space_info->lock);
5001
5002 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5003 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5004 return 0;
5005 }
5006
5007 /*
5008 * this function must be called within transaction
5009 */
5010 int btrfs_pin_extent(struct btrfs_root *root,
5011 u64 bytenr, u64 num_bytes, int reserved)
5012 {
5013 struct btrfs_block_group_cache *cache;
5014
5015 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5016 BUG_ON(!cache); /* Logic error */
5017
5018 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5019
5020 btrfs_put_block_group(cache);
5021 return 0;
5022 }
5023
5024 /*
5025 * this function must be called within transaction
5026 */
5027 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5028 u64 bytenr, u64 num_bytes)
5029 {
5030 struct btrfs_block_group_cache *cache;
5031
5032 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5033 BUG_ON(!cache); /* Logic error */
5034
5035 /*
5036 * pull in the free space cache (if any) so that our pin
5037 * removes the free space from the cache. We have load_only set
5038 * to one because the slow code to read in the free extents does check
5039 * the pinned extents.
5040 */
5041 cache_block_group(cache, 1);
5042
5043 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5044
5045 /* remove us from the free space cache (if we're there at all) */
5046 btrfs_remove_free_space(cache, bytenr, num_bytes);
5047 btrfs_put_block_group(cache);
5048 return 0;
5049 }
5050
5051 /**
5052 * btrfs_update_reserved_bytes - update the block_group and space info counters
5053 * @cache: The cache we are manipulating
5054 * @num_bytes: The number of bytes in question
5055 * @reserve: One of the reservation enums
5056 *
5057 * This is called by the allocator when it reserves space, or by somebody who is
5058 * freeing space that was never actually used on disk. For example if you
5059 * reserve some space for a new leaf in transaction A and before transaction A
5060 * commits you free that leaf, you call this with reserve set to 0 in order to
5061 * clear the reservation.
5062 *
5063 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5064 * ENOSPC accounting. For data we handle the reservation through clearing the
5065 * delalloc bits in the io_tree. We have to do this since we could end up
5066 * allocating less disk space for the amount of data we have reserved in the
5067 * case of compression.
5068 *
5069 * If this is a reservation and the block group has become read only we cannot
5070 * make the reservation and return -EAGAIN, otherwise this function always
5071 * succeeds.
5072 */
5073 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5074 u64 num_bytes, int reserve)
5075 {
5076 struct btrfs_space_info *space_info = cache->space_info;
5077 int ret = 0;
5078
5079 spin_lock(&space_info->lock);
5080 spin_lock(&cache->lock);
5081 if (reserve != RESERVE_FREE) {
5082 if (cache->ro) {
5083 ret = -EAGAIN;
5084 } else {
5085 cache->reserved += num_bytes;
5086 space_info->bytes_reserved += num_bytes;
5087 if (reserve == RESERVE_ALLOC) {
5088 trace_btrfs_space_reservation(cache->fs_info,
5089 "space_info", space_info->flags,
5090 num_bytes, 0);
5091 space_info->bytes_may_use -= num_bytes;
5092 }
5093 }
5094 } else {
5095 if (cache->ro)
5096 space_info->bytes_readonly += num_bytes;
5097 cache->reserved -= num_bytes;
5098 space_info->bytes_reserved -= num_bytes;
5099 space_info->reservation_progress++;
5100 }
5101 spin_unlock(&cache->lock);
5102 spin_unlock(&space_info->lock);
5103 return ret;
5104 }
5105
5106 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5107 struct btrfs_root *root)
5108 {
5109 struct btrfs_fs_info *fs_info = root->fs_info;
5110 struct btrfs_caching_control *next;
5111 struct btrfs_caching_control *caching_ctl;
5112 struct btrfs_block_group_cache *cache;
5113
5114 down_write(&fs_info->extent_commit_sem);
5115
5116 list_for_each_entry_safe(caching_ctl, next,
5117 &fs_info->caching_block_groups, list) {
5118 cache = caching_ctl->block_group;
5119 if (block_group_cache_done(cache)) {
5120 cache->last_byte_to_unpin = (u64)-1;
5121 list_del_init(&caching_ctl->list);
5122 put_caching_control(caching_ctl);
5123 } else {
5124 cache->last_byte_to_unpin = caching_ctl->progress;
5125 }
5126 }
5127
5128 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5129 fs_info->pinned_extents = &fs_info->freed_extents[1];
5130 else
5131 fs_info->pinned_extents = &fs_info->freed_extents[0];
5132
5133 up_write(&fs_info->extent_commit_sem);
5134
5135 update_global_block_rsv(fs_info);
5136 }
5137
5138 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5139 {
5140 struct btrfs_fs_info *fs_info = root->fs_info;
5141 struct btrfs_block_group_cache *cache = NULL;
5142 struct btrfs_space_info *space_info;
5143 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5144 u64 len;
5145 bool readonly;
5146
5147 while (start <= end) {
5148 readonly = false;
5149 if (!cache ||
5150 start >= cache->key.objectid + cache->key.offset) {
5151 if (cache)
5152 btrfs_put_block_group(cache);
5153 cache = btrfs_lookup_block_group(fs_info, start);
5154 BUG_ON(!cache); /* Logic error */
5155 }
5156
5157 len = cache->key.objectid + cache->key.offset - start;
5158 len = min(len, end + 1 - start);
5159
5160 if (start < cache->last_byte_to_unpin) {
5161 len = min(len, cache->last_byte_to_unpin - start);
5162 btrfs_add_free_space(cache, start, len);
5163 }
5164
5165 start += len;
5166 space_info = cache->space_info;
5167
5168 spin_lock(&space_info->lock);
5169 spin_lock(&cache->lock);
5170 cache->pinned -= len;
5171 space_info->bytes_pinned -= len;
5172 if (cache->ro) {
5173 space_info->bytes_readonly += len;
5174 readonly = true;
5175 }
5176 spin_unlock(&cache->lock);
5177 if (!readonly && global_rsv->space_info == space_info) {
5178 spin_lock(&global_rsv->lock);
5179 if (!global_rsv->full) {
5180 len = min(len, global_rsv->size -
5181 global_rsv->reserved);
5182 global_rsv->reserved += len;
5183 space_info->bytes_may_use += len;
5184 if (global_rsv->reserved >= global_rsv->size)
5185 global_rsv->full = 1;
5186 }
5187 spin_unlock(&global_rsv->lock);
5188 }
5189 spin_unlock(&space_info->lock);
5190 }
5191
5192 if (cache)
5193 btrfs_put_block_group(cache);
5194 return 0;
5195 }
5196
5197 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5198 struct btrfs_root *root)
5199 {
5200 struct btrfs_fs_info *fs_info = root->fs_info;
5201 struct extent_io_tree *unpin;
5202 u64 start;
5203 u64 end;
5204 int ret;
5205
5206 if (trans->aborted)
5207 return 0;
5208
5209 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5210 unpin = &fs_info->freed_extents[1];
5211 else
5212 unpin = &fs_info->freed_extents[0];
5213
5214 while (1) {
5215 ret = find_first_extent_bit(unpin, 0, &start, &end,
5216 EXTENT_DIRTY, NULL);
5217 if (ret)
5218 break;
5219
5220 if (btrfs_test_opt(root, DISCARD))
5221 ret = btrfs_discard_extent(root, start,
5222 end + 1 - start, NULL);
5223
5224 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5225 unpin_extent_range(root, start, end);
5226 cond_resched();
5227 }
5228
5229 return 0;
5230 }
5231
5232 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5233 struct btrfs_root *root,
5234 u64 bytenr, u64 num_bytes, u64 parent,
5235 u64 root_objectid, u64 owner_objectid,
5236 u64 owner_offset, int refs_to_drop,
5237 struct btrfs_delayed_extent_op *extent_op)
5238 {
5239 struct btrfs_key key;
5240 struct btrfs_path *path;
5241 struct btrfs_fs_info *info = root->fs_info;
5242 struct btrfs_root *extent_root = info->extent_root;
5243 struct extent_buffer *leaf;
5244 struct btrfs_extent_item *ei;
5245 struct btrfs_extent_inline_ref *iref;
5246 int ret;
5247 int is_data;
5248 int extent_slot = 0;
5249 int found_extent = 0;
5250 int num_to_del = 1;
5251 u32 item_size;
5252 u64 refs;
5253
5254 path = btrfs_alloc_path();
5255 if (!path)
5256 return -ENOMEM;
5257
5258 path->reada = 1;
5259 path->leave_spinning = 1;
5260
5261 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5262 BUG_ON(!is_data && refs_to_drop != 1);
5263
5264 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5265 bytenr, num_bytes, parent,
5266 root_objectid, owner_objectid,
5267 owner_offset);
5268 if (ret == 0) {
5269 extent_slot = path->slots[0];
5270 while (extent_slot >= 0) {
5271 btrfs_item_key_to_cpu(path->nodes[0], &key,
5272 extent_slot);
5273 if (key.objectid != bytenr)
5274 break;
5275 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5276 key.offset == num_bytes) {
5277 found_extent = 1;
5278 break;
5279 }
5280 if (path->slots[0] - extent_slot > 5)
5281 break;
5282 extent_slot--;
5283 }
5284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5285 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5286 if (found_extent && item_size < sizeof(*ei))
5287 found_extent = 0;
5288 #endif
5289 if (!found_extent) {
5290 BUG_ON(iref);
5291 ret = remove_extent_backref(trans, extent_root, path,
5292 NULL, refs_to_drop,
5293 is_data);
5294 if (ret) {
5295 btrfs_abort_transaction(trans, extent_root, ret);
5296 goto out;
5297 }
5298 btrfs_release_path(path);
5299 path->leave_spinning = 1;
5300
5301 key.objectid = bytenr;
5302 key.type = BTRFS_EXTENT_ITEM_KEY;
5303 key.offset = num_bytes;
5304
5305 ret = btrfs_search_slot(trans, extent_root,
5306 &key, path, -1, 1);
5307 if (ret) {
5308 printk(KERN_ERR "umm, got %d back from search"
5309 ", was looking for %llu\n", ret,
5310 (unsigned long long)bytenr);
5311 if (ret > 0)
5312 btrfs_print_leaf(extent_root,
5313 path->nodes[0]);
5314 }
5315 if (ret < 0) {
5316 btrfs_abort_transaction(trans, extent_root, ret);
5317 goto out;
5318 }
5319 extent_slot = path->slots[0];
5320 }
5321 } else if (ret == -ENOENT) {
5322 btrfs_print_leaf(extent_root, path->nodes[0]);
5323 WARN_ON(1);
5324 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5325 "parent %llu root %llu owner %llu offset %llu\n",
5326 (unsigned long long)bytenr,
5327 (unsigned long long)parent,
5328 (unsigned long long)root_objectid,
5329 (unsigned long long)owner_objectid,
5330 (unsigned long long)owner_offset);
5331 } else {
5332 btrfs_abort_transaction(trans, extent_root, ret);
5333 goto out;
5334 }
5335
5336 leaf = path->nodes[0];
5337 item_size = btrfs_item_size_nr(leaf, extent_slot);
5338 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5339 if (item_size < sizeof(*ei)) {
5340 BUG_ON(found_extent || extent_slot != path->slots[0]);
5341 ret = convert_extent_item_v0(trans, extent_root, path,
5342 owner_objectid, 0);
5343 if (ret < 0) {
5344 btrfs_abort_transaction(trans, extent_root, ret);
5345 goto out;
5346 }
5347
5348 btrfs_release_path(path);
5349 path->leave_spinning = 1;
5350
5351 key.objectid = bytenr;
5352 key.type = BTRFS_EXTENT_ITEM_KEY;
5353 key.offset = num_bytes;
5354
5355 ret = btrfs_search_slot(trans, extent_root, &key, path,
5356 -1, 1);
5357 if (ret) {
5358 printk(KERN_ERR "umm, got %d back from search"
5359 ", was looking for %llu\n", ret,
5360 (unsigned long long)bytenr);
5361 btrfs_print_leaf(extent_root, path->nodes[0]);
5362 }
5363 if (ret < 0) {
5364 btrfs_abort_transaction(trans, extent_root, ret);
5365 goto out;
5366 }
5367
5368 extent_slot = path->slots[0];
5369 leaf = path->nodes[0];
5370 item_size = btrfs_item_size_nr(leaf, extent_slot);
5371 }
5372 #endif
5373 BUG_ON(item_size < sizeof(*ei));
5374 ei = btrfs_item_ptr(leaf, extent_slot,
5375 struct btrfs_extent_item);
5376 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5377 struct btrfs_tree_block_info *bi;
5378 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5379 bi = (struct btrfs_tree_block_info *)(ei + 1);
5380 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5381 }
5382
5383 refs = btrfs_extent_refs(leaf, ei);
5384 BUG_ON(refs < refs_to_drop);
5385 refs -= refs_to_drop;
5386
5387 if (refs > 0) {
5388 if (extent_op)
5389 __run_delayed_extent_op(extent_op, leaf, ei);
5390 /*
5391 * In the case of inline back ref, reference count will
5392 * be updated by remove_extent_backref
5393 */
5394 if (iref) {
5395 BUG_ON(!found_extent);
5396 } else {
5397 btrfs_set_extent_refs(leaf, ei, refs);
5398 btrfs_mark_buffer_dirty(leaf);
5399 }
5400 if (found_extent) {
5401 ret = remove_extent_backref(trans, extent_root, path,
5402 iref, refs_to_drop,
5403 is_data);
5404 if (ret) {
5405 btrfs_abort_transaction(trans, extent_root, ret);
5406 goto out;
5407 }
5408 }
5409 } else {
5410 if (found_extent) {
5411 BUG_ON(is_data && refs_to_drop !=
5412 extent_data_ref_count(root, path, iref));
5413 if (iref) {
5414 BUG_ON(path->slots[0] != extent_slot);
5415 } else {
5416 BUG_ON(path->slots[0] != extent_slot + 1);
5417 path->slots[0] = extent_slot;
5418 num_to_del = 2;
5419 }
5420 }
5421
5422 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5423 num_to_del);
5424 if (ret) {
5425 btrfs_abort_transaction(trans, extent_root, ret);
5426 goto out;
5427 }
5428 btrfs_release_path(path);
5429
5430 if (is_data) {
5431 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5432 if (ret) {
5433 btrfs_abort_transaction(trans, extent_root, ret);
5434 goto out;
5435 }
5436 }
5437
5438 ret = update_block_group(root, bytenr, num_bytes, 0);
5439 if (ret) {
5440 btrfs_abort_transaction(trans, extent_root, ret);
5441 goto out;
5442 }
5443 }
5444 out:
5445 btrfs_free_path(path);
5446 return ret;
5447 }
5448
5449 /*
5450 * when we free an block, it is possible (and likely) that we free the last
5451 * delayed ref for that extent as well. This searches the delayed ref tree for
5452 * a given extent, and if there are no other delayed refs to be processed, it
5453 * removes it from the tree.
5454 */
5455 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5456 struct btrfs_root *root, u64 bytenr)
5457 {
5458 struct btrfs_delayed_ref_head *head;
5459 struct btrfs_delayed_ref_root *delayed_refs;
5460 struct btrfs_delayed_ref_node *ref;
5461 struct rb_node *node;
5462 int ret = 0;
5463
5464 delayed_refs = &trans->transaction->delayed_refs;
5465 spin_lock(&delayed_refs->lock);
5466 head = btrfs_find_delayed_ref_head(trans, bytenr);
5467 if (!head)
5468 goto out;
5469
5470 node = rb_prev(&head->node.rb_node);
5471 if (!node)
5472 goto out;
5473
5474 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5475
5476 /* there are still entries for this ref, we can't drop it */
5477 if (ref->bytenr == bytenr)
5478 goto out;
5479
5480 if (head->extent_op) {
5481 if (!head->must_insert_reserved)
5482 goto out;
5483 btrfs_free_delayed_extent_op(head->extent_op);
5484 head->extent_op = NULL;
5485 }
5486
5487 /*
5488 * waiting for the lock here would deadlock. If someone else has it
5489 * locked they are already in the process of dropping it anyway
5490 */
5491 if (!mutex_trylock(&head->mutex))
5492 goto out;
5493
5494 /*
5495 * at this point we have a head with no other entries. Go
5496 * ahead and process it.
5497 */
5498 head->node.in_tree = 0;
5499 rb_erase(&head->node.rb_node, &delayed_refs->root);
5500
5501 delayed_refs->num_entries--;
5502
5503 /*
5504 * we don't take a ref on the node because we're removing it from the
5505 * tree, so we just steal the ref the tree was holding.
5506 */
5507 delayed_refs->num_heads--;
5508 if (list_empty(&head->cluster))
5509 delayed_refs->num_heads_ready--;
5510
5511 list_del_init(&head->cluster);
5512 spin_unlock(&delayed_refs->lock);
5513
5514 BUG_ON(head->extent_op);
5515 if (head->must_insert_reserved)
5516 ret = 1;
5517
5518 mutex_unlock(&head->mutex);
5519 btrfs_put_delayed_ref(&head->node);
5520 return ret;
5521 out:
5522 spin_unlock(&delayed_refs->lock);
5523 return 0;
5524 }
5525
5526 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5527 struct btrfs_root *root,
5528 struct extent_buffer *buf,
5529 u64 parent, int last_ref)
5530 {
5531 struct btrfs_block_group_cache *cache = NULL;
5532 int ret;
5533
5534 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5535 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5536 buf->start, buf->len,
5537 parent, root->root_key.objectid,
5538 btrfs_header_level(buf),
5539 BTRFS_DROP_DELAYED_REF, NULL, 0);
5540 BUG_ON(ret); /* -ENOMEM */
5541 }
5542
5543 if (!last_ref)
5544 return;
5545
5546 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5547
5548 if (btrfs_header_generation(buf) == trans->transid) {
5549 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5550 ret = check_ref_cleanup(trans, root, buf->start);
5551 if (!ret)
5552 goto out;
5553 }
5554
5555 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5556 pin_down_extent(root, cache, buf->start, buf->len, 1);
5557 goto out;
5558 }
5559
5560 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5561
5562 btrfs_add_free_space(cache, buf->start, buf->len);
5563 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5564 }
5565 out:
5566 /*
5567 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5568 * anymore.
5569 */
5570 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5571 btrfs_put_block_group(cache);
5572 }
5573
5574 /* Can return -ENOMEM */
5575 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5576 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5577 u64 owner, u64 offset, int for_cow)
5578 {
5579 int ret;
5580 struct btrfs_fs_info *fs_info = root->fs_info;
5581
5582 /*
5583 * tree log blocks never actually go into the extent allocation
5584 * tree, just update pinning info and exit early.
5585 */
5586 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5587 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5588 /* unlocks the pinned mutex */
5589 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5590 ret = 0;
5591 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5592 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5593 num_bytes,
5594 parent, root_objectid, (int)owner,
5595 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5596 } else {
5597 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5598 num_bytes,
5599 parent, root_objectid, owner,
5600 offset, BTRFS_DROP_DELAYED_REF,
5601 NULL, for_cow);
5602 }
5603 return ret;
5604 }
5605
5606 static u64 stripe_align(struct btrfs_root *root,
5607 struct btrfs_block_group_cache *cache,
5608 u64 val, u64 num_bytes)
5609 {
5610 u64 mask;
5611 u64 ret;
5612 mask = ((u64)root->stripesize - 1);
5613 ret = (val + mask) & ~mask;
5614 return ret;
5615 }
5616
5617 /*
5618 * when we wait for progress in the block group caching, its because
5619 * our allocation attempt failed at least once. So, we must sleep
5620 * and let some progress happen before we try again.
5621 *
5622 * This function will sleep at least once waiting for new free space to
5623 * show up, and then it will check the block group free space numbers
5624 * for our min num_bytes. Another option is to have it go ahead
5625 * and look in the rbtree for a free extent of a given size, but this
5626 * is a good start.
5627 */
5628 static noinline int
5629 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5630 u64 num_bytes)
5631 {
5632 struct btrfs_caching_control *caching_ctl;
5633
5634 caching_ctl = get_caching_control(cache);
5635 if (!caching_ctl)
5636 return 0;
5637
5638 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5639 (cache->free_space_ctl->free_space >= num_bytes));
5640
5641 put_caching_control(caching_ctl);
5642 return 0;
5643 }
5644
5645 static noinline int
5646 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5647 {
5648 struct btrfs_caching_control *caching_ctl;
5649
5650 caching_ctl = get_caching_control(cache);
5651 if (!caching_ctl)
5652 return 0;
5653
5654 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5655
5656 put_caching_control(caching_ctl);
5657 return 0;
5658 }
5659
5660 int __get_raid_index(u64 flags)
5661 {
5662 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5663 return BTRFS_RAID_RAID10;
5664 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5665 return BTRFS_RAID_RAID1;
5666 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5667 return BTRFS_RAID_DUP;
5668 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5669 return BTRFS_RAID_RAID0;
5670 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5671 return BTRFS_RAID_RAID5;
5672 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5673 return BTRFS_RAID_RAID6;
5674
5675 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5676 }
5677
5678 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5679 {
5680 return __get_raid_index(cache->flags);
5681 }
5682
5683 enum btrfs_loop_type {
5684 LOOP_CACHING_NOWAIT = 0,
5685 LOOP_CACHING_WAIT = 1,
5686 LOOP_ALLOC_CHUNK = 2,
5687 LOOP_NO_EMPTY_SIZE = 3,
5688 };
5689
5690 /*
5691 * walks the btree of allocated extents and find a hole of a given size.
5692 * The key ins is changed to record the hole:
5693 * ins->objectid == block start
5694 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5695 * ins->offset == number of blocks
5696 * Any available blocks before search_start are skipped.
5697 */
5698 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5699 struct btrfs_root *orig_root,
5700 u64 num_bytes, u64 empty_size,
5701 u64 hint_byte, struct btrfs_key *ins,
5702 u64 data)
5703 {
5704 int ret = 0;
5705 struct btrfs_root *root = orig_root->fs_info->extent_root;
5706 struct btrfs_free_cluster *last_ptr = NULL;
5707 struct btrfs_block_group_cache *block_group = NULL;
5708 struct btrfs_block_group_cache *used_block_group;
5709 u64 search_start = 0;
5710 int empty_cluster = 2 * 1024 * 1024;
5711 struct btrfs_space_info *space_info;
5712 int loop = 0;
5713 int index = __get_raid_index(data);
5714 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5715 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5716 bool found_uncached_bg = false;
5717 bool failed_cluster_refill = false;
5718 bool failed_alloc = false;
5719 bool use_cluster = true;
5720 bool have_caching_bg = false;
5721
5722 WARN_ON(num_bytes < root->sectorsize);
5723 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5724 ins->objectid = 0;
5725 ins->offset = 0;
5726
5727 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5728
5729 space_info = __find_space_info(root->fs_info, data);
5730 if (!space_info) {
5731 printk(KERN_ERR "No space info for %llu\n", data);
5732 return -ENOSPC;
5733 }
5734
5735 /*
5736 * If the space info is for both data and metadata it means we have a
5737 * small filesystem and we can't use the clustering stuff.
5738 */
5739 if (btrfs_mixed_space_info(space_info))
5740 use_cluster = false;
5741
5742 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5743 last_ptr = &root->fs_info->meta_alloc_cluster;
5744 if (!btrfs_test_opt(root, SSD))
5745 empty_cluster = 64 * 1024;
5746 }
5747
5748 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5749 btrfs_test_opt(root, SSD)) {
5750 last_ptr = &root->fs_info->data_alloc_cluster;
5751 }
5752
5753 if (last_ptr) {
5754 spin_lock(&last_ptr->lock);
5755 if (last_ptr->block_group)
5756 hint_byte = last_ptr->window_start;
5757 spin_unlock(&last_ptr->lock);
5758 }
5759
5760 search_start = max(search_start, first_logical_byte(root, 0));
5761 search_start = max(search_start, hint_byte);
5762
5763 if (!last_ptr)
5764 empty_cluster = 0;
5765
5766 if (search_start == hint_byte) {
5767 block_group = btrfs_lookup_block_group(root->fs_info,
5768 search_start);
5769 used_block_group = block_group;
5770 /*
5771 * we don't want to use the block group if it doesn't match our
5772 * allocation bits, or if its not cached.
5773 *
5774 * However if we are re-searching with an ideal block group
5775 * picked out then we don't care that the block group is cached.
5776 */
5777 if (block_group && block_group_bits(block_group, data) &&
5778 block_group->cached != BTRFS_CACHE_NO) {
5779 down_read(&space_info->groups_sem);
5780 if (list_empty(&block_group->list) ||
5781 block_group->ro) {
5782 /*
5783 * someone is removing this block group,
5784 * we can't jump into the have_block_group
5785 * target because our list pointers are not
5786 * valid
5787 */
5788 btrfs_put_block_group(block_group);
5789 up_read(&space_info->groups_sem);
5790 } else {
5791 index = get_block_group_index(block_group);
5792 goto have_block_group;
5793 }
5794 } else if (block_group) {
5795 btrfs_put_block_group(block_group);
5796 }
5797 }
5798 search:
5799 have_caching_bg = false;
5800 down_read(&space_info->groups_sem);
5801 list_for_each_entry(block_group, &space_info->block_groups[index],
5802 list) {
5803 u64 offset;
5804 int cached;
5805
5806 used_block_group = block_group;
5807 btrfs_get_block_group(block_group);
5808 search_start = block_group->key.objectid;
5809
5810 /*
5811 * this can happen if we end up cycling through all the
5812 * raid types, but we want to make sure we only allocate
5813 * for the proper type.
5814 */
5815 if (!block_group_bits(block_group, data)) {
5816 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5817 BTRFS_BLOCK_GROUP_RAID1 |
5818 BTRFS_BLOCK_GROUP_RAID5 |
5819 BTRFS_BLOCK_GROUP_RAID6 |
5820 BTRFS_BLOCK_GROUP_RAID10;
5821
5822 /*
5823 * if they asked for extra copies and this block group
5824 * doesn't provide them, bail. This does allow us to
5825 * fill raid0 from raid1.
5826 */
5827 if ((data & extra) && !(block_group->flags & extra))
5828 goto loop;
5829 }
5830
5831 have_block_group:
5832 cached = block_group_cache_done(block_group);
5833 if (unlikely(!cached)) {
5834 found_uncached_bg = true;
5835 ret = cache_block_group(block_group, 0);
5836 BUG_ON(ret < 0);
5837 ret = 0;
5838 }
5839
5840 if (unlikely(block_group->ro))
5841 goto loop;
5842
5843 /*
5844 * Ok we want to try and use the cluster allocator, so
5845 * lets look there
5846 */
5847 if (last_ptr) {
5848 unsigned long aligned_cluster;
5849 /*
5850 * the refill lock keeps out other
5851 * people trying to start a new cluster
5852 */
5853 spin_lock(&last_ptr->refill_lock);
5854 used_block_group = last_ptr->block_group;
5855 if (used_block_group != block_group &&
5856 (!used_block_group ||
5857 used_block_group->ro ||
5858 !block_group_bits(used_block_group, data))) {
5859 used_block_group = block_group;
5860 goto refill_cluster;
5861 }
5862
5863 if (used_block_group != block_group)
5864 btrfs_get_block_group(used_block_group);
5865
5866 offset = btrfs_alloc_from_cluster(used_block_group,
5867 last_ptr, num_bytes, used_block_group->key.objectid);
5868 if (offset) {
5869 /* we have a block, we're done */
5870 spin_unlock(&last_ptr->refill_lock);
5871 trace_btrfs_reserve_extent_cluster(root,
5872 block_group, search_start, num_bytes);
5873 goto checks;
5874 }
5875
5876 WARN_ON(last_ptr->block_group != used_block_group);
5877 if (used_block_group != block_group) {
5878 btrfs_put_block_group(used_block_group);
5879 used_block_group = block_group;
5880 }
5881 refill_cluster:
5882 BUG_ON(used_block_group != block_group);
5883 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5884 * set up a new clusters, so lets just skip it
5885 * and let the allocator find whatever block
5886 * it can find. If we reach this point, we
5887 * will have tried the cluster allocator
5888 * plenty of times and not have found
5889 * anything, so we are likely way too
5890 * fragmented for the clustering stuff to find
5891 * anything.
5892 *
5893 * However, if the cluster is taken from the
5894 * current block group, release the cluster
5895 * first, so that we stand a better chance of
5896 * succeeding in the unclustered
5897 * allocation. */
5898 if (loop >= LOOP_NO_EMPTY_SIZE &&
5899 last_ptr->block_group != block_group) {
5900 spin_unlock(&last_ptr->refill_lock);
5901 goto unclustered_alloc;
5902 }
5903
5904 /*
5905 * this cluster didn't work out, free it and
5906 * start over
5907 */
5908 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5909
5910 if (loop >= LOOP_NO_EMPTY_SIZE) {
5911 spin_unlock(&last_ptr->refill_lock);
5912 goto unclustered_alloc;
5913 }
5914
5915 aligned_cluster = max_t(unsigned long,
5916 empty_cluster + empty_size,
5917 block_group->full_stripe_len);
5918
5919 /* allocate a cluster in this block group */
5920 ret = btrfs_find_space_cluster(trans, root,
5921 block_group, last_ptr,
5922 search_start, num_bytes,
5923 aligned_cluster);
5924 if (ret == 0) {
5925 /*
5926 * now pull our allocation out of this
5927 * cluster
5928 */
5929 offset = btrfs_alloc_from_cluster(block_group,
5930 last_ptr, num_bytes,
5931 search_start);
5932 if (offset) {
5933 /* we found one, proceed */
5934 spin_unlock(&last_ptr->refill_lock);
5935 trace_btrfs_reserve_extent_cluster(root,
5936 block_group, search_start,
5937 num_bytes);
5938 goto checks;
5939 }
5940 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5941 && !failed_cluster_refill) {
5942 spin_unlock(&last_ptr->refill_lock);
5943
5944 failed_cluster_refill = true;
5945 wait_block_group_cache_progress(block_group,
5946 num_bytes + empty_cluster + empty_size);
5947 goto have_block_group;
5948 }
5949
5950 /*
5951 * at this point we either didn't find a cluster
5952 * or we weren't able to allocate a block from our
5953 * cluster. Free the cluster we've been trying
5954 * to use, and go to the next block group
5955 */
5956 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5957 spin_unlock(&last_ptr->refill_lock);
5958 goto loop;
5959 }
5960
5961 unclustered_alloc:
5962 spin_lock(&block_group->free_space_ctl->tree_lock);
5963 if (cached &&
5964 block_group->free_space_ctl->free_space <
5965 num_bytes + empty_cluster + empty_size) {
5966 spin_unlock(&block_group->free_space_ctl->tree_lock);
5967 goto loop;
5968 }
5969 spin_unlock(&block_group->free_space_ctl->tree_lock);
5970
5971 offset = btrfs_find_space_for_alloc(block_group, search_start,
5972 num_bytes, empty_size);
5973 /*
5974 * If we didn't find a chunk, and we haven't failed on this
5975 * block group before, and this block group is in the middle of
5976 * caching and we are ok with waiting, then go ahead and wait
5977 * for progress to be made, and set failed_alloc to true.
5978 *
5979 * If failed_alloc is true then we've already waited on this
5980 * block group once and should move on to the next block group.
5981 */
5982 if (!offset && !failed_alloc && !cached &&
5983 loop > LOOP_CACHING_NOWAIT) {
5984 wait_block_group_cache_progress(block_group,
5985 num_bytes + empty_size);
5986 failed_alloc = true;
5987 goto have_block_group;
5988 } else if (!offset) {
5989 if (!cached)
5990 have_caching_bg = true;
5991 goto loop;
5992 }
5993 checks:
5994 search_start = stripe_align(root, used_block_group,
5995 offset, num_bytes);
5996
5997 /* move on to the next group */
5998 if (search_start + num_bytes >
5999 used_block_group->key.objectid + used_block_group->key.offset) {
6000 btrfs_add_free_space(used_block_group, offset, num_bytes);
6001 goto loop;
6002 }
6003
6004 if (offset < search_start)
6005 btrfs_add_free_space(used_block_group, offset,
6006 search_start - offset);
6007 BUG_ON(offset > search_start);
6008
6009 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6010 alloc_type);
6011 if (ret == -EAGAIN) {
6012 btrfs_add_free_space(used_block_group, offset, num_bytes);
6013 goto loop;
6014 }
6015
6016 /* we are all good, lets return */
6017 ins->objectid = search_start;
6018 ins->offset = num_bytes;
6019
6020 trace_btrfs_reserve_extent(orig_root, block_group,
6021 search_start, num_bytes);
6022 if (used_block_group != block_group)
6023 btrfs_put_block_group(used_block_group);
6024 btrfs_put_block_group(block_group);
6025 break;
6026 loop:
6027 failed_cluster_refill = false;
6028 failed_alloc = false;
6029 BUG_ON(index != get_block_group_index(block_group));
6030 if (used_block_group != block_group)
6031 btrfs_put_block_group(used_block_group);
6032 btrfs_put_block_group(block_group);
6033 }
6034 up_read(&space_info->groups_sem);
6035
6036 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6037 goto search;
6038
6039 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6040 goto search;
6041
6042 /*
6043 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6044 * caching kthreads as we move along
6045 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6046 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6047 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6048 * again
6049 */
6050 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6051 index = 0;
6052 loop++;
6053 if (loop == LOOP_ALLOC_CHUNK) {
6054 ret = do_chunk_alloc(trans, root, data,
6055 CHUNK_ALLOC_FORCE);
6056 /*
6057 * Do not bail out on ENOSPC since we
6058 * can do more things.
6059 */
6060 if (ret < 0 && ret != -ENOSPC) {
6061 btrfs_abort_transaction(trans,
6062 root, ret);
6063 goto out;
6064 }
6065 }
6066
6067 if (loop == LOOP_NO_EMPTY_SIZE) {
6068 empty_size = 0;
6069 empty_cluster = 0;
6070 }
6071
6072 goto search;
6073 } else if (!ins->objectid) {
6074 ret = -ENOSPC;
6075 } else if (ins->objectid) {
6076 ret = 0;
6077 }
6078 out:
6079
6080 return ret;
6081 }
6082
6083 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6084 int dump_block_groups)
6085 {
6086 struct btrfs_block_group_cache *cache;
6087 int index = 0;
6088
6089 spin_lock(&info->lock);
6090 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6091 (unsigned long long)info->flags,
6092 (unsigned long long)(info->total_bytes - info->bytes_used -
6093 info->bytes_pinned - info->bytes_reserved -
6094 info->bytes_readonly),
6095 (info->full) ? "" : "not ");
6096 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6097 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6098 (unsigned long long)info->total_bytes,
6099 (unsigned long long)info->bytes_used,
6100 (unsigned long long)info->bytes_pinned,
6101 (unsigned long long)info->bytes_reserved,
6102 (unsigned long long)info->bytes_may_use,
6103 (unsigned long long)info->bytes_readonly);
6104 spin_unlock(&info->lock);
6105
6106 if (!dump_block_groups)
6107 return;
6108
6109 down_read(&info->groups_sem);
6110 again:
6111 list_for_each_entry(cache, &info->block_groups[index], list) {
6112 spin_lock(&cache->lock);
6113 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6114 (unsigned long long)cache->key.objectid,
6115 (unsigned long long)cache->key.offset,
6116 (unsigned long long)btrfs_block_group_used(&cache->item),
6117 (unsigned long long)cache->pinned,
6118 (unsigned long long)cache->reserved,
6119 cache->ro ? "[readonly]" : "");
6120 btrfs_dump_free_space(cache, bytes);
6121 spin_unlock(&cache->lock);
6122 }
6123 if (++index < BTRFS_NR_RAID_TYPES)
6124 goto again;
6125 up_read(&info->groups_sem);
6126 }
6127
6128 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6129 struct btrfs_root *root,
6130 u64 num_bytes, u64 min_alloc_size,
6131 u64 empty_size, u64 hint_byte,
6132 struct btrfs_key *ins, u64 data)
6133 {
6134 bool final_tried = false;
6135 int ret;
6136
6137 data = btrfs_get_alloc_profile(root, data);
6138 again:
6139 WARN_ON(num_bytes < root->sectorsize);
6140 ret = find_free_extent(trans, root, num_bytes, empty_size,
6141 hint_byte, ins, data);
6142
6143 if (ret == -ENOSPC) {
6144 if (!final_tried) {
6145 num_bytes = num_bytes >> 1;
6146 num_bytes = num_bytes & ~(root->sectorsize - 1);
6147 num_bytes = max(num_bytes, min_alloc_size);
6148 if (num_bytes == min_alloc_size)
6149 final_tried = true;
6150 goto again;
6151 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6152 struct btrfs_space_info *sinfo;
6153
6154 sinfo = __find_space_info(root->fs_info, data);
6155 printk(KERN_ERR "btrfs allocation failed flags %llu, "
6156 "wanted %llu\n", (unsigned long long)data,
6157 (unsigned long long)num_bytes);
6158 if (sinfo)
6159 dump_space_info(sinfo, num_bytes, 1);
6160 }
6161 }
6162
6163 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6164
6165 return ret;
6166 }
6167
6168 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6169 u64 start, u64 len, int pin)
6170 {
6171 struct btrfs_block_group_cache *cache;
6172 int ret = 0;
6173
6174 cache = btrfs_lookup_block_group(root->fs_info, start);
6175 if (!cache) {
6176 printk(KERN_ERR "Unable to find block group for %llu\n",
6177 (unsigned long long)start);
6178 return -ENOSPC;
6179 }
6180
6181 if (btrfs_test_opt(root, DISCARD))
6182 ret = btrfs_discard_extent(root, start, len, NULL);
6183
6184 if (pin)
6185 pin_down_extent(root, cache, start, len, 1);
6186 else {
6187 btrfs_add_free_space(cache, start, len);
6188 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6189 }
6190 btrfs_put_block_group(cache);
6191
6192 trace_btrfs_reserved_extent_free(root, start, len);
6193
6194 return ret;
6195 }
6196
6197 int btrfs_free_reserved_extent(struct btrfs_root *root,
6198 u64 start, u64 len)
6199 {
6200 return __btrfs_free_reserved_extent(root, start, len, 0);
6201 }
6202
6203 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6204 u64 start, u64 len)
6205 {
6206 return __btrfs_free_reserved_extent(root, start, len, 1);
6207 }
6208
6209 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6210 struct btrfs_root *root,
6211 u64 parent, u64 root_objectid,
6212 u64 flags, u64 owner, u64 offset,
6213 struct btrfs_key *ins, int ref_mod)
6214 {
6215 int ret;
6216 struct btrfs_fs_info *fs_info = root->fs_info;
6217 struct btrfs_extent_item *extent_item;
6218 struct btrfs_extent_inline_ref *iref;
6219 struct btrfs_path *path;
6220 struct extent_buffer *leaf;
6221 int type;
6222 u32 size;
6223
6224 if (parent > 0)
6225 type = BTRFS_SHARED_DATA_REF_KEY;
6226 else
6227 type = BTRFS_EXTENT_DATA_REF_KEY;
6228
6229 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6230
6231 path = btrfs_alloc_path();
6232 if (!path)
6233 return -ENOMEM;
6234
6235 path->leave_spinning = 1;
6236 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6237 ins, size);
6238 if (ret) {
6239 btrfs_free_path(path);
6240 return ret;
6241 }
6242
6243 leaf = path->nodes[0];
6244 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6245 struct btrfs_extent_item);
6246 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6247 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6248 btrfs_set_extent_flags(leaf, extent_item,
6249 flags | BTRFS_EXTENT_FLAG_DATA);
6250
6251 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6252 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6253 if (parent > 0) {
6254 struct btrfs_shared_data_ref *ref;
6255 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6256 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6257 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6258 } else {
6259 struct btrfs_extent_data_ref *ref;
6260 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6261 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6262 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6263 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6264 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6265 }
6266
6267 btrfs_mark_buffer_dirty(path->nodes[0]);
6268 btrfs_free_path(path);
6269
6270 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6271 if (ret) { /* -ENOENT, logic error */
6272 printk(KERN_ERR "btrfs update block group failed for %llu "
6273 "%llu\n", (unsigned long long)ins->objectid,
6274 (unsigned long long)ins->offset);
6275 BUG();
6276 }
6277 return ret;
6278 }
6279
6280 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6281 struct btrfs_root *root,
6282 u64 parent, u64 root_objectid,
6283 u64 flags, struct btrfs_disk_key *key,
6284 int level, struct btrfs_key *ins)
6285 {
6286 int ret;
6287 struct btrfs_fs_info *fs_info = root->fs_info;
6288 struct btrfs_extent_item *extent_item;
6289 struct btrfs_tree_block_info *block_info;
6290 struct btrfs_extent_inline_ref *iref;
6291 struct btrfs_path *path;
6292 struct extent_buffer *leaf;
6293 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6294
6295 path = btrfs_alloc_path();
6296 if (!path)
6297 return -ENOMEM;
6298
6299 path->leave_spinning = 1;
6300 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6301 ins, size);
6302 if (ret) {
6303 btrfs_free_path(path);
6304 return ret;
6305 }
6306
6307 leaf = path->nodes[0];
6308 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6309 struct btrfs_extent_item);
6310 btrfs_set_extent_refs(leaf, extent_item, 1);
6311 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6312 btrfs_set_extent_flags(leaf, extent_item,
6313 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6314 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6315
6316 btrfs_set_tree_block_key(leaf, block_info, key);
6317 btrfs_set_tree_block_level(leaf, block_info, level);
6318
6319 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6320 if (parent > 0) {
6321 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6322 btrfs_set_extent_inline_ref_type(leaf, iref,
6323 BTRFS_SHARED_BLOCK_REF_KEY);
6324 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6325 } else {
6326 btrfs_set_extent_inline_ref_type(leaf, iref,
6327 BTRFS_TREE_BLOCK_REF_KEY);
6328 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6329 }
6330
6331 btrfs_mark_buffer_dirty(leaf);
6332 btrfs_free_path(path);
6333
6334 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6335 if (ret) { /* -ENOENT, logic error */
6336 printk(KERN_ERR "btrfs update block group failed for %llu "
6337 "%llu\n", (unsigned long long)ins->objectid,
6338 (unsigned long long)ins->offset);
6339 BUG();
6340 }
6341 return ret;
6342 }
6343
6344 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6345 struct btrfs_root *root,
6346 u64 root_objectid, u64 owner,
6347 u64 offset, struct btrfs_key *ins)
6348 {
6349 int ret;
6350
6351 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6352
6353 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6354 ins->offset, 0,
6355 root_objectid, owner, offset,
6356 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6357 return ret;
6358 }
6359
6360 /*
6361 * this is used by the tree logging recovery code. It records that
6362 * an extent has been allocated and makes sure to clear the free
6363 * space cache bits as well
6364 */
6365 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6366 struct btrfs_root *root,
6367 u64 root_objectid, u64 owner, u64 offset,
6368 struct btrfs_key *ins)
6369 {
6370 int ret;
6371 struct btrfs_block_group_cache *block_group;
6372 struct btrfs_caching_control *caching_ctl;
6373 u64 start = ins->objectid;
6374 u64 num_bytes = ins->offset;
6375
6376 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6377 cache_block_group(block_group, 0);
6378 caching_ctl = get_caching_control(block_group);
6379
6380 if (!caching_ctl) {
6381 BUG_ON(!block_group_cache_done(block_group));
6382 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6383 BUG_ON(ret); /* -ENOMEM */
6384 } else {
6385 mutex_lock(&caching_ctl->mutex);
6386
6387 if (start >= caching_ctl->progress) {
6388 ret = add_excluded_extent(root, start, num_bytes);
6389 BUG_ON(ret); /* -ENOMEM */
6390 } else if (start + num_bytes <= caching_ctl->progress) {
6391 ret = btrfs_remove_free_space(block_group,
6392 start, num_bytes);
6393 BUG_ON(ret); /* -ENOMEM */
6394 } else {
6395 num_bytes = caching_ctl->progress - start;
6396 ret = btrfs_remove_free_space(block_group,
6397 start, num_bytes);
6398 BUG_ON(ret); /* -ENOMEM */
6399
6400 start = caching_ctl->progress;
6401 num_bytes = ins->objectid + ins->offset -
6402 caching_ctl->progress;
6403 ret = add_excluded_extent(root, start, num_bytes);
6404 BUG_ON(ret); /* -ENOMEM */
6405 }
6406
6407 mutex_unlock(&caching_ctl->mutex);
6408 put_caching_control(caching_ctl);
6409 }
6410
6411 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6412 RESERVE_ALLOC_NO_ACCOUNT);
6413 BUG_ON(ret); /* logic error */
6414 btrfs_put_block_group(block_group);
6415 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6416 0, owner, offset, ins, 1);
6417 return ret;
6418 }
6419
6420 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6421 struct btrfs_root *root,
6422 u64 bytenr, u32 blocksize,
6423 int level)
6424 {
6425 struct extent_buffer *buf;
6426
6427 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6428 if (!buf)
6429 return ERR_PTR(-ENOMEM);
6430 btrfs_set_header_generation(buf, trans->transid);
6431 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6432 btrfs_tree_lock(buf);
6433 clean_tree_block(trans, root, buf);
6434 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6435
6436 btrfs_set_lock_blocking(buf);
6437 btrfs_set_buffer_uptodate(buf);
6438
6439 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6440 /*
6441 * we allow two log transactions at a time, use different
6442 * EXENT bit to differentiate dirty pages.
6443 */
6444 if (root->log_transid % 2 == 0)
6445 set_extent_dirty(&root->dirty_log_pages, buf->start,
6446 buf->start + buf->len - 1, GFP_NOFS);
6447 else
6448 set_extent_new(&root->dirty_log_pages, buf->start,
6449 buf->start + buf->len - 1, GFP_NOFS);
6450 } else {
6451 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6452 buf->start + buf->len - 1, GFP_NOFS);
6453 }
6454 trans->blocks_used++;
6455 /* this returns a buffer locked for blocking */
6456 return buf;
6457 }
6458
6459 static struct btrfs_block_rsv *
6460 use_block_rsv(struct btrfs_trans_handle *trans,
6461 struct btrfs_root *root, u32 blocksize)
6462 {
6463 struct btrfs_block_rsv *block_rsv;
6464 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6465 int ret;
6466
6467 block_rsv = get_block_rsv(trans, root);
6468
6469 if (block_rsv->size == 0) {
6470 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6471 BTRFS_RESERVE_NO_FLUSH);
6472 /*
6473 * If we couldn't reserve metadata bytes try and use some from
6474 * the global reserve.
6475 */
6476 if (ret && block_rsv != global_rsv) {
6477 ret = block_rsv_use_bytes(global_rsv, blocksize);
6478 if (!ret)
6479 return global_rsv;
6480 return ERR_PTR(ret);
6481 } else if (ret) {
6482 return ERR_PTR(ret);
6483 }
6484 return block_rsv;
6485 }
6486
6487 ret = block_rsv_use_bytes(block_rsv, blocksize);
6488 if (!ret)
6489 return block_rsv;
6490 if (ret && !block_rsv->failfast) {
6491 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6492 static DEFINE_RATELIMIT_STATE(_rs,
6493 DEFAULT_RATELIMIT_INTERVAL * 10,
6494 /*DEFAULT_RATELIMIT_BURST*/ 1);
6495 if (__ratelimit(&_rs))
6496 WARN(1, KERN_DEBUG
6497 "btrfs: block rsv returned %d\n", ret);
6498 }
6499 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6500 BTRFS_RESERVE_NO_FLUSH);
6501 if (!ret) {
6502 return block_rsv;
6503 } else if (ret && block_rsv != global_rsv) {
6504 ret = block_rsv_use_bytes(global_rsv, blocksize);
6505 if (!ret)
6506 return global_rsv;
6507 }
6508 }
6509
6510 return ERR_PTR(-ENOSPC);
6511 }
6512
6513 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6514 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6515 {
6516 block_rsv_add_bytes(block_rsv, blocksize, 0);
6517 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6518 }
6519
6520 /*
6521 * finds a free extent and does all the dirty work required for allocation
6522 * returns the key for the extent through ins, and a tree buffer for
6523 * the first block of the extent through buf.
6524 *
6525 * returns the tree buffer or NULL.
6526 */
6527 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6528 struct btrfs_root *root, u32 blocksize,
6529 u64 parent, u64 root_objectid,
6530 struct btrfs_disk_key *key, int level,
6531 u64 hint, u64 empty_size)
6532 {
6533 struct btrfs_key ins;
6534 struct btrfs_block_rsv *block_rsv;
6535 struct extent_buffer *buf;
6536 u64 flags = 0;
6537 int ret;
6538
6539
6540 block_rsv = use_block_rsv(trans, root, blocksize);
6541 if (IS_ERR(block_rsv))
6542 return ERR_CAST(block_rsv);
6543
6544 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6545 empty_size, hint, &ins, 0);
6546 if (ret) {
6547 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6548 return ERR_PTR(ret);
6549 }
6550
6551 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6552 blocksize, level);
6553 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6554
6555 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6556 if (parent == 0)
6557 parent = ins.objectid;
6558 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6559 } else
6560 BUG_ON(parent > 0);
6561
6562 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6563 struct btrfs_delayed_extent_op *extent_op;
6564 extent_op = btrfs_alloc_delayed_extent_op();
6565 BUG_ON(!extent_op); /* -ENOMEM */
6566 if (key)
6567 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6568 else
6569 memset(&extent_op->key, 0, sizeof(extent_op->key));
6570 extent_op->flags_to_set = flags;
6571 extent_op->update_key = 1;
6572 extent_op->update_flags = 1;
6573 extent_op->is_data = 0;
6574
6575 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6576 ins.objectid,
6577 ins.offset, parent, root_objectid,
6578 level, BTRFS_ADD_DELAYED_EXTENT,
6579 extent_op, 0);
6580 BUG_ON(ret); /* -ENOMEM */
6581 }
6582 return buf;
6583 }
6584
6585 struct walk_control {
6586 u64 refs[BTRFS_MAX_LEVEL];
6587 u64 flags[BTRFS_MAX_LEVEL];
6588 struct btrfs_key update_progress;
6589 int stage;
6590 int level;
6591 int shared_level;
6592 int update_ref;
6593 int keep_locks;
6594 int reada_slot;
6595 int reada_count;
6596 int for_reloc;
6597 };
6598
6599 #define DROP_REFERENCE 1
6600 #define UPDATE_BACKREF 2
6601
6602 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6603 struct btrfs_root *root,
6604 struct walk_control *wc,
6605 struct btrfs_path *path)
6606 {
6607 u64 bytenr;
6608 u64 generation;
6609 u64 refs;
6610 u64 flags;
6611 u32 nritems;
6612 u32 blocksize;
6613 struct btrfs_key key;
6614 struct extent_buffer *eb;
6615 int ret;
6616 int slot;
6617 int nread = 0;
6618
6619 if (path->slots[wc->level] < wc->reada_slot) {
6620 wc->reada_count = wc->reada_count * 2 / 3;
6621 wc->reada_count = max(wc->reada_count, 2);
6622 } else {
6623 wc->reada_count = wc->reada_count * 3 / 2;
6624 wc->reada_count = min_t(int, wc->reada_count,
6625 BTRFS_NODEPTRS_PER_BLOCK(root));
6626 }
6627
6628 eb = path->nodes[wc->level];
6629 nritems = btrfs_header_nritems(eb);
6630 blocksize = btrfs_level_size(root, wc->level - 1);
6631
6632 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6633 if (nread >= wc->reada_count)
6634 break;
6635
6636 cond_resched();
6637 bytenr = btrfs_node_blockptr(eb, slot);
6638 generation = btrfs_node_ptr_generation(eb, slot);
6639
6640 if (slot == path->slots[wc->level])
6641 goto reada;
6642
6643 if (wc->stage == UPDATE_BACKREF &&
6644 generation <= root->root_key.offset)
6645 continue;
6646
6647 /* We don't lock the tree block, it's OK to be racy here */
6648 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6649 &refs, &flags);
6650 /* We don't care about errors in readahead. */
6651 if (ret < 0)
6652 continue;
6653 BUG_ON(refs == 0);
6654
6655 if (wc->stage == DROP_REFERENCE) {
6656 if (refs == 1)
6657 goto reada;
6658
6659 if (wc->level == 1 &&
6660 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6661 continue;
6662 if (!wc->update_ref ||
6663 generation <= root->root_key.offset)
6664 continue;
6665 btrfs_node_key_to_cpu(eb, &key, slot);
6666 ret = btrfs_comp_cpu_keys(&key,
6667 &wc->update_progress);
6668 if (ret < 0)
6669 continue;
6670 } else {
6671 if (wc->level == 1 &&
6672 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6673 continue;
6674 }
6675 reada:
6676 ret = readahead_tree_block(root, bytenr, blocksize,
6677 generation);
6678 if (ret)
6679 break;
6680 nread++;
6681 }
6682 wc->reada_slot = slot;
6683 }
6684
6685 /*
6686 * hepler to process tree block while walking down the tree.
6687 *
6688 * when wc->stage == UPDATE_BACKREF, this function updates
6689 * back refs for pointers in the block.
6690 *
6691 * NOTE: return value 1 means we should stop walking down.
6692 */
6693 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6694 struct btrfs_root *root,
6695 struct btrfs_path *path,
6696 struct walk_control *wc, int lookup_info)
6697 {
6698 int level = wc->level;
6699 struct extent_buffer *eb = path->nodes[level];
6700 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6701 int ret;
6702
6703 if (wc->stage == UPDATE_BACKREF &&
6704 btrfs_header_owner(eb) != root->root_key.objectid)
6705 return 1;
6706
6707 /*
6708 * when reference count of tree block is 1, it won't increase
6709 * again. once full backref flag is set, we never clear it.
6710 */
6711 if (lookup_info &&
6712 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6713 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6714 BUG_ON(!path->locks[level]);
6715 ret = btrfs_lookup_extent_info(trans, root,
6716 eb->start, eb->len,
6717 &wc->refs[level],
6718 &wc->flags[level]);
6719 BUG_ON(ret == -ENOMEM);
6720 if (ret)
6721 return ret;
6722 BUG_ON(wc->refs[level] == 0);
6723 }
6724
6725 if (wc->stage == DROP_REFERENCE) {
6726 if (wc->refs[level] > 1)
6727 return 1;
6728
6729 if (path->locks[level] && !wc->keep_locks) {
6730 btrfs_tree_unlock_rw(eb, path->locks[level]);
6731 path->locks[level] = 0;
6732 }
6733 return 0;
6734 }
6735
6736 /* wc->stage == UPDATE_BACKREF */
6737 if (!(wc->flags[level] & flag)) {
6738 BUG_ON(!path->locks[level]);
6739 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6740 BUG_ON(ret); /* -ENOMEM */
6741 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6742 BUG_ON(ret); /* -ENOMEM */
6743 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6744 eb->len, flag, 0);
6745 BUG_ON(ret); /* -ENOMEM */
6746 wc->flags[level] |= flag;
6747 }
6748
6749 /*
6750 * the block is shared by multiple trees, so it's not good to
6751 * keep the tree lock
6752 */
6753 if (path->locks[level] && level > 0) {
6754 btrfs_tree_unlock_rw(eb, path->locks[level]);
6755 path->locks[level] = 0;
6756 }
6757 return 0;
6758 }
6759
6760 /*
6761 * hepler to process tree block pointer.
6762 *
6763 * when wc->stage == DROP_REFERENCE, this function checks
6764 * reference count of the block pointed to. if the block
6765 * is shared and we need update back refs for the subtree
6766 * rooted at the block, this function changes wc->stage to
6767 * UPDATE_BACKREF. if the block is shared and there is no
6768 * need to update back, this function drops the reference
6769 * to the block.
6770 *
6771 * NOTE: return value 1 means we should stop walking down.
6772 */
6773 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6774 struct btrfs_root *root,
6775 struct btrfs_path *path,
6776 struct walk_control *wc, int *lookup_info)
6777 {
6778 u64 bytenr;
6779 u64 generation;
6780 u64 parent;
6781 u32 blocksize;
6782 struct btrfs_key key;
6783 struct extent_buffer *next;
6784 int level = wc->level;
6785 int reada = 0;
6786 int ret = 0;
6787
6788 generation = btrfs_node_ptr_generation(path->nodes[level],
6789 path->slots[level]);
6790 /*
6791 * if the lower level block was created before the snapshot
6792 * was created, we know there is no need to update back refs
6793 * for the subtree
6794 */
6795 if (wc->stage == UPDATE_BACKREF &&
6796 generation <= root->root_key.offset) {
6797 *lookup_info = 1;
6798 return 1;
6799 }
6800
6801 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6802 blocksize = btrfs_level_size(root, level - 1);
6803
6804 next = btrfs_find_tree_block(root, bytenr, blocksize);
6805 if (!next) {
6806 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6807 if (!next)
6808 return -ENOMEM;
6809 reada = 1;
6810 }
6811 btrfs_tree_lock(next);
6812 btrfs_set_lock_blocking(next);
6813
6814 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6815 &wc->refs[level - 1],
6816 &wc->flags[level - 1]);
6817 if (ret < 0) {
6818 btrfs_tree_unlock(next);
6819 return ret;
6820 }
6821
6822 BUG_ON(wc->refs[level - 1] == 0);
6823 *lookup_info = 0;
6824
6825 if (wc->stage == DROP_REFERENCE) {
6826 if (wc->refs[level - 1] > 1) {
6827 if (level == 1 &&
6828 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6829 goto skip;
6830
6831 if (!wc->update_ref ||
6832 generation <= root->root_key.offset)
6833 goto skip;
6834
6835 btrfs_node_key_to_cpu(path->nodes[level], &key,
6836 path->slots[level]);
6837 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6838 if (ret < 0)
6839 goto skip;
6840
6841 wc->stage = UPDATE_BACKREF;
6842 wc->shared_level = level - 1;
6843 }
6844 } else {
6845 if (level == 1 &&
6846 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6847 goto skip;
6848 }
6849
6850 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6851 btrfs_tree_unlock(next);
6852 free_extent_buffer(next);
6853 next = NULL;
6854 *lookup_info = 1;
6855 }
6856
6857 if (!next) {
6858 if (reada && level == 1)
6859 reada_walk_down(trans, root, wc, path);
6860 next = read_tree_block(root, bytenr, blocksize, generation);
6861 if (!next)
6862 return -EIO;
6863 btrfs_tree_lock(next);
6864 btrfs_set_lock_blocking(next);
6865 }
6866
6867 level--;
6868 BUG_ON(level != btrfs_header_level(next));
6869 path->nodes[level] = next;
6870 path->slots[level] = 0;
6871 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6872 wc->level = level;
6873 if (wc->level == 1)
6874 wc->reada_slot = 0;
6875 return 0;
6876 skip:
6877 wc->refs[level - 1] = 0;
6878 wc->flags[level - 1] = 0;
6879 if (wc->stage == DROP_REFERENCE) {
6880 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6881 parent = path->nodes[level]->start;
6882 } else {
6883 BUG_ON(root->root_key.objectid !=
6884 btrfs_header_owner(path->nodes[level]));
6885 parent = 0;
6886 }
6887
6888 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6889 root->root_key.objectid, level - 1, 0, 0);
6890 BUG_ON(ret); /* -ENOMEM */
6891 }
6892 btrfs_tree_unlock(next);
6893 free_extent_buffer(next);
6894 *lookup_info = 1;
6895 return 1;
6896 }
6897
6898 /*
6899 * hepler to process tree block while walking up the tree.
6900 *
6901 * when wc->stage == DROP_REFERENCE, this function drops
6902 * reference count on the block.
6903 *
6904 * when wc->stage == UPDATE_BACKREF, this function changes
6905 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6906 * to UPDATE_BACKREF previously while processing the block.
6907 *
6908 * NOTE: return value 1 means we should stop walking up.
6909 */
6910 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6911 struct btrfs_root *root,
6912 struct btrfs_path *path,
6913 struct walk_control *wc)
6914 {
6915 int ret;
6916 int level = wc->level;
6917 struct extent_buffer *eb = path->nodes[level];
6918 u64 parent = 0;
6919
6920 if (wc->stage == UPDATE_BACKREF) {
6921 BUG_ON(wc->shared_level < level);
6922 if (level < wc->shared_level)
6923 goto out;
6924
6925 ret = find_next_key(path, level + 1, &wc->update_progress);
6926 if (ret > 0)
6927 wc->update_ref = 0;
6928
6929 wc->stage = DROP_REFERENCE;
6930 wc->shared_level = -1;
6931 path->slots[level] = 0;
6932
6933 /*
6934 * check reference count again if the block isn't locked.
6935 * we should start walking down the tree again if reference
6936 * count is one.
6937 */
6938 if (!path->locks[level]) {
6939 BUG_ON(level == 0);
6940 btrfs_tree_lock(eb);
6941 btrfs_set_lock_blocking(eb);
6942 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6943
6944 ret = btrfs_lookup_extent_info(trans, root,
6945 eb->start, eb->len,
6946 &wc->refs[level],
6947 &wc->flags[level]);
6948 if (ret < 0) {
6949 btrfs_tree_unlock_rw(eb, path->locks[level]);
6950 path->locks[level] = 0;
6951 return ret;
6952 }
6953 BUG_ON(wc->refs[level] == 0);
6954 if (wc->refs[level] == 1) {
6955 btrfs_tree_unlock_rw(eb, path->locks[level]);
6956 path->locks[level] = 0;
6957 return 1;
6958 }
6959 }
6960 }
6961
6962 /* wc->stage == DROP_REFERENCE */
6963 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6964
6965 if (wc->refs[level] == 1) {
6966 if (level == 0) {
6967 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6968 ret = btrfs_dec_ref(trans, root, eb, 1,
6969 wc->for_reloc);
6970 else
6971 ret = btrfs_dec_ref(trans, root, eb, 0,
6972 wc->for_reloc);
6973 BUG_ON(ret); /* -ENOMEM */
6974 }
6975 /* make block locked assertion in clean_tree_block happy */
6976 if (!path->locks[level] &&
6977 btrfs_header_generation(eb) == trans->transid) {
6978 btrfs_tree_lock(eb);
6979 btrfs_set_lock_blocking(eb);
6980 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6981 }
6982 clean_tree_block(trans, root, eb);
6983 }
6984
6985 if (eb == root->node) {
6986 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6987 parent = eb->start;
6988 else
6989 BUG_ON(root->root_key.objectid !=
6990 btrfs_header_owner(eb));
6991 } else {
6992 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6993 parent = path->nodes[level + 1]->start;
6994 else
6995 BUG_ON(root->root_key.objectid !=
6996 btrfs_header_owner(path->nodes[level + 1]));
6997 }
6998
6999 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7000 out:
7001 wc->refs[level] = 0;
7002 wc->flags[level] = 0;
7003 return 0;
7004 }
7005
7006 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7007 struct btrfs_root *root,
7008 struct btrfs_path *path,
7009 struct walk_control *wc)
7010 {
7011 int level = wc->level;
7012 int lookup_info = 1;
7013 int ret;
7014
7015 while (level >= 0) {
7016 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7017 if (ret > 0)
7018 break;
7019
7020 if (level == 0)
7021 break;
7022
7023 if (path->slots[level] >=
7024 btrfs_header_nritems(path->nodes[level]))
7025 break;
7026
7027 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7028 if (ret > 0) {
7029 path->slots[level]++;
7030 continue;
7031 } else if (ret < 0)
7032 return ret;
7033 level = wc->level;
7034 }
7035 return 0;
7036 }
7037
7038 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7039 struct btrfs_root *root,
7040 struct btrfs_path *path,
7041 struct walk_control *wc, int max_level)
7042 {
7043 int level = wc->level;
7044 int ret;
7045
7046 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7047 while (level < max_level && path->nodes[level]) {
7048 wc->level = level;
7049 if (path->slots[level] + 1 <
7050 btrfs_header_nritems(path->nodes[level])) {
7051 path->slots[level]++;
7052 return 0;
7053 } else {
7054 ret = walk_up_proc(trans, root, path, wc);
7055 if (ret > 0)
7056 return 0;
7057
7058 if (path->locks[level]) {
7059 btrfs_tree_unlock_rw(path->nodes[level],
7060 path->locks[level]);
7061 path->locks[level] = 0;
7062 }
7063 free_extent_buffer(path->nodes[level]);
7064 path->nodes[level] = NULL;
7065 level++;
7066 }
7067 }
7068 return 1;
7069 }
7070
7071 /*
7072 * drop a subvolume tree.
7073 *
7074 * this function traverses the tree freeing any blocks that only
7075 * referenced by the tree.
7076 *
7077 * when a shared tree block is found. this function decreases its
7078 * reference count by one. if update_ref is true, this function
7079 * also make sure backrefs for the shared block and all lower level
7080 * blocks are properly updated.
7081 */
7082 int btrfs_drop_snapshot(struct btrfs_root *root,
7083 struct btrfs_block_rsv *block_rsv, int update_ref,
7084 int for_reloc)
7085 {
7086 struct btrfs_path *path;
7087 struct btrfs_trans_handle *trans;
7088 struct btrfs_root *tree_root = root->fs_info->tree_root;
7089 struct btrfs_root_item *root_item = &root->root_item;
7090 struct walk_control *wc;
7091 struct btrfs_key key;
7092 int err = 0;
7093 int ret;
7094 int level;
7095
7096 path = btrfs_alloc_path();
7097 if (!path) {
7098 err = -ENOMEM;
7099 goto out;
7100 }
7101
7102 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7103 if (!wc) {
7104 btrfs_free_path(path);
7105 err = -ENOMEM;
7106 goto out;
7107 }
7108
7109 trans = btrfs_start_transaction(tree_root, 0);
7110 if (IS_ERR(trans)) {
7111 err = PTR_ERR(trans);
7112 goto out_free;
7113 }
7114
7115 if (block_rsv)
7116 trans->block_rsv = block_rsv;
7117
7118 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7119 level = btrfs_header_level(root->node);
7120 path->nodes[level] = btrfs_lock_root_node(root);
7121 btrfs_set_lock_blocking(path->nodes[level]);
7122 path->slots[level] = 0;
7123 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7124 memset(&wc->update_progress, 0,
7125 sizeof(wc->update_progress));
7126 } else {
7127 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7128 memcpy(&wc->update_progress, &key,
7129 sizeof(wc->update_progress));
7130
7131 level = root_item->drop_level;
7132 BUG_ON(level == 0);
7133 path->lowest_level = level;
7134 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7135 path->lowest_level = 0;
7136 if (ret < 0) {
7137 err = ret;
7138 goto out_end_trans;
7139 }
7140 WARN_ON(ret > 0);
7141
7142 /*
7143 * unlock our path, this is safe because only this
7144 * function is allowed to delete this snapshot
7145 */
7146 btrfs_unlock_up_safe(path, 0);
7147
7148 level = btrfs_header_level(root->node);
7149 while (1) {
7150 btrfs_tree_lock(path->nodes[level]);
7151 btrfs_set_lock_blocking(path->nodes[level]);
7152
7153 ret = btrfs_lookup_extent_info(trans, root,
7154 path->nodes[level]->start,
7155 path->nodes[level]->len,
7156 &wc->refs[level],
7157 &wc->flags[level]);
7158 if (ret < 0) {
7159 err = ret;
7160 goto out_end_trans;
7161 }
7162 BUG_ON(wc->refs[level] == 0);
7163
7164 if (level == root_item->drop_level)
7165 break;
7166
7167 btrfs_tree_unlock(path->nodes[level]);
7168 WARN_ON(wc->refs[level] != 1);
7169 level--;
7170 }
7171 }
7172
7173 wc->level = level;
7174 wc->shared_level = -1;
7175 wc->stage = DROP_REFERENCE;
7176 wc->update_ref = update_ref;
7177 wc->keep_locks = 0;
7178 wc->for_reloc = for_reloc;
7179 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7180
7181 while (1) {
7182 ret = walk_down_tree(trans, root, path, wc);
7183 if (ret < 0) {
7184 err = ret;
7185 break;
7186 }
7187
7188 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7189 if (ret < 0) {
7190 err = ret;
7191 break;
7192 }
7193
7194 if (ret > 0) {
7195 BUG_ON(wc->stage != DROP_REFERENCE);
7196 break;
7197 }
7198
7199 if (wc->stage == DROP_REFERENCE) {
7200 level = wc->level;
7201 btrfs_node_key(path->nodes[level],
7202 &root_item->drop_progress,
7203 path->slots[level]);
7204 root_item->drop_level = level;
7205 }
7206
7207 BUG_ON(wc->level == 0);
7208 if (btrfs_should_end_transaction(trans, tree_root)) {
7209 ret = btrfs_update_root(trans, tree_root,
7210 &root->root_key,
7211 root_item);
7212 if (ret) {
7213 btrfs_abort_transaction(trans, tree_root, ret);
7214 err = ret;
7215 goto out_end_trans;
7216 }
7217
7218 btrfs_end_transaction_throttle(trans, tree_root);
7219 trans = btrfs_start_transaction(tree_root, 0);
7220 if (IS_ERR(trans)) {
7221 err = PTR_ERR(trans);
7222 goto out_free;
7223 }
7224 if (block_rsv)
7225 trans->block_rsv = block_rsv;
7226 }
7227 }
7228 btrfs_release_path(path);
7229 if (err)
7230 goto out_end_trans;
7231
7232 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7233 if (ret) {
7234 btrfs_abort_transaction(trans, tree_root, ret);
7235 goto out_end_trans;
7236 }
7237
7238 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7239 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7240 NULL, NULL);
7241 if (ret < 0) {
7242 btrfs_abort_transaction(trans, tree_root, ret);
7243 err = ret;
7244 goto out_end_trans;
7245 } else if (ret > 0) {
7246 /* if we fail to delete the orphan item this time
7247 * around, it'll get picked up the next time.
7248 *
7249 * The most common failure here is just -ENOENT.
7250 */
7251 btrfs_del_orphan_item(trans, tree_root,
7252 root->root_key.objectid);
7253 }
7254 }
7255
7256 if (root->in_radix) {
7257 btrfs_free_fs_root(tree_root->fs_info, root);
7258 } else {
7259 free_extent_buffer(root->node);
7260 free_extent_buffer(root->commit_root);
7261 kfree(root);
7262 }
7263 out_end_trans:
7264 btrfs_end_transaction_throttle(trans, tree_root);
7265 out_free:
7266 kfree(wc);
7267 btrfs_free_path(path);
7268 out:
7269 if (err)
7270 btrfs_std_error(root->fs_info, err);
7271 return err;
7272 }
7273
7274 /*
7275 * drop subtree rooted at tree block 'node'.
7276 *
7277 * NOTE: this function will unlock and release tree block 'node'
7278 * only used by relocation code
7279 */
7280 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7281 struct btrfs_root *root,
7282 struct extent_buffer *node,
7283 struct extent_buffer *parent)
7284 {
7285 struct btrfs_path *path;
7286 struct walk_control *wc;
7287 int level;
7288 int parent_level;
7289 int ret = 0;
7290 int wret;
7291
7292 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7293
7294 path = btrfs_alloc_path();
7295 if (!path)
7296 return -ENOMEM;
7297
7298 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7299 if (!wc) {
7300 btrfs_free_path(path);
7301 return -ENOMEM;
7302 }
7303
7304 btrfs_assert_tree_locked(parent);
7305 parent_level = btrfs_header_level(parent);
7306 extent_buffer_get(parent);
7307 path->nodes[parent_level] = parent;
7308 path->slots[parent_level] = btrfs_header_nritems(parent);
7309
7310 btrfs_assert_tree_locked(node);
7311 level = btrfs_header_level(node);
7312 path->nodes[level] = node;
7313 path->slots[level] = 0;
7314 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7315
7316 wc->refs[parent_level] = 1;
7317 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7318 wc->level = level;
7319 wc->shared_level = -1;
7320 wc->stage = DROP_REFERENCE;
7321 wc->update_ref = 0;
7322 wc->keep_locks = 1;
7323 wc->for_reloc = 1;
7324 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7325
7326 while (1) {
7327 wret = walk_down_tree(trans, root, path, wc);
7328 if (wret < 0) {
7329 ret = wret;
7330 break;
7331 }
7332
7333 wret = walk_up_tree(trans, root, path, wc, parent_level);
7334 if (wret < 0)
7335 ret = wret;
7336 if (wret != 0)
7337 break;
7338 }
7339
7340 kfree(wc);
7341 btrfs_free_path(path);
7342 return ret;
7343 }
7344
7345 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7346 {
7347 u64 num_devices;
7348 u64 stripped;
7349
7350 /*
7351 * if restripe for this chunk_type is on pick target profile and
7352 * return, otherwise do the usual balance
7353 */
7354 stripped = get_restripe_target(root->fs_info, flags);
7355 if (stripped)
7356 return extended_to_chunk(stripped);
7357
7358 /*
7359 * we add in the count of missing devices because we want
7360 * to make sure that any RAID levels on a degraded FS
7361 * continue to be honored.
7362 */
7363 num_devices = root->fs_info->fs_devices->rw_devices +
7364 root->fs_info->fs_devices->missing_devices;
7365
7366 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7367 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7368 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7369
7370 if (num_devices == 1) {
7371 stripped |= BTRFS_BLOCK_GROUP_DUP;
7372 stripped = flags & ~stripped;
7373
7374 /* turn raid0 into single device chunks */
7375 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7376 return stripped;
7377
7378 /* turn mirroring into duplication */
7379 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7380 BTRFS_BLOCK_GROUP_RAID10))
7381 return stripped | BTRFS_BLOCK_GROUP_DUP;
7382 } else {
7383 /* they already had raid on here, just return */
7384 if (flags & stripped)
7385 return flags;
7386
7387 stripped |= BTRFS_BLOCK_GROUP_DUP;
7388 stripped = flags & ~stripped;
7389
7390 /* switch duplicated blocks with raid1 */
7391 if (flags & BTRFS_BLOCK_GROUP_DUP)
7392 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7393
7394 /* this is drive concat, leave it alone */
7395 }
7396
7397 return flags;
7398 }
7399
7400 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7401 {
7402 struct btrfs_space_info *sinfo = cache->space_info;
7403 u64 num_bytes;
7404 u64 min_allocable_bytes;
7405 int ret = -ENOSPC;
7406
7407
7408 /*
7409 * We need some metadata space and system metadata space for
7410 * allocating chunks in some corner cases until we force to set
7411 * it to be readonly.
7412 */
7413 if ((sinfo->flags &
7414 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7415 !force)
7416 min_allocable_bytes = 1 * 1024 * 1024;
7417 else
7418 min_allocable_bytes = 0;
7419
7420 spin_lock(&sinfo->lock);
7421 spin_lock(&cache->lock);
7422
7423 if (cache->ro) {
7424 ret = 0;
7425 goto out;
7426 }
7427
7428 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7429 cache->bytes_super - btrfs_block_group_used(&cache->item);
7430
7431 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7432 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7433 min_allocable_bytes <= sinfo->total_bytes) {
7434 sinfo->bytes_readonly += num_bytes;
7435 cache->ro = 1;
7436 ret = 0;
7437 }
7438 out:
7439 spin_unlock(&cache->lock);
7440 spin_unlock(&sinfo->lock);
7441 return ret;
7442 }
7443
7444 int btrfs_set_block_group_ro(struct btrfs_root *root,
7445 struct btrfs_block_group_cache *cache)
7446
7447 {
7448 struct btrfs_trans_handle *trans;
7449 u64 alloc_flags;
7450 int ret;
7451
7452 BUG_ON(cache->ro);
7453
7454 trans = btrfs_join_transaction(root);
7455 if (IS_ERR(trans))
7456 return PTR_ERR(trans);
7457
7458 alloc_flags = update_block_group_flags(root, cache->flags);
7459 if (alloc_flags != cache->flags) {
7460 ret = do_chunk_alloc(trans, root, alloc_flags,
7461 CHUNK_ALLOC_FORCE);
7462 if (ret < 0)
7463 goto out;
7464 }
7465
7466 ret = set_block_group_ro(cache, 0);
7467 if (!ret)
7468 goto out;
7469 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7470 ret = do_chunk_alloc(trans, root, alloc_flags,
7471 CHUNK_ALLOC_FORCE);
7472 if (ret < 0)
7473 goto out;
7474 ret = set_block_group_ro(cache, 0);
7475 out:
7476 btrfs_end_transaction(trans, root);
7477 return ret;
7478 }
7479
7480 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7481 struct btrfs_root *root, u64 type)
7482 {
7483 u64 alloc_flags = get_alloc_profile(root, type);
7484 return do_chunk_alloc(trans, root, alloc_flags,
7485 CHUNK_ALLOC_FORCE);
7486 }
7487
7488 /*
7489 * helper to account the unused space of all the readonly block group in the
7490 * list. takes mirrors into account.
7491 */
7492 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7493 {
7494 struct btrfs_block_group_cache *block_group;
7495 u64 free_bytes = 0;
7496 int factor;
7497
7498 list_for_each_entry(block_group, groups_list, list) {
7499 spin_lock(&block_group->lock);
7500
7501 if (!block_group->ro) {
7502 spin_unlock(&block_group->lock);
7503 continue;
7504 }
7505
7506 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7507 BTRFS_BLOCK_GROUP_RAID10 |
7508 BTRFS_BLOCK_GROUP_DUP))
7509 factor = 2;
7510 else
7511 factor = 1;
7512
7513 free_bytes += (block_group->key.offset -
7514 btrfs_block_group_used(&block_group->item)) *
7515 factor;
7516
7517 spin_unlock(&block_group->lock);
7518 }
7519
7520 return free_bytes;
7521 }
7522
7523 /*
7524 * helper to account the unused space of all the readonly block group in the
7525 * space_info. takes mirrors into account.
7526 */
7527 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7528 {
7529 int i;
7530 u64 free_bytes = 0;
7531
7532 spin_lock(&sinfo->lock);
7533
7534 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7535 if (!list_empty(&sinfo->block_groups[i]))
7536 free_bytes += __btrfs_get_ro_block_group_free_space(
7537 &sinfo->block_groups[i]);
7538
7539 spin_unlock(&sinfo->lock);
7540
7541 return free_bytes;
7542 }
7543
7544 void btrfs_set_block_group_rw(struct btrfs_root *root,
7545 struct btrfs_block_group_cache *cache)
7546 {
7547 struct btrfs_space_info *sinfo = cache->space_info;
7548 u64 num_bytes;
7549
7550 BUG_ON(!cache->ro);
7551
7552 spin_lock(&sinfo->lock);
7553 spin_lock(&cache->lock);
7554 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7555 cache->bytes_super - btrfs_block_group_used(&cache->item);
7556 sinfo->bytes_readonly -= num_bytes;
7557 cache->ro = 0;
7558 spin_unlock(&cache->lock);
7559 spin_unlock(&sinfo->lock);
7560 }
7561
7562 /*
7563 * checks to see if its even possible to relocate this block group.
7564 *
7565 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7566 * ok to go ahead and try.
7567 */
7568 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7569 {
7570 struct btrfs_block_group_cache *block_group;
7571 struct btrfs_space_info *space_info;
7572 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7573 struct btrfs_device *device;
7574 u64 min_free;
7575 u64 dev_min = 1;
7576 u64 dev_nr = 0;
7577 u64 target;
7578 int index;
7579 int full = 0;
7580 int ret = 0;
7581
7582 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7583
7584 /* odd, couldn't find the block group, leave it alone */
7585 if (!block_group)
7586 return -1;
7587
7588 min_free = btrfs_block_group_used(&block_group->item);
7589
7590 /* no bytes used, we're good */
7591 if (!min_free)
7592 goto out;
7593
7594 space_info = block_group->space_info;
7595 spin_lock(&space_info->lock);
7596
7597 full = space_info->full;
7598
7599 /*
7600 * if this is the last block group we have in this space, we can't
7601 * relocate it unless we're able to allocate a new chunk below.
7602 *
7603 * Otherwise, we need to make sure we have room in the space to handle
7604 * all of the extents from this block group. If we can, we're good
7605 */
7606 if ((space_info->total_bytes != block_group->key.offset) &&
7607 (space_info->bytes_used + space_info->bytes_reserved +
7608 space_info->bytes_pinned + space_info->bytes_readonly +
7609 min_free < space_info->total_bytes)) {
7610 spin_unlock(&space_info->lock);
7611 goto out;
7612 }
7613 spin_unlock(&space_info->lock);
7614
7615 /*
7616 * ok we don't have enough space, but maybe we have free space on our
7617 * devices to allocate new chunks for relocation, so loop through our
7618 * alloc devices and guess if we have enough space. if this block
7619 * group is going to be restriped, run checks against the target
7620 * profile instead of the current one.
7621 */
7622 ret = -1;
7623
7624 /*
7625 * index:
7626 * 0: raid10
7627 * 1: raid1
7628 * 2: dup
7629 * 3: raid0
7630 * 4: single
7631 */
7632 target = get_restripe_target(root->fs_info, block_group->flags);
7633 if (target) {
7634 index = __get_raid_index(extended_to_chunk(target));
7635 } else {
7636 /*
7637 * this is just a balance, so if we were marked as full
7638 * we know there is no space for a new chunk
7639 */
7640 if (full)
7641 goto out;
7642
7643 index = get_block_group_index(block_group);
7644 }
7645
7646 if (index == BTRFS_RAID_RAID10) {
7647 dev_min = 4;
7648 /* Divide by 2 */
7649 min_free >>= 1;
7650 } else if (index == BTRFS_RAID_RAID1) {
7651 dev_min = 2;
7652 } else if (index == BTRFS_RAID_DUP) {
7653 /* Multiply by 2 */
7654 min_free <<= 1;
7655 } else if (index == BTRFS_RAID_RAID0) {
7656 dev_min = fs_devices->rw_devices;
7657 do_div(min_free, dev_min);
7658 }
7659
7660 mutex_lock(&root->fs_info->chunk_mutex);
7661 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7662 u64 dev_offset;
7663
7664 /*
7665 * check to make sure we can actually find a chunk with enough
7666 * space to fit our block group in.
7667 */
7668 if (device->total_bytes > device->bytes_used + min_free &&
7669 !device->is_tgtdev_for_dev_replace) {
7670 ret = find_free_dev_extent(device, min_free,
7671 &dev_offset, NULL);
7672 if (!ret)
7673 dev_nr++;
7674
7675 if (dev_nr >= dev_min)
7676 break;
7677
7678 ret = -1;
7679 }
7680 }
7681 mutex_unlock(&root->fs_info->chunk_mutex);
7682 out:
7683 btrfs_put_block_group(block_group);
7684 return ret;
7685 }
7686
7687 static int find_first_block_group(struct btrfs_root *root,
7688 struct btrfs_path *path, struct btrfs_key *key)
7689 {
7690 int ret = 0;
7691 struct btrfs_key found_key;
7692 struct extent_buffer *leaf;
7693 int slot;
7694
7695 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7696 if (ret < 0)
7697 goto out;
7698
7699 while (1) {
7700 slot = path->slots[0];
7701 leaf = path->nodes[0];
7702 if (slot >= btrfs_header_nritems(leaf)) {
7703 ret = btrfs_next_leaf(root, path);
7704 if (ret == 0)
7705 continue;
7706 if (ret < 0)
7707 goto out;
7708 break;
7709 }
7710 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7711
7712 if (found_key.objectid >= key->objectid &&
7713 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7714 ret = 0;
7715 goto out;
7716 }
7717 path->slots[0]++;
7718 }
7719 out:
7720 return ret;
7721 }
7722
7723 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7724 {
7725 struct btrfs_block_group_cache *block_group;
7726 u64 last = 0;
7727
7728 while (1) {
7729 struct inode *inode;
7730
7731 block_group = btrfs_lookup_first_block_group(info, last);
7732 while (block_group) {
7733 spin_lock(&block_group->lock);
7734 if (block_group->iref)
7735 break;
7736 spin_unlock(&block_group->lock);
7737 block_group = next_block_group(info->tree_root,
7738 block_group);
7739 }
7740 if (!block_group) {
7741 if (last == 0)
7742 break;
7743 last = 0;
7744 continue;
7745 }
7746
7747 inode = block_group->inode;
7748 block_group->iref = 0;
7749 block_group->inode = NULL;
7750 spin_unlock(&block_group->lock);
7751 iput(inode);
7752 last = block_group->key.objectid + block_group->key.offset;
7753 btrfs_put_block_group(block_group);
7754 }
7755 }
7756
7757 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7758 {
7759 struct btrfs_block_group_cache *block_group;
7760 struct btrfs_space_info *space_info;
7761 struct btrfs_caching_control *caching_ctl;
7762 struct rb_node *n;
7763
7764 down_write(&info->extent_commit_sem);
7765 while (!list_empty(&info->caching_block_groups)) {
7766 caching_ctl = list_entry(info->caching_block_groups.next,
7767 struct btrfs_caching_control, list);
7768 list_del(&caching_ctl->list);
7769 put_caching_control(caching_ctl);
7770 }
7771 up_write(&info->extent_commit_sem);
7772
7773 spin_lock(&info->block_group_cache_lock);
7774 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7775 block_group = rb_entry(n, struct btrfs_block_group_cache,
7776 cache_node);
7777 rb_erase(&block_group->cache_node,
7778 &info->block_group_cache_tree);
7779 spin_unlock(&info->block_group_cache_lock);
7780
7781 down_write(&block_group->space_info->groups_sem);
7782 list_del(&block_group->list);
7783 up_write(&block_group->space_info->groups_sem);
7784
7785 if (block_group->cached == BTRFS_CACHE_STARTED)
7786 wait_block_group_cache_done(block_group);
7787
7788 /*
7789 * We haven't cached this block group, which means we could
7790 * possibly have excluded extents on this block group.
7791 */
7792 if (block_group->cached == BTRFS_CACHE_NO)
7793 free_excluded_extents(info->extent_root, block_group);
7794
7795 btrfs_remove_free_space_cache(block_group);
7796 btrfs_put_block_group(block_group);
7797
7798 spin_lock(&info->block_group_cache_lock);
7799 }
7800 spin_unlock(&info->block_group_cache_lock);
7801
7802 /* now that all the block groups are freed, go through and
7803 * free all the space_info structs. This is only called during
7804 * the final stages of unmount, and so we know nobody is
7805 * using them. We call synchronize_rcu() once before we start,
7806 * just to be on the safe side.
7807 */
7808 synchronize_rcu();
7809
7810 release_global_block_rsv(info);
7811
7812 while(!list_empty(&info->space_info)) {
7813 space_info = list_entry(info->space_info.next,
7814 struct btrfs_space_info,
7815 list);
7816 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
7817 if (space_info->bytes_pinned > 0 ||
7818 space_info->bytes_reserved > 0 ||
7819 space_info->bytes_may_use > 0) {
7820 WARN_ON(1);
7821 dump_space_info(space_info, 0, 0);
7822 }
7823 }
7824 list_del(&space_info->list);
7825 kfree(space_info);
7826 }
7827 return 0;
7828 }
7829
7830 static void __link_block_group(struct btrfs_space_info *space_info,
7831 struct btrfs_block_group_cache *cache)
7832 {
7833 int index = get_block_group_index(cache);
7834
7835 down_write(&space_info->groups_sem);
7836 list_add_tail(&cache->list, &space_info->block_groups[index]);
7837 up_write(&space_info->groups_sem);
7838 }
7839
7840 int btrfs_read_block_groups(struct btrfs_root *root)
7841 {
7842 struct btrfs_path *path;
7843 int ret;
7844 struct btrfs_block_group_cache *cache;
7845 struct btrfs_fs_info *info = root->fs_info;
7846 struct btrfs_space_info *space_info;
7847 struct btrfs_key key;
7848 struct btrfs_key found_key;
7849 struct extent_buffer *leaf;
7850 int need_clear = 0;
7851 u64 cache_gen;
7852
7853 root = info->extent_root;
7854 key.objectid = 0;
7855 key.offset = 0;
7856 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7857 path = btrfs_alloc_path();
7858 if (!path)
7859 return -ENOMEM;
7860 path->reada = 1;
7861
7862 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7863 if (btrfs_test_opt(root, SPACE_CACHE) &&
7864 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7865 need_clear = 1;
7866 if (btrfs_test_opt(root, CLEAR_CACHE))
7867 need_clear = 1;
7868
7869 while (1) {
7870 ret = find_first_block_group(root, path, &key);
7871 if (ret > 0)
7872 break;
7873 if (ret != 0)
7874 goto error;
7875 leaf = path->nodes[0];
7876 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7877 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7878 if (!cache) {
7879 ret = -ENOMEM;
7880 goto error;
7881 }
7882 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7883 GFP_NOFS);
7884 if (!cache->free_space_ctl) {
7885 kfree(cache);
7886 ret = -ENOMEM;
7887 goto error;
7888 }
7889
7890 atomic_set(&cache->count, 1);
7891 spin_lock_init(&cache->lock);
7892 cache->fs_info = info;
7893 INIT_LIST_HEAD(&cache->list);
7894 INIT_LIST_HEAD(&cache->cluster_list);
7895
7896 if (need_clear) {
7897 /*
7898 * When we mount with old space cache, we need to
7899 * set BTRFS_DC_CLEAR and set dirty flag.
7900 *
7901 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7902 * truncate the old free space cache inode and
7903 * setup a new one.
7904 * b) Setting 'dirty flag' makes sure that we flush
7905 * the new space cache info onto disk.
7906 */
7907 cache->disk_cache_state = BTRFS_DC_CLEAR;
7908 if (btrfs_test_opt(root, SPACE_CACHE))
7909 cache->dirty = 1;
7910 }
7911
7912 read_extent_buffer(leaf, &cache->item,
7913 btrfs_item_ptr_offset(leaf, path->slots[0]),
7914 sizeof(cache->item));
7915 memcpy(&cache->key, &found_key, sizeof(found_key));
7916
7917 key.objectid = found_key.objectid + found_key.offset;
7918 btrfs_release_path(path);
7919 cache->flags = btrfs_block_group_flags(&cache->item);
7920 cache->sectorsize = root->sectorsize;
7921 cache->full_stripe_len = btrfs_full_stripe_len(root,
7922 &root->fs_info->mapping_tree,
7923 found_key.objectid);
7924 btrfs_init_free_space_ctl(cache);
7925
7926 /*
7927 * We need to exclude the super stripes now so that the space
7928 * info has super bytes accounted for, otherwise we'll think
7929 * we have more space than we actually do.
7930 */
7931 exclude_super_stripes(root, cache);
7932
7933 /*
7934 * check for two cases, either we are full, and therefore
7935 * don't need to bother with the caching work since we won't
7936 * find any space, or we are empty, and we can just add all
7937 * the space in and be done with it. This saves us _alot_ of
7938 * time, particularly in the full case.
7939 */
7940 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7941 cache->last_byte_to_unpin = (u64)-1;
7942 cache->cached = BTRFS_CACHE_FINISHED;
7943 free_excluded_extents(root, cache);
7944 } else if (btrfs_block_group_used(&cache->item) == 0) {
7945 cache->last_byte_to_unpin = (u64)-1;
7946 cache->cached = BTRFS_CACHE_FINISHED;
7947 add_new_free_space(cache, root->fs_info,
7948 found_key.objectid,
7949 found_key.objectid +
7950 found_key.offset);
7951 free_excluded_extents(root, cache);
7952 }
7953
7954 ret = update_space_info(info, cache->flags, found_key.offset,
7955 btrfs_block_group_used(&cache->item),
7956 &space_info);
7957 BUG_ON(ret); /* -ENOMEM */
7958 cache->space_info = space_info;
7959 spin_lock(&cache->space_info->lock);
7960 cache->space_info->bytes_readonly += cache->bytes_super;
7961 spin_unlock(&cache->space_info->lock);
7962
7963 __link_block_group(space_info, cache);
7964
7965 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7966 BUG_ON(ret); /* Logic error */
7967
7968 set_avail_alloc_bits(root->fs_info, cache->flags);
7969 if (btrfs_chunk_readonly(root, cache->key.objectid))
7970 set_block_group_ro(cache, 1);
7971 }
7972
7973 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7974 if (!(get_alloc_profile(root, space_info->flags) &
7975 (BTRFS_BLOCK_GROUP_RAID10 |
7976 BTRFS_BLOCK_GROUP_RAID1 |
7977 BTRFS_BLOCK_GROUP_RAID5 |
7978 BTRFS_BLOCK_GROUP_RAID6 |
7979 BTRFS_BLOCK_GROUP_DUP)))
7980 continue;
7981 /*
7982 * avoid allocating from un-mirrored block group if there are
7983 * mirrored block groups.
7984 */
7985 list_for_each_entry(cache, &space_info->block_groups[3], list)
7986 set_block_group_ro(cache, 1);
7987 list_for_each_entry(cache, &space_info->block_groups[4], list)
7988 set_block_group_ro(cache, 1);
7989 }
7990
7991 init_global_block_rsv(info);
7992 ret = 0;
7993 error:
7994 btrfs_free_path(path);
7995 return ret;
7996 }
7997
7998 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7999 struct btrfs_root *root)
8000 {
8001 struct btrfs_block_group_cache *block_group, *tmp;
8002 struct btrfs_root *extent_root = root->fs_info->extent_root;
8003 struct btrfs_block_group_item item;
8004 struct btrfs_key key;
8005 int ret = 0;
8006
8007 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8008 new_bg_list) {
8009 list_del_init(&block_group->new_bg_list);
8010
8011 if (ret)
8012 continue;
8013
8014 spin_lock(&block_group->lock);
8015 memcpy(&item, &block_group->item, sizeof(item));
8016 memcpy(&key, &block_group->key, sizeof(key));
8017 spin_unlock(&block_group->lock);
8018
8019 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8020 sizeof(item));
8021 if (ret)
8022 btrfs_abort_transaction(trans, extent_root, ret);
8023 }
8024 }
8025
8026 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8027 struct btrfs_root *root, u64 bytes_used,
8028 u64 type, u64 chunk_objectid, u64 chunk_offset,
8029 u64 size)
8030 {
8031 int ret;
8032 struct btrfs_root *extent_root;
8033 struct btrfs_block_group_cache *cache;
8034
8035 extent_root = root->fs_info->extent_root;
8036
8037 root->fs_info->last_trans_log_full_commit = trans->transid;
8038
8039 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8040 if (!cache)
8041 return -ENOMEM;
8042 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8043 GFP_NOFS);
8044 if (!cache->free_space_ctl) {
8045 kfree(cache);
8046 return -ENOMEM;
8047 }
8048
8049 cache->key.objectid = chunk_offset;
8050 cache->key.offset = size;
8051 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8052 cache->sectorsize = root->sectorsize;
8053 cache->fs_info = root->fs_info;
8054 cache->full_stripe_len = btrfs_full_stripe_len(root,
8055 &root->fs_info->mapping_tree,
8056 chunk_offset);
8057
8058 atomic_set(&cache->count, 1);
8059 spin_lock_init(&cache->lock);
8060 INIT_LIST_HEAD(&cache->list);
8061 INIT_LIST_HEAD(&cache->cluster_list);
8062 INIT_LIST_HEAD(&cache->new_bg_list);
8063
8064 btrfs_init_free_space_ctl(cache);
8065
8066 btrfs_set_block_group_used(&cache->item, bytes_used);
8067 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8068 cache->flags = type;
8069 btrfs_set_block_group_flags(&cache->item, type);
8070
8071 cache->last_byte_to_unpin = (u64)-1;
8072 cache->cached = BTRFS_CACHE_FINISHED;
8073 exclude_super_stripes(root, cache);
8074
8075 add_new_free_space(cache, root->fs_info, chunk_offset,
8076 chunk_offset + size);
8077
8078 free_excluded_extents(root, cache);
8079
8080 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8081 &cache->space_info);
8082 BUG_ON(ret); /* -ENOMEM */
8083 update_global_block_rsv(root->fs_info);
8084
8085 spin_lock(&cache->space_info->lock);
8086 cache->space_info->bytes_readonly += cache->bytes_super;
8087 spin_unlock(&cache->space_info->lock);
8088
8089 __link_block_group(cache->space_info, cache);
8090
8091 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8092 BUG_ON(ret); /* Logic error */
8093
8094 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8095
8096 set_avail_alloc_bits(extent_root->fs_info, type);
8097
8098 return 0;
8099 }
8100
8101 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8102 {
8103 u64 extra_flags = chunk_to_extended(flags) &
8104 BTRFS_EXTENDED_PROFILE_MASK;
8105
8106 write_seqlock(&fs_info->profiles_lock);
8107 if (flags & BTRFS_BLOCK_GROUP_DATA)
8108 fs_info->avail_data_alloc_bits &= ~extra_flags;
8109 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8110 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8111 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8112 fs_info->avail_system_alloc_bits &= ~extra_flags;
8113 write_sequnlock(&fs_info->profiles_lock);
8114 }
8115
8116 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8117 struct btrfs_root *root, u64 group_start)
8118 {
8119 struct btrfs_path *path;
8120 struct btrfs_block_group_cache *block_group;
8121 struct btrfs_free_cluster *cluster;
8122 struct btrfs_root *tree_root = root->fs_info->tree_root;
8123 struct btrfs_key key;
8124 struct inode *inode;
8125 int ret;
8126 int index;
8127 int factor;
8128
8129 root = root->fs_info->extent_root;
8130
8131 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8132 BUG_ON(!block_group);
8133 BUG_ON(!block_group->ro);
8134
8135 /*
8136 * Free the reserved super bytes from this block group before
8137 * remove it.
8138 */
8139 free_excluded_extents(root, block_group);
8140
8141 memcpy(&key, &block_group->key, sizeof(key));
8142 index = get_block_group_index(block_group);
8143 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8144 BTRFS_BLOCK_GROUP_RAID1 |
8145 BTRFS_BLOCK_GROUP_RAID10))
8146 factor = 2;
8147 else
8148 factor = 1;
8149
8150 /* make sure this block group isn't part of an allocation cluster */
8151 cluster = &root->fs_info->data_alloc_cluster;
8152 spin_lock(&cluster->refill_lock);
8153 btrfs_return_cluster_to_free_space(block_group, cluster);
8154 spin_unlock(&cluster->refill_lock);
8155
8156 /*
8157 * make sure this block group isn't part of a metadata
8158 * allocation cluster
8159 */
8160 cluster = &root->fs_info->meta_alloc_cluster;
8161 spin_lock(&cluster->refill_lock);
8162 btrfs_return_cluster_to_free_space(block_group, cluster);
8163 spin_unlock(&cluster->refill_lock);
8164
8165 path = btrfs_alloc_path();
8166 if (!path) {
8167 ret = -ENOMEM;
8168 goto out;
8169 }
8170
8171 inode = lookup_free_space_inode(tree_root, block_group, path);
8172 if (!IS_ERR(inode)) {
8173 ret = btrfs_orphan_add(trans, inode);
8174 if (ret) {
8175 btrfs_add_delayed_iput(inode);
8176 goto out;
8177 }
8178 clear_nlink(inode);
8179 /* One for the block groups ref */
8180 spin_lock(&block_group->lock);
8181 if (block_group->iref) {
8182 block_group->iref = 0;
8183 block_group->inode = NULL;
8184 spin_unlock(&block_group->lock);
8185 iput(inode);
8186 } else {
8187 spin_unlock(&block_group->lock);
8188 }
8189 /* One for our lookup ref */
8190 btrfs_add_delayed_iput(inode);
8191 }
8192
8193 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8194 key.offset = block_group->key.objectid;
8195 key.type = 0;
8196
8197 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8198 if (ret < 0)
8199 goto out;
8200 if (ret > 0)
8201 btrfs_release_path(path);
8202 if (ret == 0) {
8203 ret = btrfs_del_item(trans, tree_root, path);
8204 if (ret)
8205 goto out;
8206 btrfs_release_path(path);
8207 }
8208
8209 spin_lock(&root->fs_info->block_group_cache_lock);
8210 rb_erase(&block_group->cache_node,
8211 &root->fs_info->block_group_cache_tree);
8212
8213 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8214 root->fs_info->first_logical_byte = (u64)-1;
8215 spin_unlock(&root->fs_info->block_group_cache_lock);
8216
8217 down_write(&block_group->space_info->groups_sem);
8218 /*
8219 * we must use list_del_init so people can check to see if they
8220 * are still on the list after taking the semaphore
8221 */
8222 list_del_init(&block_group->list);
8223 if (list_empty(&block_group->space_info->block_groups[index]))
8224 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8225 up_write(&block_group->space_info->groups_sem);
8226
8227 if (block_group->cached == BTRFS_CACHE_STARTED)
8228 wait_block_group_cache_done(block_group);
8229
8230 btrfs_remove_free_space_cache(block_group);
8231
8232 spin_lock(&block_group->space_info->lock);
8233 block_group->space_info->total_bytes -= block_group->key.offset;
8234 block_group->space_info->bytes_readonly -= block_group->key.offset;
8235 block_group->space_info->disk_total -= block_group->key.offset * factor;
8236 spin_unlock(&block_group->space_info->lock);
8237
8238 memcpy(&key, &block_group->key, sizeof(key));
8239
8240 btrfs_clear_space_info_full(root->fs_info);
8241
8242 btrfs_put_block_group(block_group);
8243 btrfs_put_block_group(block_group);
8244
8245 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8246 if (ret > 0)
8247 ret = -EIO;
8248 if (ret < 0)
8249 goto out;
8250
8251 ret = btrfs_del_item(trans, root, path);
8252 out:
8253 btrfs_free_path(path);
8254 return ret;
8255 }
8256
8257 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8258 {
8259 struct btrfs_space_info *space_info;
8260 struct btrfs_super_block *disk_super;
8261 u64 features;
8262 u64 flags;
8263 int mixed = 0;
8264 int ret;
8265
8266 disk_super = fs_info->super_copy;
8267 if (!btrfs_super_root(disk_super))
8268 return 1;
8269
8270 features = btrfs_super_incompat_flags(disk_super);
8271 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8272 mixed = 1;
8273
8274 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8275 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8276 if (ret)
8277 goto out;
8278
8279 if (mixed) {
8280 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8281 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8282 } else {
8283 flags = BTRFS_BLOCK_GROUP_METADATA;
8284 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8285 if (ret)
8286 goto out;
8287
8288 flags = BTRFS_BLOCK_GROUP_DATA;
8289 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8290 }
8291 out:
8292 return ret;
8293 }
8294
8295 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8296 {
8297 return unpin_extent_range(root, start, end);
8298 }
8299
8300 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8301 u64 num_bytes, u64 *actual_bytes)
8302 {
8303 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8304 }
8305
8306 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8307 {
8308 struct btrfs_fs_info *fs_info = root->fs_info;
8309 struct btrfs_block_group_cache *cache = NULL;
8310 u64 group_trimmed;
8311 u64 start;
8312 u64 end;
8313 u64 trimmed = 0;
8314 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8315 int ret = 0;
8316
8317 /*
8318 * try to trim all FS space, our block group may start from non-zero.
8319 */
8320 if (range->len == total_bytes)
8321 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8322 else
8323 cache = btrfs_lookup_block_group(fs_info, range->start);
8324
8325 while (cache) {
8326 if (cache->key.objectid >= (range->start + range->len)) {
8327 btrfs_put_block_group(cache);
8328 break;
8329 }
8330
8331 start = max(range->start, cache->key.objectid);
8332 end = min(range->start + range->len,
8333 cache->key.objectid + cache->key.offset);
8334
8335 if (end - start >= range->minlen) {
8336 if (!block_group_cache_done(cache)) {
8337 ret = cache_block_group(cache, 0);
8338 if (!ret)
8339 wait_block_group_cache_done(cache);
8340 }
8341 ret = btrfs_trim_block_group(cache,
8342 &group_trimmed,
8343 start,
8344 end,
8345 range->minlen);
8346
8347 trimmed += group_trimmed;
8348 if (ret) {
8349 btrfs_put_block_group(cache);
8350 break;
8351 }
8352 }
8353
8354 cache = next_block_group(fs_info->tree_root, cache);
8355 }
8356
8357 range->len = trimmed;
8358 return ret;
8359 }