]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 kfree(cache->free_space_ctl);
146 kfree(cache);
147 }
148 }
149
150 /*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group_cache *block_group)
156 {
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188 }
189
190 /*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197 {
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
226 if (ret) {
227 btrfs_get_block_group(ret);
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234 }
235
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237 u64 start, u64 num_bytes)
238 {
239 u64 end = start + num_bytes - 1;
240 set_extent_bits(&fs_info->freed_extents[0],
241 start, end, EXTENT_UPTODATE);
242 set_extent_bits(&fs_info->freed_extents[1],
243 start, end, EXTENT_UPTODATE);
244 return 0;
245 }
246
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 start, end;
251
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
255 clear_extent_bits(&fs_info->freed_extents[0],
256 start, end, EXTENT_UPTODATE);
257 clear_extent_bits(&fs_info->freed_extents[1],
258 start, end, EXTENT_UPTODATE);
259 }
260
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262 struct btrfs_block_group_cache *cache)
263 {
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(fs_info, cache->key.objectid,
273 stripe_len);
274 if (ret)
275 return ret;
276 }
277
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281 bytenr, 0, &logical, &nr, &stripe_len);
282 if (ret)
283 return ret;
284
285 while (nr--) {
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
306 ret = add_excluded_extent(fs_info, start, len);
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
311 }
312
313 kfree(logical);
314 }
315 return 0;
316 }
317
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 refcount_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (refcount_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344 struct btrfs_fs_info *fs_info = block_group->fs_info;
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348 fs_info->nodesize : fs_info->sectorsize;
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359 }
360 #endif
361
362 /*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370 u64 extent_start, extent_end, size, total_added = 0;
371 int ret;
372
373 while (start < end) {
374 ret = find_first_extent_bit(info->pinned_extents, start,
375 &extent_start, &extent_end,
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
378 if (ret)
379 break;
380
381 if (extent_start <= start) {
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
385 total_added += size;
386 ret = btrfs_add_free_space(block_group, start,
387 size);
388 BUG_ON(ret); /* -ENOMEM or logic error */
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
397 total_added += size;
398 ret = btrfs_add_free_space(block_group, start, size);
399 BUG_ON(ret); /* -ENOMEM or logic error */
400 }
401
402 return total_added;
403 }
404
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
410 struct btrfs_path *path;
411 struct extent_buffer *leaf;
412 struct btrfs_key key;
413 u64 total_found = 0;
414 u64 last = 0;
415 u32 nritems;
416 int ret;
417 bool wakeup = true;
418
419 path = btrfs_alloc_path();
420 if (!path)
421 return -ENOMEM;
422
423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424
425 #ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(block_group))
432 wakeup = false;
433 #endif
434 /*
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
439 */
440 path->skip_locking = 1;
441 path->search_commit_root = 1;
442 path->reada = READA_FORWARD;
443
444 key.objectid = last;
445 key.offset = 0;
446 key.type = BTRFS_EXTENT_ITEM_KEY;
447
448 next:
449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450 if (ret < 0)
451 goto out;
452
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
456 while (1) {
457 if (btrfs_fs_closing(fs_info) > 1) {
458 last = (u64)-1;
459 break;
460 }
461
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
467 break;
468
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info->commit_root_sem)) {
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 up_read(&fs_info->commit_root_sem);
475 mutex_unlock(&caching_ctl->mutex);
476 cond_resched();
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
480 }
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
484 goto out;
485 if (ret)
486 break;
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
490 }
491
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
497 if (wakeup)
498 caching_ctl->progress = last;
499 btrfs_release_path(path);
500 goto next;
501 }
502
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
505 continue;
506 }
507
508 if (key.objectid >= block_group->key.objectid +
509 block_group->key.offset)
510 break;
511
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
519 fs_info->nodesize;
520 else
521 last = key.objectid + key.offset;
522
523 if (total_found > CACHING_CTL_WAKE_UP) {
524 total_found = 0;
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
527 }
528 }
529 path->slots[0]++;
530 }
531 ret = 0;
532
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
536 caching_ctl->progress = (u64)-1;
537
538 out:
539 btrfs_free_path(path);
540 return ret;
541 }
542
543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
548 struct btrfs_root *extent_root;
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
554 extent_root = fs_info->extent_root;
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
563
564 spin_lock(&block_group->lock);
565 block_group->caching_ctl = NULL;
566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567 spin_unlock(&block_group->lock);
568
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group)) {
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
580 fragment_free_space(block_group);
581 }
582 #endif
583
584 caching_ctl->progress = (u64)-1;
585
586 up_read(&fs_info->commit_root_sem);
587 free_excluded_extents(fs_info, block_group);
588 mutex_unlock(&caching_ctl->mutex);
589
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
593 btrfs_put_block_group(block_group);
594 }
595
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597 int load_cache_only)
598 {
599 DEFINE_WAIT(wait);
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
602 int ret = 0;
603
604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605 if (!caching_ctl)
606 return -ENOMEM;
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
613 refcount_set(&caching_ctl->count, 1);
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
634 refcount_inc(&ctl->count);
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
648 return 0;
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
654
655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656 mutex_lock(&caching_ctl->mutex);
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
664 caching_ctl->progress = (u64)-1;
665 } else {
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
671 cache->has_caching_ctl = 1;
672 }
673 }
674 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
677 btrfs_should_fragment_free_space(cache)) {
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
687 fragment_free_space(cache);
688 }
689 #endif
690 mutex_unlock(&caching_ctl->mutex);
691
692 wake_up(&caching_ctl->wait);
693 if (ret == 1) {
694 put_caching_control(caching_ctl);
695 free_excluded_extents(fs_info, cache);
696 return 0;
697 }
698 } else {
699 /*
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
709 cache->has_caching_ctl = 1;
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
713 }
714
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
717 return 0;
718 }
719
720 down_write(&fs_info->commit_root_sem);
721 refcount_inc(&caching_ctl->count);
722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723 up_write(&fs_info->commit_root_sem);
724
725 btrfs_get_block_group(cache);
726
727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728
729 return ret;
730 }
731
732 /*
733 * return the block group that starts at or after bytenr
734 */
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738 return block_group_cache_tree_search(info, bytenr, 0);
739 }
740
741 /*
742 * return the block group that contains the given bytenr
743 */
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
747 {
748 return block_group_cache_tree_search(info, bytenr, 1);
749 }
750
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
753 {
754 struct list_head *head = &info->space_info;
755 struct btrfs_space_info *found;
756
757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
761 if (found->flags & flags) {
762 rcu_read_unlock();
763 return found;
764 }
765 }
766 rcu_read_unlock();
767 return NULL;
768 }
769
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
772 {
773 struct btrfs_space_info *space_info;
774 u64 flags;
775
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 else
780 flags = BTRFS_BLOCK_GROUP_METADATA;
781 } else {
782 flags = BTRFS_BLOCK_GROUP_DATA;
783 }
784
785 space_info = __find_space_info(fs_info, flags);
786 ASSERT(space_info);
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788 }
789
790 /*
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
793 */
794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795 {
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(found, head, list)
801 found->full = 0;
802 rcu_read_unlock();
803 }
804
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
807 {
808 int ret;
809 struct btrfs_key key;
810 struct btrfs_path *path;
811
812 path = btrfs_alloc_path();
813 if (!path)
814 return -ENOMEM;
815
816 key.objectid = start;
817 key.offset = len;
818 key.type = BTRFS_EXTENT_ITEM_KEY;
819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820 btrfs_free_path(path);
821 return ret;
822 }
823
824 /*
825 * helper function to lookup reference count and flags of a tree block.
826 *
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
832 */
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834 struct btrfs_fs_info *fs_info, u64 bytenr,
835 u64 offset, int metadata, u64 *refs, u64 *flags)
836 {
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
843 u32 item_size;
844 u64 num_refs;
845 u64 extent_flags;
846 int ret;
847
848 /*
849 * If we don't have skinny metadata, don't bother doing anything
850 * different
851 */
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
854 metadata = 0;
855 }
856
857 path = btrfs_alloc_path();
858 if (!path)
859 return -ENOMEM;
860
861 if (!trans) {
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
864 }
865
866 search_again:
867 key.objectid = bytenr;
868 key.offset = offset;
869 if (metadata)
870 key.type = BTRFS_METADATA_ITEM_KEY;
871 else
872 key.type = BTRFS_EXTENT_ITEM_KEY;
873
874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
875 if (ret < 0)
876 goto out_free;
877
878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879 if (path->slots[0]) {
880 path->slots[0]--;
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 path->slots[0]);
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
885 key.offset == fs_info->nodesize)
886 ret = 0;
887 }
888 }
889
890 if (ret == 0) {
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
898 } else {
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 #else
908 BUG();
909 #endif
910 }
911 BUG_ON(num_refs == 0);
912 } else {
913 num_refs = 0;
914 extent_flags = 0;
915 ret = 0;
916 }
917
918 if (!trans)
919 goto out;
920
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
924 if (head) {
925 if (!mutex_trylock(&head->mutex)) {
926 refcount_inc(&head->node.refs);
927 spin_unlock(&delayed_refs->lock);
928
929 btrfs_release_path(path);
930
931 /*
932 * Mutex was contended, block until it's released and try
933 * again
934 */
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
938 goto search_again;
939 }
940 spin_lock(&head->lock);
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
943 else
944 BUG_ON(num_refs == 0);
945
946 num_refs += head->node.ref_mod;
947 spin_unlock(&head->lock);
948 mutex_unlock(&head->mutex);
949 }
950 spin_unlock(&delayed_refs->lock);
951 out:
952 WARN_ON(num_refs == 0);
953 if (refs)
954 *refs = num_refs;
955 if (flags)
956 *flags = extent_flags;
957 out_free:
958 btrfs_free_path(path);
959 return ret;
960 }
961
962 /*
963 * Back reference rules. Back refs have three main goals:
964 *
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
968 *
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
971 *
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
975 *
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
986 *
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
993 *
994 * When a tree block is COWed through a tree, there are four cases:
995 *
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
998 *
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1003 *
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1009 *
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1013 *
1014 * Back Reference Key composing:
1015 *
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1019 * of back refs.
1020 *
1021 * File extents can be referenced by:
1022 *
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
1024 * - different files inside a single subvolume
1025 * - different offsets inside a file (bookend extents in file.c)
1026 *
1027 * The extent ref structure for the implicit back refs has fields for:
1028 *
1029 * - Objectid of the subvolume root
1030 * - objectid of the file holding the reference
1031 * - original offset in the file
1032 * - how many bookend extents
1033 *
1034 * The key offset for the implicit back refs is hash of the first
1035 * three fields.
1036 *
1037 * The extent ref structure for the full back refs has field for:
1038 *
1039 * - number of pointers in the tree leaf
1040 *
1041 * The key offset for the implicit back refs is the first byte of
1042 * the tree leaf
1043 *
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
1046 *
1047 * (root_key.objectid, inode objectid, offset in file, 1)
1048 *
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
1051 *
1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1053 *
1054 * Btree extents can be referenced by:
1055 *
1056 * - Different subvolumes
1057 *
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
1062 *
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
1066 */
1067
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070 struct btrfs_fs_info *fs_info,
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
1073 {
1074 struct btrfs_root *root = fs_info->extent_root;
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
1080 struct btrfs_key key;
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1083 u64 refs;
1084 int ret;
1085
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094 if (owner == (u64)-1) {
1095 while (1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1098 if (ret < 0)
1099 return ret;
1100 BUG_ON(ret > 0); /* Corruption */
1101 leaf = path->nodes[0];
1102 }
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1104 path->slots[0]);
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 path->slots[0]++;
1108 continue;
1109 }
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 break;
1114 }
1115 }
1116 btrfs_release_path(path);
1117
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1120
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1124 if (ret < 0)
1125 return ret;
1126 BUG_ON(ret); /* Corruption */
1127
1128 btrfs_extend_item(fs_info, path, new_size);
1129
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 } else {
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 }
1146 btrfs_mark_buffer_dirty(leaf);
1147 return 0;
1148 }
1149 #endif
1150
1151 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152 {
1153 u32 high_crc = ~(u32)0;
1154 u32 low_crc = ~(u32)0;
1155 __le64 lenum;
1156
1157 lenum = cpu_to_le64(root_objectid);
1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1159 lenum = cpu_to_le64(owner);
1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1161 lenum = cpu_to_le64(offset);
1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1163
1164 return ((u64)high_crc << 31) ^ (u64)low_crc;
1165 }
1166
1167 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168 struct btrfs_extent_data_ref *ref)
1169 {
1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171 btrfs_extent_data_ref_objectid(leaf, ref),
1172 btrfs_extent_data_ref_offset(leaf, ref));
1173 }
1174
1175 static int match_extent_data_ref(struct extent_buffer *leaf,
1176 struct btrfs_extent_data_ref *ref,
1177 u64 root_objectid, u64 owner, u64 offset)
1178 {
1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182 return 0;
1183 return 1;
1184 }
1185
1186 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info,
1188 struct btrfs_path *path,
1189 u64 bytenr, u64 parent,
1190 u64 root_objectid,
1191 u64 owner, u64 offset)
1192 {
1193 struct btrfs_root *root = fs_info->extent_root;
1194 struct btrfs_key key;
1195 struct btrfs_extent_data_ref *ref;
1196 struct extent_buffer *leaf;
1197 u32 nritems;
1198 int ret;
1199 int recow;
1200 int err = -ENOENT;
1201
1202 key.objectid = bytenr;
1203 if (parent) {
1204 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 key.offset = parent;
1206 } else {
1207 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 key.offset = hash_extent_data_ref(root_objectid,
1209 owner, offset);
1210 }
1211 again:
1212 recow = 0;
1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214 if (ret < 0) {
1215 err = ret;
1216 goto fail;
1217 }
1218
1219 if (parent) {
1220 if (!ret)
1221 return 0;
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 key.type = BTRFS_EXTENT_REF_V0_KEY;
1224 btrfs_release_path(path);
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0) {
1227 err = ret;
1228 goto fail;
1229 }
1230 if (!ret)
1231 return 0;
1232 #endif
1233 goto fail;
1234 }
1235
1236 leaf = path->nodes[0];
1237 nritems = btrfs_header_nritems(leaf);
1238 while (1) {
1239 if (path->slots[0] >= nritems) {
1240 ret = btrfs_next_leaf(root, path);
1241 if (ret < 0)
1242 err = ret;
1243 if (ret)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 nritems = btrfs_header_nritems(leaf);
1248 recow = 1;
1249 }
1250
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.objectid != bytenr ||
1253 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254 goto fail;
1255
1256 ref = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_extent_data_ref);
1258
1259 if (match_extent_data_ref(leaf, ref, root_objectid,
1260 owner, offset)) {
1261 if (recow) {
1262 btrfs_release_path(path);
1263 goto again;
1264 }
1265 err = 0;
1266 break;
1267 }
1268 path->slots[0]++;
1269 }
1270 fail:
1271 return err;
1272 }
1273
1274 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info,
1276 struct btrfs_path *path,
1277 u64 bytenr, u64 parent,
1278 u64 root_objectid, u64 owner,
1279 u64 offset, int refs_to_add)
1280 {
1281 struct btrfs_root *root = fs_info->extent_root;
1282 struct btrfs_key key;
1283 struct extent_buffer *leaf;
1284 u32 size;
1285 u32 num_refs;
1286 int ret;
1287
1288 key.objectid = bytenr;
1289 if (parent) {
1290 key.type = BTRFS_SHARED_DATA_REF_KEY;
1291 key.offset = parent;
1292 size = sizeof(struct btrfs_shared_data_ref);
1293 } else {
1294 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295 key.offset = hash_extent_data_ref(root_objectid,
1296 owner, offset);
1297 size = sizeof(struct btrfs_extent_data_ref);
1298 }
1299
1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301 if (ret && ret != -EEXIST)
1302 goto fail;
1303
1304 leaf = path->nodes[0];
1305 if (parent) {
1306 struct btrfs_shared_data_ref *ref;
1307 ref = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_shared_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1315 }
1316 } else {
1317 struct btrfs_extent_data_ref *ref;
1318 while (ret == -EEXIST) {
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (match_extent_data_ref(leaf, ref, root_objectid,
1322 owner, offset))
1323 break;
1324 btrfs_release_path(path);
1325 key.offset++;
1326 ret = btrfs_insert_empty_item(trans, root, path, &key,
1327 size);
1328 if (ret && ret != -EEXIST)
1329 goto fail;
1330
1331 leaf = path->nodes[0];
1332 }
1333 ref = btrfs_item_ptr(leaf, path->slots[0],
1334 struct btrfs_extent_data_ref);
1335 if (ret == 0) {
1336 btrfs_set_extent_data_ref_root(leaf, ref,
1337 root_objectid);
1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341 } else {
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343 num_refs += refs_to_add;
1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1345 }
1346 }
1347 btrfs_mark_buffer_dirty(leaf);
1348 ret = 0;
1349 fail:
1350 btrfs_release_path(path);
1351 return ret;
1352 }
1353
1354 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1355 struct btrfs_fs_info *fs_info,
1356 struct btrfs_path *path,
1357 int refs_to_drop, int *last_ref)
1358 {
1359 struct btrfs_key key;
1360 struct btrfs_extent_data_ref *ref1 = NULL;
1361 struct btrfs_shared_data_ref *ref2 = NULL;
1362 struct extent_buffer *leaf;
1363 u32 num_refs = 0;
1364 int ret = 0;
1365
1366 leaf = path->nodes[0];
1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_extent_data_ref);
1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375 struct btrfs_shared_data_ref);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379 struct btrfs_extent_ref_v0 *ref0;
1380 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381 struct btrfs_extent_ref_v0);
1382 num_refs = btrfs_ref_count_v0(leaf, ref0);
1383 #endif
1384 } else {
1385 BUG();
1386 }
1387
1388 BUG_ON(num_refs < refs_to_drop);
1389 num_refs -= refs_to_drop;
1390
1391 if (num_refs == 0) {
1392 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1393 *last_ref = 1;
1394 } else {
1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400 else {
1401 struct btrfs_extent_ref_v0 *ref0;
1402 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_ref_v0);
1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405 }
1406 #endif
1407 btrfs_mark_buffer_dirty(leaf);
1408 }
1409 return ret;
1410 }
1411
1412 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1413 struct btrfs_extent_inline_ref *iref)
1414 {
1415 struct btrfs_key key;
1416 struct extent_buffer *leaf;
1417 struct btrfs_extent_data_ref *ref1;
1418 struct btrfs_shared_data_ref *ref2;
1419 u32 num_refs = 0;
1420
1421 leaf = path->nodes[0];
1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423 if (iref) {
1424 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425 BTRFS_EXTENT_DATA_REF_KEY) {
1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428 } else {
1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431 }
1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_extent_data_ref);
1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_shared_data_ref);
1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442 struct btrfs_extent_ref_v0 *ref0;
1443 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_extent_ref_v0);
1445 num_refs = btrfs_ref_count_v0(leaf, ref0);
1446 #endif
1447 } else {
1448 WARN_ON(1);
1449 }
1450 return num_refs;
1451 }
1452
1453 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1454 struct btrfs_fs_info *fs_info,
1455 struct btrfs_path *path,
1456 u64 bytenr, u64 parent,
1457 u64 root_objectid)
1458 {
1459 struct btrfs_root *root = fs_info->extent_root;
1460 struct btrfs_key key;
1461 int ret;
1462
1463 key.objectid = bytenr;
1464 if (parent) {
1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466 key.offset = parent;
1467 } else {
1468 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469 key.offset = root_objectid;
1470 }
1471
1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473 if (ret > 0)
1474 ret = -ENOENT;
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (ret == -ENOENT && parent) {
1477 btrfs_release_path(path);
1478 key.type = BTRFS_EXTENT_REF_V0_KEY;
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret > 0)
1481 ret = -ENOENT;
1482 }
1483 #endif
1484 return ret;
1485 }
1486
1487 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1488 struct btrfs_fs_info *fs_info,
1489 struct btrfs_path *path,
1490 u64 bytenr, u64 parent,
1491 u64 root_objectid)
1492 {
1493 struct btrfs_key key;
1494 int ret;
1495
1496 key.objectid = bytenr;
1497 if (parent) {
1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499 key.offset = parent;
1500 } else {
1501 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502 key.offset = root_objectid;
1503 }
1504
1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506 path, &key, 0);
1507 btrfs_release_path(path);
1508 return ret;
1509 }
1510
1511 static inline int extent_ref_type(u64 parent, u64 owner)
1512 {
1513 int type;
1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 if (parent > 0)
1516 type = BTRFS_SHARED_BLOCK_REF_KEY;
1517 else
1518 type = BTRFS_TREE_BLOCK_REF_KEY;
1519 } else {
1520 if (parent > 0)
1521 type = BTRFS_SHARED_DATA_REF_KEY;
1522 else
1523 type = BTRFS_EXTENT_DATA_REF_KEY;
1524 }
1525 return type;
1526 }
1527
1528 static int find_next_key(struct btrfs_path *path, int level,
1529 struct btrfs_key *key)
1530
1531 {
1532 for (; level < BTRFS_MAX_LEVEL; level++) {
1533 if (!path->nodes[level])
1534 break;
1535 if (path->slots[level] + 1 >=
1536 btrfs_header_nritems(path->nodes[level]))
1537 continue;
1538 if (level == 0)
1539 btrfs_item_key_to_cpu(path->nodes[level], key,
1540 path->slots[level] + 1);
1541 else
1542 btrfs_node_key_to_cpu(path->nodes[level], key,
1543 path->slots[level] + 1);
1544 return 0;
1545 }
1546 return 1;
1547 }
1548
1549 /*
1550 * look for inline back ref. if back ref is found, *ref_ret is set
1551 * to the address of inline back ref, and 0 is returned.
1552 *
1553 * if back ref isn't found, *ref_ret is set to the address where it
1554 * should be inserted, and -ENOENT is returned.
1555 *
1556 * if insert is true and there are too many inline back refs, the path
1557 * points to the extent item, and -EAGAIN is returned.
1558 *
1559 * NOTE: inline back refs are ordered in the same way that back ref
1560 * items in the tree are ordered.
1561 */
1562 static noinline_for_stack
1563 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 struct btrfs_fs_info *fs_info,
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref **ref_ret,
1567 u64 bytenr, u64 num_bytes,
1568 u64 parent, u64 root_objectid,
1569 u64 owner, u64 offset, int insert)
1570 {
1571 struct btrfs_root *root = fs_info->extent_root;
1572 struct btrfs_key key;
1573 struct extent_buffer *leaf;
1574 struct btrfs_extent_item *ei;
1575 struct btrfs_extent_inline_ref *iref;
1576 u64 flags;
1577 u64 item_size;
1578 unsigned long ptr;
1579 unsigned long end;
1580 int extra_size;
1581 int type;
1582 int want;
1583 int ret;
1584 int err = 0;
1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1586
1587 key.objectid = bytenr;
1588 key.type = BTRFS_EXTENT_ITEM_KEY;
1589 key.offset = num_bytes;
1590
1591 want = extent_ref_type(parent, owner);
1592 if (insert) {
1593 extra_size = btrfs_extent_inline_ref_size(want);
1594 path->keep_locks = 1;
1595 } else
1596 extra_size = -1;
1597
1598 /*
1599 * Owner is our parent level, so we can just add one to get the level
1600 * for the block we are interested in.
1601 */
1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603 key.type = BTRFS_METADATA_ITEM_KEY;
1604 key.offset = owner;
1605 }
1606
1607 again:
1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1609 if (ret < 0) {
1610 err = ret;
1611 goto out;
1612 }
1613
1614 /*
1615 * We may be a newly converted file system which still has the old fat
1616 * extent entries for metadata, so try and see if we have one of those.
1617 */
1618 if (ret > 0 && skinny_metadata) {
1619 skinny_metadata = false;
1620 if (path->slots[0]) {
1621 path->slots[0]--;
1622 btrfs_item_key_to_cpu(path->nodes[0], &key,
1623 path->slots[0]);
1624 if (key.objectid == bytenr &&
1625 key.type == BTRFS_EXTENT_ITEM_KEY &&
1626 key.offset == num_bytes)
1627 ret = 0;
1628 }
1629 if (ret) {
1630 key.objectid = bytenr;
1631 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 key.offset = num_bytes;
1633 btrfs_release_path(path);
1634 goto again;
1635 }
1636 }
1637
1638 if (ret && !insert) {
1639 err = -ENOENT;
1640 goto out;
1641 } else if (WARN_ON(ret)) {
1642 err = -EIO;
1643 goto out;
1644 }
1645
1646 leaf = path->nodes[0];
1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 if (item_size < sizeof(*ei)) {
1650 if (!insert) {
1651 err = -ENOENT;
1652 goto out;
1653 }
1654 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1655 extra_size);
1656 if (ret < 0) {
1657 err = ret;
1658 goto out;
1659 }
1660 leaf = path->nodes[0];
1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662 }
1663 #endif
1664 BUG_ON(item_size < sizeof(*ei));
1665
1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667 flags = btrfs_extent_flags(leaf, ei);
1668
1669 ptr = (unsigned long)(ei + 1);
1670 end = (unsigned long)ei + item_size;
1671
1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1673 ptr += sizeof(struct btrfs_tree_block_info);
1674 BUG_ON(ptr > end);
1675 }
1676
1677 err = -ENOENT;
1678 while (1) {
1679 if (ptr >= end) {
1680 WARN_ON(ptr > end);
1681 break;
1682 }
1683 iref = (struct btrfs_extent_inline_ref *)ptr;
1684 type = btrfs_extent_inline_ref_type(leaf, iref);
1685 if (want < type)
1686 break;
1687 if (want > type) {
1688 ptr += btrfs_extent_inline_ref_size(type);
1689 continue;
1690 }
1691
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693 struct btrfs_extent_data_ref *dref;
1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695 if (match_extent_data_ref(leaf, dref, root_objectid,
1696 owner, offset)) {
1697 err = 0;
1698 break;
1699 }
1700 if (hash_extent_data_ref_item(leaf, dref) <
1701 hash_extent_data_ref(root_objectid, owner, offset))
1702 break;
1703 } else {
1704 u64 ref_offset;
1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706 if (parent > 0) {
1707 if (parent == ref_offset) {
1708 err = 0;
1709 break;
1710 }
1711 if (ref_offset < parent)
1712 break;
1713 } else {
1714 if (root_objectid == ref_offset) {
1715 err = 0;
1716 break;
1717 }
1718 if (ref_offset < root_objectid)
1719 break;
1720 }
1721 }
1722 ptr += btrfs_extent_inline_ref_size(type);
1723 }
1724 if (err == -ENOENT && insert) {
1725 if (item_size + extra_size >=
1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727 err = -EAGAIN;
1728 goto out;
1729 }
1730 /*
1731 * To add new inline back ref, we have to make sure
1732 * there is no corresponding back ref item.
1733 * For simplicity, we just do not add new inline back
1734 * ref if there is any kind of item for this block
1735 */
1736 if (find_next_key(path, 0, &key) == 0 &&
1737 key.objectid == bytenr &&
1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1739 err = -EAGAIN;
1740 goto out;
1741 }
1742 }
1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744 out:
1745 if (insert) {
1746 path->keep_locks = 0;
1747 btrfs_unlock_up_safe(path, 1);
1748 }
1749 return err;
1750 }
1751
1752 /*
1753 * helper to add new inline back ref
1754 */
1755 static noinline_for_stack
1756 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 u64 parent, u64 root_objectid,
1760 u64 owner, u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 struct extent_buffer *leaf;
1764 struct btrfs_extent_item *ei;
1765 unsigned long ptr;
1766 unsigned long end;
1767 unsigned long item_offset;
1768 u64 refs;
1769 int size;
1770 int type;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 item_offset = (unsigned long)iref - (unsigned long)ei;
1775
1776 type = extent_ref_type(parent, owner);
1777 size = btrfs_extent_inline_ref_size(type);
1778
1779 btrfs_extend_item(fs_info, path, size);
1780
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 refs += refs_to_add;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 ptr = (unsigned long)ei + item_offset;
1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790 if (ptr < end - size)
1791 memmove_extent_buffer(leaf, ptr + size, ptr,
1792 end - size - ptr);
1793
1794 iref = (struct btrfs_extent_inline_ref *)ptr;
1795 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 struct btrfs_extent_data_ref *dref;
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804 struct btrfs_shared_data_ref *sref;
1805 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810 } else {
1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1817 struct btrfs_fs_info *fs_info,
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref **ref_ret,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner, u64 offset)
1822 {
1823 int ret;
1824
1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1826 bytenr, num_bytes, parent,
1827 root_objectid, owner, offset, 0);
1828 if (ret != -ENOENT)
1829 return ret;
1830
1831 btrfs_release_path(path);
1832 *ref_ret = NULL;
1833
1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836 parent, root_objectid);
1837 } else {
1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839 parent, root_objectid, owner,
1840 offset);
1841 }
1842 return ret;
1843 }
1844
1845 /*
1846 * helper to update/remove inline back ref
1847 */
1848 static noinline_for_stack
1849 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1850 struct btrfs_path *path,
1851 struct btrfs_extent_inline_ref *iref,
1852 int refs_to_mod,
1853 struct btrfs_delayed_extent_op *extent_op,
1854 int *last_ref)
1855 {
1856 struct extent_buffer *leaf;
1857 struct btrfs_extent_item *ei;
1858 struct btrfs_extent_data_ref *dref = NULL;
1859 struct btrfs_shared_data_ref *sref = NULL;
1860 unsigned long ptr;
1861 unsigned long end;
1862 u32 item_size;
1863 int size;
1864 int type;
1865 u64 refs;
1866
1867 leaf = path->nodes[0];
1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, ei);
1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871 refs += refs_to_mod;
1872 btrfs_set_extent_refs(leaf, ei, refs);
1873 if (extent_op)
1874 __run_delayed_extent_op(extent_op, leaf, ei);
1875
1876 type = btrfs_extent_inline_ref_type(leaf, iref);
1877
1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880 refs = btrfs_extent_data_ref_count(leaf, dref);
1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883 refs = btrfs_shared_data_ref_count(leaf, sref);
1884 } else {
1885 refs = 1;
1886 BUG_ON(refs_to_mod != -1);
1887 }
1888
1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890 refs += refs_to_mod;
1891
1892 if (refs > 0) {
1893 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895 else
1896 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897 } else {
1898 *last_ref = 1;
1899 size = btrfs_extent_inline_ref_size(type);
1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901 ptr = (unsigned long)iref;
1902 end = (unsigned long)ei + item_size;
1903 if (ptr + size < end)
1904 memmove_extent_buffer(leaf, ptr, ptr + size,
1905 end - ptr - size);
1906 item_size -= size;
1907 btrfs_truncate_item(fs_info, path, item_size, 1);
1908 }
1909 btrfs_mark_buffer_dirty(leaf);
1910 }
1911
1912 static noinline_for_stack
1913 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1914 struct btrfs_fs_info *fs_info,
1915 struct btrfs_path *path,
1916 u64 bytenr, u64 num_bytes, u64 parent,
1917 u64 root_objectid, u64 owner,
1918 u64 offset, int refs_to_add,
1919 struct btrfs_delayed_extent_op *extent_op)
1920 {
1921 struct btrfs_extent_inline_ref *iref;
1922 int ret;
1923
1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1925 bytenr, num_bytes, parent,
1926 root_objectid, owner, offset, 1);
1927 if (ret == 0) {
1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1929 update_inline_extent_backref(fs_info, path, iref,
1930 refs_to_add, extent_op, NULL);
1931 } else if (ret == -ENOENT) {
1932 setup_inline_extent_backref(fs_info, path, iref, parent,
1933 root_objectid, owner, offset,
1934 refs_to_add, extent_op);
1935 ret = 0;
1936 }
1937 return ret;
1938 }
1939
1940 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1941 struct btrfs_fs_info *fs_info,
1942 struct btrfs_path *path,
1943 u64 bytenr, u64 parent, u64 root_objectid,
1944 u64 owner, u64 offset, int refs_to_add)
1945 {
1946 int ret;
1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948 BUG_ON(refs_to_add != 1);
1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1950 parent, root_objectid);
1951 } else {
1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1953 parent, root_objectid,
1954 owner, offset, refs_to_add);
1955 }
1956 return ret;
1957 }
1958
1959 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1960 struct btrfs_fs_info *fs_info,
1961 struct btrfs_path *path,
1962 struct btrfs_extent_inline_ref *iref,
1963 int refs_to_drop, int is_data, int *last_ref)
1964 {
1965 int ret = 0;
1966
1967 BUG_ON(!is_data && refs_to_drop != 1);
1968 if (iref) {
1969 update_inline_extent_backref(fs_info, path, iref,
1970 -refs_to_drop, NULL, last_ref);
1971 } else if (is_data) {
1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1973 last_ref);
1974 } else {
1975 *last_ref = 1;
1976 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1977 }
1978 return ret;
1979 }
1980
1981 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1982 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983 u64 *discarded_bytes)
1984 {
1985 int j, ret = 0;
1986 u64 bytes_left, end;
1987 u64 aligned_start = ALIGN(start, 1 << 9);
1988
1989 if (WARN_ON(start != aligned_start)) {
1990 len -= aligned_start - start;
1991 len = round_down(len, 1 << 9);
1992 start = aligned_start;
1993 }
1994
1995 *discarded_bytes = 0;
1996
1997 if (!len)
1998 return 0;
1999
2000 end = start + len;
2001 bytes_left = len;
2002
2003 /* Skip any superblocks on this device. */
2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005 u64 sb_start = btrfs_sb_offset(j);
2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007 u64 size = sb_start - start;
2008
2009 if (!in_range(sb_start, start, bytes_left) &&
2010 !in_range(sb_end, start, bytes_left) &&
2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012 continue;
2013
2014 /*
2015 * Superblock spans beginning of range. Adjust start and
2016 * try again.
2017 */
2018 if (sb_start <= start) {
2019 start += sb_end - start;
2020 if (start > end) {
2021 bytes_left = 0;
2022 break;
2023 }
2024 bytes_left = end - start;
2025 continue;
2026 }
2027
2028 if (size) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += size;
2033 else if (ret != -EOPNOTSUPP)
2034 return ret;
2035 }
2036
2037 start = sb_end;
2038 if (start > end) {
2039 bytes_left = 0;
2040 break;
2041 }
2042 bytes_left = end - start;
2043 }
2044
2045 if (bytes_left) {
2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2047 GFP_NOFS, 0);
2048 if (!ret)
2049 *discarded_bytes += bytes_left;
2050 }
2051 return ret;
2052 }
2053
2054 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2055 u64 num_bytes, u64 *actual_bytes)
2056 {
2057 int ret;
2058 u64 discarded_bytes = 0;
2059 struct btrfs_bio *bbio = NULL;
2060
2061
2062 /*
2063 * Avoid races with device replace and make sure our bbio has devices
2064 * associated to its stripes that don't go away while we are discarding.
2065 */
2066 btrfs_bio_counter_inc_blocked(fs_info);
2067 /* Tell the block device(s) that the sectors can be discarded */
2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069 &bbio, 0);
2070 /* Error condition is -ENOMEM */
2071 if (!ret) {
2072 struct btrfs_bio_stripe *stripe = bbio->stripes;
2073 int i;
2074
2075
2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2077 u64 bytes;
2078 if (!stripe->dev->can_discard)
2079 continue;
2080
2081 ret = btrfs_issue_discard(stripe->dev->bdev,
2082 stripe->physical,
2083 stripe->length,
2084 &bytes);
2085 if (!ret)
2086 discarded_bytes += bytes;
2087 else if (ret != -EOPNOTSUPP)
2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2089
2090 /*
2091 * Just in case we get back EOPNOTSUPP for some reason,
2092 * just ignore the return value so we don't screw up
2093 * people calling discard_extent.
2094 */
2095 ret = 0;
2096 }
2097 btrfs_put_bbio(bbio);
2098 }
2099 btrfs_bio_counter_dec(fs_info);
2100
2101 if (actual_bytes)
2102 *actual_bytes = discarded_bytes;
2103
2104
2105 if (ret == -EOPNOTSUPP)
2106 ret = 0;
2107 return ret;
2108 }
2109
2110 /* Can return -ENOMEM */
2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2112 struct btrfs_fs_info *fs_info,
2113 u64 bytenr, u64 num_bytes, u64 parent,
2114 u64 root_objectid, u64 owner, u64 offset)
2115 {
2116 int old_ref_mod, new_ref_mod;
2117 int ret;
2118
2119 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2120 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2121
2122 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2123 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2124 num_bytes, parent,
2125 root_objectid, (int)owner,
2126 BTRFS_ADD_DELAYED_REF, NULL,
2127 &old_ref_mod, &new_ref_mod);
2128 } else {
2129 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2130 num_bytes, parent,
2131 root_objectid, owner, offset,
2132 0, BTRFS_ADD_DELAYED_REF,
2133 &old_ref_mod, &new_ref_mod);
2134 }
2135
2136 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2137 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2138
2139 return ret;
2140 }
2141
2142 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2143 struct btrfs_fs_info *fs_info,
2144 struct btrfs_delayed_ref_node *node,
2145 u64 parent, u64 root_objectid,
2146 u64 owner, u64 offset, int refs_to_add,
2147 struct btrfs_delayed_extent_op *extent_op)
2148 {
2149 struct btrfs_path *path;
2150 struct extent_buffer *leaf;
2151 struct btrfs_extent_item *item;
2152 struct btrfs_key key;
2153 u64 bytenr = node->bytenr;
2154 u64 num_bytes = node->num_bytes;
2155 u64 refs;
2156 int ret;
2157
2158 path = btrfs_alloc_path();
2159 if (!path)
2160 return -ENOMEM;
2161
2162 path->reada = READA_FORWARD;
2163 path->leave_spinning = 1;
2164 /* this will setup the path even if it fails to insert the back ref */
2165 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2166 num_bytes, parent, root_objectid,
2167 owner, offset,
2168 refs_to_add, extent_op);
2169 if ((ret < 0 && ret != -EAGAIN) || !ret)
2170 goto out;
2171
2172 /*
2173 * Ok we had -EAGAIN which means we didn't have space to insert and
2174 * inline extent ref, so just update the reference count and add a
2175 * normal backref.
2176 */
2177 leaf = path->nodes[0];
2178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2180 refs = btrfs_extent_refs(leaf, item);
2181 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2182 if (extent_op)
2183 __run_delayed_extent_op(extent_op, leaf, item);
2184
2185 btrfs_mark_buffer_dirty(leaf);
2186 btrfs_release_path(path);
2187
2188 path->reada = READA_FORWARD;
2189 path->leave_spinning = 1;
2190 /* now insert the actual backref */
2191 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2192 root_objectid, owner, offset, refs_to_add);
2193 if (ret)
2194 btrfs_abort_transaction(trans, ret);
2195 out:
2196 btrfs_free_path(path);
2197 return ret;
2198 }
2199
2200 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2201 struct btrfs_fs_info *fs_info,
2202 struct btrfs_delayed_ref_node *node,
2203 struct btrfs_delayed_extent_op *extent_op,
2204 int insert_reserved)
2205 {
2206 int ret = 0;
2207 struct btrfs_delayed_data_ref *ref;
2208 struct btrfs_key ins;
2209 u64 parent = 0;
2210 u64 ref_root = 0;
2211 u64 flags = 0;
2212
2213 ins.objectid = node->bytenr;
2214 ins.offset = node->num_bytes;
2215 ins.type = BTRFS_EXTENT_ITEM_KEY;
2216
2217 ref = btrfs_delayed_node_to_data_ref(node);
2218 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2219
2220 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2221 parent = ref->parent;
2222 ref_root = ref->root;
2223
2224 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2225 if (extent_op)
2226 flags |= extent_op->flags_to_set;
2227 ret = alloc_reserved_file_extent(trans, fs_info,
2228 parent, ref_root, flags,
2229 ref->objectid, ref->offset,
2230 &ins, node->ref_mod);
2231 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2232 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2233 ref_root, ref->objectid,
2234 ref->offset, node->ref_mod,
2235 extent_op);
2236 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2237 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2238 ref_root, ref->objectid,
2239 ref->offset, node->ref_mod,
2240 extent_op);
2241 } else {
2242 BUG();
2243 }
2244 return ret;
2245 }
2246
2247 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2248 struct extent_buffer *leaf,
2249 struct btrfs_extent_item *ei)
2250 {
2251 u64 flags = btrfs_extent_flags(leaf, ei);
2252 if (extent_op->update_flags) {
2253 flags |= extent_op->flags_to_set;
2254 btrfs_set_extent_flags(leaf, ei, flags);
2255 }
2256
2257 if (extent_op->update_key) {
2258 struct btrfs_tree_block_info *bi;
2259 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2260 bi = (struct btrfs_tree_block_info *)(ei + 1);
2261 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2262 }
2263 }
2264
2265 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2266 struct btrfs_fs_info *fs_info,
2267 struct btrfs_delayed_ref_node *node,
2268 struct btrfs_delayed_extent_op *extent_op)
2269 {
2270 struct btrfs_key key;
2271 struct btrfs_path *path;
2272 struct btrfs_extent_item *ei;
2273 struct extent_buffer *leaf;
2274 u32 item_size;
2275 int ret;
2276 int err = 0;
2277 int metadata = !extent_op->is_data;
2278
2279 if (trans->aborted)
2280 return 0;
2281
2282 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2283 metadata = 0;
2284
2285 path = btrfs_alloc_path();
2286 if (!path)
2287 return -ENOMEM;
2288
2289 key.objectid = node->bytenr;
2290
2291 if (metadata) {
2292 key.type = BTRFS_METADATA_ITEM_KEY;
2293 key.offset = extent_op->level;
2294 } else {
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 key.offset = node->num_bytes;
2297 }
2298
2299 again:
2300 path->reada = READA_FORWARD;
2301 path->leave_spinning = 1;
2302 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 if (ret > 0) {
2308 if (metadata) {
2309 if (path->slots[0] > 0) {
2310 path->slots[0]--;
2311 btrfs_item_key_to_cpu(path->nodes[0], &key,
2312 path->slots[0]);
2313 if (key.objectid == node->bytenr &&
2314 key.type == BTRFS_EXTENT_ITEM_KEY &&
2315 key.offset == node->num_bytes)
2316 ret = 0;
2317 }
2318 if (ret > 0) {
2319 btrfs_release_path(path);
2320 metadata = 0;
2321
2322 key.objectid = node->bytenr;
2323 key.offset = node->num_bytes;
2324 key.type = BTRFS_EXTENT_ITEM_KEY;
2325 goto again;
2326 }
2327 } else {
2328 err = -EIO;
2329 goto out;
2330 }
2331 }
2332
2333 leaf = path->nodes[0];
2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2336 if (item_size < sizeof(*ei)) {
2337 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2338 if (ret < 0) {
2339 err = ret;
2340 goto out;
2341 }
2342 leaf = path->nodes[0];
2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344 }
2345 #endif
2346 BUG_ON(item_size < sizeof(*ei));
2347 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2348 __run_delayed_extent_op(extent_op, leaf, ei);
2349
2350 btrfs_mark_buffer_dirty(leaf);
2351 out:
2352 btrfs_free_path(path);
2353 return err;
2354 }
2355
2356 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2357 struct btrfs_fs_info *fs_info,
2358 struct btrfs_delayed_ref_node *node,
2359 struct btrfs_delayed_extent_op *extent_op,
2360 int insert_reserved)
2361 {
2362 int ret = 0;
2363 struct btrfs_delayed_tree_ref *ref;
2364 struct btrfs_key ins;
2365 u64 parent = 0;
2366 u64 ref_root = 0;
2367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2368
2369 ref = btrfs_delayed_node_to_tree_ref(node);
2370 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2371
2372 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2373 parent = ref->parent;
2374 ref_root = ref->root;
2375
2376 ins.objectid = node->bytenr;
2377 if (skinny_metadata) {
2378 ins.offset = ref->level;
2379 ins.type = BTRFS_METADATA_ITEM_KEY;
2380 } else {
2381 ins.offset = node->num_bytes;
2382 ins.type = BTRFS_EXTENT_ITEM_KEY;
2383 }
2384
2385 if (node->ref_mod != 1) {
2386 btrfs_err(fs_info,
2387 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2388 node->bytenr, node->ref_mod, node->action, ref_root,
2389 parent);
2390 return -EIO;
2391 }
2392 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2393 BUG_ON(!extent_op || !extent_op->update_flags);
2394 ret = alloc_reserved_tree_block(trans, fs_info,
2395 parent, ref_root,
2396 extent_op->flags_to_set,
2397 &extent_op->key,
2398 ref->level, &ins);
2399 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2400 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2401 parent, ref_root,
2402 ref->level, 0, 1,
2403 extent_op);
2404 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2405 ret = __btrfs_free_extent(trans, fs_info, node,
2406 parent, ref_root,
2407 ref->level, 0, 1, extent_op);
2408 } else {
2409 BUG();
2410 }
2411 return ret;
2412 }
2413
2414 /* helper function to actually process a single delayed ref entry */
2415 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2416 struct btrfs_fs_info *fs_info,
2417 struct btrfs_delayed_ref_node *node,
2418 struct btrfs_delayed_extent_op *extent_op,
2419 int insert_reserved)
2420 {
2421 int ret = 0;
2422
2423 if (trans->aborted) {
2424 if (insert_reserved)
2425 btrfs_pin_extent(fs_info, node->bytenr,
2426 node->num_bytes, 1);
2427 return 0;
2428 }
2429
2430 if (btrfs_delayed_ref_is_head(node)) {
2431 struct btrfs_delayed_ref_head *head;
2432 /*
2433 * we've hit the end of the chain and we were supposed
2434 * to insert this extent into the tree. But, it got
2435 * deleted before we ever needed to insert it, so all
2436 * we have to do is clean up the accounting
2437 */
2438 BUG_ON(extent_op);
2439 head = btrfs_delayed_node_to_head(node);
2440 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2441
2442 if (head->total_ref_mod < 0) {
2443 struct btrfs_block_group_cache *cache;
2444
2445 cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2446 ASSERT(cache);
2447 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2448 -node->num_bytes);
2449 btrfs_put_block_group(cache);
2450 }
2451
2452 if (insert_reserved) {
2453 btrfs_pin_extent(fs_info, node->bytenr,
2454 node->num_bytes, 1);
2455 if (head->is_data) {
2456 ret = btrfs_del_csums(trans, fs_info,
2457 node->bytenr,
2458 node->num_bytes);
2459 }
2460 }
2461
2462 /* Also free its reserved qgroup space */
2463 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2464 head->qgroup_reserved);
2465 return ret;
2466 }
2467
2468 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2469 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2470 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2471 insert_reserved);
2472 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2473 node->type == BTRFS_SHARED_DATA_REF_KEY)
2474 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2475 insert_reserved);
2476 else
2477 BUG();
2478 return ret;
2479 }
2480
2481 static inline struct btrfs_delayed_ref_node *
2482 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2483 {
2484 struct btrfs_delayed_ref_node *ref;
2485
2486 if (list_empty(&head->ref_list))
2487 return NULL;
2488
2489 /*
2490 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2491 * This is to prevent a ref count from going down to zero, which deletes
2492 * the extent item from the extent tree, when there still are references
2493 * to add, which would fail because they would not find the extent item.
2494 */
2495 if (!list_empty(&head->ref_add_list))
2496 return list_first_entry(&head->ref_add_list,
2497 struct btrfs_delayed_ref_node, add_list);
2498
2499 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2500 list);
2501 ASSERT(list_empty(&ref->add_list));
2502 return ref;
2503 }
2504
2505 /*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2510 struct btrfs_fs_info *fs_info,
2511 unsigned long nr)
2512 {
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
2516 struct btrfs_delayed_extent_op *extent_op;
2517 ktime_t start = ktime_get();
2518 int ret;
2519 unsigned long count = 0;
2520 unsigned long actual_count = 0;
2521 int must_insert_reserved = 0;
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
2524 while (1) {
2525 if (!locked_ref) {
2526 if (count >= nr)
2527 break;
2528
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539 spin_unlock(&delayed_refs->lock);
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
2550 }
2551 }
2552
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
2565 spin_lock(&locked_ref->lock);
2566 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2567 locked_ref);
2568
2569 /*
2570 * locked_ref is the head node, so we have to go one
2571 * node back for any delayed ref updates
2572 */
2573 ref = select_delayed_ref(locked_ref);
2574
2575 if (ref && ref->seq &&
2576 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2577 spin_unlock(&locked_ref->lock);
2578 spin_lock(&delayed_refs->lock);
2579 locked_ref->processing = 0;
2580 delayed_refs->num_heads_ready++;
2581 spin_unlock(&delayed_refs->lock);
2582 btrfs_delayed_ref_unlock(locked_ref);
2583 locked_ref = NULL;
2584 cond_resched();
2585 count++;
2586 continue;
2587 }
2588
2589 /*
2590 * record the must insert reserved flag before we
2591 * drop the spin lock.
2592 */
2593 must_insert_reserved = locked_ref->must_insert_reserved;
2594 locked_ref->must_insert_reserved = 0;
2595
2596 extent_op = locked_ref->extent_op;
2597 locked_ref->extent_op = NULL;
2598
2599 if (!ref) {
2600
2601
2602 /* All delayed refs have been processed, Go ahead
2603 * and send the head node to run_one_delayed_ref,
2604 * so that any accounting fixes can happen
2605 */
2606 ref = &locked_ref->node;
2607
2608 if (extent_op && must_insert_reserved) {
2609 btrfs_free_delayed_extent_op(extent_op);
2610 extent_op = NULL;
2611 }
2612
2613 if (extent_op) {
2614 spin_unlock(&locked_ref->lock);
2615 ret = run_delayed_extent_op(trans, fs_info,
2616 ref, extent_op);
2617 btrfs_free_delayed_extent_op(extent_op);
2618
2619 if (ret) {
2620 /*
2621 * Need to reset must_insert_reserved if
2622 * there was an error so the abort stuff
2623 * can cleanup the reserved space
2624 * properly.
2625 */
2626 if (must_insert_reserved)
2627 locked_ref->must_insert_reserved = 1;
2628 spin_lock(&delayed_refs->lock);
2629 locked_ref->processing = 0;
2630 delayed_refs->num_heads_ready++;
2631 spin_unlock(&delayed_refs->lock);
2632 btrfs_debug(fs_info,
2633 "run_delayed_extent_op returned %d",
2634 ret);
2635 btrfs_delayed_ref_unlock(locked_ref);
2636 return ret;
2637 }
2638 continue;
2639 }
2640
2641 /*
2642 * Need to drop our head ref lock and re-acquire the
2643 * delayed ref lock and then re-check to make sure
2644 * nobody got added.
2645 */
2646 spin_unlock(&locked_ref->lock);
2647 spin_lock(&delayed_refs->lock);
2648 spin_lock(&locked_ref->lock);
2649 if (!list_empty(&locked_ref->ref_list) ||
2650 locked_ref->extent_op) {
2651 spin_unlock(&locked_ref->lock);
2652 spin_unlock(&delayed_refs->lock);
2653 continue;
2654 }
2655 ref->in_tree = 0;
2656 delayed_refs->num_heads--;
2657 rb_erase(&locked_ref->href_node,
2658 &delayed_refs->href_root);
2659 spin_unlock(&delayed_refs->lock);
2660 } else {
2661 actual_count++;
2662 ref->in_tree = 0;
2663 list_del(&ref->list);
2664 if (!list_empty(&ref->add_list))
2665 list_del(&ref->add_list);
2666 }
2667 atomic_dec(&delayed_refs->num_entries);
2668
2669 if (!btrfs_delayed_ref_is_head(ref)) {
2670 /*
2671 * when we play the delayed ref, also correct the
2672 * ref_mod on head
2673 */
2674 switch (ref->action) {
2675 case BTRFS_ADD_DELAYED_REF:
2676 case BTRFS_ADD_DELAYED_EXTENT:
2677 locked_ref->node.ref_mod -= ref->ref_mod;
2678 break;
2679 case BTRFS_DROP_DELAYED_REF:
2680 locked_ref->node.ref_mod += ref->ref_mod;
2681 break;
2682 default:
2683 WARN_ON(1);
2684 }
2685 }
2686 spin_unlock(&locked_ref->lock);
2687
2688 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2689 must_insert_reserved);
2690
2691 btrfs_free_delayed_extent_op(extent_op);
2692 if (ret) {
2693 spin_lock(&delayed_refs->lock);
2694 locked_ref->processing = 0;
2695 delayed_refs->num_heads_ready++;
2696 spin_unlock(&delayed_refs->lock);
2697 btrfs_delayed_ref_unlock(locked_ref);
2698 btrfs_put_delayed_ref(ref);
2699 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2700 ret);
2701 return ret;
2702 }
2703
2704 /*
2705 * If this node is a head, that means all the refs in this head
2706 * have been dealt with, and we will pick the next head to deal
2707 * with, so we must unlock the head and drop it from the cluster
2708 * list before we release it.
2709 */
2710 if (btrfs_delayed_ref_is_head(ref)) {
2711 if (locked_ref->is_data &&
2712 locked_ref->total_ref_mod < 0) {
2713 spin_lock(&delayed_refs->lock);
2714 delayed_refs->pending_csums -= ref->num_bytes;
2715 spin_unlock(&delayed_refs->lock);
2716 }
2717 btrfs_delayed_ref_unlock(locked_ref);
2718 locked_ref = NULL;
2719 }
2720 btrfs_put_delayed_ref(ref);
2721 count++;
2722 cond_resched();
2723 }
2724
2725 /*
2726 * We don't want to include ref heads since we can have empty ref heads
2727 * and those will drastically skew our runtime down since we just do
2728 * accounting, no actual extent tree updates.
2729 */
2730 if (actual_count > 0) {
2731 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2732 u64 avg;
2733
2734 /*
2735 * We weigh the current average higher than our current runtime
2736 * to avoid large swings in the average.
2737 */
2738 spin_lock(&delayed_refs->lock);
2739 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2740 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2741 spin_unlock(&delayed_refs->lock);
2742 }
2743 return 0;
2744 }
2745
2746 #ifdef SCRAMBLE_DELAYED_REFS
2747 /*
2748 * Normally delayed refs get processed in ascending bytenr order. This
2749 * correlates in most cases to the order added. To expose dependencies on this
2750 * order, we start to process the tree in the middle instead of the beginning
2751 */
2752 static u64 find_middle(struct rb_root *root)
2753 {
2754 struct rb_node *n = root->rb_node;
2755 struct btrfs_delayed_ref_node *entry;
2756 int alt = 1;
2757 u64 middle;
2758 u64 first = 0, last = 0;
2759
2760 n = rb_first(root);
2761 if (n) {
2762 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2763 first = entry->bytenr;
2764 }
2765 n = rb_last(root);
2766 if (n) {
2767 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2768 last = entry->bytenr;
2769 }
2770 n = root->rb_node;
2771
2772 while (n) {
2773 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2774 WARN_ON(!entry->in_tree);
2775
2776 middle = entry->bytenr;
2777
2778 if (alt)
2779 n = n->rb_left;
2780 else
2781 n = n->rb_right;
2782
2783 alt = 1 - alt;
2784 }
2785 return middle;
2786 }
2787 #endif
2788
2789 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2790 {
2791 u64 num_bytes;
2792
2793 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2794 sizeof(struct btrfs_extent_inline_ref));
2795 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2796 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2797
2798 /*
2799 * We don't ever fill up leaves all the way so multiply by 2 just to be
2800 * closer to what we're really going to want to use.
2801 */
2802 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2803 }
2804
2805 /*
2806 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2807 * would require to store the csums for that many bytes.
2808 */
2809 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2810 {
2811 u64 csum_size;
2812 u64 num_csums_per_leaf;
2813 u64 num_csums;
2814
2815 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2816 num_csums_per_leaf = div64_u64(csum_size,
2817 (u64)btrfs_super_csum_size(fs_info->super_copy));
2818 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2819 num_csums += num_csums_per_leaf - 1;
2820 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2821 return num_csums;
2822 }
2823
2824 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2825 struct btrfs_fs_info *fs_info)
2826 {
2827 struct btrfs_block_rsv *global_rsv;
2828 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2829 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2830 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2831 u64 num_bytes, num_dirty_bgs_bytes;
2832 int ret = 0;
2833
2834 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2835 num_heads = heads_to_leaves(fs_info, num_heads);
2836 if (num_heads > 1)
2837 num_bytes += (num_heads - 1) * fs_info->nodesize;
2838 num_bytes <<= 1;
2839 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2840 fs_info->nodesize;
2841 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2842 num_dirty_bgs);
2843 global_rsv = &fs_info->global_block_rsv;
2844
2845 /*
2846 * If we can't allocate any more chunks lets make sure we have _lots_ of
2847 * wiggle room since running delayed refs can create more delayed refs.
2848 */
2849 if (global_rsv->space_info->full) {
2850 num_dirty_bgs_bytes <<= 1;
2851 num_bytes <<= 1;
2852 }
2853
2854 spin_lock(&global_rsv->lock);
2855 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2856 ret = 1;
2857 spin_unlock(&global_rsv->lock);
2858 return ret;
2859 }
2860
2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2862 struct btrfs_fs_info *fs_info)
2863 {
2864 u64 num_entries =
2865 atomic_read(&trans->transaction->delayed_refs.num_entries);
2866 u64 avg_runtime;
2867 u64 val;
2868
2869 smp_mb();
2870 avg_runtime = fs_info->avg_delayed_ref_runtime;
2871 val = num_entries * avg_runtime;
2872 if (val >= NSEC_PER_SEC)
2873 return 1;
2874 if (val >= NSEC_PER_SEC / 2)
2875 return 2;
2876
2877 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2878 }
2879
2880 struct async_delayed_refs {
2881 struct btrfs_root *root;
2882 u64 transid;
2883 int count;
2884 int error;
2885 int sync;
2886 struct completion wait;
2887 struct btrfs_work work;
2888 };
2889
2890 static inline struct async_delayed_refs *
2891 to_async_delayed_refs(struct btrfs_work *work)
2892 {
2893 return container_of(work, struct async_delayed_refs, work);
2894 }
2895
2896 static void delayed_ref_async_start(struct btrfs_work *work)
2897 {
2898 struct async_delayed_refs *async = to_async_delayed_refs(work);
2899 struct btrfs_trans_handle *trans;
2900 struct btrfs_fs_info *fs_info = async->root->fs_info;
2901 int ret;
2902
2903 /* if the commit is already started, we don't need to wait here */
2904 if (btrfs_transaction_blocked(fs_info))
2905 goto done;
2906
2907 trans = btrfs_join_transaction(async->root);
2908 if (IS_ERR(trans)) {
2909 async->error = PTR_ERR(trans);
2910 goto done;
2911 }
2912
2913 /*
2914 * trans->sync means that when we call end_transaction, we won't
2915 * wait on delayed refs
2916 */
2917 trans->sync = true;
2918
2919 /* Don't bother flushing if we got into a different transaction */
2920 if (trans->transid > async->transid)
2921 goto end;
2922
2923 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2924 if (ret)
2925 async->error = ret;
2926 end:
2927 ret = btrfs_end_transaction(trans);
2928 if (ret && !async->error)
2929 async->error = ret;
2930 done:
2931 if (async->sync)
2932 complete(&async->wait);
2933 else
2934 kfree(async);
2935 }
2936
2937 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2938 unsigned long count, u64 transid, int wait)
2939 {
2940 struct async_delayed_refs *async;
2941 int ret;
2942
2943 async = kmalloc(sizeof(*async), GFP_NOFS);
2944 if (!async)
2945 return -ENOMEM;
2946
2947 async->root = fs_info->tree_root;
2948 async->count = count;
2949 async->error = 0;
2950 async->transid = transid;
2951 if (wait)
2952 async->sync = 1;
2953 else
2954 async->sync = 0;
2955 init_completion(&async->wait);
2956
2957 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2958 delayed_ref_async_start, NULL, NULL);
2959
2960 btrfs_queue_work(fs_info->extent_workers, &async->work);
2961
2962 if (wait) {
2963 wait_for_completion(&async->wait);
2964 ret = async->error;
2965 kfree(async);
2966 return ret;
2967 }
2968 return 0;
2969 }
2970
2971 /*
2972 * this starts processing the delayed reference count updates and
2973 * extent insertions we have queued up so far. count can be
2974 * 0, which means to process everything in the tree at the start
2975 * of the run (but not newly added entries), or it can be some target
2976 * number you'd like to process.
2977 *
2978 * Returns 0 on success or if called with an aborted transaction
2979 * Returns <0 on error and aborts the transaction
2980 */
2981 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2982 struct btrfs_fs_info *fs_info, unsigned long count)
2983 {
2984 struct rb_node *node;
2985 struct btrfs_delayed_ref_root *delayed_refs;
2986 struct btrfs_delayed_ref_head *head;
2987 int ret;
2988 int run_all = count == (unsigned long)-1;
2989 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2990
2991 /* We'll clean this up in btrfs_cleanup_transaction */
2992 if (trans->aborted)
2993 return 0;
2994
2995 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2996 return 0;
2997
2998 delayed_refs = &trans->transaction->delayed_refs;
2999 if (count == 0)
3000 count = atomic_read(&delayed_refs->num_entries) * 2;
3001
3002 again:
3003 #ifdef SCRAMBLE_DELAYED_REFS
3004 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3005 #endif
3006 trans->can_flush_pending_bgs = false;
3007 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3008 if (ret < 0) {
3009 btrfs_abort_transaction(trans, ret);
3010 return ret;
3011 }
3012
3013 if (run_all) {
3014 if (!list_empty(&trans->new_bgs))
3015 btrfs_create_pending_block_groups(trans, fs_info);
3016
3017 spin_lock(&delayed_refs->lock);
3018 node = rb_first(&delayed_refs->href_root);
3019 if (!node) {
3020 spin_unlock(&delayed_refs->lock);
3021 goto out;
3022 }
3023
3024 while (node) {
3025 head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 href_node);
3027 if (btrfs_delayed_ref_is_head(&head->node)) {
3028 struct btrfs_delayed_ref_node *ref;
3029
3030 ref = &head->node;
3031 refcount_inc(&ref->refs);
3032
3033 spin_unlock(&delayed_refs->lock);
3034 /*
3035 * Mutex was contended, block until it's
3036 * released and try again
3037 */
3038 mutex_lock(&head->mutex);
3039 mutex_unlock(&head->mutex);
3040
3041 btrfs_put_delayed_ref(ref);
3042 cond_resched();
3043 goto again;
3044 } else {
3045 WARN_ON(1);
3046 }
3047 node = rb_next(node);
3048 }
3049 spin_unlock(&delayed_refs->lock);
3050 cond_resched();
3051 goto again;
3052 }
3053 out:
3054 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3055 return 0;
3056 }
3057
3058 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3059 struct btrfs_fs_info *fs_info,
3060 u64 bytenr, u64 num_bytes, u64 flags,
3061 int level, int is_data)
3062 {
3063 struct btrfs_delayed_extent_op *extent_op;
3064 int ret;
3065
3066 extent_op = btrfs_alloc_delayed_extent_op();
3067 if (!extent_op)
3068 return -ENOMEM;
3069
3070 extent_op->flags_to_set = flags;
3071 extent_op->update_flags = true;
3072 extent_op->update_key = false;
3073 extent_op->is_data = is_data ? true : false;
3074 extent_op->level = level;
3075
3076 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3077 num_bytes, extent_op);
3078 if (ret)
3079 btrfs_free_delayed_extent_op(extent_op);
3080 return ret;
3081 }
3082
3083 static noinline int check_delayed_ref(struct btrfs_root *root,
3084 struct btrfs_path *path,
3085 u64 objectid, u64 offset, u64 bytenr)
3086 {
3087 struct btrfs_delayed_ref_head *head;
3088 struct btrfs_delayed_ref_node *ref;
3089 struct btrfs_delayed_data_ref *data_ref;
3090 struct btrfs_delayed_ref_root *delayed_refs;
3091 struct btrfs_transaction *cur_trans;
3092 int ret = 0;
3093
3094 cur_trans = root->fs_info->running_transaction;
3095 if (!cur_trans)
3096 return 0;
3097
3098 delayed_refs = &cur_trans->delayed_refs;
3099 spin_lock(&delayed_refs->lock);
3100 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3101 if (!head) {
3102 spin_unlock(&delayed_refs->lock);
3103 return 0;
3104 }
3105
3106 if (!mutex_trylock(&head->mutex)) {
3107 refcount_inc(&head->node.refs);
3108 spin_unlock(&delayed_refs->lock);
3109
3110 btrfs_release_path(path);
3111
3112 /*
3113 * Mutex was contended, block until it's released and let
3114 * caller try again
3115 */
3116 mutex_lock(&head->mutex);
3117 mutex_unlock(&head->mutex);
3118 btrfs_put_delayed_ref(&head->node);
3119 return -EAGAIN;
3120 }
3121 spin_unlock(&delayed_refs->lock);
3122
3123 spin_lock(&head->lock);
3124 list_for_each_entry(ref, &head->ref_list, list) {
3125 /* If it's a shared ref we know a cross reference exists */
3126 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3127 ret = 1;
3128 break;
3129 }
3130
3131 data_ref = btrfs_delayed_node_to_data_ref(ref);
3132
3133 /*
3134 * If our ref doesn't match the one we're currently looking at
3135 * then we have a cross reference.
3136 */
3137 if (data_ref->root != root->root_key.objectid ||
3138 data_ref->objectid != objectid ||
3139 data_ref->offset != offset) {
3140 ret = 1;
3141 break;
3142 }
3143 }
3144 spin_unlock(&head->lock);
3145 mutex_unlock(&head->mutex);
3146 return ret;
3147 }
3148
3149 static noinline int check_committed_ref(struct btrfs_root *root,
3150 struct btrfs_path *path,
3151 u64 objectid, u64 offset, u64 bytenr)
3152 {
3153 struct btrfs_fs_info *fs_info = root->fs_info;
3154 struct btrfs_root *extent_root = fs_info->extent_root;
3155 struct extent_buffer *leaf;
3156 struct btrfs_extent_data_ref *ref;
3157 struct btrfs_extent_inline_ref *iref;
3158 struct btrfs_extent_item *ei;
3159 struct btrfs_key key;
3160 u32 item_size;
3161 int ret;
3162
3163 key.objectid = bytenr;
3164 key.offset = (u64)-1;
3165 key.type = BTRFS_EXTENT_ITEM_KEY;
3166
3167 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3168 if (ret < 0)
3169 goto out;
3170 BUG_ON(ret == 0); /* Corruption */
3171
3172 ret = -ENOENT;
3173 if (path->slots[0] == 0)
3174 goto out;
3175
3176 path->slots[0]--;
3177 leaf = path->nodes[0];
3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3179
3180 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3181 goto out;
3182
3183 ret = 1;
3184 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3185 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3186 if (item_size < sizeof(*ei)) {
3187 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3188 goto out;
3189 }
3190 #endif
3191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3192
3193 if (item_size != sizeof(*ei) +
3194 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3195 goto out;
3196
3197 if (btrfs_extent_generation(leaf, ei) <=
3198 btrfs_root_last_snapshot(&root->root_item))
3199 goto out;
3200
3201 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3202 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3203 BTRFS_EXTENT_DATA_REF_KEY)
3204 goto out;
3205
3206 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3207 if (btrfs_extent_refs(leaf, ei) !=
3208 btrfs_extent_data_ref_count(leaf, ref) ||
3209 btrfs_extent_data_ref_root(leaf, ref) !=
3210 root->root_key.objectid ||
3211 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3212 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3213 goto out;
3214
3215 ret = 0;
3216 out:
3217 return ret;
3218 }
3219
3220 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3221 u64 bytenr)
3222 {
3223 struct btrfs_path *path;
3224 int ret;
3225 int ret2;
3226
3227 path = btrfs_alloc_path();
3228 if (!path)
3229 return -ENOENT;
3230
3231 do {
3232 ret = check_committed_ref(root, path, objectid,
3233 offset, bytenr);
3234 if (ret && ret != -ENOENT)
3235 goto out;
3236
3237 ret2 = check_delayed_ref(root, path, objectid,
3238 offset, bytenr);
3239 } while (ret2 == -EAGAIN);
3240
3241 if (ret2 && ret2 != -ENOENT) {
3242 ret = ret2;
3243 goto out;
3244 }
3245
3246 if (ret != -ENOENT || ret2 != -ENOENT)
3247 ret = 0;
3248 out:
3249 btrfs_free_path(path);
3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3251 WARN_ON(ret > 0);
3252 return ret;
3253 }
3254
3255 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3256 struct btrfs_root *root,
3257 struct extent_buffer *buf,
3258 int full_backref, int inc)
3259 {
3260 struct btrfs_fs_info *fs_info = root->fs_info;
3261 u64 bytenr;
3262 u64 num_bytes;
3263 u64 parent;
3264 u64 ref_root;
3265 u32 nritems;
3266 struct btrfs_key key;
3267 struct btrfs_file_extent_item *fi;
3268 int i;
3269 int level;
3270 int ret = 0;
3271 int (*process_func)(struct btrfs_trans_handle *,
3272 struct btrfs_fs_info *,
3273 u64, u64, u64, u64, u64, u64);
3274
3275
3276 if (btrfs_is_testing(fs_info))
3277 return 0;
3278
3279 ref_root = btrfs_header_owner(buf);
3280 nritems = btrfs_header_nritems(buf);
3281 level = btrfs_header_level(buf);
3282
3283 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3284 return 0;
3285
3286 if (inc)
3287 process_func = btrfs_inc_extent_ref;
3288 else
3289 process_func = btrfs_free_extent;
3290
3291 if (full_backref)
3292 parent = buf->start;
3293 else
3294 parent = 0;
3295
3296 for (i = 0; i < nritems; i++) {
3297 if (level == 0) {
3298 btrfs_item_key_to_cpu(buf, &key, i);
3299 if (key.type != BTRFS_EXTENT_DATA_KEY)
3300 continue;
3301 fi = btrfs_item_ptr(buf, i,
3302 struct btrfs_file_extent_item);
3303 if (btrfs_file_extent_type(buf, fi) ==
3304 BTRFS_FILE_EXTENT_INLINE)
3305 continue;
3306 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3307 if (bytenr == 0)
3308 continue;
3309
3310 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3311 key.offset -= btrfs_file_extent_offset(buf, fi);
3312 ret = process_func(trans, fs_info, bytenr, num_bytes,
3313 parent, ref_root, key.objectid,
3314 key.offset);
3315 if (ret)
3316 goto fail;
3317 } else {
3318 bytenr = btrfs_node_blockptr(buf, i);
3319 num_bytes = fs_info->nodesize;
3320 ret = process_func(trans, fs_info, bytenr, num_bytes,
3321 parent, ref_root, level - 1, 0);
3322 if (ret)
3323 goto fail;
3324 }
3325 }
3326 return 0;
3327 fail:
3328 return ret;
3329 }
3330
3331 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3332 struct extent_buffer *buf, int full_backref)
3333 {
3334 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3335 }
3336
3337 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3338 struct extent_buffer *buf, int full_backref)
3339 {
3340 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3341 }
3342
3343 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3344 struct btrfs_fs_info *fs_info,
3345 struct btrfs_path *path,
3346 struct btrfs_block_group_cache *cache)
3347 {
3348 int ret;
3349 struct btrfs_root *extent_root = fs_info->extent_root;
3350 unsigned long bi;
3351 struct extent_buffer *leaf;
3352
3353 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3354 if (ret) {
3355 if (ret > 0)
3356 ret = -ENOENT;
3357 goto fail;
3358 }
3359
3360 leaf = path->nodes[0];
3361 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3362 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3363 btrfs_mark_buffer_dirty(leaf);
3364 fail:
3365 btrfs_release_path(path);
3366 return ret;
3367
3368 }
3369
3370 static struct btrfs_block_group_cache *
3371 next_block_group(struct btrfs_fs_info *fs_info,
3372 struct btrfs_block_group_cache *cache)
3373 {
3374 struct rb_node *node;
3375
3376 spin_lock(&fs_info->block_group_cache_lock);
3377
3378 /* If our block group was removed, we need a full search. */
3379 if (RB_EMPTY_NODE(&cache->cache_node)) {
3380 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3381
3382 spin_unlock(&fs_info->block_group_cache_lock);
3383 btrfs_put_block_group(cache);
3384 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3385 }
3386 node = rb_next(&cache->cache_node);
3387 btrfs_put_block_group(cache);
3388 if (node) {
3389 cache = rb_entry(node, struct btrfs_block_group_cache,
3390 cache_node);
3391 btrfs_get_block_group(cache);
3392 } else
3393 cache = NULL;
3394 spin_unlock(&fs_info->block_group_cache_lock);
3395 return cache;
3396 }
3397
3398 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3399 struct btrfs_trans_handle *trans,
3400 struct btrfs_path *path)
3401 {
3402 struct btrfs_fs_info *fs_info = block_group->fs_info;
3403 struct btrfs_root *root = fs_info->tree_root;
3404 struct inode *inode = NULL;
3405 struct extent_changeset *data_reserved = NULL;
3406 u64 alloc_hint = 0;
3407 int dcs = BTRFS_DC_ERROR;
3408 u64 num_pages = 0;
3409 int retries = 0;
3410 int ret = 0;
3411
3412 /*
3413 * If this block group is smaller than 100 megs don't bother caching the
3414 * block group.
3415 */
3416 if (block_group->key.offset < (100 * SZ_1M)) {
3417 spin_lock(&block_group->lock);
3418 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3419 spin_unlock(&block_group->lock);
3420 return 0;
3421 }
3422
3423 if (trans->aborted)
3424 return 0;
3425 again:
3426 inode = lookup_free_space_inode(fs_info, block_group, path);
3427 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3428 ret = PTR_ERR(inode);
3429 btrfs_release_path(path);
3430 goto out;
3431 }
3432
3433 if (IS_ERR(inode)) {
3434 BUG_ON(retries);
3435 retries++;
3436
3437 if (block_group->ro)
3438 goto out_free;
3439
3440 ret = create_free_space_inode(fs_info, trans, block_group,
3441 path);
3442 if (ret)
3443 goto out_free;
3444 goto again;
3445 }
3446
3447 /* We've already setup this transaction, go ahead and exit */
3448 if (block_group->cache_generation == trans->transid &&
3449 i_size_read(inode)) {
3450 dcs = BTRFS_DC_SETUP;
3451 goto out_put;
3452 }
3453
3454 /*
3455 * We want to set the generation to 0, that way if anything goes wrong
3456 * from here on out we know not to trust this cache when we load up next
3457 * time.
3458 */
3459 BTRFS_I(inode)->generation = 0;
3460 ret = btrfs_update_inode(trans, root, inode);
3461 if (ret) {
3462 /*
3463 * So theoretically we could recover from this, simply set the
3464 * super cache generation to 0 so we know to invalidate the
3465 * cache, but then we'd have to keep track of the block groups
3466 * that fail this way so we know we _have_ to reset this cache
3467 * before the next commit or risk reading stale cache. So to
3468 * limit our exposure to horrible edge cases lets just abort the
3469 * transaction, this only happens in really bad situations
3470 * anyway.
3471 */
3472 btrfs_abort_transaction(trans, ret);
3473 goto out_put;
3474 }
3475 WARN_ON(ret);
3476
3477 if (i_size_read(inode) > 0) {
3478 ret = btrfs_check_trunc_cache_free_space(fs_info,
3479 &fs_info->global_block_rsv);
3480 if (ret)
3481 goto out_put;
3482
3483 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3484 if (ret)
3485 goto out_put;
3486 }
3487
3488 spin_lock(&block_group->lock);
3489 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3490 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3491 /*
3492 * don't bother trying to write stuff out _if_
3493 * a) we're not cached,
3494 * b) we're with nospace_cache mount option,
3495 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3496 */
3497 dcs = BTRFS_DC_WRITTEN;
3498 spin_unlock(&block_group->lock);
3499 goto out_put;
3500 }
3501 spin_unlock(&block_group->lock);
3502
3503 /*
3504 * We hit an ENOSPC when setting up the cache in this transaction, just
3505 * skip doing the setup, we've already cleared the cache so we're safe.
3506 */
3507 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3508 ret = -ENOSPC;
3509 goto out_put;
3510 }
3511
3512 /*
3513 * Try to preallocate enough space based on how big the block group is.
3514 * Keep in mind this has to include any pinned space which could end up
3515 * taking up quite a bit since it's not folded into the other space
3516 * cache.
3517 */
3518 num_pages = div_u64(block_group->key.offset, SZ_256M);
3519 if (!num_pages)
3520 num_pages = 1;
3521
3522 num_pages *= 16;
3523 num_pages *= PAGE_SIZE;
3524
3525 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3526 if (ret)
3527 goto out_put;
3528
3529 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3530 num_pages, num_pages,
3531 &alloc_hint);
3532 /*
3533 * Our cache requires contiguous chunks so that we don't modify a bunch
3534 * of metadata or split extents when writing the cache out, which means
3535 * we can enospc if we are heavily fragmented in addition to just normal
3536 * out of space conditions. So if we hit this just skip setting up any
3537 * other block groups for this transaction, maybe we'll unpin enough
3538 * space the next time around.
3539 */
3540 if (!ret)
3541 dcs = BTRFS_DC_SETUP;
3542 else if (ret == -ENOSPC)
3543 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3544
3545 out_put:
3546 iput(inode);
3547 out_free:
3548 btrfs_release_path(path);
3549 out:
3550 spin_lock(&block_group->lock);
3551 if (!ret && dcs == BTRFS_DC_SETUP)
3552 block_group->cache_generation = trans->transid;
3553 block_group->disk_cache_state = dcs;
3554 spin_unlock(&block_group->lock);
3555
3556 extent_changeset_free(data_reserved);
3557 return ret;
3558 }
3559
3560 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3561 struct btrfs_fs_info *fs_info)
3562 {
3563 struct btrfs_block_group_cache *cache, *tmp;
3564 struct btrfs_transaction *cur_trans = trans->transaction;
3565 struct btrfs_path *path;
3566
3567 if (list_empty(&cur_trans->dirty_bgs) ||
3568 !btrfs_test_opt(fs_info, SPACE_CACHE))
3569 return 0;
3570
3571 path = btrfs_alloc_path();
3572 if (!path)
3573 return -ENOMEM;
3574
3575 /* Could add new block groups, use _safe just in case */
3576 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3577 dirty_list) {
3578 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3579 cache_save_setup(cache, trans, path);
3580 }
3581
3582 btrfs_free_path(path);
3583 return 0;
3584 }
3585
3586 /*
3587 * transaction commit does final block group cache writeback during a
3588 * critical section where nothing is allowed to change the FS. This is
3589 * required in order for the cache to actually match the block group,
3590 * but can introduce a lot of latency into the commit.
3591 *
3592 * So, btrfs_start_dirty_block_groups is here to kick off block group
3593 * cache IO. There's a chance we'll have to redo some of it if the
3594 * block group changes again during the commit, but it greatly reduces
3595 * the commit latency by getting rid of the easy block groups while
3596 * we're still allowing others to join the commit.
3597 */
3598 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3599 struct btrfs_fs_info *fs_info)
3600 {
3601 struct btrfs_block_group_cache *cache;
3602 struct btrfs_transaction *cur_trans = trans->transaction;
3603 int ret = 0;
3604 int should_put;
3605 struct btrfs_path *path = NULL;
3606 LIST_HEAD(dirty);
3607 struct list_head *io = &cur_trans->io_bgs;
3608 int num_started = 0;
3609 int loops = 0;
3610
3611 spin_lock(&cur_trans->dirty_bgs_lock);
3612 if (list_empty(&cur_trans->dirty_bgs)) {
3613 spin_unlock(&cur_trans->dirty_bgs_lock);
3614 return 0;
3615 }
3616 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3617 spin_unlock(&cur_trans->dirty_bgs_lock);
3618
3619 again:
3620 /*
3621 * make sure all the block groups on our dirty list actually
3622 * exist
3623 */
3624 btrfs_create_pending_block_groups(trans, fs_info);
3625
3626 if (!path) {
3627 path = btrfs_alloc_path();
3628 if (!path)
3629 return -ENOMEM;
3630 }
3631
3632 /*
3633 * cache_write_mutex is here only to save us from balance or automatic
3634 * removal of empty block groups deleting this block group while we are
3635 * writing out the cache
3636 */
3637 mutex_lock(&trans->transaction->cache_write_mutex);
3638 while (!list_empty(&dirty)) {
3639 cache = list_first_entry(&dirty,
3640 struct btrfs_block_group_cache,
3641 dirty_list);
3642 /*
3643 * this can happen if something re-dirties a block
3644 * group that is already under IO. Just wait for it to
3645 * finish and then do it all again
3646 */
3647 if (!list_empty(&cache->io_list)) {
3648 list_del_init(&cache->io_list);
3649 btrfs_wait_cache_io(trans, cache, path);
3650 btrfs_put_block_group(cache);
3651 }
3652
3653
3654 /*
3655 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3656 * if it should update the cache_state. Don't delete
3657 * until after we wait.
3658 *
3659 * Since we're not running in the commit critical section
3660 * we need the dirty_bgs_lock to protect from update_block_group
3661 */
3662 spin_lock(&cur_trans->dirty_bgs_lock);
3663 list_del_init(&cache->dirty_list);
3664 spin_unlock(&cur_trans->dirty_bgs_lock);
3665
3666 should_put = 1;
3667
3668 cache_save_setup(cache, trans, path);
3669
3670 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3671 cache->io_ctl.inode = NULL;
3672 ret = btrfs_write_out_cache(fs_info, trans,
3673 cache, path);
3674 if (ret == 0 && cache->io_ctl.inode) {
3675 num_started++;
3676 should_put = 0;
3677
3678 /*
3679 * the cache_write_mutex is protecting
3680 * the io_list
3681 */
3682 list_add_tail(&cache->io_list, io);
3683 } else {
3684 /*
3685 * if we failed to write the cache, the
3686 * generation will be bad and life goes on
3687 */
3688 ret = 0;
3689 }
3690 }
3691 if (!ret) {
3692 ret = write_one_cache_group(trans, fs_info,
3693 path, cache);
3694 /*
3695 * Our block group might still be attached to the list
3696 * of new block groups in the transaction handle of some
3697 * other task (struct btrfs_trans_handle->new_bgs). This
3698 * means its block group item isn't yet in the extent
3699 * tree. If this happens ignore the error, as we will
3700 * try again later in the critical section of the
3701 * transaction commit.
3702 */
3703 if (ret == -ENOENT) {
3704 ret = 0;
3705 spin_lock(&cur_trans->dirty_bgs_lock);
3706 if (list_empty(&cache->dirty_list)) {
3707 list_add_tail(&cache->dirty_list,
3708 &cur_trans->dirty_bgs);
3709 btrfs_get_block_group(cache);
3710 }
3711 spin_unlock(&cur_trans->dirty_bgs_lock);
3712 } else if (ret) {
3713 btrfs_abort_transaction(trans, ret);
3714 }
3715 }
3716
3717 /* if its not on the io list, we need to put the block group */
3718 if (should_put)
3719 btrfs_put_block_group(cache);
3720
3721 if (ret)
3722 break;
3723
3724 /*
3725 * Avoid blocking other tasks for too long. It might even save
3726 * us from writing caches for block groups that are going to be
3727 * removed.
3728 */
3729 mutex_unlock(&trans->transaction->cache_write_mutex);
3730 mutex_lock(&trans->transaction->cache_write_mutex);
3731 }
3732 mutex_unlock(&trans->transaction->cache_write_mutex);
3733
3734 /*
3735 * go through delayed refs for all the stuff we've just kicked off
3736 * and then loop back (just once)
3737 */
3738 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3739 if (!ret && loops == 0) {
3740 loops++;
3741 spin_lock(&cur_trans->dirty_bgs_lock);
3742 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3743 /*
3744 * dirty_bgs_lock protects us from concurrent block group
3745 * deletes too (not just cache_write_mutex).
3746 */
3747 if (!list_empty(&dirty)) {
3748 spin_unlock(&cur_trans->dirty_bgs_lock);
3749 goto again;
3750 }
3751 spin_unlock(&cur_trans->dirty_bgs_lock);
3752 } else if (ret < 0) {
3753 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3754 }
3755
3756 btrfs_free_path(path);
3757 return ret;
3758 }
3759
3760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3761 struct btrfs_fs_info *fs_info)
3762 {
3763 struct btrfs_block_group_cache *cache;
3764 struct btrfs_transaction *cur_trans = trans->transaction;
3765 int ret = 0;
3766 int should_put;
3767 struct btrfs_path *path;
3768 struct list_head *io = &cur_trans->io_bgs;
3769 int num_started = 0;
3770
3771 path = btrfs_alloc_path();
3772 if (!path)
3773 return -ENOMEM;
3774
3775 /*
3776 * Even though we are in the critical section of the transaction commit,
3777 * we can still have concurrent tasks adding elements to this
3778 * transaction's list of dirty block groups. These tasks correspond to
3779 * endio free space workers started when writeback finishes for a
3780 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3781 * allocate new block groups as a result of COWing nodes of the root
3782 * tree when updating the free space inode. The writeback for the space
3783 * caches is triggered by an earlier call to
3784 * btrfs_start_dirty_block_groups() and iterations of the following
3785 * loop.
3786 * Also we want to do the cache_save_setup first and then run the
3787 * delayed refs to make sure we have the best chance at doing this all
3788 * in one shot.
3789 */
3790 spin_lock(&cur_trans->dirty_bgs_lock);
3791 while (!list_empty(&cur_trans->dirty_bgs)) {
3792 cache = list_first_entry(&cur_trans->dirty_bgs,
3793 struct btrfs_block_group_cache,
3794 dirty_list);
3795
3796 /*
3797 * this can happen if cache_save_setup re-dirties a block
3798 * group that is already under IO. Just wait for it to
3799 * finish and then do it all again
3800 */
3801 if (!list_empty(&cache->io_list)) {
3802 spin_unlock(&cur_trans->dirty_bgs_lock);
3803 list_del_init(&cache->io_list);
3804 btrfs_wait_cache_io(trans, cache, path);
3805 btrfs_put_block_group(cache);
3806 spin_lock(&cur_trans->dirty_bgs_lock);
3807 }
3808
3809 /*
3810 * don't remove from the dirty list until after we've waited
3811 * on any pending IO
3812 */
3813 list_del_init(&cache->dirty_list);
3814 spin_unlock(&cur_trans->dirty_bgs_lock);
3815 should_put = 1;
3816
3817 cache_save_setup(cache, trans, path);
3818
3819 if (!ret)
3820 ret = btrfs_run_delayed_refs(trans, fs_info,
3821 (unsigned long) -1);
3822
3823 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3824 cache->io_ctl.inode = NULL;
3825 ret = btrfs_write_out_cache(fs_info, trans,
3826 cache, path);
3827 if (ret == 0 && cache->io_ctl.inode) {
3828 num_started++;
3829 should_put = 0;
3830 list_add_tail(&cache->io_list, io);
3831 } else {
3832 /*
3833 * if we failed to write the cache, the
3834 * generation will be bad and life goes on
3835 */
3836 ret = 0;
3837 }
3838 }
3839 if (!ret) {
3840 ret = write_one_cache_group(trans, fs_info,
3841 path, cache);
3842 /*
3843 * One of the free space endio workers might have
3844 * created a new block group while updating a free space
3845 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3846 * and hasn't released its transaction handle yet, in
3847 * which case the new block group is still attached to
3848 * its transaction handle and its creation has not
3849 * finished yet (no block group item in the extent tree
3850 * yet, etc). If this is the case, wait for all free
3851 * space endio workers to finish and retry. This is a
3852 * a very rare case so no need for a more efficient and
3853 * complex approach.
3854 */
3855 if (ret == -ENOENT) {
3856 wait_event(cur_trans->writer_wait,
3857 atomic_read(&cur_trans->num_writers) == 1);
3858 ret = write_one_cache_group(trans, fs_info,
3859 path, cache);
3860 }
3861 if (ret)
3862 btrfs_abort_transaction(trans, ret);
3863 }
3864
3865 /* if its not on the io list, we need to put the block group */
3866 if (should_put)
3867 btrfs_put_block_group(cache);
3868 spin_lock(&cur_trans->dirty_bgs_lock);
3869 }
3870 spin_unlock(&cur_trans->dirty_bgs_lock);
3871
3872 while (!list_empty(io)) {
3873 cache = list_first_entry(io, struct btrfs_block_group_cache,
3874 io_list);
3875 list_del_init(&cache->io_list);
3876 btrfs_wait_cache_io(trans, cache, path);
3877 btrfs_put_block_group(cache);
3878 }
3879
3880 btrfs_free_path(path);
3881 return ret;
3882 }
3883
3884 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3885 {
3886 struct btrfs_block_group_cache *block_group;
3887 int readonly = 0;
3888
3889 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3890 if (!block_group || block_group->ro)
3891 readonly = 1;
3892 if (block_group)
3893 btrfs_put_block_group(block_group);
3894 return readonly;
3895 }
3896
3897 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3898 {
3899 struct btrfs_block_group_cache *bg;
3900 bool ret = true;
3901
3902 bg = btrfs_lookup_block_group(fs_info, bytenr);
3903 if (!bg)
3904 return false;
3905
3906 spin_lock(&bg->lock);
3907 if (bg->ro)
3908 ret = false;
3909 else
3910 atomic_inc(&bg->nocow_writers);
3911 spin_unlock(&bg->lock);
3912
3913 /* no put on block group, done by btrfs_dec_nocow_writers */
3914 if (!ret)
3915 btrfs_put_block_group(bg);
3916
3917 return ret;
3918
3919 }
3920
3921 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3922 {
3923 struct btrfs_block_group_cache *bg;
3924
3925 bg = btrfs_lookup_block_group(fs_info, bytenr);
3926 ASSERT(bg);
3927 if (atomic_dec_and_test(&bg->nocow_writers))
3928 wake_up_atomic_t(&bg->nocow_writers);
3929 /*
3930 * Once for our lookup and once for the lookup done by a previous call
3931 * to btrfs_inc_nocow_writers()
3932 */
3933 btrfs_put_block_group(bg);
3934 btrfs_put_block_group(bg);
3935 }
3936
3937 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3938 {
3939 schedule();
3940 return 0;
3941 }
3942
3943 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3944 {
3945 wait_on_atomic_t(&bg->nocow_writers,
3946 btrfs_wait_nocow_writers_atomic_t,
3947 TASK_UNINTERRUPTIBLE);
3948 }
3949
3950 static const char *alloc_name(u64 flags)
3951 {
3952 switch (flags) {
3953 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3954 return "mixed";
3955 case BTRFS_BLOCK_GROUP_METADATA:
3956 return "metadata";
3957 case BTRFS_BLOCK_GROUP_DATA:
3958 return "data";
3959 case BTRFS_BLOCK_GROUP_SYSTEM:
3960 return "system";
3961 default:
3962 WARN_ON(1);
3963 return "invalid-combination";
3964 };
3965 }
3966
3967 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3968 struct btrfs_space_info **new)
3969 {
3970
3971 struct btrfs_space_info *space_info;
3972 int i;
3973 int ret;
3974
3975 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3976 if (!space_info)
3977 return -ENOMEM;
3978
3979 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3980 GFP_KERNEL);
3981 if (ret) {
3982 kfree(space_info);
3983 return ret;
3984 }
3985
3986 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3987 INIT_LIST_HEAD(&space_info->block_groups[i]);
3988 init_rwsem(&space_info->groups_sem);
3989 spin_lock_init(&space_info->lock);
3990 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3991 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3992 init_waitqueue_head(&space_info->wait);
3993 INIT_LIST_HEAD(&space_info->ro_bgs);
3994 INIT_LIST_HEAD(&space_info->tickets);
3995 INIT_LIST_HEAD(&space_info->priority_tickets);
3996
3997 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3998 info->space_info_kobj, "%s",
3999 alloc_name(space_info->flags));
4000 if (ret) {
4001 percpu_counter_destroy(&space_info->total_bytes_pinned);
4002 kfree(space_info);
4003 return ret;
4004 }
4005
4006 *new = space_info;
4007 list_add_rcu(&space_info->list, &info->space_info);
4008 if (flags & BTRFS_BLOCK_GROUP_DATA)
4009 info->data_sinfo = space_info;
4010
4011 return ret;
4012 }
4013
4014 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4015 u64 total_bytes, u64 bytes_used,
4016 u64 bytes_readonly,
4017 struct btrfs_space_info **space_info)
4018 {
4019 struct btrfs_space_info *found;
4020 int factor;
4021
4022 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4023 BTRFS_BLOCK_GROUP_RAID10))
4024 factor = 2;
4025 else
4026 factor = 1;
4027
4028 found = __find_space_info(info, flags);
4029 ASSERT(found);
4030 spin_lock(&found->lock);
4031 found->total_bytes += total_bytes;
4032 found->disk_total += total_bytes * factor;
4033 found->bytes_used += bytes_used;
4034 found->disk_used += bytes_used * factor;
4035 found->bytes_readonly += bytes_readonly;
4036 if (total_bytes > 0)
4037 found->full = 0;
4038 space_info_add_new_bytes(info, found, total_bytes -
4039 bytes_used - bytes_readonly);
4040 spin_unlock(&found->lock);
4041 *space_info = found;
4042 }
4043
4044 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4045 {
4046 u64 extra_flags = chunk_to_extended(flags) &
4047 BTRFS_EXTENDED_PROFILE_MASK;
4048
4049 write_seqlock(&fs_info->profiles_lock);
4050 if (flags & BTRFS_BLOCK_GROUP_DATA)
4051 fs_info->avail_data_alloc_bits |= extra_flags;
4052 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4053 fs_info->avail_metadata_alloc_bits |= extra_flags;
4054 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4055 fs_info->avail_system_alloc_bits |= extra_flags;
4056 write_sequnlock(&fs_info->profiles_lock);
4057 }
4058
4059 /*
4060 * returns target flags in extended format or 0 if restripe for this
4061 * chunk_type is not in progress
4062 *
4063 * should be called with either volume_mutex or balance_lock held
4064 */
4065 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4066 {
4067 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4068 u64 target = 0;
4069
4070 if (!bctl)
4071 return 0;
4072
4073 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4074 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4075 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4076 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4077 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4078 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4079 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4080 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4081 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4082 }
4083
4084 return target;
4085 }
4086
4087 /*
4088 * @flags: available profiles in extended format (see ctree.h)
4089 *
4090 * Returns reduced profile in chunk format. If profile changing is in
4091 * progress (either running or paused) picks the target profile (if it's
4092 * already available), otherwise falls back to plain reducing.
4093 */
4094 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4095 {
4096 u64 num_devices = fs_info->fs_devices->rw_devices;
4097 u64 target;
4098 u64 raid_type;
4099 u64 allowed = 0;
4100
4101 /*
4102 * see if restripe for this chunk_type is in progress, if so
4103 * try to reduce to the target profile
4104 */
4105 spin_lock(&fs_info->balance_lock);
4106 target = get_restripe_target(fs_info, flags);
4107 if (target) {
4108 /* pick target profile only if it's already available */
4109 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4110 spin_unlock(&fs_info->balance_lock);
4111 return extended_to_chunk(target);
4112 }
4113 }
4114 spin_unlock(&fs_info->balance_lock);
4115
4116 /* First, mask out the RAID levels which aren't possible */
4117 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4118 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4119 allowed |= btrfs_raid_group[raid_type];
4120 }
4121 allowed &= flags;
4122
4123 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4124 allowed = BTRFS_BLOCK_GROUP_RAID6;
4125 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4126 allowed = BTRFS_BLOCK_GROUP_RAID5;
4127 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4128 allowed = BTRFS_BLOCK_GROUP_RAID10;
4129 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4130 allowed = BTRFS_BLOCK_GROUP_RAID1;
4131 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4132 allowed = BTRFS_BLOCK_GROUP_RAID0;
4133
4134 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4135
4136 return extended_to_chunk(flags | allowed);
4137 }
4138
4139 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4140 {
4141 unsigned seq;
4142 u64 flags;
4143
4144 do {
4145 flags = orig_flags;
4146 seq = read_seqbegin(&fs_info->profiles_lock);
4147
4148 if (flags & BTRFS_BLOCK_GROUP_DATA)
4149 flags |= fs_info->avail_data_alloc_bits;
4150 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4151 flags |= fs_info->avail_system_alloc_bits;
4152 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4153 flags |= fs_info->avail_metadata_alloc_bits;
4154 } while (read_seqretry(&fs_info->profiles_lock, seq));
4155
4156 return btrfs_reduce_alloc_profile(fs_info, flags);
4157 }
4158
4159 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4160 {
4161 struct btrfs_fs_info *fs_info = root->fs_info;
4162 u64 flags;
4163 u64 ret;
4164
4165 if (data)
4166 flags = BTRFS_BLOCK_GROUP_DATA;
4167 else if (root == fs_info->chunk_root)
4168 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4169 else
4170 flags = BTRFS_BLOCK_GROUP_METADATA;
4171
4172 ret = get_alloc_profile(fs_info, flags);
4173 return ret;
4174 }
4175
4176 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4177 {
4178 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4179 }
4180
4181 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4182 {
4183 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4184 }
4185
4186 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4187 {
4188 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4189 }
4190
4191 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4192 bool may_use_included)
4193 {
4194 ASSERT(s_info);
4195 return s_info->bytes_used + s_info->bytes_reserved +
4196 s_info->bytes_pinned + s_info->bytes_readonly +
4197 (may_use_included ? s_info->bytes_may_use : 0);
4198 }
4199
4200 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4201 {
4202 struct btrfs_space_info *data_sinfo;
4203 struct btrfs_root *root = inode->root;
4204 struct btrfs_fs_info *fs_info = root->fs_info;
4205 u64 used;
4206 int ret = 0;
4207 int need_commit = 2;
4208 int have_pinned_space;
4209
4210 /* make sure bytes are sectorsize aligned */
4211 bytes = ALIGN(bytes, fs_info->sectorsize);
4212
4213 if (btrfs_is_free_space_inode(inode)) {
4214 need_commit = 0;
4215 ASSERT(current->journal_info);
4216 }
4217
4218 data_sinfo = fs_info->data_sinfo;
4219 if (!data_sinfo)
4220 goto alloc;
4221
4222 again:
4223 /* make sure we have enough space to handle the data first */
4224 spin_lock(&data_sinfo->lock);
4225 used = btrfs_space_info_used(data_sinfo, true);
4226
4227 if (used + bytes > data_sinfo->total_bytes) {
4228 struct btrfs_trans_handle *trans;
4229
4230 /*
4231 * if we don't have enough free bytes in this space then we need
4232 * to alloc a new chunk.
4233 */
4234 if (!data_sinfo->full) {
4235 u64 alloc_target;
4236
4237 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4238 spin_unlock(&data_sinfo->lock);
4239 alloc:
4240 alloc_target = btrfs_data_alloc_profile(fs_info);
4241 /*
4242 * It is ugly that we don't call nolock join
4243 * transaction for the free space inode case here.
4244 * But it is safe because we only do the data space
4245 * reservation for the free space cache in the
4246 * transaction context, the common join transaction
4247 * just increase the counter of the current transaction
4248 * handler, doesn't try to acquire the trans_lock of
4249 * the fs.
4250 */
4251 trans = btrfs_join_transaction(root);
4252 if (IS_ERR(trans))
4253 return PTR_ERR(trans);
4254
4255 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4256 CHUNK_ALLOC_NO_FORCE);
4257 btrfs_end_transaction(trans);
4258 if (ret < 0) {
4259 if (ret != -ENOSPC)
4260 return ret;
4261 else {
4262 have_pinned_space = 1;
4263 goto commit_trans;
4264 }
4265 }
4266
4267 if (!data_sinfo)
4268 data_sinfo = fs_info->data_sinfo;
4269
4270 goto again;
4271 }
4272
4273 /*
4274 * If we don't have enough pinned space to deal with this
4275 * allocation, and no removed chunk in current transaction,
4276 * don't bother committing the transaction.
4277 */
4278 have_pinned_space = percpu_counter_compare(
4279 &data_sinfo->total_bytes_pinned,
4280 used + bytes - data_sinfo->total_bytes);
4281 spin_unlock(&data_sinfo->lock);
4282
4283 /* commit the current transaction and try again */
4284 commit_trans:
4285 if (need_commit &&
4286 !atomic_read(&fs_info->open_ioctl_trans)) {
4287 need_commit--;
4288
4289 if (need_commit > 0) {
4290 btrfs_start_delalloc_roots(fs_info, 0, -1);
4291 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4292 (u64)-1);
4293 }
4294
4295 trans = btrfs_join_transaction(root);
4296 if (IS_ERR(trans))
4297 return PTR_ERR(trans);
4298 if (have_pinned_space >= 0 ||
4299 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4300 &trans->transaction->flags) ||
4301 need_commit > 0) {
4302 ret = btrfs_commit_transaction(trans);
4303 if (ret)
4304 return ret;
4305 /*
4306 * The cleaner kthread might still be doing iput
4307 * operations. Wait for it to finish so that
4308 * more space is released.
4309 */
4310 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4311 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4312 goto again;
4313 } else {
4314 btrfs_end_transaction(trans);
4315 }
4316 }
4317
4318 trace_btrfs_space_reservation(fs_info,
4319 "space_info:enospc",
4320 data_sinfo->flags, bytes, 1);
4321 return -ENOSPC;
4322 }
4323 data_sinfo->bytes_may_use += bytes;
4324 trace_btrfs_space_reservation(fs_info, "space_info",
4325 data_sinfo->flags, bytes, 1);
4326 spin_unlock(&data_sinfo->lock);
4327
4328 return ret;
4329 }
4330
4331 int btrfs_check_data_free_space(struct inode *inode,
4332 struct extent_changeset **reserved, u64 start, u64 len)
4333 {
4334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4335 int ret;
4336
4337 /* align the range */
4338 len = round_up(start + len, fs_info->sectorsize) -
4339 round_down(start, fs_info->sectorsize);
4340 start = round_down(start, fs_info->sectorsize);
4341
4342 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4343 if (ret < 0)
4344 return ret;
4345
4346 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4347 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4348 if (ret < 0)
4349 btrfs_free_reserved_data_space_noquota(inode, start, len);
4350 else
4351 ret = 0;
4352 return ret;
4353 }
4354
4355 /*
4356 * Called if we need to clear a data reservation for this inode
4357 * Normally in a error case.
4358 *
4359 * This one will *NOT* use accurate qgroup reserved space API, just for case
4360 * which we can't sleep and is sure it won't affect qgroup reserved space.
4361 * Like clear_bit_hook().
4362 */
4363 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4364 u64 len)
4365 {
4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4367 struct btrfs_space_info *data_sinfo;
4368
4369 /* Make sure the range is aligned to sectorsize */
4370 len = round_up(start + len, fs_info->sectorsize) -
4371 round_down(start, fs_info->sectorsize);
4372 start = round_down(start, fs_info->sectorsize);
4373
4374 data_sinfo = fs_info->data_sinfo;
4375 spin_lock(&data_sinfo->lock);
4376 if (WARN_ON(data_sinfo->bytes_may_use < len))
4377 data_sinfo->bytes_may_use = 0;
4378 else
4379 data_sinfo->bytes_may_use -= len;
4380 trace_btrfs_space_reservation(fs_info, "space_info",
4381 data_sinfo->flags, len, 0);
4382 spin_unlock(&data_sinfo->lock);
4383 }
4384
4385 /*
4386 * Called if we need to clear a data reservation for this inode
4387 * Normally in a error case.
4388 *
4389 * This one will handle the per-inode data rsv map for accurate reserved
4390 * space framework.
4391 */
4392 void btrfs_free_reserved_data_space(struct inode *inode,
4393 struct extent_changeset *reserved, u64 start, u64 len)
4394 {
4395 struct btrfs_root *root = BTRFS_I(inode)->root;
4396
4397 /* Make sure the range is aligned to sectorsize */
4398 len = round_up(start + len, root->fs_info->sectorsize) -
4399 round_down(start, root->fs_info->sectorsize);
4400 start = round_down(start, root->fs_info->sectorsize);
4401
4402 btrfs_free_reserved_data_space_noquota(inode, start, len);
4403 btrfs_qgroup_free_data(inode, reserved, start, len);
4404 }
4405
4406 static void force_metadata_allocation(struct btrfs_fs_info *info)
4407 {
4408 struct list_head *head = &info->space_info;
4409 struct btrfs_space_info *found;
4410
4411 rcu_read_lock();
4412 list_for_each_entry_rcu(found, head, list) {
4413 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4414 found->force_alloc = CHUNK_ALLOC_FORCE;
4415 }
4416 rcu_read_unlock();
4417 }
4418
4419 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4420 {
4421 return (global->size << 1);
4422 }
4423
4424 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4425 struct btrfs_space_info *sinfo, int force)
4426 {
4427 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4428 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4429 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4430 u64 thresh;
4431
4432 if (force == CHUNK_ALLOC_FORCE)
4433 return 1;
4434
4435 /*
4436 * We need to take into account the global rsv because for all intents
4437 * and purposes it's used space. Don't worry about locking the
4438 * global_rsv, it doesn't change except when the transaction commits.
4439 */
4440 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4441 num_allocated += calc_global_rsv_need_space(global_rsv);
4442
4443 /*
4444 * in limited mode, we want to have some free space up to
4445 * about 1% of the FS size.
4446 */
4447 if (force == CHUNK_ALLOC_LIMITED) {
4448 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4449 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4450
4451 if (num_bytes - num_allocated < thresh)
4452 return 1;
4453 }
4454
4455 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4456 return 0;
4457 return 1;
4458 }
4459
4460 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4461 {
4462 u64 num_dev;
4463
4464 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4465 BTRFS_BLOCK_GROUP_RAID0 |
4466 BTRFS_BLOCK_GROUP_RAID5 |
4467 BTRFS_BLOCK_GROUP_RAID6))
4468 num_dev = fs_info->fs_devices->rw_devices;
4469 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4470 num_dev = 2;
4471 else
4472 num_dev = 1; /* DUP or single */
4473
4474 return num_dev;
4475 }
4476
4477 /*
4478 * If @is_allocation is true, reserve space in the system space info necessary
4479 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4480 * removing a chunk.
4481 */
4482 void check_system_chunk(struct btrfs_trans_handle *trans,
4483 struct btrfs_fs_info *fs_info, u64 type)
4484 {
4485 struct btrfs_space_info *info;
4486 u64 left;
4487 u64 thresh;
4488 int ret = 0;
4489 u64 num_devs;
4490
4491 /*
4492 * Needed because we can end up allocating a system chunk and for an
4493 * atomic and race free space reservation in the chunk block reserve.
4494 */
4495 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4496
4497 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4498 spin_lock(&info->lock);
4499 left = info->total_bytes - btrfs_space_info_used(info, true);
4500 spin_unlock(&info->lock);
4501
4502 num_devs = get_profile_num_devs(fs_info, type);
4503
4504 /* num_devs device items to update and 1 chunk item to add or remove */
4505 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4506 btrfs_calc_trans_metadata_size(fs_info, 1);
4507
4508 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4509 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4510 left, thresh, type);
4511 dump_space_info(fs_info, info, 0, 0);
4512 }
4513
4514 if (left < thresh) {
4515 u64 flags = btrfs_system_alloc_profile(fs_info);
4516
4517 /*
4518 * Ignore failure to create system chunk. We might end up not
4519 * needing it, as we might not need to COW all nodes/leafs from
4520 * the paths we visit in the chunk tree (they were already COWed
4521 * or created in the current transaction for example).
4522 */
4523 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4524 }
4525
4526 if (!ret) {
4527 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4528 &fs_info->chunk_block_rsv,
4529 thresh, BTRFS_RESERVE_NO_FLUSH);
4530 if (!ret)
4531 trans->chunk_bytes_reserved += thresh;
4532 }
4533 }
4534
4535 /*
4536 * If force is CHUNK_ALLOC_FORCE:
4537 * - return 1 if it successfully allocates a chunk,
4538 * - return errors including -ENOSPC otherwise.
4539 * If force is NOT CHUNK_ALLOC_FORCE:
4540 * - return 0 if it doesn't need to allocate a new chunk,
4541 * - return 1 if it successfully allocates a chunk,
4542 * - return errors including -ENOSPC otherwise.
4543 */
4544 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4545 struct btrfs_fs_info *fs_info, u64 flags, int force)
4546 {
4547 struct btrfs_space_info *space_info;
4548 int wait_for_alloc = 0;
4549 int ret = 0;
4550
4551 /* Don't re-enter if we're already allocating a chunk */
4552 if (trans->allocating_chunk)
4553 return -ENOSPC;
4554
4555 space_info = __find_space_info(fs_info, flags);
4556 if (!space_info) {
4557 ret = create_space_info(fs_info, flags, &space_info);
4558 if (ret)
4559 return ret;
4560 }
4561
4562 again:
4563 spin_lock(&space_info->lock);
4564 if (force < space_info->force_alloc)
4565 force = space_info->force_alloc;
4566 if (space_info->full) {
4567 if (should_alloc_chunk(fs_info, space_info, force))
4568 ret = -ENOSPC;
4569 else
4570 ret = 0;
4571 spin_unlock(&space_info->lock);
4572 return ret;
4573 }
4574
4575 if (!should_alloc_chunk(fs_info, space_info, force)) {
4576 spin_unlock(&space_info->lock);
4577 return 0;
4578 } else if (space_info->chunk_alloc) {
4579 wait_for_alloc = 1;
4580 } else {
4581 space_info->chunk_alloc = 1;
4582 }
4583
4584 spin_unlock(&space_info->lock);
4585
4586 mutex_lock(&fs_info->chunk_mutex);
4587
4588 /*
4589 * The chunk_mutex is held throughout the entirety of a chunk
4590 * allocation, so once we've acquired the chunk_mutex we know that the
4591 * other guy is done and we need to recheck and see if we should
4592 * allocate.
4593 */
4594 if (wait_for_alloc) {
4595 mutex_unlock(&fs_info->chunk_mutex);
4596 wait_for_alloc = 0;
4597 goto again;
4598 }
4599
4600 trans->allocating_chunk = true;
4601
4602 /*
4603 * If we have mixed data/metadata chunks we want to make sure we keep
4604 * allocating mixed chunks instead of individual chunks.
4605 */
4606 if (btrfs_mixed_space_info(space_info))
4607 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4608
4609 /*
4610 * if we're doing a data chunk, go ahead and make sure that
4611 * we keep a reasonable number of metadata chunks allocated in the
4612 * FS as well.
4613 */
4614 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4615 fs_info->data_chunk_allocations++;
4616 if (!(fs_info->data_chunk_allocations %
4617 fs_info->metadata_ratio))
4618 force_metadata_allocation(fs_info);
4619 }
4620
4621 /*
4622 * Check if we have enough space in SYSTEM chunk because we may need
4623 * to update devices.
4624 */
4625 check_system_chunk(trans, fs_info, flags);
4626
4627 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4628 trans->allocating_chunk = false;
4629
4630 spin_lock(&space_info->lock);
4631 if (ret < 0 && ret != -ENOSPC)
4632 goto out;
4633 if (ret)
4634 space_info->full = 1;
4635 else
4636 ret = 1;
4637
4638 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4639 out:
4640 space_info->chunk_alloc = 0;
4641 spin_unlock(&space_info->lock);
4642 mutex_unlock(&fs_info->chunk_mutex);
4643 /*
4644 * When we allocate a new chunk we reserve space in the chunk block
4645 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4646 * add new nodes/leafs to it if we end up needing to do it when
4647 * inserting the chunk item and updating device items as part of the
4648 * second phase of chunk allocation, performed by
4649 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4650 * large number of new block groups to create in our transaction
4651 * handle's new_bgs list to avoid exhausting the chunk block reserve
4652 * in extreme cases - like having a single transaction create many new
4653 * block groups when starting to write out the free space caches of all
4654 * the block groups that were made dirty during the lifetime of the
4655 * transaction.
4656 */
4657 if (trans->can_flush_pending_bgs &&
4658 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4659 btrfs_create_pending_block_groups(trans, fs_info);
4660 btrfs_trans_release_chunk_metadata(trans);
4661 }
4662 return ret;
4663 }
4664
4665 static int can_overcommit(struct btrfs_fs_info *fs_info,
4666 struct btrfs_space_info *space_info, u64 bytes,
4667 enum btrfs_reserve_flush_enum flush,
4668 bool system_chunk)
4669 {
4670 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4671 u64 profile;
4672 u64 space_size;
4673 u64 avail;
4674 u64 used;
4675
4676 /* Don't overcommit when in mixed mode. */
4677 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4678 return 0;
4679
4680 if (system_chunk)
4681 profile = btrfs_system_alloc_profile(fs_info);
4682 else
4683 profile = btrfs_metadata_alloc_profile(fs_info);
4684
4685 used = btrfs_space_info_used(space_info, false);
4686
4687 /*
4688 * We only want to allow over committing if we have lots of actual space
4689 * free, but if we don't have enough space to handle the global reserve
4690 * space then we could end up having a real enospc problem when trying
4691 * to allocate a chunk or some other such important allocation.
4692 */
4693 spin_lock(&global_rsv->lock);
4694 space_size = calc_global_rsv_need_space(global_rsv);
4695 spin_unlock(&global_rsv->lock);
4696 if (used + space_size >= space_info->total_bytes)
4697 return 0;
4698
4699 used += space_info->bytes_may_use;
4700
4701 avail = atomic64_read(&fs_info->free_chunk_space);
4702
4703 /*
4704 * If we have dup, raid1 or raid10 then only half of the free
4705 * space is actually useable. For raid56, the space info used
4706 * doesn't include the parity drive, so we don't have to
4707 * change the math
4708 */
4709 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4710 BTRFS_BLOCK_GROUP_RAID1 |
4711 BTRFS_BLOCK_GROUP_RAID10))
4712 avail >>= 1;
4713
4714 /*
4715 * If we aren't flushing all things, let us overcommit up to
4716 * 1/2th of the space. If we can flush, don't let us overcommit
4717 * too much, let it overcommit up to 1/8 of the space.
4718 */
4719 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4720 avail >>= 3;
4721 else
4722 avail >>= 1;
4723
4724 if (used + bytes < space_info->total_bytes + avail)
4725 return 1;
4726 return 0;
4727 }
4728
4729 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4730 unsigned long nr_pages, int nr_items)
4731 {
4732 struct super_block *sb = fs_info->sb;
4733
4734 if (down_read_trylock(&sb->s_umount)) {
4735 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4736 up_read(&sb->s_umount);
4737 } else {
4738 /*
4739 * We needn't worry the filesystem going from r/w to r/o though
4740 * we don't acquire ->s_umount mutex, because the filesystem
4741 * should guarantee the delalloc inodes list be empty after
4742 * the filesystem is readonly(all dirty pages are written to
4743 * the disk).
4744 */
4745 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4746 if (!current->journal_info)
4747 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4748 }
4749 }
4750
4751 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4752 u64 to_reclaim)
4753 {
4754 u64 bytes;
4755 u64 nr;
4756
4757 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4758 nr = div64_u64(to_reclaim, bytes);
4759 if (!nr)
4760 nr = 1;
4761 return nr;
4762 }
4763
4764 #define EXTENT_SIZE_PER_ITEM SZ_256K
4765
4766 /*
4767 * shrink metadata reservation for delalloc
4768 */
4769 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4770 u64 orig, bool wait_ordered)
4771 {
4772 struct btrfs_block_rsv *block_rsv;
4773 struct btrfs_space_info *space_info;
4774 struct btrfs_trans_handle *trans;
4775 u64 delalloc_bytes;
4776 u64 max_reclaim;
4777 u64 items;
4778 long time_left;
4779 unsigned long nr_pages;
4780 int loops;
4781 enum btrfs_reserve_flush_enum flush;
4782
4783 /* Calc the number of the pages we need flush for space reservation */
4784 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4785 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4786
4787 trans = (struct btrfs_trans_handle *)current->journal_info;
4788 block_rsv = &fs_info->delalloc_block_rsv;
4789 space_info = block_rsv->space_info;
4790
4791 delalloc_bytes = percpu_counter_sum_positive(
4792 &fs_info->delalloc_bytes);
4793 if (delalloc_bytes == 0) {
4794 if (trans)
4795 return;
4796 if (wait_ordered)
4797 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4798 return;
4799 }
4800
4801 loops = 0;
4802 while (delalloc_bytes && loops < 3) {
4803 max_reclaim = min(delalloc_bytes, to_reclaim);
4804 nr_pages = max_reclaim >> PAGE_SHIFT;
4805 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4806 /*
4807 * We need to wait for the async pages to actually start before
4808 * we do anything.
4809 */
4810 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4811 if (!max_reclaim)
4812 goto skip_async;
4813
4814 if (max_reclaim <= nr_pages)
4815 max_reclaim = 0;
4816 else
4817 max_reclaim -= nr_pages;
4818
4819 wait_event(fs_info->async_submit_wait,
4820 atomic_read(&fs_info->async_delalloc_pages) <=
4821 (int)max_reclaim);
4822 skip_async:
4823 if (!trans)
4824 flush = BTRFS_RESERVE_FLUSH_ALL;
4825 else
4826 flush = BTRFS_RESERVE_NO_FLUSH;
4827 spin_lock(&space_info->lock);
4828 if (list_empty(&space_info->tickets) &&
4829 list_empty(&space_info->priority_tickets)) {
4830 spin_unlock(&space_info->lock);
4831 break;
4832 }
4833 spin_unlock(&space_info->lock);
4834
4835 loops++;
4836 if (wait_ordered && !trans) {
4837 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4838 } else {
4839 time_left = schedule_timeout_killable(1);
4840 if (time_left)
4841 break;
4842 }
4843 delalloc_bytes = percpu_counter_sum_positive(
4844 &fs_info->delalloc_bytes);
4845 }
4846 }
4847
4848 /**
4849 * maybe_commit_transaction - possibly commit the transaction if its ok to
4850 * @root - the root we're allocating for
4851 * @bytes - the number of bytes we want to reserve
4852 * @force - force the commit
4853 *
4854 * This will check to make sure that committing the transaction will actually
4855 * get us somewhere and then commit the transaction if it does. Otherwise it
4856 * will return -ENOSPC.
4857 */
4858 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4859 struct btrfs_space_info *space_info,
4860 u64 bytes, int force)
4861 {
4862 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4863 struct btrfs_trans_handle *trans;
4864
4865 trans = (struct btrfs_trans_handle *)current->journal_info;
4866 if (trans)
4867 return -EAGAIN;
4868
4869 if (force)
4870 goto commit;
4871
4872 /* See if there is enough pinned space to make this reservation */
4873 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4874 bytes) >= 0)
4875 goto commit;
4876
4877 /*
4878 * See if there is some space in the delayed insertion reservation for
4879 * this reservation.
4880 */
4881 if (space_info != delayed_rsv->space_info)
4882 return -ENOSPC;
4883
4884 spin_lock(&delayed_rsv->lock);
4885 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4886 bytes - delayed_rsv->size) < 0) {
4887 spin_unlock(&delayed_rsv->lock);
4888 return -ENOSPC;
4889 }
4890 spin_unlock(&delayed_rsv->lock);
4891
4892 commit:
4893 trans = btrfs_join_transaction(fs_info->extent_root);
4894 if (IS_ERR(trans))
4895 return -ENOSPC;
4896
4897 return btrfs_commit_transaction(trans);
4898 }
4899
4900 struct reserve_ticket {
4901 u64 bytes;
4902 int error;
4903 struct list_head list;
4904 wait_queue_head_t wait;
4905 };
4906
4907 static int flush_space(struct btrfs_fs_info *fs_info,
4908 struct btrfs_space_info *space_info, u64 num_bytes,
4909 u64 orig_bytes, int state)
4910 {
4911 struct btrfs_root *root = fs_info->extent_root;
4912 struct btrfs_trans_handle *trans;
4913 int nr;
4914 int ret = 0;
4915
4916 switch (state) {
4917 case FLUSH_DELAYED_ITEMS_NR:
4918 case FLUSH_DELAYED_ITEMS:
4919 if (state == FLUSH_DELAYED_ITEMS_NR)
4920 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4921 else
4922 nr = -1;
4923
4924 trans = btrfs_join_transaction(root);
4925 if (IS_ERR(trans)) {
4926 ret = PTR_ERR(trans);
4927 break;
4928 }
4929 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4930 btrfs_end_transaction(trans);
4931 break;
4932 case FLUSH_DELALLOC:
4933 case FLUSH_DELALLOC_WAIT:
4934 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
4935 state == FLUSH_DELALLOC_WAIT);
4936 break;
4937 case ALLOC_CHUNK:
4938 trans = btrfs_join_transaction(root);
4939 if (IS_ERR(trans)) {
4940 ret = PTR_ERR(trans);
4941 break;
4942 }
4943 ret = do_chunk_alloc(trans, fs_info,
4944 btrfs_metadata_alloc_profile(fs_info),
4945 CHUNK_ALLOC_NO_FORCE);
4946 btrfs_end_transaction(trans);
4947 if (ret > 0 || ret == -ENOSPC)
4948 ret = 0;
4949 break;
4950 case COMMIT_TRANS:
4951 ret = may_commit_transaction(fs_info, space_info,
4952 orig_bytes, 0);
4953 break;
4954 default:
4955 ret = -ENOSPC;
4956 break;
4957 }
4958
4959 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4960 orig_bytes, state, ret);
4961 return ret;
4962 }
4963
4964 static inline u64
4965 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4966 struct btrfs_space_info *space_info,
4967 bool system_chunk)
4968 {
4969 struct reserve_ticket *ticket;
4970 u64 used;
4971 u64 expected;
4972 u64 to_reclaim = 0;
4973
4974 list_for_each_entry(ticket, &space_info->tickets, list)
4975 to_reclaim += ticket->bytes;
4976 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4977 to_reclaim += ticket->bytes;
4978 if (to_reclaim)
4979 return to_reclaim;
4980
4981 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4982 if (can_overcommit(fs_info, space_info, to_reclaim,
4983 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4984 return 0;
4985
4986 used = btrfs_space_info_used(space_info, true);
4987
4988 if (can_overcommit(fs_info, space_info, SZ_1M,
4989 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4990 expected = div_factor_fine(space_info->total_bytes, 95);
4991 else
4992 expected = div_factor_fine(space_info->total_bytes, 90);
4993
4994 if (used > expected)
4995 to_reclaim = used - expected;
4996 else
4997 to_reclaim = 0;
4998 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4999 space_info->bytes_reserved);
5000 return to_reclaim;
5001 }
5002
5003 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5004 struct btrfs_space_info *space_info,
5005 u64 used, bool system_chunk)
5006 {
5007 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5008
5009 /* If we're just plain full then async reclaim just slows us down. */
5010 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5011 return 0;
5012
5013 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5014 system_chunk))
5015 return 0;
5016
5017 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5018 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5019 }
5020
5021 static void wake_all_tickets(struct list_head *head)
5022 {
5023 struct reserve_ticket *ticket;
5024
5025 while (!list_empty(head)) {
5026 ticket = list_first_entry(head, struct reserve_ticket, list);
5027 list_del_init(&ticket->list);
5028 ticket->error = -ENOSPC;
5029 wake_up(&ticket->wait);
5030 }
5031 }
5032
5033 /*
5034 * This is for normal flushers, we can wait all goddamned day if we want to. We
5035 * will loop and continuously try to flush as long as we are making progress.
5036 * We count progress as clearing off tickets each time we have to loop.
5037 */
5038 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5039 {
5040 struct btrfs_fs_info *fs_info;
5041 struct btrfs_space_info *space_info;
5042 u64 to_reclaim;
5043 int flush_state;
5044 int commit_cycles = 0;
5045 u64 last_tickets_id;
5046
5047 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5048 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5049
5050 spin_lock(&space_info->lock);
5051 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5052 false);
5053 if (!to_reclaim) {
5054 space_info->flush = 0;
5055 spin_unlock(&space_info->lock);
5056 return;
5057 }
5058 last_tickets_id = space_info->tickets_id;
5059 spin_unlock(&space_info->lock);
5060
5061 flush_state = FLUSH_DELAYED_ITEMS_NR;
5062 do {
5063 struct reserve_ticket *ticket;
5064 int ret;
5065
5066 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5067 flush_state);
5068 spin_lock(&space_info->lock);
5069 if (list_empty(&space_info->tickets)) {
5070 space_info->flush = 0;
5071 spin_unlock(&space_info->lock);
5072 return;
5073 }
5074 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5075 space_info,
5076 false);
5077 ticket = list_first_entry(&space_info->tickets,
5078 struct reserve_ticket, list);
5079 if (last_tickets_id == space_info->tickets_id) {
5080 flush_state++;
5081 } else {
5082 last_tickets_id = space_info->tickets_id;
5083 flush_state = FLUSH_DELAYED_ITEMS_NR;
5084 if (commit_cycles)
5085 commit_cycles--;
5086 }
5087
5088 if (flush_state > COMMIT_TRANS) {
5089 commit_cycles++;
5090 if (commit_cycles > 2) {
5091 wake_all_tickets(&space_info->tickets);
5092 space_info->flush = 0;
5093 } else {
5094 flush_state = FLUSH_DELAYED_ITEMS_NR;
5095 }
5096 }
5097 spin_unlock(&space_info->lock);
5098 } while (flush_state <= COMMIT_TRANS);
5099 }
5100
5101 void btrfs_init_async_reclaim_work(struct work_struct *work)
5102 {
5103 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5104 }
5105
5106 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5107 struct btrfs_space_info *space_info,
5108 struct reserve_ticket *ticket)
5109 {
5110 u64 to_reclaim;
5111 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5112
5113 spin_lock(&space_info->lock);
5114 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5115 false);
5116 if (!to_reclaim) {
5117 spin_unlock(&space_info->lock);
5118 return;
5119 }
5120 spin_unlock(&space_info->lock);
5121
5122 do {
5123 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5124 flush_state);
5125 flush_state++;
5126 spin_lock(&space_info->lock);
5127 if (ticket->bytes == 0) {
5128 spin_unlock(&space_info->lock);
5129 return;
5130 }
5131 spin_unlock(&space_info->lock);
5132
5133 /*
5134 * Priority flushers can't wait on delalloc without
5135 * deadlocking.
5136 */
5137 if (flush_state == FLUSH_DELALLOC ||
5138 flush_state == FLUSH_DELALLOC_WAIT)
5139 flush_state = ALLOC_CHUNK;
5140 } while (flush_state < COMMIT_TRANS);
5141 }
5142
5143 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5144 struct btrfs_space_info *space_info,
5145 struct reserve_ticket *ticket, u64 orig_bytes)
5146
5147 {
5148 DEFINE_WAIT(wait);
5149 int ret = 0;
5150
5151 spin_lock(&space_info->lock);
5152 while (ticket->bytes > 0 && ticket->error == 0) {
5153 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5154 if (ret) {
5155 ret = -EINTR;
5156 break;
5157 }
5158 spin_unlock(&space_info->lock);
5159
5160 schedule();
5161
5162 finish_wait(&ticket->wait, &wait);
5163 spin_lock(&space_info->lock);
5164 }
5165 if (!ret)
5166 ret = ticket->error;
5167 if (!list_empty(&ticket->list))
5168 list_del_init(&ticket->list);
5169 if (ticket->bytes && ticket->bytes < orig_bytes) {
5170 u64 num_bytes = orig_bytes - ticket->bytes;
5171 space_info->bytes_may_use -= num_bytes;
5172 trace_btrfs_space_reservation(fs_info, "space_info",
5173 space_info->flags, num_bytes, 0);
5174 }
5175 spin_unlock(&space_info->lock);
5176
5177 return ret;
5178 }
5179
5180 /**
5181 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5182 * @root - the root we're allocating for
5183 * @space_info - the space info we want to allocate from
5184 * @orig_bytes - the number of bytes we want
5185 * @flush - whether or not we can flush to make our reservation
5186 *
5187 * This will reserve orig_bytes number of bytes from the space info associated
5188 * with the block_rsv. If there is not enough space it will make an attempt to
5189 * flush out space to make room. It will do this by flushing delalloc if
5190 * possible or committing the transaction. If flush is 0 then no attempts to
5191 * regain reservations will be made and this will fail if there is not enough
5192 * space already.
5193 */
5194 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5195 struct btrfs_space_info *space_info,
5196 u64 orig_bytes,
5197 enum btrfs_reserve_flush_enum flush,
5198 bool system_chunk)
5199 {
5200 struct reserve_ticket ticket;
5201 u64 used;
5202 int ret = 0;
5203
5204 ASSERT(orig_bytes);
5205 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5206
5207 spin_lock(&space_info->lock);
5208 ret = -ENOSPC;
5209 used = btrfs_space_info_used(space_info, true);
5210
5211 /*
5212 * If we have enough space then hooray, make our reservation and carry
5213 * on. If not see if we can overcommit, and if we can, hooray carry on.
5214 * If not things get more complicated.
5215 */
5216 if (used + orig_bytes <= space_info->total_bytes) {
5217 space_info->bytes_may_use += orig_bytes;
5218 trace_btrfs_space_reservation(fs_info, "space_info",
5219 space_info->flags, orig_bytes, 1);
5220 ret = 0;
5221 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5222 system_chunk)) {
5223 space_info->bytes_may_use += orig_bytes;
5224 trace_btrfs_space_reservation(fs_info, "space_info",
5225 space_info->flags, orig_bytes, 1);
5226 ret = 0;
5227 }
5228
5229 /*
5230 * If we couldn't make a reservation then setup our reservation ticket
5231 * and kick the async worker if it's not already running.
5232 *
5233 * If we are a priority flusher then we just need to add our ticket to
5234 * the list and we will do our own flushing further down.
5235 */
5236 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5237 ticket.bytes = orig_bytes;
5238 ticket.error = 0;
5239 init_waitqueue_head(&ticket.wait);
5240 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5241 list_add_tail(&ticket.list, &space_info->tickets);
5242 if (!space_info->flush) {
5243 space_info->flush = 1;
5244 trace_btrfs_trigger_flush(fs_info,
5245 space_info->flags,
5246 orig_bytes, flush,
5247 "enospc");
5248 queue_work(system_unbound_wq,
5249 &fs_info->async_reclaim_work);
5250 }
5251 } else {
5252 list_add_tail(&ticket.list,
5253 &space_info->priority_tickets);
5254 }
5255 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5256 used += orig_bytes;
5257 /*
5258 * We will do the space reservation dance during log replay,
5259 * which means we won't have fs_info->fs_root set, so don't do
5260 * the async reclaim as we will panic.
5261 */
5262 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5263 need_do_async_reclaim(fs_info, space_info,
5264 used, system_chunk) &&
5265 !work_busy(&fs_info->async_reclaim_work)) {
5266 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5267 orig_bytes, flush, "preempt");
5268 queue_work(system_unbound_wq,
5269 &fs_info->async_reclaim_work);
5270 }
5271 }
5272 spin_unlock(&space_info->lock);
5273 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5274 return ret;
5275
5276 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5277 return wait_reserve_ticket(fs_info, space_info, &ticket,
5278 orig_bytes);
5279
5280 ret = 0;
5281 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5282 spin_lock(&space_info->lock);
5283 if (ticket.bytes) {
5284 if (ticket.bytes < orig_bytes) {
5285 u64 num_bytes = orig_bytes - ticket.bytes;
5286 space_info->bytes_may_use -= num_bytes;
5287 trace_btrfs_space_reservation(fs_info, "space_info",
5288 space_info->flags,
5289 num_bytes, 0);
5290
5291 }
5292 list_del_init(&ticket.list);
5293 ret = -ENOSPC;
5294 }
5295 spin_unlock(&space_info->lock);
5296 ASSERT(list_empty(&ticket.list));
5297 return ret;
5298 }
5299
5300 /**
5301 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5302 * @root - the root we're allocating for
5303 * @block_rsv - the block_rsv we're allocating for
5304 * @orig_bytes - the number of bytes we want
5305 * @flush - whether or not we can flush to make our reservation
5306 *
5307 * This will reserve orgi_bytes number of bytes from the space info associated
5308 * with the block_rsv. If there is not enough space it will make an attempt to
5309 * flush out space to make room. It will do this by flushing delalloc if
5310 * possible or committing the transaction. If flush is 0 then no attempts to
5311 * regain reservations will be made and this will fail if there is not enough
5312 * space already.
5313 */
5314 static int reserve_metadata_bytes(struct btrfs_root *root,
5315 struct btrfs_block_rsv *block_rsv,
5316 u64 orig_bytes,
5317 enum btrfs_reserve_flush_enum flush)
5318 {
5319 struct btrfs_fs_info *fs_info = root->fs_info;
5320 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5321 int ret;
5322 bool system_chunk = (root == fs_info->chunk_root);
5323
5324 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5325 orig_bytes, flush, system_chunk);
5326 if (ret == -ENOSPC &&
5327 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5328 if (block_rsv != global_rsv &&
5329 !block_rsv_use_bytes(global_rsv, orig_bytes))
5330 ret = 0;
5331 }
5332 if (ret == -ENOSPC)
5333 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5334 block_rsv->space_info->flags,
5335 orig_bytes, 1);
5336 return ret;
5337 }
5338
5339 static struct btrfs_block_rsv *get_block_rsv(
5340 const struct btrfs_trans_handle *trans,
5341 const struct btrfs_root *root)
5342 {
5343 struct btrfs_fs_info *fs_info = root->fs_info;
5344 struct btrfs_block_rsv *block_rsv = NULL;
5345
5346 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5347 (root == fs_info->csum_root && trans->adding_csums) ||
5348 (root == fs_info->uuid_root))
5349 block_rsv = trans->block_rsv;
5350
5351 if (!block_rsv)
5352 block_rsv = root->block_rsv;
5353
5354 if (!block_rsv)
5355 block_rsv = &fs_info->empty_block_rsv;
5356
5357 return block_rsv;
5358 }
5359
5360 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5361 u64 num_bytes)
5362 {
5363 int ret = -ENOSPC;
5364 spin_lock(&block_rsv->lock);
5365 if (block_rsv->reserved >= num_bytes) {
5366 block_rsv->reserved -= num_bytes;
5367 if (block_rsv->reserved < block_rsv->size)
5368 block_rsv->full = 0;
5369 ret = 0;
5370 }
5371 spin_unlock(&block_rsv->lock);
5372 return ret;
5373 }
5374
5375 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5376 u64 num_bytes, int update_size)
5377 {
5378 spin_lock(&block_rsv->lock);
5379 block_rsv->reserved += num_bytes;
5380 if (update_size)
5381 block_rsv->size += num_bytes;
5382 else if (block_rsv->reserved >= block_rsv->size)
5383 block_rsv->full = 1;
5384 spin_unlock(&block_rsv->lock);
5385 }
5386
5387 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5388 struct btrfs_block_rsv *dest, u64 num_bytes,
5389 int min_factor)
5390 {
5391 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5392 u64 min_bytes;
5393
5394 if (global_rsv->space_info != dest->space_info)
5395 return -ENOSPC;
5396
5397 spin_lock(&global_rsv->lock);
5398 min_bytes = div_factor(global_rsv->size, min_factor);
5399 if (global_rsv->reserved < min_bytes + num_bytes) {
5400 spin_unlock(&global_rsv->lock);
5401 return -ENOSPC;
5402 }
5403 global_rsv->reserved -= num_bytes;
5404 if (global_rsv->reserved < global_rsv->size)
5405 global_rsv->full = 0;
5406 spin_unlock(&global_rsv->lock);
5407
5408 block_rsv_add_bytes(dest, num_bytes, 1);
5409 return 0;
5410 }
5411
5412 /*
5413 * This is for space we already have accounted in space_info->bytes_may_use, so
5414 * basically when we're returning space from block_rsv's.
5415 */
5416 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5417 struct btrfs_space_info *space_info,
5418 u64 num_bytes)
5419 {
5420 struct reserve_ticket *ticket;
5421 struct list_head *head;
5422 u64 used;
5423 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5424 bool check_overcommit = false;
5425
5426 spin_lock(&space_info->lock);
5427 head = &space_info->priority_tickets;
5428
5429 /*
5430 * If we are over our limit then we need to check and see if we can
5431 * overcommit, and if we can't then we just need to free up our space
5432 * and not satisfy any requests.
5433 */
5434 used = btrfs_space_info_used(space_info, true);
5435 if (used - num_bytes >= space_info->total_bytes)
5436 check_overcommit = true;
5437 again:
5438 while (!list_empty(head) && num_bytes) {
5439 ticket = list_first_entry(head, struct reserve_ticket,
5440 list);
5441 /*
5442 * We use 0 bytes because this space is already reserved, so
5443 * adding the ticket space would be a double count.
5444 */
5445 if (check_overcommit &&
5446 !can_overcommit(fs_info, space_info, 0, flush, false))
5447 break;
5448 if (num_bytes >= ticket->bytes) {
5449 list_del_init(&ticket->list);
5450 num_bytes -= ticket->bytes;
5451 ticket->bytes = 0;
5452 space_info->tickets_id++;
5453 wake_up(&ticket->wait);
5454 } else {
5455 ticket->bytes -= num_bytes;
5456 num_bytes = 0;
5457 }
5458 }
5459
5460 if (num_bytes && head == &space_info->priority_tickets) {
5461 head = &space_info->tickets;
5462 flush = BTRFS_RESERVE_FLUSH_ALL;
5463 goto again;
5464 }
5465 space_info->bytes_may_use -= num_bytes;
5466 trace_btrfs_space_reservation(fs_info, "space_info",
5467 space_info->flags, num_bytes, 0);
5468 spin_unlock(&space_info->lock);
5469 }
5470
5471 /*
5472 * This is for newly allocated space that isn't accounted in
5473 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5474 * we use this helper.
5475 */
5476 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5477 struct btrfs_space_info *space_info,
5478 u64 num_bytes)
5479 {
5480 struct reserve_ticket *ticket;
5481 struct list_head *head = &space_info->priority_tickets;
5482
5483 again:
5484 while (!list_empty(head) && num_bytes) {
5485 ticket = list_first_entry(head, struct reserve_ticket,
5486 list);
5487 if (num_bytes >= ticket->bytes) {
5488 trace_btrfs_space_reservation(fs_info, "space_info",
5489 space_info->flags,
5490 ticket->bytes, 1);
5491 list_del_init(&ticket->list);
5492 num_bytes -= ticket->bytes;
5493 space_info->bytes_may_use += ticket->bytes;
5494 ticket->bytes = 0;
5495 space_info->tickets_id++;
5496 wake_up(&ticket->wait);
5497 } else {
5498 trace_btrfs_space_reservation(fs_info, "space_info",
5499 space_info->flags,
5500 num_bytes, 1);
5501 space_info->bytes_may_use += num_bytes;
5502 ticket->bytes -= num_bytes;
5503 num_bytes = 0;
5504 }
5505 }
5506
5507 if (num_bytes && head == &space_info->priority_tickets) {
5508 head = &space_info->tickets;
5509 goto again;
5510 }
5511 }
5512
5513 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5514 struct btrfs_block_rsv *block_rsv,
5515 struct btrfs_block_rsv *dest, u64 num_bytes)
5516 {
5517 struct btrfs_space_info *space_info = block_rsv->space_info;
5518
5519 spin_lock(&block_rsv->lock);
5520 if (num_bytes == (u64)-1)
5521 num_bytes = block_rsv->size;
5522 block_rsv->size -= num_bytes;
5523 if (block_rsv->reserved >= block_rsv->size) {
5524 num_bytes = block_rsv->reserved - block_rsv->size;
5525 block_rsv->reserved = block_rsv->size;
5526 block_rsv->full = 1;
5527 } else {
5528 num_bytes = 0;
5529 }
5530 spin_unlock(&block_rsv->lock);
5531
5532 if (num_bytes > 0) {
5533 if (dest) {
5534 spin_lock(&dest->lock);
5535 if (!dest->full) {
5536 u64 bytes_to_add;
5537
5538 bytes_to_add = dest->size - dest->reserved;
5539 bytes_to_add = min(num_bytes, bytes_to_add);
5540 dest->reserved += bytes_to_add;
5541 if (dest->reserved >= dest->size)
5542 dest->full = 1;
5543 num_bytes -= bytes_to_add;
5544 }
5545 spin_unlock(&dest->lock);
5546 }
5547 if (num_bytes)
5548 space_info_add_old_bytes(fs_info, space_info,
5549 num_bytes);
5550 }
5551 }
5552
5553 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5554 struct btrfs_block_rsv *dst, u64 num_bytes,
5555 int update_size)
5556 {
5557 int ret;
5558
5559 ret = block_rsv_use_bytes(src, num_bytes);
5560 if (ret)
5561 return ret;
5562
5563 block_rsv_add_bytes(dst, num_bytes, update_size);
5564 return 0;
5565 }
5566
5567 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5568 {
5569 memset(rsv, 0, sizeof(*rsv));
5570 spin_lock_init(&rsv->lock);
5571 rsv->type = type;
5572 }
5573
5574 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5575 unsigned short type)
5576 {
5577 struct btrfs_block_rsv *block_rsv;
5578
5579 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5580 if (!block_rsv)
5581 return NULL;
5582
5583 btrfs_init_block_rsv(block_rsv, type);
5584 block_rsv->space_info = __find_space_info(fs_info,
5585 BTRFS_BLOCK_GROUP_METADATA);
5586 return block_rsv;
5587 }
5588
5589 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5590 struct btrfs_block_rsv *rsv)
5591 {
5592 if (!rsv)
5593 return;
5594 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5595 kfree(rsv);
5596 }
5597
5598 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5599 {
5600 kfree(rsv);
5601 }
5602
5603 int btrfs_block_rsv_add(struct btrfs_root *root,
5604 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5605 enum btrfs_reserve_flush_enum flush)
5606 {
5607 int ret;
5608
5609 if (num_bytes == 0)
5610 return 0;
5611
5612 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5613 if (!ret) {
5614 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5615 return 0;
5616 }
5617
5618 return ret;
5619 }
5620
5621 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5622 {
5623 u64 num_bytes = 0;
5624 int ret = -ENOSPC;
5625
5626 if (!block_rsv)
5627 return 0;
5628
5629 spin_lock(&block_rsv->lock);
5630 num_bytes = div_factor(block_rsv->size, min_factor);
5631 if (block_rsv->reserved >= num_bytes)
5632 ret = 0;
5633 spin_unlock(&block_rsv->lock);
5634
5635 return ret;
5636 }
5637
5638 int btrfs_block_rsv_refill(struct btrfs_root *root,
5639 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5640 enum btrfs_reserve_flush_enum flush)
5641 {
5642 u64 num_bytes = 0;
5643 int ret = -ENOSPC;
5644
5645 if (!block_rsv)
5646 return 0;
5647
5648 spin_lock(&block_rsv->lock);
5649 num_bytes = min_reserved;
5650 if (block_rsv->reserved >= num_bytes)
5651 ret = 0;
5652 else
5653 num_bytes -= block_rsv->reserved;
5654 spin_unlock(&block_rsv->lock);
5655
5656 if (!ret)
5657 return 0;
5658
5659 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5660 if (!ret) {
5661 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5662 return 0;
5663 }
5664
5665 return ret;
5666 }
5667
5668 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5669 struct btrfs_block_rsv *block_rsv,
5670 u64 num_bytes)
5671 {
5672 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5673
5674 if (global_rsv == block_rsv ||
5675 block_rsv->space_info != global_rsv->space_info)
5676 global_rsv = NULL;
5677 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5678 }
5679
5680 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5681 {
5682 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5683 struct btrfs_space_info *sinfo = block_rsv->space_info;
5684 u64 num_bytes;
5685
5686 /*
5687 * The global block rsv is based on the size of the extent tree, the
5688 * checksum tree and the root tree. If the fs is empty we want to set
5689 * it to a minimal amount for safety.
5690 */
5691 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5692 btrfs_root_used(&fs_info->csum_root->root_item) +
5693 btrfs_root_used(&fs_info->tree_root->root_item);
5694 num_bytes = max_t(u64, num_bytes, SZ_16M);
5695
5696 spin_lock(&sinfo->lock);
5697 spin_lock(&block_rsv->lock);
5698
5699 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5700
5701 if (block_rsv->reserved < block_rsv->size) {
5702 num_bytes = btrfs_space_info_used(sinfo, true);
5703 if (sinfo->total_bytes > num_bytes) {
5704 num_bytes = sinfo->total_bytes - num_bytes;
5705 num_bytes = min(num_bytes,
5706 block_rsv->size - block_rsv->reserved);
5707 block_rsv->reserved += num_bytes;
5708 sinfo->bytes_may_use += num_bytes;
5709 trace_btrfs_space_reservation(fs_info, "space_info",
5710 sinfo->flags, num_bytes,
5711 1);
5712 }
5713 } else if (block_rsv->reserved > block_rsv->size) {
5714 num_bytes = block_rsv->reserved - block_rsv->size;
5715 sinfo->bytes_may_use -= num_bytes;
5716 trace_btrfs_space_reservation(fs_info, "space_info",
5717 sinfo->flags, num_bytes, 0);
5718 block_rsv->reserved = block_rsv->size;
5719 }
5720
5721 if (block_rsv->reserved == block_rsv->size)
5722 block_rsv->full = 1;
5723 else
5724 block_rsv->full = 0;
5725
5726 spin_unlock(&block_rsv->lock);
5727 spin_unlock(&sinfo->lock);
5728 }
5729
5730 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5731 {
5732 struct btrfs_space_info *space_info;
5733
5734 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5735 fs_info->chunk_block_rsv.space_info = space_info;
5736
5737 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5738 fs_info->global_block_rsv.space_info = space_info;
5739 fs_info->delalloc_block_rsv.space_info = space_info;
5740 fs_info->trans_block_rsv.space_info = space_info;
5741 fs_info->empty_block_rsv.space_info = space_info;
5742 fs_info->delayed_block_rsv.space_info = space_info;
5743
5744 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5745 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5746 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5747 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5748 if (fs_info->quota_root)
5749 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5750 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5751
5752 update_global_block_rsv(fs_info);
5753 }
5754
5755 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5756 {
5757 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5758 (u64)-1);
5759 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5760 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5761 WARN_ON(fs_info->trans_block_rsv.size > 0);
5762 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5763 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5764 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5765 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5766 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5767 }
5768
5769 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5770 struct btrfs_fs_info *fs_info)
5771 {
5772 if (!trans->block_rsv)
5773 return;
5774
5775 if (!trans->bytes_reserved)
5776 return;
5777
5778 trace_btrfs_space_reservation(fs_info, "transaction",
5779 trans->transid, trans->bytes_reserved, 0);
5780 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5781 trans->bytes_reserved);
5782 trans->bytes_reserved = 0;
5783 }
5784
5785 /*
5786 * To be called after all the new block groups attached to the transaction
5787 * handle have been created (btrfs_create_pending_block_groups()).
5788 */
5789 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5790 {
5791 struct btrfs_fs_info *fs_info = trans->fs_info;
5792
5793 if (!trans->chunk_bytes_reserved)
5794 return;
5795
5796 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5797
5798 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5799 trans->chunk_bytes_reserved);
5800 trans->chunk_bytes_reserved = 0;
5801 }
5802
5803 /* Can only return 0 or -ENOSPC */
5804 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5805 struct btrfs_inode *inode)
5806 {
5807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5808 struct btrfs_root *root = inode->root;
5809 /*
5810 * We always use trans->block_rsv here as we will have reserved space
5811 * for our orphan when starting the transaction, using get_block_rsv()
5812 * here will sometimes make us choose the wrong block rsv as we could be
5813 * doing a reloc inode for a non refcounted root.
5814 */
5815 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5816 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5817
5818 /*
5819 * We need to hold space in order to delete our orphan item once we've
5820 * added it, so this takes the reservation so we can release it later
5821 * when we are truly done with the orphan item.
5822 */
5823 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5824
5825 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5826 num_bytes, 1);
5827 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5828 }
5829
5830 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5831 {
5832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5833 struct btrfs_root *root = inode->root;
5834 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5835
5836 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5837 num_bytes, 0);
5838 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5839 }
5840
5841 /*
5842 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5843 * root: the root of the parent directory
5844 * rsv: block reservation
5845 * items: the number of items that we need do reservation
5846 * qgroup_reserved: used to return the reserved size in qgroup
5847 *
5848 * This function is used to reserve the space for snapshot/subvolume
5849 * creation and deletion. Those operations are different with the
5850 * common file/directory operations, they change two fs/file trees
5851 * and root tree, the number of items that the qgroup reserves is
5852 * different with the free space reservation. So we can not use
5853 * the space reservation mechanism in start_transaction().
5854 */
5855 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5856 struct btrfs_block_rsv *rsv,
5857 int items,
5858 u64 *qgroup_reserved,
5859 bool use_global_rsv)
5860 {
5861 u64 num_bytes;
5862 int ret;
5863 struct btrfs_fs_info *fs_info = root->fs_info;
5864 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5865
5866 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5867 /* One for parent inode, two for dir entries */
5868 num_bytes = 3 * fs_info->nodesize;
5869 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5870 if (ret)
5871 return ret;
5872 } else {
5873 num_bytes = 0;
5874 }
5875
5876 *qgroup_reserved = num_bytes;
5877
5878 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5879 rsv->space_info = __find_space_info(fs_info,
5880 BTRFS_BLOCK_GROUP_METADATA);
5881 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5882 BTRFS_RESERVE_FLUSH_ALL);
5883
5884 if (ret == -ENOSPC && use_global_rsv)
5885 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5886
5887 if (ret && *qgroup_reserved)
5888 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5889
5890 return ret;
5891 }
5892
5893 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5894 struct btrfs_block_rsv *rsv)
5895 {
5896 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5897 }
5898
5899 /**
5900 * drop_outstanding_extent - drop an outstanding extent
5901 * @inode: the inode we're dropping the extent for
5902 * @num_bytes: the number of bytes we're releasing.
5903 *
5904 * This is called when we are freeing up an outstanding extent, either called
5905 * after an error or after an extent is written. This will return the number of
5906 * reserved extents that need to be freed. This must be called with
5907 * BTRFS_I(inode)->lock held.
5908 */
5909 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5910 u64 num_bytes)
5911 {
5912 unsigned drop_inode_space = 0;
5913 unsigned dropped_extents = 0;
5914 unsigned num_extents;
5915
5916 num_extents = count_max_extents(num_bytes);
5917 ASSERT(num_extents);
5918 ASSERT(inode->outstanding_extents >= num_extents);
5919 inode->outstanding_extents -= num_extents;
5920
5921 if (inode->outstanding_extents == 0 &&
5922 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5923 &inode->runtime_flags))
5924 drop_inode_space = 1;
5925
5926 /*
5927 * If we have more or the same amount of outstanding extents than we have
5928 * reserved then we need to leave the reserved extents count alone.
5929 */
5930 if (inode->outstanding_extents >= inode->reserved_extents)
5931 return drop_inode_space;
5932
5933 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5934 inode->reserved_extents -= dropped_extents;
5935 return dropped_extents + drop_inode_space;
5936 }
5937
5938 /**
5939 * calc_csum_metadata_size - return the amount of metadata space that must be
5940 * reserved/freed for the given bytes.
5941 * @inode: the inode we're manipulating
5942 * @num_bytes: the number of bytes in question
5943 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5944 *
5945 * This adjusts the number of csum_bytes in the inode and then returns the
5946 * correct amount of metadata that must either be reserved or freed. We
5947 * calculate how many checksums we can fit into one leaf and then divide the
5948 * number of bytes that will need to be checksumed by this value to figure out
5949 * how many checksums will be required. If we are adding bytes then the number
5950 * may go up and we will return the number of additional bytes that must be
5951 * reserved. If it is going down we will return the number of bytes that must
5952 * be freed.
5953 *
5954 * This must be called with BTRFS_I(inode)->lock held.
5955 */
5956 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5957 int reserve)
5958 {
5959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5960 u64 old_csums, num_csums;
5961
5962 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5963 return 0;
5964
5965 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5966 if (reserve)
5967 inode->csum_bytes += num_bytes;
5968 else
5969 inode->csum_bytes -= num_bytes;
5970 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5971
5972 /* No change, no need to reserve more */
5973 if (old_csums == num_csums)
5974 return 0;
5975
5976 if (reserve)
5977 return btrfs_calc_trans_metadata_size(fs_info,
5978 num_csums - old_csums);
5979
5980 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5981 }
5982
5983 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5984 {
5985 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5986 struct btrfs_root *root = inode->root;
5987 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5988 u64 to_reserve = 0;
5989 u64 csum_bytes;
5990 unsigned nr_extents;
5991 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5992 int ret = 0;
5993 bool delalloc_lock = true;
5994 u64 to_free = 0;
5995 unsigned dropped;
5996 bool release_extra = false;
5997
5998 /* If we are a free space inode we need to not flush since we will be in
5999 * the middle of a transaction commit. We also don't need the delalloc
6000 * mutex since we won't race with anybody. We need this mostly to make
6001 * lockdep shut its filthy mouth.
6002 *
6003 * If we have a transaction open (can happen if we call truncate_block
6004 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6005 */
6006 if (btrfs_is_free_space_inode(inode)) {
6007 flush = BTRFS_RESERVE_NO_FLUSH;
6008 delalloc_lock = false;
6009 } else if (current->journal_info) {
6010 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6011 }
6012
6013 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6014 btrfs_transaction_in_commit(fs_info))
6015 schedule_timeout(1);
6016
6017 if (delalloc_lock)
6018 mutex_lock(&inode->delalloc_mutex);
6019
6020 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6021
6022 spin_lock(&inode->lock);
6023 nr_extents = count_max_extents(num_bytes);
6024 inode->outstanding_extents += nr_extents;
6025
6026 nr_extents = 0;
6027 if (inode->outstanding_extents > inode->reserved_extents)
6028 nr_extents += inode->outstanding_extents -
6029 inode->reserved_extents;
6030
6031 /* We always want to reserve a slot for updating the inode. */
6032 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
6033 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6034 csum_bytes = inode->csum_bytes;
6035 spin_unlock(&inode->lock);
6036
6037 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6038 ret = btrfs_qgroup_reserve_meta(root,
6039 nr_extents * fs_info->nodesize, true);
6040 if (ret)
6041 goto out_fail;
6042 }
6043
6044 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6045 if (unlikely(ret)) {
6046 btrfs_qgroup_free_meta(root,
6047 nr_extents * fs_info->nodesize);
6048 goto out_fail;
6049 }
6050
6051 spin_lock(&inode->lock);
6052 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6053 &inode->runtime_flags)) {
6054 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6055 release_extra = true;
6056 }
6057 inode->reserved_extents += nr_extents;
6058 spin_unlock(&inode->lock);
6059
6060 if (delalloc_lock)
6061 mutex_unlock(&inode->delalloc_mutex);
6062
6063 if (to_reserve)
6064 trace_btrfs_space_reservation(fs_info, "delalloc",
6065 btrfs_ino(inode), to_reserve, 1);
6066 if (release_extra)
6067 btrfs_block_rsv_release(fs_info, block_rsv,
6068 btrfs_calc_trans_metadata_size(fs_info, 1));
6069 return 0;
6070
6071 out_fail:
6072 spin_lock(&inode->lock);
6073 dropped = drop_outstanding_extent(inode, num_bytes);
6074 /*
6075 * If the inodes csum_bytes is the same as the original
6076 * csum_bytes then we know we haven't raced with any free()ers
6077 * so we can just reduce our inodes csum bytes and carry on.
6078 */
6079 if (inode->csum_bytes == csum_bytes) {
6080 calc_csum_metadata_size(inode, num_bytes, 0);
6081 } else {
6082 u64 orig_csum_bytes = inode->csum_bytes;
6083 u64 bytes;
6084
6085 /*
6086 * This is tricky, but first we need to figure out how much we
6087 * freed from any free-ers that occurred during this
6088 * reservation, so we reset ->csum_bytes to the csum_bytes
6089 * before we dropped our lock, and then call the free for the
6090 * number of bytes that were freed while we were trying our
6091 * reservation.
6092 */
6093 bytes = csum_bytes - inode->csum_bytes;
6094 inode->csum_bytes = csum_bytes;
6095 to_free = calc_csum_metadata_size(inode, bytes, 0);
6096
6097
6098 /*
6099 * Now we need to see how much we would have freed had we not
6100 * been making this reservation and our ->csum_bytes were not
6101 * artificially inflated.
6102 */
6103 inode->csum_bytes = csum_bytes - num_bytes;
6104 bytes = csum_bytes - orig_csum_bytes;
6105 bytes = calc_csum_metadata_size(inode, bytes, 0);
6106
6107 /*
6108 * Now reset ->csum_bytes to what it should be. If bytes is
6109 * more than to_free then we would have freed more space had we
6110 * not had an artificially high ->csum_bytes, so we need to free
6111 * the remainder. If bytes is the same or less then we don't
6112 * need to do anything, the other free-ers did the correct
6113 * thing.
6114 */
6115 inode->csum_bytes = orig_csum_bytes - num_bytes;
6116 if (bytes > to_free)
6117 to_free = bytes - to_free;
6118 else
6119 to_free = 0;
6120 }
6121 spin_unlock(&inode->lock);
6122 if (dropped)
6123 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6124
6125 if (to_free) {
6126 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6127 trace_btrfs_space_reservation(fs_info, "delalloc",
6128 btrfs_ino(inode), to_free, 0);
6129 }
6130 if (delalloc_lock)
6131 mutex_unlock(&inode->delalloc_mutex);
6132 return ret;
6133 }
6134
6135 /**
6136 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6137 * @inode: the inode to release the reservation for
6138 * @num_bytes: the number of bytes we're releasing
6139 *
6140 * This will release the metadata reservation for an inode. This can be called
6141 * once we complete IO for a given set of bytes to release their metadata
6142 * reservations.
6143 */
6144 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6145 {
6146 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6147 u64 to_free = 0;
6148 unsigned dropped;
6149
6150 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6151 spin_lock(&inode->lock);
6152 dropped = drop_outstanding_extent(inode, num_bytes);
6153
6154 if (num_bytes)
6155 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6156 spin_unlock(&inode->lock);
6157 if (dropped > 0)
6158 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6159
6160 if (btrfs_is_testing(fs_info))
6161 return;
6162
6163 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6164 to_free, 0);
6165
6166 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6167 }
6168
6169 /**
6170 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6171 * delalloc
6172 * @inode: inode we're writing to
6173 * @start: start range we are writing to
6174 * @len: how long the range we are writing to
6175 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6176 * current reservation.
6177 *
6178 * This will do the following things
6179 *
6180 * o reserve space in data space info for num bytes
6181 * and reserve precious corresponding qgroup space
6182 * (Done in check_data_free_space)
6183 *
6184 * o reserve space for metadata space, based on the number of outstanding
6185 * extents and how much csums will be needed
6186 * also reserve metadata space in a per root over-reserve method.
6187 * o add to the inodes->delalloc_bytes
6188 * o add it to the fs_info's delalloc inodes list.
6189 * (Above 3 all done in delalloc_reserve_metadata)
6190 *
6191 * Return 0 for success
6192 * Return <0 for error(-ENOSPC or -EQUOT)
6193 */
6194 int btrfs_delalloc_reserve_space(struct inode *inode,
6195 struct extent_changeset **reserved, u64 start, u64 len)
6196 {
6197 int ret;
6198
6199 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6200 if (ret < 0)
6201 return ret;
6202 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6203 if (ret < 0)
6204 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6205 return ret;
6206 }
6207
6208 /**
6209 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6210 * @inode: inode we're releasing space for
6211 * @start: start position of the space already reserved
6212 * @len: the len of the space already reserved
6213 *
6214 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6215 * called in the case that we don't need the metadata AND data reservations
6216 * anymore. So if there is an error or we insert an inline extent.
6217 *
6218 * This function will release the metadata space that was not used and will
6219 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6220 * list if there are no delalloc bytes left.
6221 * Also it will handle the qgroup reserved space.
6222 */
6223 void btrfs_delalloc_release_space(struct inode *inode,
6224 struct extent_changeset *reserved, u64 start, u64 len)
6225 {
6226 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6227 btrfs_free_reserved_data_space(inode, reserved, start, len);
6228 }
6229
6230 static int update_block_group(struct btrfs_trans_handle *trans,
6231 struct btrfs_fs_info *info, u64 bytenr,
6232 u64 num_bytes, int alloc)
6233 {
6234 struct btrfs_block_group_cache *cache = NULL;
6235 u64 total = num_bytes;
6236 u64 old_val;
6237 u64 byte_in_group;
6238 int factor;
6239
6240 /* block accounting for super block */
6241 spin_lock(&info->delalloc_root_lock);
6242 old_val = btrfs_super_bytes_used(info->super_copy);
6243 if (alloc)
6244 old_val += num_bytes;
6245 else
6246 old_val -= num_bytes;
6247 btrfs_set_super_bytes_used(info->super_copy, old_val);
6248 spin_unlock(&info->delalloc_root_lock);
6249
6250 while (total) {
6251 cache = btrfs_lookup_block_group(info, bytenr);
6252 if (!cache)
6253 return -ENOENT;
6254 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6255 BTRFS_BLOCK_GROUP_RAID1 |
6256 BTRFS_BLOCK_GROUP_RAID10))
6257 factor = 2;
6258 else
6259 factor = 1;
6260 /*
6261 * If this block group has free space cache written out, we
6262 * need to make sure to load it if we are removing space. This
6263 * is because we need the unpinning stage to actually add the
6264 * space back to the block group, otherwise we will leak space.
6265 */
6266 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6267 cache_block_group(cache, 1);
6268
6269 byte_in_group = bytenr - cache->key.objectid;
6270 WARN_ON(byte_in_group > cache->key.offset);
6271
6272 spin_lock(&cache->space_info->lock);
6273 spin_lock(&cache->lock);
6274
6275 if (btrfs_test_opt(info, SPACE_CACHE) &&
6276 cache->disk_cache_state < BTRFS_DC_CLEAR)
6277 cache->disk_cache_state = BTRFS_DC_CLEAR;
6278
6279 old_val = btrfs_block_group_used(&cache->item);
6280 num_bytes = min(total, cache->key.offset - byte_in_group);
6281 if (alloc) {
6282 old_val += num_bytes;
6283 btrfs_set_block_group_used(&cache->item, old_val);
6284 cache->reserved -= num_bytes;
6285 cache->space_info->bytes_reserved -= num_bytes;
6286 cache->space_info->bytes_used += num_bytes;
6287 cache->space_info->disk_used += num_bytes * factor;
6288 spin_unlock(&cache->lock);
6289 spin_unlock(&cache->space_info->lock);
6290 } else {
6291 old_val -= num_bytes;
6292 btrfs_set_block_group_used(&cache->item, old_val);
6293 cache->pinned += num_bytes;
6294 cache->space_info->bytes_pinned += num_bytes;
6295 cache->space_info->bytes_used -= num_bytes;
6296 cache->space_info->disk_used -= num_bytes * factor;
6297 spin_unlock(&cache->lock);
6298 spin_unlock(&cache->space_info->lock);
6299
6300 trace_btrfs_space_reservation(info, "pinned",
6301 cache->space_info->flags,
6302 num_bytes, 1);
6303 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6304 num_bytes);
6305 set_extent_dirty(info->pinned_extents,
6306 bytenr, bytenr + num_bytes - 1,
6307 GFP_NOFS | __GFP_NOFAIL);
6308 }
6309
6310 spin_lock(&trans->transaction->dirty_bgs_lock);
6311 if (list_empty(&cache->dirty_list)) {
6312 list_add_tail(&cache->dirty_list,
6313 &trans->transaction->dirty_bgs);
6314 trans->transaction->num_dirty_bgs++;
6315 btrfs_get_block_group(cache);
6316 }
6317 spin_unlock(&trans->transaction->dirty_bgs_lock);
6318
6319 /*
6320 * No longer have used bytes in this block group, queue it for
6321 * deletion. We do this after adding the block group to the
6322 * dirty list to avoid races between cleaner kthread and space
6323 * cache writeout.
6324 */
6325 if (!alloc && old_val == 0) {
6326 spin_lock(&info->unused_bgs_lock);
6327 if (list_empty(&cache->bg_list)) {
6328 btrfs_get_block_group(cache);
6329 list_add_tail(&cache->bg_list,
6330 &info->unused_bgs);
6331 }
6332 spin_unlock(&info->unused_bgs_lock);
6333 }
6334
6335 btrfs_put_block_group(cache);
6336 total -= num_bytes;
6337 bytenr += num_bytes;
6338 }
6339 return 0;
6340 }
6341
6342 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6343 {
6344 struct btrfs_block_group_cache *cache;
6345 u64 bytenr;
6346
6347 spin_lock(&fs_info->block_group_cache_lock);
6348 bytenr = fs_info->first_logical_byte;
6349 spin_unlock(&fs_info->block_group_cache_lock);
6350
6351 if (bytenr < (u64)-1)
6352 return bytenr;
6353
6354 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6355 if (!cache)
6356 return 0;
6357
6358 bytenr = cache->key.objectid;
6359 btrfs_put_block_group(cache);
6360
6361 return bytenr;
6362 }
6363
6364 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6365 struct btrfs_block_group_cache *cache,
6366 u64 bytenr, u64 num_bytes, int reserved)
6367 {
6368 spin_lock(&cache->space_info->lock);
6369 spin_lock(&cache->lock);
6370 cache->pinned += num_bytes;
6371 cache->space_info->bytes_pinned += num_bytes;
6372 if (reserved) {
6373 cache->reserved -= num_bytes;
6374 cache->space_info->bytes_reserved -= num_bytes;
6375 }
6376 spin_unlock(&cache->lock);
6377 spin_unlock(&cache->space_info->lock);
6378
6379 trace_btrfs_space_reservation(fs_info, "pinned",
6380 cache->space_info->flags, num_bytes, 1);
6381 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6382 set_extent_dirty(fs_info->pinned_extents, bytenr,
6383 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6384 return 0;
6385 }
6386
6387 /*
6388 * this function must be called within transaction
6389 */
6390 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6391 u64 bytenr, u64 num_bytes, int reserved)
6392 {
6393 struct btrfs_block_group_cache *cache;
6394
6395 cache = btrfs_lookup_block_group(fs_info, bytenr);
6396 BUG_ON(!cache); /* Logic error */
6397
6398 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6399
6400 btrfs_put_block_group(cache);
6401 return 0;
6402 }
6403
6404 /*
6405 * this function must be called within transaction
6406 */
6407 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6408 u64 bytenr, u64 num_bytes)
6409 {
6410 struct btrfs_block_group_cache *cache;
6411 int ret;
6412
6413 cache = btrfs_lookup_block_group(fs_info, bytenr);
6414 if (!cache)
6415 return -EINVAL;
6416
6417 /*
6418 * pull in the free space cache (if any) so that our pin
6419 * removes the free space from the cache. We have load_only set
6420 * to one because the slow code to read in the free extents does check
6421 * the pinned extents.
6422 */
6423 cache_block_group(cache, 1);
6424
6425 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6426
6427 /* remove us from the free space cache (if we're there at all) */
6428 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6429 btrfs_put_block_group(cache);
6430 return ret;
6431 }
6432
6433 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6434 u64 start, u64 num_bytes)
6435 {
6436 int ret;
6437 struct btrfs_block_group_cache *block_group;
6438 struct btrfs_caching_control *caching_ctl;
6439
6440 block_group = btrfs_lookup_block_group(fs_info, start);
6441 if (!block_group)
6442 return -EINVAL;
6443
6444 cache_block_group(block_group, 0);
6445 caching_ctl = get_caching_control(block_group);
6446
6447 if (!caching_ctl) {
6448 /* Logic error */
6449 BUG_ON(!block_group_cache_done(block_group));
6450 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6451 } else {
6452 mutex_lock(&caching_ctl->mutex);
6453
6454 if (start >= caching_ctl->progress) {
6455 ret = add_excluded_extent(fs_info, start, num_bytes);
6456 } else if (start + num_bytes <= caching_ctl->progress) {
6457 ret = btrfs_remove_free_space(block_group,
6458 start, num_bytes);
6459 } else {
6460 num_bytes = caching_ctl->progress - start;
6461 ret = btrfs_remove_free_space(block_group,
6462 start, num_bytes);
6463 if (ret)
6464 goto out_lock;
6465
6466 num_bytes = (start + num_bytes) -
6467 caching_ctl->progress;
6468 start = caching_ctl->progress;
6469 ret = add_excluded_extent(fs_info, start, num_bytes);
6470 }
6471 out_lock:
6472 mutex_unlock(&caching_ctl->mutex);
6473 put_caching_control(caching_ctl);
6474 }
6475 btrfs_put_block_group(block_group);
6476 return ret;
6477 }
6478
6479 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6480 struct extent_buffer *eb)
6481 {
6482 struct btrfs_file_extent_item *item;
6483 struct btrfs_key key;
6484 int found_type;
6485 int i;
6486
6487 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6488 return 0;
6489
6490 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6491 btrfs_item_key_to_cpu(eb, &key, i);
6492 if (key.type != BTRFS_EXTENT_DATA_KEY)
6493 continue;
6494 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6495 found_type = btrfs_file_extent_type(eb, item);
6496 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6497 continue;
6498 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6499 continue;
6500 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6501 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6502 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6503 }
6504
6505 return 0;
6506 }
6507
6508 static void
6509 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6510 {
6511 atomic_inc(&bg->reservations);
6512 }
6513
6514 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6515 const u64 start)
6516 {
6517 struct btrfs_block_group_cache *bg;
6518
6519 bg = btrfs_lookup_block_group(fs_info, start);
6520 ASSERT(bg);
6521 if (atomic_dec_and_test(&bg->reservations))
6522 wake_up_atomic_t(&bg->reservations);
6523 btrfs_put_block_group(bg);
6524 }
6525
6526 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6527 {
6528 schedule();
6529 return 0;
6530 }
6531
6532 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6533 {
6534 struct btrfs_space_info *space_info = bg->space_info;
6535
6536 ASSERT(bg->ro);
6537
6538 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6539 return;
6540
6541 /*
6542 * Our block group is read only but before we set it to read only,
6543 * some task might have had allocated an extent from it already, but it
6544 * has not yet created a respective ordered extent (and added it to a
6545 * root's list of ordered extents).
6546 * Therefore wait for any task currently allocating extents, since the
6547 * block group's reservations counter is incremented while a read lock
6548 * on the groups' semaphore is held and decremented after releasing
6549 * the read access on that semaphore and creating the ordered extent.
6550 */
6551 down_write(&space_info->groups_sem);
6552 up_write(&space_info->groups_sem);
6553
6554 wait_on_atomic_t(&bg->reservations,
6555 btrfs_wait_bg_reservations_atomic_t,
6556 TASK_UNINTERRUPTIBLE);
6557 }
6558
6559 /**
6560 * btrfs_add_reserved_bytes - update the block_group and space info counters
6561 * @cache: The cache we are manipulating
6562 * @ram_bytes: The number of bytes of file content, and will be same to
6563 * @num_bytes except for the compress path.
6564 * @num_bytes: The number of bytes in question
6565 * @delalloc: The blocks are allocated for the delalloc write
6566 *
6567 * This is called by the allocator when it reserves space. If this is a
6568 * reservation and the block group has become read only we cannot make the
6569 * reservation and return -EAGAIN, otherwise this function always succeeds.
6570 */
6571 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6572 u64 ram_bytes, u64 num_bytes, int delalloc)
6573 {
6574 struct btrfs_space_info *space_info = cache->space_info;
6575 int ret = 0;
6576
6577 spin_lock(&space_info->lock);
6578 spin_lock(&cache->lock);
6579 if (cache->ro) {
6580 ret = -EAGAIN;
6581 } else {
6582 cache->reserved += num_bytes;
6583 space_info->bytes_reserved += num_bytes;
6584
6585 trace_btrfs_space_reservation(cache->fs_info,
6586 "space_info", space_info->flags,
6587 ram_bytes, 0);
6588 space_info->bytes_may_use -= ram_bytes;
6589 if (delalloc)
6590 cache->delalloc_bytes += num_bytes;
6591 }
6592 spin_unlock(&cache->lock);
6593 spin_unlock(&space_info->lock);
6594 return ret;
6595 }
6596
6597 /**
6598 * btrfs_free_reserved_bytes - update the block_group and space info counters
6599 * @cache: The cache we are manipulating
6600 * @num_bytes: The number of bytes in question
6601 * @delalloc: The blocks are allocated for the delalloc write
6602 *
6603 * This is called by somebody who is freeing space that was never actually used
6604 * on disk. For example if you reserve some space for a new leaf in transaction
6605 * A and before transaction A commits you free that leaf, you call this with
6606 * reserve set to 0 in order to clear the reservation.
6607 */
6608
6609 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6610 u64 num_bytes, int delalloc)
6611 {
6612 struct btrfs_space_info *space_info = cache->space_info;
6613 int ret = 0;
6614
6615 spin_lock(&space_info->lock);
6616 spin_lock(&cache->lock);
6617 if (cache->ro)
6618 space_info->bytes_readonly += num_bytes;
6619 cache->reserved -= num_bytes;
6620 space_info->bytes_reserved -= num_bytes;
6621
6622 if (delalloc)
6623 cache->delalloc_bytes -= num_bytes;
6624 spin_unlock(&cache->lock);
6625 spin_unlock(&space_info->lock);
6626 return ret;
6627 }
6628 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6629 {
6630 struct btrfs_caching_control *next;
6631 struct btrfs_caching_control *caching_ctl;
6632 struct btrfs_block_group_cache *cache;
6633
6634 down_write(&fs_info->commit_root_sem);
6635
6636 list_for_each_entry_safe(caching_ctl, next,
6637 &fs_info->caching_block_groups, list) {
6638 cache = caching_ctl->block_group;
6639 if (block_group_cache_done(cache)) {
6640 cache->last_byte_to_unpin = (u64)-1;
6641 list_del_init(&caching_ctl->list);
6642 put_caching_control(caching_ctl);
6643 } else {
6644 cache->last_byte_to_unpin = caching_ctl->progress;
6645 }
6646 }
6647
6648 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6649 fs_info->pinned_extents = &fs_info->freed_extents[1];
6650 else
6651 fs_info->pinned_extents = &fs_info->freed_extents[0];
6652
6653 up_write(&fs_info->commit_root_sem);
6654
6655 update_global_block_rsv(fs_info);
6656 }
6657
6658 /*
6659 * Returns the free cluster for the given space info and sets empty_cluster to
6660 * what it should be based on the mount options.
6661 */
6662 static struct btrfs_free_cluster *
6663 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6664 struct btrfs_space_info *space_info, u64 *empty_cluster)
6665 {
6666 struct btrfs_free_cluster *ret = NULL;
6667 bool ssd = btrfs_test_opt(fs_info, SSD);
6668
6669 *empty_cluster = 0;
6670 if (btrfs_mixed_space_info(space_info))
6671 return ret;
6672
6673 if (ssd)
6674 *empty_cluster = SZ_2M;
6675 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6676 ret = &fs_info->meta_alloc_cluster;
6677 if (!ssd)
6678 *empty_cluster = SZ_64K;
6679 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6680 ret = &fs_info->data_alloc_cluster;
6681 }
6682
6683 return ret;
6684 }
6685
6686 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6687 u64 start, u64 end,
6688 const bool return_free_space)
6689 {
6690 struct btrfs_block_group_cache *cache = NULL;
6691 struct btrfs_space_info *space_info;
6692 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6693 struct btrfs_free_cluster *cluster = NULL;
6694 u64 len;
6695 u64 total_unpinned = 0;
6696 u64 empty_cluster = 0;
6697 bool readonly;
6698
6699 while (start <= end) {
6700 readonly = false;
6701 if (!cache ||
6702 start >= cache->key.objectid + cache->key.offset) {
6703 if (cache)
6704 btrfs_put_block_group(cache);
6705 total_unpinned = 0;
6706 cache = btrfs_lookup_block_group(fs_info, start);
6707 BUG_ON(!cache); /* Logic error */
6708
6709 cluster = fetch_cluster_info(fs_info,
6710 cache->space_info,
6711 &empty_cluster);
6712 empty_cluster <<= 1;
6713 }
6714
6715 len = cache->key.objectid + cache->key.offset - start;
6716 len = min(len, end + 1 - start);
6717
6718 if (start < cache->last_byte_to_unpin) {
6719 len = min(len, cache->last_byte_to_unpin - start);
6720 if (return_free_space)
6721 btrfs_add_free_space(cache, start, len);
6722 }
6723
6724 start += len;
6725 total_unpinned += len;
6726 space_info = cache->space_info;
6727
6728 /*
6729 * If this space cluster has been marked as fragmented and we've
6730 * unpinned enough in this block group to potentially allow a
6731 * cluster to be created inside of it go ahead and clear the
6732 * fragmented check.
6733 */
6734 if (cluster && cluster->fragmented &&
6735 total_unpinned > empty_cluster) {
6736 spin_lock(&cluster->lock);
6737 cluster->fragmented = 0;
6738 spin_unlock(&cluster->lock);
6739 }
6740
6741 spin_lock(&space_info->lock);
6742 spin_lock(&cache->lock);
6743 cache->pinned -= len;
6744 space_info->bytes_pinned -= len;
6745
6746 trace_btrfs_space_reservation(fs_info, "pinned",
6747 space_info->flags, len, 0);
6748 space_info->max_extent_size = 0;
6749 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6750 if (cache->ro) {
6751 space_info->bytes_readonly += len;
6752 readonly = true;
6753 }
6754 spin_unlock(&cache->lock);
6755 if (!readonly && return_free_space &&
6756 global_rsv->space_info == space_info) {
6757 u64 to_add = len;
6758 WARN_ON(!return_free_space);
6759 spin_lock(&global_rsv->lock);
6760 if (!global_rsv->full) {
6761 to_add = min(len, global_rsv->size -
6762 global_rsv->reserved);
6763 global_rsv->reserved += to_add;
6764 space_info->bytes_may_use += to_add;
6765 if (global_rsv->reserved >= global_rsv->size)
6766 global_rsv->full = 1;
6767 trace_btrfs_space_reservation(fs_info,
6768 "space_info",
6769 space_info->flags,
6770 to_add, 1);
6771 len -= to_add;
6772 }
6773 spin_unlock(&global_rsv->lock);
6774 /* Add to any tickets we may have */
6775 if (len)
6776 space_info_add_new_bytes(fs_info, space_info,
6777 len);
6778 }
6779 spin_unlock(&space_info->lock);
6780 }
6781
6782 if (cache)
6783 btrfs_put_block_group(cache);
6784 return 0;
6785 }
6786
6787 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6788 struct btrfs_fs_info *fs_info)
6789 {
6790 struct btrfs_block_group_cache *block_group, *tmp;
6791 struct list_head *deleted_bgs;
6792 struct extent_io_tree *unpin;
6793 u64 start;
6794 u64 end;
6795 int ret;
6796
6797 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6798 unpin = &fs_info->freed_extents[1];
6799 else
6800 unpin = &fs_info->freed_extents[0];
6801
6802 while (!trans->aborted) {
6803 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6804 ret = find_first_extent_bit(unpin, 0, &start, &end,
6805 EXTENT_DIRTY, NULL);
6806 if (ret) {
6807 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6808 break;
6809 }
6810
6811 if (btrfs_test_opt(fs_info, DISCARD))
6812 ret = btrfs_discard_extent(fs_info, start,
6813 end + 1 - start, NULL);
6814
6815 clear_extent_dirty(unpin, start, end);
6816 unpin_extent_range(fs_info, start, end, true);
6817 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6818 cond_resched();
6819 }
6820
6821 /*
6822 * Transaction is finished. We don't need the lock anymore. We
6823 * do need to clean up the block groups in case of a transaction
6824 * abort.
6825 */
6826 deleted_bgs = &trans->transaction->deleted_bgs;
6827 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6828 u64 trimmed = 0;
6829
6830 ret = -EROFS;
6831 if (!trans->aborted)
6832 ret = btrfs_discard_extent(fs_info,
6833 block_group->key.objectid,
6834 block_group->key.offset,
6835 &trimmed);
6836
6837 list_del_init(&block_group->bg_list);
6838 btrfs_put_block_group_trimming(block_group);
6839 btrfs_put_block_group(block_group);
6840
6841 if (ret) {
6842 const char *errstr = btrfs_decode_error(ret);
6843 btrfs_warn(fs_info,
6844 "Discard failed while removing blockgroup: errno=%d %s\n",
6845 ret, errstr);
6846 }
6847 }
6848
6849 return 0;
6850 }
6851
6852 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6853 struct btrfs_fs_info *info,
6854 struct btrfs_delayed_ref_node *node, u64 parent,
6855 u64 root_objectid, u64 owner_objectid,
6856 u64 owner_offset, int refs_to_drop,
6857 struct btrfs_delayed_extent_op *extent_op)
6858 {
6859 struct btrfs_key key;
6860 struct btrfs_path *path;
6861 struct btrfs_root *extent_root = info->extent_root;
6862 struct extent_buffer *leaf;
6863 struct btrfs_extent_item *ei;
6864 struct btrfs_extent_inline_ref *iref;
6865 int ret;
6866 int is_data;
6867 int extent_slot = 0;
6868 int found_extent = 0;
6869 int num_to_del = 1;
6870 u32 item_size;
6871 u64 refs;
6872 u64 bytenr = node->bytenr;
6873 u64 num_bytes = node->num_bytes;
6874 int last_ref = 0;
6875 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6876
6877 path = btrfs_alloc_path();
6878 if (!path)
6879 return -ENOMEM;
6880
6881 path->reada = READA_FORWARD;
6882 path->leave_spinning = 1;
6883
6884 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6885 BUG_ON(!is_data && refs_to_drop != 1);
6886
6887 if (is_data)
6888 skinny_metadata = 0;
6889
6890 ret = lookup_extent_backref(trans, info, path, &iref,
6891 bytenr, num_bytes, parent,
6892 root_objectid, owner_objectid,
6893 owner_offset);
6894 if (ret == 0) {
6895 extent_slot = path->slots[0];
6896 while (extent_slot >= 0) {
6897 btrfs_item_key_to_cpu(path->nodes[0], &key,
6898 extent_slot);
6899 if (key.objectid != bytenr)
6900 break;
6901 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6902 key.offset == num_bytes) {
6903 found_extent = 1;
6904 break;
6905 }
6906 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6907 key.offset == owner_objectid) {
6908 found_extent = 1;
6909 break;
6910 }
6911 if (path->slots[0] - extent_slot > 5)
6912 break;
6913 extent_slot--;
6914 }
6915 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6916 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6917 if (found_extent && item_size < sizeof(*ei))
6918 found_extent = 0;
6919 #endif
6920 if (!found_extent) {
6921 BUG_ON(iref);
6922 ret = remove_extent_backref(trans, info, path, NULL,
6923 refs_to_drop,
6924 is_data, &last_ref);
6925 if (ret) {
6926 btrfs_abort_transaction(trans, ret);
6927 goto out;
6928 }
6929 btrfs_release_path(path);
6930 path->leave_spinning = 1;
6931
6932 key.objectid = bytenr;
6933 key.type = BTRFS_EXTENT_ITEM_KEY;
6934 key.offset = num_bytes;
6935
6936 if (!is_data && skinny_metadata) {
6937 key.type = BTRFS_METADATA_ITEM_KEY;
6938 key.offset = owner_objectid;
6939 }
6940
6941 ret = btrfs_search_slot(trans, extent_root,
6942 &key, path, -1, 1);
6943 if (ret > 0 && skinny_metadata && path->slots[0]) {
6944 /*
6945 * Couldn't find our skinny metadata item,
6946 * see if we have ye olde extent item.
6947 */
6948 path->slots[0]--;
6949 btrfs_item_key_to_cpu(path->nodes[0], &key,
6950 path->slots[0]);
6951 if (key.objectid == bytenr &&
6952 key.type == BTRFS_EXTENT_ITEM_KEY &&
6953 key.offset == num_bytes)
6954 ret = 0;
6955 }
6956
6957 if (ret > 0 && skinny_metadata) {
6958 skinny_metadata = false;
6959 key.objectid = bytenr;
6960 key.type = BTRFS_EXTENT_ITEM_KEY;
6961 key.offset = num_bytes;
6962 btrfs_release_path(path);
6963 ret = btrfs_search_slot(trans, extent_root,
6964 &key, path, -1, 1);
6965 }
6966
6967 if (ret) {
6968 btrfs_err(info,
6969 "umm, got %d back from search, was looking for %llu",
6970 ret, bytenr);
6971 if (ret > 0)
6972 btrfs_print_leaf(info, path->nodes[0]);
6973 }
6974 if (ret < 0) {
6975 btrfs_abort_transaction(trans, ret);
6976 goto out;
6977 }
6978 extent_slot = path->slots[0];
6979 }
6980 } else if (WARN_ON(ret == -ENOENT)) {
6981 btrfs_print_leaf(info, path->nodes[0]);
6982 btrfs_err(info,
6983 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6984 bytenr, parent, root_objectid, owner_objectid,
6985 owner_offset);
6986 btrfs_abort_transaction(trans, ret);
6987 goto out;
6988 } else {
6989 btrfs_abort_transaction(trans, ret);
6990 goto out;
6991 }
6992
6993 leaf = path->nodes[0];
6994 item_size = btrfs_item_size_nr(leaf, extent_slot);
6995 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6996 if (item_size < sizeof(*ei)) {
6997 BUG_ON(found_extent || extent_slot != path->slots[0]);
6998 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6999 0);
7000 if (ret < 0) {
7001 btrfs_abort_transaction(trans, ret);
7002 goto out;
7003 }
7004
7005 btrfs_release_path(path);
7006 path->leave_spinning = 1;
7007
7008 key.objectid = bytenr;
7009 key.type = BTRFS_EXTENT_ITEM_KEY;
7010 key.offset = num_bytes;
7011
7012 ret = btrfs_search_slot(trans, extent_root, &key, path,
7013 -1, 1);
7014 if (ret) {
7015 btrfs_err(info,
7016 "umm, got %d back from search, was looking for %llu",
7017 ret, bytenr);
7018 btrfs_print_leaf(info, path->nodes[0]);
7019 }
7020 if (ret < 0) {
7021 btrfs_abort_transaction(trans, ret);
7022 goto out;
7023 }
7024
7025 extent_slot = path->slots[0];
7026 leaf = path->nodes[0];
7027 item_size = btrfs_item_size_nr(leaf, extent_slot);
7028 }
7029 #endif
7030 BUG_ON(item_size < sizeof(*ei));
7031 ei = btrfs_item_ptr(leaf, extent_slot,
7032 struct btrfs_extent_item);
7033 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7034 key.type == BTRFS_EXTENT_ITEM_KEY) {
7035 struct btrfs_tree_block_info *bi;
7036 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7037 bi = (struct btrfs_tree_block_info *)(ei + 1);
7038 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7039 }
7040
7041 refs = btrfs_extent_refs(leaf, ei);
7042 if (refs < refs_to_drop) {
7043 btrfs_err(info,
7044 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7045 refs_to_drop, refs, bytenr);
7046 ret = -EINVAL;
7047 btrfs_abort_transaction(trans, ret);
7048 goto out;
7049 }
7050 refs -= refs_to_drop;
7051
7052 if (refs > 0) {
7053 if (extent_op)
7054 __run_delayed_extent_op(extent_op, leaf, ei);
7055 /*
7056 * In the case of inline back ref, reference count will
7057 * be updated by remove_extent_backref
7058 */
7059 if (iref) {
7060 BUG_ON(!found_extent);
7061 } else {
7062 btrfs_set_extent_refs(leaf, ei, refs);
7063 btrfs_mark_buffer_dirty(leaf);
7064 }
7065 if (found_extent) {
7066 ret = remove_extent_backref(trans, info, path,
7067 iref, refs_to_drop,
7068 is_data, &last_ref);
7069 if (ret) {
7070 btrfs_abort_transaction(trans, ret);
7071 goto out;
7072 }
7073 }
7074 } else {
7075 if (found_extent) {
7076 BUG_ON(is_data && refs_to_drop !=
7077 extent_data_ref_count(path, iref));
7078 if (iref) {
7079 BUG_ON(path->slots[0] != extent_slot);
7080 } else {
7081 BUG_ON(path->slots[0] != extent_slot + 1);
7082 path->slots[0] = extent_slot;
7083 num_to_del = 2;
7084 }
7085 }
7086
7087 last_ref = 1;
7088 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7089 num_to_del);
7090 if (ret) {
7091 btrfs_abort_transaction(trans, ret);
7092 goto out;
7093 }
7094 btrfs_release_path(path);
7095
7096 if (is_data) {
7097 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7098 if (ret) {
7099 btrfs_abort_transaction(trans, ret);
7100 goto out;
7101 }
7102 }
7103
7104 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7105 if (ret) {
7106 btrfs_abort_transaction(trans, ret);
7107 goto out;
7108 }
7109
7110 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7111 if (ret) {
7112 btrfs_abort_transaction(trans, ret);
7113 goto out;
7114 }
7115 }
7116 btrfs_release_path(path);
7117
7118 out:
7119 btrfs_free_path(path);
7120 return ret;
7121 }
7122
7123 /*
7124 * when we free an block, it is possible (and likely) that we free the last
7125 * delayed ref for that extent as well. This searches the delayed ref tree for
7126 * a given extent, and if there are no other delayed refs to be processed, it
7127 * removes it from the tree.
7128 */
7129 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7130 u64 bytenr)
7131 {
7132 struct btrfs_delayed_ref_head *head;
7133 struct btrfs_delayed_ref_root *delayed_refs;
7134 int ret = 0;
7135
7136 delayed_refs = &trans->transaction->delayed_refs;
7137 spin_lock(&delayed_refs->lock);
7138 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7139 if (!head)
7140 goto out_delayed_unlock;
7141
7142 spin_lock(&head->lock);
7143 if (!list_empty(&head->ref_list))
7144 goto out;
7145
7146 if (head->extent_op) {
7147 if (!head->must_insert_reserved)
7148 goto out;
7149 btrfs_free_delayed_extent_op(head->extent_op);
7150 head->extent_op = NULL;
7151 }
7152
7153 /*
7154 * waiting for the lock here would deadlock. If someone else has it
7155 * locked they are already in the process of dropping it anyway
7156 */
7157 if (!mutex_trylock(&head->mutex))
7158 goto out;
7159
7160 /*
7161 * at this point we have a head with no other entries. Go
7162 * ahead and process it.
7163 */
7164 head->node.in_tree = 0;
7165 rb_erase(&head->href_node, &delayed_refs->href_root);
7166
7167 atomic_dec(&delayed_refs->num_entries);
7168
7169 /*
7170 * we don't take a ref on the node because we're removing it from the
7171 * tree, so we just steal the ref the tree was holding.
7172 */
7173 delayed_refs->num_heads--;
7174 if (head->processing == 0)
7175 delayed_refs->num_heads_ready--;
7176 head->processing = 0;
7177 spin_unlock(&head->lock);
7178 spin_unlock(&delayed_refs->lock);
7179
7180 BUG_ON(head->extent_op);
7181 if (head->must_insert_reserved)
7182 ret = 1;
7183
7184 mutex_unlock(&head->mutex);
7185 btrfs_put_delayed_ref(&head->node);
7186 return ret;
7187 out:
7188 spin_unlock(&head->lock);
7189
7190 out_delayed_unlock:
7191 spin_unlock(&delayed_refs->lock);
7192 return 0;
7193 }
7194
7195 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7196 struct btrfs_root *root,
7197 struct extent_buffer *buf,
7198 u64 parent, int last_ref)
7199 {
7200 struct btrfs_fs_info *fs_info = root->fs_info;
7201 int pin = 1;
7202 int ret;
7203
7204 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7205 int old_ref_mod, new_ref_mod;
7206
7207 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7208 buf->len, parent,
7209 root->root_key.objectid,
7210 btrfs_header_level(buf),
7211 BTRFS_DROP_DELAYED_REF, NULL,
7212 &old_ref_mod, &new_ref_mod);
7213 BUG_ON(ret); /* -ENOMEM */
7214 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7215 }
7216
7217 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7218 struct btrfs_block_group_cache *cache;
7219
7220 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7221 ret = check_ref_cleanup(trans, buf->start);
7222 if (!ret)
7223 goto out;
7224 }
7225
7226 pin = 0;
7227 cache = btrfs_lookup_block_group(fs_info, buf->start);
7228
7229 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7230 pin_down_extent(fs_info, cache, buf->start,
7231 buf->len, 1);
7232 btrfs_put_block_group(cache);
7233 goto out;
7234 }
7235
7236 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7237
7238 btrfs_add_free_space(cache, buf->start, buf->len);
7239 btrfs_free_reserved_bytes(cache, buf->len, 0);
7240 btrfs_put_block_group(cache);
7241 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7242 }
7243 out:
7244 if (pin)
7245 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7246 root->root_key.objectid);
7247
7248 if (last_ref) {
7249 /*
7250 * Deleting the buffer, clear the corrupt flag since it doesn't
7251 * matter anymore.
7252 */
7253 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7254 }
7255 }
7256
7257 /* Can return -ENOMEM */
7258 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7259 struct btrfs_fs_info *fs_info,
7260 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7261 u64 owner, u64 offset)
7262 {
7263 int old_ref_mod, new_ref_mod;
7264 int ret;
7265
7266 if (btrfs_is_testing(fs_info))
7267 return 0;
7268
7269
7270 /*
7271 * tree log blocks never actually go into the extent allocation
7272 * tree, just update pinning info and exit early.
7273 */
7274 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7275 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7276 /* unlocks the pinned mutex */
7277 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7278 old_ref_mod = new_ref_mod = 0;
7279 ret = 0;
7280 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7281 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7282 num_bytes, parent,
7283 root_objectid, (int)owner,
7284 BTRFS_DROP_DELAYED_REF, NULL,
7285 &old_ref_mod, &new_ref_mod);
7286 } else {
7287 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7288 num_bytes, parent,
7289 root_objectid, owner, offset,
7290 0, BTRFS_DROP_DELAYED_REF,
7291 &old_ref_mod, &new_ref_mod);
7292 }
7293
7294 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7295 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7296
7297 return ret;
7298 }
7299
7300 /*
7301 * when we wait for progress in the block group caching, its because
7302 * our allocation attempt failed at least once. So, we must sleep
7303 * and let some progress happen before we try again.
7304 *
7305 * This function will sleep at least once waiting for new free space to
7306 * show up, and then it will check the block group free space numbers
7307 * for our min num_bytes. Another option is to have it go ahead
7308 * and look in the rbtree for a free extent of a given size, but this
7309 * is a good start.
7310 *
7311 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7312 * any of the information in this block group.
7313 */
7314 static noinline void
7315 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7316 u64 num_bytes)
7317 {
7318 struct btrfs_caching_control *caching_ctl;
7319
7320 caching_ctl = get_caching_control(cache);
7321 if (!caching_ctl)
7322 return;
7323
7324 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7325 (cache->free_space_ctl->free_space >= num_bytes));
7326
7327 put_caching_control(caching_ctl);
7328 }
7329
7330 static noinline int
7331 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7332 {
7333 struct btrfs_caching_control *caching_ctl;
7334 int ret = 0;
7335
7336 caching_ctl = get_caching_control(cache);
7337 if (!caching_ctl)
7338 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7339
7340 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7341 if (cache->cached == BTRFS_CACHE_ERROR)
7342 ret = -EIO;
7343 put_caching_control(caching_ctl);
7344 return ret;
7345 }
7346
7347 int __get_raid_index(u64 flags)
7348 {
7349 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7350 return BTRFS_RAID_RAID10;
7351 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7352 return BTRFS_RAID_RAID1;
7353 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7354 return BTRFS_RAID_DUP;
7355 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7356 return BTRFS_RAID_RAID0;
7357 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7358 return BTRFS_RAID_RAID5;
7359 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7360 return BTRFS_RAID_RAID6;
7361
7362 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7363 }
7364
7365 int get_block_group_index(struct btrfs_block_group_cache *cache)
7366 {
7367 return __get_raid_index(cache->flags);
7368 }
7369
7370 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7371 [BTRFS_RAID_RAID10] = "raid10",
7372 [BTRFS_RAID_RAID1] = "raid1",
7373 [BTRFS_RAID_DUP] = "dup",
7374 [BTRFS_RAID_RAID0] = "raid0",
7375 [BTRFS_RAID_SINGLE] = "single",
7376 [BTRFS_RAID_RAID5] = "raid5",
7377 [BTRFS_RAID_RAID6] = "raid6",
7378 };
7379
7380 static const char *get_raid_name(enum btrfs_raid_types type)
7381 {
7382 if (type >= BTRFS_NR_RAID_TYPES)
7383 return NULL;
7384
7385 return btrfs_raid_type_names[type];
7386 }
7387
7388 enum btrfs_loop_type {
7389 LOOP_CACHING_NOWAIT = 0,
7390 LOOP_CACHING_WAIT = 1,
7391 LOOP_ALLOC_CHUNK = 2,
7392 LOOP_NO_EMPTY_SIZE = 3,
7393 };
7394
7395 static inline void
7396 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7397 int delalloc)
7398 {
7399 if (delalloc)
7400 down_read(&cache->data_rwsem);
7401 }
7402
7403 static inline void
7404 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7405 int delalloc)
7406 {
7407 btrfs_get_block_group(cache);
7408 if (delalloc)
7409 down_read(&cache->data_rwsem);
7410 }
7411
7412 static struct btrfs_block_group_cache *
7413 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7414 struct btrfs_free_cluster *cluster,
7415 int delalloc)
7416 {
7417 struct btrfs_block_group_cache *used_bg = NULL;
7418
7419 spin_lock(&cluster->refill_lock);
7420 while (1) {
7421 used_bg = cluster->block_group;
7422 if (!used_bg)
7423 return NULL;
7424
7425 if (used_bg == block_group)
7426 return used_bg;
7427
7428 btrfs_get_block_group(used_bg);
7429
7430 if (!delalloc)
7431 return used_bg;
7432
7433 if (down_read_trylock(&used_bg->data_rwsem))
7434 return used_bg;
7435
7436 spin_unlock(&cluster->refill_lock);
7437
7438 /* We should only have one-level nested. */
7439 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7440
7441 spin_lock(&cluster->refill_lock);
7442 if (used_bg == cluster->block_group)
7443 return used_bg;
7444
7445 up_read(&used_bg->data_rwsem);
7446 btrfs_put_block_group(used_bg);
7447 }
7448 }
7449
7450 static inline void
7451 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7452 int delalloc)
7453 {
7454 if (delalloc)
7455 up_read(&cache->data_rwsem);
7456 btrfs_put_block_group(cache);
7457 }
7458
7459 /*
7460 * walks the btree of allocated extents and find a hole of a given size.
7461 * The key ins is changed to record the hole:
7462 * ins->objectid == start position
7463 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7464 * ins->offset == the size of the hole.
7465 * Any available blocks before search_start are skipped.
7466 *
7467 * If there is no suitable free space, we will record the max size of
7468 * the free space extent currently.
7469 */
7470 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7471 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7472 u64 hint_byte, struct btrfs_key *ins,
7473 u64 flags, int delalloc)
7474 {
7475 int ret = 0;
7476 struct btrfs_root *root = fs_info->extent_root;
7477 struct btrfs_free_cluster *last_ptr = NULL;
7478 struct btrfs_block_group_cache *block_group = NULL;
7479 u64 search_start = 0;
7480 u64 max_extent_size = 0;
7481 u64 empty_cluster = 0;
7482 struct btrfs_space_info *space_info;
7483 int loop = 0;
7484 int index = __get_raid_index(flags);
7485 bool failed_cluster_refill = false;
7486 bool failed_alloc = false;
7487 bool use_cluster = true;
7488 bool have_caching_bg = false;
7489 bool orig_have_caching_bg = false;
7490 bool full_search = false;
7491
7492 WARN_ON(num_bytes < fs_info->sectorsize);
7493 ins->type = BTRFS_EXTENT_ITEM_KEY;
7494 ins->objectid = 0;
7495 ins->offset = 0;
7496
7497 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7498
7499 space_info = __find_space_info(fs_info, flags);
7500 if (!space_info) {
7501 btrfs_err(fs_info, "No space info for %llu", flags);
7502 return -ENOSPC;
7503 }
7504
7505 /*
7506 * If our free space is heavily fragmented we may not be able to make
7507 * big contiguous allocations, so instead of doing the expensive search
7508 * for free space, simply return ENOSPC with our max_extent_size so we
7509 * can go ahead and search for a more manageable chunk.
7510 *
7511 * If our max_extent_size is large enough for our allocation simply
7512 * disable clustering since we will likely not be able to find enough
7513 * space to create a cluster and induce latency trying.
7514 */
7515 if (unlikely(space_info->max_extent_size)) {
7516 spin_lock(&space_info->lock);
7517 if (space_info->max_extent_size &&
7518 num_bytes > space_info->max_extent_size) {
7519 ins->offset = space_info->max_extent_size;
7520 spin_unlock(&space_info->lock);
7521 return -ENOSPC;
7522 } else if (space_info->max_extent_size) {
7523 use_cluster = false;
7524 }
7525 spin_unlock(&space_info->lock);
7526 }
7527
7528 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7529 if (last_ptr) {
7530 spin_lock(&last_ptr->lock);
7531 if (last_ptr->block_group)
7532 hint_byte = last_ptr->window_start;
7533 if (last_ptr->fragmented) {
7534 /*
7535 * We still set window_start so we can keep track of the
7536 * last place we found an allocation to try and save
7537 * some time.
7538 */
7539 hint_byte = last_ptr->window_start;
7540 use_cluster = false;
7541 }
7542 spin_unlock(&last_ptr->lock);
7543 }
7544
7545 search_start = max(search_start, first_logical_byte(fs_info, 0));
7546 search_start = max(search_start, hint_byte);
7547 if (search_start == hint_byte) {
7548 block_group = btrfs_lookup_block_group(fs_info, search_start);
7549 /*
7550 * we don't want to use the block group if it doesn't match our
7551 * allocation bits, or if its not cached.
7552 *
7553 * However if we are re-searching with an ideal block group
7554 * picked out then we don't care that the block group is cached.
7555 */
7556 if (block_group && block_group_bits(block_group, flags) &&
7557 block_group->cached != BTRFS_CACHE_NO) {
7558 down_read(&space_info->groups_sem);
7559 if (list_empty(&block_group->list) ||
7560 block_group->ro) {
7561 /*
7562 * someone is removing this block group,
7563 * we can't jump into the have_block_group
7564 * target because our list pointers are not
7565 * valid
7566 */
7567 btrfs_put_block_group(block_group);
7568 up_read(&space_info->groups_sem);
7569 } else {
7570 index = get_block_group_index(block_group);
7571 btrfs_lock_block_group(block_group, delalloc);
7572 goto have_block_group;
7573 }
7574 } else if (block_group) {
7575 btrfs_put_block_group(block_group);
7576 }
7577 }
7578 search:
7579 have_caching_bg = false;
7580 if (index == 0 || index == __get_raid_index(flags))
7581 full_search = true;
7582 down_read(&space_info->groups_sem);
7583 list_for_each_entry(block_group, &space_info->block_groups[index],
7584 list) {
7585 u64 offset;
7586 int cached;
7587
7588 /* If the block group is read-only, we can skip it entirely. */
7589 if (unlikely(block_group->ro))
7590 continue;
7591
7592 btrfs_grab_block_group(block_group, delalloc);
7593 search_start = block_group->key.objectid;
7594
7595 /*
7596 * this can happen if we end up cycling through all the
7597 * raid types, but we want to make sure we only allocate
7598 * for the proper type.
7599 */
7600 if (!block_group_bits(block_group, flags)) {
7601 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7602 BTRFS_BLOCK_GROUP_RAID1 |
7603 BTRFS_BLOCK_GROUP_RAID5 |
7604 BTRFS_BLOCK_GROUP_RAID6 |
7605 BTRFS_BLOCK_GROUP_RAID10;
7606
7607 /*
7608 * if they asked for extra copies and this block group
7609 * doesn't provide them, bail. This does allow us to
7610 * fill raid0 from raid1.
7611 */
7612 if ((flags & extra) && !(block_group->flags & extra))
7613 goto loop;
7614 }
7615
7616 have_block_group:
7617 cached = block_group_cache_done(block_group);
7618 if (unlikely(!cached)) {
7619 have_caching_bg = true;
7620 ret = cache_block_group(block_group, 0);
7621 BUG_ON(ret < 0);
7622 ret = 0;
7623 }
7624
7625 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7626 goto loop;
7627
7628 /*
7629 * Ok we want to try and use the cluster allocator, so
7630 * lets look there
7631 */
7632 if (last_ptr && use_cluster) {
7633 struct btrfs_block_group_cache *used_block_group;
7634 unsigned long aligned_cluster;
7635 /*
7636 * the refill lock keeps out other
7637 * people trying to start a new cluster
7638 */
7639 used_block_group = btrfs_lock_cluster(block_group,
7640 last_ptr,
7641 delalloc);
7642 if (!used_block_group)
7643 goto refill_cluster;
7644
7645 if (used_block_group != block_group &&
7646 (used_block_group->ro ||
7647 !block_group_bits(used_block_group, flags)))
7648 goto release_cluster;
7649
7650 offset = btrfs_alloc_from_cluster(used_block_group,
7651 last_ptr,
7652 num_bytes,
7653 used_block_group->key.objectid,
7654 &max_extent_size);
7655 if (offset) {
7656 /* we have a block, we're done */
7657 spin_unlock(&last_ptr->refill_lock);
7658 trace_btrfs_reserve_extent_cluster(fs_info,
7659 used_block_group,
7660 search_start, num_bytes);
7661 if (used_block_group != block_group) {
7662 btrfs_release_block_group(block_group,
7663 delalloc);
7664 block_group = used_block_group;
7665 }
7666 goto checks;
7667 }
7668
7669 WARN_ON(last_ptr->block_group != used_block_group);
7670 release_cluster:
7671 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7672 * set up a new clusters, so lets just skip it
7673 * and let the allocator find whatever block
7674 * it can find. If we reach this point, we
7675 * will have tried the cluster allocator
7676 * plenty of times and not have found
7677 * anything, so we are likely way too
7678 * fragmented for the clustering stuff to find
7679 * anything.
7680 *
7681 * However, if the cluster is taken from the
7682 * current block group, release the cluster
7683 * first, so that we stand a better chance of
7684 * succeeding in the unclustered
7685 * allocation. */
7686 if (loop >= LOOP_NO_EMPTY_SIZE &&
7687 used_block_group != block_group) {
7688 spin_unlock(&last_ptr->refill_lock);
7689 btrfs_release_block_group(used_block_group,
7690 delalloc);
7691 goto unclustered_alloc;
7692 }
7693
7694 /*
7695 * this cluster didn't work out, free it and
7696 * start over
7697 */
7698 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7699
7700 if (used_block_group != block_group)
7701 btrfs_release_block_group(used_block_group,
7702 delalloc);
7703 refill_cluster:
7704 if (loop >= LOOP_NO_EMPTY_SIZE) {
7705 spin_unlock(&last_ptr->refill_lock);
7706 goto unclustered_alloc;
7707 }
7708
7709 aligned_cluster = max_t(unsigned long,
7710 empty_cluster + empty_size,
7711 block_group->full_stripe_len);
7712
7713 /* allocate a cluster in this block group */
7714 ret = btrfs_find_space_cluster(fs_info, block_group,
7715 last_ptr, search_start,
7716 num_bytes,
7717 aligned_cluster);
7718 if (ret == 0) {
7719 /*
7720 * now pull our allocation out of this
7721 * cluster
7722 */
7723 offset = btrfs_alloc_from_cluster(block_group,
7724 last_ptr,
7725 num_bytes,
7726 search_start,
7727 &max_extent_size);
7728 if (offset) {
7729 /* we found one, proceed */
7730 spin_unlock(&last_ptr->refill_lock);
7731 trace_btrfs_reserve_extent_cluster(fs_info,
7732 block_group, search_start,
7733 num_bytes);
7734 goto checks;
7735 }
7736 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7737 && !failed_cluster_refill) {
7738 spin_unlock(&last_ptr->refill_lock);
7739
7740 failed_cluster_refill = true;
7741 wait_block_group_cache_progress(block_group,
7742 num_bytes + empty_cluster + empty_size);
7743 goto have_block_group;
7744 }
7745
7746 /*
7747 * at this point we either didn't find a cluster
7748 * or we weren't able to allocate a block from our
7749 * cluster. Free the cluster we've been trying
7750 * to use, and go to the next block group
7751 */
7752 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7753 spin_unlock(&last_ptr->refill_lock);
7754 goto loop;
7755 }
7756
7757 unclustered_alloc:
7758 /*
7759 * We are doing an unclustered alloc, set the fragmented flag so
7760 * we don't bother trying to setup a cluster again until we get
7761 * more space.
7762 */
7763 if (unlikely(last_ptr)) {
7764 spin_lock(&last_ptr->lock);
7765 last_ptr->fragmented = 1;
7766 spin_unlock(&last_ptr->lock);
7767 }
7768 if (cached) {
7769 struct btrfs_free_space_ctl *ctl =
7770 block_group->free_space_ctl;
7771
7772 spin_lock(&ctl->tree_lock);
7773 if (ctl->free_space <
7774 num_bytes + empty_cluster + empty_size) {
7775 if (ctl->free_space > max_extent_size)
7776 max_extent_size = ctl->free_space;
7777 spin_unlock(&ctl->tree_lock);
7778 goto loop;
7779 }
7780 spin_unlock(&ctl->tree_lock);
7781 }
7782
7783 offset = btrfs_find_space_for_alloc(block_group, search_start,
7784 num_bytes, empty_size,
7785 &max_extent_size);
7786 /*
7787 * If we didn't find a chunk, and we haven't failed on this
7788 * block group before, and this block group is in the middle of
7789 * caching and we are ok with waiting, then go ahead and wait
7790 * for progress to be made, and set failed_alloc to true.
7791 *
7792 * If failed_alloc is true then we've already waited on this
7793 * block group once and should move on to the next block group.
7794 */
7795 if (!offset && !failed_alloc && !cached &&
7796 loop > LOOP_CACHING_NOWAIT) {
7797 wait_block_group_cache_progress(block_group,
7798 num_bytes + empty_size);
7799 failed_alloc = true;
7800 goto have_block_group;
7801 } else if (!offset) {
7802 goto loop;
7803 }
7804 checks:
7805 search_start = ALIGN(offset, fs_info->stripesize);
7806
7807 /* move on to the next group */
7808 if (search_start + num_bytes >
7809 block_group->key.objectid + block_group->key.offset) {
7810 btrfs_add_free_space(block_group, offset, num_bytes);
7811 goto loop;
7812 }
7813
7814 if (offset < search_start)
7815 btrfs_add_free_space(block_group, offset,
7816 search_start - offset);
7817 BUG_ON(offset > search_start);
7818
7819 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7820 num_bytes, delalloc);
7821 if (ret == -EAGAIN) {
7822 btrfs_add_free_space(block_group, offset, num_bytes);
7823 goto loop;
7824 }
7825 btrfs_inc_block_group_reservations(block_group);
7826
7827 /* we are all good, lets return */
7828 ins->objectid = search_start;
7829 ins->offset = num_bytes;
7830
7831 trace_btrfs_reserve_extent(fs_info, block_group,
7832 search_start, num_bytes);
7833 btrfs_release_block_group(block_group, delalloc);
7834 break;
7835 loop:
7836 failed_cluster_refill = false;
7837 failed_alloc = false;
7838 BUG_ON(index != get_block_group_index(block_group));
7839 btrfs_release_block_group(block_group, delalloc);
7840 cond_resched();
7841 }
7842 up_read(&space_info->groups_sem);
7843
7844 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7845 && !orig_have_caching_bg)
7846 orig_have_caching_bg = true;
7847
7848 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7849 goto search;
7850
7851 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7852 goto search;
7853
7854 /*
7855 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7856 * caching kthreads as we move along
7857 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7858 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7859 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7860 * again
7861 */
7862 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7863 index = 0;
7864 if (loop == LOOP_CACHING_NOWAIT) {
7865 /*
7866 * We want to skip the LOOP_CACHING_WAIT step if we
7867 * don't have any uncached bgs and we've already done a
7868 * full search through.
7869 */
7870 if (orig_have_caching_bg || !full_search)
7871 loop = LOOP_CACHING_WAIT;
7872 else
7873 loop = LOOP_ALLOC_CHUNK;
7874 } else {
7875 loop++;
7876 }
7877
7878 if (loop == LOOP_ALLOC_CHUNK) {
7879 struct btrfs_trans_handle *trans;
7880 int exist = 0;
7881
7882 trans = current->journal_info;
7883 if (trans)
7884 exist = 1;
7885 else
7886 trans = btrfs_join_transaction(root);
7887
7888 if (IS_ERR(trans)) {
7889 ret = PTR_ERR(trans);
7890 goto out;
7891 }
7892
7893 ret = do_chunk_alloc(trans, fs_info, flags,
7894 CHUNK_ALLOC_FORCE);
7895
7896 /*
7897 * If we can't allocate a new chunk we've already looped
7898 * through at least once, move on to the NO_EMPTY_SIZE
7899 * case.
7900 */
7901 if (ret == -ENOSPC)
7902 loop = LOOP_NO_EMPTY_SIZE;
7903
7904 /*
7905 * Do not bail out on ENOSPC since we
7906 * can do more things.
7907 */
7908 if (ret < 0 && ret != -ENOSPC)
7909 btrfs_abort_transaction(trans, ret);
7910 else
7911 ret = 0;
7912 if (!exist)
7913 btrfs_end_transaction(trans);
7914 if (ret)
7915 goto out;
7916 }
7917
7918 if (loop == LOOP_NO_EMPTY_SIZE) {
7919 /*
7920 * Don't loop again if we already have no empty_size and
7921 * no empty_cluster.
7922 */
7923 if (empty_size == 0 &&
7924 empty_cluster == 0) {
7925 ret = -ENOSPC;
7926 goto out;
7927 }
7928 empty_size = 0;
7929 empty_cluster = 0;
7930 }
7931
7932 goto search;
7933 } else if (!ins->objectid) {
7934 ret = -ENOSPC;
7935 } else if (ins->objectid) {
7936 if (!use_cluster && last_ptr) {
7937 spin_lock(&last_ptr->lock);
7938 last_ptr->window_start = ins->objectid;
7939 spin_unlock(&last_ptr->lock);
7940 }
7941 ret = 0;
7942 }
7943 out:
7944 if (ret == -ENOSPC) {
7945 spin_lock(&space_info->lock);
7946 space_info->max_extent_size = max_extent_size;
7947 spin_unlock(&space_info->lock);
7948 ins->offset = max_extent_size;
7949 }
7950 return ret;
7951 }
7952
7953 static void dump_space_info(struct btrfs_fs_info *fs_info,
7954 struct btrfs_space_info *info, u64 bytes,
7955 int dump_block_groups)
7956 {
7957 struct btrfs_block_group_cache *cache;
7958 int index = 0;
7959
7960 spin_lock(&info->lock);
7961 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7962 info->flags,
7963 info->total_bytes - btrfs_space_info_used(info, true),
7964 info->full ? "" : "not ");
7965 btrfs_info(fs_info,
7966 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7967 info->total_bytes, info->bytes_used, info->bytes_pinned,
7968 info->bytes_reserved, info->bytes_may_use,
7969 info->bytes_readonly);
7970 spin_unlock(&info->lock);
7971
7972 if (!dump_block_groups)
7973 return;
7974
7975 down_read(&info->groups_sem);
7976 again:
7977 list_for_each_entry(cache, &info->block_groups[index], list) {
7978 spin_lock(&cache->lock);
7979 btrfs_info(fs_info,
7980 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7981 cache->key.objectid, cache->key.offset,
7982 btrfs_block_group_used(&cache->item), cache->pinned,
7983 cache->reserved, cache->ro ? "[readonly]" : "");
7984 btrfs_dump_free_space(cache, bytes);
7985 spin_unlock(&cache->lock);
7986 }
7987 if (++index < BTRFS_NR_RAID_TYPES)
7988 goto again;
7989 up_read(&info->groups_sem);
7990 }
7991
7992 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7993 u64 num_bytes, u64 min_alloc_size,
7994 u64 empty_size, u64 hint_byte,
7995 struct btrfs_key *ins, int is_data, int delalloc)
7996 {
7997 struct btrfs_fs_info *fs_info = root->fs_info;
7998 bool final_tried = num_bytes == min_alloc_size;
7999 u64 flags;
8000 int ret;
8001
8002 flags = get_alloc_profile_by_root(root, is_data);
8003 again:
8004 WARN_ON(num_bytes < fs_info->sectorsize);
8005 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8006 hint_byte, ins, flags, delalloc);
8007 if (!ret && !is_data) {
8008 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8009 } else if (ret == -ENOSPC) {
8010 if (!final_tried && ins->offset) {
8011 num_bytes = min(num_bytes >> 1, ins->offset);
8012 num_bytes = round_down(num_bytes,
8013 fs_info->sectorsize);
8014 num_bytes = max(num_bytes, min_alloc_size);
8015 ram_bytes = num_bytes;
8016 if (num_bytes == min_alloc_size)
8017 final_tried = true;
8018 goto again;
8019 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8020 struct btrfs_space_info *sinfo;
8021
8022 sinfo = __find_space_info(fs_info, flags);
8023 btrfs_err(fs_info,
8024 "allocation failed flags %llu, wanted %llu",
8025 flags, num_bytes);
8026 if (sinfo)
8027 dump_space_info(fs_info, sinfo, num_bytes, 1);
8028 }
8029 }
8030
8031 return ret;
8032 }
8033
8034 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8035 u64 start, u64 len,
8036 int pin, int delalloc)
8037 {
8038 struct btrfs_block_group_cache *cache;
8039 int ret = 0;
8040
8041 cache = btrfs_lookup_block_group(fs_info, start);
8042 if (!cache) {
8043 btrfs_err(fs_info, "Unable to find block group for %llu",
8044 start);
8045 return -ENOSPC;
8046 }
8047
8048 if (pin)
8049 pin_down_extent(fs_info, cache, start, len, 1);
8050 else {
8051 if (btrfs_test_opt(fs_info, DISCARD))
8052 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8053 btrfs_add_free_space(cache, start, len);
8054 btrfs_free_reserved_bytes(cache, len, delalloc);
8055 trace_btrfs_reserved_extent_free(fs_info, start, len);
8056 }
8057
8058 btrfs_put_block_group(cache);
8059 return ret;
8060 }
8061
8062 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8063 u64 start, u64 len, int delalloc)
8064 {
8065 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8066 }
8067
8068 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8069 u64 start, u64 len)
8070 {
8071 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8072 }
8073
8074 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8075 struct btrfs_fs_info *fs_info,
8076 u64 parent, u64 root_objectid,
8077 u64 flags, u64 owner, u64 offset,
8078 struct btrfs_key *ins, int ref_mod)
8079 {
8080 int ret;
8081 struct btrfs_extent_item *extent_item;
8082 struct btrfs_extent_inline_ref *iref;
8083 struct btrfs_path *path;
8084 struct extent_buffer *leaf;
8085 int type;
8086 u32 size;
8087
8088 if (parent > 0)
8089 type = BTRFS_SHARED_DATA_REF_KEY;
8090 else
8091 type = BTRFS_EXTENT_DATA_REF_KEY;
8092
8093 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8094
8095 path = btrfs_alloc_path();
8096 if (!path)
8097 return -ENOMEM;
8098
8099 path->leave_spinning = 1;
8100 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8101 ins, size);
8102 if (ret) {
8103 btrfs_free_path(path);
8104 return ret;
8105 }
8106
8107 leaf = path->nodes[0];
8108 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8109 struct btrfs_extent_item);
8110 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8111 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8112 btrfs_set_extent_flags(leaf, extent_item,
8113 flags | BTRFS_EXTENT_FLAG_DATA);
8114
8115 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8116 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8117 if (parent > 0) {
8118 struct btrfs_shared_data_ref *ref;
8119 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8120 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8121 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8122 } else {
8123 struct btrfs_extent_data_ref *ref;
8124 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8125 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8126 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8127 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8128 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8129 }
8130
8131 btrfs_mark_buffer_dirty(path->nodes[0]);
8132 btrfs_free_path(path);
8133
8134 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8135 ins->offset);
8136 if (ret)
8137 return ret;
8138
8139 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8140 if (ret) { /* -ENOENT, logic error */
8141 btrfs_err(fs_info, "update block group failed for %llu %llu",
8142 ins->objectid, ins->offset);
8143 BUG();
8144 }
8145 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8146 return ret;
8147 }
8148
8149 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8150 struct btrfs_fs_info *fs_info,
8151 u64 parent, u64 root_objectid,
8152 u64 flags, struct btrfs_disk_key *key,
8153 int level, struct btrfs_key *ins)
8154 {
8155 int ret;
8156 struct btrfs_extent_item *extent_item;
8157 struct btrfs_tree_block_info *block_info;
8158 struct btrfs_extent_inline_ref *iref;
8159 struct btrfs_path *path;
8160 struct extent_buffer *leaf;
8161 u32 size = sizeof(*extent_item) + sizeof(*iref);
8162 u64 num_bytes = ins->offset;
8163 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8164
8165 if (!skinny_metadata)
8166 size += sizeof(*block_info);
8167
8168 path = btrfs_alloc_path();
8169 if (!path) {
8170 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8171 fs_info->nodesize);
8172 return -ENOMEM;
8173 }
8174
8175 path->leave_spinning = 1;
8176 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8177 ins, size);
8178 if (ret) {
8179 btrfs_free_path(path);
8180 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8181 fs_info->nodesize);
8182 return ret;
8183 }
8184
8185 leaf = path->nodes[0];
8186 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8187 struct btrfs_extent_item);
8188 btrfs_set_extent_refs(leaf, extent_item, 1);
8189 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8190 btrfs_set_extent_flags(leaf, extent_item,
8191 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8192
8193 if (skinny_metadata) {
8194 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8195 num_bytes = fs_info->nodesize;
8196 } else {
8197 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8198 btrfs_set_tree_block_key(leaf, block_info, key);
8199 btrfs_set_tree_block_level(leaf, block_info, level);
8200 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8201 }
8202
8203 if (parent > 0) {
8204 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8205 btrfs_set_extent_inline_ref_type(leaf, iref,
8206 BTRFS_SHARED_BLOCK_REF_KEY);
8207 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8208 } else {
8209 btrfs_set_extent_inline_ref_type(leaf, iref,
8210 BTRFS_TREE_BLOCK_REF_KEY);
8211 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8212 }
8213
8214 btrfs_mark_buffer_dirty(leaf);
8215 btrfs_free_path(path);
8216
8217 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8218 num_bytes);
8219 if (ret)
8220 return ret;
8221
8222 ret = update_block_group(trans, fs_info, ins->objectid,
8223 fs_info->nodesize, 1);
8224 if (ret) { /* -ENOENT, logic error */
8225 btrfs_err(fs_info, "update block group failed for %llu %llu",
8226 ins->objectid, ins->offset);
8227 BUG();
8228 }
8229
8230 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8231 fs_info->nodesize);
8232 return ret;
8233 }
8234
8235 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8236 u64 root_objectid, u64 owner,
8237 u64 offset, u64 ram_bytes,
8238 struct btrfs_key *ins)
8239 {
8240 struct btrfs_fs_info *fs_info = trans->fs_info;
8241 int ret;
8242
8243 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8244
8245 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8246 ins->offset, 0, root_objectid, owner,
8247 offset, ram_bytes,
8248 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8249 return ret;
8250 }
8251
8252 /*
8253 * this is used by the tree logging recovery code. It records that
8254 * an extent has been allocated and makes sure to clear the free
8255 * space cache bits as well
8256 */
8257 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8258 struct btrfs_fs_info *fs_info,
8259 u64 root_objectid, u64 owner, u64 offset,
8260 struct btrfs_key *ins)
8261 {
8262 int ret;
8263 struct btrfs_block_group_cache *block_group;
8264 struct btrfs_space_info *space_info;
8265
8266 /*
8267 * Mixed block groups will exclude before processing the log so we only
8268 * need to do the exclude dance if this fs isn't mixed.
8269 */
8270 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8271 ret = __exclude_logged_extent(fs_info, ins->objectid,
8272 ins->offset);
8273 if (ret)
8274 return ret;
8275 }
8276
8277 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8278 if (!block_group)
8279 return -EINVAL;
8280
8281 space_info = block_group->space_info;
8282 spin_lock(&space_info->lock);
8283 spin_lock(&block_group->lock);
8284 space_info->bytes_reserved += ins->offset;
8285 block_group->reserved += ins->offset;
8286 spin_unlock(&block_group->lock);
8287 spin_unlock(&space_info->lock);
8288
8289 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8290 0, owner, offset, ins, 1);
8291 btrfs_put_block_group(block_group);
8292 return ret;
8293 }
8294
8295 static struct extent_buffer *
8296 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8297 u64 bytenr, int level)
8298 {
8299 struct btrfs_fs_info *fs_info = root->fs_info;
8300 struct extent_buffer *buf;
8301
8302 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8303 if (IS_ERR(buf))
8304 return buf;
8305
8306 btrfs_set_header_generation(buf, trans->transid);
8307 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8308 btrfs_tree_lock(buf);
8309 clean_tree_block(fs_info, buf);
8310 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8311
8312 btrfs_set_lock_blocking(buf);
8313 set_extent_buffer_uptodate(buf);
8314
8315 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8316 buf->log_index = root->log_transid % 2;
8317 /*
8318 * we allow two log transactions at a time, use different
8319 * EXENT bit to differentiate dirty pages.
8320 */
8321 if (buf->log_index == 0)
8322 set_extent_dirty(&root->dirty_log_pages, buf->start,
8323 buf->start + buf->len - 1, GFP_NOFS);
8324 else
8325 set_extent_new(&root->dirty_log_pages, buf->start,
8326 buf->start + buf->len - 1);
8327 } else {
8328 buf->log_index = -1;
8329 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8330 buf->start + buf->len - 1, GFP_NOFS);
8331 }
8332 trans->dirty = true;
8333 /* this returns a buffer locked for blocking */
8334 return buf;
8335 }
8336
8337 static struct btrfs_block_rsv *
8338 use_block_rsv(struct btrfs_trans_handle *trans,
8339 struct btrfs_root *root, u32 blocksize)
8340 {
8341 struct btrfs_fs_info *fs_info = root->fs_info;
8342 struct btrfs_block_rsv *block_rsv;
8343 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8344 int ret;
8345 bool global_updated = false;
8346
8347 block_rsv = get_block_rsv(trans, root);
8348
8349 if (unlikely(block_rsv->size == 0))
8350 goto try_reserve;
8351 again:
8352 ret = block_rsv_use_bytes(block_rsv, blocksize);
8353 if (!ret)
8354 return block_rsv;
8355
8356 if (block_rsv->failfast)
8357 return ERR_PTR(ret);
8358
8359 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8360 global_updated = true;
8361 update_global_block_rsv(fs_info);
8362 goto again;
8363 }
8364
8365 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8366 static DEFINE_RATELIMIT_STATE(_rs,
8367 DEFAULT_RATELIMIT_INTERVAL * 10,
8368 /*DEFAULT_RATELIMIT_BURST*/ 1);
8369 if (__ratelimit(&_rs))
8370 WARN(1, KERN_DEBUG
8371 "BTRFS: block rsv returned %d\n", ret);
8372 }
8373 try_reserve:
8374 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8375 BTRFS_RESERVE_NO_FLUSH);
8376 if (!ret)
8377 return block_rsv;
8378 /*
8379 * If we couldn't reserve metadata bytes try and use some from
8380 * the global reserve if its space type is the same as the global
8381 * reservation.
8382 */
8383 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8384 block_rsv->space_info == global_rsv->space_info) {
8385 ret = block_rsv_use_bytes(global_rsv, blocksize);
8386 if (!ret)
8387 return global_rsv;
8388 }
8389 return ERR_PTR(ret);
8390 }
8391
8392 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8393 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8394 {
8395 block_rsv_add_bytes(block_rsv, blocksize, 0);
8396 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8397 }
8398
8399 /*
8400 * finds a free extent and does all the dirty work required for allocation
8401 * returns the tree buffer or an ERR_PTR on error.
8402 */
8403 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8404 struct btrfs_root *root,
8405 u64 parent, u64 root_objectid,
8406 const struct btrfs_disk_key *key,
8407 int level, u64 hint,
8408 u64 empty_size)
8409 {
8410 struct btrfs_fs_info *fs_info = root->fs_info;
8411 struct btrfs_key ins;
8412 struct btrfs_block_rsv *block_rsv;
8413 struct extent_buffer *buf;
8414 struct btrfs_delayed_extent_op *extent_op;
8415 u64 flags = 0;
8416 int ret;
8417 u32 blocksize = fs_info->nodesize;
8418 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8419
8420 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8421 if (btrfs_is_testing(fs_info)) {
8422 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8423 level);
8424 if (!IS_ERR(buf))
8425 root->alloc_bytenr += blocksize;
8426 return buf;
8427 }
8428 #endif
8429
8430 block_rsv = use_block_rsv(trans, root, blocksize);
8431 if (IS_ERR(block_rsv))
8432 return ERR_CAST(block_rsv);
8433
8434 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8435 empty_size, hint, &ins, 0, 0);
8436 if (ret)
8437 goto out_unuse;
8438
8439 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8440 if (IS_ERR(buf)) {
8441 ret = PTR_ERR(buf);
8442 goto out_free_reserved;
8443 }
8444
8445 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8446 if (parent == 0)
8447 parent = ins.objectid;
8448 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8449 } else
8450 BUG_ON(parent > 0);
8451
8452 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8453 extent_op = btrfs_alloc_delayed_extent_op();
8454 if (!extent_op) {
8455 ret = -ENOMEM;
8456 goto out_free_buf;
8457 }
8458 if (key)
8459 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8460 else
8461 memset(&extent_op->key, 0, sizeof(extent_op->key));
8462 extent_op->flags_to_set = flags;
8463 extent_op->update_key = skinny_metadata ? false : true;
8464 extent_op->update_flags = true;
8465 extent_op->is_data = false;
8466 extent_op->level = level;
8467
8468 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8469 ins.offset, parent,
8470 root_objectid, level,
8471 BTRFS_ADD_DELAYED_EXTENT,
8472 extent_op, NULL, NULL);
8473 if (ret)
8474 goto out_free_delayed;
8475 }
8476 return buf;
8477
8478 out_free_delayed:
8479 btrfs_free_delayed_extent_op(extent_op);
8480 out_free_buf:
8481 free_extent_buffer(buf);
8482 out_free_reserved:
8483 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8484 out_unuse:
8485 unuse_block_rsv(fs_info, block_rsv, blocksize);
8486 return ERR_PTR(ret);
8487 }
8488
8489 struct walk_control {
8490 u64 refs[BTRFS_MAX_LEVEL];
8491 u64 flags[BTRFS_MAX_LEVEL];
8492 struct btrfs_key update_progress;
8493 int stage;
8494 int level;
8495 int shared_level;
8496 int update_ref;
8497 int keep_locks;
8498 int reada_slot;
8499 int reada_count;
8500 int for_reloc;
8501 };
8502
8503 #define DROP_REFERENCE 1
8504 #define UPDATE_BACKREF 2
8505
8506 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8507 struct btrfs_root *root,
8508 struct walk_control *wc,
8509 struct btrfs_path *path)
8510 {
8511 struct btrfs_fs_info *fs_info = root->fs_info;
8512 u64 bytenr;
8513 u64 generation;
8514 u64 refs;
8515 u64 flags;
8516 u32 nritems;
8517 struct btrfs_key key;
8518 struct extent_buffer *eb;
8519 int ret;
8520 int slot;
8521 int nread = 0;
8522
8523 if (path->slots[wc->level] < wc->reada_slot) {
8524 wc->reada_count = wc->reada_count * 2 / 3;
8525 wc->reada_count = max(wc->reada_count, 2);
8526 } else {
8527 wc->reada_count = wc->reada_count * 3 / 2;
8528 wc->reada_count = min_t(int, wc->reada_count,
8529 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8530 }
8531
8532 eb = path->nodes[wc->level];
8533 nritems = btrfs_header_nritems(eb);
8534
8535 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8536 if (nread >= wc->reada_count)
8537 break;
8538
8539 cond_resched();
8540 bytenr = btrfs_node_blockptr(eb, slot);
8541 generation = btrfs_node_ptr_generation(eb, slot);
8542
8543 if (slot == path->slots[wc->level])
8544 goto reada;
8545
8546 if (wc->stage == UPDATE_BACKREF &&
8547 generation <= root->root_key.offset)
8548 continue;
8549
8550 /* We don't lock the tree block, it's OK to be racy here */
8551 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8552 wc->level - 1, 1, &refs,
8553 &flags);
8554 /* We don't care about errors in readahead. */
8555 if (ret < 0)
8556 continue;
8557 BUG_ON(refs == 0);
8558
8559 if (wc->stage == DROP_REFERENCE) {
8560 if (refs == 1)
8561 goto reada;
8562
8563 if (wc->level == 1 &&
8564 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8565 continue;
8566 if (!wc->update_ref ||
8567 generation <= root->root_key.offset)
8568 continue;
8569 btrfs_node_key_to_cpu(eb, &key, slot);
8570 ret = btrfs_comp_cpu_keys(&key,
8571 &wc->update_progress);
8572 if (ret < 0)
8573 continue;
8574 } else {
8575 if (wc->level == 1 &&
8576 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8577 continue;
8578 }
8579 reada:
8580 readahead_tree_block(fs_info, bytenr);
8581 nread++;
8582 }
8583 wc->reada_slot = slot;
8584 }
8585
8586 /*
8587 * helper to process tree block while walking down the tree.
8588 *
8589 * when wc->stage == UPDATE_BACKREF, this function updates
8590 * back refs for pointers in the block.
8591 *
8592 * NOTE: return value 1 means we should stop walking down.
8593 */
8594 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8595 struct btrfs_root *root,
8596 struct btrfs_path *path,
8597 struct walk_control *wc, int lookup_info)
8598 {
8599 struct btrfs_fs_info *fs_info = root->fs_info;
8600 int level = wc->level;
8601 struct extent_buffer *eb = path->nodes[level];
8602 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8603 int ret;
8604
8605 if (wc->stage == UPDATE_BACKREF &&
8606 btrfs_header_owner(eb) != root->root_key.objectid)
8607 return 1;
8608
8609 /*
8610 * when reference count of tree block is 1, it won't increase
8611 * again. once full backref flag is set, we never clear it.
8612 */
8613 if (lookup_info &&
8614 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8615 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8616 BUG_ON(!path->locks[level]);
8617 ret = btrfs_lookup_extent_info(trans, fs_info,
8618 eb->start, level, 1,
8619 &wc->refs[level],
8620 &wc->flags[level]);
8621 BUG_ON(ret == -ENOMEM);
8622 if (ret)
8623 return ret;
8624 BUG_ON(wc->refs[level] == 0);
8625 }
8626
8627 if (wc->stage == DROP_REFERENCE) {
8628 if (wc->refs[level] > 1)
8629 return 1;
8630
8631 if (path->locks[level] && !wc->keep_locks) {
8632 btrfs_tree_unlock_rw(eb, path->locks[level]);
8633 path->locks[level] = 0;
8634 }
8635 return 0;
8636 }
8637
8638 /* wc->stage == UPDATE_BACKREF */
8639 if (!(wc->flags[level] & flag)) {
8640 BUG_ON(!path->locks[level]);
8641 ret = btrfs_inc_ref(trans, root, eb, 1);
8642 BUG_ON(ret); /* -ENOMEM */
8643 ret = btrfs_dec_ref(trans, root, eb, 0);
8644 BUG_ON(ret); /* -ENOMEM */
8645 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8646 eb->len, flag,
8647 btrfs_header_level(eb), 0);
8648 BUG_ON(ret); /* -ENOMEM */
8649 wc->flags[level] |= flag;
8650 }
8651
8652 /*
8653 * the block is shared by multiple trees, so it's not good to
8654 * keep the tree lock
8655 */
8656 if (path->locks[level] && level > 0) {
8657 btrfs_tree_unlock_rw(eb, path->locks[level]);
8658 path->locks[level] = 0;
8659 }
8660 return 0;
8661 }
8662
8663 /*
8664 * helper to process tree block pointer.
8665 *
8666 * when wc->stage == DROP_REFERENCE, this function checks
8667 * reference count of the block pointed to. if the block
8668 * is shared and we need update back refs for the subtree
8669 * rooted at the block, this function changes wc->stage to
8670 * UPDATE_BACKREF. if the block is shared and there is no
8671 * need to update back, this function drops the reference
8672 * to the block.
8673 *
8674 * NOTE: return value 1 means we should stop walking down.
8675 */
8676 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8677 struct btrfs_root *root,
8678 struct btrfs_path *path,
8679 struct walk_control *wc, int *lookup_info)
8680 {
8681 struct btrfs_fs_info *fs_info = root->fs_info;
8682 u64 bytenr;
8683 u64 generation;
8684 u64 parent;
8685 u32 blocksize;
8686 struct btrfs_key key;
8687 struct extent_buffer *next;
8688 int level = wc->level;
8689 int reada = 0;
8690 int ret = 0;
8691 bool need_account = false;
8692
8693 generation = btrfs_node_ptr_generation(path->nodes[level],
8694 path->slots[level]);
8695 /*
8696 * if the lower level block was created before the snapshot
8697 * was created, we know there is no need to update back refs
8698 * for the subtree
8699 */
8700 if (wc->stage == UPDATE_BACKREF &&
8701 generation <= root->root_key.offset) {
8702 *lookup_info = 1;
8703 return 1;
8704 }
8705
8706 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8707 blocksize = fs_info->nodesize;
8708
8709 next = find_extent_buffer(fs_info, bytenr);
8710 if (!next) {
8711 next = btrfs_find_create_tree_block(fs_info, bytenr);
8712 if (IS_ERR(next))
8713 return PTR_ERR(next);
8714
8715 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8716 level - 1);
8717 reada = 1;
8718 }
8719 btrfs_tree_lock(next);
8720 btrfs_set_lock_blocking(next);
8721
8722 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8723 &wc->refs[level - 1],
8724 &wc->flags[level - 1]);
8725 if (ret < 0)
8726 goto out_unlock;
8727
8728 if (unlikely(wc->refs[level - 1] == 0)) {
8729 btrfs_err(fs_info, "Missing references.");
8730 ret = -EIO;
8731 goto out_unlock;
8732 }
8733 *lookup_info = 0;
8734
8735 if (wc->stage == DROP_REFERENCE) {
8736 if (wc->refs[level - 1] > 1) {
8737 need_account = true;
8738 if (level == 1 &&
8739 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8740 goto skip;
8741
8742 if (!wc->update_ref ||
8743 generation <= root->root_key.offset)
8744 goto skip;
8745
8746 btrfs_node_key_to_cpu(path->nodes[level], &key,
8747 path->slots[level]);
8748 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8749 if (ret < 0)
8750 goto skip;
8751
8752 wc->stage = UPDATE_BACKREF;
8753 wc->shared_level = level - 1;
8754 }
8755 } else {
8756 if (level == 1 &&
8757 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8758 goto skip;
8759 }
8760
8761 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8762 btrfs_tree_unlock(next);
8763 free_extent_buffer(next);
8764 next = NULL;
8765 *lookup_info = 1;
8766 }
8767
8768 if (!next) {
8769 if (reada && level == 1)
8770 reada_walk_down(trans, root, wc, path);
8771 next = read_tree_block(fs_info, bytenr, generation);
8772 if (IS_ERR(next)) {
8773 return PTR_ERR(next);
8774 } else if (!extent_buffer_uptodate(next)) {
8775 free_extent_buffer(next);
8776 return -EIO;
8777 }
8778 btrfs_tree_lock(next);
8779 btrfs_set_lock_blocking(next);
8780 }
8781
8782 level--;
8783 ASSERT(level == btrfs_header_level(next));
8784 if (level != btrfs_header_level(next)) {
8785 btrfs_err(root->fs_info, "mismatched level");
8786 ret = -EIO;
8787 goto out_unlock;
8788 }
8789 path->nodes[level] = next;
8790 path->slots[level] = 0;
8791 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8792 wc->level = level;
8793 if (wc->level == 1)
8794 wc->reada_slot = 0;
8795 return 0;
8796 skip:
8797 wc->refs[level - 1] = 0;
8798 wc->flags[level - 1] = 0;
8799 if (wc->stage == DROP_REFERENCE) {
8800 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8801 parent = path->nodes[level]->start;
8802 } else {
8803 ASSERT(root->root_key.objectid ==
8804 btrfs_header_owner(path->nodes[level]));
8805 if (root->root_key.objectid !=
8806 btrfs_header_owner(path->nodes[level])) {
8807 btrfs_err(root->fs_info,
8808 "mismatched block owner");
8809 ret = -EIO;
8810 goto out_unlock;
8811 }
8812 parent = 0;
8813 }
8814
8815 if (need_account) {
8816 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8817 generation, level - 1);
8818 if (ret) {
8819 btrfs_err_rl(fs_info,
8820 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8821 ret);
8822 }
8823 }
8824 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8825 parent, root->root_key.objectid,
8826 level - 1, 0);
8827 if (ret)
8828 goto out_unlock;
8829 }
8830
8831 *lookup_info = 1;
8832 ret = 1;
8833
8834 out_unlock:
8835 btrfs_tree_unlock(next);
8836 free_extent_buffer(next);
8837
8838 return ret;
8839 }
8840
8841 /*
8842 * helper to process tree block while walking up the tree.
8843 *
8844 * when wc->stage == DROP_REFERENCE, this function drops
8845 * reference count on the block.
8846 *
8847 * when wc->stage == UPDATE_BACKREF, this function changes
8848 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8849 * to UPDATE_BACKREF previously while processing the block.
8850 *
8851 * NOTE: return value 1 means we should stop walking up.
8852 */
8853 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8854 struct btrfs_root *root,
8855 struct btrfs_path *path,
8856 struct walk_control *wc)
8857 {
8858 struct btrfs_fs_info *fs_info = root->fs_info;
8859 int ret;
8860 int level = wc->level;
8861 struct extent_buffer *eb = path->nodes[level];
8862 u64 parent = 0;
8863
8864 if (wc->stage == UPDATE_BACKREF) {
8865 BUG_ON(wc->shared_level < level);
8866 if (level < wc->shared_level)
8867 goto out;
8868
8869 ret = find_next_key(path, level + 1, &wc->update_progress);
8870 if (ret > 0)
8871 wc->update_ref = 0;
8872
8873 wc->stage = DROP_REFERENCE;
8874 wc->shared_level = -1;
8875 path->slots[level] = 0;
8876
8877 /*
8878 * check reference count again if the block isn't locked.
8879 * we should start walking down the tree again if reference
8880 * count is one.
8881 */
8882 if (!path->locks[level]) {
8883 BUG_ON(level == 0);
8884 btrfs_tree_lock(eb);
8885 btrfs_set_lock_blocking(eb);
8886 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8887
8888 ret = btrfs_lookup_extent_info(trans, fs_info,
8889 eb->start, level, 1,
8890 &wc->refs[level],
8891 &wc->flags[level]);
8892 if (ret < 0) {
8893 btrfs_tree_unlock_rw(eb, path->locks[level]);
8894 path->locks[level] = 0;
8895 return ret;
8896 }
8897 BUG_ON(wc->refs[level] == 0);
8898 if (wc->refs[level] == 1) {
8899 btrfs_tree_unlock_rw(eb, path->locks[level]);
8900 path->locks[level] = 0;
8901 return 1;
8902 }
8903 }
8904 }
8905
8906 /* wc->stage == DROP_REFERENCE */
8907 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8908
8909 if (wc->refs[level] == 1) {
8910 if (level == 0) {
8911 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8912 ret = btrfs_dec_ref(trans, root, eb, 1);
8913 else
8914 ret = btrfs_dec_ref(trans, root, eb, 0);
8915 BUG_ON(ret); /* -ENOMEM */
8916 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8917 if (ret) {
8918 btrfs_err_rl(fs_info,
8919 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8920 ret);
8921 }
8922 }
8923 /* make block locked assertion in clean_tree_block happy */
8924 if (!path->locks[level] &&
8925 btrfs_header_generation(eb) == trans->transid) {
8926 btrfs_tree_lock(eb);
8927 btrfs_set_lock_blocking(eb);
8928 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8929 }
8930 clean_tree_block(fs_info, eb);
8931 }
8932
8933 if (eb == root->node) {
8934 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8935 parent = eb->start;
8936 else
8937 BUG_ON(root->root_key.objectid !=
8938 btrfs_header_owner(eb));
8939 } else {
8940 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8941 parent = path->nodes[level + 1]->start;
8942 else
8943 BUG_ON(root->root_key.objectid !=
8944 btrfs_header_owner(path->nodes[level + 1]));
8945 }
8946
8947 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8948 out:
8949 wc->refs[level] = 0;
8950 wc->flags[level] = 0;
8951 return 0;
8952 }
8953
8954 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8955 struct btrfs_root *root,
8956 struct btrfs_path *path,
8957 struct walk_control *wc)
8958 {
8959 int level = wc->level;
8960 int lookup_info = 1;
8961 int ret;
8962
8963 while (level >= 0) {
8964 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8965 if (ret > 0)
8966 break;
8967
8968 if (level == 0)
8969 break;
8970
8971 if (path->slots[level] >=
8972 btrfs_header_nritems(path->nodes[level]))
8973 break;
8974
8975 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8976 if (ret > 0) {
8977 path->slots[level]++;
8978 continue;
8979 } else if (ret < 0)
8980 return ret;
8981 level = wc->level;
8982 }
8983 return 0;
8984 }
8985
8986 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8987 struct btrfs_root *root,
8988 struct btrfs_path *path,
8989 struct walk_control *wc, int max_level)
8990 {
8991 int level = wc->level;
8992 int ret;
8993
8994 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8995 while (level < max_level && path->nodes[level]) {
8996 wc->level = level;
8997 if (path->slots[level] + 1 <
8998 btrfs_header_nritems(path->nodes[level])) {
8999 path->slots[level]++;
9000 return 0;
9001 } else {
9002 ret = walk_up_proc(trans, root, path, wc);
9003 if (ret > 0)
9004 return 0;
9005
9006 if (path->locks[level]) {
9007 btrfs_tree_unlock_rw(path->nodes[level],
9008 path->locks[level]);
9009 path->locks[level] = 0;
9010 }
9011 free_extent_buffer(path->nodes[level]);
9012 path->nodes[level] = NULL;
9013 level++;
9014 }
9015 }
9016 return 1;
9017 }
9018
9019 /*
9020 * drop a subvolume tree.
9021 *
9022 * this function traverses the tree freeing any blocks that only
9023 * referenced by the tree.
9024 *
9025 * when a shared tree block is found. this function decreases its
9026 * reference count by one. if update_ref is true, this function
9027 * also make sure backrefs for the shared block and all lower level
9028 * blocks are properly updated.
9029 *
9030 * If called with for_reloc == 0, may exit early with -EAGAIN
9031 */
9032 int btrfs_drop_snapshot(struct btrfs_root *root,
9033 struct btrfs_block_rsv *block_rsv, int update_ref,
9034 int for_reloc)
9035 {
9036 struct btrfs_fs_info *fs_info = root->fs_info;
9037 struct btrfs_path *path;
9038 struct btrfs_trans_handle *trans;
9039 struct btrfs_root *tree_root = fs_info->tree_root;
9040 struct btrfs_root_item *root_item = &root->root_item;
9041 struct walk_control *wc;
9042 struct btrfs_key key;
9043 int err = 0;
9044 int ret;
9045 int level;
9046 bool root_dropped = false;
9047
9048 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9049
9050 path = btrfs_alloc_path();
9051 if (!path) {
9052 err = -ENOMEM;
9053 goto out;
9054 }
9055
9056 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9057 if (!wc) {
9058 btrfs_free_path(path);
9059 err = -ENOMEM;
9060 goto out;
9061 }
9062
9063 trans = btrfs_start_transaction(tree_root, 0);
9064 if (IS_ERR(trans)) {
9065 err = PTR_ERR(trans);
9066 goto out_free;
9067 }
9068
9069 if (block_rsv)
9070 trans->block_rsv = block_rsv;
9071
9072 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9073 level = btrfs_header_level(root->node);
9074 path->nodes[level] = btrfs_lock_root_node(root);
9075 btrfs_set_lock_blocking(path->nodes[level]);
9076 path->slots[level] = 0;
9077 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9078 memset(&wc->update_progress, 0,
9079 sizeof(wc->update_progress));
9080 } else {
9081 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9082 memcpy(&wc->update_progress, &key,
9083 sizeof(wc->update_progress));
9084
9085 level = root_item->drop_level;
9086 BUG_ON(level == 0);
9087 path->lowest_level = level;
9088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9089 path->lowest_level = 0;
9090 if (ret < 0) {
9091 err = ret;
9092 goto out_end_trans;
9093 }
9094 WARN_ON(ret > 0);
9095
9096 /*
9097 * unlock our path, this is safe because only this
9098 * function is allowed to delete this snapshot
9099 */
9100 btrfs_unlock_up_safe(path, 0);
9101
9102 level = btrfs_header_level(root->node);
9103 while (1) {
9104 btrfs_tree_lock(path->nodes[level]);
9105 btrfs_set_lock_blocking(path->nodes[level]);
9106 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9107
9108 ret = btrfs_lookup_extent_info(trans, fs_info,
9109 path->nodes[level]->start,
9110 level, 1, &wc->refs[level],
9111 &wc->flags[level]);
9112 if (ret < 0) {
9113 err = ret;
9114 goto out_end_trans;
9115 }
9116 BUG_ON(wc->refs[level] == 0);
9117
9118 if (level == root_item->drop_level)
9119 break;
9120
9121 btrfs_tree_unlock(path->nodes[level]);
9122 path->locks[level] = 0;
9123 WARN_ON(wc->refs[level] != 1);
9124 level--;
9125 }
9126 }
9127
9128 wc->level = level;
9129 wc->shared_level = -1;
9130 wc->stage = DROP_REFERENCE;
9131 wc->update_ref = update_ref;
9132 wc->keep_locks = 0;
9133 wc->for_reloc = for_reloc;
9134 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9135
9136 while (1) {
9137
9138 ret = walk_down_tree(trans, root, path, wc);
9139 if (ret < 0) {
9140 err = ret;
9141 break;
9142 }
9143
9144 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9145 if (ret < 0) {
9146 err = ret;
9147 break;
9148 }
9149
9150 if (ret > 0) {
9151 BUG_ON(wc->stage != DROP_REFERENCE);
9152 break;
9153 }
9154
9155 if (wc->stage == DROP_REFERENCE) {
9156 level = wc->level;
9157 btrfs_node_key(path->nodes[level],
9158 &root_item->drop_progress,
9159 path->slots[level]);
9160 root_item->drop_level = level;
9161 }
9162
9163 BUG_ON(wc->level == 0);
9164 if (btrfs_should_end_transaction(trans) ||
9165 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9166 ret = btrfs_update_root(trans, tree_root,
9167 &root->root_key,
9168 root_item);
9169 if (ret) {
9170 btrfs_abort_transaction(trans, ret);
9171 err = ret;
9172 goto out_end_trans;
9173 }
9174
9175 btrfs_end_transaction_throttle(trans);
9176 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9177 btrfs_debug(fs_info,
9178 "drop snapshot early exit");
9179 err = -EAGAIN;
9180 goto out_free;
9181 }
9182
9183 trans = btrfs_start_transaction(tree_root, 0);
9184 if (IS_ERR(trans)) {
9185 err = PTR_ERR(trans);
9186 goto out_free;
9187 }
9188 if (block_rsv)
9189 trans->block_rsv = block_rsv;
9190 }
9191 }
9192 btrfs_release_path(path);
9193 if (err)
9194 goto out_end_trans;
9195
9196 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9197 if (ret) {
9198 btrfs_abort_transaction(trans, ret);
9199 goto out_end_trans;
9200 }
9201
9202 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9203 ret = btrfs_find_root(tree_root, &root->root_key, path,
9204 NULL, NULL);
9205 if (ret < 0) {
9206 btrfs_abort_transaction(trans, ret);
9207 err = ret;
9208 goto out_end_trans;
9209 } else if (ret > 0) {
9210 /* if we fail to delete the orphan item this time
9211 * around, it'll get picked up the next time.
9212 *
9213 * The most common failure here is just -ENOENT.
9214 */
9215 btrfs_del_orphan_item(trans, tree_root,
9216 root->root_key.objectid);
9217 }
9218 }
9219
9220 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9221 btrfs_add_dropped_root(trans, root);
9222 } else {
9223 free_extent_buffer(root->node);
9224 free_extent_buffer(root->commit_root);
9225 btrfs_put_fs_root(root);
9226 }
9227 root_dropped = true;
9228 out_end_trans:
9229 btrfs_end_transaction_throttle(trans);
9230 out_free:
9231 kfree(wc);
9232 btrfs_free_path(path);
9233 out:
9234 /*
9235 * So if we need to stop dropping the snapshot for whatever reason we
9236 * need to make sure to add it back to the dead root list so that we
9237 * keep trying to do the work later. This also cleans up roots if we
9238 * don't have it in the radix (like when we recover after a power fail
9239 * or unmount) so we don't leak memory.
9240 */
9241 if (!for_reloc && root_dropped == false)
9242 btrfs_add_dead_root(root);
9243 if (err && err != -EAGAIN)
9244 btrfs_handle_fs_error(fs_info, err, NULL);
9245 return err;
9246 }
9247
9248 /*
9249 * drop subtree rooted at tree block 'node'.
9250 *
9251 * NOTE: this function will unlock and release tree block 'node'
9252 * only used by relocation code
9253 */
9254 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9255 struct btrfs_root *root,
9256 struct extent_buffer *node,
9257 struct extent_buffer *parent)
9258 {
9259 struct btrfs_fs_info *fs_info = root->fs_info;
9260 struct btrfs_path *path;
9261 struct walk_control *wc;
9262 int level;
9263 int parent_level;
9264 int ret = 0;
9265 int wret;
9266
9267 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9268
9269 path = btrfs_alloc_path();
9270 if (!path)
9271 return -ENOMEM;
9272
9273 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9274 if (!wc) {
9275 btrfs_free_path(path);
9276 return -ENOMEM;
9277 }
9278
9279 btrfs_assert_tree_locked(parent);
9280 parent_level = btrfs_header_level(parent);
9281 extent_buffer_get(parent);
9282 path->nodes[parent_level] = parent;
9283 path->slots[parent_level] = btrfs_header_nritems(parent);
9284
9285 btrfs_assert_tree_locked(node);
9286 level = btrfs_header_level(node);
9287 path->nodes[level] = node;
9288 path->slots[level] = 0;
9289 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9290
9291 wc->refs[parent_level] = 1;
9292 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9293 wc->level = level;
9294 wc->shared_level = -1;
9295 wc->stage = DROP_REFERENCE;
9296 wc->update_ref = 0;
9297 wc->keep_locks = 1;
9298 wc->for_reloc = 1;
9299 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9300
9301 while (1) {
9302 wret = walk_down_tree(trans, root, path, wc);
9303 if (wret < 0) {
9304 ret = wret;
9305 break;
9306 }
9307
9308 wret = walk_up_tree(trans, root, path, wc, parent_level);
9309 if (wret < 0)
9310 ret = wret;
9311 if (wret != 0)
9312 break;
9313 }
9314
9315 kfree(wc);
9316 btrfs_free_path(path);
9317 return ret;
9318 }
9319
9320 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9321 {
9322 u64 num_devices;
9323 u64 stripped;
9324
9325 /*
9326 * if restripe for this chunk_type is on pick target profile and
9327 * return, otherwise do the usual balance
9328 */
9329 stripped = get_restripe_target(fs_info, flags);
9330 if (stripped)
9331 return extended_to_chunk(stripped);
9332
9333 num_devices = fs_info->fs_devices->rw_devices;
9334
9335 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9336 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9337 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9338
9339 if (num_devices == 1) {
9340 stripped |= BTRFS_BLOCK_GROUP_DUP;
9341 stripped = flags & ~stripped;
9342
9343 /* turn raid0 into single device chunks */
9344 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9345 return stripped;
9346
9347 /* turn mirroring into duplication */
9348 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9349 BTRFS_BLOCK_GROUP_RAID10))
9350 return stripped | BTRFS_BLOCK_GROUP_DUP;
9351 } else {
9352 /* they already had raid on here, just return */
9353 if (flags & stripped)
9354 return flags;
9355
9356 stripped |= BTRFS_BLOCK_GROUP_DUP;
9357 stripped = flags & ~stripped;
9358
9359 /* switch duplicated blocks with raid1 */
9360 if (flags & BTRFS_BLOCK_GROUP_DUP)
9361 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9362
9363 /* this is drive concat, leave it alone */
9364 }
9365
9366 return flags;
9367 }
9368
9369 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9370 {
9371 struct btrfs_space_info *sinfo = cache->space_info;
9372 u64 num_bytes;
9373 u64 min_allocable_bytes;
9374 int ret = -ENOSPC;
9375
9376 /*
9377 * We need some metadata space and system metadata space for
9378 * allocating chunks in some corner cases until we force to set
9379 * it to be readonly.
9380 */
9381 if ((sinfo->flags &
9382 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9383 !force)
9384 min_allocable_bytes = SZ_1M;
9385 else
9386 min_allocable_bytes = 0;
9387
9388 spin_lock(&sinfo->lock);
9389 spin_lock(&cache->lock);
9390
9391 if (cache->ro) {
9392 cache->ro++;
9393 ret = 0;
9394 goto out;
9395 }
9396
9397 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9398 cache->bytes_super - btrfs_block_group_used(&cache->item);
9399
9400 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9401 min_allocable_bytes <= sinfo->total_bytes) {
9402 sinfo->bytes_readonly += num_bytes;
9403 cache->ro++;
9404 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9405 ret = 0;
9406 }
9407 out:
9408 spin_unlock(&cache->lock);
9409 spin_unlock(&sinfo->lock);
9410 return ret;
9411 }
9412
9413 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9414 struct btrfs_block_group_cache *cache)
9415
9416 {
9417 struct btrfs_trans_handle *trans;
9418 u64 alloc_flags;
9419 int ret;
9420
9421 again:
9422 trans = btrfs_join_transaction(fs_info->extent_root);
9423 if (IS_ERR(trans))
9424 return PTR_ERR(trans);
9425
9426 /*
9427 * we're not allowed to set block groups readonly after the dirty
9428 * block groups cache has started writing. If it already started,
9429 * back off and let this transaction commit
9430 */
9431 mutex_lock(&fs_info->ro_block_group_mutex);
9432 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9433 u64 transid = trans->transid;
9434
9435 mutex_unlock(&fs_info->ro_block_group_mutex);
9436 btrfs_end_transaction(trans);
9437
9438 ret = btrfs_wait_for_commit(fs_info, transid);
9439 if (ret)
9440 return ret;
9441 goto again;
9442 }
9443
9444 /*
9445 * if we are changing raid levels, try to allocate a corresponding
9446 * block group with the new raid level.
9447 */
9448 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9449 if (alloc_flags != cache->flags) {
9450 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9451 CHUNK_ALLOC_FORCE);
9452 /*
9453 * ENOSPC is allowed here, we may have enough space
9454 * already allocated at the new raid level to
9455 * carry on
9456 */
9457 if (ret == -ENOSPC)
9458 ret = 0;
9459 if (ret < 0)
9460 goto out;
9461 }
9462
9463 ret = inc_block_group_ro(cache, 0);
9464 if (!ret)
9465 goto out;
9466 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9467 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9468 CHUNK_ALLOC_FORCE);
9469 if (ret < 0)
9470 goto out;
9471 ret = inc_block_group_ro(cache, 0);
9472 out:
9473 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9474 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9475 mutex_lock(&fs_info->chunk_mutex);
9476 check_system_chunk(trans, fs_info, alloc_flags);
9477 mutex_unlock(&fs_info->chunk_mutex);
9478 }
9479 mutex_unlock(&fs_info->ro_block_group_mutex);
9480
9481 btrfs_end_transaction(trans);
9482 return ret;
9483 }
9484
9485 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9486 struct btrfs_fs_info *fs_info, u64 type)
9487 {
9488 u64 alloc_flags = get_alloc_profile(fs_info, type);
9489
9490 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9491 }
9492
9493 /*
9494 * helper to account the unused space of all the readonly block group in the
9495 * space_info. takes mirrors into account.
9496 */
9497 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9498 {
9499 struct btrfs_block_group_cache *block_group;
9500 u64 free_bytes = 0;
9501 int factor;
9502
9503 /* It's df, we don't care if it's racy */
9504 if (list_empty(&sinfo->ro_bgs))
9505 return 0;
9506
9507 spin_lock(&sinfo->lock);
9508 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9509 spin_lock(&block_group->lock);
9510
9511 if (!block_group->ro) {
9512 spin_unlock(&block_group->lock);
9513 continue;
9514 }
9515
9516 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9517 BTRFS_BLOCK_GROUP_RAID10 |
9518 BTRFS_BLOCK_GROUP_DUP))
9519 factor = 2;
9520 else
9521 factor = 1;
9522
9523 free_bytes += (block_group->key.offset -
9524 btrfs_block_group_used(&block_group->item)) *
9525 factor;
9526
9527 spin_unlock(&block_group->lock);
9528 }
9529 spin_unlock(&sinfo->lock);
9530
9531 return free_bytes;
9532 }
9533
9534 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9535 {
9536 struct btrfs_space_info *sinfo = cache->space_info;
9537 u64 num_bytes;
9538
9539 BUG_ON(!cache->ro);
9540
9541 spin_lock(&sinfo->lock);
9542 spin_lock(&cache->lock);
9543 if (!--cache->ro) {
9544 num_bytes = cache->key.offset - cache->reserved -
9545 cache->pinned - cache->bytes_super -
9546 btrfs_block_group_used(&cache->item);
9547 sinfo->bytes_readonly -= num_bytes;
9548 list_del_init(&cache->ro_list);
9549 }
9550 spin_unlock(&cache->lock);
9551 spin_unlock(&sinfo->lock);
9552 }
9553
9554 /*
9555 * checks to see if its even possible to relocate this block group.
9556 *
9557 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9558 * ok to go ahead and try.
9559 */
9560 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9561 {
9562 struct btrfs_root *root = fs_info->extent_root;
9563 struct btrfs_block_group_cache *block_group;
9564 struct btrfs_space_info *space_info;
9565 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9566 struct btrfs_device *device;
9567 struct btrfs_trans_handle *trans;
9568 u64 min_free;
9569 u64 dev_min = 1;
9570 u64 dev_nr = 0;
9571 u64 target;
9572 int debug;
9573 int index;
9574 int full = 0;
9575 int ret = 0;
9576
9577 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9578
9579 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9580
9581 /* odd, couldn't find the block group, leave it alone */
9582 if (!block_group) {
9583 if (debug)
9584 btrfs_warn(fs_info,
9585 "can't find block group for bytenr %llu",
9586 bytenr);
9587 return -1;
9588 }
9589
9590 min_free = btrfs_block_group_used(&block_group->item);
9591
9592 /* no bytes used, we're good */
9593 if (!min_free)
9594 goto out;
9595
9596 space_info = block_group->space_info;
9597 spin_lock(&space_info->lock);
9598
9599 full = space_info->full;
9600
9601 /*
9602 * if this is the last block group we have in this space, we can't
9603 * relocate it unless we're able to allocate a new chunk below.
9604 *
9605 * Otherwise, we need to make sure we have room in the space to handle
9606 * all of the extents from this block group. If we can, we're good
9607 */
9608 if ((space_info->total_bytes != block_group->key.offset) &&
9609 (btrfs_space_info_used(space_info, false) + min_free <
9610 space_info->total_bytes)) {
9611 spin_unlock(&space_info->lock);
9612 goto out;
9613 }
9614 spin_unlock(&space_info->lock);
9615
9616 /*
9617 * ok we don't have enough space, but maybe we have free space on our
9618 * devices to allocate new chunks for relocation, so loop through our
9619 * alloc devices and guess if we have enough space. if this block
9620 * group is going to be restriped, run checks against the target
9621 * profile instead of the current one.
9622 */
9623 ret = -1;
9624
9625 /*
9626 * index:
9627 * 0: raid10
9628 * 1: raid1
9629 * 2: dup
9630 * 3: raid0
9631 * 4: single
9632 */
9633 target = get_restripe_target(fs_info, block_group->flags);
9634 if (target) {
9635 index = __get_raid_index(extended_to_chunk(target));
9636 } else {
9637 /*
9638 * this is just a balance, so if we were marked as full
9639 * we know there is no space for a new chunk
9640 */
9641 if (full) {
9642 if (debug)
9643 btrfs_warn(fs_info,
9644 "no space to alloc new chunk for block group %llu",
9645 block_group->key.objectid);
9646 goto out;
9647 }
9648
9649 index = get_block_group_index(block_group);
9650 }
9651
9652 if (index == BTRFS_RAID_RAID10) {
9653 dev_min = 4;
9654 /* Divide by 2 */
9655 min_free >>= 1;
9656 } else if (index == BTRFS_RAID_RAID1) {
9657 dev_min = 2;
9658 } else if (index == BTRFS_RAID_DUP) {
9659 /* Multiply by 2 */
9660 min_free <<= 1;
9661 } else if (index == BTRFS_RAID_RAID0) {
9662 dev_min = fs_devices->rw_devices;
9663 min_free = div64_u64(min_free, dev_min);
9664 }
9665
9666 /* We need to do this so that we can look at pending chunks */
9667 trans = btrfs_join_transaction(root);
9668 if (IS_ERR(trans)) {
9669 ret = PTR_ERR(trans);
9670 goto out;
9671 }
9672
9673 mutex_lock(&fs_info->chunk_mutex);
9674 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9675 u64 dev_offset;
9676
9677 /*
9678 * check to make sure we can actually find a chunk with enough
9679 * space to fit our block group in.
9680 */
9681 if (device->total_bytes > device->bytes_used + min_free &&
9682 !device->is_tgtdev_for_dev_replace) {
9683 ret = find_free_dev_extent(trans, device, min_free,
9684 &dev_offset, NULL);
9685 if (!ret)
9686 dev_nr++;
9687
9688 if (dev_nr >= dev_min)
9689 break;
9690
9691 ret = -1;
9692 }
9693 }
9694 if (debug && ret == -1)
9695 btrfs_warn(fs_info,
9696 "no space to allocate a new chunk for block group %llu",
9697 block_group->key.objectid);
9698 mutex_unlock(&fs_info->chunk_mutex);
9699 btrfs_end_transaction(trans);
9700 out:
9701 btrfs_put_block_group(block_group);
9702 return ret;
9703 }
9704
9705 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9706 struct btrfs_path *path,
9707 struct btrfs_key *key)
9708 {
9709 struct btrfs_root *root = fs_info->extent_root;
9710 int ret = 0;
9711 struct btrfs_key found_key;
9712 struct extent_buffer *leaf;
9713 int slot;
9714
9715 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9716 if (ret < 0)
9717 goto out;
9718
9719 while (1) {
9720 slot = path->slots[0];
9721 leaf = path->nodes[0];
9722 if (slot >= btrfs_header_nritems(leaf)) {
9723 ret = btrfs_next_leaf(root, path);
9724 if (ret == 0)
9725 continue;
9726 if (ret < 0)
9727 goto out;
9728 break;
9729 }
9730 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9731
9732 if (found_key.objectid >= key->objectid &&
9733 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9734 struct extent_map_tree *em_tree;
9735 struct extent_map *em;
9736
9737 em_tree = &root->fs_info->mapping_tree.map_tree;
9738 read_lock(&em_tree->lock);
9739 em = lookup_extent_mapping(em_tree, found_key.objectid,
9740 found_key.offset);
9741 read_unlock(&em_tree->lock);
9742 if (!em) {
9743 btrfs_err(fs_info,
9744 "logical %llu len %llu found bg but no related chunk",
9745 found_key.objectid, found_key.offset);
9746 ret = -ENOENT;
9747 } else {
9748 ret = 0;
9749 }
9750 free_extent_map(em);
9751 goto out;
9752 }
9753 path->slots[0]++;
9754 }
9755 out:
9756 return ret;
9757 }
9758
9759 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9760 {
9761 struct btrfs_block_group_cache *block_group;
9762 u64 last = 0;
9763
9764 while (1) {
9765 struct inode *inode;
9766
9767 block_group = btrfs_lookup_first_block_group(info, last);
9768 while (block_group) {
9769 spin_lock(&block_group->lock);
9770 if (block_group->iref)
9771 break;
9772 spin_unlock(&block_group->lock);
9773 block_group = next_block_group(info, block_group);
9774 }
9775 if (!block_group) {
9776 if (last == 0)
9777 break;
9778 last = 0;
9779 continue;
9780 }
9781
9782 inode = block_group->inode;
9783 block_group->iref = 0;
9784 block_group->inode = NULL;
9785 spin_unlock(&block_group->lock);
9786 ASSERT(block_group->io_ctl.inode == NULL);
9787 iput(inode);
9788 last = block_group->key.objectid + block_group->key.offset;
9789 btrfs_put_block_group(block_group);
9790 }
9791 }
9792
9793 /*
9794 * Must be called only after stopping all workers, since we could have block
9795 * group caching kthreads running, and therefore they could race with us if we
9796 * freed the block groups before stopping them.
9797 */
9798 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9799 {
9800 struct btrfs_block_group_cache *block_group;
9801 struct btrfs_space_info *space_info;
9802 struct btrfs_caching_control *caching_ctl;
9803 struct rb_node *n;
9804
9805 down_write(&info->commit_root_sem);
9806 while (!list_empty(&info->caching_block_groups)) {
9807 caching_ctl = list_entry(info->caching_block_groups.next,
9808 struct btrfs_caching_control, list);
9809 list_del(&caching_ctl->list);
9810 put_caching_control(caching_ctl);
9811 }
9812 up_write(&info->commit_root_sem);
9813
9814 spin_lock(&info->unused_bgs_lock);
9815 while (!list_empty(&info->unused_bgs)) {
9816 block_group = list_first_entry(&info->unused_bgs,
9817 struct btrfs_block_group_cache,
9818 bg_list);
9819 list_del_init(&block_group->bg_list);
9820 btrfs_put_block_group(block_group);
9821 }
9822 spin_unlock(&info->unused_bgs_lock);
9823
9824 spin_lock(&info->block_group_cache_lock);
9825 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9826 block_group = rb_entry(n, struct btrfs_block_group_cache,
9827 cache_node);
9828 rb_erase(&block_group->cache_node,
9829 &info->block_group_cache_tree);
9830 RB_CLEAR_NODE(&block_group->cache_node);
9831 spin_unlock(&info->block_group_cache_lock);
9832
9833 down_write(&block_group->space_info->groups_sem);
9834 list_del(&block_group->list);
9835 up_write(&block_group->space_info->groups_sem);
9836
9837 /*
9838 * We haven't cached this block group, which means we could
9839 * possibly have excluded extents on this block group.
9840 */
9841 if (block_group->cached == BTRFS_CACHE_NO ||
9842 block_group->cached == BTRFS_CACHE_ERROR)
9843 free_excluded_extents(info, block_group);
9844
9845 btrfs_remove_free_space_cache(block_group);
9846 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9847 ASSERT(list_empty(&block_group->dirty_list));
9848 ASSERT(list_empty(&block_group->io_list));
9849 ASSERT(list_empty(&block_group->bg_list));
9850 ASSERT(atomic_read(&block_group->count) == 1);
9851 btrfs_put_block_group(block_group);
9852
9853 spin_lock(&info->block_group_cache_lock);
9854 }
9855 spin_unlock(&info->block_group_cache_lock);
9856
9857 /* now that all the block groups are freed, go through and
9858 * free all the space_info structs. This is only called during
9859 * the final stages of unmount, and so we know nobody is
9860 * using them. We call synchronize_rcu() once before we start,
9861 * just to be on the safe side.
9862 */
9863 synchronize_rcu();
9864
9865 release_global_block_rsv(info);
9866
9867 while (!list_empty(&info->space_info)) {
9868 int i;
9869
9870 space_info = list_entry(info->space_info.next,
9871 struct btrfs_space_info,
9872 list);
9873
9874 /*
9875 * Do not hide this behind enospc_debug, this is actually
9876 * important and indicates a real bug if this happens.
9877 */
9878 if (WARN_ON(space_info->bytes_pinned > 0 ||
9879 space_info->bytes_reserved > 0 ||
9880 space_info->bytes_may_use > 0))
9881 dump_space_info(info, space_info, 0, 0);
9882 list_del(&space_info->list);
9883 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9884 struct kobject *kobj;
9885 kobj = space_info->block_group_kobjs[i];
9886 space_info->block_group_kobjs[i] = NULL;
9887 if (kobj) {
9888 kobject_del(kobj);
9889 kobject_put(kobj);
9890 }
9891 }
9892 kobject_del(&space_info->kobj);
9893 kobject_put(&space_info->kobj);
9894 }
9895 return 0;
9896 }
9897
9898 static void __link_block_group(struct btrfs_space_info *space_info,
9899 struct btrfs_block_group_cache *cache)
9900 {
9901 int index = get_block_group_index(cache);
9902 bool first = false;
9903
9904 down_write(&space_info->groups_sem);
9905 if (list_empty(&space_info->block_groups[index]))
9906 first = true;
9907 list_add_tail(&cache->list, &space_info->block_groups[index]);
9908 up_write(&space_info->groups_sem);
9909
9910 if (first) {
9911 struct raid_kobject *rkobj;
9912 int ret;
9913
9914 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9915 if (!rkobj)
9916 goto out_err;
9917 rkobj->raid_type = index;
9918 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9919 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9920 "%s", get_raid_name(index));
9921 if (ret) {
9922 kobject_put(&rkobj->kobj);
9923 goto out_err;
9924 }
9925 space_info->block_group_kobjs[index] = &rkobj->kobj;
9926 }
9927
9928 return;
9929 out_err:
9930 btrfs_warn(cache->fs_info,
9931 "failed to add kobject for block cache, ignoring");
9932 }
9933
9934 static struct btrfs_block_group_cache *
9935 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9936 u64 start, u64 size)
9937 {
9938 struct btrfs_block_group_cache *cache;
9939
9940 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9941 if (!cache)
9942 return NULL;
9943
9944 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9945 GFP_NOFS);
9946 if (!cache->free_space_ctl) {
9947 kfree(cache);
9948 return NULL;
9949 }
9950
9951 cache->key.objectid = start;
9952 cache->key.offset = size;
9953 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9954
9955 cache->sectorsize = fs_info->sectorsize;
9956 cache->fs_info = fs_info;
9957 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9958 &fs_info->mapping_tree,
9959 start);
9960 set_free_space_tree_thresholds(cache);
9961
9962 atomic_set(&cache->count, 1);
9963 spin_lock_init(&cache->lock);
9964 init_rwsem(&cache->data_rwsem);
9965 INIT_LIST_HEAD(&cache->list);
9966 INIT_LIST_HEAD(&cache->cluster_list);
9967 INIT_LIST_HEAD(&cache->bg_list);
9968 INIT_LIST_HEAD(&cache->ro_list);
9969 INIT_LIST_HEAD(&cache->dirty_list);
9970 INIT_LIST_HEAD(&cache->io_list);
9971 btrfs_init_free_space_ctl(cache);
9972 atomic_set(&cache->trimming, 0);
9973 mutex_init(&cache->free_space_lock);
9974 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9975
9976 return cache;
9977 }
9978
9979 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9980 {
9981 struct btrfs_path *path;
9982 int ret;
9983 struct btrfs_block_group_cache *cache;
9984 struct btrfs_space_info *space_info;
9985 struct btrfs_key key;
9986 struct btrfs_key found_key;
9987 struct extent_buffer *leaf;
9988 int need_clear = 0;
9989 u64 cache_gen;
9990 u64 feature;
9991 int mixed;
9992
9993 feature = btrfs_super_incompat_flags(info->super_copy);
9994 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9995
9996 key.objectid = 0;
9997 key.offset = 0;
9998 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9999 path = btrfs_alloc_path();
10000 if (!path)
10001 return -ENOMEM;
10002 path->reada = READA_FORWARD;
10003
10004 cache_gen = btrfs_super_cache_generation(info->super_copy);
10005 if (btrfs_test_opt(info, SPACE_CACHE) &&
10006 btrfs_super_generation(info->super_copy) != cache_gen)
10007 need_clear = 1;
10008 if (btrfs_test_opt(info, CLEAR_CACHE))
10009 need_clear = 1;
10010
10011 while (1) {
10012 ret = find_first_block_group(info, path, &key);
10013 if (ret > 0)
10014 break;
10015 if (ret != 0)
10016 goto error;
10017
10018 leaf = path->nodes[0];
10019 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10020
10021 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10022 found_key.offset);
10023 if (!cache) {
10024 ret = -ENOMEM;
10025 goto error;
10026 }
10027
10028 if (need_clear) {
10029 /*
10030 * When we mount with old space cache, we need to
10031 * set BTRFS_DC_CLEAR and set dirty flag.
10032 *
10033 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10034 * truncate the old free space cache inode and
10035 * setup a new one.
10036 * b) Setting 'dirty flag' makes sure that we flush
10037 * the new space cache info onto disk.
10038 */
10039 if (btrfs_test_opt(info, SPACE_CACHE))
10040 cache->disk_cache_state = BTRFS_DC_CLEAR;
10041 }
10042
10043 read_extent_buffer(leaf, &cache->item,
10044 btrfs_item_ptr_offset(leaf, path->slots[0]),
10045 sizeof(cache->item));
10046 cache->flags = btrfs_block_group_flags(&cache->item);
10047 if (!mixed &&
10048 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10049 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10050 btrfs_err(info,
10051 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10052 cache->key.objectid);
10053 ret = -EINVAL;
10054 goto error;
10055 }
10056
10057 key.objectid = found_key.objectid + found_key.offset;
10058 btrfs_release_path(path);
10059
10060 /*
10061 * We need to exclude the super stripes now so that the space
10062 * info has super bytes accounted for, otherwise we'll think
10063 * we have more space than we actually do.
10064 */
10065 ret = exclude_super_stripes(info, cache);
10066 if (ret) {
10067 /*
10068 * We may have excluded something, so call this just in
10069 * case.
10070 */
10071 free_excluded_extents(info, cache);
10072 btrfs_put_block_group(cache);
10073 goto error;
10074 }
10075
10076 /*
10077 * check for two cases, either we are full, and therefore
10078 * don't need to bother with the caching work since we won't
10079 * find any space, or we are empty, and we can just add all
10080 * the space in and be done with it. This saves us _alot_ of
10081 * time, particularly in the full case.
10082 */
10083 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10084 cache->last_byte_to_unpin = (u64)-1;
10085 cache->cached = BTRFS_CACHE_FINISHED;
10086 free_excluded_extents(info, cache);
10087 } else if (btrfs_block_group_used(&cache->item) == 0) {
10088 cache->last_byte_to_unpin = (u64)-1;
10089 cache->cached = BTRFS_CACHE_FINISHED;
10090 add_new_free_space(cache, info,
10091 found_key.objectid,
10092 found_key.objectid +
10093 found_key.offset);
10094 free_excluded_extents(info, cache);
10095 }
10096
10097 ret = btrfs_add_block_group_cache(info, cache);
10098 if (ret) {
10099 btrfs_remove_free_space_cache(cache);
10100 btrfs_put_block_group(cache);
10101 goto error;
10102 }
10103
10104 trace_btrfs_add_block_group(info, cache, 0);
10105 update_space_info(info, cache->flags, found_key.offset,
10106 btrfs_block_group_used(&cache->item),
10107 cache->bytes_super, &space_info);
10108
10109 cache->space_info = space_info;
10110
10111 __link_block_group(space_info, cache);
10112
10113 set_avail_alloc_bits(info, cache->flags);
10114 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10115 inc_block_group_ro(cache, 1);
10116 } else if (btrfs_block_group_used(&cache->item) == 0) {
10117 spin_lock(&info->unused_bgs_lock);
10118 /* Should always be true but just in case. */
10119 if (list_empty(&cache->bg_list)) {
10120 btrfs_get_block_group(cache);
10121 list_add_tail(&cache->bg_list,
10122 &info->unused_bgs);
10123 }
10124 spin_unlock(&info->unused_bgs_lock);
10125 }
10126 }
10127
10128 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10129 if (!(get_alloc_profile(info, space_info->flags) &
10130 (BTRFS_BLOCK_GROUP_RAID10 |
10131 BTRFS_BLOCK_GROUP_RAID1 |
10132 BTRFS_BLOCK_GROUP_RAID5 |
10133 BTRFS_BLOCK_GROUP_RAID6 |
10134 BTRFS_BLOCK_GROUP_DUP)))
10135 continue;
10136 /*
10137 * avoid allocating from un-mirrored block group if there are
10138 * mirrored block groups.
10139 */
10140 list_for_each_entry(cache,
10141 &space_info->block_groups[BTRFS_RAID_RAID0],
10142 list)
10143 inc_block_group_ro(cache, 1);
10144 list_for_each_entry(cache,
10145 &space_info->block_groups[BTRFS_RAID_SINGLE],
10146 list)
10147 inc_block_group_ro(cache, 1);
10148 }
10149
10150 init_global_block_rsv(info);
10151 ret = 0;
10152 error:
10153 btrfs_free_path(path);
10154 return ret;
10155 }
10156
10157 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10158 struct btrfs_fs_info *fs_info)
10159 {
10160 struct btrfs_block_group_cache *block_group, *tmp;
10161 struct btrfs_root *extent_root = fs_info->extent_root;
10162 struct btrfs_block_group_item item;
10163 struct btrfs_key key;
10164 int ret = 0;
10165 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10166
10167 trans->can_flush_pending_bgs = false;
10168 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10169 if (ret)
10170 goto next;
10171
10172 spin_lock(&block_group->lock);
10173 memcpy(&item, &block_group->item, sizeof(item));
10174 memcpy(&key, &block_group->key, sizeof(key));
10175 spin_unlock(&block_group->lock);
10176
10177 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10178 sizeof(item));
10179 if (ret)
10180 btrfs_abort_transaction(trans, ret);
10181 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10182 key.offset);
10183 if (ret)
10184 btrfs_abort_transaction(trans, ret);
10185 add_block_group_free_space(trans, fs_info, block_group);
10186 /* already aborted the transaction if it failed. */
10187 next:
10188 list_del_init(&block_group->bg_list);
10189 }
10190 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10191 }
10192
10193 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10194 struct btrfs_fs_info *fs_info, u64 bytes_used,
10195 u64 type, u64 chunk_objectid, u64 chunk_offset,
10196 u64 size)
10197 {
10198 struct btrfs_block_group_cache *cache;
10199 int ret;
10200
10201 btrfs_set_log_full_commit(fs_info, trans);
10202
10203 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10204 if (!cache)
10205 return -ENOMEM;
10206
10207 btrfs_set_block_group_used(&cache->item, bytes_used);
10208 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10209 btrfs_set_block_group_flags(&cache->item, type);
10210
10211 cache->flags = type;
10212 cache->last_byte_to_unpin = (u64)-1;
10213 cache->cached = BTRFS_CACHE_FINISHED;
10214 cache->needs_free_space = 1;
10215 ret = exclude_super_stripes(fs_info, cache);
10216 if (ret) {
10217 /*
10218 * We may have excluded something, so call this just in
10219 * case.
10220 */
10221 free_excluded_extents(fs_info, cache);
10222 btrfs_put_block_group(cache);
10223 return ret;
10224 }
10225
10226 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10227
10228 free_excluded_extents(fs_info, cache);
10229
10230 #ifdef CONFIG_BTRFS_DEBUG
10231 if (btrfs_should_fragment_free_space(cache)) {
10232 u64 new_bytes_used = size - bytes_used;
10233
10234 bytes_used += new_bytes_used >> 1;
10235 fragment_free_space(cache);
10236 }
10237 #endif
10238 /*
10239 * Ensure the corresponding space_info object is created and
10240 * assigned to our block group. We want our bg to be added to the rbtree
10241 * with its ->space_info set.
10242 */
10243 cache->space_info = __find_space_info(fs_info, cache->flags);
10244 if (!cache->space_info) {
10245 ret = create_space_info(fs_info, cache->flags,
10246 &cache->space_info);
10247 if (ret) {
10248 btrfs_remove_free_space_cache(cache);
10249 btrfs_put_block_group(cache);
10250 return ret;
10251 }
10252 }
10253
10254 ret = btrfs_add_block_group_cache(fs_info, cache);
10255 if (ret) {
10256 btrfs_remove_free_space_cache(cache);
10257 btrfs_put_block_group(cache);
10258 return ret;
10259 }
10260
10261 /*
10262 * Now that our block group has its ->space_info set and is inserted in
10263 * the rbtree, update the space info's counters.
10264 */
10265 trace_btrfs_add_block_group(fs_info, cache, 1);
10266 update_space_info(fs_info, cache->flags, size, bytes_used,
10267 cache->bytes_super, &cache->space_info);
10268 update_global_block_rsv(fs_info);
10269
10270 __link_block_group(cache->space_info, cache);
10271
10272 list_add_tail(&cache->bg_list, &trans->new_bgs);
10273
10274 set_avail_alloc_bits(fs_info, type);
10275 return 0;
10276 }
10277
10278 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10279 {
10280 u64 extra_flags = chunk_to_extended(flags) &
10281 BTRFS_EXTENDED_PROFILE_MASK;
10282
10283 write_seqlock(&fs_info->profiles_lock);
10284 if (flags & BTRFS_BLOCK_GROUP_DATA)
10285 fs_info->avail_data_alloc_bits &= ~extra_flags;
10286 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10287 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10288 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10289 fs_info->avail_system_alloc_bits &= ~extra_flags;
10290 write_sequnlock(&fs_info->profiles_lock);
10291 }
10292
10293 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10294 struct btrfs_fs_info *fs_info, u64 group_start,
10295 struct extent_map *em)
10296 {
10297 struct btrfs_root *root = fs_info->extent_root;
10298 struct btrfs_path *path;
10299 struct btrfs_block_group_cache *block_group;
10300 struct btrfs_free_cluster *cluster;
10301 struct btrfs_root *tree_root = fs_info->tree_root;
10302 struct btrfs_key key;
10303 struct inode *inode;
10304 struct kobject *kobj = NULL;
10305 int ret;
10306 int index;
10307 int factor;
10308 struct btrfs_caching_control *caching_ctl = NULL;
10309 bool remove_em;
10310
10311 block_group = btrfs_lookup_block_group(fs_info, group_start);
10312 BUG_ON(!block_group);
10313 BUG_ON(!block_group->ro);
10314
10315 /*
10316 * Free the reserved super bytes from this block group before
10317 * remove it.
10318 */
10319 free_excluded_extents(fs_info, block_group);
10320
10321 memcpy(&key, &block_group->key, sizeof(key));
10322 index = get_block_group_index(block_group);
10323 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10324 BTRFS_BLOCK_GROUP_RAID1 |
10325 BTRFS_BLOCK_GROUP_RAID10))
10326 factor = 2;
10327 else
10328 factor = 1;
10329
10330 /* make sure this block group isn't part of an allocation cluster */
10331 cluster = &fs_info->data_alloc_cluster;
10332 spin_lock(&cluster->refill_lock);
10333 btrfs_return_cluster_to_free_space(block_group, cluster);
10334 spin_unlock(&cluster->refill_lock);
10335
10336 /*
10337 * make sure this block group isn't part of a metadata
10338 * allocation cluster
10339 */
10340 cluster = &fs_info->meta_alloc_cluster;
10341 spin_lock(&cluster->refill_lock);
10342 btrfs_return_cluster_to_free_space(block_group, cluster);
10343 spin_unlock(&cluster->refill_lock);
10344
10345 path = btrfs_alloc_path();
10346 if (!path) {
10347 ret = -ENOMEM;
10348 goto out;
10349 }
10350
10351 /*
10352 * get the inode first so any iput calls done for the io_list
10353 * aren't the final iput (no unlinks allowed now)
10354 */
10355 inode = lookup_free_space_inode(fs_info, block_group, path);
10356
10357 mutex_lock(&trans->transaction->cache_write_mutex);
10358 /*
10359 * make sure our free spache cache IO is done before remove the
10360 * free space inode
10361 */
10362 spin_lock(&trans->transaction->dirty_bgs_lock);
10363 if (!list_empty(&block_group->io_list)) {
10364 list_del_init(&block_group->io_list);
10365
10366 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10367
10368 spin_unlock(&trans->transaction->dirty_bgs_lock);
10369 btrfs_wait_cache_io(trans, block_group, path);
10370 btrfs_put_block_group(block_group);
10371 spin_lock(&trans->transaction->dirty_bgs_lock);
10372 }
10373
10374 if (!list_empty(&block_group->dirty_list)) {
10375 list_del_init(&block_group->dirty_list);
10376 btrfs_put_block_group(block_group);
10377 }
10378 spin_unlock(&trans->transaction->dirty_bgs_lock);
10379 mutex_unlock(&trans->transaction->cache_write_mutex);
10380
10381 if (!IS_ERR(inode)) {
10382 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10383 if (ret) {
10384 btrfs_add_delayed_iput(inode);
10385 goto out;
10386 }
10387 clear_nlink(inode);
10388 /* One for the block groups ref */
10389 spin_lock(&block_group->lock);
10390 if (block_group->iref) {
10391 block_group->iref = 0;
10392 block_group->inode = NULL;
10393 spin_unlock(&block_group->lock);
10394 iput(inode);
10395 } else {
10396 spin_unlock(&block_group->lock);
10397 }
10398 /* One for our lookup ref */
10399 btrfs_add_delayed_iput(inode);
10400 }
10401
10402 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10403 key.offset = block_group->key.objectid;
10404 key.type = 0;
10405
10406 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10407 if (ret < 0)
10408 goto out;
10409 if (ret > 0)
10410 btrfs_release_path(path);
10411 if (ret == 0) {
10412 ret = btrfs_del_item(trans, tree_root, path);
10413 if (ret)
10414 goto out;
10415 btrfs_release_path(path);
10416 }
10417
10418 spin_lock(&fs_info->block_group_cache_lock);
10419 rb_erase(&block_group->cache_node,
10420 &fs_info->block_group_cache_tree);
10421 RB_CLEAR_NODE(&block_group->cache_node);
10422
10423 if (fs_info->first_logical_byte == block_group->key.objectid)
10424 fs_info->first_logical_byte = (u64)-1;
10425 spin_unlock(&fs_info->block_group_cache_lock);
10426
10427 down_write(&block_group->space_info->groups_sem);
10428 /*
10429 * we must use list_del_init so people can check to see if they
10430 * are still on the list after taking the semaphore
10431 */
10432 list_del_init(&block_group->list);
10433 if (list_empty(&block_group->space_info->block_groups[index])) {
10434 kobj = block_group->space_info->block_group_kobjs[index];
10435 block_group->space_info->block_group_kobjs[index] = NULL;
10436 clear_avail_alloc_bits(fs_info, block_group->flags);
10437 }
10438 up_write(&block_group->space_info->groups_sem);
10439 if (kobj) {
10440 kobject_del(kobj);
10441 kobject_put(kobj);
10442 }
10443
10444 if (block_group->has_caching_ctl)
10445 caching_ctl = get_caching_control(block_group);
10446 if (block_group->cached == BTRFS_CACHE_STARTED)
10447 wait_block_group_cache_done(block_group);
10448 if (block_group->has_caching_ctl) {
10449 down_write(&fs_info->commit_root_sem);
10450 if (!caching_ctl) {
10451 struct btrfs_caching_control *ctl;
10452
10453 list_for_each_entry(ctl,
10454 &fs_info->caching_block_groups, list)
10455 if (ctl->block_group == block_group) {
10456 caching_ctl = ctl;
10457 refcount_inc(&caching_ctl->count);
10458 break;
10459 }
10460 }
10461 if (caching_ctl)
10462 list_del_init(&caching_ctl->list);
10463 up_write(&fs_info->commit_root_sem);
10464 if (caching_ctl) {
10465 /* Once for the caching bgs list and once for us. */
10466 put_caching_control(caching_ctl);
10467 put_caching_control(caching_ctl);
10468 }
10469 }
10470
10471 spin_lock(&trans->transaction->dirty_bgs_lock);
10472 if (!list_empty(&block_group->dirty_list)) {
10473 WARN_ON(1);
10474 }
10475 if (!list_empty(&block_group->io_list)) {
10476 WARN_ON(1);
10477 }
10478 spin_unlock(&trans->transaction->dirty_bgs_lock);
10479 btrfs_remove_free_space_cache(block_group);
10480
10481 spin_lock(&block_group->space_info->lock);
10482 list_del_init(&block_group->ro_list);
10483
10484 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10485 WARN_ON(block_group->space_info->total_bytes
10486 < block_group->key.offset);
10487 WARN_ON(block_group->space_info->bytes_readonly
10488 < block_group->key.offset);
10489 WARN_ON(block_group->space_info->disk_total
10490 < block_group->key.offset * factor);
10491 }
10492 block_group->space_info->total_bytes -= block_group->key.offset;
10493 block_group->space_info->bytes_readonly -= block_group->key.offset;
10494 block_group->space_info->disk_total -= block_group->key.offset * factor;
10495
10496 spin_unlock(&block_group->space_info->lock);
10497
10498 memcpy(&key, &block_group->key, sizeof(key));
10499
10500 mutex_lock(&fs_info->chunk_mutex);
10501 if (!list_empty(&em->list)) {
10502 /* We're in the transaction->pending_chunks list. */
10503 free_extent_map(em);
10504 }
10505 spin_lock(&block_group->lock);
10506 block_group->removed = 1;
10507 /*
10508 * At this point trimming can't start on this block group, because we
10509 * removed the block group from the tree fs_info->block_group_cache_tree
10510 * so no one can't find it anymore and even if someone already got this
10511 * block group before we removed it from the rbtree, they have already
10512 * incremented block_group->trimming - if they didn't, they won't find
10513 * any free space entries because we already removed them all when we
10514 * called btrfs_remove_free_space_cache().
10515 *
10516 * And we must not remove the extent map from the fs_info->mapping_tree
10517 * to prevent the same logical address range and physical device space
10518 * ranges from being reused for a new block group. This is because our
10519 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10520 * completely transactionless, so while it is trimming a range the
10521 * currently running transaction might finish and a new one start,
10522 * allowing for new block groups to be created that can reuse the same
10523 * physical device locations unless we take this special care.
10524 *
10525 * There may also be an implicit trim operation if the file system
10526 * is mounted with -odiscard. The same protections must remain
10527 * in place until the extents have been discarded completely when
10528 * the transaction commit has completed.
10529 */
10530 remove_em = (atomic_read(&block_group->trimming) == 0);
10531 /*
10532 * Make sure a trimmer task always sees the em in the pinned_chunks list
10533 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10534 * before checking block_group->removed).
10535 */
10536 if (!remove_em) {
10537 /*
10538 * Our em might be in trans->transaction->pending_chunks which
10539 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10540 * and so is the fs_info->pinned_chunks list.
10541 *
10542 * So at this point we must be holding the chunk_mutex to avoid
10543 * any races with chunk allocation (more specifically at
10544 * volumes.c:contains_pending_extent()), to ensure it always
10545 * sees the em, either in the pending_chunks list or in the
10546 * pinned_chunks list.
10547 */
10548 list_move_tail(&em->list, &fs_info->pinned_chunks);
10549 }
10550 spin_unlock(&block_group->lock);
10551
10552 if (remove_em) {
10553 struct extent_map_tree *em_tree;
10554
10555 em_tree = &fs_info->mapping_tree.map_tree;
10556 write_lock(&em_tree->lock);
10557 /*
10558 * The em might be in the pending_chunks list, so make sure the
10559 * chunk mutex is locked, since remove_extent_mapping() will
10560 * delete us from that list.
10561 */
10562 remove_extent_mapping(em_tree, em);
10563 write_unlock(&em_tree->lock);
10564 /* once for the tree */
10565 free_extent_map(em);
10566 }
10567
10568 mutex_unlock(&fs_info->chunk_mutex);
10569
10570 ret = remove_block_group_free_space(trans, fs_info, block_group);
10571 if (ret)
10572 goto out;
10573
10574 btrfs_put_block_group(block_group);
10575 btrfs_put_block_group(block_group);
10576
10577 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10578 if (ret > 0)
10579 ret = -EIO;
10580 if (ret < 0)
10581 goto out;
10582
10583 ret = btrfs_del_item(trans, root, path);
10584 out:
10585 btrfs_free_path(path);
10586 return ret;
10587 }
10588
10589 struct btrfs_trans_handle *
10590 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10591 const u64 chunk_offset)
10592 {
10593 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10594 struct extent_map *em;
10595 struct map_lookup *map;
10596 unsigned int num_items;
10597
10598 read_lock(&em_tree->lock);
10599 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10600 read_unlock(&em_tree->lock);
10601 ASSERT(em && em->start == chunk_offset);
10602
10603 /*
10604 * We need to reserve 3 + N units from the metadata space info in order
10605 * to remove a block group (done at btrfs_remove_chunk() and at
10606 * btrfs_remove_block_group()), which are used for:
10607 *
10608 * 1 unit for adding the free space inode's orphan (located in the tree
10609 * of tree roots).
10610 * 1 unit for deleting the block group item (located in the extent
10611 * tree).
10612 * 1 unit for deleting the free space item (located in tree of tree
10613 * roots).
10614 * N units for deleting N device extent items corresponding to each
10615 * stripe (located in the device tree).
10616 *
10617 * In order to remove a block group we also need to reserve units in the
10618 * system space info in order to update the chunk tree (update one or
10619 * more device items and remove one chunk item), but this is done at
10620 * btrfs_remove_chunk() through a call to check_system_chunk().
10621 */
10622 map = em->map_lookup;
10623 num_items = 3 + map->num_stripes;
10624 free_extent_map(em);
10625
10626 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10627 num_items, 1);
10628 }
10629
10630 /*
10631 * Process the unused_bgs list and remove any that don't have any allocated
10632 * space inside of them.
10633 */
10634 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10635 {
10636 struct btrfs_block_group_cache *block_group;
10637 struct btrfs_space_info *space_info;
10638 struct btrfs_trans_handle *trans;
10639 int ret = 0;
10640
10641 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10642 return;
10643
10644 spin_lock(&fs_info->unused_bgs_lock);
10645 while (!list_empty(&fs_info->unused_bgs)) {
10646 u64 start, end;
10647 int trimming;
10648
10649 block_group = list_first_entry(&fs_info->unused_bgs,
10650 struct btrfs_block_group_cache,
10651 bg_list);
10652 list_del_init(&block_group->bg_list);
10653
10654 space_info = block_group->space_info;
10655
10656 if (ret || btrfs_mixed_space_info(space_info)) {
10657 btrfs_put_block_group(block_group);
10658 continue;
10659 }
10660 spin_unlock(&fs_info->unused_bgs_lock);
10661
10662 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10663
10664 /* Don't want to race with allocators so take the groups_sem */
10665 down_write(&space_info->groups_sem);
10666 spin_lock(&block_group->lock);
10667 if (block_group->reserved ||
10668 btrfs_block_group_used(&block_group->item) ||
10669 block_group->ro ||
10670 list_is_singular(&block_group->list)) {
10671 /*
10672 * We want to bail if we made new allocations or have
10673 * outstanding allocations in this block group. We do
10674 * the ro check in case balance is currently acting on
10675 * this block group.
10676 */
10677 spin_unlock(&block_group->lock);
10678 up_write(&space_info->groups_sem);
10679 goto next;
10680 }
10681 spin_unlock(&block_group->lock);
10682
10683 /* We don't want to force the issue, only flip if it's ok. */
10684 ret = inc_block_group_ro(block_group, 0);
10685 up_write(&space_info->groups_sem);
10686 if (ret < 0) {
10687 ret = 0;
10688 goto next;
10689 }
10690
10691 /*
10692 * Want to do this before we do anything else so we can recover
10693 * properly if we fail to join the transaction.
10694 */
10695 trans = btrfs_start_trans_remove_block_group(fs_info,
10696 block_group->key.objectid);
10697 if (IS_ERR(trans)) {
10698 btrfs_dec_block_group_ro(block_group);
10699 ret = PTR_ERR(trans);
10700 goto next;
10701 }
10702
10703 /*
10704 * We could have pending pinned extents for this block group,
10705 * just delete them, we don't care about them anymore.
10706 */
10707 start = block_group->key.objectid;
10708 end = start + block_group->key.offset - 1;
10709 /*
10710 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10711 * btrfs_finish_extent_commit(). If we are at transaction N,
10712 * another task might be running finish_extent_commit() for the
10713 * previous transaction N - 1, and have seen a range belonging
10714 * to the block group in freed_extents[] before we were able to
10715 * clear the whole block group range from freed_extents[]. This
10716 * means that task can lookup for the block group after we
10717 * unpinned it from freed_extents[] and removed it, leading to
10718 * a BUG_ON() at btrfs_unpin_extent_range().
10719 */
10720 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10721 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10722 EXTENT_DIRTY);
10723 if (ret) {
10724 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10725 btrfs_dec_block_group_ro(block_group);
10726 goto end_trans;
10727 }
10728 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10729 EXTENT_DIRTY);
10730 if (ret) {
10731 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10732 btrfs_dec_block_group_ro(block_group);
10733 goto end_trans;
10734 }
10735 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10736
10737 /* Reset pinned so btrfs_put_block_group doesn't complain */
10738 spin_lock(&space_info->lock);
10739 spin_lock(&block_group->lock);
10740
10741 space_info->bytes_pinned -= block_group->pinned;
10742 space_info->bytes_readonly += block_group->pinned;
10743 percpu_counter_add(&space_info->total_bytes_pinned,
10744 -block_group->pinned);
10745 block_group->pinned = 0;
10746
10747 spin_unlock(&block_group->lock);
10748 spin_unlock(&space_info->lock);
10749
10750 /* DISCARD can flip during remount */
10751 trimming = btrfs_test_opt(fs_info, DISCARD);
10752
10753 /* Implicit trim during transaction commit. */
10754 if (trimming)
10755 btrfs_get_block_group_trimming(block_group);
10756
10757 /*
10758 * Btrfs_remove_chunk will abort the transaction if things go
10759 * horribly wrong.
10760 */
10761 ret = btrfs_remove_chunk(trans, fs_info,
10762 block_group->key.objectid);
10763
10764 if (ret) {
10765 if (trimming)
10766 btrfs_put_block_group_trimming(block_group);
10767 goto end_trans;
10768 }
10769
10770 /*
10771 * If we're not mounted with -odiscard, we can just forget
10772 * about this block group. Otherwise we'll need to wait
10773 * until transaction commit to do the actual discard.
10774 */
10775 if (trimming) {
10776 spin_lock(&fs_info->unused_bgs_lock);
10777 /*
10778 * A concurrent scrub might have added us to the list
10779 * fs_info->unused_bgs, so use a list_move operation
10780 * to add the block group to the deleted_bgs list.
10781 */
10782 list_move(&block_group->bg_list,
10783 &trans->transaction->deleted_bgs);
10784 spin_unlock(&fs_info->unused_bgs_lock);
10785 btrfs_get_block_group(block_group);
10786 }
10787 end_trans:
10788 btrfs_end_transaction(trans);
10789 next:
10790 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10791 btrfs_put_block_group(block_group);
10792 spin_lock(&fs_info->unused_bgs_lock);
10793 }
10794 spin_unlock(&fs_info->unused_bgs_lock);
10795 }
10796
10797 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10798 {
10799 struct btrfs_space_info *space_info;
10800 struct btrfs_super_block *disk_super;
10801 u64 features;
10802 u64 flags;
10803 int mixed = 0;
10804 int ret;
10805
10806 disk_super = fs_info->super_copy;
10807 if (!btrfs_super_root(disk_super))
10808 return -EINVAL;
10809
10810 features = btrfs_super_incompat_flags(disk_super);
10811 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10812 mixed = 1;
10813
10814 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10815 ret = create_space_info(fs_info, flags, &space_info);
10816 if (ret)
10817 goto out;
10818
10819 if (mixed) {
10820 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10821 ret = create_space_info(fs_info, flags, &space_info);
10822 } else {
10823 flags = BTRFS_BLOCK_GROUP_METADATA;
10824 ret = create_space_info(fs_info, flags, &space_info);
10825 if (ret)
10826 goto out;
10827
10828 flags = BTRFS_BLOCK_GROUP_DATA;
10829 ret = create_space_info(fs_info, flags, &space_info);
10830 }
10831 out:
10832 return ret;
10833 }
10834
10835 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10836 u64 start, u64 end)
10837 {
10838 return unpin_extent_range(fs_info, start, end, false);
10839 }
10840
10841 /*
10842 * It used to be that old block groups would be left around forever.
10843 * Iterating over them would be enough to trim unused space. Since we
10844 * now automatically remove them, we also need to iterate over unallocated
10845 * space.
10846 *
10847 * We don't want a transaction for this since the discard may take a
10848 * substantial amount of time. We don't require that a transaction be
10849 * running, but we do need to take a running transaction into account
10850 * to ensure that we're not discarding chunks that were released in
10851 * the current transaction.
10852 *
10853 * Holding the chunks lock will prevent other threads from allocating
10854 * or releasing chunks, but it won't prevent a running transaction
10855 * from committing and releasing the memory that the pending chunks
10856 * list head uses. For that, we need to take a reference to the
10857 * transaction.
10858 */
10859 static int btrfs_trim_free_extents(struct btrfs_device *device,
10860 u64 minlen, u64 *trimmed)
10861 {
10862 u64 start = 0, len = 0;
10863 int ret;
10864
10865 *trimmed = 0;
10866
10867 /* Not writeable = nothing to do. */
10868 if (!device->writeable)
10869 return 0;
10870
10871 /* No free space = nothing to do. */
10872 if (device->total_bytes <= device->bytes_used)
10873 return 0;
10874
10875 ret = 0;
10876
10877 while (1) {
10878 struct btrfs_fs_info *fs_info = device->fs_info;
10879 struct btrfs_transaction *trans;
10880 u64 bytes;
10881
10882 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10883 if (ret)
10884 return ret;
10885
10886 down_read(&fs_info->commit_root_sem);
10887
10888 spin_lock(&fs_info->trans_lock);
10889 trans = fs_info->running_transaction;
10890 if (trans)
10891 refcount_inc(&trans->use_count);
10892 spin_unlock(&fs_info->trans_lock);
10893
10894 ret = find_free_dev_extent_start(trans, device, minlen, start,
10895 &start, &len);
10896 if (trans)
10897 btrfs_put_transaction(trans);
10898
10899 if (ret) {
10900 up_read(&fs_info->commit_root_sem);
10901 mutex_unlock(&fs_info->chunk_mutex);
10902 if (ret == -ENOSPC)
10903 ret = 0;
10904 break;
10905 }
10906
10907 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10908 up_read(&fs_info->commit_root_sem);
10909 mutex_unlock(&fs_info->chunk_mutex);
10910
10911 if (ret)
10912 break;
10913
10914 start += len;
10915 *trimmed += bytes;
10916
10917 if (fatal_signal_pending(current)) {
10918 ret = -ERESTARTSYS;
10919 break;
10920 }
10921
10922 cond_resched();
10923 }
10924
10925 return ret;
10926 }
10927
10928 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10929 {
10930 struct btrfs_block_group_cache *cache = NULL;
10931 struct btrfs_device *device;
10932 struct list_head *devices;
10933 u64 group_trimmed;
10934 u64 start;
10935 u64 end;
10936 u64 trimmed = 0;
10937 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10938 int ret = 0;
10939
10940 /*
10941 * try to trim all FS space, our block group may start from non-zero.
10942 */
10943 if (range->len == total_bytes)
10944 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10945 else
10946 cache = btrfs_lookup_block_group(fs_info, range->start);
10947
10948 while (cache) {
10949 if (cache->key.objectid >= (range->start + range->len)) {
10950 btrfs_put_block_group(cache);
10951 break;
10952 }
10953
10954 start = max(range->start, cache->key.objectid);
10955 end = min(range->start + range->len,
10956 cache->key.objectid + cache->key.offset);
10957
10958 if (end - start >= range->minlen) {
10959 if (!block_group_cache_done(cache)) {
10960 ret = cache_block_group(cache, 0);
10961 if (ret) {
10962 btrfs_put_block_group(cache);
10963 break;
10964 }
10965 ret = wait_block_group_cache_done(cache);
10966 if (ret) {
10967 btrfs_put_block_group(cache);
10968 break;
10969 }
10970 }
10971 ret = btrfs_trim_block_group(cache,
10972 &group_trimmed,
10973 start,
10974 end,
10975 range->minlen);
10976
10977 trimmed += group_trimmed;
10978 if (ret) {
10979 btrfs_put_block_group(cache);
10980 break;
10981 }
10982 }
10983
10984 cache = next_block_group(fs_info, cache);
10985 }
10986
10987 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10988 devices = &fs_info->fs_devices->alloc_list;
10989 list_for_each_entry(device, devices, dev_alloc_list) {
10990 ret = btrfs_trim_free_extents(device, range->minlen,
10991 &group_trimmed);
10992 if (ret)
10993 break;
10994
10995 trimmed += group_trimmed;
10996 }
10997 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10998
10999 range->len = trimmed;
11000 return ret;
11001 }
11002
11003 /*
11004 * btrfs_{start,end}_write_no_snapshoting() are similar to
11005 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11006 * data into the page cache through nocow before the subvolume is snapshoted,
11007 * but flush the data into disk after the snapshot creation, or to prevent
11008 * operations while snapshoting is ongoing and that cause the snapshot to be
11009 * inconsistent (writes followed by expanding truncates for example).
11010 */
11011 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11012 {
11013 percpu_counter_dec(&root->subv_writers->counter);
11014 /*
11015 * Make sure counter is updated before we wake up waiters.
11016 */
11017 smp_mb();
11018 if (waitqueue_active(&root->subv_writers->wait))
11019 wake_up(&root->subv_writers->wait);
11020 }
11021
11022 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11023 {
11024 if (atomic_read(&root->will_be_snapshoted))
11025 return 0;
11026
11027 percpu_counter_inc(&root->subv_writers->counter);
11028 /*
11029 * Make sure counter is updated before we check for snapshot creation.
11030 */
11031 smp_mb();
11032 if (atomic_read(&root->will_be_snapshoted)) {
11033 btrfs_end_write_no_snapshoting(root);
11034 return 0;
11035 }
11036 return 1;
11037 }
11038
11039 static int wait_snapshoting_atomic_t(atomic_t *a)
11040 {
11041 schedule();
11042 return 0;
11043 }
11044
11045 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11046 {
11047 while (true) {
11048 int ret;
11049
11050 ret = btrfs_start_write_no_snapshoting(root);
11051 if (ret)
11052 break;
11053 wait_on_atomic_t(&root->will_be_snapshoted,
11054 wait_snapshoting_atomic_t,
11055 TASK_UNINTERRUPTIBLE);
11056 }
11057 }