]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
writeback: Add a 'reason' to wb_writeback_work
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
39 *
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 */
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
53 };
54
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, u64 parent,
61 u64 root_objectid, u64 owner_objectid,
62 u64 owner_offset, int refs_to_drop,
63 struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 struct extent_buffer *leaf,
66 struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_root *root,
69 u64 parent, u64 root_objectid,
70 u64 flags, u64 owner, u64 offset,
71 struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 parent, u64 root_objectid,
75 u64 flags, struct btrfs_disk_key *key,
76 int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 struct btrfs_root *extent_root, u64 alloc_bytes,
79 u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 int dump_block_groups);
84
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED;
90 }
91
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
93 {
94 return (cache->flags & bits) == bits;
95 }
96
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
98 {
99 atomic_inc(&cache->count);
100 }
101
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
103 {
104 if (atomic_dec_and_test(&cache->count)) {
105 WARN_ON(cache->pinned > 0);
106 WARN_ON(cache->reserved > 0);
107 WARN_ON(cache->reserved_pinned > 0);
108 kfree(cache->free_space_ctl);
109 kfree(cache);
110 }
111 }
112
113 /*
114 * this adds the block group to the fs_info rb tree for the block group
115 * cache
116 */
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 struct btrfs_block_group_cache *block_group)
119 {
120 struct rb_node **p;
121 struct rb_node *parent = NULL;
122 struct btrfs_block_group_cache *cache;
123
124 spin_lock(&info->block_group_cache_lock);
125 p = &info->block_group_cache_tree.rb_node;
126
127 while (*p) {
128 parent = *p;
129 cache = rb_entry(parent, struct btrfs_block_group_cache,
130 cache_node);
131 if (block_group->key.objectid < cache->key.objectid) {
132 p = &(*p)->rb_left;
133 } else if (block_group->key.objectid > cache->key.objectid) {
134 p = &(*p)->rb_right;
135 } else {
136 spin_unlock(&info->block_group_cache_lock);
137 return -EEXIST;
138 }
139 }
140
141 rb_link_node(&block_group->cache_node, parent, p);
142 rb_insert_color(&block_group->cache_node,
143 &info->block_group_cache_tree);
144 spin_unlock(&info->block_group_cache_lock);
145
146 return 0;
147 }
148
149 /*
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
152 */
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155 int contains)
156 {
157 struct btrfs_block_group_cache *cache, *ret = NULL;
158 struct rb_node *n;
159 u64 end, start;
160
161 spin_lock(&info->block_group_cache_lock);
162 n = info->block_group_cache_tree.rb_node;
163
164 while (n) {
165 cache = rb_entry(n, struct btrfs_block_group_cache,
166 cache_node);
167 end = cache->key.objectid + cache->key.offset - 1;
168 start = cache->key.objectid;
169
170 if (bytenr < start) {
171 if (!contains && (!ret || start < ret->key.objectid))
172 ret = cache;
173 n = n->rb_left;
174 } else if (bytenr > start) {
175 if (contains && bytenr <= end) {
176 ret = cache;
177 break;
178 }
179 n = n->rb_right;
180 } else {
181 ret = cache;
182 break;
183 }
184 }
185 if (ret)
186 btrfs_get_block_group(ret);
187 spin_unlock(&info->block_group_cache_lock);
188
189 return ret;
190 }
191
192 static int add_excluded_extent(struct btrfs_root *root,
193 u64 start, u64 num_bytes)
194 {
195 u64 end = start + num_bytes - 1;
196 set_extent_bits(&root->fs_info->freed_extents[0],
197 start, end, EXTENT_UPTODATE, GFP_NOFS);
198 set_extent_bits(&root->fs_info->freed_extents[1],
199 start, end, EXTENT_UPTODATE, GFP_NOFS);
200 return 0;
201 }
202
203 static void free_excluded_extents(struct btrfs_root *root,
204 struct btrfs_block_group_cache *cache)
205 {
206 u64 start, end;
207
208 start = cache->key.objectid;
209 end = start + cache->key.offset - 1;
210
211 clear_extent_bits(&root->fs_info->freed_extents[0],
212 start, end, EXTENT_UPTODATE, GFP_NOFS);
213 clear_extent_bits(&root->fs_info->freed_extents[1],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 }
216
217 static int exclude_super_stripes(struct btrfs_root *root,
218 struct btrfs_block_group_cache *cache)
219 {
220 u64 bytenr;
221 u64 *logical;
222 int stripe_len;
223 int i, nr, ret;
224
225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 cache->bytes_super += stripe_len;
228 ret = add_excluded_extent(root, cache->key.objectid,
229 stripe_len);
230 BUG_ON(ret);
231 }
232
233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 bytenr = btrfs_sb_offset(i);
235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 cache->key.objectid, bytenr,
237 0, &logical, &nr, &stripe_len);
238 BUG_ON(ret);
239
240 while (nr--) {
241 cache->bytes_super += stripe_len;
242 ret = add_excluded_extent(root, logical[nr],
243 stripe_len);
244 BUG_ON(ret);
245 }
246
247 kfree(logical);
248 }
249 return 0;
250 }
251
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
254 {
255 struct btrfs_caching_control *ctl;
256
257 spin_lock(&cache->lock);
258 if (cache->cached != BTRFS_CACHE_STARTED) {
259 spin_unlock(&cache->lock);
260 return NULL;
261 }
262
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache->caching_ctl) {
265 spin_unlock(&cache->lock);
266 return NULL;
267 }
268
269 ctl = cache->caching_ctl;
270 atomic_inc(&ctl->count);
271 spin_unlock(&cache->lock);
272 return ctl;
273 }
274
275 static void put_caching_control(struct btrfs_caching_control *ctl)
276 {
277 if (atomic_dec_and_test(&ctl->count))
278 kfree(ctl);
279 }
280
281 /*
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
285 */
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 struct btrfs_fs_info *info, u64 start, u64 end)
288 {
289 u64 extent_start, extent_end, size, total_added = 0;
290 int ret;
291
292 while (start < end) {
293 ret = find_first_extent_bit(info->pinned_extents, start,
294 &extent_start, &extent_end,
295 EXTENT_DIRTY | EXTENT_UPTODATE);
296 if (ret)
297 break;
298
299 if (extent_start <= start) {
300 start = extent_end + 1;
301 } else if (extent_start > start && extent_start < end) {
302 size = extent_start - start;
303 total_added += size;
304 ret = btrfs_add_free_space(block_group, start,
305 size);
306 BUG_ON(ret);
307 start = extent_end + 1;
308 } else {
309 break;
310 }
311 }
312
313 if (start < end) {
314 size = end - start;
315 total_added += size;
316 ret = btrfs_add_free_space(block_group, start, size);
317 BUG_ON(ret);
318 }
319
320 return total_added;
321 }
322
323 static noinline void caching_thread(struct btrfs_work *work)
324 {
325 struct btrfs_block_group_cache *block_group;
326 struct btrfs_fs_info *fs_info;
327 struct btrfs_caching_control *caching_ctl;
328 struct btrfs_root *extent_root;
329 struct btrfs_path *path;
330 struct extent_buffer *leaf;
331 struct btrfs_key key;
332 u64 total_found = 0;
333 u64 last = 0;
334 u32 nritems;
335 int ret = 0;
336
337 caching_ctl = container_of(work, struct btrfs_caching_control, work);
338 block_group = caching_ctl->block_group;
339 fs_info = block_group->fs_info;
340 extent_root = fs_info->extent_root;
341
342 path = btrfs_alloc_path();
343 if (!path)
344 goto out;
345
346 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
347
348 /*
349 * We don't want to deadlock with somebody trying to allocate a new
350 * extent for the extent root while also trying to search the extent
351 * root to add free space. So we skip locking and search the commit
352 * root, since its read-only
353 */
354 path->skip_locking = 1;
355 path->search_commit_root = 1;
356 path->reada = 1;
357
358 key.objectid = last;
359 key.offset = 0;
360 key.type = BTRFS_EXTENT_ITEM_KEY;
361 again:
362 mutex_lock(&caching_ctl->mutex);
363 /* need to make sure the commit_root doesn't disappear */
364 down_read(&fs_info->extent_commit_sem);
365
366 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
367 if (ret < 0)
368 goto err;
369
370 leaf = path->nodes[0];
371 nritems = btrfs_header_nritems(leaf);
372
373 while (1) {
374 if (btrfs_fs_closing(fs_info) > 1) {
375 last = (u64)-1;
376 break;
377 }
378
379 if (path->slots[0] < nritems) {
380 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
381 } else {
382 ret = find_next_key(path, 0, &key);
383 if (ret)
384 break;
385
386 if (need_resched() ||
387 btrfs_next_leaf(extent_root, path)) {
388 caching_ctl->progress = last;
389 btrfs_release_path(path);
390 up_read(&fs_info->extent_commit_sem);
391 mutex_unlock(&caching_ctl->mutex);
392 cond_resched();
393 goto again;
394 }
395 leaf = path->nodes[0];
396 nritems = btrfs_header_nritems(leaf);
397 continue;
398 }
399
400 if (key.objectid < block_group->key.objectid) {
401 path->slots[0]++;
402 continue;
403 }
404
405 if (key.objectid >= block_group->key.objectid +
406 block_group->key.offset)
407 break;
408
409 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
410 total_found += add_new_free_space(block_group,
411 fs_info, last,
412 key.objectid);
413 last = key.objectid + key.offset;
414
415 if (total_found > (1024 * 1024 * 2)) {
416 total_found = 0;
417 wake_up(&caching_ctl->wait);
418 }
419 }
420 path->slots[0]++;
421 }
422 ret = 0;
423
424 total_found += add_new_free_space(block_group, fs_info, last,
425 block_group->key.objectid +
426 block_group->key.offset);
427 caching_ctl->progress = (u64)-1;
428
429 spin_lock(&block_group->lock);
430 block_group->caching_ctl = NULL;
431 block_group->cached = BTRFS_CACHE_FINISHED;
432 spin_unlock(&block_group->lock);
433
434 err:
435 btrfs_free_path(path);
436 up_read(&fs_info->extent_commit_sem);
437
438 free_excluded_extents(extent_root, block_group);
439
440 mutex_unlock(&caching_ctl->mutex);
441 out:
442 wake_up(&caching_ctl->wait);
443
444 put_caching_control(caching_ctl);
445 btrfs_put_block_group(block_group);
446 }
447
448 static int cache_block_group(struct btrfs_block_group_cache *cache,
449 struct btrfs_trans_handle *trans,
450 struct btrfs_root *root,
451 int load_cache_only)
452 {
453 struct btrfs_fs_info *fs_info = cache->fs_info;
454 struct btrfs_caching_control *caching_ctl;
455 int ret = 0;
456
457 smp_mb();
458 if (cache->cached != BTRFS_CACHE_NO)
459 return 0;
460
461 /*
462 * We can't do the read from on-disk cache during a commit since we need
463 * to have the normal tree locking. Also if we are currently trying to
464 * allocate blocks for the tree root we can't do the fast caching since
465 * we likely hold important locks.
466 */
467 if (trans && (!trans->transaction->in_commit) &&
468 (root && root != root->fs_info->tree_root)) {
469 spin_lock(&cache->lock);
470 if (cache->cached != BTRFS_CACHE_NO) {
471 spin_unlock(&cache->lock);
472 return 0;
473 }
474 cache->cached = BTRFS_CACHE_STARTED;
475 spin_unlock(&cache->lock);
476
477 ret = load_free_space_cache(fs_info, cache);
478
479 spin_lock(&cache->lock);
480 if (ret == 1) {
481 cache->cached = BTRFS_CACHE_FINISHED;
482 cache->last_byte_to_unpin = (u64)-1;
483 } else {
484 cache->cached = BTRFS_CACHE_NO;
485 }
486 spin_unlock(&cache->lock);
487 if (ret == 1) {
488 free_excluded_extents(fs_info->extent_root, cache);
489 return 0;
490 }
491 }
492
493 if (load_cache_only)
494 return 0;
495
496 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
497 BUG_ON(!caching_ctl);
498
499 INIT_LIST_HEAD(&caching_ctl->list);
500 mutex_init(&caching_ctl->mutex);
501 init_waitqueue_head(&caching_ctl->wait);
502 caching_ctl->block_group = cache;
503 caching_ctl->progress = cache->key.objectid;
504 /* one for caching kthread, one for caching block group list */
505 atomic_set(&caching_ctl->count, 2);
506 caching_ctl->work.func = caching_thread;
507
508 spin_lock(&cache->lock);
509 if (cache->cached != BTRFS_CACHE_NO) {
510 spin_unlock(&cache->lock);
511 kfree(caching_ctl);
512 return 0;
513 }
514 cache->caching_ctl = caching_ctl;
515 cache->cached = BTRFS_CACHE_STARTED;
516 spin_unlock(&cache->lock);
517
518 down_write(&fs_info->extent_commit_sem);
519 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
520 up_write(&fs_info->extent_commit_sem);
521
522 btrfs_get_block_group(cache);
523
524 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
525
526 return ret;
527 }
528
529 /*
530 * return the block group that starts at or after bytenr
531 */
532 static struct btrfs_block_group_cache *
533 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
534 {
535 struct btrfs_block_group_cache *cache;
536
537 cache = block_group_cache_tree_search(info, bytenr, 0);
538
539 return cache;
540 }
541
542 /*
543 * return the block group that contains the given bytenr
544 */
545 struct btrfs_block_group_cache *btrfs_lookup_block_group(
546 struct btrfs_fs_info *info,
547 u64 bytenr)
548 {
549 struct btrfs_block_group_cache *cache;
550
551 cache = block_group_cache_tree_search(info, bytenr, 1);
552
553 return cache;
554 }
555
556 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
557 u64 flags)
558 {
559 struct list_head *head = &info->space_info;
560 struct btrfs_space_info *found;
561
562 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
563 BTRFS_BLOCK_GROUP_METADATA;
564
565 rcu_read_lock();
566 list_for_each_entry_rcu(found, head, list) {
567 if (found->flags & flags) {
568 rcu_read_unlock();
569 return found;
570 }
571 }
572 rcu_read_unlock();
573 return NULL;
574 }
575
576 /*
577 * after adding space to the filesystem, we need to clear the full flags
578 * on all the space infos.
579 */
580 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
581 {
582 struct list_head *head = &info->space_info;
583 struct btrfs_space_info *found;
584
585 rcu_read_lock();
586 list_for_each_entry_rcu(found, head, list)
587 found->full = 0;
588 rcu_read_unlock();
589 }
590
591 static u64 div_factor(u64 num, int factor)
592 {
593 if (factor == 10)
594 return num;
595 num *= factor;
596 do_div(num, 10);
597 return num;
598 }
599
600 static u64 div_factor_fine(u64 num, int factor)
601 {
602 if (factor == 100)
603 return num;
604 num *= factor;
605 do_div(num, 100);
606 return num;
607 }
608
609 u64 btrfs_find_block_group(struct btrfs_root *root,
610 u64 search_start, u64 search_hint, int owner)
611 {
612 struct btrfs_block_group_cache *cache;
613 u64 used;
614 u64 last = max(search_hint, search_start);
615 u64 group_start = 0;
616 int full_search = 0;
617 int factor = 9;
618 int wrapped = 0;
619 again:
620 while (1) {
621 cache = btrfs_lookup_first_block_group(root->fs_info, last);
622 if (!cache)
623 break;
624
625 spin_lock(&cache->lock);
626 last = cache->key.objectid + cache->key.offset;
627 used = btrfs_block_group_used(&cache->item);
628
629 if ((full_search || !cache->ro) &&
630 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
631 if (used + cache->pinned + cache->reserved <
632 div_factor(cache->key.offset, factor)) {
633 group_start = cache->key.objectid;
634 spin_unlock(&cache->lock);
635 btrfs_put_block_group(cache);
636 goto found;
637 }
638 }
639 spin_unlock(&cache->lock);
640 btrfs_put_block_group(cache);
641 cond_resched();
642 }
643 if (!wrapped) {
644 last = search_start;
645 wrapped = 1;
646 goto again;
647 }
648 if (!full_search && factor < 10) {
649 last = search_start;
650 full_search = 1;
651 factor = 10;
652 goto again;
653 }
654 found:
655 return group_start;
656 }
657
658 /* simple helper to search for an existing extent at a given offset */
659 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
660 {
661 int ret;
662 struct btrfs_key key;
663 struct btrfs_path *path;
664
665 path = btrfs_alloc_path();
666 if (!path)
667 return -ENOMEM;
668
669 key.objectid = start;
670 key.offset = len;
671 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
672 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
673 0, 0);
674 btrfs_free_path(path);
675 return ret;
676 }
677
678 /*
679 * helper function to lookup reference count and flags of extent.
680 *
681 * the head node for delayed ref is used to store the sum of all the
682 * reference count modifications queued up in the rbtree. the head
683 * node may also store the extent flags to set. This way you can check
684 * to see what the reference count and extent flags would be if all of
685 * the delayed refs are not processed.
686 */
687 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
688 struct btrfs_root *root, u64 bytenr,
689 u64 num_bytes, u64 *refs, u64 *flags)
690 {
691 struct btrfs_delayed_ref_head *head;
692 struct btrfs_delayed_ref_root *delayed_refs;
693 struct btrfs_path *path;
694 struct btrfs_extent_item *ei;
695 struct extent_buffer *leaf;
696 struct btrfs_key key;
697 u32 item_size;
698 u64 num_refs;
699 u64 extent_flags;
700 int ret;
701
702 path = btrfs_alloc_path();
703 if (!path)
704 return -ENOMEM;
705
706 key.objectid = bytenr;
707 key.type = BTRFS_EXTENT_ITEM_KEY;
708 key.offset = num_bytes;
709 if (!trans) {
710 path->skip_locking = 1;
711 path->search_commit_root = 1;
712 }
713 again:
714 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
715 &key, path, 0, 0);
716 if (ret < 0)
717 goto out_free;
718
719 if (ret == 0) {
720 leaf = path->nodes[0];
721 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
722 if (item_size >= sizeof(*ei)) {
723 ei = btrfs_item_ptr(leaf, path->slots[0],
724 struct btrfs_extent_item);
725 num_refs = btrfs_extent_refs(leaf, ei);
726 extent_flags = btrfs_extent_flags(leaf, ei);
727 } else {
728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
729 struct btrfs_extent_item_v0 *ei0;
730 BUG_ON(item_size != sizeof(*ei0));
731 ei0 = btrfs_item_ptr(leaf, path->slots[0],
732 struct btrfs_extent_item_v0);
733 num_refs = btrfs_extent_refs_v0(leaf, ei0);
734 /* FIXME: this isn't correct for data */
735 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
736 #else
737 BUG();
738 #endif
739 }
740 BUG_ON(num_refs == 0);
741 } else {
742 num_refs = 0;
743 extent_flags = 0;
744 ret = 0;
745 }
746
747 if (!trans)
748 goto out;
749
750 delayed_refs = &trans->transaction->delayed_refs;
751 spin_lock(&delayed_refs->lock);
752 head = btrfs_find_delayed_ref_head(trans, bytenr);
753 if (head) {
754 if (!mutex_trylock(&head->mutex)) {
755 atomic_inc(&head->node.refs);
756 spin_unlock(&delayed_refs->lock);
757
758 btrfs_release_path(path);
759
760 /*
761 * Mutex was contended, block until it's released and try
762 * again
763 */
764 mutex_lock(&head->mutex);
765 mutex_unlock(&head->mutex);
766 btrfs_put_delayed_ref(&head->node);
767 goto again;
768 }
769 if (head->extent_op && head->extent_op->update_flags)
770 extent_flags |= head->extent_op->flags_to_set;
771 else
772 BUG_ON(num_refs == 0);
773
774 num_refs += head->node.ref_mod;
775 mutex_unlock(&head->mutex);
776 }
777 spin_unlock(&delayed_refs->lock);
778 out:
779 WARN_ON(num_refs == 0);
780 if (refs)
781 *refs = num_refs;
782 if (flags)
783 *flags = extent_flags;
784 out_free:
785 btrfs_free_path(path);
786 return ret;
787 }
788
789 /*
790 * Back reference rules. Back refs have three main goals:
791 *
792 * 1) differentiate between all holders of references to an extent so that
793 * when a reference is dropped we can make sure it was a valid reference
794 * before freeing the extent.
795 *
796 * 2) Provide enough information to quickly find the holders of an extent
797 * if we notice a given block is corrupted or bad.
798 *
799 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
800 * maintenance. This is actually the same as #2, but with a slightly
801 * different use case.
802 *
803 * There are two kinds of back refs. The implicit back refs is optimized
804 * for pointers in non-shared tree blocks. For a given pointer in a block,
805 * back refs of this kind provide information about the block's owner tree
806 * and the pointer's key. These information allow us to find the block by
807 * b-tree searching. The full back refs is for pointers in tree blocks not
808 * referenced by their owner trees. The location of tree block is recorded
809 * in the back refs. Actually the full back refs is generic, and can be
810 * used in all cases the implicit back refs is used. The major shortcoming
811 * of the full back refs is its overhead. Every time a tree block gets
812 * COWed, we have to update back refs entry for all pointers in it.
813 *
814 * For a newly allocated tree block, we use implicit back refs for
815 * pointers in it. This means most tree related operations only involve
816 * implicit back refs. For a tree block created in old transaction, the
817 * only way to drop a reference to it is COW it. So we can detect the
818 * event that tree block loses its owner tree's reference and do the
819 * back refs conversion.
820 *
821 * When a tree block is COW'd through a tree, there are four cases:
822 *
823 * The reference count of the block is one and the tree is the block's
824 * owner tree. Nothing to do in this case.
825 *
826 * The reference count of the block is one and the tree is not the
827 * block's owner tree. In this case, full back refs is used for pointers
828 * in the block. Remove these full back refs, add implicit back refs for
829 * every pointers in the new block.
830 *
831 * The reference count of the block is greater than one and the tree is
832 * the block's owner tree. In this case, implicit back refs is used for
833 * pointers in the block. Add full back refs for every pointers in the
834 * block, increase lower level extents' reference counts. The original
835 * implicit back refs are entailed to the new block.
836 *
837 * The reference count of the block is greater than one and the tree is
838 * not the block's owner tree. Add implicit back refs for every pointer in
839 * the new block, increase lower level extents' reference count.
840 *
841 * Back Reference Key composing:
842 *
843 * The key objectid corresponds to the first byte in the extent,
844 * The key type is used to differentiate between types of back refs.
845 * There are different meanings of the key offset for different types
846 * of back refs.
847 *
848 * File extents can be referenced by:
849 *
850 * - multiple snapshots, subvolumes, or different generations in one subvol
851 * - different files inside a single subvolume
852 * - different offsets inside a file (bookend extents in file.c)
853 *
854 * The extent ref structure for the implicit back refs has fields for:
855 *
856 * - Objectid of the subvolume root
857 * - objectid of the file holding the reference
858 * - original offset in the file
859 * - how many bookend extents
860 *
861 * The key offset for the implicit back refs is hash of the first
862 * three fields.
863 *
864 * The extent ref structure for the full back refs has field for:
865 *
866 * - number of pointers in the tree leaf
867 *
868 * The key offset for the implicit back refs is the first byte of
869 * the tree leaf
870 *
871 * When a file extent is allocated, The implicit back refs is used.
872 * the fields are filled in:
873 *
874 * (root_key.objectid, inode objectid, offset in file, 1)
875 *
876 * When a file extent is removed file truncation, we find the
877 * corresponding implicit back refs and check the following fields:
878 *
879 * (btrfs_header_owner(leaf), inode objectid, offset in file)
880 *
881 * Btree extents can be referenced by:
882 *
883 * - Different subvolumes
884 *
885 * Both the implicit back refs and the full back refs for tree blocks
886 * only consist of key. The key offset for the implicit back refs is
887 * objectid of block's owner tree. The key offset for the full back refs
888 * is the first byte of parent block.
889 *
890 * When implicit back refs is used, information about the lowest key and
891 * level of the tree block are required. These information are stored in
892 * tree block info structure.
893 */
894
895 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
896 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
897 struct btrfs_root *root,
898 struct btrfs_path *path,
899 u64 owner, u32 extra_size)
900 {
901 struct btrfs_extent_item *item;
902 struct btrfs_extent_item_v0 *ei0;
903 struct btrfs_extent_ref_v0 *ref0;
904 struct btrfs_tree_block_info *bi;
905 struct extent_buffer *leaf;
906 struct btrfs_key key;
907 struct btrfs_key found_key;
908 u32 new_size = sizeof(*item);
909 u64 refs;
910 int ret;
911
912 leaf = path->nodes[0];
913 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
914
915 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
916 ei0 = btrfs_item_ptr(leaf, path->slots[0],
917 struct btrfs_extent_item_v0);
918 refs = btrfs_extent_refs_v0(leaf, ei0);
919
920 if (owner == (u64)-1) {
921 while (1) {
922 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
923 ret = btrfs_next_leaf(root, path);
924 if (ret < 0)
925 return ret;
926 BUG_ON(ret > 0);
927 leaf = path->nodes[0];
928 }
929 btrfs_item_key_to_cpu(leaf, &found_key,
930 path->slots[0]);
931 BUG_ON(key.objectid != found_key.objectid);
932 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
933 path->slots[0]++;
934 continue;
935 }
936 ref0 = btrfs_item_ptr(leaf, path->slots[0],
937 struct btrfs_extent_ref_v0);
938 owner = btrfs_ref_objectid_v0(leaf, ref0);
939 break;
940 }
941 }
942 btrfs_release_path(path);
943
944 if (owner < BTRFS_FIRST_FREE_OBJECTID)
945 new_size += sizeof(*bi);
946
947 new_size -= sizeof(*ei0);
948 ret = btrfs_search_slot(trans, root, &key, path,
949 new_size + extra_size, 1);
950 if (ret < 0)
951 return ret;
952 BUG_ON(ret);
953
954 ret = btrfs_extend_item(trans, root, path, new_size);
955
956 leaf = path->nodes[0];
957 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
958 btrfs_set_extent_refs(leaf, item, refs);
959 /* FIXME: get real generation */
960 btrfs_set_extent_generation(leaf, item, 0);
961 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
962 btrfs_set_extent_flags(leaf, item,
963 BTRFS_EXTENT_FLAG_TREE_BLOCK |
964 BTRFS_BLOCK_FLAG_FULL_BACKREF);
965 bi = (struct btrfs_tree_block_info *)(item + 1);
966 /* FIXME: get first key of the block */
967 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
968 btrfs_set_tree_block_level(leaf, bi, (int)owner);
969 } else {
970 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
971 }
972 btrfs_mark_buffer_dirty(leaf);
973 return 0;
974 }
975 #endif
976
977 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
978 {
979 u32 high_crc = ~(u32)0;
980 u32 low_crc = ~(u32)0;
981 __le64 lenum;
982
983 lenum = cpu_to_le64(root_objectid);
984 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
985 lenum = cpu_to_le64(owner);
986 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
987 lenum = cpu_to_le64(offset);
988 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
989
990 return ((u64)high_crc << 31) ^ (u64)low_crc;
991 }
992
993 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
994 struct btrfs_extent_data_ref *ref)
995 {
996 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
997 btrfs_extent_data_ref_objectid(leaf, ref),
998 btrfs_extent_data_ref_offset(leaf, ref));
999 }
1000
1001 static int match_extent_data_ref(struct extent_buffer *leaf,
1002 struct btrfs_extent_data_ref *ref,
1003 u64 root_objectid, u64 owner, u64 offset)
1004 {
1005 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1006 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1007 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1008 return 0;
1009 return 1;
1010 }
1011
1012 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root,
1014 struct btrfs_path *path,
1015 u64 bytenr, u64 parent,
1016 u64 root_objectid,
1017 u64 owner, u64 offset)
1018 {
1019 struct btrfs_key key;
1020 struct btrfs_extent_data_ref *ref;
1021 struct extent_buffer *leaf;
1022 u32 nritems;
1023 int ret;
1024 int recow;
1025 int err = -ENOENT;
1026
1027 key.objectid = bytenr;
1028 if (parent) {
1029 key.type = BTRFS_SHARED_DATA_REF_KEY;
1030 key.offset = parent;
1031 } else {
1032 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1033 key.offset = hash_extent_data_ref(root_objectid,
1034 owner, offset);
1035 }
1036 again:
1037 recow = 0;
1038 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1039 if (ret < 0) {
1040 err = ret;
1041 goto fail;
1042 }
1043
1044 if (parent) {
1045 if (!ret)
1046 return 0;
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 key.type = BTRFS_EXTENT_REF_V0_KEY;
1049 btrfs_release_path(path);
1050 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051 if (ret < 0) {
1052 err = ret;
1053 goto fail;
1054 }
1055 if (!ret)
1056 return 0;
1057 #endif
1058 goto fail;
1059 }
1060
1061 leaf = path->nodes[0];
1062 nritems = btrfs_header_nritems(leaf);
1063 while (1) {
1064 if (path->slots[0] >= nritems) {
1065 ret = btrfs_next_leaf(root, path);
1066 if (ret < 0)
1067 err = ret;
1068 if (ret)
1069 goto fail;
1070
1071 leaf = path->nodes[0];
1072 nritems = btrfs_header_nritems(leaf);
1073 recow = 1;
1074 }
1075
1076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1077 if (key.objectid != bytenr ||
1078 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1079 goto fail;
1080
1081 ref = btrfs_item_ptr(leaf, path->slots[0],
1082 struct btrfs_extent_data_ref);
1083
1084 if (match_extent_data_ref(leaf, ref, root_objectid,
1085 owner, offset)) {
1086 if (recow) {
1087 btrfs_release_path(path);
1088 goto again;
1089 }
1090 err = 0;
1091 break;
1092 }
1093 path->slots[0]++;
1094 }
1095 fail:
1096 return err;
1097 }
1098
1099 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root,
1101 struct btrfs_path *path,
1102 u64 bytenr, u64 parent,
1103 u64 root_objectid, u64 owner,
1104 u64 offset, int refs_to_add)
1105 {
1106 struct btrfs_key key;
1107 struct extent_buffer *leaf;
1108 u32 size;
1109 u32 num_refs;
1110 int ret;
1111
1112 key.objectid = bytenr;
1113 if (parent) {
1114 key.type = BTRFS_SHARED_DATA_REF_KEY;
1115 key.offset = parent;
1116 size = sizeof(struct btrfs_shared_data_ref);
1117 } else {
1118 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1119 key.offset = hash_extent_data_ref(root_objectid,
1120 owner, offset);
1121 size = sizeof(struct btrfs_extent_data_ref);
1122 }
1123
1124 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1125 if (ret && ret != -EEXIST)
1126 goto fail;
1127
1128 leaf = path->nodes[0];
1129 if (parent) {
1130 struct btrfs_shared_data_ref *ref;
1131 ref = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_shared_data_ref);
1133 if (ret == 0) {
1134 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1135 } else {
1136 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1137 num_refs += refs_to_add;
1138 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1139 }
1140 } else {
1141 struct btrfs_extent_data_ref *ref;
1142 while (ret == -EEXIST) {
1143 ref = btrfs_item_ptr(leaf, path->slots[0],
1144 struct btrfs_extent_data_ref);
1145 if (match_extent_data_ref(leaf, ref, root_objectid,
1146 owner, offset))
1147 break;
1148 btrfs_release_path(path);
1149 key.offset++;
1150 ret = btrfs_insert_empty_item(trans, root, path, &key,
1151 size);
1152 if (ret && ret != -EEXIST)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 }
1157 ref = btrfs_item_ptr(leaf, path->slots[0],
1158 struct btrfs_extent_data_ref);
1159 if (ret == 0) {
1160 btrfs_set_extent_data_ref_root(leaf, ref,
1161 root_objectid);
1162 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1163 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1164 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1165 } else {
1166 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1167 num_refs += refs_to_add;
1168 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1169 }
1170 }
1171 btrfs_mark_buffer_dirty(leaf);
1172 ret = 0;
1173 fail:
1174 btrfs_release_path(path);
1175 return ret;
1176 }
1177
1178 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1179 struct btrfs_root *root,
1180 struct btrfs_path *path,
1181 int refs_to_drop)
1182 {
1183 struct btrfs_key key;
1184 struct btrfs_extent_data_ref *ref1 = NULL;
1185 struct btrfs_shared_data_ref *ref2 = NULL;
1186 struct extent_buffer *leaf;
1187 u32 num_refs = 0;
1188 int ret = 0;
1189
1190 leaf = path->nodes[0];
1191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1192
1193 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1194 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1195 struct btrfs_extent_data_ref);
1196 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1197 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1198 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_shared_data_ref);
1200 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1203 struct btrfs_extent_ref_v0 *ref0;
1204 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_extent_ref_v0);
1206 num_refs = btrfs_ref_count_v0(leaf, ref0);
1207 #endif
1208 } else {
1209 BUG();
1210 }
1211
1212 BUG_ON(num_refs < refs_to_drop);
1213 num_refs -= refs_to_drop;
1214
1215 if (num_refs == 0) {
1216 ret = btrfs_del_item(trans, root, path);
1217 } else {
1218 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1219 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1220 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1221 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 else {
1224 struct btrfs_extent_ref_v0 *ref0;
1225 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1226 struct btrfs_extent_ref_v0);
1227 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1228 }
1229 #endif
1230 btrfs_mark_buffer_dirty(leaf);
1231 }
1232 return ret;
1233 }
1234
1235 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1236 struct btrfs_path *path,
1237 struct btrfs_extent_inline_ref *iref)
1238 {
1239 struct btrfs_key key;
1240 struct extent_buffer *leaf;
1241 struct btrfs_extent_data_ref *ref1;
1242 struct btrfs_shared_data_ref *ref2;
1243 u32 num_refs = 0;
1244
1245 leaf = path->nodes[0];
1246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1247 if (iref) {
1248 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1249 BTRFS_EXTENT_DATA_REF_KEY) {
1250 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1251 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1252 } else {
1253 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1254 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1255 }
1256 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1257 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_extent_data_ref);
1259 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1260 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1261 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1262 struct btrfs_shared_data_ref);
1263 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1264 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1265 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1266 struct btrfs_extent_ref_v0 *ref0;
1267 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1268 struct btrfs_extent_ref_v0);
1269 num_refs = btrfs_ref_count_v0(leaf, ref0);
1270 #endif
1271 } else {
1272 WARN_ON(1);
1273 }
1274 return num_refs;
1275 }
1276
1277 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1278 struct btrfs_root *root,
1279 struct btrfs_path *path,
1280 u64 bytenr, u64 parent,
1281 u64 root_objectid)
1282 {
1283 struct btrfs_key key;
1284 int ret;
1285
1286 key.objectid = bytenr;
1287 if (parent) {
1288 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1289 key.offset = parent;
1290 } else {
1291 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1292 key.offset = root_objectid;
1293 }
1294
1295 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1296 if (ret > 0)
1297 ret = -ENOENT;
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 if (ret == -ENOENT && parent) {
1300 btrfs_release_path(path);
1301 key.type = BTRFS_EXTENT_REF_V0_KEY;
1302 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1303 if (ret > 0)
1304 ret = -ENOENT;
1305 }
1306 #endif
1307 return ret;
1308 }
1309
1310 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1311 struct btrfs_root *root,
1312 struct btrfs_path *path,
1313 u64 bytenr, u64 parent,
1314 u64 root_objectid)
1315 {
1316 struct btrfs_key key;
1317 int ret;
1318
1319 key.objectid = bytenr;
1320 if (parent) {
1321 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1322 key.offset = parent;
1323 } else {
1324 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1325 key.offset = root_objectid;
1326 }
1327
1328 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1329 btrfs_release_path(path);
1330 return ret;
1331 }
1332
1333 static inline int extent_ref_type(u64 parent, u64 owner)
1334 {
1335 int type;
1336 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1337 if (parent > 0)
1338 type = BTRFS_SHARED_BLOCK_REF_KEY;
1339 else
1340 type = BTRFS_TREE_BLOCK_REF_KEY;
1341 } else {
1342 if (parent > 0)
1343 type = BTRFS_SHARED_DATA_REF_KEY;
1344 else
1345 type = BTRFS_EXTENT_DATA_REF_KEY;
1346 }
1347 return type;
1348 }
1349
1350 static int find_next_key(struct btrfs_path *path, int level,
1351 struct btrfs_key *key)
1352
1353 {
1354 for (; level < BTRFS_MAX_LEVEL; level++) {
1355 if (!path->nodes[level])
1356 break;
1357 if (path->slots[level] + 1 >=
1358 btrfs_header_nritems(path->nodes[level]))
1359 continue;
1360 if (level == 0)
1361 btrfs_item_key_to_cpu(path->nodes[level], key,
1362 path->slots[level] + 1);
1363 else
1364 btrfs_node_key_to_cpu(path->nodes[level], key,
1365 path->slots[level] + 1);
1366 return 0;
1367 }
1368 return 1;
1369 }
1370
1371 /*
1372 * look for inline back ref. if back ref is found, *ref_ret is set
1373 * to the address of inline back ref, and 0 is returned.
1374 *
1375 * if back ref isn't found, *ref_ret is set to the address where it
1376 * should be inserted, and -ENOENT is returned.
1377 *
1378 * if insert is true and there are too many inline back refs, the path
1379 * points to the extent item, and -EAGAIN is returned.
1380 *
1381 * NOTE: inline back refs are ordered in the same way that back ref
1382 * items in the tree are ordered.
1383 */
1384 static noinline_for_stack
1385 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1386 struct btrfs_root *root,
1387 struct btrfs_path *path,
1388 struct btrfs_extent_inline_ref **ref_ret,
1389 u64 bytenr, u64 num_bytes,
1390 u64 parent, u64 root_objectid,
1391 u64 owner, u64 offset, int insert)
1392 {
1393 struct btrfs_key key;
1394 struct extent_buffer *leaf;
1395 struct btrfs_extent_item *ei;
1396 struct btrfs_extent_inline_ref *iref;
1397 u64 flags;
1398 u64 item_size;
1399 unsigned long ptr;
1400 unsigned long end;
1401 int extra_size;
1402 int type;
1403 int want;
1404 int ret;
1405 int err = 0;
1406
1407 key.objectid = bytenr;
1408 key.type = BTRFS_EXTENT_ITEM_KEY;
1409 key.offset = num_bytes;
1410
1411 want = extent_ref_type(parent, owner);
1412 if (insert) {
1413 extra_size = btrfs_extent_inline_ref_size(want);
1414 path->keep_locks = 1;
1415 } else
1416 extra_size = -1;
1417 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1418 if (ret < 0) {
1419 err = ret;
1420 goto out;
1421 }
1422 BUG_ON(ret);
1423
1424 leaf = path->nodes[0];
1425 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 if (item_size < sizeof(*ei)) {
1428 if (!insert) {
1429 err = -ENOENT;
1430 goto out;
1431 }
1432 ret = convert_extent_item_v0(trans, root, path, owner,
1433 extra_size);
1434 if (ret < 0) {
1435 err = ret;
1436 goto out;
1437 }
1438 leaf = path->nodes[0];
1439 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1440 }
1441 #endif
1442 BUG_ON(item_size < sizeof(*ei));
1443
1444 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1445 flags = btrfs_extent_flags(leaf, ei);
1446
1447 ptr = (unsigned long)(ei + 1);
1448 end = (unsigned long)ei + item_size;
1449
1450 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1451 ptr += sizeof(struct btrfs_tree_block_info);
1452 BUG_ON(ptr > end);
1453 } else {
1454 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1455 }
1456
1457 err = -ENOENT;
1458 while (1) {
1459 if (ptr >= end) {
1460 WARN_ON(ptr > end);
1461 break;
1462 }
1463 iref = (struct btrfs_extent_inline_ref *)ptr;
1464 type = btrfs_extent_inline_ref_type(leaf, iref);
1465 if (want < type)
1466 break;
1467 if (want > type) {
1468 ptr += btrfs_extent_inline_ref_size(type);
1469 continue;
1470 }
1471
1472 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 struct btrfs_extent_data_ref *dref;
1474 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1475 if (match_extent_data_ref(leaf, dref, root_objectid,
1476 owner, offset)) {
1477 err = 0;
1478 break;
1479 }
1480 if (hash_extent_data_ref_item(leaf, dref) <
1481 hash_extent_data_ref(root_objectid, owner, offset))
1482 break;
1483 } else {
1484 u64 ref_offset;
1485 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1486 if (parent > 0) {
1487 if (parent == ref_offset) {
1488 err = 0;
1489 break;
1490 }
1491 if (ref_offset < parent)
1492 break;
1493 } else {
1494 if (root_objectid == ref_offset) {
1495 err = 0;
1496 break;
1497 }
1498 if (ref_offset < root_objectid)
1499 break;
1500 }
1501 }
1502 ptr += btrfs_extent_inline_ref_size(type);
1503 }
1504 if (err == -ENOENT && insert) {
1505 if (item_size + extra_size >=
1506 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1507 err = -EAGAIN;
1508 goto out;
1509 }
1510 /*
1511 * To add new inline back ref, we have to make sure
1512 * there is no corresponding back ref item.
1513 * For simplicity, we just do not add new inline back
1514 * ref if there is any kind of item for this block
1515 */
1516 if (find_next_key(path, 0, &key) == 0 &&
1517 key.objectid == bytenr &&
1518 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1519 err = -EAGAIN;
1520 goto out;
1521 }
1522 }
1523 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1524 out:
1525 if (insert) {
1526 path->keep_locks = 0;
1527 btrfs_unlock_up_safe(path, 1);
1528 }
1529 return err;
1530 }
1531
1532 /*
1533 * helper to add new inline back ref
1534 */
1535 static noinline_for_stack
1536 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1537 struct btrfs_root *root,
1538 struct btrfs_path *path,
1539 struct btrfs_extent_inline_ref *iref,
1540 u64 parent, u64 root_objectid,
1541 u64 owner, u64 offset, int refs_to_add,
1542 struct btrfs_delayed_extent_op *extent_op)
1543 {
1544 struct extent_buffer *leaf;
1545 struct btrfs_extent_item *ei;
1546 unsigned long ptr;
1547 unsigned long end;
1548 unsigned long item_offset;
1549 u64 refs;
1550 int size;
1551 int type;
1552 int ret;
1553
1554 leaf = path->nodes[0];
1555 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1556 item_offset = (unsigned long)iref - (unsigned long)ei;
1557
1558 type = extent_ref_type(parent, owner);
1559 size = btrfs_extent_inline_ref_size(type);
1560
1561 ret = btrfs_extend_item(trans, root, path, size);
1562
1563 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1564 refs = btrfs_extent_refs(leaf, ei);
1565 refs += refs_to_add;
1566 btrfs_set_extent_refs(leaf, ei, refs);
1567 if (extent_op)
1568 __run_delayed_extent_op(extent_op, leaf, ei);
1569
1570 ptr = (unsigned long)ei + item_offset;
1571 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1572 if (ptr < end - size)
1573 memmove_extent_buffer(leaf, ptr + size, ptr,
1574 end - size - ptr);
1575
1576 iref = (struct btrfs_extent_inline_ref *)ptr;
1577 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1578 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1579 struct btrfs_extent_data_ref *dref;
1580 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1581 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1582 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1583 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1584 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1585 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1586 struct btrfs_shared_data_ref *sref;
1587 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1588 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1589 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1590 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1591 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1592 } else {
1593 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1594 }
1595 btrfs_mark_buffer_dirty(leaf);
1596 return 0;
1597 }
1598
1599 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1600 struct btrfs_root *root,
1601 struct btrfs_path *path,
1602 struct btrfs_extent_inline_ref **ref_ret,
1603 u64 bytenr, u64 num_bytes, u64 parent,
1604 u64 root_objectid, u64 owner, u64 offset)
1605 {
1606 int ret;
1607
1608 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1609 bytenr, num_bytes, parent,
1610 root_objectid, owner, offset, 0);
1611 if (ret != -ENOENT)
1612 return ret;
1613
1614 btrfs_release_path(path);
1615 *ref_ret = NULL;
1616
1617 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1618 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1619 root_objectid);
1620 } else {
1621 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1622 root_objectid, owner, offset);
1623 }
1624 return ret;
1625 }
1626
1627 /*
1628 * helper to update/remove inline back ref
1629 */
1630 static noinline_for_stack
1631 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1632 struct btrfs_root *root,
1633 struct btrfs_path *path,
1634 struct btrfs_extent_inline_ref *iref,
1635 int refs_to_mod,
1636 struct btrfs_delayed_extent_op *extent_op)
1637 {
1638 struct extent_buffer *leaf;
1639 struct btrfs_extent_item *ei;
1640 struct btrfs_extent_data_ref *dref = NULL;
1641 struct btrfs_shared_data_ref *sref = NULL;
1642 unsigned long ptr;
1643 unsigned long end;
1644 u32 item_size;
1645 int size;
1646 int type;
1647 int ret;
1648 u64 refs;
1649
1650 leaf = path->nodes[0];
1651 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1652 refs = btrfs_extent_refs(leaf, ei);
1653 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1654 refs += refs_to_mod;
1655 btrfs_set_extent_refs(leaf, ei, refs);
1656 if (extent_op)
1657 __run_delayed_extent_op(extent_op, leaf, ei);
1658
1659 type = btrfs_extent_inline_ref_type(leaf, iref);
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 refs = btrfs_extent_data_ref_count(leaf, dref);
1664 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1665 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1666 refs = btrfs_shared_data_ref_count(leaf, sref);
1667 } else {
1668 refs = 1;
1669 BUG_ON(refs_to_mod != -1);
1670 }
1671
1672 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1673 refs += refs_to_mod;
1674
1675 if (refs > 0) {
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1677 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1678 else
1679 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1680 } else {
1681 size = btrfs_extent_inline_ref_size(type);
1682 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1683 ptr = (unsigned long)iref;
1684 end = (unsigned long)ei + item_size;
1685 if (ptr + size < end)
1686 memmove_extent_buffer(leaf, ptr, ptr + size,
1687 end - ptr - size);
1688 item_size -= size;
1689 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1690 }
1691 btrfs_mark_buffer_dirty(leaf);
1692 return 0;
1693 }
1694
1695 static noinline_for_stack
1696 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1697 struct btrfs_root *root,
1698 struct btrfs_path *path,
1699 u64 bytenr, u64 num_bytes, u64 parent,
1700 u64 root_objectid, u64 owner,
1701 u64 offset, int refs_to_add,
1702 struct btrfs_delayed_extent_op *extent_op)
1703 {
1704 struct btrfs_extent_inline_ref *iref;
1705 int ret;
1706
1707 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1708 bytenr, num_bytes, parent,
1709 root_objectid, owner, offset, 1);
1710 if (ret == 0) {
1711 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1712 ret = update_inline_extent_backref(trans, root, path, iref,
1713 refs_to_add, extent_op);
1714 } else if (ret == -ENOENT) {
1715 ret = setup_inline_extent_backref(trans, root, path, iref,
1716 parent, root_objectid,
1717 owner, offset, refs_to_add,
1718 extent_op);
1719 }
1720 return ret;
1721 }
1722
1723 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 u64 bytenr, u64 parent, u64 root_objectid,
1727 u64 owner, u64 offset, int refs_to_add)
1728 {
1729 int ret;
1730 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1731 BUG_ON(refs_to_add != 1);
1732 ret = insert_tree_block_ref(trans, root, path, bytenr,
1733 parent, root_objectid);
1734 } else {
1735 ret = insert_extent_data_ref(trans, root, path, bytenr,
1736 parent, root_objectid,
1737 owner, offset, refs_to_add);
1738 }
1739 return ret;
1740 }
1741
1742 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path,
1745 struct btrfs_extent_inline_ref *iref,
1746 int refs_to_drop, int is_data)
1747 {
1748 int ret;
1749
1750 BUG_ON(!is_data && refs_to_drop != 1);
1751 if (iref) {
1752 ret = update_inline_extent_backref(trans, root, path, iref,
1753 -refs_to_drop, NULL);
1754 } else if (is_data) {
1755 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1756 } else {
1757 ret = btrfs_del_item(trans, root, path);
1758 }
1759 return ret;
1760 }
1761
1762 static int btrfs_issue_discard(struct block_device *bdev,
1763 u64 start, u64 len)
1764 {
1765 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1766 }
1767
1768 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1769 u64 num_bytes, u64 *actual_bytes)
1770 {
1771 int ret;
1772 u64 discarded_bytes = 0;
1773 struct btrfs_multi_bio *multi = NULL;
1774
1775
1776 /* Tell the block device(s) that the sectors can be discarded */
1777 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1778 bytenr, &num_bytes, &multi, 0);
1779 if (!ret) {
1780 struct btrfs_bio_stripe *stripe = multi->stripes;
1781 int i;
1782
1783
1784 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1785 if (!stripe->dev->can_discard)
1786 continue;
1787
1788 ret = btrfs_issue_discard(stripe->dev->bdev,
1789 stripe->physical,
1790 stripe->length);
1791 if (!ret)
1792 discarded_bytes += stripe->length;
1793 else if (ret != -EOPNOTSUPP)
1794 break;
1795
1796 /*
1797 * Just in case we get back EOPNOTSUPP for some reason,
1798 * just ignore the return value so we don't screw up
1799 * people calling discard_extent.
1800 */
1801 ret = 0;
1802 }
1803 kfree(multi);
1804 }
1805
1806 if (actual_bytes)
1807 *actual_bytes = discarded_bytes;
1808
1809
1810 return ret;
1811 }
1812
1813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1814 struct btrfs_root *root,
1815 u64 bytenr, u64 num_bytes, u64 parent,
1816 u64 root_objectid, u64 owner, u64 offset)
1817 {
1818 int ret;
1819 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1820 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1821
1822 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1823 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1824 parent, root_objectid, (int)owner,
1825 BTRFS_ADD_DELAYED_REF, NULL);
1826 } else {
1827 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1828 parent, root_objectid, owner, offset,
1829 BTRFS_ADD_DELAYED_REF, NULL);
1830 }
1831 return ret;
1832 }
1833
1834 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1835 struct btrfs_root *root,
1836 u64 bytenr, u64 num_bytes,
1837 u64 parent, u64 root_objectid,
1838 u64 owner, u64 offset, int refs_to_add,
1839 struct btrfs_delayed_extent_op *extent_op)
1840 {
1841 struct btrfs_path *path;
1842 struct extent_buffer *leaf;
1843 struct btrfs_extent_item *item;
1844 u64 refs;
1845 int ret;
1846 int err = 0;
1847
1848 path = btrfs_alloc_path();
1849 if (!path)
1850 return -ENOMEM;
1851
1852 path->reada = 1;
1853 path->leave_spinning = 1;
1854 /* this will setup the path even if it fails to insert the back ref */
1855 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1856 path, bytenr, num_bytes, parent,
1857 root_objectid, owner, offset,
1858 refs_to_add, extent_op);
1859 if (ret == 0)
1860 goto out;
1861
1862 if (ret != -EAGAIN) {
1863 err = ret;
1864 goto out;
1865 }
1866
1867 leaf = path->nodes[0];
1868 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, item);
1870 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1871 if (extent_op)
1872 __run_delayed_extent_op(extent_op, leaf, item);
1873
1874 btrfs_mark_buffer_dirty(leaf);
1875 btrfs_release_path(path);
1876
1877 path->reada = 1;
1878 path->leave_spinning = 1;
1879
1880 /* now insert the actual backref */
1881 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1882 path, bytenr, parent, root_objectid,
1883 owner, offset, refs_to_add);
1884 BUG_ON(ret);
1885 out:
1886 btrfs_free_path(path);
1887 return err;
1888 }
1889
1890 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *root,
1892 struct btrfs_delayed_ref_node *node,
1893 struct btrfs_delayed_extent_op *extent_op,
1894 int insert_reserved)
1895 {
1896 int ret = 0;
1897 struct btrfs_delayed_data_ref *ref;
1898 struct btrfs_key ins;
1899 u64 parent = 0;
1900 u64 ref_root = 0;
1901 u64 flags = 0;
1902
1903 ins.objectid = node->bytenr;
1904 ins.offset = node->num_bytes;
1905 ins.type = BTRFS_EXTENT_ITEM_KEY;
1906
1907 ref = btrfs_delayed_node_to_data_ref(node);
1908 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1909 parent = ref->parent;
1910 else
1911 ref_root = ref->root;
1912
1913 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1914 if (extent_op) {
1915 BUG_ON(extent_op->update_key);
1916 flags |= extent_op->flags_to_set;
1917 }
1918 ret = alloc_reserved_file_extent(trans, root,
1919 parent, ref_root, flags,
1920 ref->objectid, ref->offset,
1921 &ins, node->ref_mod);
1922 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1923 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1924 node->num_bytes, parent,
1925 ref_root, ref->objectid,
1926 ref->offset, node->ref_mod,
1927 extent_op);
1928 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1929 ret = __btrfs_free_extent(trans, root, node->bytenr,
1930 node->num_bytes, parent,
1931 ref_root, ref->objectid,
1932 ref->offset, node->ref_mod,
1933 extent_op);
1934 } else {
1935 BUG();
1936 }
1937 return ret;
1938 }
1939
1940 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1941 struct extent_buffer *leaf,
1942 struct btrfs_extent_item *ei)
1943 {
1944 u64 flags = btrfs_extent_flags(leaf, ei);
1945 if (extent_op->update_flags) {
1946 flags |= extent_op->flags_to_set;
1947 btrfs_set_extent_flags(leaf, ei, flags);
1948 }
1949
1950 if (extent_op->update_key) {
1951 struct btrfs_tree_block_info *bi;
1952 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1953 bi = (struct btrfs_tree_block_info *)(ei + 1);
1954 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1955 }
1956 }
1957
1958 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_delayed_ref_node *node,
1961 struct btrfs_delayed_extent_op *extent_op)
1962 {
1963 struct btrfs_key key;
1964 struct btrfs_path *path;
1965 struct btrfs_extent_item *ei;
1966 struct extent_buffer *leaf;
1967 u32 item_size;
1968 int ret;
1969 int err = 0;
1970
1971 path = btrfs_alloc_path();
1972 if (!path)
1973 return -ENOMEM;
1974
1975 key.objectid = node->bytenr;
1976 key.type = BTRFS_EXTENT_ITEM_KEY;
1977 key.offset = node->num_bytes;
1978
1979 path->reada = 1;
1980 path->leave_spinning = 1;
1981 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1982 path, 0, 1);
1983 if (ret < 0) {
1984 err = ret;
1985 goto out;
1986 }
1987 if (ret > 0) {
1988 err = -EIO;
1989 goto out;
1990 }
1991
1992 leaf = path->nodes[0];
1993 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1995 if (item_size < sizeof(*ei)) {
1996 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1997 path, (u64)-1, 0);
1998 if (ret < 0) {
1999 err = ret;
2000 goto out;
2001 }
2002 leaf = path->nodes[0];
2003 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2004 }
2005 #endif
2006 BUG_ON(item_size < sizeof(*ei));
2007 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2008 __run_delayed_extent_op(extent_op, leaf, ei);
2009
2010 btrfs_mark_buffer_dirty(leaf);
2011 out:
2012 btrfs_free_path(path);
2013 return err;
2014 }
2015
2016 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2017 struct btrfs_root *root,
2018 struct btrfs_delayed_ref_node *node,
2019 struct btrfs_delayed_extent_op *extent_op,
2020 int insert_reserved)
2021 {
2022 int ret = 0;
2023 struct btrfs_delayed_tree_ref *ref;
2024 struct btrfs_key ins;
2025 u64 parent = 0;
2026 u64 ref_root = 0;
2027
2028 ins.objectid = node->bytenr;
2029 ins.offset = node->num_bytes;
2030 ins.type = BTRFS_EXTENT_ITEM_KEY;
2031
2032 ref = btrfs_delayed_node_to_tree_ref(node);
2033 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2034 parent = ref->parent;
2035 else
2036 ref_root = ref->root;
2037
2038 BUG_ON(node->ref_mod != 1);
2039 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2040 BUG_ON(!extent_op || !extent_op->update_flags ||
2041 !extent_op->update_key);
2042 ret = alloc_reserved_tree_block(trans, root,
2043 parent, ref_root,
2044 extent_op->flags_to_set,
2045 &extent_op->key,
2046 ref->level, &ins);
2047 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2048 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2049 node->num_bytes, parent, ref_root,
2050 ref->level, 0, 1, extent_op);
2051 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2052 ret = __btrfs_free_extent(trans, root, node->bytenr,
2053 node->num_bytes, parent, ref_root,
2054 ref->level, 0, 1, extent_op);
2055 } else {
2056 BUG();
2057 }
2058 return ret;
2059 }
2060
2061 /* helper function to actually process a single delayed ref entry */
2062 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2063 struct btrfs_root *root,
2064 struct btrfs_delayed_ref_node *node,
2065 struct btrfs_delayed_extent_op *extent_op,
2066 int insert_reserved)
2067 {
2068 int ret;
2069 if (btrfs_delayed_ref_is_head(node)) {
2070 struct btrfs_delayed_ref_head *head;
2071 /*
2072 * we've hit the end of the chain and we were supposed
2073 * to insert this extent into the tree. But, it got
2074 * deleted before we ever needed to insert it, so all
2075 * we have to do is clean up the accounting
2076 */
2077 BUG_ON(extent_op);
2078 head = btrfs_delayed_node_to_head(node);
2079 if (insert_reserved) {
2080 btrfs_pin_extent(root, node->bytenr,
2081 node->num_bytes, 1);
2082 if (head->is_data) {
2083 ret = btrfs_del_csums(trans, root,
2084 node->bytenr,
2085 node->num_bytes);
2086 BUG_ON(ret);
2087 }
2088 }
2089 mutex_unlock(&head->mutex);
2090 return 0;
2091 }
2092
2093 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2094 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2095 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2096 insert_reserved);
2097 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2098 node->type == BTRFS_SHARED_DATA_REF_KEY)
2099 ret = run_delayed_data_ref(trans, root, node, extent_op,
2100 insert_reserved);
2101 else
2102 BUG();
2103 return ret;
2104 }
2105
2106 static noinline struct btrfs_delayed_ref_node *
2107 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2108 {
2109 struct rb_node *node;
2110 struct btrfs_delayed_ref_node *ref;
2111 int action = BTRFS_ADD_DELAYED_REF;
2112 again:
2113 /*
2114 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2115 * this prevents ref count from going down to zero when
2116 * there still are pending delayed ref.
2117 */
2118 node = rb_prev(&head->node.rb_node);
2119 while (1) {
2120 if (!node)
2121 break;
2122 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2123 rb_node);
2124 if (ref->bytenr != head->node.bytenr)
2125 break;
2126 if (ref->action == action)
2127 return ref;
2128 node = rb_prev(node);
2129 }
2130 if (action == BTRFS_ADD_DELAYED_REF) {
2131 action = BTRFS_DROP_DELAYED_REF;
2132 goto again;
2133 }
2134 return NULL;
2135 }
2136
2137 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2138 struct btrfs_root *root,
2139 struct list_head *cluster)
2140 {
2141 struct btrfs_delayed_ref_root *delayed_refs;
2142 struct btrfs_delayed_ref_node *ref;
2143 struct btrfs_delayed_ref_head *locked_ref = NULL;
2144 struct btrfs_delayed_extent_op *extent_op;
2145 int ret;
2146 int count = 0;
2147 int must_insert_reserved = 0;
2148
2149 delayed_refs = &trans->transaction->delayed_refs;
2150 while (1) {
2151 if (!locked_ref) {
2152 /* pick a new head ref from the cluster list */
2153 if (list_empty(cluster))
2154 break;
2155
2156 locked_ref = list_entry(cluster->next,
2157 struct btrfs_delayed_ref_head, cluster);
2158
2159 /* grab the lock that says we are going to process
2160 * all the refs for this head */
2161 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2162
2163 /*
2164 * we may have dropped the spin lock to get the head
2165 * mutex lock, and that might have given someone else
2166 * time to free the head. If that's true, it has been
2167 * removed from our list and we can move on.
2168 */
2169 if (ret == -EAGAIN) {
2170 locked_ref = NULL;
2171 count++;
2172 continue;
2173 }
2174 }
2175
2176 /*
2177 * record the must insert reserved flag before we
2178 * drop the spin lock.
2179 */
2180 must_insert_reserved = locked_ref->must_insert_reserved;
2181 locked_ref->must_insert_reserved = 0;
2182
2183 extent_op = locked_ref->extent_op;
2184 locked_ref->extent_op = NULL;
2185
2186 /*
2187 * locked_ref is the head node, so we have to go one
2188 * node back for any delayed ref updates
2189 */
2190 ref = select_delayed_ref(locked_ref);
2191 if (!ref) {
2192 /* All delayed refs have been processed, Go ahead
2193 * and send the head node to run_one_delayed_ref,
2194 * so that any accounting fixes can happen
2195 */
2196 ref = &locked_ref->node;
2197
2198 if (extent_op && must_insert_reserved) {
2199 kfree(extent_op);
2200 extent_op = NULL;
2201 }
2202
2203 if (extent_op) {
2204 spin_unlock(&delayed_refs->lock);
2205
2206 ret = run_delayed_extent_op(trans, root,
2207 ref, extent_op);
2208 BUG_ON(ret);
2209 kfree(extent_op);
2210
2211 cond_resched();
2212 spin_lock(&delayed_refs->lock);
2213 continue;
2214 }
2215
2216 list_del_init(&locked_ref->cluster);
2217 locked_ref = NULL;
2218 }
2219
2220 ref->in_tree = 0;
2221 rb_erase(&ref->rb_node, &delayed_refs->root);
2222 delayed_refs->num_entries--;
2223
2224 spin_unlock(&delayed_refs->lock);
2225
2226 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2227 must_insert_reserved);
2228 BUG_ON(ret);
2229
2230 btrfs_put_delayed_ref(ref);
2231 kfree(extent_op);
2232 count++;
2233
2234 cond_resched();
2235 spin_lock(&delayed_refs->lock);
2236 }
2237 return count;
2238 }
2239
2240 /*
2241 * this starts processing the delayed reference count updates and
2242 * extent insertions we have queued up so far. count can be
2243 * 0, which means to process everything in the tree at the start
2244 * of the run (but not newly added entries), or it can be some target
2245 * number you'd like to process.
2246 */
2247 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2248 struct btrfs_root *root, unsigned long count)
2249 {
2250 struct rb_node *node;
2251 struct btrfs_delayed_ref_root *delayed_refs;
2252 struct btrfs_delayed_ref_node *ref;
2253 struct list_head cluster;
2254 int ret;
2255 int run_all = count == (unsigned long)-1;
2256 int run_most = 0;
2257
2258 if (root == root->fs_info->extent_root)
2259 root = root->fs_info->tree_root;
2260
2261 delayed_refs = &trans->transaction->delayed_refs;
2262 INIT_LIST_HEAD(&cluster);
2263 again:
2264 spin_lock(&delayed_refs->lock);
2265 if (count == 0) {
2266 count = delayed_refs->num_entries * 2;
2267 run_most = 1;
2268 }
2269 while (1) {
2270 if (!(run_all || run_most) &&
2271 delayed_refs->num_heads_ready < 64)
2272 break;
2273
2274 /*
2275 * go find something we can process in the rbtree. We start at
2276 * the beginning of the tree, and then build a cluster
2277 * of refs to process starting at the first one we are able to
2278 * lock
2279 */
2280 ret = btrfs_find_ref_cluster(trans, &cluster,
2281 delayed_refs->run_delayed_start);
2282 if (ret)
2283 break;
2284
2285 ret = run_clustered_refs(trans, root, &cluster);
2286 BUG_ON(ret < 0);
2287
2288 count -= min_t(unsigned long, ret, count);
2289
2290 if (count == 0)
2291 break;
2292 }
2293
2294 if (run_all) {
2295 node = rb_first(&delayed_refs->root);
2296 if (!node)
2297 goto out;
2298 count = (unsigned long)-1;
2299
2300 while (node) {
2301 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 rb_node);
2303 if (btrfs_delayed_ref_is_head(ref)) {
2304 struct btrfs_delayed_ref_head *head;
2305
2306 head = btrfs_delayed_node_to_head(ref);
2307 atomic_inc(&ref->refs);
2308
2309 spin_unlock(&delayed_refs->lock);
2310 /*
2311 * Mutex was contended, block until it's
2312 * released and try again
2313 */
2314 mutex_lock(&head->mutex);
2315 mutex_unlock(&head->mutex);
2316
2317 btrfs_put_delayed_ref(ref);
2318 cond_resched();
2319 goto again;
2320 }
2321 node = rb_next(node);
2322 }
2323 spin_unlock(&delayed_refs->lock);
2324 schedule_timeout(1);
2325 goto again;
2326 }
2327 out:
2328 spin_unlock(&delayed_refs->lock);
2329 return 0;
2330 }
2331
2332 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2333 struct btrfs_root *root,
2334 u64 bytenr, u64 num_bytes, u64 flags,
2335 int is_data)
2336 {
2337 struct btrfs_delayed_extent_op *extent_op;
2338 int ret;
2339
2340 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2341 if (!extent_op)
2342 return -ENOMEM;
2343
2344 extent_op->flags_to_set = flags;
2345 extent_op->update_flags = 1;
2346 extent_op->update_key = 0;
2347 extent_op->is_data = is_data ? 1 : 0;
2348
2349 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2350 if (ret)
2351 kfree(extent_op);
2352 return ret;
2353 }
2354
2355 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2356 struct btrfs_root *root,
2357 struct btrfs_path *path,
2358 u64 objectid, u64 offset, u64 bytenr)
2359 {
2360 struct btrfs_delayed_ref_head *head;
2361 struct btrfs_delayed_ref_node *ref;
2362 struct btrfs_delayed_data_ref *data_ref;
2363 struct btrfs_delayed_ref_root *delayed_refs;
2364 struct rb_node *node;
2365 int ret = 0;
2366
2367 ret = -ENOENT;
2368 delayed_refs = &trans->transaction->delayed_refs;
2369 spin_lock(&delayed_refs->lock);
2370 head = btrfs_find_delayed_ref_head(trans, bytenr);
2371 if (!head)
2372 goto out;
2373
2374 if (!mutex_trylock(&head->mutex)) {
2375 atomic_inc(&head->node.refs);
2376 spin_unlock(&delayed_refs->lock);
2377
2378 btrfs_release_path(path);
2379
2380 /*
2381 * Mutex was contended, block until it's released and let
2382 * caller try again
2383 */
2384 mutex_lock(&head->mutex);
2385 mutex_unlock(&head->mutex);
2386 btrfs_put_delayed_ref(&head->node);
2387 return -EAGAIN;
2388 }
2389
2390 node = rb_prev(&head->node.rb_node);
2391 if (!node)
2392 goto out_unlock;
2393
2394 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2395
2396 if (ref->bytenr != bytenr)
2397 goto out_unlock;
2398
2399 ret = 1;
2400 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2401 goto out_unlock;
2402
2403 data_ref = btrfs_delayed_node_to_data_ref(ref);
2404
2405 node = rb_prev(node);
2406 if (node) {
2407 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2408 if (ref->bytenr == bytenr)
2409 goto out_unlock;
2410 }
2411
2412 if (data_ref->root != root->root_key.objectid ||
2413 data_ref->objectid != objectid || data_ref->offset != offset)
2414 goto out_unlock;
2415
2416 ret = 0;
2417 out_unlock:
2418 mutex_unlock(&head->mutex);
2419 out:
2420 spin_unlock(&delayed_refs->lock);
2421 return ret;
2422 }
2423
2424 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2425 struct btrfs_root *root,
2426 struct btrfs_path *path,
2427 u64 objectid, u64 offset, u64 bytenr)
2428 {
2429 struct btrfs_root *extent_root = root->fs_info->extent_root;
2430 struct extent_buffer *leaf;
2431 struct btrfs_extent_data_ref *ref;
2432 struct btrfs_extent_inline_ref *iref;
2433 struct btrfs_extent_item *ei;
2434 struct btrfs_key key;
2435 u32 item_size;
2436 int ret;
2437
2438 key.objectid = bytenr;
2439 key.offset = (u64)-1;
2440 key.type = BTRFS_EXTENT_ITEM_KEY;
2441
2442 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2443 if (ret < 0)
2444 goto out;
2445 BUG_ON(ret == 0);
2446
2447 ret = -ENOENT;
2448 if (path->slots[0] == 0)
2449 goto out;
2450
2451 path->slots[0]--;
2452 leaf = path->nodes[0];
2453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2454
2455 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2456 goto out;
2457
2458 ret = 1;
2459 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2461 if (item_size < sizeof(*ei)) {
2462 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2463 goto out;
2464 }
2465 #endif
2466 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2467
2468 if (item_size != sizeof(*ei) +
2469 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2470 goto out;
2471
2472 if (btrfs_extent_generation(leaf, ei) <=
2473 btrfs_root_last_snapshot(&root->root_item))
2474 goto out;
2475
2476 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2477 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2478 BTRFS_EXTENT_DATA_REF_KEY)
2479 goto out;
2480
2481 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2482 if (btrfs_extent_refs(leaf, ei) !=
2483 btrfs_extent_data_ref_count(leaf, ref) ||
2484 btrfs_extent_data_ref_root(leaf, ref) !=
2485 root->root_key.objectid ||
2486 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2487 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2488 goto out;
2489
2490 ret = 0;
2491 out:
2492 return ret;
2493 }
2494
2495 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2496 struct btrfs_root *root,
2497 u64 objectid, u64 offset, u64 bytenr)
2498 {
2499 struct btrfs_path *path;
2500 int ret;
2501 int ret2;
2502
2503 path = btrfs_alloc_path();
2504 if (!path)
2505 return -ENOENT;
2506
2507 do {
2508 ret = check_committed_ref(trans, root, path, objectid,
2509 offset, bytenr);
2510 if (ret && ret != -ENOENT)
2511 goto out;
2512
2513 ret2 = check_delayed_ref(trans, root, path, objectid,
2514 offset, bytenr);
2515 } while (ret2 == -EAGAIN);
2516
2517 if (ret2 && ret2 != -ENOENT) {
2518 ret = ret2;
2519 goto out;
2520 }
2521
2522 if (ret != -ENOENT || ret2 != -ENOENT)
2523 ret = 0;
2524 out:
2525 btrfs_free_path(path);
2526 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2527 WARN_ON(ret > 0);
2528 return ret;
2529 }
2530
2531 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root,
2533 struct extent_buffer *buf,
2534 int full_backref, int inc)
2535 {
2536 u64 bytenr;
2537 u64 num_bytes;
2538 u64 parent;
2539 u64 ref_root;
2540 u32 nritems;
2541 struct btrfs_key key;
2542 struct btrfs_file_extent_item *fi;
2543 int i;
2544 int level;
2545 int ret = 0;
2546 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2547 u64, u64, u64, u64, u64, u64);
2548
2549 ref_root = btrfs_header_owner(buf);
2550 nritems = btrfs_header_nritems(buf);
2551 level = btrfs_header_level(buf);
2552
2553 if (!root->ref_cows && level == 0)
2554 return 0;
2555
2556 if (inc)
2557 process_func = btrfs_inc_extent_ref;
2558 else
2559 process_func = btrfs_free_extent;
2560
2561 if (full_backref)
2562 parent = buf->start;
2563 else
2564 parent = 0;
2565
2566 for (i = 0; i < nritems; i++) {
2567 if (level == 0) {
2568 btrfs_item_key_to_cpu(buf, &key, i);
2569 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2570 continue;
2571 fi = btrfs_item_ptr(buf, i,
2572 struct btrfs_file_extent_item);
2573 if (btrfs_file_extent_type(buf, fi) ==
2574 BTRFS_FILE_EXTENT_INLINE)
2575 continue;
2576 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2577 if (bytenr == 0)
2578 continue;
2579
2580 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2581 key.offset -= btrfs_file_extent_offset(buf, fi);
2582 ret = process_func(trans, root, bytenr, num_bytes,
2583 parent, ref_root, key.objectid,
2584 key.offset);
2585 if (ret)
2586 goto fail;
2587 } else {
2588 bytenr = btrfs_node_blockptr(buf, i);
2589 num_bytes = btrfs_level_size(root, level - 1);
2590 ret = process_func(trans, root, bytenr, num_bytes,
2591 parent, ref_root, level - 1, 0);
2592 if (ret)
2593 goto fail;
2594 }
2595 }
2596 return 0;
2597 fail:
2598 BUG();
2599 return ret;
2600 }
2601
2602 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2603 struct extent_buffer *buf, int full_backref)
2604 {
2605 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2606 }
2607
2608 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2609 struct extent_buffer *buf, int full_backref)
2610 {
2611 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2612 }
2613
2614 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2615 struct btrfs_root *root,
2616 struct btrfs_path *path,
2617 struct btrfs_block_group_cache *cache)
2618 {
2619 int ret;
2620 struct btrfs_root *extent_root = root->fs_info->extent_root;
2621 unsigned long bi;
2622 struct extent_buffer *leaf;
2623
2624 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2625 if (ret < 0)
2626 goto fail;
2627 BUG_ON(ret);
2628
2629 leaf = path->nodes[0];
2630 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2631 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2632 btrfs_mark_buffer_dirty(leaf);
2633 btrfs_release_path(path);
2634 fail:
2635 if (ret)
2636 return ret;
2637 return 0;
2638
2639 }
2640
2641 static struct btrfs_block_group_cache *
2642 next_block_group(struct btrfs_root *root,
2643 struct btrfs_block_group_cache *cache)
2644 {
2645 struct rb_node *node;
2646 spin_lock(&root->fs_info->block_group_cache_lock);
2647 node = rb_next(&cache->cache_node);
2648 btrfs_put_block_group(cache);
2649 if (node) {
2650 cache = rb_entry(node, struct btrfs_block_group_cache,
2651 cache_node);
2652 btrfs_get_block_group(cache);
2653 } else
2654 cache = NULL;
2655 spin_unlock(&root->fs_info->block_group_cache_lock);
2656 return cache;
2657 }
2658
2659 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2660 struct btrfs_trans_handle *trans,
2661 struct btrfs_path *path)
2662 {
2663 struct btrfs_root *root = block_group->fs_info->tree_root;
2664 struct inode *inode = NULL;
2665 u64 alloc_hint = 0;
2666 int dcs = BTRFS_DC_ERROR;
2667 int num_pages = 0;
2668 int retries = 0;
2669 int ret = 0;
2670
2671 /*
2672 * If this block group is smaller than 100 megs don't bother caching the
2673 * block group.
2674 */
2675 if (block_group->key.offset < (100 * 1024 * 1024)) {
2676 spin_lock(&block_group->lock);
2677 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2678 spin_unlock(&block_group->lock);
2679 return 0;
2680 }
2681
2682 again:
2683 inode = lookup_free_space_inode(root, block_group, path);
2684 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2685 ret = PTR_ERR(inode);
2686 btrfs_release_path(path);
2687 goto out;
2688 }
2689
2690 if (IS_ERR(inode)) {
2691 BUG_ON(retries);
2692 retries++;
2693
2694 if (block_group->ro)
2695 goto out_free;
2696
2697 ret = create_free_space_inode(root, trans, block_group, path);
2698 if (ret)
2699 goto out_free;
2700 goto again;
2701 }
2702
2703 /*
2704 * We want to set the generation to 0, that way if anything goes wrong
2705 * from here on out we know not to trust this cache when we load up next
2706 * time.
2707 */
2708 BTRFS_I(inode)->generation = 0;
2709 ret = btrfs_update_inode(trans, root, inode);
2710 WARN_ON(ret);
2711
2712 if (i_size_read(inode) > 0) {
2713 ret = btrfs_truncate_free_space_cache(root, trans, path,
2714 inode);
2715 if (ret)
2716 goto out_put;
2717 }
2718
2719 spin_lock(&block_group->lock);
2720 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2721 /* We're not cached, don't bother trying to write stuff out */
2722 dcs = BTRFS_DC_WRITTEN;
2723 spin_unlock(&block_group->lock);
2724 goto out_put;
2725 }
2726 spin_unlock(&block_group->lock);
2727
2728 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2729 if (!num_pages)
2730 num_pages = 1;
2731
2732 /*
2733 * Just to make absolutely sure we have enough space, we're going to
2734 * preallocate 12 pages worth of space for each block group. In
2735 * practice we ought to use at most 8, but we need extra space so we can
2736 * add our header and have a terminator between the extents and the
2737 * bitmaps.
2738 */
2739 num_pages *= 16;
2740 num_pages *= PAGE_CACHE_SIZE;
2741
2742 ret = btrfs_check_data_free_space(inode, num_pages);
2743 if (ret)
2744 goto out_put;
2745
2746 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2747 num_pages, num_pages,
2748 &alloc_hint);
2749 if (!ret)
2750 dcs = BTRFS_DC_SETUP;
2751 btrfs_free_reserved_data_space(inode, num_pages);
2752 out_put:
2753 iput(inode);
2754 out_free:
2755 btrfs_release_path(path);
2756 out:
2757 spin_lock(&block_group->lock);
2758 block_group->disk_cache_state = dcs;
2759 spin_unlock(&block_group->lock);
2760
2761 return ret;
2762 }
2763
2764 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root)
2766 {
2767 struct btrfs_block_group_cache *cache;
2768 int err = 0;
2769 struct btrfs_path *path;
2770 u64 last = 0;
2771
2772 path = btrfs_alloc_path();
2773 if (!path)
2774 return -ENOMEM;
2775
2776 again:
2777 while (1) {
2778 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2779 while (cache) {
2780 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2781 break;
2782 cache = next_block_group(root, cache);
2783 }
2784 if (!cache) {
2785 if (last == 0)
2786 break;
2787 last = 0;
2788 continue;
2789 }
2790 err = cache_save_setup(cache, trans, path);
2791 last = cache->key.objectid + cache->key.offset;
2792 btrfs_put_block_group(cache);
2793 }
2794
2795 while (1) {
2796 if (last == 0) {
2797 err = btrfs_run_delayed_refs(trans, root,
2798 (unsigned long)-1);
2799 BUG_ON(err);
2800 }
2801
2802 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2803 while (cache) {
2804 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2805 btrfs_put_block_group(cache);
2806 goto again;
2807 }
2808
2809 if (cache->dirty)
2810 break;
2811 cache = next_block_group(root, cache);
2812 }
2813 if (!cache) {
2814 if (last == 0)
2815 break;
2816 last = 0;
2817 continue;
2818 }
2819
2820 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2821 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2822 cache->dirty = 0;
2823 last = cache->key.objectid + cache->key.offset;
2824
2825 err = write_one_cache_group(trans, root, path, cache);
2826 BUG_ON(err);
2827 btrfs_put_block_group(cache);
2828 }
2829
2830 while (1) {
2831 /*
2832 * I don't think this is needed since we're just marking our
2833 * preallocated extent as written, but just in case it can't
2834 * hurt.
2835 */
2836 if (last == 0) {
2837 err = btrfs_run_delayed_refs(trans, root,
2838 (unsigned long)-1);
2839 BUG_ON(err);
2840 }
2841
2842 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2843 while (cache) {
2844 /*
2845 * Really this shouldn't happen, but it could if we
2846 * couldn't write the entire preallocated extent and
2847 * splitting the extent resulted in a new block.
2848 */
2849 if (cache->dirty) {
2850 btrfs_put_block_group(cache);
2851 goto again;
2852 }
2853 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2854 break;
2855 cache = next_block_group(root, cache);
2856 }
2857 if (!cache) {
2858 if (last == 0)
2859 break;
2860 last = 0;
2861 continue;
2862 }
2863
2864 btrfs_write_out_cache(root, trans, cache, path);
2865
2866 /*
2867 * If we didn't have an error then the cache state is still
2868 * NEED_WRITE, so we can set it to WRITTEN.
2869 */
2870 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2871 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2872 last = cache->key.objectid + cache->key.offset;
2873 btrfs_put_block_group(cache);
2874 }
2875
2876 btrfs_free_path(path);
2877 return 0;
2878 }
2879
2880 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2881 {
2882 struct btrfs_block_group_cache *block_group;
2883 int readonly = 0;
2884
2885 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2886 if (!block_group || block_group->ro)
2887 readonly = 1;
2888 if (block_group)
2889 btrfs_put_block_group(block_group);
2890 return readonly;
2891 }
2892
2893 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2894 u64 total_bytes, u64 bytes_used,
2895 struct btrfs_space_info **space_info)
2896 {
2897 struct btrfs_space_info *found;
2898 int i;
2899 int factor;
2900
2901 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2902 BTRFS_BLOCK_GROUP_RAID10))
2903 factor = 2;
2904 else
2905 factor = 1;
2906
2907 found = __find_space_info(info, flags);
2908 if (found) {
2909 spin_lock(&found->lock);
2910 found->total_bytes += total_bytes;
2911 found->disk_total += total_bytes * factor;
2912 found->bytes_used += bytes_used;
2913 found->disk_used += bytes_used * factor;
2914 found->full = 0;
2915 spin_unlock(&found->lock);
2916 *space_info = found;
2917 return 0;
2918 }
2919 found = kzalloc(sizeof(*found), GFP_NOFS);
2920 if (!found)
2921 return -ENOMEM;
2922
2923 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2924 INIT_LIST_HEAD(&found->block_groups[i]);
2925 init_rwsem(&found->groups_sem);
2926 spin_lock_init(&found->lock);
2927 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2928 BTRFS_BLOCK_GROUP_SYSTEM |
2929 BTRFS_BLOCK_GROUP_METADATA);
2930 found->total_bytes = total_bytes;
2931 found->disk_total = total_bytes * factor;
2932 found->bytes_used = bytes_used;
2933 found->disk_used = bytes_used * factor;
2934 found->bytes_pinned = 0;
2935 found->bytes_reserved = 0;
2936 found->bytes_readonly = 0;
2937 found->bytes_may_use = 0;
2938 found->full = 0;
2939 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2940 found->chunk_alloc = 0;
2941 found->flush = 0;
2942 init_waitqueue_head(&found->wait);
2943 *space_info = found;
2944 list_add_rcu(&found->list, &info->space_info);
2945 return 0;
2946 }
2947
2948 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2949 {
2950 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2951 BTRFS_BLOCK_GROUP_RAID1 |
2952 BTRFS_BLOCK_GROUP_RAID10 |
2953 BTRFS_BLOCK_GROUP_DUP);
2954 if (extra_flags) {
2955 if (flags & BTRFS_BLOCK_GROUP_DATA)
2956 fs_info->avail_data_alloc_bits |= extra_flags;
2957 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2958 fs_info->avail_metadata_alloc_bits |= extra_flags;
2959 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2960 fs_info->avail_system_alloc_bits |= extra_flags;
2961 }
2962 }
2963
2964 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2965 {
2966 /*
2967 * we add in the count of missing devices because we want
2968 * to make sure that any RAID levels on a degraded FS
2969 * continue to be honored.
2970 */
2971 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2972 root->fs_info->fs_devices->missing_devices;
2973
2974 if (num_devices == 1)
2975 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2976 if (num_devices < 4)
2977 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2978
2979 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2980 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2981 BTRFS_BLOCK_GROUP_RAID10))) {
2982 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2983 }
2984
2985 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2986 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2987 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2988 }
2989
2990 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2991 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2992 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2993 (flags & BTRFS_BLOCK_GROUP_DUP)))
2994 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2995 return flags;
2996 }
2997
2998 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2999 {
3000 if (flags & BTRFS_BLOCK_GROUP_DATA)
3001 flags |= root->fs_info->avail_data_alloc_bits &
3002 root->fs_info->data_alloc_profile;
3003 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3004 flags |= root->fs_info->avail_system_alloc_bits &
3005 root->fs_info->system_alloc_profile;
3006 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3007 flags |= root->fs_info->avail_metadata_alloc_bits &
3008 root->fs_info->metadata_alloc_profile;
3009 return btrfs_reduce_alloc_profile(root, flags);
3010 }
3011
3012 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3013 {
3014 u64 flags;
3015
3016 if (data)
3017 flags = BTRFS_BLOCK_GROUP_DATA;
3018 else if (root == root->fs_info->chunk_root)
3019 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3020 else
3021 flags = BTRFS_BLOCK_GROUP_METADATA;
3022
3023 return get_alloc_profile(root, flags);
3024 }
3025
3026 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3027 {
3028 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3029 BTRFS_BLOCK_GROUP_DATA);
3030 }
3031
3032 /*
3033 * This will check the space that the inode allocates from to make sure we have
3034 * enough space for bytes.
3035 */
3036 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3037 {
3038 struct btrfs_space_info *data_sinfo;
3039 struct btrfs_root *root = BTRFS_I(inode)->root;
3040 u64 used;
3041 int ret = 0, committed = 0, alloc_chunk = 1;
3042
3043 /* make sure bytes are sectorsize aligned */
3044 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3045
3046 if (root == root->fs_info->tree_root ||
3047 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3048 alloc_chunk = 0;
3049 committed = 1;
3050 }
3051
3052 data_sinfo = BTRFS_I(inode)->space_info;
3053 if (!data_sinfo)
3054 goto alloc;
3055
3056 again:
3057 /* make sure we have enough space to handle the data first */
3058 spin_lock(&data_sinfo->lock);
3059 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3060 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3061 data_sinfo->bytes_may_use;
3062
3063 if (used + bytes > data_sinfo->total_bytes) {
3064 struct btrfs_trans_handle *trans;
3065
3066 /*
3067 * if we don't have enough free bytes in this space then we need
3068 * to alloc a new chunk.
3069 */
3070 if (!data_sinfo->full && alloc_chunk) {
3071 u64 alloc_target;
3072
3073 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3074 spin_unlock(&data_sinfo->lock);
3075 alloc:
3076 alloc_target = btrfs_get_alloc_profile(root, 1);
3077 trans = btrfs_join_transaction(root);
3078 if (IS_ERR(trans))
3079 return PTR_ERR(trans);
3080
3081 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3082 bytes + 2 * 1024 * 1024,
3083 alloc_target,
3084 CHUNK_ALLOC_NO_FORCE);
3085 btrfs_end_transaction(trans, root);
3086 if (ret < 0) {
3087 if (ret != -ENOSPC)
3088 return ret;
3089 else
3090 goto commit_trans;
3091 }
3092
3093 if (!data_sinfo) {
3094 btrfs_set_inode_space_info(root, inode);
3095 data_sinfo = BTRFS_I(inode)->space_info;
3096 }
3097 goto again;
3098 }
3099
3100 /*
3101 * If we have less pinned bytes than we want to allocate then
3102 * don't bother committing the transaction, it won't help us.
3103 */
3104 if (data_sinfo->bytes_pinned < bytes)
3105 committed = 1;
3106 spin_unlock(&data_sinfo->lock);
3107
3108 /* commit the current transaction and try again */
3109 commit_trans:
3110 if (!committed &&
3111 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3112 committed = 1;
3113 trans = btrfs_join_transaction(root);
3114 if (IS_ERR(trans))
3115 return PTR_ERR(trans);
3116 ret = btrfs_commit_transaction(trans, root);
3117 if (ret)
3118 return ret;
3119 goto again;
3120 }
3121
3122 return -ENOSPC;
3123 }
3124 data_sinfo->bytes_may_use += bytes;
3125 BTRFS_I(inode)->reserved_bytes += bytes;
3126 spin_unlock(&data_sinfo->lock);
3127
3128 return 0;
3129 }
3130
3131 /*
3132 * called when we are clearing an delalloc extent from the
3133 * inode's io_tree or there was an error for whatever reason
3134 * after calling btrfs_check_data_free_space
3135 */
3136 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3137 {
3138 struct btrfs_root *root = BTRFS_I(inode)->root;
3139 struct btrfs_space_info *data_sinfo;
3140
3141 /* make sure bytes are sectorsize aligned */
3142 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3143
3144 data_sinfo = BTRFS_I(inode)->space_info;
3145 spin_lock(&data_sinfo->lock);
3146 data_sinfo->bytes_may_use -= bytes;
3147 BTRFS_I(inode)->reserved_bytes -= bytes;
3148 spin_unlock(&data_sinfo->lock);
3149 }
3150
3151 static void force_metadata_allocation(struct btrfs_fs_info *info)
3152 {
3153 struct list_head *head = &info->space_info;
3154 struct btrfs_space_info *found;
3155
3156 rcu_read_lock();
3157 list_for_each_entry_rcu(found, head, list) {
3158 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3159 found->force_alloc = CHUNK_ALLOC_FORCE;
3160 }
3161 rcu_read_unlock();
3162 }
3163
3164 static int should_alloc_chunk(struct btrfs_root *root,
3165 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3166 int force)
3167 {
3168 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3169 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3170 u64 thresh;
3171
3172 if (force == CHUNK_ALLOC_FORCE)
3173 return 1;
3174
3175 /*
3176 * in limited mode, we want to have some free space up to
3177 * about 1% of the FS size.
3178 */
3179 if (force == CHUNK_ALLOC_LIMITED) {
3180 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3181 thresh = max_t(u64, 64 * 1024 * 1024,
3182 div_factor_fine(thresh, 1));
3183
3184 if (num_bytes - num_allocated < thresh)
3185 return 1;
3186 }
3187
3188 /*
3189 * we have two similar checks here, one based on percentage
3190 * and once based on a hard number of 256MB. The idea
3191 * is that if we have a good amount of free
3192 * room, don't allocate a chunk. A good mount is
3193 * less than 80% utilized of the chunks we have allocated,
3194 * or more than 256MB free
3195 */
3196 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3197 return 0;
3198
3199 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3200 return 0;
3201
3202 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3203
3204 /* 256MB or 5% of the FS */
3205 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3206
3207 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3208 return 0;
3209 return 1;
3210 }
3211
3212 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *extent_root, u64 alloc_bytes,
3214 u64 flags, int force)
3215 {
3216 struct btrfs_space_info *space_info;
3217 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3218 int wait_for_alloc = 0;
3219 int ret = 0;
3220
3221 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3222
3223 space_info = __find_space_info(extent_root->fs_info, flags);
3224 if (!space_info) {
3225 ret = update_space_info(extent_root->fs_info, flags,
3226 0, 0, &space_info);
3227 BUG_ON(ret);
3228 }
3229 BUG_ON(!space_info);
3230
3231 again:
3232 spin_lock(&space_info->lock);
3233 if (space_info->force_alloc)
3234 force = space_info->force_alloc;
3235 if (space_info->full) {
3236 spin_unlock(&space_info->lock);
3237 return 0;
3238 }
3239
3240 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3241 spin_unlock(&space_info->lock);
3242 return 0;
3243 } else if (space_info->chunk_alloc) {
3244 wait_for_alloc = 1;
3245 } else {
3246 space_info->chunk_alloc = 1;
3247 }
3248
3249 spin_unlock(&space_info->lock);
3250
3251 mutex_lock(&fs_info->chunk_mutex);
3252
3253 /*
3254 * The chunk_mutex is held throughout the entirety of a chunk
3255 * allocation, so once we've acquired the chunk_mutex we know that the
3256 * other guy is done and we need to recheck and see if we should
3257 * allocate.
3258 */
3259 if (wait_for_alloc) {
3260 mutex_unlock(&fs_info->chunk_mutex);
3261 wait_for_alloc = 0;
3262 goto again;
3263 }
3264
3265 /*
3266 * If we have mixed data/metadata chunks we want to make sure we keep
3267 * allocating mixed chunks instead of individual chunks.
3268 */
3269 if (btrfs_mixed_space_info(space_info))
3270 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3271
3272 /*
3273 * if we're doing a data chunk, go ahead and make sure that
3274 * we keep a reasonable number of metadata chunks allocated in the
3275 * FS as well.
3276 */
3277 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3278 fs_info->data_chunk_allocations++;
3279 if (!(fs_info->data_chunk_allocations %
3280 fs_info->metadata_ratio))
3281 force_metadata_allocation(fs_info);
3282 }
3283
3284 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3285 if (ret < 0 && ret != -ENOSPC)
3286 goto out;
3287
3288 spin_lock(&space_info->lock);
3289 if (ret)
3290 space_info->full = 1;
3291 else
3292 ret = 1;
3293
3294 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3295 space_info->chunk_alloc = 0;
3296 spin_unlock(&space_info->lock);
3297 out:
3298 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3299 return ret;
3300 }
3301
3302 /*
3303 * shrink metadata reservation for delalloc
3304 */
3305 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3306 struct btrfs_root *root, u64 to_reclaim, int sync)
3307 {
3308 struct btrfs_block_rsv *block_rsv;
3309 struct btrfs_space_info *space_info;
3310 u64 reserved;
3311 u64 max_reclaim;
3312 u64 reclaimed = 0;
3313 long time_left;
3314 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3315 int loops = 0;
3316 unsigned long progress;
3317
3318 block_rsv = &root->fs_info->delalloc_block_rsv;
3319 space_info = block_rsv->space_info;
3320
3321 smp_mb();
3322 reserved = space_info->bytes_reserved;
3323 progress = space_info->reservation_progress;
3324
3325 if (reserved == 0)
3326 return 0;
3327
3328 smp_mb();
3329 if (root->fs_info->delalloc_bytes == 0) {
3330 if (trans)
3331 return 0;
3332 btrfs_wait_ordered_extents(root, 0, 0);
3333 return 0;
3334 }
3335
3336 max_reclaim = min(reserved, to_reclaim);
3337
3338 while (loops < 1024) {
3339 /* have the flusher threads jump in and do some IO */
3340 smp_mb();
3341 nr_pages = min_t(unsigned long, nr_pages,
3342 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3343 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3344 WB_REASON_FS_FREE_SPACE);
3345
3346 spin_lock(&space_info->lock);
3347 if (reserved > space_info->bytes_reserved)
3348 reclaimed += reserved - space_info->bytes_reserved;
3349 reserved = space_info->bytes_reserved;
3350 spin_unlock(&space_info->lock);
3351
3352 loops++;
3353
3354 if (reserved == 0 || reclaimed >= max_reclaim)
3355 break;
3356
3357 if (trans && trans->transaction->blocked)
3358 return -EAGAIN;
3359
3360 time_left = schedule_timeout_interruptible(1);
3361
3362 /* We were interrupted, exit */
3363 if (time_left)
3364 break;
3365
3366 /* we've kicked the IO a few times, if anything has been freed,
3367 * exit. There is no sense in looping here for a long time
3368 * when we really need to commit the transaction, or there are
3369 * just too many writers without enough free space
3370 */
3371
3372 if (loops > 3) {
3373 smp_mb();
3374 if (progress != space_info->reservation_progress)
3375 break;
3376 }
3377
3378 }
3379 if (reclaimed >= to_reclaim && !trans)
3380 btrfs_wait_ordered_extents(root, 0, 0);
3381 return reclaimed >= to_reclaim;
3382 }
3383
3384 /*
3385 * Retries tells us how many times we've called reserve_metadata_bytes. The
3386 * idea is if this is the first call (retries == 0) then we will add to our
3387 * reserved count if we can't make the allocation in order to hold our place
3388 * while we go and try and free up space. That way for retries > 1 we don't try
3389 * and add space, we just check to see if the amount of unused space is >= the
3390 * total space, meaning that our reservation is valid.
3391 *
3392 * However if we don't intend to retry this reservation, pass -1 as retries so
3393 * that it short circuits this logic.
3394 */
3395 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3396 struct btrfs_root *root,
3397 struct btrfs_block_rsv *block_rsv,
3398 u64 orig_bytes, int flush)
3399 {
3400 struct btrfs_space_info *space_info = block_rsv->space_info;
3401 u64 unused;
3402 u64 num_bytes = orig_bytes;
3403 int retries = 0;
3404 int ret = 0;
3405 bool committed = false;
3406 bool flushing = false;
3407
3408 again:
3409 ret = 0;
3410 spin_lock(&space_info->lock);
3411 /*
3412 * We only want to wait if somebody other than us is flushing and we are
3413 * actually alloed to flush.
3414 */
3415 while (flush && !flushing && space_info->flush) {
3416 spin_unlock(&space_info->lock);
3417 /*
3418 * If we have a trans handle we can't wait because the flusher
3419 * may have to commit the transaction, which would mean we would
3420 * deadlock since we are waiting for the flusher to finish, but
3421 * hold the current transaction open.
3422 */
3423 if (trans)
3424 return -EAGAIN;
3425 ret = wait_event_interruptible(space_info->wait,
3426 !space_info->flush);
3427 /* Must have been interrupted, return */
3428 if (ret)
3429 return -EINTR;
3430
3431 spin_lock(&space_info->lock);
3432 }
3433
3434 ret = -ENOSPC;
3435 unused = space_info->bytes_used + space_info->bytes_reserved +
3436 space_info->bytes_pinned + space_info->bytes_readonly +
3437 space_info->bytes_may_use;
3438
3439 /*
3440 * The idea here is that we've not already over-reserved the block group
3441 * then we can go ahead and save our reservation first and then start
3442 * flushing if we need to. Otherwise if we've already overcommitted
3443 * lets start flushing stuff first and then come back and try to make
3444 * our reservation.
3445 */
3446 if (unused <= space_info->total_bytes) {
3447 unused = space_info->total_bytes - unused;
3448 if (unused >= num_bytes) {
3449 space_info->bytes_reserved += orig_bytes;
3450 ret = 0;
3451 } else {
3452 /*
3453 * Ok set num_bytes to orig_bytes since we aren't
3454 * overocmmitted, this way we only try and reclaim what
3455 * we need.
3456 */
3457 num_bytes = orig_bytes;
3458 }
3459 } else {
3460 /*
3461 * Ok we're over committed, set num_bytes to the overcommitted
3462 * amount plus the amount of bytes that we need for this
3463 * reservation.
3464 */
3465 num_bytes = unused - space_info->total_bytes +
3466 (orig_bytes * (retries + 1));
3467 }
3468
3469 /*
3470 * Couldn't make our reservation, save our place so while we're trying
3471 * to reclaim space we can actually use it instead of somebody else
3472 * stealing it from us.
3473 */
3474 if (ret && flush) {
3475 flushing = true;
3476 space_info->flush = 1;
3477 }
3478
3479 spin_unlock(&space_info->lock);
3480
3481 if (!ret || !flush)
3482 goto out;
3483
3484 /*
3485 * We do synchronous shrinking since we don't actually unreserve
3486 * metadata until after the IO is completed.
3487 */
3488 ret = shrink_delalloc(trans, root, num_bytes, 1);
3489 if (ret < 0)
3490 goto out;
3491
3492 ret = 0;
3493
3494 /*
3495 * So if we were overcommitted it's possible that somebody else flushed
3496 * out enough space and we simply didn't have enough space to reclaim,
3497 * so go back around and try again.
3498 */
3499 if (retries < 2) {
3500 retries++;
3501 goto again;
3502 }
3503
3504 /*
3505 * Not enough space to be reclaimed, don't bother committing the
3506 * transaction.
3507 */
3508 spin_lock(&space_info->lock);
3509 if (space_info->bytes_pinned < orig_bytes)
3510 ret = -ENOSPC;
3511 spin_unlock(&space_info->lock);
3512 if (ret)
3513 goto out;
3514
3515 ret = -EAGAIN;
3516 if (trans)
3517 goto out;
3518
3519 ret = -ENOSPC;
3520 if (committed)
3521 goto out;
3522
3523 trans = btrfs_join_transaction(root);
3524 if (IS_ERR(trans))
3525 goto out;
3526 ret = btrfs_commit_transaction(trans, root);
3527 if (!ret) {
3528 trans = NULL;
3529 committed = true;
3530 goto again;
3531 }
3532
3533 out:
3534 if (flushing) {
3535 spin_lock(&space_info->lock);
3536 space_info->flush = 0;
3537 wake_up_all(&space_info->wait);
3538 spin_unlock(&space_info->lock);
3539 }
3540 return ret;
3541 }
3542
3543 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root)
3545 {
3546 struct btrfs_block_rsv *block_rsv;
3547 if (root->ref_cows)
3548 block_rsv = trans->block_rsv;
3549 else
3550 block_rsv = root->block_rsv;
3551
3552 if (!block_rsv)
3553 block_rsv = &root->fs_info->empty_block_rsv;
3554
3555 return block_rsv;
3556 }
3557
3558 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3559 u64 num_bytes)
3560 {
3561 int ret = -ENOSPC;
3562 spin_lock(&block_rsv->lock);
3563 if (block_rsv->reserved >= num_bytes) {
3564 block_rsv->reserved -= num_bytes;
3565 if (block_rsv->reserved < block_rsv->size)
3566 block_rsv->full = 0;
3567 ret = 0;
3568 }
3569 spin_unlock(&block_rsv->lock);
3570 return ret;
3571 }
3572
3573 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3574 u64 num_bytes, int update_size)
3575 {
3576 spin_lock(&block_rsv->lock);
3577 block_rsv->reserved += num_bytes;
3578 if (update_size)
3579 block_rsv->size += num_bytes;
3580 else if (block_rsv->reserved >= block_rsv->size)
3581 block_rsv->full = 1;
3582 spin_unlock(&block_rsv->lock);
3583 }
3584
3585 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3586 struct btrfs_block_rsv *dest, u64 num_bytes)
3587 {
3588 struct btrfs_space_info *space_info = block_rsv->space_info;
3589
3590 spin_lock(&block_rsv->lock);
3591 if (num_bytes == (u64)-1)
3592 num_bytes = block_rsv->size;
3593 block_rsv->size -= num_bytes;
3594 if (block_rsv->reserved >= block_rsv->size) {
3595 num_bytes = block_rsv->reserved - block_rsv->size;
3596 block_rsv->reserved = block_rsv->size;
3597 block_rsv->full = 1;
3598 } else {
3599 num_bytes = 0;
3600 }
3601 spin_unlock(&block_rsv->lock);
3602
3603 if (num_bytes > 0) {
3604 if (dest) {
3605 spin_lock(&dest->lock);
3606 if (!dest->full) {
3607 u64 bytes_to_add;
3608
3609 bytes_to_add = dest->size - dest->reserved;
3610 bytes_to_add = min(num_bytes, bytes_to_add);
3611 dest->reserved += bytes_to_add;
3612 if (dest->reserved >= dest->size)
3613 dest->full = 1;
3614 num_bytes -= bytes_to_add;
3615 }
3616 spin_unlock(&dest->lock);
3617 }
3618 if (num_bytes) {
3619 spin_lock(&space_info->lock);
3620 space_info->bytes_reserved -= num_bytes;
3621 space_info->reservation_progress++;
3622 spin_unlock(&space_info->lock);
3623 }
3624 }
3625 }
3626
3627 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3628 struct btrfs_block_rsv *dst, u64 num_bytes)
3629 {
3630 int ret;
3631
3632 ret = block_rsv_use_bytes(src, num_bytes);
3633 if (ret)
3634 return ret;
3635
3636 block_rsv_add_bytes(dst, num_bytes, 1);
3637 return 0;
3638 }
3639
3640 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3641 {
3642 memset(rsv, 0, sizeof(*rsv));
3643 spin_lock_init(&rsv->lock);
3644 atomic_set(&rsv->usage, 1);
3645 rsv->priority = 6;
3646 INIT_LIST_HEAD(&rsv->list);
3647 }
3648
3649 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3650 {
3651 struct btrfs_block_rsv *block_rsv;
3652 struct btrfs_fs_info *fs_info = root->fs_info;
3653
3654 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3655 if (!block_rsv)
3656 return NULL;
3657
3658 btrfs_init_block_rsv(block_rsv);
3659 block_rsv->space_info = __find_space_info(fs_info,
3660 BTRFS_BLOCK_GROUP_METADATA);
3661 return block_rsv;
3662 }
3663
3664 void btrfs_free_block_rsv(struct btrfs_root *root,
3665 struct btrfs_block_rsv *rsv)
3666 {
3667 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3668 btrfs_block_rsv_release(root, rsv, (u64)-1);
3669 if (!rsv->durable)
3670 kfree(rsv);
3671 }
3672 }
3673
3674 /*
3675 * make the block_rsv struct be able to capture freed space.
3676 * the captured space will re-add to the the block_rsv struct
3677 * after transaction commit
3678 */
3679 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3680 struct btrfs_block_rsv *block_rsv)
3681 {
3682 block_rsv->durable = 1;
3683 mutex_lock(&fs_info->durable_block_rsv_mutex);
3684 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3685 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3686 }
3687
3688 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3689 struct btrfs_root *root,
3690 struct btrfs_block_rsv *block_rsv,
3691 u64 num_bytes)
3692 {
3693 int ret;
3694
3695 if (num_bytes == 0)
3696 return 0;
3697
3698 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3699 if (!ret) {
3700 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3701 return 0;
3702 }
3703
3704 return ret;
3705 }
3706
3707 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3708 struct btrfs_root *root,
3709 struct btrfs_block_rsv *block_rsv,
3710 u64 min_reserved, int min_factor)
3711 {
3712 u64 num_bytes = 0;
3713 int commit_trans = 0;
3714 int ret = -ENOSPC;
3715
3716 if (!block_rsv)
3717 return 0;
3718
3719 spin_lock(&block_rsv->lock);
3720 if (min_factor > 0)
3721 num_bytes = div_factor(block_rsv->size, min_factor);
3722 if (min_reserved > num_bytes)
3723 num_bytes = min_reserved;
3724
3725 if (block_rsv->reserved >= num_bytes) {
3726 ret = 0;
3727 } else {
3728 num_bytes -= block_rsv->reserved;
3729 if (block_rsv->durable &&
3730 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3731 commit_trans = 1;
3732 }
3733 spin_unlock(&block_rsv->lock);
3734 if (!ret)
3735 return 0;
3736
3737 if (block_rsv->refill_used) {
3738 ret = reserve_metadata_bytes(trans, root, block_rsv,
3739 num_bytes, 0);
3740 if (!ret) {
3741 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3742 return 0;
3743 }
3744 }
3745
3746 if (commit_trans) {
3747 if (trans)
3748 return -EAGAIN;
3749 trans = btrfs_join_transaction(root);
3750 BUG_ON(IS_ERR(trans));
3751 ret = btrfs_commit_transaction(trans, root);
3752 return 0;
3753 }
3754
3755 return -ENOSPC;
3756 }
3757
3758 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3759 struct btrfs_block_rsv *dst_rsv,
3760 u64 num_bytes)
3761 {
3762 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3763 }
3764
3765 void btrfs_block_rsv_release(struct btrfs_root *root,
3766 struct btrfs_block_rsv *block_rsv,
3767 u64 num_bytes)
3768 {
3769 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3770 if (global_rsv->full || global_rsv == block_rsv ||
3771 block_rsv->space_info != global_rsv->space_info)
3772 global_rsv = NULL;
3773 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3774 }
3775
3776 /*
3777 * helper to calculate size of global block reservation.
3778 * the desired value is sum of space used by extent tree,
3779 * checksum tree and root tree
3780 */
3781 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3782 {
3783 struct btrfs_space_info *sinfo;
3784 u64 num_bytes;
3785 u64 meta_used;
3786 u64 data_used;
3787 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3788
3789 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3790 spin_lock(&sinfo->lock);
3791 data_used = sinfo->bytes_used;
3792 spin_unlock(&sinfo->lock);
3793
3794 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3795 spin_lock(&sinfo->lock);
3796 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3797 data_used = 0;
3798 meta_used = sinfo->bytes_used;
3799 spin_unlock(&sinfo->lock);
3800
3801 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3802 csum_size * 2;
3803 num_bytes += div64_u64(data_used + meta_used, 50);
3804
3805 if (num_bytes * 3 > meta_used)
3806 num_bytes = div64_u64(meta_used, 3);
3807
3808 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3809 }
3810
3811 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3812 {
3813 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3814 struct btrfs_space_info *sinfo = block_rsv->space_info;
3815 u64 num_bytes;
3816
3817 num_bytes = calc_global_metadata_size(fs_info);
3818
3819 spin_lock(&block_rsv->lock);
3820 spin_lock(&sinfo->lock);
3821
3822 block_rsv->size = num_bytes;
3823
3824 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3825 sinfo->bytes_reserved + sinfo->bytes_readonly +
3826 sinfo->bytes_may_use;
3827
3828 if (sinfo->total_bytes > num_bytes) {
3829 num_bytes = sinfo->total_bytes - num_bytes;
3830 block_rsv->reserved += num_bytes;
3831 sinfo->bytes_reserved += num_bytes;
3832 }
3833
3834 if (block_rsv->reserved >= block_rsv->size) {
3835 num_bytes = block_rsv->reserved - block_rsv->size;
3836 sinfo->bytes_reserved -= num_bytes;
3837 sinfo->reservation_progress++;
3838 block_rsv->reserved = block_rsv->size;
3839 block_rsv->full = 1;
3840 }
3841
3842 spin_unlock(&sinfo->lock);
3843 spin_unlock(&block_rsv->lock);
3844 }
3845
3846 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3847 {
3848 struct btrfs_space_info *space_info;
3849
3850 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3851 fs_info->chunk_block_rsv.space_info = space_info;
3852 fs_info->chunk_block_rsv.priority = 10;
3853
3854 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3855 fs_info->global_block_rsv.space_info = space_info;
3856 fs_info->global_block_rsv.priority = 10;
3857 fs_info->global_block_rsv.refill_used = 1;
3858 fs_info->delalloc_block_rsv.space_info = space_info;
3859 fs_info->trans_block_rsv.space_info = space_info;
3860 fs_info->empty_block_rsv.space_info = space_info;
3861 fs_info->empty_block_rsv.priority = 10;
3862
3863 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3864 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3865 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3866 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3867 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3868
3869 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3870
3871 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3872
3873 update_global_block_rsv(fs_info);
3874 }
3875
3876 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3877 {
3878 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3879 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3880 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3881 WARN_ON(fs_info->trans_block_rsv.size > 0);
3882 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3883 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3884 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3885 }
3886
3887 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3888 struct btrfs_root *root,
3889 struct btrfs_block_rsv *rsv)
3890 {
3891 struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3892 u64 num_bytes;
3893 int ret;
3894
3895 /*
3896 * Truncate should be freeing data, but give us 2 items just in case it
3897 * needs to use some space. We may want to be smarter about this in the
3898 * future.
3899 */
3900 num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3901
3902 /* We already have enough bytes, just return */
3903 if (rsv->reserved >= num_bytes)
3904 return 0;
3905
3906 num_bytes -= rsv->reserved;
3907
3908 /*
3909 * You should have reserved enough space before hand to do this, so this
3910 * should not fail.
3911 */
3912 ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3913 BUG_ON(ret);
3914
3915 return 0;
3916 }
3917
3918 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3919 struct btrfs_root *root)
3920 {
3921 if (!trans->bytes_reserved)
3922 return;
3923
3924 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3925 btrfs_block_rsv_release(root, trans->block_rsv,
3926 trans->bytes_reserved);
3927 trans->bytes_reserved = 0;
3928 }
3929
3930 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3931 struct inode *inode)
3932 {
3933 struct btrfs_root *root = BTRFS_I(inode)->root;
3934 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3935 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3936
3937 /*
3938 * We need to hold space in order to delete our orphan item once we've
3939 * added it, so this takes the reservation so we can release it later
3940 * when we are truly done with the orphan item.
3941 */
3942 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3943 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3944 }
3945
3946 void btrfs_orphan_release_metadata(struct inode *inode)
3947 {
3948 struct btrfs_root *root = BTRFS_I(inode)->root;
3949 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3950 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3951 }
3952
3953 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3954 struct btrfs_pending_snapshot *pending)
3955 {
3956 struct btrfs_root *root = pending->root;
3957 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3958 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3959 /*
3960 * two for root back/forward refs, two for directory entries
3961 * and one for root of the snapshot.
3962 */
3963 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3964 dst_rsv->space_info = src_rsv->space_info;
3965 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3966 }
3967
3968 static unsigned drop_outstanding_extent(struct inode *inode)
3969 {
3970 unsigned dropped_extents = 0;
3971
3972 spin_lock(&BTRFS_I(inode)->lock);
3973 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
3974 BTRFS_I(inode)->outstanding_extents--;
3975
3976 /*
3977 * If we have more or the same amount of outsanding extents than we have
3978 * reserved then we need to leave the reserved extents count alone.
3979 */
3980 if (BTRFS_I(inode)->outstanding_extents >=
3981 BTRFS_I(inode)->reserved_extents)
3982 goto out;
3983
3984 dropped_extents = BTRFS_I(inode)->reserved_extents -
3985 BTRFS_I(inode)->outstanding_extents;
3986 BTRFS_I(inode)->reserved_extents -= dropped_extents;
3987 out:
3988 spin_unlock(&BTRFS_I(inode)->lock);
3989 return dropped_extents;
3990 }
3991
3992 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3993 {
3994 return num_bytes >>= 3;
3995 }
3996
3997 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3998 {
3999 struct btrfs_root *root = BTRFS_I(inode)->root;
4000 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4001 u64 to_reserve = 0;
4002 unsigned nr_extents = 0;
4003 int ret;
4004
4005 if (btrfs_transaction_in_commit(root->fs_info))
4006 schedule_timeout(1);
4007
4008 num_bytes = ALIGN(num_bytes, root->sectorsize);
4009
4010 spin_lock(&BTRFS_I(inode)->lock);
4011 BTRFS_I(inode)->outstanding_extents++;
4012
4013 if (BTRFS_I(inode)->outstanding_extents >
4014 BTRFS_I(inode)->reserved_extents) {
4015 nr_extents = BTRFS_I(inode)->outstanding_extents -
4016 BTRFS_I(inode)->reserved_extents;
4017 BTRFS_I(inode)->reserved_extents += nr_extents;
4018
4019 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4020 }
4021 spin_unlock(&BTRFS_I(inode)->lock);
4022
4023 to_reserve += calc_csum_metadata_size(inode, num_bytes);
4024 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4025 if (ret) {
4026 unsigned dropped;
4027 /*
4028 * We don't need the return value since our reservation failed,
4029 * we just need to clean up our counter.
4030 */
4031 dropped = drop_outstanding_extent(inode);
4032 WARN_ON(dropped > 1);
4033 return ret;
4034 }
4035
4036 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4037
4038 return 0;
4039 }
4040
4041 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4042 {
4043 struct btrfs_root *root = BTRFS_I(inode)->root;
4044 u64 to_free = 0;
4045 unsigned dropped;
4046
4047 num_bytes = ALIGN(num_bytes, root->sectorsize);
4048 dropped = drop_outstanding_extent(inode);
4049
4050 to_free = calc_csum_metadata_size(inode, num_bytes);
4051 if (dropped > 0)
4052 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4053
4054 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4055 to_free);
4056 }
4057
4058 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4059 {
4060 int ret;
4061
4062 ret = btrfs_check_data_free_space(inode, num_bytes);
4063 if (ret)
4064 return ret;
4065
4066 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4067 if (ret) {
4068 btrfs_free_reserved_data_space(inode, num_bytes);
4069 return ret;
4070 }
4071
4072 return 0;
4073 }
4074
4075 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4076 {
4077 btrfs_delalloc_release_metadata(inode, num_bytes);
4078 btrfs_free_reserved_data_space(inode, num_bytes);
4079 }
4080
4081 static int update_block_group(struct btrfs_trans_handle *trans,
4082 struct btrfs_root *root,
4083 u64 bytenr, u64 num_bytes, int alloc)
4084 {
4085 struct btrfs_block_group_cache *cache = NULL;
4086 struct btrfs_fs_info *info = root->fs_info;
4087 u64 total = num_bytes;
4088 u64 old_val;
4089 u64 byte_in_group;
4090 int factor;
4091
4092 /* block accounting for super block */
4093 spin_lock(&info->delalloc_lock);
4094 old_val = btrfs_super_bytes_used(&info->super_copy);
4095 if (alloc)
4096 old_val += num_bytes;
4097 else
4098 old_val -= num_bytes;
4099 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4100 spin_unlock(&info->delalloc_lock);
4101
4102 while (total) {
4103 cache = btrfs_lookup_block_group(info, bytenr);
4104 if (!cache)
4105 return -1;
4106 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4107 BTRFS_BLOCK_GROUP_RAID1 |
4108 BTRFS_BLOCK_GROUP_RAID10))
4109 factor = 2;
4110 else
4111 factor = 1;
4112 /*
4113 * If this block group has free space cache written out, we
4114 * need to make sure to load it if we are removing space. This
4115 * is because we need the unpinning stage to actually add the
4116 * space back to the block group, otherwise we will leak space.
4117 */
4118 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4119 cache_block_group(cache, trans, NULL, 1);
4120
4121 byte_in_group = bytenr - cache->key.objectid;
4122 WARN_ON(byte_in_group > cache->key.offset);
4123
4124 spin_lock(&cache->space_info->lock);
4125 spin_lock(&cache->lock);
4126
4127 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4128 cache->disk_cache_state < BTRFS_DC_CLEAR)
4129 cache->disk_cache_state = BTRFS_DC_CLEAR;
4130
4131 cache->dirty = 1;
4132 old_val = btrfs_block_group_used(&cache->item);
4133 num_bytes = min(total, cache->key.offset - byte_in_group);
4134 if (alloc) {
4135 old_val += num_bytes;
4136 btrfs_set_block_group_used(&cache->item, old_val);
4137 cache->reserved -= num_bytes;
4138 cache->space_info->bytes_reserved -= num_bytes;
4139 cache->space_info->reservation_progress++;
4140 cache->space_info->bytes_used += num_bytes;
4141 cache->space_info->disk_used += num_bytes * factor;
4142 spin_unlock(&cache->lock);
4143 spin_unlock(&cache->space_info->lock);
4144 } else {
4145 old_val -= num_bytes;
4146 btrfs_set_block_group_used(&cache->item, old_val);
4147 cache->pinned += num_bytes;
4148 cache->space_info->bytes_pinned += num_bytes;
4149 cache->space_info->bytes_used -= num_bytes;
4150 cache->space_info->disk_used -= num_bytes * factor;
4151 spin_unlock(&cache->lock);
4152 spin_unlock(&cache->space_info->lock);
4153
4154 set_extent_dirty(info->pinned_extents,
4155 bytenr, bytenr + num_bytes - 1,
4156 GFP_NOFS | __GFP_NOFAIL);
4157 }
4158 btrfs_put_block_group(cache);
4159 total -= num_bytes;
4160 bytenr += num_bytes;
4161 }
4162 return 0;
4163 }
4164
4165 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4166 {
4167 struct btrfs_block_group_cache *cache;
4168 u64 bytenr;
4169
4170 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4171 if (!cache)
4172 return 0;
4173
4174 bytenr = cache->key.objectid;
4175 btrfs_put_block_group(cache);
4176
4177 return bytenr;
4178 }
4179
4180 static int pin_down_extent(struct btrfs_root *root,
4181 struct btrfs_block_group_cache *cache,
4182 u64 bytenr, u64 num_bytes, int reserved)
4183 {
4184 spin_lock(&cache->space_info->lock);
4185 spin_lock(&cache->lock);
4186 cache->pinned += num_bytes;
4187 cache->space_info->bytes_pinned += num_bytes;
4188 if (reserved) {
4189 cache->reserved -= num_bytes;
4190 cache->space_info->bytes_reserved -= num_bytes;
4191 cache->space_info->reservation_progress++;
4192 }
4193 spin_unlock(&cache->lock);
4194 spin_unlock(&cache->space_info->lock);
4195
4196 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4197 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4198 return 0;
4199 }
4200
4201 /*
4202 * this function must be called within transaction
4203 */
4204 int btrfs_pin_extent(struct btrfs_root *root,
4205 u64 bytenr, u64 num_bytes, int reserved)
4206 {
4207 struct btrfs_block_group_cache *cache;
4208
4209 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4210 BUG_ON(!cache);
4211
4212 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4213
4214 btrfs_put_block_group(cache);
4215 return 0;
4216 }
4217
4218 /*
4219 * update size of reserved extents. this function may return -EAGAIN
4220 * if 'reserve' is true or 'sinfo' is false.
4221 */
4222 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4223 u64 num_bytes, int reserve, int sinfo)
4224 {
4225 int ret = 0;
4226 if (sinfo) {
4227 struct btrfs_space_info *space_info = cache->space_info;
4228 spin_lock(&space_info->lock);
4229 spin_lock(&cache->lock);
4230 if (reserve) {
4231 if (cache->ro) {
4232 ret = -EAGAIN;
4233 } else {
4234 cache->reserved += num_bytes;
4235 space_info->bytes_reserved += num_bytes;
4236 }
4237 } else {
4238 if (cache->ro)
4239 space_info->bytes_readonly += num_bytes;
4240 cache->reserved -= num_bytes;
4241 space_info->bytes_reserved -= num_bytes;
4242 space_info->reservation_progress++;
4243 }
4244 spin_unlock(&cache->lock);
4245 spin_unlock(&space_info->lock);
4246 } else {
4247 spin_lock(&cache->lock);
4248 if (cache->ro) {
4249 ret = -EAGAIN;
4250 } else {
4251 if (reserve)
4252 cache->reserved += num_bytes;
4253 else
4254 cache->reserved -= num_bytes;
4255 }
4256 spin_unlock(&cache->lock);
4257 }
4258 return ret;
4259 }
4260
4261 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4262 struct btrfs_root *root)
4263 {
4264 struct btrfs_fs_info *fs_info = root->fs_info;
4265 struct btrfs_caching_control *next;
4266 struct btrfs_caching_control *caching_ctl;
4267 struct btrfs_block_group_cache *cache;
4268
4269 down_write(&fs_info->extent_commit_sem);
4270
4271 list_for_each_entry_safe(caching_ctl, next,
4272 &fs_info->caching_block_groups, list) {
4273 cache = caching_ctl->block_group;
4274 if (block_group_cache_done(cache)) {
4275 cache->last_byte_to_unpin = (u64)-1;
4276 list_del_init(&caching_ctl->list);
4277 put_caching_control(caching_ctl);
4278 } else {
4279 cache->last_byte_to_unpin = caching_ctl->progress;
4280 }
4281 }
4282
4283 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4284 fs_info->pinned_extents = &fs_info->freed_extents[1];
4285 else
4286 fs_info->pinned_extents = &fs_info->freed_extents[0];
4287
4288 up_write(&fs_info->extent_commit_sem);
4289
4290 update_global_block_rsv(fs_info);
4291 return 0;
4292 }
4293
4294 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4295 {
4296 struct btrfs_fs_info *fs_info = root->fs_info;
4297 struct btrfs_block_group_cache *cache = NULL;
4298 u64 len;
4299
4300 while (start <= end) {
4301 if (!cache ||
4302 start >= cache->key.objectid + cache->key.offset) {
4303 if (cache)
4304 btrfs_put_block_group(cache);
4305 cache = btrfs_lookup_block_group(fs_info, start);
4306 BUG_ON(!cache);
4307 }
4308
4309 len = cache->key.objectid + cache->key.offset - start;
4310 len = min(len, end + 1 - start);
4311
4312 if (start < cache->last_byte_to_unpin) {
4313 len = min(len, cache->last_byte_to_unpin - start);
4314 btrfs_add_free_space(cache, start, len);
4315 }
4316
4317 start += len;
4318
4319 spin_lock(&cache->space_info->lock);
4320 spin_lock(&cache->lock);
4321 cache->pinned -= len;
4322 cache->space_info->bytes_pinned -= len;
4323 if (cache->ro) {
4324 cache->space_info->bytes_readonly += len;
4325 } else if (cache->reserved_pinned > 0) {
4326 len = min(len, cache->reserved_pinned);
4327 cache->reserved_pinned -= len;
4328 cache->space_info->bytes_reserved += len;
4329 }
4330 spin_unlock(&cache->lock);
4331 spin_unlock(&cache->space_info->lock);
4332 }
4333
4334 if (cache)
4335 btrfs_put_block_group(cache);
4336 return 0;
4337 }
4338
4339 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4340 struct btrfs_root *root)
4341 {
4342 struct btrfs_fs_info *fs_info = root->fs_info;
4343 struct extent_io_tree *unpin;
4344 struct btrfs_block_rsv *block_rsv;
4345 struct btrfs_block_rsv *next_rsv;
4346 u64 start;
4347 u64 end;
4348 int idx;
4349 int ret;
4350
4351 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4352 unpin = &fs_info->freed_extents[1];
4353 else
4354 unpin = &fs_info->freed_extents[0];
4355
4356 while (1) {
4357 ret = find_first_extent_bit(unpin, 0, &start, &end,
4358 EXTENT_DIRTY);
4359 if (ret)
4360 break;
4361
4362 if (btrfs_test_opt(root, DISCARD))
4363 ret = btrfs_discard_extent(root, start,
4364 end + 1 - start, NULL);
4365
4366 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4367 unpin_extent_range(root, start, end);
4368 cond_resched();
4369 }
4370
4371 mutex_lock(&fs_info->durable_block_rsv_mutex);
4372 list_for_each_entry_safe(block_rsv, next_rsv,
4373 &fs_info->durable_block_rsv_list, list) {
4374
4375 idx = trans->transid & 0x1;
4376 if (block_rsv->freed[idx] > 0) {
4377 block_rsv_add_bytes(block_rsv,
4378 block_rsv->freed[idx], 0);
4379 block_rsv->freed[idx] = 0;
4380 }
4381 if (atomic_read(&block_rsv->usage) == 0) {
4382 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4383
4384 if (block_rsv->freed[0] == 0 &&
4385 block_rsv->freed[1] == 0) {
4386 list_del_init(&block_rsv->list);
4387 kfree(block_rsv);
4388 }
4389 } else {
4390 btrfs_block_rsv_release(root, block_rsv, 0);
4391 }
4392 }
4393 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4394
4395 return 0;
4396 }
4397
4398 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4399 struct btrfs_root *root,
4400 u64 bytenr, u64 num_bytes, u64 parent,
4401 u64 root_objectid, u64 owner_objectid,
4402 u64 owner_offset, int refs_to_drop,
4403 struct btrfs_delayed_extent_op *extent_op)
4404 {
4405 struct btrfs_key key;
4406 struct btrfs_path *path;
4407 struct btrfs_fs_info *info = root->fs_info;
4408 struct btrfs_root *extent_root = info->extent_root;
4409 struct extent_buffer *leaf;
4410 struct btrfs_extent_item *ei;
4411 struct btrfs_extent_inline_ref *iref;
4412 int ret;
4413 int is_data;
4414 int extent_slot = 0;
4415 int found_extent = 0;
4416 int num_to_del = 1;
4417 u32 item_size;
4418 u64 refs;
4419
4420 path = btrfs_alloc_path();
4421 if (!path)
4422 return -ENOMEM;
4423
4424 path->reada = 1;
4425 path->leave_spinning = 1;
4426
4427 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4428 BUG_ON(!is_data && refs_to_drop != 1);
4429
4430 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4431 bytenr, num_bytes, parent,
4432 root_objectid, owner_objectid,
4433 owner_offset);
4434 if (ret == 0) {
4435 extent_slot = path->slots[0];
4436 while (extent_slot >= 0) {
4437 btrfs_item_key_to_cpu(path->nodes[0], &key,
4438 extent_slot);
4439 if (key.objectid != bytenr)
4440 break;
4441 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4442 key.offset == num_bytes) {
4443 found_extent = 1;
4444 break;
4445 }
4446 if (path->slots[0] - extent_slot > 5)
4447 break;
4448 extent_slot--;
4449 }
4450 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4451 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4452 if (found_extent && item_size < sizeof(*ei))
4453 found_extent = 0;
4454 #endif
4455 if (!found_extent) {
4456 BUG_ON(iref);
4457 ret = remove_extent_backref(trans, extent_root, path,
4458 NULL, refs_to_drop,
4459 is_data);
4460 BUG_ON(ret);
4461 btrfs_release_path(path);
4462 path->leave_spinning = 1;
4463
4464 key.objectid = bytenr;
4465 key.type = BTRFS_EXTENT_ITEM_KEY;
4466 key.offset = num_bytes;
4467
4468 ret = btrfs_search_slot(trans, extent_root,
4469 &key, path, -1, 1);
4470 if (ret) {
4471 printk(KERN_ERR "umm, got %d back from search"
4472 ", was looking for %llu\n", ret,
4473 (unsigned long long)bytenr);
4474 if (ret > 0)
4475 btrfs_print_leaf(extent_root,
4476 path->nodes[0]);
4477 }
4478 BUG_ON(ret);
4479 extent_slot = path->slots[0];
4480 }
4481 } else {
4482 btrfs_print_leaf(extent_root, path->nodes[0]);
4483 WARN_ON(1);
4484 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4485 "parent %llu root %llu owner %llu offset %llu\n",
4486 (unsigned long long)bytenr,
4487 (unsigned long long)parent,
4488 (unsigned long long)root_objectid,
4489 (unsigned long long)owner_objectid,
4490 (unsigned long long)owner_offset);
4491 }
4492
4493 leaf = path->nodes[0];
4494 item_size = btrfs_item_size_nr(leaf, extent_slot);
4495 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4496 if (item_size < sizeof(*ei)) {
4497 BUG_ON(found_extent || extent_slot != path->slots[0]);
4498 ret = convert_extent_item_v0(trans, extent_root, path,
4499 owner_objectid, 0);
4500 BUG_ON(ret < 0);
4501
4502 btrfs_release_path(path);
4503 path->leave_spinning = 1;
4504
4505 key.objectid = bytenr;
4506 key.type = BTRFS_EXTENT_ITEM_KEY;
4507 key.offset = num_bytes;
4508
4509 ret = btrfs_search_slot(trans, extent_root, &key, path,
4510 -1, 1);
4511 if (ret) {
4512 printk(KERN_ERR "umm, got %d back from search"
4513 ", was looking for %llu\n", ret,
4514 (unsigned long long)bytenr);
4515 btrfs_print_leaf(extent_root, path->nodes[0]);
4516 }
4517 BUG_ON(ret);
4518 extent_slot = path->slots[0];
4519 leaf = path->nodes[0];
4520 item_size = btrfs_item_size_nr(leaf, extent_slot);
4521 }
4522 #endif
4523 BUG_ON(item_size < sizeof(*ei));
4524 ei = btrfs_item_ptr(leaf, extent_slot,
4525 struct btrfs_extent_item);
4526 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4527 struct btrfs_tree_block_info *bi;
4528 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4529 bi = (struct btrfs_tree_block_info *)(ei + 1);
4530 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4531 }
4532
4533 refs = btrfs_extent_refs(leaf, ei);
4534 BUG_ON(refs < refs_to_drop);
4535 refs -= refs_to_drop;
4536
4537 if (refs > 0) {
4538 if (extent_op)
4539 __run_delayed_extent_op(extent_op, leaf, ei);
4540 /*
4541 * In the case of inline back ref, reference count will
4542 * be updated by remove_extent_backref
4543 */
4544 if (iref) {
4545 BUG_ON(!found_extent);
4546 } else {
4547 btrfs_set_extent_refs(leaf, ei, refs);
4548 btrfs_mark_buffer_dirty(leaf);
4549 }
4550 if (found_extent) {
4551 ret = remove_extent_backref(trans, extent_root, path,
4552 iref, refs_to_drop,
4553 is_data);
4554 BUG_ON(ret);
4555 }
4556 } else {
4557 if (found_extent) {
4558 BUG_ON(is_data && refs_to_drop !=
4559 extent_data_ref_count(root, path, iref));
4560 if (iref) {
4561 BUG_ON(path->slots[0] != extent_slot);
4562 } else {
4563 BUG_ON(path->slots[0] != extent_slot + 1);
4564 path->slots[0] = extent_slot;
4565 num_to_del = 2;
4566 }
4567 }
4568
4569 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4570 num_to_del);
4571 BUG_ON(ret);
4572 btrfs_release_path(path);
4573
4574 if (is_data) {
4575 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4576 BUG_ON(ret);
4577 } else {
4578 invalidate_mapping_pages(info->btree_inode->i_mapping,
4579 bytenr >> PAGE_CACHE_SHIFT,
4580 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4581 }
4582
4583 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4584 BUG_ON(ret);
4585 }
4586 btrfs_free_path(path);
4587 return ret;
4588 }
4589
4590 /*
4591 * when we free an block, it is possible (and likely) that we free the last
4592 * delayed ref for that extent as well. This searches the delayed ref tree for
4593 * a given extent, and if there are no other delayed refs to be processed, it
4594 * removes it from the tree.
4595 */
4596 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4597 struct btrfs_root *root, u64 bytenr)
4598 {
4599 struct btrfs_delayed_ref_head *head;
4600 struct btrfs_delayed_ref_root *delayed_refs;
4601 struct btrfs_delayed_ref_node *ref;
4602 struct rb_node *node;
4603 int ret = 0;
4604
4605 delayed_refs = &trans->transaction->delayed_refs;
4606 spin_lock(&delayed_refs->lock);
4607 head = btrfs_find_delayed_ref_head(trans, bytenr);
4608 if (!head)
4609 goto out;
4610
4611 node = rb_prev(&head->node.rb_node);
4612 if (!node)
4613 goto out;
4614
4615 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4616
4617 /* there are still entries for this ref, we can't drop it */
4618 if (ref->bytenr == bytenr)
4619 goto out;
4620
4621 if (head->extent_op) {
4622 if (!head->must_insert_reserved)
4623 goto out;
4624 kfree(head->extent_op);
4625 head->extent_op = NULL;
4626 }
4627
4628 /*
4629 * waiting for the lock here would deadlock. If someone else has it
4630 * locked they are already in the process of dropping it anyway
4631 */
4632 if (!mutex_trylock(&head->mutex))
4633 goto out;
4634
4635 /*
4636 * at this point we have a head with no other entries. Go
4637 * ahead and process it.
4638 */
4639 head->node.in_tree = 0;
4640 rb_erase(&head->node.rb_node, &delayed_refs->root);
4641
4642 delayed_refs->num_entries--;
4643
4644 /*
4645 * we don't take a ref on the node because we're removing it from the
4646 * tree, so we just steal the ref the tree was holding.
4647 */
4648 delayed_refs->num_heads--;
4649 if (list_empty(&head->cluster))
4650 delayed_refs->num_heads_ready--;
4651
4652 list_del_init(&head->cluster);
4653 spin_unlock(&delayed_refs->lock);
4654
4655 BUG_ON(head->extent_op);
4656 if (head->must_insert_reserved)
4657 ret = 1;
4658
4659 mutex_unlock(&head->mutex);
4660 btrfs_put_delayed_ref(&head->node);
4661 return ret;
4662 out:
4663 spin_unlock(&delayed_refs->lock);
4664 return 0;
4665 }
4666
4667 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4668 struct btrfs_root *root,
4669 struct extent_buffer *buf,
4670 u64 parent, int last_ref)
4671 {
4672 struct btrfs_block_rsv *block_rsv;
4673 struct btrfs_block_group_cache *cache = NULL;
4674 int ret;
4675
4676 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4677 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4678 parent, root->root_key.objectid,
4679 btrfs_header_level(buf),
4680 BTRFS_DROP_DELAYED_REF, NULL);
4681 BUG_ON(ret);
4682 }
4683
4684 if (!last_ref)
4685 return;
4686
4687 block_rsv = get_block_rsv(trans, root);
4688 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4689 if (block_rsv->space_info != cache->space_info)
4690 goto out;
4691
4692 if (btrfs_header_generation(buf) == trans->transid) {
4693 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4694 ret = check_ref_cleanup(trans, root, buf->start);
4695 if (!ret)
4696 goto pin;
4697 }
4698
4699 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4700 pin_down_extent(root, cache, buf->start, buf->len, 1);
4701 goto pin;
4702 }
4703
4704 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4705
4706 btrfs_add_free_space(cache, buf->start, buf->len);
4707 ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4708 if (ret == -EAGAIN) {
4709 /* block group became read-only */
4710 btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4711 goto out;
4712 }
4713
4714 ret = 1;
4715 spin_lock(&block_rsv->lock);
4716 if (block_rsv->reserved < block_rsv->size) {
4717 block_rsv->reserved += buf->len;
4718 ret = 0;
4719 }
4720 spin_unlock(&block_rsv->lock);
4721
4722 if (ret) {
4723 spin_lock(&cache->space_info->lock);
4724 cache->space_info->bytes_reserved -= buf->len;
4725 cache->space_info->reservation_progress++;
4726 spin_unlock(&cache->space_info->lock);
4727 }
4728 goto out;
4729 }
4730 pin:
4731 if (block_rsv->durable && !cache->ro) {
4732 ret = 0;
4733 spin_lock(&cache->lock);
4734 if (!cache->ro) {
4735 cache->reserved_pinned += buf->len;
4736 ret = 1;
4737 }
4738 spin_unlock(&cache->lock);
4739
4740 if (ret) {
4741 spin_lock(&block_rsv->lock);
4742 block_rsv->freed[trans->transid & 0x1] += buf->len;
4743 spin_unlock(&block_rsv->lock);
4744 }
4745 }
4746 out:
4747 /*
4748 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4749 * anymore.
4750 */
4751 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4752 btrfs_put_block_group(cache);
4753 }
4754
4755 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4756 struct btrfs_root *root,
4757 u64 bytenr, u64 num_bytes, u64 parent,
4758 u64 root_objectid, u64 owner, u64 offset)
4759 {
4760 int ret;
4761
4762 /*
4763 * tree log blocks never actually go into the extent allocation
4764 * tree, just update pinning info and exit early.
4765 */
4766 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4767 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4768 /* unlocks the pinned mutex */
4769 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4770 ret = 0;
4771 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4772 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4773 parent, root_objectid, (int)owner,
4774 BTRFS_DROP_DELAYED_REF, NULL);
4775 BUG_ON(ret);
4776 } else {
4777 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4778 parent, root_objectid, owner,
4779 offset, BTRFS_DROP_DELAYED_REF, NULL);
4780 BUG_ON(ret);
4781 }
4782 return ret;
4783 }
4784
4785 static u64 stripe_align(struct btrfs_root *root, u64 val)
4786 {
4787 u64 mask = ((u64)root->stripesize - 1);
4788 u64 ret = (val + mask) & ~mask;
4789 return ret;
4790 }
4791
4792 /*
4793 * when we wait for progress in the block group caching, its because
4794 * our allocation attempt failed at least once. So, we must sleep
4795 * and let some progress happen before we try again.
4796 *
4797 * This function will sleep at least once waiting for new free space to
4798 * show up, and then it will check the block group free space numbers
4799 * for our min num_bytes. Another option is to have it go ahead
4800 * and look in the rbtree for a free extent of a given size, but this
4801 * is a good start.
4802 */
4803 static noinline int
4804 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4805 u64 num_bytes)
4806 {
4807 struct btrfs_caching_control *caching_ctl;
4808 DEFINE_WAIT(wait);
4809
4810 caching_ctl = get_caching_control(cache);
4811 if (!caching_ctl)
4812 return 0;
4813
4814 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4815 (cache->free_space_ctl->free_space >= num_bytes));
4816
4817 put_caching_control(caching_ctl);
4818 return 0;
4819 }
4820
4821 static noinline int
4822 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4823 {
4824 struct btrfs_caching_control *caching_ctl;
4825 DEFINE_WAIT(wait);
4826
4827 caching_ctl = get_caching_control(cache);
4828 if (!caching_ctl)
4829 return 0;
4830
4831 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4832
4833 put_caching_control(caching_ctl);
4834 return 0;
4835 }
4836
4837 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4838 {
4839 int index;
4840 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4841 index = 0;
4842 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4843 index = 1;
4844 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4845 index = 2;
4846 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4847 index = 3;
4848 else
4849 index = 4;
4850 return index;
4851 }
4852
4853 enum btrfs_loop_type {
4854 LOOP_FIND_IDEAL = 0,
4855 LOOP_CACHING_NOWAIT = 1,
4856 LOOP_CACHING_WAIT = 2,
4857 LOOP_ALLOC_CHUNK = 3,
4858 LOOP_NO_EMPTY_SIZE = 4,
4859 };
4860
4861 /*
4862 * walks the btree of allocated extents and find a hole of a given size.
4863 * The key ins is changed to record the hole:
4864 * ins->objectid == block start
4865 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4866 * ins->offset == number of blocks
4867 * Any available blocks before search_start are skipped.
4868 */
4869 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4870 struct btrfs_root *orig_root,
4871 u64 num_bytes, u64 empty_size,
4872 u64 search_start, u64 search_end,
4873 u64 hint_byte, struct btrfs_key *ins,
4874 u64 data)
4875 {
4876 int ret = 0;
4877 struct btrfs_root *root = orig_root->fs_info->extent_root;
4878 struct btrfs_free_cluster *last_ptr = NULL;
4879 struct btrfs_block_group_cache *block_group = NULL;
4880 int empty_cluster = 2 * 1024 * 1024;
4881 int allowed_chunk_alloc = 0;
4882 int done_chunk_alloc = 0;
4883 struct btrfs_space_info *space_info;
4884 int last_ptr_loop = 0;
4885 int loop = 0;
4886 int index = 0;
4887 bool found_uncached_bg = false;
4888 bool failed_cluster_refill = false;
4889 bool failed_alloc = false;
4890 bool use_cluster = true;
4891 u64 ideal_cache_percent = 0;
4892 u64 ideal_cache_offset = 0;
4893
4894 WARN_ON(num_bytes < root->sectorsize);
4895 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4896 ins->objectid = 0;
4897 ins->offset = 0;
4898
4899 space_info = __find_space_info(root->fs_info, data);
4900 if (!space_info) {
4901 printk(KERN_ERR "No space info for %llu\n", data);
4902 return -ENOSPC;
4903 }
4904
4905 /*
4906 * If the space info is for both data and metadata it means we have a
4907 * small filesystem and we can't use the clustering stuff.
4908 */
4909 if (btrfs_mixed_space_info(space_info))
4910 use_cluster = false;
4911
4912 if (orig_root->ref_cows || empty_size)
4913 allowed_chunk_alloc = 1;
4914
4915 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4916 last_ptr = &root->fs_info->meta_alloc_cluster;
4917 if (!btrfs_test_opt(root, SSD))
4918 empty_cluster = 64 * 1024;
4919 }
4920
4921 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4922 btrfs_test_opt(root, SSD)) {
4923 last_ptr = &root->fs_info->data_alloc_cluster;
4924 }
4925
4926 if (last_ptr) {
4927 spin_lock(&last_ptr->lock);
4928 if (last_ptr->block_group)
4929 hint_byte = last_ptr->window_start;
4930 spin_unlock(&last_ptr->lock);
4931 }
4932
4933 search_start = max(search_start, first_logical_byte(root, 0));
4934 search_start = max(search_start, hint_byte);
4935
4936 if (!last_ptr)
4937 empty_cluster = 0;
4938
4939 if (search_start == hint_byte) {
4940 ideal_cache:
4941 block_group = btrfs_lookup_block_group(root->fs_info,
4942 search_start);
4943 /*
4944 * we don't want to use the block group if it doesn't match our
4945 * allocation bits, or if its not cached.
4946 *
4947 * However if we are re-searching with an ideal block group
4948 * picked out then we don't care that the block group is cached.
4949 */
4950 if (block_group && block_group_bits(block_group, data) &&
4951 (block_group->cached != BTRFS_CACHE_NO ||
4952 search_start == ideal_cache_offset)) {
4953 down_read(&space_info->groups_sem);
4954 if (list_empty(&block_group->list) ||
4955 block_group->ro) {
4956 /*
4957 * someone is removing this block group,
4958 * we can't jump into the have_block_group
4959 * target because our list pointers are not
4960 * valid
4961 */
4962 btrfs_put_block_group(block_group);
4963 up_read(&space_info->groups_sem);
4964 } else {
4965 index = get_block_group_index(block_group);
4966 goto have_block_group;
4967 }
4968 } else if (block_group) {
4969 btrfs_put_block_group(block_group);
4970 }
4971 }
4972 search:
4973 down_read(&space_info->groups_sem);
4974 list_for_each_entry(block_group, &space_info->block_groups[index],
4975 list) {
4976 u64 offset;
4977 int cached;
4978
4979 btrfs_get_block_group(block_group);
4980 search_start = block_group->key.objectid;
4981
4982 /*
4983 * this can happen if we end up cycling through all the
4984 * raid types, but we want to make sure we only allocate
4985 * for the proper type.
4986 */
4987 if (!block_group_bits(block_group, data)) {
4988 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4989 BTRFS_BLOCK_GROUP_RAID1 |
4990 BTRFS_BLOCK_GROUP_RAID10;
4991
4992 /*
4993 * if they asked for extra copies and this block group
4994 * doesn't provide them, bail. This does allow us to
4995 * fill raid0 from raid1.
4996 */
4997 if ((data & extra) && !(block_group->flags & extra))
4998 goto loop;
4999 }
5000
5001 have_block_group:
5002 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5003 u64 free_percent;
5004
5005 ret = cache_block_group(block_group, trans,
5006 orig_root, 1);
5007 if (block_group->cached == BTRFS_CACHE_FINISHED)
5008 goto have_block_group;
5009
5010 free_percent = btrfs_block_group_used(&block_group->item);
5011 free_percent *= 100;
5012 free_percent = div64_u64(free_percent,
5013 block_group->key.offset);
5014 free_percent = 100 - free_percent;
5015 if (free_percent > ideal_cache_percent &&
5016 likely(!block_group->ro)) {
5017 ideal_cache_offset = block_group->key.objectid;
5018 ideal_cache_percent = free_percent;
5019 }
5020
5021 /*
5022 * The caching workers are limited to 2 threads, so we
5023 * can queue as much work as we care to.
5024 */
5025 if (loop > LOOP_FIND_IDEAL) {
5026 ret = cache_block_group(block_group, trans,
5027 orig_root, 0);
5028 BUG_ON(ret);
5029 }
5030 found_uncached_bg = true;
5031
5032 /*
5033 * If loop is set for cached only, try the next block
5034 * group.
5035 */
5036 if (loop == LOOP_FIND_IDEAL)
5037 goto loop;
5038 }
5039
5040 cached = block_group_cache_done(block_group);
5041 if (unlikely(!cached))
5042 found_uncached_bg = true;
5043
5044 if (unlikely(block_group->ro))
5045 goto loop;
5046
5047 spin_lock(&block_group->free_space_ctl->tree_lock);
5048 if (cached &&
5049 block_group->free_space_ctl->free_space <
5050 num_bytes + empty_size) {
5051 spin_unlock(&block_group->free_space_ctl->tree_lock);
5052 goto loop;
5053 }
5054 spin_unlock(&block_group->free_space_ctl->tree_lock);
5055
5056 /*
5057 * Ok we want to try and use the cluster allocator, so lets look
5058 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5059 * have tried the cluster allocator plenty of times at this
5060 * point and not have found anything, so we are likely way too
5061 * fragmented for the clustering stuff to find anything, so lets
5062 * just skip it and let the allocator find whatever block it can
5063 * find
5064 */
5065 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5066 /*
5067 * the refill lock keeps out other
5068 * people trying to start a new cluster
5069 */
5070 spin_lock(&last_ptr->refill_lock);
5071 if (last_ptr->block_group &&
5072 (last_ptr->block_group->ro ||
5073 !block_group_bits(last_ptr->block_group, data))) {
5074 offset = 0;
5075 goto refill_cluster;
5076 }
5077
5078 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5079 num_bytes, search_start);
5080 if (offset) {
5081 /* we have a block, we're done */
5082 spin_unlock(&last_ptr->refill_lock);
5083 goto checks;
5084 }
5085
5086 spin_lock(&last_ptr->lock);
5087 /*
5088 * whoops, this cluster doesn't actually point to
5089 * this block group. Get a ref on the block
5090 * group is does point to and try again
5091 */
5092 if (!last_ptr_loop && last_ptr->block_group &&
5093 last_ptr->block_group != block_group &&
5094 index <=
5095 get_block_group_index(last_ptr->block_group)) {
5096
5097 btrfs_put_block_group(block_group);
5098 block_group = last_ptr->block_group;
5099 btrfs_get_block_group(block_group);
5100 spin_unlock(&last_ptr->lock);
5101 spin_unlock(&last_ptr->refill_lock);
5102
5103 last_ptr_loop = 1;
5104 search_start = block_group->key.objectid;
5105 /*
5106 * we know this block group is properly
5107 * in the list because
5108 * btrfs_remove_block_group, drops the
5109 * cluster before it removes the block
5110 * group from the list
5111 */
5112 goto have_block_group;
5113 }
5114 spin_unlock(&last_ptr->lock);
5115 refill_cluster:
5116 /*
5117 * this cluster didn't work out, free it and
5118 * start over
5119 */
5120 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5121
5122 last_ptr_loop = 0;
5123
5124 /* allocate a cluster in this block group */
5125 ret = btrfs_find_space_cluster(trans, root,
5126 block_group, last_ptr,
5127 offset, num_bytes,
5128 empty_cluster + empty_size);
5129 if (ret == 0) {
5130 /*
5131 * now pull our allocation out of this
5132 * cluster
5133 */
5134 offset = btrfs_alloc_from_cluster(block_group,
5135 last_ptr, num_bytes,
5136 search_start);
5137 if (offset) {
5138 /* we found one, proceed */
5139 spin_unlock(&last_ptr->refill_lock);
5140 goto checks;
5141 }
5142 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5143 && !failed_cluster_refill) {
5144 spin_unlock(&last_ptr->refill_lock);
5145
5146 failed_cluster_refill = true;
5147 wait_block_group_cache_progress(block_group,
5148 num_bytes + empty_cluster + empty_size);
5149 goto have_block_group;
5150 }
5151
5152 /*
5153 * at this point we either didn't find a cluster
5154 * or we weren't able to allocate a block from our
5155 * cluster. Free the cluster we've been trying
5156 * to use, and go to the next block group
5157 */
5158 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5159 spin_unlock(&last_ptr->refill_lock);
5160 goto loop;
5161 }
5162
5163 offset = btrfs_find_space_for_alloc(block_group, search_start,
5164 num_bytes, empty_size);
5165 /*
5166 * If we didn't find a chunk, and we haven't failed on this
5167 * block group before, and this block group is in the middle of
5168 * caching and we are ok with waiting, then go ahead and wait
5169 * for progress to be made, and set failed_alloc to true.
5170 *
5171 * If failed_alloc is true then we've already waited on this
5172 * block group once and should move on to the next block group.
5173 */
5174 if (!offset && !failed_alloc && !cached &&
5175 loop > LOOP_CACHING_NOWAIT) {
5176 wait_block_group_cache_progress(block_group,
5177 num_bytes + empty_size);
5178 failed_alloc = true;
5179 goto have_block_group;
5180 } else if (!offset) {
5181 goto loop;
5182 }
5183 checks:
5184 search_start = stripe_align(root, offset);
5185 /* move on to the next group */
5186 if (search_start + num_bytes >= search_end) {
5187 btrfs_add_free_space(block_group, offset, num_bytes);
5188 goto loop;
5189 }
5190
5191 /* move on to the next group */
5192 if (search_start + num_bytes >
5193 block_group->key.objectid + block_group->key.offset) {
5194 btrfs_add_free_space(block_group, offset, num_bytes);
5195 goto loop;
5196 }
5197
5198 ins->objectid = search_start;
5199 ins->offset = num_bytes;
5200
5201 if (offset < search_start)
5202 btrfs_add_free_space(block_group, offset,
5203 search_start - offset);
5204 BUG_ON(offset > search_start);
5205
5206 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5207 (data & BTRFS_BLOCK_GROUP_DATA));
5208 if (ret == -EAGAIN) {
5209 btrfs_add_free_space(block_group, offset, num_bytes);
5210 goto loop;
5211 }
5212
5213 /* we are all good, lets return */
5214 ins->objectid = search_start;
5215 ins->offset = num_bytes;
5216
5217 if (offset < search_start)
5218 btrfs_add_free_space(block_group, offset,
5219 search_start - offset);
5220 BUG_ON(offset > search_start);
5221 btrfs_put_block_group(block_group);
5222 break;
5223 loop:
5224 failed_cluster_refill = false;
5225 failed_alloc = false;
5226 BUG_ON(index != get_block_group_index(block_group));
5227 btrfs_put_block_group(block_group);
5228 }
5229 up_read(&space_info->groups_sem);
5230
5231 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5232 goto search;
5233
5234 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5235 * for them to make caching progress. Also
5236 * determine the best possible bg to cache
5237 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5238 * caching kthreads as we move along
5239 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5240 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5241 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5242 * again
5243 */
5244 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5245 index = 0;
5246 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5247 found_uncached_bg = false;
5248 loop++;
5249 if (!ideal_cache_percent)
5250 goto search;
5251
5252 /*
5253 * 1 of the following 2 things have happened so far
5254 *
5255 * 1) We found an ideal block group for caching that
5256 * is mostly full and will cache quickly, so we might
5257 * as well wait for it.
5258 *
5259 * 2) We searched for cached only and we didn't find
5260 * anything, and we didn't start any caching kthreads
5261 * either, so chances are we will loop through and
5262 * start a couple caching kthreads, and then come back
5263 * around and just wait for them. This will be slower
5264 * because we will have 2 caching kthreads reading at
5265 * the same time when we could have just started one
5266 * and waited for it to get far enough to give us an
5267 * allocation, so go ahead and go to the wait caching
5268 * loop.
5269 */
5270 loop = LOOP_CACHING_WAIT;
5271 search_start = ideal_cache_offset;
5272 ideal_cache_percent = 0;
5273 goto ideal_cache;
5274 } else if (loop == LOOP_FIND_IDEAL) {
5275 /*
5276 * Didn't find a uncached bg, wait on anything we find
5277 * next.
5278 */
5279 loop = LOOP_CACHING_WAIT;
5280 goto search;
5281 }
5282
5283 loop++;
5284
5285 if (loop == LOOP_ALLOC_CHUNK) {
5286 if (allowed_chunk_alloc) {
5287 ret = do_chunk_alloc(trans, root, num_bytes +
5288 2 * 1024 * 1024, data,
5289 CHUNK_ALLOC_LIMITED);
5290 allowed_chunk_alloc = 0;
5291 if (ret == 1)
5292 done_chunk_alloc = 1;
5293 } else if (!done_chunk_alloc &&
5294 space_info->force_alloc ==
5295 CHUNK_ALLOC_NO_FORCE) {
5296 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5297 }
5298
5299 /*
5300 * We didn't allocate a chunk, go ahead and drop the
5301 * empty size and loop again.
5302 */
5303 if (!done_chunk_alloc)
5304 loop = LOOP_NO_EMPTY_SIZE;
5305 }
5306
5307 if (loop == LOOP_NO_EMPTY_SIZE) {
5308 empty_size = 0;
5309 empty_cluster = 0;
5310 }
5311
5312 goto search;
5313 } else if (!ins->objectid) {
5314 ret = -ENOSPC;
5315 } else if (ins->objectid) {
5316 ret = 0;
5317 }
5318
5319 return ret;
5320 }
5321
5322 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5323 int dump_block_groups)
5324 {
5325 struct btrfs_block_group_cache *cache;
5326 int index = 0;
5327
5328 spin_lock(&info->lock);
5329 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5330 (unsigned long long)(info->total_bytes - info->bytes_used -
5331 info->bytes_pinned - info->bytes_reserved -
5332 info->bytes_readonly),
5333 (info->full) ? "" : "not ");
5334 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5335 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5336 (unsigned long long)info->total_bytes,
5337 (unsigned long long)info->bytes_used,
5338 (unsigned long long)info->bytes_pinned,
5339 (unsigned long long)info->bytes_reserved,
5340 (unsigned long long)info->bytes_may_use,
5341 (unsigned long long)info->bytes_readonly);
5342 spin_unlock(&info->lock);
5343
5344 if (!dump_block_groups)
5345 return;
5346
5347 down_read(&info->groups_sem);
5348 again:
5349 list_for_each_entry(cache, &info->block_groups[index], list) {
5350 spin_lock(&cache->lock);
5351 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5352 "%llu pinned %llu reserved\n",
5353 (unsigned long long)cache->key.objectid,
5354 (unsigned long long)cache->key.offset,
5355 (unsigned long long)btrfs_block_group_used(&cache->item),
5356 (unsigned long long)cache->pinned,
5357 (unsigned long long)cache->reserved);
5358 btrfs_dump_free_space(cache, bytes);
5359 spin_unlock(&cache->lock);
5360 }
5361 if (++index < BTRFS_NR_RAID_TYPES)
5362 goto again;
5363 up_read(&info->groups_sem);
5364 }
5365
5366 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5367 struct btrfs_root *root,
5368 u64 num_bytes, u64 min_alloc_size,
5369 u64 empty_size, u64 hint_byte,
5370 u64 search_end, struct btrfs_key *ins,
5371 u64 data)
5372 {
5373 int ret;
5374 u64 search_start = 0;
5375
5376 data = btrfs_get_alloc_profile(root, data);
5377 again:
5378 /*
5379 * the only place that sets empty_size is btrfs_realloc_node, which
5380 * is not called recursively on allocations
5381 */
5382 if (empty_size || root->ref_cows)
5383 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5384 num_bytes + 2 * 1024 * 1024, data,
5385 CHUNK_ALLOC_NO_FORCE);
5386
5387 WARN_ON(num_bytes < root->sectorsize);
5388 ret = find_free_extent(trans, root, num_bytes, empty_size,
5389 search_start, search_end, hint_byte,
5390 ins, data);
5391
5392 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5393 num_bytes = num_bytes >> 1;
5394 num_bytes = num_bytes & ~(root->sectorsize - 1);
5395 num_bytes = max(num_bytes, min_alloc_size);
5396 do_chunk_alloc(trans, root->fs_info->extent_root,
5397 num_bytes, data, CHUNK_ALLOC_FORCE);
5398 goto again;
5399 }
5400 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5401 struct btrfs_space_info *sinfo;
5402
5403 sinfo = __find_space_info(root->fs_info, data);
5404 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5405 "wanted %llu\n", (unsigned long long)data,
5406 (unsigned long long)num_bytes);
5407 dump_space_info(sinfo, num_bytes, 1);
5408 }
5409
5410 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5411
5412 return ret;
5413 }
5414
5415 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5416 {
5417 struct btrfs_block_group_cache *cache;
5418 int ret = 0;
5419
5420 cache = btrfs_lookup_block_group(root->fs_info, start);
5421 if (!cache) {
5422 printk(KERN_ERR "Unable to find block group for %llu\n",
5423 (unsigned long long)start);
5424 return -ENOSPC;
5425 }
5426
5427 if (btrfs_test_opt(root, DISCARD))
5428 ret = btrfs_discard_extent(root, start, len, NULL);
5429
5430 btrfs_add_free_space(cache, start, len);
5431 btrfs_update_reserved_bytes(cache, len, 0, 1);
5432 btrfs_put_block_group(cache);
5433
5434 trace_btrfs_reserved_extent_free(root, start, len);
5435
5436 return ret;
5437 }
5438
5439 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5440 struct btrfs_root *root,
5441 u64 parent, u64 root_objectid,
5442 u64 flags, u64 owner, u64 offset,
5443 struct btrfs_key *ins, int ref_mod)
5444 {
5445 int ret;
5446 struct btrfs_fs_info *fs_info = root->fs_info;
5447 struct btrfs_extent_item *extent_item;
5448 struct btrfs_extent_inline_ref *iref;
5449 struct btrfs_path *path;
5450 struct extent_buffer *leaf;
5451 int type;
5452 u32 size;
5453
5454 if (parent > 0)
5455 type = BTRFS_SHARED_DATA_REF_KEY;
5456 else
5457 type = BTRFS_EXTENT_DATA_REF_KEY;
5458
5459 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5460
5461 path = btrfs_alloc_path();
5462 if (!path)
5463 return -ENOMEM;
5464
5465 path->leave_spinning = 1;
5466 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5467 ins, size);
5468 BUG_ON(ret);
5469
5470 leaf = path->nodes[0];
5471 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5472 struct btrfs_extent_item);
5473 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5474 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5475 btrfs_set_extent_flags(leaf, extent_item,
5476 flags | BTRFS_EXTENT_FLAG_DATA);
5477
5478 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5479 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5480 if (parent > 0) {
5481 struct btrfs_shared_data_ref *ref;
5482 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5483 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5484 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5485 } else {
5486 struct btrfs_extent_data_ref *ref;
5487 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5488 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5489 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5490 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5491 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5492 }
5493
5494 btrfs_mark_buffer_dirty(path->nodes[0]);
5495 btrfs_free_path(path);
5496
5497 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5498 if (ret) {
5499 printk(KERN_ERR "btrfs update block group failed for %llu "
5500 "%llu\n", (unsigned long long)ins->objectid,
5501 (unsigned long long)ins->offset);
5502 BUG();
5503 }
5504 return ret;
5505 }
5506
5507 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5508 struct btrfs_root *root,
5509 u64 parent, u64 root_objectid,
5510 u64 flags, struct btrfs_disk_key *key,
5511 int level, struct btrfs_key *ins)
5512 {
5513 int ret;
5514 struct btrfs_fs_info *fs_info = root->fs_info;
5515 struct btrfs_extent_item *extent_item;
5516 struct btrfs_tree_block_info *block_info;
5517 struct btrfs_extent_inline_ref *iref;
5518 struct btrfs_path *path;
5519 struct extent_buffer *leaf;
5520 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5521
5522 path = btrfs_alloc_path();
5523 if (!path)
5524 return -ENOMEM;
5525
5526 path->leave_spinning = 1;
5527 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5528 ins, size);
5529 BUG_ON(ret);
5530
5531 leaf = path->nodes[0];
5532 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5533 struct btrfs_extent_item);
5534 btrfs_set_extent_refs(leaf, extent_item, 1);
5535 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5536 btrfs_set_extent_flags(leaf, extent_item,
5537 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5538 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5539
5540 btrfs_set_tree_block_key(leaf, block_info, key);
5541 btrfs_set_tree_block_level(leaf, block_info, level);
5542
5543 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5544 if (parent > 0) {
5545 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5546 btrfs_set_extent_inline_ref_type(leaf, iref,
5547 BTRFS_SHARED_BLOCK_REF_KEY);
5548 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5549 } else {
5550 btrfs_set_extent_inline_ref_type(leaf, iref,
5551 BTRFS_TREE_BLOCK_REF_KEY);
5552 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5553 }
5554
5555 btrfs_mark_buffer_dirty(leaf);
5556 btrfs_free_path(path);
5557
5558 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5559 if (ret) {
5560 printk(KERN_ERR "btrfs update block group failed for %llu "
5561 "%llu\n", (unsigned long long)ins->objectid,
5562 (unsigned long long)ins->offset);
5563 BUG();
5564 }
5565 return ret;
5566 }
5567
5568 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5569 struct btrfs_root *root,
5570 u64 root_objectid, u64 owner,
5571 u64 offset, struct btrfs_key *ins)
5572 {
5573 int ret;
5574
5575 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5576
5577 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5578 0, root_objectid, owner, offset,
5579 BTRFS_ADD_DELAYED_EXTENT, NULL);
5580 return ret;
5581 }
5582
5583 /*
5584 * this is used by the tree logging recovery code. It records that
5585 * an extent has been allocated and makes sure to clear the free
5586 * space cache bits as well
5587 */
5588 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5589 struct btrfs_root *root,
5590 u64 root_objectid, u64 owner, u64 offset,
5591 struct btrfs_key *ins)
5592 {
5593 int ret;
5594 struct btrfs_block_group_cache *block_group;
5595 struct btrfs_caching_control *caching_ctl;
5596 u64 start = ins->objectid;
5597 u64 num_bytes = ins->offset;
5598
5599 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5600 cache_block_group(block_group, trans, NULL, 0);
5601 caching_ctl = get_caching_control(block_group);
5602
5603 if (!caching_ctl) {
5604 BUG_ON(!block_group_cache_done(block_group));
5605 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5606 BUG_ON(ret);
5607 } else {
5608 mutex_lock(&caching_ctl->mutex);
5609
5610 if (start >= caching_ctl->progress) {
5611 ret = add_excluded_extent(root, start, num_bytes);
5612 BUG_ON(ret);
5613 } else if (start + num_bytes <= caching_ctl->progress) {
5614 ret = btrfs_remove_free_space(block_group,
5615 start, num_bytes);
5616 BUG_ON(ret);
5617 } else {
5618 num_bytes = caching_ctl->progress - start;
5619 ret = btrfs_remove_free_space(block_group,
5620 start, num_bytes);
5621 BUG_ON(ret);
5622
5623 start = caching_ctl->progress;
5624 num_bytes = ins->objectid + ins->offset -
5625 caching_ctl->progress;
5626 ret = add_excluded_extent(root, start, num_bytes);
5627 BUG_ON(ret);
5628 }
5629
5630 mutex_unlock(&caching_ctl->mutex);
5631 put_caching_control(caching_ctl);
5632 }
5633
5634 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5635 BUG_ON(ret);
5636 btrfs_put_block_group(block_group);
5637 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5638 0, owner, offset, ins, 1);
5639 return ret;
5640 }
5641
5642 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5643 struct btrfs_root *root,
5644 u64 bytenr, u32 blocksize,
5645 int level)
5646 {
5647 struct extent_buffer *buf;
5648
5649 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5650 if (!buf)
5651 return ERR_PTR(-ENOMEM);
5652 btrfs_set_header_generation(buf, trans->transid);
5653 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5654 btrfs_tree_lock(buf);
5655 clean_tree_block(trans, root, buf);
5656
5657 btrfs_set_lock_blocking(buf);
5658 btrfs_set_buffer_uptodate(buf);
5659
5660 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5661 /*
5662 * we allow two log transactions at a time, use different
5663 * EXENT bit to differentiate dirty pages.
5664 */
5665 if (root->log_transid % 2 == 0)
5666 set_extent_dirty(&root->dirty_log_pages, buf->start,
5667 buf->start + buf->len - 1, GFP_NOFS);
5668 else
5669 set_extent_new(&root->dirty_log_pages, buf->start,
5670 buf->start + buf->len - 1, GFP_NOFS);
5671 } else {
5672 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5673 buf->start + buf->len - 1, GFP_NOFS);
5674 }
5675 trans->blocks_used++;
5676 /* this returns a buffer locked for blocking */
5677 return buf;
5678 }
5679
5680 static struct btrfs_block_rsv *
5681 use_block_rsv(struct btrfs_trans_handle *trans,
5682 struct btrfs_root *root, u32 blocksize)
5683 {
5684 struct btrfs_block_rsv *block_rsv;
5685 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5686 int ret;
5687
5688 block_rsv = get_block_rsv(trans, root);
5689
5690 if (block_rsv->size == 0) {
5691 ret = reserve_metadata_bytes(trans, root, block_rsv,
5692 blocksize, 0);
5693 /*
5694 * If we couldn't reserve metadata bytes try and use some from
5695 * the global reserve.
5696 */
5697 if (ret && block_rsv != global_rsv) {
5698 ret = block_rsv_use_bytes(global_rsv, blocksize);
5699 if (!ret)
5700 return global_rsv;
5701 return ERR_PTR(ret);
5702 } else if (ret) {
5703 return ERR_PTR(ret);
5704 }
5705 return block_rsv;
5706 }
5707
5708 ret = block_rsv_use_bytes(block_rsv, blocksize);
5709 if (!ret)
5710 return block_rsv;
5711 if (ret) {
5712 WARN_ON(1);
5713 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5714 0);
5715 if (!ret) {
5716 spin_lock(&block_rsv->lock);
5717 block_rsv->size += blocksize;
5718 spin_unlock(&block_rsv->lock);
5719 return block_rsv;
5720 } else if (ret && block_rsv != global_rsv) {
5721 ret = block_rsv_use_bytes(global_rsv, blocksize);
5722 if (!ret)
5723 return global_rsv;
5724 }
5725 }
5726
5727 return ERR_PTR(-ENOSPC);
5728 }
5729
5730 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5731 {
5732 block_rsv_add_bytes(block_rsv, blocksize, 0);
5733 block_rsv_release_bytes(block_rsv, NULL, 0);
5734 }
5735
5736 /*
5737 * finds a free extent and does all the dirty work required for allocation
5738 * returns the key for the extent through ins, and a tree buffer for
5739 * the first block of the extent through buf.
5740 *
5741 * returns the tree buffer or NULL.
5742 */
5743 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5744 struct btrfs_root *root, u32 blocksize,
5745 u64 parent, u64 root_objectid,
5746 struct btrfs_disk_key *key, int level,
5747 u64 hint, u64 empty_size)
5748 {
5749 struct btrfs_key ins;
5750 struct btrfs_block_rsv *block_rsv;
5751 struct extent_buffer *buf;
5752 u64 flags = 0;
5753 int ret;
5754
5755
5756 block_rsv = use_block_rsv(trans, root, blocksize);
5757 if (IS_ERR(block_rsv))
5758 return ERR_CAST(block_rsv);
5759
5760 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5761 empty_size, hint, (u64)-1, &ins, 0);
5762 if (ret) {
5763 unuse_block_rsv(block_rsv, blocksize);
5764 return ERR_PTR(ret);
5765 }
5766
5767 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5768 blocksize, level);
5769 BUG_ON(IS_ERR(buf));
5770
5771 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5772 if (parent == 0)
5773 parent = ins.objectid;
5774 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5775 } else
5776 BUG_ON(parent > 0);
5777
5778 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5779 struct btrfs_delayed_extent_op *extent_op;
5780 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5781 BUG_ON(!extent_op);
5782 if (key)
5783 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5784 else
5785 memset(&extent_op->key, 0, sizeof(extent_op->key));
5786 extent_op->flags_to_set = flags;
5787 extent_op->update_key = 1;
5788 extent_op->update_flags = 1;
5789 extent_op->is_data = 0;
5790
5791 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5792 ins.offset, parent, root_objectid,
5793 level, BTRFS_ADD_DELAYED_EXTENT,
5794 extent_op);
5795 BUG_ON(ret);
5796 }
5797 return buf;
5798 }
5799
5800 struct walk_control {
5801 u64 refs[BTRFS_MAX_LEVEL];
5802 u64 flags[BTRFS_MAX_LEVEL];
5803 struct btrfs_key update_progress;
5804 int stage;
5805 int level;
5806 int shared_level;
5807 int update_ref;
5808 int keep_locks;
5809 int reada_slot;
5810 int reada_count;
5811 };
5812
5813 #define DROP_REFERENCE 1
5814 #define UPDATE_BACKREF 2
5815
5816 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5817 struct btrfs_root *root,
5818 struct walk_control *wc,
5819 struct btrfs_path *path)
5820 {
5821 u64 bytenr;
5822 u64 generation;
5823 u64 refs;
5824 u64 flags;
5825 u32 nritems;
5826 u32 blocksize;
5827 struct btrfs_key key;
5828 struct extent_buffer *eb;
5829 int ret;
5830 int slot;
5831 int nread = 0;
5832
5833 if (path->slots[wc->level] < wc->reada_slot) {
5834 wc->reada_count = wc->reada_count * 2 / 3;
5835 wc->reada_count = max(wc->reada_count, 2);
5836 } else {
5837 wc->reada_count = wc->reada_count * 3 / 2;
5838 wc->reada_count = min_t(int, wc->reada_count,
5839 BTRFS_NODEPTRS_PER_BLOCK(root));
5840 }
5841
5842 eb = path->nodes[wc->level];
5843 nritems = btrfs_header_nritems(eb);
5844 blocksize = btrfs_level_size(root, wc->level - 1);
5845
5846 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5847 if (nread >= wc->reada_count)
5848 break;
5849
5850 cond_resched();
5851 bytenr = btrfs_node_blockptr(eb, slot);
5852 generation = btrfs_node_ptr_generation(eb, slot);
5853
5854 if (slot == path->slots[wc->level])
5855 goto reada;
5856
5857 if (wc->stage == UPDATE_BACKREF &&
5858 generation <= root->root_key.offset)
5859 continue;
5860
5861 /* We don't lock the tree block, it's OK to be racy here */
5862 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5863 &refs, &flags);
5864 BUG_ON(ret);
5865 BUG_ON(refs == 0);
5866
5867 if (wc->stage == DROP_REFERENCE) {
5868 if (refs == 1)
5869 goto reada;
5870
5871 if (wc->level == 1 &&
5872 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5873 continue;
5874 if (!wc->update_ref ||
5875 generation <= root->root_key.offset)
5876 continue;
5877 btrfs_node_key_to_cpu(eb, &key, slot);
5878 ret = btrfs_comp_cpu_keys(&key,
5879 &wc->update_progress);
5880 if (ret < 0)
5881 continue;
5882 } else {
5883 if (wc->level == 1 &&
5884 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5885 continue;
5886 }
5887 reada:
5888 ret = readahead_tree_block(root, bytenr, blocksize,
5889 generation);
5890 if (ret)
5891 break;
5892 nread++;
5893 }
5894 wc->reada_slot = slot;
5895 }
5896
5897 /*
5898 * hepler to process tree block while walking down the tree.
5899 *
5900 * when wc->stage == UPDATE_BACKREF, this function updates
5901 * back refs for pointers in the block.
5902 *
5903 * NOTE: return value 1 means we should stop walking down.
5904 */
5905 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5906 struct btrfs_root *root,
5907 struct btrfs_path *path,
5908 struct walk_control *wc, int lookup_info)
5909 {
5910 int level = wc->level;
5911 struct extent_buffer *eb = path->nodes[level];
5912 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5913 int ret;
5914
5915 if (wc->stage == UPDATE_BACKREF &&
5916 btrfs_header_owner(eb) != root->root_key.objectid)
5917 return 1;
5918
5919 /*
5920 * when reference count of tree block is 1, it won't increase
5921 * again. once full backref flag is set, we never clear it.
5922 */
5923 if (lookup_info &&
5924 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5925 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5926 BUG_ON(!path->locks[level]);
5927 ret = btrfs_lookup_extent_info(trans, root,
5928 eb->start, eb->len,
5929 &wc->refs[level],
5930 &wc->flags[level]);
5931 BUG_ON(ret);
5932 BUG_ON(wc->refs[level] == 0);
5933 }
5934
5935 if (wc->stage == DROP_REFERENCE) {
5936 if (wc->refs[level] > 1)
5937 return 1;
5938
5939 if (path->locks[level] && !wc->keep_locks) {
5940 btrfs_tree_unlock_rw(eb, path->locks[level]);
5941 path->locks[level] = 0;
5942 }
5943 return 0;
5944 }
5945
5946 /* wc->stage == UPDATE_BACKREF */
5947 if (!(wc->flags[level] & flag)) {
5948 BUG_ON(!path->locks[level]);
5949 ret = btrfs_inc_ref(trans, root, eb, 1);
5950 BUG_ON(ret);
5951 ret = btrfs_dec_ref(trans, root, eb, 0);
5952 BUG_ON(ret);
5953 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5954 eb->len, flag, 0);
5955 BUG_ON(ret);
5956 wc->flags[level] |= flag;
5957 }
5958
5959 /*
5960 * the block is shared by multiple trees, so it's not good to
5961 * keep the tree lock
5962 */
5963 if (path->locks[level] && level > 0) {
5964 btrfs_tree_unlock_rw(eb, path->locks[level]);
5965 path->locks[level] = 0;
5966 }
5967 return 0;
5968 }
5969
5970 /*
5971 * hepler to process tree block pointer.
5972 *
5973 * when wc->stage == DROP_REFERENCE, this function checks
5974 * reference count of the block pointed to. if the block
5975 * is shared and we need update back refs for the subtree
5976 * rooted at the block, this function changes wc->stage to
5977 * UPDATE_BACKREF. if the block is shared and there is no
5978 * need to update back, this function drops the reference
5979 * to the block.
5980 *
5981 * NOTE: return value 1 means we should stop walking down.
5982 */
5983 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5984 struct btrfs_root *root,
5985 struct btrfs_path *path,
5986 struct walk_control *wc, int *lookup_info)
5987 {
5988 u64 bytenr;
5989 u64 generation;
5990 u64 parent;
5991 u32 blocksize;
5992 struct btrfs_key key;
5993 struct extent_buffer *next;
5994 int level = wc->level;
5995 int reada = 0;
5996 int ret = 0;
5997
5998 generation = btrfs_node_ptr_generation(path->nodes[level],
5999 path->slots[level]);
6000 /*
6001 * if the lower level block was created before the snapshot
6002 * was created, we know there is no need to update back refs
6003 * for the subtree
6004 */
6005 if (wc->stage == UPDATE_BACKREF &&
6006 generation <= root->root_key.offset) {
6007 *lookup_info = 1;
6008 return 1;
6009 }
6010
6011 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6012 blocksize = btrfs_level_size(root, level - 1);
6013
6014 next = btrfs_find_tree_block(root, bytenr, blocksize);
6015 if (!next) {
6016 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6017 if (!next)
6018 return -ENOMEM;
6019 reada = 1;
6020 }
6021 btrfs_tree_lock(next);
6022 btrfs_set_lock_blocking(next);
6023
6024 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6025 &wc->refs[level - 1],
6026 &wc->flags[level - 1]);
6027 BUG_ON(ret);
6028 BUG_ON(wc->refs[level - 1] == 0);
6029 *lookup_info = 0;
6030
6031 if (wc->stage == DROP_REFERENCE) {
6032 if (wc->refs[level - 1] > 1) {
6033 if (level == 1 &&
6034 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6035 goto skip;
6036
6037 if (!wc->update_ref ||
6038 generation <= root->root_key.offset)
6039 goto skip;
6040
6041 btrfs_node_key_to_cpu(path->nodes[level], &key,
6042 path->slots[level]);
6043 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6044 if (ret < 0)
6045 goto skip;
6046
6047 wc->stage = UPDATE_BACKREF;
6048 wc->shared_level = level - 1;
6049 }
6050 } else {
6051 if (level == 1 &&
6052 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6053 goto skip;
6054 }
6055
6056 if (!btrfs_buffer_uptodate(next, generation)) {
6057 btrfs_tree_unlock(next);
6058 free_extent_buffer(next);
6059 next = NULL;
6060 *lookup_info = 1;
6061 }
6062
6063 if (!next) {
6064 if (reada && level == 1)
6065 reada_walk_down(trans, root, wc, path);
6066 next = read_tree_block(root, bytenr, blocksize, generation);
6067 if (!next)
6068 return -EIO;
6069 btrfs_tree_lock(next);
6070 btrfs_set_lock_blocking(next);
6071 }
6072
6073 level--;
6074 BUG_ON(level != btrfs_header_level(next));
6075 path->nodes[level] = next;
6076 path->slots[level] = 0;
6077 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6078 wc->level = level;
6079 if (wc->level == 1)
6080 wc->reada_slot = 0;
6081 return 0;
6082 skip:
6083 wc->refs[level - 1] = 0;
6084 wc->flags[level - 1] = 0;
6085 if (wc->stage == DROP_REFERENCE) {
6086 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6087 parent = path->nodes[level]->start;
6088 } else {
6089 BUG_ON(root->root_key.objectid !=
6090 btrfs_header_owner(path->nodes[level]));
6091 parent = 0;
6092 }
6093
6094 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6095 root->root_key.objectid, level - 1, 0);
6096 BUG_ON(ret);
6097 }
6098 btrfs_tree_unlock(next);
6099 free_extent_buffer(next);
6100 *lookup_info = 1;
6101 return 1;
6102 }
6103
6104 /*
6105 * hepler to process tree block while walking up the tree.
6106 *
6107 * when wc->stage == DROP_REFERENCE, this function drops
6108 * reference count on the block.
6109 *
6110 * when wc->stage == UPDATE_BACKREF, this function changes
6111 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6112 * to UPDATE_BACKREF previously while processing the block.
6113 *
6114 * NOTE: return value 1 means we should stop walking up.
6115 */
6116 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6117 struct btrfs_root *root,
6118 struct btrfs_path *path,
6119 struct walk_control *wc)
6120 {
6121 int ret;
6122 int level = wc->level;
6123 struct extent_buffer *eb = path->nodes[level];
6124 u64 parent = 0;
6125
6126 if (wc->stage == UPDATE_BACKREF) {
6127 BUG_ON(wc->shared_level < level);
6128 if (level < wc->shared_level)
6129 goto out;
6130
6131 ret = find_next_key(path, level + 1, &wc->update_progress);
6132 if (ret > 0)
6133 wc->update_ref = 0;
6134
6135 wc->stage = DROP_REFERENCE;
6136 wc->shared_level = -1;
6137 path->slots[level] = 0;
6138
6139 /*
6140 * check reference count again if the block isn't locked.
6141 * we should start walking down the tree again if reference
6142 * count is one.
6143 */
6144 if (!path->locks[level]) {
6145 BUG_ON(level == 0);
6146 btrfs_tree_lock(eb);
6147 btrfs_set_lock_blocking(eb);
6148 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6149
6150 ret = btrfs_lookup_extent_info(trans, root,
6151 eb->start, eb->len,
6152 &wc->refs[level],
6153 &wc->flags[level]);
6154 BUG_ON(ret);
6155 BUG_ON(wc->refs[level] == 0);
6156 if (wc->refs[level] == 1) {
6157 btrfs_tree_unlock_rw(eb, path->locks[level]);
6158 return 1;
6159 }
6160 }
6161 }
6162
6163 /* wc->stage == DROP_REFERENCE */
6164 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6165
6166 if (wc->refs[level] == 1) {
6167 if (level == 0) {
6168 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6169 ret = btrfs_dec_ref(trans, root, eb, 1);
6170 else
6171 ret = btrfs_dec_ref(trans, root, eb, 0);
6172 BUG_ON(ret);
6173 }
6174 /* make block locked assertion in clean_tree_block happy */
6175 if (!path->locks[level] &&
6176 btrfs_header_generation(eb) == trans->transid) {
6177 btrfs_tree_lock(eb);
6178 btrfs_set_lock_blocking(eb);
6179 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6180 }
6181 clean_tree_block(trans, root, eb);
6182 }
6183
6184 if (eb == root->node) {
6185 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6186 parent = eb->start;
6187 else
6188 BUG_ON(root->root_key.objectid !=
6189 btrfs_header_owner(eb));
6190 } else {
6191 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6192 parent = path->nodes[level + 1]->start;
6193 else
6194 BUG_ON(root->root_key.objectid !=
6195 btrfs_header_owner(path->nodes[level + 1]));
6196 }
6197
6198 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6199 out:
6200 wc->refs[level] = 0;
6201 wc->flags[level] = 0;
6202 return 0;
6203 }
6204
6205 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6206 struct btrfs_root *root,
6207 struct btrfs_path *path,
6208 struct walk_control *wc)
6209 {
6210 int level = wc->level;
6211 int lookup_info = 1;
6212 int ret;
6213
6214 while (level >= 0) {
6215 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6216 if (ret > 0)
6217 break;
6218
6219 if (level == 0)
6220 break;
6221
6222 if (path->slots[level] >=
6223 btrfs_header_nritems(path->nodes[level]))
6224 break;
6225
6226 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6227 if (ret > 0) {
6228 path->slots[level]++;
6229 continue;
6230 } else if (ret < 0)
6231 return ret;
6232 level = wc->level;
6233 }
6234 return 0;
6235 }
6236
6237 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6238 struct btrfs_root *root,
6239 struct btrfs_path *path,
6240 struct walk_control *wc, int max_level)
6241 {
6242 int level = wc->level;
6243 int ret;
6244
6245 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6246 while (level < max_level && path->nodes[level]) {
6247 wc->level = level;
6248 if (path->slots[level] + 1 <
6249 btrfs_header_nritems(path->nodes[level])) {
6250 path->slots[level]++;
6251 return 0;
6252 } else {
6253 ret = walk_up_proc(trans, root, path, wc);
6254 if (ret > 0)
6255 return 0;
6256
6257 if (path->locks[level]) {
6258 btrfs_tree_unlock_rw(path->nodes[level],
6259 path->locks[level]);
6260 path->locks[level] = 0;
6261 }
6262 free_extent_buffer(path->nodes[level]);
6263 path->nodes[level] = NULL;
6264 level++;
6265 }
6266 }
6267 return 1;
6268 }
6269
6270 /*
6271 * drop a subvolume tree.
6272 *
6273 * this function traverses the tree freeing any blocks that only
6274 * referenced by the tree.
6275 *
6276 * when a shared tree block is found. this function decreases its
6277 * reference count by one. if update_ref is true, this function
6278 * also make sure backrefs for the shared block and all lower level
6279 * blocks are properly updated.
6280 */
6281 void btrfs_drop_snapshot(struct btrfs_root *root,
6282 struct btrfs_block_rsv *block_rsv, int update_ref)
6283 {
6284 struct btrfs_path *path;
6285 struct btrfs_trans_handle *trans;
6286 struct btrfs_root *tree_root = root->fs_info->tree_root;
6287 struct btrfs_root_item *root_item = &root->root_item;
6288 struct walk_control *wc;
6289 struct btrfs_key key;
6290 int err = 0;
6291 int ret;
6292 int level;
6293
6294 path = btrfs_alloc_path();
6295 if (!path) {
6296 err = -ENOMEM;
6297 goto out;
6298 }
6299
6300 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6301 if (!wc) {
6302 btrfs_free_path(path);
6303 err = -ENOMEM;
6304 goto out;
6305 }
6306
6307 trans = btrfs_start_transaction(tree_root, 0);
6308 BUG_ON(IS_ERR(trans));
6309
6310 if (block_rsv)
6311 trans->block_rsv = block_rsv;
6312
6313 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6314 level = btrfs_header_level(root->node);
6315 path->nodes[level] = btrfs_lock_root_node(root);
6316 btrfs_set_lock_blocking(path->nodes[level]);
6317 path->slots[level] = 0;
6318 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6319 memset(&wc->update_progress, 0,
6320 sizeof(wc->update_progress));
6321 } else {
6322 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6323 memcpy(&wc->update_progress, &key,
6324 sizeof(wc->update_progress));
6325
6326 level = root_item->drop_level;
6327 BUG_ON(level == 0);
6328 path->lowest_level = level;
6329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6330 path->lowest_level = 0;
6331 if (ret < 0) {
6332 err = ret;
6333 goto out_free;
6334 }
6335 WARN_ON(ret > 0);
6336
6337 /*
6338 * unlock our path, this is safe because only this
6339 * function is allowed to delete this snapshot
6340 */
6341 btrfs_unlock_up_safe(path, 0);
6342
6343 level = btrfs_header_level(root->node);
6344 while (1) {
6345 btrfs_tree_lock(path->nodes[level]);
6346 btrfs_set_lock_blocking(path->nodes[level]);
6347
6348 ret = btrfs_lookup_extent_info(trans, root,
6349 path->nodes[level]->start,
6350 path->nodes[level]->len,
6351 &wc->refs[level],
6352 &wc->flags[level]);
6353 BUG_ON(ret);
6354 BUG_ON(wc->refs[level] == 0);
6355
6356 if (level == root_item->drop_level)
6357 break;
6358
6359 btrfs_tree_unlock(path->nodes[level]);
6360 WARN_ON(wc->refs[level] != 1);
6361 level--;
6362 }
6363 }
6364
6365 wc->level = level;
6366 wc->shared_level = -1;
6367 wc->stage = DROP_REFERENCE;
6368 wc->update_ref = update_ref;
6369 wc->keep_locks = 0;
6370 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6371
6372 while (1) {
6373 ret = walk_down_tree(trans, root, path, wc);
6374 if (ret < 0) {
6375 err = ret;
6376 break;
6377 }
6378
6379 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6380 if (ret < 0) {
6381 err = ret;
6382 break;
6383 }
6384
6385 if (ret > 0) {
6386 BUG_ON(wc->stage != DROP_REFERENCE);
6387 break;
6388 }
6389
6390 if (wc->stage == DROP_REFERENCE) {
6391 level = wc->level;
6392 btrfs_node_key(path->nodes[level],
6393 &root_item->drop_progress,
6394 path->slots[level]);
6395 root_item->drop_level = level;
6396 }
6397
6398 BUG_ON(wc->level == 0);
6399 if (btrfs_should_end_transaction(trans, tree_root)) {
6400 ret = btrfs_update_root(trans, tree_root,
6401 &root->root_key,
6402 root_item);
6403 BUG_ON(ret);
6404
6405 btrfs_end_transaction_throttle(trans, tree_root);
6406 trans = btrfs_start_transaction(tree_root, 0);
6407 BUG_ON(IS_ERR(trans));
6408 if (block_rsv)
6409 trans->block_rsv = block_rsv;
6410 }
6411 }
6412 btrfs_release_path(path);
6413 BUG_ON(err);
6414
6415 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6416 BUG_ON(ret);
6417
6418 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6419 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6420 NULL, NULL);
6421 BUG_ON(ret < 0);
6422 if (ret > 0) {
6423 /* if we fail to delete the orphan item this time
6424 * around, it'll get picked up the next time.
6425 *
6426 * The most common failure here is just -ENOENT.
6427 */
6428 btrfs_del_orphan_item(trans, tree_root,
6429 root->root_key.objectid);
6430 }
6431 }
6432
6433 if (root->in_radix) {
6434 btrfs_free_fs_root(tree_root->fs_info, root);
6435 } else {
6436 free_extent_buffer(root->node);
6437 free_extent_buffer(root->commit_root);
6438 kfree(root);
6439 }
6440 out_free:
6441 btrfs_end_transaction_throttle(trans, tree_root);
6442 kfree(wc);
6443 btrfs_free_path(path);
6444 out:
6445 if (err)
6446 btrfs_std_error(root->fs_info, err);
6447 return;
6448 }
6449
6450 /*
6451 * drop subtree rooted at tree block 'node'.
6452 *
6453 * NOTE: this function will unlock and release tree block 'node'
6454 */
6455 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6456 struct btrfs_root *root,
6457 struct extent_buffer *node,
6458 struct extent_buffer *parent)
6459 {
6460 struct btrfs_path *path;
6461 struct walk_control *wc;
6462 int level;
6463 int parent_level;
6464 int ret = 0;
6465 int wret;
6466
6467 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6468
6469 path = btrfs_alloc_path();
6470 if (!path)
6471 return -ENOMEM;
6472
6473 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6474 if (!wc) {
6475 btrfs_free_path(path);
6476 return -ENOMEM;
6477 }
6478
6479 btrfs_assert_tree_locked(parent);
6480 parent_level = btrfs_header_level(parent);
6481 extent_buffer_get(parent);
6482 path->nodes[parent_level] = parent;
6483 path->slots[parent_level] = btrfs_header_nritems(parent);
6484
6485 btrfs_assert_tree_locked(node);
6486 level = btrfs_header_level(node);
6487 path->nodes[level] = node;
6488 path->slots[level] = 0;
6489 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6490
6491 wc->refs[parent_level] = 1;
6492 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6493 wc->level = level;
6494 wc->shared_level = -1;
6495 wc->stage = DROP_REFERENCE;
6496 wc->update_ref = 0;
6497 wc->keep_locks = 1;
6498 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6499
6500 while (1) {
6501 wret = walk_down_tree(trans, root, path, wc);
6502 if (wret < 0) {
6503 ret = wret;
6504 break;
6505 }
6506
6507 wret = walk_up_tree(trans, root, path, wc, parent_level);
6508 if (wret < 0)
6509 ret = wret;
6510 if (wret != 0)
6511 break;
6512 }
6513
6514 kfree(wc);
6515 btrfs_free_path(path);
6516 return ret;
6517 }
6518
6519 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6520 {
6521 u64 num_devices;
6522 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6523 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6524
6525 /*
6526 * we add in the count of missing devices because we want
6527 * to make sure that any RAID levels on a degraded FS
6528 * continue to be honored.
6529 */
6530 num_devices = root->fs_info->fs_devices->rw_devices +
6531 root->fs_info->fs_devices->missing_devices;
6532
6533 if (num_devices == 1) {
6534 stripped |= BTRFS_BLOCK_GROUP_DUP;
6535 stripped = flags & ~stripped;
6536
6537 /* turn raid0 into single device chunks */
6538 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6539 return stripped;
6540
6541 /* turn mirroring into duplication */
6542 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6543 BTRFS_BLOCK_GROUP_RAID10))
6544 return stripped | BTRFS_BLOCK_GROUP_DUP;
6545 return flags;
6546 } else {
6547 /* they already had raid on here, just return */
6548 if (flags & stripped)
6549 return flags;
6550
6551 stripped |= BTRFS_BLOCK_GROUP_DUP;
6552 stripped = flags & ~stripped;
6553
6554 /* switch duplicated blocks with raid1 */
6555 if (flags & BTRFS_BLOCK_GROUP_DUP)
6556 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6557
6558 /* turn single device chunks into raid0 */
6559 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6560 }
6561 return flags;
6562 }
6563
6564 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6565 {
6566 struct btrfs_space_info *sinfo = cache->space_info;
6567 u64 num_bytes;
6568 u64 min_allocable_bytes;
6569 int ret = -ENOSPC;
6570
6571
6572 /*
6573 * We need some metadata space and system metadata space for
6574 * allocating chunks in some corner cases until we force to set
6575 * it to be readonly.
6576 */
6577 if ((sinfo->flags &
6578 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6579 !force)
6580 min_allocable_bytes = 1 * 1024 * 1024;
6581 else
6582 min_allocable_bytes = 0;
6583
6584 spin_lock(&sinfo->lock);
6585 spin_lock(&cache->lock);
6586
6587 if (cache->ro) {
6588 ret = 0;
6589 goto out;
6590 }
6591
6592 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6593 cache->bytes_super - btrfs_block_group_used(&cache->item);
6594
6595 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6596 sinfo->bytes_may_use + sinfo->bytes_readonly +
6597 cache->reserved_pinned + num_bytes + min_allocable_bytes <=
6598 sinfo->total_bytes) {
6599 sinfo->bytes_readonly += num_bytes;
6600 sinfo->bytes_reserved += cache->reserved_pinned;
6601 cache->reserved_pinned = 0;
6602 cache->ro = 1;
6603 ret = 0;
6604 }
6605 out:
6606 spin_unlock(&cache->lock);
6607 spin_unlock(&sinfo->lock);
6608 return ret;
6609 }
6610
6611 int btrfs_set_block_group_ro(struct btrfs_root *root,
6612 struct btrfs_block_group_cache *cache)
6613
6614 {
6615 struct btrfs_trans_handle *trans;
6616 u64 alloc_flags;
6617 int ret;
6618
6619 BUG_ON(cache->ro);
6620
6621 trans = btrfs_join_transaction(root);
6622 BUG_ON(IS_ERR(trans));
6623
6624 alloc_flags = update_block_group_flags(root, cache->flags);
6625 if (alloc_flags != cache->flags)
6626 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6627 CHUNK_ALLOC_FORCE);
6628
6629 ret = set_block_group_ro(cache, 0);
6630 if (!ret)
6631 goto out;
6632 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6633 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6634 CHUNK_ALLOC_FORCE);
6635 if (ret < 0)
6636 goto out;
6637 ret = set_block_group_ro(cache, 0);
6638 out:
6639 btrfs_end_transaction(trans, root);
6640 return ret;
6641 }
6642
6643 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6644 struct btrfs_root *root, u64 type)
6645 {
6646 u64 alloc_flags = get_alloc_profile(root, type);
6647 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6648 CHUNK_ALLOC_FORCE);
6649 }
6650
6651 /*
6652 * helper to account the unused space of all the readonly block group in the
6653 * list. takes mirrors into account.
6654 */
6655 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6656 {
6657 struct btrfs_block_group_cache *block_group;
6658 u64 free_bytes = 0;
6659 int factor;
6660
6661 list_for_each_entry(block_group, groups_list, list) {
6662 spin_lock(&block_group->lock);
6663
6664 if (!block_group->ro) {
6665 spin_unlock(&block_group->lock);
6666 continue;
6667 }
6668
6669 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6670 BTRFS_BLOCK_GROUP_RAID10 |
6671 BTRFS_BLOCK_GROUP_DUP))
6672 factor = 2;
6673 else
6674 factor = 1;
6675
6676 free_bytes += (block_group->key.offset -
6677 btrfs_block_group_used(&block_group->item)) *
6678 factor;
6679
6680 spin_unlock(&block_group->lock);
6681 }
6682
6683 return free_bytes;
6684 }
6685
6686 /*
6687 * helper to account the unused space of all the readonly block group in the
6688 * space_info. takes mirrors into account.
6689 */
6690 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6691 {
6692 int i;
6693 u64 free_bytes = 0;
6694
6695 spin_lock(&sinfo->lock);
6696
6697 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6698 if (!list_empty(&sinfo->block_groups[i]))
6699 free_bytes += __btrfs_get_ro_block_group_free_space(
6700 &sinfo->block_groups[i]);
6701
6702 spin_unlock(&sinfo->lock);
6703
6704 return free_bytes;
6705 }
6706
6707 int btrfs_set_block_group_rw(struct btrfs_root *root,
6708 struct btrfs_block_group_cache *cache)
6709 {
6710 struct btrfs_space_info *sinfo = cache->space_info;
6711 u64 num_bytes;
6712
6713 BUG_ON(!cache->ro);
6714
6715 spin_lock(&sinfo->lock);
6716 spin_lock(&cache->lock);
6717 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6718 cache->bytes_super - btrfs_block_group_used(&cache->item);
6719 sinfo->bytes_readonly -= num_bytes;
6720 cache->ro = 0;
6721 spin_unlock(&cache->lock);
6722 spin_unlock(&sinfo->lock);
6723 return 0;
6724 }
6725
6726 /*
6727 * checks to see if its even possible to relocate this block group.
6728 *
6729 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6730 * ok to go ahead and try.
6731 */
6732 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6733 {
6734 struct btrfs_block_group_cache *block_group;
6735 struct btrfs_space_info *space_info;
6736 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6737 struct btrfs_device *device;
6738 u64 min_free;
6739 u64 dev_min = 1;
6740 u64 dev_nr = 0;
6741 int index;
6742 int full = 0;
6743 int ret = 0;
6744
6745 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6746
6747 /* odd, couldn't find the block group, leave it alone */
6748 if (!block_group)
6749 return -1;
6750
6751 min_free = btrfs_block_group_used(&block_group->item);
6752
6753 /* no bytes used, we're good */
6754 if (!min_free)
6755 goto out;
6756
6757 space_info = block_group->space_info;
6758 spin_lock(&space_info->lock);
6759
6760 full = space_info->full;
6761
6762 /*
6763 * if this is the last block group we have in this space, we can't
6764 * relocate it unless we're able to allocate a new chunk below.
6765 *
6766 * Otherwise, we need to make sure we have room in the space to handle
6767 * all of the extents from this block group. If we can, we're good
6768 */
6769 if ((space_info->total_bytes != block_group->key.offset) &&
6770 (space_info->bytes_used + space_info->bytes_reserved +
6771 space_info->bytes_pinned + space_info->bytes_readonly +
6772 min_free < space_info->total_bytes)) {
6773 spin_unlock(&space_info->lock);
6774 goto out;
6775 }
6776 spin_unlock(&space_info->lock);
6777
6778 /*
6779 * ok we don't have enough space, but maybe we have free space on our
6780 * devices to allocate new chunks for relocation, so loop through our
6781 * alloc devices and guess if we have enough space. However, if we
6782 * were marked as full, then we know there aren't enough chunks, and we
6783 * can just return.
6784 */
6785 ret = -1;
6786 if (full)
6787 goto out;
6788
6789 /*
6790 * index:
6791 * 0: raid10
6792 * 1: raid1
6793 * 2: dup
6794 * 3: raid0
6795 * 4: single
6796 */
6797 index = get_block_group_index(block_group);
6798 if (index == 0) {
6799 dev_min = 4;
6800 /* Divide by 2 */
6801 min_free >>= 1;
6802 } else if (index == 1) {
6803 dev_min = 2;
6804 } else if (index == 2) {
6805 /* Multiply by 2 */
6806 min_free <<= 1;
6807 } else if (index == 3) {
6808 dev_min = fs_devices->rw_devices;
6809 do_div(min_free, dev_min);
6810 }
6811
6812 mutex_lock(&root->fs_info->chunk_mutex);
6813 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6814 u64 dev_offset;
6815
6816 /*
6817 * check to make sure we can actually find a chunk with enough
6818 * space to fit our block group in.
6819 */
6820 if (device->total_bytes > device->bytes_used + min_free) {
6821 ret = find_free_dev_extent(NULL, device, min_free,
6822 &dev_offset, NULL);
6823 if (!ret)
6824 dev_nr++;
6825
6826 if (dev_nr >= dev_min)
6827 break;
6828
6829 ret = -1;
6830 }
6831 }
6832 mutex_unlock(&root->fs_info->chunk_mutex);
6833 out:
6834 btrfs_put_block_group(block_group);
6835 return ret;
6836 }
6837
6838 static int find_first_block_group(struct btrfs_root *root,
6839 struct btrfs_path *path, struct btrfs_key *key)
6840 {
6841 int ret = 0;
6842 struct btrfs_key found_key;
6843 struct extent_buffer *leaf;
6844 int slot;
6845
6846 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6847 if (ret < 0)
6848 goto out;
6849
6850 while (1) {
6851 slot = path->slots[0];
6852 leaf = path->nodes[0];
6853 if (slot >= btrfs_header_nritems(leaf)) {
6854 ret = btrfs_next_leaf(root, path);
6855 if (ret == 0)
6856 continue;
6857 if (ret < 0)
6858 goto out;
6859 break;
6860 }
6861 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6862
6863 if (found_key.objectid >= key->objectid &&
6864 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6865 ret = 0;
6866 goto out;
6867 }
6868 path->slots[0]++;
6869 }
6870 out:
6871 return ret;
6872 }
6873
6874 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6875 {
6876 struct btrfs_block_group_cache *block_group;
6877 u64 last = 0;
6878
6879 while (1) {
6880 struct inode *inode;
6881
6882 block_group = btrfs_lookup_first_block_group(info, last);
6883 while (block_group) {
6884 spin_lock(&block_group->lock);
6885 if (block_group->iref)
6886 break;
6887 spin_unlock(&block_group->lock);
6888 block_group = next_block_group(info->tree_root,
6889 block_group);
6890 }
6891 if (!block_group) {
6892 if (last == 0)
6893 break;
6894 last = 0;
6895 continue;
6896 }
6897
6898 inode = block_group->inode;
6899 block_group->iref = 0;
6900 block_group->inode = NULL;
6901 spin_unlock(&block_group->lock);
6902 iput(inode);
6903 last = block_group->key.objectid + block_group->key.offset;
6904 btrfs_put_block_group(block_group);
6905 }
6906 }
6907
6908 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6909 {
6910 struct btrfs_block_group_cache *block_group;
6911 struct btrfs_space_info *space_info;
6912 struct btrfs_caching_control *caching_ctl;
6913 struct rb_node *n;
6914
6915 down_write(&info->extent_commit_sem);
6916 while (!list_empty(&info->caching_block_groups)) {
6917 caching_ctl = list_entry(info->caching_block_groups.next,
6918 struct btrfs_caching_control, list);
6919 list_del(&caching_ctl->list);
6920 put_caching_control(caching_ctl);
6921 }
6922 up_write(&info->extent_commit_sem);
6923
6924 spin_lock(&info->block_group_cache_lock);
6925 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6926 block_group = rb_entry(n, struct btrfs_block_group_cache,
6927 cache_node);
6928 rb_erase(&block_group->cache_node,
6929 &info->block_group_cache_tree);
6930 spin_unlock(&info->block_group_cache_lock);
6931
6932 down_write(&block_group->space_info->groups_sem);
6933 list_del(&block_group->list);
6934 up_write(&block_group->space_info->groups_sem);
6935
6936 if (block_group->cached == BTRFS_CACHE_STARTED)
6937 wait_block_group_cache_done(block_group);
6938
6939 /*
6940 * We haven't cached this block group, which means we could
6941 * possibly have excluded extents on this block group.
6942 */
6943 if (block_group->cached == BTRFS_CACHE_NO)
6944 free_excluded_extents(info->extent_root, block_group);
6945
6946 btrfs_remove_free_space_cache(block_group);
6947 btrfs_put_block_group(block_group);
6948
6949 spin_lock(&info->block_group_cache_lock);
6950 }
6951 spin_unlock(&info->block_group_cache_lock);
6952
6953 /* now that all the block groups are freed, go through and
6954 * free all the space_info structs. This is only called during
6955 * the final stages of unmount, and so we know nobody is
6956 * using them. We call synchronize_rcu() once before we start,
6957 * just to be on the safe side.
6958 */
6959 synchronize_rcu();
6960
6961 release_global_block_rsv(info);
6962
6963 while(!list_empty(&info->space_info)) {
6964 space_info = list_entry(info->space_info.next,
6965 struct btrfs_space_info,
6966 list);
6967 if (space_info->bytes_pinned > 0 ||
6968 space_info->bytes_reserved > 0) {
6969 WARN_ON(1);
6970 dump_space_info(space_info, 0, 0);
6971 }
6972 list_del(&space_info->list);
6973 kfree(space_info);
6974 }
6975 return 0;
6976 }
6977
6978 static void __link_block_group(struct btrfs_space_info *space_info,
6979 struct btrfs_block_group_cache *cache)
6980 {
6981 int index = get_block_group_index(cache);
6982
6983 down_write(&space_info->groups_sem);
6984 list_add_tail(&cache->list, &space_info->block_groups[index]);
6985 up_write(&space_info->groups_sem);
6986 }
6987
6988 int btrfs_read_block_groups(struct btrfs_root *root)
6989 {
6990 struct btrfs_path *path;
6991 int ret;
6992 struct btrfs_block_group_cache *cache;
6993 struct btrfs_fs_info *info = root->fs_info;
6994 struct btrfs_space_info *space_info;
6995 struct btrfs_key key;
6996 struct btrfs_key found_key;
6997 struct extent_buffer *leaf;
6998 int need_clear = 0;
6999 u64 cache_gen;
7000
7001 root = info->extent_root;
7002 key.objectid = 0;
7003 key.offset = 0;
7004 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7005 path = btrfs_alloc_path();
7006 if (!path)
7007 return -ENOMEM;
7008 path->reada = 1;
7009
7010 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
7011 if (cache_gen != 0 &&
7012 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
7013 need_clear = 1;
7014 if (btrfs_test_opt(root, CLEAR_CACHE))
7015 need_clear = 1;
7016 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
7017 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
7018
7019 while (1) {
7020 ret = find_first_block_group(root, path, &key);
7021 if (ret > 0)
7022 break;
7023 if (ret != 0)
7024 goto error;
7025 leaf = path->nodes[0];
7026 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7027 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7028 if (!cache) {
7029 ret = -ENOMEM;
7030 goto error;
7031 }
7032 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7033 GFP_NOFS);
7034 if (!cache->free_space_ctl) {
7035 kfree(cache);
7036 ret = -ENOMEM;
7037 goto error;
7038 }
7039
7040 atomic_set(&cache->count, 1);
7041 spin_lock_init(&cache->lock);
7042 cache->fs_info = info;
7043 INIT_LIST_HEAD(&cache->list);
7044 INIT_LIST_HEAD(&cache->cluster_list);
7045
7046 if (need_clear)
7047 cache->disk_cache_state = BTRFS_DC_CLEAR;
7048
7049 read_extent_buffer(leaf, &cache->item,
7050 btrfs_item_ptr_offset(leaf, path->slots[0]),
7051 sizeof(cache->item));
7052 memcpy(&cache->key, &found_key, sizeof(found_key));
7053
7054 key.objectid = found_key.objectid + found_key.offset;
7055 btrfs_release_path(path);
7056 cache->flags = btrfs_block_group_flags(&cache->item);
7057 cache->sectorsize = root->sectorsize;
7058
7059 btrfs_init_free_space_ctl(cache);
7060
7061 /*
7062 * We need to exclude the super stripes now so that the space
7063 * info has super bytes accounted for, otherwise we'll think
7064 * we have more space than we actually do.
7065 */
7066 exclude_super_stripes(root, cache);
7067
7068 /*
7069 * check for two cases, either we are full, and therefore
7070 * don't need to bother with the caching work since we won't
7071 * find any space, or we are empty, and we can just add all
7072 * the space in and be done with it. This saves us _alot_ of
7073 * time, particularly in the full case.
7074 */
7075 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7076 cache->last_byte_to_unpin = (u64)-1;
7077 cache->cached = BTRFS_CACHE_FINISHED;
7078 free_excluded_extents(root, cache);
7079 } else if (btrfs_block_group_used(&cache->item) == 0) {
7080 cache->last_byte_to_unpin = (u64)-1;
7081 cache->cached = BTRFS_CACHE_FINISHED;
7082 add_new_free_space(cache, root->fs_info,
7083 found_key.objectid,
7084 found_key.objectid +
7085 found_key.offset);
7086 free_excluded_extents(root, cache);
7087 }
7088
7089 ret = update_space_info(info, cache->flags, found_key.offset,
7090 btrfs_block_group_used(&cache->item),
7091 &space_info);
7092 BUG_ON(ret);
7093 cache->space_info = space_info;
7094 spin_lock(&cache->space_info->lock);
7095 cache->space_info->bytes_readonly += cache->bytes_super;
7096 spin_unlock(&cache->space_info->lock);
7097
7098 __link_block_group(space_info, cache);
7099
7100 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7101 BUG_ON(ret);
7102
7103 set_avail_alloc_bits(root->fs_info, cache->flags);
7104 if (btrfs_chunk_readonly(root, cache->key.objectid))
7105 set_block_group_ro(cache, 1);
7106 }
7107
7108 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7109 if (!(get_alloc_profile(root, space_info->flags) &
7110 (BTRFS_BLOCK_GROUP_RAID10 |
7111 BTRFS_BLOCK_GROUP_RAID1 |
7112 BTRFS_BLOCK_GROUP_DUP)))
7113 continue;
7114 /*
7115 * avoid allocating from un-mirrored block group if there are
7116 * mirrored block groups.
7117 */
7118 list_for_each_entry(cache, &space_info->block_groups[3], list)
7119 set_block_group_ro(cache, 1);
7120 list_for_each_entry(cache, &space_info->block_groups[4], list)
7121 set_block_group_ro(cache, 1);
7122 }
7123
7124 init_global_block_rsv(info);
7125 ret = 0;
7126 error:
7127 btrfs_free_path(path);
7128 return ret;
7129 }
7130
7131 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7132 struct btrfs_root *root, u64 bytes_used,
7133 u64 type, u64 chunk_objectid, u64 chunk_offset,
7134 u64 size)
7135 {
7136 int ret;
7137 struct btrfs_root *extent_root;
7138 struct btrfs_block_group_cache *cache;
7139
7140 extent_root = root->fs_info->extent_root;
7141
7142 root->fs_info->last_trans_log_full_commit = trans->transid;
7143
7144 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7145 if (!cache)
7146 return -ENOMEM;
7147 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7148 GFP_NOFS);
7149 if (!cache->free_space_ctl) {
7150 kfree(cache);
7151 return -ENOMEM;
7152 }
7153
7154 cache->key.objectid = chunk_offset;
7155 cache->key.offset = size;
7156 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7157 cache->sectorsize = root->sectorsize;
7158 cache->fs_info = root->fs_info;
7159
7160 atomic_set(&cache->count, 1);
7161 spin_lock_init(&cache->lock);
7162 INIT_LIST_HEAD(&cache->list);
7163 INIT_LIST_HEAD(&cache->cluster_list);
7164
7165 btrfs_init_free_space_ctl(cache);
7166
7167 btrfs_set_block_group_used(&cache->item, bytes_used);
7168 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7169 cache->flags = type;
7170 btrfs_set_block_group_flags(&cache->item, type);
7171
7172 cache->last_byte_to_unpin = (u64)-1;
7173 cache->cached = BTRFS_CACHE_FINISHED;
7174 exclude_super_stripes(root, cache);
7175
7176 add_new_free_space(cache, root->fs_info, chunk_offset,
7177 chunk_offset + size);
7178
7179 free_excluded_extents(root, cache);
7180
7181 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7182 &cache->space_info);
7183 BUG_ON(ret);
7184
7185 spin_lock(&cache->space_info->lock);
7186 cache->space_info->bytes_readonly += cache->bytes_super;
7187 spin_unlock(&cache->space_info->lock);
7188
7189 __link_block_group(cache->space_info, cache);
7190
7191 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7192 BUG_ON(ret);
7193
7194 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7195 sizeof(cache->item));
7196 BUG_ON(ret);
7197
7198 set_avail_alloc_bits(extent_root->fs_info, type);
7199
7200 return 0;
7201 }
7202
7203 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7204 struct btrfs_root *root, u64 group_start)
7205 {
7206 struct btrfs_path *path;
7207 struct btrfs_block_group_cache *block_group;
7208 struct btrfs_free_cluster *cluster;
7209 struct btrfs_root *tree_root = root->fs_info->tree_root;
7210 struct btrfs_key key;
7211 struct inode *inode;
7212 int ret;
7213 int factor;
7214
7215 root = root->fs_info->extent_root;
7216
7217 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7218 BUG_ON(!block_group);
7219 BUG_ON(!block_group->ro);
7220
7221 /*
7222 * Free the reserved super bytes from this block group before
7223 * remove it.
7224 */
7225 free_excluded_extents(root, block_group);
7226
7227 memcpy(&key, &block_group->key, sizeof(key));
7228 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7229 BTRFS_BLOCK_GROUP_RAID1 |
7230 BTRFS_BLOCK_GROUP_RAID10))
7231 factor = 2;
7232 else
7233 factor = 1;
7234
7235 /* make sure this block group isn't part of an allocation cluster */
7236 cluster = &root->fs_info->data_alloc_cluster;
7237 spin_lock(&cluster->refill_lock);
7238 btrfs_return_cluster_to_free_space(block_group, cluster);
7239 spin_unlock(&cluster->refill_lock);
7240
7241 /*
7242 * make sure this block group isn't part of a metadata
7243 * allocation cluster
7244 */
7245 cluster = &root->fs_info->meta_alloc_cluster;
7246 spin_lock(&cluster->refill_lock);
7247 btrfs_return_cluster_to_free_space(block_group, cluster);
7248 spin_unlock(&cluster->refill_lock);
7249
7250 path = btrfs_alloc_path();
7251 if (!path) {
7252 ret = -ENOMEM;
7253 goto out;
7254 }
7255
7256 inode = lookup_free_space_inode(root, block_group, path);
7257 if (!IS_ERR(inode)) {
7258 ret = btrfs_orphan_add(trans, inode);
7259 BUG_ON(ret);
7260 clear_nlink(inode);
7261 /* One for the block groups ref */
7262 spin_lock(&block_group->lock);
7263 if (block_group->iref) {
7264 block_group->iref = 0;
7265 block_group->inode = NULL;
7266 spin_unlock(&block_group->lock);
7267 iput(inode);
7268 } else {
7269 spin_unlock(&block_group->lock);
7270 }
7271 /* One for our lookup ref */
7272 iput(inode);
7273 }
7274
7275 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7276 key.offset = block_group->key.objectid;
7277 key.type = 0;
7278
7279 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7280 if (ret < 0)
7281 goto out;
7282 if (ret > 0)
7283 btrfs_release_path(path);
7284 if (ret == 0) {
7285 ret = btrfs_del_item(trans, tree_root, path);
7286 if (ret)
7287 goto out;
7288 btrfs_release_path(path);
7289 }
7290
7291 spin_lock(&root->fs_info->block_group_cache_lock);
7292 rb_erase(&block_group->cache_node,
7293 &root->fs_info->block_group_cache_tree);
7294 spin_unlock(&root->fs_info->block_group_cache_lock);
7295
7296 down_write(&block_group->space_info->groups_sem);
7297 /*
7298 * we must use list_del_init so people can check to see if they
7299 * are still on the list after taking the semaphore
7300 */
7301 list_del_init(&block_group->list);
7302 up_write(&block_group->space_info->groups_sem);
7303
7304 if (block_group->cached == BTRFS_CACHE_STARTED)
7305 wait_block_group_cache_done(block_group);
7306
7307 btrfs_remove_free_space_cache(block_group);
7308
7309 spin_lock(&block_group->space_info->lock);
7310 block_group->space_info->total_bytes -= block_group->key.offset;
7311 block_group->space_info->bytes_readonly -= block_group->key.offset;
7312 block_group->space_info->disk_total -= block_group->key.offset * factor;
7313 spin_unlock(&block_group->space_info->lock);
7314
7315 memcpy(&key, &block_group->key, sizeof(key));
7316
7317 btrfs_clear_space_info_full(root->fs_info);
7318
7319 btrfs_put_block_group(block_group);
7320 btrfs_put_block_group(block_group);
7321
7322 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7323 if (ret > 0)
7324 ret = -EIO;
7325 if (ret < 0)
7326 goto out;
7327
7328 ret = btrfs_del_item(trans, root, path);
7329 out:
7330 btrfs_free_path(path);
7331 return ret;
7332 }
7333
7334 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7335 {
7336 struct btrfs_space_info *space_info;
7337 struct btrfs_super_block *disk_super;
7338 u64 features;
7339 u64 flags;
7340 int mixed = 0;
7341 int ret;
7342
7343 disk_super = &fs_info->super_copy;
7344 if (!btrfs_super_root(disk_super))
7345 return 1;
7346
7347 features = btrfs_super_incompat_flags(disk_super);
7348 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7349 mixed = 1;
7350
7351 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7352 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7353 if (ret)
7354 goto out;
7355
7356 if (mixed) {
7357 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7358 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7359 } else {
7360 flags = BTRFS_BLOCK_GROUP_METADATA;
7361 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7362 if (ret)
7363 goto out;
7364
7365 flags = BTRFS_BLOCK_GROUP_DATA;
7366 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7367 }
7368 out:
7369 return ret;
7370 }
7371
7372 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7373 {
7374 return unpin_extent_range(root, start, end);
7375 }
7376
7377 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7378 u64 num_bytes, u64 *actual_bytes)
7379 {
7380 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7381 }
7382
7383 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7384 {
7385 struct btrfs_fs_info *fs_info = root->fs_info;
7386 struct btrfs_block_group_cache *cache = NULL;
7387 u64 group_trimmed;
7388 u64 start;
7389 u64 end;
7390 u64 trimmed = 0;
7391 int ret = 0;
7392
7393 cache = btrfs_lookup_block_group(fs_info, range->start);
7394
7395 while (cache) {
7396 if (cache->key.objectid >= (range->start + range->len)) {
7397 btrfs_put_block_group(cache);
7398 break;
7399 }
7400
7401 start = max(range->start, cache->key.objectid);
7402 end = min(range->start + range->len,
7403 cache->key.objectid + cache->key.offset);
7404
7405 if (end - start >= range->minlen) {
7406 if (!block_group_cache_done(cache)) {
7407 ret = cache_block_group(cache, NULL, root, 0);
7408 if (!ret)
7409 wait_block_group_cache_done(cache);
7410 }
7411 ret = btrfs_trim_block_group(cache,
7412 &group_trimmed,
7413 start,
7414 end,
7415 range->minlen);
7416
7417 trimmed += group_trimmed;
7418 if (ret) {
7419 btrfs_put_block_group(cache);
7420 break;
7421 }
7422 }
7423
7424 cache = next_block_group(fs_info->tree_root, cache);
7425 }
7426
7427 range->len = trimmed;
7428 return ret;
7429 }