]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'cleanups-post-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 locked_ref = NULL;
2543 }
2544 btrfs_put_delayed_ref(ref);
2545 count++;
2546 cond_resched();
2547 }
2548
2549 /*
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2553 */
2554 if (actual_count > 0) {
2555 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 u64 avg;
2557
2558 /*
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2561 */
2562 spin_lock(&delayed_refs->lock);
2563 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2565 spin_unlock(&delayed_refs->lock);
2566 }
2567 return 0;
2568 }
2569
2570 #ifdef SCRAMBLE_DELAYED_REFS
2571 /*
2572 * Normally delayed refs get processed in ascending bytenr order. This
2573 * correlates in most cases to the order added. To expose dependencies on this
2574 * order, we start to process the tree in the middle instead of the beginning
2575 */
2576 static u64 find_middle(struct rb_root *root)
2577 {
2578 struct rb_node *n = root->rb_node;
2579 struct btrfs_delayed_ref_node *entry;
2580 int alt = 1;
2581 u64 middle;
2582 u64 first = 0, last = 0;
2583
2584 n = rb_first(root);
2585 if (n) {
2586 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2587 first = entry->bytenr;
2588 }
2589 n = rb_last(root);
2590 if (n) {
2591 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2592 last = entry->bytenr;
2593 }
2594 n = root->rb_node;
2595
2596 while (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 WARN_ON(!entry->in_tree);
2599
2600 middle = entry->bytenr;
2601
2602 if (alt)
2603 n = n->rb_left;
2604 else
2605 n = n->rb_right;
2606
2607 alt = 1 - alt;
2608 }
2609 return middle;
2610 }
2611 #endif
2612
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614 {
2615 u64 num_bytes;
2616
2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 sizeof(struct btrfs_extent_inline_ref));
2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621
2622 /*
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2625 */
2626 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627 }
2628
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2631 {
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 num_bytes;
2635 int ret = 0;
2636
2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 num_heads = heads_to_leaves(root, num_heads);
2639 if (num_heads > 1)
2640 num_bytes += (num_heads - 1) * root->nodesize;
2641 num_bytes <<= 1;
2642 global_rsv = &root->fs_info->global_block_rsv;
2643
2644 /*
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2647 */
2648 if (global_rsv->space_info->full)
2649 num_bytes <<= 1;
2650
2651 spin_lock(&global_rsv->lock);
2652 if (global_rsv->reserved <= num_bytes)
2653 ret = 1;
2654 spin_unlock(&global_rsv->lock);
2655 return ret;
2656 }
2657
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root)
2660 {
2661 struct btrfs_fs_info *fs_info = root->fs_info;
2662 u64 num_entries =
2663 atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 u64 avg_runtime;
2665 u64 val;
2666
2667 smp_mb();
2668 avg_runtime = fs_info->avg_delayed_ref_runtime;
2669 val = num_entries * avg_runtime;
2670 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2671 return 1;
2672 if (val >= NSEC_PER_SEC / 2)
2673 return 2;
2674
2675 return btrfs_check_space_for_delayed_refs(trans, root);
2676 }
2677
2678 struct async_delayed_refs {
2679 struct btrfs_root *root;
2680 int count;
2681 int error;
2682 int sync;
2683 struct completion wait;
2684 struct btrfs_work work;
2685 };
2686
2687 static void delayed_ref_async_start(struct btrfs_work *work)
2688 {
2689 struct async_delayed_refs *async;
2690 struct btrfs_trans_handle *trans;
2691 int ret;
2692
2693 async = container_of(work, struct async_delayed_refs, work);
2694
2695 trans = btrfs_join_transaction(async->root);
2696 if (IS_ERR(trans)) {
2697 async->error = PTR_ERR(trans);
2698 goto done;
2699 }
2700
2701 /*
2702 * trans->sync means that when we call end_transaciton, we won't
2703 * wait on delayed refs
2704 */
2705 trans->sync = true;
2706 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2707 if (ret)
2708 async->error = ret;
2709
2710 ret = btrfs_end_transaction(trans, async->root);
2711 if (ret && !async->error)
2712 async->error = ret;
2713 done:
2714 if (async->sync)
2715 complete(&async->wait);
2716 else
2717 kfree(async);
2718 }
2719
2720 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2721 unsigned long count, int wait)
2722 {
2723 struct async_delayed_refs *async;
2724 int ret;
2725
2726 async = kmalloc(sizeof(*async), GFP_NOFS);
2727 if (!async)
2728 return -ENOMEM;
2729
2730 async->root = root->fs_info->tree_root;
2731 async->count = count;
2732 async->error = 0;
2733 if (wait)
2734 async->sync = 1;
2735 else
2736 async->sync = 0;
2737 init_completion(&async->wait);
2738
2739 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2740 delayed_ref_async_start, NULL, NULL);
2741
2742 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2743
2744 if (wait) {
2745 wait_for_completion(&async->wait);
2746 ret = async->error;
2747 kfree(async);
2748 return ret;
2749 }
2750 return 0;
2751 }
2752
2753 /*
2754 * this starts processing the delayed reference count updates and
2755 * extent insertions we have queued up so far. count can be
2756 * 0, which means to process everything in the tree at the start
2757 * of the run (but not newly added entries), or it can be some target
2758 * number you'd like to process.
2759 *
2760 * Returns 0 on success or if called with an aborted transaction
2761 * Returns <0 on error and aborts the transaction
2762 */
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root, unsigned long count)
2765 {
2766 struct rb_node *node;
2767 struct btrfs_delayed_ref_root *delayed_refs;
2768 struct btrfs_delayed_ref_head *head;
2769 int ret;
2770 int run_all = count == (unsigned long)-1;
2771
2772 /* We'll clean this up in btrfs_cleanup_transaction */
2773 if (trans->aborted)
2774 return 0;
2775
2776 if (root == root->fs_info->extent_root)
2777 root = root->fs_info->tree_root;
2778
2779 delayed_refs = &trans->transaction->delayed_refs;
2780 if (count == 0)
2781 count = atomic_read(&delayed_refs->num_entries) * 2;
2782
2783 again:
2784 #ifdef SCRAMBLE_DELAYED_REFS
2785 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2786 #endif
2787 ret = __btrfs_run_delayed_refs(trans, root, count);
2788 if (ret < 0) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 return ret;
2791 }
2792
2793 if (run_all) {
2794 if (!list_empty(&trans->new_bgs))
2795 btrfs_create_pending_block_groups(trans, root);
2796
2797 spin_lock(&delayed_refs->lock);
2798 node = rb_first(&delayed_refs->href_root);
2799 if (!node) {
2800 spin_unlock(&delayed_refs->lock);
2801 goto out;
2802 }
2803 count = (unsigned long)-1;
2804
2805 while (node) {
2806 head = rb_entry(node, struct btrfs_delayed_ref_head,
2807 href_node);
2808 if (btrfs_delayed_ref_is_head(&head->node)) {
2809 struct btrfs_delayed_ref_node *ref;
2810
2811 ref = &head->node;
2812 atomic_inc(&ref->refs);
2813
2814 spin_unlock(&delayed_refs->lock);
2815 /*
2816 * Mutex was contended, block until it's
2817 * released and try again
2818 */
2819 mutex_lock(&head->mutex);
2820 mutex_unlock(&head->mutex);
2821
2822 btrfs_put_delayed_ref(ref);
2823 cond_resched();
2824 goto again;
2825 } else {
2826 WARN_ON(1);
2827 }
2828 node = rb_next(node);
2829 }
2830 spin_unlock(&delayed_refs->lock);
2831 cond_resched();
2832 goto again;
2833 }
2834 out:
2835 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2836 if (ret)
2837 return ret;
2838 assert_qgroups_uptodate(trans);
2839 return 0;
2840 }
2841
2842 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2843 struct btrfs_root *root,
2844 u64 bytenr, u64 num_bytes, u64 flags,
2845 int level, int is_data)
2846 {
2847 struct btrfs_delayed_extent_op *extent_op;
2848 int ret;
2849
2850 extent_op = btrfs_alloc_delayed_extent_op();
2851 if (!extent_op)
2852 return -ENOMEM;
2853
2854 extent_op->flags_to_set = flags;
2855 extent_op->update_flags = 1;
2856 extent_op->update_key = 0;
2857 extent_op->is_data = is_data ? 1 : 0;
2858 extent_op->level = level;
2859
2860 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2861 num_bytes, extent_op);
2862 if (ret)
2863 btrfs_free_delayed_extent_op(extent_op);
2864 return ret;
2865 }
2866
2867 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2868 struct btrfs_root *root,
2869 struct btrfs_path *path,
2870 u64 objectid, u64 offset, u64 bytenr)
2871 {
2872 struct btrfs_delayed_ref_head *head;
2873 struct btrfs_delayed_ref_node *ref;
2874 struct btrfs_delayed_data_ref *data_ref;
2875 struct btrfs_delayed_ref_root *delayed_refs;
2876 struct rb_node *node;
2877 int ret = 0;
2878
2879 delayed_refs = &trans->transaction->delayed_refs;
2880 spin_lock(&delayed_refs->lock);
2881 head = btrfs_find_delayed_ref_head(trans, bytenr);
2882 if (!head) {
2883 spin_unlock(&delayed_refs->lock);
2884 return 0;
2885 }
2886
2887 if (!mutex_trylock(&head->mutex)) {
2888 atomic_inc(&head->node.refs);
2889 spin_unlock(&delayed_refs->lock);
2890
2891 btrfs_release_path(path);
2892
2893 /*
2894 * Mutex was contended, block until it's released and let
2895 * caller try again
2896 */
2897 mutex_lock(&head->mutex);
2898 mutex_unlock(&head->mutex);
2899 btrfs_put_delayed_ref(&head->node);
2900 return -EAGAIN;
2901 }
2902 spin_unlock(&delayed_refs->lock);
2903
2904 spin_lock(&head->lock);
2905 node = rb_first(&head->ref_root);
2906 while (node) {
2907 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2908 node = rb_next(node);
2909
2910 /* If it's a shared ref we know a cross reference exists */
2911 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2912 ret = 1;
2913 break;
2914 }
2915
2916 data_ref = btrfs_delayed_node_to_data_ref(ref);
2917
2918 /*
2919 * If our ref doesn't match the one we're currently looking at
2920 * then we have a cross reference.
2921 */
2922 if (data_ref->root != root->root_key.objectid ||
2923 data_ref->objectid != objectid ||
2924 data_ref->offset != offset) {
2925 ret = 1;
2926 break;
2927 }
2928 }
2929 spin_unlock(&head->lock);
2930 mutex_unlock(&head->mutex);
2931 return ret;
2932 }
2933
2934 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root,
2936 struct btrfs_path *path,
2937 u64 objectid, u64 offset, u64 bytenr)
2938 {
2939 struct btrfs_root *extent_root = root->fs_info->extent_root;
2940 struct extent_buffer *leaf;
2941 struct btrfs_extent_data_ref *ref;
2942 struct btrfs_extent_inline_ref *iref;
2943 struct btrfs_extent_item *ei;
2944 struct btrfs_key key;
2945 u32 item_size;
2946 int ret;
2947
2948 key.objectid = bytenr;
2949 key.offset = (u64)-1;
2950 key.type = BTRFS_EXTENT_ITEM_KEY;
2951
2952 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2953 if (ret < 0)
2954 goto out;
2955 BUG_ON(ret == 0); /* Corruption */
2956
2957 ret = -ENOENT;
2958 if (path->slots[0] == 0)
2959 goto out;
2960
2961 path->slots[0]--;
2962 leaf = path->nodes[0];
2963 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2964
2965 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2966 goto out;
2967
2968 ret = 1;
2969 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2971 if (item_size < sizeof(*ei)) {
2972 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2973 goto out;
2974 }
2975 #endif
2976 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2977
2978 if (item_size != sizeof(*ei) +
2979 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2980 goto out;
2981
2982 if (btrfs_extent_generation(leaf, ei) <=
2983 btrfs_root_last_snapshot(&root->root_item))
2984 goto out;
2985
2986 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2987 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2988 BTRFS_EXTENT_DATA_REF_KEY)
2989 goto out;
2990
2991 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2992 if (btrfs_extent_refs(leaf, ei) !=
2993 btrfs_extent_data_ref_count(leaf, ref) ||
2994 btrfs_extent_data_ref_root(leaf, ref) !=
2995 root->root_key.objectid ||
2996 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2997 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2998 goto out;
2999
3000 ret = 0;
3001 out:
3002 return ret;
3003 }
3004
3005 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3006 struct btrfs_root *root,
3007 u64 objectid, u64 offset, u64 bytenr)
3008 {
3009 struct btrfs_path *path;
3010 int ret;
3011 int ret2;
3012
3013 path = btrfs_alloc_path();
3014 if (!path)
3015 return -ENOENT;
3016
3017 do {
3018 ret = check_committed_ref(trans, root, path, objectid,
3019 offset, bytenr);
3020 if (ret && ret != -ENOENT)
3021 goto out;
3022
3023 ret2 = check_delayed_ref(trans, root, path, objectid,
3024 offset, bytenr);
3025 } while (ret2 == -EAGAIN);
3026
3027 if (ret2 && ret2 != -ENOENT) {
3028 ret = ret2;
3029 goto out;
3030 }
3031
3032 if (ret != -ENOENT || ret2 != -ENOENT)
3033 ret = 0;
3034 out:
3035 btrfs_free_path(path);
3036 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3037 WARN_ON(ret > 0);
3038 return ret;
3039 }
3040
3041 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3042 struct btrfs_root *root,
3043 struct extent_buffer *buf,
3044 int full_backref, int inc)
3045 {
3046 u64 bytenr;
3047 u64 num_bytes;
3048 u64 parent;
3049 u64 ref_root;
3050 u32 nritems;
3051 struct btrfs_key key;
3052 struct btrfs_file_extent_item *fi;
3053 int i;
3054 int level;
3055 int ret = 0;
3056 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3057 u64, u64, u64, u64, u64, u64, int);
3058
3059
3060 if (btrfs_test_is_dummy_root(root))
3061 return 0;
3062
3063 ref_root = btrfs_header_owner(buf);
3064 nritems = btrfs_header_nritems(buf);
3065 level = btrfs_header_level(buf);
3066
3067 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3068 return 0;
3069
3070 if (inc)
3071 process_func = btrfs_inc_extent_ref;
3072 else
3073 process_func = btrfs_free_extent;
3074
3075 if (full_backref)
3076 parent = buf->start;
3077 else
3078 parent = 0;
3079
3080 for (i = 0; i < nritems; i++) {
3081 if (level == 0) {
3082 btrfs_item_key_to_cpu(buf, &key, i);
3083 if (key.type != BTRFS_EXTENT_DATA_KEY)
3084 continue;
3085 fi = btrfs_item_ptr(buf, i,
3086 struct btrfs_file_extent_item);
3087 if (btrfs_file_extent_type(buf, fi) ==
3088 BTRFS_FILE_EXTENT_INLINE)
3089 continue;
3090 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3091 if (bytenr == 0)
3092 continue;
3093
3094 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3095 key.offset -= btrfs_file_extent_offset(buf, fi);
3096 ret = process_func(trans, root, bytenr, num_bytes,
3097 parent, ref_root, key.objectid,
3098 key.offset, 1);
3099 if (ret)
3100 goto fail;
3101 } else {
3102 bytenr = btrfs_node_blockptr(buf, i);
3103 num_bytes = root->nodesize;
3104 ret = process_func(trans, root, bytenr, num_bytes,
3105 parent, ref_root, level - 1, 0,
3106 1);
3107 if (ret)
3108 goto fail;
3109 }
3110 }
3111 return 0;
3112 fail:
3113 return ret;
3114 }
3115
3116 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3117 struct extent_buffer *buf, int full_backref)
3118 {
3119 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3120 }
3121
3122 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3123 struct extent_buffer *buf, int full_backref)
3124 {
3125 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3126 }
3127
3128 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3129 struct btrfs_root *root,
3130 struct btrfs_path *path,
3131 struct btrfs_block_group_cache *cache)
3132 {
3133 int ret;
3134 struct btrfs_root *extent_root = root->fs_info->extent_root;
3135 unsigned long bi;
3136 struct extent_buffer *leaf;
3137
3138 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3139 if (ret) {
3140 if (ret > 0)
3141 ret = -ENOENT;
3142 goto fail;
3143 }
3144
3145 leaf = path->nodes[0];
3146 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3147 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3148 btrfs_mark_buffer_dirty(leaf);
3149 btrfs_release_path(path);
3150 fail:
3151 if (ret)
3152 btrfs_abort_transaction(trans, root, ret);
3153 return ret;
3154
3155 }
3156
3157 static struct btrfs_block_group_cache *
3158 next_block_group(struct btrfs_root *root,
3159 struct btrfs_block_group_cache *cache)
3160 {
3161 struct rb_node *node;
3162
3163 spin_lock(&root->fs_info->block_group_cache_lock);
3164
3165 /* If our block group was removed, we need a full search. */
3166 if (RB_EMPTY_NODE(&cache->cache_node)) {
3167 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3168
3169 spin_unlock(&root->fs_info->block_group_cache_lock);
3170 btrfs_put_block_group(cache);
3171 cache = btrfs_lookup_first_block_group(root->fs_info,
3172 next_bytenr);
3173 return cache;
3174 }
3175 node = rb_next(&cache->cache_node);
3176 btrfs_put_block_group(cache);
3177 if (node) {
3178 cache = rb_entry(node, struct btrfs_block_group_cache,
3179 cache_node);
3180 btrfs_get_block_group(cache);
3181 } else
3182 cache = NULL;
3183 spin_unlock(&root->fs_info->block_group_cache_lock);
3184 return cache;
3185 }
3186
3187 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3188 struct btrfs_trans_handle *trans,
3189 struct btrfs_path *path)
3190 {
3191 struct btrfs_root *root = block_group->fs_info->tree_root;
3192 struct inode *inode = NULL;
3193 u64 alloc_hint = 0;
3194 int dcs = BTRFS_DC_ERROR;
3195 u64 num_pages = 0;
3196 int retries = 0;
3197 int ret = 0;
3198
3199 /*
3200 * If this block group is smaller than 100 megs don't bother caching the
3201 * block group.
3202 */
3203 if (block_group->key.offset < (100 * 1024 * 1024)) {
3204 spin_lock(&block_group->lock);
3205 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3206 spin_unlock(&block_group->lock);
3207 return 0;
3208 }
3209
3210 if (trans->aborted)
3211 return 0;
3212 again:
3213 inode = lookup_free_space_inode(root, block_group, path);
3214 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3215 ret = PTR_ERR(inode);
3216 btrfs_release_path(path);
3217 goto out;
3218 }
3219
3220 if (IS_ERR(inode)) {
3221 BUG_ON(retries);
3222 retries++;
3223
3224 if (block_group->ro)
3225 goto out_free;
3226
3227 ret = create_free_space_inode(root, trans, block_group, path);
3228 if (ret)
3229 goto out_free;
3230 goto again;
3231 }
3232
3233 /* We've already setup this transaction, go ahead and exit */
3234 if (block_group->cache_generation == trans->transid &&
3235 i_size_read(inode)) {
3236 dcs = BTRFS_DC_SETUP;
3237 goto out_put;
3238 }
3239
3240 /*
3241 * We want to set the generation to 0, that way if anything goes wrong
3242 * from here on out we know not to trust this cache when we load up next
3243 * time.
3244 */
3245 BTRFS_I(inode)->generation = 0;
3246 ret = btrfs_update_inode(trans, root, inode);
3247 if (ret) {
3248 /*
3249 * So theoretically we could recover from this, simply set the
3250 * super cache generation to 0 so we know to invalidate the
3251 * cache, but then we'd have to keep track of the block groups
3252 * that fail this way so we know we _have_ to reset this cache
3253 * before the next commit or risk reading stale cache. So to
3254 * limit our exposure to horrible edge cases lets just abort the
3255 * transaction, this only happens in really bad situations
3256 * anyway.
3257 */
3258 btrfs_abort_transaction(trans, root, ret);
3259 goto out_put;
3260 }
3261 WARN_ON(ret);
3262
3263 if (i_size_read(inode) > 0) {
3264 ret = btrfs_check_trunc_cache_free_space(root,
3265 &root->fs_info->global_block_rsv);
3266 if (ret)
3267 goto out_put;
3268
3269 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3270 if (ret)
3271 goto out_put;
3272 }
3273
3274 spin_lock(&block_group->lock);
3275 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3276 !btrfs_test_opt(root, SPACE_CACHE) ||
3277 block_group->delalloc_bytes) {
3278 /*
3279 * don't bother trying to write stuff out _if_
3280 * a) we're not cached,
3281 * b) we're with nospace_cache mount option.
3282 */
3283 dcs = BTRFS_DC_WRITTEN;
3284 spin_unlock(&block_group->lock);
3285 goto out_put;
3286 }
3287 spin_unlock(&block_group->lock);
3288
3289 /*
3290 * Try to preallocate enough space based on how big the block group is.
3291 * Keep in mind this has to include any pinned space which could end up
3292 * taking up quite a bit since it's not folded into the other space
3293 * cache.
3294 */
3295 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3296 if (!num_pages)
3297 num_pages = 1;
3298
3299 num_pages *= 16;
3300 num_pages *= PAGE_CACHE_SIZE;
3301
3302 ret = btrfs_check_data_free_space(inode, num_pages);
3303 if (ret)
3304 goto out_put;
3305
3306 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3307 num_pages, num_pages,
3308 &alloc_hint);
3309 if (!ret)
3310 dcs = BTRFS_DC_SETUP;
3311 btrfs_free_reserved_data_space(inode, num_pages);
3312
3313 out_put:
3314 iput(inode);
3315 out_free:
3316 btrfs_release_path(path);
3317 out:
3318 spin_lock(&block_group->lock);
3319 if (!ret && dcs == BTRFS_DC_SETUP)
3320 block_group->cache_generation = trans->transid;
3321 block_group->disk_cache_state = dcs;
3322 spin_unlock(&block_group->lock);
3323
3324 return ret;
3325 }
3326
3327 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3328 struct btrfs_root *root)
3329 {
3330 struct btrfs_block_group_cache *cache, *tmp;
3331 struct btrfs_transaction *cur_trans = trans->transaction;
3332 struct btrfs_path *path;
3333
3334 if (list_empty(&cur_trans->dirty_bgs) ||
3335 !btrfs_test_opt(root, SPACE_CACHE))
3336 return 0;
3337
3338 path = btrfs_alloc_path();
3339 if (!path)
3340 return -ENOMEM;
3341
3342 /* Could add new block groups, use _safe just in case */
3343 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3344 dirty_list) {
3345 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3346 cache_save_setup(cache, trans, path);
3347 }
3348
3349 btrfs_free_path(path);
3350 return 0;
3351 }
3352
3353 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3354 struct btrfs_root *root)
3355 {
3356 struct btrfs_block_group_cache *cache;
3357 struct btrfs_transaction *cur_trans = trans->transaction;
3358 int ret = 0;
3359 struct btrfs_path *path;
3360
3361 if (list_empty(&cur_trans->dirty_bgs))
3362 return 0;
3363
3364 path = btrfs_alloc_path();
3365 if (!path)
3366 return -ENOMEM;
3367
3368 /*
3369 * We don't need the lock here since we are protected by the transaction
3370 * commit. We want to do the cache_save_setup first and then run the
3371 * delayed refs to make sure we have the best chance at doing this all
3372 * in one shot.
3373 */
3374 while (!list_empty(&cur_trans->dirty_bgs)) {
3375 cache = list_first_entry(&cur_trans->dirty_bgs,
3376 struct btrfs_block_group_cache,
3377 dirty_list);
3378 list_del_init(&cache->dirty_list);
3379 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3380 cache_save_setup(cache, trans, path);
3381 if (!ret)
3382 ret = btrfs_run_delayed_refs(trans, root,
3383 (unsigned long) -1);
3384 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3385 btrfs_write_out_cache(root, trans, cache, path);
3386 if (!ret)
3387 ret = write_one_cache_group(trans, root, path, cache);
3388 btrfs_put_block_group(cache);
3389 }
3390
3391 btrfs_free_path(path);
3392 return ret;
3393 }
3394
3395 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3396 {
3397 struct btrfs_block_group_cache *block_group;
3398 int readonly = 0;
3399
3400 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3401 if (!block_group || block_group->ro)
3402 readonly = 1;
3403 if (block_group)
3404 btrfs_put_block_group(block_group);
3405 return readonly;
3406 }
3407
3408 static const char *alloc_name(u64 flags)
3409 {
3410 switch (flags) {
3411 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3412 return "mixed";
3413 case BTRFS_BLOCK_GROUP_METADATA:
3414 return "metadata";
3415 case BTRFS_BLOCK_GROUP_DATA:
3416 return "data";
3417 case BTRFS_BLOCK_GROUP_SYSTEM:
3418 return "system";
3419 default:
3420 WARN_ON(1);
3421 return "invalid-combination";
3422 };
3423 }
3424
3425 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3426 u64 total_bytes, u64 bytes_used,
3427 struct btrfs_space_info **space_info)
3428 {
3429 struct btrfs_space_info *found;
3430 int i;
3431 int factor;
3432 int ret;
3433
3434 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3435 BTRFS_BLOCK_GROUP_RAID10))
3436 factor = 2;
3437 else
3438 factor = 1;
3439
3440 found = __find_space_info(info, flags);
3441 if (found) {
3442 spin_lock(&found->lock);
3443 found->total_bytes += total_bytes;
3444 found->disk_total += total_bytes * factor;
3445 found->bytes_used += bytes_used;
3446 found->disk_used += bytes_used * factor;
3447 found->full = 0;
3448 spin_unlock(&found->lock);
3449 *space_info = found;
3450 return 0;
3451 }
3452 found = kzalloc(sizeof(*found), GFP_NOFS);
3453 if (!found)
3454 return -ENOMEM;
3455
3456 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3457 if (ret) {
3458 kfree(found);
3459 return ret;
3460 }
3461
3462 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3463 INIT_LIST_HEAD(&found->block_groups[i]);
3464 init_rwsem(&found->groups_sem);
3465 spin_lock_init(&found->lock);
3466 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3467 found->total_bytes = total_bytes;
3468 found->disk_total = total_bytes * factor;
3469 found->bytes_used = bytes_used;
3470 found->disk_used = bytes_used * factor;
3471 found->bytes_pinned = 0;
3472 found->bytes_reserved = 0;
3473 found->bytes_readonly = 0;
3474 found->bytes_may_use = 0;
3475 found->full = 0;
3476 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3477 found->chunk_alloc = 0;
3478 found->flush = 0;
3479 init_waitqueue_head(&found->wait);
3480 INIT_LIST_HEAD(&found->ro_bgs);
3481
3482 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3483 info->space_info_kobj, "%s",
3484 alloc_name(found->flags));
3485 if (ret) {
3486 kfree(found);
3487 return ret;
3488 }
3489
3490 *space_info = found;
3491 list_add_rcu(&found->list, &info->space_info);
3492 if (flags & BTRFS_BLOCK_GROUP_DATA)
3493 info->data_sinfo = found;
3494
3495 return ret;
3496 }
3497
3498 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3499 {
3500 u64 extra_flags = chunk_to_extended(flags) &
3501 BTRFS_EXTENDED_PROFILE_MASK;
3502
3503 write_seqlock(&fs_info->profiles_lock);
3504 if (flags & BTRFS_BLOCK_GROUP_DATA)
3505 fs_info->avail_data_alloc_bits |= extra_flags;
3506 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3507 fs_info->avail_metadata_alloc_bits |= extra_flags;
3508 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3509 fs_info->avail_system_alloc_bits |= extra_flags;
3510 write_sequnlock(&fs_info->profiles_lock);
3511 }
3512
3513 /*
3514 * returns target flags in extended format or 0 if restripe for this
3515 * chunk_type is not in progress
3516 *
3517 * should be called with either volume_mutex or balance_lock held
3518 */
3519 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3520 {
3521 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3522 u64 target = 0;
3523
3524 if (!bctl)
3525 return 0;
3526
3527 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3528 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3529 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3530 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3531 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3532 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3533 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3534 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3535 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3536 }
3537
3538 return target;
3539 }
3540
3541 /*
3542 * @flags: available profiles in extended format (see ctree.h)
3543 *
3544 * Returns reduced profile in chunk format. If profile changing is in
3545 * progress (either running or paused) picks the target profile (if it's
3546 * already available), otherwise falls back to plain reducing.
3547 */
3548 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3549 {
3550 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3551 u64 target;
3552 u64 tmp;
3553
3554 /*
3555 * see if restripe for this chunk_type is in progress, if so
3556 * try to reduce to the target profile
3557 */
3558 spin_lock(&root->fs_info->balance_lock);
3559 target = get_restripe_target(root->fs_info, flags);
3560 if (target) {
3561 /* pick target profile only if it's already available */
3562 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3563 spin_unlock(&root->fs_info->balance_lock);
3564 return extended_to_chunk(target);
3565 }
3566 }
3567 spin_unlock(&root->fs_info->balance_lock);
3568
3569 /* First, mask out the RAID levels which aren't possible */
3570 if (num_devices == 1)
3571 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3572 BTRFS_BLOCK_GROUP_RAID5);
3573 if (num_devices < 3)
3574 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3575 if (num_devices < 4)
3576 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3577
3578 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3579 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3580 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3581 flags &= ~tmp;
3582
3583 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3584 tmp = BTRFS_BLOCK_GROUP_RAID6;
3585 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3586 tmp = BTRFS_BLOCK_GROUP_RAID5;
3587 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3588 tmp = BTRFS_BLOCK_GROUP_RAID10;
3589 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3590 tmp = BTRFS_BLOCK_GROUP_RAID1;
3591 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3592 tmp = BTRFS_BLOCK_GROUP_RAID0;
3593
3594 return extended_to_chunk(flags | tmp);
3595 }
3596
3597 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3598 {
3599 unsigned seq;
3600 u64 flags;
3601
3602 do {
3603 flags = orig_flags;
3604 seq = read_seqbegin(&root->fs_info->profiles_lock);
3605
3606 if (flags & BTRFS_BLOCK_GROUP_DATA)
3607 flags |= root->fs_info->avail_data_alloc_bits;
3608 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3609 flags |= root->fs_info->avail_system_alloc_bits;
3610 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3611 flags |= root->fs_info->avail_metadata_alloc_bits;
3612 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3613
3614 return btrfs_reduce_alloc_profile(root, flags);
3615 }
3616
3617 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3618 {
3619 u64 flags;
3620 u64 ret;
3621
3622 if (data)
3623 flags = BTRFS_BLOCK_GROUP_DATA;
3624 else if (root == root->fs_info->chunk_root)
3625 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3626 else
3627 flags = BTRFS_BLOCK_GROUP_METADATA;
3628
3629 ret = get_alloc_profile(root, flags);
3630 return ret;
3631 }
3632
3633 /*
3634 * This will check the space that the inode allocates from to make sure we have
3635 * enough space for bytes.
3636 */
3637 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3638 {
3639 struct btrfs_space_info *data_sinfo;
3640 struct btrfs_root *root = BTRFS_I(inode)->root;
3641 struct btrfs_fs_info *fs_info = root->fs_info;
3642 u64 used;
3643 int ret = 0, committed = 0;
3644
3645 /* make sure bytes are sectorsize aligned */
3646 bytes = ALIGN(bytes, root->sectorsize);
3647
3648 if (btrfs_is_free_space_inode(inode)) {
3649 committed = 1;
3650 ASSERT(current->journal_info);
3651 }
3652
3653 data_sinfo = fs_info->data_sinfo;
3654 if (!data_sinfo)
3655 goto alloc;
3656
3657 again:
3658 /* make sure we have enough space to handle the data first */
3659 spin_lock(&data_sinfo->lock);
3660 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3661 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3662 data_sinfo->bytes_may_use;
3663
3664 if (used + bytes > data_sinfo->total_bytes) {
3665 struct btrfs_trans_handle *trans;
3666
3667 /*
3668 * if we don't have enough free bytes in this space then we need
3669 * to alloc a new chunk.
3670 */
3671 if (!data_sinfo->full) {
3672 u64 alloc_target;
3673
3674 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3675 spin_unlock(&data_sinfo->lock);
3676 alloc:
3677 alloc_target = btrfs_get_alloc_profile(root, 1);
3678 /*
3679 * It is ugly that we don't call nolock join
3680 * transaction for the free space inode case here.
3681 * But it is safe because we only do the data space
3682 * reservation for the free space cache in the
3683 * transaction context, the common join transaction
3684 * just increase the counter of the current transaction
3685 * handler, doesn't try to acquire the trans_lock of
3686 * the fs.
3687 */
3688 trans = btrfs_join_transaction(root);
3689 if (IS_ERR(trans))
3690 return PTR_ERR(trans);
3691
3692 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3693 alloc_target,
3694 CHUNK_ALLOC_NO_FORCE);
3695 btrfs_end_transaction(trans, root);
3696 if (ret < 0) {
3697 if (ret != -ENOSPC)
3698 return ret;
3699 else
3700 goto commit_trans;
3701 }
3702
3703 if (!data_sinfo)
3704 data_sinfo = fs_info->data_sinfo;
3705
3706 goto again;
3707 }
3708
3709 /*
3710 * If we don't have enough pinned space to deal with this
3711 * allocation don't bother committing the transaction.
3712 */
3713 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3714 bytes) < 0)
3715 committed = 1;
3716 spin_unlock(&data_sinfo->lock);
3717
3718 /* commit the current transaction and try again */
3719 commit_trans:
3720 if (!committed &&
3721 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3722 committed = 1;
3723
3724 trans = btrfs_join_transaction(root);
3725 if (IS_ERR(trans))
3726 return PTR_ERR(trans);
3727 ret = btrfs_commit_transaction(trans, root);
3728 if (ret)
3729 return ret;
3730 goto again;
3731 }
3732
3733 trace_btrfs_space_reservation(root->fs_info,
3734 "space_info:enospc",
3735 data_sinfo->flags, bytes, 1);
3736 return -ENOSPC;
3737 }
3738 data_sinfo->bytes_may_use += bytes;
3739 trace_btrfs_space_reservation(root->fs_info, "space_info",
3740 data_sinfo->flags, bytes, 1);
3741 spin_unlock(&data_sinfo->lock);
3742
3743 return 0;
3744 }
3745
3746 /*
3747 * Called if we need to clear a data reservation for this inode.
3748 */
3749 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3750 {
3751 struct btrfs_root *root = BTRFS_I(inode)->root;
3752 struct btrfs_space_info *data_sinfo;
3753
3754 /* make sure bytes are sectorsize aligned */
3755 bytes = ALIGN(bytes, root->sectorsize);
3756
3757 data_sinfo = root->fs_info->data_sinfo;
3758 spin_lock(&data_sinfo->lock);
3759 WARN_ON(data_sinfo->bytes_may_use < bytes);
3760 data_sinfo->bytes_may_use -= bytes;
3761 trace_btrfs_space_reservation(root->fs_info, "space_info",
3762 data_sinfo->flags, bytes, 0);
3763 spin_unlock(&data_sinfo->lock);
3764 }
3765
3766 static void force_metadata_allocation(struct btrfs_fs_info *info)
3767 {
3768 struct list_head *head = &info->space_info;
3769 struct btrfs_space_info *found;
3770
3771 rcu_read_lock();
3772 list_for_each_entry_rcu(found, head, list) {
3773 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3774 found->force_alloc = CHUNK_ALLOC_FORCE;
3775 }
3776 rcu_read_unlock();
3777 }
3778
3779 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3780 {
3781 return (global->size << 1);
3782 }
3783
3784 static int should_alloc_chunk(struct btrfs_root *root,
3785 struct btrfs_space_info *sinfo, int force)
3786 {
3787 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3788 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3789 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3790 u64 thresh;
3791
3792 if (force == CHUNK_ALLOC_FORCE)
3793 return 1;
3794
3795 /*
3796 * We need to take into account the global rsv because for all intents
3797 * and purposes it's used space. Don't worry about locking the
3798 * global_rsv, it doesn't change except when the transaction commits.
3799 */
3800 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3801 num_allocated += calc_global_rsv_need_space(global_rsv);
3802
3803 /*
3804 * in limited mode, we want to have some free space up to
3805 * about 1% of the FS size.
3806 */
3807 if (force == CHUNK_ALLOC_LIMITED) {
3808 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3809 thresh = max_t(u64, 64 * 1024 * 1024,
3810 div_factor_fine(thresh, 1));
3811
3812 if (num_bytes - num_allocated < thresh)
3813 return 1;
3814 }
3815
3816 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3817 return 0;
3818 return 1;
3819 }
3820
3821 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3822 {
3823 u64 num_dev;
3824
3825 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3826 BTRFS_BLOCK_GROUP_RAID0 |
3827 BTRFS_BLOCK_GROUP_RAID5 |
3828 BTRFS_BLOCK_GROUP_RAID6))
3829 num_dev = root->fs_info->fs_devices->rw_devices;
3830 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3831 num_dev = 2;
3832 else
3833 num_dev = 1; /* DUP or single */
3834
3835 /* metadata for updaing devices and chunk tree */
3836 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3837 }
3838
3839 static void check_system_chunk(struct btrfs_trans_handle *trans,
3840 struct btrfs_root *root, u64 type)
3841 {
3842 struct btrfs_space_info *info;
3843 u64 left;
3844 u64 thresh;
3845
3846 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3847 spin_lock(&info->lock);
3848 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3849 info->bytes_reserved - info->bytes_readonly;
3850 spin_unlock(&info->lock);
3851
3852 thresh = get_system_chunk_thresh(root, type);
3853 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3854 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3855 left, thresh, type);
3856 dump_space_info(info, 0, 0);
3857 }
3858
3859 if (left < thresh) {
3860 u64 flags;
3861
3862 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3863 btrfs_alloc_chunk(trans, root, flags);
3864 }
3865 }
3866
3867 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3868 struct btrfs_root *extent_root, u64 flags, int force)
3869 {
3870 struct btrfs_space_info *space_info;
3871 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3872 int wait_for_alloc = 0;
3873 int ret = 0;
3874
3875 /* Don't re-enter if we're already allocating a chunk */
3876 if (trans->allocating_chunk)
3877 return -ENOSPC;
3878
3879 space_info = __find_space_info(extent_root->fs_info, flags);
3880 if (!space_info) {
3881 ret = update_space_info(extent_root->fs_info, flags,
3882 0, 0, &space_info);
3883 BUG_ON(ret); /* -ENOMEM */
3884 }
3885 BUG_ON(!space_info); /* Logic error */
3886
3887 again:
3888 spin_lock(&space_info->lock);
3889 if (force < space_info->force_alloc)
3890 force = space_info->force_alloc;
3891 if (space_info->full) {
3892 if (should_alloc_chunk(extent_root, space_info, force))
3893 ret = -ENOSPC;
3894 else
3895 ret = 0;
3896 spin_unlock(&space_info->lock);
3897 return ret;
3898 }
3899
3900 if (!should_alloc_chunk(extent_root, space_info, force)) {
3901 spin_unlock(&space_info->lock);
3902 return 0;
3903 } else if (space_info->chunk_alloc) {
3904 wait_for_alloc = 1;
3905 } else {
3906 space_info->chunk_alloc = 1;
3907 }
3908
3909 spin_unlock(&space_info->lock);
3910
3911 mutex_lock(&fs_info->chunk_mutex);
3912
3913 /*
3914 * The chunk_mutex is held throughout the entirety of a chunk
3915 * allocation, so once we've acquired the chunk_mutex we know that the
3916 * other guy is done and we need to recheck and see if we should
3917 * allocate.
3918 */
3919 if (wait_for_alloc) {
3920 mutex_unlock(&fs_info->chunk_mutex);
3921 wait_for_alloc = 0;
3922 goto again;
3923 }
3924
3925 trans->allocating_chunk = true;
3926
3927 /*
3928 * If we have mixed data/metadata chunks we want to make sure we keep
3929 * allocating mixed chunks instead of individual chunks.
3930 */
3931 if (btrfs_mixed_space_info(space_info))
3932 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3933
3934 /*
3935 * if we're doing a data chunk, go ahead and make sure that
3936 * we keep a reasonable number of metadata chunks allocated in the
3937 * FS as well.
3938 */
3939 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3940 fs_info->data_chunk_allocations++;
3941 if (!(fs_info->data_chunk_allocations %
3942 fs_info->metadata_ratio))
3943 force_metadata_allocation(fs_info);
3944 }
3945
3946 /*
3947 * Check if we have enough space in SYSTEM chunk because we may need
3948 * to update devices.
3949 */
3950 check_system_chunk(trans, extent_root, flags);
3951
3952 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3953 trans->allocating_chunk = false;
3954
3955 spin_lock(&space_info->lock);
3956 if (ret < 0 && ret != -ENOSPC)
3957 goto out;
3958 if (ret)
3959 space_info->full = 1;
3960 else
3961 ret = 1;
3962
3963 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3964 out:
3965 space_info->chunk_alloc = 0;
3966 spin_unlock(&space_info->lock);
3967 mutex_unlock(&fs_info->chunk_mutex);
3968 return ret;
3969 }
3970
3971 static int can_overcommit(struct btrfs_root *root,
3972 struct btrfs_space_info *space_info, u64 bytes,
3973 enum btrfs_reserve_flush_enum flush)
3974 {
3975 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3976 u64 profile = btrfs_get_alloc_profile(root, 0);
3977 u64 space_size;
3978 u64 avail;
3979 u64 used;
3980
3981 used = space_info->bytes_used + space_info->bytes_reserved +
3982 space_info->bytes_pinned + space_info->bytes_readonly;
3983
3984 /*
3985 * We only want to allow over committing if we have lots of actual space
3986 * free, but if we don't have enough space to handle the global reserve
3987 * space then we could end up having a real enospc problem when trying
3988 * to allocate a chunk or some other such important allocation.
3989 */
3990 spin_lock(&global_rsv->lock);
3991 space_size = calc_global_rsv_need_space(global_rsv);
3992 spin_unlock(&global_rsv->lock);
3993 if (used + space_size >= space_info->total_bytes)
3994 return 0;
3995
3996 used += space_info->bytes_may_use;
3997
3998 spin_lock(&root->fs_info->free_chunk_lock);
3999 avail = root->fs_info->free_chunk_space;
4000 spin_unlock(&root->fs_info->free_chunk_lock);
4001
4002 /*
4003 * If we have dup, raid1 or raid10 then only half of the free
4004 * space is actually useable. For raid56, the space info used
4005 * doesn't include the parity drive, so we don't have to
4006 * change the math
4007 */
4008 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4009 BTRFS_BLOCK_GROUP_RAID1 |
4010 BTRFS_BLOCK_GROUP_RAID10))
4011 avail >>= 1;
4012
4013 /*
4014 * If we aren't flushing all things, let us overcommit up to
4015 * 1/2th of the space. If we can flush, don't let us overcommit
4016 * too much, let it overcommit up to 1/8 of the space.
4017 */
4018 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4019 avail >>= 3;
4020 else
4021 avail >>= 1;
4022
4023 if (used + bytes < space_info->total_bytes + avail)
4024 return 1;
4025 return 0;
4026 }
4027
4028 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4029 unsigned long nr_pages, int nr_items)
4030 {
4031 struct super_block *sb = root->fs_info->sb;
4032
4033 if (down_read_trylock(&sb->s_umount)) {
4034 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4035 up_read(&sb->s_umount);
4036 } else {
4037 /*
4038 * We needn't worry the filesystem going from r/w to r/o though
4039 * we don't acquire ->s_umount mutex, because the filesystem
4040 * should guarantee the delalloc inodes list be empty after
4041 * the filesystem is readonly(all dirty pages are written to
4042 * the disk).
4043 */
4044 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4045 if (!current->journal_info)
4046 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4047 }
4048 }
4049
4050 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4051 {
4052 u64 bytes;
4053 int nr;
4054
4055 bytes = btrfs_calc_trans_metadata_size(root, 1);
4056 nr = (int)div64_u64(to_reclaim, bytes);
4057 if (!nr)
4058 nr = 1;
4059 return nr;
4060 }
4061
4062 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4063
4064 /*
4065 * shrink metadata reservation for delalloc
4066 */
4067 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4068 bool wait_ordered)
4069 {
4070 struct btrfs_block_rsv *block_rsv;
4071 struct btrfs_space_info *space_info;
4072 struct btrfs_trans_handle *trans;
4073 u64 delalloc_bytes;
4074 u64 max_reclaim;
4075 long time_left;
4076 unsigned long nr_pages;
4077 int loops;
4078 int items;
4079 enum btrfs_reserve_flush_enum flush;
4080
4081 /* Calc the number of the pages we need flush for space reservation */
4082 items = calc_reclaim_items_nr(root, to_reclaim);
4083 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4084
4085 trans = (struct btrfs_trans_handle *)current->journal_info;
4086 block_rsv = &root->fs_info->delalloc_block_rsv;
4087 space_info = block_rsv->space_info;
4088
4089 delalloc_bytes = percpu_counter_sum_positive(
4090 &root->fs_info->delalloc_bytes);
4091 if (delalloc_bytes == 0) {
4092 if (trans)
4093 return;
4094 if (wait_ordered)
4095 btrfs_wait_ordered_roots(root->fs_info, items);
4096 return;
4097 }
4098
4099 loops = 0;
4100 while (delalloc_bytes && loops < 3) {
4101 max_reclaim = min(delalloc_bytes, to_reclaim);
4102 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4103 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4104 /*
4105 * We need to wait for the async pages to actually start before
4106 * we do anything.
4107 */
4108 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4109 if (!max_reclaim)
4110 goto skip_async;
4111
4112 if (max_reclaim <= nr_pages)
4113 max_reclaim = 0;
4114 else
4115 max_reclaim -= nr_pages;
4116
4117 wait_event(root->fs_info->async_submit_wait,
4118 atomic_read(&root->fs_info->async_delalloc_pages) <=
4119 (int)max_reclaim);
4120 skip_async:
4121 if (!trans)
4122 flush = BTRFS_RESERVE_FLUSH_ALL;
4123 else
4124 flush = BTRFS_RESERVE_NO_FLUSH;
4125 spin_lock(&space_info->lock);
4126 if (can_overcommit(root, space_info, orig, flush)) {
4127 spin_unlock(&space_info->lock);
4128 break;
4129 }
4130 spin_unlock(&space_info->lock);
4131
4132 loops++;
4133 if (wait_ordered && !trans) {
4134 btrfs_wait_ordered_roots(root->fs_info, items);
4135 } else {
4136 time_left = schedule_timeout_killable(1);
4137 if (time_left)
4138 break;
4139 }
4140 delalloc_bytes = percpu_counter_sum_positive(
4141 &root->fs_info->delalloc_bytes);
4142 }
4143 }
4144
4145 /**
4146 * maybe_commit_transaction - possibly commit the transaction if its ok to
4147 * @root - the root we're allocating for
4148 * @bytes - the number of bytes we want to reserve
4149 * @force - force the commit
4150 *
4151 * This will check to make sure that committing the transaction will actually
4152 * get us somewhere and then commit the transaction if it does. Otherwise it
4153 * will return -ENOSPC.
4154 */
4155 static int may_commit_transaction(struct btrfs_root *root,
4156 struct btrfs_space_info *space_info,
4157 u64 bytes, int force)
4158 {
4159 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4160 struct btrfs_trans_handle *trans;
4161
4162 trans = (struct btrfs_trans_handle *)current->journal_info;
4163 if (trans)
4164 return -EAGAIN;
4165
4166 if (force)
4167 goto commit;
4168
4169 /* See if there is enough pinned space to make this reservation */
4170 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4171 bytes) >= 0)
4172 goto commit;
4173
4174 /*
4175 * See if there is some space in the delayed insertion reservation for
4176 * this reservation.
4177 */
4178 if (space_info != delayed_rsv->space_info)
4179 return -ENOSPC;
4180
4181 spin_lock(&delayed_rsv->lock);
4182 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4183 bytes - delayed_rsv->size) >= 0) {
4184 spin_unlock(&delayed_rsv->lock);
4185 return -ENOSPC;
4186 }
4187 spin_unlock(&delayed_rsv->lock);
4188
4189 commit:
4190 trans = btrfs_join_transaction(root);
4191 if (IS_ERR(trans))
4192 return -ENOSPC;
4193
4194 return btrfs_commit_transaction(trans, root);
4195 }
4196
4197 enum flush_state {
4198 FLUSH_DELAYED_ITEMS_NR = 1,
4199 FLUSH_DELAYED_ITEMS = 2,
4200 FLUSH_DELALLOC = 3,
4201 FLUSH_DELALLOC_WAIT = 4,
4202 ALLOC_CHUNK = 5,
4203 COMMIT_TRANS = 6,
4204 };
4205
4206 static int flush_space(struct btrfs_root *root,
4207 struct btrfs_space_info *space_info, u64 num_bytes,
4208 u64 orig_bytes, int state)
4209 {
4210 struct btrfs_trans_handle *trans;
4211 int nr;
4212 int ret = 0;
4213
4214 switch (state) {
4215 case FLUSH_DELAYED_ITEMS_NR:
4216 case FLUSH_DELAYED_ITEMS:
4217 if (state == FLUSH_DELAYED_ITEMS_NR)
4218 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4219 else
4220 nr = -1;
4221
4222 trans = btrfs_join_transaction(root);
4223 if (IS_ERR(trans)) {
4224 ret = PTR_ERR(trans);
4225 break;
4226 }
4227 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4228 btrfs_end_transaction(trans, root);
4229 break;
4230 case FLUSH_DELALLOC:
4231 case FLUSH_DELALLOC_WAIT:
4232 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4233 state == FLUSH_DELALLOC_WAIT);
4234 break;
4235 case ALLOC_CHUNK:
4236 trans = btrfs_join_transaction(root);
4237 if (IS_ERR(trans)) {
4238 ret = PTR_ERR(trans);
4239 break;
4240 }
4241 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4242 btrfs_get_alloc_profile(root, 0),
4243 CHUNK_ALLOC_NO_FORCE);
4244 btrfs_end_transaction(trans, root);
4245 if (ret == -ENOSPC)
4246 ret = 0;
4247 break;
4248 case COMMIT_TRANS:
4249 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4250 break;
4251 default:
4252 ret = -ENOSPC;
4253 break;
4254 }
4255
4256 return ret;
4257 }
4258
4259 static inline u64
4260 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4261 struct btrfs_space_info *space_info)
4262 {
4263 u64 used;
4264 u64 expected;
4265 u64 to_reclaim;
4266
4267 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4268 16 * 1024 * 1024);
4269 spin_lock(&space_info->lock);
4270 if (can_overcommit(root, space_info, to_reclaim,
4271 BTRFS_RESERVE_FLUSH_ALL)) {
4272 to_reclaim = 0;
4273 goto out;
4274 }
4275
4276 used = space_info->bytes_used + space_info->bytes_reserved +
4277 space_info->bytes_pinned + space_info->bytes_readonly +
4278 space_info->bytes_may_use;
4279 if (can_overcommit(root, space_info, 1024 * 1024,
4280 BTRFS_RESERVE_FLUSH_ALL))
4281 expected = div_factor_fine(space_info->total_bytes, 95);
4282 else
4283 expected = div_factor_fine(space_info->total_bytes, 90);
4284
4285 if (used > expected)
4286 to_reclaim = used - expected;
4287 else
4288 to_reclaim = 0;
4289 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4290 space_info->bytes_reserved);
4291 out:
4292 spin_unlock(&space_info->lock);
4293
4294 return to_reclaim;
4295 }
4296
4297 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4298 struct btrfs_fs_info *fs_info, u64 used)
4299 {
4300 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4301 !btrfs_fs_closing(fs_info) &&
4302 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4303 }
4304
4305 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4306 struct btrfs_fs_info *fs_info,
4307 int flush_state)
4308 {
4309 u64 used;
4310
4311 spin_lock(&space_info->lock);
4312 /*
4313 * We run out of space and have not got any free space via flush_space,
4314 * so don't bother doing async reclaim.
4315 */
4316 if (flush_state > COMMIT_TRANS && space_info->full) {
4317 spin_unlock(&space_info->lock);
4318 return 0;
4319 }
4320
4321 used = space_info->bytes_used + space_info->bytes_reserved +
4322 space_info->bytes_pinned + space_info->bytes_readonly +
4323 space_info->bytes_may_use;
4324 if (need_do_async_reclaim(space_info, fs_info, used)) {
4325 spin_unlock(&space_info->lock);
4326 return 1;
4327 }
4328 spin_unlock(&space_info->lock);
4329
4330 return 0;
4331 }
4332
4333 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4334 {
4335 struct btrfs_fs_info *fs_info;
4336 struct btrfs_space_info *space_info;
4337 u64 to_reclaim;
4338 int flush_state;
4339
4340 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4341 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4342
4343 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4344 space_info);
4345 if (!to_reclaim)
4346 return;
4347
4348 flush_state = FLUSH_DELAYED_ITEMS_NR;
4349 do {
4350 flush_space(fs_info->fs_root, space_info, to_reclaim,
4351 to_reclaim, flush_state);
4352 flush_state++;
4353 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4354 flush_state))
4355 return;
4356 } while (flush_state <= COMMIT_TRANS);
4357
4358 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4359 queue_work(system_unbound_wq, work);
4360 }
4361
4362 void btrfs_init_async_reclaim_work(struct work_struct *work)
4363 {
4364 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4365 }
4366
4367 /**
4368 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4369 * @root - the root we're allocating for
4370 * @block_rsv - the block_rsv we're allocating for
4371 * @orig_bytes - the number of bytes we want
4372 * @flush - whether or not we can flush to make our reservation
4373 *
4374 * This will reserve orgi_bytes number of bytes from the space info associated
4375 * with the block_rsv. If there is not enough space it will make an attempt to
4376 * flush out space to make room. It will do this by flushing delalloc if
4377 * possible or committing the transaction. If flush is 0 then no attempts to
4378 * regain reservations will be made and this will fail if there is not enough
4379 * space already.
4380 */
4381 static int reserve_metadata_bytes(struct btrfs_root *root,
4382 struct btrfs_block_rsv *block_rsv,
4383 u64 orig_bytes,
4384 enum btrfs_reserve_flush_enum flush)
4385 {
4386 struct btrfs_space_info *space_info = block_rsv->space_info;
4387 u64 used;
4388 u64 num_bytes = orig_bytes;
4389 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4390 int ret = 0;
4391 bool flushing = false;
4392
4393 again:
4394 ret = 0;
4395 spin_lock(&space_info->lock);
4396 /*
4397 * We only want to wait if somebody other than us is flushing and we
4398 * are actually allowed to flush all things.
4399 */
4400 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4401 space_info->flush) {
4402 spin_unlock(&space_info->lock);
4403 /*
4404 * If we have a trans handle we can't wait because the flusher
4405 * may have to commit the transaction, which would mean we would
4406 * deadlock since we are waiting for the flusher to finish, but
4407 * hold the current transaction open.
4408 */
4409 if (current->journal_info)
4410 return -EAGAIN;
4411 ret = wait_event_killable(space_info->wait, !space_info->flush);
4412 /* Must have been killed, return */
4413 if (ret)
4414 return -EINTR;
4415
4416 spin_lock(&space_info->lock);
4417 }
4418
4419 ret = -ENOSPC;
4420 used = space_info->bytes_used + space_info->bytes_reserved +
4421 space_info->bytes_pinned + space_info->bytes_readonly +
4422 space_info->bytes_may_use;
4423
4424 /*
4425 * The idea here is that we've not already over-reserved the block group
4426 * then we can go ahead and save our reservation first and then start
4427 * flushing if we need to. Otherwise if we've already overcommitted
4428 * lets start flushing stuff first and then come back and try to make
4429 * our reservation.
4430 */
4431 if (used <= space_info->total_bytes) {
4432 if (used + orig_bytes <= space_info->total_bytes) {
4433 space_info->bytes_may_use += orig_bytes;
4434 trace_btrfs_space_reservation(root->fs_info,
4435 "space_info", space_info->flags, orig_bytes, 1);
4436 ret = 0;
4437 } else {
4438 /*
4439 * Ok set num_bytes to orig_bytes since we aren't
4440 * overocmmitted, this way we only try and reclaim what
4441 * we need.
4442 */
4443 num_bytes = orig_bytes;
4444 }
4445 } else {
4446 /*
4447 * Ok we're over committed, set num_bytes to the overcommitted
4448 * amount plus the amount of bytes that we need for this
4449 * reservation.
4450 */
4451 num_bytes = used - space_info->total_bytes +
4452 (orig_bytes * 2);
4453 }
4454
4455 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4456 space_info->bytes_may_use += orig_bytes;
4457 trace_btrfs_space_reservation(root->fs_info, "space_info",
4458 space_info->flags, orig_bytes,
4459 1);
4460 ret = 0;
4461 }
4462
4463 /*
4464 * Couldn't make our reservation, save our place so while we're trying
4465 * to reclaim space we can actually use it instead of somebody else
4466 * stealing it from us.
4467 *
4468 * We make the other tasks wait for the flush only when we can flush
4469 * all things.
4470 */
4471 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4472 flushing = true;
4473 space_info->flush = 1;
4474 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4475 used += orig_bytes;
4476 /*
4477 * We will do the space reservation dance during log replay,
4478 * which means we won't have fs_info->fs_root set, so don't do
4479 * the async reclaim as we will panic.
4480 */
4481 if (!root->fs_info->log_root_recovering &&
4482 need_do_async_reclaim(space_info, root->fs_info, used) &&
4483 !work_busy(&root->fs_info->async_reclaim_work))
4484 queue_work(system_unbound_wq,
4485 &root->fs_info->async_reclaim_work);
4486 }
4487 spin_unlock(&space_info->lock);
4488
4489 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4490 goto out;
4491
4492 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4493 flush_state);
4494 flush_state++;
4495
4496 /*
4497 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4498 * would happen. So skip delalloc flush.
4499 */
4500 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4501 (flush_state == FLUSH_DELALLOC ||
4502 flush_state == FLUSH_DELALLOC_WAIT))
4503 flush_state = ALLOC_CHUNK;
4504
4505 if (!ret)
4506 goto again;
4507 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4508 flush_state < COMMIT_TRANS)
4509 goto again;
4510 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4511 flush_state <= COMMIT_TRANS)
4512 goto again;
4513
4514 out:
4515 if (ret == -ENOSPC &&
4516 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4517 struct btrfs_block_rsv *global_rsv =
4518 &root->fs_info->global_block_rsv;
4519
4520 if (block_rsv != global_rsv &&
4521 !block_rsv_use_bytes(global_rsv, orig_bytes))
4522 ret = 0;
4523 }
4524 if (ret == -ENOSPC)
4525 trace_btrfs_space_reservation(root->fs_info,
4526 "space_info:enospc",
4527 space_info->flags, orig_bytes, 1);
4528 if (flushing) {
4529 spin_lock(&space_info->lock);
4530 space_info->flush = 0;
4531 wake_up_all(&space_info->wait);
4532 spin_unlock(&space_info->lock);
4533 }
4534 return ret;
4535 }
4536
4537 static struct btrfs_block_rsv *get_block_rsv(
4538 const struct btrfs_trans_handle *trans,
4539 const struct btrfs_root *root)
4540 {
4541 struct btrfs_block_rsv *block_rsv = NULL;
4542
4543 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4544 block_rsv = trans->block_rsv;
4545
4546 if (root == root->fs_info->csum_root && trans->adding_csums)
4547 block_rsv = trans->block_rsv;
4548
4549 if (root == root->fs_info->uuid_root)
4550 block_rsv = trans->block_rsv;
4551
4552 if (!block_rsv)
4553 block_rsv = root->block_rsv;
4554
4555 if (!block_rsv)
4556 block_rsv = &root->fs_info->empty_block_rsv;
4557
4558 return block_rsv;
4559 }
4560
4561 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4562 u64 num_bytes)
4563 {
4564 int ret = -ENOSPC;
4565 spin_lock(&block_rsv->lock);
4566 if (block_rsv->reserved >= num_bytes) {
4567 block_rsv->reserved -= num_bytes;
4568 if (block_rsv->reserved < block_rsv->size)
4569 block_rsv->full = 0;
4570 ret = 0;
4571 }
4572 spin_unlock(&block_rsv->lock);
4573 return ret;
4574 }
4575
4576 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4577 u64 num_bytes, int update_size)
4578 {
4579 spin_lock(&block_rsv->lock);
4580 block_rsv->reserved += num_bytes;
4581 if (update_size)
4582 block_rsv->size += num_bytes;
4583 else if (block_rsv->reserved >= block_rsv->size)
4584 block_rsv->full = 1;
4585 spin_unlock(&block_rsv->lock);
4586 }
4587
4588 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4589 struct btrfs_block_rsv *dest, u64 num_bytes,
4590 int min_factor)
4591 {
4592 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4593 u64 min_bytes;
4594
4595 if (global_rsv->space_info != dest->space_info)
4596 return -ENOSPC;
4597
4598 spin_lock(&global_rsv->lock);
4599 min_bytes = div_factor(global_rsv->size, min_factor);
4600 if (global_rsv->reserved < min_bytes + num_bytes) {
4601 spin_unlock(&global_rsv->lock);
4602 return -ENOSPC;
4603 }
4604 global_rsv->reserved -= num_bytes;
4605 if (global_rsv->reserved < global_rsv->size)
4606 global_rsv->full = 0;
4607 spin_unlock(&global_rsv->lock);
4608
4609 block_rsv_add_bytes(dest, num_bytes, 1);
4610 return 0;
4611 }
4612
4613 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4614 struct btrfs_block_rsv *block_rsv,
4615 struct btrfs_block_rsv *dest, u64 num_bytes)
4616 {
4617 struct btrfs_space_info *space_info = block_rsv->space_info;
4618
4619 spin_lock(&block_rsv->lock);
4620 if (num_bytes == (u64)-1)
4621 num_bytes = block_rsv->size;
4622 block_rsv->size -= num_bytes;
4623 if (block_rsv->reserved >= block_rsv->size) {
4624 num_bytes = block_rsv->reserved - block_rsv->size;
4625 block_rsv->reserved = block_rsv->size;
4626 block_rsv->full = 1;
4627 } else {
4628 num_bytes = 0;
4629 }
4630 spin_unlock(&block_rsv->lock);
4631
4632 if (num_bytes > 0) {
4633 if (dest) {
4634 spin_lock(&dest->lock);
4635 if (!dest->full) {
4636 u64 bytes_to_add;
4637
4638 bytes_to_add = dest->size - dest->reserved;
4639 bytes_to_add = min(num_bytes, bytes_to_add);
4640 dest->reserved += bytes_to_add;
4641 if (dest->reserved >= dest->size)
4642 dest->full = 1;
4643 num_bytes -= bytes_to_add;
4644 }
4645 spin_unlock(&dest->lock);
4646 }
4647 if (num_bytes) {
4648 spin_lock(&space_info->lock);
4649 space_info->bytes_may_use -= num_bytes;
4650 trace_btrfs_space_reservation(fs_info, "space_info",
4651 space_info->flags, num_bytes, 0);
4652 spin_unlock(&space_info->lock);
4653 }
4654 }
4655 }
4656
4657 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4658 struct btrfs_block_rsv *dst, u64 num_bytes)
4659 {
4660 int ret;
4661
4662 ret = block_rsv_use_bytes(src, num_bytes);
4663 if (ret)
4664 return ret;
4665
4666 block_rsv_add_bytes(dst, num_bytes, 1);
4667 return 0;
4668 }
4669
4670 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4671 {
4672 memset(rsv, 0, sizeof(*rsv));
4673 spin_lock_init(&rsv->lock);
4674 rsv->type = type;
4675 }
4676
4677 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4678 unsigned short type)
4679 {
4680 struct btrfs_block_rsv *block_rsv;
4681 struct btrfs_fs_info *fs_info = root->fs_info;
4682
4683 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4684 if (!block_rsv)
4685 return NULL;
4686
4687 btrfs_init_block_rsv(block_rsv, type);
4688 block_rsv->space_info = __find_space_info(fs_info,
4689 BTRFS_BLOCK_GROUP_METADATA);
4690 return block_rsv;
4691 }
4692
4693 void btrfs_free_block_rsv(struct btrfs_root *root,
4694 struct btrfs_block_rsv *rsv)
4695 {
4696 if (!rsv)
4697 return;
4698 btrfs_block_rsv_release(root, rsv, (u64)-1);
4699 kfree(rsv);
4700 }
4701
4702 int btrfs_block_rsv_add(struct btrfs_root *root,
4703 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4704 enum btrfs_reserve_flush_enum flush)
4705 {
4706 int ret;
4707
4708 if (num_bytes == 0)
4709 return 0;
4710
4711 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4712 if (!ret) {
4713 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4714 return 0;
4715 }
4716
4717 return ret;
4718 }
4719
4720 int btrfs_block_rsv_check(struct btrfs_root *root,
4721 struct btrfs_block_rsv *block_rsv, int min_factor)
4722 {
4723 u64 num_bytes = 0;
4724 int ret = -ENOSPC;
4725
4726 if (!block_rsv)
4727 return 0;
4728
4729 spin_lock(&block_rsv->lock);
4730 num_bytes = div_factor(block_rsv->size, min_factor);
4731 if (block_rsv->reserved >= num_bytes)
4732 ret = 0;
4733 spin_unlock(&block_rsv->lock);
4734
4735 return ret;
4736 }
4737
4738 int btrfs_block_rsv_refill(struct btrfs_root *root,
4739 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4740 enum btrfs_reserve_flush_enum flush)
4741 {
4742 u64 num_bytes = 0;
4743 int ret = -ENOSPC;
4744
4745 if (!block_rsv)
4746 return 0;
4747
4748 spin_lock(&block_rsv->lock);
4749 num_bytes = min_reserved;
4750 if (block_rsv->reserved >= num_bytes)
4751 ret = 0;
4752 else
4753 num_bytes -= block_rsv->reserved;
4754 spin_unlock(&block_rsv->lock);
4755
4756 if (!ret)
4757 return 0;
4758
4759 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4760 if (!ret) {
4761 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4762 return 0;
4763 }
4764
4765 return ret;
4766 }
4767
4768 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4769 struct btrfs_block_rsv *dst_rsv,
4770 u64 num_bytes)
4771 {
4772 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4773 }
4774
4775 void btrfs_block_rsv_release(struct btrfs_root *root,
4776 struct btrfs_block_rsv *block_rsv,
4777 u64 num_bytes)
4778 {
4779 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4780 if (global_rsv == block_rsv ||
4781 block_rsv->space_info != global_rsv->space_info)
4782 global_rsv = NULL;
4783 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4784 num_bytes);
4785 }
4786
4787 /*
4788 * helper to calculate size of global block reservation.
4789 * the desired value is sum of space used by extent tree,
4790 * checksum tree and root tree
4791 */
4792 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4793 {
4794 struct btrfs_space_info *sinfo;
4795 u64 num_bytes;
4796 u64 meta_used;
4797 u64 data_used;
4798 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4799
4800 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4801 spin_lock(&sinfo->lock);
4802 data_used = sinfo->bytes_used;
4803 spin_unlock(&sinfo->lock);
4804
4805 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4806 spin_lock(&sinfo->lock);
4807 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4808 data_used = 0;
4809 meta_used = sinfo->bytes_used;
4810 spin_unlock(&sinfo->lock);
4811
4812 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4813 csum_size * 2;
4814 num_bytes += div_u64(data_used + meta_used, 50);
4815
4816 if (num_bytes * 3 > meta_used)
4817 num_bytes = div_u64(meta_used, 3);
4818
4819 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4820 }
4821
4822 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4823 {
4824 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4825 struct btrfs_space_info *sinfo = block_rsv->space_info;
4826 u64 num_bytes;
4827
4828 num_bytes = calc_global_metadata_size(fs_info);
4829
4830 spin_lock(&sinfo->lock);
4831 spin_lock(&block_rsv->lock);
4832
4833 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4834
4835 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4836 sinfo->bytes_reserved + sinfo->bytes_readonly +
4837 sinfo->bytes_may_use;
4838
4839 if (sinfo->total_bytes > num_bytes) {
4840 num_bytes = sinfo->total_bytes - num_bytes;
4841 block_rsv->reserved += num_bytes;
4842 sinfo->bytes_may_use += num_bytes;
4843 trace_btrfs_space_reservation(fs_info, "space_info",
4844 sinfo->flags, num_bytes, 1);
4845 }
4846
4847 if (block_rsv->reserved >= block_rsv->size) {
4848 num_bytes = block_rsv->reserved - block_rsv->size;
4849 sinfo->bytes_may_use -= num_bytes;
4850 trace_btrfs_space_reservation(fs_info, "space_info",
4851 sinfo->flags, num_bytes, 0);
4852 block_rsv->reserved = block_rsv->size;
4853 block_rsv->full = 1;
4854 }
4855
4856 spin_unlock(&block_rsv->lock);
4857 spin_unlock(&sinfo->lock);
4858 }
4859
4860 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4861 {
4862 struct btrfs_space_info *space_info;
4863
4864 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4865 fs_info->chunk_block_rsv.space_info = space_info;
4866
4867 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4868 fs_info->global_block_rsv.space_info = space_info;
4869 fs_info->delalloc_block_rsv.space_info = space_info;
4870 fs_info->trans_block_rsv.space_info = space_info;
4871 fs_info->empty_block_rsv.space_info = space_info;
4872 fs_info->delayed_block_rsv.space_info = space_info;
4873
4874 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4875 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4876 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4877 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4878 if (fs_info->quota_root)
4879 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4880 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4881
4882 update_global_block_rsv(fs_info);
4883 }
4884
4885 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4886 {
4887 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4888 (u64)-1);
4889 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4890 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4891 WARN_ON(fs_info->trans_block_rsv.size > 0);
4892 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4893 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4894 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4895 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4896 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4897 }
4898
4899 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4900 struct btrfs_root *root)
4901 {
4902 if (!trans->block_rsv)
4903 return;
4904
4905 if (!trans->bytes_reserved)
4906 return;
4907
4908 trace_btrfs_space_reservation(root->fs_info, "transaction",
4909 trans->transid, trans->bytes_reserved, 0);
4910 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4911 trans->bytes_reserved = 0;
4912 }
4913
4914 /* Can only return 0 or -ENOSPC */
4915 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4916 struct inode *inode)
4917 {
4918 struct btrfs_root *root = BTRFS_I(inode)->root;
4919 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4920 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4921
4922 /*
4923 * We need to hold space in order to delete our orphan item once we've
4924 * added it, so this takes the reservation so we can release it later
4925 * when we are truly done with the orphan item.
4926 */
4927 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4928 trace_btrfs_space_reservation(root->fs_info, "orphan",
4929 btrfs_ino(inode), num_bytes, 1);
4930 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4931 }
4932
4933 void btrfs_orphan_release_metadata(struct inode *inode)
4934 {
4935 struct btrfs_root *root = BTRFS_I(inode)->root;
4936 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4937 trace_btrfs_space_reservation(root->fs_info, "orphan",
4938 btrfs_ino(inode), num_bytes, 0);
4939 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4940 }
4941
4942 /*
4943 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4944 * root: the root of the parent directory
4945 * rsv: block reservation
4946 * items: the number of items that we need do reservation
4947 * qgroup_reserved: used to return the reserved size in qgroup
4948 *
4949 * This function is used to reserve the space for snapshot/subvolume
4950 * creation and deletion. Those operations are different with the
4951 * common file/directory operations, they change two fs/file trees
4952 * and root tree, the number of items that the qgroup reserves is
4953 * different with the free space reservation. So we can not use
4954 * the space reseravtion mechanism in start_transaction().
4955 */
4956 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4957 struct btrfs_block_rsv *rsv,
4958 int items,
4959 u64 *qgroup_reserved,
4960 bool use_global_rsv)
4961 {
4962 u64 num_bytes;
4963 int ret;
4964 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4965
4966 if (root->fs_info->quota_enabled) {
4967 /* One for parent inode, two for dir entries */
4968 num_bytes = 3 * root->nodesize;
4969 ret = btrfs_qgroup_reserve(root, num_bytes);
4970 if (ret)
4971 return ret;
4972 } else {
4973 num_bytes = 0;
4974 }
4975
4976 *qgroup_reserved = num_bytes;
4977
4978 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4979 rsv->space_info = __find_space_info(root->fs_info,
4980 BTRFS_BLOCK_GROUP_METADATA);
4981 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4982 BTRFS_RESERVE_FLUSH_ALL);
4983
4984 if (ret == -ENOSPC && use_global_rsv)
4985 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4986
4987 if (ret) {
4988 if (*qgroup_reserved)
4989 btrfs_qgroup_free(root, *qgroup_reserved);
4990 }
4991
4992 return ret;
4993 }
4994
4995 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4996 struct btrfs_block_rsv *rsv,
4997 u64 qgroup_reserved)
4998 {
4999 btrfs_block_rsv_release(root, rsv, (u64)-1);
5000 if (qgroup_reserved)
5001 btrfs_qgroup_free(root, qgroup_reserved);
5002 }
5003
5004 /**
5005 * drop_outstanding_extent - drop an outstanding extent
5006 * @inode: the inode we're dropping the extent for
5007 * @num_bytes: the number of bytes we're relaseing.
5008 *
5009 * This is called when we are freeing up an outstanding extent, either called
5010 * after an error or after an extent is written. This will return the number of
5011 * reserved extents that need to be freed. This must be called with
5012 * BTRFS_I(inode)->lock held.
5013 */
5014 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5015 {
5016 unsigned drop_inode_space = 0;
5017 unsigned dropped_extents = 0;
5018 unsigned num_extents = 0;
5019
5020 num_extents = (unsigned)div64_u64(num_bytes +
5021 BTRFS_MAX_EXTENT_SIZE - 1,
5022 BTRFS_MAX_EXTENT_SIZE);
5023 ASSERT(num_extents);
5024 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5025 BTRFS_I(inode)->outstanding_extents -= num_extents;
5026
5027 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5028 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5029 &BTRFS_I(inode)->runtime_flags))
5030 drop_inode_space = 1;
5031
5032 /*
5033 * If we have more or the same amount of outsanding extents than we have
5034 * reserved then we need to leave the reserved extents count alone.
5035 */
5036 if (BTRFS_I(inode)->outstanding_extents >=
5037 BTRFS_I(inode)->reserved_extents)
5038 return drop_inode_space;
5039
5040 dropped_extents = BTRFS_I(inode)->reserved_extents -
5041 BTRFS_I(inode)->outstanding_extents;
5042 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5043 return dropped_extents + drop_inode_space;
5044 }
5045
5046 /**
5047 * calc_csum_metadata_size - return the amount of metada space that must be
5048 * reserved/free'd for the given bytes.
5049 * @inode: the inode we're manipulating
5050 * @num_bytes: the number of bytes in question
5051 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5052 *
5053 * This adjusts the number of csum_bytes in the inode and then returns the
5054 * correct amount of metadata that must either be reserved or freed. We
5055 * calculate how many checksums we can fit into one leaf and then divide the
5056 * number of bytes that will need to be checksumed by this value to figure out
5057 * how many checksums will be required. If we are adding bytes then the number
5058 * may go up and we will return the number of additional bytes that must be
5059 * reserved. If it is going down we will return the number of bytes that must
5060 * be freed.
5061 *
5062 * This must be called with BTRFS_I(inode)->lock held.
5063 */
5064 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5065 int reserve)
5066 {
5067 struct btrfs_root *root = BTRFS_I(inode)->root;
5068 u64 csum_size;
5069 int num_csums_per_leaf;
5070 int num_csums;
5071 int old_csums;
5072
5073 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5074 BTRFS_I(inode)->csum_bytes == 0)
5075 return 0;
5076
5077 old_csums = (int)div_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5078 if (reserve)
5079 BTRFS_I(inode)->csum_bytes += num_bytes;
5080 else
5081 BTRFS_I(inode)->csum_bytes -= num_bytes;
5082 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5083 num_csums_per_leaf = (int)div_u64(csum_size,
5084 sizeof(struct btrfs_csum_item) +
5085 sizeof(struct btrfs_disk_key));
5086 num_csums = (int)div_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5087 num_csums = num_csums + num_csums_per_leaf - 1;
5088 num_csums = num_csums / num_csums_per_leaf;
5089
5090 old_csums = old_csums + num_csums_per_leaf - 1;
5091 old_csums = old_csums / num_csums_per_leaf;
5092
5093 /* No change, no need to reserve more */
5094 if (old_csums == num_csums)
5095 return 0;
5096
5097 if (reserve)
5098 return btrfs_calc_trans_metadata_size(root,
5099 num_csums - old_csums);
5100
5101 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5102 }
5103
5104 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5105 {
5106 struct btrfs_root *root = BTRFS_I(inode)->root;
5107 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5108 u64 to_reserve = 0;
5109 u64 csum_bytes;
5110 unsigned nr_extents = 0;
5111 int extra_reserve = 0;
5112 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5113 int ret = 0;
5114 bool delalloc_lock = true;
5115 u64 to_free = 0;
5116 unsigned dropped;
5117
5118 /* If we are a free space inode we need to not flush since we will be in
5119 * the middle of a transaction commit. We also don't need the delalloc
5120 * mutex since we won't race with anybody. We need this mostly to make
5121 * lockdep shut its filthy mouth.
5122 */
5123 if (btrfs_is_free_space_inode(inode)) {
5124 flush = BTRFS_RESERVE_NO_FLUSH;
5125 delalloc_lock = false;
5126 }
5127
5128 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5129 btrfs_transaction_in_commit(root->fs_info))
5130 schedule_timeout(1);
5131
5132 if (delalloc_lock)
5133 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5134
5135 num_bytes = ALIGN(num_bytes, root->sectorsize);
5136
5137 spin_lock(&BTRFS_I(inode)->lock);
5138 nr_extents = (unsigned)div64_u64(num_bytes +
5139 BTRFS_MAX_EXTENT_SIZE - 1,
5140 BTRFS_MAX_EXTENT_SIZE);
5141 BTRFS_I(inode)->outstanding_extents += nr_extents;
5142 nr_extents = 0;
5143
5144 if (BTRFS_I(inode)->outstanding_extents >
5145 BTRFS_I(inode)->reserved_extents)
5146 nr_extents = BTRFS_I(inode)->outstanding_extents -
5147 BTRFS_I(inode)->reserved_extents;
5148
5149 /*
5150 * Add an item to reserve for updating the inode when we complete the
5151 * delalloc io.
5152 */
5153 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5154 &BTRFS_I(inode)->runtime_flags)) {
5155 nr_extents++;
5156 extra_reserve = 1;
5157 }
5158
5159 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5160 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5161 csum_bytes = BTRFS_I(inode)->csum_bytes;
5162 spin_unlock(&BTRFS_I(inode)->lock);
5163
5164 if (root->fs_info->quota_enabled) {
5165 ret = btrfs_qgroup_reserve(root, num_bytes +
5166 nr_extents * root->nodesize);
5167 if (ret)
5168 goto out_fail;
5169 }
5170
5171 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5172 if (unlikely(ret)) {
5173 if (root->fs_info->quota_enabled)
5174 btrfs_qgroup_free(root, num_bytes +
5175 nr_extents * root->nodesize);
5176 goto out_fail;
5177 }
5178
5179 spin_lock(&BTRFS_I(inode)->lock);
5180 if (extra_reserve) {
5181 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5182 &BTRFS_I(inode)->runtime_flags);
5183 nr_extents--;
5184 }
5185 BTRFS_I(inode)->reserved_extents += nr_extents;
5186 spin_unlock(&BTRFS_I(inode)->lock);
5187
5188 if (delalloc_lock)
5189 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5190
5191 if (to_reserve)
5192 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5193 btrfs_ino(inode), to_reserve, 1);
5194 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5195
5196 return 0;
5197
5198 out_fail:
5199 spin_lock(&BTRFS_I(inode)->lock);
5200 dropped = drop_outstanding_extent(inode, num_bytes);
5201 /*
5202 * If the inodes csum_bytes is the same as the original
5203 * csum_bytes then we know we haven't raced with any free()ers
5204 * so we can just reduce our inodes csum bytes and carry on.
5205 */
5206 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5207 calc_csum_metadata_size(inode, num_bytes, 0);
5208 } else {
5209 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5210 u64 bytes;
5211
5212 /*
5213 * This is tricky, but first we need to figure out how much we
5214 * free'd from any free-ers that occured during this
5215 * reservation, so we reset ->csum_bytes to the csum_bytes
5216 * before we dropped our lock, and then call the free for the
5217 * number of bytes that were freed while we were trying our
5218 * reservation.
5219 */
5220 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5221 BTRFS_I(inode)->csum_bytes = csum_bytes;
5222 to_free = calc_csum_metadata_size(inode, bytes, 0);
5223
5224
5225 /*
5226 * Now we need to see how much we would have freed had we not
5227 * been making this reservation and our ->csum_bytes were not
5228 * artificially inflated.
5229 */
5230 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5231 bytes = csum_bytes - orig_csum_bytes;
5232 bytes = calc_csum_metadata_size(inode, bytes, 0);
5233
5234 /*
5235 * Now reset ->csum_bytes to what it should be. If bytes is
5236 * more than to_free then we would have free'd more space had we
5237 * not had an artificially high ->csum_bytes, so we need to free
5238 * the remainder. If bytes is the same or less then we don't
5239 * need to do anything, the other free-ers did the correct
5240 * thing.
5241 */
5242 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5243 if (bytes > to_free)
5244 to_free = bytes - to_free;
5245 else
5246 to_free = 0;
5247 }
5248 spin_unlock(&BTRFS_I(inode)->lock);
5249 if (dropped)
5250 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5251
5252 if (to_free) {
5253 btrfs_block_rsv_release(root, block_rsv, to_free);
5254 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5255 btrfs_ino(inode), to_free, 0);
5256 }
5257 if (delalloc_lock)
5258 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5259 return ret;
5260 }
5261
5262 /**
5263 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5264 * @inode: the inode to release the reservation for
5265 * @num_bytes: the number of bytes we're releasing
5266 *
5267 * This will release the metadata reservation for an inode. This can be called
5268 * once we complete IO for a given set of bytes to release their metadata
5269 * reservations.
5270 */
5271 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5272 {
5273 struct btrfs_root *root = BTRFS_I(inode)->root;
5274 u64 to_free = 0;
5275 unsigned dropped;
5276
5277 num_bytes = ALIGN(num_bytes, root->sectorsize);
5278 spin_lock(&BTRFS_I(inode)->lock);
5279 dropped = drop_outstanding_extent(inode, num_bytes);
5280
5281 if (num_bytes)
5282 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5283 spin_unlock(&BTRFS_I(inode)->lock);
5284 if (dropped > 0)
5285 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5286
5287 if (btrfs_test_is_dummy_root(root))
5288 return;
5289
5290 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5291 btrfs_ino(inode), to_free, 0);
5292 if (root->fs_info->quota_enabled) {
5293 btrfs_qgroup_free(root, num_bytes +
5294 dropped * root->nodesize);
5295 }
5296
5297 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5298 to_free);
5299 }
5300
5301 /**
5302 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5303 * @inode: inode we're writing to
5304 * @num_bytes: the number of bytes we want to allocate
5305 *
5306 * This will do the following things
5307 *
5308 * o reserve space in the data space info for num_bytes
5309 * o reserve space in the metadata space info based on number of outstanding
5310 * extents and how much csums will be needed
5311 * o add to the inodes ->delalloc_bytes
5312 * o add it to the fs_info's delalloc inodes list.
5313 *
5314 * This will return 0 for success and -ENOSPC if there is no space left.
5315 */
5316 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5317 {
5318 int ret;
5319
5320 ret = btrfs_check_data_free_space(inode, num_bytes);
5321 if (ret)
5322 return ret;
5323
5324 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5325 if (ret) {
5326 btrfs_free_reserved_data_space(inode, num_bytes);
5327 return ret;
5328 }
5329
5330 return 0;
5331 }
5332
5333 /**
5334 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5335 * @inode: inode we're releasing space for
5336 * @num_bytes: the number of bytes we want to free up
5337 *
5338 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5339 * called in the case that we don't need the metadata AND data reservations
5340 * anymore. So if there is an error or we insert an inline extent.
5341 *
5342 * This function will release the metadata space that was not used and will
5343 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5344 * list if there are no delalloc bytes left.
5345 */
5346 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5347 {
5348 btrfs_delalloc_release_metadata(inode, num_bytes);
5349 btrfs_free_reserved_data_space(inode, num_bytes);
5350 }
5351
5352 static int update_block_group(struct btrfs_trans_handle *trans,
5353 struct btrfs_root *root, u64 bytenr,
5354 u64 num_bytes, int alloc)
5355 {
5356 struct btrfs_block_group_cache *cache = NULL;
5357 struct btrfs_fs_info *info = root->fs_info;
5358 u64 total = num_bytes;
5359 u64 old_val;
5360 u64 byte_in_group;
5361 int factor;
5362
5363 /* block accounting for super block */
5364 spin_lock(&info->delalloc_root_lock);
5365 old_val = btrfs_super_bytes_used(info->super_copy);
5366 if (alloc)
5367 old_val += num_bytes;
5368 else
5369 old_val -= num_bytes;
5370 btrfs_set_super_bytes_used(info->super_copy, old_val);
5371 spin_unlock(&info->delalloc_root_lock);
5372
5373 while (total) {
5374 cache = btrfs_lookup_block_group(info, bytenr);
5375 if (!cache)
5376 return -ENOENT;
5377 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5378 BTRFS_BLOCK_GROUP_RAID1 |
5379 BTRFS_BLOCK_GROUP_RAID10))
5380 factor = 2;
5381 else
5382 factor = 1;
5383 /*
5384 * If this block group has free space cache written out, we
5385 * need to make sure to load it if we are removing space. This
5386 * is because we need the unpinning stage to actually add the
5387 * space back to the block group, otherwise we will leak space.
5388 */
5389 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5390 cache_block_group(cache, 1);
5391
5392 spin_lock(&trans->transaction->dirty_bgs_lock);
5393 if (list_empty(&cache->dirty_list)) {
5394 list_add_tail(&cache->dirty_list,
5395 &trans->transaction->dirty_bgs);
5396 btrfs_get_block_group(cache);
5397 }
5398 spin_unlock(&trans->transaction->dirty_bgs_lock);
5399
5400 byte_in_group = bytenr - cache->key.objectid;
5401 WARN_ON(byte_in_group > cache->key.offset);
5402
5403 spin_lock(&cache->space_info->lock);
5404 spin_lock(&cache->lock);
5405
5406 if (btrfs_test_opt(root, SPACE_CACHE) &&
5407 cache->disk_cache_state < BTRFS_DC_CLEAR)
5408 cache->disk_cache_state = BTRFS_DC_CLEAR;
5409
5410 old_val = btrfs_block_group_used(&cache->item);
5411 num_bytes = min(total, cache->key.offset - byte_in_group);
5412 if (alloc) {
5413 old_val += num_bytes;
5414 btrfs_set_block_group_used(&cache->item, old_val);
5415 cache->reserved -= num_bytes;
5416 cache->space_info->bytes_reserved -= num_bytes;
5417 cache->space_info->bytes_used += num_bytes;
5418 cache->space_info->disk_used += num_bytes * factor;
5419 spin_unlock(&cache->lock);
5420 spin_unlock(&cache->space_info->lock);
5421 } else {
5422 old_val -= num_bytes;
5423 btrfs_set_block_group_used(&cache->item, old_val);
5424 cache->pinned += num_bytes;
5425 cache->space_info->bytes_pinned += num_bytes;
5426 cache->space_info->bytes_used -= num_bytes;
5427 cache->space_info->disk_used -= num_bytes * factor;
5428 spin_unlock(&cache->lock);
5429 spin_unlock(&cache->space_info->lock);
5430
5431 set_extent_dirty(info->pinned_extents,
5432 bytenr, bytenr + num_bytes - 1,
5433 GFP_NOFS | __GFP_NOFAIL);
5434 /*
5435 * No longer have used bytes in this block group, queue
5436 * it for deletion.
5437 */
5438 if (old_val == 0) {
5439 spin_lock(&info->unused_bgs_lock);
5440 if (list_empty(&cache->bg_list)) {
5441 btrfs_get_block_group(cache);
5442 list_add_tail(&cache->bg_list,
5443 &info->unused_bgs);
5444 }
5445 spin_unlock(&info->unused_bgs_lock);
5446 }
5447 }
5448 btrfs_put_block_group(cache);
5449 total -= num_bytes;
5450 bytenr += num_bytes;
5451 }
5452 return 0;
5453 }
5454
5455 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5456 {
5457 struct btrfs_block_group_cache *cache;
5458 u64 bytenr;
5459
5460 spin_lock(&root->fs_info->block_group_cache_lock);
5461 bytenr = root->fs_info->first_logical_byte;
5462 spin_unlock(&root->fs_info->block_group_cache_lock);
5463
5464 if (bytenr < (u64)-1)
5465 return bytenr;
5466
5467 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5468 if (!cache)
5469 return 0;
5470
5471 bytenr = cache->key.objectid;
5472 btrfs_put_block_group(cache);
5473
5474 return bytenr;
5475 }
5476
5477 static int pin_down_extent(struct btrfs_root *root,
5478 struct btrfs_block_group_cache *cache,
5479 u64 bytenr, u64 num_bytes, int reserved)
5480 {
5481 spin_lock(&cache->space_info->lock);
5482 spin_lock(&cache->lock);
5483 cache->pinned += num_bytes;
5484 cache->space_info->bytes_pinned += num_bytes;
5485 if (reserved) {
5486 cache->reserved -= num_bytes;
5487 cache->space_info->bytes_reserved -= num_bytes;
5488 }
5489 spin_unlock(&cache->lock);
5490 spin_unlock(&cache->space_info->lock);
5491
5492 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5493 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5494 if (reserved)
5495 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5496 return 0;
5497 }
5498
5499 /*
5500 * this function must be called within transaction
5501 */
5502 int btrfs_pin_extent(struct btrfs_root *root,
5503 u64 bytenr, u64 num_bytes, int reserved)
5504 {
5505 struct btrfs_block_group_cache *cache;
5506
5507 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5508 BUG_ON(!cache); /* Logic error */
5509
5510 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5511
5512 btrfs_put_block_group(cache);
5513 return 0;
5514 }
5515
5516 /*
5517 * this function must be called within transaction
5518 */
5519 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5520 u64 bytenr, u64 num_bytes)
5521 {
5522 struct btrfs_block_group_cache *cache;
5523 int ret;
5524
5525 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5526 if (!cache)
5527 return -EINVAL;
5528
5529 /*
5530 * pull in the free space cache (if any) so that our pin
5531 * removes the free space from the cache. We have load_only set
5532 * to one because the slow code to read in the free extents does check
5533 * the pinned extents.
5534 */
5535 cache_block_group(cache, 1);
5536
5537 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5538
5539 /* remove us from the free space cache (if we're there at all) */
5540 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5541 btrfs_put_block_group(cache);
5542 return ret;
5543 }
5544
5545 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5546 {
5547 int ret;
5548 struct btrfs_block_group_cache *block_group;
5549 struct btrfs_caching_control *caching_ctl;
5550
5551 block_group = btrfs_lookup_block_group(root->fs_info, start);
5552 if (!block_group)
5553 return -EINVAL;
5554
5555 cache_block_group(block_group, 0);
5556 caching_ctl = get_caching_control(block_group);
5557
5558 if (!caching_ctl) {
5559 /* Logic error */
5560 BUG_ON(!block_group_cache_done(block_group));
5561 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5562 } else {
5563 mutex_lock(&caching_ctl->mutex);
5564
5565 if (start >= caching_ctl->progress) {
5566 ret = add_excluded_extent(root, start, num_bytes);
5567 } else if (start + num_bytes <= caching_ctl->progress) {
5568 ret = btrfs_remove_free_space(block_group,
5569 start, num_bytes);
5570 } else {
5571 num_bytes = caching_ctl->progress - start;
5572 ret = btrfs_remove_free_space(block_group,
5573 start, num_bytes);
5574 if (ret)
5575 goto out_lock;
5576
5577 num_bytes = (start + num_bytes) -
5578 caching_ctl->progress;
5579 start = caching_ctl->progress;
5580 ret = add_excluded_extent(root, start, num_bytes);
5581 }
5582 out_lock:
5583 mutex_unlock(&caching_ctl->mutex);
5584 put_caching_control(caching_ctl);
5585 }
5586 btrfs_put_block_group(block_group);
5587 return ret;
5588 }
5589
5590 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5591 struct extent_buffer *eb)
5592 {
5593 struct btrfs_file_extent_item *item;
5594 struct btrfs_key key;
5595 int found_type;
5596 int i;
5597
5598 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5599 return 0;
5600
5601 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5602 btrfs_item_key_to_cpu(eb, &key, i);
5603 if (key.type != BTRFS_EXTENT_DATA_KEY)
5604 continue;
5605 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5606 found_type = btrfs_file_extent_type(eb, item);
5607 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5608 continue;
5609 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5610 continue;
5611 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5612 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5613 __exclude_logged_extent(log, key.objectid, key.offset);
5614 }
5615
5616 return 0;
5617 }
5618
5619 /**
5620 * btrfs_update_reserved_bytes - update the block_group and space info counters
5621 * @cache: The cache we are manipulating
5622 * @num_bytes: The number of bytes in question
5623 * @reserve: One of the reservation enums
5624 * @delalloc: The blocks are allocated for the delalloc write
5625 *
5626 * This is called by the allocator when it reserves space, or by somebody who is
5627 * freeing space that was never actually used on disk. For example if you
5628 * reserve some space for a new leaf in transaction A and before transaction A
5629 * commits you free that leaf, you call this with reserve set to 0 in order to
5630 * clear the reservation.
5631 *
5632 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5633 * ENOSPC accounting. For data we handle the reservation through clearing the
5634 * delalloc bits in the io_tree. We have to do this since we could end up
5635 * allocating less disk space for the amount of data we have reserved in the
5636 * case of compression.
5637 *
5638 * If this is a reservation and the block group has become read only we cannot
5639 * make the reservation and return -EAGAIN, otherwise this function always
5640 * succeeds.
5641 */
5642 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5643 u64 num_bytes, int reserve, int delalloc)
5644 {
5645 struct btrfs_space_info *space_info = cache->space_info;
5646 int ret = 0;
5647
5648 spin_lock(&space_info->lock);
5649 spin_lock(&cache->lock);
5650 if (reserve != RESERVE_FREE) {
5651 if (cache->ro) {
5652 ret = -EAGAIN;
5653 } else {
5654 cache->reserved += num_bytes;
5655 space_info->bytes_reserved += num_bytes;
5656 if (reserve == RESERVE_ALLOC) {
5657 trace_btrfs_space_reservation(cache->fs_info,
5658 "space_info", space_info->flags,
5659 num_bytes, 0);
5660 space_info->bytes_may_use -= num_bytes;
5661 }
5662
5663 if (delalloc)
5664 cache->delalloc_bytes += num_bytes;
5665 }
5666 } else {
5667 if (cache->ro)
5668 space_info->bytes_readonly += num_bytes;
5669 cache->reserved -= num_bytes;
5670 space_info->bytes_reserved -= num_bytes;
5671
5672 if (delalloc)
5673 cache->delalloc_bytes -= num_bytes;
5674 }
5675 spin_unlock(&cache->lock);
5676 spin_unlock(&space_info->lock);
5677 return ret;
5678 }
5679
5680 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5681 struct btrfs_root *root)
5682 {
5683 struct btrfs_fs_info *fs_info = root->fs_info;
5684 struct btrfs_caching_control *next;
5685 struct btrfs_caching_control *caching_ctl;
5686 struct btrfs_block_group_cache *cache;
5687
5688 down_write(&fs_info->commit_root_sem);
5689
5690 list_for_each_entry_safe(caching_ctl, next,
5691 &fs_info->caching_block_groups, list) {
5692 cache = caching_ctl->block_group;
5693 if (block_group_cache_done(cache)) {
5694 cache->last_byte_to_unpin = (u64)-1;
5695 list_del_init(&caching_ctl->list);
5696 put_caching_control(caching_ctl);
5697 } else {
5698 cache->last_byte_to_unpin = caching_ctl->progress;
5699 }
5700 }
5701
5702 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5703 fs_info->pinned_extents = &fs_info->freed_extents[1];
5704 else
5705 fs_info->pinned_extents = &fs_info->freed_extents[0];
5706
5707 up_write(&fs_info->commit_root_sem);
5708
5709 update_global_block_rsv(fs_info);
5710 }
5711
5712 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5713 const bool return_free_space)
5714 {
5715 struct btrfs_fs_info *fs_info = root->fs_info;
5716 struct btrfs_block_group_cache *cache = NULL;
5717 struct btrfs_space_info *space_info;
5718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5719 u64 len;
5720 bool readonly;
5721
5722 while (start <= end) {
5723 readonly = false;
5724 if (!cache ||
5725 start >= cache->key.objectid + cache->key.offset) {
5726 if (cache)
5727 btrfs_put_block_group(cache);
5728 cache = btrfs_lookup_block_group(fs_info, start);
5729 BUG_ON(!cache); /* Logic error */
5730 }
5731
5732 len = cache->key.objectid + cache->key.offset - start;
5733 len = min(len, end + 1 - start);
5734
5735 if (start < cache->last_byte_to_unpin) {
5736 len = min(len, cache->last_byte_to_unpin - start);
5737 if (return_free_space)
5738 btrfs_add_free_space(cache, start, len);
5739 }
5740
5741 start += len;
5742 space_info = cache->space_info;
5743
5744 spin_lock(&space_info->lock);
5745 spin_lock(&cache->lock);
5746 cache->pinned -= len;
5747 space_info->bytes_pinned -= len;
5748 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5749 if (cache->ro) {
5750 space_info->bytes_readonly += len;
5751 readonly = true;
5752 }
5753 spin_unlock(&cache->lock);
5754 if (!readonly && global_rsv->space_info == space_info) {
5755 spin_lock(&global_rsv->lock);
5756 if (!global_rsv->full) {
5757 len = min(len, global_rsv->size -
5758 global_rsv->reserved);
5759 global_rsv->reserved += len;
5760 space_info->bytes_may_use += len;
5761 if (global_rsv->reserved >= global_rsv->size)
5762 global_rsv->full = 1;
5763 }
5764 spin_unlock(&global_rsv->lock);
5765 }
5766 spin_unlock(&space_info->lock);
5767 }
5768
5769 if (cache)
5770 btrfs_put_block_group(cache);
5771 return 0;
5772 }
5773
5774 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5775 struct btrfs_root *root)
5776 {
5777 struct btrfs_fs_info *fs_info = root->fs_info;
5778 struct extent_io_tree *unpin;
5779 u64 start;
5780 u64 end;
5781 int ret;
5782
5783 if (trans->aborted)
5784 return 0;
5785
5786 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5787 unpin = &fs_info->freed_extents[1];
5788 else
5789 unpin = &fs_info->freed_extents[0];
5790
5791 while (1) {
5792 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5793 ret = find_first_extent_bit(unpin, 0, &start, &end,
5794 EXTENT_DIRTY, NULL);
5795 if (ret) {
5796 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5797 break;
5798 }
5799
5800 if (btrfs_test_opt(root, DISCARD))
5801 ret = btrfs_discard_extent(root, start,
5802 end + 1 - start, NULL);
5803
5804 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5805 unpin_extent_range(root, start, end, true);
5806 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5807 cond_resched();
5808 }
5809
5810 return 0;
5811 }
5812
5813 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5814 u64 owner, u64 root_objectid)
5815 {
5816 struct btrfs_space_info *space_info;
5817 u64 flags;
5818
5819 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5820 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5821 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5822 else
5823 flags = BTRFS_BLOCK_GROUP_METADATA;
5824 } else {
5825 flags = BTRFS_BLOCK_GROUP_DATA;
5826 }
5827
5828 space_info = __find_space_info(fs_info, flags);
5829 BUG_ON(!space_info); /* Logic bug */
5830 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5831 }
5832
5833
5834 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5835 struct btrfs_root *root,
5836 u64 bytenr, u64 num_bytes, u64 parent,
5837 u64 root_objectid, u64 owner_objectid,
5838 u64 owner_offset, int refs_to_drop,
5839 struct btrfs_delayed_extent_op *extent_op,
5840 int no_quota)
5841 {
5842 struct btrfs_key key;
5843 struct btrfs_path *path;
5844 struct btrfs_fs_info *info = root->fs_info;
5845 struct btrfs_root *extent_root = info->extent_root;
5846 struct extent_buffer *leaf;
5847 struct btrfs_extent_item *ei;
5848 struct btrfs_extent_inline_ref *iref;
5849 int ret;
5850 int is_data;
5851 int extent_slot = 0;
5852 int found_extent = 0;
5853 int num_to_del = 1;
5854 u32 item_size;
5855 u64 refs;
5856 int last_ref = 0;
5857 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5858 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5859 SKINNY_METADATA);
5860
5861 if (!info->quota_enabled || !is_fstree(root_objectid))
5862 no_quota = 1;
5863
5864 path = btrfs_alloc_path();
5865 if (!path)
5866 return -ENOMEM;
5867
5868 path->reada = 1;
5869 path->leave_spinning = 1;
5870
5871 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5872 BUG_ON(!is_data && refs_to_drop != 1);
5873
5874 if (is_data)
5875 skinny_metadata = 0;
5876
5877 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5878 bytenr, num_bytes, parent,
5879 root_objectid, owner_objectid,
5880 owner_offset);
5881 if (ret == 0) {
5882 extent_slot = path->slots[0];
5883 while (extent_slot >= 0) {
5884 btrfs_item_key_to_cpu(path->nodes[0], &key,
5885 extent_slot);
5886 if (key.objectid != bytenr)
5887 break;
5888 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5889 key.offset == num_bytes) {
5890 found_extent = 1;
5891 break;
5892 }
5893 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5894 key.offset == owner_objectid) {
5895 found_extent = 1;
5896 break;
5897 }
5898 if (path->slots[0] - extent_slot > 5)
5899 break;
5900 extent_slot--;
5901 }
5902 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5903 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5904 if (found_extent && item_size < sizeof(*ei))
5905 found_extent = 0;
5906 #endif
5907 if (!found_extent) {
5908 BUG_ON(iref);
5909 ret = remove_extent_backref(trans, extent_root, path,
5910 NULL, refs_to_drop,
5911 is_data, &last_ref);
5912 if (ret) {
5913 btrfs_abort_transaction(trans, extent_root, ret);
5914 goto out;
5915 }
5916 btrfs_release_path(path);
5917 path->leave_spinning = 1;
5918
5919 key.objectid = bytenr;
5920 key.type = BTRFS_EXTENT_ITEM_KEY;
5921 key.offset = num_bytes;
5922
5923 if (!is_data && skinny_metadata) {
5924 key.type = BTRFS_METADATA_ITEM_KEY;
5925 key.offset = owner_objectid;
5926 }
5927
5928 ret = btrfs_search_slot(trans, extent_root,
5929 &key, path, -1, 1);
5930 if (ret > 0 && skinny_metadata && path->slots[0]) {
5931 /*
5932 * Couldn't find our skinny metadata item,
5933 * see if we have ye olde extent item.
5934 */
5935 path->slots[0]--;
5936 btrfs_item_key_to_cpu(path->nodes[0], &key,
5937 path->slots[0]);
5938 if (key.objectid == bytenr &&
5939 key.type == BTRFS_EXTENT_ITEM_KEY &&
5940 key.offset == num_bytes)
5941 ret = 0;
5942 }
5943
5944 if (ret > 0 && skinny_metadata) {
5945 skinny_metadata = false;
5946 key.objectid = bytenr;
5947 key.type = BTRFS_EXTENT_ITEM_KEY;
5948 key.offset = num_bytes;
5949 btrfs_release_path(path);
5950 ret = btrfs_search_slot(trans, extent_root,
5951 &key, path, -1, 1);
5952 }
5953
5954 if (ret) {
5955 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5956 ret, bytenr);
5957 if (ret > 0)
5958 btrfs_print_leaf(extent_root,
5959 path->nodes[0]);
5960 }
5961 if (ret < 0) {
5962 btrfs_abort_transaction(trans, extent_root, ret);
5963 goto out;
5964 }
5965 extent_slot = path->slots[0];
5966 }
5967 } else if (WARN_ON(ret == -ENOENT)) {
5968 btrfs_print_leaf(extent_root, path->nodes[0]);
5969 btrfs_err(info,
5970 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5971 bytenr, parent, root_objectid, owner_objectid,
5972 owner_offset);
5973 btrfs_abort_transaction(trans, extent_root, ret);
5974 goto out;
5975 } else {
5976 btrfs_abort_transaction(trans, extent_root, ret);
5977 goto out;
5978 }
5979
5980 leaf = path->nodes[0];
5981 item_size = btrfs_item_size_nr(leaf, extent_slot);
5982 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5983 if (item_size < sizeof(*ei)) {
5984 BUG_ON(found_extent || extent_slot != path->slots[0]);
5985 ret = convert_extent_item_v0(trans, extent_root, path,
5986 owner_objectid, 0);
5987 if (ret < 0) {
5988 btrfs_abort_transaction(trans, extent_root, ret);
5989 goto out;
5990 }
5991
5992 btrfs_release_path(path);
5993 path->leave_spinning = 1;
5994
5995 key.objectid = bytenr;
5996 key.type = BTRFS_EXTENT_ITEM_KEY;
5997 key.offset = num_bytes;
5998
5999 ret = btrfs_search_slot(trans, extent_root, &key, path,
6000 -1, 1);
6001 if (ret) {
6002 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6003 ret, bytenr);
6004 btrfs_print_leaf(extent_root, path->nodes[0]);
6005 }
6006 if (ret < 0) {
6007 btrfs_abort_transaction(trans, extent_root, ret);
6008 goto out;
6009 }
6010
6011 extent_slot = path->slots[0];
6012 leaf = path->nodes[0];
6013 item_size = btrfs_item_size_nr(leaf, extent_slot);
6014 }
6015 #endif
6016 BUG_ON(item_size < sizeof(*ei));
6017 ei = btrfs_item_ptr(leaf, extent_slot,
6018 struct btrfs_extent_item);
6019 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6020 key.type == BTRFS_EXTENT_ITEM_KEY) {
6021 struct btrfs_tree_block_info *bi;
6022 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6023 bi = (struct btrfs_tree_block_info *)(ei + 1);
6024 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6025 }
6026
6027 refs = btrfs_extent_refs(leaf, ei);
6028 if (refs < refs_to_drop) {
6029 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6030 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6031 ret = -EINVAL;
6032 btrfs_abort_transaction(trans, extent_root, ret);
6033 goto out;
6034 }
6035 refs -= refs_to_drop;
6036
6037 if (refs > 0) {
6038 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6039 if (extent_op)
6040 __run_delayed_extent_op(extent_op, leaf, ei);
6041 /*
6042 * In the case of inline back ref, reference count will
6043 * be updated by remove_extent_backref
6044 */
6045 if (iref) {
6046 BUG_ON(!found_extent);
6047 } else {
6048 btrfs_set_extent_refs(leaf, ei, refs);
6049 btrfs_mark_buffer_dirty(leaf);
6050 }
6051 if (found_extent) {
6052 ret = remove_extent_backref(trans, extent_root, path,
6053 iref, refs_to_drop,
6054 is_data, &last_ref);
6055 if (ret) {
6056 btrfs_abort_transaction(trans, extent_root, ret);
6057 goto out;
6058 }
6059 }
6060 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6061 root_objectid);
6062 } else {
6063 if (found_extent) {
6064 BUG_ON(is_data && refs_to_drop !=
6065 extent_data_ref_count(root, path, iref));
6066 if (iref) {
6067 BUG_ON(path->slots[0] != extent_slot);
6068 } else {
6069 BUG_ON(path->slots[0] != extent_slot + 1);
6070 path->slots[0] = extent_slot;
6071 num_to_del = 2;
6072 }
6073 }
6074
6075 last_ref = 1;
6076 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6077 num_to_del);
6078 if (ret) {
6079 btrfs_abort_transaction(trans, extent_root, ret);
6080 goto out;
6081 }
6082 btrfs_release_path(path);
6083
6084 if (is_data) {
6085 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6086 if (ret) {
6087 btrfs_abort_transaction(trans, extent_root, ret);
6088 goto out;
6089 }
6090 }
6091
6092 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6093 if (ret) {
6094 btrfs_abort_transaction(trans, extent_root, ret);
6095 goto out;
6096 }
6097 }
6098 btrfs_release_path(path);
6099
6100 /* Deal with the quota accounting */
6101 if (!ret && last_ref && !no_quota) {
6102 int mod_seq = 0;
6103
6104 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6105 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6106 mod_seq = 1;
6107
6108 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6109 bytenr, num_bytes, type,
6110 mod_seq);
6111 }
6112 out:
6113 btrfs_free_path(path);
6114 return ret;
6115 }
6116
6117 /*
6118 * when we free an block, it is possible (and likely) that we free the last
6119 * delayed ref for that extent as well. This searches the delayed ref tree for
6120 * a given extent, and if there are no other delayed refs to be processed, it
6121 * removes it from the tree.
6122 */
6123 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6124 struct btrfs_root *root, u64 bytenr)
6125 {
6126 struct btrfs_delayed_ref_head *head;
6127 struct btrfs_delayed_ref_root *delayed_refs;
6128 int ret = 0;
6129
6130 delayed_refs = &trans->transaction->delayed_refs;
6131 spin_lock(&delayed_refs->lock);
6132 head = btrfs_find_delayed_ref_head(trans, bytenr);
6133 if (!head)
6134 goto out_delayed_unlock;
6135
6136 spin_lock(&head->lock);
6137 if (rb_first(&head->ref_root))
6138 goto out;
6139
6140 if (head->extent_op) {
6141 if (!head->must_insert_reserved)
6142 goto out;
6143 btrfs_free_delayed_extent_op(head->extent_op);
6144 head->extent_op = NULL;
6145 }
6146
6147 /*
6148 * waiting for the lock here would deadlock. If someone else has it
6149 * locked they are already in the process of dropping it anyway
6150 */
6151 if (!mutex_trylock(&head->mutex))
6152 goto out;
6153
6154 /*
6155 * at this point we have a head with no other entries. Go
6156 * ahead and process it.
6157 */
6158 head->node.in_tree = 0;
6159 rb_erase(&head->href_node, &delayed_refs->href_root);
6160
6161 atomic_dec(&delayed_refs->num_entries);
6162
6163 /*
6164 * we don't take a ref on the node because we're removing it from the
6165 * tree, so we just steal the ref the tree was holding.
6166 */
6167 delayed_refs->num_heads--;
6168 if (head->processing == 0)
6169 delayed_refs->num_heads_ready--;
6170 head->processing = 0;
6171 spin_unlock(&head->lock);
6172 spin_unlock(&delayed_refs->lock);
6173
6174 BUG_ON(head->extent_op);
6175 if (head->must_insert_reserved)
6176 ret = 1;
6177
6178 mutex_unlock(&head->mutex);
6179 btrfs_put_delayed_ref(&head->node);
6180 return ret;
6181 out:
6182 spin_unlock(&head->lock);
6183
6184 out_delayed_unlock:
6185 spin_unlock(&delayed_refs->lock);
6186 return 0;
6187 }
6188
6189 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6190 struct btrfs_root *root,
6191 struct extent_buffer *buf,
6192 u64 parent, int last_ref)
6193 {
6194 int pin = 1;
6195 int ret;
6196
6197 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6198 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6199 buf->start, buf->len,
6200 parent, root->root_key.objectid,
6201 btrfs_header_level(buf),
6202 BTRFS_DROP_DELAYED_REF, NULL, 0);
6203 BUG_ON(ret); /* -ENOMEM */
6204 }
6205
6206 if (!last_ref)
6207 return;
6208
6209 if (btrfs_header_generation(buf) == trans->transid) {
6210 struct btrfs_block_group_cache *cache;
6211
6212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6213 ret = check_ref_cleanup(trans, root, buf->start);
6214 if (!ret)
6215 goto out;
6216 }
6217
6218 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6219
6220 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6221 pin_down_extent(root, cache, buf->start, buf->len, 1);
6222 btrfs_put_block_group(cache);
6223 goto out;
6224 }
6225
6226 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6227
6228 btrfs_add_free_space(cache, buf->start, buf->len);
6229 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6230 btrfs_put_block_group(cache);
6231 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6232 pin = 0;
6233 }
6234 out:
6235 if (pin)
6236 add_pinned_bytes(root->fs_info, buf->len,
6237 btrfs_header_level(buf),
6238 root->root_key.objectid);
6239
6240 /*
6241 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6242 * anymore.
6243 */
6244 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6245 }
6246
6247 /* Can return -ENOMEM */
6248 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6249 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6250 u64 owner, u64 offset, int no_quota)
6251 {
6252 int ret;
6253 struct btrfs_fs_info *fs_info = root->fs_info;
6254
6255 if (btrfs_test_is_dummy_root(root))
6256 return 0;
6257
6258 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6259
6260 /*
6261 * tree log blocks never actually go into the extent allocation
6262 * tree, just update pinning info and exit early.
6263 */
6264 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6265 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6266 /* unlocks the pinned mutex */
6267 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6268 ret = 0;
6269 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6270 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6271 num_bytes,
6272 parent, root_objectid, (int)owner,
6273 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6274 } else {
6275 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6276 num_bytes,
6277 parent, root_objectid, owner,
6278 offset, BTRFS_DROP_DELAYED_REF,
6279 NULL, no_quota);
6280 }
6281 return ret;
6282 }
6283
6284 /*
6285 * when we wait for progress in the block group caching, its because
6286 * our allocation attempt failed at least once. So, we must sleep
6287 * and let some progress happen before we try again.
6288 *
6289 * This function will sleep at least once waiting for new free space to
6290 * show up, and then it will check the block group free space numbers
6291 * for our min num_bytes. Another option is to have it go ahead
6292 * and look in the rbtree for a free extent of a given size, but this
6293 * is a good start.
6294 *
6295 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6296 * any of the information in this block group.
6297 */
6298 static noinline void
6299 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6300 u64 num_bytes)
6301 {
6302 struct btrfs_caching_control *caching_ctl;
6303
6304 caching_ctl = get_caching_control(cache);
6305 if (!caching_ctl)
6306 return;
6307
6308 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6309 (cache->free_space_ctl->free_space >= num_bytes));
6310
6311 put_caching_control(caching_ctl);
6312 }
6313
6314 static noinline int
6315 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6316 {
6317 struct btrfs_caching_control *caching_ctl;
6318 int ret = 0;
6319
6320 caching_ctl = get_caching_control(cache);
6321 if (!caching_ctl)
6322 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6323
6324 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6325 if (cache->cached == BTRFS_CACHE_ERROR)
6326 ret = -EIO;
6327 put_caching_control(caching_ctl);
6328 return ret;
6329 }
6330
6331 int __get_raid_index(u64 flags)
6332 {
6333 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6334 return BTRFS_RAID_RAID10;
6335 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6336 return BTRFS_RAID_RAID1;
6337 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6338 return BTRFS_RAID_DUP;
6339 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6340 return BTRFS_RAID_RAID0;
6341 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6342 return BTRFS_RAID_RAID5;
6343 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6344 return BTRFS_RAID_RAID6;
6345
6346 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6347 }
6348
6349 int get_block_group_index(struct btrfs_block_group_cache *cache)
6350 {
6351 return __get_raid_index(cache->flags);
6352 }
6353
6354 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6355 [BTRFS_RAID_RAID10] = "raid10",
6356 [BTRFS_RAID_RAID1] = "raid1",
6357 [BTRFS_RAID_DUP] = "dup",
6358 [BTRFS_RAID_RAID0] = "raid0",
6359 [BTRFS_RAID_SINGLE] = "single",
6360 [BTRFS_RAID_RAID5] = "raid5",
6361 [BTRFS_RAID_RAID6] = "raid6",
6362 };
6363
6364 static const char *get_raid_name(enum btrfs_raid_types type)
6365 {
6366 if (type >= BTRFS_NR_RAID_TYPES)
6367 return NULL;
6368
6369 return btrfs_raid_type_names[type];
6370 }
6371
6372 enum btrfs_loop_type {
6373 LOOP_CACHING_NOWAIT = 0,
6374 LOOP_CACHING_WAIT = 1,
6375 LOOP_ALLOC_CHUNK = 2,
6376 LOOP_NO_EMPTY_SIZE = 3,
6377 };
6378
6379 static inline void
6380 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6381 int delalloc)
6382 {
6383 if (delalloc)
6384 down_read(&cache->data_rwsem);
6385 }
6386
6387 static inline void
6388 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6389 int delalloc)
6390 {
6391 btrfs_get_block_group(cache);
6392 if (delalloc)
6393 down_read(&cache->data_rwsem);
6394 }
6395
6396 static struct btrfs_block_group_cache *
6397 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6398 struct btrfs_free_cluster *cluster,
6399 int delalloc)
6400 {
6401 struct btrfs_block_group_cache *used_bg;
6402 bool locked = false;
6403 again:
6404 spin_lock(&cluster->refill_lock);
6405 if (locked) {
6406 if (used_bg == cluster->block_group)
6407 return used_bg;
6408
6409 up_read(&used_bg->data_rwsem);
6410 btrfs_put_block_group(used_bg);
6411 }
6412
6413 used_bg = cluster->block_group;
6414 if (!used_bg)
6415 return NULL;
6416
6417 if (used_bg == block_group)
6418 return used_bg;
6419
6420 btrfs_get_block_group(used_bg);
6421
6422 if (!delalloc)
6423 return used_bg;
6424
6425 if (down_read_trylock(&used_bg->data_rwsem))
6426 return used_bg;
6427
6428 spin_unlock(&cluster->refill_lock);
6429 down_read(&used_bg->data_rwsem);
6430 locked = true;
6431 goto again;
6432 }
6433
6434 static inline void
6435 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6436 int delalloc)
6437 {
6438 if (delalloc)
6439 up_read(&cache->data_rwsem);
6440 btrfs_put_block_group(cache);
6441 }
6442
6443 /*
6444 * walks the btree of allocated extents and find a hole of a given size.
6445 * The key ins is changed to record the hole:
6446 * ins->objectid == start position
6447 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6448 * ins->offset == the size of the hole.
6449 * Any available blocks before search_start are skipped.
6450 *
6451 * If there is no suitable free space, we will record the max size of
6452 * the free space extent currently.
6453 */
6454 static noinline int find_free_extent(struct btrfs_root *orig_root,
6455 u64 num_bytes, u64 empty_size,
6456 u64 hint_byte, struct btrfs_key *ins,
6457 u64 flags, int delalloc)
6458 {
6459 int ret = 0;
6460 struct btrfs_root *root = orig_root->fs_info->extent_root;
6461 struct btrfs_free_cluster *last_ptr = NULL;
6462 struct btrfs_block_group_cache *block_group = NULL;
6463 u64 search_start = 0;
6464 u64 max_extent_size = 0;
6465 int empty_cluster = 2 * 1024 * 1024;
6466 struct btrfs_space_info *space_info;
6467 int loop = 0;
6468 int index = __get_raid_index(flags);
6469 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6470 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6471 bool failed_cluster_refill = false;
6472 bool failed_alloc = false;
6473 bool use_cluster = true;
6474 bool have_caching_bg = false;
6475
6476 WARN_ON(num_bytes < root->sectorsize);
6477 ins->type = BTRFS_EXTENT_ITEM_KEY;
6478 ins->objectid = 0;
6479 ins->offset = 0;
6480
6481 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6482
6483 space_info = __find_space_info(root->fs_info, flags);
6484 if (!space_info) {
6485 btrfs_err(root->fs_info, "No space info for %llu", flags);
6486 return -ENOSPC;
6487 }
6488
6489 /*
6490 * If the space info is for both data and metadata it means we have a
6491 * small filesystem and we can't use the clustering stuff.
6492 */
6493 if (btrfs_mixed_space_info(space_info))
6494 use_cluster = false;
6495
6496 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6497 last_ptr = &root->fs_info->meta_alloc_cluster;
6498 if (!btrfs_test_opt(root, SSD))
6499 empty_cluster = 64 * 1024;
6500 }
6501
6502 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6503 btrfs_test_opt(root, SSD)) {
6504 last_ptr = &root->fs_info->data_alloc_cluster;
6505 }
6506
6507 if (last_ptr) {
6508 spin_lock(&last_ptr->lock);
6509 if (last_ptr->block_group)
6510 hint_byte = last_ptr->window_start;
6511 spin_unlock(&last_ptr->lock);
6512 }
6513
6514 search_start = max(search_start, first_logical_byte(root, 0));
6515 search_start = max(search_start, hint_byte);
6516
6517 if (!last_ptr)
6518 empty_cluster = 0;
6519
6520 if (search_start == hint_byte) {
6521 block_group = btrfs_lookup_block_group(root->fs_info,
6522 search_start);
6523 /*
6524 * we don't want to use the block group if it doesn't match our
6525 * allocation bits, or if its not cached.
6526 *
6527 * However if we are re-searching with an ideal block group
6528 * picked out then we don't care that the block group is cached.
6529 */
6530 if (block_group && block_group_bits(block_group, flags) &&
6531 block_group->cached != BTRFS_CACHE_NO) {
6532 down_read(&space_info->groups_sem);
6533 if (list_empty(&block_group->list) ||
6534 block_group->ro) {
6535 /*
6536 * someone is removing this block group,
6537 * we can't jump into the have_block_group
6538 * target because our list pointers are not
6539 * valid
6540 */
6541 btrfs_put_block_group(block_group);
6542 up_read(&space_info->groups_sem);
6543 } else {
6544 index = get_block_group_index(block_group);
6545 btrfs_lock_block_group(block_group, delalloc);
6546 goto have_block_group;
6547 }
6548 } else if (block_group) {
6549 btrfs_put_block_group(block_group);
6550 }
6551 }
6552 search:
6553 have_caching_bg = false;
6554 down_read(&space_info->groups_sem);
6555 list_for_each_entry(block_group, &space_info->block_groups[index],
6556 list) {
6557 u64 offset;
6558 int cached;
6559
6560 btrfs_grab_block_group(block_group, delalloc);
6561 search_start = block_group->key.objectid;
6562
6563 /*
6564 * this can happen if we end up cycling through all the
6565 * raid types, but we want to make sure we only allocate
6566 * for the proper type.
6567 */
6568 if (!block_group_bits(block_group, flags)) {
6569 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6570 BTRFS_BLOCK_GROUP_RAID1 |
6571 BTRFS_BLOCK_GROUP_RAID5 |
6572 BTRFS_BLOCK_GROUP_RAID6 |
6573 BTRFS_BLOCK_GROUP_RAID10;
6574
6575 /*
6576 * if they asked for extra copies and this block group
6577 * doesn't provide them, bail. This does allow us to
6578 * fill raid0 from raid1.
6579 */
6580 if ((flags & extra) && !(block_group->flags & extra))
6581 goto loop;
6582 }
6583
6584 have_block_group:
6585 cached = block_group_cache_done(block_group);
6586 if (unlikely(!cached)) {
6587 ret = cache_block_group(block_group, 0);
6588 BUG_ON(ret < 0);
6589 ret = 0;
6590 }
6591
6592 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6593 goto loop;
6594 if (unlikely(block_group->ro))
6595 goto loop;
6596
6597 /*
6598 * Ok we want to try and use the cluster allocator, so
6599 * lets look there
6600 */
6601 if (last_ptr) {
6602 struct btrfs_block_group_cache *used_block_group;
6603 unsigned long aligned_cluster;
6604 /*
6605 * the refill lock keeps out other
6606 * people trying to start a new cluster
6607 */
6608 used_block_group = btrfs_lock_cluster(block_group,
6609 last_ptr,
6610 delalloc);
6611 if (!used_block_group)
6612 goto refill_cluster;
6613
6614 if (used_block_group != block_group &&
6615 (used_block_group->ro ||
6616 !block_group_bits(used_block_group, flags)))
6617 goto release_cluster;
6618
6619 offset = btrfs_alloc_from_cluster(used_block_group,
6620 last_ptr,
6621 num_bytes,
6622 used_block_group->key.objectid,
6623 &max_extent_size);
6624 if (offset) {
6625 /* we have a block, we're done */
6626 spin_unlock(&last_ptr->refill_lock);
6627 trace_btrfs_reserve_extent_cluster(root,
6628 used_block_group,
6629 search_start, num_bytes);
6630 if (used_block_group != block_group) {
6631 btrfs_release_block_group(block_group,
6632 delalloc);
6633 block_group = used_block_group;
6634 }
6635 goto checks;
6636 }
6637
6638 WARN_ON(last_ptr->block_group != used_block_group);
6639 release_cluster:
6640 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6641 * set up a new clusters, so lets just skip it
6642 * and let the allocator find whatever block
6643 * it can find. If we reach this point, we
6644 * will have tried the cluster allocator
6645 * plenty of times and not have found
6646 * anything, so we are likely way too
6647 * fragmented for the clustering stuff to find
6648 * anything.
6649 *
6650 * However, if the cluster is taken from the
6651 * current block group, release the cluster
6652 * first, so that we stand a better chance of
6653 * succeeding in the unclustered
6654 * allocation. */
6655 if (loop >= LOOP_NO_EMPTY_SIZE &&
6656 used_block_group != block_group) {
6657 spin_unlock(&last_ptr->refill_lock);
6658 btrfs_release_block_group(used_block_group,
6659 delalloc);
6660 goto unclustered_alloc;
6661 }
6662
6663 /*
6664 * this cluster didn't work out, free it and
6665 * start over
6666 */
6667 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6668
6669 if (used_block_group != block_group)
6670 btrfs_release_block_group(used_block_group,
6671 delalloc);
6672 refill_cluster:
6673 if (loop >= LOOP_NO_EMPTY_SIZE) {
6674 spin_unlock(&last_ptr->refill_lock);
6675 goto unclustered_alloc;
6676 }
6677
6678 aligned_cluster = max_t(unsigned long,
6679 empty_cluster + empty_size,
6680 block_group->full_stripe_len);
6681
6682 /* allocate a cluster in this block group */
6683 ret = btrfs_find_space_cluster(root, block_group,
6684 last_ptr, search_start,
6685 num_bytes,
6686 aligned_cluster);
6687 if (ret == 0) {
6688 /*
6689 * now pull our allocation out of this
6690 * cluster
6691 */
6692 offset = btrfs_alloc_from_cluster(block_group,
6693 last_ptr,
6694 num_bytes,
6695 search_start,
6696 &max_extent_size);
6697 if (offset) {
6698 /* we found one, proceed */
6699 spin_unlock(&last_ptr->refill_lock);
6700 trace_btrfs_reserve_extent_cluster(root,
6701 block_group, search_start,
6702 num_bytes);
6703 goto checks;
6704 }
6705 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6706 && !failed_cluster_refill) {
6707 spin_unlock(&last_ptr->refill_lock);
6708
6709 failed_cluster_refill = true;
6710 wait_block_group_cache_progress(block_group,
6711 num_bytes + empty_cluster + empty_size);
6712 goto have_block_group;
6713 }
6714
6715 /*
6716 * at this point we either didn't find a cluster
6717 * or we weren't able to allocate a block from our
6718 * cluster. Free the cluster we've been trying
6719 * to use, and go to the next block group
6720 */
6721 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6722 spin_unlock(&last_ptr->refill_lock);
6723 goto loop;
6724 }
6725
6726 unclustered_alloc:
6727 spin_lock(&block_group->free_space_ctl->tree_lock);
6728 if (cached &&
6729 block_group->free_space_ctl->free_space <
6730 num_bytes + empty_cluster + empty_size) {
6731 if (block_group->free_space_ctl->free_space >
6732 max_extent_size)
6733 max_extent_size =
6734 block_group->free_space_ctl->free_space;
6735 spin_unlock(&block_group->free_space_ctl->tree_lock);
6736 goto loop;
6737 }
6738 spin_unlock(&block_group->free_space_ctl->tree_lock);
6739
6740 offset = btrfs_find_space_for_alloc(block_group, search_start,
6741 num_bytes, empty_size,
6742 &max_extent_size);
6743 /*
6744 * If we didn't find a chunk, and we haven't failed on this
6745 * block group before, and this block group is in the middle of
6746 * caching and we are ok with waiting, then go ahead and wait
6747 * for progress to be made, and set failed_alloc to true.
6748 *
6749 * If failed_alloc is true then we've already waited on this
6750 * block group once and should move on to the next block group.
6751 */
6752 if (!offset && !failed_alloc && !cached &&
6753 loop > LOOP_CACHING_NOWAIT) {
6754 wait_block_group_cache_progress(block_group,
6755 num_bytes + empty_size);
6756 failed_alloc = true;
6757 goto have_block_group;
6758 } else if (!offset) {
6759 if (!cached)
6760 have_caching_bg = true;
6761 goto loop;
6762 }
6763 checks:
6764 search_start = ALIGN(offset, root->stripesize);
6765
6766 /* move on to the next group */
6767 if (search_start + num_bytes >
6768 block_group->key.objectid + block_group->key.offset) {
6769 btrfs_add_free_space(block_group, offset, num_bytes);
6770 goto loop;
6771 }
6772
6773 if (offset < search_start)
6774 btrfs_add_free_space(block_group, offset,
6775 search_start - offset);
6776 BUG_ON(offset > search_start);
6777
6778 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6779 alloc_type, delalloc);
6780 if (ret == -EAGAIN) {
6781 btrfs_add_free_space(block_group, offset, num_bytes);
6782 goto loop;
6783 }
6784
6785 /* we are all good, lets return */
6786 ins->objectid = search_start;
6787 ins->offset = num_bytes;
6788
6789 trace_btrfs_reserve_extent(orig_root, block_group,
6790 search_start, num_bytes);
6791 btrfs_release_block_group(block_group, delalloc);
6792 break;
6793 loop:
6794 failed_cluster_refill = false;
6795 failed_alloc = false;
6796 BUG_ON(index != get_block_group_index(block_group));
6797 btrfs_release_block_group(block_group, delalloc);
6798 }
6799 up_read(&space_info->groups_sem);
6800
6801 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6802 goto search;
6803
6804 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6805 goto search;
6806
6807 /*
6808 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6809 * caching kthreads as we move along
6810 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6811 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6812 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6813 * again
6814 */
6815 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6816 index = 0;
6817 loop++;
6818 if (loop == LOOP_ALLOC_CHUNK) {
6819 struct btrfs_trans_handle *trans;
6820 int exist = 0;
6821
6822 trans = current->journal_info;
6823 if (trans)
6824 exist = 1;
6825 else
6826 trans = btrfs_join_transaction(root);
6827
6828 if (IS_ERR(trans)) {
6829 ret = PTR_ERR(trans);
6830 goto out;
6831 }
6832
6833 ret = do_chunk_alloc(trans, root, flags,
6834 CHUNK_ALLOC_FORCE);
6835 /*
6836 * Do not bail out on ENOSPC since we
6837 * can do more things.
6838 */
6839 if (ret < 0 && ret != -ENOSPC)
6840 btrfs_abort_transaction(trans,
6841 root, ret);
6842 else
6843 ret = 0;
6844 if (!exist)
6845 btrfs_end_transaction(trans, root);
6846 if (ret)
6847 goto out;
6848 }
6849
6850 if (loop == LOOP_NO_EMPTY_SIZE) {
6851 empty_size = 0;
6852 empty_cluster = 0;
6853 }
6854
6855 goto search;
6856 } else if (!ins->objectid) {
6857 ret = -ENOSPC;
6858 } else if (ins->objectid) {
6859 ret = 0;
6860 }
6861 out:
6862 if (ret == -ENOSPC)
6863 ins->offset = max_extent_size;
6864 return ret;
6865 }
6866
6867 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6868 int dump_block_groups)
6869 {
6870 struct btrfs_block_group_cache *cache;
6871 int index = 0;
6872
6873 spin_lock(&info->lock);
6874 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6875 info->flags,
6876 info->total_bytes - info->bytes_used - info->bytes_pinned -
6877 info->bytes_reserved - info->bytes_readonly,
6878 (info->full) ? "" : "not ");
6879 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6880 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6881 info->total_bytes, info->bytes_used, info->bytes_pinned,
6882 info->bytes_reserved, info->bytes_may_use,
6883 info->bytes_readonly);
6884 spin_unlock(&info->lock);
6885
6886 if (!dump_block_groups)
6887 return;
6888
6889 down_read(&info->groups_sem);
6890 again:
6891 list_for_each_entry(cache, &info->block_groups[index], list) {
6892 spin_lock(&cache->lock);
6893 printk(KERN_INFO "BTRFS: "
6894 "block group %llu has %llu bytes, "
6895 "%llu used %llu pinned %llu reserved %s\n",
6896 cache->key.objectid, cache->key.offset,
6897 btrfs_block_group_used(&cache->item), cache->pinned,
6898 cache->reserved, cache->ro ? "[readonly]" : "");
6899 btrfs_dump_free_space(cache, bytes);
6900 spin_unlock(&cache->lock);
6901 }
6902 if (++index < BTRFS_NR_RAID_TYPES)
6903 goto again;
6904 up_read(&info->groups_sem);
6905 }
6906
6907 int btrfs_reserve_extent(struct btrfs_root *root,
6908 u64 num_bytes, u64 min_alloc_size,
6909 u64 empty_size, u64 hint_byte,
6910 struct btrfs_key *ins, int is_data, int delalloc)
6911 {
6912 bool final_tried = false;
6913 u64 flags;
6914 int ret;
6915
6916 flags = btrfs_get_alloc_profile(root, is_data);
6917 again:
6918 WARN_ON(num_bytes < root->sectorsize);
6919 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6920 flags, delalloc);
6921
6922 if (ret == -ENOSPC) {
6923 if (!final_tried && ins->offset) {
6924 num_bytes = min(num_bytes >> 1, ins->offset);
6925 num_bytes = round_down(num_bytes, root->sectorsize);
6926 num_bytes = max(num_bytes, min_alloc_size);
6927 if (num_bytes == min_alloc_size)
6928 final_tried = true;
6929 goto again;
6930 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6931 struct btrfs_space_info *sinfo;
6932
6933 sinfo = __find_space_info(root->fs_info, flags);
6934 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6935 flags, num_bytes);
6936 if (sinfo)
6937 dump_space_info(sinfo, num_bytes, 1);
6938 }
6939 }
6940
6941 return ret;
6942 }
6943
6944 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6945 u64 start, u64 len,
6946 int pin, int delalloc)
6947 {
6948 struct btrfs_block_group_cache *cache;
6949 int ret = 0;
6950
6951 cache = btrfs_lookup_block_group(root->fs_info, start);
6952 if (!cache) {
6953 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6954 start);
6955 return -ENOSPC;
6956 }
6957
6958 if (btrfs_test_opt(root, DISCARD))
6959 ret = btrfs_discard_extent(root, start, len, NULL);
6960
6961 if (pin)
6962 pin_down_extent(root, cache, start, len, 1);
6963 else {
6964 btrfs_add_free_space(cache, start, len);
6965 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6966 }
6967 btrfs_put_block_group(cache);
6968
6969 trace_btrfs_reserved_extent_free(root, start, len);
6970
6971 return ret;
6972 }
6973
6974 int btrfs_free_reserved_extent(struct btrfs_root *root,
6975 u64 start, u64 len, int delalloc)
6976 {
6977 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6978 }
6979
6980 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6981 u64 start, u64 len)
6982 {
6983 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6984 }
6985
6986 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6987 struct btrfs_root *root,
6988 u64 parent, u64 root_objectid,
6989 u64 flags, u64 owner, u64 offset,
6990 struct btrfs_key *ins, int ref_mod)
6991 {
6992 int ret;
6993 struct btrfs_fs_info *fs_info = root->fs_info;
6994 struct btrfs_extent_item *extent_item;
6995 struct btrfs_extent_inline_ref *iref;
6996 struct btrfs_path *path;
6997 struct extent_buffer *leaf;
6998 int type;
6999 u32 size;
7000
7001 if (parent > 0)
7002 type = BTRFS_SHARED_DATA_REF_KEY;
7003 else
7004 type = BTRFS_EXTENT_DATA_REF_KEY;
7005
7006 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7007
7008 path = btrfs_alloc_path();
7009 if (!path)
7010 return -ENOMEM;
7011
7012 path->leave_spinning = 1;
7013 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7014 ins, size);
7015 if (ret) {
7016 btrfs_free_path(path);
7017 return ret;
7018 }
7019
7020 leaf = path->nodes[0];
7021 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7022 struct btrfs_extent_item);
7023 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7024 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7025 btrfs_set_extent_flags(leaf, extent_item,
7026 flags | BTRFS_EXTENT_FLAG_DATA);
7027
7028 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7029 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7030 if (parent > 0) {
7031 struct btrfs_shared_data_ref *ref;
7032 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7033 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7034 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7035 } else {
7036 struct btrfs_extent_data_ref *ref;
7037 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7038 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7039 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7040 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7041 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7042 }
7043
7044 btrfs_mark_buffer_dirty(path->nodes[0]);
7045 btrfs_free_path(path);
7046
7047 /* Always set parent to 0 here since its exclusive anyway. */
7048 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7049 ins->objectid, ins->offset,
7050 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7051 if (ret)
7052 return ret;
7053
7054 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7055 if (ret) { /* -ENOENT, logic error */
7056 btrfs_err(fs_info, "update block group failed for %llu %llu",
7057 ins->objectid, ins->offset);
7058 BUG();
7059 }
7060 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7061 return ret;
7062 }
7063
7064 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7065 struct btrfs_root *root,
7066 u64 parent, u64 root_objectid,
7067 u64 flags, struct btrfs_disk_key *key,
7068 int level, struct btrfs_key *ins,
7069 int no_quota)
7070 {
7071 int ret;
7072 struct btrfs_fs_info *fs_info = root->fs_info;
7073 struct btrfs_extent_item *extent_item;
7074 struct btrfs_tree_block_info *block_info;
7075 struct btrfs_extent_inline_ref *iref;
7076 struct btrfs_path *path;
7077 struct extent_buffer *leaf;
7078 u32 size = sizeof(*extent_item) + sizeof(*iref);
7079 u64 num_bytes = ins->offset;
7080 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7081 SKINNY_METADATA);
7082
7083 if (!skinny_metadata)
7084 size += sizeof(*block_info);
7085
7086 path = btrfs_alloc_path();
7087 if (!path) {
7088 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7089 root->nodesize);
7090 return -ENOMEM;
7091 }
7092
7093 path->leave_spinning = 1;
7094 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7095 ins, size);
7096 if (ret) {
7097 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7098 root->nodesize);
7099 btrfs_free_path(path);
7100 return ret;
7101 }
7102
7103 leaf = path->nodes[0];
7104 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7105 struct btrfs_extent_item);
7106 btrfs_set_extent_refs(leaf, extent_item, 1);
7107 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7108 btrfs_set_extent_flags(leaf, extent_item,
7109 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7110
7111 if (skinny_metadata) {
7112 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7113 num_bytes = root->nodesize;
7114 } else {
7115 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7116 btrfs_set_tree_block_key(leaf, block_info, key);
7117 btrfs_set_tree_block_level(leaf, block_info, level);
7118 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7119 }
7120
7121 if (parent > 0) {
7122 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7123 btrfs_set_extent_inline_ref_type(leaf, iref,
7124 BTRFS_SHARED_BLOCK_REF_KEY);
7125 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7126 } else {
7127 btrfs_set_extent_inline_ref_type(leaf, iref,
7128 BTRFS_TREE_BLOCK_REF_KEY);
7129 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7130 }
7131
7132 btrfs_mark_buffer_dirty(leaf);
7133 btrfs_free_path(path);
7134
7135 if (!no_quota) {
7136 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7137 ins->objectid, num_bytes,
7138 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7139 if (ret)
7140 return ret;
7141 }
7142
7143 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7144 1);
7145 if (ret) { /* -ENOENT, logic error */
7146 btrfs_err(fs_info, "update block group failed for %llu %llu",
7147 ins->objectid, ins->offset);
7148 BUG();
7149 }
7150
7151 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7152 return ret;
7153 }
7154
7155 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7156 struct btrfs_root *root,
7157 u64 root_objectid, u64 owner,
7158 u64 offset, struct btrfs_key *ins)
7159 {
7160 int ret;
7161
7162 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7163
7164 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7165 ins->offset, 0,
7166 root_objectid, owner, offset,
7167 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7168 return ret;
7169 }
7170
7171 /*
7172 * this is used by the tree logging recovery code. It records that
7173 * an extent has been allocated and makes sure to clear the free
7174 * space cache bits as well
7175 */
7176 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7177 struct btrfs_root *root,
7178 u64 root_objectid, u64 owner, u64 offset,
7179 struct btrfs_key *ins)
7180 {
7181 int ret;
7182 struct btrfs_block_group_cache *block_group;
7183
7184 /*
7185 * Mixed block groups will exclude before processing the log so we only
7186 * need to do the exlude dance if this fs isn't mixed.
7187 */
7188 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7189 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7190 if (ret)
7191 return ret;
7192 }
7193
7194 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7195 if (!block_group)
7196 return -EINVAL;
7197
7198 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7199 RESERVE_ALLOC_NO_ACCOUNT, 0);
7200 BUG_ON(ret); /* logic error */
7201 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7202 0, owner, offset, ins, 1);
7203 btrfs_put_block_group(block_group);
7204 return ret;
7205 }
7206
7207 static struct extent_buffer *
7208 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7209 u64 bytenr, int level)
7210 {
7211 struct extent_buffer *buf;
7212
7213 buf = btrfs_find_create_tree_block(root, bytenr);
7214 if (!buf)
7215 return ERR_PTR(-ENOMEM);
7216 btrfs_set_header_generation(buf, trans->transid);
7217 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7218 btrfs_tree_lock(buf);
7219 clean_tree_block(trans, root->fs_info, buf);
7220 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7221
7222 btrfs_set_lock_blocking(buf);
7223 btrfs_set_buffer_uptodate(buf);
7224
7225 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7226 buf->log_index = root->log_transid % 2;
7227 /*
7228 * we allow two log transactions at a time, use different
7229 * EXENT bit to differentiate dirty pages.
7230 */
7231 if (buf->log_index == 0)
7232 set_extent_dirty(&root->dirty_log_pages, buf->start,
7233 buf->start + buf->len - 1, GFP_NOFS);
7234 else
7235 set_extent_new(&root->dirty_log_pages, buf->start,
7236 buf->start + buf->len - 1, GFP_NOFS);
7237 } else {
7238 buf->log_index = -1;
7239 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7240 buf->start + buf->len - 1, GFP_NOFS);
7241 }
7242 trans->blocks_used++;
7243 /* this returns a buffer locked for blocking */
7244 return buf;
7245 }
7246
7247 static struct btrfs_block_rsv *
7248 use_block_rsv(struct btrfs_trans_handle *trans,
7249 struct btrfs_root *root, u32 blocksize)
7250 {
7251 struct btrfs_block_rsv *block_rsv;
7252 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7253 int ret;
7254 bool global_updated = false;
7255
7256 block_rsv = get_block_rsv(trans, root);
7257
7258 if (unlikely(block_rsv->size == 0))
7259 goto try_reserve;
7260 again:
7261 ret = block_rsv_use_bytes(block_rsv, blocksize);
7262 if (!ret)
7263 return block_rsv;
7264
7265 if (block_rsv->failfast)
7266 return ERR_PTR(ret);
7267
7268 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7269 global_updated = true;
7270 update_global_block_rsv(root->fs_info);
7271 goto again;
7272 }
7273
7274 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7275 static DEFINE_RATELIMIT_STATE(_rs,
7276 DEFAULT_RATELIMIT_INTERVAL * 10,
7277 /*DEFAULT_RATELIMIT_BURST*/ 1);
7278 if (__ratelimit(&_rs))
7279 WARN(1, KERN_DEBUG
7280 "BTRFS: block rsv returned %d\n", ret);
7281 }
7282 try_reserve:
7283 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7284 BTRFS_RESERVE_NO_FLUSH);
7285 if (!ret)
7286 return block_rsv;
7287 /*
7288 * If we couldn't reserve metadata bytes try and use some from
7289 * the global reserve if its space type is the same as the global
7290 * reservation.
7291 */
7292 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7293 block_rsv->space_info == global_rsv->space_info) {
7294 ret = block_rsv_use_bytes(global_rsv, blocksize);
7295 if (!ret)
7296 return global_rsv;
7297 }
7298 return ERR_PTR(ret);
7299 }
7300
7301 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7302 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7303 {
7304 block_rsv_add_bytes(block_rsv, blocksize, 0);
7305 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7306 }
7307
7308 /*
7309 * finds a free extent and does all the dirty work required for allocation
7310 * returns the key for the extent through ins, and a tree buffer for
7311 * the first block of the extent through buf.
7312 *
7313 * returns the tree buffer or NULL.
7314 */
7315 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7316 struct btrfs_root *root,
7317 u64 parent, u64 root_objectid,
7318 struct btrfs_disk_key *key, int level,
7319 u64 hint, u64 empty_size)
7320 {
7321 struct btrfs_key ins;
7322 struct btrfs_block_rsv *block_rsv;
7323 struct extent_buffer *buf;
7324 u64 flags = 0;
7325 int ret;
7326 u32 blocksize = root->nodesize;
7327 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7328 SKINNY_METADATA);
7329
7330 if (btrfs_test_is_dummy_root(root)) {
7331 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7332 level);
7333 if (!IS_ERR(buf))
7334 root->alloc_bytenr += blocksize;
7335 return buf;
7336 }
7337
7338 block_rsv = use_block_rsv(trans, root, blocksize);
7339 if (IS_ERR(block_rsv))
7340 return ERR_CAST(block_rsv);
7341
7342 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7343 empty_size, hint, &ins, 0, 0);
7344 if (ret) {
7345 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7346 return ERR_PTR(ret);
7347 }
7348
7349 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7350 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7351
7352 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7353 if (parent == 0)
7354 parent = ins.objectid;
7355 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7356 } else
7357 BUG_ON(parent > 0);
7358
7359 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7360 struct btrfs_delayed_extent_op *extent_op;
7361 extent_op = btrfs_alloc_delayed_extent_op();
7362 BUG_ON(!extent_op); /* -ENOMEM */
7363 if (key)
7364 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7365 else
7366 memset(&extent_op->key, 0, sizeof(extent_op->key));
7367 extent_op->flags_to_set = flags;
7368 if (skinny_metadata)
7369 extent_op->update_key = 0;
7370 else
7371 extent_op->update_key = 1;
7372 extent_op->update_flags = 1;
7373 extent_op->is_data = 0;
7374 extent_op->level = level;
7375
7376 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7377 ins.objectid,
7378 ins.offset, parent, root_objectid,
7379 level, BTRFS_ADD_DELAYED_EXTENT,
7380 extent_op, 0);
7381 BUG_ON(ret); /* -ENOMEM */
7382 }
7383 return buf;
7384 }
7385
7386 struct walk_control {
7387 u64 refs[BTRFS_MAX_LEVEL];
7388 u64 flags[BTRFS_MAX_LEVEL];
7389 struct btrfs_key update_progress;
7390 int stage;
7391 int level;
7392 int shared_level;
7393 int update_ref;
7394 int keep_locks;
7395 int reada_slot;
7396 int reada_count;
7397 int for_reloc;
7398 };
7399
7400 #define DROP_REFERENCE 1
7401 #define UPDATE_BACKREF 2
7402
7403 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7404 struct btrfs_root *root,
7405 struct walk_control *wc,
7406 struct btrfs_path *path)
7407 {
7408 u64 bytenr;
7409 u64 generation;
7410 u64 refs;
7411 u64 flags;
7412 u32 nritems;
7413 u32 blocksize;
7414 struct btrfs_key key;
7415 struct extent_buffer *eb;
7416 int ret;
7417 int slot;
7418 int nread = 0;
7419
7420 if (path->slots[wc->level] < wc->reada_slot) {
7421 wc->reada_count = wc->reada_count * 2 / 3;
7422 wc->reada_count = max(wc->reada_count, 2);
7423 } else {
7424 wc->reada_count = wc->reada_count * 3 / 2;
7425 wc->reada_count = min_t(int, wc->reada_count,
7426 BTRFS_NODEPTRS_PER_BLOCK(root));
7427 }
7428
7429 eb = path->nodes[wc->level];
7430 nritems = btrfs_header_nritems(eb);
7431 blocksize = root->nodesize;
7432
7433 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7434 if (nread >= wc->reada_count)
7435 break;
7436
7437 cond_resched();
7438 bytenr = btrfs_node_blockptr(eb, slot);
7439 generation = btrfs_node_ptr_generation(eb, slot);
7440
7441 if (slot == path->slots[wc->level])
7442 goto reada;
7443
7444 if (wc->stage == UPDATE_BACKREF &&
7445 generation <= root->root_key.offset)
7446 continue;
7447
7448 /* We don't lock the tree block, it's OK to be racy here */
7449 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7450 wc->level - 1, 1, &refs,
7451 &flags);
7452 /* We don't care about errors in readahead. */
7453 if (ret < 0)
7454 continue;
7455 BUG_ON(refs == 0);
7456
7457 if (wc->stage == DROP_REFERENCE) {
7458 if (refs == 1)
7459 goto reada;
7460
7461 if (wc->level == 1 &&
7462 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7463 continue;
7464 if (!wc->update_ref ||
7465 generation <= root->root_key.offset)
7466 continue;
7467 btrfs_node_key_to_cpu(eb, &key, slot);
7468 ret = btrfs_comp_cpu_keys(&key,
7469 &wc->update_progress);
7470 if (ret < 0)
7471 continue;
7472 } else {
7473 if (wc->level == 1 &&
7474 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7475 continue;
7476 }
7477 reada:
7478 readahead_tree_block(root, bytenr);
7479 nread++;
7480 }
7481 wc->reada_slot = slot;
7482 }
7483
7484 static int account_leaf_items(struct btrfs_trans_handle *trans,
7485 struct btrfs_root *root,
7486 struct extent_buffer *eb)
7487 {
7488 int nr = btrfs_header_nritems(eb);
7489 int i, extent_type, ret;
7490 struct btrfs_key key;
7491 struct btrfs_file_extent_item *fi;
7492 u64 bytenr, num_bytes;
7493
7494 for (i = 0; i < nr; i++) {
7495 btrfs_item_key_to_cpu(eb, &key, i);
7496
7497 if (key.type != BTRFS_EXTENT_DATA_KEY)
7498 continue;
7499
7500 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7501 /* filter out non qgroup-accountable extents */
7502 extent_type = btrfs_file_extent_type(eb, fi);
7503
7504 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7505 continue;
7506
7507 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7508 if (!bytenr)
7509 continue;
7510
7511 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7512
7513 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7514 root->objectid,
7515 bytenr, num_bytes,
7516 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7517 if (ret)
7518 return ret;
7519 }
7520 return 0;
7521 }
7522
7523 /*
7524 * Walk up the tree from the bottom, freeing leaves and any interior
7525 * nodes which have had all slots visited. If a node (leaf or
7526 * interior) is freed, the node above it will have it's slot
7527 * incremented. The root node will never be freed.
7528 *
7529 * At the end of this function, we should have a path which has all
7530 * slots incremented to the next position for a search. If we need to
7531 * read a new node it will be NULL and the node above it will have the
7532 * correct slot selected for a later read.
7533 *
7534 * If we increment the root nodes slot counter past the number of
7535 * elements, 1 is returned to signal completion of the search.
7536 */
7537 static int adjust_slots_upwards(struct btrfs_root *root,
7538 struct btrfs_path *path, int root_level)
7539 {
7540 int level = 0;
7541 int nr, slot;
7542 struct extent_buffer *eb;
7543
7544 if (root_level == 0)
7545 return 1;
7546
7547 while (level <= root_level) {
7548 eb = path->nodes[level];
7549 nr = btrfs_header_nritems(eb);
7550 path->slots[level]++;
7551 slot = path->slots[level];
7552 if (slot >= nr || level == 0) {
7553 /*
7554 * Don't free the root - we will detect this
7555 * condition after our loop and return a
7556 * positive value for caller to stop walking the tree.
7557 */
7558 if (level != root_level) {
7559 btrfs_tree_unlock_rw(eb, path->locks[level]);
7560 path->locks[level] = 0;
7561
7562 free_extent_buffer(eb);
7563 path->nodes[level] = NULL;
7564 path->slots[level] = 0;
7565 }
7566 } else {
7567 /*
7568 * We have a valid slot to walk back down
7569 * from. Stop here so caller can process these
7570 * new nodes.
7571 */
7572 break;
7573 }
7574
7575 level++;
7576 }
7577
7578 eb = path->nodes[root_level];
7579 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7580 return 1;
7581
7582 return 0;
7583 }
7584
7585 /*
7586 * root_eb is the subtree root and is locked before this function is called.
7587 */
7588 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7589 struct btrfs_root *root,
7590 struct extent_buffer *root_eb,
7591 u64 root_gen,
7592 int root_level)
7593 {
7594 int ret = 0;
7595 int level;
7596 struct extent_buffer *eb = root_eb;
7597 struct btrfs_path *path = NULL;
7598
7599 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7600 BUG_ON(root_eb == NULL);
7601
7602 if (!root->fs_info->quota_enabled)
7603 return 0;
7604
7605 if (!extent_buffer_uptodate(root_eb)) {
7606 ret = btrfs_read_buffer(root_eb, root_gen);
7607 if (ret)
7608 goto out;
7609 }
7610
7611 if (root_level == 0) {
7612 ret = account_leaf_items(trans, root, root_eb);
7613 goto out;
7614 }
7615
7616 path = btrfs_alloc_path();
7617 if (!path)
7618 return -ENOMEM;
7619
7620 /*
7621 * Walk down the tree. Missing extent blocks are filled in as
7622 * we go. Metadata is accounted every time we read a new
7623 * extent block.
7624 *
7625 * When we reach a leaf, we account for file extent items in it,
7626 * walk back up the tree (adjusting slot pointers as we go)
7627 * and restart the search process.
7628 */
7629 extent_buffer_get(root_eb); /* For path */
7630 path->nodes[root_level] = root_eb;
7631 path->slots[root_level] = 0;
7632 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7633 walk_down:
7634 level = root_level;
7635 while (level >= 0) {
7636 if (path->nodes[level] == NULL) {
7637 int parent_slot;
7638 u64 child_gen;
7639 u64 child_bytenr;
7640
7641 /* We need to get child blockptr/gen from
7642 * parent before we can read it. */
7643 eb = path->nodes[level + 1];
7644 parent_slot = path->slots[level + 1];
7645 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7646 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7647
7648 eb = read_tree_block(root, child_bytenr, child_gen);
7649 if (!eb || !extent_buffer_uptodate(eb)) {
7650 ret = -EIO;
7651 goto out;
7652 }
7653
7654 path->nodes[level] = eb;
7655 path->slots[level] = 0;
7656
7657 btrfs_tree_read_lock(eb);
7658 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7659 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7660
7661 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7662 root->objectid,
7663 child_bytenr,
7664 root->nodesize,
7665 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7666 0);
7667 if (ret)
7668 goto out;
7669
7670 }
7671
7672 if (level == 0) {
7673 ret = account_leaf_items(trans, root, path->nodes[level]);
7674 if (ret)
7675 goto out;
7676
7677 /* Nonzero return here means we completed our search */
7678 ret = adjust_slots_upwards(root, path, root_level);
7679 if (ret)
7680 break;
7681
7682 /* Restart search with new slots */
7683 goto walk_down;
7684 }
7685
7686 level--;
7687 }
7688
7689 ret = 0;
7690 out:
7691 btrfs_free_path(path);
7692
7693 return ret;
7694 }
7695
7696 /*
7697 * helper to process tree block while walking down the tree.
7698 *
7699 * when wc->stage == UPDATE_BACKREF, this function updates
7700 * back refs for pointers in the block.
7701 *
7702 * NOTE: return value 1 means we should stop walking down.
7703 */
7704 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7705 struct btrfs_root *root,
7706 struct btrfs_path *path,
7707 struct walk_control *wc, int lookup_info)
7708 {
7709 int level = wc->level;
7710 struct extent_buffer *eb = path->nodes[level];
7711 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7712 int ret;
7713
7714 if (wc->stage == UPDATE_BACKREF &&
7715 btrfs_header_owner(eb) != root->root_key.objectid)
7716 return 1;
7717
7718 /*
7719 * when reference count of tree block is 1, it won't increase
7720 * again. once full backref flag is set, we never clear it.
7721 */
7722 if (lookup_info &&
7723 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7724 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7725 BUG_ON(!path->locks[level]);
7726 ret = btrfs_lookup_extent_info(trans, root,
7727 eb->start, level, 1,
7728 &wc->refs[level],
7729 &wc->flags[level]);
7730 BUG_ON(ret == -ENOMEM);
7731 if (ret)
7732 return ret;
7733 BUG_ON(wc->refs[level] == 0);
7734 }
7735
7736 if (wc->stage == DROP_REFERENCE) {
7737 if (wc->refs[level] > 1)
7738 return 1;
7739
7740 if (path->locks[level] && !wc->keep_locks) {
7741 btrfs_tree_unlock_rw(eb, path->locks[level]);
7742 path->locks[level] = 0;
7743 }
7744 return 0;
7745 }
7746
7747 /* wc->stage == UPDATE_BACKREF */
7748 if (!(wc->flags[level] & flag)) {
7749 BUG_ON(!path->locks[level]);
7750 ret = btrfs_inc_ref(trans, root, eb, 1);
7751 BUG_ON(ret); /* -ENOMEM */
7752 ret = btrfs_dec_ref(trans, root, eb, 0);
7753 BUG_ON(ret); /* -ENOMEM */
7754 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7755 eb->len, flag,
7756 btrfs_header_level(eb), 0);
7757 BUG_ON(ret); /* -ENOMEM */
7758 wc->flags[level] |= flag;
7759 }
7760
7761 /*
7762 * the block is shared by multiple trees, so it's not good to
7763 * keep the tree lock
7764 */
7765 if (path->locks[level] && level > 0) {
7766 btrfs_tree_unlock_rw(eb, path->locks[level]);
7767 path->locks[level] = 0;
7768 }
7769 return 0;
7770 }
7771
7772 /*
7773 * helper to process tree block pointer.
7774 *
7775 * when wc->stage == DROP_REFERENCE, this function checks
7776 * reference count of the block pointed to. if the block
7777 * is shared and we need update back refs for the subtree
7778 * rooted at the block, this function changes wc->stage to
7779 * UPDATE_BACKREF. if the block is shared and there is no
7780 * need to update back, this function drops the reference
7781 * to the block.
7782 *
7783 * NOTE: return value 1 means we should stop walking down.
7784 */
7785 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7786 struct btrfs_root *root,
7787 struct btrfs_path *path,
7788 struct walk_control *wc, int *lookup_info)
7789 {
7790 u64 bytenr;
7791 u64 generation;
7792 u64 parent;
7793 u32 blocksize;
7794 struct btrfs_key key;
7795 struct extent_buffer *next;
7796 int level = wc->level;
7797 int reada = 0;
7798 int ret = 0;
7799 bool need_account = false;
7800
7801 generation = btrfs_node_ptr_generation(path->nodes[level],
7802 path->slots[level]);
7803 /*
7804 * if the lower level block was created before the snapshot
7805 * was created, we know there is no need to update back refs
7806 * for the subtree
7807 */
7808 if (wc->stage == UPDATE_BACKREF &&
7809 generation <= root->root_key.offset) {
7810 *lookup_info = 1;
7811 return 1;
7812 }
7813
7814 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7815 blocksize = root->nodesize;
7816
7817 next = btrfs_find_tree_block(root->fs_info, bytenr);
7818 if (!next) {
7819 next = btrfs_find_create_tree_block(root, bytenr);
7820 if (!next)
7821 return -ENOMEM;
7822 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7823 level - 1);
7824 reada = 1;
7825 }
7826 btrfs_tree_lock(next);
7827 btrfs_set_lock_blocking(next);
7828
7829 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7830 &wc->refs[level - 1],
7831 &wc->flags[level - 1]);
7832 if (ret < 0) {
7833 btrfs_tree_unlock(next);
7834 return ret;
7835 }
7836
7837 if (unlikely(wc->refs[level - 1] == 0)) {
7838 btrfs_err(root->fs_info, "Missing references.");
7839 BUG();
7840 }
7841 *lookup_info = 0;
7842
7843 if (wc->stage == DROP_REFERENCE) {
7844 if (wc->refs[level - 1] > 1) {
7845 need_account = true;
7846 if (level == 1 &&
7847 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7848 goto skip;
7849
7850 if (!wc->update_ref ||
7851 generation <= root->root_key.offset)
7852 goto skip;
7853
7854 btrfs_node_key_to_cpu(path->nodes[level], &key,
7855 path->slots[level]);
7856 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7857 if (ret < 0)
7858 goto skip;
7859
7860 wc->stage = UPDATE_BACKREF;
7861 wc->shared_level = level - 1;
7862 }
7863 } else {
7864 if (level == 1 &&
7865 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7866 goto skip;
7867 }
7868
7869 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7870 btrfs_tree_unlock(next);
7871 free_extent_buffer(next);
7872 next = NULL;
7873 *lookup_info = 1;
7874 }
7875
7876 if (!next) {
7877 if (reada && level == 1)
7878 reada_walk_down(trans, root, wc, path);
7879 next = read_tree_block(root, bytenr, generation);
7880 if (!next || !extent_buffer_uptodate(next)) {
7881 free_extent_buffer(next);
7882 return -EIO;
7883 }
7884 btrfs_tree_lock(next);
7885 btrfs_set_lock_blocking(next);
7886 }
7887
7888 level--;
7889 BUG_ON(level != btrfs_header_level(next));
7890 path->nodes[level] = next;
7891 path->slots[level] = 0;
7892 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7893 wc->level = level;
7894 if (wc->level == 1)
7895 wc->reada_slot = 0;
7896 return 0;
7897 skip:
7898 wc->refs[level - 1] = 0;
7899 wc->flags[level - 1] = 0;
7900 if (wc->stage == DROP_REFERENCE) {
7901 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7902 parent = path->nodes[level]->start;
7903 } else {
7904 BUG_ON(root->root_key.objectid !=
7905 btrfs_header_owner(path->nodes[level]));
7906 parent = 0;
7907 }
7908
7909 if (need_account) {
7910 ret = account_shared_subtree(trans, root, next,
7911 generation, level - 1);
7912 if (ret) {
7913 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7914 "%d accounting shared subtree. Quota "
7915 "is out of sync, rescan required.\n",
7916 root->fs_info->sb->s_id, ret);
7917 }
7918 }
7919 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7920 root->root_key.objectid, level - 1, 0, 0);
7921 BUG_ON(ret); /* -ENOMEM */
7922 }
7923 btrfs_tree_unlock(next);
7924 free_extent_buffer(next);
7925 *lookup_info = 1;
7926 return 1;
7927 }
7928
7929 /*
7930 * helper to process tree block while walking up the tree.
7931 *
7932 * when wc->stage == DROP_REFERENCE, this function drops
7933 * reference count on the block.
7934 *
7935 * when wc->stage == UPDATE_BACKREF, this function changes
7936 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7937 * to UPDATE_BACKREF previously while processing the block.
7938 *
7939 * NOTE: return value 1 means we should stop walking up.
7940 */
7941 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7942 struct btrfs_root *root,
7943 struct btrfs_path *path,
7944 struct walk_control *wc)
7945 {
7946 int ret;
7947 int level = wc->level;
7948 struct extent_buffer *eb = path->nodes[level];
7949 u64 parent = 0;
7950
7951 if (wc->stage == UPDATE_BACKREF) {
7952 BUG_ON(wc->shared_level < level);
7953 if (level < wc->shared_level)
7954 goto out;
7955
7956 ret = find_next_key(path, level + 1, &wc->update_progress);
7957 if (ret > 0)
7958 wc->update_ref = 0;
7959
7960 wc->stage = DROP_REFERENCE;
7961 wc->shared_level = -1;
7962 path->slots[level] = 0;
7963
7964 /*
7965 * check reference count again if the block isn't locked.
7966 * we should start walking down the tree again if reference
7967 * count is one.
7968 */
7969 if (!path->locks[level]) {
7970 BUG_ON(level == 0);
7971 btrfs_tree_lock(eb);
7972 btrfs_set_lock_blocking(eb);
7973 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7974
7975 ret = btrfs_lookup_extent_info(trans, root,
7976 eb->start, level, 1,
7977 &wc->refs[level],
7978 &wc->flags[level]);
7979 if (ret < 0) {
7980 btrfs_tree_unlock_rw(eb, path->locks[level]);
7981 path->locks[level] = 0;
7982 return ret;
7983 }
7984 BUG_ON(wc->refs[level] == 0);
7985 if (wc->refs[level] == 1) {
7986 btrfs_tree_unlock_rw(eb, path->locks[level]);
7987 path->locks[level] = 0;
7988 return 1;
7989 }
7990 }
7991 }
7992
7993 /* wc->stage == DROP_REFERENCE */
7994 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7995
7996 if (wc->refs[level] == 1) {
7997 if (level == 0) {
7998 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7999 ret = btrfs_dec_ref(trans, root, eb, 1);
8000 else
8001 ret = btrfs_dec_ref(trans, root, eb, 0);
8002 BUG_ON(ret); /* -ENOMEM */
8003 ret = account_leaf_items(trans, root, eb);
8004 if (ret) {
8005 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8006 "%d accounting leaf items. Quota "
8007 "is out of sync, rescan required.\n",
8008 root->fs_info->sb->s_id, ret);
8009 }
8010 }
8011 /* make block locked assertion in clean_tree_block happy */
8012 if (!path->locks[level] &&
8013 btrfs_header_generation(eb) == trans->transid) {
8014 btrfs_tree_lock(eb);
8015 btrfs_set_lock_blocking(eb);
8016 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8017 }
8018 clean_tree_block(trans, root->fs_info, eb);
8019 }
8020
8021 if (eb == root->node) {
8022 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8023 parent = eb->start;
8024 else
8025 BUG_ON(root->root_key.objectid !=
8026 btrfs_header_owner(eb));
8027 } else {
8028 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8029 parent = path->nodes[level + 1]->start;
8030 else
8031 BUG_ON(root->root_key.objectid !=
8032 btrfs_header_owner(path->nodes[level + 1]));
8033 }
8034
8035 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8036 out:
8037 wc->refs[level] = 0;
8038 wc->flags[level] = 0;
8039 return 0;
8040 }
8041
8042 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8043 struct btrfs_root *root,
8044 struct btrfs_path *path,
8045 struct walk_control *wc)
8046 {
8047 int level = wc->level;
8048 int lookup_info = 1;
8049 int ret;
8050
8051 while (level >= 0) {
8052 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8053 if (ret > 0)
8054 break;
8055
8056 if (level == 0)
8057 break;
8058
8059 if (path->slots[level] >=
8060 btrfs_header_nritems(path->nodes[level]))
8061 break;
8062
8063 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8064 if (ret > 0) {
8065 path->slots[level]++;
8066 continue;
8067 } else if (ret < 0)
8068 return ret;
8069 level = wc->level;
8070 }
8071 return 0;
8072 }
8073
8074 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8075 struct btrfs_root *root,
8076 struct btrfs_path *path,
8077 struct walk_control *wc, int max_level)
8078 {
8079 int level = wc->level;
8080 int ret;
8081
8082 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8083 while (level < max_level && path->nodes[level]) {
8084 wc->level = level;
8085 if (path->slots[level] + 1 <
8086 btrfs_header_nritems(path->nodes[level])) {
8087 path->slots[level]++;
8088 return 0;
8089 } else {
8090 ret = walk_up_proc(trans, root, path, wc);
8091 if (ret > 0)
8092 return 0;
8093
8094 if (path->locks[level]) {
8095 btrfs_tree_unlock_rw(path->nodes[level],
8096 path->locks[level]);
8097 path->locks[level] = 0;
8098 }
8099 free_extent_buffer(path->nodes[level]);
8100 path->nodes[level] = NULL;
8101 level++;
8102 }
8103 }
8104 return 1;
8105 }
8106
8107 /*
8108 * drop a subvolume tree.
8109 *
8110 * this function traverses the tree freeing any blocks that only
8111 * referenced by the tree.
8112 *
8113 * when a shared tree block is found. this function decreases its
8114 * reference count by one. if update_ref is true, this function
8115 * also make sure backrefs for the shared block and all lower level
8116 * blocks are properly updated.
8117 *
8118 * If called with for_reloc == 0, may exit early with -EAGAIN
8119 */
8120 int btrfs_drop_snapshot(struct btrfs_root *root,
8121 struct btrfs_block_rsv *block_rsv, int update_ref,
8122 int for_reloc)
8123 {
8124 struct btrfs_path *path;
8125 struct btrfs_trans_handle *trans;
8126 struct btrfs_root *tree_root = root->fs_info->tree_root;
8127 struct btrfs_root_item *root_item = &root->root_item;
8128 struct walk_control *wc;
8129 struct btrfs_key key;
8130 int err = 0;
8131 int ret;
8132 int level;
8133 bool root_dropped = false;
8134
8135 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8136
8137 path = btrfs_alloc_path();
8138 if (!path) {
8139 err = -ENOMEM;
8140 goto out;
8141 }
8142
8143 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8144 if (!wc) {
8145 btrfs_free_path(path);
8146 err = -ENOMEM;
8147 goto out;
8148 }
8149
8150 trans = btrfs_start_transaction(tree_root, 0);
8151 if (IS_ERR(trans)) {
8152 err = PTR_ERR(trans);
8153 goto out_free;
8154 }
8155
8156 if (block_rsv)
8157 trans->block_rsv = block_rsv;
8158
8159 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8160 level = btrfs_header_level(root->node);
8161 path->nodes[level] = btrfs_lock_root_node(root);
8162 btrfs_set_lock_blocking(path->nodes[level]);
8163 path->slots[level] = 0;
8164 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8165 memset(&wc->update_progress, 0,
8166 sizeof(wc->update_progress));
8167 } else {
8168 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8169 memcpy(&wc->update_progress, &key,
8170 sizeof(wc->update_progress));
8171
8172 level = root_item->drop_level;
8173 BUG_ON(level == 0);
8174 path->lowest_level = level;
8175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8176 path->lowest_level = 0;
8177 if (ret < 0) {
8178 err = ret;
8179 goto out_end_trans;
8180 }
8181 WARN_ON(ret > 0);
8182
8183 /*
8184 * unlock our path, this is safe because only this
8185 * function is allowed to delete this snapshot
8186 */
8187 btrfs_unlock_up_safe(path, 0);
8188
8189 level = btrfs_header_level(root->node);
8190 while (1) {
8191 btrfs_tree_lock(path->nodes[level]);
8192 btrfs_set_lock_blocking(path->nodes[level]);
8193 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8194
8195 ret = btrfs_lookup_extent_info(trans, root,
8196 path->nodes[level]->start,
8197 level, 1, &wc->refs[level],
8198 &wc->flags[level]);
8199 if (ret < 0) {
8200 err = ret;
8201 goto out_end_trans;
8202 }
8203 BUG_ON(wc->refs[level] == 0);
8204
8205 if (level == root_item->drop_level)
8206 break;
8207
8208 btrfs_tree_unlock(path->nodes[level]);
8209 path->locks[level] = 0;
8210 WARN_ON(wc->refs[level] != 1);
8211 level--;
8212 }
8213 }
8214
8215 wc->level = level;
8216 wc->shared_level = -1;
8217 wc->stage = DROP_REFERENCE;
8218 wc->update_ref = update_ref;
8219 wc->keep_locks = 0;
8220 wc->for_reloc = for_reloc;
8221 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8222
8223 while (1) {
8224
8225 ret = walk_down_tree(trans, root, path, wc);
8226 if (ret < 0) {
8227 err = ret;
8228 break;
8229 }
8230
8231 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8232 if (ret < 0) {
8233 err = ret;
8234 break;
8235 }
8236
8237 if (ret > 0) {
8238 BUG_ON(wc->stage != DROP_REFERENCE);
8239 break;
8240 }
8241
8242 if (wc->stage == DROP_REFERENCE) {
8243 level = wc->level;
8244 btrfs_node_key(path->nodes[level],
8245 &root_item->drop_progress,
8246 path->slots[level]);
8247 root_item->drop_level = level;
8248 }
8249
8250 BUG_ON(wc->level == 0);
8251 if (btrfs_should_end_transaction(trans, tree_root) ||
8252 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8253 ret = btrfs_update_root(trans, tree_root,
8254 &root->root_key,
8255 root_item);
8256 if (ret) {
8257 btrfs_abort_transaction(trans, tree_root, ret);
8258 err = ret;
8259 goto out_end_trans;
8260 }
8261
8262 /*
8263 * Qgroup update accounting is run from
8264 * delayed ref handling. This usually works
8265 * out because delayed refs are normally the
8266 * only way qgroup updates are added. However,
8267 * we may have added updates during our tree
8268 * walk so run qgroups here to make sure we
8269 * don't lose any updates.
8270 */
8271 ret = btrfs_delayed_qgroup_accounting(trans,
8272 root->fs_info);
8273 if (ret)
8274 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8275 "running qgroup updates "
8276 "during snapshot delete. "
8277 "Quota is out of sync, "
8278 "rescan required.\n", ret);
8279
8280 btrfs_end_transaction_throttle(trans, tree_root);
8281 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8282 pr_debug("BTRFS: drop snapshot early exit\n");
8283 err = -EAGAIN;
8284 goto out_free;
8285 }
8286
8287 trans = btrfs_start_transaction(tree_root, 0);
8288 if (IS_ERR(trans)) {
8289 err = PTR_ERR(trans);
8290 goto out_free;
8291 }
8292 if (block_rsv)
8293 trans->block_rsv = block_rsv;
8294 }
8295 }
8296 btrfs_release_path(path);
8297 if (err)
8298 goto out_end_trans;
8299
8300 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8301 if (ret) {
8302 btrfs_abort_transaction(trans, tree_root, ret);
8303 goto out_end_trans;
8304 }
8305
8306 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8307 ret = btrfs_find_root(tree_root, &root->root_key, path,
8308 NULL, NULL);
8309 if (ret < 0) {
8310 btrfs_abort_transaction(trans, tree_root, ret);
8311 err = ret;
8312 goto out_end_trans;
8313 } else if (ret > 0) {
8314 /* if we fail to delete the orphan item this time
8315 * around, it'll get picked up the next time.
8316 *
8317 * The most common failure here is just -ENOENT.
8318 */
8319 btrfs_del_orphan_item(trans, tree_root,
8320 root->root_key.objectid);
8321 }
8322 }
8323
8324 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8325 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8326 } else {
8327 free_extent_buffer(root->node);
8328 free_extent_buffer(root->commit_root);
8329 btrfs_put_fs_root(root);
8330 }
8331 root_dropped = true;
8332 out_end_trans:
8333 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8334 if (ret)
8335 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8336 "running qgroup updates "
8337 "during snapshot delete. "
8338 "Quota is out of sync, "
8339 "rescan required.\n", ret);
8340
8341 btrfs_end_transaction_throttle(trans, tree_root);
8342 out_free:
8343 kfree(wc);
8344 btrfs_free_path(path);
8345 out:
8346 /*
8347 * So if we need to stop dropping the snapshot for whatever reason we
8348 * need to make sure to add it back to the dead root list so that we
8349 * keep trying to do the work later. This also cleans up roots if we
8350 * don't have it in the radix (like when we recover after a power fail
8351 * or unmount) so we don't leak memory.
8352 */
8353 if (!for_reloc && root_dropped == false)
8354 btrfs_add_dead_root(root);
8355 if (err && err != -EAGAIN)
8356 btrfs_std_error(root->fs_info, err);
8357 return err;
8358 }
8359
8360 /*
8361 * drop subtree rooted at tree block 'node'.
8362 *
8363 * NOTE: this function will unlock and release tree block 'node'
8364 * only used by relocation code
8365 */
8366 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8367 struct btrfs_root *root,
8368 struct extent_buffer *node,
8369 struct extent_buffer *parent)
8370 {
8371 struct btrfs_path *path;
8372 struct walk_control *wc;
8373 int level;
8374 int parent_level;
8375 int ret = 0;
8376 int wret;
8377
8378 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8379
8380 path = btrfs_alloc_path();
8381 if (!path)
8382 return -ENOMEM;
8383
8384 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8385 if (!wc) {
8386 btrfs_free_path(path);
8387 return -ENOMEM;
8388 }
8389
8390 btrfs_assert_tree_locked(parent);
8391 parent_level = btrfs_header_level(parent);
8392 extent_buffer_get(parent);
8393 path->nodes[parent_level] = parent;
8394 path->slots[parent_level] = btrfs_header_nritems(parent);
8395
8396 btrfs_assert_tree_locked(node);
8397 level = btrfs_header_level(node);
8398 path->nodes[level] = node;
8399 path->slots[level] = 0;
8400 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8401
8402 wc->refs[parent_level] = 1;
8403 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8404 wc->level = level;
8405 wc->shared_level = -1;
8406 wc->stage = DROP_REFERENCE;
8407 wc->update_ref = 0;
8408 wc->keep_locks = 1;
8409 wc->for_reloc = 1;
8410 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8411
8412 while (1) {
8413 wret = walk_down_tree(trans, root, path, wc);
8414 if (wret < 0) {
8415 ret = wret;
8416 break;
8417 }
8418
8419 wret = walk_up_tree(trans, root, path, wc, parent_level);
8420 if (wret < 0)
8421 ret = wret;
8422 if (wret != 0)
8423 break;
8424 }
8425
8426 kfree(wc);
8427 btrfs_free_path(path);
8428 return ret;
8429 }
8430
8431 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8432 {
8433 u64 num_devices;
8434 u64 stripped;
8435
8436 /*
8437 * if restripe for this chunk_type is on pick target profile and
8438 * return, otherwise do the usual balance
8439 */
8440 stripped = get_restripe_target(root->fs_info, flags);
8441 if (stripped)
8442 return extended_to_chunk(stripped);
8443
8444 num_devices = root->fs_info->fs_devices->rw_devices;
8445
8446 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8447 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8448 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8449
8450 if (num_devices == 1) {
8451 stripped |= BTRFS_BLOCK_GROUP_DUP;
8452 stripped = flags & ~stripped;
8453
8454 /* turn raid0 into single device chunks */
8455 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8456 return stripped;
8457
8458 /* turn mirroring into duplication */
8459 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8460 BTRFS_BLOCK_GROUP_RAID10))
8461 return stripped | BTRFS_BLOCK_GROUP_DUP;
8462 } else {
8463 /* they already had raid on here, just return */
8464 if (flags & stripped)
8465 return flags;
8466
8467 stripped |= BTRFS_BLOCK_GROUP_DUP;
8468 stripped = flags & ~stripped;
8469
8470 /* switch duplicated blocks with raid1 */
8471 if (flags & BTRFS_BLOCK_GROUP_DUP)
8472 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8473
8474 /* this is drive concat, leave it alone */
8475 }
8476
8477 return flags;
8478 }
8479
8480 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8481 {
8482 struct btrfs_space_info *sinfo = cache->space_info;
8483 u64 num_bytes;
8484 u64 min_allocable_bytes;
8485 int ret = -ENOSPC;
8486
8487
8488 /*
8489 * We need some metadata space and system metadata space for
8490 * allocating chunks in some corner cases until we force to set
8491 * it to be readonly.
8492 */
8493 if ((sinfo->flags &
8494 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8495 !force)
8496 min_allocable_bytes = 1 * 1024 * 1024;
8497 else
8498 min_allocable_bytes = 0;
8499
8500 spin_lock(&sinfo->lock);
8501 spin_lock(&cache->lock);
8502
8503 if (cache->ro) {
8504 ret = 0;
8505 goto out;
8506 }
8507
8508 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8509 cache->bytes_super - btrfs_block_group_used(&cache->item);
8510
8511 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8512 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8513 min_allocable_bytes <= sinfo->total_bytes) {
8514 sinfo->bytes_readonly += num_bytes;
8515 cache->ro = 1;
8516 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8517 ret = 0;
8518 }
8519 out:
8520 spin_unlock(&cache->lock);
8521 spin_unlock(&sinfo->lock);
8522 return ret;
8523 }
8524
8525 int btrfs_set_block_group_ro(struct btrfs_root *root,
8526 struct btrfs_block_group_cache *cache)
8527
8528 {
8529 struct btrfs_trans_handle *trans;
8530 u64 alloc_flags;
8531 int ret;
8532
8533 BUG_ON(cache->ro);
8534
8535 trans = btrfs_join_transaction(root);
8536 if (IS_ERR(trans))
8537 return PTR_ERR(trans);
8538
8539 ret = set_block_group_ro(cache, 0);
8540 if (!ret)
8541 goto out;
8542 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8543 ret = do_chunk_alloc(trans, root, alloc_flags,
8544 CHUNK_ALLOC_FORCE);
8545 if (ret < 0)
8546 goto out;
8547 ret = set_block_group_ro(cache, 0);
8548 out:
8549 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8550 alloc_flags = update_block_group_flags(root, cache->flags);
8551 check_system_chunk(trans, root, alloc_flags);
8552 }
8553
8554 btrfs_end_transaction(trans, root);
8555 return ret;
8556 }
8557
8558 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8559 struct btrfs_root *root, u64 type)
8560 {
8561 u64 alloc_flags = get_alloc_profile(root, type);
8562 return do_chunk_alloc(trans, root, alloc_flags,
8563 CHUNK_ALLOC_FORCE);
8564 }
8565
8566 /*
8567 * helper to account the unused space of all the readonly block group in the
8568 * space_info. takes mirrors into account.
8569 */
8570 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8571 {
8572 struct btrfs_block_group_cache *block_group;
8573 u64 free_bytes = 0;
8574 int factor;
8575
8576 /* It's df, we don't care if it's racey */
8577 if (list_empty(&sinfo->ro_bgs))
8578 return 0;
8579
8580 spin_lock(&sinfo->lock);
8581 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8582 spin_lock(&block_group->lock);
8583
8584 if (!block_group->ro) {
8585 spin_unlock(&block_group->lock);
8586 continue;
8587 }
8588
8589 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8590 BTRFS_BLOCK_GROUP_RAID10 |
8591 BTRFS_BLOCK_GROUP_DUP))
8592 factor = 2;
8593 else
8594 factor = 1;
8595
8596 free_bytes += (block_group->key.offset -
8597 btrfs_block_group_used(&block_group->item)) *
8598 factor;
8599
8600 spin_unlock(&block_group->lock);
8601 }
8602 spin_unlock(&sinfo->lock);
8603
8604 return free_bytes;
8605 }
8606
8607 void btrfs_set_block_group_rw(struct btrfs_root *root,
8608 struct btrfs_block_group_cache *cache)
8609 {
8610 struct btrfs_space_info *sinfo = cache->space_info;
8611 u64 num_bytes;
8612
8613 BUG_ON(!cache->ro);
8614
8615 spin_lock(&sinfo->lock);
8616 spin_lock(&cache->lock);
8617 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8618 cache->bytes_super - btrfs_block_group_used(&cache->item);
8619 sinfo->bytes_readonly -= num_bytes;
8620 cache->ro = 0;
8621 list_del_init(&cache->ro_list);
8622 spin_unlock(&cache->lock);
8623 spin_unlock(&sinfo->lock);
8624 }
8625
8626 /*
8627 * checks to see if its even possible to relocate this block group.
8628 *
8629 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8630 * ok to go ahead and try.
8631 */
8632 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8633 {
8634 struct btrfs_block_group_cache *block_group;
8635 struct btrfs_space_info *space_info;
8636 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8637 struct btrfs_device *device;
8638 struct btrfs_trans_handle *trans;
8639 u64 min_free;
8640 u64 dev_min = 1;
8641 u64 dev_nr = 0;
8642 u64 target;
8643 int index;
8644 int full = 0;
8645 int ret = 0;
8646
8647 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8648
8649 /* odd, couldn't find the block group, leave it alone */
8650 if (!block_group)
8651 return -1;
8652
8653 min_free = btrfs_block_group_used(&block_group->item);
8654
8655 /* no bytes used, we're good */
8656 if (!min_free)
8657 goto out;
8658
8659 space_info = block_group->space_info;
8660 spin_lock(&space_info->lock);
8661
8662 full = space_info->full;
8663
8664 /*
8665 * if this is the last block group we have in this space, we can't
8666 * relocate it unless we're able to allocate a new chunk below.
8667 *
8668 * Otherwise, we need to make sure we have room in the space to handle
8669 * all of the extents from this block group. If we can, we're good
8670 */
8671 if ((space_info->total_bytes != block_group->key.offset) &&
8672 (space_info->bytes_used + space_info->bytes_reserved +
8673 space_info->bytes_pinned + space_info->bytes_readonly +
8674 min_free < space_info->total_bytes)) {
8675 spin_unlock(&space_info->lock);
8676 goto out;
8677 }
8678 spin_unlock(&space_info->lock);
8679
8680 /*
8681 * ok we don't have enough space, but maybe we have free space on our
8682 * devices to allocate new chunks for relocation, so loop through our
8683 * alloc devices and guess if we have enough space. if this block
8684 * group is going to be restriped, run checks against the target
8685 * profile instead of the current one.
8686 */
8687 ret = -1;
8688
8689 /*
8690 * index:
8691 * 0: raid10
8692 * 1: raid1
8693 * 2: dup
8694 * 3: raid0
8695 * 4: single
8696 */
8697 target = get_restripe_target(root->fs_info, block_group->flags);
8698 if (target) {
8699 index = __get_raid_index(extended_to_chunk(target));
8700 } else {
8701 /*
8702 * this is just a balance, so if we were marked as full
8703 * we know there is no space for a new chunk
8704 */
8705 if (full)
8706 goto out;
8707
8708 index = get_block_group_index(block_group);
8709 }
8710
8711 if (index == BTRFS_RAID_RAID10) {
8712 dev_min = 4;
8713 /* Divide by 2 */
8714 min_free >>= 1;
8715 } else if (index == BTRFS_RAID_RAID1) {
8716 dev_min = 2;
8717 } else if (index == BTRFS_RAID_DUP) {
8718 /* Multiply by 2 */
8719 min_free <<= 1;
8720 } else if (index == BTRFS_RAID_RAID0) {
8721 dev_min = fs_devices->rw_devices;
8722 min_free = div64_u64(min_free, dev_min);
8723 }
8724
8725 /* We need to do this so that we can look at pending chunks */
8726 trans = btrfs_join_transaction(root);
8727 if (IS_ERR(trans)) {
8728 ret = PTR_ERR(trans);
8729 goto out;
8730 }
8731
8732 mutex_lock(&root->fs_info->chunk_mutex);
8733 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8734 u64 dev_offset;
8735
8736 /*
8737 * check to make sure we can actually find a chunk with enough
8738 * space to fit our block group in.
8739 */
8740 if (device->total_bytes > device->bytes_used + min_free &&
8741 !device->is_tgtdev_for_dev_replace) {
8742 ret = find_free_dev_extent(trans, device, min_free,
8743 &dev_offset, NULL);
8744 if (!ret)
8745 dev_nr++;
8746
8747 if (dev_nr >= dev_min)
8748 break;
8749
8750 ret = -1;
8751 }
8752 }
8753 mutex_unlock(&root->fs_info->chunk_mutex);
8754 btrfs_end_transaction(trans, root);
8755 out:
8756 btrfs_put_block_group(block_group);
8757 return ret;
8758 }
8759
8760 static int find_first_block_group(struct btrfs_root *root,
8761 struct btrfs_path *path, struct btrfs_key *key)
8762 {
8763 int ret = 0;
8764 struct btrfs_key found_key;
8765 struct extent_buffer *leaf;
8766 int slot;
8767
8768 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8769 if (ret < 0)
8770 goto out;
8771
8772 while (1) {
8773 slot = path->slots[0];
8774 leaf = path->nodes[0];
8775 if (slot >= btrfs_header_nritems(leaf)) {
8776 ret = btrfs_next_leaf(root, path);
8777 if (ret == 0)
8778 continue;
8779 if (ret < 0)
8780 goto out;
8781 break;
8782 }
8783 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8784
8785 if (found_key.objectid >= key->objectid &&
8786 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8787 ret = 0;
8788 goto out;
8789 }
8790 path->slots[0]++;
8791 }
8792 out:
8793 return ret;
8794 }
8795
8796 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8797 {
8798 struct btrfs_block_group_cache *block_group;
8799 u64 last = 0;
8800
8801 while (1) {
8802 struct inode *inode;
8803
8804 block_group = btrfs_lookup_first_block_group(info, last);
8805 while (block_group) {
8806 spin_lock(&block_group->lock);
8807 if (block_group->iref)
8808 break;
8809 spin_unlock(&block_group->lock);
8810 block_group = next_block_group(info->tree_root,
8811 block_group);
8812 }
8813 if (!block_group) {
8814 if (last == 0)
8815 break;
8816 last = 0;
8817 continue;
8818 }
8819
8820 inode = block_group->inode;
8821 block_group->iref = 0;
8822 block_group->inode = NULL;
8823 spin_unlock(&block_group->lock);
8824 iput(inode);
8825 last = block_group->key.objectid + block_group->key.offset;
8826 btrfs_put_block_group(block_group);
8827 }
8828 }
8829
8830 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8831 {
8832 struct btrfs_block_group_cache *block_group;
8833 struct btrfs_space_info *space_info;
8834 struct btrfs_caching_control *caching_ctl;
8835 struct rb_node *n;
8836
8837 down_write(&info->commit_root_sem);
8838 while (!list_empty(&info->caching_block_groups)) {
8839 caching_ctl = list_entry(info->caching_block_groups.next,
8840 struct btrfs_caching_control, list);
8841 list_del(&caching_ctl->list);
8842 put_caching_control(caching_ctl);
8843 }
8844 up_write(&info->commit_root_sem);
8845
8846 spin_lock(&info->unused_bgs_lock);
8847 while (!list_empty(&info->unused_bgs)) {
8848 block_group = list_first_entry(&info->unused_bgs,
8849 struct btrfs_block_group_cache,
8850 bg_list);
8851 list_del_init(&block_group->bg_list);
8852 btrfs_put_block_group(block_group);
8853 }
8854 spin_unlock(&info->unused_bgs_lock);
8855
8856 spin_lock(&info->block_group_cache_lock);
8857 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8858 block_group = rb_entry(n, struct btrfs_block_group_cache,
8859 cache_node);
8860 rb_erase(&block_group->cache_node,
8861 &info->block_group_cache_tree);
8862 RB_CLEAR_NODE(&block_group->cache_node);
8863 spin_unlock(&info->block_group_cache_lock);
8864
8865 down_write(&block_group->space_info->groups_sem);
8866 list_del(&block_group->list);
8867 up_write(&block_group->space_info->groups_sem);
8868
8869 if (block_group->cached == BTRFS_CACHE_STARTED)
8870 wait_block_group_cache_done(block_group);
8871
8872 /*
8873 * We haven't cached this block group, which means we could
8874 * possibly have excluded extents on this block group.
8875 */
8876 if (block_group->cached == BTRFS_CACHE_NO ||
8877 block_group->cached == BTRFS_CACHE_ERROR)
8878 free_excluded_extents(info->extent_root, block_group);
8879
8880 btrfs_remove_free_space_cache(block_group);
8881 btrfs_put_block_group(block_group);
8882
8883 spin_lock(&info->block_group_cache_lock);
8884 }
8885 spin_unlock(&info->block_group_cache_lock);
8886
8887 /* now that all the block groups are freed, go through and
8888 * free all the space_info structs. This is only called during
8889 * the final stages of unmount, and so we know nobody is
8890 * using them. We call synchronize_rcu() once before we start,
8891 * just to be on the safe side.
8892 */
8893 synchronize_rcu();
8894
8895 release_global_block_rsv(info);
8896
8897 while (!list_empty(&info->space_info)) {
8898 int i;
8899
8900 space_info = list_entry(info->space_info.next,
8901 struct btrfs_space_info,
8902 list);
8903 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8904 if (WARN_ON(space_info->bytes_pinned > 0 ||
8905 space_info->bytes_reserved > 0 ||
8906 space_info->bytes_may_use > 0)) {
8907 dump_space_info(space_info, 0, 0);
8908 }
8909 }
8910 list_del(&space_info->list);
8911 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8912 struct kobject *kobj;
8913 kobj = space_info->block_group_kobjs[i];
8914 space_info->block_group_kobjs[i] = NULL;
8915 if (kobj) {
8916 kobject_del(kobj);
8917 kobject_put(kobj);
8918 }
8919 }
8920 kobject_del(&space_info->kobj);
8921 kobject_put(&space_info->kobj);
8922 }
8923 return 0;
8924 }
8925
8926 static void __link_block_group(struct btrfs_space_info *space_info,
8927 struct btrfs_block_group_cache *cache)
8928 {
8929 int index = get_block_group_index(cache);
8930 bool first = false;
8931
8932 down_write(&space_info->groups_sem);
8933 if (list_empty(&space_info->block_groups[index]))
8934 first = true;
8935 list_add_tail(&cache->list, &space_info->block_groups[index]);
8936 up_write(&space_info->groups_sem);
8937
8938 if (first) {
8939 struct raid_kobject *rkobj;
8940 int ret;
8941
8942 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8943 if (!rkobj)
8944 goto out_err;
8945 rkobj->raid_type = index;
8946 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8947 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8948 "%s", get_raid_name(index));
8949 if (ret) {
8950 kobject_put(&rkobj->kobj);
8951 goto out_err;
8952 }
8953 space_info->block_group_kobjs[index] = &rkobj->kobj;
8954 }
8955
8956 return;
8957 out_err:
8958 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8959 }
8960
8961 static struct btrfs_block_group_cache *
8962 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8963 {
8964 struct btrfs_block_group_cache *cache;
8965
8966 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8967 if (!cache)
8968 return NULL;
8969
8970 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8971 GFP_NOFS);
8972 if (!cache->free_space_ctl) {
8973 kfree(cache);
8974 return NULL;
8975 }
8976
8977 cache->key.objectid = start;
8978 cache->key.offset = size;
8979 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8980
8981 cache->sectorsize = root->sectorsize;
8982 cache->fs_info = root->fs_info;
8983 cache->full_stripe_len = btrfs_full_stripe_len(root,
8984 &root->fs_info->mapping_tree,
8985 start);
8986 atomic_set(&cache->count, 1);
8987 spin_lock_init(&cache->lock);
8988 init_rwsem(&cache->data_rwsem);
8989 INIT_LIST_HEAD(&cache->list);
8990 INIT_LIST_HEAD(&cache->cluster_list);
8991 INIT_LIST_HEAD(&cache->bg_list);
8992 INIT_LIST_HEAD(&cache->ro_list);
8993 INIT_LIST_HEAD(&cache->dirty_list);
8994 btrfs_init_free_space_ctl(cache);
8995 atomic_set(&cache->trimming, 0);
8996
8997 return cache;
8998 }
8999
9000 int btrfs_read_block_groups(struct btrfs_root *root)
9001 {
9002 struct btrfs_path *path;
9003 int ret;
9004 struct btrfs_block_group_cache *cache;
9005 struct btrfs_fs_info *info = root->fs_info;
9006 struct btrfs_space_info *space_info;
9007 struct btrfs_key key;
9008 struct btrfs_key found_key;
9009 struct extent_buffer *leaf;
9010 int need_clear = 0;
9011 u64 cache_gen;
9012
9013 root = info->extent_root;
9014 key.objectid = 0;
9015 key.offset = 0;
9016 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9017 path = btrfs_alloc_path();
9018 if (!path)
9019 return -ENOMEM;
9020 path->reada = 1;
9021
9022 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9023 if (btrfs_test_opt(root, SPACE_CACHE) &&
9024 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9025 need_clear = 1;
9026 if (btrfs_test_opt(root, CLEAR_CACHE))
9027 need_clear = 1;
9028
9029 while (1) {
9030 ret = find_first_block_group(root, path, &key);
9031 if (ret > 0)
9032 break;
9033 if (ret != 0)
9034 goto error;
9035
9036 leaf = path->nodes[0];
9037 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9038
9039 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9040 found_key.offset);
9041 if (!cache) {
9042 ret = -ENOMEM;
9043 goto error;
9044 }
9045
9046 if (need_clear) {
9047 /*
9048 * When we mount with old space cache, we need to
9049 * set BTRFS_DC_CLEAR and set dirty flag.
9050 *
9051 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9052 * truncate the old free space cache inode and
9053 * setup a new one.
9054 * b) Setting 'dirty flag' makes sure that we flush
9055 * the new space cache info onto disk.
9056 */
9057 if (btrfs_test_opt(root, SPACE_CACHE))
9058 cache->disk_cache_state = BTRFS_DC_CLEAR;
9059 }
9060
9061 read_extent_buffer(leaf, &cache->item,
9062 btrfs_item_ptr_offset(leaf, path->slots[0]),
9063 sizeof(cache->item));
9064 cache->flags = btrfs_block_group_flags(&cache->item);
9065
9066 key.objectid = found_key.objectid + found_key.offset;
9067 btrfs_release_path(path);
9068
9069 /*
9070 * We need to exclude the super stripes now so that the space
9071 * info has super bytes accounted for, otherwise we'll think
9072 * we have more space than we actually do.
9073 */
9074 ret = exclude_super_stripes(root, cache);
9075 if (ret) {
9076 /*
9077 * We may have excluded something, so call this just in
9078 * case.
9079 */
9080 free_excluded_extents(root, cache);
9081 btrfs_put_block_group(cache);
9082 goto error;
9083 }
9084
9085 /*
9086 * check for two cases, either we are full, and therefore
9087 * don't need to bother with the caching work since we won't
9088 * find any space, or we are empty, and we can just add all
9089 * the space in and be done with it. This saves us _alot_ of
9090 * time, particularly in the full case.
9091 */
9092 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9093 cache->last_byte_to_unpin = (u64)-1;
9094 cache->cached = BTRFS_CACHE_FINISHED;
9095 free_excluded_extents(root, cache);
9096 } else if (btrfs_block_group_used(&cache->item) == 0) {
9097 cache->last_byte_to_unpin = (u64)-1;
9098 cache->cached = BTRFS_CACHE_FINISHED;
9099 add_new_free_space(cache, root->fs_info,
9100 found_key.objectid,
9101 found_key.objectid +
9102 found_key.offset);
9103 free_excluded_extents(root, cache);
9104 }
9105
9106 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9107 if (ret) {
9108 btrfs_remove_free_space_cache(cache);
9109 btrfs_put_block_group(cache);
9110 goto error;
9111 }
9112
9113 ret = update_space_info(info, cache->flags, found_key.offset,
9114 btrfs_block_group_used(&cache->item),
9115 &space_info);
9116 if (ret) {
9117 btrfs_remove_free_space_cache(cache);
9118 spin_lock(&info->block_group_cache_lock);
9119 rb_erase(&cache->cache_node,
9120 &info->block_group_cache_tree);
9121 RB_CLEAR_NODE(&cache->cache_node);
9122 spin_unlock(&info->block_group_cache_lock);
9123 btrfs_put_block_group(cache);
9124 goto error;
9125 }
9126
9127 cache->space_info = space_info;
9128 spin_lock(&cache->space_info->lock);
9129 cache->space_info->bytes_readonly += cache->bytes_super;
9130 spin_unlock(&cache->space_info->lock);
9131
9132 __link_block_group(space_info, cache);
9133
9134 set_avail_alloc_bits(root->fs_info, cache->flags);
9135 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9136 set_block_group_ro(cache, 1);
9137 } else if (btrfs_block_group_used(&cache->item) == 0) {
9138 spin_lock(&info->unused_bgs_lock);
9139 /* Should always be true but just in case. */
9140 if (list_empty(&cache->bg_list)) {
9141 btrfs_get_block_group(cache);
9142 list_add_tail(&cache->bg_list,
9143 &info->unused_bgs);
9144 }
9145 spin_unlock(&info->unused_bgs_lock);
9146 }
9147 }
9148
9149 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9150 if (!(get_alloc_profile(root, space_info->flags) &
9151 (BTRFS_BLOCK_GROUP_RAID10 |
9152 BTRFS_BLOCK_GROUP_RAID1 |
9153 BTRFS_BLOCK_GROUP_RAID5 |
9154 BTRFS_BLOCK_GROUP_RAID6 |
9155 BTRFS_BLOCK_GROUP_DUP)))
9156 continue;
9157 /*
9158 * avoid allocating from un-mirrored block group if there are
9159 * mirrored block groups.
9160 */
9161 list_for_each_entry(cache,
9162 &space_info->block_groups[BTRFS_RAID_RAID0],
9163 list)
9164 set_block_group_ro(cache, 1);
9165 list_for_each_entry(cache,
9166 &space_info->block_groups[BTRFS_RAID_SINGLE],
9167 list)
9168 set_block_group_ro(cache, 1);
9169 }
9170
9171 init_global_block_rsv(info);
9172 ret = 0;
9173 error:
9174 btrfs_free_path(path);
9175 return ret;
9176 }
9177
9178 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9179 struct btrfs_root *root)
9180 {
9181 struct btrfs_block_group_cache *block_group, *tmp;
9182 struct btrfs_root *extent_root = root->fs_info->extent_root;
9183 struct btrfs_block_group_item item;
9184 struct btrfs_key key;
9185 int ret = 0;
9186
9187 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9188 if (ret)
9189 goto next;
9190
9191 spin_lock(&block_group->lock);
9192 memcpy(&item, &block_group->item, sizeof(item));
9193 memcpy(&key, &block_group->key, sizeof(key));
9194 spin_unlock(&block_group->lock);
9195
9196 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9197 sizeof(item));
9198 if (ret)
9199 btrfs_abort_transaction(trans, extent_root, ret);
9200 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9201 key.objectid, key.offset);
9202 if (ret)
9203 btrfs_abort_transaction(trans, extent_root, ret);
9204 next:
9205 list_del_init(&block_group->bg_list);
9206 }
9207 }
9208
9209 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9210 struct btrfs_root *root, u64 bytes_used,
9211 u64 type, u64 chunk_objectid, u64 chunk_offset,
9212 u64 size)
9213 {
9214 int ret;
9215 struct btrfs_root *extent_root;
9216 struct btrfs_block_group_cache *cache;
9217
9218 extent_root = root->fs_info->extent_root;
9219
9220 btrfs_set_log_full_commit(root->fs_info, trans);
9221
9222 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9223 if (!cache)
9224 return -ENOMEM;
9225
9226 btrfs_set_block_group_used(&cache->item, bytes_used);
9227 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9228 btrfs_set_block_group_flags(&cache->item, type);
9229
9230 cache->flags = type;
9231 cache->last_byte_to_unpin = (u64)-1;
9232 cache->cached = BTRFS_CACHE_FINISHED;
9233 ret = exclude_super_stripes(root, cache);
9234 if (ret) {
9235 /*
9236 * We may have excluded something, so call this just in
9237 * case.
9238 */
9239 free_excluded_extents(root, cache);
9240 btrfs_put_block_group(cache);
9241 return ret;
9242 }
9243
9244 add_new_free_space(cache, root->fs_info, chunk_offset,
9245 chunk_offset + size);
9246
9247 free_excluded_extents(root, cache);
9248
9249 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9250 if (ret) {
9251 btrfs_remove_free_space_cache(cache);
9252 btrfs_put_block_group(cache);
9253 return ret;
9254 }
9255
9256 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9257 &cache->space_info);
9258 if (ret) {
9259 btrfs_remove_free_space_cache(cache);
9260 spin_lock(&root->fs_info->block_group_cache_lock);
9261 rb_erase(&cache->cache_node,
9262 &root->fs_info->block_group_cache_tree);
9263 RB_CLEAR_NODE(&cache->cache_node);
9264 spin_unlock(&root->fs_info->block_group_cache_lock);
9265 btrfs_put_block_group(cache);
9266 return ret;
9267 }
9268 update_global_block_rsv(root->fs_info);
9269
9270 spin_lock(&cache->space_info->lock);
9271 cache->space_info->bytes_readonly += cache->bytes_super;
9272 spin_unlock(&cache->space_info->lock);
9273
9274 __link_block_group(cache->space_info, cache);
9275
9276 list_add_tail(&cache->bg_list, &trans->new_bgs);
9277
9278 set_avail_alloc_bits(extent_root->fs_info, type);
9279
9280 return 0;
9281 }
9282
9283 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9284 {
9285 u64 extra_flags = chunk_to_extended(flags) &
9286 BTRFS_EXTENDED_PROFILE_MASK;
9287
9288 write_seqlock(&fs_info->profiles_lock);
9289 if (flags & BTRFS_BLOCK_GROUP_DATA)
9290 fs_info->avail_data_alloc_bits &= ~extra_flags;
9291 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9292 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9293 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9294 fs_info->avail_system_alloc_bits &= ~extra_flags;
9295 write_sequnlock(&fs_info->profiles_lock);
9296 }
9297
9298 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9299 struct btrfs_root *root, u64 group_start,
9300 struct extent_map *em)
9301 {
9302 struct btrfs_path *path;
9303 struct btrfs_block_group_cache *block_group;
9304 struct btrfs_free_cluster *cluster;
9305 struct btrfs_root *tree_root = root->fs_info->tree_root;
9306 struct btrfs_key key;
9307 struct inode *inode;
9308 struct kobject *kobj = NULL;
9309 int ret;
9310 int index;
9311 int factor;
9312 struct btrfs_caching_control *caching_ctl = NULL;
9313 bool remove_em;
9314
9315 root = root->fs_info->extent_root;
9316
9317 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9318 BUG_ON(!block_group);
9319 BUG_ON(!block_group->ro);
9320
9321 /*
9322 * Free the reserved super bytes from this block group before
9323 * remove it.
9324 */
9325 free_excluded_extents(root, block_group);
9326
9327 memcpy(&key, &block_group->key, sizeof(key));
9328 index = get_block_group_index(block_group);
9329 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9330 BTRFS_BLOCK_GROUP_RAID1 |
9331 BTRFS_BLOCK_GROUP_RAID10))
9332 factor = 2;
9333 else
9334 factor = 1;
9335
9336 /* make sure this block group isn't part of an allocation cluster */
9337 cluster = &root->fs_info->data_alloc_cluster;
9338 spin_lock(&cluster->refill_lock);
9339 btrfs_return_cluster_to_free_space(block_group, cluster);
9340 spin_unlock(&cluster->refill_lock);
9341
9342 /*
9343 * make sure this block group isn't part of a metadata
9344 * allocation cluster
9345 */
9346 cluster = &root->fs_info->meta_alloc_cluster;
9347 spin_lock(&cluster->refill_lock);
9348 btrfs_return_cluster_to_free_space(block_group, cluster);
9349 spin_unlock(&cluster->refill_lock);
9350
9351 path = btrfs_alloc_path();
9352 if (!path) {
9353 ret = -ENOMEM;
9354 goto out;
9355 }
9356
9357 inode = lookup_free_space_inode(tree_root, block_group, path);
9358 if (!IS_ERR(inode)) {
9359 ret = btrfs_orphan_add(trans, inode);
9360 if (ret) {
9361 btrfs_add_delayed_iput(inode);
9362 goto out;
9363 }
9364 clear_nlink(inode);
9365 /* One for the block groups ref */
9366 spin_lock(&block_group->lock);
9367 if (block_group->iref) {
9368 block_group->iref = 0;
9369 block_group->inode = NULL;
9370 spin_unlock(&block_group->lock);
9371 iput(inode);
9372 } else {
9373 spin_unlock(&block_group->lock);
9374 }
9375 /* One for our lookup ref */
9376 btrfs_add_delayed_iput(inode);
9377 }
9378
9379 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9380 key.offset = block_group->key.objectid;
9381 key.type = 0;
9382
9383 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9384 if (ret < 0)
9385 goto out;
9386 if (ret > 0)
9387 btrfs_release_path(path);
9388 if (ret == 0) {
9389 ret = btrfs_del_item(trans, tree_root, path);
9390 if (ret)
9391 goto out;
9392 btrfs_release_path(path);
9393 }
9394
9395 spin_lock(&root->fs_info->block_group_cache_lock);
9396 rb_erase(&block_group->cache_node,
9397 &root->fs_info->block_group_cache_tree);
9398 RB_CLEAR_NODE(&block_group->cache_node);
9399
9400 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9401 root->fs_info->first_logical_byte = (u64)-1;
9402 spin_unlock(&root->fs_info->block_group_cache_lock);
9403
9404 down_write(&block_group->space_info->groups_sem);
9405 /*
9406 * we must use list_del_init so people can check to see if they
9407 * are still on the list after taking the semaphore
9408 */
9409 list_del_init(&block_group->list);
9410 if (list_empty(&block_group->space_info->block_groups[index])) {
9411 kobj = block_group->space_info->block_group_kobjs[index];
9412 block_group->space_info->block_group_kobjs[index] = NULL;
9413 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9414 }
9415 up_write(&block_group->space_info->groups_sem);
9416 if (kobj) {
9417 kobject_del(kobj);
9418 kobject_put(kobj);
9419 }
9420
9421 if (block_group->has_caching_ctl)
9422 caching_ctl = get_caching_control(block_group);
9423 if (block_group->cached == BTRFS_CACHE_STARTED)
9424 wait_block_group_cache_done(block_group);
9425 if (block_group->has_caching_ctl) {
9426 down_write(&root->fs_info->commit_root_sem);
9427 if (!caching_ctl) {
9428 struct btrfs_caching_control *ctl;
9429
9430 list_for_each_entry(ctl,
9431 &root->fs_info->caching_block_groups, list)
9432 if (ctl->block_group == block_group) {
9433 caching_ctl = ctl;
9434 atomic_inc(&caching_ctl->count);
9435 break;
9436 }
9437 }
9438 if (caching_ctl)
9439 list_del_init(&caching_ctl->list);
9440 up_write(&root->fs_info->commit_root_sem);
9441 if (caching_ctl) {
9442 /* Once for the caching bgs list and once for us. */
9443 put_caching_control(caching_ctl);
9444 put_caching_control(caching_ctl);
9445 }
9446 }
9447
9448 spin_lock(&trans->transaction->dirty_bgs_lock);
9449 if (!list_empty(&block_group->dirty_list)) {
9450 list_del_init(&block_group->dirty_list);
9451 btrfs_put_block_group(block_group);
9452 }
9453 spin_unlock(&trans->transaction->dirty_bgs_lock);
9454
9455 btrfs_remove_free_space_cache(block_group);
9456
9457 spin_lock(&block_group->space_info->lock);
9458 list_del_init(&block_group->ro_list);
9459 block_group->space_info->total_bytes -= block_group->key.offset;
9460 block_group->space_info->bytes_readonly -= block_group->key.offset;
9461 block_group->space_info->disk_total -= block_group->key.offset * factor;
9462 spin_unlock(&block_group->space_info->lock);
9463
9464 memcpy(&key, &block_group->key, sizeof(key));
9465
9466 lock_chunks(root);
9467 if (!list_empty(&em->list)) {
9468 /* We're in the transaction->pending_chunks list. */
9469 free_extent_map(em);
9470 }
9471 spin_lock(&block_group->lock);
9472 block_group->removed = 1;
9473 /*
9474 * At this point trimming can't start on this block group, because we
9475 * removed the block group from the tree fs_info->block_group_cache_tree
9476 * so no one can't find it anymore and even if someone already got this
9477 * block group before we removed it from the rbtree, they have already
9478 * incremented block_group->trimming - if they didn't, they won't find
9479 * any free space entries because we already removed them all when we
9480 * called btrfs_remove_free_space_cache().
9481 *
9482 * And we must not remove the extent map from the fs_info->mapping_tree
9483 * to prevent the same logical address range and physical device space
9484 * ranges from being reused for a new block group. This is because our
9485 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9486 * completely transactionless, so while it is trimming a range the
9487 * currently running transaction might finish and a new one start,
9488 * allowing for new block groups to be created that can reuse the same
9489 * physical device locations unless we take this special care.
9490 */
9491 remove_em = (atomic_read(&block_group->trimming) == 0);
9492 /*
9493 * Make sure a trimmer task always sees the em in the pinned_chunks list
9494 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9495 * before checking block_group->removed).
9496 */
9497 if (!remove_em) {
9498 /*
9499 * Our em might be in trans->transaction->pending_chunks which
9500 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9501 * and so is the fs_info->pinned_chunks list.
9502 *
9503 * So at this point we must be holding the chunk_mutex to avoid
9504 * any races with chunk allocation (more specifically at
9505 * volumes.c:contains_pending_extent()), to ensure it always
9506 * sees the em, either in the pending_chunks list or in the
9507 * pinned_chunks list.
9508 */
9509 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9510 }
9511 spin_unlock(&block_group->lock);
9512
9513 if (remove_em) {
9514 struct extent_map_tree *em_tree;
9515
9516 em_tree = &root->fs_info->mapping_tree.map_tree;
9517 write_lock(&em_tree->lock);
9518 /*
9519 * The em might be in the pending_chunks list, so make sure the
9520 * chunk mutex is locked, since remove_extent_mapping() will
9521 * delete us from that list.
9522 */
9523 remove_extent_mapping(em_tree, em);
9524 write_unlock(&em_tree->lock);
9525 /* once for the tree */
9526 free_extent_map(em);
9527 }
9528
9529 unlock_chunks(root);
9530
9531 btrfs_put_block_group(block_group);
9532 btrfs_put_block_group(block_group);
9533
9534 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9535 if (ret > 0)
9536 ret = -EIO;
9537 if (ret < 0)
9538 goto out;
9539
9540 ret = btrfs_del_item(trans, root, path);
9541 out:
9542 btrfs_free_path(path);
9543 return ret;
9544 }
9545
9546 /*
9547 * Process the unused_bgs list and remove any that don't have any allocated
9548 * space inside of them.
9549 */
9550 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9551 {
9552 struct btrfs_block_group_cache *block_group;
9553 struct btrfs_space_info *space_info;
9554 struct btrfs_root *root = fs_info->extent_root;
9555 struct btrfs_trans_handle *trans;
9556 int ret = 0;
9557
9558 if (!fs_info->open)
9559 return;
9560
9561 spin_lock(&fs_info->unused_bgs_lock);
9562 while (!list_empty(&fs_info->unused_bgs)) {
9563 u64 start, end;
9564
9565 block_group = list_first_entry(&fs_info->unused_bgs,
9566 struct btrfs_block_group_cache,
9567 bg_list);
9568 space_info = block_group->space_info;
9569 list_del_init(&block_group->bg_list);
9570 if (ret || btrfs_mixed_space_info(space_info)) {
9571 btrfs_put_block_group(block_group);
9572 continue;
9573 }
9574 spin_unlock(&fs_info->unused_bgs_lock);
9575
9576 /* Don't want to race with allocators so take the groups_sem */
9577 down_write(&space_info->groups_sem);
9578 spin_lock(&block_group->lock);
9579 if (block_group->reserved ||
9580 btrfs_block_group_used(&block_group->item) ||
9581 block_group->ro) {
9582 /*
9583 * We want to bail if we made new allocations or have
9584 * outstanding allocations in this block group. We do
9585 * the ro check in case balance is currently acting on
9586 * this block group.
9587 */
9588 spin_unlock(&block_group->lock);
9589 up_write(&space_info->groups_sem);
9590 goto next;
9591 }
9592 spin_unlock(&block_group->lock);
9593
9594 /* We don't want to force the issue, only flip if it's ok. */
9595 ret = set_block_group_ro(block_group, 0);
9596 up_write(&space_info->groups_sem);
9597 if (ret < 0) {
9598 ret = 0;
9599 goto next;
9600 }
9601
9602 /*
9603 * Want to do this before we do anything else so we can recover
9604 * properly if we fail to join the transaction.
9605 */
9606 /* 1 for btrfs_orphan_reserve_metadata() */
9607 trans = btrfs_start_transaction(root, 1);
9608 if (IS_ERR(trans)) {
9609 btrfs_set_block_group_rw(root, block_group);
9610 ret = PTR_ERR(trans);
9611 goto next;
9612 }
9613
9614 /*
9615 * We could have pending pinned extents for this block group,
9616 * just delete them, we don't care about them anymore.
9617 */
9618 start = block_group->key.objectid;
9619 end = start + block_group->key.offset - 1;
9620 /*
9621 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9622 * btrfs_finish_extent_commit(). If we are at transaction N,
9623 * another task might be running finish_extent_commit() for the
9624 * previous transaction N - 1, and have seen a range belonging
9625 * to the block group in freed_extents[] before we were able to
9626 * clear the whole block group range from freed_extents[]. This
9627 * means that task can lookup for the block group after we
9628 * unpinned it from freed_extents[] and removed it, leading to
9629 * a BUG_ON() at btrfs_unpin_extent_range().
9630 */
9631 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9632 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9633 EXTENT_DIRTY, GFP_NOFS);
9634 if (ret) {
9635 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9636 btrfs_set_block_group_rw(root, block_group);
9637 goto end_trans;
9638 }
9639 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9640 EXTENT_DIRTY, GFP_NOFS);
9641 if (ret) {
9642 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9643 btrfs_set_block_group_rw(root, block_group);
9644 goto end_trans;
9645 }
9646 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9647
9648 /* Reset pinned so btrfs_put_block_group doesn't complain */
9649 block_group->pinned = 0;
9650
9651 /*
9652 * Btrfs_remove_chunk will abort the transaction if things go
9653 * horribly wrong.
9654 */
9655 ret = btrfs_remove_chunk(trans, root,
9656 block_group->key.objectid);
9657 end_trans:
9658 btrfs_end_transaction(trans, root);
9659 next:
9660 btrfs_put_block_group(block_group);
9661 spin_lock(&fs_info->unused_bgs_lock);
9662 }
9663 spin_unlock(&fs_info->unused_bgs_lock);
9664 }
9665
9666 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9667 {
9668 struct btrfs_space_info *space_info;
9669 struct btrfs_super_block *disk_super;
9670 u64 features;
9671 u64 flags;
9672 int mixed = 0;
9673 int ret;
9674
9675 disk_super = fs_info->super_copy;
9676 if (!btrfs_super_root(disk_super))
9677 return 1;
9678
9679 features = btrfs_super_incompat_flags(disk_super);
9680 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9681 mixed = 1;
9682
9683 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9684 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9685 if (ret)
9686 goto out;
9687
9688 if (mixed) {
9689 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9690 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9691 } else {
9692 flags = BTRFS_BLOCK_GROUP_METADATA;
9693 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9694 if (ret)
9695 goto out;
9696
9697 flags = BTRFS_BLOCK_GROUP_DATA;
9698 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9699 }
9700 out:
9701 return ret;
9702 }
9703
9704 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9705 {
9706 return unpin_extent_range(root, start, end, false);
9707 }
9708
9709 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9710 {
9711 struct btrfs_fs_info *fs_info = root->fs_info;
9712 struct btrfs_block_group_cache *cache = NULL;
9713 u64 group_trimmed;
9714 u64 start;
9715 u64 end;
9716 u64 trimmed = 0;
9717 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9718 int ret = 0;
9719
9720 /*
9721 * try to trim all FS space, our block group may start from non-zero.
9722 */
9723 if (range->len == total_bytes)
9724 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9725 else
9726 cache = btrfs_lookup_block_group(fs_info, range->start);
9727
9728 while (cache) {
9729 if (cache->key.objectid >= (range->start + range->len)) {
9730 btrfs_put_block_group(cache);
9731 break;
9732 }
9733
9734 start = max(range->start, cache->key.objectid);
9735 end = min(range->start + range->len,
9736 cache->key.objectid + cache->key.offset);
9737
9738 if (end - start >= range->minlen) {
9739 if (!block_group_cache_done(cache)) {
9740 ret = cache_block_group(cache, 0);
9741 if (ret) {
9742 btrfs_put_block_group(cache);
9743 break;
9744 }
9745 ret = wait_block_group_cache_done(cache);
9746 if (ret) {
9747 btrfs_put_block_group(cache);
9748 break;
9749 }
9750 }
9751 ret = btrfs_trim_block_group(cache,
9752 &group_trimmed,
9753 start,
9754 end,
9755 range->minlen);
9756
9757 trimmed += group_trimmed;
9758 if (ret) {
9759 btrfs_put_block_group(cache);
9760 break;
9761 }
9762 }
9763
9764 cache = next_block_group(fs_info->tree_root, cache);
9765 }
9766
9767 range->len = trimmed;
9768 return ret;
9769 }
9770
9771 /*
9772 * btrfs_{start,end}_write_no_snapshoting() are similar to
9773 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9774 * data into the page cache through nocow before the subvolume is snapshoted,
9775 * but flush the data into disk after the snapshot creation, or to prevent
9776 * operations while snapshoting is ongoing and that cause the snapshot to be
9777 * inconsistent (writes followed by expanding truncates for example).
9778 */
9779 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9780 {
9781 percpu_counter_dec(&root->subv_writers->counter);
9782 /*
9783 * Make sure counter is updated before we wake up
9784 * waiters.
9785 */
9786 smp_mb();
9787 if (waitqueue_active(&root->subv_writers->wait))
9788 wake_up(&root->subv_writers->wait);
9789 }
9790
9791 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9792 {
9793 if (atomic_read(&root->will_be_snapshoted))
9794 return 0;
9795
9796 percpu_counter_inc(&root->subv_writers->counter);
9797 /*
9798 * Make sure counter is updated before we check for snapshot creation.
9799 */
9800 smp_mb();
9801 if (atomic_read(&root->will_be_snapshoted)) {
9802 btrfs_end_write_no_snapshoting(root);
9803 return 0;
9804 }
9805 return 1;
9806 }