]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
Btrfs: fix race between fs trimming and block group remove/allocation
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op,
85 int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (cache->cached != BTRFS_CACHE_STARTED) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 /* We're loading it the fast way, so we don't have a caching_ctl. */
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 atomic_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (atomic_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 /*
342 * this is only called by cache_block_group, since we could have freed extents
343 * we need to check the pinned_extents for any extents that can't be used yet
344 * since their free space will be released as soon as the transaction commits.
345 */
346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
347 struct btrfs_fs_info *info, u64 start, u64 end)
348 {
349 u64 extent_start, extent_end, size, total_added = 0;
350 int ret;
351
352 while (start < end) {
353 ret = find_first_extent_bit(info->pinned_extents, start,
354 &extent_start, &extent_end,
355 EXTENT_DIRTY | EXTENT_UPTODATE,
356 NULL);
357 if (ret)
358 break;
359
360 if (extent_start <= start) {
361 start = extent_end + 1;
362 } else if (extent_start > start && extent_start < end) {
363 size = extent_start - start;
364 total_added += size;
365 ret = btrfs_add_free_space(block_group, start,
366 size);
367 BUG_ON(ret); /* -ENOMEM or logic error */
368 start = extent_end + 1;
369 } else {
370 break;
371 }
372 }
373
374 if (start < end) {
375 size = end - start;
376 total_added += size;
377 ret = btrfs_add_free_space(block_group, start, size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 }
380
381 return total_added;
382 }
383
384 static noinline void caching_thread(struct btrfs_work *work)
385 {
386 struct btrfs_block_group_cache *block_group;
387 struct btrfs_fs_info *fs_info;
388 struct btrfs_caching_control *caching_ctl;
389 struct btrfs_root *extent_root;
390 struct btrfs_path *path;
391 struct extent_buffer *leaf;
392 struct btrfs_key key;
393 u64 total_found = 0;
394 u64 last = 0;
395 u32 nritems;
396 int ret = -ENOMEM;
397
398 caching_ctl = container_of(work, struct btrfs_caching_control, work);
399 block_group = caching_ctl->block_group;
400 fs_info = block_group->fs_info;
401 extent_root = fs_info->extent_root;
402
403 path = btrfs_alloc_path();
404 if (!path)
405 goto out;
406
407 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
408
409 /*
410 * We don't want to deadlock with somebody trying to allocate a new
411 * extent for the extent root while also trying to search the extent
412 * root to add free space. So we skip locking and search the commit
413 * root, since its read-only
414 */
415 path->skip_locking = 1;
416 path->search_commit_root = 1;
417 path->reada = 1;
418
419 key.objectid = last;
420 key.offset = 0;
421 key.type = BTRFS_EXTENT_ITEM_KEY;
422 again:
423 mutex_lock(&caching_ctl->mutex);
424 /* need to make sure the commit_root doesn't disappear */
425 down_read(&fs_info->commit_root_sem);
426
427 next:
428 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 if (ret < 0)
430 goto err;
431
432 leaf = path->nodes[0];
433 nritems = btrfs_header_nritems(leaf);
434
435 while (1) {
436 if (btrfs_fs_closing(fs_info) > 1) {
437 last = (u64)-1;
438 break;
439 }
440
441 if (path->slots[0] < nritems) {
442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 } else {
444 ret = find_next_key(path, 0, &key);
445 if (ret)
446 break;
447
448 if (need_resched() ||
449 rwsem_is_contended(&fs_info->commit_root_sem)) {
450 caching_ctl->progress = last;
451 btrfs_release_path(path);
452 up_read(&fs_info->commit_root_sem);
453 mutex_unlock(&caching_ctl->mutex);
454 cond_resched();
455 goto again;
456 }
457
458 ret = btrfs_next_leaf(extent_root, path);
459 if (ret < 0)
460 goto err;
461 if (ret)
462 break;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 continue;
466 }
467
468 if (key.objectid < last) {
469 key.objectid = last;
470 key.offset = 0;
471 key.type = BTRFS_EXTENT_ITEM_KEY;
472
473 caching_ctl->progress = last;
474 btrfs_release_path(path);
475 goto next;
476 }
477
478 if (key.objectid < block_group->key.objectid) {
479 path->slots[0]++;
480 continue;
481 }
482
483 if (key.objectid >= block_group->key.objectid +
484 block_group->key.offset)
485 break;
486
487 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 key.type == BTRFS_METADATA_ITEM_KEY) {
489 total_found += add_new_free_space(block_group,
490 fs_info, last,
491 key.objectid);
492 if (key.type == BTRFS_METADATA_ITEM_KEY)
493 last = key.objectid +
494 fs_info->tree_root->nodesize;
495 else
496 last = key.objectid + key.offset;
497
498 if (total_found > (1024 * 1024 * 2)) {
499 total_found = 0;
500 wake_up(&caching_ctl->wait);
501 }
502 }
503 path->slots[0]++;
504 }
505 ret = 0;
506
507 total_found += add_new_free_space(block_group, fs_info, last,
508 block_group->key.objectid +
509 block_group->key.offset);
510 caching_ctl->progress = (u64)-1;
511
512 spin_lock(&block_group->lock);
513 block_group->caching_ctl = NULL;
514 block_group->cached = BTRFS_CACHE_FINISHED;
515 spin_unlock(&block_group->lock);
516
517 err:
518 btrfs_free_path(path);
519 up_read(&fs_info->commit_root_sem);
520
521 free_excluded_extents(extent_root, block_group);
522
523 mutex_unlock(&caching_ctl->mutex);
524 out:
525 if (ret) {
526 spin_lock(&block_group->lock);
527 block_group->caching_ctl = NULL;
528 block_group->cached = BTRFS_CACHE_ERROR;
529 spin_unlock(&block_group->lock);
530 }
531 wake_up(&caching_ctl->wait);
532
533 put_caching_control(caching_ctl);
534 btrfs_put_block_group(block_group);
535 }
536
537 static int cache_block_group(struct btrfs_block_group_cache *cache,
538 int load_cache_only)
539 {
540 DEFINE_WAIT(wait);
541 struct btrfs_fs_info *fs_info = cache->fs_info;
542 struct btrfs_caching_control *caching_ctl;
543 int ret = 0;
544
545 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
546 if (!caching_ctl)
547 return -ENOMEM;
548
549 INIT_LIST_HEAD(&caching_ctl->list);
550 mutex_init(&caching_ctl->mutex);
551 init_waitqueue_head(&caching_ctl->wait);
552 caching_ctl->block_group = cache;
553 caching_ctl->progress = cache->key.objectid;
554 atomic_set(&caching_ctl->count, 1);
555 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
556 caching_thread, NULL, NULL);
557
558 spin_lock(&cache->lock);
559 /*
560 * This should be a rare occasion, but this could happen I think in the
561 * case where one thread starts to load the space cache info, and then
562 * some other thread starts a transaction commit which tries to do an
563 * allocation while the other thread is still loading the space cache
564 * info. The previous loop should have kept us from choosing this block
565 * group, but if we've moved to the state where we will wait on caching
566 * block groups we need to first check if we're doing a fast load here,
567 * so we can wait for it to finish, otherwise we could end up allocating
568 * from a block group who's cache gets evicted for one reason or
569 * another.
570 */
571 while (cache->cached == BTRFS_CACHE_FAST) {
572 struct btrfs_caching_control *ctl;
573
574 ctl = cache->caching_ctl;
575 atomic_inc(&ctl->count);
576 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
577 spin_unlock(&cache->lock);
578
579 schedule();
580
581 finish_wait(&ctl->wait, &wait);
582 put_caching_control(ctl);
583 spin_lock(&cache->lock);
584 }
585
586 if (cache->cached != BTRFS_CACHE_NO) {
587 spin_unlock(&cache->lock);
588 kfree(caching_ctl);
589 return 0;
590 }
591 WARN_ON(cache->caching_ctl);
592 cache->caching_ctl = caching_ctl;
593 cache->cached = BTRFS_CACHE_FAST;
594 spin_unlock(&cache->lock);
595
596 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
597 ret = load_free_space_cache(fs_info, cache);
598
599 spin_lock(&cache->lock);
600 if (ret == 1) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_FINISHED;
603 cache->last_byte_to_unpin = (u64)-1;
604 } else {
605 if (load_cache_only) {
606 cache->caching_ctl = NULL;
607 cache->cached = BTRFS_CACHE_NO;
608 } else {
609 cache->cached = BTRFS_CACHE_STARTED;
610 cache->has_caching_ctl = 1;
611 }
612 }
613 spin_unlock(&cache->lock);
614 wake_up(&caching_ctl->wait);
615 if (ret == 1) {
616 put_caching_control(caching_ctl);
617 free_excluded_extents(fs_info->extent_root, cache);
618 return 0;
619 }
620 } else {
621 /*
622 * We are not going to do the fast caching, set cached to the
623 * appropriate value and wakeup any waiters.
624 */
625 spin_lock(&cache->lock);
626 if (load_cache_only) {
627 cache->caching_ctl = NULL;
628 cache->cached = BTRFS_CACHE_NO;
629 } else {
630 cache->cached = BTRFS_CACHE_STARTED;
631 cache->has_caching_ctl = 1;
632 }
633 spin_unlock(&cache->lock);
634 wake_up(&caching_ctl->wait);
635 }
636
637 if (load_cache_only) {
638 put_caching_control(caching_ctl);
639 return 0;
640 }
641
642 down_write(&fs_info->commit_root_sem);
643 atomic_inc(&caching_ctl->count);
644 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
645 up_write(&fs_info->commit_root_sem);
646
647 btrfs_get_block_group(cache);
648
649 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
650
651 return ret;
652 }
653
654 /*
655 * return the block group that starts at or after bytenr
656 */
657 static struct btrfs_block_group_cache *
658 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
659 {
660 struct btrfs_block_group_cache *cache;
661
662 cache = block_group_cache_tree_search(info, bytenr, 0);
663
664 return cache;
665 }
666
667 /*
668 * return the block group that contains the given bytenr
669 */
670 struct btrfs_block_group_cache *btrfs_lookup_block_group(
671 struct btrfs_fs_info *info,
672 u64 bytenr)
673 {
674 struct btrfs_block_group_cache *cache;
675
676 cache = block_group_cache_tree_search(info, bytenr, 1);
677
678 return cache;
679 }
680
681 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
682 u64 flags)
683 {
684 struct list_head *head = &info->space_info;
685 struct btrfs_space_info *found;
686
687 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
688
689 rcu_read_lock();
690 list_for_each_entry_rcu(found, head, list) {
691 if (found->flags & flags) {
692 rcu_read_unlock();
693 return found;
694 }
695 }
696 rcu_read_unlock();
697 return NULL;
698 }
699
700 /*
701 * after adding space to the filesystem, we need to clear the full flags
702 * on all the space infos.
703 */
704 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
705 {
706 struct list_head *head = &info->space_info;
707 struct btrfs_space_info *found;
708
709 rcu_read_lock();
710 list_for_each_entry_rcu(found, head, list)
711 found->full = 0;
712 rcu_read_unlock();
713 }
714
715 /* simple helper to search for an existing data extent at a given offset */
716 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
717 {
718 int ret;
719 struct btrfs_key key;
720 struct btrfs_path *path;
721
722 path = btrfs_alloc_path();
723 if (!path)
724 return -ENOMEM;
725
726 key.objectid = start;
727 key.offset = len;
728 key.type = BTRFS_EXTENT_ITEM_KEY;
729 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
730 0, 0);
731 btrfs_free_path(path);
732 return ret;
733 }
734
735 /*
736 * helper function to lookup reference count and flags of a tree block.
737 *
738 * the head node for delayed ref is used to store the sum of all the
739 * reference count modifications queued up in the rbtree. the head
740 * node may also store the extent flags to set. This way you can check
741 * to see what the reference count and extent flags would be if all of
742 * the delayed refs are not processed.
743 */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root, u64 bytenr,
746 u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 struct btrfs_delayed_ref_head *head;
749 struct btrfs_delayed_ref_root *delayed_refs;
750 struct btrfs_path *path;
751 struct btrfs_extent_item *ei;
752 struct extent_buffer *leaf;
753 struct btrfs_key key;
754 u32 item_size;
755 u64 num_refs;
756 u64 extent_flags;
757 int ret;
758
759 /*
760 * If we don't have skinny metadata, don't bother doing anything
761 * different
762 */
763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 offset = root->nodesize;
765 metadata = 0;
766 }
767
768 path = btrfs_alloc_path();
769 if (!path)
770 return -ENOMEM;
771
772 if (!trans) {
773 path->skip_locking = 1;
774 path->search_commit_root = 1;
775 }
776
777 search_again:
778 key.objectid = bytenr;
779 key.offset = offset;
780 if (metadata)
781 key.type = BTRFS_METADATA_ITEM_KEY;
782 else
783 key.type = BTRFS_EXTENT_ITEM_KEY;
784
785 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
786 &key, path, 0, 0);
787 if (ret < 0)
788 goto out_free;
789
790 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
791 if (path->slots[0]) {
792 path->slots[0]--;
793 btrfs_item_key_to_cpu(path->nodes[0], &key,
794 path->slots[0]);
795 if (key.objectid == bytenr &&
796 key.type == BTRFS_EXTENT_ITEM_KEY &&
797 key.offset == root->nodesize)
798 ret = 0;
799 }
800 }
801
802 if (ret == 0) {
803 leaf = path->nodes[0];
804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
805 if (item_size >= sizeof(*ei)) {
806 ei = btrfs_item_ptr(leaf, path->slots[0],
807 struct btrfs_extent_item);
808 num_refs = btrfs_extent_refs(leaf, ei);
809 extent_flags = btrfs_extent_flags(leaf, ei);
810 } else {
811 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
812 struct btrfs_extent_item_v0 *ei0;
813 BUG_ON(item_size != sizeof(*ei0));
814 ei0 = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item_v0);
816 num_refs = btrfs_extent_refs_v0(leaf, ei0);
817 /* FIXME: this isn't correct for data */
818 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
819 #else
820 BUG();
821 #endif
822 }
823 BUG_ON(num_refs == 0);
824 } else {
825 num_refs = 0;
826 extent_flags = 0;
827 ret = 0;
828 }
829
830 if (!trans)
831 goto out;
832
833 delayed_refs = &trans->transaction->delayed_refs;
834 spin_lock(&delayed_refs->lock);
835 head = btrfs_find_delayed_ref_head(trans, bytenr);
836 if (head) {
837 if (!mutex_trylock(&head->mutex)) {
838 atomic_inc(&head->node.refs);
839 spin_unlock(&delayed_refs->lock);
840
841 btrfs_release_path(path);
842
843 /*
844 * Mutex was contended, block until it's released and try
845 * again
846 */
847 mutex_lock(&head->mutex);
848 mutex_unlock(&head->mutex);
849 btrfs_put_delayed_ref(&head->node);
850 goto search_again;
851 }
852 spin_lock(&head->lock);
853 if (head->extent_op && head->extent_op->update_flags)
854 extent_flags |= head->extent_op->flags_to_set;
855 else
856 BUG_ON(num_refs == 0);
857
858 num_refs += head->node.ref_mod;
859 spin_unlock(&head->lock);
860 mutex_unlock(&head->mutex);
861 }
862 spin_unlock(&delayed_refs->lock);
863 out:
864 WARN_ON(num_refs == 0);
865 if (refs)
866 *refs = num_refs;
867 if (flags)
868 *flags = extent_flags;
869 out_free:
870 btrfs_free_path(path);
871 return ret;
872 }
873
874 /*
875 * Back reference rules. Back refs have three main goals:
876 *
877 * 1) differentiate between all holders of references to an extent so that
878 * when a reference is dropped we can make sure it was a valid reference
879 * before freeing the extent.
880 *
881 * 2) Provide enough information to quickly find the holders of an extent
882 * if we notice a given block is corrupted or bad.
883 *
884 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
885 * maintenance. This is actually the same as #2, but with a slightly
886 * different use case.
887 *
888 * There are two kinds of back refs. The implicit back refs is optimized
889 * for pointers in non-shared tree blocks. For a given pointer in a block,
890 * back refs of this kind provide information about the block's owner tree
891 * and the pointer's key. These information allow us to find the block by
892 * b-tree searching. The full back refs is for pointers in tree blocks not
893 * referenced by their owner trees. The location of tree block is recorded
894 * in the back refs. Actually the full back refs is generic, and can be
895 * used in all cases the implicit back refs is used. The major shortcoming
896 * of the full back refs is its overhead. Every time a tree block gets
897 * COWed, we have to update back refs entry for all pointers in it.
898 *
899 * For a newly allocated tree block, we use implicit back refs for
900 * pointers in it. This means most tree related operations only involve
901 * implicit back refs. For a tree block created in old transaction, the
902 * only way to drop a reference to it is COW it. So we can detect the
903 * event that tree block loses its owner tree's reference and do the
904 * back refs conversion.
905 *
906 * When a tree block is COW'd through a tree, there are four cases:
907 *
908 * The reference count of the block is one and the tree is the block's
909 * owner tree. Nothing to do in this case.
910 *
911 * The reference count of the block is one and the tree is not the
912 * block's owner tree. In this case, full back refs is used for pointers
913 * in the block. Remove these full back refs, add implicit back refs for
914 * every pointers in the new block.
915 *
916 * The reference count of the block is greater than one and the tree is
917 * the block's owner tree. In this case, implicit back refs is used for
918 * pointers in the block. Add full back refs for every pointers in the
919 * block, increase lower level extents' reference counts. The original
920 * implicit back refs are entailed to the new block.
921 *
922 * The reference count of the block is greater than one and the tree is
923 * not the block's owner tree. Add implicit back refs for every pointer in
924 * the new block, increase lower level extents' reference count.
925 *
926 * Back Reference Key composing:
927 *
928 * The key objectid corresponds to the first byte in the extent,
929 * The key type is used to differentiate between types of back refs.
930 * There are different meanings of the key offset for different types
931 * of back refs.
932 *
933 * File extents can be referenced by:
934 *
935 * - multiple snapshots, subvolumes, or different generations in one subvol
936 * - different files inside a single subvolume
937 * - different offsets inside a file (bookend extents in file.c)
938 *
939 * The extent ref structure for the implicit back refs has fields for:
940 *
941 * - Objectid of the subvolume root
942 * - objectid of the file holding the reference
943 * - original offset in the file
944 * - how many bookend extents
945 *
946 * The key offset for the implicit back refs is hash of the first
947 * three fields.
948 *
949 * The extent ref structure for the full back refs has field for:
950 *
951 * - number of pointers in the tree leaf
952 *
953 * The key offset for the implicit back refs is the first byte of
954 * the tree leaf
955 *
956 * When a file extent is allocated, The implicit back refs is used.
957 * the fields are filled in:
958 *
959 * (root_key.objectid, inode objectid, offset in file, 1)
960 *
961 * When a file extent is removed file truncation, we find the
962 * corresponding implicit back refs and check the following fields:
963 *
964 * (btrfs_header_owner(leaf), inode objectid, offset in file)
965 *
966 * Btree extents can be referenced by:
967 *
968 * - Different subvolumes
969 *
970 * Both the implicit back refs and the full back refs for tree blocks
971 * only consist of key. The key offset for the implicit back refs is
972 * objectid of block's owner tree. The key offset for the full back refs
973 * is the first byte of parent block.
974 *
975 * When implicit back refs is used, information about the lowest key and
976 * level of the tree block are required. These information are stored in
977 * tree block info structure.
978 */
979
980 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
981 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
982 struct btrfs_root *root,
983 struct btrfs_path *path,
984 u64 owner, u32 extra_size)
985 {
986 struct btrfs_extent_item *item;
987 struct btrfs_extent_item_v0 *ei0;
988 struct btrfs_extent_ref_v0 *ref0;
989 struct btrfs_tree_block_info *bi;
990 struct extent_buffer *leaf;
991 struct btrfs_key key;
992 struct btrfs_key found_key;
993 u32 new_size = sizeof(*item);
994 u64 refs;
995 int ret;
996
997 leaf = path->nodes[0];
998 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
999
1000 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1001 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1002 struct btrfs_extent_item_v0);
1003 refs = btrfs_extent_refs_v0(leaf, ei0);
1004
1005 if (owner == (u64)-1) {
1006 while (1) {
1007 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1008 ret = btrfs_next_leaf(root, path);
1009 if (ret < 0)
1010 return ret;
1011 BUG_ON(ret > 0); /* Corruption */
1012 leaf = path->nodes[0];
1013 }
1014 btrfs_item_key_to_cpu(leaf, &found_key,
1015 path->slots[0]);
1016 BUG_ON(key.objectid != found_key.objectid);
1017 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1018 path->slots[0]++;
1019 continue;
1020 }
1021 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1022 struct btrfs_extent_ref_v0);
1023 owner = btrfs_ref_objectid_v0(leaf, ref0);
1024 break;
1025 }
1026 }
1027 btrfs_release_path(path);
1028
1029 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1030 new_size += sizeof(*bi);
1031
1032 new_size -= sizeof(*ei0);
1033 ret = btrfs_search_slot(trans, root, &key, path,
1034 new_size + extra_size, 1);
1035 if (ret < 0)
1036 return ret;
1037 BUG_ON(ret); /* Corruption */
1038
1039 btrfs_extend_item(root, path, new_size);
1040
1041 leaf = path->nodes[0];
1042 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1043 btrfs_set_extent_refs(leaf, item, refs);
1044 /* FIXME: get real generation */
1045 btrfs_set_extent_generation(leaf, item, 0);
1046 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1047 btrfs_set_extent_flags(leaf, item,
1048 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1049 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1050 bi = (struct btrfs_tree_block_info *)(item + 1);
1051 /* FIXME: get first key of the block */
1052 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1053 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1054 } else {
1055 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1056 }
1057 btrfs_mark_buffer_dirty(leaf);
1058 return 0;
1059 }
1060 #endif
1061
1062 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1063 {
1064 u32 high_crc = ~(u32)0;
1065 u32 low_crc = ~(u32)0;
1066 __le64 lenum;
1067
1068 lenum = cpu_to_le64(root_objectid);
1069 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(owner);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072 lenum = cpu_to_le64(offset);
1073 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1074
1075 return ((u64)high_crc << 31) ^ (u64)low_crc;
1076 }
1077
1078 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1079 struct btrfs_extent_data_ref *ref)
1080 {
1081 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1082 btrfs_extent_data_ref_objectid(leaf, ref),
1083 btrfs_extent_data_ref_offset(leaf, ref));
1084 }
1085
1086 static int match_extent_data_ref(struct extent_buffer *leaf,
1087 struct btrfs_extent_data_ref *ref,
1088 u64 root_objectid, u64 owner, u64 offset)
1089 {
1090 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1091 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1092 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1093 return 0;
1094 return 1;
1095 }
1096
1097 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 u64 bytenr, u64 parent,
1101 u64 root_objectid,
1102 u64 owner, u64 offset)
1103 {
1104 struct btrfs_key key;
1105 struct btrfs_extent_data_ref *ref;
1106 struct extent_buffer *leaf;
1107 u32 nritems;
1108 int ret;
1109 int recow;
1110 int err = -ENOENT;
1111
1112 key.objectid = bytenr;
1113 if (parent) {
1114 key.type = BTRFS_SHARED_DATA_REF_KEY;
1115 key.offset = parent;
1116 } else {
1117 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1118 key.offset = hash_extent_data_ref(root_objectid,
1119 owner, offset);
1120 }
1121 again:
1122 recow = 0;
1123 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1124 if (ret < 0) {
1125 err = ret;
1126 goto fail;
1127 }
1128
1129 if (parent) {
1130 if (!ret)
1131 return 0;
1132 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1133 key.type = BTRFS_EXTENT_REF_V0_KEY;
1134 btrfs_release_path(path);
1135 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1136 if (ret < 0) {
1137 err = ret;
1138 goto fail;
1139 }
1140 if (!ret)
1141 return 0;
1142 #endif
1143 goto fail;
1144 }
1145
1146 leaf = path->nodes[0];
1147 nritems = btrfs_header_nritems(leaf);
1148 while (1) {
1149 if (path->slots[0] >= nritems) {
1150 ret = btrfs_next_leaf(root, path);
1151 if (ret < 0)
1152 err = ret;
1153 if (ret)
1154 goto fail;
1155
1156 leaf = path->nodes[0];
1157 nritems = btrfs_header_nritems(leaf);
1158 recow = 1;
1159 }
1160
1161 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1162 if (key.objectid != bytenr ||
1163 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1164 goto fail;
1165
1166 ref = btrfs_item_ptr(leaf, path->slots[0],
1167 struct btrfs_extent_data_ref);
1168
1169 if (match_extent_data_ref(leaf, ref, root_objectid,
1170 owner, offset)) {
1171 if (recow) {
1172 btrfs_release_path(path);
1173 goto again;
1174 }
1175 err = 0;
1176 break;
1177 }
1178 path->slots[0]++;
1179 }
1180 fail:
1181 return err;
1182 }
1183
1184 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1185 struct btrfs_root *root,
1186 struct btrfs_path *path,
1187 u64 bytenr, u64 parent,
1188 u64 root_objectid, u64 owner,
1189 u64 offset, int refs_to_add)
1190 {
1191 struct btrfs_key key;
1192 struct extent_buffer *leaf;
1193 u32 size;
1194 u32 num_refs;
1195 int ret;
1196
1197 key.objectid = bytenr;
1198 if (parent) {
1199 key.type = BTRFS_SHARED_DATA_REF_KEY;
1200 key.offset = parent;
1201 size = sizeof(struct btrfs_shared_data_ref);
1202 } else {
1203 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1204 key.offset = hash_extent_data_ref(root_objectid,
1205 owner, offset);
1206 size = sizeof(struct btrfs_extent_data_ref);
1207 }
1208
1209 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1210 if (ret && ret != -EEXIST)
1211 goto fail;
1212
1213 leaf = path->nodes[0];
1214 if (parent) {
1215 struct btrfs_shared_data_ref *ref;
1216 ref = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_shared_data_ref);
1218 if (ret == 0) {
1219 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1220 } else {
1221 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1222 num_refs += refs_to_add;
1223 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1224 }
1225 } else {
1226 struct btrfs_extent_data_ref *ref;
1227 while (ret == -EEXIST) {
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_extent_data_ref);
1230 if (match_extent_data_ref(leaf, ref, root_objectid,
1231 owner, offset))
1232 break;
1233 btrfs_release_path(path);
1234 key.offset++;
1235 ret = btrfs_insert_empty_item(trans, root, path, &key,
1236 size);
1237 if (ret && ret != -EEXIST)
1238 goto fail;
1239
1240 leaf = path->nodes[0];
1241 }
1242 ref = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_extent_data_ref);
1244 if (ret == 0) {
1245 btrfs_set_extent_data_ref_root(leaf, ref,
1246 root_objectid);
1247 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1248 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1249 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1250 } else {
1251 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1252 num_refs += refs_to_add;
1253 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1254 }
1255 }
1256 btrfs_mark_buffer_dirty(leaf);
1257 ret = 0;
1258 fail:
1259 btrfs_release_path(path);
1260 return ret;
1261 }
1262
1263 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1264 struct btrfs_root *root,
1265 struct btrfs_path *path,
1266 int refs_to_drop, int *last_ref)
1267 {
1268 struct btrfs_key key;
1269 struct btrfs_extent_data_ref *ref1 = NULL;
1270 struct btrfs_shared_data_ref *ref2 = NULL;
1271 struct extent_buffer *leaf;
1272 u32 num_refs = 0;
1273 int ret = 0;
1274
1275 leaf = path->nodes[0];
1276 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1277
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1279 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1280 struct btrfs_extent_data_ref);
1281 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1282 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1283 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_shared_data_ref);
1285 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1286 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1287 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1288 struct btrfs_extent_ref_v0 *ref0;
1289 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_extent_ref_v0);
1291 num_refs = btrfs_ref_count_v0(leaf, ref0);
1292 #endif
1293 } else {
1294 BUG();
1295 }
1296
1297 BUG_ON(num_refs < refs_to_drop);
1298 num_refs -= refs_to_drop;
1299
1300 if (num_refs == 0) {
1301 ret = btrfs_del_item(trans, root, path);
1302 *last_ref = 1;
1303 } else {
1304 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1305 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1306 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1307 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309 else {
1310 struct btrfs_extent_ref_v0 *ref0;
1311 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1312 struct btrfs_extent_ref_v0);
1313 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1314 }
1315 #endif
1316 btrfs_mark_buffer_dirty(leaf);
1317 }
1318 return ret;
1319 }
1320
1321 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1322 struct btrfs_path *path,
1323 struct btrfs_extent_inline_ref *iref)
1324 {
1325 struct btrfs_key key;
1326 struct extent_buffer *leaf;
1327 struct btrfs_extent_data_ref *ref1;
1328 struct btrfs_shared_data_ref *ref2;
1329 u32 num_refs = 0;
1330
1331 leaf = path->nodes[0];
1332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1333 if (iref) {
1334 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1335 BTRFS_EXTENT_DATA_REF_KEY) {
1336 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1337 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1338 } else {
1339 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1340 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1341 }
1342 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1343 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1344 struct btrfs_extent_data_ref);
1345 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1346 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1347 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1348 struct btrfs_shared_data_ref);
1349 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1350 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1351 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1352 struct btrfs_extent_ref_v0 *ref0;
1353 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_extent_ref_v0);
1355 num_refs = btrfs_ref_count_v0(leaf, ref0);
1356 #endif
1357 } else {
1358 WARN_ON(1);
1359 }
1360 return num_refs;
1361 }
1362
1363 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1364 struct btrfs_root *root,
1365 struct btrfs_path *path,
1366 u64 bytenr, u64 parent,
1367 u64 root_objectid)
1368 {
1369 struct btrfs_key key;
1370 int ret;
1371
1372 key.objectid = bytenr;
1373 if (parent) {
1374 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1375 key.offset = parent;
1376 } else {
1377 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1378 key.offset = root_objectid;
1379 }
1380
1381 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1382 if (ret > 0)
1383 ret = -ENOENT;
1384 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1385 if (ret == -ENOENT && parent) {
1386 btrfs_release_path(path);
1387 key.type = BTRFS_EXTENT_REF_V0_KEY;
1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 if (ret > 0)
1390 ret = -ENOENT;
1391 }
1392 #endif
1393 return ret;
1394 }
1395
1396 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1397 struct btrfs_root *root,
1398 struct btrfs_path *path,
1399 u64 bytenr, u64 parent,
1400 u64 root_objectid)
1401 {
1402 struct btrfs_key key;
1403 int ret;
1404
1405 key.objectid = bytenr;
1406 if (parent) {
1407 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1408 key.offset = parent;
1409 } else {
1410 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1411 key.offset = root_objectid;
1412 }
1413
1414 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1415 btrfs_release_path(path);
1416 return ret;
1417 }
1418
1419 static inline int extent_ref_type(u64 parent, u64 owner)
1420 {
1421 int type;
1422 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1423 if (parent > 0)
1424 type = BTRFS_SHARED_BLOCK_REF_KEY;
1425 else
1426 type = BTRFS_TREE_BLOCK_REF_KEY;
1427 } else {
1428 if (parent > 0)
1429 type = BTRFS_SHARED_DATA_REF_KEY;
1430 else
1431 type = BTRFS_EXTENT_DATA_REF_KEY;
1432 }
1433 return type;
1434 }
1435
1436 static int find_next_key(struct btrfs_path *path, int level,
1437 struct btrfs_key *key)
1438
1439 {
1440 for (; level < BTRFS_MAX_LEVEL; level++) {
1441 if (!path->nodes[level])
1442 break;
1443 if (path->slots[level] + 1 >=
1444 btrfs_header_nritems(path->nodes[level]))
1445 continue;
1446 if (level == 0)
1447 btrfs_item_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 else
1450 btrfs_node_key_to_cpu(path->nodes[level], key,
1451 path->slots[level] + 1);
1452 return 0;
1453 }
1454 return 1;
1455 }
1456
1457 /*
1458 * look for inline back ref. if back ref is found, *ref_ret is set
1459 * to the address of inline back ref, and 0 is returned.
1460 *
1461 * if back ref isn't found, *ref_ret is set to the address where it
1462 * should be inserted, and -ENOENT is returned.
1463 *
1464 * if insert is true and there are too many inline back refs, the path
1465 * points to the extent item, and -EAGAIN is returned.
1466 *
1467 * NOTE: inline back refs are ordered in the same way that back ref
1468 * items in the tree are ordered.
1469 */
1470 static noinline_for_stack
1471 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1472 struct btrfs_root *root,
1473 struct btrfs_path *path,
1474 struct btrfs_extent_inline_ref **ref_ret,
1475 u64 bytenr, u64 num_bytes,
1476 u64 parent, u64 root_objectid,
1477 u64 owner, u64 offset, int insert)
1478 {
1479 struct btrfs_key key;
1480 struct extent_buffer *leaf;
1481 struct btrfs_extent_item *ei;
1482 struct btrfs_extent_inline_ref *iref;
1483 u64 flags;
1484 u64 item_size;
1485 unsigned long ptr;
1486 unsigned long end;
1487 int extra_size;
1488 int type;
1489 int want;
1490 int ret;
1491 int err = 0;
1492 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1493 SKINNY_METADATA);
1494
1495 key.objectid = bytenr;
1496 key.type = BTRFS_EXTENT_ITEM_KEY;
1497 key.offset = num_bytes;
1498
1499 want = extent_ref_type(parent, owner);
1500 if (insert) {
1501 extra_size = btrfs_extent_inline_ref_size(want);
1502 path->keep_locks = 1;
1503 } else
1504 extra_size = -1;
1505
1506 /*
1507 * Owner is our parent level, so we can just add one to get the level
1508 * for the block we are interested in.
1509 */
1510 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1511 key.type = BTRFS_METADATA_ITEM_KEY;
1512 key.offset = owner;
1513 }
1514
1515 again:
1516 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1517 if (ret < 0) {
1518 err = ret;
1519 goto out;
1520 }
1521
1522 /*
1523 * We may be a newly converted file system which still has the old fat
1524 * extent entries for metadata, so try and see if we have one of those.
1525 */
1526 if (ret > 0 && skinny_metadata) {
1527 skinny_metadata = false;
1528 if (path->slots[0]) {
1529 path->slots[0]--;
1530 btrfs_item_key_to_cpu(path->nodes[0], &key,
1531 path->slots[0]);
1532 if (key.objectid == bytenr &&
1533 key.type == BTRFS_EXTENT_ITEM_KEY &&
1534 key.offset == num_bytes)
1535 ret = 0;
1536 }
1537 if (ret) {
1538 key.objectid = bytenr;
1539 key.type = BTRFS_EXTENT_ITEM_KEY;
1540 key.offset = num_bytes;
1541 btrfs_release_path(path);
1542 goto again;
1543 }
1544 }
1545
1546 if (ret && !insert) {
1547 err = -ENOENT;
1548 goto out;
1549 } else if (WARN_ON(ret)) {
1550 err = -EIO;
1551 goto out;
1552 }
1553
1554 leaf = path->nodes[0];
1555 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1556 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1557 if (item_size < sizeof(*ei)) {
1558 if (!insert) {
1559 err = -ENOENT;
1560 goto out;
1561 }
1562 ret = convert_extent_item_v0(trans, root, path, owner,
1563 extra_size);
1564 if (ret < 0) {
1565 err = ret;
1566 goto out;
1567 }
1568 leaf = path->nodes[0];
1569 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1570 }
1571 #endif
1572 BUG_ON(item_size < sizeof(*ei));
1573
1574 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1575 flags = btrfs_extent_flags(leaf, ei);
1576
1577 ptr = (unsigned long)(ei + 1);
1578 end = (unsigned long)ei + item_size;
1579
1580 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1581 ptr += sizeof(struct btrfs_tree_block_info);
1582 BUG_ON(ptr > end);
1583 }
1584
1585 err = -ENOENT;
1586 while (1) {
1587 if (ptr >= end) {
1588 WARN_ON(ptr > end);
1589 break;
1590 }
1591 iref = (struct btrfs_extent_inline_ref *)ptr;
1592 type = btrfs_extent_inline_ref_type(leaf, iref);
1593 if (want < type)
1594 break;
1595 if (want > type) {
1596 ptr += btrfs_extent_inline_ref_size(type);
1597 continue;
1598 }
1599
1600 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1601 struct btrfs_extent_data_ref *dref;
1602 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1603 if (match_extent_data_ref(leaf, dref, root_objectid,
1604 owner, offset)) {
1605 err = 0;
1606 break;
1607 }
1608 if (hash_extent_data_ref_item(leaf, dref) <
1609 hash_extent_data_ref(root_objectid, owner, offset))
1610 break;
1611 } else {
1612 u64 ref_offset;
1613 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1614 if (parent > 0) {
1615 if (parent == ref_offset) {
1616 err = 0;
1617 break;
1618 }
1619 if (ref_offset < parent)
1620 break;
1621 } else {
1622 if (root_objectid == ref_offset) {
1623 err = 0;
1624 break;
1625 }
1626 if (ref_offset < root_objectid)
1627 break;
1628 }
1629 }
1630 ptr += btrfs_extent_inline_ref_size(type);
1631 }
1632 if (err == -ENOENT && insert) {
1633 if (item_size + extra_size >=
1634 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1635 err = -EAGAIN;
1636 goto out;
1637 }
1638 /*
1639 * To add new inline back ref, we have to make sure
1640 * there is no corresponding back ref item.
1641 * For simplicity, we just do not add new inline back
1642 * ref if there is any kind of item for this block
1643 */
1644 if (find_next_key(path, 0, &key) == 0 &&
1645 key.objectid == bytenr &&
1646 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1647 err = -EAGAIN;
1648 goto out;
1649 }
1650 }
1651 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1652 out:
1653 if (insert) {
1654 path->keep_locks = 0;
1655 btrfs_unlock_up_safe(path, 1);
1656 }
1657 return err;
1658 }
1659
1660 /*
1661 * helper to add new inline back ref
1662 */
1663 static noinline_for_stack
1664 void setup_inline_extent_backref(struct btrfs_root *root,
1665 struct btrfs_path *path,
1666 struct btrfs_extent_inline_ref *iref,
1667 u64 parent, u64 root_objectid,
1668 u64 owner, u64 offset, int refs_to_add,
1669 struct btrfs_delayed_extent_op *extent_op)
1670 {
1671 struct extent_buffer *leaf;
1672 struct btrfs_extent_item *ei;
1673 unsigned long ptr;
1674 unsigned long end;
1675 unsigned long item_offset;
1676 u64 refs;
1677 int size;
1678 int type;
1679
1680 leaf = path->nodes[0];
1681 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1682 item_offset = (unsigned long)iref - (unsigned long)ei;
1683
1684 type = extent_ref_type(parent, owner);
1685 size = btrfs_extent_inline_ref_size(type);
1686
1687 btrfs_extend_item(root, path, size);
1688
1689 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1690 refs = btrfs_extent_refs(leaf, ei);
1691 refs += refs_to_add;
1692 btrfs_set_extent_refs(leaf, ei, refs);
1693 if (extent_op)
1694 __run_delayed_extent_op(extent_op, leaf, ei);
1695
1696 ptr = (unsigned long)ei + item_offset;
1697 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1698 if (ptr < end - size)
1699 memmove_extent_buffer(leaf, ptr + size, ptr,
1700 end - size - ptr);
1701
1702 iref = (struct btrfs_extent_inline_ref *)ptr;
1703 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1704 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1705 struct btrfs_extent_data_ref *dref;
1706 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1707 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1708 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1709 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1710 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1711 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1712 struct btrfs_shared_data_ref *sref;
1713 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1714 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1720 }
1721 btrfs_mark_buffer_dirty(leaf);
1722 }
1723
1724 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1725 struct btrfs_root *root,
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref **ref_ret,
1728 u64 bytenr, u64 num_bytes, u64 parent,
1729 u64 root_objectid, u64 owner, u64 offset)
1730 {
1731 int ret;
1732
1733 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1734 bytenr, num_bytes, parent,
1735 root_objectid, owner, offset, 0);
1736 if (ret != -ENOENT)
1737 return ret;
1738
1739 btrfs_release_path(path);
1740 *ref_ret = NULL;
1741
1742 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1743 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1744 root_objectid);
1745 } else {
1746 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1747 root_objectid, owner, offset);
1748 }
1749 return ret;
1750 }
1751
1752 /*
1753 * helper to update/remove inline back ref
1754 */
1755 static noinline_for_stack
1756 void update_inline_extent_backref(struct btrfs_root *root,
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
1762 {
1763 struct extent_buffer *leaf;
1764 struct btrfs_extent_item *ei;
1765 struct btrfs_extent_data_ref *dref = NULL;
1766 struct btrfs_shared_data_ref *sref = NULL;
1767 unsigned long ptr;
1768 unsigned long end;
1769 u32 item_size;
1770 int size;
1771 int type;
1772 u64 refs;
1773
1774 leaf = path->nodes[0];
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
1783 type = btrfs_extent_inline_ref_type(leaf, iref);
1784
1785 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1786 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1787 refs = btrfs_extent_data_ref_count(leaf, dref);
1788 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 refs = btrfs_shared_data_ref_count(leaf, sref);
1791 } else {
1792 refs = 1;
1793 BUG_ON(refs_to_mod != -1);
1794 }
1795
1796 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1797 refs += refs_to_mod;
1798
1799 if (refs > 0) {
1800 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1801 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1802 else
1803 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1804 } else {
1805 *last_ref = 1;
1806 size = btrfs_extent_inline_ref_size(type);
1807 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1808 ptr = (unsigned long)iref;
1809 end = (unsigned long)ei + item_size;
1810 if (ptr + size < end)
1811 memmove_extent_buffer(leaf, ptr, ptr + size,
1812 end - ptr - size);
1813 item_size -= size;
1814 btrfs_truncate_item(root, path, item_size, 1);
1815 }
1816 btrfs_mark_buffer_dirty(leaf);
1817 }
1818
1819 static noinline_for_stack
1820 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1821 struct btrfs_root *root,
1822 struct btrfs_path *path,
1823 u64 bytenr, u64 num_bytes, u64 parent,
1824 u64 root_objectid, u64 owner,
1825 u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 struct btrfs_extent_inline_ref *iref;
1829 int ret;
1830
1831 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1832 bytenr, num_bytes, parent,
1833 root_objectid, owner, offset, 1);
1834 if (ret == 0) {
1835 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1836 update_inline_extent_backref(root, path, iref,
1837 refs_to_add, extent_op, NULL);
1838 } else if (ret == -ENOENT) {
1839 setup_inline_extent_backref(root, path, iref, parent,
1840 root_objectid, owner, offset,
1841 refs_to_add, extent_op);
1842 ret = 0;
1843 }
1844 return ret;
1845 }
1846
1847 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1848 struct btrfs_root *root,
1849 struct btrfs_path *path,
1850 u64 bytenr, u64 parent, u64 root_objectid,
1851 u64 owner, u64 offset, int refs_to_add)
1852 {
1853 int ret;
1854 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1855 BUG_ON(refs_to_add != 1);
1856 ret = insert_tree_block_ref(trans, root, path, bytenr,
1857 parent, root_objectid);
1858 } else {
1859 ret = insert_extent_data_ref(trans, root, path, bytenr,
1860 parent, root_objectid,
1861 owner, offset, refs_to_add);
1862 }
1863 return ret;
1864 }
1865
1866 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1867 struct btrfs_root *root,
1868 struct btrfs_path *path,
1869 struct btrfs_extent_inline_ref *iref,
1870 int refs_to_drop, int is_data, int *last_ref)
1871 {
1872 int ret = 0;
1873
1874 BUG_ON(!is_data && refs_to_drop != 1);
1875 if (iref) {
1876 update_inline_extent_backref(root, path, iref,
1877 -refs_to_drop, NULL, last_ref);
1878 } else if (is_data) {
1879 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1880 last_ref);
1881 } else {
1882 *last_ref = 1;
1883 ret = btrfs_del_item(trans, root, path);
1884 }
1885 return ret;
1886 }
1887
1888 static int btrfs_issue_discard(struct block_device *bdev,
1889 u64 start, u64 len)
1890 {
1891 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1892 }
1893
1894 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1895 u64 num_bytes, u64 *actual_bytes)
1896 {
1897 int ret;
1898 u64 discarded_bytes = 0;
1899 struct btrfs_bio *bbio = NULL;
1900
1901
1902 /* Tell the block device(s) that the sectors can be discarded */
1903 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1904 bytenr, &num_bytes, &bbio, 0);
1905 /* Error condition is -ENOMEM */
1906 if (!ret) {
1907 struct btrfs_bio_stripe *stripe = bbio->stripes;
1908 int i;
1909
1910
1911 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1912 if (!stripe->dev->can_discard)
1913 continue;
1914
1915 ret = btrfs_issue_discard(stripe->dev->bdev,
1916 stripe->physical,
1917 stripe->length);
1918 if (!ret)
1919 discarded_bytes += stripe->length;
1920 else if (ret != -EOPNOTSUPP)
1921 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1922
1923 /*
1924 * Just in case we get back EOPNOTSUPP for some reason,
1925 * just ignore the return value so we don't screw up
1926 * people calling discard_extent.
1927 */
1928 ret = 0;
1929 }
1930 kfree(bbio);
1931 }
1932
1933 if (actual_bytes)
1934 *actual_bytes = discarded_bytes;
1935
1936
1937 if (ret == -EOPNOTSUPP)
1938 ret = 0;
1939 return ret;
1940 }
1941
1942 /* Can return -ENOMEM */
1943 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1944 struct btrfs_root *root,
1945 u64 bytenr, u64 num_bytes, u64 parent,
1946 u64 root_objectid, u64 owner, u64 offset,
1947 int no_quota)
1948 {
1949 int ret;
1950 struct btrfs_fs_info *fs_info = root->fs_info;
1951
1952 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1953 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1954
1955 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1956 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1957 num_bytes,
1958 parent, root_objectid, (int)owner,
1959 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1960 } else {
1961 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1962 num_bytes,
1963 parent, root_objectid, owner, offset,
1964 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1965 }
1966 return ret;
1967 }
1968
1969 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1970 struct btrfs_root *root,
1971 u64 bytenr, u64 num_bytes,
1972 u64 parent, u64 root_objectid,
1973 u64 owner, u64 offset, int refs_to_add,
1974 int no_quota,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_fs_info *fs_info = root->fs_info;
1978 struct btrfs_path *path;
1979 struct extent_buffer *leaf;
1980 struct btrfs_extent_item *item;
1981 struct btrfs_key key;
1982 u64 refs;
1983 int ret;
1984 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1985
1986 path = btrfs_alloc_path();
1987 if (!path)
1988 return -ENOMEM;
1989
1990 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1991 no_quota = 1;
1992
1993 path->reada = 1;
1994 path->leave_spinning = 1;
1995 /* this will setup the path even if it fails to insert the back ref */
1996 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1997 bytenr, num_bytes, parent,
1998 root_objectid, owner, offset,
1999 refs_to_add, extent_op);
2000 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2001 goto out;
2002 /*
2003 * Ok we were able to insert an inline extent and it appears to be a new
2004 * reference, deal with the qgroup accounting.
2005 */
2006 if (!ret && !no_quota) {
2007 ASSERT(root->fs_info->quota_enabled);
2008 leaf = path->nodes[0];
2009 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2010 item = btrfs_item_ptr(leaf, path->slots[0],
2011 struct btrfs_extent_item);
2012 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2013 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2014 btrfs_release_path(path);
2015
2016 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2017 bytenr, num_bytes, type, 0);
2018 goto out;
2019 }
2020
2021 /*
2022 * Ok we had -EAGAIN which means we didn't have space to insert and
2023 * inline extent ref, so just update the reference count and add a
2024 * normal backref.
2025 */
2026 leaf = path->nodes[0];
2027 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2028 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2029 refs = btrfs_extent_refs(leaf, item);
2030 if (refs)
2031 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2032 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2033 if (extent_op)
2034 __run_delayed_extent_op(extent_op, leaf, item);
2035
2036 btrfs_mark_buffer_dirty(leaf);
2037 btrfs_release_path(path);
2038
2039 if (!no_quota) {
2040 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2041 bytenr, num_bytes, type, 0);
2042 if (ret)
2043 goto out;
2044 }
2045
2046 path->reada = 1;
2047 path->leave_spinning = 1;
2048 /* now insert the actual backref */
2049 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2050 path, bytenr, parent, root_objectid,
2051 owner, offset, refs_to_add);
2052 if (ret)
2053 btrfs_abort_transaction(trans, root, ret);
2054 out:
2055 btrfs_free_path(path);
2056 return ret;
2057 }
2058
2059 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2060 struct btrfs_root *root,
2061 struct btrfs_delayed_ref_node *node,
2062 struct btrfs_delayed_extent_op *extent_op,
2063 int insert_reserved)
2064 {
2065 int ret = 0;
2066 struct btrfs_delayed_data_ref *ref;
2067 struct btrfs_key ins;
2068 u64 parent = 0;
2069 u64 ref_root = 0;
2070 u64 flags = 0;
2071
2072 ins.objectid = node->bytenr;
2073 ins.offset = node->num_bytes;
2074 ins.type = BTRFS_EXTENT_ITEM_KEY;
2075
2076 ref = btrfs_delayed_node_to_data_ref(node);
2077 trace_run_delayed_data_ref(node, ref, node->action);
2078
2079 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2080 parent = ref->parent;
2081 ref_root = ref->root;
2082
2083 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2084 if (extent_op)
2085 flags |= extent_op->flags_to_set;
2086 ret = alloc_reserved_file_extent(trans, root,
2087 parent, ref_root, flags,
2088 ref->objectid, ref->offset,
2089 &ins, node->ref_mod);
2090 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2091 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2092 node->num_bytes, parent,
2093 ref_root, ref->objectid,
2094 ref->offset, node->ref_mod,
2095 node->no_quota, extent_op);
2096 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2097 ret = __btrfs_free_extent(trans, root, node->bytenr,
2098 node->num_bytes, parent,
2099 ref_root, ref->objectid,
2100 ref->offset, node->ref_mod,
2101 extent_op, node->no_quota);
2102 } else {
2103 BUG();
2104 }
2105 return ret;
2106 }
2107
2108 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2109 struct extent_buffer *leaf,
2110 struct btrfs_extent_item *ei)
2111 {
2112 u64 flags = btrfs_extent_flags(leaf, ei);
2113 if (extent_op->update_flags) {
2114 flags |= extent_op->flags_to_set;
2115 btrfs_set_extent_flags(leaf, ei, flags);
2116 }
2117
2118 if (extent_op->update_key) {
2119 struct btrfs_tree_block_info *bi;
2120 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2121 bi = (struct btrfs_tree_block_info *)(ei + 1);
2122 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2123 }
2124 }
2125
2126 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2127 struct btrfs_root *root,
2128 struct btrfs_delayed_ref_node *node,
2129 struct btrfs_delayed_extent_op *extent_op)
2130 {
2131 struct btrfs_key key;
2132 struct btrfs_path *path;
2133 struct btrfs_extent_item *ei;
2134 struct extent_buffer *leaf;
2135 u32 item_size;
2136 int ret;
2137 int err = 0;
2138 int metadata = !extent_op->is_data;
2139
2140 if (trans->aborted)
2141 return 0;
2142
2143 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2144 metadata = 0;
2145
2146 path = btrfs_alloc_path();
2147 if (!path)
2148 return -ENOMEM;
2149
2150 key.objectid = node->bytenr;
2151
2152 if (metadata) {
2153 key.type = BTRFS_METADATA_ITEM_KEY;
2154 key.offset = extent_op->level;
2155 } else {
2156 key.type = BTRFS_EXTENT_ITEM_KEY;
2157 key.offset = node->num_bytes;
2158 }
2159
2160 again:
2161 path->reada = 1;
2162 path->leave_spinning = 1;
2163 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2164 path, 0, 1);
2165 if (ret < 0) {
2166 err = ret;
2167 goto out;
2168 }
2169 if (ret > 0) {
2170 if (metadata) {
2171 if (path->slots[0] > 0) {
2172 path->slots[0]--;
2173 btrfs_item_key_to_cpu(path->nodes[0], &key,
2174 path->slots[0]);
2175 if (key.objectid == node->bytenr &&
2176 key.type == BTRFS_EXTENT_ITEM_KEY &&
2177 key.offset == node->num_bytes)
2178 ret = 0;
2179 }
2180 if (ret > 0) {
2181 btrfs_release_path(path);
2182 metadata = 0;
2183
2184 key.objectid = node->bytenr;
2185 key.offset = node->num_bytes;
2186 key.type = BTRFS_EXTENT_ITEM_KEY;
2187 goto again;
2188 }
2189 } else {
2190 err = -EIO;
2191 goto out;
2192 }
2193 }
2194
2195 leaf = path->nodes[0];
2196 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2198 if (item_size < sizeof(*ei)) {
2199 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2200 path, (u64)-1, 0);
2201 if (ret < 0) {
2202 err = ret;
2203 goto out;
2204 }
2205 leaf = path->nodes[0];
2206 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2207 }
2208 #endif
2209 BUG_ON(item_size < sizeof(*ei));
2210 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2211 __run_delayed_extent_op(extent_op, leaf, ei);
2212
2213 btrfs_mark_buffer_dirty(leaf);
2214 out:
2215 btrfs_free_path(path);
2216 return err;
2217 }
2218
2219 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2220 struct btrfs_root *root,
2221 struct btrfs_delayed_ref_node *node,
2222 struct btrfs_delayed_extent_op *extent_op,
2223 int insert_reserved)
2224 {
2225 int ret = 0;
2226 struct btrfs_delayed_tree_ref *ref;
2227 struct btrfs_key ins;
2228 u64 parent = 0;
2229 u64 ref_root = 0;
2230 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2231 SKINNY_METADATA);
2232
2233 ref = btrfs_delayed_node_to_tree_ref(node);
2234 trace_run_delayed_tree_ref(node, ref, node->action);
2235
2236 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2237 parent = ref->parent;
2238 ref_root = ref->root;
2239
2240 ins.objectid = node->bytenr;
2241 if (skinny_metadata) {
2242 ins.offset = ref->level;
2243 ins.type = BTRFS_METADATA_ITEM_KEY;
2244 } else {
2245 ins.offset = node->num_bytes;
2246 ins.type = BTRFS_EXTENT_ITEM_KEY;
2247 }
2248
2249 BUG_ON(node->ref_mod != 1);
2250 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2251 BUG_ON(!extent_op || !extent_op->update_flags);
2252 ret = alloc_reserved_tree_block(trans, root,
2253 parent, ref_root,
2254 extent_op->flags_to_set,
2255 &extent_op->key,
2256 ref->level, &ins,
2257 node->no_quota);
2258 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2259 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2260 node->num_bytes, parent, ref_root,
2261 ref->level, 0, 1, node->no_quota,
2262 extent_op);
2263 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2264 ret = __btrfs_free_extent(trans, root, node->bytenr,
2265 node->num_bytes, parent, ref_root,
2266 ref->level, 0, 1, extent_op,
2267 node->no_quota);
2268 } else {
2269 BUG();
2270 }
2271 return ret;
2272 }
2273
2274 /* helper function to actually process a single delayed ref entry */
2275 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2276 struct btrfs_root *root,
2277 struct btrfs_delayed_ref_node *node,
2278 struct btrfs_delayed_extent_op *extent_op,
2279 int insert_reserved)
2280 {
2281 int ret = 0;
2282
2283 if (trans->aborted) {
2284 if (insert_reserved)
2285 btrfs_pin_extent(root, node->bytenr,
2286 node->num_bytes, 1);
2287 return 0;
2288 }
2289
2290 if (btrfs_delayed_ref_is_head(node)) {
2291 struct btrfs_delayed_ref_head *head;
2292 /*
2293 * we've hit the end of the chain and we were supposed
2294 * to insert this extent into the tree. But, it got
2295 * deleted before we ever needed to insert it, so all
2296 * we have to do is clean up the accounting
2297 */
2298 BUG_ON(extent_op);
2299 head = btrfs_delayed_node_to_head(node);
2300 trace_run_delayed_ref_head(node, head, node->action);
2301
2302 if (insert_reserved) {
2303 btrfs_pin_extent(root, node->bytenr,
2304 node->num_bytes, 1);
2305 if (head->is_data) {
2306 ret = btrfs_del_csums(trans, root,
2307 node->bytenr,
2308 node->num_bytes);
2309 }
2310 }
2311 return ret;
2312 }
2313
2314 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2315 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2316 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2317 insert_reserved);
2318 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2319 node->type == BTRFS_SHARED_DATA_REF_KEY)
2320 ret = run_delayed_data_ref(trans, root, node, extent_op,
2321 insert_reserved);
2322 else
2323 BUG();
2324 return ret;
2325 }
2326
2327 static noinline struct btrfs_delayed_ref_node *
2328 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2329 {
2330 struct rb_node *node;
2331 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2332
2333 /*
2334 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2335 * this prevents ref count from going down to zero when
2336 * there still are pending delayed ref.
2337 */
2338 node = rb_first(&head->ref_root);
2339 while (node) {
2340 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2341 rb_node);
2342 if (ref->action == BTRFS_ADD_DELAYED_REF)
2343 return ref;
2344 else if (last == NULL)
2345 last = ref;
2346 node = rb_next(node);
2347 }
2348 return last;
2349 }
2350
2351 /*
2352 * Returns 0 on success or if called with an already aborted transaction.
2353 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2354 */
2355 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2356 struct btrfs_root *root,
2357 unsigned long nr)
2358 {
2359 struct btrfs_delayed_ref_root *delayed_refs;
2360 struct btrfs_delayed_ref_node *ref;
2361 struct btrfs_delayed_ref_head *locked_ref = NULL;
2362 struct btrfs_delayed_extent_op *extent_op;
2363 struct btrfs_fs_info *fs_info = root->fs_info;
2364 ktime_t start = ktime_get();
2365 int ret;
2366 unsigned long count = 0;
2367 unsigned long actual_count = 0;
2368 int must_insert_reserved = 0;
2369
2370 delayed_refs = &trans->transaction->delayed_refs;
2371 while (1) {
2372 if (!locked_ref) {
2373 if (count >= nr)
2374 break;
2375
2376 spin_lock(&delayed_refs->lock);
2377 locked_ref = btrfs_select_ref_head(trans);
2378 if (!locked_ref) {
2379 spin_unlock(&delayed_refs->lock);
2380 break;
2381 }
2382
2383 /* grab the lock that says we are going to process
2384 * all the refs for this head */
2385 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2386 spin_unlock(&delayed_refs->lock);
2387 /*
2388 * we may have dropped the spin lock to get the head
2389 * mutex lock, and that might have given someone else
2390 * time to free the head. If that's true, it has been
2391 * removed from our list and we can move on.
2392 */
2393 if (ret == -EAGAIN) {
2394 locked_ref = NULL;
2395 count++;
2396 continue;
2397 }
2398 }
2399
2400 /*
2401 * We need to try and merge add/drops of the same ref since we
2402 * can run into issues with relocate dropping the implicit ref
2403 * and then it being added back again before the drop can
2404 * finish. If we merged anything we need to re-loop so we can
2405 * get a good ref.
2406 */
2407 spin_lock(&locked_ref->lock);
2408 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2409 locked_ref);
2410
2411 /*
2412 * locked_ref is the head node, so we have to go one
2413 * node back for any delayed ref updates
2414 */
2415 ref = select_delayed_ref(locked_ref);
2416
2417 if (ref && ref->seq &&
2418 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2419 spin_unlock(&locked_ref->lock);
2420 btrfs_delayed_ref_unlock(locked_ref);
2421 spin_lock(&delayed_refs->lock);
2422 locked_ref->processing = 0;
2423 delayed_refs->num_heads_ready++;
2424 spin_unlock(&delayed_refs->lock);
2425 locked_ref = NULL;
2426 cond_resched();
2427 count++;
2428 continue;
2429 }
2430
2431 /*
2432 * record the must insert reserved flag before we
2433 * drop the spin lock.
2434 */
2435 must_insert_reserved = locked_ref->must_insert_reserved;
2436 locked_ref->must_insert_reserved = 0;
2437
2438 extent_op = locked_ref->extent_op;
2439 locked_ref->extent_op = NULL;
2440
2441 if (!ref) {
2442
2443
2444 /* All delayed refs have been processed, Go ahead
2445 * and send the head node to run_one_delayed_ref,
2446 * so that any accounting fixes can happen
2447 */
2448 ref = &locked_ref->node;
2449
2450 if (extent_op && must_insert_reserved) {
2451 btrfs_free_delayed_extent_op(extent_op);
2452 extent_op = NULL;
2453 }
2454
2455 if (extent_op) {
2456 spin_unlock(&locked_ref->lock);
2457 ret = run_delayed_extent_op(trans, root,
2458 ref, extent_op);
2459 btrfs_free_delayed_extent_op(extent_op);
2460
2461 if (ret) {
2462 /*
2463 * Need to reset must_insert_reserved if
2464 * there was an error so the abort stuff
2465 * can cleanup the reserved space
2466 * properly.
2467 */
2468 if (must_insert_reserved)
2469 locked_ref->must_insert_reserved = 1;
2470 locked_ref->processing = 0;
2471 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2472 btrfs_delayed_ref_unlock(locked_ref);
2473 return ret;
2474 }
2475 continue;
2476 }
2477
2478 /*
2479 * Need to drop our head ref lock and re-aqcuire the
2480 * delayed ref lock and then re-check to make sure
2481 * nobody got added.
2482 */
2483 spin_unlock(&locked_ref->lock);
2484 spin_lock(&delayed_refs->lock);
2485 spin_lock(&locked_ref->lock);
2486 if (rb_first(&locked_ref->ref_root) ||
2487 locked_ref->extent_op) {
2488 spin_unlock(&locked_ref->lock);
2489 spin_unlock(&delayed_refs->lock);
2490 continue;
2491 }
2492 ref->in_tree = 0;
2493 delayed_refs->num_heads--;
2494 rb_erase(&locked_ref->href_node,
2495 &delayed_refs->href_root);
2496 spin_unlock(&delayed_refs->lock);
2497 } else {
2498 actual_count++;
2499 ref->in_tree = 0;
2500 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2501 }
2502 atomic_dec(&delayed_refs->num_entries);
2503
2504 if (!btrfs_delayed_ref_is_head(ref)) {
2505 /*
2506 * when we play the delayed ref, also correct the
2507 * ref_mod on head
2508 */
2509 switch (ref->action) {
2510 case BTRFS_ADD_DELAYED_REF:
2511 case BTRFS_ADD_DELAYED_EXTENT:
2512 locked_ref->node.ref_mod -= ref->ref_mod;
2513 break;
2514 case BTRFS_DROP_DELAYED_REF:
2515 locked_ref->node.ref_mod += ref->ref_mod;
2516 break;
2517 default:
2518 WARN_ON(1);
2519 }
2520 }
2521 spin_unlock(&locked_ref->lock);
2522
2523 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2524 must_insert_reserved);
2525
2526 btrfs_free_delayed_extent_op(extent_op);
2527 if (ret) {
2528 locked_ref->processing = 0;
2529 btrfs_delayed_ref_unlock(locked_ref);
2530 btrfs_put_delayed_ref(ref);
2531 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2532 return ret;
2533 }
2534
2535 /*
2536 * If this node is a head, that means all the refs in this head
2537 * have been dealt with, and we will pick the next head to deal
2538 * with, so we must unlock the head and drop it from the cluster
2539 * list before we release it.
2540 */
2541 if (btrfs_delayed_ref_is_head(ref)) {
2542 btrfs_delayed_ref_unlock(locked_ref);
2543 locked_ref = NULL;
2544 }
2545 btrfs_put_delayed_ref(ref);
2546 count++;
2547 cond_resched();
2548 }
2549
2550 /*
2551 * We don't want to include ref heads since we can have empty ref heads
2552 * and those will drastically skew our runtime down since we just do
2553 * accounting, no actual extent tree updates.
2554 */
2555 if (actual_count > 0) {
2556 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2557 u64 avg;
2558
2559 /*
2560 * We weigh the current average higher than our current runtime
2561 * to avoid large swings in the average.
2562 */
2563 spin_lock(&delayed_refs->lock);
2564 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2565 avg = div64_u64(avg, 4);
2566 fs_info->avg_delayed_ref_runtime = avg;
2567 spin_unlock(&delayed_refs->lock);
2568 }
2569 return 0;
2570 }
2571
2572 #ifdef SCRAMBLE_DELAYED_REFS
2573 /*
2574 * Normally delayed refs get processed in ascending bytenr order. This
2575 * correlates in most cases to the order added. To expose dependencies on this
2576 * order, we start to process the tree in the middle instead of the beginning
2577 */
2578 static u64 find_middle(struct rb_root *root)
2579 {
2580 struct rb_node *n = root->rb_node;
2581 struct btrfs_delayed_ref_node *entry;
2582 int alt = 1;
2583 u64 middle;
2584 u64 first = 0, last = 0;
2585
2586 n = rb_first(root);
2587 if (n) {
2588 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2589 first = entry->bytenr;
2590 }
2591 n = rb_last(root);
2592 if (n) {
2593 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2594 last = entry->bytenr;
2595 }
2596 n = root->rb_node;
2597
2598 while (n) {
2599 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2600 WARN_ON(!entry->in_tree);
2601
2602 middle = entry->bytenr;
2603
2604 if (alt)
2605 n = n->rb_left;
2606 else
2607 n = n->rb_right;
2608
2609 alt = 1 - alt;
2610 }
2611 return middle;
2612 }
2613 #endif
2614
2615 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2616 {
2617 u64 num_bytes;
2618
2619 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2620 sizeof(struct btrfs_extent_inline_ref));
2621 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2622 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2623
2624 /*
2625 * We don't ever fill up leaves all the way so multiply by 2 just to be
2626 * closer to what we're really going to want to ouse.
2627 */
2628 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2629 }
2630
2631 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2632 struct btrfs_root *root)
2633 {
2634 struct btrfs_block_rsv *global_rsv;
2635 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2636 u64 num_bytes;
2637 int ret = 0;
2638
2639 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2640 num_heads = heads_to_leaves(root, num_heads);
2641 if (num_heads > 1)
2642 num_bytes += (num_heads - 1) * root->nodesize;
2643 num_bytes <<= 1;
2644 global_rsv = &root->fs_info->global_block_rsv;
2645
2646 /*
2647 * If we can't allocate any more chunks lets make sure we have _lots_ of
2648 * wiggle room since running delayed refs can create more delayed refs.
2649 */
2650 if (global_rsv->space_info->full)
2651 num_bytes <<= 1;
2652
2653 spin_lock(&global_rsv->lock);
2654 if (global_rsv->reserved <= num_bytes)
2655 ret = 1;
2656 spin_unlock(&global_rsv->lock);
2657 return ret;
2658 }
2659
2660 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2661 struct btrfs_root *root)
2662 {
2663 struct btrfs_fs_info *fs_info = root->fs_info;
2664 u64 num_entries =
2665 atomic_read(&trans->transaction->delayed_refs.num_entries);
2666 u64 avg_runtime;
2667 u64 val;
2668
2669 smp_mb();
2670 avg_runtime = fs_info->avg_delayed_ref_runtime;
2671 val = num_entries * avg_runtime;
2672 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2673 return 1;
2674 if (val >= NSEC_PER_SEC / 2)
2675 return 2;
2676
2677 return btrfs_check_space_for_delayed_refs(trans, root);
2678 }
2679
2680 struct async_delayed_refs {
2681 struct btrfs_root *root;
2682 int count;
2683 int error;
2684 int sync;
2685 struct completion wait;
2686 struct btrfs_work work;
2687 };
2688
2689 static void delayed_ref_async_start(struct btrfs_work *work)
2690 {
2691 struct async_delayed_refs *async;
2692 struct btrfs_trans_handle *trans;
2693 int ret;
2694
2695 async = container_of(work, struct async_delayed_refs, work);
2696
2697 trans = btrfs_join_transaction(async->root);
2698 if (IS_ERR(trans)) {
2699 async->error = PTR_ERR(trans);
2700 goto done;
2701 }
2702
2703 /*
2704 * trans->sync means that when we call end_transaciton, we won't
2705 * wait on delayed refs
2706 */
2707 trans->sync = true;
2708 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2709 if (ret)
2710 async->error = ret;
2711
2712 ret = btrfs_end_transaction(trans, async->root);
2713 if (ret && !async->error)
2714 async->error = ret;
2715 done:
2716 if (async->sync)
2717 complete(&async->wait);
2718 else
2719 kfree(async);
2720 }
2721
2722 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2723 unsigned long count, int wait)
2724 {
2725 struct async_delayed_refs *async;
2726 int ret;
2727
2728 async = kmalloc(sizeof(*async), GFP_NOFS);
2729 if (!async)
2730 return -ENOMEM;
2731
2732 async->root = root->fs_info->tree_root;
2733 async->count = count;
2734 async->error = 0;
2735 if (wait)
2736 async->sync = 1;
2737 else
2738 async->sync = 0;
2739 init_completion(&async->wait);
2740
2741 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2742 delayed_ref_async_start, NULL, NULL);
2743
2744 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2745
2746 if (wait) {
2747 wait_for_completion(&async->wait);
2748 ret = async->error;
2749 kfree(async);
2750 return ret;
2751 }
2752 return 0;
2753 }
2754
2755 /*
2756 * this starts processing the delayed reference count updates and
2757 * extent insertions we have queued up so far. count can be
2758 * 0, which means to process everything in the tree at the start
2759 * of the run (but not newly added entries), or it can be some target
2760 * number you'd like to process.
2761 *
2762 * Returns 0 on success or if called with an aborted transaction
2763 * Returns <0 on error and aborts the transaction
2764 */
2765 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root, unsigned long count)
2767 {
2768 struct rb_node *node;
2769 struct btrfs_delayed_ref_root *delayed_refs;
2770 struct btrfs_delayed_ref_head *head;
2771 int ret;
2772 int run_all = count == (unsigned long)-1;
2773 int run_most = 0;
2774
2775 /* We'll clean this up in btrfs_cleanup_transaction */
2776 if (trans->aborted)
2777 return 0;
2778
2779 if (root == root->fs_info->extent_root)
2780 root = root->fs_info->tree_root;
2781
2782 delayed_refs = &trans->transaction->delayed_refs;
2783 if (count == 0) {
2784 count = atomic_read(&delayed_refs->num_entries) * 2;
2785 run_most = 1;
2786 }
2787
2788 again:
2789 #ifdef SCRAMBLE_DELAYED_REFS
2790 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2791 #endif
2792 ret = __btrfs_run_delayed_refs(trans, root, count);
2793 if (ret < 0) {
2794 btrfs_abort_transaction(trans, root, ret);
2795 return ret;
2796 }
2797
2798 if (run_all) {
2799 if (!list_empty(&trans->new_bgs))
2800 btrfs_create_pending_block_groups(trans, root);
2801
2802 spin_lock(&delayed_refs->lock);
2803 node = rb_first(&delayed_refs->href_root);
2804 if (!node) {
2805 spin_unlock(&delayed_refs->lock);
2806 goto out;
2807 }
2808 count = (unsigned long)-1;
2809
2810 while (node) {
2811 head = rb_entry(node, struct btrfs_delayed_ref_head,
2812 href_node);
2813 if (btrfs_delayed_ref_is_head(&head->node)) {
2814 struct btrfs_delayed_ref_node *ref;
2815
2816 ref = &head->node;
2817 atomic_inc(&ref->refs);
2818
2819 spin_unlock(&delayed_refs->lock);
2820 /*
2821 * Mutex was contended, block until it's
2822 * released and try again
2823 */
2824 mutex_lock(&head->mutex);
2825 mutex_unlock(&head->mutex);
2826
2827 btrfs_put_delayed_ref(ref);
2828 cond_resched();
2829 goto again;
2830 } else {
2831 WARN_ON(1);
2832 }
2833 node = rb_next(node);
2834 }
2835 spin_unlock(&delayed_refs->lock);
2836 cond_resched();
2837 goto again;
2838 }
2839 out:
2840 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2841 if (ret)
2842 return ret;
2843 assert_qgroups_uptodate(trans);
2844 return 0;
2845 }
2846
2847 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2848 struct btrfs_root *root,
2849 u64 bytenr, u64 num_bytes, u64 flags,
2850 int level, int is_data)
2851 {
2852 struct btrfs_delayed_extent_op *extent_op;
2853 int ret;
2854
2855 extent_op = btrfs_alloc_delayed_extent_op();
2856 if (!extent_op)
2857 return -ENOMEM;
2858
2859 extent_op->flags_to_set = flags;
2860 extent_op->update_flags = 1;
2861 extent_op->update_key = 0;
2862 extent_op->is_data = is_data ? 1 : 0;
2863 extent_op->level = level;
2864
2865 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2866 num_bytes, extent_op);
2867 if (ret)
2868 btrfs_free_delayed_extent_op(extent_op);
2869 return ret;
2870 }
2871
2872 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2873 struct btrfs_root *root,
2874 struct btrfs_path *path,
2875 u64 objectid, u64 offset, u64 bytenr)
2876 {
2877 struct btrfs_delayed_ref_head *head;
2878 struct btrfs_delayed_ref_node *ref;
2879 struct btrfs_delayed_data_ref *data_ref;
2880 struct btrfs_delayed_ref_root *delayed_refs;
2881 struct rb_node *node;
2882 int ret = 0;
2883
2884 delayed_refs = &trans->transaction->delayed_refs;
2885 spin_lock(&delayed_refs->lock);
2886 head = btrfs_find_delayed_ref_head(trans, bytenr);
2887 if (!head) {
2888 spin_unlock(&delayed_refs->lock);
2889 return 0;
2890 }
2891
2892 if (!mutex_trylock(&head->mutex)) {
2893 atomic_inc(&head->node.refs);
2894 spin_unlock(&delayed_refs->lock);
2895
2896 btrfs_release_path(path);
2897
2898 /*
2899 * Mutex was contended, block until it's released and let
2900 * caller try again
2901 */
2902 mutex_lock(&head->mutex);
2903 mutex_unlock(&head->mutex);
2904 btrfs_put_delayed_ref(&head->node);
2905 return -EAGAIN;
2906 }
2907 spin_unlock(&delayed_refs->lock);
2908
2909 spin_lock(&head->lock);
2910 node = rb_first(&head->ref_root);
2911 while (node) {
2912 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2913 node = rb_next(node);
2914
2915 /* If it's a shared ref we know a cross reference exists */
2916 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2917 ret = 1;
2918 break;
2919 }
2920
2921 data_ref = btrfs_delayed_node_to_data_ref(ref);
2922
2923 /*
2924 * If our ref doesn't match the one we're currently looking at
2925 * then we have a cross reference.
2926 */
2927 if (data_ref->root != root->root_key.objectid ||
2928 data_ref->objectid != objectid ||
2929 data_ref->offset != offset) {
2930 ret = 1;
2931 break;
2932 }
2933 }
2934 spin_unlock(&head->lock);
2935 mutex_unlock(&head->mutex);
2936 return ret;
2937 }
2938
2939 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2940 struct btrfs_root *root,
2941 struct btrfs_path *path,
2942 u64 objectid, u64 offset, u64 bytenr)
2943 {
2944 struct btrfs_root *extent_root = root->fs_info->extent_root;
2945 struct extent_buffer *leaf;
2946 struct btrfs_extent_data_ref *ref;
2947 struct btrfs_extent_inline_ref *iref;
2948 struct btrfs_extent_item *ei;
2949 struct btrfs_key key;
2950 u32 item_size;
2951 int ret;
2952
2953 key.objectid = bytenr;
2954 key.offset = (u64)-1;
2955 key.type = BTRFS_EXTENT_ITEM_KEY;
2956
2957 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2958 if (ret < 0)
2959 goto out;
2960 BUG_ON(ret == 0); /* Corruption */
2961
2962 ret = -ENOENT;
2963 if (path->slots[0] == 0)
2964 goto out;
2965
2966 path->slots[0]--;
2967 leaf = path->nodes[0];
2968 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2969
2970 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2971 goto out;
2972
2973 ret = 1;
2974 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2975 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2976 if (item_size < sizeof(*ei)) {
2977 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2978 goto out;
2979 }
2980 #endif
2981 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2982
2983 if (item_size != sizeof(*ei) +
2984 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2985 goto out;
2986
2987 if (btrfs_extent_generation(leaf, ei) <=
2988 btrfs_root_last_snapshot(&root->root_item))
2989 goto out;
2990
2991 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2992 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2993 BTRFS_EXTENT_DATA_REF_KEY)
2994 goto out;
2995
2996 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2997 if (btrfs_extent_refs(leaf, ei) !=
2998 btrfs_extent_data_ref_count(leaf, ref) ||
2999 btrfs_extent_data_ref_root(leaf, ref) !=
3000 root->root_key.objectid ||
3001 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3002 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3003 goto out;
3004
3005 ret = 0;
3006 out:
3007 return ret;
3008 }
3009
3010 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3011 struct btrfs_root *root,
3012 u64 objectid, u64 offset, u64 bytenr)
3013 {
3014 struct btrfs_path *path;
3015 int ret;
3016 int ret2;
3017
3018 path = btrfs_alloc_path();
3019 if (!path)
3020 return -ENOENT;
3021
3022 do {
3023 ret = check_committed_ref(trans, root, path, objectid,
3024 offset, bytenr);
3025 if (ret && ret != -ENOENT)
3026 goto out;
3027
3028 ret2 = check_delayed_ref(trans, root, path, objectid,
3029 offset, bytenr);
3030 } while (ret2 == -EAGAIN);
3031
3032 if (ret2 && ret2 != -ENOENT) {
3033 ret = ret2;
3034 goto out;
3035 }
3036
3037 if (ret != -ENOENT || ret2 != -ENOENT)
3038 ret = 0;
3039 out:
3040 btrfs_free_path(path);
3041 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3042 WARN_ON(ret > 0);
3043 return ret;
3044 }
3045
3046 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root,
3048 struct extent_buffer *buf,
3049 int full_backref, int inc)
3050 {
3051 u64 bytenr;
3052 u64 num_bytes;
3053 u64 parent;
3054 u64 ref_root;
3055 u32 nritems;
3056 struct btrfs_key key;
3057 struct btrfs_file_extent_item *fi;
3058 int i;
3059 int level;
3060 int ret = 0;
3061 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3062 u64, u64, u64, u64, u64, u64, int);
3063
3064
3065 if (btrfs_test_is_dummy_root(root))
3066 return 0;
3067
3068 ref_root = btrfs_header_owner(buf);
3069 nritems = btrfs_header_nritems(buf);
3070 level = btrfs_header_level(buf);
3071
3072 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3073 return 0;
3074
3075 if (inc)
3076 process_func = btrfs_inc_extent_ref;
3077 else
3078 process_func = btrfs_free_extent;
3079
3080 if (full_backref)
3081 parent = buf->start;
3082 else
3083 parent = 0;
3084
3085 for (i = 0; i < nritems; i++) {
3086 if (level == 0) {
3087 btrfs_item_key_to_cpu(buf, &key, i);
3088 if (key.type != BTRFS_EXTENT_DATA_KEY)
3089 continue;
3090 fi = btrfs_item_ptr(buf, i,
3091 struct btrfs_file_extent_item);
3092 if (btrfs_file_extent_type(buf, fi) ==
3093 BTRFS_FILE_EXTENT_INLINE)
3094 continue;
3095 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3096 if (bytenr == 0)
3097 continue;
3098
3099 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3100 key.offset -= btrfs_file_extent_offset(buf, fi);
3101 ret = process_func(trans, root, bytenr, num_bytes,
3102 parent, ref_root, key.objectid,
3103 key.offset, 1);
3104 if (ret)
3105 goto fail;
3106 } else {
3107 bytenr = btrfs_node_blockptr(buf, i);
3108 num_bytes = root->nodesize;
3109 ret = process_func(trans, root, bytenr, num_bytes,
3110 parent, ref_root, level - 1, 0,
3111 1);
3112 if (ret)
3113 goto fail;
3114 }
3115 }
3116 return 0;
3117 fail:
3118 return ret;
3119 }
3120
3121 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3122 struct extent_buffer *buf, int full_backref)
3123 {
3124 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3125 }
3126
3127 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3128 struct extent_buffer *buf, int full_backref)
3129 {
3130 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3131 }
3132
3133 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3134 struct btrfs_root *root,
3135 struct btrfs_path *path,
3136 struct btrfs_block_group_cache *cache)
3137 {
3138 int ret;
3139 struct btrfs_root *extent_root = root->fs_info->extent_root;
3140 unsigned long bi;
3141 struct extent_buffer *leaf;
3142
3143 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3144 if (ret < 0)
3145 goto fail;
3146 BUG_ON(ret); /* Corruption */
3147
3148 leaf = path->nodes[0];
3149 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3150 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3151 btrfs_mark_buffer_dirty(leaf);
3152 btrfs_release_path(path);
3153 fail:
3154 if (ret) {
3155 btrfs_abort_transaction(trans, root, ret);
3156 return ret;
3157 }
3158 return 0;
3159
3160 }
3161
3162 static struct btrfs_block_group_cache *
3163 next_block_group(struct btrfs_root *root,
3164 struct btrfs_block_group_cache *cache)
3165 {
3166 struct rb_node *node;
3167
3168 spin_lock(&root->fs_info->block_group_cache_lock);
3169
3170 /* If our block group was removed, we need a full search. */
3171 if (RB_EMPTY_NODE(&cache->cache_node)) {
3172 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3173
3174 spin_unlock(&root->fs_info->block_group_cache_lock);
3175 btrfs_put_block_group(cache);
3176 cache = btrfs_lookup_first_block_group(root->fs_info,
3177 next_bytenr);
3178 return cache;
3179 }
3180 node = rb_next(&cache->cache_node);
3181 btrfs_put_block_group(cache);
3182 if (node) {
3183 cache = rb_entry(node, struct btrfs_block_group_cache,
3184 cache_node);
3185 btrfs_get_block_group(cache);
3186 } else
3187 cache = NULL;
3188 spin_unlock(&root->fs_info->block_group_cache_lock);
3189 return cache;
3190 }
3191
3192 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3193 struct btrfs_trans_handle *trans,
3194 struct btrfs_path *path)
3195 {
3196 struct btrfs_root *root = block_group->fs_info->tree_root;
3197 struct inode *inode = NULL;
3198 u64 alloc_hint = 0;
3199 int dcs = BTRFS_DC_ERROR;
3200 int num_pages = 0;
3201 int retries = 0;
3202 int ret = 0;
3203
3204 /*
3205 * If this block group is smaller than 100 megs don't bother caching the
3206 * block group.
3207 */
3208 if (block_group->key.offset < (100 * 1024 * 1024)) {
3209 spin_lock(&block_group->lock);
3210 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3211 spin_unlock(&block_group->lock);
3212 return 0;
3213 }
3214
3215 again:
3216 inode = lookup_free_space_inode(root, block_group, path);
3217 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3218 ret = PTR_ERR(inode);
3219 btrfs_release_path(path);
3220 goto out;
3221 }
3222
3223 if (IS_ERR(inode)) {
3224 BUG_ON(retries);
3225 retries++;
3226
3227 if (block_group->ro)
3228 goto out_free;
3229
3230 ret = create_free_space_inode(root, trans, block_group, path);
3231 if (ret)
3232 goto out_free;
3233 goto again;
3234 }
3235
3236 /* We've already setup this transaction, go ahead and exit */
3237 if (block_group->cache_generation == trans->transid &&
3238 i_size_read(inode)) {
3239 dcs = BTRFS_DC_SETUP;
3240 goto out_put;
3241 }
3242
3243 /*
3244 * We want to set the generation to 0, that way if anything goes wrong
3245 * from here on out we know not to trust this cache when we load up next
3246 * time.
3247 */
3248 BTRFS_I(inode)->generation = 0;
3249 ret = btrfs_update_inode(trans, root, inode);
3250 WARN_ON(ret);
3251
3252 if (i_size_read(inode) > 0) {
3253 ret = btrfs_check_trunc_cache_free_space(root,
3254 &root->fs_info->global_block_rsv);
3255 if (ret)
3256 goto out_put;
3257
3258 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3259 if (ret)
3260 goto out_put;
3261 }
3262
3263 spin_lock(&block_group->lock);
3264 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3265 !btrfs_test_opt(root, SPACE_CACHE) ||
3266 block_group->delalloc_bytes) {
3267 /*
3268 * don't bother trying to write stuff out _if_
3269 * a) we're not cached,
3270 * b) we're with nospace_cache mount option.
3271 */
3272 dcs = BTRFS_DC_WRITTEN;
3273 spin_unlock(&block_group->lock);
3274 goto out_put;
3275 }
3276 spin_unlock(&block_group->lock);
3277
3278 /*
3279 * Try to preallocate enough space based on how big the block group is.
3280 * Keep in mind this has to include any pinned space which could end up
3281 * taking up quite a bit since it's not folded into the other space
3282 * cache.
3283 */
3284 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3285 if (!num_pages)
3286 num_pages = 1;
3287
3288 num_pages *= 16;
3289 num_pages *= PAGE_CACHE_SIZE;
3290
3291 ret = btrfs_check_data_free_space(inode, num_pages);
3292 if (ret)
3293 goto out_put;
3294
3295 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3296 num_pages, num_pages,
3297 &alloc_hint);
3298 if (!ret)
3299 dcs = BTRFS_DC_SETUP;
3300 btrfs_free_reserved_data_space(inode, num_pages);
3301
3302 out_put:
3303 iput(inode);
3304 out_free:
3305 btrfs_release_path(path);
3306 out:
3307 spin_lock(&block_group->lock);
3308 if (!ret && dcs == BTRFS_DC_SETUP)
3309 block_group->cache_generation = trans->transid;
3310 block_group->disk_cache_state = dcs;
3311 spin_unlock(&block_group->lock);
3312
3313 return ret;
3314 }
3315
3316 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *root)
3318 {
3319 struct btrfs_block_group_cache *cache;
3320 int err = 0;
3321 struct btrfs_path *path;
3322 u64 last = 0;
3323
3324 path = btrfs_alloc_path();
3325 if (!path)
3326 return -ENOMEM;
3327
3328 again:
3329 while (1) {
3330 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3331 while (cache) {
3332 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3333 break;
3334 cache = next_block_group(root, cache);
3335 }
3336 if (!cache) {
3337 if (last == 0)
3338 break;
3339 last = 0;
3340 continue;
3341 }
3342 err = cache_save_setup(cache, trans, path);
3343 last = cache->key.objectid + cache->key.offset;
3344 btrfs_put_block_group(cache);
3345 }
3346
3347 while (1) {
3348 if (last == 0) {
3349 err = btrfs_run_delayed_refs(trans, root,
3350 (unsigned long)-1);
3351 if (err) /* File system offline */
3352 goto out;
3353 }
3354
3355 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3356 while (cache) {
3357 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3358 btrfs_put_block_group(cache);
3359 goto again;
3360 }
3361
3362 if (cache->dirty)
3363 break;
3364 cache = next_block_group(root, cache);
3365 }
3366 if (!cache) {
3367 if (last == 0)
3368 break;
3369 last = 0;
3370 continue;
3371 }
3372
3373 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3374 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3375 cache->dirty = 0;
3376 last = cache->key.objectid + cache->key.offset;
3377
3378 err = write_one_cache_group(trans, root, path, cache);
3379 btrfs_put_block_group(cache);
3380 if (err) /* File system offline */
3381 goto out;
3382 }
3383
3384 while (1) {
3385 /*
3386 * I don't think this is needed since we're just marking our
3387 * preallocated extent as written, but just in case it can't
3388 * hurt.
3389 */
3390 if (last == 0) {
3391 err = btrfs_run_delayed_refs(trans, root,
3392 (unsigned long)-1);
3393 if (err) /* File system offline */
3394 goto out;
3395 }
3396
3397 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3398 while (cache) {
3399 /*
3400 * Really this shouldn't happen, but it could if we
3401 * couldn't write the entire preallocated extent and
3402 * splitting the extent resulted in a new block.
3403 */
3404 if (cache->dirty) {
3405 btrfs_put_block_group(cache);
3406 goto again;
3407 }
3408 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3409 break;
3410 cache = next_block_group(root, cache);
3411 }
3412 if (!cache) {
3413 if (last == 0)
3414 break;
3415 last = 0;
3416 continue;
3417 }
3418
3419 err = btrfs_write_out_cache(root, trans, cache, path);
3420
3421 /*
3422 * If we didn't have an error then the cache state is still
3423 * NEED_WRITE, so we can set it to WRITTEN.
3424 */
3425 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3426 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3427 last = cache->key.objectid + cache->key.offset;
3428 btrfs_put_block_group(cache);
3429 }
3430 out:
3431
3432 btrfs_free_path(path);
3433 return err;
3434 }
3435
3436 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3437 {
3438 struct btrfs_block_group_cache *block_group;
3439 int readonly = 0;
3440
3441 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3442 if (!block_group || block_group->ro)
3443 readonly = 1;
3444 if (block_group)
3445 btrfs_put_block_group(block_group);
3446 return readonly;
3447 }
3448
3449 static const char *alloc_name(u64 flags)
3450 {
3451 switch (flags) {
3452 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3453 return "mixed";
3454 case BTRFS_BLOCK_GROUP_METADATA:
3455 return "metadata";
3456 case BTRFS_BLOCK_GROUP_DATA:
3457 return "data";
3458 case BTRFS_BLOCK_GROUP_SYSTEM:
3459 return "system";
3460 default:
3461 WARN_ON(1);
3462 return "invalid-combination";
3463 };
3464 }
3465
3466 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3467 u64 total_bytes, u64 bytes_used,
3468 struct btrfs_space_info **space_info)
3469 {
3470 struct btrfs_space_info *found;
3471 int i;
3472 int factor;
3473 int ret;
3474
3475 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3476 BTRFS_BLOCK_GROUP_RAID10))
3477 factor = 2;
3478 else
3479 factor = 1;
3480
3481 found = __find_space_info(info, flags);
3482 if (found) {
3483 spin_lock(&found->lock);
3484 found->total_bytes += total_bytes;
3485 found->disk_total += total_bytes * factor;
3486 found->bytes_used += bytes_used;
3487 found->disk_used += bytes_used * factor;
3488 found->full = 0;
3489 spin_unlock(&found->lock);
3490 *space_info = found;
3491 return 0;
3492 }
3493 found = kzalloc(sizeof(*found), GFP_NOFS);
3494 if (!found)
3495 return -ENOMEM;
3496
3497 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3498 if (ret) {
3499 kfree(found);
3500 return ret;
3501 }
3502
3503 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3504 INIT_LIST_HEAD(&found->block_groups[i]);
3505 init_rwsem(&found->groups_sem);
3506 spin_lock_init(&found->lock);
3507 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3508 found->total_bytes = total_bytes;
3509 found->disk_total = total_bytes * factor;
3510 found->bytes_used = bytes_used;
3511 found->disk_used = bytes_used * factor;
3512 found->bytes_pinned = 0;
3513 found->bytes_reserved = 0;
3514 found->bytes_readonly = 0;
3515 found->bytes_may_use = 0;
3516 found->full = 0;
3517 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3518 found->chunk_alloc = 0;
3519 found->flush = 0;
3520 init_waitqueue_head(&found->wait);
3521 INIT_LIST_HEAD(&found->ro_bgs);
3522
3523 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3524 info->space_info_kobj, "%s",
3525 alloc_name(found->flags));
3526 if (ret) {
3527 kfree(found);
3528 return ret;
3529 }
3530
3531 *space_info = found;
3532 list_add_rcu(&found->list, &info->space_info);
3533 if (flags & BTRFS_BLOCK_GROUP_DATA)
3534 info->data_sinfo = found;
3535
3536 return ret;
3537 }
3538
3539 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3540 {
3541 u64 extra_flags = chunk_to_extended(flags) &
3542 BTRFS_EXTENDED_PROFILE_MASK;
3543
3544 write_seqlock(&fs_info->profiles_lock);
3545 if (flags & BTRFS_BLOCK_GROUP_DATA)
3546 fs_info->avail_data_alloc_bits |= extra_flags;
3547 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3548 fs_info->avail_metadata_alloc_bits |= extra_flags;
3549 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3550 fs_info->avail_system_alloc_bits |= extra_flags;
3551 write_sequnlock(&fs_info->profiles_lock);
3552 }
3553
3554 /*
3555 * returns target flags in extended format or 0 if restripe for this
3556 * chunk_type is not in progress
3557 *
3558 * should be called with either volume_mutex or balance_lock held
3559 */
3560 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3561 {
3562 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3563 u64 target = 0;
3564
3565 if (!bctl)
3566 return 0;
3567
3568 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3569 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3570 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3571 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3572 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3573 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3574 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3575 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3576 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3577 }
3578
3579 return target;
3580 }
3581
3582 /*
3583 * @flags: available profiles in extended format (see ctree.h)
3584 *
3585 * Returns reduced profile in chunk format. If profile changing is in
3586 * progress (either running or paused) picks the target profile (if it's
3587 * already available), otherwise falls back to plain reducing.
3588 */
3589 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3590 {
3591 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3592 u64 target;
3593 u64 tmp;
3594
3595 /*
3596 * see if restripe for this chunk_type is in progress, if so
3597 * try to reduce to the target profile
3598 */
3599 spin_lock(&root->fs_info->balance_lock);
3600 target = get_restripe_target(root->fs_info, flags);
3601 if (target) {
3602 /* pick target profile only if it's already available */
3603 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3604 spin_unlock(&root->fs_info->balance_lock);
3605 return extended_to_chunk(target);
3606 }
3607 }
3608 spin_unlock(&root->fs_info->balance_lock);
3609
3610 /* First, mask out the RAID levels which aren't possible */
3611 if (num_devices == 1)
3612 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3613 BTRFS_BLOCK_GROUP_RAID5);
3614 if (num_devices < 3)
3615 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3616 if (num_devices < 4)
3617 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3618
3619 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3620 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3621 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3622 flags &= ~tmp;
3623
3624 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3625 tmp = BTRFS_BLOCK_GROUP_RAID6;
3626 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3627 tmp = BTRFS_BLOCK_GROUP_RAID5;
3628 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3629 tmp = BTRFS_BLOCK_GROUP_RAID10;
3630 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3631 tmp = BTRFS_BLOCK_GROUP_RAID1;
3632 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3633 tmp = BTRFS_BLOCK_GROUP_RAID0;
3634
3635 return extended_to_chunk(flags | tmp);
3636 }
3637
3638 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3639 {
3640 unsigned seq;
3641 u64 flags;
3642
3643 do {
3644 flags = orig_flags;
3645 seq = read_seqbegin(&root->fs_info->profiles_lock);
3646
3647 if (flags & BTRFS_BLOCK_GROUP_DATA)
3648 flags |= root->fs_info->avail_data_alloc_bits;
3649 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3650 flags |= root->fs_info->avail_system_alloc_bits;
3651 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3652 flags |= root->fs_info->avail_metadata_alloc_bits;
3653 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3654
3655 return btrfs_reduce_alloc_profile(root, flags);
3656 }
3657
3658 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3659 {
3660 u64 flags;
3661 u64 ret;
3662
3663 if (data)
3664 flags = BTRFS_BLOCK_GROUP_DATA;
3665 else if (root == root->fs_info->chunk_root)
3666 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3667 else
3668 flags = BTRFS_BLOCK_GROUP_METADATA;
3669
3670 ret = get_alloc_profile(root, flags);
3671 return ret;
3672 }
3673
3674 /*
3675 * This will check the space that the inode allocates from to make sure we have
3676 * enough space for bytes.
3677 */
3678 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3679 {
3680 struct btrfs_space_info *data_sinfo;
3681 struct btrfs_root *root = BTRFS_I(inode)->root;
3682 struct btrfs_fs_info *fs_info = root->fs_info;
3683 u64 used;
3684 int ret = 0, committed = 0, alloc_chunk = 1;
3685
3686 /* make sure bytes are sectorsize aligned */
3687 bytes = ALIGN(bytes, root->sectorsize);
3688
3689 if (btrfs_is_free_space_inode(inode)) {
3690 committed = 1;
3691 ASSERT(current->journal_info);
3692 }
3693
3694 data_sinfo = fs_info->data_sinfo;
3695 if (!data_sinfo)
3696 goto alloc;
3697
3698 again:
3699 /* make sure we have enough space to handle the data first */
3700 spin_lock(&data_sinfo->lock);
3701 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3702 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3703 data_sinfo->bytes_may_use;
3704
3705 if (used + bytes > data_sinfo->total_bytes) {
3706 struct btrfs_trans_handle *trans;
3707
3708 /*
3709 * if we don't have enough free bytes in this space then we need
3710 * to alloc a new chunk.
3711 */
3712 if (!data_sinfo->full && alloc_chunk) {
3713 u64 alloc_target;
3714
3715 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3716 spin_unlock(&data_sinfo->lock);
3717 alloc:
3718 alloc_target = btrfs_get_alloc_profile(root, 1);
3719 /*
3720 * It is ugly that we don't call nolock join
3721 * transaction for the free space inode case here.
3722 * But it is safe because we only do the data space
3723 * reservation for the free space cache in the
3724 * transaction context, the common join transaction
3725 * just increase the counter of the current transaction
3726 * handler, doesn't try to acquire the trans_lock of
3727 * the fs.
3728 */
3729 trans = btrfs_join_transaction(root);
3730 if (IS_ERR(trans))
3731 return PTR_ERR(trans);
3732
3733 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3734 alloc_target,
3735 CHUNK_ALLOC_NO_FORCE);
3736 btrfs_end_transaction(trans, root);
3737 if (ret < 0) {
3738 if (ret != -ENOSPC)
3739 return ret;
3740 else
3741 goto commit_trans;
3742 }
3743
3744 if (!data_sinfo)
3745 data_sinfo = fs_info->data_sinfo;
3746
3747 goto again;
3748 }
3749
3750 /*
3751 * If we don't have enough pinned space to deal with this
3752 * allocation don't bother committing the transaction.
3753 */
3754 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3755 bytes) < 0)
3756 committed = 1;
3757 spin_unlock(&data_sinfo->lock);
3758
3759 /* commit the current transaction and try again */
3760 commit_trans:
3761 if (!committed &&
3762 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3763 committed = 1;
3764
3765 trans = btrfs_join_transaction(root);
3766 if (IS_ERR(trans))
3767 return PTR_ERR(trans);
3768 ret = btrfs_commit_transaction(trans, root);
3769 if (ret)
3770 return ret;
3771 goto again;
3772 }
3773
3774 trace_btrfs_space_reservation(root->fs_info,
3775 "space_info:enospc",
3776 data_sinfo->flags, bytes, 1);
3777 return -ENOSPC;
3778 }
3779 data_sinfo->bytes_may_use += bytes;
3780 trace_btrfs_space_reservation(root->fs_info, "space_info",
3781 data_sinfo->flags, bytes, 1);
3782 spin_unlock(&data_sinfo->lock);
3783
3784 return 0;
3785 }
3786
3787 /*
3788 * Called if we need to clear a data reservation for this inode.
3789 */
3790 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3791 {
3792 struct btrfs_root *root = BTRFS_I(inode)->root;
3793 struct btrfs_space_info *data_sinfo;
3794
3795 /* make sure bytes are sectorsize aligned */
3796 bytes = ALIGN(bytes, root->sectorsize);
3797
3798 data_sinfo = root->fs_info->data_sinfo;
3799 spin_lock(&data_sinfo->lock);
3800 WARN_ON(data_sinfo->bytes_may_use < bytes);
3801 data_sinfo->bytes_may_use -= bytes;
3802 trace_btrfs_space_reservation(root->fs_info, "space_info",
3803 data_sinfo->flags, bytes, 0);
3804 spin_unlock(&data_sinfo->lock);
3805 }
3806
3807 static void force_metadata_allocation(struct btrfs_fs_info *info)
3808 {
3809 struct list_head *head = &info->space_info;
3810 struct btrfs_space_info *found;
3811
3812 rcu_read_lock();
3813 list_for_each_entry_rcu(found, head, list) {
3814 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3815 found->force_alloc = CHUNK_ALLOC_FORCE;
3816 }
3817 rcu_read_unlock();
3818 }
3819
3820 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3821 {
3822 return (global->size << 1);
3823 }
3824
3825 static int should_alloc_chunk(struct btrfs_root *root,
3826 struct btrfs_space_info *sinfo, int force)
3827 {
3828 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3829 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3830 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3831 u64 thresh;
3832
3833 if (force == CHUNK_ALLOC_FORCE)
3834 return 1;
3835
3836 /*
3837 * We need to take into account the global rsv because for all intents
3838 * and purposes it's used space. Don't worry about locking the
3839 * global_rsv, it doesn't change except when the transaction commits.
3840 */
3841 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3842 num_allocated += calc_global_rsv_need_space(global_rsv);
3843
3844 /*
3845 * in limited mode, we want to have some free space up to
3846 * about 1% of the FS size.
3847 */
3848 if (force == CHUNK_ALLOC_LIMITED) {
3849 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3850 thresh = max_t(u64, 64 * 1024 * 1024,
3851 div_factor_fine(thresh, 1));
3852
3853 if (num_bytes - num_allocated < thresh)
3854 return 1;
3855 }
3856
3857 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3858 return 0;
3859 return 1;
3860 }
3861
3862 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3863 {
3864 u64 num_dev;
3865
3866 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3867 BTRFS_BLOCK_GROUP_RAID0 |
3868 BTRFS_BLOCK_GROUP_RAID5 |
3869 BTRFS_BLOCK_GROUP_RAID6))
3870 num_dev = root->fs_info->fs_devices->rw_devices;
3871 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3872 num_dev = 2;
3873 else
3874 num_dev = 1; /* DUP or single */
3875
3876 /* metadata for updaing devices and chunk tree */
3877 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3878 }
3879
3880 static void check_system_chunk(struct btrfs_trans_handle *trans,
3881 struct btrfs_root *root, u64 type)
3882 {
3883 struct btrfs_space_info *info;
3884 u64 left;
3885 u64 thresh;
3886
3887 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3888 spin_lock(&info->lock);
3889 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3890 info->bytes_reserved - info->bytes_readonly;
3891 spin_unlock(&info->lock);
3892
3893 thresh = get_system_chunk_thresh(root, type);
3894 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3895 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3896 left, thresh, type);
3897 dump_space_info(info, 0, 0);
3898 }
3899
3900 if (left < thresh) {
3901 u64 flags;
3902
3903 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3904 btrfs_alloc_chunk(trans, root, flags);
3905 }
3906 }
3907
3908 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3909 struct btrfs_root *extent_root, u64 flags, int force)
3910 {
3911 struct btrfs_space_info *space_info;
3912 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3913 int wait_for_alloc = 0;
3914 int ret = 0;
3915
3916 /* Don't re-enter if we're already allocating a chunk */
3917 if (trans->allocating_chunk)
3918 return -ENOSPC;
3919
3920 space_info = __find_space_info(extent_root->fs_info, flags);
3921 if (!space_info) {
3922 ret = update_space_info(extent_root->fs_info, flags,
3923 0, 0, &space_info);
3924 BUG_ON(ret); /* -ENOMEM */
3925 }
3926 BUG_ON(!space_info); /* Logic error */
3927
3928 again:
3929 spin_lock(&space_info->lock);
3930 if (force < space_info->force_alloc)
3931 force = space_info->force_alloc;
3932 if (space_info->full) {
3933 if (should_alloc_chunk(extent_root, space_info, force))
3934 ret = -ENOSPC;
3935 else
3936 ret = 0;
3937 spin_unlock(&space_info->lock);
3938 return ret;
3939 }
3940
3941 if (!should_alloc_chunk(extent_root, space_info, force)) {
3942 spin_unlock(&space_info->lock);
3943 return 0;
3944 } else if (space_info->chunk_alloc) {
3945 wait_for_alloc = 1;
3946 } else {
3947 space_info->chunk_alloc = 1;
3948 }
3949
3950 spin_unlock(&space_info->lock);
3951
3952 mutex_lock(&fs_info->chunk_mutex);
3953
3954 /*
3955 * The chunk_mutex is held throughout the entirety of a chunk
3956 * allocation, so once we've acquired the chunk_mutex we know that the
3957 * other guy is done and we need to recheck and see if we should
3958 * allocate.
3959 */
3960 if (wait_for_alloc) {
3961 mutex_unlock(&fs_info->chunk_mutex);
3962 wait_for_alloc = 0;
3963 goto again;
3964 }
3965
3966 trans->allocating_chunk = true;
3967
3968 /*
3969 * If we have mixed data/metadata chunks we want to make sure we keep
3970 * allocating mixed chunks instead of individual chunks.
3971 */
3972 if (btrfs_mixed_space_info(space_info))
3973 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3974
3975 /*
3976 * if we're doing a data chunk, go ahead and make sure that
3977 * we keep a reasonable number of metadata chunks allocated in the
3978 * FS as well.
3979 */
3980 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3981 fs_info->data_chunk_allocations++;
3982 if (!(fs_info->data_chunk_allocations %
3983 fs_info->metadata_ratio))
3984 force_metadata_allocation(fs_info);
3985 }
3986
3987 /*
3988 * Check if we have enough space in SYSTEM chunk because we may need
3989 * to update devices.
3990 */
3991 check_system_chunk(trans, extent_root, flags);
3992
3993 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3994 trans->allocating_chunk = false;
3995
3996 spin_lock(&space_info->lock);
3997 if (ret < 0 && ret != -ENOSPC)
3998 goto out;
3999 if (ret)
4000 space_info->full = 1;
4001 else
4002 ret = 1;
4003
4004 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4005 out:
4006 space_info->chunk_alloc = 0;
4007 spin_unlock(&space_info->lock);
4008 mutex_unlock(&fs_info->chunk_mutex);
4009 return ret;
4010 }
4011
4012 static int can_overcommit(struct btrfs_root *root,
4013 struct btrfs_space_info *space_info, u64 bytes,
4014 enum btrfs_reserve_flush_enum flush)
4015 {
4016 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4017 u64 profile = btrfs_get_alloc_profile(root, 0);
4018 u64 space_size;
4019 u64 avail;
4020 u64 used;
4021
4022 used = space_info->bytes_used + space_info->bytes_reserved +
4023 space_info->bytes_pinned + space_info->bytes_readonly;
4024
4025 /*
4026 * We only want to allow over committing if we have lots of actual space
4027 * free, but if we don't have enough space to handle the global reserve
4028 * space then we could end up having a real enospc problem when trying
4029 * to allocate a chunk or some other such important allocation.
4030 */
4031 spin_lock(&global_rsv->lock);
4032 space_size = calc_global_rsv_need_space(global_rsv);
4033 spin_unlock(&global_rsv->lock);
4034 if (used + space_size >= space_info->total_bytes)
4035 return 0;
4036
4037 used += space_info->bytes_may_use;
4038
4039 spin_lock(&root->fs_info->free_chunk_lock);
4040 avail = root->fs_info->free_chunk_space;
4041 spin_unlock(&root->fs_info->free_chunk_lock);
4042
4043 /*
4044 * If we have dup, raid1 or raid10 then only half of the free
4045 * space is actually useable. For raid56, the space info used
4046 * doesn't include the parity drive, so we don't have to
4047 * change the math
4048 */
4049 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4050 BTRFS_BLOCK_GROUP_RAID1 |
4051 BTRFS_BLOCK_GROUP_RAID10))
4052 avail >>= 1;
4053
4054 /*
4055 * If we aren't flushing all things, let us overcommit up to
4056 * 1/2th of the space. If we can flush, don't let us overcommit
4057 * too much, let it overcommit up to 1/8 of the space.
4058 */
4059 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4060 avail >>= 3;
4061 else
4062 avail >>= 1;
4063
4064 if (used + bytes < space_info->total_bytes + avail)
4065 return 1;
4066 return 0;
4067 }
4068
4069 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4070 unsigned long nr_pages, int nr_items)
4071 {
4072 struct super_block *sb = root->fs_info->sb;
4073
4074 if (down_read_trylock(&sb->s_umount)) {
4075 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4076 up_read(&sb->s_umount);
4077 } else {
4078 /*
4079 * We needn't worry the filesystem going from r/w to r/o though
4080 * we don't acquire ->s_umount mutex, because the filesystem
4081 * should guarantee the delalloc inodes list be empty after
4082 * the filesystem is readonly(all dirty pages are written to
4083 * the disk).
4084 */
4085 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4086 if (!current->journal_info)
4087 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4088 }
4089 }
4090
4091 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4092 {
4093 u64 bytes;
4094 int nr;
4095
4096 bytes = btrfs_calc_trans_metadata_size(root, 1);
4097 nr = (int)div64_u64(to_reclaim, bytes);
4098 if (!nr)
4099 nr = 1;
4100 return nr;
4101 }
4102
4103 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4104
4105 /*
4106 * shrink metadata reservation for delalloc
4107 */
4108 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4109 bool wait_ordered)
4110 {
4111 struct btrfs_block_rsv *block_rsv;
4112 struct btrfs_space_info *space_info;
4113 struct btrfs_trans_handle *trans;
4114 u64 delalloc_bytes;
4115 u64 max_reclaim;
4116 long time_left;
4117 unsigned long nr_pages;
4118 int loops;
4119 int items;
4120 enum btrfs_reserve_flush_enum flush;
4121
4122 /* Calc the number of the pages we need flush for space reservation */
4123 items = calc_reclaim_items_nr(root, to_reclaim);
4124 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4125
4126 trans = (struct btrfs_trans_handle *)current->journal_info;
4127 block_rsv = &root->fs_info->delalloc_block_rsv;
4128 space_info = block_rsv->space_info;
4129
4130 delalloc_bytes = percpu_counter_sum_positive(
4131 &root->fs_info->delalloc_bytes);
4132 if (delalloc_bytes == 0) {
4133 if (trans)
4134 return;
4135 if (wait_ordered)
4136 btrfs_wait_ordered_roots(root->fs_info, items);
4137 return;
4138 }
4139
4140 loops = 0;
4141 while (delalloc_bytes && loops < 3) {
4142 max_reclaim = min(delalloc_bytes, to_reclaim);
4143 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4144 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4145 /*
4146 * We need to wait for the async pages to actually start before
4147 * we do anything.
4148 */
4149 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4150 if (!max_reclaim)
4151 goto skip_async;
4152
4153 if (max_reclaim <= nr_pages)
4154 max_reclaim = 0;
4155 else
4156 max_reclaim -= nr_pages;
4157
4158 wait_event(root->fs_info->async_submit_wait,
4159 atomic_read(&root->fs_info->async_delalloc_pages) <=
4160 (int)max_reclaim);
4161 skip_async:
4162 if (!trans)
4163 flush = BTRFS_RESERVE_FLUSH_ALL;
4164 else
4165 flush = BTRFS_RESERVE_NO_FLUSH;
4166 spin_lock(&space_info->lock);
4167 if (can_overcommit(root, space_info, orig, flush)) {
4168 spin_unlock(&space_info->lock);
4169 break;
4170 }
4171 spin_unlock(&space_info->lock);
4172
4173 loops++;
4174 if (wait_ordered && !trans) {
4175 btrfs_wait_ordered_roots(root->fs_info, items);
4176 } else {
4177 time_left = schedule_timeout_killable(1);
4178 if (time_left)
4179 break;
4180 }
4181 delalloc_bytes = percpu_counter_sum_positive(
4182 &root->fs_info->delalloc_bytes);
4183 }
4184 }
4185
4186 /**
4187 * maybe_commit_transaction - possibly commit the transaction if its ok to
4188 * @root - the root we're allocating for
4189 * @bytes - the number of bytes we want to reserve
4190 * @force - force the commit
4191 *
4192 * This will check to make sure that committing the transaction will actually
4193 * get us somewhere and then commit the transaction if it does. Otherwise it
4194 * will return -ENOSPC.
4195 */
4196 static int may_commit_transaction(struct btrfs_root *root,
4197 struct btrfs_space_info *space_info,
4198 u64 bytes, int force)
4199 {
4200 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4201 struct btrfs_trans_handle *trans;
4202
4203 trans = (struct btrfs_trans_handle *)current->journal_info;
4204 if (trans)
4205 return -EAGAIN;
4206
4207 if (force)
4208 goto commit;
4209
4210 /* See if there is enough pinned space to make this reservation */
4211 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4212 bytes) >= 0)
4213 goto commit;
4214
4215 /*
4216 * See if there is some space in the delayed insertion reservation for
4217 * this reservation.
4218 */
4219 if (space_info != delayed_rsv->space_info)
4220 return -ENOSPC;
4221
4222 spin_lock(&delayed_rsv->lock);
4223 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4224 bytes - delayed_rsv->size) >= 0) {
4225 spin_unlock(&delayed_rsv->lock);
4226 return -ENOSPC;
4227 }
4228 spin_unlock(&delayed_rsv->lock);
4229
4230 commit:
4231 trans = btrfs_join_transaction(root);
4232 if (IS_ERR(trans))
4233 return -ENOSPC;
4234
4235 return btrfs_commit_transaction(trans, root);
4236 }
4237
4238 enum flush_state {
4239 FLUSH_DELAYED_ITEMS_NR = 1,
4240 FLUSH_DELAYED_ITEMS = 2,
4241 FLUSH_DELALLOC = 3,
4242 FLUSH_DELALLOC_WAIT = 4,
4243 ALLOC_CHUNK = 5,
4244 COMMIT_TRANS = 6,
4245 };
4246
4247 static int flush_space(struct btrfs_root *root,
4248 struct btrfs_space_info *space_info, u64 num_bytes,
4249 u64 orig_bytes, int state)
4250 {
4251 struct btrfs_trans_handle *trans;
4252 int nr;
4253 int ret = 0;
4254
4255 switch (state) {
4256 case FLUSH_DELAYED_ITEMS_NR:
4257 case FLUSH_DELAYED_ITEMS:
4258 if (state == FLUSH_DELAYED_ITEMS_NR)
4259 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4260 else
4261 nr = -1;
4262
4263 trans = btrfs_join_transaction(root);
4264 if (IS_ERR(trans)) {
4265 ret = PTR_ERR(trans);
4266 break;
4267 }
4268 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4269 btrfs_end_transaction(trans, root);
4270 break;
4271 case FLUSH_DELALLOC:
4272 case FLUSH_DELALLOC_WAIT:
4273 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4274 state == FLUSH_DELALLOC_WAIT);
4275 break;
4276 case ALLOC_CHUNK:
4277 trans = btrfs_join_transaction(root);
4278 if (IS_ERR(trans)) {
4279 ret = PTR_ERR(trans);
4280 break;
4281 }
4282 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4283 btrfs_get_alloc_profile(root, 0),
4284 CHUNK_ALLOC_NO_FORCE);
4285 btrfs_end_transaction(trans, root);
4286 if (ret == -ENOSPC)
4287 ret = 0;
4288 break;
4289 case COMMIT_TRANS:
4290 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4291 break;
4292 default:
4293 ret = -ENOSPC;
4294 break;
4295 }
4296
4297 return ret;
4298 }
4299
4300 static inline u64
4301 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4302 struct btrfs_space_info *space_info)
4303 {
4304 u64 used;
4305 u64 expected;
4306 u64 to_reclaim;
4307
4308 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4309 16 * 1024 * 1024);
4310 spin_lock(&space_info->lock);
4311 if (can_overcommit(root, space_info, to_reclaim,
4312 BTRFS_RESERVE_FLUSH_ALL)) {
4313 to_reclaim = 0;
4314 goto out;
4315 }
4316
4317 used = space_info->bytes_used + space_info->bytes_reserved +
4318 space_info->bytes_pinned + space_info->bytes_readonly +
4319 space_info->bytes_may_use;
4320 if (can_overcommit(root, space_info, 1024 * 1024,
4321 BTRFS_RESERVE_FLUSH_ALL))
4322 expected = div_factor_fine(space_info->total_bytes, 95);
4323 else
4324 expected = div_factor_fine(space_info->total_bytes, 90);
4325
4326 if (used > expected)
4327 to_reclaim = used - expected;
4328 else
4329 to_reclaim = 0;
4330 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4331 space_info->bytes_reserved);
4332 out:
4333 spin_unlock(&space_info->lock);
4334
4335 return to_reclaim;
4336 }
4337
4338 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4339 struct btrfs_fs_info *fs_info, u64 used)
4340 {
4341 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4342 !btrfs_fs_closing(fs_info) &&
4343 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4344 }
4345
4346 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4347 struct btrfs_fs_info *fs_info,
4348 int flush_state)
4349 {
4350 u64 used;
4351
4352 spin_lock(&space_info->lock);
4353 /*
4354 * We run out of space and have not got any free space via flush_space,
4355 * so don't bother doing async reclaim.
4356 */
4357 if (flush_state > COMMIT_TRANS && space_info->full) {
4358 spin_unlock(&space_info->lock);
4359 return 0;
4360 }
4361
4362 used = space_info->bytes_used + space_info->bytes_reserved +
4363 space_info->bytes_pinned + space_info->bytes_readonly +
4364 space_info->bytes_may_use;
4365 if (need_do_async_reclaim(space_info, fs_info, used)) {
4366 spin_unlock(&space_info->lock);
4367 return 1;
4368 }
4369 spin_unlock(&space_info->lock);
4370
4371 return 0;
4372 }
4373
4374 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4375 {
4376 struct btrfs_fs_info *fs_info;
4377 struct btrfs_space_info *space_info;
4378 u64 to_reclaim;
4379 int flush_state;
4380
4381 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4382 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4383
4384 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4385 space_info);
4386 if (!to_reclaim)
4387 return;
4388
4389 flush_state = FLUSH_DELAYED_ITEMS_NR;
4390 do {
4391 flush_space(fs_info->fs_root, space_info, to_reclaim,
4392 to_reclaim, flush_state);
4393 flush_state++;
4394 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4395 flush_state))
4396 return;
4397 } while (flush_state <= COMMIT_TRANS);
4398
4399 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4400 queue_work(system_unbound_wq, work);
4401 }
4402
4403 void btrfs_init_async_reclaim_work(struct work_struct *work)
4404 {
4405 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4406 }
4407
4408 /**
4409 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4410 * @root - the root we're allocating for
4411 * @block_rsv - the block_rsv we're allocating for
4412 * @orig_bytes - the number of bytes we want
4413 * @flush - whether or not we can flush to make our reservation
4414 *
4415 * This will reserve orgi_bytes number of bytes from the space info associated
4416 * with the block_rsv. If there is not enough space it will make an attempt to
4417 * flush out space to make room. It will do this by flushing delalloc if
4418 * possible or committing the transaction. If flush is 0 then no attempts to
4419 * regain reservations will be made and this will fail if there is not enough
4420 * space already.
4421 */
4422 static int reserve_metadata_bytes(struct btrfs_root *root,
4423 struct btrfs_block_rsv *block_rsv,
4424 u64 orig_bytes,
4425 enum btrfs_reserve_flush_enum flush)
4426 {
4427 struct btrfs_space_info *space_info = block_rsv->space_info;
4428 u64 used;
4429 u64 num_bytes = orig_bytes;
4430 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4431 int ret = 0;
4432 bool flushing = false;
4433
4434 again:
4435 ret = 0;
4436 spin_lock(&space_info->lock);
4437 /*
4438 * We only want to wait if somebody other than us is flushing and we
4439 * are actually allowed to flush all things.
4440 */
4441 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4442 space_info->flush) {
4443 spin_unlock(&space_info->lock);
4444 /*
4445 * If we have a trans handle we can't wait because the flusher
4446 * may have to commit the transaction, which would mean we would
4447 * deadlock since we are waiting for the flusher to finish, but
4448 * hold the current transaction open.
4449 */
4450 if (current->journal_info)
4451 return -EAGAIN;
4452 ret = wait_event_killable(space_info->wait, !space_info->flush);
4453 /* Must have been killed, return */
4454 if (ret)
4455 return -EINTR;
4456
4457 spin_lock(&space_info->lock);
4458 }
4459
4460 ret = -ENOSPC;
4461 used = space_info->bytes_used + space_info->bytes_reserved +
4462 space_info->bytes_pinned + space_info->bytes_readonly +
4463 space_info->bytes_may_use;
4464
4465 /*
4466 * The idea here is that we've not already over-reserved the block group
4467 * then we can go ahead and save our reservation first and then start
4468 * flushing if we need to. Otherwise if we've already overcommitted
4469 * lets start flushing stuff first and then come back and try to make
4470 * our reservation.
4471 */
4472 if (used <= space_info->total_bytes) {
4473 if (used + orig_bytes <= space_info->total_bytes) {
4474 space_info->bytes_may_use += orig_bytes;
4475 trace_btrfs_space_reservation(root->fs_info,
4476 "space_info", space_info->flags, orig_bytes, 1);
4477 ret = 0;
4478 } else {
4479 /*
4480 * Ok set num_bytes to orig_bytes since we aren't
4481 * overocmmitted, this way we only try and reclaim what
4482 * we need.
4483 */
4484 num_bytes = orig_bytes;
4485 }
4486 } else {
4487 /*
4488 * Ok we're over committed, set num_bytes to the overcommitted
4489 * amount plus the amount of bytes that we need for this
4490 * reservation.
4491 */
4492 num_bytes = used - space_info->total_bytes +
4493 (orig_bytes * 2);
4494 }
4495
4496 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4497 space_info->bytes_may_use += orig_bytes;
4498 trace_btrfs_space_reservation(root->fs_info, "space_info",
4499 space_info->flags, orig_bytes,
4500 1);
4501 ret = 0;
4502 }
4503
4504 /*
4505 * Couldn't make our reservation, save our place so while we're trying
4506 * to reclaim space we can actually use it instead of somebody else
4507 * stealing it from us.
4508 *
4509 * We make the other tasks wait for the flush only when we can flush
4510 * all things.
4511 */
4512 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4513 flushing = true;
4514 space_info->flush = 1;
4515 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4516 used += orig_bytes;
4517 /*
4518 * We will do the space reservation dance during log replay,
4519 * which means we won't have fs_info->fs_root set, so don't do
4520 * the async reclaim as we will panic.
4521 */
4522 if (!root->fs_info->log_root_recovering &&
4523 need_do_async_reclaim(space_info, root->fs_info, used) &&
4524 !work_busy(&root->fs_info->async_reclaim_work))
4525 queue_work(system_unbound_wq,
4526 &root->fs_info->async_reclaim_work);
4527 }
4528 spin_unlock(&space_info->lock);
4529
4530 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4531 goto out;
4532
4533 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4534 flush_state);
4535 flush_state++;
4536
4537 /*
4538 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4539 * would happen. So skip delalloc flush.
4540 */
4541 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4542 (flush_state == FLUSH_DELALLOC ||
4543 flush_state == FLUSH_DELALLOC_WAIT))
4544 flush_state = ALLOC_CHUNK;
4545
4546 if (!ret)
4547 goto again;
4548 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4549 flush_state < COMMIT_TRANS)
4550 goto again;
4551 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4552 flush_state <= COMMIT_TRANS)
4553 goto again;
4554
4555 out:
4556 if (ret == -ENOSPC &&
4557 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4558 struct btrfs_block_rsv *global_rsv =
4559 &root->fs_info->global_block_rsv;
4560
4561 if (block_rsv != global_rsv &&
4562 !block_rsv_use_bytes(global_rsv, orig_bytes))
4563 ret = 0;
4564 }
4565 if (ret == -ENOSPC)
4566 trace_btrfs_space_reservation(root->fs_info,
4567 "space_info:enospc",
4568 space_info->flags, orig_bytes, 1);
4569 if (flushing) {
4570 spin_lock(&space_info->lock);
4571 space_info->flush = 0;
4572 wake_up_all(&space_info->wait);
4573 spin_unlock(&space_info->lock);
4574 }
4575 return ret;
4576 }
4577
4578 static struct btrfs_block_rsv *get_block_rsv(
4579 const struct btrfs_trans_handle *trans,
4580 const struct btrfs_root *root)
4581 {
4582 struct btrfs_block_rsv *block_rsv = NULL;
4583
4584 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4585 block_rsv = trans->block_rsv;
4586
4587 if (root == root->fs_info->csum_root && trans->adding_csums)
4588 block_rsv = trans->block_rsv;
4589
4590 if (root == root->fs_info->uuid_root)
4591 block_rsv = trans->block_rsv;
4592
4593 if (!block_rsv)
4594 block_rsv = root->block_rsv;
4595
4596 if (!block_rsv)
4597 block_rsv = &root->fs_info->empty_block_rsv;
4598
4599 return block_rsv;
4600 }
4601
4602 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4603 u64 num_bytes)
4604 {
4605 int ret = -ENOSPC;
4606 spin_lock(&block_rsv->lock);
4607 if (block_rsv->reserved >= num_bytes) {
4608 block_rsv->reserved -= num_bytes;
4609 if (block_rsv->reserved < block_rsv->size)
4610 block_rsv->full = 0;
4611 ret = 0;
4612 }
4613 spin_unlock(&block_rsv->lock);
4614 return ret;
4615 }
4616
4617 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4618 u64 num_bytes, int update_size)
4619 {
4620 spin_lock(&block_rsv->lock);
4621 block_rsv->reserved += num_bytes;
4622 if (update_size)
4623 block_rsv->size += num_bytes;
4624 else if (block_rsv->reserved >= block_rsv->size)
4625 block_rsv->full = 1;
4626 spin_unlock(&block_rsv->lock);
4627 }
4628
4629 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4630 struct btrfs_block_rsv *dest, u64 num_bytes,
4631 int min_factor)
4632 {
4633 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4634 u64 min_bytes;
4635
4636 if (global_rsv->space_info != dest->space_info)
4637 return -ENOSPC;
4638
4639 spin_lock(&global_rsv->lock);
4640 min_bytes = div_factor(global_rsv->size, min_factor);
4641 if (global_rsv->reserved < min_bytes + num_bytes) {
4642 spin_unlock(&global_rsv->lock);
4643 return -ENOSPC;
4644 }
4645 global_rsv->reserved -= num_bytes;
4646 if (global_rsv->reserved < global_rsv->size)
4647 global_rsv->full = 0;
4648 spin_unlock(&global_rsv->lock);
4649
4650 block_rsv_add_bytes(dest, num_bytes, 1);
4651 return 0;
4652 }
4653
4654 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4655 struct btrfs_block_rsv *block_rsv,
4656 struct btrfs_block_rsv *dest, u64 num_bytes)
4657 {
4658 struct btrfs_space_info *space_info = block_rsv->space_info;
4659
4660 spin_lock(&block_rsv->lock);
4661 if (num_bytes == (u64)-1)
4662 num_bytes = block_rsv->size;
4663 block_rsv->size -= num_bytes;
4664 if (block_rsv->reserved >= block_rsv->size) {
4665 num_bytes = block_rsv->reserved - block_rsv->size;
4666 block_rsv->reserved = block_rsv->size;
4667 block_rsv->full = 1;
4668 } else {
4669 num_bytes = 0;
4670 }
4671 spin_unlock(&block_rsv->lock);
4672
4673 if (num_bytes > 0) {
4674 if (dest) {
4675 spin_lock(&dest->lock);
4676 if (!dest->full) {
4677 u64 bytes_to_add;
4678
4679 bytes_to_add = dest->size - dest->reserved;
4680 bytes_to_add = min(num_bytes, bytes_to_add);
4681 dest->reserved += bytes_to_add;
4682 if (dest->reserved >= dest->size)
4683 dest->full = 1;
4684 num_bytes -= bytes_to_add;
4685 }
4686 spin_unlock(&dest->lock);
4687 }
4688 if (num_bytes) {
4689 spin_lock(&space_info->lock);
4690 space_info->bytes_may_use -= num_bytes;
4691 trace_btrfs_space_reservation(fs_info, "space_info",
4692 space_info->flags, num_bytes, 0);
4693 spin_unlock(&space_info->lock);
4694 }
4695 }
4696 }
4697
4698 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4699 struct btrfs_block_rsv *dst, u64 num_bytes)
4700 {
4701 int ret;
4702
4703 ret = block_rsv_use_bytes(src, num_bytes);
4704 if (ret)
4705 return ret;
4706
4707 block_rsv_add_bytes(dst, num_bytes, 1);
4708 return 0;
4709 }
4710
4711 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4712 {
4713 memset(rsv, 0, sizeof(*rsv));
4714 spin_lock_init(&rsv->lock);
4715 rsv->type = type;
4716 }
4717
4718 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4719 unsigned short type)
4720 {
4721 struct btrfs_block_rsv *block_rsv;
4722 struct btrfs_fs_info *fs_info = root->fs_info;
4723
4724 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4725 if (!block_rsv)
4726 return NULL;
4727
4728 btrfs_init_block_rsv(block_rsv, type);
4729 block_rsv->space_info = __find_space_info(fs_info,
4730 BTRFS_BLOCK_GROUP_METADATA);
4731 return block_rsv;
4732 }
4733
4734 void btrfs_free_block_rsv(struct btrfs_root *root,
4735 struct btrfs_block_rsv *rsv)
4736 {
4737 if (!rsv)
4738 return;
4739 btrfs_block_rsv_release(root, rsv, (u64)-1);
4740 kfree(rsv);
4741 }
4742
4743 int btrfs_block_rsv_add(struct btrfs_root *root,
4744 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4745 enum btrfs_reserve_flush_enum flush)
4746 {
4747 int ret;
4748
4749 if (num_bytes == 0)
4750 return 0;
4751
4752 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4753 if (!ret) {
4754 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4755 return 0;
4756 }
4757
4758 return ret;
4759 }
4760
4761 int btrfs_block_rsv_check(struct btrfs_root *root,
4762 struct btrfs_block_rsv *block_rsv, int min_factor)
4763 {
4764 u64 num_bytes = 0;
4765 int ret = -ENOSPC;
4766
4767 if (!block_rsv)
4768 return 0;
4769
4770 spin_lock(&block_rsv->lock);
4771 num_bytes = div_factor(block_rsv->size, min_factor);
4772 if (block_rsv->reserved >= num_bytes)
4773 ret = 0;
4774 spin_unlock(&block_rsv->lock);
4775
4776 return ret;
4777 }
4778
4779 int btrfs_block_rsv_refill(struct btrfs_root *root,
4780 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4781 enum btrfs_reserve_flush_enum flush)
4782 {
4783 u64 num_bytes = 0;
4784 int ret = -ENOSPC;
4785
4786 if (!block_rsv)
4787 return 0;
4788
4789 spin_lock(&block_rsv->lock);
4790 num_bytes = min_reserved;
4791 if (block_rsv->reserved >= num_bytes)
4792 ret = 0;
4793 else
4794 num_bytes -= block_rsv->reserved;
4795 spin_unlock(&block_rsv->lock);
4796
4797 if (!ret)
4798 return 0;
4799
4800 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4801 if (!ret) {
4802 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4803 return 0;
4804 }
4805
4806 return ret;
4807 }
4808
4809 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4810 struct btrfs_block_rsv *dst_rsv,
4811 u64 num_bytes)
4812 {
4813 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4814 }
4815
4816 void btrfs_block_rsv_release(struct btrfs_root *root,
4817 struct btrfs_block_rsv *block_rsv,
4818 u64 num_bytes)
4819 {
4820 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4821 if (global_rsv == block_rsv ||
4822 block_rsv->space_info != global_rsv->space_info)
4823 global_rsv = NULL;
4824 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4825 num_bytes);
4826 }
4827
4828 /*
4829 * helper to calculate size of global block reservation.
4830 * the desired value is sum of space used by extent tree,
4831 * checksum tree and root tree
4832 */
4833 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4834 {
4835 struct btrfs_space_info *sinfo;
4836 u64 num_bytes;
4837 u64 meta_used;
4838 u64 data_used;
4839 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4840
4841 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4842 spin_lock(&sinfo->lock);
4843 data_used = sinfo->bytes_used;
4844 spin_unlock(&sinfo->lock);
4845
4846 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4847 spin_lock(&sinfo->lock);
4848 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4849 data_used = 0;
4850 meta_used = sinfo->bytes_used;
4851 spin_unlock(&sinfo->lock);
4852
4853 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4854 csum_size * 2;
4855 num_bytes += div64_u64(data_used + meta_used, 50);
4856
4857 if (num_bytes * 3 > meta_used)
4858 num_bytes = div64_u64(meta_used, 3);
4859
4860 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4861 }
4862
4863 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4864 {
4865 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4866 struct btrfs_space_info *sinfo = block_rsv->space_info;
4867 u64 num_bytes;
4868
4869 num_bytes = calc_global_metadata_size(fs_info);
4870
4871 spin_lock(&sinfo->lock);
4872 spin_lock(&block_rsv->lock);
4873
4874 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4875
4876 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4877 sinfo->bytes_reserved + sinfo->bytes_readonly +
4878 sinfo->bytes_may_use;
4879
4880 if (sinfo->total_bytes > num_bytes) {
4881 num_bytes = sinfo->total_bytes - num_bytes;
4882 block_rsv->reserved += num_bytes;
4883 sinfo->bytes_may_use += num_bytes;
4884 trace_btrfs_space_reservation(fs_info, "space_info",
4885 sinfo->flags, num_bytes, 1);
4886 }
4887
4888 if (block_rsv->reserved >= block_rsv->size) {
4889 num_bytes = block_rsv->reserved - block_rsv->size;
4890 sinfo->bytes_may_use -= num_bytes;
4891 trace_btrfs_space_reservation(fs_info, "space_info",
4892 sinfo->flags, num_bytes, 0);
4893 block_rsv->reserved = block_rsv->size;
4894 block_rsv->full = 1;
4895 }
4896
4897 spin_unlock(&block_rsv->lock);
4898 spin_unlock(&sinfo->lock);
4899 }
4900
4901 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4902 {
4903 struct btrfs_space_info *space_info;
4904
4905 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4906 fs_info->chunk_block_rsv.space_info = space_info;
4907
4908 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4909 fs_info->global_block_rsv.space_info = space_info;
4910 fs_info->delalloc_block_rsv.space_info = space_info;
4911 fs_info->trans_block_rsv.space_info = space_info;
4912 fs_info->empty_block_rsv.space_info = space_info;
4913 fs_info->delayed_block_rsv.space_info = space_info;
4914
4915 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4916 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4917 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4918 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4919 if (fs_info->quota_root)
4920 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4921 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4922
4923 update_global_block_rsv(fs_info);
4924 }
4925
4926 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4927 {
4928 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4929 (u64)-1);
4930 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4931 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4932 WARN_ON(fs_info->trans_block_rsv.size > 0);
4933 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4934 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4935 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4936 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4937 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4938 }
4939
4940 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4941 struct btrfs_root *root)
4942 {
4943 if (!trans->block_rsv)
4944 return;
4945
4946 if (!trans->bytes_reserved)
4947 return;
4948
4949 trace_btrfs_space_reservation(root->fs_info, "transaction",
4950 trans->transid, trans->bytes_reserved, 0);
4951 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4952 trans->bytes_reserved = 0;
4953 }
4954
4955 /* Can only return 0 or -ENOSPC */
4956 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4957 struct inode *inode)
4958 {
4959 struct btrfs_root *root = BTRFS_I(inode)->root;
4960 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4961 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4962
4963 /*
4964 * We need to hold space in order to delete our orphan item once we've
4965 * added it, so this takes the reservation so we can release it later
4966 * when we are truly done with the orphan item.
4967 */
4968 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4969 trace_btrfs_space_reservation(root->fs_info, "orphan",
4970 btrfs_ino(inode), num_bytes, 1);
4971 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4972 }
4973
4974 void btrfs_orphan_release_metadata(struct inode *inode)
4975 {
4976 struct btrfs_root *root = BTRFS_I(inode)->root;
4977 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4978 trace_btrfs_space_reservation(root->fs_info, "orphan",
4979 btrfs_ino(inode), num_bytes, 0);
4980 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4981 }
4982
4983 /*
4984 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4985 * root: the root of the parent directory
4986 * rsv: block reservation
4987 * items: the number of items that we need do reservation
4988 * qgroup_reserved: used to return the reserved size in qgroup
4989 *
4990 * This function is used to reserve the space for snapshot/subvolume
4991 * creation and deletion. Those operations are different with the
4992 * common file/directory operations, they change two fs/file trees
4993 * and root tree, the number of items that the qgroup reserves is
4994 * different with the free space reservation. So we can not use
4995 * the space reseravtion mechanism in start_transaction().
4996 */
4997 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4998 struct btrfs_block_rsv *rsv,
4999 int items,
5000 u64 *qgroup_reserved,
5001 bool use_global_rsv)
5002 {
5003 u64 num_bytes;
5004 int ret;
5005 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5006
5007 if (root->fs_info->quota_enabled) {
5008 /* One for parent inode, two for dir entries */
5009 num_bytes = 3 * root->nodesize;
5010 ret = btrfs_qgroup_reserve(root, num_bytes);
5011 if (ret)
5012 return ret;
5013 } else {
5014 num_bytes = 0;
5015 }
5016
5017 *qgroup_reserved = num_bytes;
5018
5019 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5020 rsv->space_info = __find_space_info(root->fs_info,
5021 BTRFS_BLOCK_GROUP_METADATA);
5022 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5023 BTRFS_RESERVE_FLUSH_ALL);
5024
5025 if (ret == -ENOSPC && use_global_rsv)
5026 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5027
5028 if (ret) {
5029 if (*qgroup_reserved)
5030 btrfs_qgroup_free(root, *qgroup_reserved);
5031 }
5032
5033 return ret;
5034 }
5035
5036 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5037 struct btrfs_block_rsv *rsv,
5038 u64 qgroup_reserved)
5039 {
5040 btrfs_block_rsv_release(root, rsv, (u64)-1);
5041 if (qgroup_reserved)
5042 btrfs_qgroup_free(root, qgroup_reserved);
5043 }
5044
5045 /**
5046 * drop_outstanding_extent - drop an outstanding extent
5047 * @inode: the inode we're dropping the extent for
5048 *
5049 * This is called when we are freeing up an outstanding extent, either called
5050 * after an error or after an extent is written. This will return the number of
5051 * reserved extents that need to be freed. This must be called with
5052 * BTRFS_I(inode)->lock held.
5053 */
5054 static unsigned drop_outstanding_extent(struct inode *inode)
5055 {
5056 unsigned drop_inode_space = 0;
5057 unsigned dropped_extents = 0;
5058
5059 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5060 BTRFS_I(inode)->outstanding_extents--;
5061
5062 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5063 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5064 &BTRFS_I(inode)->runtime_flags))
5065 drop_inode_space = 1;
5066
5067 /*
5068 * If we have more or the same amount of outsanding extents than we have
5069 * reserved then we need to leave the reserved extents count alone.
5070 */
5071 if (BTRFS_I(inode)->outstanding_extents >=
5072 BTRFS_I(inode)->reserved_extents)
5073 return drop_inode_space;
5074
5075 dropped_extents = BTRFS_I(inode)->reserved_extents -
5076 BTRFS_I(inode)->outstanding_extents;
5077 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5078 return dropped_extents + drop_inode_space;
5079 }
5080
5081 /**
5082 * calc_csum_metadata_size - return the amount of metada space that must be
5083 * reserved/free'd for the given bytes.
5084 * @inode: the inode we're manipulating
5085 * @num_bytes: the number of bytes in question
5086 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5087 *
5088 * This adjusts the number of csum_bytes in the inode and then returns the
5089 * correct amount of metadata that must either be reserved or freed. We
5090 * calculate how many checksums we can fit into one leaf and then divide the
5091 * number of bytes that will need to be checksumed by this value to figure out
5092 * how many checksums will be required. If we are adding bytes then the number
5093 * may go up and we will return the number of additional bytes that must be
5094 * reserved. If it is going down we will return the number of bytes that must
5095 * be freed.
5096 *
5097 * This must be called with BTRFS_I(inode)->lock held.
5098 */
5099 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5100 int reserve)
5101 {
5102 struct btrfs_root *root = BTRFS_I(inode)->root;
5103 u64 csum_size;
5104 int num_csums_per_leaf;
5105 int num_csums;
5106 int old_csums;
5107
5108 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5109 BTRFS_I(inode)->csum_bytes == 0)
5110 return 0;
5111
5112 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5113 if (reserve)
5114 BTRFS_I(inode)->csum_bytes += num_bytes;
5115 else
5116 BTRFS_I(inode)->csum_bytes -= num_bytes;
5117 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5118 num_csums_per_leaf = (int)div64_u64(csum_size,
5119 sizeof(struct btrfs_csum_item) +
5120 sizeof(struct btrfs_disk_key));
5121 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5122 num_csums = num_csums + num_csums_per_leaf - 1;
5123 num_csums = num_csums / num_csums_per_leaf;
5124
5125 old_csums = old_csums + num_csums_per_leaf - 1;
5126 old_csums = old_csums / num_csums_per_leaf;
5127
5128 /* No change, no need to reserve more */
5129 if (old_csums == num_csums)
5130 return 0;
5131
5132 if (reserve)
5133 return btrfs_calc_trans_metadata_size(root,
5134 num_csums - old_csums);
5135
5136 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5137 }
5138
5139 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5140 {
5141 struct btrfs_root *root = BTRFS_I(inode)->root;
5142 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5143 u64 to_reserve = 0;
5144 u64 csum_bytes;
5145 unsigned nr_extents = 0;
5146 int extra_reserve = 0;
5147 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5148 int ret = 0;
5149 bool delalloc_lock = true;
5150 u64 to_free = 0;
5151 unsigned dropped;
5152
5153 /* If we are a free space inode we need to not flush since we will be in
5154 * the middle of a transaction commit. We also don't need the delalloc
5155 * mutex since we won't race with anybody. We need this mostly to make
5156 * lockdep shut its filthy mouth.
5157 */
5158 if (btrfs_is_free_space_inode(inode)) {
5159 flush = BTRFS_RESERVE_NO_FLUSH;
5160 delalloc_lock = false;
5161 }
5162
5163 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5164 btrfs_transaction_in_commit(root->fs_info))
5165 schedule_timeout(1);
5166
5167 if (delalloc_lock)
5168 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5169
5170 num_bytes = ALIGN(num_bytes, root->sectorsize);
5171
5172 spin_lock(&BTRFS_I(inode)->lock);
5173 BTRFS_I(inode)->outstanding_extents++;
5174
5175 if (BTRFS_I(inode)->outstanding_extents >
5176 BTRFS_I(inode)->reserved_extents)
5177 nr_extents = BTRFS_I(inode)->outstanding_extents -
5178 BTRFS_I(inode)->reserved_extents;
5179
5180 /*
5181 * Add an item to reserve for updating the inode when we complete the
5182 * delalloc io.
5183 */
5184 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5185 &BTRFS_I(inode)->runtime_flags)) {
5186 nr_extents++;
5187 extra_reserve = 1;
5188 }
5189
5190 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5191 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5192 csum_bytes = BTRFS_I(inode)->csum_bytes;
5193 spin_unlock(&BTRFS_I(inode)->lock);
5194
5195 if (root->fs_info->quota_enabled) {
5196 ret = btrfs_qgroup_reserve(root, num_bytes +
5197 nr_extents * root->nodesize);
5198 if (ret)
5199 goto out_fail;
5200 }
5201
5202 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5203 if (unlikely(ret)) {
5204 if (root->fs_info->quota_enabled)
5205 btrfs_qgroup_free(root, num_bytes +
5206 nr_extents * root->nodesize);
5207 goto out_fail;
5208 }
5209
5210 spin_lock(&BTRFS_I(inode)->lock);
5211 if (extra_reserve) {
5212 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5213 &BTRFS_I(inode)->runtime_flags);
5214 nr_extents--;
5215 }
5216 BTRFS_I(inode)->reserved_extents += nr_extents;
5217 spin_unlock(&BTRFS_I(inode)->lock);
5218
5219 if (delalloc_lock)
5220 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5221
5222 if (to_reserve)
5223 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5224 btrfs_ino(inode), to_reserve, 1);
5225 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5226
5227 return 0;
5228
5229 out_fail:
5230 spin_lock(&BTRFS_I(inode)->lock);
5231 dropped = drop_outstanding_extent(inode);
5232 /*
5233 * If the inodes csum_bytes is the same as the original
5234 * csum_bytes then we know we haven't raced with any free()ers
5235 * so we can just reduce our inodes csum bytes and carry on.
5236 */
5237 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5238 calc_csum_metadata_size(inode, num_bytes, 0);
5239 } else {
5240 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5241 u64 bytes;
5242
5243 /*
5244 * This is tricky, but first we need to figure out how much we
5245 * free'd from any free-ers that occured during this
5246 * reservation, so we reset ->csum_bytes to the csum_bytes
5247 * before we dropped our lock, and then call the free for the
5248 * number of bytes that were freed while we were trying our
5249 * reservation.
5250 */
5251 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5252 BTRFS_I(inode)->csum_bytes = csum_bytes;
5253 to_free = calc_csum_metadata_size(inode, bytes, 0);
5254
5255
5256 /*
5257 * Now we need to see how much we would have freed had we not
5258 * been making this reservation and our ->csum_bytes were not
5259 * artificially inflated.
5260 */
5261 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5262 bytes = csum_bytes - orig_csum_bytes;
5263 bytes = calc_csum_metadata_size(inode, bytes, 0);
5264
5265 /*
5266 * Now reset ->csum_bytes to what it should be. If bytes is
5267 * more than to_free then we would have free'd more space had we
5268 * not had an artificially high ->csum_bytes, so we need to free
5269 * the remainder. If bytes is the same or less then we don't
5270 * need to do anything, the other free-ers did the correct
5271 * thing.
5272 */
5273 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5274 if (bytes > to_free)
5275 to_free = bytes - to_free;
5276 else
5277 to_free = 0;
5278 }
5279 spin_unlock(&BTRFS_I(inode)->lock);
5280 if (dropped)
5281 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5282
5283 if (to_free) {
5284 btrfs_block_rsv_release(root, block_rsv, to_free);
5285 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5286 btrfs_ino(inode), to_free, 0);
5287 }
5288 if (delalloc_lock)
5289 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5290 return ret;
5291 }
5292
5293 /**
5294 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5295 * @inode: the inode to release the reservation for
5296 * @num_bytes: the number of bytes we're releasing
5297 *
5298 * This will release the metadata reservation for an inode. This can be called
5299 * once we complete IO for a given set of bytes to release their metadata
5300 * reservations.
5301 */
5302 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5303 {
5304 struct btrfs_root *root = BTRFS_I(inode)->root;
5305 u64 to_free = 0;
5306 unsigned dropped;
5307
5308 num_bytes = ALIGN(num_bytes, root->sectorsize);
5309 spin_lock(&BTRFS_I(inode)->lock);
5310 dropped = drop_outstanding_extent(inode);
5311
5312 if (num_bytes)
5313 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5314 spin_unlock(&BTRFS_I(inode)->lock);
5315 if (dropped > 0)
5316 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5317
5318 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5319 btrfs_ino(inode), to_free, 0);
5320 if (root->fs_info->quota_enabled) {
5321 btrfs_qgroup_free(root, num_bytes +
5322 dropped * root->nodesize);
5323 }
5324
5325 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5326 to_free);
5327 }
5328
5329 /**
5330 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5331 * @inode: inode we're writing to
5332 * @num_bytes: the number of bytes we want to allocate
5333 *
5334 * This will do the following things
5335 *
5336 * o reserve space in the data space info for num_bytes
5337 * o reserve space in the metadata space info based on number of outstanding
5338 * extents and how much csums will be needed
5339 * o add to the inodes ->delalloc_bytes
5340 * o add it to the fs_info's delalloc inodes list.
5341 *
5342 * This will return 0 for success and -ENOSPC if there is no space left.
5343 */
5344 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5345 {
5346 int ret;
5347
5348 ret = btrfs_check_data_free_space(inode, num_bytes);
5349 if (ret)
5350 return ret;
5351
5352 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5353 if (ret) {
5354 btrfs_free_reserved_data_space(inode, num_bytes);
5355 return ret;
5356 }
5357
5358 return 0;
5359 }
5360
5361 /**
5362 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5363 * @inode: inode we're releasing space for
5364 * @num_bytes: the number of bytes we want to free up
5365 *
5366 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5367 * called in the case that we don't need the metadata AND data reservations
5368 * anymore. So if there is an error or we insert an inline extent.
5369 *
5370 * This function will release the metadata space that was not used and will
5371 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5372 * list if there are no delalloc bytes left.
5373 */
5374 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5375 {
5376 btrfs_delalloc_release_metadata(inode, num_bytes);
5377 btrfs_free_reserved_data_space(inode, num_bytes);
5378 }
5379
5380 static int update_block_group(struct btrfs_root *root,
5381 u64 bytenr, u64 num_bytes, int alloc)
5382 {
5383 struct btrfs_block_group_cache *cache = NULL;
5384 struct btrfs_fs_info *info = root->fs_info;
5385 u64 total = num_bytes;
5386 u64 old_val;
5387 u64 byte_in_group;
5388 int factor;
5389
5390 /* block accounting for super block */
5391 spin_lock(&info->delalloc_root_lock);
5392 old_val = btrfs_super_bytes_used(info->super_copy);
5393 if (alloc)
5394 old_val += num_bytes;
5395 else
5396 old_val -= num_bytes;
5397 btrfs_set_super_bytes_used(info->super_copy, old_val);
5398 spin_unlock(&info->delalloc_root_lock);
5399
5400 while (total) {
5401 cache = btrfs_lookup_block_group(info, bytenr);
5402 if (!cache)
5403 return -ENOENT;
5404 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5405 BTRFS_BLOCK_GROUP_RAID1 |
5406 BTRFS_BLOCK_GROUP_RAID10))
5407 factor = 2;
5408 else
5409 factor = 1;
5410 /*
5411 * If this block group has free space cache written out, we
5412 * need to make sure to load it if we are removing space. This
5413 * is because we need the unpinning stage to actually add the
5414 * space back to the block group, otherwise we will leak space.
5415 */
5416 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5417 cache_block_group(cache, 1);
5418
5419 byte_in_group = bytenr - cache->key.objectid;
5420 WARN_ON(byte_in_group > cache->key.offset);
5421
5422 spin_lock(&cache->space_info->lock);
5423 spin_lock(&cache->lock);
5424
5425 if (btrfs_test_opt(root, SPACE_CACHE) &&
5426 cache->disk_cache_state < BTRFS_DC_CLEAR)
5427 cache->disk_cache_state = BTRFS_DC_CLEAR;
5428
5429 cache->dirty = 1;
5430 old_val = btrfs_block_group_used(&cache->item);
5431 num_bytes = min(total, cache->key.offset - byte_in_group);
5432 if (alloc) {
5433 old_val += num_bytes;
5434 btrfs_set_block_group_used(&cache->item, old_val);
5435 cache->reserved -= num_bytes;
5436 cache->space_info->bytes_reserved -= num_bytes;
5437 cache->space_info->bytes_used += num_bytes;
5438 cache->space_info->disk_used += num_bytes * factor;
5439 spin_unlock(&cache->lock);
5440 spin_unlock(&cache->space_info->lock);
5441 } else {
5442 old_val -= num_bytes;
5443 btrfs_set_block_group_used(&cache->item, old_val);
5444 cache->pinned += num_bytes;
5445 cache->space_info->bytes_pinned += num_bytes;
5446 cache->space_info->bytes_used -= num_bytes;
5447 cache->space_info->disk_used -= num_bytes * factor;
5448 spin_unlock(&cache->lock);
5449 spin_unlock(&cache->space_info->lock);
5450
5451 set_extent_dirty(info->pinned_extents,
5452 bytenr, bytenr + num_bytes - 1,
5453 GFP_NOFS | __GFP_NOFAIL);
5454 /*
5455 * No longer have used bytes in this block group, queue
5456 * it for deletion.
5457 */
5458 if (old_val == 0) {
5459 spin_lock(&info->unused_bgs_lock);
5460 if (list_empty(&cache->bg_list)) {
5461 btrfs_get_block_group(cache);
5462 list_add_tail(&cache->bg_list,
5463 &info->unused_bgs);
5464 }
5465 spin_unlock(&info->unused_bgs_lock);
5466 }
5467 }
5468 btrfs_put_block_group(cache);
5469 total -= num_bytes;
5470 bytenr += num_bytes;
5471 }
5472 return 0;
5473 }
5474
5475 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5476 {
5477 struct btrfs_block_group_cache *cache;
5478 u64 bytenr;
5479
5480 spin_lock(&root->fs_info->block_group_cache_lock);
5481 bytenr = root->fs_info->first_logical_byte;
5482 spin_unlock(&root->fs_info->block_group_cache_lock);
5483
5484 if (bytenr < (u64)-1)
5485 return bytenr;
5486
5487 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5488 if (!cache)
5489 return 0;
5490
5491 bytenr = cache->key.objectid;
5492 btrfs_put_block_group(cache);
5493
5494 return bytenr;
5495 }
5496
5497 static int pin_down_extent(struct btrfs_root *root,
5498 struct btrfs_block_group_cache *cache,
5499 u64 bytenr, u64 num_bytes, int reserved)
5500 {
5501 spin_lock(&cache->space_info->lock);
5502 spin_lock(&cache->lock);
5503 cache->pinned += num_bytes;
5504 cache->space_info->bytes_pinned += num_bytes;
5505 if (reserved) {
5506 cache->reserved -= num_bytes;
5507 cache->space_info->bytes_reserved -= num_bytes;
5508 }
5509 spin_unlock(&cache->lock);
5510 spin_unlock(&cache->space_info->lock);
5511
5512 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5513 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5514 if (reserved)
5515 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5516 return 0;
5517 }
5518
5519 /*
5520 * this function must be called within transaction
5521 */
5522 int btrfs_pin_extent(struct btrfs_root *root,
5523 u64 bytenr, u64 num_bytes, int reserved)
5524 {
5525 struct btrfs_block_group_cache *cache;
5526
5527 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5528 BUG_ON(!cache); /* Logic error */
5529
5530 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5531
5532 btrfs_put_block_group(cache);
5533 return 0;
5534 }
5535
5536 /*
5537 * this function must be called within transaction
5538 */
5539 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5540 u64 bytenr, u64 num_bytes)
5541 {
5542 struct btrfs_block_group_cache *cache;
5543 int ret;
5544
5545 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5546 if (!cache)
5547 return -EINVAL;
5548
5549 /*
5550 * pull in the free space cache (if any) so that our pin
5551 * removes the free space from the cache. We have load_only set
5552 * to one because the slow code to read in the free extents does check
5553 * the pinned extents.
5554 */
5555 cache_block_group(cache, 1);
5556
5557 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5558
5559 /* remove us from the free space cache (if we're there at all) */
5560 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5561 btrfs_put_block_group(cache);
5562 return ret;
5563 }
5564
5565 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5566 {
5567 int ret;
5568 struct btrfs_block_group_cache *block_group;
5569 struct btrfs_caching_control *caching_ctl;
5570
5571 block_group = btrfs_lookup_block_group(root->fs_info, start);
5572 if (!block_group)
5573 return -EINVAL;
5574
5575 cache_block_group(block_group, 0);
5576 caching_ctl = get_caching_control(block_group);
5577
5578 if (!caching_ctl) {
5579 /* Logic error */
5580 BUG_ON(!block_group_cache_done(block_group));
5581 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5582 } else {
5583 mutex_lock(&caching_ctl->mutex);
5584
5585 if (start >= caching_ctl->progress) {
5586 ret = add_excluded_extent(root, start, num_bytes);
5587 } else if (start + num_bytes <= caching_ctl->progress) {
5588 ret = btrfs_remove_free_space(block_group,
5589 start, num_bytes);
5590 } else {
5591 num_bytes = caching_ctl->progress - start;
5592 ret = btrfs_remove_free_space(block_group,
5593 start, num_bytes);
5594 if (ret)
5595 goto out_lock;
5596
5597 num_bytes = (start + num_bytes) -
5598 caching_ctl->progress;
5599 start = caching_ctl->progress;
5600 ret = add_excluded_extent(root, start, num_bytes);
5601 }
5602 out_lock:
5603 mutex_unlock(&caching_ctl->mutex);
5604 put_caching_control(caching_ctl);
5605 }
5606 btrfs_put_block_group(block_group);
5607 return ret;
5608 }
5609
5610 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5611 struct extent_buffer *eb)
5612 {
5613 struct btrfs_file_extent_item *item;
5614 struct btrfs_key key;
5615 int found_type;
5616 int i;
5617
5618 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5619 return 0;
5620
5621 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5622 btrfs_item_key_to_cpu(eb, &key, i);
5623 if (key.type != BTRFS_EXTENT_DATA_KEY)
5624 continue;
5625 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5626 found_type = btrfs_file_extent_type(eb, item);
5627 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5628 continue;
5629 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5630 continue;
5631 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5632 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5633 __exclude_logged_extent(log, key.objectid, key.offset);
5634 }
5635
5636 return 0;
5637 }
5638
5639 /**
5640 * btrfs_update_reserved_bytes - update the block_group and space info counters
5641 * @cache: The cache we are manipulating
5642 * @num_bytes: The number of bytes in question
5643 * @reserve: One of the reservation enums
5644 * @delalloc: The blocks are allocated for the delalloc write
5645 *
5646 * This is called by the allocator when it reserves space, or by somebody who is
5647 * freeing space that was never actually used on disk. For example if you
5648 * reserve some space for a new leaf in transaction A and before transaction A
5649 * commits you free that leaf, you call this with reserve set to 0 in order to
5650 * clear the reservation.
5651 *
5652 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5653 * ENOSPC accounting. For data we handle the reservation through clearing the
5654 * delalloc bits in the io_tree. We have to do this since we could end up
5655 * allocating less disk space for the amount of data we have reserved in the
5656 * case of compression.
5657 *
5658 * If this is a reservation and the block group has become read only we cannot
5659 * make the reservation and return -EAGAIN, otherwise this function always
5660 * succeeds.
5661 */
5662 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5663 u64 num_bytes, int reserve, int delalloc)
5664 {
5665 struct btrfs_space_info *space_info = cache->space_info;
5666 int ret = 0;
5667
5668 spin_lock(&space_info->lock);
5669 spin_lock(&cache->lock);
5670 if (reserve != RESERVE_FREE) {
5671 if (cache->ro) {
5672 ret = -EAGAIN;
5673 } else {
5674 cache->reserved += num_bytes;
5675 space_info->bytes_reserved += num_bytes;
5676 if (reserve == RESERVE_ALLOC) {
5677 trace_btrfs_space_reservation(cache->fs_info,
5678 "space_info", space_info->flags,
5679 num_bytes, 0);
5680 space_info->bytes_may_use -= num_bytes;
5681 }
5682
5683 if (delalloc)
5684 cache->delalloc_bytes += num_bytes;
5685 }
5686 } else {
5687 if (cache->ro)
5688 space_info->bytes_readonly += num_bytes;
5689 cache->reserved -= num_bytes;
5690 space_info->bytes_reserved -= num_bytes;
5691
5692 if (delalloc)
5693 cache->delalloc_bytes -= num_bytes;
5694 }
5695 spin_unlock(&cache->lock);
5696 spin_unlock(&space_info->lock);
5697 return ret;
5698 }
5699
5700 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5701 struct btrfs_root *root)
5702 {
5703 struct btrfs_fs_info *fs_info = root->fs_info;
5704 struct btrfs_caching_control *next;
5705 struct btrfs_caching_control *caching_ctl;
5706 struct btrfs_block_group_cache *cache;
5707
5708 down_write(&fs_info->commit_root_sem);
5709
5710 list_for_each_entry_safe(caching_ctl, next,
5711 &fs_info->caching_block_groups, list) {
5712 cache = caching_ctl->block_group;
5713 if (block_group_cache_done(cache)) {
5714 cache->last_byte_to_unpin = (u64)-1;
5715 list_del_init(&caching_ctl->list);
5716 put_caching_control(caching_ctl);
5717 } else {
5718 cache->last_byte_to_unpin = caching_ctl->progress;
5719 }
5720 }
5721
5722 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5723 fs_info->pinned_extents = &fs_info->freed_extents[1];
5724 else
5725 fs_info->pinned_extents = &fs_info->freed_extents[0];
5726
5727 up_write(&fs_info->commit_root_sem);
5728
5729 update_global_block_rsv(fs_info);
5730 }
5731
5732 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5733 {
5734 struct btrfs_fs_info *fs_info = root->fs_info;
5735 struct btrfs_block_group_cache *cache = NULL;
5736 struct btrfs_space_info *space_info;
5737 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5738 u64 len;
5739 bool readonly;
5740
5741 while (start <= end) {
5742 readonly = false;
5743 if (!cache ||
5744 start >= cache->key.objectid + cache->key.offset) {
5745 if (cache)
5746 btrfs_put_block_group(cache);
5747 cache = btrfs_lookup_block_group(fs_info, start);
5748 BUG_ON(!cache); /* Logic error */
5749 }
5750
5751 len = cache->key.objectid + cache->key.offset - start;
5752 len = min(len, end + 1 - start);
5753
5754 if (start < cache->last_byte_to_unpin) {
5755 len = min(len, cache->last_byte_to_unpin - start);
5756 btrfs_add_free_space(cache, start, len);
5757 }
5758
5759 start += len;
5760 space_info = cache->space_info;
5761
5762 spin_lock(&space_info->lock);
5763 spin_lock(&cache->lock);
5764 cache->pinned -= len;
5765 space_info->bytes_pinned -= len;
5766 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5767 if (cache->ro) {
5768 space_info->bytes_readonly += len;
5769 readonly = true;
5770 }
5771 spin_unlock(&cache->lock);
5772 if (!readonly && global_rsv->space_info == space_info) {
5773 spin_lock(&global_rsv->lock);
5774 if (!global_rsv->full) {
5775 len = min(len, global_rsv->size -
5776 global_rsv->reserved);
5777 global_rsv->reserved += len;
5778 space_info->bytes_may_use += len;
5779 if (global_rsv->reserved >= global_rsv->size)
5780 global_rsv->full = 1;
5781 }
5782 spin_unlock(&global_rsv->lock);
5783 }
5784 spin_unlock(&space_info->lock);
5785 }
5786
5787 if (cache)
5788 btrfs_put_block_group(cache);
5789 return 0;
5790 }
5791
5792 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5793 struct btrfs_root *root)
5794 {
5795 struct btrfs_fs_info *fs_info = root->fs_info;
5796 struct extent_io_tree *unpin;
5797 u64 start;
5798 u64 end;
5799 int ret;
5800
5801 if (trans->aborted)
5802 return 0;
5803
5804 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5805 unpin = &fs_info->freed_extents[1];
5806 else
5807 unpin = &fs_info->freed_extents[0];
5808
5809 while (1) {
5810 ret = find_first_extent_bit(unpin, 0, &start, &end,
5811 EXTENT_DIRTY, NULL);
5812 if (ret)
5813 break;
5814
5815 if (btrfs_test_opt(root, DISCARD))
5816 ret = btrfs_discard_extent(root, start,
5817 end + 1 - start, NULL);
5818
5819 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5820 unpin_extent_range(root, start, end);
5821 cond_resched();
5822 }
5823
5824 return 0;
5825 }
5826
5827 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5828 u64 owner, u64 root_objectid)
5829 {
5830 struct btrfs_space_info *space_info;
5831 u64 flags;
5832
5833 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5834 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5835 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5836 else
5837 flags = BTRFS_BLOCK_GROUP_METADATA;
5838 } else {
5839 flags = BTRFS_BLOCK_GROUP_DATA;
5840 }
5841
5842 space_info = __find_space_info(fs_info, flags);
5843 BUG_ON(!space_info); /* Logic bug */
5844 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5845 }
5846
5847
5848 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5849 struct btrfs_root *root,
5850 u64 bytenr, u64 num_bytes, u64 parent,
5851 u64 root_objectid, u64 owner_objectid,
5852 u64 owner_offset, int refs_to_drop,
5853 struct btrfs_delayed_extent_op *extent_op,
5854 int no_quota)
5855 {
5856 struct btrfs_key key;
5857 struct btrfs_path *path;
5858 struct btrfs_fs_info *info = root->fs_info;
5859 struct btrfs_root *extent_root = info->extent_root;
5860 struct extent_buffer *leaf;
5861 struct btrfs_extent_item *ei;
5862 struct btrfs_extent_inline_ref *iref;
5863 int ret;
5864 int is_data;
5865 int extent_slot = 0;
5866 int found_extent = 0;
5867 int num_to_del = 1;
5868 u32 item_size;
5869 u64 refs;
5870 int last_ref = 0;
5871 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5872 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5873 SKINNY_METADATA);
5874
5875 if (!info->quota_enabled || !is_fstree(root_objectid))
5876 no_quota = 1;
5877
5878 path = btrfs_alloc_path();
5879 if (!path)
5880 return -ENOMEM;
5881
5882 path->reada = 1;
5883 path->leave_spinning = 1;
5884
5885 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5886 BUG_ON(!is_data && refs_to_drop != 1);
5887
5888 if (is_data)
5889 skinny_metadata = 0;
5890
5891 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5892 bytenr, num_bytes, parent,
5893 root_objectid, owner_objectid,
5894 owner_offset);
5895 if (ret == 0) {
5896 extent_slot = path->slots[0];
5897 while (extent_slot >= 0) {
5898 btrfs_item_key_to_cpu(path->nodes[0], &key,
5899 extent_slot);
5900 if (key.objectid != bytenr)
5901 break;
5902 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5903 key.offset == num_bytes) {
5904 found_extent = 1;
5905 break;
5906 }
5907 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5908 key.offset == owner_objectid) {
5909 found_extent = 1;
5910 break;
5911 }
5912 if (path->slots[0] - extent_slot > 5)
5913 break;
5914 extent_slot--;
5915 }
5916 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5917 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5918 if (found_extent && item_size < sizeof(*ei))
5919 found_extent = 0;
5920 #endif
5921 if (!found_extent) {
5922 BUG_ON(iref);
5923 ret = remove_extent_backref(trans, extent_root, path,
5924 NULL, refs_to_drop,
5925 is_data, &last_ref);
5926 if (ret) {
5927 btrfs_abort_transaction(trans, extent_root, ret);
5928 goto out;
5929 }
5930 btrfs_release_path(path);
5931 path->leave_spinning = 1;
5932
5933 key.objectid = bytenr;
5934 key.type = BTRFS_EXTENT_ITEM_KEY;
5935 key.offset = num_bytes;
5936
5937 if (!is_data && skinny_metadata) {
5938 key.type = BTRFS_METADATA_ITEM_KEY;
5939 key.offset = owner_objectid;
5940 }
5941
5942 ret = btrfs_search_slot(trans, extent_root,
5943 &key, path, -1, 1);
5944 if (ret > 0 && skinny_metadata && path->slots[0]) {
5945 /*
5946 * Couldn't find our skinny metadata item,
5947 * see if we have ye olde extent item.
5948 */
5949 path->slots[0]--;
5950 btrfs_item_key_to_cpu(path->nodes[0], &key,
5951 path->slots[0]);
5952 if (key.objectid == bytenr &&
5953 key.type == BTRFS_EXTENT_ITEM_KEY &&
5954 key.offset == num_bytes)
5955 ret = 0;
5956 }
5957
5958 if (ret > 0 && skinny_metadata) {
5959 skinny_metadata = false;
5960 key.objectid = bytenr;
5961 key.type = BTRFS_EXTENT_ITEM_KEY;
5962 key.offset = num_bytes;
5963 btrfs_release_path(path);
5964 ret = btrfs_search_slot(trans, extent_root,
5965 &key, path, -1, 1);
5966 }
5967
5968 if (ret) {
5969 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5970 ret, bytenr);
5971 if (ret > 0)
5972 btrfs_print_leaf(extent_root,
5973 path->nodes[0]);
5974 }
5975 if (ret < 0) {
5976 btrfs_abort_transaction(trans, extent_root, ret);
5977 goto out;
5978 }
5979 extent_slot = path->slots[0];
5980 }
5981 } else if (WARN_ON(ret == -ENOENT)) {
5982 btrfs_print_leaf(extent_root, path->nodes[0]);
5983 btrfs_err(info,
5984 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5985 bytenr, parent, root_objectid, owner_objectid,
5986 owner_offset);
5987 btrfs_abort_transaction(trans, extent_root, ret);
5988 goto out;
5989 } else {
5990 btrfs_abort_transaction(trans, extent_root, ret);
5991 goto out;
5992 }
5993
5994 leaf = path->nodes[0];
5995 item_size = btrfs_item_size_nr(leaf, extent_slot);
5996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5997 if (item_size < sizeof(*ei)) {
5998 BUG_ON(found_extent || extent_slot != path->slots[0]);
5999 ret = convert_extent_item_v0(trans, extent_root, path,
6000 owner_objectid, 0);
6001 if (ret < 0) {
6002 btrfs_abort_transaction(trans, extent_root, ret);
6003 goto out;
6004 }
6005
6006 btrfs_release_path(path);
6007 path->leave_spinning = 1;
6008
6009 key.objectid = bytenr;
6010 key.type = BTRFS_EXTENT_ITEM_KEY;
6011 key.offset = num_bytes;
6012
6013 ret = btrfs_search_slot(trans, extent_root, &key, path,
6014 -1, 1);
6015 if (ret) {
6016 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6017 ret, bytenr);
6018 btrfs_print_leaf(extent_root, path->nodes[0]);
6019 }
6020 if (ret < 0) {
6021 btrfs_abort_transaction(trans, extent_root, ret);
6022 goto out;
6023 }
6024
6025 extent_slot = path->slots[0];
6026 leaf = path->nodes[0];
6027 item_size = btrfs_item_size_nr(leaf, extent_slot);
6028 }
6029 #endif
6030 BUG_ON(item_size < sizeof(*ei));
6031 ei = btrfs_item_ptr(leaf, extent_slot,
6032 struct btrfs_extent_item);
6033 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6034 key.type == BTRFS_EXTENT_ITEM_KEY) {
6035 struct btrfs_tree_block_info *bi;
6036 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6037 bi = (struct btrfs_tree_block_info *)(ei + 1);
6038 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6039 }
6040
6041 refs = btrfs_extent_refs(leaf, ei);
6042 if (refs < refs_to_drop) {
6043 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6044 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6045 ret = -EINVAL;
6046 btrfs_abort_transaction(trans, extent_root, ret);
6047 goto out;
6048 }
6049 refs -= refs_to_drop;
6050
6051 if (refs > 0) {
6052 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6053 if (extent_op)
6054 __run_delayed_extent_op(extent_op, leaf, ei);
6055 /*
6056 * In the case of inline back ref, reference count will
6057 * be updated by remove_extent_backref
6058 */
6059 if (iref) {
6060 BUG_ON(!found_extent);
6061 } else {
6062 btrfs_set_extent_refs(leaf, ei, refs);
6063 btrfs_mark_buffer_dirty(leaf);
6064 }
6065 if (found_extent) {
6066 ret = remove_extent_backref(trans, extent_root, path,
6067 iref, refs_to_drop,
6068 is_data, &last_ref);
6069 if (ret) {
6070 btrfs_abort_transaction(trans, extent_root, ret);
6071 goto out;
6072 }
6073 }
6074 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6075 root_objectid);
6076 } else {
6077 if (found_extent) {
6078 BUG_ON(is_data && refs_to_drop !=
6079 extent_data_ref_count(root, path, iref));
6080 if (iref) {
6081 BUG_ON(path->slots[0] != extent_slot);
6082 } else {
6083 BUG_ON(path->slots[0] != extent_slot + 1);
6084 path->slots[0] = extent_slot;
6085 num_to_del = 2;
6086 }
6087 }
6088
6089 last_ref = 1;
6090 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6091 num_to_del);
6092 if (ret) {
6093 btrfs_abort_transaction(trans, extent_root, ret);
6094 goto out;
6095 }
6096 btrfs_release_path(path);
6097
6098 if (is_data) {
6099 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6100 if (ret) {
6101 btrfs_abort_transaction(trans, extent_root, ret);
6102 goto out;
6103 }
6104 }
6105
6106 ret = update_block_group(root, bytenr, num_bytes, 0);
6107 if (ret) {
6108 btrfs_abort_transaction(trans, extent_root, ret);
6109 goto out;
6110 }
6111 }
6112 btrfs_release_path(path);
6113
6114 /* Deal with the quota accounting */
6115 if (!ret && last_ref && !no_quota) {
6116 int mod_seq = 0;
6117
6118 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6119 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6120 mod_seq = 1;
6121
6122 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6123 bytenr, num_bytes, type,
6124 mod_seq);
6125 }
6126 out:
6127 btrfs_free_path(path);
6128 return ret;
6129 }
6130
6131 /*
6132 * when we free an block, it is possible (and likely) that we free the last
6133 * delayed ref for that extent as well. This searches the delayed ref tree for
6134 * a given extent, and if there are no other delayed refs to be processed, it
6135 * removes it from the tree.
6136 */
6137 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6138 struct btrfs_root *root, u64 bytenr)
6139 {
6140 struct btrfs_delayed_ref_head *head;
6141 struct btrfs_delayed_ref_root *delayed_refs;
6142 int ret = 0;
6143
6144 delayed_refs = &trans->transaction->delayed_refs;
6145 spin_lock(&delayed_refs->lock);
6146 head = btrfs_find_delayed_ref_head(trans, bytenr);
6147 if (!head)
6148 goto out_delayed_unlock;
6149
6150 spin_lock(&head->lock);
6151 if (rb_first(&head->ref_root))
6152 goto out;
6153
6154 if (head->extent_op) {
6155 if (!head->must_insert_reserved)
6156 goto out;
6157 btrfs_free_delayed_extent_op(head->extent_op);
6158 head->extent_op = NULL;
6159 }
6160
6161 /*
6162 * waiting for the lock here would deadlock. If someone else has it
6163 * locked they are already in the process of dropping it anyway
6164 */
6165 if (!mutex_trylock(&head->mutex))
6166 goto out;
6167
6168 /*
6169 * at this point we have a head with no other entries. Go
6170 * ahead and process it.
6171 */
6172 head->node.in_tree = 0;
6173 rb_erase(&head->href_node, &delayed_refs->href_root);
6174
6175 atomic_dec(&delayed_refs->num_entries);
6176
6177 /*
6178 * we don't take a ref on the node because we're removing it from the
6179 * tree, so we just steal the ref the tree was holding.
6180 */
6181 delayed_refs->num_heads--;
6182 if (head->processing == 0)
6183 delayed_refs->num_heads_ready--;
6184 head->processing = 0;
6185 spin_unlock(&head->lock);
6186 spin_unlock(&delayed_refs->lock);
6187
6188 BUG_ON(head->extent_op);
6189 if (head->must_insert_reserved)
6190 ret = 1;
6191
6192 mutex_unlock(&head->mutex);
6193 btrfs_put_delayed_ref(&head->node);
6194 return ret;
6195 out:
6196 spin_unlock(&head->lock);
6197
6198 out_delayed_unlock:
6199 spin_unlock(&delayed_refs->lock);
6200 return 0;
6201 }
6202
6203 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6204 struct btrfs_root *root,
6205 struct extent_buffer *buf,
6206 u64 parent, int last_ref)
6207 {
6208 struct btrfs_block_group_cache *cache = NULL;
6209 int pin = 1;
6210 int ret;
6211
6212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6213 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6214 buf->start, buf->len,
6215 parent, root->root_key.objectid,
6216 btrfs_header_level(buf),
6217 BTRFS_DROP_DELAYED_REF, NULL, 0);
6218 BUG_ON(ret); /* -ENOMEM */
6219 }
6220
6221 if (!last_ref)
6222 return;
6223
6224 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6225
6226 if (btrfs_header_generation(buf) == trans->transid) {
6227 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6228 ret = check_ref_cleanup(trans, root, buf->start);
6229 if (!ret)
6230 goto out;
6231 }
6232
6233 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6234 pin_down_extent(root, cache, buf->start, buf->len, 1);
6235 goto out;
6236 }
6237
6238 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6239
6240 btrfs_add_free_space(cache, buf->start, buf->len);
6241 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6242 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6243 pin = 0;
6244 }
6245 out:
6246 if (pin)
6247 add_pinned_bytes(root->fs_info, buf->len,
6248 btrfs_header_level(buf),
6249 root->root_key.objectid);
6250
6251 /*
6252 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6253 * anymore.
6254 */
6255 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6256 btrfs_put_block_group(cache);
6257 }
6258
6259 /* Can return -ENOMEM */
6260 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6261 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6262 u64 owner, u64 offset, int no_quota)
6263 {
6264 int ret;
6265 struct btrfs_fs_info *fs_info = root->fs_info;
6266
6267 if (btrfs_test_is_dummy_root(root))
6268 return 0;
6269
6270 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6271
6272 /*
6273 * tree log blocks never actually go into the extent allocation
6274 * tree, just update pinning info and exit early.
6275 */
6276 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6277 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6278 /* unlocks the pinned mutex */
6279 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6280 ret = 0;
6281 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6282 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6283 num_bytes,
6284 parent, root_objectid, (int)owner,
6285 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6286 } else {
6287 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6288 num_bytes,
6289 parent, root_objectid, owner,
6290 offset, BTRFS_DROP_DELAYED_REF,
6291 NULL, no_quota);
6292 }
6293 return ret;
6294 }
6295
6296 /*
6297 * when we wait for progress in the block group caching, its because
6298 * our allocation attempt failed at least once. So, we must sleep
6299 * and let some progress happen before we try again.
6300 *
6301 * This function will sleep at least once waiting for new free space to
6302 * show up, and then it will check the block group free space numbers
6303 * for our min num_bytes. Another option is to have it go ahead
6304 * and look in the rbtree for a free extent of a given size, but this
6305 * is a good start.
6306 *
6307 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6308 * any of the information in this block group.
6309 */
6310 static noinline void
6311 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6312 u64 num_bytes)
6313 {
6314 struct btrfs_caching_control *caching_ctl;
6315
6316 caching_ctl = get_caching_control(cache);
6317 if (!caching_ctl)
6318 return;
6319
6320 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6321 (cache->free_space_ctl->free_space >= num_bytes));
6322
6323 put_caching_control(caching_ctl);
6324 }
6325
6326 static noinline int
6327 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6328 {
6329 struct btrfs_caching_control *caching_ctl;
6330 int ret = 0;
6331
6332 caching_ctl = get_caching_control(cache);
6333 if (!caching_ctl)
6334 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6335
6336 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6337 if (cache->cached == BTRFS_CACHE_ERROR)
6338 ret = -EIO;
6339 put_caching_control(caching_ctl);
6340 return ret;
6341 }
6342
6343 int __get_raid_index(u64 flags)
6344 {
6345 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6346 return BTRFS_RAID_RAID10;
6347 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6348 return BTRFS_RAID_RAID1;
6349 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6350 return BTRFS_RAID_DUP;
6351 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6352 return BTRFS_RAID_RAID0;
6353 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6354 return BTRFS_RAID_RAID5;
6355 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6356 return BTRFS_RAID_RAID6;
6357
6358 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6359 }
6360
6361 int get_block_group_index(struct btrfs_block_group_cache *cache)
6362 {
6363 return __get_raid_index(cache->flags);
6364 }
6365
6366 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6367 [BTRFS_RAID_RAID10] = "raid10",
6368 [BTRFS_RAID_RAID1] = "raid1",
6369 [BTRFS_RAID_DUP] = "dup",
6370 [BTRFS_RAID_RAID0] = "raid0",
6371 [BTRFS_RAID_SINGLE] = "single",
6372 [BTRFS_RAID_RAID5] = "raid5",
6373 [BTRFS_RAID_RAID6] = "raid6",
6374 };
6375
6376 static const char *get_raid_name(enum btrfs_raid_types type)
6377 {
6378 if (type >= BTRFS_NR_RAID_TYPES)
6379 return NULL;
6380
6381 return btrfs_raid_type_names[type];
6382 }
6383
6384 enum btrfs_loop_type {
6385 LOOP_CACHING_NOWAIT = 0,
6386 LOOP_CACHING_WAIT = 1,
6387 LOOP_ALLOC_CHUNK = 2,
6388 LOOP_NO_EMPTY_SIZE = 3,
6389 };
6390
6391 static inline void
6392 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6393 int delalloc)
6394 {
6395 if (delalloc)
6396 down_read(&cache->data_rwsem);
6397 }
6398
6399 static inline void
6400 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6401 int delalloc)
6402 {
6403 btrfs_get_block_group(cache);
6404 if (delalloc)
6405 down_read(&cache->data_rwsem);
6406 }
6407
6408 static struct btrfs_block_group_cache *
6409 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6410 struct btrfs_free_cluster *cluster,
6411 int delalloc)
6412 {
6413 struct btrfs_block_group_cache *used_bg;
6414 bool locked = false;
6415 again:
6416 spin_lock(&cluster->refill_lock);
6417 if (locked) {
6418 if (used_bg == cluster->block_group)
6419 return used_bg;
6420
6421 up_read(&used_bg->data_rwsem);
6422 btrfs_put_block_group(used_bg);
6423 }
6424
6425 used_bg = cluster->block_group;
6426 if (!used_bg)
6427 return NULL;
6428
6429 if (used_bg == block_group)
6430 return used_bg;
6431
6432 btrfs_get_block_group(used_bg);
6433
6434 if (!delalloc)
6435 return used_bg;
6436
6437 if (down_read_trylock(&used_bg->data_rwsem))
6438 return used_bg;
6439
6440 spin_unlock(&cluster->refill_lock);
6441 down_read(&used_bg->data_rwsem);
6442 locked = true;
6443 goto again;
6444 }
6445
6446 static inline void
6447 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6448 int delalloc)
6449 {
6450 if (delalloc)
6451 up_read(&cache->data_rwsem);
6452 btrfs_put_block_group(cache);
6453 }
6454
6455 /*
6456 * walks the btree of allocated extents and find a hole of a given size.
6457 * The key ins is changed to record the hole:
6458 * ins->objectid == start position
6459 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6460 * ins->offset == the size of the hole.
6461 * Any available blocks before search_start are skipped.
6462 *
6463 * If there is no suitable free space, we will record the max size of
6464 * the free space extent currently.
6465 */
6466 static noinline int find_free_extent(struct btrfs_root *orig_root,
6467 u64 num_bytes, u64 empty_size,
6468 u64 hint_byte, struct btrfs_key *ins,
6469 u64 flags, int delalloc)
6470 {
6471 int ret = 0;
6472 struct btrfs_root *root = orig_root->fs_info->extent_root;
6473 struct btrfs_free_cluster *last_ptr = NULL;
6474 struct btrfs_block_group_cache *block_group = NULL;
6475 u64 search_start = 0;
6476 u64 max_extent_size = 0;
6477 int empty_cluster = 2 * 1024 * 1024;
6478 struct btrfs_space_info *space_info;
6479 int loop = 0;
6480 int index = __get_raid_index(flags);
6481 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6482 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6483 bool failed_cluster_refill = false;
6484 bool failed_alloc = false;
6485 bool use_cluster = true;
6486 bool have_caching_bg = false;
6487
6488 WARN_ON(num_bytes < root->sectorsize);
6489 ins->type = BTRFS_EXTENT_ITEM_KEY;
6490 ins->objectid = 0;
6491 ins->offset = 0;
6492
6493 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6494
6495 space_info = __find_space_info(root->fs_info, flags);
6496 if (!space_info) {
6497 btrfs_err(root->fs_info, "No space info for %llu", flags);
6498 return -ENOSPC;
6499 }
6500
6501 /*
6502 * If the space info is for both data and metadata it means we have a
6503 * small filesystem and we can't use the clustering stuff.
6504 */
6505 if (btrfs_mixed_space_info(space_info))
6506 use_cluster = false;
6507
6508 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6509 last_ptr = &root->fs_info->meta_alloc_cluster;
6510 if (!btrfs_test_opt(root, SSD))
6511 empty_cluster = 64 * 1024;
6512 }
6513
6514 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6515 btrfs_test_opt(root, SSD)) {
6516 last_ptr = &root->fs_info->data_alloc_cluster;
6517 }
6518
6519 if (last_ptr) {
6520 spin_lock(&last_ptr->lock);
6521 if (last_ptr->block_group)
6522 hint_byte = last_ptr->window_start;
6523 spin_unlock(&last_ptr->lock);
6524 }
6525
6526 search_start = max(search_start, first_logical_byte(root, 0));
6527 search_start = max(search_start, hint_byte);
6528
6529 if (!last_ptr)
6530 empty_cluster = 0;
6531
6532 if (search_start == hint_byte) {
6533 block_group = btrfs_lookup_block_group(root->fs_info,
6534 search_start);
6535 /*
6536 * we don't want to use the block group if it doesn't match our
6537 * allocation bits, or if its not cached.
6538 *
6539 * However if we are re-searching with an ideal block group
6540 * picked out then we don't care that the block group is cached.
6541 */
6542 if (block_group && block_group_bits(block_group, flags) &&
6543 block_group->cached != BTRFS_CACHE_NO) {
6544 down_read(&space_info->groups_sem);
6545 if (list_empty(&block_group->list) ||
6546 block_group->ro) {
6547 /*
6548 * someone is removing this block group,
6549 * we can't jump into the have_block_group
6550 * target because our list pointers are not
6551 * valid
6552 */
6553 btrfs_put_block_group(block_group);
6554 up_read(&space_info->groups_sem);
6555 } else {
6556 index = get_block_group_index(block_group);
6557 btrfs_lock_block_group(block_group, delalloc);
6558 goto have_block_group;
6559 }
6560 } else if (block_group) {
6561 btrfs_put_block_group(block_group);
6562 }
6563 }
6564 search:
6565 have_caching_bg = false;
6566 down_read(&space_info->groups_sem);
6567 list_for_each_entry(block_group, &space_info->block_groups[index],
6568 list) {
6569 u64 offset;
6570 int cached;
6571
6572 btrfs_grab_block_group(block_group, delalloc);
6573 search_start = block_group->key.objectid;
6574
6575 /*
6576 * this can happen if we end up cycling through all the
6577 * raid types, but we want to make sure we only allocate
6578 * for the proper type.
6579 */
6580 if (!block_group_bits(block_group, flags)) {
6581 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6582 BTRFS_BLOCK_GROUP_RAID1 |
6583 BTRFS_BLOCK_GROUP_RAID5 |
6584 BTRFS_BLOCK_GROUP_RAID6 |
6585 BTRFS_BLOCK_GROUP_RAID10;
6586
6587 /*
6588 * if they asked for extra copies and this block group
6589 * doesn't provide them, bail. This does allow us to
6590 * fill raid0 from raid1.
6591 */
6592 if ((flags & extra) && !(block_group->flags & extra))
6593 goto loop;
6594 }
6595
6596 have_block_group:
6597 cached = block_group_cache_done(block_group);
6598 if (unlikely(!cached)) {
6599 ret = cache_block_group(block_group, 0);
6600 BUG_ON(ret < 0);
6601 ret = 0;
6602 }
6603
6604 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6605 goto loop;
6606 if (unlikely(block_group->ro))
6607 goto loop;
6608
6609 /*
6610 * Ok we want to try and use the cluster allocator, so
6611 * lets look there
6612 */
6613 if (last_ptr) {
6614 struct btrfs_block_group_cache *used_block_group;
6615 unsigned long aligned_cluster;
6616 /*
6617 * the refill lock keeps out other
6618 * people trying to start a new cluster
6619 */
6620 used_block_group = btrfs_lock_cluster(block_group,
6621 last_ptr,
6622 delalloc);
6623 if (!used_block_group)
6624 goto refill_cluster;
6625
6626 if (used_block_group != block_group &&
6627 (used_block_group->ro ||
6628 !block_group_bits(used_block_group, flags)))
6629 goto release_cluster;
6630
6631 offset = btrfs_alloc_from_cluster(used_block_group,
6632 last_ptr,
6633 num_bytes,
6634 used_block_group->key.objectid,
6635 &max_extent_size);
6636 if (offset) {
6637 /* we have a block, we're done */
6638 spin_unlock(&last_ptr->refill_lock);
6639 trace_btrfs_reserve_extent_cluster(root,
6640 used_block_group,
6641 search_start, num_bytes);
6642 if (used_block_group != block_group) {
6643 btrfs_release_block_group(block_group,
6644 delalloc);
6645 block_group = used_block_group;
6646 }
6647 goto checks;
6648 }
6649
6650 WARN_ON(last_ptr->block_group != used_block_group);
6651 release_cluster:
6652 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6653 * set up a new clusters, so lets just skip it
6654 * and let the allocator find whatever block
6655 * it can find. If we reach this point, we
6656 * will have tried the cluster allocator
6657 * plenty of times and not have found
6658 * anything, so we are likely way too
6659 * fragmented for the clustering stuff to find
6660 * anything.
6661 *
6662 * However, if the cluster is taken from the
6663 * current block group, release the cluster
6664 * first, so that we stand a better chance of
6665 * succeeding in the unclustered
6666 * allocation. */
6667 if (loop >= LOOP_NO_EMPTY_SIZE &&
6668 used_block_group != block_group) {
6669 spin_unlock(&last_ptr->refill_lock);
6670 btrfs_release_block_group(used_block_group,
6671 delalloc);
6672 goto unclustered_alloc;
6673 }
6674
6675 /*
6676 * this cluster didn't work out, free it and
6677 * start over
6678 */
6679 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6680
6681 if (used_block_group != block_group)
6682 btrfs_release_block_group(used_block_group,
6683 delalloc);
6684 refill_cluster:
6685 if (loop >= LOOP_NO_EMPTY_SIZE) {
6686 spin_unlock(&last_ptr->refill_lock);
6687 goto unclustered_alloc;
6688 }
6689
6690 aligned_cluster = max_t(unsigned long,
6691 empty_cluster + empty_size,
6692 block_group->full_stripe_len);
6693
6694 /* allocate a cluster in this block group */
6695 ret = btrfs_find_space_cluster(root, block_group,
6696 last_ptr, search_start,
6697 num_bytes,
6698 aligned_cluster);
6699 if (ret == 0) {
6700 /*
6701 * now pull our allocation out of this
6702 * cluster
6703 */
6704 offset = btrfs_alloc_from_cluster(block_group,
6705 last_ptr,
6706 num_bytes,
6707 search_start,
6708 &max_extent_size);
6709 if (offset) {
6710 /* we found one, proceed */
6711 spin_unlock(&last_ptr->refill_lock);
6712 trace_btrfs_reserve_extent_cluster(root,
6713 block_group, search_start,
6714 num_bytes);
6715 goto checks;
6716 }
6717 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6718 && !failed_cluster_refill) {
6719 spin_unlock(&last_ptr->refill_lock);
6720
6721 failed_cluster_refill = true;
6722 wait_block_group_cache_progress(block_group,
6723 num_bytes + empty_cluster + empty_size);
6724 goto have_block_group;
6725 }
6726
6727 /*
6728 * at this point we either didn't find a cluster
6729 * or we weren't able to allocate a block from our
6730 * cluster. Free the cluster we've been trying
6731 * to use, and go to the next block group
6732 */
6733 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6734 spin_unlock(&last_ptr->refill_lock);
6735 goto loop;
6736 }
6737
6738 unclustered_alloc:
6739 spin_lock(&block_group->free_space_ctl->tree_lock);
6740 if (cached &&
6741 block_group->free_space_ctl->free_space <
6742 num_bytes + empty_cluster + empty_size) {
6743 if (block_group->free_space_ctl->free_space >
6744 max_extent_size)
6745 max_extent_size =
6746 block_group->free_space_ctl->free_space;
6747 spin_unlock(&block_group->free_space_ctl->tree_lock);
6748 goto loop;
6749 }
6750 spin_unlock(&block_group->free_space_ctl->tree_lock);
6751
6752 offset = btrfs_find_space_for_alloc(block_group, search_start,
6753 num_bytes, empty_size,
6754 &max_extent_size);
6755 /*
6756 * If we didn't find a chunk, and we haven't failed on this
6757 * block group before, and this block group is in the middle of
6758 * caching and we are ok with waiting, then go ahead and wait
6759 * for progress to be made, and set failed_alloc to true.
6760 *
6761 * If failed_alloc is true then we've already waited on this
6762 * block group once and should move on to the next block group.
6763 */
6764 if (!offset && !failed_alloc && !cached &&
6765 loop > LOOP_CACHING_NOWAIT) {
6766 wait_block_group_cache_progress(block_group,
6767 num_bytes + empty_size);
6768 failed_alloc = true;
6769 goto have_block_group;
6770 } else if (!offset) {
6771 if (!cached)
6772 have_caching_bg = true;
6773 goto loop;
6774 }
6775 checks:
6776 search_start = ALIGN(offset, root->stripesize);
6777
6778 /* move on to the next group */
6779 if (search_start + num_bytes >
6780 block_group->key.objectid + block_group->key.offset) {
6781 btrfs_add_free_space(block_group, offset, num_bytes);
6782 goto loop;
6783 }
6784
6785 if (offset < search_start)
6786 btrfs_add_free_space(block_group, offset,
6787 search_start - offset);
6788 BUG_ON(offset > search_start);
6789
6790 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6791 alloc_type, delalloc);
6792 if (ret == -EAGAIN) {
6793 btrfs_add_free_space(block_group, offset, num_bytes);
6794 goto loop;
6795 }
6796
6797 /* we are all good, lets return */
6798 ins->objectid = search_start;
6799 ins->offset = num_bytes;
6800
6801 trace_btrfs_reserve_extent(orig_root, block_group,
6802 search_start, num_bytes);
6803 btrfs_release_block_group(block_group, delalloc);
6804 break;
6805 loop:
6806 failed_cluster_refill = false;
6807 failed_alloc = false;
6808 BUG_ON(index != get_block_group_index(block_group));
6809 btrfs_release_block_group(block_group, delalloc);
6810 }
6811 up_read(&space_info->groups_sem);
6812
6813 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6814 goto search;
6815
6816 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6817 goto search;
6818
6819 /*
6820 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6821 * caching kthreads as we move along
6822 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6823 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6824 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6825 * again
6826 */
6827 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6828 index = 0;
6829 loop++;
6830 if (loop == LOOP_ALLOC_CHUNK) {
6831 struct btrfs_trans_handle *trans;
6832 int exist = 0;
6833
6834 trans = current->journal_info;
6835 if (trans)
6836 exist = 1;
6837 else
6838 trans = btrfs_join_transaction(root);
6839
6840 if (IS_ERR(trans)) {
6841 ret = PTR_ERR(trans);
6842 goto out;
6843 }
6844
6845 ret = do_chunk_alloc(trans, root, flags,
6846 CHUNK_ALLOC_FORCE);
6847 /*
6848 * Do not bail out on ENOSPC since we
6849 * can do more things.
6850 */
6851 if (ret < 0 && ret != -ENOSPC)
6852 btrfs_abort_transaction(trans,
6853 root, ret);
6854 else
6855 ret = 0;
6856 if (!exist)
6857 btrfs_end_transaction(trans, root);
6858 if (ret)
6859 goto out;
6860 }
6861
6862 if (loop == LOOP_NO_EMPTY_SIZE) {
6863 empty_size = 0;
6864 empty_cluster = 0;
6865 }
6866
6867 goto search;
6868 } else if (!ins->objectid) {
6869 ret = -ENOSPC;
6870 } else if (ins->objectid) {
6871 ret = 0;
6872 }
6873 out:
6874 if (ret == -ENOSPC)
6875 ins->offset = max_extent_size;
6876 return ret;
6877 }
6878
6879 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6880 int dump_block_groups)
6881 {
6882 struct btrfs_block_group_cache *cache;
6883 int index = 0;
6884
6885 spin_lock(&info->lock);
6886 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6887 info->flags,
6888 info->total_bytes - info->bytes_used - info->bytes_pinned -
6889 info->bytes_reserved - info->bytes_readonly,
6890 (info->full) ? "" : "not ");
6891 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6892 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6893 info->total_bytes, info->bytes_used, info->bytes_pinned,
6894 info->bytes_reserved, info->bytes_may_use,
6895 info->bytes_readonly);
6896 spin_unlock(&info->lock);
6897
6898 if (!dump_block_groups)
6899 return;
6900
6901 down_read(&info->groups_sem);
6902 again:
6903 list_for_each_entry(cache, &info->block_groups[index], list) {
6904 spin_lock(&cache->lock);
6905 printk(KERN_INFO "BTRFS: "
6906 "block group %llu has %llu bytes, "
6907 "%llu used %llu pinned %llu reserved %s\n",
6908 cache->key.objectid, cache->key.offset,
6909 btrfs_block_group_used(&cache->item), cache->pinned,
6910 cache->reserved, cache->ro ? "[readonly]" : "");
6911 btrfs_dump_free_space(cache, bytes);
6912 spin_unlock(&cache->lock);
6913 }
6914 if (++index < BTRFS_NR_RAID_TYPES)
6915 goto again;
6916 up_read(&info->groups_sem);
6917 }
6918
6919 int btrfs_reserve_extent(struct btrfs_root *root,
6920 u64 num_bytes, u64 min_alloc_size,
6921 u64 empty_size, u64 hint_byte,
6922 struct btrfs_key *ins, int is_data, int delalloc)
6923 {
6924 bool final_tried = false;
6925 u64 flags;
6926 int ret;
6927
6928 flags = btrfs_get_alloc_profile(root, is_data);
6929 again:
6930 WARN_ON(num_bytes < root->sectorsize);
6931 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6932 flags, delalloc);
6933
6934 if (ret == -ENOSPC) {
6935 if (!final_tried && ins->offset) {
6936 num_bytes = min(num_bytes >> 1, ins->offset);
6937 num_bytes = round_down(num_bytes, root->sectorsize);
6938 num_bytes = max(num_bytes, min_alloc_size);
6939 if (num_bytes == min_alloc_size)
6940 final_tried = true;
6941 goto again;
6942 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 struct btrfs_space_info *sinfo;
6944
6945 sinfo = __find_space_info(root->fs_info, flags);
6946 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6947 flags, num_bytes);
6948 if (sinfo)
6949 dump_space_info(sinfo, num_bytes, 1);
6950 }
6951 }
6952
6953 return ret;
6954 }
6955
6956 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6957 u64 start, u64 len,
6958 int pin, int delalloc)
6959 {
6960 struct btrfs_block_group_cache *cache;
6961 int ret = 0;
6962
6963 cache = btrfs_lookup_block_group(root->fs_info, start);
6964 if (!cache) {
6965 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6966 start);
6967 return -ENOSPC;
6968 }
6969
6970 if (btrfs_test_opt(root, DISCARD))
6971 ret = btrfs_discard_extent(root, start, len, NULL);
6972
6973 if (pin)
6974 pin_down_extent(root, cache, start, len, 1);
6975 else {
6976 btrfs_add_free_space(cache, start, len);
6977 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6978 }
6979 btrfs_put_block_group(cache);
6980
6981 trace_btrfs_reserved_extent_free(root, start, len);
6982
6983 return ret;
6984 }
6985
6986 int btrfs_free_reserved_extent(struct btrfs_root *root,
6987 u64 start, u64 len, int delalloc)
6988 {
6989 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6990 }
6991
6992 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6993 u64 start, u64 len)
6994 {
6995 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6996 }
6997
6998 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6999 struct btrfs_root *root,
7000 u64 parent, u64 root_objectid,
7001 u64 flags, u64 owner, u64 offset,
7002 struct btrfs_key *ins, int ref_mod)
7003 {
7004 int ret;
7005 struct btrfs_fs_info *fs_info = root->fs_info;
7006 struct btrfs_extent_item *extent_item;
7007 struct btrfs_extent_inline_ref *iref;
7008 struct btrfs_path *path;
7009 struct extent_buffer *leaf;
7010 int type;
7011 u32 size;
7012
7013 if (parent > 0)
7014 type = BTRFS_SHARED_DATA_REF_KEY;
7015 else
7016 type = BTRFS_EXTENT_DATA_REF_KEY;
7017
7018 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7019
7020 path = btrfs_alloc_path();
7021 if (!path)
7022 return -ENOMEM;
7023
7024 path->leave_spinning = 1;
7025 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7026 ins, size);
7027 if (ret) {
7028 btrfs_free_path(path);
7029 return ret;
7030 }
7031
7032 leaf = path->nodes[0];
7033 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7034 struct btrfs_extent_item);
7035 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7036 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7037 btrfs_set_extent_flags(leaf, extent_item,
7038 flags | BTRFS_EXTENT_FLAG_DATA);
7039
7040 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7041 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7042 if (parent > 0) {
7043 struct btrfs_shared_data_ref *ref;
7044 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7046 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7047 } else {
7048 struct btrfs_extent_data_ref *ref;
7049 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7050 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7051 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7052 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7053 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7054 }
7055
7056 btrfs_mark_buffer_dirty(path->nodes[0]);
7057 btrfs_free_path(path);
7058
7059 /* Always set parent to 0 here since its exclusive anyway. */
7060 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7061 ins->objectid, ins->offset,
7062 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7063 if (ret)
7064 return ret;
7065
7066 ret = update_block_group(root, ins->objectid, ins->offset, 1);
7067 if (ret) { /* -ENOENT, logic error */
7068 btrfs_err(fs_info, "update block group failed for %llu %llu",
7069 ins->objectid, ins->offset);
7070 BUG();
7071 }
7072 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7073 return ret;
7074 }
7075
7076 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7077 struct btrfs_root *root,
7078 u64 parent, u64 root_objectid,
7079 u64 flags, struct btrfs_disk_key *key,
7080 int level, struct btrfs_key *ins,
7081 int no_quota)
7082 {
7083 int ret;
7084 struct btrfs_fs_info *fs_info = root->fs_info;
7085 struct btrfs_extent_item *extent_item;
7086 struct btrfs_tree_block_info *block_info;
7087 struct btrfs_extent_inline_ref *iref;
7088 struct btrfs_path *path;
7089 struct extent_buffer *leaf;
7090 u32 size = sizeof(*extent_item) + sizeof(*iref);
7091 u64 num_bytes = ins->offset;
7092 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7093 SKINNY_METADATA);
7094
7095 if (!skinny_metadata)
7096 size += sizeof(*block_info);
7097
7098 path = btrfs_alloc_path();
7099 if (!path) {
7100 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7101 root->nodesize);
7102 return -ENOMEM;
7103 }
7104
7105 path->leave_spinning = 1;
7106 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7107 ins, size);
7108 if (ret) {
7109 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7110 root->nodesize);
7111 btrfs_free_path(path);
7112 return ret;
7113 }
7114
7115 leaf = path->nodes[0];
7116 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7117 struct btrfs_extent_item);
7118 btrfs_set_extent_refs(leaf, extent_item, 1);
7119 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7120 btrfs_set_extent_flags(leaf, extent_item,
7121 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7122
7123 if (skinny_metadata) {
7124 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7125 num_bytes = root->nodesize;
7126 } else {
7127 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7128 btrfs_set_tree_block_key(leaf, block_info, key);
7129 btrfs_set_tree_block_level(leaf, block_info, level);
7130 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7131 }
7132
7133 if (parent > 0) {
7134 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7135 btrfs_set_extent_inline_ref_type(leaf, iref,
7136 BTRFS_SHARED_BLOCK_REF_KEY);
7137 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7138 } else {
7139 btrfs_set_extent_inline_ref_type(leaf, iref,
7140 BTRFS_TREE_BLOCK_REF_KEY);
7141 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7142 }
7143
7144 btrfs_mark_buffer_dirty(leaf);
7145 btrfs_free_path(path);
7146
7147 if (!no_quota) {
7148 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7149 ins->objectid, num_bytes,
7150 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7151 if (ret)
7152 return ret;
7153 }
7154
7155 ret = update_block_group(root, ins->objectid, root->nodesize, 1);
7156 if (ret) { /* -ENOENT, logic error */
7157 btrfs_err(fs_info, "update block group failed for %llu %llu",
7158 ins->objectid, ins->offset);
7159 BUG();
7160 }
7161
7162 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7163 return ret;
7164 }
7165
7166 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7167 struct btrfs_root *root,
7168 u64 root_objectid, u64 owner,
7169 u64 offset, struct btrfs_key *ins)
7170 {
7171 int ret;
7172
7173 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7174
7175 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7176 ins->offset, 0,
7177 root_objectid, owner, offset,
7178 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7179 return ret;
7180 }
7181
7182 /*
7183 * this is used by the tree logging recovery code. It records that
7184 * an extent has been allocated and makes sure to clear the free
7185 * space cache bits as well
7186 */
7187 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7188 struct btrfs_root *root,
7189 u64 root_objectid, u64 owner, u64 offset,
7190 struct btrfs_key *ins)
7191 {
7192 int ret;
7193 struct btrfs_block_group_cache *block_group;
7194
7195 /*
7196 * Mixed block groups will exclude before processing the log so we only
7197 * need to do the exlude dance if this fs isn't mixed.
7198 */
7199 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7200 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7201 if (ret)
7202 return ret;
7203 }
7204
7205 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7206 if (!block_group)
7207 return -EINVAL;
7208
7209 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7210 RESERVE_ALLOC_NO_ACCOUNT, 0);
7211 BUG_ON(ret); /* logic error */
7212 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7213 0, owner, offset, ins, 1);
7214 btrfs_put_block_group(block_group);
7215 return ret;
7216 }
7217
7218 static struct extent_buffer *
7219 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7220 u64 bytenr, u32 blocksize, int level)
7221 {
7222 struct extent_buffer *buf;
7223
7224 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7225 if (!buf)
7226 return ERR_PTR(-ENOMEM);
7227 btrfs_set_header_generation(buf, trans->transid);
7228 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7229 btrfs_tree_lock(buf);
7230 clean_tree_block(trans, root, buf);
7231 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7232
7233 btrfs_set_lock_blocking(buf);
7234 btrfs_set_buffer_uptodate(buf);
7235
7236 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7237 buf->log_index = root->log_transid % 2;
7238 /*
7239 * we allow two log transactions at a time, use different
7240 * EXENT bit to differentiate dirty pages.
7241 */
7242 if (buf->log_index == 0)
7243 set_extent_dirty(&root->dirty_log_pages, buf->start,
7244 buf->start + buf->len - 1, GFP_NOFS);
7245 else
7246 set_extent_new(&root->dirty_log_pages, buf->start,
7247 buf->start + buf->len - 1, GFP_NOFS);
7248 } else {
7249 buf->log_index = -1;
7250 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7251 buf->start + buf->len - 1, GFP_NOFS);
7252 }
7253 trans->blocks_used++;
7254 /* this returns a buffer locked for blocking */
7255 return buf;
7256 }
7257
7258 static struct btrfs_block_rsv *
7259 use_block_rsv(struct btrfs_trans_handle *trans,
7260 struct btrfs_root *root, u32 blocksize)
7261 {
7262 struct btrfs_block_rsv *block_rsv;
7263 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7264 int ret;
7265 bool global_updated = false;
7266
7267 block_rsv = get_block_rsv(trans, root);
7268
7269 if (unlikely(block_rsv->size == 0))
7270 goto try_reserve;
7271 again:
7272 ret = block_rsv_use_bytes(block_rsv, blocksize);
7273 if (!ret)
7274 return block_rsv;
7275
7276 if (block_rsv->failfast)
7277 return ERR_PTR(ret);
7278
7279 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7280 global_updated = true;
7281 update_global_block_rsv(root->fs_info);
7282 goto again;
7283 }
7284
7285 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7286 static DEFINE_RATELIMIT_STATE(_rs,
7287 DEFAULT_RATELIMIT_INTERVAL * 10,
7288 /*DEFAULT_RATELIMIT_BURST*/ 1);
7289 if (__ratelimit(&_rs))
7290 WARN(1, KERN_DEBUG
7291 "BTRFS: block rsv returned %d\n", ret);
7292 }
7293 try_reserve:
7294 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7295 BTRFS_RESERVE_NO_FLUSH);
7296 if (!ret)
7297 return block_rsv;
7298 /*
7299 * If we couldn't reserve metadata bytes try and use some from
7300 * the global reserve if its space type is the same as the global
7301 * reservation.
7302 */
7303 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7304 block_rsv->space_info == global_rsv->space_info) {
7305 ret = block_rsv_use_bytes(global_rsv, blocksize);
7306 if (!ret)
7307 return global_rsv;
7308 }
7309 return ERR_PTR(ret);
7310 }
7311
7312 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7313 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7314 {
7315 block_rsv_add_bytes(block_rsv, blocksize, 0);
7316 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7317 }
7318
7319 /*
7320 * finds a free extent and does all the dirty work required for allocation
7321 * returns the key for the extent through ins, and a tree buffer for
7322 * the first block of the extent through buf.
7323 *
7324 * returns the tree buffer or NULL.
7325 */
7326 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7327 struct btrfs_root *root,
7328 u64 parent, u64 root_objectid,
7329 struct btrfs_disk_key *key, int level,
7330 u64 hint, u64 empty_size)
7331 {
7332 struct btrfs_key ins;
7333 struct btrfs_block_rsv *block_rsv;
7334 struct extent_buffer *buf;
7335 u64 flags = 0;
7336 int ret;
7337 u32 blocksize = root->nodesize;
7338 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7339 SKINNY_METADATA);
7340
7341 if (btrfs_test_is_dummy_root(root)) {
7342 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7343 blocksize, level);
7344 if (!IS_ERR(buf))
7345 root->alloc_bytenr += blocksize;
7346 return buf;
7347 }
7348
7349 block_rsv = use_block_rsv(trans, root, blocksize);
7350 if (IS_ERR(block_rsv))
7351 return ERR_CAST(block_rsv);
7352
7353 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7354 empty_size, hint, &ins, 0, 0);
7355 if (ret) {
7356 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7357 return ERR_PTR(ret);
7358 }
7359
7360 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7361 blocksize, level);
7362 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7363
7364 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7365 if (parent == 0)
7366 parent = ins.objectid;
7367 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7368 } else
7369 BUG_ON(parent > 0);
7370
7371 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7372 struct btrfs_delayed_extent_op *extent_op;
7373 extent_op = btrfs_alloc_delayed_extent_op();
7374 BUG_ON(!extent_op); /* -ENOMEM */
7375 if (key)
7376 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7377 else
7378 memset(&extent_op->key, 0, sizeof(extent_op->key));
7379 extent_op->flags_to_set = flags;
7380 if (skinny_metadata)
7381 extent_op->update_key = 0;
7382 else
7383 extent_op->update_key = 1;
7384 extent_op->update_flags = 1;
7385 extent_op->is_data = 0;
7386 extent_op->level = level;
7387
7388 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7389 ins.objectid,
7390 ins.offset, parent, root_objectid,
7391 level, BTRFS_ADD_DELAYED_EXTENT,
7392 extent_op, 0);
7393 BUG_ON(ret); /* -ENOMEM */
7394 }
7395 return buf;
7396 }
7397
7398 struct walk_control {
7399 u64 refs[BTRFS_MAX_LEVEL];
7400 u64 flags[BTRFS_MAX_LEVEL];
7401 struct btrfs_key update_progress;
7402 int stage;
7403 int level;
7404 int shared_level;
7405 int update_ref;
7406 int keep_locks;
7407 int reada_slot;
7408 int reada_count;
7409 int for_reloc;
7410 };
7411
7412 #define DROP_REFERENCE 1
7413 #define UPDATE_BACKREF 2
7414
7415 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7416 struct btrfs_root *root,
7417 struct walk_control *wc,
7418 struct btrfs_path *path)
7419 {
7420 u64 bytenr;
7421 u64 generation;
7422 u64 refs;
7423 u64 flags;
7424 u32 nritems;
7425 u32 blocksize;
7426 struct btrfs_key key;
7427 struct extent_buffer *eb;
7428 int ret;
7429 int slot;
7430 int nread = 0;
7431
7432 if (path->slots[wc->level] < wc->reada_slot) {
7433 wc->reada_count = wc->reada_count * 2 / 3;
7434 wc->reada_count = max(wc->reada_count, 2);
7435 } else {
7436 wc->reada_count = wc->reada_count * 3 / 2;
7437 wc->reada_count = min_t(int, wc->reada_count,
7438 BTRFS_NODEPTRS_PER_BLOCK(root));
7439 }
7440
7441 eb = path->nodes[wc->level];
7442 nritems = btrfs_header_nritems(eb);
7443 blocksize = root->nodesize;
7444
7445 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7446 if (nread >= wc->reada_count)
7447 break;
7448
7449 cond_resched();
7450 bytenr = btrfs_node_blockptr(eb, slot);
7451 generation = btrfs_node_ptr_generation(eb, slot);
7452
7453 if (slot == path->slots[wc->level])
7454 goto reada;
7455
7456 if (wc->stage == UPDATE_BACKREF &&
7457 generation <= root->root_key.offset)
7458 continue;
7459
7460 /* We don't lock the tree block, it's OK to be racy here */
7461 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7462 wc->level - 1, 1, &refs,
7463 &flags);
7464 /* We don't care about errors in readahead. */
7465 if (ret < 0)
7466 continue;
7467 BUG_ON(refs == 0);
7468
7469 if (wc->stage == DROP_REFERENCE) {
7470 if (refs == 1)
7471 goto reada;
7472
7473 if (wc->level == 1 &&
7474 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7475 continue;
7476 if (!wc->update_ref ||
7477 generation <= root->root_key.offset)
7478 continue;
7479 btrfs_node_key_to_cpu(eb, &key, slot);
7480 ret = btrfs_comp_cpu_keys(&key,
7481 &wc->update_progress);
7482 if (ret < 0)
7483 continue;
7484 } else {
7485 if (wc->level == 1 &&
7486 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7487 continue;
7488 }
7489 reada:
7490 readahead_tree_block(root, bytenr, blocksize);
7491 nread++;
7492 }
7493 wc->reada_slot = slot;
7494 }
7495
7496 static int account_leaf_items(struct btrfs_trans_handle *trans,
7497 struct btrfs_root *root,
7498 struct extent_buffer *eb)
7499 {
7500 int nr = btrfs_header_nritems(eb);
7501 int i, extent_type, ret;
7502 struct btrfs_key key;
7503 struct btrfs_file_extent_item *fi;
7504 u64 bytenr, num_bytes;
7505
7506 for (i = 0; i < nr; i++) {
7507 btrfs_item_key_to_cpu(eb, &key, i);
7508
7509 if (key.type != BTRFS_EXTENT_DATA_KEY)
7510 continue;
7511
7512 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7513 /* filter out non qgroup-accountable extents */
7514 extent_type = btrfs_file_extent_type(eb, fi);
7515
7516 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7517 continue;
7518
7519 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7520 if (!bytenr)
7521 continue;
7522
7523 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7524
7525 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7526 root->objectid,
7527 bytenr, num_bytes,
7528 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7529 if (ret)
7530 return ret;
7531 }
7532 return 0;
7533 }
7534
7535 /*
7536 * Walk up the tree from the bottom, freeing leaves and any interior
7537 * nodes which have had all slots visited. If a node (leaf or
7538 * interior) is freed, the node above it will have it's slot
7539 * incremented. The root node will never be freed.
7540 *
7541 * At the end of this function, we should have a path which has all
7542 * slots incremented to the next position for a search. If we need to
7543 * read a new node it will be NULL and the node above it will have the
7544 * correct slot selected for a later read.
7545 *
7546 * If we increment the root nodes slot counter past the number of
7547 * elements, 1 is returned to signal completion of the search.
7548 */
7549 static int adjust_slots_upwards(struct btrfs_root *root,
7550 struct btrfs_path *path, int root_level)
7551 {
7552 int level = 0;
7553 int nr, slot;
7554 struct extent_buffer *eb;
7555
7556 if (root_level == 0)
7557 return 1;
7558
7559 while (level <= root_level) {
7560 eb = path->nodes[level];
7561 nr = btrfs_header_nritems(eb);
7562 path->slots[level]++;
7563 slot = path->slots[level];
7564 if (slot >= nr || level == 0) {
7565 /*
7566 * Don't free the root - we will detect this
7567 * condition after our loop and return a
7568 * positive value for caller to stop walking the tree.
7569 */
7570 if (level != root_level) {
7571 btrfs_tree_unlock_rw(eb, path->locks[level]);
7572 path->locks[level] = 0;
7573
7574 free_extent_buffer(eb);
7575 path->nodes[level] = NULL;
7576 path->slots[level] = 0;
7577 }
7578 } else {
7579 /*
7580 * We have a valid slot to walk back down
7581 * from. Stop here so caller can process these
7582 * new nodes.
7583 */
7584 break;
7585 }
7586
7587 level++;
7588 }
7589
7590 eb = path->nodes[root_level];
7591 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7592 return 1;
7593
7594 return 0;
7595 }
7596
7597 /*
7598 * root_eb is the subtree root and is locked before this function is called.
7599 */
7600 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7601 struct btrfs_root *root,
7602 struct extent_buffer *root_eb,
7603 u64 root_gen,
7604 int root_level)
7605 {
7606 int ret = 0;
7607 int level;
7608 struct extent_buffer *eb = root_eb;
7609 struct btrfs_path *path = NULL;
7610
7611 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7612 BUG_ON(root_eb == NULL);
7613
7614 if (!root->fs_info->quota_enabled)
7615 return 0;
7616
7617 if (!extent_buffer_uptodate(root_eb)) {
7618 ret = btrfs_read_buffer(root_eb, root_gen);
7619 if (ret)
7620 goto out;
7621 }
7622
7623 if (root_level == 0) {
7624 ret = account_leaf_items(trans, root, root_eb);
7625 goto out;
7626 }
7627
7628 path = btrfs_alloc_path();
7629 if (!path)
7630 return -ENOMEM;
7631
7632 /*
7633 * Walk down the tree. Missing extent blocks are filled in as
7634 * we go. Metadata is accounted every time we read a new
7635 * extent block.
7636 *
7637 * When we reach a leaf, we account for file extent items in it,
7638 * walk back up the tree (adjusting slot pointers as we go)
7639 * and restart the search process.
7640 */
7641 extent_buffer_get(root_eb); /* For path */
7642 path->nodes[root_level] = root_eb;
7643 path->slots[root_level] = 0;
7644 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7645 walk_down:
7646 level = root_level;
7647 while (level >= 0) {
7648 if (path->nodes[level] == NULL) {
7649 int parent_slot;
7650 u64 child_gen;
7651 u64 child_bytenr;
7652
7653 /* We need to get child blockptr/gen from
7654 * parent before we can read it. */
7655 eb = path->nodes[level + 1];
7656 parent_slot = path->slots[level + 1];
7657 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7658 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7659
7660 eb = read_tree_block(root, child_bytenr, child_gen);
7661 if (!eb || !extent_buffer_uptodate(eb)) {
7662 ret = -EIO;
7663 goto out;
7664 }
7665
7666 path->nodes[level] = eb;
7667 path->slots[level] = 0;
7668
7669 btrfs_tree_read_lock(eb);
7670 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7671 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7672
7673 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7674 root->objectid,
7675 child_bytenr,
7676 root->nodesize,
7677 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7678 0);
7679 if (ret)
7680 goto out;
7681
7682 }
7683
7684 if (level == 0) {
7685 ret = account_leaf_items(trans, root, path->nodes[level]);
7686 if (ret)
7687 goto out;
7688
7689 /* Nonzero return here means we completed our search */
7690 ret = adjust_slots_upwards(root, path, root_level);
7691 if (ret)
7692 break;
7693
7694 /* Restart search with new slots */
7695 goto walk_down;
7696 }
7697
7698 level--;
7699 }
7700
7701 ret = 0;
7702 out:
7703 btrfs_free_path(path);
7704
7705 return ret;
7706 }
7707
7708 /*
7709 * helper to process tree block while walking down the tree.
7710 *
7711 * when wc->stage == UPDATE_BACKREF, this function updates
7712 * back refs for pointers in the block.
7713 *
7714 * NOTE: return value 1 means we should stop walking down.
7715 */
7716 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7717 struct btrfs_root *root,
7718 struct btrfs_path *path,
7719 struct walk_control *wc, int lookup_info)
7720 {
7721 int level = wc->level;
7722 struct extent_buffer *eb = path->nodes[level];
7723 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7724 int ret;
7725
7726 if (wc->stage == UPDATE_BACKREF &&
7727 btrfs_header_owner(eb) != root->root_key.objectid)
7728 return 1;
7729
7730 /*
7731 * when reference count of tree block is 1, it won't increase
7732 * again. once full backref flag is set, we never clear it.
7733 */
7734 if (lookup_info &&
7735 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7736 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7737 BUG_ON(!path->locks[level]);
7738 ret = btrfs_lookup_extent_info(trans, root,
7739 eb->start, level, 1,
7740 &wc->refs[level],
7741 &wc->flags[level]);
7742 BUG_ON(ret == -ENOMEM);
7743 if (ret)
7744 return ret;
7745 BUG_ON(wc->refs[level] == 0);
7746 }
7747
7748 if (wc->stage == DROP_REFERENCE) {
7749 if (wc->refs[level] > 1)
7750 return 1;
7751
7752 if (path->locks[level] && !wc->keep_locks) {
7753 btrfs_tree_unlock_rw(eb, path->locks[level]);
7754 path->locks[level] = 0;
7755 }
7756 return 0;
7757 }
7758
7759 /* wc->stage == UPDATE_BACKREF */
7760 if (!(wc->flags[level] & flag)) {
7761 BUG_ON(!path->locks[level]);
7762 ret = btrfs_inc_ref(trans, root, eb, 1);
7763 BUG_ON(ret); /* -ENOMEM */
7764 ret = btrfs_dec_ref(trans, root, eb, 0);
7765 BUG_ON(ret); /* -ENOMEM */
7766 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7767 eb->len, flag,
7768 btrfs_header_level(eb), 0);
7769 BUG_ON(ret); /* -ENOMEM */
7770 wc->flags[level] |= flag;
7771 }
7772
7773 /*
7774 * the block is shared by multiple trees, so it's not good to
7775 * keep the tree lock
7776 */
7777 if (path->locks[level] && level > 0) {
7778 btrfs_tree_unlock_rw(eb, path->locks[level]);
7779 path->locks[level] = 0;
7780 }
7781 return 0;
7782 }
7783
7784 /*
7785 * helper to process tree block pointer.
7786 *
7787 * when wc->stage == DROP_REFERENCE, this function checks
7788 * reference count of the block pointed to. if the block
7789 * is shared and we need update back refs for the subtree
7790 * rooted at the block, this function changes wc->stage to
7791 * UPDATE_BACKREF. if the block is shared and there is no
7792 * need to update back, this function drops the reference
7793 * to the block.
7794 *
7795 * NOTE: return value 1 means we should stop walking down.
7796 */
7797 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7798 struct btrfs_root *root,
7799 struct btrfs_path *path,
7800 struct walk_control *wc, int *lookup_info)
7801 {
7802 u64 bytenr;
7803 u64 generation;
7804 u64 parent;
7805 u32 blocksize;
7806 struct btrfs_key key;
7807 struct extent_buffer *next;
7808 int level = wc->level;
7809 int reada = 0;
7810 int ret = 0;
7811 bool need_account = false;
7812
7813 generation = btrfs_node_ptr_generation(path->nodes[level],
7814 path->slots[level]);
7815 /*
7816 * if the lower level block was created before the snapshot
7817 * was created, we know there is no need to update back refs
7818 * for the subtree
7819 */
7820 if (wc->stage == UPDATE_BACKREF &&
7821 generation <= root->root_key.offset) {
7822 *lookup_info = 1;
7823 return 1;
7824 }
7825
7826 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7827 blocksize = root->nodesize;
7828
7829 next = btrfs_find_tree_block(root, bytenr);
7830 if (!next) {
7831 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7832 if (!next)
7833 return -ENOMEM;
7834 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7835 level - 1);
7836 reada = 1;
7837 }
7838 btrfs_tree_lock(next);
7839 btrfs_set_lock_blocking(next);
7840
7841 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7842 &wc->refs[level - 1],
7843 &wc->flags[level - 1]);
7844 if (ret < 0) {
7845 btrfs_tree_unlock(next);
7846 return ret;
7847 }
7848
7849 if (unlikely(wc->refs[level - 1] == 0)) {
7850 btrfs_err(root->fs_info, "Missing references.");
7851 BUG();
7852 }
7853 *lookup_info = 0;
7854
7855 if (wc->stage == DROP_REFERENCE) {
7856 if (wc->refs[level - 1] > 1) {
7857 need_account = true;
7858 if (level == 1 &&
7859 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7860 goto skip;
7861
7862 if (!wc->update_ref ||
7863 generation <= root->root_key.offset)
7864 goto skip;
7865
7866 btrfs_node_key_to_cpu(path->nodes[level], &key,
7867 path->slots[level]);
7868 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7869 if (ret < 0)
7870 goto skip;
7871
7872 wc->stage = UPDATE_BACKREF;
7873 wc->shared_level = level - 1;
7874 }
7875 } else {
7876 if (level == 1 &&
7877 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7878 goto skip;
7879 }
7880
7881 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7882 btrfs_tree_unlock(next);
7883 free_extent_buffer(next);
7884 next = NULL;
7885 *lookup_info = 1;
7886 }
7887
7888 if (!next) {
7889 if (reada && level == 1)
7890 reada_walk_down(trans, root, wc, path);
7891 next = read_tree_block(root, bytenr, generation);
7892 if (!next || !extent_buffer_uptodate(next)) {
7893 free_extent_buffer(next);
7894 return -EIO;
7895 }
7896 btrfs_tree_lock(next);
7897 btrfs_set_lock_blocking(next);
7898 }
7899
7900 level--;
7901 BUG_ON(level != btrfs_header_level(next));
7902 path->nodes[level] = next;
7903 path->slots[level] = 0;
7904 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7905 wc->level = level;
7906 if (wc->level == 1)
7907 wc->reada_slot = 0;
7908 return 0;
7909 skip:
7910 wc->refs[level - 1] = 0;
7911 wc->flags[level - 1] = 0;
7912 if (wc->stage == DROP_REFERENCE) {
7913 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7914 parent = path->nodes[level]->start;
7915 } else {
7916 BUG_ON(root->root_key.objectid !=
7917 btrfs_header_owner(path->nodes[level]));
7918 parent = 0;
7919 }
7920
7921 if (need_account) {
7922 ret = account_shared_subtree(trans, root, next,
7923 generation, level - 1);
7924 if (ret) {
7925 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7926 "%d accounting shared subtree. Quota "
7927 "is out of sync, rescan required.\n",
7928 root->fs_info->sb->s_id, ret);
7929 }
7930 }
7931 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7932 root->root_key.objectid, level - 1, 0, 0);
7933 BUG_ON(ret); /* -ENOMEM */
7934 }
7935 btrfs_tree_unlock(next);
7936 free_extent_buffer(next);
7937 *lookup_info = 1;
7938 return 1;
7939 }
7940
7941 /*
7942 * helper to process tree block while walking up the tree.
7943 *
7944 * when wc->stage == DROP_REFERENCE, this function drops
7945 * reference count on the block.
7946 *
7947 * when wc->stage == UPDATE_BACKREF, this function changes
7948 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7949 * to UPDATE_BACKREF previously while processing the block.
7950 *
7951 * NOTE: return value 1 means we should stop walking up.
7952 */
7953 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7954 struct btrfs_root *root,
7955 struct btrfs_path *path,
7956 struct walk_control *wc)
7957 {
7958 int ret;
7959 int level = wc->level;
7960 struct extent_buffer *eb = path->nodes[level];
7961 u64 parent = 0;
7962
7963 if (wc->stage == UPDATE_BACKREF) {
7964 BUG_ON(wc->shared_level < level);
7965 if (level < wc->shared_level)
7966 goto out;
7967
7968 ret = find_next_key(path, level + 1, &wc->update_progress);
7969 if (ret > 0)
7970 wc->update_ref = 0;
7971
7972 wc->stage = DROP_REFERENCE;
7973 wc->shared_level = -1;
7974 path->slots[level] = 0;
7975
7976 /*
7977 * check reference count again if the block isn't locked.
7978 * we should start walking down the tree again if reference
7979 * count is one.
7980 */
7981 if (!path->locks[level]) {
7982 BUG_ON(level == 0);
7983 btrfs_tree_lock(eb);
7984 btrfs_set_lock_blocking(eb);
7985 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7986
7987 ret = btrfs_lookup_extent_info(trans, root,
7988 eb->start, level, 1,
7989 &wc->refs[level],
7990 &wc->flags[level]);
7991 if (ret < 0) {
7992 btrfs_tree_unlock_rw(eb, path->locks[level]);
7993 path->locks[level] = 0;
7994 return ret;
7995 }
7996 BUG_ON(wc->refs[level] == 0);
7997 if (wc->refs[level] == 1) {
7998 btrfs_tree_unlock_rw(eb, path->locks[level]);
7999 path->locks[level] = 0;
8000 return 1;
8001 }
8002 }
8003 }
8004
8005 /* wc->stage == DROP_REFERENCE */
8006 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8007
8008 if (wc->refs[level] == 1) {
8009 if (level == 0) {
8010 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8011 ret = btrfs_dec_ref(trans, root, eb, 1);
8012 else
8013 ret = btrfs_dec_ref(trans, root, eb, 0);
8014 BUG_ON(ret); /* -ENOMEM */
8015 ret = account_leaf_items(trans, root, eb);
8016 if (ret) {
8017 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8018 "%d accounting leaf items. Quota "
8019 "is out of sync, rescan required.\n",
8020 root->fs_info->sb->s_id, ret);
8021 }
8022 }
8023 /* make block locked assertion in clean_tree_block happy */
8024 if (!path->locks[level] &&
8025 btrfs_header_generation(eb) == trans->transid) {
8026 btrfs_tree_lock(eb);
8027 btrfs_set_lock_blocking(eb);
8028 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8029 }
8030 clean_tree_block(trans, root, eb);
8031 }
8032
8033 if (eb == root->node) {
8034 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8035 parent = eb->start;
8036 else
8037 BUG_ON(root->root_key.objectid !=
8038 btrfs_header_owner(eb));
8039 } else {
8040 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8041 parent = path->nodes[level + 1]->start;
8042 else
8043 BUG_ON(root->root_key.objectid !=
8044 btrfs_header_owner(path->nodes[level + 1]));
8045 }
8046
8047 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8048 out:
8049 wc->refs[level] = 0;
8050 wc->flags[level] = 0;
8051 return 0;
8052 }
8053
8054 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8055 struct btrfs_root *root,
8056 struct btrfs_path *path,
8057 struct walk_control *wc)
8058 {
8059 int level = wc->level;
8060 int lookup_info = 1;
8061 int ret;
8062
8063 while (level >= 0) {
8064 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8065 if (ret > 0)
8066 break;
8067
8068 if (level == 0)
8069 break;
8070
8071 if (path->slots[level] >=
8072 btrfs_header_nritems(path->nodes[level]))
8073 break;
8074
8075 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8076 if (ret > 0) {
8077 path->slots[level]++;
8078 continue;
8079 } else if (ret < 0)
8080 return ret;
8081 level = wc->level;
8082 }
8083 return 0;
8084 }
8085
8086 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8087 struct btrfs_root *root,
8088 struct btrfs_path *path,
8089 struct walk_control *wc, int max_level)
8090 {
8091 int level = wc->level;
8092 int ret;
8093
8094 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8095 while (level < max_level && path->nodes[level]) {
8096 wc->level = level;
8097 if (path->slots[level] + 1 <
8098 btrfs_header_nritems(path->nodes[level])) {
8099 path->slots[level]++;
8100 return 0;
8101 } else {
8102 ret = walk_up_proc(trans, root, path, wc);
8103 if (ret > 0)
8104 return 0;
8105
8106 if (path->locks[level]) {
8107 btrfs_tree_unlock_rw(path->nodes[level],
8108 path->locks[level]);
8109 path->locks[level] = 0;
8110 }
8111 free_extent_buffer(path->nodes[level]);
8112 path->nodes[level] = NULL;
8113 level++;
8114 }
8115 }
8116 return 1;
8117 }
8118
8119 /*
8120 * drop a subvolume tree.
8121 *
8122 * this function traverses the tree freeing any blocks that only
8123 * referenced by the tree.
8124 *
8125 * when a shared tree block is found. this function decreases its
8126 * reference count by one. if update_ref is true, this function
8127 * also make sure backrefs for the shared block and all lower level
8128 * blocks are properly updated.
8129 *
8130 * If called with for_reloc == 0, may exit early with -EAGAIN
8131 */
8132 int btrfs_drop_snapshot(struct btrfs_root *root,
8133 struct btrfs_block_rsv *block_rsv, int update_ref,
8134 int for_reloc)
8135 {
8136 struct btrfs_path *path;
8137 struct btrfs_trans_handle *trans;
8138 struct btrfs_root *tree_root = root->fs_info->tree_root;
8139 struct btrfs_root_item *root_item = &root->root_item;
8140 struct walk_control *wc;
8141 struct btrfs_key key;
8142 int err = 0;
8143 int ret;
8144 int level;
8145 bool root_dropped = false;
8146
8147 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8148
8149 path = btrfs_alloc_path();
8150 if (!path) {
8151 err = -ENOMEM;
8152 goto out;
8153 }
8154
8155 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8156 if (!wc) {
8157 btrfs_free_path(path);
8158 err = -ENOMEM;
8159 goto out;
8160 }
8161
8162 trans = btrfs_start_transaction(tree_root, 0);
8163 if (IS_ERR(trans)) {
8164 err = PTR_ERR(trans);
8165 goto out_free;
8166 }
8167
8168 if (block_rsv)
8169 trans->block_rsv = block_rsv;
8170
8171 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8172 level = btrfs_header_level(root->node);
8173 path->nodes[level] = btrfs_lock_root_node(root);
8174 btrfs_set_lock_blocking(path->nodes[level]);
8175 path->slots[level] = 0;
8176 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8177 memset(&wc->update_progress, 0,
8178 sizeof(wc->update_progress));
8179 } else {
8180 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8181 memcpy(&wc->update_progress, &key,
8182 sizeof(wc->update_progress));
8183
8184 level = root_item->drop_level;
8185 BUG_ON(level == 0);
8186 path->lowest_level = level;
8187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8188 path->lowest_level = 0;
8189 if (ret < 0) {
8190 err = ret;
8191 goto out_end_trans;
8192 }
8193 WARN_ON(ret > 0);
8194
8195 /*
8196 * unlock our path, this is safe because only this
8197 * function is allowed to delete this snapshot
8198 */
8199 btrfs_unlock_up_safe(path, 0);
8200
8201 level = btrfs_header_level(root->node);
8202 while (1) {
8203 btrfs_tree_lock(path->nodes[level]);
8204 btrfs_set_lock_blocking(path->nodes[level]);
8205 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8206
8207 ret = btrfs_lookup_extent_info(trans, root,
8208 path->nodes[level]->start,
8209 level, 1, &wc->refs[level],
8210 &wc->flags[level]);
8211 if (ret < 0) {
8212 err = ret;
8213 goto out_end_trans;
8214 }
8215 BUG_ON(wc->refs[level] == 0);
8216
8217 if (level == root_item->drop_level)
8218 break;
8219
8220 btrfs_tree_unlock(path->nodes[level]);
8221 path->locks[level] = 0;
8222 WARN_ON(wc->refs[level] != 1);
8223 level--;
8224 }
8225 }
8226
8227 wc->level = level;
8228 wc->shared_level = -1;
8229 wc->stage = DROP_REFERENCE;
8230 wc->update_ref = update_ref;
8231 wc->keep_locks = 0;
8232 wc->for_reloc = for_reloc;
8233 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8234
8235 while (1) {
8236
8237 ret = walk_down_tree(trans, root, path, wc);
8238 if (ret < 0) {
8239 err = ret;
8240 break;
8241 }
8242
8243 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8244 if (ret < 0) {
8245 err = ret;
8246 break;
8247 }
8248
8249 if (ret > 0) {
8250 BUG_ON(wc->stage != DROP_REFERENCE);
8251 break;
8252 }
8253
8254 if (wc->stage == DROP_REFERENCE) {
8255 level = wc->level;
8256 btrfs_node_key(path->nodes[level],
8257 &root_item->drop_progress,
8258 path->slots[level]);
8259 root_item->drop_level = level;
8260 }
8261
8262 BUG_ON(wc->level == 0);
8263 if (btrfs_should_end_transaction(trans, tree_root) ||
8264 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8265 ret = btrfs_update_root(trans, tree_root,
8266 &root->root_key,
8267 root_item);
8268 if (ret) {
8269 btrfs_abort_transaction(trans, tree_root, ret);
8270 err = ret;
8271 goto out_end_trans;
8272 }
8273
8274 /*
8275 * Qgroup update accounting is run from
8276 * delayed ref handling. This usually works
8277 * out because delayed refs are normally the
8278 * only way qgroup updates are added. However,
8279 * we may have added updates during our tree
8280 * walk so run qgroups here to make sure we
8281 * don't lose any updates.
8282 */
8283 ret = btrfs_delayed_qgroup_accounting(trans,
8284 root->fs_info);
8285 if (ret)
8286 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8287 "running qgroup updates "
8288 "during snapshot delete. "
8289 "Quota is out of sync, "
8290 "rescan required.\n", ret);
8291
8292 btrfs_end_transaction_throttle(trans, tree_root);
8293 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8294 pr_debug("BTRFS: drop snapshot early exit\n");
8295 err = -EAGAIN;
8296 goto out_free;
8297 }
8298
8299 trans = btrfs_start_transaction(tree_root, 0);
8300 if (IS_ERR(trans)) {
8301 err = PTR_ERR(trans);
8302 goto out_free;
8303 }
8304 if (block_rsv)
8305 trans->block_rsv = block_rsv;
8306 }
8307 }
8308 btrfs_release_path(path);
8309 if (err)
8310 goto out_end_trans;
8311
8312 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8313 if (ret) {
8314 btrfs_abort_transaction(trans, tree_root, ret);
8315 goto out_end_trans;
8316 }
8317
8318 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8319 ret = btrfs_find_root(tree_root, &root->root_key, path,
8320 NULL, NULL);
8321 if (ret < 0) {
8322 btrfs_abort_transaction(trans, tree_root, ret);
8323 err = ret;
8324 goto out_end_trans;
8325 } else if (ret > 0) {
8326 /* if we fail to delete the orphan item this time
8327 * around, it'll get picked up the next time.
8328 *
8329 * The most common failure here is just -ENOENT.
8330 */
8331 btrfs_del_orphan_item(trans, tree_root,
8332 root->root_key.objectid);
8333 }
8334 }
8335
8336 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8337 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8338 } else {
8339 free_extent_buffer(root->node);
8340 free_extent_buffer(root->commit_root);
8341 btrfs_put_fs_root(root);
8342 }
8343 root_dropped = true;
8344 out_end_trans:
8345 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8346 if (ret)
8347 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8348 "running qgroup updates "
8349 "during snapshot delete. "
8350 "Quota is out of sync, "
8351 "rescan required.\n", ret);
8352
8353 btrfs_end_transaction_throttle(trans, tree_root);
8354 out_free:
8355 kfree(wc);
8356 btrfs_free_path(path);
8357 out:
8358 /*
8359 * So if we need to stop dropping the snapshot for whatever reason we
8360 * need to make sure to add it back to the dead root list so that we
8361 * keep trying to do the work later. This also cleans up roots if we
8362 * don't have it in the radix (like when we recover after a power fail
8363 * or unmount) so we don't leak memory.
8364 */
8365 if (!for_reloc && root_dropped == false)
8366 btrfs_add_dead_root(root);
8367 if (err && err != -EAGAIN)
8368 btrfs_std_error(root->fs_info, err);
8369 return err;
8370 }
8371
8372 /*
8373 * drop subtree rooted at tree block 'node'.
8374 *
8375 * NOTE: this function will unlock and release tree block 'node'
8376 * only used by relocation code
8377 */
8378 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8379 struct btrfs_root *root,
8380 struct extent_buffer *node,
8381 struct extent_buffer *parent)
8382 {
8383 struct btrfs_path *path;
8384 struct walk_control *wc;
8385 int level;
8386 int parent_level;
8387 int ret = 0;
8388 int wret;
8389
8390 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8391
8392 path = btrfs_alloc_path();
8393 if (!path)
8394 return -ENOMEM;
8395
8396 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8397 if (!wc) {
8398 btrfs_free_path(path);
8399 return -ENOMEM;
8400 }
8401
8402 btrfs_assert_tree_locked(parent);
8403 parent_level = btrfs_header_level(parent);
8404 extent_buffer_get(parent);
8405 path->nodes[parent_level] = parent;
8406 path->slots[parent_level] = btrfs_header_nritems(parent);
8407
8408 btrfs_assert_tree_locked(node);
8409 level = btrfs_header_level(node);
8410 path->nodes[level] = node;
8411 path->slots[level] = 0;
8412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8413
8414 wc->refs[parent_level] = 1;
8415 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8416 wc->level = level;
8417 wc->shared_level = -1;
8418 wc->stage = DROP_REFERENCE;
8419 wc->update_ref = 0;
8420 wc->keep_locks = 1;
8421 wc->for_reloc = 1;
8422 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8423
8424 while (1) {
8425 wret = walk_down_tree(trans, root, path, wc);
8426 if (wret < 0) {
8427 ret = wret;
8428 break;
8429 }
8430
8431 wret = walk_up_tree(trans, root, path, wc, parent_level);
8432 if (wret < 0)
8433 ret = wret;
8434 if (wret != 0)
8435 break;
8436 }
8437
8438 kfree(wc);
8439 btrfs_free_path(path);
8440 return ret;
8441 }
8442
8443 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8444 {
8445 u64 num_devices;
8446 u64 stripped;
8447
8448 /*
8449 * if restripe for this chunk_type is on pick target profile and
8450 * return, otherwise do the usual balance
8451 */
8452 stripped = get_restripe_target(root->fs_info, flags);
8453 if (stripped)
8454 return extended_to_chunk(stripped);
8455
8456 num_devices = root->fs_info->fs_devices->rw_devices;
8457
8458 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8459 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8460 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8461
8462 if (num_devices == 1) {
8463 stripped |= BTRFS_BLOCK_GROUP_DUP;
8464 stripped = flags & ~stripped;
8465
8466 /* turn raid0 into single device chunks */
8467 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8468 return stripped;
8469
8470 /* turn mirroring into duplication */
8471 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8472 BTRFS_BLOCK_GROUP_RAID10))
8473 return stripped | BTRFS_BLOCK_GROUP_DUP;
8474 } else {
8475 /* they already had raid on here, just return */
8476 if (flags & stripped)
8477 return flags;
8478
8479 stripped |= BTRFS_BLOCK_GROUP_DUP;
8480 stripped = flags & ~stripped;
8481
8482 /* switch duplicated blocks with raid1 */
8483 if (flags & BTRFS_BLOCK_GROUP_DUP)
8484 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8485
8486 /* this is drive concat, leave it alone */
8487 }
8488
8489 return flags;
8490 }
8491
8492 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8493 {
8494 struct btrfs_space_info *sinfo = cache->space_info;
8495 u64 num_bytes;
8496 u64 min_allocable_bytes;
8497 int ret = -ENOSPC;
8498
8499
8500 /*
8501 * We need some metadata space and system metadata space for
8502 * allocating chunks in some corner cases until we force to set
8503 * it to be readonly.
8504 */
8505 if ((sinfo->flags &
8506 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8507 !force)
8508 min_allocable_bytes = 1 * 1024 * 1024;
8509 else
8510 min_allocable_bytes = 0;
8511
8512 spin_lock(&sinfo->lock);
8513 spin_lock(&cache->lock);
8514
8515 if (cache->ro) {
8516 ret = 0;
8517 goto out;
8518 }
8519
8520 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8521 cache->bytes_super - btrfs_block_group_used(&cache->item);
8522
8523 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8524 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8525 min_allocable_bytes <= sinfo->total_bytes) {
8526 sinfo->bytes_readonly += num_bytes;
8527 cache->ro = 1;
8528 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8529 ret = 0;
8530 }
8531 out:
8532 spin_unlock(&cache->lock);
8533 spin_unlock(&sinfo->lock);
8534 return ret;
8535 }
8536
8537 int btrfs_set_block_group_ro(struct btrfs_root *root,
8538 struct btrfs_block_group_cache *cache)
8539
8540 {
8541 struct btrfs_trans_handle *trans;
8542 u64 alloc_flags;
8543 int ret;
8544
8545 BUG_ON(cache->ro);
8546
8547 trans = btrfs_join_transaction(root);
8548 if (IS_ERR(trans))
8549 return PTR_ERR(trans);
8550
8551 alloc_flags = update_block_group_flags(root, cache->flags);
8552 if (alloc_flags != cache->flags) {
8553 ret = do_chunk_alloc(trans, root, alloc_flags,
8554 CHUNK_ALLOC_FORCE);
8555 if (ret < 0)
8556 goto out;
8557 }
8558
8559 ret = set_block_group_ro(cache, 0);
8560 if (!ret)
8561 goto out;
8562 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8563 ret = do_chunk_alloc(trans, root, alloc_flags,
8564 CHUNK_ALLOC_FORCE);
8565 if (ret < 0)
8566 goto out;
8567 ret = set_block_group_ro(cache, 0);
8568 out:
8569 btrfs_end_transaction(trans, root);
8570 return ret;
8571 }
8572
8573 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8574 struct btrfs_root *root, u64 type)
8575 {
8576 u64 alloc_flags = get_alloc_profile(root, type);
8577 return do_chunk_alloc(trans, root, alloc_flags,
8578 CHUNK_ALLOC_FORCE);
8579 }
8580
8581 /*
8582 * helper to account the unused space of all the readonly block group in the
8583 * space_info. takes mirrors into account.
8584 */
8585 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8586 {
8587 struct btrfs_block_group_cache *block_group;
8588 u64 free_bytes = 0;
8589 int factor;
8590
8591 /* It's df, we don't care if it's racey */
8592 if (list_empty(&sinfo->ro_bgs))
8593 return 0;
8594
8595 spin_lock(&sinfo->lock);
8596 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8597 spin_lock(&block_group->lock);
8598
8599 if (!block_group->ro) {
8600 spin_unlock(&block_group->lock);
8601 continue;
8602 }
8603
8604 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8605 BTRFS_BLOCK_GROUP_RAID10 |
8606 BTRFS_BLOCK_GROUP_DUP))
8607 factor = 2;
8608 else
8609 factor = 1;
8610
8611 free_bytes += (block_group->key.offset -
8612 btrfs_block_group_used(&block_group->item)) *
8613 factor;
8614
8615 spin_unlock(&block_group->lock);
8616 }
8617 spin_unlock(&sinfo->lock);
8618
8619 return free_bytes;
8620 }
8621
8622 void btrfs_set_block_group_rw(struct btrfs_root *root,
8623 struct btrfs_block_group_cache *cache)
8624 {
8625 struct btrfs_space_info *sinfo = cache->space_info;
8626 u64 num_bytes;
8627
8628 BUG_ON(!cache->ro);
8629
8630 spin_lock(&sinfo->lock);
8631 spin_lock(&cache->lock);
8632 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8633 cache->bytes_super - btrfs_block_group_used(&cache->item);
8634 sinfo->bytes_readonly -= num_bytes;
8635 cache->ro = 0;
8636 list_del_init(&cache->ro_list);
8637 spin_unlock(&cache->lock);
8638 spin_unlock(&sinfo->lock);
8639 }
8640
8641 /*
8642 * checks to see if its even possible to relocate this block group.
8643 *
8644 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8645 * ok to go ahead and try.
8646 */
8647 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8648 {
8649 struct btrfs_block_group_cache *block_group;
8650 struct btrfs_space_info *space_info;
8651 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8652 struct btrfs_device *device;
8653 struct btrfs_trans_handle *trans;
8654 u64 min_free;
8655 u64 dev_min = 1;
8656 u64 dev_nr = 0;
8657 u64 target;
8658 int index;
8659 int full = 0;
8660 int ret = 0;
8661
8662 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8663
8664 /* odd, couldn't find the block group, leave it alone */
8665 if (!block_group)
8666 return -1;
8667
8668 min_free = btrfs_block_group_used(&block_group->item);
8669
8670 /* no bytes used, we're good */
8671 if (!min_free)
8672 goto out;
8673
8674 space_info = block_group->space_info;
8675 spin_lock(&space_info->lock);
8676
8677 full = space_info->full;
8678
8679 /*
8680 * if this is the last block group we have in this space, we can't
8681 * relocate it unless we're able to allocate a new chunk below.
8682 *
8683 * Otherwise, we need to make sure we have room in the space to handle
8684 * all of the extents from this block group. If we can, we're good
8685 */
8686 if ((space_info->total_bytes != block_group->key.offset) &&
8687 (space_info->bytes_used + space_info->bytes_reserved +
8688 space_info->bytes_pinned + space_info->bytes_readonly +
8689 min_free < space_info->total_bytes)) {
8690 spin_unlock(&space_info->lock);
8691 goto out;
8692 }
8693 spin_unlock(&space_info->lock);
8694
8695 /*
8696 * ok we don't have enough space, but maybe we have free space on our
8697 * devices to allocate new chunks for relocation, so loop through our
8698 * alloc devices and guess if we have enough space. if this block
8699 * group is going to be restriped, run checks against the target
8700 * profile instead of the current one.
8701 */
8702 ret = -1;
8703
8704 /*
8705 * index:
8706 * 0: raid10
8707 * 1: raid1
8708 * 2: dup
8709 * 3: raid0
8710 * 4: single
8711 */
8712 target = get_restripe_target(root->fs_info, block_group->flags);
8713 if (target) {
8714 index = __get_raid_index(extended_to_chunk(target));
8715 } else {
8716 /*
8717 * this is just a balance, so if we were marked as full
8718 * we know there is no space for a new chunk
8719 */
8720 if (full)
8721 goto out;
8722
8723 index = get_block_group_index(block_group);
8724 }
8725
8726 if (index == BTRFS_RAID_RAID10) {
8727 dev_min = 4;
8728 /* Divide by 2 */
8729 min_free >>= 1;
8730 } else if (index == BTRFS_RAID_RAID1) {
8731 dev_min = 2;
8732 } else if (index == BTRFS_RAID_DUP) {
8733 /* Multiply by 2 */
8734 min_free <<= 1;
8735 } else if (index == BTRFS_RAID_RAID0) {
8736 dev_min = fs_devices->rw_devices;
8737 do_div(min_free, dev_min);
8738 }
8739
8740 /* We need to do this so that we can look at pending chunks */
8741 trans = btrfs_join_transaction(root);
8742 if (IS_ERR(trans)) {
8743 ret = PTR_ERR(trans);
8744 goto out;
8745 }
8746
8747 mutex_lock(&root->fs_info->chunk_mutex);
8748 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8749 u64 dev_offset;
8750
8751 /*
8752 * check to make sure we can actually find a chunk with enough
8753 * space to fit our block group in.
8754 */
8755 if (device->total_bytes > device->bytes_used + min_free &&
8756 !device->is_tgtdev_for_dev_replace) {
8757 ret = find_free_dev_extent(trans, device, min_free,
8758 &dev_offset, NULL);
8759 if (!ret)
8760 dev_nr++;
8761
8762 if (dev_nr >= dev_min)
8763 break;
8764
8765 ret = -1;
8766 }
8767 }
8768 mutex_unlock(&root->fs_info->chunk_mutex);
8769 btrfs_end_transaction(trans, root);
8770 out:
8771 btrfs_put_block_group(block_group);
8772 return ret;
8773 }
8774
8775 static int find_first_block_group(struct btrfs_root *root,
8776 struct btrfs_path *path, struct btrfs_key *key)
8777 {
8778 int ret = 0;
8779 struct btrfs_key found_key;
8780 struct extent_buffer *leaf;
8781 int slot;
8782
8783 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8784 if (ret < 0)
8785 goto out;
8786
8787 while (1) {
8788 slot = path->slots[0];
8789 leaf = path->nodes[0];
8790 if (slot >= btrfs_header_nritems(leaf)) {
8791 ret = btrfs_next_leaf(root, path);
8792 if (ret == 0)
8793 continue;
8794 if (ret < 0)
8795 goto out;
8796 break;
8797 }
8798 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8799
8800 if (found_key.objectid >= key->objectid &&
8801 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8802 ret = 0;
8803 goto out;
8804 }
8805 path->slots[0]++;
8806 }
8807 out:
8808 return ret;
8809 }
8810
8811 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8812 {
8813 struct btrfs_block_group_cache *block_group;
8814 u64 last = 0;
8815
8816 while (1) {
8817 struct inode *inode;
8818
8819 block_group = btrfs_lookup_first_block_group(info, last);
8820 while (block_group) {
8821 spin_lock(&block_group->lock);
8822 if (block_group->iref)
8823 break;
8824 spin_unlock(&block_group->lock);
8825 block_group = next_block_group(info->tree_root,
8826 block_group);
8827 }
8828 if (!block_group) {
8829 if (last == 0)
8830 break;
8831 last = 0;
8832 continue;
8833 }
8834
8835 inode = block_group->inode;
8836 block_group->iref = 0;
8837 block_group->inode = NULL;
8838 spin_unlock(&block_group->lock);
8839 iput(inode);
8840 last = block_group->key.objectid + block_group->key.offset;
8841 btrfs_put_block_group(block_group);
8842 }
8843 }
8844
8845 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8846 {
8847 struct btrfs_block_group_cache *block_group;
8848 struct btrfs_space_info *space_info;
8849 struct btrfs_caching_control *caching_ctl;
8850 struct rb_node *n;
8851
8852 down_write(&info->commit_root_sem);
8853 while (!list_empty(&info->caching_block_groups)) {
8854 caching_ctl = list_entry(info->caching_block_groups.next,
8855 struct btrfs_caching_control, list);
8856 list_del(&caching_ctl->list);
8857 put_caching_control(caching_ctl);
8858 }
8859 up_write(&info->commit_root_sem);
8860
8861 spin_lock(&info->unused_bgs_lock);
8862 while (!list_empty(&info->unused_bgs)) {
8863 block_group = list_first_entry(&info->unused_bgs,
8864 struct btrfs_block_group_cache,
8865 bg_list);
8866 list_del_init(&block_group->bg_list);
8867 btrfs_put_block_group(block_group);
8868 }
8869 spin_unlock(&info->unused_bgs_lock);
8870
8871 spin_lock(&info->block_group_cache_lock);
8872 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8873 block_group = rb_entry(n, struct btrfs_block_group_cache,
8874 cache_node);
8875 rb_erase(&block_group->cache_node,
8876 &info->block_group_cache_tree);
8877 spin_unlock(&info->block_group_cache_lock);
8878
8879 down_write(&block_group->space_info->groups_sem);
8880 list_del(&block_group->list);
8881 up_write(&block_group->space_info->groups_sem);
8882
8883 if (block_group->cached == BTRFS_CACHE_STARTED)
8884 wait_block_group_cache_done(block_group);
8885
8886 /*
8887 * We haven't cached this block group, which means we could
8888 * possibly have excluded extents on this block group.
8889 */
8890 if (block_group->cached == BTRFS_CACHE_NO ||
8891 block_group->cached == BTRFS_CACHE_ERROR)
8892 free_excluded_extents(info->extent_root, block_group);
8893
8894 btrfs_remove_free_space_cache(block_group);
8895 btrfs_put_block_group(block_group);
8896
8897 spin_lock(&info->block_group_cache_lock);
8898 }
8899 spin_unlock(&info->block_group_cache_lock);
8900
8901 /* now that all the block groups are freed, go through and
8902 * free all the space_info structs. This is only called during
8903 * the final stages of unmount, and so we know nobody is
8904 * using them. We call synchronize_rcu() once before we start,
8905 * just to be on the safe side.
8906 */
8907 synchronize_rcu();
8908
8909 release_global_block_rsv(info);
8910
8911 while (!list_empty(&info->space_info)) {
8912 int i;
8913
8914 space_info = list_entry(info->space_info.next,
8915 struct btrfs_space_info,
8916 list);
8917 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8918 if (WARN_ON(space_info->bytes_pinned > 0 ||
8919 space_info->bytes_reserved > 0 ||
8920 space_info->bytes_may_use > 0)) {
8921 dump_space_info(space_info, 0, 0);
8922 }
8923 }
8924 list_del(&space_info->list);
8925 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8926 struct kobject *kobj;
8927 kobj = space_info->block_group_kobjs[i];
8928 space_info->block_group_kobjs[i] = NULL;
8929 if (kobj) {
8930 kobject_del(kobj);
8931 kobject_put(kobj);
8932 }
8933 }
8934 kobject_del(&space_info->kobj);
8935 kobject_put(&space_info->kobj);
8936 }
8937 return 0;
8938 }
8939
8940 static void __link_block_group(struct btrfs_space_info *space_info,
8941 struct btrfs_block_group_cache *cache)
8942 {
8943 int index = get_block_group_index(cache);
8944 bool first = false;
8945
8946 down_write(&space_info->groups_sem);
8947 if (list_empty(&space_info->block_groups[index]))
8948 first = true;
8949 list_add_tail(&cache->list, &space_info->block_groups[index]);
8950 up_write(&space_info->groups_sem);
8951
8952 if (first) {
8953 struct raid_kobject *rkobj;
8954 int ret;
8955
8956 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8957 if (!rkobj)
8958 goto out_err;
8959 rkobj->raid_type = index;
8960 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8961 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8962 "%s", get_raid_name(index));
8963 if (ret) {
8964 kobject_put(&rkobj->kobj);
8965 goto out_err;
8966 }
8967 space_info->block_group_kobjs[index] = &rkobj->kobj;
8968 }
8969
8970 return;
8971 out_err:
8972 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8973 }
8974
8975 static struct btrfs_block_group_cache *
8976 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8977 {
8978 struct btrfs_block_group_cache *cache;
8979
8980 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8981 if (!cache)
8982 return NULL;
8983
8984 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8985 GFP_NOFS);
8986 if (!cache->free_space_ctl) {
8987 kfree(cache);
8988 return NULL;
8989 }
8990
8991 cache->key.objectid = start;
8992 cache->key.offset = size;
8993 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8994
8995 cache->sectorsize = root->sectorsize;
8996 cache->fs_info = root->fs_info;
8997 cache->full_stripe_len = btrfs_full_stripe_len(root,
8998 &root->fs_info->mapping_tree,
8999 start);
9000 atomic_set(&cache->count, 1);
9001 spin_lock_init(&cache->lock);
9002 init_rwsem(&cache->data_rwsem);
9003 INIT_LIST_HEAD(&cache->list);
9004 INIT_LIST_HEAD(&cache->cluster_list);
9005 INIT_LIST_HEAD(&cache->bg_list);
9006 INIT_LIST_HEAD(&cache->ro_list);
9007 btrfs_init_free_space_ctl(cache);
9008 atomic_set(&cache->trimming, 0);
9009
9010 return cache;
9011 }
9012
9013 int btrfs_read_block_groups(struct btrfs_root *root)
9014 {
9015 struct btrfs_path *path;
9016 int ret;
9017 struct btrfs_block_group_cache *cache;
9018 struct btrfs_fs_info *info = root->fs_info;
9019 struct btrfs_space_info *space_info;
9020 struct btrfs_key key;
9021 struct btrfs_key found_key;
9022 struct extent_buffer *leaf;
9023 int need_clear = 0;
9024 u64 cache_gen;
9025
9026 root = info->extent_root;
9027 key.objectid = 0;
9028 key.offset = 0;
9029 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9030 path = btrfs_alloc_path();
9031 if (!path)
9032 return -ENOMEM;
9033 path->reada = 1;
9034
9035 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9036 if (btrfs_test_opt(root, SPACE_CACHE) &&
9037 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9038 need_clear = 1;
9039 if (btrfs_test_opt(root, CLEAR_CACHE))
9040 need_clear = 1;
9041
9042 while (1) {
9043 ret = find_first_block_group(root, path, &key);
9044 if (ret > 0)
9045 break;
9046 if (ret != 0)
9047 goto error;
9048
9049 leaf = path->nodes[0];
9050 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9051
9052 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9053 found_key.offset);
9054 if (!cache) {
9055 ret = -ENOMEM;
9056 goto error;
9057 }
9058
9059 if (need_clear) {
9060 /*
9061 * When we mount with old space cache, we need to
9062 * set BTRFS_DC_CLEAR and set dirty flag.
9063 *
9064 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9065 * truncate the old free space cache inode and
9066 * setup a new one.
9067 * b) Setting 'dirty flag' makes sure that we flush
9068 * the new space cache info onto disk.
9069 */
9070 cache->disk_cache_state = BTRFS_DC_CLEAR;
9071 if (btrfs_test_opt(root, SPACE_CACHE))
9072 cache->dirty = 1;
9073 }
9074
9075 read_extent_buffer(leaf, &cache->item,
9076 btrfs_item_ptr_offset(leaf, path->slots[0]),
9077 sizeof(cache->item));
9078 cache->flags = btrfs_block_group_flags(&cache->item);
9079
9080 key.objectid = found_key.objectid + found_key.offset;
9081 btrfs_release_path(path);
9082
9083 /*
9084 * We need to exclude the super stripes now so that the space
9085 * info has super bytes accounted for, otherwise we'll think
9086 * we have more space than we actually do.
9087 */
9088 ret = exclude_super_stripes(root, cache);
9089 if (ret) {
9090 /*
9091 * We may have excluded something, so call this just in
9092 * case.
9093 */
9094 free_excluded_extents(root, cache);
9095 btrfs_put_block_group(cache);
9096 goto error;
9097 }
9098
9099 /*
9100 * check for two cases, either we are full, and therefore
9101 * don't need to bother with the caching work since we won't
9102 * find any space, or we are empty, and we can just add all
9103 * the space in and be done with it. This saves us _alot_ of
9104 * time, particularly in the full case.
9105 */
9106 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9107 cache->last_byte_to_unpin = (u64)-1;
9108 cache->cached = BTRFS_CACHE_FINISHED;
9109 free_excluded_extents(root, cache);
9110 } else if (btrfs_block_group_used(&cache->item) == 0) {
9111 cache->last_byte_to_unpin = (u64)-1;
9112 cache->cached = BTRFS_CACHE_FINISHED;
9113 add_new_free_space(cache, root->fs_info,
9114 found_key.objectid,
9115 found_key.objectid +
9116 found_key.offset);
9117 free_excluded_extents(root, cache);
9118 }
9119
9120 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9121 if (ret) {
9122 btrfs_remove_free_space_cache(cache);
9123 btrfs_put_block_group(cache);
9124 goto error;
9125 }
9126
9127 ret = update_space_info(info, cache->flags, found_key.offset,
9128 btrfs_block_group_used(&cache->item),
9129 &space_info);
9130 if (ret) {
9131 btrfs_remove_free_space_cache(cache);
9132 spin_lock(&info->block_group_cache_lock);
9133 rb_erase(&cache->cache_node,
9134 &info->block_group_cache_tree);
9135 spin_unlock(&info->block_group_cache_lock);
9136 btrfs_put_block_group(cache);
9137 goto error;
9138 }
9139
9140 cache->space_info = space_info;
9141 spin_lock(&cache->space_info->lock);
9142 cache->space_info->bytes_readonly += cache->bytes_super;
9143 spin_unlock(&cache->space_info->lock);
9144
9145 __link_block_group(space_info, cache);
9146
9147 set_avail_alloc_bits(root->fs_info, cache->flags);
9148 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9149 set_block_group_ro(cache, 1);
9150 } else if (btrfs_block_group_used(&cache->item) == 0) {
9151 spin_lock(&info->unused_bgs_lock);
9152 /* Should always be true but just in case. */
9153 if (list_empty(&cache->bg_list)) {
9154 btrfs_get_block_group(cache);
9155 list_add_tail(&cache->bg_list,
9156 &info->unused_bgs);
9157 }
9158 spin_unlock(&info->unused_bgs_lock);
9159 }
9160 }
9161
9162 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9163 if (!(get_alloc_profile(root, space_info->flags) &
9164 (BTRFS_BLOCK_GROUP_RAID10 |
9165 BTRFS_BLOCK_GROUP_RAID1 |
9166 BTRFS_BLOCK_GROUP_RAID5 |
9167 BTRFS_BLOCK_GROUP_RAID6 |
9168 BTRFS_BLOCK_GROUP_DUP)))
9169 continue;
9170 /*
9171 * avoid allocating from un-mirrored block group if there are
9172 * mirrored block groups.
9173 */
9174 list_for_each_entry(cache,
9175 &space_info->block_groups[BTRFS_RAID_RAID0],
9176 list)
9177 set_block_group_ro(cache, 1);
9178 list_for_each_entry(cache,
9179 &space_info->block_groups[BTRFS_RAID_SINGLE],
9180 list)
9181 set_block_group_ro(cache, 1);
9182 }
9183
9184 init_global_block_rsv(info);
9185 ret = 0;
9186 error:
9187 btrfs_free_path(path);
9188 return ret;
9189 }
9190
9191 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9192 struct btrfs_root *root)
9193 {
9194 struct btrfs_block_group_cache *block_group, *tmp;
9195 struct btrfs_root *extent_root = root->fs_info->extent_root;
9196 struct btrfs_block_group_item item;
9197 struct btrfs_key key;
9198 int ret = 0;
9199
9200 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9201 list_del_init(&block_group->bg_list);
9202 if (ret)
9203 continue;
9204
9205 spin_lock(&block_group->lock);
9206 memcpy(&item, &block_group->item, sizeof(item));
9207 memcpy(&key, &block_group->key, sizeof(key));
9208 spin_unlock(&block_group->lock);
9209
9210 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9211 sizeof(item));
9212 if (ret)
9213 btrfs_abort_transaction(trans, extent_root, ret);
9214 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9215 key.objectid, key.offset);
9216 if (ret)
9217 btrfs_abort_transaction(trans, extent_root, ret);
9218 }
9219 }
9220
9221 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9222 struct btrfs_root *root, u64 bytes_used,
9223 u64 type, u64 chunk_objectid, u64 chunk_offset,
9224 u64 size)
9225 {
9226 int ret;
9227 struct btrfs_root *extent_root;
9228 struct btrfs_block_group_cache *cache;
9229
9230 extent_root = root->fs_info->extent_root;
9231
9232 btrfs_set_log_full_commit(root->fs_info, trans);
9233
9234 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9235 if (!cache)
9236 return -ENOMEM;
9237
9238 btrfs_set_block_group_used(&cache->item, bytes_used);
9239 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9240 btrfs_set_block_group_flags(&cache->item, type);
9241
9242 cache->flags = type;
9243 cache->last_byte_to_unpin = (u64)-1;
9244 cache->cached = BTRFS_CACHE_FINISHED;
9245 ret = exclude_super_stripes(root, cache);
9246 if (ret) {
9247 /*
9248 * We may have excluded something, so call this just in
9249 * case.
9250 */
9251 free_excluded_extents(root, cache);
9252 btrfs_put_block_group(cache);
9253 return ret;
9254 }
9255
9256 add_new_free_space(cache, root->fs_info, chunk_offset,
9257 chunk_offset + size);
9258
9259 free_excluded_extents(root, cache);
9260
9261 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9262 if (ret) {
9263 btrfs_remove_free_space_cache(cache);
9264 btrfs_put_block_group(cache);
9265 return ret;
9266 }
9267
9268 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9269 &cache->space_info);
9270 if (ret) {
9271 btrfs_remove_free_space_cache(cache);
9272 spin_lock(&root->fs_info->block_group_cache_lock);
9273 rb_erase(&cache->cache_node,
9274 &root->fs_info->block_group_cache_tree);
9275 spin_unlock(&root->fs_info->block_group_cache_lock);
9276 btrfs_put_block_group(cache);
9277 return ret;
9278 }
9279 update_global_block_rsv(root->fs_info);
9280
9281 spin_lock(&cache->space_info->lock);
9282 cache->space_info->bytes_readonly += cache->bytes_super;
9283 spin_unlock(&cache->space_info->lock);
9284
9285 __link_block_group(cache->space_info, cache);
9286
9287 list_add_tail(&cache->bg_list, &trans->new_bgs);
9288
9289 set_avail_alloc_bits(extent_root->fs_info, type);
9290
9291 return 0;
9292 }
9293
9294 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9295 {
9296 u64 extra_flags = chunk_to_extended(flags) &
9297 BTRFS_EXTENDED_PROFILE_MASK;
9298
9299 write_seqlock(&fs_info->profiles_lock);
9300 if (flags & BTRFS_BLOCK_GROUP_DATA)
9301 fs_info->avail_data_alloc_bits &= ~extra_flags;
9302 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9303 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9304 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9305 fs_info->avail_system_alloc_bits &= ~extra_flags;
9306 write_sequnlock(&fs_info->profiles_lock);
9307 }
9308
9309 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9310 struct btrfs_root *root, u64 group_start,
9311 struct extent_map *em)
9312 {
9313 struct btrfs_path *path;
9314 struct btrfs_block_group_cache *block_group;
9315 struct btrfs_free_cluster *cluster;
9316 struct btrfs_root *tree_root = root->fs_info->tree_root;
9317 struct btrfs_key key;
9318 struct inode *inode;
9319 struct kobject *kobj = NULL;
9320 int ret;
9321 int index;
9322 int factor;
9323 struct btrfs_caching_control *caching_ctl = NULL;
9324 bool remove_em;
9325
9326 root = root->fs_info->extent_root;
9327
9328 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9329 BUG_ON(!block_group);
9330 BUG_ON(!block_group->ro);
9331
9332 /*
9333 * Free the reserved super bytes from this block group before
9334 * remove it.
9335 */
9336 free_excluded_extents(root, block_group);
9337
9338 memcpy(&key, &block_group->key, sizeof(key));
9339 index = get_block_group_index(block_group);
9340 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9341 BTRFS_BLOCK_GROUP_RAID1 |
9342 BTRFS_BLOCK_GROUP_RAID10))
9343 factor = 2;
9344 else
9345 factor = 1;
9346
9347 /* make sure this block group isn't part of an allocation cluster */
9348 cluster = &root->fs_info->data_alloc_cluster;
9349 spin_lock(&cluster->refill_lock);
9350 btrfs_return_cluster_to_free_space(block_group, cluster);
9351 spin_unlock(&cluster->refill_lock);
9352
9353 /*
9354 * make sure this block group isn't part of a metadata
9355 * allocation cluster
9356 */
9357 cluster = &root->fs_info->meta_alloc_cluster;
9358 spin_lock(&cluster->refill_lock);
9359 btrfs_return_cluster_to_free_space(block_group, cluster);
9360 spin_unlock(&cluster->refill_lock);
9361
9362 path = btrfs_alloc_path();
9363 if (!path) {
9364 ret = -ENOMEM;
9365 goto out;
9366 }
9367
9368 inode = lookup_free_space_inode(tree_root, block_group, path);
9369 if (!IS_ERR(inode)) {
9370 ret = btrfs_orphan_add(trans, inode);
9371 if (ret) {
9372 btrfs_add_delayed_iput(inode);
9373 goto out;
9374 }
9375 clear_nlink(inode);
9376 /* One for the block groups ref */
9377 spin_lock(&block_group->lock);
9378 if (block_group->iref) {
9379 block_group->iref = 0;
9380 block_group->inode = NULL;
9381 spin_unlock(&block_group->lock);
9382 iput(inode);
9383 } else {
9384 spin_unlock(&block_group->lock);
9385 }
9386 /* One for our lookup ref */
9387 btrfs_add_delayed_iput(inode);
9388 }
9389
9390 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9391 key.offset = block_group->key.objectid;
9392 key.type = 0;
9393
9394 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9395 if (ret < 0)
9396 goto out;
9397 if (ret > 0)
9398 btrfs_release_path(path);
9399 if (ret == 0) {
9400 ret = btrfs_del_item(trans, tree_root, path);
9401 if (ret)
9402 goto out;
9403 btrfs_release_path(path);
9404 }
9405
9406 spin_lock(&root->fs_info->block_group_cache_lock);
9407 rb_erase(&block_group->cache_node,
9408 &root->fs_info->block_group_cache_tree);
9409 RB_CLEAR_NODE(&block_group->cache_node);
9410
9411 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9412 root->fs_info->first_logical_byte = (u64)-1;
9413 spin_unlock(&root->fs_info->block_group_cache_lock);
9414
9415 down_write(&block_group->space_info->groups_sem);
9416 /*
9417 * we must use list_del_init so people can check to see if they
9418 * are still on the list after taking the semaphore
9419 */
9420 list_del_init(&block_group->list);
9421 list_del_init(&block_group->ro_list);
9422 if (list_empty(&block_group->space_info->block_groups[index])) {
9423 kobj = block_group->space_info->block_group_kobjs[index];
9424 block_group->space_info->block_group_kobjs[index] = NULL;
9425 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9426 }
9427 up_write(&block_group->space_info->groups_sem);
9428 if (kobj) {
9429 kobject_del(kobj);
9430 kobject_put(kobj);
9431 }
9432
9433 if (block_group->has_caching_ctl)
9434 caching_ctl = get_caching_control(block_group);
9435 if (block_group->cached == BTRFS_CACHE_STARTED)
9436 wait_block_group_cache_done(block_group);
9437 if (block_group->has_caching_ctl) {
9438 down_write(&root->fs_info->commit_root_sem);
9439 if (!caching_ctl) {
9440 struct btrfs_caching_control *ctl;
9441
9442 list_for_each_entry(ctl,
9443 &root->fs_info->caching_block_groups, list)
9444 if (ctl->block_group == block_group) {
9445 caching_ctl = ctl;
9446 atomic_inc(&caching_ctl->count);
9447 break;
9448 }
9449 }
9450 if (caching_ctl)
9451 list_del_init(&caching_ctl->list);
9452 up_write(&root->fs_info->commit_root_sem);
9453 if (caching_ctl) {
9454 /* Once for the caching bgs list and once for us. */
9455 put_caching_control(caching_ctl);
9456 put_caching_control(caching_ctl);
9457 }
9458 }
9459
9460 btrfs_remove_free_space_cache(block_group);
9461
9462 spin_lock(&block_group->space_info->lock);
9463 block_group->space_info->total_bytes -= block_group->key.offset;
9464 block_group->space_info->bytes_readonly -= block_group->key.offset;
9465 block_group->space_info->disk_total -= block_group->key.offset * factor;
9466 spin_unlock(&block_group->space_info->lock);
9467
9468 memcpy(&key, &block_group->key, sizeof(key));
9469
9470 lock_chunks(root);
9471 spin_lock(&block_group->lock);
9472 block_group->removed = 1;
9473 /*
9474 * At this point trimming can't start on this block group, because we
9475 * removed the block group from the tree fs_info->block_group_cache_tree
9476 * so no one can't find it anymore and even if someone already got this
9477 * block group before we removed it from the rbtree, they have already
9478 * incremented block_group->trimming - if they didn't, they won't find
9479 * any free space entries because we already removed them all when we
9480 * called btrfs_remove_free_space_cache().
9481 *
9482 * And we must not remove the extent map from the fs_info->mapping_tree
9483 * to prevent the same logical address range and physical device space
9484 * ranges from being reused for a new block group. This is because our
9485 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9486 * completely transactionless, so while it is trimming a range the
9487 * currently running transaction might finish and a new one start,
9488 * allowing for new block groups to be created that can reuse the same
9489 * physical device locations unless we take this special care.
9490 */
9491 remove_em = (atomic_read(&block_group->trimming) == 0);
9492 /*
9493 * Make sure a trimmer task always sees the em in the pinned_chunks list
9494 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9495 * before checking block_group->removed).
9496 */
9497 if (!remove_em) {
9498 /*
9499 * Our em might be in trans->transaction->pending_chunks which
9500 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9501 * and so is the fs_info->pinned_chunks list.
9502 *
9503 * So at this point we must be holding the chunk_mutex to avoid
9504 * any races with chunk allocation (more specifically at
9505 * volumes.c:contains_pending_extent()), to ensure it always
9506 * sees the em, either in the pending_chunks list or in the
9507 * pinned_chunks list.
9508 */
9509 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9510 }
9511 spin_unlock(&block_group->lock);
9512 unlock_chunks(root);
9513
9514 if (remove_em) {
9515 struct extent_map_tree *em_tree;
9516
9517 em_tree = &root->fs_info->mapping_tree.map_tree;
9518 write_lock(&em_tree->lock);
9519 remove_extent_mapping(em_tree, em);
9520 write_unlock(&em_tree->lock);
9521 /* once for the tree */
9522 free_extent_map(em);
9523 }
9524
9525 btrfs_put_block_group(block_group);
9526 btrfs_put_block_group(block_group);
9527
9528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9529 if (ret > 0)
9530 ret = -EIO;
9531 if (ret < 0)
9532 goto out;
9533
9534 ret = btrfs_del_item(trans, root, path);
9535 out:
9536 btrfs_free_path(path);
9537 return ret;
9538 }
9539
9540 /*
9541 * Process the unused_bgs list and remove any that don't have any allocated
9542 * space inside of them.
9543 */
9544 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9545 {
9546 struct btrfs_block_group_cache *block_group;
9547 struct btrfs_space_info *space_info;
9548 struct btrfs_root *root = fs_info->extent_root;
9549 struct btrfs_trans_handle *trans;
9550 int ret = 0;
9551
9552 if (!fs_info->open)
9553 return;
9554
9555 spin_lock(&fs_info->unused_bgs_lock);
9556 while (!list_empty(&fs_info->unused_bgs)) {
9557 u64 start, end;
9558
9559 block_group = list_first_entry(&fs_info->unused_bgs,
9560 struct btrfs_block_group_cache,
9561 bg_list);
9562 space_info = block_group->space_info;
9563 list_del_init(&block_group->bg_list);
9564 if (ret || btrfs_mixed_space_info(space_info)) {
9565 btrfs_put_block_group(block_group);
9566 continue;
9567 }
9568 spin_unlock(&fs_info->unused_bgs_lock);
9569
9570 /* Don't want to race with allocators so take the groups_sem */
9571 down_write(&space_info->groups_sem);
9572 spin_lock(&block_group->lock);
9573 if (block_group->reserved ||
9574 btrfs_block_group_used(&block_group->item) ||
9575 block_group->ro) {
9576 /*
9577 * We want to bail if we made new allocations or have
9578 * outstanding allocations in this block group. We do
9579 * the ro check in case balance is currently acting on
9580 * this block group.
9581 */
9582 spin_unlock(&block_group->lock);
9583 up_write(&space_info->groups_sem);
9584 goto next;
9585 }
9586 spin_unlock(&block_group->lock);
9587
9588 /* We don't want to force the issue, only flip if it's ok. */
9589 ret = set_block_group_ro(block_group, 0);
9590 up_write(&space_info->groups_sem);
9591 if (ret < 0) {
9592 ret = 0;
9593 goto next;
9594 }
9595
9596 /*
9597 * Want to do this before we do anything else so we can recover
9598 * properly if we fail to join the transaction.
9599 */
9600 trans = btrfs_join_transaction(root);
9601 if (IS_ERR(trans)) {
9602 btrfs_set_block_group_rw(root, block_group);
9603 ret = PTR_ERR(trans);
9604 goto next;
9605 }
9606
9607 /*
9608 * We could have pending pinned extents for this block group,
9609 * just delete them, we don't care about them anymore.
9610 */
9611 start = block_group->key.objectid;
9612 end = start + block_group->key.offset - 1;
9613 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9614 EXTENT_DIRTY, GFP_NOFS);
9615 if (ret) {
9616 btrfs_set_block_group_rw(root, block_group);
9617 goto end_trans;
9618 }
9619 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9620 EXTENT_DIRTY, GFP_NOFS);
9621 if (ret) {
9622 btrfs_set_block_group_rw(root, block_group);
9623 goto end_trans;
9624 }
9625
9626 /* Reset pinned so btrfs_put_block_group doesn't complain */
9627 block_group->pinned = 0;
9628
9629 /*
9630 * Btrfs_remove_chunk will abort the transaction if things go
9631 * horribly wrong.
9632 */
9633 ret = btrfs_remove_chunk(trans, root,
9634 block_group->key.objectid);
9635 end_trans:
9636 btrfs_end_transaction(trans, root);
9637 next:
9638 btrfs_put_block_group(block_group);
9639 spin_lock(&fs_info->unused_bgs_lock);
9640 }
9641 spin_unlock(&fs_info->unused_bgs_lock);
9642 }
9643
9644 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9645 {
9646 struct btrfs_space_info *space_info;
9647 struct btrfs_super_block *disk_super;
9648 u64 features;
9649 u64 flags;
9650 int mixed = 0;
9651 int ret;
9652
9653 disk_super = fs_info->super_copy;
9654 if (!btrfs_super_root(disk_super))
9655 return 1;
9656
9657 features = btrfs_super_incompat_flags(disk_super);
9658 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9659 mixed = 1;
9660
9661 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9662 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9663 if (ret)
9664 goto out;
9665
9666 if (mixed) {
9667 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9668 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9669 } else {
9670 flags = BTRFS_BLOCK_GROUP_METADATA;
9671 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9672 if (ret)
9673 goto out;
9674
9675 flags = BTRFS_BLOCK_GROUP_DATA;
9676 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9677 }
9678 out:
9679 return ret;
9680 }
9681
9682 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9683 {
9684 return unpin_extent_range(root, start, end);
9685 }
9686
9687 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9688 u64 num_bytes, u64 *actual_bytes)
9689 {
9690 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9691 }
9692
9693 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9694 {
9695 struct btrfs_fs_info *fs_info = root->fs_info;
9696 struct btrfs_block_group_cache *cache = NULL;
9697 u64 group_trimmed;
9698 u64 start;
9699 u64 end;
9700 u64 trimmed = 0;
9701 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9702 int ret = 0;
9703
9704 /*
9705 * try to trim all FS space, our block group may start from non-zero.
9706 */
9707 if (range->len == total_bytes)
9708 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9709 else
9710 cache = btrfs_lookup_block_group(fs_info, range->start);
9711
9712 while (cache) {
9713 if (cache->key.objectid >= (range->start + range->len)) {
9714 btrfs_put_block_group(cache);
9715 break;
9716 }
9717
9718 start = max(range->start, cache->key.objectid);
9719 end = min(range->start + range->len,
9720 cache->key.objectid + cache->key.offset);
9721
9722 if (end - start >= range->minlen) {
9723 if (!block_group_cache_done(cache)) {
9724 ret = cache_block_group(cache, 0);
9725 if (ret) {
9726 btrfs_put_block_group(cache);
9727 break;
9728 }
9729 ret = wait_block_group_cache_done(cache);
9730 if (ret) {
9731 btrfs_put_block_group(cache);
9732 break;
9733 }
9734 }
9735 ret = btrfs_trim_block_group(cache,
9736 &group_trimmed,
9737 start,
9738 end,
9739 range->minlen);
9740
9741 trimmed += group_trimmed;
9742 if (ret) {
9743 btrfs_put_block_group(cache);
9744 break;
9745 }
9746 }
9747
9748 cache = next_block_group(fs_info->tree_root, cache);
9749 }
9750
9751 range->len = trimmed;
9752 return ret;
9753 }
9754
9755 /*
9756 * btrfs_{start,end}_write_no_snapshoting() are similar to
9757 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9758 * data into the page cache through nocow before the subvolume is snapshoted,
9759 * but flush the data into disk after the snapshot creation, or to prevent
9760 * operations while snapshoting is ongoing and that cause the snapshot to be
9761 * inconsistent (writes followed by expanding truncates for example).
9762 */
9763 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9764 {
9765 percpu_counter_dec(&root->subv_writers->counter);
9766 /*
9767 * Make sure counter is updated before we wake up
9768 * waiters.
9769 */
9770 smp_mb();
9771 if (waitqueue_active(&root->subv_writers->wait))
9772 wake_up(&root->subv_writers->wait);
9773 }
9774
9775 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9776 {
9777 if (atomic_read(&root->will_be_snapshoted))
9778 return 0;
9779
9780 percpu_counter_inc(&root->subv_writers->counter);
9781 /*
9782 * Make sure counter is updated before we check for snapshot creation.
9783 */
9784 smp_mb();
9785 if (atomic_read(&root->will_be_snapshoted)) {
9786 btrfs_end_write_no_snapshoting(root);
9787 return 0;
9788 }
9789 return 1;
9790 }