]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret = -ENOMEM;
391
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 goto out;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 /*
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
408 */
409 path->skip_locking = 1;
410 path->search_commit_root = 1;
411 path->reada = 1;
412
413 key.objectid = last;
414 key.offset = 0;
415 key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 mutex_lock(&caching_ctl->mutex);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info->commit_root_sem);
420
421 next:
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info->commit_root_sem)) {
444 caching_ctl->progress = last;
445 btrfs_release_path(path);
446 up_read(&fs_info->commit_root_sem);
447 mutex_unlock(&caching_ctl->mutex);
448 cond_resched();
449 goto again;
450 }
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
460 }
461
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
474 continue;
475 }
476
477 if (key.objectid >= block_group->key.objectid +
478 block_group->key.offset)
479 break;
480
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
488 fs_info->tree_root->nodesize;
489 else
490 last = key.objectid + key.offset;
491
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
496 }
497 path->slots[0]++;
498 }
499 ret = 0;
500
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
504 caching_ctl->progress = (u64)-1;
505
506 spin_lock(&block_group->lock);
507 block_group->caching_ctl = NULL;
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
510
511 err:
512 btrfs_free_path(path);
513 up_read(&fs_info->commit_root_sem);
514
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
518 out:
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
528 btrfs_put_block_group(block_group);
529 }
530
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 int load_cache_only)
533 {
534 DEFINE_WAIT(wait);
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 int ret = 0;
538
539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 if (!caching_ctl)
541 return -ENOMEM;
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 mutex_lock(&caching_ctl->mutex);
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 caching_ctl->progress = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 cache->has_caching_ctl = 1;
607 }
608 }
609 spin_unlock(&cache->lock);
610 mutex_unlock(&caching_ctl->mutex);
611
612 wake_up(&caching_ctl->wait);
613 if (ret == 1) {
614 put_caching_control(caching_ctl);
615 free_excluded_extents(fs_info->extent_root, cache);
616 return 0;
617 }
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
629 cache->has_caching_ctl = 1;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1320 struct btrfs_extent_inline_ref *iref)
1321 {
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358 }
1359
1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1365 {
1366 struct btrfs_key key;
1367 int ret;
1368
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1376 }
1377
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
1383 btrfs_release_path(path);
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1389 #endif
1390 return ret;
1391 }
1392
1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
1398 {
1399 struct btrfs_key key;
1400 int ret;
1401
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1412 btrfs_release_path(path);
1413 return ret;
1414 }
1415
1416 static inline int extent_ref_type(u64 parent, u64 owner)
1417 {
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
1431 }
1432
1433 static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
1435
1436 {
1437 for (; level < BTRFS_MAX_LEVEL; level++) {
1438 if (!path->nodes[level])
1439 break;
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452 }
1453
1454 /*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467 static noinline_for_stack
1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475 {
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
1491
1492 key.objectid = bytenr;
1493 key.type = BTRFS_EXTENT_ITEM_KEY;
1494 key.offset = num_bytes;
1495
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
1499 path->keep_locks = 1;
1500 } else
1501 extra_size = -1;
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512 again:
1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1514 if (ret < 0) {
1515 err = ret;
1516 goto out;
1517 }
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
1535 key.objectid = bytenr;
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
1546 } else if (WARN_ON(ret)) {
1547 err = -EIO;
1548 goto out;
1549 }
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568 #endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649 out:
1650 if (insert) {
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655 }
1656
1657 /*
1658 * helper to add new inline back ref
1659 */
1660 static noinline_for_stack
1661 void setup_inline_extent_backref(struct btrfs_root *root,
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
1667 {
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
1684 btrfs_extend_item(root, path, size);
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
1719 }
1720
1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727 {
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
1734 return ret;
1735
1736 btrfs_release_path(path);
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
1745 }
1746 return ret;
1747 }
1748
1749 /*
1750 * helper to update/remove inline back ref
1751 */
1752 static noinline_for_stack
1753 void update_inline_extent_backref(struct btrfs_root *root,
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
1759 {
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
1791 }
1792
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
1802 *last_ref = 1;
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
1811 btrfs_truncate_item(root, path, item_size, 1);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static noinline_for_stack
1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824 {
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1833 update_inline_extent_backref(root, path, iref,
1834 refs_to_add, extent_op, NULL);
1835 } else if (ret == -ENOENT) {
1836 setup_inline_extent_backref(root, path, iref, parent,
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
1840 }
1841 return ret;
1842 }
1843
1844 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849 {
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861 }
1862
1863 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
1867 int refs_to_drop, int is_data, int *last_ref)
1868 {
1869 int ret = 0;
1870
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
1873 update_inline_extent_backref(root, path, iref,
1874 -refs_to_drop, NULL, last_ref);
1875 } else if (is_data) {
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
1878 } else {
1879 *last_ref = 1;
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883 }
1884
1885 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
1888 {
1889 int j, ret = 0;
1890 u64 bytes_left, end;
1891 u64 aligned_start = ALIGN(start, 1 << 9);
1892
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
1898
1899 *discarded_bytes = 0;
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1951 GFP_NOFS, 0);
1952 if (!ret)
1953 *discarded_bytes += bytes_left;
1954 }
1955 return ret;
1956 }
1957
1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
1960 {
1961 int ret;
1962 u64 discarded_bytes = 0;
1963 struct btrfs_bio *bbio = NULL;
1964
1965
1966 /* Tell the block device(s) that the sectors can be discarded */
1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1968 bytenr, &num_bytes, &bbio, 0);
1969 /* Error condition is -ENOMEM */
1970 if (!ret) {
1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
1972 int i;
1973
1974
1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1976 u64 bytes;
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
1982 stripe->length,
1983 &bytes);
1984 if (!ret)
1985 discarded_bytes += bytes;
1986 else if (ret != -EOPNOTSUPP)
1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
1995 }
1996 btrfs_put_bbio(bbio);
1997 }
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
2002
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
2005 return ret;
2006 }
2007
2008 /* Can return -ENOMEM */
2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
2014 {
2015 int ret;
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
2024 parent, root_objectid, (int)owner,
2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2026 } else {
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
2029 parent, root_objectid, owner, offset,
2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2031 }
2032 return ret;
2033 }
2034
2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
2037 struct btrfs_delayed_ref_node *node,
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041 {
2042 struct btrfs_fs_info *fs_info = root->fs_info;
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
2046 struct btrfs_key key;
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
2049 u64 refs;
2050 int ret;
2051 int no_quota = node->no_quota;
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
2068 goto out;
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
2075 leaf = path->nodes[0];
2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
2082
2083 btrfs_mark_buffer_dirty(leaf);
2084 btrfs_release_path(path);
2085
2086 path->reada = 1;
2087 path->leave_spinning = 1;
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
2094 out:
2095 btrfs_free_path(path);
2096 return ret;
2097 }
2098
2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
2104 {
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
2121 ref_root = ref->root;
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2124 if (extent_op)
2125 flags |= extent_op->flags_to_set;
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
2134 extent_op);
2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2136 ret = __btrfs_free_extent(trans, root, node, parent,
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
2139 extent_op);
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144 }
2145
2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149 {
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162 }
2163
2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168 {
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
2174 int ret;
2175 int err = 0;
2176 int metadata = !extent_op->is_data;
2177
2178 if (trans->aborted)
2179 return 0;
2180
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
2189
2190 if (metadata) {
2191 key.type = BTRFS_METADATA_ITEM_KEY;
2192 key.offset = extent_op->level;
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198 again:
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
2208 if (metadata) {
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
2221
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
2230 }
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246 #endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
2250
2251 btrfs_mark_buffer_dirty(leaf);
2252 out:
2253 btrfs_free_path(path);
2254 return err;
2255 }
2256
2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
2262 {
2263 int ret = 0;
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
2270
2271 ref = btrfs_delayed_node_to_tree_ref(node);
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
2276 ref_root = ref->root;
2277
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2289 BUG_ON(!extent_op || !extent_op->update_flags);
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
2294 ref->level, &ins,
2295 node->no_quota);
2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
2300 extent_op);
2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
2305 } else {
2306 BUG();
2307 }
2308 return ret;
2309 }
2310
2311 /* helper function to actually process a single delayed ref entry */
2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
2317 {
2318 int ret = 0;
2319
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
2324 return 0;
2325 }
2326
2327 if (btrfs_delayed_ref_is_head(node)) {
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
2339 if (insert_reserved) {
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
2346 }
2347 }
2348 return ret;
2349 }
2350
2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2353 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2354 insert_reserved);
2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2356 node->type == BTRFS_SHARED_DATA_REF_KEY)
2357 ret = run_delayed_data_ref(trans, root, node, extent_op,
2358 insert_reserved);
2359 else
2360 BUG();
2361 return ret;
2362 }
2363
2364 static inline struct btrfs_delayed_ref_node *
2365 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2366 {
2367 struct btrfs_delayed_ref_node *ref;
2368
2369 if (list_empty(&head->ref_list))
2370 return NULL;
2371
2372 /*
2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2374 * This is to prevent a ref count from going down to zero, which deletes
2375 * the extent item from the extent tree, when there still are references
2376 * to add, which would fail because they would not find the extent item.
2377 */
2378 list_for_each_entry(ref, &head->ref_list, list) {
2379 if (ref->action == BTRFS_ADD_DELAYED_REF)
2380 return ref;
2381 }
2382
2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2384 list);
2385 }
2386
2387 /*
2388 * Returns 0 on success or if called with an already aborted transaction.
2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2390 */
2391 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 unsigned long nr)
2394 {
2395 struct btrfs_delayed_ref_root *delayed_refs;
2396 struct btrfs_delayed_ref_node *ref;
2397 struct btrfs_delayed_ref_head *locked_ref = NULL;
2398 struct btrfs_delayed_extent_op *extent_op;
2399 struct btrfs_fs_info *fs_info = root->fs_info;
2400 ktime_t start = ktime_get();
2401 int ret;
2402 unsigned long count = 0;
2403 unsigned long actual_count = 0;
2404 int must_insert_reserved = 0;
2405
2406 delayed_refs = &trans->transaction->delayed_refs;
2407 while (1) {
2408 if (!locked_ref) {
2409 if (count >= nr)
2410 break;
2411
2412 spin_lock(&delayed_refs->lock);
2413 locked_ref = btrfs_select_ref_head(trans);
2414 if (!locked_ref) {
2415 spin_unlock(&delayed_refs->lock);
2416 break;
2417 }
2418
2419 /* grab the lock that says we are going to process
2420 * all the refs for this head */
2421 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2422 spin_unlock(&delayed_refs->lock);
2423 /*
2424 * we may have dropped the spin lock to get the head
2425 * mutex lock, and that might have given someone else
2426 * time to free the head. If that's true, it has been
2427 * removed from our list and we can move on.
2428 */
2429 if (ret == -EAGAIN) {
2430 locked_ref = NULL;
2431 count++;
2432 continue;
2433 }
2434 }
2435
2436 spin_lock(&locked_ref->lock);
2437
2438 /*
2439 * locked_ref is the head node, so we have to go one
2440 * node back for any delayed ref updates
2441 */
2442 ref = select_delayed_ref(locked_ref);
2443
2444 if (ref && ref->seq &&
2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2446 spin_unlock(&locked_ref->lock);
2447 btrfs_delayed_ref_unlock(locked_ref);
2448 spin_lock(&delayed_refs->lock);
2449 locked_ref->processing = 0;
2450 delayed_refs->num_heads_ready++;
2451 spin_unlock(&delayed_refs->lock);
2452 locked_ref = NULL;
2453 cond_resched();
2454 count++;
2455 continue;
2456 }
2457
2458 /*
2459 * record the must insert reserved flag before we
2460 * drop the spin lock.
2461 */
2462 must_insert_reserved = locked_ref->must_insert_reserved;
2463 locked_ref->must_insert_reserved = 0;
2464
2465 extent_op = locked_ref->extent_op;
2466 locked_ref->extent_op = NULL;
2467
2468 if (!ref) {
2469
2470
2471 /* All delayed refs have been processed, Go ahead
2472 * and send the head node to run_one_delayed_ref,
2473 * so that any accounting fixes can happen
2474 */
2475 ref = &locked_ref->node;
2476
2477 if (extent_op && must_insert_reserved) {
2478 btrfs_free_delayed_extent_op(extent_op);
2479 extent_op = NULL;
2480 }
2481
2482 if (extent_op) {
2483 spin_unlock(&locked_ref->lock);
2484 ret = run_delayed_extent_op(trans, root,
2485 ref, extent_op);
2486 btrfs_free_delayed_extent_op(extent_op);
2487
2488 if (ret) {
2489 /*
2490 * Need to reset must_insert_reserved if
2491 * there was an error so the abort stuff
2492 * can cleanup the reserved space
2493 * properly.
2494 */
2495 if (must_insert_reserved)
2496 locked_ref->must_insert_reserved = 1;
2497 locked_ref->processing = 0;
2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2499 btrfs_delayed_ref_unlock(locked_ref);
2500 return ret;
2501 }
2502 continue;
2503 }
2504
2505 /*
2506 * Need to drop our head ref lock and re-aqcuire the
2507 * delayed ref lock and then re-check to make sure
2508 * nobody got added.
2509 */
2510 spin_unlock(&locked_ref->lock);
2511 spin_lock(&delayed_refs->lock);
2512 spin_lock(&locked_ref->lock);
2513 if (!list_empty(&locked_ref->ref_list) ||
2514 locked_ref->extent_op) {
2515 spin_unlock(&locked_ref->lock);
2516 spin_unlock(&delayed_refs->lock);
2517 continue;
2518 }
2519 ref->in_tree = 0;
2520 delayed_refs->num_heads--;
2521 rb_erase(&locked_ref->href_node,
2522 &delayed_refs->href_root);
2523 spin_unlock(&delayed_refs->lock);
2524 } else {
2525 actual_count++;
2526 ref->in_tree = 0;
2527 list_del(&ref->list);
2528 }
2529 atomic_dec(&delayed_refs->num_entries);
2530
2531 if (!btrfs_delayed_ref_is_head(ref)) {
2532 /*
2533 * when we play the delayed ref, also correct the
2534 * ref_mod on head
2535 */
2536 switch (ref->action) {
2537 case BTRFS_ADD_DELAYED_REF:
2538 case BTRFS_ADD_DELAYED_EXTENT:
2539 locked_ref->node.ref_mod -= ref->ref_mod;
2540 break;
2541 case BTRFS_DROP_DELAYED_REF:
2542 locked_ref->node.ref_mod += ref->ref_mod;
2543 break;
2544 default:
2545 WARN_ON(1);
2546 }
2547 }
2548 spin_unlock(&locked_ref->lock);
2549
2550 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2551 must_insert_reserved);
2552
2553 btrfs_free_delayed_extent_op(extent_op);
2554 if (ret) {
2555 locked_ref->processing = 0;
2556 btrfs_delayed_ref_unlock(locked_ref);
2557 btrfs_put_delayed_ref(ref);
2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2559 return ret;
2560 }
2561
2562 /*
2563 * If this node is a head, that means all the refs in this head
2564 * have been dealt with, and we will pick the next head to deal
2565 * with, so we must unlock the head and drop it from the cluster
2566 * list before we release it.
2567 */
2568 if (btrfs_delayed_ref_is_head(ref)) {
2569 if (locked_ref->is_data &&
2570 locked_ref->total_ref_mod < 0) {
2571 spin_lock(&delayed_refs->lock);
2572 delayed_refs->pending_csums -= ref->num_bytes;
2573 spin_unlock(&delayed_refs->lock);
2574 }
2575 btrfs_delayed_ref_unlock(locked_ref);
2576 locked_ref = NULL;
2577 }
2578 btrfs_put_delayed_ref(ref);
2579 count++;
2580 cond_resched();
2581 }
2582
2583 /*
2584 * We don't want to include ref heads since we can have empty ref heads
2585 * and those will drastically skew our runtime down since we just do
2586 * accounting, no actual extent tree updates.
2587 */
2588 if (actual_count > 0) {
2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2590 u64 avg;
2591
2592 /*
2593 * We weigh the current average higher than our current runtime
2594 * to avoid large swings in the average.
2595 */
2596 spin_lock(&delayed_refs->lock);
2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2599 spin_unlock(&delayed_refs->lock);
2600 }
2601 return 0;
2602 }
2603
2604 #ifdef SCRAMBLE_DELAYED_REFS
2605 /*
2606 * Normally delayed refs get processed in ascending bytenr order. This
2607 * correlates in most cases to the order added. To expose dependencies on this
2608 * order, we start to process the tree in the middle instead of the beginning
2609 */
2610 static u64 find_middle(struct rb_root *root)
2611 {
2612 struct rb_node *n = root->rb_node;
2613 struct btrfs_delayed_ref_node *entry;
2614 int alt = 1;
2615 u64 middle;
2616 u64 first = 0, last = 0;
2617
2618 n = rb_first(root);
2619 if (n) {
2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2621 first = entry->bytenr;
2622 }
2623 n = rb_last(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 last = entry->bytenr;
2627 }
2628 n = root->rb_node;
2629
2630 while (n) {
2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2632 WARN_ON(!entry->in_tree);
2633
2634 middle = entry->bytenr;
2635
2636 if (alt)
2637 n = n->rb_left;
2638 else
2639 n = n->rb_right;
2640
2641 alt = 1 - alt;
2642 }
2643 return middle;
2644 }
2645 #endif
2646
2647 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2648 {
2649 u64 num_bytes;
2650
2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2652 sizeof(struct btrfs_extent_inline_ref));
2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2655
2656 /*
2657 * We don't ever fill up leaves all the way so multiply by 2 just to be
2658 * closer to what we're really going to want to ouse.
2659 */
2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2661 }
2662
2663 /*
2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2665 * would require to store the csums for that many bytes.
2666 */
2667 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2668 {
2669 u64 csum_size;
2670 u64 num_csums_per_leaf;
2671 u64 num_csums;
2672
2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2674 num_csums_per_leaf = div64_u64(csum_size,
2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2676 num_csums = div64_u64(csum_bytes, root->sectorsize);
2677 num_csums += num_csums_per_leaf - 1;
2678 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2679 return num_csums;
2680 }
2681
2682 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2683 struct btrfs_root *root)
2684 {
2685 struct btrfs_block_rsv *global_rsv;
2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2689 u64 num_bytes, num_dirty_bgs_bytes;
2690 int ret = 0;
2691
2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2693 num_heads = heads_to_leaves(root, num_heads);
2694 if (num_heads > 1)
2695 num_bytes += (num_heads - 1) * root->nodesize;
2696 num_bytes <<= 1;
2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2699 num_dirty_bgs);
2700 global_rsv = &root->fs_info->global_block_rsv;
2701
2702 /*
2703 * If we can't allocate any more chunks lets make sure we have _lots_ of
2704 * wiggle room since running delayed refs can create more delayed refs.
2705 */
2706 if (global_rsv->space_info->full) {
2707 num_dirty_bgs_bytes <<= 1;
2708 num_bytes <<= 1;
2709 }
2710
2711 spin_lock(&global_rsv->lock);
2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2713 ret = 1;
2714 spin_unlock(&global_rsv->lock);
2715 return ret;
2716 }
2717
2718 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2719 struct btrfs_root *root)
2720 {
2721 struct btrfs_fs_info *fs_info = root->fs_info;
2722 u64 num_entries =
2723 atomic_read(&trans->transaction->delayed_refs.num_entries);
2724 u64 avg_runtime;
2725 u64 val;
2726
2727 smp_mb();
2728 avg_runtime = fs_info->avg_delayed_ref_runtime;
2729 val = num_entries * avg_runtime;
2730 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2731 return 1;
2732 if (val >= NSEC_PER_SEC / 2)
2733 return 2;
2734
2735 return btrfs_check_space_for_delayed_refs(trans, root);
2736 }
2737
2738 struct async_delayed_refs {
2739 struct btrfs_root *root;
2740 int count;
2741 int error;
2742 int sync;
2743 struct completion wait;
2744 struct btrfs_work work;
2745 };
2746
2747 static void delayed_ref_async_start(struct btrfs_work *work)
2748 {
2749 struct async_delayed_refs *async;
2750 struct btrfs_trans_handle *trans;
2751 int ret;
2752
2753 async = container_of(work, struct async_delayed_refs, work);
2754
2755 trans = btrfs_join_transaction(async->root);
2756 if (IS_ERR(trans)) {
2757 async->error = PTR_ERR(trans);
2758 goto done;
2759 }
2760
2761 /*
2762 * trans->sync means that when we call end_transaciton, we won't
2763 * wait on delayed refs
2764 */
2765 trans->sync = true;
2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2767 if (ret)
2768 async->error = ret;
2769
2770 ret = btrfs_end_transaction(trans, async->root);
2771 if (ret && !async->error)
2772 async->error = ret;
2773 done:
2774 if (async->sync)
2775 complete(&async->wait);
2776 else
2777 kfree(async);
2778 }
2779
2780 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2781 unsigned long count, int wait)
2782 {
2783 struct async_delayed_refs *async;
2784 int ret;
2785
2786 async = kmalloc(sizeof(*async), GFP_NOFS);
2787 if (!async)
2788 return -ENOMEM;
2789
2790 async->root = root->fs_info->tree_root;
2791 async->count = count;
2792 async->error = 0;
2793 if (wait)
2794 async->sync = 1;
2795 else
2796 async->sync = 0;
2797 init_completion(&async->wait);
2798
2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2800 delayed_ref_async_start, NULL, NULL);
2801
2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2803
2804 if (wait) {
2805 wait_for_completion(&async->wait);
2806 ret = async->error;
2807 kfree(async);
2808 return ret;
2809 }
2810 return 0;
2811 }
2812
2813 /*
2814 * this starts processing the delayed reference count updates and
2815 * extent insertions we have queued up so far. count can be
2816 * 0, which means to process everything in the tree at the start
2817 * of the run (but not newly added entries), or it can be some target
2818 * number you'd like to process.
2819 *
2820 * Returns 0 on success or if called with an aborted transaction
2821 * Returns <0 on error and aborts the transaction
2822 */
2823 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_root *root, unsigned long count)
2825 {
2826 struct rb_node *node;
2827 struct btrfs_delayed_ref_root *delayed_refs;
2828 struct btrfs_delayed_ref_head *head;
2829 int ret;
2830 int run_all = count == (unsigned long)-1;
2831
2832 /* We'll clean this up in btrfs_cleanup_transaction */
2833 if (trans->aborted)
2834 return 0;
2835
2836 if (root == root->fs_info->extent_root)
2837 root = root->fs_info->tree_root;
2838
2839 delayed_refs = &trans->transaction->delayed_refs;
2840 if (count == 0)
2841 count = atomic_read(&delayed_refs->num_entries) * 2;
2842
2843 again:
2844 #ifdef SCRAMBLE_DELAYED_REFS
2845 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2846 #endif
2847 ret = __btrfs_run_delayed_refs(trans, root, count);
2848 if (ret < 0) {
2849 btrfs_abort_transaction(trans, root, ret);
2850 return ret;
2851 }
2852
2853 if (run_all) {
2854 if (!list_empty(&trans->new_bgs))
2855 btrfs_create_pending_block_groups(trans, root);
2856
2857 spin_lock(&delayed_refs->lock);
2858 node = rb_first(&delayed_refs->href_root);
2859 if (!node) {
2860 spin_unlock(&delayed_refs->lock);
2861 goto out;
2862 }
2863 count = (unsigned long)-1;
2864
2865 while (node) {
2866 head = rb_entry(node, struct btrfs_delayed_ref_head,
2867 href_node);
2868 if (btrfs_delayed_ref_is_head(&head->node)) {
2869 struct btrfs_delayed_ref_node *ref;
2870
2871 ref = &head->node;
2872 atomic_inc(&ref->refs);
2873
2874 spin_unlock(&delayed_refs->lock);
2875 /*
2876 * Mutex was contended, block until it's
2877 * released and try again
2878 */
2879 mutex_lock(&head->mutex);
2880 mutex_unlock(&head->mutex);
2881
2882 btrfs_put_delayed_ref(ref);
2883 cond_resched();
2884 goto again;
2885 } else {
2886 WARN_ON(1);
2887 }
2888 node = rb_next(node);
2889 }
2890 spin_unlock(&delayed_refs->lock);
2891 cond_resched();
2892 goto again;
2893 }
2894 out:
2895 assert_qgroups_uptodate(trans);
2896 return 0;
2897 }
2898
2899 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 u64 bytenr, u64 num_bytes, u64 flags,
2902 int level, int is_data)
2903 {
2904 struct btrfs_delayed_extent_op *extent_op;
2905 int ret;
2906
2907 extent_op = btrfs_alloc_delayed_extent_op();
2908 if (!extent_op)
2909 return -ENOMEM;
2910
2911 extent_op->flags_to_set = flags;
2912 extent_op->update_flags = 1;
2913 extent_op->update_key = 0;
2914 extent_op->is_data = is_data ? 1 : 0;
2915 extent_op->level = level;
2916
2917 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2918 num_bytes, extent_op);
2919 if (ret)
2920 btrfs_free_delayed_extent_op(extent_op);
2921 return ret;
2922 }
2923
2924 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root,
2926 struct btrfs_path *path,
2927 u64 objectid, u64 offset, u64 bytenr)
2928 {
2929 struct btrfs_delayed_ref_head *head;
2930 struct btrfs_delayed_ref_node *ref;
2931 struct btrfs_delayed_data_ref *data_ref;
2932 struct btrfs_delayed_ref_root *delayed_refs;
2933 int ret = 0;
2934
2935 delayed_refs = &trans->transaction->delayed_refs;
2936 spin_lock(&delayed_refs->lock);
2937 head = btrfs_find_delayed_ref_head(trans, bytenr);
2938 if (!head) {
2939 spin_unlock(&delayed_refs->lock);
2940 return 0;
2941 }
2942
2943 if (!mutex_trylock(&head->mutex)) {
2944 atomic_inc(&head->node.refs);
2945 spin_unlock(&delayed_refs->lock);
2946
2947 btrfs_release_path(path);
2948
2949 /*
2950 * Mutex was contended, block until it's released and let
2951 * caller try again
2952 */
2953 mutex_lock(&head->mutex);
2954 mutex_unlock(&head->mutex);
2955 btrfs_put_delayed_ref(&head->node);
2956 return -EAGAIN;
2957 }
2958 spin_unlock(&delayed_refs->lock);
2959
2960 spin_lock(&head->lock);
2961 list_for_each_entry(ref, &head->ref_list, list) {
2962 /* If it's a shared ref we know a cross reference exists */
2963 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2964 ret = 1;
2965 break;
2966 }
2967
2968 data_ref = btrfs_delayed_node_to_data_ref(ref);
2969
2970 /*
2971 * If our ref doesn't match the one we're currently looking at
2972 * then we have a cross reference.
2973 */
2974 if (data_ref->root != root->root_key.objectid ||
2975 data_ref->objectid != objectid ||
2976 data_ref->offset != offset) {
2977 ret = 1;
2978 break;
2979 }
2980 }
2981 spin_unlock(&head->lock);
2982 mutex_unlock(&head->mutex);
2983 return ret;
2984 }
2985
2986 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2987 struct btrfs_root *root,
2988 struct btrfs_path *path,
2989 u64 objectid, u64 offset, u64 bytenr)
2990 {
2991 struct btrfs_root *extent_root = root->fs_info->extent_root;
2992 struct extent_buffer *leaf;
2993 struct btrfs_extent_data_ref *ref;
2994 struct btrfs_extent_inline_ref *iref;
2995 struct btrfs_extent_item *ei;
2996 struct btrfs_key key;
2997 u32 item_size;
2998 int ret;
2999
3000 key.objectid = bytenr;
3001 key.offset = (u64)-1;
3002 key.type = BTRFS_EXTENT_ITEM_KEY;
3003
3004 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3005 if (ret < 0)
3006 goto out;
3007 BUG_ON(ret == 0); /* Corruption */
3008
3009 ret = -ENOENT;
3010 if (path->slots[0] == 0)
3011 goto out;
3012
3013 path->slots[0]--;
3014 leaf = path->nodes[0];
3015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3016
3017 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3018 goto out;
3019
3020 ret = 1;
3021 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3022 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3023 if (item_size < sizeof(*ei)) {
3024 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3025 goto out;
3026 }
3027 #endif
3028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3029
3030 if (item_size != sizeof(*ei) +
3031 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3032 goto out;
3033
3034 if (btrfs_extent_generation(leaf, ei) <=
3035 btrfs_root_last_snapshot(&root->root_item))
3036 goto out;
3037
3038 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3039 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3040 BTRFS_EXTENT_DATA_REF_KEY)
3041 goto out;
3042
3043 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3044 if (btrfs_extent_refs(leaf, ei) !=
3045 btrfs_extent_data_ref_count(leaf, ref) ||
3046 btrfs_extent_data_ref_root(leaf, ref) !=
3047 root->root_key.objectid ||
3048 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3049 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3050 goto out;
3051
3052 ret = 0;
3053 out:
3054 return ret;
3055 }
3056
3057 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3058 struct btrfs_root *root,
3059 u64 objectid, u64 offset, u64 bytenr)
3060 {
3061 struct btrfs_path *path;
3062 int ret;
3063 int ret2;
3064
3065 path = btrfs_alloc_path();
3066 if (!path)
3067 return -ENOENT;
3068
3069 do {
3070 ret = check_committed_ref(trans, root, path, objectid,
3071 offset, bytenr);
3072 if (ret && ret != -ENOENT)
3073 goto out;
3074
3075 ret2 = check_delayed_ref(trans, root, path, objectid,
3076 offset, bytenr);
3077 } while (ret2 == -EAGAIN);
3078
3079 if (ret2 && ret2 != -ENOENT) {
3080 ret = ret2;
3081 goto out;
3082 }
3083
3084 if (ret != -ENOENT || ret2 != -ENOENT)
3085 ret = 0;
3086 out:
3087 btrfs_free_path(path);
3088 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3089 WARN_ON(ret > 0);
3090 return ret;
3091 }
3092
3093 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3094 struct btrfs_root *root,
3095 struct extent_buffer *buf,
3096 int full_backref, int inc)
3097 {
3098 u64 bytenr;
3099 u64 num_bytes;
3100 u64 parent;
3101 u64 ref_root;
3102 u32 nritems;
3103 struct btrfs_key key;
3104 struct btrfs_file_extent_item *fi;
3105 int i;
3106 int level;
3107 int ret = 0;
3108 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3109 u64, u64, u64, u64, u64, u64, int);
3110
3111
3112 if (btrfs_test_is_dummy_root(root))
3113 return 0;
3114
3115 ref_root = btrfs_header_owner(buf);
3116 nritems = btrfs_header_nritems(buf);
3117 level = btrfs_header_level(buf);
3118
3119 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3120 return 0;
3121
3122 if (inc)
3123 process_func = btrfs_inc_extent_ref;
3124 else
3125 process_func = btrfs_free_extent;
3126
3127 if (full_backref)
3128 parent = buf->start;
3129 else
3130 parent = 0;
3131
3132 for (i = 0; i < nritems; i++) {
3133 if (level == 0) {
3134 btrfs_item_key_to_cpu(buf, &key, i);
3135 if (key.type != BTRFS_EXTENT_DATA_KEY)
3136 continue;
3137 fi = btrfs_item_ptr(buf, i,
3138 struct btrfs_file_extent_item);
3139 if (btrfs_file_extent_type(buf, fi) ==
3140 BTRFS_FILE_EXTENT_INLINE)
3141 continue;
3142 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3143 if (bytenr == 0)
3144 continue;
3145
3146 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3147 key.offset -= btrfs_file_extent_offset(buf, fi);
3148 ret = process_func(trans, root, bytenr, num_bytes,
3149 parent, ref_root, key.objectid,
3150 key.offset, 1);
3151 if (ret)
3152 goto fail;
3153 } else {
3154 bytenr = btrfs_node_blockptr(buf, i);
3155 num_bytes = root->nodesize;
3156 ret = process_func(trans, root, bytenr, num_bytes,
3157 parent, ref_root, level - 1, 0,
3158 1);
3159 if (ret)
3160 goto fail;
3161 }
3162 }
3163 return 0;
3164 fail:
3165 return ret;
3166 }
3167
3168 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3169 struct extent_buffer *buf, int full_backref)
3170 {
3171 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3172 }
3173
3174 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3175 struct extent_buffer *buf, int full_backref)
3176 {
3177 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3178 }
3179
3180 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3181 struct btrfs_root *root,
3182 struct btrfs_path *path,
3183 struct btrfs_block_group_cache *cache)
3184 {
3185 int ret;
3186 struct btrfs_root *extent_root = root->fs_info->extent_root;
3187 unsigned long bi;
3188 struct extent_buffer *leaf;
3189
3190 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3191 if (ret) {
3192 if (ret > 0)
3193 ret = -ENOENT;
3194 goto fail;
3195 }
3196
3197 leaf = path->nodes[0];
3198 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3199 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3200 btrfs_mark_buffer_dirty(leaf);
3201 fail:
3202 btrfs_release_path(path);
3203 return ret;
3204
3205 }
3206
3207 static struct btrfs_block_group_cache *
3208 next_block_group(struct btrfs_root *root,
3209 struct btrfs_block_group_cache *cache)
3210 {
3211 struct rb_node *node;
3212
3213 spin_lock(&root->fs_info->block_group_cache_lock);
3214
3215 /* If our block group was removed, we need a full search. */
3216 if (RB_EMPTY_NODE(&cache->cache_node)) {
3217 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3218
3219 spin_unlock(&root->fs_info->block_group_cache_lock);
3220 btrfs_put_block_group(cache);
3221 cache = btrfs_lookup_first_block_group(root->fs_info,
3222 next_bytenr);
3223 return cache;
3224 }
3225 node = rb_next(&cache->cache_node);
3226 btrfs_put_block_group(cache);
3227 if (node) {
3228 cache = rb_entry(node, struct btrfs_block_group_cache,
3229 cache_node);
3230 btrfs_get_block_group(cache);
3231 } else
3232 cache = NULL;
3233 spin_unlock(&root->fs_info->block_group_cache_lock);
3234 return cache;
3235 }
3236
3237 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3238 struct btrfs_trans_handle *trans,
3239 struct btrfs_path *path)
3240 {
3241 struct btrfs_root *root = block_group->fs_info->tree_root;
3242 struct inode *inode = NULL;
3243 u64 alloc_hint = 0;
3244 int dcs = BTRFS_DC_ERROR;
3245 u64 num_pages = 0;
3246 int retries = 0;
3247 int ret = 0;
3248
3249 /*
3250 * If this block group is smaller than 100 megs don't bother caching the
3251 * block group.
3252 */
3253 if (block_group->key.offset < (100 * 1024 * 1024)) {
3254 spin_lock(&block_group->lock);
3255 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3256 spin_unlock(&block_group->lock);
3257 return 0;
3258 }
3259
3260 if (trans->aborted)
3261 return 0;
3262 again:
3263 inode = lookup_free_space_inode(root, block_group, path);
3264 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3265 ret = PTR_ERR(inode);
3266 btrfs_release_path(path);
3267 goto out;
3268 }
3269
3270 if (IS_ERR(inode)) {
3271 BUG_ON(retries);
3272 retries++;
3273
3274 if (block_group->ro)
3275 goto out_free;
3276
3277 ret = create_free_space_inode(root, trans, block_group, path);
3278 if (ret)
3279 goto out_free;
3280 goto again;
3281 }
3282
3283 /* We've already setup this transaction, go ahead and exit */
3284 if (block_group->cache_generation == trans->transid &&
3285 i_size_read(inode)) {
3286 dcs = BTRFS_DC_SETUP;
3287 goto out_put;
3288 }
3289
3290 /*
3291 * We want to set the generation to 0, that way if anything goes wrong
3292 * from here on out we know not to trust this cache when we load up next
3293 * time.
3294 */
3295 BTRFS_I(inode)->generation = 0;
3296 ret = btrfs_update_inode(trans, root, inode);
3297 if (ret) {
3298 /*
3299 * So theoretically we could recover from this, simply set the
3300 * super cache generation to 0 so we know to invalidate the
3301 * cache, but then we'd have to keep track of the block groups
3302 * that fail this way so we know we _have_ to reset this cache
3303 * before the next commit or risk reading stale cache. So to
3304 * limit our exposure to horrible edge cases lets just abort the
3305 * transaction, this only happens in really bad situations
3306 * anyway.
3307 */
3308 btrfs_abort_transaction(trans, root, ret);
3309 goto out_put;
3310 }
3311 WARN_ON(ret);
3312
3313 if (i_size_read(inode) > 0) {
3314 ret = btrfs_check_trunc_cache_free_space(root,
3315 &root->fs_info->global_block_rsv);
3316 if (ret)
3317 goto out_put;
3318
3319 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3320 if (ret)
3321 goto out_put;
3322 }
3323
3324 spin_lock(&block_group->lock);
3325 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3326 !btrfs_test_opt(root, SPACE_CACHE)) {
3327 /*
3328 * don't bother trying to write stuff out _if_
3329 * a) we're not cached,
3330 * b) we're with nospace_cache mount option.
3331 */
3332 dcs = BTRFS_DC_WRITTEN;
3333 spin_unlock(&block_group->lock);
3334 goto out_put;
3335 }
3336 spin_unlock(&block_group->lock);
3337
3338 /*
3339 * Try to preallocate enough space based on how big the block group is.
3340 * Keep in mind this has to include any pinned space which could end up
3341 * taking up quite a bit since it's not folded into the other space
3342 * cache.
3343 */
3344 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3345 if (!num_pages)
3346 num_pages = 1;
3347
3348 num_pages *= 16;
3349 num_pages *= PAGE_CACHE_SIZE;
3350
3351 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3352 if (ret)
3353 goto out_put;
3354
3355 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3356 num_pages, num_pages,
3357 &alloc_hint);
3358 if (!ret)
3359 dcs = BTRFS_DC_SETUP;
3360 btrfs_free_reserved_data_space(inode, num_pages);
3361
3362 out_put:
3363 iput(inode);
3364 out_free:
3365 btrfs_release_path(path);
3366 out:
3367 spin_lock(&block_group->lock);
3368 if (!ret && dcs == BTRFS_DC_SETUP)
3369 block_group->cache_generation = trans->transid;
3370 block_group->disk_cache_state = dcs;
3371 spin_unlock(&block_group->lock);
3372
3373 return ret;
3374 }
3375
3376 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3377 struct btrfs_root *root)
3378 {
3379 struct btrfs_block_group_cache *cache, *tmp;
3380 struct btrfs_transaction *cur_trans = trans->transaction;
3381 struct btrfs_path *path;
3382
3383 if (list_empty(&cur_trans->dirty_bgs) ||
3384 !btrfs_test_opt(root, SPACE_CACHE))
3385 return 0;
3386
3387 path = btrfs_alloc_path();
3388 if (!path)
3389 return -ENOMEM;
3390
3391 /* Could add new block groups, use _safe just in case */
3392 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3393 dirty_list) {
3394 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3395 cache_save_setup(cache, trans, path);
3396 }
3397
3398 btrfs_free_path(path);
3399 return 0;
3400 }
3401
3402 /*
3403 * transaction commit does final block group cache writeback during a
3404 * critical section where nothing is allowed to change the FS. This is
3405 * required in order for the cache to actually match the block group,
3406 * but can introduce a lot of latency into the commit.
3407 *
3408 * So, btrfs_start_dirty_block_groups is here to kick off block group
3409 * cache IO. There's a chance we'll have to redo some of it if the
3410 * block group changes again during the commit, but it greatly reduces
3411 * the commit latency by getting rid of the easy block groups while
3412 * we're still allowing others to join the commit.
3413 */
3414 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3415 struct btrfs_root *root)
3416 {
3417 struct btrfs_block_group_cache *cache;
3418 struct btrfs_transaction *cur_trans = trans->transaction;
3419 int ret = 0;
3420 int should_put;
3421 struct btrfs_path *path = NULL;
3422 LIST_HEAD(dirty);
3423 struct list_head *io = &cur_trans->io_bgs;
3424 int num_started = 0;
3425 int loops = 0;
3426
3427 spin_lock(&cur_trans->dirty_bgs_lock);
3428 if (list_empty(&cur_trans->dirty_bgs)) {
3429 spin_unlock(&cur_trans->dirty_bgs_lock);
3430 return 0;
3431 }
3432 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3433 spin_unlock(&cur_trans->dirty_bgs_lock);
3434
3435 again:
3436 /*
3437 * make sure all the block groups on our dirty list actually
3438 * exist
3439 */
3440 btrfs_create_pending_block_groups(trans, root);
3441
3442 if (!path) {
3443 path = btrfs_alloc_path();
3444 if (!path)
3445 return -ENOMEM;
3446 }
3447
3448 /*
3449 * cache_write_mutex is here only to save us from balance or automatic
3450 * removal of empty block groups deleting this block group while we are
3451 * writing out the cache
3452 */
3453 mutex_lock(&trans->transaction->cache_write_mutex);
3454 while (!list_empty(&dirty)) {
3455 cache = list_first_entry(&dirty,
3456 struct btrfs_block_group_cache,
3457 dirty_list);
3458 /*
3459 * this can happen if something re-dirties a block
3460 * group that is already under IO. Just wait for it to
3461 * finish and then do it all again
3462 */
3463 if (!list_empty(&cache->io_list)) {
3464 list_del_init(&cache->io_list);
3465 btrfs_wait_cache_io(root, trans, cache,
3466 &cache->io_ctl, path,
3467 cache->key.objectid);
3468 btrfs_put_block_group(cache);
3469 }
3470
3471
3472 /*
3473 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3474 * if it should update the cache_state. Don't delete
3475 * until after we wait.
3476 *
3477 * Since we're not running in the commit critical section
3478 * we need the dirty_bgs_lock to protect from update_block_group
3479 */
3480 spin_lock(&cur_trans->dirty_bgs_lock);
3481 list_del_init(&cache->dirty_list);
3482 spin_unlock(&cur_trans->dirty_bgs_lock);
3483
3484 should_put = 1;
3485
3486 cache_save_setup(cache, trans, path);
3487
3488 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3489 cache->io_ctl.inode = NULL;
3490 ret = btrfs_write_out_cache(root, trans, cache, path);
3491 if (ret == 0 && cache->io_ctl.inode) {
3492 num_started++;
3493 should_put = 0;
3494
3495 /*
3496 * the cache_write_mutex is protecting
3497 * the io_list
3498 */
3499 list_add_tail(&cache->io_list, io);
3500 } else {
3501 /*
3502 * if we failed to write the cache, the
3503 * generation will be bad and life goes on
3504 */
3505 ret = 0;
3506 }
3507 }
3508 if (!ret) {
3509 ret = write_one_cache_group(trans, root, path, cache);
3510 /*
3511 * Our block group might still be attached to the list
3512 * of new block groups in the transaction handle of some
3513 * other task (struct btrfs_trans_handle->new_bgs). This
3514 * means its block group item isn't yet in the extent
3515 * tree. If this happens ignore the error, as we will
3516 * try again later in the critical section of the
3517 * transaction commit.
3518 */
3519 if (ret == -ENOENT) {
3520 ret = 0;
3521 spin_lock(&cur_trans->dirty_bgs_lock);
3522 if (list_empty(&cache->dirty_list)) {
3523 list_add_tail(&cache->dirty_list,
3524 &cur_trans->dirty_bgs);
3525 btrfs_get_block_group(cache);
3526 }
3527 spin_unlock(&cur_trans->dirty_bgs_lock);
3528 } else if (ret) {
3529 btrfs_abort_transaction(trans, root, ret);
3530 }
3531 }
3532
3533 /* if its not on the io list, we need to put the block group */
3534 if (should_put)
3535 btrfs_put_block_group(cache);
3536
3537 if (ret)
3538 break;
3539
3540 /*
3541 * Avoid blocking other tasks for too long. It might even save
3542 * us from writing caches for block groups that are going to be
3543 * removed.
3544 */
3545 mutex_unlock(&trans->transaction->cache_write_mutex);
3546 mutex_lock(&trans->transaction->cache_write_mutex);
3547 }
3548 mutex_unlock(&trans->transaction->cache_write_mutex);
3549
3550 /*
3551 * go through delayed refs for all the stuff we've just kicked off
3552 * and then loop back (just once)
3553 */
3554 ret = btrfs_run_delayed_refs(trans, root, 0);
3555 if (!ret && loops == 0) {
3556 loops++;
3557 spin_lock(&cur_trans->dirty_bgs_lock);
3558 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3559 /*
3560 * dirty_bgs_lock protects us from concurrent block group
3561 * deletes too (not just cache_write_mutex).
3562 */
3563 if (!list_empty(&dirty)) {
3564 spin_unlock(&cur_trans->dirty_bgs_lock);
3565 goto again;
3566 }
3567 spin_unlock(&cur_trans->dirty_bgs_lock);
3568 }
3569
3570 btrfs_free_path(path);
3571 return ret;
3572 }
3573
3574 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3575 struct btrfs_root *root)
3576 {
3577 struct btrfs_block_group_cache *cache;
3578 struct btrfs_transaction *cur_trans = trans->transaction;
3579 int ret = 0;
3580 int should_put;
3581 struct btrfs_path *path;
3582 struct list_head *io = &cur_trans->io_bgs;
3583 int num_started = 0;
3584
3585 path = btrfs_alloc_path();
3586 if (!path)
3587 return -ENOMEM;
3588
3589 /*
3590 * We don't need the lock here since we are protected by the transaction
3591 * commit. We want to do the cache_save_setup first and then run the
3592 * delayed refs to make sure we have the best chance at doing this all
3593 * in one shot.
3594 */
3595 while (!list_empty(&cur_trans->dirty_bgs)) {
3596 cache = list_first_entry(&cur_trans->dirty_bgs,
3597 struct btrfs_block_group_cache,
3598 dirty_list);
3599
3600 /*
3601 * this can happen if cache_save_setup re-dirties a block
3602 * group that is already under IO. Just wait for it to
3603 * finish and then do it all again
3604 */
3605 if (!list_empty(&cache->io_list)) {
3606 list_del_init(&cache->io_list);
3607 btrfs_wait_cache_io(root, trans, cache,
3608 &cache->io_ctl, path,
3609 cache->key.objectid);
3610 btrfs_put_block_group(cache);
3611 }
3612
3613 /*
3614 * don't remove from the dirty list until after we've waited
3615 * on any pending IO
3616 */
3617 list_del_init(&cache->dirty_list);
3618 should_put = 1;
3619
3620 cache_save_setup(cache, trans, path);
3621
3622 if (!ret)
3623 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3624
3625 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3626 cache->io_ctl.inode = NULL;
3627 ret = btrfs_write_out_cache(root, trans, cache, path);
3628 if (ret == 0 && cache->io_ctl.inode) {
3629 num_started++;
3630 should_put = 0;
3631 list_add_tail(&cache->io_list, io);
3632 } else {
3633 /*
3634 * if we failed to write the cache, the
3635 * generation will be bad and life goes on
3636 */
3637 ret = 0;
3638 }
3639 }
3640 if (!ret) {
3641 ret = write_one_cache_group(trans, root, path, cache);
3642 if (ret)
3643 btrfs_abort_transaction(trans, root, ret);
3644 }
3645
3646 /* if its not on the io list, we need to put the block group */
3647 if (should_put)
3648 btrfs_put_block_group(cache);
3649 }
3650
3651 while (!list_empty(io)) {
3652 cache = list_first_entry(io, struct btrfs_block_group_cache,
3653 io_list);
3654 list_del_init(&cache->io_list);
3655 btrfs_wait_cache_io(root, trans, cache,
3656 &cache->io_ctl, path, cache->key.objectid);
3657 btrfs_put_block_group(cache);
3658 }
3659
3660 btrfs_free_path(path);
3661 return ret;
3662 }
3663
3664 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3665 {
3666 struct btrfs_block_group_cache *block_group;
3667 int readonly = 0;
3668
3669 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3670 if (!block_group || block_group->ro)
3671 readonly = 1;
3672 if (block_group)
3673 btrfs_put_block_group(block_group);
3674 return readonly;
3675 }
3676
3677 static const char *alloc_name(u64 flags)
3678 {
3679 switch (flags) {
3680 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3681 return "mixed";
3682 case BTRFS_BLOCK_GROUP_METADATA:
3683 return "metadata";
3684 case BTRFS_BLOCK_GROUP_DATA:
3685 return "data";
3686 case BTRFS_BLOCK_GROUP_SYSTEM:
3687 return "system";
3688 default:
3689 WARN_ON(1);
3690 return "invalid-combination";
3691 };
3692 }
3693
3694 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3695 u64 total_bytes, u64 bytes_used,
3696 struct btrfs_space_info **space_info)
3697 {
3698 struct btrfs_space_info *found;
3699 int i;
3700 int factor;
3701 int ret;
3702
3703 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3704 BTRFS_BLOCK_GROUP_RAID10))
3705 factor = 2;
3706 else
3707 factor = 1;
3708
3709 found = __find_space_info(info, flags);
3710 if (found) {
3711 spin_lock(&found->lock);
3712 found->total_bytes += total_bytes;
3713 found->disk_total += total_bytes * factor;
3714 found->bytes_used += bytes_used;
3715 found->disk_used += bytes_used * factor;
3716 if (total_bytes > 0)
3717 found->full = 0;
3718 spin_unlock(&found->lock);
3719 *space_info = found;
3720 return 0;
3721 }
3722 found = kzalloc(sizeof(*found), GFP_NOFS);
3723 if (!found)
3724 return -ENOMEM;
3725
3726 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3727 if (ret) {
3728 kfree(found);
3729 return ret;
3730 }
3731
3732 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3733 INIT_LIST_HEAD(&found->block_groups[i]);
3734 init_rwsem(&found->groups_sem);
3735 spin_lock_init(&found->lock);
3736 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3737 found->total_bytes = total_bytes;
3738 found->disk_total = total_bytes * factor;
3739 found->bytes_used = bytes_used;
3740 found->disk_used = bytes_used * factor;
3741 found->bytes_pinned = 0;
3742 found->bytes_reserved = 0;
3743 found->bytes_readonly = 0;
3744 found->bytes_may_use = 0;
3745 found->full = 0;
3746 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3747 found->chunk_alloc = 0;
3748 found->flush = 0;
3749 init_waitqueue_head(&found->wait);
3750 INIT_LIST_HEAD(&found->ro_bgs);
3751
3752 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3753 info->space_info_kobj, "%s",
3754 alloc_name(found->flags));
3755 if (ret) {
3756 kfree(found);
3757 return ret;
3758 }
3759
3760 *space_info = found;
3761 list_add_rcu(&found->list, &info->space_info);
3762 if (flags & BTRFS_BLOCK_GROUP_DATA)
3763 info->data_sinfo = found;
3764
3765 return ret;
3766 }
3767
3768 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3769 {
3770 u64 extra_flags = chunk_to_extended(flags) &
3771 BTRFS_EXTENDED_PROFILE_MASK;
3772
3773 write_seqlock(&fs_info->profiles_lock);
3774 if (flags & BTRFS_BLOCK_GROUP_DATA)
3775 fs_info->avail_data_alloc_bits |= extra_flags;
3776 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3777 fs_info->avail_metadata_alloc_bits |= extra_flags;
3778 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3779 fs_info->avail_system_alloc_bits |= extra_flags;
3780 write_sequnlock(&fs_info->profiles_lock);
3781 }
3782
3783 /*
3784 * returns target flags in extended format or 0 if restripe for this
3785 * chunk_type is not in progress
3786 *
3787 * should be called with either volume_mutex or balance_lock held
3788 */
3789 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3790 {
3791 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3792 u64 target = 0;
3793
3794 if (!bctl)
3795 return 0;
3796
3797 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3798 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3799 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3800 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3801 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3802 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3803 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3804 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3805 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3806 }
3807
3808 return target;
3809 }
3810
3811 /*
3812 * @flags: available profiles in extended format (see ctree.h)
3813 *
3814 * Returns reduced profile in chunk format. If profile changing is in
3815 * progress (either running or paused) picks the target profile (if it's
3816 * already available), otherwise falls back to plain reducing.
3817 */
3818 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3819 {
3820 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3821 u64 target;
3822 u64 tmp;
3823
3824 /*
3825 * see if restripe for this chunk_type is in progress, if so
3826 * try to reduce to the target profile
3827 */
3828 spin_lock(&root->fs_info->balance_lock);
3829 target = get_restripe_target(root->fs_info, flags);
3830 if (target) {
3831 /* pick target profile only if it's already available */
3832 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3833 spin_unlock(&root->fs_info->balance_lock);
3834 return extended_to_chunk(target);
3835 }
3836 }
3837 spin_unlock(&root->fs_info->balance_lock);
3838
3839 /* First, mask out the RAID levels which aren't possible */
3840 if (num_devices == 1)
3841 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3842 BTRFS_BLOCK_GROUP_RAID5);
3843 if (num_devices < 3)
3844 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3845 if (num_devices < 4)
3846 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3847
3848 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3849 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3850 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3851 flags &= ~tmp;
3852
3853 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3854 tmp = BTRFS_BLOCK_GROUP_RAID6;
3855 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3856 tmp = BTRFS_BLOCK_GROUP_RAID5;
3857 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3858 tmp = BTRFS_BLOCK_GROUP_RAID10;
3859 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3860 tmp = BTRFS_BLOCK_GROUP_RAID1;
3861 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3862 tmp = BTRFS_BLOCK_GROUP_RAID0;
3863
3864 return extended_to_chunk(flags | tmp);
3865 }
3866
3867 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3868 {
3869 unsigned seq;
3870 u64 flags;
3871
3872 do {
3873 flags = orig_flags;
3874 seq = read_seqbegin(&root->fs_info->profiles_lock);
3875
3876 if (flags & BTRFS_BLOCK_GROUP_DATA)
3877 flags |= root->fs_info->avail_data_alloc_bits;
3878 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3879 flags |= root->fs_info->avail_system_alloc_bits;
3880 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3881 flags |= root->fs_info->avail_metadata_alloc_bits;
3882 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3883
3884 return btrfs_reduce_alloc_profile(root, flags);
3885 }
3886
3887 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3888 {
3889 u64 flags;
3890 u64 ret;
3891
3892 if (data)
3893 flags = BTRFS_BLOCK_GROUP_DATA;
3894 else if (root == root->fs_info->chunk_root)
3895 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3896 else
3897 flags = BTRFS_BLOCK_GROUP_METADATA;
3898
3899 ret = get_alloc_profile(root, flags);
3900 return ret;
3901 }
3902
3903 /*
3904 * This will check the space that the inode allocates from to make sure we have
3905 * enough space for bytes.
3906 */
3907 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3908 {
3909 struct btrfs_space_info *data_sinfo;
3910 struct btrfs_root *root = BTRFS_I(inode)->root;
3911 struct btrfs_fs_info *fs_info = root->fs_info;
3912 u64 used;
3913 int ret = 0;
3914 int need_commit = 2;
3915 int have_pinned_space;
3916
3917 /* make sure bytes are sectorsize aligned */
3918 bytes = ALIGN(bytes, root->sectorsize);
3919
3920 if (btrfs_is_free_space_inode(inode)) {
3921 need_commit = 0;
3922 ASSERT(current->journal_info);
3923 }
3924
3925 data_sinfo = fs_info->data_sinfo;
3926 if (!data_sinfo)
3927 goto alloc;
3928
3929 again:
3930 /* make sure we have enough space to handle the data first */
3931 spin_lock(&data_sinfo->lock);
3932 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3933 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3934 data_sinfo->bytes_may_use;
3935
3936 if (used + bytes > data_sinfo->total_bytes) {
3937 struct btrfs_trans_handle *trans;
3938
3939 /*
3940 * if we don't have enough free bytes in this space then we need
3941 * to alloc a new chunk.
3942 */
3943 if (!data_sinfo->full) {
3944 u64 alloc_target;
3945
3946 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3947 spin_unlock(&data_sinfo->lock);
3948 alloc:
3949 alloc_target = btrfs_get_alloc_profile(root, 1);
3950 /*
3951 * It is ugly that we don't call nolock join
3952 * transaction for the free space inode case here.
3953 * But it is safe because we only do the data space
3954 * reservation for the free space cache in the
3955 * transaction context, the common join transaction
3956 * just increase the counter of the current transaction
3957 * handler, doesn't try to acquire the trans_lock of
3958 * the fs.
3959 */
3960 trans = btrfs_join_transaction(root);
3961 if (IS_ERR(trans))
3962 return PTR_ERR(trans);
3963
3964 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3965 alloc_target,
3966 CHUNK_ALLOC_NO_FORCE);
3967 btrfs_end_transaction(trans, root);
3968 if (ret < 0) {
3969 if (ret != -ENOSPC)
3970 return ret;
3971 else {
3972 have_pinned_space = 1;
3973 goto commit_trans;
3974 }
3975 }
3976
3977 if (!data_sinfo)
3978 data_sinfo = fs_info->data_sinfo;
3979
3980 goto again;
3981 }
3982
3983 /*
3984 * If we don't have enough pinned space to deal with this
3985 * allocation, and no removed chunk in current transaction,
3986 * don't bother committing the transaction.
3987 */
3988 have_pinned_space = percpu_counter_compare(
3989 &data_sinfo->total_bytes_pinned,
3990 used + bytes - data_sinfo->total_bytes);
3991 spin_unlock(&data_sinfo->lock);
3992
3993 /* commit the current transaction and try again */
3994 commit_trans:
3995 if (need_commit &&
3996 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3997 need_commit--;
3998
3999 if (need_commit > 0)
4000 btrfs_wait_ordered_roots(fs_info, -1);
4001
4002 trans = btrfs_join_transaction(root);
4003 if (IS_ERR(trans))
4004 return PTR_ERR(trans);
4005 if (have_pinned_space >= 0 ||
4006 trans->transaction->have_free_bgs ||
4007 need_commit > 0) {
4008 ret = btrfs_commit_transaction(trans, root);
4009 if (ret)
4010 return ret;
4011 /*
4012 * make sure that all running delayed iput are
4013 * done
4014 */
4015 down_write(&root->fs_info->delayed_iput_sem);
4016 up_write(&root->fs_info->delayed_iput_sem);
4017 goto again;
4018 } else {
4019 btrfs_end_transaction(trans, root);
4020 }
4021 }
4022
4023 trace_btrfs_space_reservation(root->fs_info,
4024 "space_info:enospc",
4025 data_sinfo->flags, bytes, 1);
4026 return -ENOSPC;
4027 }
4028 ret = btrfs_qgroup_reserve(root, write_bytes);
4029 if (ret)
4030 goto out;
4031 data_sinfo->bytes_may_use += bytes;
4032 trace_btrfs_space_reservation(root->fs_info, "space_info",
4033 data_sinfo->flags, bytes, 1);
4034 out:
4035 spin_unlock(&data_sinfo->lock);
4036
4037 return ret;
4038 }
4039
4040 /*
4041 * Called if we need to clear a data reservation for this inode.
4042 */
4043 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4044 {
4045 struct btrfs_root *root = BTRFS_I(inode)->root;
4046 struct btrfs_space_info *data_sinfo;
4047
4048 /* make sure bytes are sectorsize aligned */
4049 bytes = ALIGN(bytes, root->sectorsize);
4050
4051 data_sinfo = root->fs_info->data_sinfo;
4052 spin_lock(&data_sinfo->lock);
4053 WARN_ON(data_sinfo->bytes_may_use < bytes);
4054 data_sinfo->bytes_may_use -= bytes;
4055 trace_btrfs_space_reservation(root->fs_info, "space_info",
4056 data_sinfo->flags, bytes, 0);
4057 spin_unlock(&data_sinfo->lock);
4058 }
4059
4060 static void force_metadata_allocation(struct btrfs_fs_info *info)
4061 {
4062 struct list_head *head = &info->space_info;
4063 struct btrfs_space_info *found;
4064
4065 rcu_read_lock();
4066 list_for_each_entry_rcu(found, head, list) {
4067 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4068 found->force_alloc = CHUNK_ALLOC_FORCE;
4069 }
4070 rcu_read_unlock();
4071 }
4072
4073 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4074 {
4075 return (global->size << 1);
4076 }
4077
4078 static int should_alloc_chunk(struct btrfs_root *root,
4079 struct btrfs_space_info *sinfo, int force)
4080 {
4081 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4082 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4083 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4084 u64 thresh;
4085
4086 if (force == CHUNK_ALLOC_FORCE)
4087 return 1;
4088
4089 /*
4090 * We need to take into account the global rsv because for all intents
4091 * and purposes it's used space. Don't worry about locking the
4092 * global_rsv, it doesn't change except when the transaction commits.
4093 */
4094 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4095 num_allocated += calc_global_rsv_need_space(global_rsv);
4096
4097 /*
4098 * in limited mode, we want to have some free space up to
4099 * about 1% of the FS size.
4100 */
4101 if (force == CHUNK_ALLOC_LIMITED) {
4102 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4103 thresh = max_t(u64, 64 * 1024 * 1024,
4104 div_factor_fine(thresh, 1));
4105
4106 if (num_bytes - num_allocated < thresh)
4107 return 1;
4108 }
4109
4110 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4111 return 0;
4112 return 1;
4113 }
4114
4115 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4116 {
4117 u64 num_dev;
4118
4119 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4120 BTRFS_BLOCK_GROUP_RAID0 |
4121 BTRFS_BLOCK_GROUP_RAID5 |
4122 BTRFS_BLOCK_GROUP_RAID6))
4123 num_dev = root->fs_info->fs_devices->rw_devices;
4124 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4125 num_dev = 2;
4126 else
4127 num_dev = 1; /* DUP or single */
4128
4129 return num_dev;
4130 }
4131
4132 /*
4133 * If @is_allocation is true, reserve space in the system space info necessary
4134 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4135 * removing a chunk.
4136 */
4137 void check_system_chunk(struct btrfs_trans_handle *trans,
4138 struct btrfs_root *root,
4139 u64 type)
4140 {
4141 struct btrfs_space_info *info;
4142 u64 left;
4143 u64 thresh;
4144 int ret = 0;
4145 u64 num_devs;
4146
4147 /*
4148 * Needed because we can end up allocating a system chunk and for an
4149 * atomic and race free space reservation in the chunk block reserve.
4150 */
4151 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4152
4153 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4154 spin_lock(&info->lock);
4155 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4156 info->bytes_reserved - info->bytes_readonly -
4157 info->bytes_may_use;
4158 spin_unlock(&info->lock);
4159
4160 num_devs = get_profile_num_devs(root, type);
4161
4162 /* num_devs device items to update and 1 chunk item to add or remove */
4163 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4164 btrfs_calc_trans_metadata_size(root, 1);
4165
4166 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4167 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4168 left, thresh, type);
4169 dump_space_info(info, 0, 0);
4170 }
4171
4172 if (left < thresh) {
4173 u64 flags;
4174
4175 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4176 /*
4177 * Ignore failure to create system chunk. We might end up not
4178 * needing it, as we might not need to COW all nodes/leafs from
4179 * the paths we visit in the chunk tree (they were already COWed
4180 * or created in the current transaction for example).
4181 */
4182 ret = btrfs_alloc_chunk(trans, root, flags);
4183 }
4184
4185 if (!ret) {
4186 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4187 &root->fs_info->chunk_block_rsv,
4188 thresh, BTRFS_RESERVE_NO_FLUSH);
4189 if (!ret)
4190 trans->chunk_bytes_reserved += thresh;
4191 }
4192 }
4193
4194 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4195 struct btrfs_root *extent_root, u64 flags, int force)
4196 {
4197 struct btrfs_space_info *space_info;
4198 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4199 int wait_for_alloc = 0;
4200 int ret = 0;
4201
4202 /* Don't re-enter if we're already allocating a chunk */
4203 if (trans->allocating_chunk)
4204 return -ENOSPC;
4205
4206 space_info = __find_space_info(extent_root->fs_info, flags);
4207 if (!space_info) {
4208 ret = update_space_info(extent_root->fs_info, flags,
4209 0, 0, &space_info);
4210 BUG_ON(ret); /* -ENOMEM */
4211 }
4212 BUG_ON(!space_info); /* Logic error */
4213
4214 again:
4215 spin_lock(&space_info->lock);
4216 if (force < space_info->force_alloc)
4217 force = space_info->force_alloc;
4218 if (space_info->full) {
4219 if (should_alloc_chunk(extent_root, space_info, force))
4220 ret = -ENOSPC;
4221 else
4222 ret = 0;
4223 spin_unlock(&space_info->lock);
4224 return ret;
4225 }
4226
4227 if (!should_alloc_chunk(extent_root, space_info, force)) {
4228 spin_unlock(&space_info->lock);
4229 return 0;
4230 } else if (space_info->chunk_alloc) {
4231 wait_for_alloc = 1;
4232 } else {
4233 space_info->chunk_alloc = 1;
4234 }
4235
4236 spin_unlock(&space_info->lock);
4237
4238 mutex_lock(&fs_info->chunk_mutex);
4239
4240 /*
4241 * The chunk_mutex is held throughout the entirety of a chunk
4242 * allocation, so once we've acquired the chunk_mutex we know that the
4243 * other guy is done and we need to recheck and see if we should
4244 * allocate.
4245 */
4246 if (wait_for_alloc) {
4247 mutex_unlock(&fs_info->chunk_mutex);
4248 wait_for_alloc = 0;
4249 goto again;
4250 }
4251
4252 trans->allocating_chunk = true;
4253
4254 /*
4255 * If we have mixed data/metadata chunks we want to make sure we keep
4256 * allocating mixed chunks instead of individual chunks.
4257 */
4258 if (btrfs_mixed_space_info(space_info))
4259 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4260
4261 /*
4262 * if we're doing a data chunk, go ahead and make sure that
4263 * we keep a reasonable number of metadata chunks allocated in the
4264 * FS as well.
4265 */
4266 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4267 fs_info->data_chunk_allocations++;
4268 if (!(fs_info->data_chunk_allocations %
4269 fs_info->metadata_ratio))
4270 force_metadata_allocation(fs_info);
4271 }
4272
4273 /*
4274 * Check if we have enough space in SYSTEM chunk because we may need
4275 * to update devices.
4276 */
4277 check_system_chunk(trans, extent_root, flags);
4278
4279 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4280 trans->allocating_chunk = false;
4281
4282 spin_lock(&space_info->lock);
4283 if (ret < 0 && ret != -ENOSPC)
4284 goto out;
4285 if (ret)
4286 space_info->full = 1;
4287 else
4288 ret = 1;
4289
4290 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4291 out:
4292 space_info->chunk_alloc = 0;
4293 spin_unlock(&space_info->lock);
4294 mutex_unlock(&fs_info->chunk_mutex);
4295 /*
4296 * When we allocate a new chunk we reserve space in the chunk block
4297 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4298 * add new nodes/leafs to it if we end up needing to do it when
4299 * inserting the chunk item and updating device items as part of the
4300 * second phase of chunk allocation, performed by
4301 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4302 * large number of new block groups to create in our transaction
4303 * handle's new_bgs list to avoid exhausting the chunk block reserve
4304 * in extreme cases - like having a single transaction create many new
4305 * block groups when starting to write out the free space caches of all
4306 * the block groups that were made dirty during the lifetime of the
4307 * transaction.
4308 */
4309 if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4310 btrfs_create_pending_block_groups(trans, trans->root);
4311 btrfs_trans_release_chunk_metadata(trans);
4312 }
4313 return ret;
4314 }
4315
4316 static int can_overcommit(struct btrfs_root *root,
4317 struct btrfs_space_info *space_info, u64 bytes,
4318 enum btrfs_reserve_flush_enum flush)
4319 {
4320 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4321 u64 profile = btrfs_get_alloc_profile(root, 0);
4322 u64 space_size;
4323 u64 avail;
4324 u64 used;
4325
4326 used = space_info->bytes_used + space_info->bytes_reserved +
4327 space_info->bytes_pinned + space_info->bytes_readonly;
4328
4329 /*
4330 * We only want to allow over committing if we have lots of actual space
4331 * free, but if we don't have enough space to handle the global reserve
4332 * space then we could end up having a real enospc problem when trying
4333 * to allocate a chunk or some other such important allocation.
4334 */
4335 spin_lock(&global_rsv->lock);
4336 space_size = calc_global_rsv_need_space(global_rsv);
4337 spin_unlock(&global_rsv->lock);
4338 if (used + space_size >= space_info->total_bytes)
4339 return 0;
4340
4341 used += space_info->bytes_may_use;
4342
4343 spin_lock(&root->fs_info->free_chunk_lock);
4344 avail = root->fs_info->free_chunk_space;
4345 spin_unlock(&root->fs_info->free_chunk_lock);
4346
4347 /*
4348 * If we have dup, raid1 or raid10 then only half of the free
4349 * space is actually useable. For raid56, the space info used
4350 * doesn't include the parity drive, so we don't have to
4351 * change the math
4352 */
4353 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4354 BTRFS_BLOCK_GROUP_RAID1 |
4355 BTRFS_BLOCK_GROUP_RAID10))
4356 avail >>= 1;
4357
4358 /*
4359 * If we aren't flushing all things, let us overcommit up to
4360 * 1/2th of the space. If we can flush, don't let us overcommit
4361 * too much, let it overcommit up to 1/8 of the space.
4362 */
4363 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4364 avail >>= 3;
4365 else
4366 avail >>= 1;
4367
4368 if (used + bytes < space_info->total_bytes + avail)
4369 return 1;
4370 return 0;
4371 }
4372
4373 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4374 unsigned long nr_pages, int nr_items)
4375 {
4376 struct super_block *sb = root->fs_info->sb;
4377
4378 if (down_read_trylock(&sb->s_umount)) {
4379 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4380 up_read(&sb->s_umount);
4381 } else {
4382 /*
4383 * We needn't worry the filesystem going from r/w to r/o though
4384 * we don't acquire ->s_umount mutex, because the filesystem
4385 * should guarantee the delalloc inodes list be empty after
4386 * the filesystem is readonly(all dirty pages are written to
4387 * the disk).
4388 */
4389 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4390 if (!current->journal_info)
4391 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4392 }
4393 }
4394
4395 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4396 {
4397 u64 bytes;
4398 int nr;
4399
4400 bytes = btrfs_calc_trans_metadata_size(root, 1);
4401 nr = (int)div64_u64(to_reclaim, bytes);
4402 if (!nr)
4403 nr = 1;
4404 return nr;
4405 }
4406
4407 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4408
4409 /*
4410 * shrink metadata reservation for delalloc
4411 */
4412 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4413 bool wait_ordered)
4414 {
4415 struct btrfs_block_rsv *block_rsv;
4416 struct btrfs_space_info *space_info;
4417 struct btrfs_trans_handle *trans;
4418 u64 delalloc_bytes;
4419 u64 max_reclaim;
4420 long time_left;
4421 unsigned long nr_pages;
4422 int loops;
4423 int items;
4424 enum btrfs_reserve_flush_enum flush;
4425
4426 /* Calc the number of the pages we need flush for space reservation */
4427 items = calc_reclaim_items_nr(root, to_reclaim);
4428 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4429
4430 trans = (struct btrfs_trans_handle *)current->journal_info;
4431 block_rsv = &root->fs_info->delalloc_block_rsv;
4432 space_info = block_rsv->space_info;
4433
4434 delalloc_bytes = percpu_counter_sum_positive(
4435 &root->fs_info->delalloc_bytes);
4436 if (delalloc_bytes == 0) {
4437 if (trans)
4438 return;
4439 if (wait_ordered)
4440 btrfs_wait_ordered_roots(root->fs_info, items);
4441 return;
4442 }
4443
4444 loops = 0;
4445 while (delalloc_bytes && loops < 3) {
4446 max_reclaim = min(delalloc_bytes, to_reclaim);
4447 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4448 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4449 /*
4450 * We need to wait for the async pages to actually start before
4451 * we do anything.
4452 */
4453 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4454 if (!max_reclaim)
4455 goto skip_async;
4456
4457 if (max_reclaim <= nr_pages)
4458 max_reclaim = 0;
4459 else
4460 max_reclaim -= nr_pages;
4461
4462 wait_event(root->fs_info->async_submit_wait,
4463 atomic_read(&root->fs_info->async_delalloc_pages) <=
4464 (int)max_reclaim);
4465 skip_async:
4466 if (!trans)
4467 flush = BTRFS_RESERVE_FLUSH_ALL;
4468 else
4469 flush = BTRFS_RESERVE_NO_FLUSH;
4470 spin_lock(&space_info->lock);
4471 if (can_overcommit(root, space_info, orig, flush)) {
4472 spin_unlock(&space_info->lock);
4473 break;
4474 }
4475 spin_unlock(&space_info->lock);
4476
4477 loops++;
4478 if (wait_ordered && !trans) {
4479 btrfs_wait_ordered_roots(root->fs_info, items);
4480 } else {
4481 time_left = schedule_timeout_killable(1);
4482 if (time_left)
4483 break;
4484 }
4485 delalloc_bytes = percpu_counter_sum_positive(
4486 &root->fs_info->delalloc_bytes);
4487 }
4488 }
4489
4490 /**
4491 * maybe_commit_transaction - possibly commit the transaction if its ok to
4492 * @root - the root we're allocating for
4493 * @bytes - the number of bytes we want to reserve
4494 * @force - force the commit
4495 *
4496 * This will check to make sure that committing the transaction will actually
4497 * get us somewhere and then commit the transaction if it does. Otherwise it
4498 * will return -ENOSPC.
4499 */
4500 static int may_commit_transaction(struct btrfs_root *root,
4501 struct btrfs_space_info *space_info,
4502 u64 bytes, int force)
4503 {
4504 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4505 struct btrfs_trans_handle *trans;
4506
4507 trans = (struct btrfs_trans_handle *)current->journal_info;
4508 if (trans)
4509 return -EAGAIN;
4510
4511 if (force)
4512 goto commit;
4513
4514 /* See if there is enough pinned space to make this reservation */
4515 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4516 bytes) >= 0)
4517 goto commit;
4518
4519 /*
4520 * See if there is some space in the delayed insertion reservation for
4521 * this reservation.
4522 */
4523 if (space_info != delayed_rsv->space_info)
4524 return -ENOSPC;
4525
4526 spin_lock(&delayed_rsv->lock);
4527 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4528 bytes - delayed_rsv->size) >= 0) {
4529 spin_unlock(&delayed_rsv->lock);
4530 return -ENOSPC;
4531 }
4532 spin_unlock(&delayed_rsv->lock);
4533
4534 commit:
4535 trans = btrfs_join_transaction(root);
4536 if (IS_ERR(trans))
4537 return -ENOSPC;
4538
4539 return btrfs_commit_transaction(trans, root);
4540 }
4541
4542 enum flush_state {
4543 FLUSH_DELAYED_ITEMS_NR = 1,
4544 FLUSH_DELAYED_ITEMS = 2,
4545 FLUSH_DELALLOC = 3,
4546 FLUSH_DELALLOC_WAIT = 4,
4547 ALLOC_CHUNK = 5,
4548 COMMIT_TRANS = 6,
4549 };
4550
4551 static int flush_space(struct btrfs_root *root,
4552 struct btrfs_space_info *space_info, u64 num_bytes,
4553 u64 orig_bytes, int state)
4554 {
4555 struct btrfs_trans_handle *trans;
4556 int nr;
4557 int ret = 0;
4558
4559 switch (state) {
4560 case FLUSH_DELAYED_ITEMS_NR:
4561 case FLUSH_DELAYED_ITEMS:
4562 if (state == FLUSH_DELAYED_ITEMS_NR)
4563 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4564 else
4565 nr = -1;
4566
4567 trans = btrfs_join_transaction(root);
4568 if (IS_ERR(trans)) {
4569 ret = PTR_ERR(trans);
4570 break;
4571 }
4572 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4573 btrfs_end_transaction(trans, root);
4574 break;
4575 case FLUSH_DELALLOC:
4576 case FLUSH_DELALLOC_WAIT:
4577 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4578 state == FLUSH_DELALLOC_WAIT);
4579 break;
4580 case ALLOC_CHUNK:
4581 trans = btrfs_join_transaction(root);
4582 if (IS_ERR(trans)) {
4583 ret = PTR_ERR(trans);
4584 break;
4585 }
4586 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4587 btrfs_get_alloc_profile(root, 0),
4588 CHUNK_ALLOC_NO_FORCE);
4589 btrfs_end_transaction(trans, root);
4590 if (ret == -ENOSPC)
4591 ret = 0;
4592 break;
4593 case COMMIT_TRANS:
4594 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4595 break;
4596 default:
4597 ret = -ENOSPC;
4598 break;
4599 }
4600
4601 return ret;
4602 }
4603
4604 static inline u64
4605 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4606 struct btrfs_space_info *space_info)
4607 {
4608 u64 used;
4609 u64 expected;
4610 u64 to_reclaim;
4611
4612 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4613 16 * 1024 * 1024);
4614 spin_lock(&space_info->lock);
4615 if (can_overcommit(root, space_info, to_reclaim,
4616 BTRFS_RESERVE_FLUSH_ALL)) {
4617 to_reclaim = 0;
4618 goto out;
4619 }
4620
4621 used = space_info->bytes_used + space_info->bytes_reserved +
4622 space_info->bytes_pinned + space_info->bytes_readonly +
4623 space_info->bytes_may_use;
4624 if (can_overcommit(root, space_info, 1024 * 1024,
4625 BTRFS_RESERVE_FLUSH_ALL))
4626 expected = div_factor_fine(space_info->total_bytes, 95);
4627 else
4628 expected = div_factor_fine(space_info->total_bytes, 90);
4629
4630 if (used > expected)
4631 to_reclaim = used - expected;
4632 else
4633 to_reclaim = 0;
4634 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4635 space_info->bytes_reserved);
4636 out:
4637 spin_unlock(&space_info->lock);
4638
4639 return to_reclaim;
4640 }
4641
4642 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4643 struct btrfs_fs_info *fs_info, u64 used)
4644 {
4645 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4646
4647 /* If we're just plain full then async reclaim just slows us down. */
4648 if (space_info->bytes_used >= thresh)
4649 return 0;
4650
4651 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4652 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4653 }
4654
4655 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4656 struct btrfs_fs_info *fs_info,
4657 int flush_state)
4658 {
4659 u64 used;
4660
4661 spin_lock(&space_info->lock);
4662 /*
4663 * We run out of space and have not got any free space via flush_space,
4664 * so don't bother doing async reclaim.
4665 */
4666 if (flush_state > COMMIT_TRANS && space_info->full) {
4667 spin_unlock(&space_info->lock);
4668 return 0;
4669 }
4670
4671 used = space_info->bytes_used + space_info->bytes_reserved +
4672 space_info->bytes_pinned + space_info->bytes_readonly +
4673 space_info->bytes_may_use;
4674 if (need_do_async_reclaim(space_info, fs_info, used)) {
4675 spin_unlock(&space_info->lock);
4676 return 1;
4677 }
4678 spin_unlock(&space_info->lock);
4679
4680 return 0;
4681 }
4682
4683 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4684 {
4685 struct btrfs_fs_info *fs_info;
4686 struct btrfs_space_info *space_info;
4687 u64 to_reclaim;
4688 int flush_state;
4689
4690 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4691 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4692
4693 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4694 space_info);
4695 if (!to_reclaim)
4696 return;
4697
4698 flush_state = FLUSH_DELAYED_ITEMS_NR;
4699 do {
4700 flush_space(fs_info->fs_root, space_info, to_reclaim,
4701 to_reclaim, flush_state);
4702 flush_state++;
4703 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4704 flush_state))
4705 return;
4706 } while (flush_state < COMMIT_TRANS);
4707 }
4708
4709 void btrfs_init_async_reclaim_work(struct work_struct *work)
4710 {
4711 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4712 }
4713
4714 /**
4715 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4716 * @root - the root we're allocating for
4717 * @block_rsv - the block_rsv we're allocating for
4718 * @orig_bytes - the number of bytes we want
4719 * @flush - whether or not we can flush to make our reservation
4720 *
4721 * This will reserve orgi_bytes number of bytes from the space info associated
4722 * with the block_rsv. If there is not enough space it will make an attempt to
4723 * flush out space to make room. It will do this by flushing delalloc if
4724 * possible or committing the transaction. If flush is 0 then no attempts to
4725 * regain reservations will be made and this will fail if there is not enough
4726 * space already.
4727 */
4728 static int reserve_metadata_bytes(struct btrfs_root *root,
4729 struct btrfs_block_rsv *block_rsv,
4730 u64 orig_bytes,
4731 enum btrfs_reserve_flush_enum flush)
4732 {
4733 struct btrfs_space_info *space_info = block_rsv->space_info;
4734 u64 used;
4735 u64 num_bytes = orig_bytes;
4736 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4737 int ret = 0;
4738 bool flushing = false;
4739
4740 again:
4741 ret = 0;
4742 spin_lock(&space_info->lock);
4743 /*
4744 * We only want to wait if somebody other than us is flushing and we
4745 * are actually allowed to flush all things.
4746 */
4747 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4748 space_info->flush) {
4749 spin_unlock(&space_info->lock);
4750 /*
4751 * If we have a trans handle we can't wait because the flusher
4752 * may have to commit the transaction, which would mean we would
4753 * deadlock since we are waiting for the flusher to finish, but
4754 * hold the current transaction open.
4755 */
4756 if (current->journal_info)
4757 return -EAGAIN;
4758 ret = wait_event_killable(space_info->wait, !space_info->flush);
4759 /* Must have been killed, return */
4760 if (ret)
4761 return -EINTR;
4762
4763 spin_lock(&space_info->lock);
4764 }
4765
4766 ret = -ENOSPC;
4767 used = space_info->bytes_used + space_info->bytes_reserved +
4768 space_info->bytes_pinned + space_info->bytes_readonly +
4769 space_info->bytes_may_use;
4770
4771 /*
4772 * The idea here is that we've not already over-reserved the block group
4773 * then we can go ahead and save our reservation first and then start
4774 * flushing if we need to. Otherwise if we've already overcommitted
4775 * lets start flushing stuff first and then come back and try to make
4776 * our reservation.
4777 */
4778 if (used <= space_info->total_bytes) {
4779 if (used + orig_bytes <= space_info->total_bytes) {
4780 space_info->bytes_may_use += orig_bytes;
4781 trace_btrfs_space_reservation(root->fs_info,
4782 "space_info", space_info->flags, orig_bytes, 1);
4783 ret = 0;
4784 } else {
4785 /*
4786 * Ok set num_bytes to orig_bytes since we aren't
4787 * overocmmitted, this way we only try and reclaim what
4788 * we need.
4789 */
4790 num_bytes = orig_bytes;
4791 }
4792 } else {
4793 /*
4794 * Ok we're over committed, set num_bytes to the overcommitted
4795 * amount plus the amount of bytes that we need for this
4796 * reservation.
4797 */
4798 num_bytes = used - space_info->total_bytes +
4799 (orig_bytes * 2);
4800 }
4801
4802 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4803 space_info->bytes_may_use += orig_bytes;
4804 trace_btrfs_space_reservation(root->fs_info, "space_info",
4805 space_info->flags, orig_bytes,
4806 1);
4807 ret = 0;
4808 }
4809
4810 /*
4811 * Couldn't make our reservation, save our place so while we're trying
4812 * to reclaim space we can actually use it instead of somebody else
4813 * stealing it from us.
4814 *
4815 * We make the other tasks wait for the flush only when we can flush
4816 * all things.
4817 */
4818 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4819 flushing = true;
4820 space_info->flush = 1;
4821 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4822 used += orig_bytes;
4823 /*
4824 * We will do the space reservation dance during log replay,
4825 * which means we won't have fs_info->fs_root set, so don't do
4826 * the async reclaim as we will panic.
4827 */
4828 if (!root->fs_info->log_root_recovering &&
4829 need_do_async_reclaim(space_info, root->fs_info, used) &&
4830 !work_busy(&root->fs_info->async_reclaim_work))
4831 queue_work(system_unbound_wq,
4832 &root->fs_info->async_reclaim_work);
4833 }
4834 spin_unlock(&space_info->lock);
4835
4836 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4837 goto out;
4838
4839 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4840 flush_state);
4841 flush_state++;
4842
4843 /*
4844 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4845 * would happen. So skip delalloc flush.
4846 */
4847 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4848 (flush_state == FLUSH_DELALLOC ||
4849 flush_state == FLUSH_DELALLOC_WAIT))
4850 flush_state = ALLOC_CHUNK;
4851
4852 if (!ret)
4853 goto again;
4854 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4855 flush_state < COMMIT_TRANS)
4856 goto again;
4857 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4858 flush_state <= COMMIT_TRANS)
4859 goto again;
4860
4861 out:
4862 if (ret == -ENOSPC &&
4863 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4864 struct btrfs_block_rsv *global_rsv =
4865 &root->fs_info->global_block_rsv;
4866
4867 if (block_rsv != global_rsv &&
4868 !block_rsv_use_bytes(global_rsv, orig_bytes))
4869 ret = 0;
4870 }
4871 if (ret == -ENOSPC)
4872 trace_btrfs_space_reservation(root->fs_info,
4873 "space_info:enospc",
4874 space_info->flags, orig_bytes, 1);
4875 if (flushing) {
4876 spin_lock(&space_info->lock);
4877 space_info->flush = 0;
4878 wake_up_all(&space_info->wait);
4879 spin_unlock(&space_info->lock);
4880 }
4881 return ret;
4882 }
4883
4884 static struct btrfs_block_rsv *get_block_rsv(
4885 const struct btrfs_trans_handle *trans,
4886 const struct btrfs_root *root)
4887 {
4888 struct btrfs_block_rsv *block_rsv = NULL;
4889
4890 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4891 block_rsv = trans->block_rsv;
4892
4893 if (root == root->fs_info->csum_root && trans->adding_csums)
4894 block_rsv = trans->block_rsv;
4895
4896 if (root == root->fs_info->uuid_root)
4897 block_rsv = trans->block_rsv;
4898
4899 if (!block_rsv)
4900 block_rsv = root->block_rsv;
4901
4902 if (!block_rsv)
4903 block_rsv = &root->fs_info->empty_block_rsv;
4904
4905 return block_rsv;
4906 }
4907
4908 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4909 u64 num_bytes)
4910 {
4911 int ret = -ENOSPC;
4912 spin_lock(&block_rsv->lock);
4913 if (block_rsv->reserved >= num_bytes) {
4914 block_rsv->reserved -= num_bytes;
4915 if (block_rsv->reserved < block_rsv->size)
4916 block_rsv->full = 0;
4917 ret = 0;
4918 }
4919 spin_unlock(&block_rsv->lock);
4920 return ret;
4921 }
4922
4923 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4924 u64 num_bytes, int update_size)
4925 {
4926 spin_lock(&block_rsv->lock);
4927 block_rsv->reserved += num_bytes;
4928 if (update_size)
4929 block_rsv->size += num_bytes;
4930 else if (block_rsv->reserved >= block_rsv->size)
4931 block_rsv->full = 1;
4932 spin_unlock(&block_rsv->lock);
4933 }
4934
4935 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4936 struct btrfs_block_rsv *dest, u64 num_bytes,
4937 int min_factor)
4938 {
4939 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4940 u64 min_bytes;
4941
4942 if (global_rsv->space_info != dest->space_info)
4943 return -ENOSPC;
4944
4945 spin_lock(&global_rsv->lock);
4946 min_bytes = div_factor(global_rsv->size, min_factor);
4947 if (global_rsv->reserved < min_bytes + num_bytes) {
4948 spin_unlock(&global_rsv->lock);
4949 return -ENOSPC;
4950 }
4951 global_rsv->reserved -= num_bytes;
4952 if (global_rsv->reserved < global_rsv->size)
4953 global_rsv->full = 0;
4954 spin_unlock(&global_rsv->lock);
4955
4956 block_rsv_add_bytes(dest, num_bytes, 1);
4957 return 0;
4958 }
4959
4960 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4961 struct btrfs_block_rsv *block_rsv,
4962 struct btrfs_block_rsv *dest, u64 num_bytes)
4963 {
4964 struct btrfs_space_info *space_info = block_rsv->space_info;
4965
4966 spin_lock(&block_rsv->lock);
4967 if (num_bytes == (u64)-1)
4968 num_bytes = block_rsv->size;
4969 block_rsv->size -= num_bytes;
4970 if (block_rsv->reserved >= block_rsv->size) {
4971 num_bytes = block_rsv->reserved - block_rsv->size;
4972 block_rsv->reserved = block_rsv->size;
4973 block_rsv->full = 1;
4974 } else {
4975 num_bytes = 0;
4976 }
4977 spin_unlock(&block_rsv->lock);
4978
4979 if (num_bytes > 0) {
4980 if (dest) {
4981 spin_lock(&dest->lock);
4982 if (!dest->full) {
4983 u64 bytes_to_add;
4984
4985 bytes_to_add = dest->size - dest->reserved;
4986 bytes_to_add = min(num_bytes, bytes_to_add);
4987 dest->reserved += bytes_to_add;
4988 if (dest->reserved >= dest->size)
4989 dest->full = 1;
4990 num_bytes -= bytes_to_add;
4991 }
4992 spin_unlock(&dest->lock);
4993 }
4994 if (num_bytes) {
4995 spin_lock(&space_info->lock);
4996 space_info->bytes_may_use -= num_bytes;
4997 trace_btrfs_space_reservation(fs_info, "space_info",
4998 space_info->flags, num_bytes, 0);
4999 spin_unlock(&space_info->lock);
5000 }
5001 }
5002 }
5003
5004 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5005 struct btrfs_block_rsv *dst, u64 num_bytes)
5006 {
5007 int ret;
5008
5009 ret = block_rsv_use_bytes(src, num_bytes);
5010 if (ret)
5011 return ret;
5012
5013 block_rsv_add_bytes(dst, num_bytes, 1);
5014 return 0;
5015 }
5016
5017 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5018 {
5019 memset(rsv, 0, sizeof(*rsv));
5020 spin_lock_init(&rsv->lock);
5021 rsv->type = type;
5022 }
5023
5024 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5025 unsigned short type)
5026 {
5027 struct btrfs_block_rsv *block_rsv;
5028 struct btrfs_fs_info *fs_info = root->fs_info;
5029
5030 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5031 if (!block_rsv)
5032 return NULL;
5033
5034 btrfs_init_block_rsv(block_rsv, type);
5035 block_rsv->space_info = __find_space_info(fs_info,
5036 BTRFS_BLOCK_GROUP_METADATA);
5037 return block_rsv;
5038 }
5039
5040 void btrfs_free_block_rsv(struct btrfs_root *root,
5041 struct btrfs_block_rsv *rsv)
5042 {
5043 if (!rsv)
5044 return;
5045 btrfs_block_rsv_release(root, rsv, (u64)-1);
5046 kfree(rsv);
5047 }
5048
5049 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5050 {
5051 kfree(rsv);
5052 }
5053
5054 int btrfs_block_rsv_add(struct btrfs_root *root,
5055 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5056 enum btrfs_reserve_flush_enum flush)
5057 {
5058 int ret;
5059
5060 if (num_bytes == 0)
5061 return 0;
5062
5063 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5064 if (!ret) {
5065 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5066 return 0;
5067 }
5068
5069 return ret;
5070 }
5071
5072 int btrfs_block_rsv_check(struct btrfs_root *root,
5073 struct btrfs_block_rsv *block_rsv, int min_factor)
5074 {
5075 u64 num_bytes = 0;
5076 int ret = -ENOSPC;
5077
5078 if (!block_rsv)
5079 return 0;
5080
5081 spin_lock(&block_rsv->lock);
5082 num_bytes = div_factor(block_rsv->size, min_factor);
5083 if (block_rsv->reserved >= num_bytes)
5084 ret = 0;
5085 spin_unlock(&block_rsv->lock);
5086
5087 return ret;
5088 }
5089
5090 int btrfs_block_rsv_refill(struct btrfs_root *root,
5091 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5092 enum btrfs_reserve_flush_enum flush)
5093 {
5094 u64 num_bytes = 0;
5095 int ret = -ENOSPC;
5096
5097 if (!block_rsv)
5098 return 0;
5099
5100 spin_lock(&block_rsv->lock);
5101 num_bytes = min_reserved;
5102 if (block_rsv->reserved >= num_bytes)
5103 ret = 0;
5104 else
5105 num_bytes -= block_rsv->reserved;
5106 spin_unlock(&block_rsv->lock);
5107
5108 if (!ret)
5109 return 0;
5110
5111 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5112 if (!ret) {
5113 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5114 return 0;
5115 }
5116
5117 return ret;
5118 }
5119
5120 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5121 struct btrfs_block_rsv *dst_rsv,
5122 u64 num_bytes)
5123 {
5124 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5125 }
5126
5127 void btrfs_block_rsv_release(struct btrfs_root *root,
5128 struct btrfs_block_rsv *block_rsv,
5129 u64 num_bytes)
5130 {
5131 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5132 if (global_rsv == block_rsv ||
5133 block_rsv->space_info != global_rsv->space_info)
5134 global_rsv = NULL;
5135 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5136 num_bytes);
5137 }
5138
5139 /*
5140 * helper to calculate size of global block reservation.
5141 * the desired value is sum of space used by extent tree,
5142 * checksum tree and root tree
5143 */
5144 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5145 {
5146 struct btrfs_space_info *sinfo;
5147 u64 num_bytes;
5148 u64 meta_used;
5149 u64 data_used;
5150 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5151
5152 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5153 spin_lock(&sinfo->lock);
5154 data_used = sinfo->bytes_used;
5155 spin_unlock(&sinfo->lock);
5156
5157 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5158 spin_lock(&sinfo->lock);
5159 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5160 data_used = 0;
5161 meta_used = sinfo->bytes_used;
5162 spin_unlock(&sinfo->lock);
5163
5164 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5165 csum_size * 2;
5166 num_bytes += div_u64(data_used + meta_used, 50);
5167
5168 if (num_bytes * 3 > meta_used)
5169 num_bytes = div_u64(meta_used, 3);
5170
5171 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5172 }
5173
5174 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5175 {
5176 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5177 struct btrfs_space_info *sinfo = block_rsv->space_info;
5178 u64 num_bytes;
5179
5180 num_bytes = calc_global_metadata_size(fs_info);
5181
5182 spin_lock(&sinfo->lock);
5183 spin_lock(&block_rsv->lock);
5184
5185 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5186
5187 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5188 sinfo->bytes_reserved + sinfo->bytes_readonly +
5189 sinfo->bytes_may_use;
5190
5191 if (sinfo->total_bytes > num_bytes) {
5192 num_bytes = sinfo->total_bytes - num_bytes;
5193 block_rsv->reserved += num_bytes;
5194 sinfo->bytes_may_use += num_bytes;
5195 trace_btrfs_space_reservation(fs_info, "space_info",
5196 sinfo->flags, num_bytes, 1);
5197 }
5198
5199 if (block_rsv->reserved >= block_rsv->size) {
5200 num_bytes = block_rsv->reserved - block_rsv->size;
5201 sinfo->bytes_may_use -= num_bytes;
5202 trace_btrfs_space_reservation(fs_info, "space_info",
5203 sinfo->flags, num_bytes, 0);
5204 block_rsv->reserved = block_rsv->size;
5205 block_rsv->full = 1;
5206 }
5207
5208 spin_unlock(&block_rsv->lock);
5209 spin_unlock(&sinfo->lock);
5210 }
5211
5212 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5213 {
5214 struct btrfs_space_info *space_info;
5215
5216 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5217 fs_info->chunk_block_rsv.space_info = space_info;
5218
5219 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5220 fs_info->global_block_rsv.space_info = space_info;
5221 fs_info->delalloc_block_rsv.space_info = space_info;
5222 fs_info->trans_block_rsv.space_info = space_info;
5223 fs_info->empty_block_rsv.space_info = space_info;
5224 fs_info->delayed_block_rsv.space_info = space_info;
5225
5226 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5227 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5228 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5229 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5230 if (fs_info->quota_root)
5231 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5232 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5233
5234 update_global_block_rsv(fs_info);
5235 }
5236
5237 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5238 {
5239 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5240 (u64)-1);
5241 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5242 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5243 WARN_ON(fs_info->trans_block_rsv.size > 0);
5244 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5245 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5246 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5247 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5248 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5249 }
5250
5251 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5252 struct btrfs_root *root)
5253 {
5254 if (!trans->block_rsv)
5255 return;
5256
5257 if (!trans->bytes_reserved)
5258 return;
5259
5260 trace_btrfs_space_reservation(root->fs_info, "transaction",
5261 trans->transid, trans->bytes_reserved, 0);
5262 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5263 trans->bytes_reserved = 0;
5264 }
5265
5266 /*
5267 * To be called after all the new block groups attached to the transaction
5268 * handle have been created (btrfs_create_pending_block_groups()).
5269 */
5270 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5271 {
5272 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5273
5274 if (!trans->chunk_bytes_reserved)
5275 return;
5276
5277 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5278
5279 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5280 trans->chunk_bytes_reserved);
5281 trans->chunk_bytes_reserved = 0;
5282 }
5283
5284 /* Can only return 0 or -ENOSPC */
5285 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5286 struct inode *inode)
5287 {
5288 struct btrfs_root *root = BTRFS_I(inode)->root;
5289 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5290 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5291
5292 /*
5293 * We need to hold space in order to delete our orphan item once we've
5294 * added it, so this takes the reservation so we can release it later
5295 * when we are truly done with the orphan item.
5296 */
5297 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5298 trace_btrfs_space_reservation(root->fs_info, "orphan",
5299 btrfs_ino(inode), num_bytes, 1);
5300 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5301 }
5302
5303 void btrfs_orphan_release_metadata(struct inode *inode)
5304 {
5305 struct btrfs_root *root = BTRFS_I(inode)->root;
5306 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5307 trace_btrfs_space_reservation(root->fs_info, "orphan",
5308 btrfs_ino(inode), num_bytes, 0);
5309 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5310 }
5311
5312 /*
5313 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5314 * root: the root of the parent directory
5315 * rsv: block reservation
5316 * items: the number of items that we need do reservation
5317 * qgroup_reserved: used to return the reserved size in qgroup
5318 *
5319 * This function is used to reserve the space for snapshot/subvolume
5320 * creation and deletion. Those operations are different with the
5321 * common file/directory operations, they change two fs/file trees
5322 * and root tree, the number of items that the qgroup reserves is
5323 * different with the free space reservation. So we can not use
5324 * the space reseravtion mechanism in start_transaction().
5325 */
5326 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5327 struct btrfs_block_rsv *rsv,
5328 int items,
5329 u64 *qgroup_reserved,
5330 bool use_global_rsv)
5331 {
5332 u64 num_bytes;
5333 int ret;
5334 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5335
5336 if (root->fs_info->quota_enabled) {
5337 /* One for parent inode, two for dir entries */
5338 num_bytes = 3 * root->nodesize;
5339 ret = btrfs_qgroup_reserve(root, num_bytes);
5340 if (ret)
5341 return ret;
5342 } else {
5343 num_bytes = 0;
5344 }
5345
5346 *qgroup_reserved = num_bytes;
5347
5348 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5349 rsv->space_info = __find_space_info(root->fs_info,
5350 BTRFS_BLOCK_GROUP_METADATA);
5351 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5352 BTRFS_RESERVE_FLUSH_ALL);
5353
5354 if (ret == -ENOSPC && use_global_rsv)
5355 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5356
5357 if (ret) {
5358 if (*qgroup_reserved)
5359 btrfs_qgroup_free(root, *qgroup_reserved);
5360 }
5361
5362 return ret;
5363 }
5364
5365 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5366 struct btrfs_block_rsv *rsv,
5367 u64 qgroup_reserved)
5368 {
5369 btrfs_block_rsv_release(root, rsv, (u64)-1);
5370 }
5371
5372 /**
5373 * drop_outstanding_extent - drop an outstanding extent
5374 * @inode: the inode we're dropping the extent for
5375 * @num_bytes: the number of bytes we're relaseing.
5376 *
5377 * This is called when we are freeing up an outstanding extent, either called
5378 * after an error or after an extent is written. This will return the number of
5379 * reserved extents that need to be freed. This must be called with
5380 * BTRFS_I(inode)->lock held.
5381 */
5382 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5383 {
5384 unsigned drop_inode_space = 0;
5385 unsigned dropped_extents = 0;
5386 unsigned num_extents = 0;
5387
5388 num_extents = (unsigned)div64_u64(num_bytes +
5389 BTRFS_MAX_EXTENT_SIZE - 1,
5390 BTRFS_MAX_EXTENT_SIZE);
5391 ASSERT(num_extents);
5392 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5393 BTRFS_I(inode)->outstanding_extents -= num_extents;
5394
5395 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5396 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5397 &BTRFS_I(inode)->runtime_flags))
5398 drop_inode_space = 1;
5399
5400 /*
5401 * If we have more or the same amount of outsanding extents than we have
5402 * reserved then we need to leave the reserved extents count alone.
5403 */
5404 if (BTRFS_I(inode)->outstanding_extents >=
5405 BTRFS_I(inode)->reserved_extents)
5406 return drop_inode_space;
5407
5408 dropped_extents = BTRFS_I(inode)->reserved_extents -
5409 BTRFS_I(inode)->outstanding_extents;
5410 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5411 return dropped_extents + drop_inode_space;
5412 }
5413
5414 /**
5415 * calc_csum_metadata_size - return the amount of metada space that must be
5416 * reserved/free'd for the given bytes.
5417 * @inode: the inode we're manipulating
5418 * @num_bytes: the number of bytes in question
5419 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5420 *
5421 * This adjusts the number of csum_bytes in the inode and then returns the
5422 * correct amount of metadata that must either be reserved or freed. We
5423 * calculate how many checksums we can fit into one leaf and then divide the
5424 * number of bytes that will need to be checksumed by this value to figure out
5425 * how many checksums will be required. If we are adding bytes then the number
5426 * may go up and we will return the number of additional bytes that must be
5427 * reserved. If it is going down we will return the number of bytes that must
5428 * be freed.
5429 *
5430 * This must be called with BTRFS_I(inode)->lock held.
5431 */
5432 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5433 int reserve)
5434 {
5435 struct btrfs_root *root = BTRFS_I(inode)->root;
5436 u64 old_csums, num_csums;
5437
5438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5439 BTRFS_I(inode)->csum_bytes == 0)
5440 return 0;
5441
5442 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5443 if (reserve)
5444 BTRFS_I(inode)->csum_bytes += num_bytes;
5445 else
5446 BTRFS_I(inode)->csum_bytes -= num_bytes;
5447 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5448
5449 /* No change, no need to reserve more */
5450 if (old_csums == num_csums)
5451 return 0;
5452
5453 if (reserve)
5454 return btrfs_calc_trans_metadata_size(root,
5455 num_csums - old_csums);
5456
5457 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5458 }
5459
5460 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5461 {
5462 struct btrfs_root *root = BTRFS_I(inode)->root;
5463 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5464 u64 to_reserve = 0;
5465 u64 csum_bytes;
5466 unsigned nr_extents = 0;
5467 int extra_reserve = 0;
5468 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5469 int ret = 0;
5470 bool delalloc_lock = true;
5471 u64 to_free = 0;
5472 unsigned dropped;
5473
5474 /* If we are a free space inode we need to not flush since we will be in
5475 * the middle of a transaction commit. We also don't need the delalloc
5476 * mutex since we won't race with anybody. We need this mostly to make
5477 * lockdep shut its filthy mouth.
5478 */
5479 if (btrfs_is_free_space_inode(inode)) {
5480 flush = BTRFS_RESERVE_NO_FLUSH;
5481 delalloc_lock = false;
5482 }
5483
5484 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5485 btrfs_transaction_in_commit(root->fs_info))
5486 schedule_timeout(1);
5487
5488 if (delalloc_lock)
5489 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5490
5491 num_bytes = ALIGN(num_bytes, root->sectorsize);
5492
5493 spin_lock(&BTRFS_I(inode)->lock);
5494 nr_extents = (unsigned)div64_u64(num_bytes +
5495 BTRFS_MAX_EXTENT_SIZE - 1,
5496 BTRFS_MAX_EXTENT_SIZE);
5497 BTRFS_I(inode)->outstanding_extents += nr_extents;
5498 nr_extents = 0;
5499
5500 if (BTRFS_I(inode)->outstanding_extents >
5501 BTRFS_I(inode)->reserved_extents)
5502 nr_extents = BTRFS_I(inode)->outstanding_extents -
5503 BTRFS_I(inode)->reserved_extents;
5504
5505 /*
5506 * Add an item to reserve for updating the inode when we complete the
5507 * delalloc io.
5508 */
5509 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5510 &BTRFS_I(inode)->runtime_flags)) {
5511 nr_extents++;
5512 extra_reserve = 1;
5513 }
5514
5515 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5516 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5517 csum_bytes = BTRFS_I(inode)->csum_bytes;
5518 spin_unlock(&BTRFS_I(inode)->lock);
5519
5520 if (root->fs_info->quota_enabled) {
5521 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5522 if (ret)
5523 goto out_fail;
5524 }
5525
5526 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5527 if (unlikely(ret)) {
5528 if (root->fs_info->quota_enabled)
5529 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5530 goto out_fail;
5531 }
5532
5533 spin_lock(&BTRFS_I(inode)->lock);
5534 if (extra_reserve) {
5535 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5536 &BTRFS_I(inode)->runtime_flags);
5537 nr_extents--;
5538 }
5539 BTRFS_I(inode)->reserved_extents += nr_extents;
5540 spin_unlock(&BTRFS_I(inode)->lock);
5541
5542 if (delalloc_lock)
5543 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5544
5545 if (to_reserve)
5546 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5547 btrfs_ino(inode), to_reserve, 1);
5548 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5549
5550 return 0;
5551
5552 out_fail:
5553 spin_lock(&BTRFS_I(inode)->lock);
5554 dropped = drop_outstanding_extent(inode, num_bytes);
5555 /*
5556 * If the inodes csum_bytes is the same as the original
5557 * csum_bytes then we know we haven't raced with any free()ers
5558 * so we can just reduce our inodes csum bytes and carry on.
5559 */
5560 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5561 calc_csum_metadata_size(inode, num_bytes, 0);
5562 } else {
5563 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5564 u64 bytes;
5565
5566 /*
5567 * This is tricky, but first we need to figure out how much we
5568 * free'd from any free-ers that occured during this
5569 * reservation, so we reset ->csum_bytes to the csum_bytes
5570 * before we dropped our lock, and then call the free for the
5571 * number of bytes that were freed while we were trying our
5572 * reservation.
5573 */
5574 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5575 BTRFS_I(inode)->csum_bytes = csum_bytes;
5576 to_free = calc_csum_metadata_size(inode, bytes, 0);
5577
5578
5579 /*
5580 * Now we need to see how much we would have freed had we not
5581 * been making this reservation and our ->csum_bytes were not
5582 * artificially inflated.
5583 */
5584 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5585 bytes = csum_bytes - orig_csum_bytes;
5586 bytes = calc_csum_metadata_size(inode, bytes, 0);
5587
5588 /*
5589 * Now reset ->csum_bytes to what it should be. If bytes is
5590 * more than to_free then we would have free'd more space had we
5591 * not had an artificially high ->csum_bytes, so we need to free
5592 * the remainder. If bytes is the same or less then we don't
5593 * need to do anything, the other free-ers did the correct
5594 * thing.
5595 */
5596 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5597 if (bytes > to_free)
5598 to_free = bytes - to_free;
5599 else
5600 to_free = 0;
5601 }
5602 spin_unlock(&BTRFS_I(inode)->lock);
5603 if (dropped)
5604 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5605
5606 if (to_free) {
5607 btrfs_block_rsv_release(root, block_rsv, to_free);
5608 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5609 btrfs_ino(inode), to_free, 0);
5610 }
5611 if (delalloc_lock)
5612 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5613 return ret;
5614 }
5615
5616 /**
5617 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5618 * @inode: the inode to release the reservation for
5619 * @num_bytes: the number of bytes we're releasing
5620 *
5621 * This will release the metadata reservation for an inode. This can be called
5622 * once we complete IO for a given set of bytes to release their metadata
5623 * reservations.
5624 */
5625 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5626 {
5627 struct btrfs_root *root = BTRFS_I(inode)->root;
5628 u64 to_free = 0;
5629 unsigned dropped;
5630
5631 num_bytes = ALIGN(num_bytes, root->sectorsize);
5632 spin_lock(&BTRFS_I(inode)->lock);
5633 dropped = drop_outstanding_extent(inode, num_bytes);
5634
5635 if (num_bytes)
5636 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5637 spin_unlock(&BTRFS_I(inode)->lock);
5638 if (dropped > 0)
5639 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5640
5641 if (btrfs_test_is_dummy_root(root))
5642 return;
5643
5644 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5645 btrfs_ino(inode), to_free, 0);
5646
5647 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5648 to_free);
5649 }
5650
5651 /**
5652 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5653 * @inode: inode we're writing to
5654 * @num_bytes: the number of bytes we want to allocate
5655 *
5656 * This will do the following things
5657 *
5658 * o reserve space in the data space info for num_bytes
5659 * o reserve space in the metadata space info based on number of outstanding
5660 * extents and how much csums will be needed
5661 * o add to the inodes ->delalloc_bytes
5662 * o add it to the fs_info's delalloc inodes list.
5663 *
5664 * This will return 0 for success and -ENOSPC if there is no space left.
5665 */
5666 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5667 {
5668 int ret;
5669
5670 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5671 if (ret)
5672 return ret;
5673
5674 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5675 if (ret) {
5676 btrfs_free_reserved_data_space(inode, num_bytes);
5677 return ret;
5678 }
5679
5680 return 0;
5681 }
5682
5683 /**
5684 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5685 * @inode: inode we're releasing space for
5686 * @num_bytes: the number of bytes we want to free up
5687 *
5688 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5689 * called in the case that we don't need the metadata AND data reservations
5690 * anymore. So if there is an error or we insert an inline extent.
5691 *
5692 * This function will release the metadata space that was not used and will
5693 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5694 * list if there are no delalloc bytes left.
5695 */
5696 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5697 {
5698 btrfs_delalloc_release_metadata(inode, num_bytes);
5699 btrfs_free_reserved_data_space(inode, num_bytes);
5700 }
5701
5702 static int update_block_group(struct btrfs_trans_handle *trans,
5703 struct btrfs_root *root, u64 bytenr,
5704 u64 num_bytes, int alloc)
5705 {
5706 struct btrfs_block_group_cache *cache = NULL;
5707 struct btrfs_fs_info *info = root->fs_info;
5708 u64 total = num_bytes;
5709 u64 old_val;
5710 u64 byte_in_group;
5711 int factor;
5712
5713 /* block accounting for super block */
5714 spin_lock(&info->delalloc_root_lock);
5715 old_val = btrfs_super_bytes_used(info->super_copy);
5716 if (alloc)
5717 old_val += num_bytes;
5718 else
5719 old_val -= num_bytes;
5720 btrfs_set_super_bytes_used(info->super_copy, old_val);
5721 spin_unlock(&info->delalloc_root_lock);
5722
5723 while (total) {
5724 cache = btrfs_lookup_block_group(info, bytenr);
5725 if (!cache)
5726 return -ENOENT;
5727 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5728 BTRFS_BLOCK_GROUP_RAID1 |
5729 BTRFS_BLOCK_GROUP_RAID10))
5730 factor = 2;
5731 else
5732 factor = 1;
5733 /*
5734 * If this block group has free space cache written out, we
5735 * need to make sure to load it if we are removing space. This
5736 * is because we need the unpinning stage to actually add the
5737 * space back to the block group, otherwise we will leak space.
5738 */
5739 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5740 cache_block_group(cache, 1);
5741
5742 byte_in_group = bytenr - cache->key.objectid;
5743 WARN_ON(byte_in_group > cache->key.offset);
5744
5745 spin_lock(&cache->space_info->lock);
5746 spin_lock(&cache->lock);
5747
5748 if (btrfs_test_opt(root, SPACE_CACHE) &&
5749 cache->disk_cache_state < BTRFS_DC_CLEAR)
5750 cache->disk_cache_state = BTRFS_DC_CLEAR;
5751
5752 old_val = btrfs_block_group_used(&cache->item);
5753 num_bytes = min(total, cache->key.offset - byte_in_group);
5754 if (alloc) {
5755 old_val += num_bytes;
5756 btrfs_set_block_group_used(&cache->item, old_val);
5757 cache->reserved -= num_bytes;
5758 cache->space_info->bytes_reserved -= num_bytes;
5759 cache->space_info->bytes_used += num_bytes;
5760 cache->space_info->disk_used += num_bytes * factor;
5761 spin_unlock(&cache->lock);
5762 spin_unlock(&cache->space_info->lock);
5763 } else {
5764 old_val -= num_bytes;
5765 btrfs_set_block_group_used(&cache->item, old_val);
5766 cache->pinned += num_bytes;
5767 cache->space_info->bytes_pinned += num_bytes;
5768 cache->space_info->bytes_used -= num_bytes;
5769 cache->space_info->disk_used -= num_bytes * factor;
5770 spin_unlock(&cache->lock);
5771 spin_unlock(&cache->space_info->lock);
5772
5773 set_extent_dirty(info->pinned_extents,
5774 bytenr, bytenr + num_bytes - 1,
5775 GFP_NOFS | __GFP_NOFAIL);
5776 /*
5777 * No longer have used bytes in this block group, queue
5778 * it for deletion.
5779 */
5780 if (old_val == 0) {
5781 spin_lock(&info->unused_bgs_lock);
5782 if (list_empty(&cache->bg_list)) {
5783 btrfs_get_block_group(cache);
5784 list_add_tail(&cache->bg_list,
5785 &info->unused_bgs);
5786 }
5787 spin_unlock(&info->unused_bgs_lock);
5788 }
5789 }
5790
5791 spin_lock(&trans->transaction->dirty_bgs_lock);
5792 if (list_empty(&cache->dirty_list)) {
5793 list_add_tail(&cache->dirty_list,
5794 &trans->transaction->dirty_bgs);
5795 trans->transaction->num_dirty_bgs++;
5796 btrfs_get_block_group(cache);
5797 }
5798 spin_unlock(&trans->transaction->dirty_bgs_lock);
5799
5800 btrfs_put_block_group(cache);
5801 total -= num_bytes;
5802 bytenr += num_bytes;
5803 }
5804 return 0;
5805 }
5806
5807 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5808 {
5809 struct btrfs_block_group_cache *cache;
5810 u64 bytenr;
5811
5812 spin_lock(&root->fs_info->block_group_cache_lock);
5813 bytenr = root->fs_info->first_logical_byte;
5814 spin_unlock(&root->fs_info->block_group_cache_lock);
5815
5816 if (bytenr < (u64)-1)
5817 return bytenr;
5818
5819 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5820 if (!cache)
5821 return 0;
5822
5823 bytenr = cache->key.objectid;
5824 btrfs_put_block_group(cache);
5825
5826 return bytenr;
5827 }
5828
5829 static int pin_down_extent(struct btrfs_root *root,
5830 struct btrfs_block_group_cache *cache,
5831 u64 bytenr, u64 num_bytes, int reserved)
5832 {
5833 spin_lock(&cache->space_info->lock);
5834 spin_lock(&cache->lock);
5835 cache->pinned += num_bytes;
5836 cache->space_info->bytes_pinned += num_bytes;
5837 if (reserved) {
5838 cache->reserved -= num_bytes;
5839 cache->space_info->bytes_reserved -= num_bytes;
5840 }
5841 spin_unlock(&cache->lock);
5842 spin_unlock(&cache->space_info->lock);
5843
5844 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5845 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5846 if (reserved)
5847 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5848 return 0;
5849 }
5850
5851 /*
5852 * this function must be called within transaction
5853 */
5854 int btrfs_pin_extent(struct btrfs_root *root,
5855 u64 bytenr, u64 num_bytes, int reserved)
5856 {
5857 struct btrfs_block_group_cache *cache;
5858
5859 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5860 BUG_ON(!cache); /* Logic error */
5861
5862 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5863
5864 btrfs_put_block_group(cache);
5865 return 0;
5866 }
5867
5868 /*
5869 * this function must be called within transaction
5870 */
5871 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5872 u64 bytenr, u64 num_bytes)
5873 {
5874 struct btrfs_block_group_cache *cache;
5875 int ret;
5876
5877 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5878 if (!cache)
5879 return -EINVAL;
5880
5881 /*
5882 * pull in the free space cache (if any) so that our pin
5883 * removes the free space from the cache. We have load_only set
5884 * to one because the slow code to read in the free extents does check
5885 * the pinned extents.
5886 */
5887 cache_block_group(cache, 1);
5888
5889 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5890
5891 /* remove us from the free space cache (if we're there at all) */
5892 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5893 btrfs_put_block_group(cache);
5894 return ret;
5895 }
5896
5897 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5898 {
5899 int ret;
5900 struct btrfs_block_group_cache *block_group;
5901 struct btrfs_caching_control *caching_ctl;
5902
5903 block_group = btrfs_lookup_block_group(root->fs_info, start);
5904 if (!block_group)
5905 return -EINVAL;
5906
5907 cache_block_group(block_group, 0);
5908 caching_ctl = get_caching_control(block_group);
5909
5910 if (!caching_ctl) {
5911 /* Logic error */
5912 BUG_ON(!block_group_cache_done(block_group));
5913 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5914 } else {
5915 mutex_lock(&caching_ctl->mutex);
5916
5917 if (start >= caching_ctl->progress) {
5918 ret = add_excluded_extent(root, start, num_bytes);
5919 } else if (start + num_bytes <= caching_ctl->progress) {
5920 ret = btrfs_remove_free_space(block_group,
5921 start, num_bytes);
5922 } else {
5923 num_bytes = caching_ctl->progress - start;
5924 ret = btrfs_remove_free_space(block_group,
5925 start, num_bytes);
5926 if (ret)
5927 goto out_lock;
5928
5929 num_bytes = (start + num_bytes) -
5930 caching_ctl->progress;
5931 start = caching_ctl->progress;
5932 ret = add_excluded_extent(root, start, num_bytes);
5933 }
5934 out_lock:
5935 mutex_unlock(&caching_ctl->mutex);
5936 put_caching_control(caching_ctl);
5937 }
5938 btrfs_put_block_group(block_group);
5939 return ret;
5940 }
5941
5942 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5943 struct extent_buffer *eb)
5944 {
5945 struct btrfs_file_extent_item *item;
5946 struct btrfs_key key;
5947 int found_type;
5948 int i;
5949
5950 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5951 return 0;
5952
5953 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5954 btrfs_item_key_to_cpu(eb, &key, i);
5955 if (key.type != BTRFS_EXTENT_DATA_KEY)
5956 continue;
5957 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5958 found_type = btrfs_file_extent_type(eb, item);
5959 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5960 continue;
5961 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5962 continue;
5963 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5964 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5965 __exclude_logged_extent(log, key.objectid, key.offset);
5966 }
5967
5968 return 0;
5969 }
5970
5971 /**
5972 * btrfs_update_reserved_bytes - update the block_group and space info counters
5973 * @cache: The cache we are manipulating
5974 * @num_bytes: The number of bytes in question
5975 * @reserve: One of the reservation enums
5976 * @delalloc: The blocks are allocated for the delalloc write
5977 *
5978 * This is called by the allocator when it reserves space, or by somebody who is
5979 * freeing space that was never actually used on disk. For example if you
5980 * reserve some space for a new leaf in transaction A and before transaction A
5981 * commits you free that leaf, you call this with reserve set to 0 in order to
5982 * clear the reservation.
5983 *
5984 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5985 * ENOSPC accounting. For data we handle the reservation through clearing the
5986 * delalloc bits in the io_tree. We have to do this since we could end up
5987 * allocating less disk space for the amount of data we have reserved in the
5988 * case of compression.
5989 *
5990 * If this is a reservation and the block group has become read only we cannot
5991 * make the reservation and return -EAGAIN, otherwise this function always
5992 * succeeds.
5993 */
5994 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5995 u64 num_bytes, int reserve, int delalloc)
5996 {
5997 struct btrfs_space_info *space_info = cache->space_info;
5998 int ret = 0;
5999
6000 spin_lock(&space_info->lock);
6001 spin_lock(&cache->lock);
6002 if (reserve != RESERVE_FREE) {
6003 if (cache->ro) {
6004 ret = -EAGAIN;
6005 } else {
6006 cache->reserved += num_bytes;
6007 space_info->bytes_reserved += num_bytes;
6008 if (reserve == RESERVE_ALLOC) {
6009 trace_btrfs_space_reservation(cache->fs_info,
6010 "space_info", space_info->flags,
6011 num_bytes, 0);
6012 space_info->bytes_may_use -= num_bytes;
6013 }
6014
6015 if (delalloc)
6016 cache->delalloc_bytes += num_bytes;
6017 }
6018 } else {
6019 if (cache->ro)
6020 space_info->bytes_readonly += num_bytes;
6021 cache->reserved -= num_bytes;
6022 space_info->bytes_reserved -= num_bytes;
6023
6024 if (delalloc)
6025 cache->delalloc_bytes -= num_bytes;
6026 }
6027 spin_unlock(&cache->lock);
6028 spin_unlock(&space_info->lock);
6029 return ret;
6030 }
6031
6032 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6033 struct btrfs_root *root)
6034 {
6035 struct btrfs_fs_info *fs_info = root->fs_info;
6036 struct btrfs_caching_control *next;
6037 struct btrfs_caching_control *caching_ctl;
6038 struct btrfs_block_group_cache *cache;
6039
6040 down_write(&fs_info->commit_root_sem);
6041
6042 list_for_each_entry_safe(caching_ctl, next,
6043 &fs_info->caching_block_groups, list) {
6044 cache = caching_ctl->block_group;
6045 if (block_group_cache_done(cache)) {
6046 cache->last_byte_to_unpin = (u64)-1;
6047 list_del_init(&caching_ctl->list);
6048 put_caching_control(caching_ctl);
6049 } else {
6050 cache->last_byte_to_unpin = caching_ctl->progress;
6051 }
6052 }
6053
6054 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6055 fs_info->pinned_extents = &fs_info->freed_extents[1];
6056 else
6057 fs_info->pinned_extents = &fs_info->freed_extents[0];
6058
6059 up_write(&fs_info->commit_root_sem);
6060
6061 update_global_block_rsv(fs_info);
6062 }
6063
6064 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6065 const bool return_free_space)
6066 {
6067 struct btrfs_fs_info *fs_info = root->fs_info;
6068 struct btrfs_block_group_cache *cache = NULL;
6069 struct btrfs_space_info *space_info;
6070 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6071 u64 len;
6072 bool readonly;
6073
6074 while (start <= end) {
6075 readonly = false;
6076 if (!cache ||
6077 start >= cache->key.objectid + cache->key.offset) {
6078 if (cache)
6079 btrfs_put_block_group(cache);
6080 cache = btrfs_lookup_block_group(fs_info, start);
6081 BUG_ON(!cache); /* Logic error */
6082 }
6083
6084 len = cache->key.objectid + cache->key.offset - start;
6085 len = min(len, end + 1 - start);
6086
6087 if (start < cache->last_byte_to_unpin) {
6088 len = min(len, cache->last_byte_to_unpin - start);
6089 if (return_free_space)
6090 btrfs_add_free_space(cache, start, len);
6091 }
6092
6093 start += len;
6094 space_info = cache->space_info;
6095
6096 spin_lock(&space_info->lock);
6097 spin_lock(&cache->lock);
6098 cache->pinned -= len;
6099 space_info->bytes_pinned -= len;
6100 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6101 if (cache->ro) {
6102 space_info->bytes_readonly += len;
6103 readonly = true;
6104 }
6105 spin_unlock(&cache->lock);
6106 if (!readonly && global_rsv->space_info == space_info) {
6107 spin_lock(&global_rsv->lock);
6108 if (!global_rsv->full) {
6109 len = min(len, global_rsv->size -
6110 global_rsv->reserved);
6111 global_rsv->reserved += len;
6112 space_info->bytes_may_use += len;
6113 if (global_rsv->reserved >= global_rsv->size)
6114 global_rsv->full = 1;
6115 }
6116 spin_unlock(&global_rsv->lock);
6117 }
6118 spin_unlock(&space_info->lock);
6119 }
6120
6121 if (cache)
6122 btrfs_put_block_group(cache);
6123 return 0;
6124 }
6125
6126 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6127 struct btrfs_root *root)
6128 {
6129 struct btrfs_fs_info *fs_info = root->fs_info;
6130 struct btrfs_block_group_cache *block_group, *tmp;
6131 struct list_head *deleted_bgs;
6132 struct extent_io_tree *unpin;
6133 u64 start;
6134 u64 end;
6135 int ret;
6136
6137 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6138 unpin = &fs_info->freed_extents[1];
6139 else
6140 unpin = &fs_info->freed_extents[0];
6141
6142 while (!trans->aborted) {
6143 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6144 ret = find_first_extent_bit(unpin, 0, &start, &end,
6145 EXTENT_DIRTY, NULL);
6146 if (ret) {
6147 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6148 break;
6149 }
6150
6151 if (btrfs_test_opt(root, DISCARD))
6152 ret = btrfs_discard_extent(root, start,
6153 end + 1 - start, NULL);
6154
6155 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6156 unpin_extent_range(root, start, end, true);
6157 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6158 cond_resched();
6159 }
6160
6161 /*
6162 * Transaction is finished. We don't need the lock anymore. We
6163 * do need to clean up the block groups in case of a transaction
6164 * abort.
6165 */
6166 deleted_bgs = &trans->transaction->deleted_bgs;
6167 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6168 u64 trimmed = 0;
6169
6170 ret = -EROFS;
6171 if (!trans->aborted)
6172 ret = btrfs_discard_extent(root,
6173 block_group->key.objectid,
6174 block_group->key.offset,
6175 &trimmed);
6176
6177 list_del_init(&block_group->bg_list);
6178 btrfs_put_block_group_trimming(block_group);
6179 btrfs_put_block_group(block_group);
6180
6181 if (ret) {
6182 const char *errstr = btrfs_decode_error(ret);
6183 btrfs_warn(fs_info,
6184 "Discard failed while removing blockgroup: errno=%d %s\n",
6185 ret, errstr);
6186 }
6187 }
6188
6189 return 0;
6190 }
6191
6192 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6193 u64 owner, u64 root_objectid)
6194 {
6195 struct btrfs_space_info *space_info;
6196 u64 flags;
6197
6198 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6199 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6200 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6201 else
6202 flags = BTRFS_BLOCK_GROUP_METADATA;
6203 } else {
6204 flags = BTRFS_BLOCK_GROUP_DATA;
6205 }
6206
6207 space_info = __find_space_info(fs_info, flags);
6208 BUG_ON(!space_info); /* Logic bug */
6209 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6210 }
6211
6212
6213 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6214 struct btrfs_root *root,
6215 struct btrfs_delayed_ref_node *node, u64 parent,
6216 u64 root_objectid, u64 owner_objectid,
6217 u64 owner_offset, int refs_to_drop,
6218 struct btrfs_delayed_extent_op *extent_op)
6219 {
6220 struct btrfs_key key;
6221 struct btrfs_path *path;
6222 struct btrfs_fs_info *info = root->fs_info;
6223 struct btrfs_root *extent_root = info->extent_root;
6224 struct extent_buffer *leaf;
6225 struct btrfs_extent_item *ei;
6226 struct btrfs_extent_inline_ref *iref;
6227 int ret;
6228 int is_data;
6229 int extent_slot = 0;
6230 int found_extent = 0;
6231 int num_to_del = 1;
6232 int no_quota = node->no_quota;
6233 u32 item_size;
6234 u64 refs;
6235 u64 bytenr = node->bytenr;
6236 u64 num_bytes = node->num_bytes;
6237 int last_ref = 0;
6238 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6239 SKINNY_METADATA);
6240
6241 if (!info->quota_enabled || !is_fstree(root_objectid))
6242 no_quota = 1;
6243
6244 path = btrfs_alloc_path();
6245 if (!path)
6246 return -ENOMEM;
6247
6248 path->reada = 1;
6249 path->leave_spinning = 1;
6250
6251 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6252 BUG_ON(!is_data && refs_to_drop != 1);
6253
6254 if (is_data)
6255 skinny_metadata = 0;
6256
6257 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6258 bytenr, num_bytes, parent,
6259 root_objectid, owner_objectid,
6260 owner_offset);
6261 if (ret == 0) {
6262 extent_slot = path->slots[0];
6263 while (extent_slot >= 0) {
6264 btrfs_item_key_to_cpu(path->nodes[0], &key,
6265 extent_slot);
6266 if (key.objectid != bytenr)
6267 break;
6268 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6269 key.offset == num_bytes) {
6270 found_extent = 1;
6271 break;
6272 }
6273 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6274 key.offset == owner_objectid) {
6275 found_extent = 1;
6276 break;
6277 }
6278 if (path->slots[0] - extent_slot > 5)
6279 break;
6280 extent_slot--;
6281 }
6282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6283 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6284 if (found_extent && item_size < sizeof(*ei))
6285 found_extent = 0;
6286 #endif
6287 if (!found_extent) {
6288 BUG_ON(iref);
6289 ret = remove_extent_backref(trans, extent_root, path,
6290 NULL, refs_to_drop,
6291 is_data, &last_ref);
6292 if (ret) {
6293 btrfs_abort_transaction(trans, extent_root, ret);
6294 goto out;
6295 }
6296 btrfs_release_path(path);
6297 path->leave_spinning = 1;
6298
6299 key.objectid = bytenr;
6300 key.type = BTRFS_EXTENT_ITEM_KEY;
6301 key.offset = num_bytes;
6302
6303 if (!is_data && skinny_metadata) {
6304 key.type = BTRFS_METADATA_ITEM_KEY;
6305 key.offset = owner_objectid;
6306 }
6307
6308 ret = btrfs_search_slot(trans, extent_root,
6309 &key, path, -1, 1);
6310 if (ret > 0 && skinny_metadata && path->slots[0]) {
6311 /*
6312 * Couldn't find our skinny metadata item,
6313 * see if we have ye olde extent item.
6314 */
6315 path->slots[0]--;
6316 btrfs_item_key_to_cpu(path->nodes[0], &key,
6317 path->slots[0]);
6318 if (key.objectid == bytenr &&
6319 key.type == BTRFS_EXTENT_ITEM_KEY &&
6320 key.offset == num_bytes)
6321 ret = 0;
6322 }
6323
6324 if (ret > 0 && skinny_metadata) {
6325 skinny_metadata = false;
6326 key.objectid = bytenr;
6327 key.type = BTRFS_EXTENT_ITEM_KEY;
6328 key.offset = num_bytes;
6329 btrfs_release_path(path);
6330 ret = btrfs_search_slot(trans, extent_root,
6331 &key, path, -1, 1);
6332 }
6333
6334 if (ret) {
6335 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6336 ret, bytenr);
6337 if (ret > 0)
6338 btrfs_print_leaf(extent_root,
6339 path->nodes[0]);
6340 }
6341 if (ret < 0) {
6342 btrfs_abort_transaction(trans, extent_root, ret);
6343 goto out;
6344 }
6345 extent_slot = path->slots[0];
6346 }
6347 } else if (WARN_ON(ret == -ENOENT)) {
6348 btrfs_print_leaf(extent_root, path->nodes[0]);
6349 btrfs_err(info,
6350 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6351 bytenr, parent, root_objectid, owner_objectid,
6352 owner_offset);
6353 btrfs_abort_transaction(trans, extent_root, ret);
6354 goto out;
6355 } else {
6356 btrfs_abort_transaction(trans, extent_root, ret);
6357 goto out;
6358 }
6359
6360 leaf = path->nodes[0];
6361 item_size = btrfs_item_size_nr(leaf, extent_slot);
6362 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6363 if (item_size < sizeof(*ei)) {
6364 BUG_ON(found_extent || extent_slot != path->slots[0]);
6365 ret = convert_extent_item_v0(trans, extent_root, path,
6366 owner_objectid, 0);
6367 if (ret < 0) {
6368 btrfs_abort_transaction(trans, extent_root, ret);
6369 goto out;
6370 }
6371
6372 btrfs_release_path(path);
6373 path->leave_spinning = 1;
6374
6375 key.objectid = bytenr;
6376 key.type = BTRFS_EXTENT_ITEM_KEY;
6377 key.offset = num_bytes;
6378
6379 ret = btrfs_search_slot(trans, extent_root, &key, path,
6380 -1, 1);
6381 if (ret) {
6382 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6383 ret, bytenr);
6384 btrfs_print_leaf(extent_root, path->nodes[0]);
6385 }
6386 if (ret < 0) {
6387 btrfs_abort_transaction(trans, extent_root, ret);
6388 goto out;
6389 }
6390
6391 extent_slot = path->slots[0];
6392 leaf = path->nodes[0];
6393 item_size = btrfs_item_size_nr(leaf, extent_slot);
6394 }
6395 #endif
6396 BUG_ON(item_size < sizeof(*ei));
6397 ei = btrfs_item_ptr(leaf, extent_slot,
6398 struct btrfs_extent_item);
6399 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6400 key.type == BTRFS_EXTENT_ITEM_KEY) {
6401 struct btrfs_tree_block_info *bi;
6402 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6403 bi = (struct btrfs_tree_block_info *)(ei + 1);
6404 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6405 }
6406
6407 refs = btrfs_extent_refs(leaf, ei);
6408 if (refs < refs_to_drop) {
6409 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6410 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6411 ret = -EINVAL;
6412 btrfs_abort_transaction(trans, extent_root, ret);
6413 goto out;
6414 }
6415 refs -= refs_to_drop;
6416
6417 if (refs > 0) {
6418 if (extent_op)
6419 __run_delayed_extent_op(extent_op, leaf, ei);
6420 /*
6421 * In the case of inline back ref, reference count will
6422 * be updated by remove_extent_backref
6423 */
6424 if (iref) {
6425 BUG_ON(!found_extent);
6426 } else {
6427 btrfs_set_extent_refs(leaf, ei, refs);
6428 btrfs_mark_buffer_dirty(leaf);
6429 }
6430 if (found_extent) {
6431 ret = remove_extent_backref(trans, extent_root, path,
6432 iref, refs_to_drop,
6433 is_data, &last_ref);
6434 if (ret) {
6435 btrfs_abort_transaction(trans, extent_root, ret);
6436 goto out;
6437 }
6438 }
6439 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6440 root_objectid);
6441 } else {
6442 if (found_extent) {
6443 BUG_ON(is_data && refs_to_drop !=
6444 extent_data_ref_count(path, iref));
6445 if (iref) {
6446 BUG_ON(path->slots[0] != extent_slot);
6447 } else {
6448 BUG_ON(path->slots[0] != extent_slot + 1);
6449 path->slots[0] = extent_slot;
6450 num_to_del = 2;
6451 }
6452 }
6453
6454 last_ref = 1;
6455 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6456 num_to_del);
6457 if (ret) {
6458 btrfs_abort_transaction(trans, extent_root, ret);
6459 goto out;
6460 }
6461 btrfs_release_path(path);
6462
6463 if (is_data) {
6464 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6465 if (ret) {
6466 btrfs_abort_transaction(trans, extent_root, ret);
6467 goto out;
6468 }
6469 }
6470
6471 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6472 if (ret) {
6473 btrfs_abort_transaction(trans, extent_root, ret);
6474 goto out;
6475 }
6476 }
6477 btrfs_release_path(path);
6478
6479 out:
6480 btrfs_free_path(path);
6481 return ret;
6482 }
6483
6484 /*
6485 * when we free an block, it is possible (and likely) that we free the last
6486 * delayed ref for that extent as well. This searches the delayed ref tree for
6487 * a given extent, and if there are no other delayed refs to be processed, it
6488 * removes it from the tree.
6489 */
6490 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6491 struct btrfs_root *root, u64 bytenr)
6492 {
6493 struct btrfs_delayed_ref_head *head;
6494 struct btrfs_delayed_ref_root *delayed_refs;
6495 int ret = 0;
6496
6497 delayed_refs = &trans->transaction->delayed_refs;
6498 spin_lock(&delayed_refs->lock);
6499 head = btrfs_find_delayed_ref_head(trans, bytenr);
6500 if (!head)
6501 goto out_delayed_unlock;
6502
6503 spin_lock(&head->lock);
6504 if (!list_empty(&head->ref_list))
6505 goto out;
6506
6507 if (head->extent_op) {
6508 if (!head->must_insert_reserved)
6509 goto out;
6510 btrfs_free_delayed_extent_op(head->extent_op);
6511 head->extent_op = NULL;
6512 }
6513
6514 /*
6515 * waiting for the lock here would deadlock. If someone else has it
6516 * locked they are already in the process of dropping it anyway
6517 */
6518 if (!mutex_trylock(&head->mutex))
6519 goto out;
6520
6521 /*
6522 * at this point we have a head with no other entries. Go
6523 * ahead and process it.
6524 */
6525 head->node.in_tree = 0;
6526 rb_erase(&head->href_node, &delayed_refs->href_root);
6527
6528 atomic_dec(&delayed_refs->num_entries);
6529
6530 /*
6531 * we don't take a ref on the node because we're removing it from the
6532 * tree, so we just steal the ref the tree was holding.
6533 */
6534 delayed_refs->num_heads--;
6535 if (head->processing == 0)
6536 delayed_refs->num_heads_ready--;
6537 head->processing = 0;
6538 spin_unlock(&head->lock);
6539 spin_unlock(&delayed_refs->lock);
6540
6541 BUG_ON(head->extent_op);
6542 if (head->must_insert_reserved)
6543 ret = 1;
6544
6545 mutex_unlock(&head->mutex);
6546 btrfs_put_delayed_ref(&head->node);
6547 return ret;
6548 out:
6549 spin_unlock(&head->lock);
6550
6551 out_delayed_unlock:
6552 spin_unlock(&delayed_refs->lock);
6553 return 0;
6554 }
6555
6556 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6557 struct btrfs_root *root,
6558 struct extent_buffer *buf,
6559 u64 parent, int last_ref)
6560 {
6561 int pin = 1;
6562 int ret;
6563
6564 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6565 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6566 buf->start, buf->len,
6567 parent, root->root_key.objectid,
6568 btrfs_header_level(buf),
6569 BTRFS_DROP_DELAYED_REF, NULL, 0);
6570 BUG_ON(ret); /* -ENOMEM */
6571 }
6572
6573 if (!last_ref)
6574 return;
6575
6576 if (btrfs_header_generation(buf) == trans->transid) {
6577 struct btrfs_block_group_cache *cache;
6578
6579 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6580 ret = check_ref_cleanup(trans, root, buf->start);
6581 if (!ret)
6582 goto out;
6583 }
6584
6585 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6586
6587 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6588 pin_down_extent(root, cache, buf->start, buf->len, 1);
6589 btrfs_put_block_group(cache);
6590 goto out;
6591 }
6592
6593 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6594
6595 btrfs_add_free_space(cache, buf->start, buf->len);
6596 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6597 btrfs_put_block_group(cache);
6598 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6599 pin = 0;
6600 }
6601 out:
6602 if (pin)
6603 add_pinned_bytes(root->fs_info, buf->len,
6604 btrfs_header_level(buf),
6605 root->root_key.objectid);
6606
6607 /*
6608 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6609 * anymore.
6610 */
6611 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6612 }
6613
6614 /* Can return -ENOMEM */
6615 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6616 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6617 u64 owner, u64 offset, int no_quota)
6618 {
6619 int ret;
6620 struct btrfs_fs_info *fs_info = root->fs_info;
6621
6622 if (btrfs_test_is_dummy_root(root))
6623 return 0;
6624
6625 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6626
6627 /*
6628 * tree log blocks never actually go into the extent allocation
6629 * tree, just update pinning info and exit early.
6630 */
6631 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6632 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6633 /* unlocks the pinned mutex */
6634 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6635 ret = 0;
6636 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6637 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6638 num_bytes,
6639 parent, root_objectid, (int)owner,
6640 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6641 } else {
6642 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6643 num_bytes,
6644 parent, root_objectid, owner,
6645 offset, BTRFS_DROP_DELAYED_REF,
6646 NULL, no_quota);
6647 }
6648 return ret;
6649 }
6650
6651 /*
6652 * when we wait for progress in the block group caching, its because
6653 * our allocation attempt failed at least once. So, we must sleep
6654 * and let some progress happen before we try again.
6655 *
6656 * This function will sleep at least once waiting for new free space to
6657 * show up, and then it will check the block group free space numbers
6658 * for our min num_bytes. Another option is to have it go ahead
6659 * and look in the rbtree for a free extent of a given size, but this
6660 * is a good start.
6661 *
6662 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6663 * any of the information in this block group.
6664 */
6665 static noinline void
6666 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6667 u64 num_bytes)
6668 {
6669 struct btrfs_caching_control *caching_ctl;
6670
6671 caching_ctl = get_caching_control(cache);
6672 if (!caching_ctl)
6673 return;
6674
6675 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6676 (cache->free_space_ctl->free_space >= num_bytes));
6677
6678 put_caching_control(caching_ctl);
6679 }
6680
6681 static noinline int
6682 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6683 {
6684 struct btrfs_caching_control *caching_ctl;
6685 int ret = 0;
6686
6687 caching_ctl = get_caching_control(cache);
6688 if (!caching_ctl)
6689 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6690
6691 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6692 if (cache->cached == BTRFS_CACHE_ERROR)
6693 ret = -EIO;
6694 put_caching_control(caching_ctl);
6695 return ret;
6696 }
6697
6698 int __get_raid_index(u64 flags)
6699 {
6700 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6701 return BTRFS_RAID_RAID10;
6702 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6703 return BTRFS_RAID_RAID1;
6704 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6705 return BTRFS_RAID_DUP;
6706 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6707 return BTRFS_RAID_RAID0;
6708 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6709 return BTRFS_RAID_RAID5;
6710 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6711 return BTRFS_RAID_RAID6;
6712
6713 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6714 }
6715
6716 int get_block_group_index(struct btrfs_block_group_cache *cache)
6717 {
6718 return __get_raid_index(cache->flags);
6719 }
6720
6721 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6722 [BTRFS_RAID_RAID10] = "raid10",
6723 [BTRFS_RAID_RAID1] = "raid1",
6724 [BTRFS_RAID_DUP] = "dup",
6725 [BTRFS_RAID_RAID0] = "raid0",
6726 [BTRFS_RAID_SINGLE] = "single",
6727 [BTRFS_RAID_RAID5] = "raid5",
6728 [BTRFS_RAID_RAID6] = "raid6",
6729 };
6730
6731 static const char *get_raid_name(enum btrfs_raid_types type)
6732 {
6733 if (type >= BTRFS_NR_RAID_TYPES)
6734 return NULL;
6735
6736 return btrfs_raid_type_names[type];
6737 }
6738
6739 enum btrfs_loop_type {
6740 LOOP_CACHING_NOWAIT = 0,
6741 LOOP_CACHING_WAIT = 1,
6742 LOOP_ALLOC_CHUNK = 2,
6743 LOOP_NO_EMPTY_SIZE = 3,
6744 };
6745
6746 static inline void
6747 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6748 int delalloc)
6749 {
6750 if (delalloc)
6751 down_read(&cache->data_rwsem);
6752 }
6753
6754 static inline void
6755 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6756 int delalloc)
6757 {
6758 btrfs_get_block_group(cache);
6759 if (delalloc)
6760 down_read(&cache->data_rwsem);
6761 }
6762
6763 static struct btrfs_block_group_cache *
6764 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6765 struct btrfs_free_cluster *cluster,
6766 int delalloc)
6767 {
6768 struct btrfs_block_group_cache *used_bg;
6769 bool locked = false;
6770 again:
6771 spin_lock(&cluster->refill_lock);
6772 if (locked) {
6773 if (used_bg == cluster->block_group)
6774 return used_bg;
6775
6776 up_read(&used_bg->data_rwsem);
6777 btrfs_put_block_group(used_bg);
6778 }
6779
6780 used_bg = cluster->block_group;
6781 if (!used_bg)
6782 return NULL;
6783
6784 if (used_bg == block_group)
6785 return used_bg;
6786
6787 btrfs_get_block_group(used_bg);
6788
6789 if (!delalloc)
6790 return used_bg;
6791
6792 if (down_read_trylock(&used_bg->data_rwsem))
6793 return used_bg;
6794
6795 spin_unlock(&cluster->refill_lock);
6796 down_read(&used_bg->data_rwsem);
6797 locked = true;
6798 goto again;
6799 }
6800
6801 static inline void
6802 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6803 int delalloc)
6804 {
6805 if (delalloc)
6806 up_read(&cache->data_rwsem);
6807 btrfs_put_block_group(cache);
6808 }
6809
6810 /*
6811 * walks the btree of allocated extents and find a hole of a given size.
6812 * The key ins is changed to record the hole:
6813 * ins->objectid == start position
6814 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6815 * ins->offset == the size of the hole.
6816 * Any available blocks before search_start are skipped.
6817 *
6818 * If there is no suitable free space, we will record the max size of
6819 * the free space extent currently.
6820 */
6821 static noinline int find_free_extent(struct btrfs_root *orig_root,
6822 u64 num_bytes, u64 empty_size,
6823 u64 hint_byte, struct btrfs_key *ins,
6824 u64 flags, int delalloc)
6825 {
6826 int ret = 0;
6827 struct btrfs_root *root = orig_root->fs_info->extent_root;
6828 struct btrfs_free_cluster *last_ptr = NULL;
6829 struct btrfs_block_group_cache *block_group = NULL;
6830 u64 search_start = 0;
6831 u64 max_extent_size = 0;
6832 int empty_cluster = 2 * 1024 * 1024;
6833 struct btrfs_space_info *space_info;
6834 int loop = 0;
6835 int index = __get_raid_index(flags);
6836 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6837 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6838 bool failed_cluster_refill = false;
6839 bool failed_alloc = false;
6840 bool use_cluster = true;
6841 bool have_caching_bg = false;
6842
6843 WARN_ON(num_bytes < root->sectorsize);
6844 ins->type = BTRFS_EXTENT_ITEM_KEY;
6845 ins->objectid = 0;
6846 ins->offset = 0;
6847
6848 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6849
6850 space_info = __find_space_info(root->fs_info, flags);
6851 if (!space_info) {
6852 btrfs_err(root->fs_info, "No space info for %llu", flags);
6853 return -ENOSPC;
6854 }
6855
6856 /*
6857 * If the space info is for both data and metadata it means we have a
6858 * small filesystem and we can't use the clustering stuff.
6859 */
6860 if (btrfs_mixed_space_info(space_info))
6861 use_cluster = false;
6862
6863 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6864 last_ptr = &root->fs_info->meta_alloc_cluster;
6865 if (!btrfs_test_opt(root, SSD))
6866 empty_cluster = 64 * 1024;
6867 }
6868
6869 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6870 btrfs_test_opt(root, SSD)) {
6871 last_ptr = &root->fs_info->data_alloc_cluster;
6872 }
6873
6874 if (last_ptr) {
6875 spin_lock(&last_ptr->lock);
6876 if (last_ptr->block_group)
6877 hint_byte = last_ptr->window_start;
6878 spin_unlock(&last_ptr->lock);
6879 }
6880
6881 search_start = max(search_start, first_logical_byte(root, 0));
6882 search_start = max(search_start, hint_byte);
6883
6884 if (!last_ptr)
6885 empty_cluster = 0;
6886
6887 if (search_start == hint_byte) {
6888 block_group = btrfs_lookup_block_group(root->fs_info,
6889 search_start);
6890 /*
6891 * we don't want to use the block group if it doesn't match our
6892 * allocation bits, or if its not cached.
6893 *
6894 * However if we are re-searching with an ideal block group
6895 * picked out then we don't care that the block group is cached.
6896 */
6897 if (block_group && block_group_bits(block_group, flags) &&
6898 block_group->cached != BTRFS_CACHE_NO) {
6899 down_read(&space_info->groups_sem);
6900 if (list_empty(&block_group->list) ||
6901 block_group->ro) {
6902 /*
6903 * someone is removing this block group,
6904 * we can't jump into the have_block_group
6905 * target because our list pointers are not
6906 * valid
6907 */
6908 btrfs_put_block_group(block_group);
6909 up_read(&space_info->groups_sem);
6910 } else {
6911 index = get_block_group_index(block_group);
6912 btrfs_lock_block_group(block_group, delalloc);
6913 goto have_block_group;
6914 }
6915 } else if (block_group) {
6916 btrfs_put_block_group(block_group);
6917 }
6918 }
6919 search:
6920 have_caching_bg = false;
6921 down_read(&space_info->groups_sem);
6922 list_for_each_entry(block_group, &space_info->block_groups[index],
6923 list) {
6924 u64 offset;
6925 int cached;
6926
6927 btrfs_grab_block_group(block_group, delalloc);
6928 search_start = block_group->key.objectid;
6929
6930 /*
6931 * this can happen if we end up cycling through all the
6932 * raid types, but we want to make sure we only allocate
6933 * for the proper type.
6934 */
6935 if (!block_group_bits(block_group, flags)) {
6936 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6937 BTRFS_BLOCK_GROUP_RAID1 |
6938 BTRFS_BLOCK_GROUP_RAID5 |
6939 BTRFS_BLOCK_GROUP_RAID6 |
6940 BTRFS_BLOCK_GROUP_RAID10;
6941
6942 /*
6943 * if they asked for extra copies and this block group
6944 * doesn't provide them, bail. This does allow us to
6945 * fill raid0 from raid1.
6946 */
6947 if ((flags & extra) && !(block_group->flags & extra))
6948 goto loop;
6949 }
6950
6951 have_block_group:
6952 cached = block_group_cache_done(block_group);
6953 if (unlikely(!cached)) {
6954 ret = cache_block_group(block_group, 0);
6955 BUG_ON(ret < 0);
6956 ret = 0;
6957 }
6958
6959 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6960 goto loop;
6961 if (unlikely(block_group->ro))
6962 goto loop;
6963
6964 /*
6965 * Ok we want to try and use the cluster allocator, so
6966 * lets look there
6967 */
6968 if (last_ptr) {
6969 struct btrfs_block_group_cache *used_block_group;
6970 unsigned long aligned_cluster;
6971 /*
6972 * the refill lock keeps out other
6973 * people trying to start a new cluster
6974 */
6975 used_block_group = btrfs_lock_cluster(block_group,
6976 last_ptr,
6977 delalloc);
6978 if (!used_block_group)
6979 goto refill_cluster;
6980
6981 if (used_block_group != block_group &&
6982 (used_block_group->ro ||
6983 !block_group_bits(used_block_group, flags)))
6984 goto release_cluster;
6985
6986 offset = btrfs_alloc_from_cluster(used_block_group,
6987 last_ptr,
6988 num_bytes,
6989 used_block_group->key.objectid,
6990 &max_extent_size);
6991 if (offset) {
6992 /* we have a block, we're done */
6993 spin_unlock(&last_ptr->refill_lock);
6994 trace_btrfs_reserve_extent_cluster(root,
6995 used_block_group,
6996 search_start, num_bytes);
6997 if (used_block_group != block_group) {
6998 btrfs_release_block_group(block_group,
6999 delalloc);
7000 block_group = used_block_group;
7001 }
7002 goto checks;
7003 }
7004
7005 WARN_ON(last_ptr->block_group != used_block_group);
7006 release_cluster:
7007 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7008 * set up a new clusters, so lets just skip it
7009 * and let the allocator find whatever block
7010 * it can find. If we reach this point, we
7011 * will have tried the cluster allocator
7012 * plenty of times and not have found
7013 * anything, so we are likely way too
7014 * fragmented for the clustering stuff to find
7015 * anything.
7016 *
7017 * However, if the cluster is taken from the
7018 * current block group, release the cluster
7019 * first, so that we stand a better chance of
7020 * succeeding in the unclustered
7021 * allocation. */
7022 if (loop >= LOOP_NO_EMPTY_SIZE &&
7023 used_block_group != block_group) {
7024 spin_unlock(&last_ptr->refill_lock);
7025 btrfs_release_block_group(used_block_group,
7026 delalloc);
7027 goto unclustered_alloc;
7028 }
7029
7030 /*
7031 * this cluster didn't work out, free it and
7032 * start over
7033 */
7034 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7035
7036 if (used_block_group != block_group)
7037 btrfs_release_block_group(used_block_group,
7038 delalloc);
7039 refill_cluster:
7040 if (loop >= LOOP_NO_EMPTY_SIZE) {
7041 spin_unlock(&last_ptr->refill_lock);
7042 goto unclustered_alloc;
7043 }
7044
7045 aligned_cluster = max_t(unsigned long,
7046 empty_cluster + empty_size,
7047 block_group->full_stripe_len);
7048
7049 /* allocate a cluster in this block group */
7050 ret = btrfs_find_space_cluster(root, block_group,
7051 last_ptr, search_start,
7052 num_bytes,
7053 aligned_cluster);
7054 if (ret == 0) {
7055 /*
7056 * now pull our allocation out of this
7057 * cluster
7058 */
7059 offset = btrfs_alloc_from_cluster(block_group,
7060 last_ptr,
7061 num_bytes,
7062 search_start,
7063 &max_extent_size);
7064 if (offset) {
7065 /* we found one, proceed */
7066 spin_unlock(&last_ptr->refill_lock);
7067 trace_btrfs_reserve_extent_cluster(root,
7068 block_group, search_start,
7069 num_bytes);
7070 goto checks;
7071 }
7072 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7073 && !failed_cluster_refill) {
7074 spin_unlock(&last_ptr->refill_lock);
7075
7076 failed_cluster_refill = true;
7077 wait_block_group_cache_progress(block_group,
7078 num_bytes + empty_cluster + empty_size);
7079 goto have_block_group;
7080 }
7081
7082 /*
7083 * at this point we either didn't find a cluster
7084 * or we weren't able to allocate a block from our
7085 * cluster. Free the cluster we've been trying
7086 * to use, and go to the next block group
7087 */
7088 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7089 spin_unlock(&last_ptr->refill_lock);
7090 goto loop;
7091 }
7092
7093 unclustered_alloc:
7094 spin_lock(&block_group->free_space_ctl->tree_lock);
7095 if (cached &&
7096 block_group->free_space_ctl->free_space <
7097 num_bytes + empty_cluster + empty_size) {
7098 if (block_group->free_space_ctl->free_space >
7099 max_extent_size)
7100 max_extent_size =
7101 block_group->free_space_ctl->free_space;
7102 spin_unlock(&block_group->free_space_ctl->tree_lock);
7103 goto loop;
7104 }
7105 spin_unlock(&block_group->free_space_ctl->tree_lock);
7106
7107 offset = btrfs_find_space_for_alloc(block_group, search_start,
7108 num_bytes, empty_size,
7109 &max_extent_size);
7110 /*
7111 * If we didn't find a chunk, and we haven't failed on this
7112 * block group before, and this block group is in the middle of
7113 * caching and we are ok with waiting, then go ahead and wait
7114 * for progress to be made, and set failed_alloc to true.
7115 *
7116 * If failed_alloc is true then we've already waited on this
7117 * block group once and should move on to the next block group.
7118 */
7119 if (!offset && !failed_alloc && !cached &&
7120 loop > LOOP_CACHING_NOWAIT) {
7121 wait_block_group_cache_progress(block_group,
7122 num_bytes + empty_size);
7123 failed_alloc = true;
7124 goto have_block_group;
7125 } else if (!offset) {
7126 if (!cached)
7127 have_caching_bg = true;
7128 goto loop;
7129 }
7130 checks:
7131 search_start = ALIGN(offset, root->stripesize);
7132
7133 /* move on to the next group */
7134 if (search_start + num_bytes >
7135 block_group->key.objectid + block_group->key.offset) {
7136 btrfs_add_free_space(block_group, offset, num_bytes);
7137 goto loop;
7138 }
7139
7140 if (offset < search_start)
7141 btrfs_add_free_space(block_group, offset,
7142 search_start - offset);
7143 BUG_ON(offset > search_start);
7144
7145 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7146 alloc_type, delalloc);
7147 if (ret == -EAGAIN) {
7148 btrfs_add_free_space(block_group, offset, num_bytes);
7149 goto loop;
7150 }
7151
7152 /* we are all good, lets return */
7153 ins->objectid = search_start;
7154 ins->offset = num_bytes;
7155
7156 trace_btrfs_reserve_extent(orig_root, block_group,
7157 search_start, num_bytes);
7158 btrfs_release_block_group(block_group, delalloc);
7159 break;
7160 loop:
7161 failed_cluster_refill = false;
7162 failed_alloc = false;
7163 BUG_ON(index != get_block_group_index(block_group));
7164 btrfs_release_block_group(block_group, delalloc);
7165 }
7166 up_read(&space_info->groups_sem);
7167
7168 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7169 goto search;
7170
7171 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7172 goto search;
7173
7174 /*
7175 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7176 * caching kthreads as we move along
7177 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7178 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7179 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7180 * again
7181 */
7182 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7183 index = 0;
7184 loop++;
7185 if (loop == LOOP_ALLOC_CHUNK) {
7186 struct btrfs_trans_handle *trans;
7187 int exist = 0;
7188
7189 trans = current->journal_info;
7190 if (trans)
7191 exist = 1;
7192 else
7193 trans = btrfs_join_transaction(root);
7194
7195 if (IS_ERR(trans)) {
7196 ret = PTR_ERR(trans);
7197 goto out;
7198 }
7199
7200 ret = do_chunk_alloc(trans, root, flags,
7201 CHUNK_ALLOC_FORCE);
7202 /*
7203 * Do not bail out on ENOSPC since we
7204 * can do more things.
7205 */
7206 if (ret < 0 && ret != -ENOSPC)
7207 btrfs_abort_transaction(trans,
7208 root, ret);
7209 else
7210 ret = 0;
7211 if (!exist)
7212 btrfs_end_transaction(trans, root);
7213 if (ret)
7214 goto out;
7215 }
7216
7217 if (loop == LOOP_NO_EMPTY_SIZE) {
7218 empty_size = 0;
7219 empty_cluster = 0;
7220 }
7221
7222 goto search;
7223 } else if (!ins->objectid) {
7224 ret = -ENOSPC;
7225 } else if (ins->objectid) {
7226 ret = 0;
7227 }
7228 out:
7229 if (ret == -ENOSPC)
7230 ins->offset = max_extent_size;
7231 return ret;
7232 }
7233
7234 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7235 int dump_block_groups)
7236 {
7237 struct btrfs_block_group_cache *cache;
7238 int index = 0;
7239
7240 spin_lock(&info->lock);
7241 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7242 info->flags,
7243 info->total_bytes - info->bytes_used - info->bytes_pinned -
7244 info->bytes_reserved - info->bytes_readonly,
7245 (info->full) ? "" : "not ");
7246 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7247 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7248 info->total_bytes, info->bytes_used, info->bytes_pinned,
7249 info->bytes_reserved, info->bytes_may_use,
7250 info->bytes_readonly);
7251 spin_unlock(&info->lock);
7252
7253 if (!dump_block_groups)
7254 return;
7255
7256 down_read(&info->groups_sem);
7257 again:
7258 list_for_each_entry(cache, &info->block_groups[index], list) {
7259 spin_lock(&cache->lock);
7260 printk(KERN_INFO "BTRFS: "
7261 "block group %llu has %llu bytes, "
7262 "%llu used %llu pinned %llu reserved %s\n",
7263 cache->key.objectid, cache->key.offset,
7264 btrfs_block_group_used(&cache->item), cache->pinned,
7265 cache->reserved, cache->ro ? "[readonly]" : "");
7266 btrfs_dump_free_space(cache, bytes);
7267 spin_unlock(&cache->lock);
7268 }
7269 if (++index < BTRFS_NR_RAID_TYPES)
7270 goto again;
7271 up_read(&info->groups_sem);
7272 }
7273
7274 int btrfs_reserve_extent(struct btrfs_root *root,
7275 u64 num_bytes, u64 min_alloc_size,
7276 u64 empty_size, u64 hint_byte,
7277 struct btrfs_key *ins, int is_data, int delalloc)
7278 {
7279 bool final_tried = false;
7280 u64 flags;
7281 int ret;
7282
7283 flags = btrfs_get_alloc_profile(root, is_data);
7284 again:
7285 WARN_ON(num_bytes < root->sectorsize);
7286 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7287 flags, delalloc);
7288
7289 if (ret == -ENOSPC) {
7290 if (!final_tried && ins->offset) {
7291 num_bytes = min(num_bytes >> 1, ins->offset);
7292 num_bytes = round_down(num_bytes, root->sectorsize);
7293 num_bytes = max(num_bytes, min_alloc_size);
7294 if (num_bytes == min_alloc_size)
7295 final_tried = true;
7296 goto again;
7297 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7298 struct btrfs_space_info *sinfo;
7299
7300 sinfo = __find_space_info(root->fs_info, flags);
7301 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7302 flags, num_bytes);
7303 if (sinfo)
7304 dump_space_info(sinfo, num_bytes, 1);
7305 }
7306 }
7307
7308 return ret;
7309 }
7310
7311 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7312 u64 start, u64 len,
7313 int pin, int delalloc)
7314 {
7315 struct btrfs_block_group_cache *cache;
7316 int ret = 0;
7317
7318 cache = btrfs_lookup_block_group(root->fs_info, start);
7319 if (!cache) {
7320 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7321 start);
7322 return -ENOSPC;
7323 }
7324
7325 if (pin)
7326 pin_down_extent(root, cache, start, len, 1);
7327 else {
7328 if (btrfs_test_opt(root, DISCARD))
7329 ret = btrfs_discard_extent(root, start, len, NULL);
7330 btrfs_add_free_space(cache, start, len);
7331 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7332 }
7333
7334 btrfs_put_block_group(cache);
7335
7336 trace_btrfs_reserved_extent_free(root, start, len);
7337
7338 return ret;
7339 }
7340
7341 int btrfs_free_reserved_extent(struct btrfs_root *root,
7342 u64 start, u64 len, int delalloc)
7343 {
7344 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7345 }
7346
7347 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7348 u64 start, u64 len)
7349 {
7350 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7351 }
7352
7353 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7354 struct btrfs_root *root,
7355 u64 parent, u64 root_objectid,
7356 u64 flags, u64 owner, u64 offset,
7357 struct btrfs_key *ins, int ref_mod)
7358 {
7359 int ret;
7360 struct btrfs_fs_info *fs_info = root->fs_info;
7361 struct btrfs_extent_item *extent_item;
7362 struct btrfs_extent_inline_ref *iref;
7363 struct btrfs_path *path;
7364 struct extent_buffer *leaf;
7365 int type;
7366 u32 size;
7367
7368 if (parent > 0)
7369 type = BTRFS_SHARED_DATA_REF_KEY;
7370 else
7371 type = BTRFS_EXTENT_DATA_REF_KEY;
7372
7373 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7374
7375 path = btrfs_alloc_path();
7376 if (!path)
7377 return -ENOMEM;
7378
7379 path->leave_spinning = 1;
7380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7381 ins, size);
7382 if (ret) {
7383 btrfs_free_path(path);
7384 return ret;
7385 }
7386
7387 leaf = path->nodes[0];
7388 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7389 struct btrfs_extent_item);
7390 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7391 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7392 btrfs_set_extent_flags(leaf, extent_item,
7393 flags | BTRFS_EXTENT_FLAG_DATA);
7394
7395 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7396 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7397 if (parent > 0) {
7398 struct btrfs_shared_data_ref *ref;
7399 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7400 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7401 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7402 } else {
7403 struct btrfs_extent_data_ref *ref;
7404 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7405 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7406 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7407 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7408 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7409 }
7410
7411 btrfs_mark_buffer_dirty(path->nodes[0]);
7412 btrfs_free_path(path);
7413
7414 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7415 if (ret) { /* -ENOENT, logic error */
7416 btrfs_err(fs_info, "update block group failed for %llu %llu",
7417 ins->objectid, ins->offset);
7418 BUG();
7419 }
7420 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7421 return ret;
7422 }
7423
7424 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7425 struct btrfs_root *root,
7426 u64 parent, u64 root_objectid,
7427 u64 flags, struct btrfs_disk_key *key,
7428 int level, struct btrfs_key *ins,
7429 int no_quota)
7430 {
7431 int ret;
7432 struct btrfs_fs_info *fs_info = root->fs_info;
7433 struct btrfs_extent_item *extent_item;
7434 struct btrfs_tree_block_info *block_info;
7435 struct btrfs_extent_inline_ref *iref;
7436 struct btrfs_path *path;
7437 struct extent_buffer *leaf;
7438 u32 size = sizeof(*extent_item) + sizeof(*iref);
7439 u64 num_bytes = ins->offset;
7440 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7441 SKINNY_METADATA);
7442
7443 if (!skinny_metadata)
7444 size += sizeof(*block_info);
7445
7446 path = btrfs_alloc_path();
7447 if (!path) {
7448 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7449 root->nodesize);
7450 return -ENOMEM;
7451 }
7452
7453 path->leave_spinning = 1;
7454 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7455 ins, size);
7456 if (ret) {
7457 btrfs_free_path(path);
7458 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7459 root->nodesize);
7460 return ret;
7461 }
7462
7463 leaf = path->nodes[0];
7464 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7465 struct btrfs_extent_item);
7466 btrfs_set_extent_refs(leaf, extent_item, 1);
7467 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7468 btrfs_set_extent_flags(leaf, extent_item,
7469 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7470
7471 if (skinny_metadata) {
7472 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7473 num_bytes = root->nodesize;
7474 } else {
7475 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7476 btrfs_set_tree_block_key(leaf, block_info, key);
7477 btrfs_set_tree_block_level(leaf, block_info, level);
7478 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7479 }
7480
7481 if (parent > 0) {
7482 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7483 btrfs_set_extent_inline_ref_type(leaf, iref,
7484 BTRFS_SHARED_BLOCK_REF_KEY);
7485 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7486 } else {
7487 btrfs_set_extent_inline_ref_type(leaf, iref,
7488 BTRFS_TREE_BLOCK_REF_KEY);
7489 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7490 }
7491
7492 btrfs_mark_buffer_dirty(leaf);
7493 btrfs_free_path(path);
7494
7495 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7496 1);
7497 if (ret) { /* -ENOENT, logic error */
7498 btrfs_err(fs_info, "update block group failed for %llu %llu",
7499 ins->objectid, ins->offset);
7500 BUG();
7501 }
7502
7503 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7504 return ret;
7505 }
7506
7507 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7508 struct btrfs_root *root,
7509 u64 root_objectid, u64 owner,
7510 u64 offset, struct btrfs_key *ins)
7511 {
7512 int ret;
7513
7514 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7515
7516 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7517 ins->offset, 0,
7518 root_objectid, owner, offset,
7519 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7520 return ret;
7521 }
7522
7523 /*
7524 * this is used by the tree logging recovery code. It records that
7525 * an extent has been allocated and makes sure to clear the free
7526 * space cache bits as well
7527 */
7528 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7529 struct btrfs_root *root,
7530 u64 root_objectid, u64 owner, u64 offset,
7531 struct btrfs_key *ins)
7532 {
7533 int ret;
7534 struct btrfs_block_group_cache *block_group;
7535
7536 /*
7537 * Mixed block groups will exclude before processing the log so we only
7538 * need to do the exlude dance if this fs isn't mixed.
7539 */
7540 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7541 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7542 if (ret)
7543 return ret;
7544 }
7545
7546 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7547 if (!block_group)
7548 return -EINVAL;
7549
7550 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7551 RESERVE_ALLOC_NO_ACCOUNT, 0);
7552 BUG_ON(ret); /* logic error */
7553 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7554 0, owner, offset, ins, 1);
7555 btrfs_put_block_group(block_group);
7556 return ret;
7557 }
7558
7559 static struct extent_buffer *
7560 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7561 u64 bytenr, int level)
7562 {
7563 struct extent_buffer *buf;
7564
7565 buf = btrfs_find_create_tree_block(root, bytenr);
7566 if (!buf)
7567 return ERR_PTR(-ENOMEM);
7568 btrfs_set_header_generation(buf, trans->transid);
7569 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7570 btrfs_tree_lock(buf);
7571 clean_tree_block(trans, root->fs_info, buf);
7572 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7573
7574 btrfs_set_lock_blocking(buf);
7575 btrfs_set_buffer_uptodate(buf);
7576
7577 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7578 buf->log_index = root->log_transid % 2;
7579 /*
7580 * we allow two log transactions at a time, use different
7581 * EXENT bit to differentiate dirty pages.
7582 */
7583 if (buf->log_index == 0)
7584 set_extent_dirty(&root->dirty_log_pages, buf->start,
7585 buf->start + buf->len - 1, GFP_NOFS);
7586 else
7587 set_extent_new(&root->dirty_log_pages, buf->start,
7588 buf->start + buf->len - 1, GFP_NOFS);
7589 } else {
7590 buf->log_index = -1;
7591 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7592 buf->start + buf->len - 1, GFP_NOFS);
7593 }
7594 trans->blocks_used++;
7595 /* this returns a buffer locked for blocking */
7596 return buf;
7597 }
7598
7599 static struct btrfs_block_rsv *
7600 use_block_rsv(struct btrfs_trans_handle *trans,
7601 struct btrfs_root *root, u32 blocksize)
7602 {
7603 struct btrfs_block_rsv *block_rsv;
7604 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7605 int ret;
7606 bool global_updated = false;
7607
7608 block_rsv = get_block_rsv(trans, root);
7609
7610 if (unlikely(block_rsv->size == 0))
7611 goto try_reserve;
7612 again:
7613 ret = block_rsv_use_bytes(block_rsv, blocksize);
7614 if (!ret)
7615 return block_rsv;
7616
7617 if (block_rsv->failfast)
7618 return ERR_PTR(ret);
7619
7620 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7621 global_updated = true;
7622 update_global_block_rsv(root->fs_info);
7623 goto again;
7624 }
7625
7626 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7627 static DEFINE_RATELIMIT_STATE(_rs,
7628 DEFAULT_RATELIMIT_INTERVAL * 10,
7629 /*DEFAULT_RATELIMIT_BURST*/ 1);
7630 if (__ratelimit(&_rs))
7631 WARN(1, KERN_DEBUG
7632 "BTRFS: block rsv returned %d\n", ret);
7633 }
7634 try_reserve:
7635 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7636 BTRFS_RESERVE_NO_FLUSH);
7637 if (!ret)
7638 return block_rsv;
7639 /*
7640 * If we couldn't reserve metadata bytes try and use some from
7641 * the global reserve if its space type is the same as the global
7642 * reservation.
7643 */
7644 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7645 block_rsv->space_info == global_rsv->space_info) {
7646 ret = block_rsv_use_bytes(global_rsv, blocksize);
7647 if (!ret)
7648 return global_rsv;
7649 }
7650 return ERR_PTR(ret);
7651 }
7652
7653 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7654 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7655 {
7656 block_rsv_add_bytes(block_rsv, blocksize, 0);
7657 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7658 }
7659
7660 /*
7661 * finds a free extent and does all the dirty work required for allocation
7662 * returns the tree buffer or an ERR_PTR on error.
7663 */
7664 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7665 struct btrfs_root *root,
7666 u64 parent, u64 root_objectid,
7667 struct btrfs_disk_key *key, int level,
7668 u64 hint, u64 empty_size)
7669 {
7670 struct btrfs_key ins;
7671 struct btrfs_block_rsv *block_rsv;
7672 struct extent_buffer *buf;
7673 struct btrfs_delayed_extent_op *extent_op;
7674 u64 flags = 0;
7675 int ret;
7676 u32 blocksize = root->nodesize;
7677 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7678 SKINNY_METADATA);
7679
7680 if (btrfs_test_is_dummy_root(root)) {
7681 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7682 level);
7683 if (!IS_ERR(buf))
7684 root->alloc_bytenr += blocksize;
7685 return buf;
7686 }
7687
7688 block_rsv = use_block_rsv(trans, root, blocksize);
7689 if (IS_ERR(block_rsv))
7690 return ERR_CAST(block_rsv);
7691
7692 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7693 empty_size, hint, &ins, 0, 0);
7694 if (ret)
7695 goto out_unuse;
7696
7697 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7698 if (IS_ERR(buf)) {
7699 ret = PTR_ERR(buf);
7700 goto out_free_reserved;
7701 }
7702
7703 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7704 if (parent == 0)
7705 parent = ins.objectid;
7706 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7707 } else
7708 BUG_ON(parent > 0);
7709
7710 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7711 extent_op = btrfs_alloc_delayed_extent_op();
7712 if (!extent_op) {
7713 ret = -ENOMEM;
7714 goto out_free_buf;
7715 }
7716 if (key)
7717 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7718 else
7719 memset(&extent_op->key, 0, sizeof(extent_op->key));
7720 extent_op->flags_to_set = flags;
7721 if (skinny_metadata)
7722 extent_op->update_key = 0;
7723 else
7724 extent_op->update_key = 1;
7725 extent_op->update_flags = 1;
7726 extent_op->is_data = 0;
7727 extent_op->level = level;
7728
7729 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7730 ins.objectid, ins.offset,
7731 parent, root_objectid, level,
7732 BTRFS_ADD_DELAYED_EXTENT,
7733 extent_op, 0);
7734 if (ret)
7735 goto out_free_delayed;
7736 }
7737 return buf;
7738
7739 out_free_delayed:
7740 btrfs_free_delayed_extent_op(extent_op);
7741 out_free_buf:
7742 free_extent_buffer(buf);
7743 out_free_reserved:
7744 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7745 out_unuse:
7746 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7747 return ERR_PTR(ret);
7748 }
7749
7750 struct walk_control {
7751 u64 refs[BTRFS_MAX_LEVEL];
7752 u64 flags[BTRFS_MAX_LEVEL];
7753 struct btrfs_key update_progress;
7754 int stage;
7755 int level;
7756 int shared_level;
7757 int update_ref;
7758 int keep_locks;
7759 int reada_slot;
7760 int reada_count;
7761 int for_reloc;
7762 };
7763
7764 #define DROP_REFERENCE 1
7765 #define UPDATE_BACKREF 2
7766
7767 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7768 struct btrfs_root *root,
7769 struct walk_control *wc,
7770 struct btrfs_path *path)
7771 {
7772 u64 bytenr;
7773 u64 generation;
7774 u64 refs;
7775 u64 flags;
7776 u32 nritems;
7777 u32 blocksize;
7778 struct btrfs_key key;
7779 struct extent_buffer *eb;
7780 int ret;
7781 int slot;
7782 int nread = 0;
7783
7784 if (path->slots[wc->level] < wc->reada_slot) {
7785 wc->reada_count = wc->reada_count * 2 / 3;
7786 wc->reada_count = max(wc->reada_count, 2);
7787 } else {
7788 wc->reada_count = wc->reada_count * 3 / 2;
7789 wc->reada_count = min_t(int, wc->reada_count,
7790 BTRFS_NODEPTRS_PER_BLOCK(root));
7791 }
7792
7793 eb = path->nodes[wc->level];
7794 nritems = btrfs_header_nritems(eb);
7795 blocksize = root->nodesize;
7796
7797 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7798 if (nread >= wc->reada_count)
7799 break;
7800
7801 cond_resched();
7802 bytenr = btrfs_node_blockptr(eb, slot);
7803 generation = btrfs_node_ptr_generation(eb, slot);
7804
7805 if (slot == path->slots[wc->level])
7806 goto reada;
7807
7808 if (wc->stage == UPDATE_BACKREF &&
7809 generation <= root->root_key.offset)
7810 continue;
7811
7812 /* We don't lock the tree block, it's OK to be racy here */
7813 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7814 wc->level - 1, 1, &refs,
7815 &flags);
7816 /* We don't care about errors in readahead. */
7817 if (ret < 0)
7818 continue;
7819 BUG_ON(refs == 0);
7820
7821 if (wc->stage == DROP_REFERENCE) {
7822 if (refs == 1)
7823 goto reada;
7824
7825 if (wc->level == 1 &&
7826 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7827 continue;
7828 if (!wc->update_ref ||
7829 generation <= root->root_key.offset)
7830 continue;
7831 btrfs_node_key_to_cpu(eb, &key, slot);
7832 ret = btrfs_comp_cpu_keys(&key,
7833 &wc->update_progress);
7834 if (ret < 0)
7835 continue;
7836 } else {
7837 if (wc->level == 1 &&
7838 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7839 continue;
7840 }
7841 reada:
7842 readahead_tree_block(root, bytenr);
7843 nread++;
7844 }
7845 wc->reada_slot = slot;
7846 }
7847
7848 /*
7849 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7850 * for later qgroup accounting.
7851 *
7852 * Current, this function does nothing.
7853 */
7854 static int account_leaf_items(struct btrfs_trans_handle *trans,
7855 struct btrfs_root *root,
7856 struct extent_buffer *eb)
7857 {
7858 int nr = btrfs_header_nritems(eb);
7859 int i, extent_type;
7860 struct btrfs_key key;
7861 struct btrfs_file_extent_item *fi;
7862 u64 bytenr, num_bytes;
7863
7864 for (i = 0; i < nr; i++) {
7865 btrfs_item_key_to_cpu(eb, &key, i);
7866
7867 if (key.type != BTRFS_EXTENT_DATA_KEY)
7868 continue;
7869
7870 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7871 /* filter out non qgroup-accountable extents */
7872 extent_type = btrfs_file_extent_type(eb, fi);
7873
7874 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7875 continue;
7876
7877 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7878 if (!bytenr)
7879 continue;
7880
7881 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7882 }
7883 return 0;
7884 }
7885
7886 /*
7887 * Walk up the tree from the bottom, freeing leaves and any interior
7888 * nodes which have had all slots visited. If a node (leaf or
7889 * interior) is freed, the node above it will have it's slot
7890 * incremented. The root node will never be freed.
7891 *
7892 * At the end of this function, we should have a path which has all
7893 * slots incremented to the next position for a search. If we need to
7894 * read a new node it will be NULL and the node above it will have the
7895 * correct slot selected for a later read.
7896 *
7897 * If we increment the root nodes slot counter past the number of
7898 * elements, 1 is returned to signal completion of the search.
7899 */
7900 static int adjust_slots_upwards(struct btrfs_root *root,
7901 struct btrfs_path *path, int root_level)
7902 {
7903 int level = 0;
7904 int nr, slot;
7905 struct extent_buffer *eb;
7906
7907 if (root_level == 0)
7908 return 1;
7909
7910 while (level <= root_level) {
7911 eb = path->nodes[level];
7912 nr = btrfs_header_nritems(eb);
7913 path->slots[level]++;
7914 slot = path->slots[level];
7915 if (slot >= nr || level == 0) {
7916 /*
7917 * Don't free the root - we will detect this
7918 * condition after our loop and return a
7919 * positive value for caller to stop walking the tree.
7920 */
7921 if (level != root_level) {
7922 btrfs_tree_unlock_rw(eb, path->locks[level]);
7923 path->locks[level] = 0;
7924
7925 free_extent_buffer(eb);
7926 path->nodes[level] = NULL;
7927 path->slots[level] = 0;
7928 }
7929 } else {
7930 /*
7931 * We have a valid slot to walk back down
7932 * from. Stop here so caller can process these
7933 * new nodes.
7934 */
7935 break;
7936 }
7937
7938 level++;
7939 }
7940
7941 eb = path->nodes[root_level];
7942 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7943 return 1;
7944
7945 return 0;
7946 }
7947
7948 /*
7949 * root_eb is the subtree root and is locked before this function is called.
7950 * TODO: Modify this function to mark all (including complete shared node)
7951 * to dirty_extent_root to allow it get accounted in qgroup.
7952 */
7953 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7954 struct btrfs_root *root,
7955 struct extent_buffer *root_eb,
7956 u64 root_gen,
7957 int root_level)
7958 {
7959 int ret = 0;
7960 int level;
7961 struct extent_buffer *eb = root_eb;
7962 struct btrfs_path *path = NULL;
7963
7964 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7965 BUG_ON(root_eb == NULL);
7966
7967 if (!root->fs_info->quota_enabled)
7968 return 0;
7969
7970 if (!extent_buffer_uptodate(root_eb)) {
7971 ret = btrfs_read_buffer(root_eb, root_gen);
7972 if (ret)
7973 goto out;
7974 }
7975
7976 if (root_level == 0) {
7977 ret = account_leaf_items(trans, root, root_eb);
7978 goto out;
7979 }
7980
7981 path = btrfs_alloc_path();
7982 if (!path)
7983 return -ENOMEM;
7984
7985 /*
7986 * Walk down the tree. Missing extent blocks are filled in as
7987 * we go. Metadata is accounted every time we read a new
7988 * extent block.
7989 *
7990 * When we reach a leaf, we account for file extent items in it,
7991 * walk back up the tree (adjusting slot pointers as we go)
7992 * and restart the search process.
7993 */
7994 extent_buffer_get(root_eb); /* For path */
7995 path->nodes[root_level] = root_eb;
7996 path->slots[root_level] = 0;
7997 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7998 walk_down:
7999 level = root_level;
8000 while (level >= 0) {
8001 if (path->nodes[level] == NULL) {
8002 int parent_slot;
8003 u64 child_gen;
8004 u64 child_bytenr;
8005
8006 /* We need to get child blockptr/gen from
8007 * parent before we can read it. */
8008 eb = path->nodes[level + 1];
8009 parent_slot = path->slots[level + 1];
8010 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8011 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8012
8013 eb = read_tree_block(root, child_bytenr, child_gen);
8014 if (IS_ERR(eb)) {
8015 ret = PTR_ERR(eb);
8016 goto out;
8017 } else if (!extent_buffer_uptodate(eb)) {
8018 free_extent_buffer(eb);
8019 ret = -EIO;
8020 goto out;
8021 }
8022
8023 path->nodes[level] = eb;
8024 path->slots[level] = 0;
8025
8026 btrfs_tree_read_lock(eb);
8027 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8028 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8029 }
8030
8031 if (level == 0) {
8032 ret = account_leaf_items(trans, root, path->nodes[level]);
8033 if (ret)
8034 goto out;
8035
8036 /* Nonzero return here means we completed our search */
8037 ret = adjust_slots_upwards(root, path, root_level);
8038 if (ret)
8039 break;
8040
8041 /* Restart search with new slots */
8042 goto walk_down;
8043 }
8044
8045 level--;
8046 }
8047
8048 ret = 0;
8049 out:
8050 btrfs_free_path(path);
8051
8052 return ret;
8053 }
8054
8055 /*
8056 * helper to process tree block while walking down the tree.
8057 *
8058 * when wc->stage == UPDATE_BACKREF, this function updates
8059 * back refs for pointers in the block.
8060 *
8061 * NOTE: return value 1 means we should stop walking down.
8062 */
8063 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8064 struct btrfs_root *root,
8065 struct btrfs_path *path,
8066 struct walk_control *wc, int lookup_info)
8067 {
8068 int level = wc->level;
8069 struct extent_buffer *eb = path->nodes[level];
8070 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8071 int ret;
8072
8073 if (wc->stage == UPDATE_BACKREF &&
8074 btrfs_header_owner(eb) != root->root_key.objectid)
8075 return 1;
8076
8077 /*
8078 * when reference count of tree block is 1, it won't increase
8079 * again. once full backref flag is set, we never clear it.
8080 */
8081 if (lookup_info &&
8082 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8083 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8084 BUG_ON(!path->locks[level]);
8085 ret = btrfs_lookup_extent_info(trans, root,
8086 eb->start, level, 1,
8087 &wc->refs[level],
8088 &wc->flags[level]);
8089 BUG_ON(ret == -ENOMEM);
8090 if (ret)
8091 return ret;
8092 BUG_ON(wc->refs[level] == 0);
8093 }
8094
8095 if (wc->stage == DROP_REFERENCE) {
8096 if (wc->refs[level] > 1)
8097 return 1;
8098
8099 if (path->locks[level] && !wc->keep_locks) {
8100 btrfs_tree_unlock_rw(eb, path->locks[level]);
8101 path->locks[level] = 0;
8102 }
8103 return 0;
8104 }
8105
8106 /* wc->stage == UPDATE_BACKREF */
8107 if (!(wc->flags[level] & flag)) {
8108 BUG_ON(!path->locks[level]);
8109 ret = btrfs_inc_ref(trans, root, eb, 1);
8110 BUG_ON(ret); /* -ENOMEM */
8111 ret = btrfs_dec_ref(trans, root, eb, 0);
8112 BUG_ON(ret); /* -ENOMEM */
8113 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8114 eb->len, flag,
8115 btrfs_header_level(eb), 0);
8116 BUG_ON(ret); /* -ENOMEM */
8117 wc->flags[level] |= flag;
8118 }
8119
8120 /*
8121 * the block is shared by multiple trees, so it's not good to
8122 * keep the tree lock
8123 */
8124 if (path->locks[level] && level > 0) {
8125 btrfs_tree_unlock_rw(eb, path->locks[level]);
8126 path->locks[level] = 0;
8127 }
8128 return 0;
8129 }
8130
8131 /*
8132 * helper to process tree block pointer.
8133 *
8134 * when wc->stage == DROP_REFERENCE, this function checks
8135 * reference count of the block pointed to. if the block
8136 * is shared and we need update back refs for the subtree
8137 * rooted at the block, this function changes wc->stage to
8138 * UPDATE_BACKREF. if the block is shared and there is no
8139 * need to update back, this function drops the reference
8140 * to the block.
8141 *
8142 * NOTE: return value 1 means we should stop walking down.
8143 */
8144 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8145 struct btrfs_root *root,
8146 struct btrfs_path *path,
8147 struct walk_control *wc, int *lookup_info)
8148 {
8149 u64 bytenr;
8150 u64 generation;
8151 u64 parent;
8152 u32 blocksize;
8153 struct btrfs_key key;
8154 struct extent_buffer *next;
8155 int level = wc->level;
8156 int reada = 0;
8157 int ret = 0;
8158 bool need_account = false;
8159
8160 generation = btrfs_node_ptr_generation(path->nodes[level],
8161 path->slots[level]);
8162 /*
8163 * if the lower level block was created before the snapshot
8164 * was created, we know there is no need to update back refs
8165 * for the subtree
8166 */
8167 if (wc->stage == UPDATE_BACKREF &&
8168 generation <= root->root_key.offset) {
8169 *lookup_info = 1;
8170 return 1;
8171 }
8172
8173 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8174 blocksize = root->nodesize;
8175
8176 next = btrfs_find_tree_block(root->fs_info, bytenr);
8177 if (!next) {
8178 next = btrfs_find_create_tree_block(root, bytenr);
8179 if (!next)
8180 return -ENOMEM;
8181 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8182 level - 1);
8183 reada = 1;
8184 }
8185 btrfs_tree_lock(next);
8186 btrfs_set_lock_blocking(next);
8187
8188 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8189 &wc->refs[level - 1],
8190 &wc->flags[level - 1]);
8191 if (ret < 0) {
8192 btrfs_tree_unlock(next);
8193 return ret;
8194 }
8195
8196 if (unlikely(wc->refs[level - 1] == 0)) {
8197 btrfs_err(root->fs_info, "Missing references.");
8198 BUG();
8199 }
8200 *lookup_info = 0;
8201
8202 if (wc->stage == DROP_REFERENCE) {
8203 if (wc->refs[level - 1] > 1) {
8204 need_account = true;
8205 if (level == 1 &&
8206 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8207 goto skip;
8208
8209 if (!wc->update_ref ||
8210 generation <= root->root_key.offset)
8211 goto skip;
8212
8213 btrfs_node_key_to_cpu(path->nodes[level], &key,
8214 path->slots[level]);
8215 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8216 if (ret < 0)
8217 goto skip;
8218
8219 wc->stage = UPDATE_BACKREF;
8220 wc->shared_level = level - 1;
8221 }
8222 } else {
8223 if (level == 1 &&
8224 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8225 goto skip;
8226 }
8227
8228 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8229 btrfs_tree_unlock(next);
8230 free_extent_buffer(next);
8231 next = NULL;
8232 *lookup_info = 1;
8233 }
8234
8235 if (!next) {
8236 if (reada && level == 1)
8237 reada_walk_down(trans, root, wc, path);
8238 next = read_tree_block(root, bytenr, generation);
8239 if (IS_ERR(next)) {
8240 return PTR_ERR(next);
8241 } else if (!extent_buffer_uptodate(next)) {
8242 free_extent_buffer(next);
8243 return -EIO;
8244 }
8245 btrfs_tree_lock(next);
8246 btrfs_set_lock_blocking(next);
8247 }
8248
8249 level--;
8250 BUG_ON(level != btrfs_header_level(next));
8251 path->nodes[level] = next;
8252 path->slots[level] = 0;
8253 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8254 wc->level = level;
8255 if (wc->level == 1)
8256 wc->reada_slot = 0;
8257 return 0;
8258 skip:
8259 wc->refs[level - 1] = 0;
8260 wc->flags[level - 1] = 0;
8261 if (wc->stage == DROP_REFERENCE) {
8262 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8263 parent = path->nodes[level]->start;
8264 } else {
8265 BUG_ON(root->root_key.objectid !=
8266 btrfs_header_owner(path->nodes[level]));
8267 parent = 0;
8268 }
8269
8270 if (need_account) {
8271 ret = account_shared_subtree(trans, root, next,
8272 generation, level - 1);
8273 if (ret) {
8274 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8275 "%d accounting shared subtree. Quota "
8276 "is out of sync, rescan required.\n",
8277 root->fs_info->sb->s_id, ret);
8278 }
8279 }
8280 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8281 root->root_key.objectid, level - 1, 0, 0);
8282 BUG_ON(ret); /* -ENOMEM */
8283 }
8284 btrfs_tree_unlock(next);
8285 free_extent_buffer(next);
8286 *lookup_info = 1;
8287 return 1;
8288 }
8289
8290 /*
8291 * helper to process tree block while walking up the tree.
8292 *
8293 * when wc->stage == DROP_REFERENCE, this function drops
8294 * reference count on the block.
8295 *
8296 * when wc->stage == UPDATE_BACKREF, this function changes
8297 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8298 * to UPDATE_BACKREF previously while processing the block.
8299 *
8300 * NOTE: return value 1 means we should stop walking up.
8301 */
8302 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8303 struct btrfs_root *root,
8304 struct btrfs_path *path,
8305 struct walk_control *wc)
8306 {
8307 int ret;
8308 int level = wc->level;
8309 struct extent_buffer *eb = path->nodes[level];
8310 u64 parent = 0;
8311
8312 if (wc->stage == UPDATE_BACKREF) {
8313 BUG_ON(wc->shared_level < level);
8314 if (level < wc->shared_level)
8315 goto out;
8316
8317 ret = find_next_key(path, level + 1, &wc->update_progress);
8318 if (ret > 0)
8319 wc->update_ref = 0;
8320
8321 wc->stage = DROP_REFERENCE;
8322 wc->shared_level = -1;
8323 path->slots[level] = 0;
8324
8325 /*
8326 * check reference count again if the block isn't locked.
8327 * we should start walking down the tree again if reference
8328 * count is one.
8329 */
8330 if (!path->locks[level]) {
8331 BUG_ON(level == 0);
8332 btrfs_tree_lock(eb);
8333 btrfs_set_lock_blocking(eb);
8334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8335
8336 ret = btrfs_lookup_extent_info(trans, root,
8337 eb->start, level, 1,
8338 &wc->refs[level],
8339 &wc->flags[level]);
8340 if (ret < 0) {
8341 btrfs_tree_unlock_rw(eb, path->locks[level]);
8342 path->locks[level] = 0;
8343 return ret;
8344 }
8345 BUG_ON(wc->refs[level] == 0);
8346 if (wc->refs[level] == 1) {
8347 btrfs_tree_unlock_rw(eb, path->locks[level]);
8348 path->locks[level] = 0;
8349 return 1;
8350 }
8351 }
8352 }
8353
8354 /* wc->stage == DROP_REFERENCE */
8355 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8356
8357 if (wc->refs[level] == 1) {
8358 if (level == 0) {
8359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8360 ret = btrfs_dec_ref(trans, root, eb, 1);
8361 else
8362 ret = btrfs_dec_ref(trans, root, eb, 0);
8363 BUG_ON(ret); /* -ENOMEM */
8364 ret = account_leaf_items(trans, root, eb);
8365 if (ret) {
8366 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8367 "%d accounting leaf items. Quota "
8368 "is out of sync, rescan required.\n",
8369 root->fs_info->sb->s_id, ret);
8370 }
8371 }
8372 /* make block locked assertion in clean_tree_block happy */
8373 if (!path->locks[level] &&
8374 btrfs_header_generation(eb) == trans->transid) {
8375 btrfs_tree_lock(eb);
8376 btrfs_set_lock_blocking(eb);
8377 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8378 }
8379 clean_tree_block(trans, root->fs_info, eb);
8380 }
8381
8382 if (eb == root->node) {
8383 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8384 parent = eb->start;
8385 else
8386 BUG_ON(root->root_key.objectid !=
8387 btrfs_header_owner(eb));
8388 } else {
8389 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8390 parent = path->nodes[level + 1]->start;
8391 else
8392 BUG_ON(root->root_key.objectid !=
8393 btrfs_header_owner(path->nodes[level + 1]));
8394 }
8395
8396 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8397 out:
8398 wc->refs[level] = 0;
8399 wc->flags[level] = 0;
8400 return 0;
8401 }
8402
8403 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8404 struct btrfs_root *root,
8405 struct btrfs_path *path,
8406 struct walk_control *wc)
8407 {
8408 int level = wc->level;
8409 int lookup_info = 1;
8410 int ret;
8411
8412 while (level >= 0) {
8413 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8414 if (ret > 0)
8415 break;
8416
8417 if (level == 0)
8418 break;
8419
8420 if (path->slots[level] >=
8421 btrfs_header_nritems(path->nodes[level]))
8422 break;
8423
8424 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8425 if (ret > 0) {
8426 path->slots[level]++;
8427 continue;
8428 } else if (ret < 0)
8429 return ret;
8430 level = wc->level;
8431 }
8432 return 0;
8433 }
8434
8435 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8436 struct btrfs_root *root,
8437 struct btrfs_path *path,
8438 struct walk_control *wc, int max_level)
8439 {
8440 int level = wc->level;
8441 int ret;
8442
8443 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8444 while (level < max_level && path->nodes[level]) {
8445 wc->level = level;
8446 if (path->slots[level] + 1 <
8447 btrfs_header_nritems(path->nodes[level])) {
8448 path->slots[level]++;
8449 return 0;
8450 } else {
8451 ret = walk_up_proc(trans, root, path, wc);
8452 if (ret > 0)
8453 return 0;
8454
8455 if (path->locks[level]) {
8456 btrfs_tree_unlock_rw(path->nodes[level],
8457 path->locks[level]);
8458 path->locks[level] = 0;
8459 }
8460 free_extent_buffer(path->nodes[level]);
8461 path->nodes[level] = NULL;
8462 level++;
8463 }
8464 }
8465 return 1;
8466 }
8467
8468 /*
8469 * drop a subvolume tree.
8470 *
8471 * this function traverses the tree freeing any blocks that only
8472 * referenced by the tree.
8473 *
8474 * when a shared tree block is found. this function decreases its
8475 * reference count by one. if update_ref is true, this function
8476 * also make sure backrefs for the shared block and all lower level
8477 * blocks are properly updated.
8478 *
8479 * If called with for_reloc == 0, may exit early with -EAGAIN
8480 */
8481 int btrfs_drop_snapshot(struct btrfs_root *root,
8482 struct btrfs_block_rsv *block_rsv, int update_ref,
8483 int for_reloc)
8484 {
8485 struct btrfs_path *path;
8486 struct btrfs_trans_handle *trans;
8487 struct btrfs_root *tree_root = root->fs_info->tree_root;
8488 struct btrfs_root_item *root_item = &root->root_item;
8489 struct walk_control *wc;
8490 struct btrfs_key key;
8491 int err = 0;
8492 int ret;
8493 int level;
8494 bool root_dropped = false;
8495
8496 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8497
8498 path = btrfs_alloc_path();
8499 if (!path) {
8500 err = -ENOMEM;
8501 goto out;
8502 }
8503
8504 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8505 if (!wc) {
8506 btrfs_free_path(path);
8507 err = -ENOMEM;
8508 goto out;
8509 }
8510
8511 trans = btrfs_start_transaction(tree_root, 0);
8512 if (IS_ERR(trans)) {
8513 err = PTR_ERR(trans);
8514 goto out_free;
8515 }
8516
8517 if (block_rsv)
8518 trans->block_rsv = block_rsv;
8519
8520 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8521 level = btrfs_header_level(root->node);
8522 path->nodes[level] = btrfs_lock_root_node(root);
8523 btrfs_set_lock_blocking(path->nodes[level]);
8524 path->slots[level] = 0;
8525 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8526 memset(&wc->update_progress, 0,
8527 sizeof(wc->update_progress));
8528 } else {
8529 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8530 memcpy(&wc->update_progress, &key,
8531 sizeof(wc->update_progress));
8532
8533 level = root_item->drop_level;
8534 BUG_ON(level == 0);
8535 path->lowest_level = level;
8536 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8537 path->lowest_level = 0;
8538 if (ret < 0) {
8539 err = ret;
8540 goto out_end_trans;
8541 }
8542 WARN_ON(ret > 0);
8543
8544 /*
8545 * unlock our path, this is safe because only this
8546 * function is allowed to delete this snapshot
8547 */
8548 btrfs_unlock_up_safe(path, 0);
8549
8550 level = btrfs_header_level(root->node);
8551 while (1) {
8552 btrfs_tree_lock(path->nodes[level]);
8553 btrfs_set_lock_blocking(path->nodes[level]);
8554 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8555
8556 ret = btrfs_lookup_extent_info(trans, root,
8557 path->nodes[level]->start,
8558 level, 1, &wc->refs[level],
8559 &wc->flags[level]);
8560 if (ret < 0) {
8561 err = ret;
8562 goto out_end_trans;
8563 }
8564 BUG_ON(wc->refs[level] == 0);
8565
8566 if (level == root_item->drop_level)
8567 break;
8568
8569 btrfs_tree_unlock(path->nodes[level]);
8570 path->locks[level] = 0;
8571 WARN_ON(wc->refs[level] != 1);
8572 level--;
8573 }
8574 }
8575
8576 wc->level = level;
8577 wc->shared_level = -1;
8578 wc->stage = DROP_REFERENCE;
8579 wc->update_ref = update_ref;
8580 wc->keep_locks = 0;
8581 wc->for_reloc = for_reloc;
8582 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8583
8584 while (1) {
8585
8586 ret = walk_down_tree(trans, root, path, wc);
8587 if (ret < 0) {
8588 err = ret;
8589 break;
8590 }
8591
8592 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8593 if (ret < 0) {
8594 err = ret;
8595 break;
8596 }
8597
8598 if (ret > 0) {
8599 BUG_ON(wc->stage != DROP_REFERENCE);
8600 break;
8601 }
8602
8603 if (wc->stage == DROP_REFERENCE) {
8604 level = wc->level;
8605 btrfs_node_key(path->nodes[level],
8606 &root_item->drop_progress,
8607 path->slots[level]);
8608 root_item->drop_level = level;
8609 }
8610
8611 BUG_ON(wc->level == 0);
8612 if (btrfs_should_end_transaction(trans, tree_root) ||
8613 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8614 ret = btrfs_update_root(trans, tree_root,
8615 &root->root_key,
8616 root_item);
8617 if (ret) {
8618 btrfs_abort_transaction(trans, tree_root, ret);
8619 err = ret;
8620 goto out_end_trans;
8621 }
8622
8623 btrfs_end_transaction_throttle(trans, tree_root);
8624 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8625 pr_debug("BTRFS: drop snapshot early exit\n");
8626 err = -EAGAIN;
8627 goto out_free;
8628 }
8629
8630 trans = btrfs_start_transaction(tree_root, 0);
8631 if (IS_ERR(trans)) {
8632 err = PTR_ERR(trans);
8633 goto out_free;
8634 }
8635 if (block_rsv)
8636 trans->block_rsv = block_rsv;
8637 }
8638 }
8639 btrfs_release_path(path);
8640 if (err)
8641 goto out_end_trans;
8642
8643 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8644 if (ret) {
8645 btrfs_abort_transaction(trans, tree_root, ret);
8646 goto out_end_trans;
8647 }
8648
8649 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8650 ret = btrfs_find_root(tree_root, &root->root_key, path,
8651 NULL, NULL);
8652 if (ret < 0) {
8653 btrfs_abort_transaction(trans, tree_root, ret);
8654 err = ret;
8655 goto out_end_trans;
8656 } else if (ret > 0) {
8657 /* if we fail to delete the orphan item this time
8658 * around, it'll get picked up the next time.
8659 *
8660 * The most common failure here is just -ENOENT.
8661 */
8662 btrfs_del_orphan_item(trans, tree_root,
8663 root->root_key.objectid);
8664 }
8665 }
8666
8667 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8668 btrfs_add_dropped_root(trans, root);
8669 } else {
8670 free_extent_buffer(root->node);
8671 free_extent_buffer(root->commit_root);
8672 btrfs_put_fs_root(root);
8673 }
8674 root_dropped = true;
8675 out_end_trans:
8676 btrfs_end_transaction_throttle(trans, tree_root);
8677 out_free:
8678 kfree(wc);
8679 btrfs_free_path(path);
8680 out:
8681 /*
8682 * So if we need to stop dropping the snapshot for whatever reason we
8683 * need to make sure to add it back to the dead root list so that we
8684 * keep trying to do the work later. This also cleans up roots if we
8685 * don't have it in the radix (like when we recover after a power fail
8686 * or unmount) so we don't leak memory.
8687 */
8688 if (!for_reloc && root_dropped == false)
8689 btrfs_add_dead_root(root);
8690 if (err && err != -EAGAIN)
8691 btrfs_std_error(root->fs_info, err);
8692 return err;
8693 }
8694
8695 /*
8696 * drop subtree rooted at tree block 'node'.
8697 *
8698 * NOTE: this function will unlock and release tree block 'node'
8699 * only used by relocation code
8700 */
8701 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8702 struct btrfs_root *root,
8703 struct extent_buffer *node,
8704 struct extent_buffer *parent)
8705 {
8706 struct btrfs_path *path;
8707 struct walk_control *wc;
8708 int level;
8709 int parent_level;
8710 int ret = 0;
8711 int wret;
8712
8713 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8714
8715 path = btrfs_alloc_path();
8716 if (!path)
8717 return -ENOMEM;
8718
8719 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8720 if (!wc) {
8721 btrfs_free_path(path);
8722 return -ENOMEM;
8723 }
8724
8725 btrfs_assert_tree_locked(parent);
8726 parent_level = btrfs_header_level(parent);
8727 extent_buffer_get(parent);
8728 path->nodes[parent_level] = parent;
8729 path->slots[parent_level] = btrfs_header_nritems(parent);
8730
8731 btrfs_assert_tree_locked(node);
8732 level = btrfs_header_level(node);
8733 path->nodes[level] = node;
8734 path->slots[level] = 0;
8735 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8736
8737 wc->refs[parent_level] = 1;
8738 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8739 wc->level = level;
8740 wc->shared_level = -1;
8741 wc->stage = DROP_REFERENCE;
8742 wc->update_ref = 0;
8743 wc->keep_locks = 1;
8744 wc->for_reloc = 1;
8745 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8746
8747 while (1) {
8748 wret = walk_down_tree(trans, root, path, wc);
8749 if (wret < 0) {
8750 ret = wret;
8751 break;
8752 }
8753
8754 wret = walk_up_tree(trans, root, path, wc, parent_level);
8755 if (wret < 0)
8756 ret = wret;
8757 if (wret != 0)
8758 break;
8759 }
8760
8761 kfree(wc);
8762 btrfs_free_path(path);
8763 return ret;
8764 }
8765
8766 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8767 {
8768 u64 num_devices;
8769 u64 stripped;
8770
8771 /*
8772 * if restripe for this chunk_type is on pick target profile and
8773 * return, otherwise do the usual balance
8774 */
8775 stripped = get_restripe_target(root->fs_info, flags);
8776 if (stripped)
8777 return extended_to_chunk(stripped);
8778
8779 num_devices = root->fs_info->fs_devices->rw_devices;
8780
8781 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8782 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8783 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8784
8785 if (num_devices == 1) {
8786 stripped |= BTRFS_BLOCK_GROUP_DUP;
8787 stripped = flags & ~stripped;
8788
8789 /* turn raid0 into single device chunks */
8790 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8791 return stripped;
8792
8793 /* turn mirroring into duplication */
8794 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8795 BTRFS_BLOCK_GROUP_RAID10))
8796 return stripped | BTRFS_BLOCK_GROUP_DUP;
8797 } else {
8798 /* they already had raid on here, just return */
8799 if (flags & stripped)
8800 return flags;
8801
8802 stripped |= BTRFS_BLOCK_GROUP_DUP;
8803 stripped = flags & ~stripped;
8804
8805 /* switch duplicated blocks with raid1 */
8806 if (flags & BTRFS_BLOCK_GROUP_DUP)
8807 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8808
8809 /* this is drive concat, leave it alone */
8810 }
8811
8812 return flags;
8813 }
8814
8815 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8816 {
8817 struct btrfs_space_info *sinfo = cache->space_info;
8818 u64 num_bytes;
8819 u64 min_allocable_bytes;
8820 int ret = -ENOSPC;
8821
8822 /*
8823 * We need some metadata space and system metadata space for
8824 * allocating chunks in some corner cases until we force to set
8825 * it to be readonly.
8826 */
8827 if ((sinfo->flags &
8828 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8829 !force)
8830 min_allocable_bytes = 1 * 1024 * 1024;
8831 else
8832 min_allocable_bytes = 0;
8833
8834 spin_lock(&sinfo->lock);
8835 spin_lock(&cache->lock);
8836
8837 if (cache->ro) {
8838 cache->ro++;
8839 ret = 0;
8840 goto out;
8841 }
8842
8843 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8844 cache->bytes_super - btrfs_block_group_used(&cache->item);
8845
8846 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8847 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8848 min_allocable_bytes <= sinfo->total_bytes) {
8849 sinfo->bytes_readonly += num_bytes;
8850 cache->ro++;
8851 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8852 ret = 0;
8853 }
8854 out:
8855 spin_unlock(&cache->lock);
8856 spin_unlock(&sinfo->lock);
8857 return ret;
8858 }
8859
8860 int btrfs_inc_block_group_ro(struct btrfs_root *root,
8861 struct btrfs_block_group_cache *cache)
8862
8863 {
8864 struct btrfs_trans_handle *trans;
8865 u64 alloc_flags;
8866 int ret;
8867
8868 again:
8869 trans = btrfs_join_transaction(root);
8870 if (IS_ERR(trans))
8871 return PTR_ERR(trans);
8872
8873 /*
8874 * we're not allowed to set block groups readonly after the dirty
8875 * block groups cache has started writing. If it already started,
8876 * back off and let this transaction commit
8877 */
8878 mutex_lock(&root->fs_info->ro_block_group_mutex);
8879 if (trans->transaction->dirty_bg_run) {
8880 u64 transid = trans->transid;
8881
8882 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8883 btrfs_end_transaction(trans, root);
8884
8885 ret = btrfs_wait_for_commit(root, transid);
8886 if (ret)
8887 return ret;
8888 goto again;
8889 }
8890
8891 /*
8892 * if we are changing raid levels, try to allocate a corresponding
8893 * block group with the new raid level.
8894 */
8895 alloc_flags = update_block_group_flags(root, cache->flags);
8896 if (alloc_flags != cache->flags) {
8897 ret = do_chunk_alloc(trans, root, alloc_flags,
8898 CHUNK_ALLOC_FORCE);
8899 /*
8900 * ENOSPC is allowed here, we may have enough space
8901 * already allocated at the new raid level to
8902 * carry on
8903 */
8904 if (ret == -ENOSPC)
8905 ret = 0;
8906 if (ret < 0)
8907 goto out;
8908 }
8909
8910 ret = inc_block_group_ro(cache, 0);
8911 if (!ret)
8912 goto out;
8913 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8914 ret = do_chunk_alloc(trans, root, alloc_flags,
8915 CHUNK_ALLOC_FORCE);
8916 if (ret < 0)
8917 goto out;
8918 ret = inc_block_group_ro(cache, 0);
8919 out:
8920 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8921 alloc_flags = update_block_group_flags(root, cache->flags);
8922 lock_chunks(root->fs_info->chunk_root);
8923 check_system_chunk(trans, root, alloc_flags);
8924 unlock_chunks(root->fs_info->chunk_root);
8925 }
8926 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8927
8928 btrfs_end_transaction(trans, root);
8929 return ret;
8930 }
8931
8932 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8933 struct btrfs_root *root, u64 type)
8934 {
8935 u64 alloc_flags = get_alloc_profile(root, type);
8936 return do_chunk_alloc(trans, root, alloc_flags,
8937 CHUNK_ALLOC_FORCE);
8938 }
8939
8940 /*
8941 * helper to account the unused space of all the readonly block group in the
8942 * space_info. takes mirrors into account.
8943 */
8944 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8945 {
8946 struct btrfs_block_group_cache *block_group;
8947 u64 free_bytes = 0;
8948 int factor;
8949
8950 /* It's df, we don't care if it's racey */
8951 if (list_empty(&sinfo->ro_bgs))
8952 return 0;
8953
8954 spin_lock(&sinfo->lock);
8955 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8956 spin_lock(&block_group->lock);
8957
8958 if (!block_group->ro) {
8959 spin_unlock(&block_group->lock);
8960 continue;
8961 }
8962
8963 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8964 BTRFS_BLOCK_GROUP_RAID10 |
8965 BTRFS_BLOCK_GROUP_DUP))
8966 factor = 2;
8967 else
8968 factor = 1;
8969
8970 free_bytes += (block_group->key.offset -
8971 btrfs_block_group_used(&block_group->item)) *
8972 factor;
8973
8974 spin_unlock(&block_group->lock);
8975 }
8976 spin_unlock(&sinfo->lock);
8977
8978 return free_bytes;
8979 }
8980
8981 void btrfs_dec_block_group_ro(struct btrfs_root *root,
8982 struct btrfs_block_group_cache *cache)
8983 {
8984 struct btrfs_space_info *sinfo = cache->space_info;
8985 u64 num_bytes;
8986
8987 BUG_ON(!cache->ro);
8988
8989 spin_lock(&sinfo->lock);
8990 spin_lock(&cache->lock);
8991 if (!--cache->ro) {
8992 num_bytes = cache->key.offset - cache->reserved -
8993 cache->pinned - cache->bytes_super -
8994 btrfs_block_group_used(&cache->item);
8995 sinfo->bytes_readonly -= num_bytes;
8996 list_del_init(&cache->ro_list);
8997 }
8998 spin_unlock(&cache->lock);
8999 spin_unlock(&sinfo->lock);
9000 }
9001
9002 /*
9003 * checks to see if its even possible to relocate this block group.
9004 *
9005 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9006 * ok to go ahead and try.
9007 */
9008 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9009 {
9010 struct btrfs_block_group_cache *block_group;
9011 struct btrfs_space_info *space_info;
9012 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9013 struct btrfs_device *device;
9014 struct btrfs_trans_handle *trans;
9015 u64 min_free;
9016 u64 dev_min = 1;
9017 u64 dev_nr = 0;
9018 u64 target;
9019 int index;
9020 int full = 0;
9021 int ret = 0;
9022
9023 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9024
9025 /* odd, couldn't find the block group, leave it alone */
9026 if (!block_group)
9027 return -1;
9028
9029 min_free = btrfs_block_group_used(&block_group->item);
9030
9031 /* no bytes used, we're good */
9032 if (!min_free)
9033 goto out;
9034
9035 space_info = block_group->space_info;
9036 spin_lock(&space_info->lock);
9037
9038 full = space_info->full;
9039
9040 /*
9041 * if this is the last block group we have in this space, we can't
9042 * relocate it unless we're able to allocate a new chunk below.
9043 *
9044 * Otherwise, we need to make sure we have room in the space to handle
9045 * all of the extents from this block group. If we can, we're good
9046 */
9047 if ((space_info->total_bytes != block_group->key.offset) &&
9048 (space_info->bytes_used + space_info->bytes_reserved +
9049 space_info->bytes_pinned + space_info->bytes_readonly +
9050 min_free < space_info->total_bytes)) {
9051 spin_unlock(&space_info->lock);
9052 goto out;
9053 }
9054 spin_unlock(&space_info->lock);
9055
9056 /*
9057 * ok we don't have enough space, but maybe we have free space on our
9058 * devices to allocate new chunks for relocation, so loop through our
9059 * alloc devices and guess if we have enough space. if this block
9060 * group is going to be restriped, run checks against the target
9061 * profile instead of the current one.
9062 */
9063 ret = -1;
9064
9065 /*
9066 * index:
9067 * 0: raid10
9068 * 1: raid1
9069 * 2: dup
9070 * 3: raid0
9071 * 4: single
9072 */
9073 target = get_restripe_target(root->fs_info, block_group->flags);
9074 if (target) {
9075 index = __get_raid_index(extended_to_chunk(target));
9076 } else {
9077 /*
9078 * this is just a balance, so if we were marked as full
9079 * we know there is no space for a new chunk
9080 */
9081 if (full)
9082 goto out;
9083
9084 index = get_block_group_index(block_group);
9085 }
9086
9087 if (index == BTRFS_RAID_RAID10) {
9088 dev_min = 4;
9089 /* Divide by 2 */
9090 min_free >>= 1;
9091 } else if (index == BTRFS_RAID_RAID1) {
9092 dev_min = 2;
9093 } else if (index == BTRFS_RAID_DUP) {
9094 /* Multiply by 2 */
9095 min_free <<= 1;
9096 } else if (index == BTRFS_RAID_RAID0) {
9097 dev_min = fs_devices->rw_devices;
9098 min_free = div64_u64(min_free, dev_min);
9099 }
9100
9101 /* We need to do this so that we can look at pending chunks */
9102 trans = btrfs_join_transaction(root);
9103 if (IS_ERR(trans)) {
9104 ret = PTR_ERR(trans);
9105 goto out;
9106 }
9107
9108 mutex_lock(&root->fs_info->chunk_mutex);
9109 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9110 u64 dev_offset;
9111
9112 /*
9113 * check to make sure we can actually find a chunk with enough
9114 * space to fit our block group in.
9115 */
9116 if (device->total_bytes > device->bytes_used + min_free &&
9117 !device->is_tgtdev_for_dev_replace) {
9118 ret = find_free_dev_extent(trans, device, min_free,
9119 &dev_offset, NULL);
9120 if (!ret)
9121 dev_nr++;
9122
9123 if (dev_nr >= dev_min)
9124 break;
9125
9126 ret = -1;
9127 }
9128 }
9129 mutex_unlock(&root->fs_info->chunk_mutex);
9130 btrfs_end_transaction(trans, root);
9131 out:
9132 btrfs_put_block_group(block_group);
9133 return ret;
9134 }
9135
9136 static int find_first_block_group(struct btrfs_root *root,
9137 struct btrfs_path *path, struct btrfs_key *key)
9138 {
9139 int ret = 0;
9140 struct btrfs_key found_key;
9141 struct extent_buffer *leaf;
9142 int slot;
9143
9144 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9145 if (ret < 0)
9146 goto out;
9147
9148 while (1) {
9149 slot = path->slots[0];
9150 leaf = path->nodes[0];
9151 if (slot >= btrfs_header_nritems(leaf)) {
9152 ret = btrfs_next_leaf(root, path);
9153 if (ret == 0)
9154 continue;
9155 if (ret < 0)
9156 goto out;
9157 break;
9158 }
9159 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9160
9161 if (found_key.objectid >= key->objectid &&
9162 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9163 ret = 0;
9164 goto out;
9165 }
9166 path->slots[0]++;
9167 }
9168 out:
9169 return ret;
9170 }
9171
9172 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9173 {
9174 struct btrfs_block_group_cache *block_group;
9175 u64 last = 0;
9176
9177 while (1) {
9178 struct inode *inode;
9179
9180 block_group = btrfs_lookup_first_block_group(info, last);
9181 while (block_group) {
9182 spin_lock(&block_group->lock);
9183 if (block_group->iref)
9184 break;
9185 spin_unlock(&block_group->lock);
9186 block_group = next_block_group(info->tree_root,
9187 block_group);
9188 }
9189 if (!block_group) {
9190 if (last == 0)
9191 break;
9192 last = 0;
9193 continue;
9194 }
9195
9196 inode = block_group->inode;
9197 block_group->iref = 0;
9198 block_group->inode = NULL;
9199 spin_unlock(&block_group->lock);
9200 iput(inode);
9201 last = block_group->key.objectid + block_group->key.offset;
9202 btrfs_put_block_group(block_group);
9203 }
9204 }
9205
9206 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9207 {
9208 struct btrfs_block_group_cache *block_group;
9209 struct btrfs_space_info *space_info;
9210 struct btrfs_caching_control *caching_ctl;
9211 struct rb_node *n;
9212
9213 down_write(&info->commit_root_sem);
9214 while (!list_empty(&info->caching_block_groups)) {
9215 caching_ctl = list_entry(info->caching_block_groups.next,
9216 struct btrfs_caching_control, list);
9217 list_del(&caching_ctl->list);
9218 put_caching_control(caching_ctl);
9219 }
9220 up_write(&info->commit_root_sem);
9221
9222 spin_lock(&info->unused_bgs_lock);
9223 while (!list_empty(&info->unused_bgs)) {
9224 block_group = list_first_entry(&info->unused_bgs,
9225 struct btrfs_block_group_cache,
9226 bg_list);
9227 list_del_init(&block_group->bg_list);
9228 btrfs_put_block_group(block_group);
9229 }
9230 spin_unlock(&info->unused_bgs_lock);
9231
9232 spin_lock(&info->block_group_cache_lock);
9233 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9234 block_group = rb_entry(n, struct btrfs_block_group_cache,
9235 cache_node);
9236 rb_erase(&block_group->cache_node,
9237 &info->block_group_cache_tree);
9238 RB_CLEAR_NODE(&block_group->cache_node);
9239 spin_unlock(&info->block_group_cache_lock);
9240
9241 down_write(&block_group->space_info->groups_sem);
9242 list_del(&block_group->list);
9243 up_write(&block_group->space_info->groups_sem);
9244
9245 if (block_group->cached == BTRFS_CACHE_STARTED)
9246 wait_block_group_cache_done(block_group);
9247
9248 /*
9249 * We haven't cached this block group, which means we could
9250 * possibly have excluded extents on this block group.
9251 */
9252 if (block_group->cached == BTRFS_CACHE_NO ||
9253 block_group->cached == BTRFS_CACHE_ERROR)
9254 free_excluded_extents(info->extent_root, block_group);
9255
9256 btrfs_remove_free_space_cache(block_group);
9257 btrfs_put_block_group(block_group);
9258
9259 spin_lock(&info->block_group_cache_lock);
9260 }
9261 spin_unlock(&info->block_group_cache_lock);
9262
9263 /* now that all the block groups are freed, go through and
9264 * free all the space_info structs. This is only called during
9265 * the final stages of unmount, and so we know nobody is
9266 * using them. We call synchronize_rcu() once before we start,
9267 * just to be on the safe side.
9268 */
9269 synchronize_rcu();
9270
9271 release_global_block_rsv(info);
9272
9273 while (!list_empty(&info->space_info)) {
9274 int i;
9275
9276 space_info = list_entry(info->space_info.next,
9277 struct btrfs_space_info,
9278 list);
9279 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9280 if (WARN_ON(space_info->bytes_pinned > 0 ||
9281 space_info->bytes_reserved > 0 ||
9282 space_info->bytes_may_use > 0)) {
9283 dump_space_info(space_info, 0, 0);
9284 }
9285 }
9286 list_del(&space_info->list);
9287 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9288 struct kobject *kobj;
9289 kobj = space_info->block_group_kobjs[i];
9290 space_info->block_group_kobjs[i] = NULL;
9291 if (kobj) {
9292 kobject_del(kobj);
9293 kobject_put(kobj);
9294 }
9295 }
9296 kobject_del(&space_info->kobj);
9297 kobject_put(&space_info->kobj);
9298 }
9299 return 0;
9300 }
9301
9302 static void __link_block_group(struct btrfs_space_info *space_info,
9303 struct btrfs_block_group_cache *cache)
9304 {
9305 int index = get_block_group_index(cache);
9306 bool first = false;
9307
9308 down_write(&space_info->groups_sem);
9309 if (list_empty(&space_info->block_groups[index]))
9310 first = true;
9311 list_add_tail(&cache->list, &space_info->block_groups[index]);
9312 up_write(&space_info->groups_sem);
9313
9314 if (first) {
9315 struct raid_kobject *rkobj;
9316 int ret;
9317
9318 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9319 if (!rkobj)
9320 goto out_err;
9321 rkobj->raid_type = index;
9322 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9323 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9324 "%s", get_raid_name(index));
9325 if (ret) {
9326 kobject_put(&rkobj->kobj);
9327 goto out_err;
9328 }
9329 space_info->block_group_kobjs[index] = &rkobj->kobj;
9330 }
9331
9332 return;
9333 out_err:
9334 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9335 }
9336
9337 static struct btrfs_block_group_cache *
9338 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9339 {
9340 struct btrfs_block_group_cache *cache;
9341
9342 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9343 if (!cache)
9344 return NULL;
9345
9346 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9347 GFP_NOFS);
9348 if (!cache->free_space_ctl) {
9349 kfree(cache);
9350 return NULL;
9351 }
9352
9353 cache->key.objectid = start;
9354 cache->key.offset = size;
9355 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9356
9357 cache->sectorsize = root->sectorsize;
9358 cache->fs_info = root->fs_info;
9359 cache->full_stripe_len = btrfs_full_stripe_len(root,
9360 &root->fs_info->mapping_tree,
9361 start);
9362 atomic_set(&cache->count, 1);
9363 spin_lock_init(&cache->lock);
9364 init_rwsem(&cache->data_rwsem);
9365 INIT_LIST_HEAD(&cache->list);
9366 INIT_LIST_HEAD(&cache->cluster_list);
9367 INIT_LIST_HEAD(&cache->bg_list);
9368 INIT_LIST_HEAD(&cache->ro_list);
9369 INIT_LIST_HEAD(&cache->dirty_list);
9370 INIT_LIST_HEAD(&cache->io_list);
9371 btrfs_init_free_space_ctl(cache);
9372 atomic_set(&cache->trimming, 0);
9373
9374 return cache;
9375 }
9376
9377 int btrfs_read_block_groups(struct btrfs_root *root)
9378 {
9379 struct btrfs_path *path;
9380 int ret;
9381 struct btrfs_block_group_cache *cache;
9382 struct btrfs_fs_info *info = root->fs_info;
9383 struct btrfs_space_info *space_info;
9384 struct btrfs_key key;
9385 struct btrfs_key found_key;
9386 struct extent_buffer *leaf;
9387 int need_clear = 0;
9388 u64 cache_gen;
9389
9390 root = info->extent_root;
9391 key.objectid = 0;
9392 key.offset = 0;
9393 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9394 path = btrfs_alloc_path();
9395 if (!path)
9396 return -ENOMEM;
9397 path->reada = 1;
9398
9399 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9400 if (btrfs_test_opt(root, SPACE_CACHE) &&
9401 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9402 need_clear = 1;
9403 if (btrfs_test_opt(root, CLEAR_CACHE))
9404 need_clear = 1;
9405
9406 while (1) {
9407 ret = find_first_block_group(root, path, &key);
9408 if (ret > 0)
9409 break;
9410 if (ret != 0)
9411 goto error;
9412
9413 leaf = path->nodes[0];
9414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9415
9416 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9417 found_key.offset);
9418 if (!cache) {
9419 ret = -ENOMEM;
9420 goto error;
9421 }
9422
9423 if (need_clear) {
9424 /*
9425 * When we mount with old space cache, we need to
9426 * set BTRFS_DC_CLEAR and set dirty flag.
9427 *
9428 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9429 * truncate the old free space cache inode and
9430 * setup a new one.
9431 * b) Setting 'dirty flag' makes sure that we flush
9432 * the new space cache info onto disk.
9433 */
9434 if (btrfs_test_opt(root, SPACE_CACHE))
9435 cache->disk_cache_state = BTRFS_DC_CLEAR;
9436 }
9437
9438 read_extent_buffer(leaf, &cache->item,
9439 btrfs_item_ptr_offset(leaf, path->slots[0]),
9440 sizeof(cache->item));
9441 cache->flags = btrfs_block_group_flags(&cache->item);
9442
9443 key.objectid = found_key.objectid + found_key.offset;
9444 btrfs_release_path(path);
9445
9446 /*
9447 * We need to exclude the super stripes now so that the space
9448 * info has super bytes accounted for, otherwise we'll think
9449 * we have more space than we actually do.
9450 */
9451 ret = exclude_super_stripes(root, cache);
9452 if (ret) {
9453 /*
9454 * We may have excluded something, so call this just in
9455 * case.
9456 */
9457 free_excluded_extents(root, cache);
9458 btrfs_put_block_group(cache);
9459 goto error;
9460 }
9461
9462 /*
9463 * check for two cases, either we are full, and therefore
9464 * don't need to bother with the caching work since we won't
9465 * find any space, or we are empty, and we can just add all
9466 * the space in and be done with it. This saves us _alot_ of
9467 * time, particularly in the full case.
9468 */
9469 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9470 cache->last_byte_to_unpin = (u64)-1;
9471 cache->cached = BTRFS_CACHE_FINISHED;
9472 free_excluded_extents(root, cache);
9473 } else if (btrfs_block_group_used(&cache->item) == 0) {
9474 cache->last_byte_to_unpin = (u64)-1;
9475 cache->cached = BTRFS_CACHE_FINISHED;
9476 add_new_free_space(cache, root->fs_info,
9477 found_key.objectid,
9478 found_key.objectid +
9479 found_key.offset);
9480 free_excluded_extents(root, cache);
9481 }
9482
9483 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9484 if (ret) {
9485 btrfs_remove_free_space_cache(cache);
9486 btrfs_put_block_group(cache);
9487 goto error;
9488 }
9489
9490 ret = update_space_info(info, cache->flags, found_key.offset,
9491 btrfs_block_group_used(&cache->item),
9492 &space_info);
9493 if (ret) {
9494 btrfs_remove_free_space_cache(cache);
9495 spin_lock(&info->block_group_cache_lock);
9496 rb_erase(&cache->cache_node,
9497 &info->block_group_cache_tree);
9498 RB_CLEAR_NODE(&cache->cache_node);
9499 spin_unlock(&info->block_group_cache_lock);
9500 btrfs_put_block_group(cache);
9501 goto error;
9502 }
9503
9504 cache->space_info = space_info;
9505 spin_lock(&cache->space_info->lock);
9506 cache->space_info->bytes_readonly += cache->bytes_super;
9507 spin_unlock(&cache->space_info->lock);
9508
9509 __link_block_group(space_info, cache);
9510
9511 set_avail_alloc_bits(root->fs_info, cache->flags);
9512 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9513 inc_block_group_ro(cache, 1);
9514 } else if (btrfs_block_group_used(&cache->item) == 0) {
9515 spin_lock(&info->unused_bgs_lock);
9516 /* Should always be true but just in case. */
9517 if (list_empty(&cache->bg_list)) {
9518 btrfs_get_block_group(cache);
9519 list_add_tail(&cache->bg_list,
9520 &info->unused_bgs);
9521 }
9522 spin_unlock(&info->unused_bgs_lock);
9523 }
9524 }
9525
9526 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9527 if (!(get_alloc_profile(root, space_info->flags) &
9528 (BTRFS_BLOCK_GROUP_RAID10 |
9529 BTRFS_BLOCK_GROUP_RAID1 |
9530 BTRFS_BLOCK_GROUP_RAID5 |
9531 BTRFS_BLOCK_GROUP_RAID6 |
9532 BTRFS_BLOCK_GROUP_DUP)))
9533 continue;
9534 /*
9535 * avoid allocating from un-mirrored block group if there are
9536 * mirrored block groups.
9537 */
9538 list_for_each_entry(cache,
9539 &space_info->block_groups[BTRFS_RAID_RAID0],
9540 list)
9541 inc_block_group_ro(cache, 1);
9542 list_for_each_entry(cache,
9543 &space_info->block_groups[BTRFS_RAID_SINGLE],
9544 list)
9545 inc_block_group_ro(cache, 1);
9546 }
9547
9548 init_global_block_rsv(info);
9549 ret = 0;
9550 error:
9551 btrfs_free_path(path);
9552 return ret;
9553 }
9554
9555 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9556 struct btrfs_root *root)
9557 {
9558 struct btrfs_block_group_cache *block_group, *tmp;
9559 struct btrfs_root *extent_root = root->fs_info->extent_root;
9560 struct btrfs_block_group_item item;
9561 struct btrfs_key key;
9562 int ret = 0;
9563
9564 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9565 if (ret)
9566 goto next;
9567
9568 spin_lock(&block_group->lock);
9569 memcpy(&item, &block_group->item, sizeof(item));
9570 memcpy(&key, &block_group->key, sizeof(key));
9571 spin_unlock(&block_group->lock);
9572
9573 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9574 sizeof(item));
9575 if (ret)
9576 btrfs_abort_transaction(trans, extent_root, ret);
9577 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9578 key.objectid, key.offset);
9579 if (ret)
9580 btrfs_abort_transaction(trans, extent_root, ret);
9581 next:
9582 list_del_init(&block_group->bg_list);
9583 }
9584 }
9585
9586 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9587 struct btrfs_root *root, u64 bytes_used,
9588 u64 type, u64 chunk_objectid, u64 chunk_offset,
9589 u64 size)
9590 {
9591 int ret;
9592 struct btrfs_root *extent_root;
9593 struct btrfs_block_group_cache *cache;
9594
9595 extent_root = root->fs_info->extent_root;
9596
9597 btrfs_set_log_full_commit(root->fs_info, trans);
9598
9599 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9600 if (!cache)
9601 return -ENOMEM;
9602
9603 btrfs_set_block_group_used(&cache->item, bytes_used);
9604 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9605 btrfs_set_block_group_flags(&cache->item, type);
9606
9607 cache->flags = type;
9608 cache->last_byte_to_unpin = (u64)-1;
9609 cache->cached = BTRFS_CACHE_FINISHED;
9610 ret = exclude_super_stripes(root, cache);
9611 if (ret) {
9612 /*
9613 * We may have excluded something, so call this just in
9614 * case.
9615 */
9616 free_excluded_extents(root, cache);
9617 btrfs_put_block_group(cache);
9618 return ret;
9619 }
9620
9621 add_new_free_space(cache, root->fs_info, chunk_offset,
9622 chunk_offset + size);
9623
9624 free_excluded_extents(root, cache);
9625
9626 /*
9627 * Call to ensure the corresponding space_info object is created and
9628 * assigned to our block group, but don't update its counters just yet.
9629 * We want our bg to be added to the rbtree with its ->space_info set.
9630 */
9631 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9632 &cache->space_info);
9633 if (ret) {
9634 btrfs_remove_free_space_cache(cache);
9635 btrfs_put_block_group(cache);
9636 return ret;
9637 }
9638
9639 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9640 if (ret) {
9641 btrfs_remove_free_space_cache(cache);
9642 btrfs_put_block_group(cache);
9643 return ret;
9644 }
9645
9646 /*
9647 * Now that our block group has its ->space_info set and is inserted in
9648 * the rbtree, update the space info's counters.
9649 */
9650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9651 &cache->space_info);
9652 if (ret) {
9653 btrfs_remove_free_space_cache(cache);
9654 spin_lock(&root->fs_info->block_group_cache_lock);
9655 rb_erase(&cache->cache_node,
9656 &root->fs_info->block_group_cache_tree);
9657 RB_CLEAR_NODE(&cache->cache_node);
9658 spin_unlock(&root->fs_info->block_group_cache_lock);
9659 btrfs_put_block_group(cache);
9660 return ret;
9661 }
9662 update_global_block_rsv(root->fs_info);
9663
9664 spin_lock(&cache->space_info->lock);
9665 cache->space_info->bytes_readonly += cache->bytes_super;
9666 spin_unlock(&cache->space_info->lock);
9667
9668 __link_block_group(cache->space_info, cache);
9669
9670 list_add_tail(&cache->bg_list, &trans->new_bgs);
9671
9672 set_avail_alloc_bits(extent_root->fs_info, type);
9673
9674 return 0;
9675 }
9676
9677 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9678 {
9679 u64 extra_flags = chunk_to_extended(flags) &
9680 BTRFS_EXTENDED_PROFILE_MASK;
9681
9682 write_seqlock(&fs_info->profiles_lock);
9683 if (flags & BTRFS_BLOCK_GROUP_DATA)
9684 fs_info->avail_data_alloc_bits &= ~extra_flags;
9685 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9686 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9687 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9688 fs_info->avail_system_alloc_bits &= ~extra_flags;
9689 write_sequnlock(&fs_info->profiles_lock);
9690 }
9691
9692 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9693 struct btrfs_root *root, u64 group_start,
9694 struct extent_map *em)
9695 {
9696 struct btrfs_path *path;
9697 struct btrfs_block_group_cache *block_group;
9698 struct btrfs_free_cluster *cluster;
9699 struct btrfs_root *tree_root = root->fs_info->tree_root;
9700 struct btrfs_key key;
9701 struct inode *inode;
9702 struct kobject *kobj = NULL;
9703 int ret;
9704 int index;
9705 int factor;
9706 struct btrfs_caching_control *caching_ctl = NULL;
9707 bool remove_em;
9708
9709 root = root->fs_info->extent_root;
9710
9711 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9712 BUG_ON(!block_group);
9713 BUG_ON(!block_group->ro);
9714
9715 /*
9716 * Free the reserved super bytes from this block group before
9717 * remove it.
9718 */
9719 free_excluded_extents(root, block_group);
9720
9721 memcpy(&key, &block_group->key, sizeof(key));
9722 index = get_block_group_index(block_group);
9723 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9724 BTRFS_BLOCK_GROUP_RAID1 |
9725 BTRFS_BLOCK_GROUP_RAID10))
9726 factor = 2;
9727 else
9728 factor = 1;
9729
9730 /* make sure this block group isn't part of an allocation cluster */
9731 cluster = &root->fs_info->data_alloc_cluster;
9732 spin_lock(&cluster->refill_lock);
9733 btrfs_return_cluster_to_free_space(block_group, cluster);
9734 spin_unlock(&cluster->refill_lock);
9735
9736 /*
9737 * make sure this block group isn't part of a metadata
9738 * allocation cluster
9739 */
9740 cluster = &root->fs_info->meta_alloc_cluster;
9741 spin_lock(&cluster->refill_lock);
9742 btrfs_return_cluster_to_free_space(block_group, cluster);
9743 spin_unlock(&cluster->refill_lock);
9744
9745 path = btrfs_alloc_path();
9746 if (!path) {
9747 ret = -ENOMEM;
9748 goto out;
9749 }
9750
9751 /*
9752 * get the inode first so any iput calls done for the io_list
9753 * aren't the final iput (no unlinks allowed now)
9754 */
9755 inode = lookup_free_space_inode(tree_root, block_group, path);
9756
9757 mutex_lock(&trans->transaction->cache_write_mutex);
9758 /*
9759 * make sure our free spache cache IO is done before remove the
9760 * free space inode
9761 */
9762 spin_lock(&trans->transaction->dirty_bgs_lock);
9763 if (!list_empty(&block_group->io_list)) {
9764 list_del_init(&block_group->io_list);
9765
9766 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9767
9768 spin_unlock(&trans->transaction->dirty_bgs_lock);
9769 btrfs_wait_cache_io(root, trans, block_group,
9770 &block_group->io_ctl, path,
9771 block_group->key.objectid);
9772 btrfs_put_block_group(block_group);
9773 spin_lock(&trans->transaction->dirty_bgs_lock);
9774 }
9775
9776 if (!list_empty(&block_group->dirty_list)) {
9777 list_del_init(&block_group->dirty_list);
9778 btrfs_put_block_group(block_group);
9779 }
9780 spin_unlock(&trans->transaction->dirty_bgs_lock);
9781 mutex_unlock(&trans->transaction->cache_write_mutex);
9782
9783 if (!IS_ERR(inode)) {
9784 ret = btrfs_orphan_add(trans, inode);
9785 if (ret) {
9786 btrfs_add_delayed_iput(inode);
9787 goto out;
9788 }
9789 clear_nlink(inode);
9790 /* One for the block groups ref */
9791 spin_lock(&block_group->lock);
9792 if (block_group->iref) {
9793 block_group->iref = 0;
9794 block_group->inode = NULL;
9795 spin_unlock(&block_group->lock);
9796 iput(inode);
9797 } else {
9798 spin_unlock(&block_group->lock);
9799 }
9800 /* One for our lookup ref */
9801 btrfs_add_delayed_iput(inode);
9802 }
9803
9804 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9805 key.offset = block_group->key.objectid;
9806 key.type = 0;
9807
9808 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9809 if (ret < 0)
9810 goto out;
9811 if (ret > 0)
9812 btrfs_release_path(path);
9813 if (ret == 0) {
9814 ret = btrfs_del_item(trans, tree_root, path);
9815 if (ret)
9816 goto out;
9817 btrfs_release_path(path);
9818 }
9819
9820 spin_lock(&root->fs_info->block_group_cache_lock);
9821 rb_erase(&block_group->cache_node,
9822 &root->fs_info->block_group_cache_tree);
9823 RB_CLEAR_NODE(&block_group->cache_node);
9824
9825 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9826 root->fs_info->first_logical_byte = (u64)-1;
9827 spin_unlock(&root->fs_info->block_group_cache_lock);
9828
9829 down_write(&block_group->space_info->groups_sem);
9830 /*
9831 * we must use list_del_init so people can check to see if they
9832 * are still on the list after taking the semaphore
9833 */
9834 list_del_init(&block_group->list);
9835 if (list_empty(&block_group->space_info->block_groups[index])) {
9836 kobj = block_group->space_info->block_group_kobjs[index];
9837 block_group->space_info->block_group_kobjs[index] = NULL;
9838 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9839 }
9840 up_write(&block_group->space_info->groups_sem);
9841 if (kobj) {
9842 kobject_del(kobj);
9843 kobject_put(kobj);
9844 }
9845
9846 if (block_group->has_caching_ctl)
9847 caching_ctl = get_caching_control(block_group);
9848 if (block_group->cached == BTRFS_CACHE_STARTED)
9849 wait_block_group_cache_done(block_group);
9850 if (block_group->has_caching_ctl) {
9851 down_write(&root->fs_info->commit_root_sem);
9852 if (!caching_ctl) {
9853 struct btrfs_caching_control *ctl;
9854
9855 list_for_each_entry(ctl,
9856 &root->fs_info->caching_block_groups, list)
9857 if (ctl->block_group == block_group) {
9858 caching_ctl = ctl;
9859 atomic_inc(&caching_ctl->count);
9860 break;
9861 }
9862 }
9863 if (caching_ctl)
9864 list_del_init(&caching_ctl->list);
9865 up_write(&root->fs_info->commit_root_sem);
9866 if (caching_ctl) {
9867 /* Once for the caching bgs list and once for us. */
9868 put_caching_control(caching_ctl);
9869 put_caching_control(caching_ctl);
9870 }
9871 }
9872
9873 spin_lock(&trans->transaction->dirty_bgs_lock);
9874 if (!list_empty(&block_group->dirty_list)) {
9875 WARN_ON(1);
9876 }
9877 if (!list_empty(&block_group->io_list)) {
9878 WARN_ON(1);
9879 }
9880 spin_unlock(&trans->transaction->dirty_bgs_lock);
9881 btrfs_remove_free_space_cache(block_group);
9882
9883 spin_lock(&block_group->space_info->lock);
9884 list_del_init(&block_group->ro_list);
9885
9886 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9887 WARN_ON(block_group->space_info->total_bytes
9888 < block_group->key.offset);
9889 WARN_ON(block_group->space_info->bytes_readonly
9890 < block_group->key.offset);
9891 WARN_ON(block_group->space_info->disk_total
9892 < block_group->key.offset * factor);
9893 }
9894 block_group->space_info->total_bytes -= block_group->key.offset;
9895 block_group->space_info->bytes_readonly -= block_group->key.offset;
9896 block_group->space_info->disk_total -= block_group->key.offset * factor;
9897
9898 spin_unlock(&block_group->space_info->lock);
9899
9900 memcpy(&key, &block_group->key, sizeof(key));
9901
9902 lock_chunks(root);
9903 if (!list_empty(&em->list)) {
9904 /* We're in the transaction->pending_chunks list. */
9905 free_extent_map(em);
9906 }
9907 spin_lock(&block_group->lock);
9908 block_group->removed = 1;
9909 /*
9910 * At this point trimming can't start on this block group, because we
9911 * removed the block group from the tree fs_info->block_group_cache_tree
9912 * so no one can't find it anymore and even if someone already got this
9913 * block group before we removed it from the rbtree, they have already
9914 * incremented block_group->trimming - if they didn't, they won't find
9915 * any free space entries because we already removed them all when we
9916 * called btrfs_remove_free_space_cache().
9917 *
9918 * And we must not remove the extent map from the fs_info->mapping_tree
9919 * to prevent the same logical address range and physical device space
9920 * ranges from being reused for a new block group. This is because our
9921 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9922 * completely transactionless, so while it is trimming a range the
9923 * currently running transaction might finish and a new one start,
9924 * allowing for new block groups to be created that can reuse the same
9925 * physical device locations unless we take this special care.
9926 *
9927 * There may also be an implicit trim operation if the file system
9928 * is mounted with -odiscard. The same protections must remain
9929 * in place until the extents have been discarded completely when
9930 * the transaction commit has completed.
9931 */
9932 remove_em = (atomic_read(&block_group->trimming) == 0);
9933 /*
9934 * Make sure a trimmer task always sees the em in the pinned_chunks list
9935 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9936 * before checking block_group->removed).
9937 */
9938 if (!remove_em) {
9939 /*
9940 * Our em might be in trans->transaction->pending_chunks which
9941 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9942 * and so is the fs_info->pinned_chunks list.
9943 *
9944 * So at this point we must be holding the chunk_mutex to avoid
9945 * any races with chunk allocation (more specifically at
9946 * volumes.c:contains_pending_extent()), to ensure it always
9947 * sees the em, either in the pending_chunks list or in the
9948 * pinned_chunks list.
9949 */
9950 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9951 }
9952 spin_unlock(&block_group->lock);
9953
9954 if (remove_em) {
9955 struct extent_map_tree *em_tree;
9956
9957 em_tree = &root->fs_info->mapping_tree.map_tree;
9958 write_lock(&em_tree->lock);
9959 /*
9960 * The em might be in the pending_chunks list, so make sure the
9961 * chunk mutex is locked, since remove_extent_mapping() will
9962 * delete us from that list.
9963 */
9964 remove_extent_mapping(em_tree, em);
9965 write_unlock(&em_tree->lock);
9966 /* once for the tree */
9967 free_extent_map(em);
9968 }
9969
9970 unlock_chunks(root);
9971
9972 btrfs_put_block_group(block_group);
9973 btrfs_put_block_group(block_group);
9974
9975 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9976 if (ret > 0)
9977 ret = -EIO;
9978 if (ret < 0)
9979 goto out;
9980
9981 ret = btrfs_del_item(trans, root, path);
9982 out:
9983 btrfs_free_path(path);
9984 return ret;
9985 }
9986
9987 /*
9988 * Process the unused_bgs list and remove any that don't have any allocated
9989 * space inside of them.
9990 */
9991 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9992 {
9993 struct btrfs_block_group_cache *block_group;
9994 struct btrfs_space_info *space_info;
9995 struct btrfs_root *root = fs_info->extent_root;
9996 struct btrfs_trans_handle *trans;
9997 int ret = 0;
9998
9999 if (!fs_info->open)
10000 return;
10001
10002 spin_lock(&fs_info->unused_bgs_lock);
10003 while (!list_empty(&fs_info->unused_bgs)) {
10004 u64 start, end;
10005 int trimming;
10006
10007 block_group = list_first_entry(&fs_info->unused_bgs,
10008 struct btrfs_block_group_cache,
10009 bg_list);
10010 space_info = block_group->space_info;
10011 list_del_init(&block_group->bg_list);
10012 if (ret || btrfs_mixed_space_info(space_info)) {
10013 btrfs_put_block_group(block_group);
10014 continue;
10015 }
10016 spin_unlock(&fs_info->unused_bgs_lock);
10017
10018 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10019
10020 /* Don't want to race with allocators so take the groups_sem */
10021 down_write(&space_info->groups_sem);
10022 spin_lock(&block_group->lock);
10023 if (block_group->reserved ||
10024 btrfs_block_group_used(&block_group->item) ||
10025 block_group->ro) {
10026 /*
10027 * We want to bail if we made new allocations or have
10028 * outstanding allocations in this block group. We do
10029 * the ro check in case balance is currently acting on
10030 * this block group.
10031 */
10032 spin_unlock(&block_group->lock);
10033 up_write(&space_info->groups_sem);
10034 goto next;
10035 }
10036 spin_unlock(&block_group->lock);
10037
10038 /* We don't want to force the issue, only flip if it's ok. */
10039 ret = inc_block_group_ro(block_group, 0);
10040 up_write(&space_info->groups_sem);
10041 if (ret < 0) {
10042 ret = 0;
10043 goto next;
10044 }
10045
10046 /*
10047 * Want to do this before we do anything else so we can recover
10048 * properly if we fail to join the transaction.
10049 */
10050 /* 1 for btrfs_orphan_reserve_metadata() */
10051 trans = btrfs_start_transaction(root, 1);
10052 if (IS_ERR(trans)) {
10053 btrfs_dec_block_group_ro(root, block_group);
10054 ret = PTR_ERR(trans);
10055 goto next;
10056 }
10057
10058 /*
10059 * We could have pending pinned extents for this block group,
10060 * just delete them, we don't care about them anymore.
10061 */
10062 start = block_group->key.objectid;
10063 end = start + block_group->key.offset - 1;
10064 /*
10065 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10066 * btrfs_finish_extent_commit(). If we are at transaction N,
10067 * another task might be running finish_extent_commit() for the
10068 * previous transaction N - 1, and have seen a range belonging
10069 * to the block group in freed_extents[] before we were able to
10070 * clear the whole block group range from freed_extents[]. This
10071 * means that task can lookup for the block group after we
10072 * unpinned it from freed_extents[] and removed it, leading to
10073 * a BUG_ON() at btrfs_unpin_extent_range().
10074 */
10075 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10076 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10077 EXTENT_DIRTY, GFP_NOFS);
10078 if (ret) {
10079 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10080 btrfs_dec_block_group_ro(root, block_group);
10081 goto end_trans;
10082 }
10083 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10084 EXTENT_DIRTY, GFP_NOFS);
10085 if (ret) {
10086 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10087 btrfs_dec_block_group_ro(root, block_group);
10088 goto end_trans;
10089 }
10090 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10091
10092 /* Reset pinned so btrfs_put_block_group doesn't complain */
10093 spin_lock(&space_info->lock);
10094 spin_lock(&block_group->lock);
10095
10096 space_info->bytes_pinned -= block_group->pinned;
10097 space_info->bytes_readonly += block_group->pinned;
10098 percpu_counter_add(&space_info->total_bytes_pinned,
10099 -block_group->pinned);
10100 block_group->pinned = 0;
10101
10102 spin_unlock(&block_group->lock);
10103 spin_unlock(&space_info->lock);
10104
10105 /* DISCARD can flip during remount */
10106 trimming = btrfs_test_opt(root, DISCARD);
10107
10108 /* Implicit trim during transaction commit. */
10109 if (trimming)
10110 btrfs_get_block_group_trimming(block_group);
10111
10112 /*
10113 * Btrfs_remove_chunk will abort the transaction if things go
10114 * horribly wrong.
10115 */
10116 ret = btrfs_remove_chunk(trans, root,
10117 block_group->key.objectid);
10118
10119 if (ret) {
10120 if (trimming)
10121 btrfs_put_block_group_trimming(block_group);
10122 goto end_trans;
10123 }
10124
10125 /*
10126 * If we're not mounted with -odiscard, we can just forget
10127 * about this block group. Otherwise we'll need to wait
10128 * until transaction commit to do the actual discard.
10129 */
10130 if (trimming) {
10131 WARN_ON(!list_empty(&block_group->bg_list));
10132 spin_lock(&trans->transaction->deleted_bgs_lock);
10133 list_move(&block_group->bg_list,
10134 &trans->transaction->deleted_bgs);
10135 spin_unlock(&trans->transaction->deleted_bgs_lock);
10136 btrfs_get_block_group(block_group);
10137 }
10138 end_trans:
10139 btrfs_end_transaction(trans, root);
10140 next:
10141 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10142 btrfs_put_block_group(block_group);
10143 spin_lock(&fs_info->unused_bgs_lock);
10144 }
10145 spin_unlock(&fs_info->unused_bgs_lock);
10146 }
10147
10148 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10149 {
10150 struct btrfs_space_info *space_info;
10151 struct btrfs_super_block *disk_super;
10152 u64 features;
10153 u64 flags;
10154 int mixed = 0;
10155 int ret;
10156
10157 disk_super = fs_info->super_copy;
10158 if (!btrfs_super_root(disk_super))
10159 return 1;
10160
10161 features = btrfs_super_incompat_flags(disk_super);
10162 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10163 mixed = 1;
10164
10165 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10166 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10167 if (ret)
10168 goto out;
10169
10170 if (mixed) {
10171 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10172 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10173 } else {
10174 flags = BTRFS_BLOCK_GROUP_METADATA;
10175 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10176 if (ret)
10177 goto out;
10178
10179 flags = BTRFS_BLOCK_GROUP_DATA;
10180 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10181 }
10182 out:
10183 return ret;
10184 }
10185
10186 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10187 {
10188 return unpin_extent_range(root, start, end, false);
10189 }
10190
10191 /*
10192 * It used to be that old block groups would be left around forever.
10193 * Iterating over them would be enough to trim unused space. Since we
10194 * now automatically remove them, we also need to iterate over unallocated
10195 * space.
10196 *
10197 * We don't want a transaction for this since the discard may take a
10198 * substantial amount of time. We don't require that a transaction be
10199 * running, but we do need to take a running transaction into account
10200 * to ensure that we're not discarding chunks that were released in
10201 * the current transaction.
10202 *
10203 * Holding the chunks lock will prevent other threads from allocating
10204 * or releasing chunks, but it won't prevent a running transaction
10205 * from committing and releasing the memory that the pending chunks
10206 * list head uses. For that, we need to take a reference to the
10207 * transaction.
10208 */
10209 static int btrfs_trim_free_extents(struct btrfs_device *device,
10210 u64 minlen, u64 *trimmed)
10211 {
10212 u64 start = 0, len = 0;
10213 int ret;
10214
10215 *trimmed = 0;
10216
10217 /* Not writeable = nothing to do. */
10218 if (!device->writeable)
10219 return 0;
10220
10221 /* No free space = nothing to do. */
10222 if (device->total_bytes <= device->bytes_used)
10223 return 0;
10224
10225 ret = 0;
10226
10227 while (1) {
10228 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10229 struct btrfs_transaction *trans;
10230 u64 bytes;
10231
10232 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10233 if (ret)
10234 return ret;
10235
10236 down_read(&fs_info->commit_root_sem);
10237
10238 spin_lock(&fs_info->trans_lock);
10239 trans = fs_info->running_transaction;
10240 if (trans)
10241 atomic_inc(&trans->use_count);
10242 spin_unlock(&fs_info->trans_lock);
10243
10244 ret = find_free_dev_extent_start(trans, device, minlen, start,
10245 &start, &len);
10246 if (trans)
10247 btrfs_put_transaction(trans);
10248
10249 if (ret) {
10250 up_read(&fs_info->commit_root_sem);
10251 mutex_unlock(&fs_info->chunk_mutex);
10252 if (ret == -ENOSPC)
10253 ret = 0;
10254 break;
10255 }
10256
10257 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10258 up_read(&fs_info->commit_root_sem);
10259 mutex_unlock(&fs_info->chunk_mutex);
10260
10261 if (ret)
10262 break;
10263
10264 start += len;
10265 *trimmed += bytes;
10266
10267 if (fatal_signal_pending(current)) {
10268 ret = -ERESTARTSYS;
10269 break;
10270 }
10271
10272 cond_resched();
10273 }
10274
10275 return ret;
10276 }
10277
10278 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10279 {
10280 struct btrfs_fs_info *fs_info = root->fs_info;
10281 struct btrfs_block_group_cache *cache = NULL;
10282 struct btrfs_device *device;
10283 struct list_head *devices;
10284 u64 group_trimmed;
10285 u64 start;
10286 u64 end;
10287 u64 trimmed = 0;
10288 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10289 int ret = 0;
10290
10291 /*
10292 * try to trim all FS space, our block group may start from non-zero.
10293 */
10294 if (range->len == total_bytes)
10295 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10296 else
10297 cache = btrfs_lookup_block_group(fs_info, range->start);
10298
10299 while (cache) {
10300 if (cache->key.objectid >= (range->start + range->len)) {
10301 btrfs_put_block_group(cache);
10302 break;
10303 }
10304
10305 start = max(range->start, cache->key.objectid);
10306 end = min(range->start + range->len,
10307 cache->key.objectid + cache->key.offset);
10308
10309 if (end - start >= range->minlen) {
10310 if (!block_group_cache_done(cache)) {
10311 ret = cache_block_group(cache, 0);
10312 if (ret) {
10313 btrfs_put_block_group(cache);
10314 break;
10315 }
10316 ret = wait_block_group_cache_done(cache);
10317 if (ret) {
10318 btrfs_put_block_group(cache);
10319 break;
10320 }
10321 }
10322 ret = btrfs_trim_block_group(cache,
10323 &group_trimmed,
10324 start,
10325 end,
10326 range->minlen);
10327
10328 trimmed += group_trimmed;
10329 if (ret) {
10330 btrfs_put_block_group(cache);
10331 break;
10332 }
10333 }
10334
10335 cache = next_block_group(fs_info->tree_root, cache);
10336 }
10337
10338 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10339 devices = &root->fs_info->fs_devices->alloc_list;
10340 list_for_each_entry(device, devices, dev_alloc_list) {
10341 ret = btrfs_trim_free_extents(device, range->minlen,
10342 &group_trimmed);
10343 if (ret)
10344 break;
10345
10346 trimmed += group_trimmed;
10347 }
10348 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10349
10350 range->len = trimmed;
10351 return ret;
10352 }
10353
10354 /*
10355 * btrfs_{start,end}_write_no_snapshoting() are similar to
10356 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10357 * data into the page cache through nocow before the subvolume is snapshoted,
10358 * but flush the data into disk after the snapshot creation, or to prevent
10359 * operations while snapshoting is ongoing and that cause the snapshot to be
10360 * inconsistent (writes followed by expanding truncates for example).
10361 */
10362 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10363 {
10364 percpu_counter_dec(&root->subv_writers->counter);
10365 /*
10366 * Make sure counter is updated before we wake up
10367 * waiters.
10368 */
10369 smp_mb();
10370 if (waitqueue_active(&root->subv_writers->wait))
10371 wake_up(&root->subv_writers->wait);
10372 }
10373
10374 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10375 {
10376 if (atomic_read(&root->will_be_snapshoted))
10377 return 0;
10378
10379 percpu_counter_inc(&root->subv_writers->counter);
10380 /*
10381 * Make sure counter is updated before we check for snapshot creation.
10382 */
10383 smp_mb();
10384 if (atomic_read(&root->will_be_snapshoted)) {
10385 btrfs_end_write_no_snapshoting(root);
10386 return 0;
10387 }
10388 return 1;
10389 }