]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 kfree(cache->free_space_ctl);
146 kfree(cache);
147 }
148 }
149
150 /*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group_cache *block_group)
156 {
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188 }
189
190 /*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197 {
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
226 if (ret) {
227 btrfs_get_block_group(ret);
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234 }
235
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237 u64 start, u64 num_bytes)
238 {
239 u64 end = start + num_bytes - 1;
240 set_extent_bits(&fs_info->freed_extents[0],
241 start, end, EXTENT_UPTODATE);
242 set_extent_bits(&fs_info->freed_extents[1],
243 start, end, EXTENT_UPTODATE);
244 return 0;
245 }
246
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 start, end;
251
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
255 clear_extent_bits(&fs_info->freed_extents[0],
256 start, end, EXTENT_UPTODATE);
257 clear_extent_bits(&fs_info->freed_extents[1],
258 start, end, EXTENT_UPTODATE);
259 }
260
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262 struct btrfs_block_group_cache *cache)
263 {
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(fs_info, cache->key.objectid,
273 stripe_len);
274 if (ret)
275 return ret;
276 }
277
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281 bytenr, 0, &logical, &nr, &stripe_len);
282 if (ret)
283 return ret;
284
285 while (nr--) {
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
306 ret = add_excluded_extent(fs_info, start, len);
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
311 }
312
313 kfree(logical);
314 }
315 return 0;
316 }
317
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 refcount_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (refcount_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344 struct btrfs_fs_info *fs_info = block_group->fs_info;
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348 fs_info->nodesize : fs_info->sectorsize;
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359 }
360 #endif
361
362 /*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370 u64 extent_start, extent_end, size, total_added = 0;
371 int ret;
372
373 while (start < end) {
374 ret = find_first_extent_bit(info->pinned_extents, start,
375 &extent_start, &extent_end,
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
378 if (ret)
379 break;
380
381 if (extent_start <= start) {
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
385 total_added += size;
386 ret = btrfs_add_free_space(block_group, start,
387 size);
388 BUG_ON(ret); /* -ENOMEM or logic error */
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
397 total_added += size;
398 ret = btrfs_add_free_space(block_group, start, size);
399 BUG_ON(ret); /* -ENOMEM or logic error */
400 }
401
402 return total_added;
403 }
404
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
410 struct btrfs_path *path;
411 struct extent_buffer *leaf;
412 struct btrfs_key key;
413 u64 total_found = 0;
414 u64 last = 0;
415 u32 nritems;
416 int ret;
417 bool wakeup = true;
418
419 path = btrfs_alloc_path();
420 if (!path)
421 return -ENOMEM;
422
423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424
425 #ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(block_group))
432 wakeup = false;
433 #endif
434 /*
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
439 */
440 path->skip_locking = 1;
441 path->search_commit_root = 1;
442 path->reada = READA_FORWARD;
443
444 key.objectid = last;
445 key.offset = 0;
446 key.type = BTRFS_EXTENT_ITEM_KEY;
447
448 next:
449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450 if (ret < 0)
451 goto out;
452
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
456 while (1) {
457 if (btrfs_fs_closing(fs_info) > 1) {
458 last = (u64)-1;
459 break;
460 }
461
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
467 break;
468
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info->commit_root_sem)) {
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 up_read(&fs_info->commit_root_sem);
475 mutex_unlock(&caching_ctl->mutex);
476 cond_resched();
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
480 }
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
484 goto out;
485 if (ret)
486 break;
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
490 }
491
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
497 if (wakeup)
498 caching_ctl->progress = last;
499 btrfs_release_path(path);
500 goto next;
501 }
502
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
505 continue;
506 }
507
508 if (key.objectid >= block_group->key.objectid +
509 block_group->key.offset)
510 break;
511
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
519 fs_info->nodesize;
520 else
521 last = key.objectid + key.offset;
522
523 if (total_found > CACHING_CTL_WAKE_UP) {
524 total_found = 0;
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
527 }
528 }
529 path->slots[0]++;
530 }
531 ret = 0;
532
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
536 caching_ctl->progress = (u64)-1;
537
538 out:
539 btrfs_free_path(path);
540 return ret;
541 }
542
543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
548 struct btrfs_root *extent_root;
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
554 extent_root = fs_info->extent_root;
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
563
564 spin_lock(&block_group->lock);
565 block_group->caching_ctl = NULL;
566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567 spin_unlock(&block_group->lock);
568
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group)) {
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
580 fragment_free_space(block_group);
581 }
582 #endif
583
584 caching_ctl->progress = (u64)-1;
585
586 up_read(&fs_info->commit_root_sem);
587 free_excluded_extents(fs_info, block_group);
588 mutex_unlock(&caching_ctl->mutex);
589
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
593 btrfs_put_block_group(block_group);
594 }
595
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597 int load_cache_only)
598 {
599 DEFINE_WAIT(wait);
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
602 int ret = 0;
603
604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605 if (!caching_ctl)
606 return -ENOMEM;
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
613 refcount_set(&caching_ctl->count, 1);
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
634 refcount_inc(&ctl->count);
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
648 return 0;
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
654
655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656 mutex_lock(&caching_ctl->mutex);
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
664 caching_ctl->progress = (u64)-1;
665 } else {
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
671 cache->has_caching_ctl = 1;
672 }
673 }
674 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
677 btrfs_should_fragment_free_space(cache)) {
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
687 fragment_free_space(cache);
688 }
689 #endif
690 mutex_unlock(&caching_ctl->mutex);
691
692 wake_up(&caching_ctl->wait);
693 if (ret == 1) {
694 put_caching_control(caching_ctl);
695 free_excluded_extents(fs_info, cache);
696 return 0;
697 }
698 } else {
699 /*
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
709 cache->has_caching_ctl = 1;
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
713 }
714
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
717 return 0;
718 }
719
720 down_write(&fs_info->commit_root_sem);
721 refcount_inc(&caching_ctl->count);
722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723 up_write(&fs_info->commit_root_sem);
724
725 btrfs_get_block_group(cache);
726
727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728
729 return ret;
730 }
731
732 /*
733 * return the block group that starts at or after bytenr
734 */
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738 return block_group_cache_tree_search(info, bytenr, 0);
739 }
740
741 /*
742 * return the block group that contains the given bytenr
743 */
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
747 {
748 return block_group_cache_tree_search(info, bytenr, 1);
749 }
750
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
753 {
754 struct list_head *head = &info->space_info;
755 struct btrfs_space_info *found;
756
757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
761 if (found->flags & flags) {
762 rcu_read_unlock();
763 return found;
764 }
765 }
766 rcu_read_unlock();
767 return NULL;
768 }
769
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
772 {
773 struct btrfs_space_info *space_info;
774 u64 flags;
775
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 else
780 flags = BTRFS_BLOCK_GROUP_METADATA;
781 } else {
782 flags = BTRFS_BLOCK_GROUP_DATA;
783 }
784
785 space_info = __find_space_info(fs_info, flags);
786 BUG_ON(!space_info); /* Logic bug */
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788 }
789
790 /*
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
793 */
794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795 {
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(found, head, list)
801 found->full = 0;
802 rcu_read_unlock();
803 }
804
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
807 {
808 int ret;
809 struct btrfs_key key;
810 struct btrfs_path *path;
811
812 path = btrfs_alloc_path();
813 if (!path)
814 return -ENOMEM;
815
816 key.objectid = start;
817 key.offset = len;
818 key.type = BTRFS_EXTENT_ITEM_KEY;
819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820 btrfs_free_path(path);
821 return ret;
822 }
823
824 /*
825 * helper function to lookup reference count and flags of a tree block.
826 *
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
832 */
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834 struct btrfs_fs_info *fs_info, u64 bytenr,
835 u64 offset, int metadata, u64 *refs, u64 *flags)
836 {
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
843 u32 item_size;
844 u64 num_refs;
845 u64 extent_flags;
846 int ret;
847
848 /*
849 * If we don't have skinny metadata, don't bother doing anything
850 * different
851 */
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
854 metadata = 0;
855 }
856
857 path = btrfs_alloc_path();
858 if (!path)
859 return -ENOMEM;
860
861 if (!trans) {
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
864 }
865
866 search_again:
867 key.objectid = bytenr;
868 key.offset = offset;
869 if (metadata)
870 key.type = BTRFS_METADATA_ITEM_KEY;
871 else
872 key.type = BTRFS_EXTENT_ITEM_KEY;
873
874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
875 if (ret < 0)
876 goto out_free;
877
878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879 if (path->slots[0]) {
880 path->slots[0]--;
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 path->slots[0]);
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
885 key.offset == fs_info->nodesize)
886 ret = 0;
887 }
888 }
889
890 if (ret == 0) {
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
898 } else {
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 #else
908 BUG();
909 #endif
910 }
911 BUG_ON(num_refs == 0);
912 } else {
913 num_refs = 0;
914 extent_flags = 0;
915 ret = 0;
916 }
917
918 if (!trans)
919 goto out;
920
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
924 if (head) {
925 if (!mutex_trylock(&head->mutex)) {
926 refcount_inc(&head->node.refs);
927 spin_unlock(&delayed_refs->lock);
928
929 btrfs_release_path(path);
930
931 /*
932 * Mutex was contended, block until it's released and try
933 * again
934 */
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
938 goto search_again;
939 }
940 spin_lock(&head->lock);
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
943 else
944 BUG_ON(num_refs == 0);
945
946 num_refs += head->node.ref_mod;
947 spin_unlock(&head->lock);
948 mutex_unlock(&head->mutex);
949 }
950 spin_unlock(&delayed_refs->lock);
951 out:
952 WARN_ON(num_refs == 0);
953 if (refs)
954 *refs = num_refs;
955 if (flags)
956 *flags = extent_flags;
957 out_free:
958 btrfs_free_path(path);
959 return ret;
960 }
961
962 /*
963 * Back reference rules. Back refs have three main goals:
964 *
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
968 *
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
971 *
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
975 *
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
986 *
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
993 *
994 * When a tree block is COWed through a tree, there are four cases:
995 *
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
998 *
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1003 *
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1009 *
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1013 *
1014 * Back Reference Key composing:
1015 *
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1019 * of back refs.
1020 *
1021 * File extents can be referenced by:
1022 *
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
1024 * - different files inside a single subvolume
1025 * - different offsets inside a file (bookend extents in file.c)
1026 *
1027 * The extent ref structure for the implicit back refs has fields for:
1028 *
1029 * - Objectid of the subvolume root
1030 * - objectid of the file holding the reference
1031 * - original offset in the file
1032 * - how many bookend extents
1033 *
1034 * The key offset for the implicit back refs is hash of the first
1035 * three fields.
1036 *
1037 * The extent ref structure for the full back refs has field for:
1038 *
1039 * - number of pointers in the tree leaf
1040 *
1041 * The key offset for the implicit back refs is the first byte of
1042 * the tree leaf
1043 *
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
1046 *
1047 * (root_key.objectid, inode objectid, offset in file, 1)
1048 *
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
1051 *
1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1053 *
1054 * Btree extents can be referenced by:
1055 *
1056 * - Different subvolumes
1057 *
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
1062 *
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
1066 */
1067
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070 struct btrfs_fs_info *fs_info,
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
1073 {
1074 struct btrfs_root *root = fs_info->extent_root;
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
1080 struct btrfs_key key;
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1083 u64 refs;
1084 int ret;
1085
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094 if (owner == (u64)-1) {
1095 while (1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1098 if (ret < 0)
1099 return ret;
1100 BUG_ON(ret > 0); /* Corruption */
1101 leaf = path->nodes[0];
1102 }
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1104 path->slots[0]);
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 path->slots[0]++;
1108 continue;
1109 }
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 break;
1114 }
1115 }
1116 btrfs_release_path(path);
1117
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1120
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1124 if (ret < 0)
1125 return ret;
1126 BUG_ON(ret); /* Corruption */
1127
1128 btrfs_extend_item(fs_info, path, new_size);
1129
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 } else {
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 }
1146 btrfs_mark_buffer_dirty(leaf);
1147 return 0;
1148 }
1149 #endif
1150
1151 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152 {
1153 u32 high_crc = ~(u32)0;
1154 u32 low_crc = ~(u32)0;
1155 __le64 lenum;
1156
1157 lenum = cpu_to_le64(root_objectid);
1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1159 lenum = cpu_to_le64(owner);
1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1161 lenum = cpu_to_le64(offset);
1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1163
1164 return ((u64)high_crc << 31) ^ (u64)low_crc;
1165 }
1166
1167 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168 struct btrfs_extent_data_ref *ref)
1169 {
1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171 btrfs_extent_data_ref_objectid(leaf, ref),
1172 btrfs_extent_data_ref_offset(leaf, ref));
1173 }
1174
1175 static int match_extent_data_ref(struct extent_buffer *leaf,
1176 struct btrfs_extent_data_ref *ref,
1177 u64 root_objectid, u64 owner, u64 offset)
1178 {
1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182 return 0;
1183 return 1;
1184 }
1185
1186 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info,
1188 struct btrfs_path *path,
1189 u64 bytenr, u64 parent,
1190 u64 root_objectid,
1191 u64 owner, u64 offset)
1192 {
1193 struct btrfs_root *root = fs_info->extent_root;
1194 struct btrfs_key key;
1195 struct btrfs_extent_data_ref *ref;
1196 struct extent_buffer *leaf;
1197 u32 nritems;
1198 int ret;
1199 int recow;
1200 int err = -ENOENT;
1201
1202 key.objectid = bytenr;
1203 if (parent) {
1204 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 key.offset = parent;
1206 } else {
1207 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 key.offset = hash_extent_data_ref(root_objectid,
1209 owner, offset);
1210 }
1211 again:
1212 recow = 0;
1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214 if (ret < 0) {
1215 err = ret;
1216 goto fail;
1217 }
1218
1219 if (parent) {
1220 if (!ret)
1221 return 0;
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 key.type = BTRFS_EXTENT_REF_V0_KEY;
1224 btrfs_release_path(path);
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0) {
1227 err = ret;
1228 goto fail;
1229 }
1230 if (!ret)
1231 return 0;
1232 #endif
1233 goto fail;
1234 }
1235
1236 leaf = path->nodes[0];
1237 nritems = btrfs_header_nritems(leaf);
1238 while (1) {
1239 if (path->slots[0] >= nritems) {
1240 ret = btrfs_next_leaf(root, path);
1241 if (ret < 0)
1242 err = ret;
1243 if (ret)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 nritems = btrfs_header_nritems(leaf);
1248 recow = 1;
1249 }
1250
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.objectid != bytenr ||
1253 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254 goto fail;
1255
1256 ref = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_extent_data_ref);
1258
1259 if (match_extent_data_ref(leaf, ref, root_objectid,
1260 owner, offset)) {
1261 if (recow) {
1262 btrfs_release_path(path);
1263 goto again;
1264 }
1265 err = 0;
1266 break;
1267 }
1268 path->slots[0]++;
1269 }
1270 fail:
1271 return err;
1272 }
1273
1274 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info,
1276 struct btrfs_path *path,
1277 u64 bytenr, u64 parent,
1278 u64 root_objectid, u64 owner,
1279 u64 offset, int refs_to_add)
1280 {
1281 struct btrfs_root *root = fs_info->extent_root;
1282 struct btrfs_key key;
1283 struct extent_buffer *leaf;
1284 u32 size;
1285 u32 num_refs;
1286 int ret;
1287
1288 key.objectid = bytenr;
1289 if (parent) {
1290 key.type = BTRFS_SHARED_DATA_REF_KEY;
1291 key.offset = parent;
1292 size = sizeof(struct btrfs_shared_data_ref);
1293 } else {
1294 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295 key.offset = hash_extent_data_ref(root_objectid,
1296 owner, offset);
1297 size = sizeof(struct btrfs_extent_data_ref);
1298 }
1299
1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301 if (ret && ret != -EEXIST)
1302 goto fail;
1303
1304 leaf = path->nodes[0];
1305 if (parent) {
1306 struct btrfs_shared_data_ref *ref;
1307 ref = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_shared_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1315 }
1316 } else {
1317 struct btrfs_extent_data_ref *ref;
1318 while (ret == -EEXIST) {
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (match_extent_data_ref(leaf, ref, root_objectid,
1322 owner, offset))
1323 break;
1324 btrfs_release_path(path);
1325 key.offset++;
1326 ret = btrfs_insert_empty_item(trans, root, path, &key,
1327 size);
1328 if (ret && ret != -EEXIST)
1329 goto fail;
1330
1331 leaf = path->nodes[0];
1332 }
1333 ref = btrfs_item_ptr(leaf, path->slots[0],
1334 struct btrfs_extent_data_ref);
1335 if (ret == 0) {
1336 btrfs_set_extent_data_ref_root(leaf, ref,
1337 root_objectid);
1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341 } else {
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343 num_refs += refs_to_add;
1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1345 }
1346 }
1347 btrfs_mark_buffer_dirty(leaf);
1348 ret = 0;
1349 fail:
1350 btrfs_release_path(path);
1351 return ret;
1352 }
1353
1354 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1355 struct btrfs_fs_info *fs_info,
1356 struct btrfs_path *path,
1357 int refs_to_drop, int *last_ref)
1358 {
1359 struct btrfs_key key;
1360 struct btrfs_extent_data_ref *ref1 = NULL;
1361 struct btrfs_shared_data_ref *ref2 = NULL;
1362 struct extent_buffer *leaf;
1363 u32 num_refs = 0;
1364 int ret = 0;
1365
1366 leaf = path->nodes[0];
1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_extent_data_ref);
1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375 struct btrfs_shared_data_ref);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379 struct btrfs_extent_ref_v0 *ref0;
1380 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381 struct btrfs_extent_ref_v0);
1382 num_refs = btrfs_ref_count_v0(leaf, ref0);
1383 #endif
1384 } else {
1385 BUG();
1386 }
1387
1388 BUG_ON(num_refs < refs_to_drop);
1389 num_refs -= refs_to_drop;
1390
1391 if (num_refs == 0) {
1392 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1393 *last_ref = 1;
1394 } else {
1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400 else {
1401 struct btrfs_extent_ref_v0 *ref0;
1402 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_ref_v0);
1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405 }
1406 #endif
1407 btrfs_mark_buffer_dirty(leaf);
1408 }
1409 return ret;
1410 }
1411
1412 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1413 struct btrfs_extent_inline_ref *iref)
1414 {
1415 struct btrfs_key key;
1416 struct extent_buffer *leaf;
1417 struct btrfs_extent_data_ref *ref1;
1418 struct btrfs_shared_data_ref *ref2;
1419 u32 num_refs = 0;
1420
1421 leaf = path->nodes[0];
1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423 if (iref) {
1424 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425 BTRFS_EXTENT_DATA_REF_KEY) {
1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428 } else {
1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431 }
1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_extent_data_ref);
1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_shared_data_ref);
1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442 struct btrfs_extent_ref_v0 *ref0;
1443 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_extent_ref_v0);
1445 num_refs = btrfs_ref_count_v0(leaf, ref0);
1446 #endif
1447 } else {
1448 WARN_ON(1);
1449 }
1450 return num_refs;
1451 }
1452
1453 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1454 struct btrfs_fs_info *fs_info,
1455 struct btrfs_path *path,
1456 u64 bytenr, u64 parent,
1457 u64 root_objectid)
1458 {
1459 struct btrfs_root *root = fs_info->extent_root;
1460 struct btrfs_key key;
1461 int ret;
1462
1463 key.objectid = bytenr;
1464 if (parent) {
1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466 key.offset = parent;
1467 } else {
1468 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469 key.offset = root_objectid;
1470 }
1471
1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473 if (ret > 0)
1474 ret = -ENOENT;
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (ret == -ENOENT && parent) {
1477 btrfs_release_path(path);
1478 key.type = BTRFS_EXTENT_REF_V0_KEY;
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret > 0)
1481 ret = -ENOENT;
1482 }
1483 #endif
1484 return ret;
1485 }
1486
1487 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1488 struct btrfs_fs_info *fs_info,
1489 struct btrfs_path *path,
1490 u64 bytenr, u64 parent,
1491 u64 root_objectid)
1492 {
1493 struct btrfs_key key;
1494 int ret;
1495
1496 key.objectid = bytenr;
1497 if (parent) {
1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499 key.offset = parent;
1500 } else {
1501 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502 key.offset = root_objectid;
1503 }
1504
1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506 path, &key, 0);
1507 btrfs_release_path(path);
1508 return ret;
1509 }
1510
1511 static inline int extent_ref_type(u64 parent, u64 owner)
1512 {
1513 int type;
1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 if (parent > 0)
1516 type = BTRFS_SHARED_BLOCK_REF_KEY;
1517 else
1518 type = BTRFS_TREE_BLOCK_REF_KEY;
1519 } else {
1520 if (parent > 0)
1521 type = BTRFS_SHARED_DATA_REF_KEY;
1522 else
1523 type = BTRFS_EXTENT_DATA_REF_KEY;
1524 }
1525 return type;
1526 }
1527
1528 static int find_next_key(struct btrfs_path *path, int level,
1529 struct btrfs_key *key)
1530
1531 {
1532 for (; level < BTRFS_MAX_LEVEL; level++) {
1533 if (!path->nodes[level])
1534 break;
1535 if (path->slots[level] + 1 >=
1536 btrfs_header_nritems(path->nodes[level]))
1537 continue;
1538 if (level == 0)
1539 btrfs_item_key_to_cpu(path->nodes[level], key,
1540 path->slots[level] + 1);
1541 else
1542 btrfs_node_key_to_cpu(path->nodes[level], key,
1543 path->slots[level] + 1);
1544 return 0;
1545 }
1546 return 1;
1547 }
1548
1549 /*
1550 * look for inline back ref. if back ref is found, *ref_ret is set
1551 * to the address of inline back ref, and 0 is returned.
1552 *
1553 * if back ref isn't found, *ref_ret is set to the address where it
1554 * should be inserted, and -ENOENT is returned.
1555 *
1556 * if insert is true and there are too many inline back refs, the path
1557 * points to the extent item, and -EAGAIN is returned.
1558 *
1559 * NOTE: inline back refs are ordered in the same way that back ref
1560 * items in the tree are ordered.
1561 */
1562 static noinline_for_stack
1563 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 struct btrfs_fs_info *fs_info,
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref **ref_ret,
1567 u64 bytenr, u64 num_bytes,
1568 u64 parent, u64 root_objectid,
1569 u64 owner, u64 offset, int insert)
1570 {
1571 struct btrfs_root *root = fs_info->extent_root;
1572 struct btrfs_key key;
1573 struct extent_buffer *leaf;
1574 struct btrfs_extent_item *ei;
1575 struct btrfs_extent_inline_ref *iref;
1576 u64 flags;
1577 u64 item_size;
1578 unsigned long ptr;
1579 unsigned long end;
1580 int extra_size;
1581 int type;
1582 int want;
1583 int ret;
1584 int err = 0;
1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1586
1587 key.objectid = bytenr;
1588 key.type = BTRFS_EXTENT_ITEM_KEY;
1589 key.offset = num_bytes;
1590
1591 want = extent_ref_type(parent, owner);
1592 if (insert) {
1593 extra_size = btrfs_extent_inline_ref_size(want);
1594 path->keep_locks = 1;
1595 } else
1596 extra_size = -1;
1597
1598 /*
1599 * Owner is our parent level, so we can just add one to get the level
1600 * for the block we are interested in.
1601 */
1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603 key.type = BTRFS_METADATA_ITEM_KEY;
1604 key.offset = owner;
1605 }
1606
1607 again:
1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1609 if (ret < 0) {
1610 err = ret;
1611 goto out;
1612 }
1613
1614 /*
1615 * We may be a newly converted file system which still has the old fat
1616 * extent entries for metadata, so try and see if we have one of those.
1617 */
1618 if (ret > 0 && skinny_metadata) {
1619 skinny_metadata = false;
1620 if (path->slots[0]) {
1621 path->slots[0]--;
1622 btrfs_item_key_to_cpu(path->nodes[0], &key,
1623 path->slots[0]);
1624 if (key.objectid == bytenr &&
1625 key.type == BTRFS_EXTENT_ITEM_KEY &&
1626 key.offset == num_bytes)
1627 ret = 0;
1628 }
1629 if (ret) {
1630 key.objectid = bytenr;
1631 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 key.offset = num_bytes;
1633 btrfs_release_path(path);
1634 goto again;
1635 }
1636 }
1637
1638 if (ret && !insert) {
1639 err = -ENOENT;
1640 goto out;
1641 } else if (WARN_ON(ret)) {
1642 err = -EIO;
1643 goto out;
1644 }
1645
1646 leaf = path->nodes[0];
1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 if (item_size < sizeof(*ei)) {
1650 if (!insert) {
1651 err = -ENOENT;
1652 goto out;
1653 }
1654 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1655 extra_size);
1656 if (ret < 0) {
1657 err = ret;
1658 goto out;
1659 }
1660 leaf = path->nodes[0];
1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662 }
1663 #endif
1664 BUG_ON(item_size < sizeof(*ei));
1665
1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667 flags = btrfs_extent_flags(leaf, ei);
1668
1669 ptr = (unsigned long)(ei + 1);
1670 end = (unsigned long)ei + item_size;
1671
1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1673 ptr += sizeof(struct btrfs_tree_block_info);
1674 BUG_ON(ptr > end);
1675 }
1676
1677 err = -ENOENT;
1678 while (1) {
1679 if (ptr >= end) {
1680 WARN_ON(ptr > end);
1681 break;
1682 }
1683 iref = (struct btrfs_extent_inline_ref *)ptr;
1684 type = btrfs_extent_inline_ref_type(leaf, iref);
1685 if (want < type)
1686 break;
1687 if (want > type) {
1688 ptr += btrfs_extent_inline_ref_size(type);
1689 continue;
1690 }
1691
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693 struct btrfs_extent_data_ref *dref;
1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695 if (match_extent_data_ref(leaf, dref, root_objectid,
1696 owner, offset)) {
1697 err = 0;
1698 break;
1699 }
1700 if (hash_extent_data_ref_item(leaf, dref) <
1701 hash_extent_data_ref(root_objectid, owner, offset))
1702 break;
1703 } else {
1704 u64 ref_offset;
1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706 if (parent > 0) {
1707 if (parent == ref_offset) {
1708 err = 0;
1709 break;
1710 }
1711 if (ref_offset < parent)
1712 break;
1713 } else {
1714 if (root_objectid == ref_offset) {
1715 err = 0;
1716 break;
1717 }
1718 if (ref_offset < root_objectid)
1719 break;
1720 }
1721 }
1722 ptr += btrfs_extent_inline_ref_size(type);
1723 }
1724 if (err == -ENOENT && insert) {
1725 if (item_size + extra_size >=
1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727 err = -EAGAIN;
1728 goto out;
1729 }
1730 /*
1731 * To add new inline back ref, we have to make sure
1732 * there is no corresponding back ref item.
1733 * For simplicity, we just do not add new inline back
1734 * ref if there is any kind of item for this block
1735 */
1736 if (find_next_key(path, 0, &key) == 0 &&
1737 key.objectid == bytenr &&
1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1739 err = -EAGAIN;
1740 goto out;
1741 }
1742 }
1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744 out:
1745 if (insert) {
1746 path->keep_locks = 0;
1747 btrfs_unlock_up_safe(path, 1);
1748 }
1749 return err;
1750 }
1751
1752 /*
1753 * helper to add new inline back ref
1754 */
1755 static noinline_for_stack
1756 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 u64 parent, u64 root_objectid,
1760 u64 owner, u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 struct extent_buffer *leaf;
1764 struct btrfs_extent_item *ei;
1765 unsigned long ptr;
1766 unsigned long end;
1767 unsigned long item_offset;
1768 u64 refs;
1769 int size;
1770 int type;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 item_offset = (unsigned long)iref - (unsigned long)ei;
1775
1776 type = extent_ref_type(parent, owner);
1777 size = btrfs_extent_inline_ref_size(type);
1778
1779 btrfs_extend_item(fs_info, path, size);
1780
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 refs += refs_to_add;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 ptr = (unsigned long)ei + item_offset;
1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790 if (ptr < end - size)
1791 memmove_extent_buffer(leaf, ptr + size, ptr,
1792 end - size - ptr);
1793
1794 iref = (struct btrfs_extent_inline_ref *)ptr;
1795 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 struct btrfs_extent_data_ref *dref;
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804 struct btrfs_shared_data_ref *sref;
1805 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810 } else {
1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1817 struct btrfs_fs_info *fs_info,
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref **ref_ret,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner, u64 offset)
1822 {
1823 int ret;
1824
1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1826 bytenr, num_bytes, parent,
1827 root_objectid, owner, offset, 0);
1828 if (ret != -ENOENT)
1829 return ret;
1830
1831 btrfs_release_path(path);
1832 *ref_ret = NULL;
1833
1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836 parent, root_objectid);
1837 } else {
1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839 parent, root_objectid, owner,
1840 offset);
1841 }
1842 return ret;
1843 }
1844
1845 /*
1846 * helper to update/remove inline back ref
1847 */
1848 static noinline_for_stack
1849 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1850 struct btrfs_path *path,
1851 struct btrfs_extent_inline_ref *iref,
1852 int refs_to_mod,
1853 struct btrfs_delayed_extent_op *extent_op,
1854 int *last_ref)
1855 {
1856 struct extent_buffer *leaf;
1857 struct btrfs_extent_item *ei;
1858 struct btrfs_extent_data_ref *dref = NULL;
1859 struct btrfs_shared_data_ref *sref = NULL;
1860 unsigned long ptr;
1861 unsigned long end;
1862 u32 item_size;
1863 int size;
1864 int type;
1865 u64 refs;
1866
1867 leaf = path->nodes[0];
1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, ei);
1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871 refs += refs_to_mod;
1872 btrfs_set_extent_refs(leaf, ei, refs);
1873 if (extent_op)
1874 __run_delayed_extent_op(extent_op, leaf, ei);
1875
1876 type = btrfs_extent_inline_ref_type(leaf, iref);
1877
1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880 refs = btrfs_extent_data_ref_count(leaf, dref);
1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883 refs = btrfs_shared_data_ref_count(leaf, sref);
1884 } else {
1885 refs = 1;
1886 BUG_ON(refs_to_mod != -1);
1887 }
1888
1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890 refs += refs_to_mod;
1891
1892 if (refs > 0) {
1893 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895 else
1896 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897 } else {
1898 *last_ref = 1;
1899 size = btrfs_extent_inline_ref_size(type);
1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901 ptr = (unsigned long)iref;
1902 end = (unsigned long)ei + item_size;
1903 if (ptr + size < end)
1904 memmove_extent_buffer(leaf, ptr, ptr + size,
1905 end - ptr - size);
1906 item_size -= size;
1907 btrfs_truncate_item(fs_info, path, item_size, 1);
1908 }
1909 btrfs_mark_buffer_dirty(leaf);
1910 }
1911
1912 static noinline_for_stack
1913 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1914 struct btrfs_fs_info *fs_info,
1915 struct btrfs_path *path,
1916 u64 bytenr, u64 num_bytes, u64 parent,
1917 u64 root_objectid, u64 owner,
1918 u64 offset, int refs_to_add,
1919 struct btrfs_delayed_extent_op *extent_op)
1920 {
1921 struct btrfs_extent_inline_ref *iref;
1922 int ret;
1923
1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1925 bytenr, num_bytes, parent,
1926 root_objectid, owner, offset, 1);
1927 if (ret == 0) {
1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1929 update_inline_extent_backref(fs_info, path, iref,
1930 refs_to_add, extent_op, NULL);
1931 } else if (ret == -ENOENT) {
1932 setup_inline_extent_backref(fs_info, path, iref, parent,
1933 root_objectid, owner, offset,
1934 refs_to_add, extent_op);
1935 ret = 0;
1936 }
1937 return ret;
1938 }
1939
1940 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1941 struct btrfs_fs_info *fs_info,
1942 struct btrfs_path *path,
1943 u64 bytenr, u64 parent, u64 root_objectid,
1944 u64 owner, u64 offset, int refs_to_add)
1945 {
1946 int ret;
1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948 BUG_ON(refs_to_add != 1);
1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1950 parent, root_objectid);
1951 } else {
1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1953 parent, root_objectid,
1954 owner, offset, refs_to_add);
1955 }
1956 return ret;
1957 }
1958
1959 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1960 struct btrfs_fs_info *fs_info,
1961 struct btrfs_path *path,
1962 struct btrfs_extent_inline_ref *iref,
1963 int refs_to_drop, int is_data, int *last_ref)
1964 {
1965 int ret = 0;
1966
1967 BUG_ON(!is_data && refs_to_drop != 1);
1968 if (iref) {
1969 update_inline_extent_backref(fs_info, path, iref,
1970 -refs_to_drop, NULL, last_ref);
1971 } else if (is_data) {
1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1973 last_ref);
1974 } else {
1975 *last_ref = 1;
1976 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1977 }
1978 return ret;
1979 }
1980
1981 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1982 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983 u64 *discarded_bytes)
1984 {
1985 int j, ret = 0;
1986 u64 bytes_left, end;
1987 u64 aligned_start = ALIGN(start, 1 << 9);
1988
1989 if (WARN_ON(start != aligned_start)) {
1990 len -= aligned_start - start;
1991 len = round_down(len, 1 << 9);
1992 start = aligned_start;
1993 }
1994
1995 *discarded_bytes = 0;
1996
1997 if (!len)
1998 return 0;
1999
2000 end = start + len;
2001 bytes_left = len;
2002
2003 /* Skip any superblocks on this device. */
2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005 u64 sb_start = btrfs_sb_offset(j);
2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007 u64 size = sb_start - start;
2008
2009 if (!in_range(sb_start, start, bytes_left) &&
2010 !in_range(sb_end, start, bytes_left) &&
2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012 continue;
2013
2014 /*
2015 * Superblock spans beginning of range. Adjust start and
2016 * try again.
2017 */
2018 if (sb_start <= start) {
2019 start += sb_end - start;
2020 if (start > end) {
2021 bytes_left = 0;
2022 break;
2023 }
2024 bytes_left = end - start;
2025 continue;
2026 }
2027
2028 if (size) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += size;
2033 else if (ret != -EOPNOTSUPP)
2034 return ret;
2035 }
2036
2037 start = sb_end;
2038 if (start > end) {
2039 bytes_left = 0;
2040 break;
2041 }
2042 bytes_left = end - start;
2043 }
2044
2045 if (bytes_left) {
2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2047 GFP_NOFS, 0);
2048 if (!ret)
2049 *discarded_bytes += bytes_left;
2050 }
2051 return ret;
2052 }
2053
2054 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2055 u64 num_bytes, u64 *actual_bytes)
2056 {
2057 int ret;
2058 u64 discarded_bytes = 0;
2059 struct btrfs_bio *bbio = NULL;
2060
2061
2062 /*
2063 * Avoid races with device replace and make sure our bbio has devices
2064 * associated to its stripes that don't go away while we are discarding.
2065 */
2066 btrfs_bio_counter_inc_blocked(fs_info);
2067 /* Tell the block device(s) that the sectors can be discarded */
2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069 &bbio, 0);
2070 /* Error condition is -ENOMEM */
2071 if (!ret) {
2072 struct btrfs_bio_stripe *stripe = bbio->stripes;
2073 int i;
2074
2075
2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2077 u64 bytes;
2078 if (!stripe->dev->can_discard)
2079 continue;
2080
2081 ret = btrfs_issue_discard(stripe->dev->bdev,
2082 stripe->physical,
2083 stripe->length,
2084 &bytes);
2085 if (!ret)
2086 discarded_bytes += bytes;
2087 else if (ret != -EOPNOTSUPP)
2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2089
2090 /*
2091 * Just in case we get back EOPNOTSUPP for some reason,
2092 * just ignore the return value so we don't screw up
2093 * people calling discard_extent.
2094 */
2095 ret = 0;
2096 }
2097 btrfs_put_bbio(bbio);
2098 }
2099 btrfs_bio_counter_dec(fs_info);
2100
2101 if (actual_bytes)
2102 *actual_bytes = discarded_bytes;
2103
2104
2105 if (ret == -EOPNOTSUPP)
2106 ret = 0;
2107 return ret;
2108 }
2109
2110 /* Can return -ENOMEM */
2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2112 struct btrfs_fs_info *fs_info,
2113 u64 bytenr, u64 num_bytes, u64 parent,
2114 u64 root_objectid, u64 owner, u64 offset)
2115 {
2116 int ret;
2117
2118 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2119 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2120
2121 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2122 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2123 num_bytes,
2124 parent, root_objectid, (int)owner,
2125 BTRFS_ADD_DELAYED_REF, NULL);
2126 } else {
2127 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2128 num_bytes, parent, root_objectid,
2129 owner, offset, 0,
2130 BTRFS_ADD_DELAYED_REF);
2131 }
2132 return ret;
2133 }
2134
2135 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2136 struct btrfs_fs_info *fs_info,
2137 struct btrfs_delayed_ref_node *node,
2138 u64 parent, u64 root_objectid,
2139 u64 owner, u64 offset, int refs_to_add,
2140 struct btrfs_delayed_extent_op *extent_op)
2141 {
2142 struct btrfs_path *path;
2143 struct extent_buffer *leaf;
2144 struct btrfs_extent_item *item;
2145 struct btrfs_key key;
2146 u64 bytenr = node->bytenr;
2147 u64 num_bytes = node->num_bytes;
2148 u64 refs;
2149 int ret;
2150
2151 path = btrfs_alloc_path();
2152 if (!path)
2153 return -ENOMEM;
2154
2155 path->reada = READA_FORWARD;
2156 path->leave_spinning = 1;
2157 /* this will setup the path even if it fails to insert the back ref */
2158 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2159 num_bytes, parent, root_objectid,
2160 owner, offset,
2161 refs_to_add, extent_op);
2162 if ((ret < 0 && ret != -EAGAIN) || !ret)
2163 goto out;
2164
2165 /*
2166 * Ok we had -EAGAIN which means we didn't have space to insert and
2167 * inline extent ref, so just update the reference count and add a
2168 * normal backref.
2169 */
2170 leaf = path->nodes[0];
2171 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2172 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2173 refs = btrfs_extent_refs(leaf, item);
2174 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2175 if (extent_op)
2176 __run_delayed_extent_op(extent_op, leaf, item);
2177
2178 btrfs_mark_buffer_dirty(leaf);
2179 btrfs_release_path(path);
2180
2181 path->reada = READA_FORWARD;
2182 path->leave_spinning = 1;
2183 /* now insert the actual backref */
2184 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2185 root_objectid, owner, offset, refs_to_add);
2186 if (ret)
2187 btrfs_abort_transaction(trans, ret);
2188 out:
2189 btrfs_free_path(path);
2190 return ret;
2191 }
2192
2193 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2194 struct btrfs_fs_info *fs_info,
2195 struct btrfs_delayed_ref_node *node,
2196 struct btrfs_delayed_extent_op *extent_op,
2197 int insert_reserved)
2198 {
2199 int ret = 0;
2200 struct btrfs_delayed_data_ref *ref;
2201 struct btrfs_key ins;
2202 u64 parent = 0;
2203 u64 ref_root = 0;
2204 u64 flags = 0;
2205
2206 ins.objectid = node->bytenr;
2207 ins.offset = node->num_bytes;
2208 ins.type = BTRFS_EXTENT_ITEM_KEY;
2209
2210 ref = btrfs_delayed_node_to_data_ref(node);
2211 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2212
2213 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2214 parent = ref->parent;
2215 ref_root = ref->root;
2216
2217 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2218 if (extent_op)
2219 flags |= extent_op->flags_to_set;
2220 ret = alloc_reserved_file_extent(trans, fs_info,
2221 parent, ref_root, flags,
2222 ref->objectid, ref->offset,
2223 &ins, node->ref_mod);
2224 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2225 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2226 ref_root, ref->objectid,
2227 ref->offset, node->ref_mod,
2228 extent_op);
2229 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2230 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2231 ref_root, ref->objectid,
2232 ref->offset, node->ref_mod,
2233 extent_op);
2234 } else {
2235 BUG();
2236 }
2237 return ret;
2238 }
2239
2240 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2241 struct extent_buffer *leaf,
2242 struct btrfs_extent_item *ei)
2243 {
2244 u64 flags = btrfs_extent_flags(leaf, ei);
2245 if (extent_op->update_flags) {
2246 flags |= extent_op->flags_to_set;
2247 btrfs_set_extent_flags(leaf, ei, flags);
2248 }
2249
2250 if (extent_op->update_key) {
2251 struct btrfs_tree_block_info *bi;
2252 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2253 bi = (struct btrfs_tree_block_info *)(ei + 1);
2254 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2255 }
2256 }
2257
2258 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2259 struct btrfs_fs_info *fs_info,
2260 struct btrfs_delayed_ref_node *node,
2261 struct btrfs_delayed_extent_op *extent_op)
2262 {
2263 struct btrfs_key key;
2264 struct btrfs_path *path;
2265 struct btrfs_extent_item *ei;
2266 struct extent_buffer *leaf;
2267 u32 item_size;
2268 int ret;
2269 int err = 0;
2270 int metadata = !extent_op->is_data;
2271
2272 if (trans->aborted)
2273 return 0;
2274
2275 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2276 metadata = 0;
2277
2278 path = btrfs_alloc_path();
2279 if (!path)
2280 return -ENOMEM;
2281
2282 key.objectid = node->bytenr;
2283
2284 if (metadata) {
2285 key.type = BTRFS_METADATA_ITEM_KEY;
2286 key.offset = extent_op->level;
2287 } else {
2288 key.type = BTRFS_EXTENT_ITEM_KEY;
2289 key.offset = node->num_bytes;
2290 }
2291
2292 again:
2293 path->reada = READA_FORWARD;
2294 path->leave_spinning = 1;
2295 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2296 if (ret < 0) {
2297 err = ret;
2298 goto out;
2299 }
2300 if (ret > 0) {
2301 if (metadata) {
2302 if (path->slots[0] > 0) {
2303 path->slots[0]--;
2304 btrfs_item_key_to_cpu(path->nodes[0], &key,
2305 path->slots[0]);
2306 if (key.objectid == node->bytenr &&
2307 key.type == BTRFS_EXTENT_ITEM_KEY &&
2308 key.offset == node->num_bytes)
2309 ret = 0;
2310 }
2311 if (ret > 0) {
2312 btrfs_release_path(path);
2313 metadata = 0;
2314
2315 key.objectid = node->bytenr;
2316 key.offset = node->num_bytes;
2317 key.type = BTRFS_EXTENT_ITEM_KEY;
2318 goto again;
2319 }
2320 } else {
2321 err = -EIO;
2322 goto out;
2323 }
2324 }
2325
2326 leaf = path->nodes[0];
2327 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2328 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2329 if (item_size < sizeof(*ei)) {
2330 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2331 if (ret < 0) {
2332 err = ret;
2333 goto out;
2334 }
2335 leaf = path->nodes[0];
2336 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2337 }
2338 #endif
2339 BUG_ON(item_size < sizeof(*ei));
2340 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2341 __run_delayed_extent_op(extent_op, leaf, ei);
2342
2343 btrfs_mark_buffer_dirty(leaf);
2344 out:
2345 btrfs_free_path(path);
2346 return err;
2347 }
2348
2349 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2350 struct btrfs_fs_info *fs_info,
2351 struct btrfs_delayed_ref_node *node,
2352 struct btrfs_delayed_extent_op *extent_op,
2353 int insert_reserved)
2354 {
2355 int ret = 0;
2356 struct btrfs_delayed_tree_ref *ref;
2357 struct btrfs_key ins;
2358 u64 parent = 0;
2359 u64 ref_root = 0;
2360 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2361
2362 ref = btrfs_delayed_node_to_tree_ref(node);
2363 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2364
2365 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2366 parent = ref->parent;
2367 ref_root = ref->root;
2368
2369 ins.objectid = node->bytenr;
2370 if (skinny_metadata) {
2371 ins.offset = ref->level;
2372 ins.type = BTRFS_METADATA_ITEM_KEY;
2373 } else {
2374 ins.offset = node->num_bytes;
2375 ins.type = BTRFS_EXTENT_ITEM_KEY;
2376 }
2377
2378 if (node->ref_mod != 1) {
2379 btrfs_err(fs_info,
2380 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2381 node->bytenr, node->ref_mod, node->action, ref_root,
2382 parent);
2383 return -EIO;
2384 }
2385 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2386 BUG_ON(!extent_op || !extent_op->update_flags);
2387 ret = alloc_reserved_tree_block(trans, fs_info,
2388 parent, ref_root,
2389 extent_op->flags_to_set,
2390 &extent_op->key,
2391 ref->level, &ins);
2392 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2393 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2394 parent, ref_root,
2395 ref->level, 0, 1,
2396 extent_op);
2397 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2398 ret = __btrfs_free_extent(trans, fs_info, node,
2399 parent, ref_root,
2400 ref->level, 0, 1, extent_op);
2401 } else {
2402 BUG();
2403 }
2404 return ret;
2405 }
2406
2407 /* helper function to actually process a single delayed ref entry */
2408 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2409 struct btrfs_fs_info *fs_info,
2410 struct btrfs_delayed_ref_node *node,
2411 struct btrfs_delayed_extent_op *extent_op,
2412 int insert_reserved)
2413 {
2414 int ret = 0;
2415
2416 if (trans->aborted) {
2417 if (insert_reserved)
2418 btrfs_pin_extent(fs_info, node->bytenr,
2419 node->num_bytes, 1);
2420 return 0;
2421 }
2422
2423 if (btrfs_delayed_ref_is_head(node)) {
2424 struct btrfs_delayed_ref_head *head;
2425 /*
2426 * we've hit the end of the chain and we were supposed
2427 * to insert this extent into the tree. But, it got
2428 * deleted before we ever needed to insert it, so all
2429 * we have to do is clean up the accounting
2430 */
2431 BUG_ON(extent_op);
2432 head = btrfs_delayed_node_to_head(node);
2433 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2434
2435 if (insert_reserved) {
2436 btrfs_pin_extent(fs_info, node->bytenr,
2437 node->num_bytes, 1);
2438 if (head->is_data) {
2439 ret = btrfs_del_csums(trans, fs_info,
2440 node->bytenr,
2441 node->num_bytes);
2442 }
2443 }
2444
2445 /* Also free its reserved qgroup space */
2446 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2447 head->qgroup_reserved);
2448 return ret;
2449 }
2450
2451 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2452 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2453 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2454 insert_reserved);
2455 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2456 node->type == BTRFS_SHARED_DATA_REF_KEY)
2457 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2458 insert_reserved);
2459 else
2460 BUG();
2461 return ret;
2462 }
2463
2464 static inline struct btrfs_delayed_ref_node *
2465 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2466 {
2467 struct btrfs_delayed_ref_node *ref;
2468
2469 if (list_empty(&head->ref_list))
2470 return NULL;
2471
2472 /*
2473 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2474 * This is to prevent a ref count from going down to zero, which deletes
2475 * the extent item from the extent tree, when there still are references
2476 * to add, which would fail because they would not find the extent item.
2477 */
2478 if (!list_empty(&head->ref_add_list))
2479 return list_first_entry(&head->ref_add_list,
2480 struct btrfs_delayed_ref_node, add_list);
2481
2482 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2483 list);
2484 ASSERT(list_empty(&ref->add_list));
2485 return ref;
2486 }
2487
2488 /*
2489 * Returns 0 on success or if called with an already aborted transaction.
2490 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2491 */
2492 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2493 struct btrfs_fs_info *fs_info,
2494 unsigned long nr)
2495 {
2496 struct btrfs_delayed_ref_root *delayed_refs;
2497 struct btrfs_delayed_ref_node *ref;
2498 struct btrfs_delayed_ref_head *locked_ref = NULL;
2499 struct btrfs_delayed_extent_op *extent_op;
2500 ktime_t start = ktime_get();
2501 int ret;
2502 unsigned long count = 0;
2503 unsigned long actual_count = 0;
2504 int must_insert_reserved = 0;
2505
2506 delayed_refs = &trans->transaction->delayed_refs;
2507 while (1) {
2508 if (!locked_ref) {
2509 if (count >= nr)
2510 break;
2511
2512 spin_lock(&delayed_refs->lock);
2513 locked_ref = btrfs_select_ref_head(trans);
2514 if (!locked_ref) {
2515 spin_unlock(&delayed_refs->lock);
2516 break;
2517 }
2518
2519 /* grab the lock that says we are going to process
2520 * all the refs for this head */
2521 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2522 spin_unlock(&delayed_refs->lock);
2523 /*
2524 * we may have dropped the spin lock to get the head
2525 * mutex lock, and that might have given someone else
2526 * time to free the head. If that's true, it has been
2527 * removed from our list and we can move on.
2528 */
2529 if (ret == -EAGAIN) {
2530 locked_ref = NULL;
2531 count++;
2532 continue;
2533 }
2534 }
2535
2536 /*
2537 * We need to try and merge add/drops of the same ref since we
2538 * can run into issues with relocate dropping the implicit ref
2539 * and then it being added back again before the drop can
2540 * finish. If we merged anything we need to re-loop so we can
2541 * get a good ref.
2542 * Or we can get node references of the same type that weren't
2543 * merged when created due to bumps in the tree mod seq, and
2544 * we need to merge them to prevent adding an inline extent
2545 * backref before dropping it (triggering a BUG_ON at
2546 * insert_inline_extent_backref()).
2547 */
2548 spin_lock(&locked_ref->lock);
2549 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2550 locked_ref);
2551
2552 /*
2553 * locked_ref is the head node, so we have to go one
2554 * node back for any delayed ref updates
2555 */
2556 ref = select_delayed_ref(locked_ref);
2557
2558 if (ref && ref->seq &&
2559 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2560 spin_unlock(&locked_ref->lock);
2561 spin_lock(&delayed_refs->lock);
2562 locked_ref->processing = 0;
2563 delayed_refs->num_heads_ready++;
2564 spin_unlock(&delayed_refs->lock);
2565 btrfs_delayed_ref_unlock(locked_ref);
2566 locked_ref = NULL;
2567 cond_resched();
2568 count++;
2569 continue;
2570 }
2571
2572 /*
2573 * record the must insert reserved flag before we
2574 * drop the spin lock.
2575 */
2576 must_insert_reserved = locked_ref->must_insert_reserved;
2577 locked_ref->must_insert_reserved = 0;
2578
2579 extent_op = locked_ref->extent_op;
2580 locked_ref->extent_op = NULL;
2581
2582 if (!ref) {
2583
2584
2585 /* All delayed refs have been processed, Go ahead
2586 * and send the head node to run_one_delayed_ref,
2587 * so that any accounting fixes can happen
2588 */
2589 ref = &locked_ref->node;
2590
2591 if (extent_op && must_insert_reserved) {
2592 btrfs_free_delayed_extent_op(extent_op);
2593 extent_op = NULL;
2594 }
2595
2596 if (extent_op) {
2597 spin_unlock(&locked_ref->lock);
2598 ret = run_delayed_extent_op(trans, fs_info,
2599 ref, extent_op);
2600 btrfs_free_delayed_extent_op(extent_op);
2601
2602 if (ret) {
2603 /*
2604 * Need to reset must_insert_reserved if
2605 * there was an error so the abort stuff
2606 * can cleanup the reserved space
2607 * properly.
2608 */
2609 if (must_insert_reserved)
2610 locked_ref->must_insert_reserved = 1;
2611 spin_lock(&delayed_refs->lock);
2612 locked_ref->processing = 0;
2613 delayed_refs->num_heads_ready++;
2614 spin_unlock(&delayed_refs->lock);
2615 btrfs_debug(fs_info,
2616 "run_delayed_extent_op returned %d",
2617 ret);
2618 btrfs_delayed_ref_unlock(locked_ref);
2619 return ret;
2620 }
2621 continue;
2622 }
2623
2624 /*
2625 * Need to drop our head ref lock and re-acquire the
2626 * delayed ref lock and then re-check to make sure
2627 * nobody got added.
2628 */
2629 spin_unlock(&locked_ref->lock);
2630 spin_lock(&delayed_refs->lock);
2631 spin_lock(&locked_ref->lock);
2632 if (!list_empty(&locked_ref->ref_list) ||
2633 locked_ref->extent_op) {
2634 spin_unlock(&locked_ref->lock);
2635 spin_unlock(&delayed_refs->lock);
2636 continue;
2637 }
2638 ref->in_tree = 0;
2639 delayed_refs->num_heads--;
2640 rb_erase(&locked_ref->href_node,
2641 &delayed_refs->href_root);
2642 spin_unlock(&delayed_refs->lock);
2643 } else {
2644 actual_count++;
2645 ref->in_tree = 0;
2646 list_del(&ref->list);
2647 if (!list_empty(&ref->add_list))
2648 list_del(&ref->add_list);
2649 }
2650 atomic_dec(&delayed_refs->num_entries);
2651
2652 if (!btrfs_delayed_ref_is_head(ref)) {
2653 /*
2654 * when we play the delayed ref, also correct the
2655 * ref_mod on head
2656 */
2657 switch (ref->action) {
2658 case BTRFS_ADD_DELAYED_REF:
2659 case BTRFS_ADD_DELAYED_EXTENT:
2660 locked_ref->node.ref_mod -= ref->ref_mod;
2661 break;
2662 case BTRFS_DROP_DELAYED_REF:
2663 locked_ref->node.ref_mod += ref->ref_mod;
2664 break;
2665 default:
2666 WARN_ON(1);
2667 }
2668 }
2669 spin_unlock(&locked_ref->lock);
2670
2671 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2672 must_insert_reserved);
2673
2674 btrfs_free_delayed_extent_op(extent_op);
2675 if (ret) {
2676 spin_lock(&delayed_refs->lock);
2677 locked_ref->processing = 0;
2678 delayed_refs->num_heads_ready++;
2679 spin_unlock(&delayed_refs->lock);
2680 btrfs_delayed_ref_unlock(locked_ref);
2681 btrfs_put_delayed_ref(ref);
2682 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2683 ret);
2684 return ret;
2685 }
2686
2687 /*
2688 * If this node is a head, that means all the refs in this head
2689 * have been dealt with, and we will pick the next head to deal
2690 * with, so we must unlock the head and drop it from the cluster
2691 * list before we release it.
2692 */
2693 if (btrfs_delayed_ref_is_head(ref)) {
2694 if (locked_ref->is_data &&
2695 locked_ref->total_ref_mod < 0) {
2696 spin_lock(&delayed_refs->lock);
2697 delayed_refs->pending_csums -= ref->num_bytes;
2698 spin_unlock(&delayed_refs->lock);
2699 }
2700 btrfs_delayed_ref_unlock(locked_ref);
2701 locked_ref = NULL;
2702 }
2703 btrfs_put_delayed_ref(ref);
2704 count++;
2705 cond_resched();
2706 }
2707
2708 /*
2709 * We don't want to include ref heads since we can have empty ref heads
2710 * and those will drastically skew our runtime down since we just do
2711 * accounting, no actual extent tree updates.
2712 */
2713 if (actual_count > 0) {
2714 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2715 u64 avg;
2716
2717 /*
2718 * We weigh the current average higher than our current runtime
2719 * to avoid large swings in the average.
2720 */
2721 spin_lock(&delayed_refs->lock);
2722 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2723 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2724 spin_unlock(&delayed_refs->lock);
2725 }
2726 return 0;
2727 }
2728
2729 #ifdef SCRAMBLE_DELAYED_REFS
2730 /*
2731 * Normally delayed refs get processed in ascending bytenr order. This
2732 * correlates in most cases to the order added. To expose dependencies on this
2733 * order, we start to process the tree in the middle instead of the beginning
2734 */
2735 static u64 find_middle(struct rb_root *root)
2736 {
2737 struct rb_node *n = root->rb_node;
2738 struct btrfs_delayed_ref_node *entry;
2739 int alt = 1;
2740 u64 middle;
2741 u64 first = 0, last = 0;
2742
2743 n = rb_first(root);
2744 if (n) {
2745 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2746 first = entry->bytenr;
2747 }
2748 n = rb_last(root);
2749 if (n) {
2750 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2751 last = entry->bytenr;
2752 }
2753 n = root->rb_node;
2754
2755 while (n) {
2756 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2757 WARN_ON(!entry->in_tree);
2758
2759 middle = entry->bytenr;
2760
2761 if (alt)
2762 n = n->rb_left;
2763 else
2764 n = n->rb_right;
2765
2766 alt = 1 - alt;
2767 }
2768 return middle;
2769 }
2770 #endif
2771
2772 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2773 {
2774 u64 num_bytes;
2775
2776 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2777 sizeof(struct btrfs_extent_inline_ref));
2778 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2779 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2780
2781 /*
2782 * We don't ever fill up leaves all the way so multiply by 2 just to be
2783 * closer to what we're really going to want to use.
2784 */
2785 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2786 }
2787
2788 /*
2789 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2790 * would require to store the csums for that many bytes.
2791 */
2792 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2793 {
2794 u64 csum_size;
2795 u64 num_csums_per_leaf;
2796 u64 num_csums;
2797
2798 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2799 num_csums_per_leaf = div64_u64(csum_size,
2800 (u64)btrfs_super_csum_size(fs_info->super_copy));
2801 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2802 num_csums += num_csums_per_leaf - 1;
2803 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2804 return num_csums;
2805 }
2806
2807 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2808 struct btrfs_fs_info *fs_info)
2809 {
2810 struct btrfs_block_rsv *global_rsv;
2811 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2812 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2813 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2814 u64 num_bytes, num_dirty_bgs_bytes;
2815 int ret = 0;
2816
2817 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2818 num_heads = heads_to_leaves(fs_info, num_heads);
2819 if (num_heads > 1)
2820 num_bytes += (num_heads - 1) * fs_info->nodesize;
2821 num_bytes <<= 1;
2822 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2823 fs_info->nodesize;
2824 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2825 num_dirty_bgs);
2826 global_rsv = &fs_info->global_block_rsv;
2827
2828 /*
2829 * If we can't allocate any more chunks lets make sure we have _lots_ of
2830 * wiggle room since running delayed refs can create more delayed refs.
2831 */
2832 if (global_rsv->space_info->full) {
2833 num_dirty_bgs_bytes <<= 1;
2834 num_bytes <<= 1;
2835 }
2836
2837 spin_lock(&global_rsv->lock);
2838 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2839 ret = 1;
2840 spin_unlock(&global_rsv->lock);
2841 return ret;
2842 }
2843
2844 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2845 struct btrfs_fs_info *fs_info)
2846 {
2847 u64 num_entries =
2848 atomic_read(&trans->transaction->delayed_refs.num_entries);
2849 u64 avg_runtime;
2850 u64 val;
2851
2852 smp_mb();
2853 avg_runtime = fs_info->avg_delayed_ref_runtime;
2854 val = num_entries * avg_runtime;
2855 if (val >= NSEC_PER_SEC)
2856 return 1;
2857 if (val >= NSEC_PER_SEC / 2)
2858 return 2;
2859
2860 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2861 }
2862
2863 struct async_delayed_refs {
2864 struct btrfs_root *root;
2865 u64 transid;
2866 int count;
2867 int error;
2868 int sync;
2869 struct completion wait;
2870 struct btrfs_work work;
2871 };
2872
2873 static inline struct async_delayed_refs *
2874 to_async_delayed_refs(struct btrfs_work *work)
2875 {
2876 return container_of(work, struct async_delayed_refs, work);
2877 }
2878
2879 static void delayed_ref_async_start(struct btrfs_work *work)
2880 {
2881 struct async_delayed_refs *async = to_async_delayed_refs(work);
2882 struct btrfs_trans_handle *trans;
2883 struct btrfs_fs_info *fs_info = async->root->fs_info;
2884 int ret;
2885
2886 /* if the commit is already started, we don't need to wait here */
2887 if (btrfs_transaction_blocked(fs_info))
2888 goto done;
2889
2890 trans = btrfs_join_transaction(async->root);
2891 if (IS_ERR(trans)) {
2892 async->error = PTR_ERR(trans);
2893 goto done;
2894 }
2895
2896 /*
2897 * trans->sync means that when we call end_transaction, we won't
2898 * wait on delayed refs
2899 */
2900 trans->sync = true;
2901
2902 /* Don't bother flushing if we got into a different transaction */
2903 if (trans->transid > async->transid)
2904 goto end;
2905
2906 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2907 if (ret)
2908 async->error = ret;
2909 end:
2910 ret = btrfs_end_transaction(trans);
2911 if (ret && !async->error)
2912 async->error = ret;
2913 done:
2914 if (async->sync)
2915 complete(&async->wait);
2916 else
2917 kfree(async);
2918 }
2919
2920 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2921 unsigned long count, u64 transid, int wait)
2922 {
2923 struct async_delayed_refs *async;
2924 int ret;
2925
2926 async = kmalloc(sizeof(*async), GFP_NOFS);
2927 if (!async)
2928 return -ENOMEM;
2929
2930 async->root = fs_info->tree_root;
2931 async->count = count;
2932 async->error = 0;
2933 async->transid = transid;
2934 if (wait)
2935 async->sync = 1;
2936 else
2937 async->sync = 0;
2938 init_completion(&async->wait);
2939
2940 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2941 delayed_ref_async_start, NULL, NULL);
2942
2943 btrfs_queue_work(fs_info->extent_workers, &async->work);
2944
2945 if (wait) {
2946 wait_for_completion(&async->wait);
2947 ret = async->error;
2948 kfree(async);
2949 return ret;
2950 }
2951 return 0;
2952 }
2953
2954 /*
2955 * this starts processing the delayed reference count updates and
2956 * extent insertions we have queued up so far. count can be
2957 * 0, which means to process everything in the tree at the start
2958 * of the run (but not newly added entries), or it can be some target
2959 * number you'd like to process.
2960 *
2961 * Returns 0 on success or if called with an aborted transaction
2962 * Returns <0 on error and aborts the transaction
2963 */
2964 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2965 struct btrfs_fs_info *fs_info, unsigned long count)
2966 {
2967 struct rb_node *node;
2968 struct btrfs_delayed_ref_root *delayed_refs;
2969 struct btrfs_delayed_ref_head *head;
2970 int ret;
2971 int run_all = count == (unsigned long)-1;
2972 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2973
2974 /* We'll clean this up in btrfs_cleanup_transaction */
2975 if (trans->aborted)
2976 return 0;
2977
2978 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2979 return 0;
2980
2981 delayed_refs = &trans->transaction->delayed_refs;
2982 if (count == 0)
2983 count = atomic_read(&delayed_refs->num_entries) * 2;
2984
2985 again:
2986 #ifdef SCRAMBLE_DELAYED_REFS
2987 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2988 #endif
2989 trans->can_flush_pending_bgs = false;
2990 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2991 if (ret < 0) {
2992 btrfs_abort_transaction(trans, ret);
2993 return ret;
2994 }
2995
2996 if (run_all) {
2997 if (!list_empty(&trans->new_bgs))
2998 btrfs_create_pending_block_groups(trans, fs_info);
2999
3000 spin_lock(&delayed_refs->lock);
3001 node = rb_first(&delayed_refs->href_root);
3002 if (!node) {
3003 spin_unlock(&delayed_refs->lock);
3004 goto out;
3005 }
3006
3007 while (node) {
3008 head = rb_entry(node, struct btrfs_delayed_ref_head,
3009 href_node);
3010 if (btrfs_delayed_ref_is_head(&head->node)) {
3011 struct btrfs_delayed_ref_node *ref;
3012
3013 ref = &head->node;
3014 refcount_inc(&ref->refs);
3015
3016 spin_unlock(&delayed_refs->lock);
3017 /*
3018 * Mutex was contended, block until it's
3019 * released and try again
3020 */
3021 mutex_lock(&head->mutex);
3022 mutex_unlock(&head->mutex);
3023
3024 btrfs_put_delayed_ref(ref);
3025 cond_resched();
3026 goto again;
3027 } else {
3028 WARN_ON(1);
3029 }
3030 node = rb_next(node);
3031 }
3032 spin_unlock(&delayed_refs->lock);
3033 cond_resched();
3034 goto again;
3035 }
3036 out:
3037 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3038 return 0;
3039 }
3040
3041 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3042 struct btrfs_fs_info *fs_info,
3043 u64 bytenr, u64 num_bytes, u64 flags,
3044 int level, int is_data)
3045 {
3046 struct btrfs_delayed_extent_op *extent_op;
3047 int ret;
3048
3049 extent_op = btrfs_alloc_delayed_extent_op();
3050 if (!extent_op)
3051 return -ENOMEM;
3052
3053 extent_op->flags_to_set = flags;
3054 extent_op->update_flags = true;
3055 extent_op->update_key = false;
3056 extent_op->is_data = is_data ? true : false;
3057 extent_op->level = level;
3058
3059 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3060 num_bytes, extent_op);
3061 if (ret)
3062 btrfs_free_delayed_extent_op(extent_op);
3063 return ret;
3064 }
3065
3066 static noinline int check_delayed_ref(struct btrfs_root *root,
3067 struct btrfs_path *path,
3068 u64 objectid, u64 offset, u64 bytenr)
3069 {
3070 struct btrfs_delayed_ref_head *head;
3071 struct btrfs_delayed_ref_node *ref;
3072 struct btrfs_delayed_data_ref *data_ref;
3073 struct btrfs_delayed_ref_root *delayed_refs;
3074 struct btrfs_transaction *cur_trans;
3075 int ret = 0;
3076
3077 cur_trans = root->fs_info->running_transaction;
3078 if (!cur_trans)
3079 return 0;
3080
3081 delayed_refs = &cur_trans->delayed_refs;
3082 spin_lock(&delayed_refs->lock);
3083 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3084 if (!head) {
3085 spin_unlock(&delayed_refs->lock);
3086 return 0;
3087 }
3088
3089 if (!mutex_trylock(&head->mutex)) {
3090 refcount_inc(&head->node.refs);
3091 spin_unlock(&delayed_refs->lock);
3092
3093 btrfs_release_path(path);
3094
3095 /*
3096 * Mutex was contended, block until it's released and let
3097 * caller try again
3098 */
3099 mutex_lock(&head->mutex);
3100 mutex_unlock(&head->mutex);
3101 btrfs_put_delayed_ref(&head->node);
3102 return -EAGAIN;
3103 }
3104 spin_unlock(&delayed_refs->lock);
3105
3106 spin_lock(&head->lock);
3107 list_for_each_entry(ref, &head->ref_list, list) {
3108 /* If it's a shared ref we know a cross reference exists */
3109 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3110 ret = 1;
3111 break;
3112 }
3113
3114 data_ref = btrfs_delayed_node_to_data_ref(ref);
3115
3116 /*
3117 * If our ref doesn't match the one we're currently looking at
3118 * then we have a cross reference.
3119 */
3120 if (data_ref->root != root->root_key.objectid ||
3121 data_ref->objectid != objectid ||
3122 data_ref->offset != offset) {
3123 ret = 1;
3124 break;
3125 }
3126 }
3127 spin_unlock(&head->lock);
3128 mutex_unlock(&head->mutex);
3129 return ret;
3130 }
3131
3132 static noinline int check_committed_ref(struct btrfs_root *root,
3133 struct btrfs_path *path,
3134 u64 objectid, u64 offset, u64 bytenr)
3135 {
3136 struct btrfs_fs_info *fs_info = root->fs_info;
3137 struct btrfs_root *extent_root = fs_info->extent_root;
3138 struct extent_buffer *leaf;
3139 struct btrfs_extent_data_ref *ref;
3140 struct btrfs_extent_inline_ref *iref;
3141 struct btrfs_extent_item *ei;
3142 struct btrfs_key key;
3143 u32 item_size;
3144 int ret;
3145
3146 key.objectid = bytenr;
3147 key.offset = (u64)-1;
3148 key.type = BTRFS_EXTENT_ITEM_KEY;
3149
3150 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3151 if (ret < 0)
3152 goto out;
3153 BUG_ON(ret == 0); /* Corruption */
3154
3155 ret = -ENOENT;
3156 if (path->slots[0] == 0)
3157 goto out;
3158
3159 path->slots[0]--;
3160 leaf = path->nodes[0];
3161 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3162
3163 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3164 goto out;
3165
3166 ret = 1;
3167 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3168 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3169 if (item_size < sizeof(*ei)) {
3170 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3171 goto out;
3172 }
3173 #endif
3174 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3175
3176 if (item_size != sizeof(*ei) +
3177 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3178 goto out;
3179
3180 if (btrfs_extent_generation(leaf, ei) <=
3181 btrfs_root_last_snapshot(&root->root_item))
3182 goto out;
3183
3184 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3185 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3186 BTRFS_EXTENT_DATA_REF_KEY)
3187 goto out;
3188
3189 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3190 if (btrfs_extent_refs(leaf, ei) !=
3191 btrfs_extent_data_ref_count(leaf, ref) ||
3192 btrfs_extent_data_ref_root(leaf, ref) !=
3193 root->root_key.objectid ||
3194 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3195 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3196 goto out;
3197
3198 ret = 0;
3199 out:
3200 return ret;
3201 }
3202
3203 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3204 u64 bytenr)
3205 {
3206 struct btrfs_path *path;
3207 int ret;
3208 int ret2;
3209
3210 path = btrfs_alloc_path();
3211 if (!path)
3212 return -ENOENT;
3213
3214 do {
3215 ret = check_committed_ref(root, path, objectid,
3216 offset, bytenr);
3217 if (ret && ret != -ENOENT)
3218 goto out;
3219
3220 ret2 = check_delayed_ref(root, path, objectid,
3221 offset, bytenr);
3222 } while (ret2 == -EAGAIN);
3223
3224 if (ret2 && ret2 != -ENOENT) {
3225 ret = ret2;
3226 goto out;
3227 }
3228
3229 if (ret != -ENOENT || ret2 != -ENOENT)
3230 ret = 0;
3231 out:
3232 btrfs_free_path(path);
3233 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3234 WARN_ON(ret > 0);
3235 return ret;
3236 }
3237
3238 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *root,
3240 struct extent_buffer *buf,
3241 int full_backref, int inc)
3242 {
3243 struct btrfs_fs_info *fs_info = root->fs_info;
3244 u64 bytenr;
3245 u64 num_bytes;
3246 u64 parent;
3247 u64 ref_root;
3248 u32 nritems;
3249 struct btrfs_key key;
3250 struct btrfs_file_extent_item *fi;
3251 int i;
3252 int level;
3253 int ret = 0;
3254 int (*process_func)(struct btrfs_trans_handle *,
3255 struct btrfs_fs_info *,
3256 u64, u64, u64, u64, u64, u64);
3257
3258
3259 if (btrfs_is_testing(fs_info))
3260 return 0;
3261
3262 ref_root = btrfs_header_owner(buf);
3263 nritems = btrfs_header_nritems(buf);
3264 level = btrfs_header_level(buf);
3265
3266 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3267 return 0;
3268
3269 if (inc)
3270 process_func = btrfs_inc_extent_ref;
3271 else
3272 process_func = btrfs_free_extent;
3273
3274 if (full_backref)
3275 parent = buf->start;
3276 else
3277 parent = 0;
3278
3279 for (i = 0; i < nritems; i++) {
3280 if (level == 0) {
3281 btrfs_item_key_to_cpu(buf, &key, i);
3282 if (key.type != BTRFS_EXTENT_DATA_KEY)
3283 continue;
3284 fi = btrfs_item_ptr(buf, i,
3285 struct btrfs_file_extent_item);
3286 if (btrfs_file_extent_type(buf, fi) ==
3287 BTRFS_FILE_EXTENT_INLINE)
3288 continue;
3289 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3290 if (bytenr == 0)
3291 continue;
3292
3293 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3294 key.offset -= btrfs_file_extent_offset(buf, fi);
3295 ret = process_func(trans, fs_info, bytenr, num_bytes,
3296 parent, ref_root, key.objectid,
3297 key.offset);
3298 if (ret)
3299 goto fail;
3300 } else {
3301 bytenr = btrfs_node_blockptr(buf, i);
3302 num_bytes = fs_info->nodesize;
3303 ret = process_func(trans, fs_info, bytenr, num_bytes,
3304 parent, ref_root, level - 1, 0);
3305 if (ret)
3306 goto fail;
3307 }
3308 }
3309 return 0;
3310 fail:
3311 return ret;
3312 }
3313
3314 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3315 struct extent_buffer *buf, int full_backref)
3316 {
3317 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3318 }
3319
3320 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3321 struct extent_buffer *buf, int full_backref)
3322 {
3323 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3324 }
3325
3326 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3327 struct btrfs_fs_info *fs_info,
3328 struct btrfs_path *path,
3329 struct btrfs_block_group_cache *cache)
3330 {
3331 int ret;
3332 struct btrfs_root *extent_root = fs_info->extent_root;
3333 unsigned long bi;
3334 struct extent_buffer *leaf;
3335
3336 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3337 if (ret) {
3338 if (ret > 0)
3339 ret = -ENOENT;
3340 goto fail;
3341 }
3342
3343 leaf = path->nodes[0];
3344 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3345 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3346 btrfs_mark_buffer_dirty(leaf);
3347 fail:
3348 btrfs_release_path(path);
3349 return ret;
3350
3351 }
3352
3353 static struct btrfs_block_group_cache *
3354 next_block_group(struct btrfs_fs_info *fs_info,
3355 struct btrfs_block_group_cache *cache)
3356 {
3357 struct rb_node *node;
3358
3359 spin_lock(&fs_info->block_group_cache_lock);
3360
3361 /* If our block group was removed, we need a full search. */
3362 if (RB_EMPTY_NODE(&cache->cache_node)) {
3363 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3364
3365 spin_unlock(&fs_info->block_group_cache_lock);
3366 btrfs_put_block_group(cache);
3367 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3368 }
3369 node = rb_next(&cache->cache_node);
3370 btrfs_put_block_group(cache);
3371 if (node) {
3372 cache = rb_entry(node, struct btrfs_block_group_cache,
3373 cache_node);
3374 btrfs_get_block_group(cache);
3375 } else
3376 cache = NULL;
3377 spin_unlock(&fs_info->block_group_cache_lock);
3378 return cache;
3379 }
3380
3381 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3382 struct btrfs_trans_handle *trans,
3383 struct btrfs_path *path)
3384 {
3385 struct btrfs_fs_info *fs_info = block_group->fs_info;
3386 struct btrfs_root *root = fs_info->tree_root;
3387 struct inode *inode = NULL;
3388 u64 alloc_hint = 0;
3389 int dcs = BTRFS_DC_ERROR;
3390 u64 num_pages = 0;
3391 int retries = 0;
3392 int ret = 0;
3393
3394 /*
3395 * If this block group is smaller than 100 megs don't bother caching the
3396 * block group.
3397 */
3398 if (block_group->key.offset < (100 * SZ_1M)) {
3399 spin_lock(&block_group->lock);
3400 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3401 spin_unlock(&block_group->lock);
3402 return 0;
3403 }
3404
3405 if (trans->aborted)
3406 return 0;
3407 again:
3408 inode = lookup_free_space_inode(fs_info, block_group, path);
3409 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3410 ret = PTR_ERR(inode);
3411 btrfs_release_path(path);
3412 goto out;
3413 }
3414
3415 if (IS_ERR(inode)) {
3416 BUG_ON(retries);
3417 retries++;
3418
3419 if (block_group->ro)
3420 goto out_free;
3421
3422 ret = create_free_space_inode(fs_info, trans, block_group,
3423 path);
3424 if (ret)
3425 goto out_free;
3426 goto again;
3427 }
3428
3429 /* We've already setup this transaction, go ahead and exit */
3430 if (block_group->cache_generation == trans->transid &&
3431 i_size_read(inode)) {
3432 dcs = BTRFS_DC_SETUP;
3433 goto out_put;
3434 }
3435
3436 /*
3437 * We want to set the generation to 0, that way if anything goes wrong
3438 * from here on out we know not to trust this cache when we load up next
3439 * time.
3440 */
3441 BTRFS_I(inode)->generation = 0;
3442 ret = btrfs_update_inode(trans, root, inode);
3443 if (ret) {
3444 /*
3445 * So theoretically we could recover from this, simply set the
3446 * super cache generation to 0 so we know to invalidate the
3447 * cache, but then we'd have to keep track of the block groups
3448 * that fail this way so we know we _have_ to reset this cache
3449 * before the next commit or risk reading stale cache. So to
3450 * limit our exposure to horrible edge cases lets just abort the
3451 * transaction, this only happens in really bad situations
3452 * anyway.
3453 */
3454 btrfs_abort_transaction(trans, ret);
3455 goto out_put;
3456 }
3457 WARN_ON(ret);
3458
3459 if (i_size_read(inode) > 0) {
3460 ret = btrfs_check_trunc_cache_free_space(fs_info,
3461 &fs_info->global_block_rsv);
3462 if (ret)
3463 goto out_put;
3464
3465 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3466 if (ret)
3467 goto out_put;
3468 }
3469
3470 spin_lock(&block_group->lock);
3471 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3472 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3473 /*
3474 * don't bother trying to write stuff out _if_
3475 * a) we're not cached,
3476 * b) we're with nospace_cache mount option,
3477 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3478 */
3479 dcs = BTRFS_DC_WRITTEN;
3480 spin_unlock(&block_group->lock);
3481 goto out_put;
3482 }
3483 spin_unlock(&block_group->lock);
3484
3485 /*
3486 * We hit an ENOSPC when setting up the cache in this transaction, just
3487 * skip doing the setup, we've already cleared the cache so we're safe.
3488 */
3489 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3490 ret = -ENOSPC;
3491 goto out_put;
3492 }
3493
3494 /*
3495 * Try to preallocate enough space based on how big the block group is.
3496 * Keep in mind this has to include any pinned space which could end up
3497 * taking up quite a bit since it's not folded into the other space
3498 * cache.
3499 */
3500 num_pages = div_u64(block_group->key.offset, SZ_256M);
3501 if (!num_pages)
3502 num_pages = 1;
3503
3504 num_pages *= 16;
3505 num_pages *= PAGE_SIZE;
3506
3507 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3508 if (ret)
3509 goto out_put;
3510
3511 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3512 num_pages, num_pages,
3513 &alloc_hint);
3514 /*
3515 * Our cache requires contiguous chunks so that we don't modify a bunch
3516 * of metadata or split extents when writing the cache out, which means
3517 * we can enospc if we are heavily fragmented in addition to just normal
3518 * out of space conditions. So if we hit this just skip setting up any
3519 * other block groups for this transaction, maybe we'll unpin enough
3520 * space the next time around.
3521 */
3522 if (!ret)
3523 dcs = BTRFS_DC_SETUP;
3524 else if (ret == -ENOSPC)
3525 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3526
3527 out_put:
3528 iput(inode);
3529 out_free:
3530 btrfs_release_path(path);
3531 out:
3532 spin_lock(&block_group->lock);
3533 if (!ret && dcs == BTRFS_DC_SETUP)
3534 block_group->cache_generation = trans->transid;
3535 block_group->disk_cache_state = dcs;
3536 spin_unlock(&block_group->lock);
3537
3538 return ret;
3539 }
3540
3541 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3542 struct btrfs_fs_info *fs_info)
3543 {
3544 struct btrfs_block_group_cache *cache, *tmp;
3545 struct btrfs_transaction *cur_trans = trans->transaction;
3546 struct btrfs_path *path;
3547
3548 if (list_empty(&cur_trans->dirty_bgs) ||
3549 !btrfs_test_opt(fs_info, SPACE_CACHE))
3550 return 0;
3551
3552 path = btrfs_alloc_path();
3553 if (!path)
3554 return -ENOMEM;
3555
3556 /* Could add new block groups, use _safe just in case */
3557 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3558 dirty_list) {
3559 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3560 cache_save_setup(cache, trans, path);
3561 }
3562
3563 btrfs_free_path(path);
3564 return 0;
3565 }
3566
3567 /*
3568 * transaction commit does final block group cache writeback during a
3569 * critical section where nothing is allowed to change the FS. This is
3570 * required in order for the cache to actually match the block group,
3571 * but can introduce a lot of latency into the commit.
3572 *
3573 * So, btrfs_start_dirty_block_groups is here to kick off block group
3574 * cache IO. There's a chance we'll have to redo some of it if the
3575 * block group changes again during the commit, but it greatly reduces
3576 * the commit latency by getting rid of the easy block groups while
3577 * we're still allowing others to join the commit.
3578 */
3579 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3580 struct btrfs_fs_info *fs_info)
3581 {
3582 struct btrfs_block_group_cache *cache;
3583 struct btrfs_transaction *cur_trans = trans->transaction;
3584 int ret = 0;
3585 int should_put;
3586 struct btrfs_path *path = NULL;
3587 LIST_HEAD(dirty);
3588 struct list_head *io = &cur_trans->io_bgs;
3589 int num_started = 0;
3590 int loops = 0;
3591
3592 spin_lock(&cur_trans->dirty_bgs_lock);
3593 if (list_empty(&cur_trans->dirty_bgs)) {
3594 spin_unlock(&cur_trans->dirty_bgs_lock);
3595 return 0;
3596 }
3597 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3598 spin_unlock(&cur_trans->dirty_bgs_lock);
3599
3600 again:
3601 /*
3602 * make sure all the block groups on our dirty list actually
3603 * exist
3604 */
3605 btrfs_create_pending_block_groups(trans, fs_info);
3606
3607 if (!path) {
3608 path = btrfs_alloc_path();
3609 if (!path)
3610 return -ENOMEM;
3611 }
3612
3613 /*
3614 * cache_write_mutex is here only to save us from balance or automatic
3615 * removal of empty block groups deleting this block group while we are
3616 * writing out the cache
3617 */
3618 mutex_lock(&trans->transaction->cache_write_mutex);
3619 while (!list_empty(&dirty)) {
3620 cache = list_first_entry(&dirty,
3621 struct btrfs_block_group_cache,
3622 dirty_list);
3623 /*
3624 * this can happen if something re-dirties a block
3625 * group that is already under IO. Just wait for it to
3626 * finish and then do it all again
3627 */
3628 if (!list_empty(&cache->io_list)) {
3629 list_del_init(&cache->io_list);
3630 btrfs_wait_cache_io(trans, cache, path);
3631 btrfs_put_block_group(cache);
3632 }
3633
3634
3635 /*
3636 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3637 * if it should update the cache_state. Don't delete
3638 * until after we wait.
3639 *
3640 * Since we're not running in the commit critical section
3641 * we need the dirty_bgs_lock to protect from update_block_group
3642 */
3643 spin_lock(&cur_trans->dirty_bgs_lock);
3644 list_del_init(&cache->dirty_list);
3645 spin_unlock(&cur_trans->dirty_bgs_lock);
3646
3647 should_put = 1;
3648
3649 cache_save_setup(cache, trans, path);
3650
3651 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3652 cache->io_ctl.inode = NULL;
3653 ret = btrfs_write_out_cache(fs_info, trans,
3654 cache, path);
3655 if (ret == 0 && cache->io_ctl.inode) {
3656 num_started++;
3657 should_put = 0;
3658
3659 /*
3660 * the cache_write_mutex is protecting
3661 * the io_list
3662 */
3663 list_add_tail(&cache->io_list, io);
3664 } else {
3665 /*
3666 * if we failed to write the cache, the
3667 * generation will be bad and life goes on
3668 */
3669 ret = 0;
3670 }
3671 }
3672 if (!ret) {
3673 ret = write_one_cache_group(trans, fs_info,
3674 path, cache);
3675 /*
3676 * Our block group might still be attached to the list
3677 * of new block groups in the transaction handle of some
3678 * other task (struct btrfs_trans_handle->new_bgs). This
3679 * means its block group item isn't yet in the extent
3680 * tree. If this happens ignore the error, as we will
3681 * try again later in the critical section of the
3682 * transaction commit.
3683 */
3684 if (ret == -ENOENT) {
3685 ret = 0;
3686 spin_lock(&cur_trans->dirty_bgs_lock);
3687 if (list_empty(&cache->dirty_list)) {
3688 list_add_tail(&cache->dirty_list,
3689 &cur_trans->dirty_bgs);
3690 btrfs_get_block_group(cache);
3691 }
3692 spin_unlock(&cur_trans->dirty_bgs_lock);
3693 } else if (ret) {
3694 btrfs_abort_transaction(trans, ret);
3695 }
3696 }
3697
3698 /* if its not on the io list, we need to put the block group */
3699 if (should_put)
3700 btrfs_put_block_group(cache);
3701
3702 if (ret)
3703 break;
3704
3705 /*
3706 * Avoid blocking other tasks for too long. It might even save
3707 * us from writing caches for block groups that are going to be
3708 * removed.
3709 */
3710 mutex_unlock(&trans->transaction->cache_write_mutex);
3711 mutex_lock(&trans->transaction->cache_write_mutex);
3712 }
3713 mutex_unlock(&trans->transaction->cache_write_mutex);
3714
3715 /*
3716 * go through delayed refs for all the stuff we've just kicked off
3717 * and then loop back (just once)
3718 */
3719 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3720 if (!ret && loops == 0) {
3721 loops++;
3722 spin_lock(&cur_trans->dirty_bgs_lock);
3723 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3724 /*
3725 * dirty_bgs_lock protects us from concurrent block group
3726 * deletes too (not just cache_write_mutex).
3727 */
3728 if (!list_empty(&dirty)) {
3729 spin_unlock(&cur_trans->dirty_bgs_lock);
3730 goto again;
3731 }
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733 } else if (ret < 0) {
3734 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3735 }
3736
3737 btrfs_free_path(path);
3738 return ret;
3739 }
3740
3741 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3742 struct btrfs_fs_info *fs_info)
3743 {
3744 struct btrfs_block_group_cache *cache;
3745 struct btrfs_transaction *cur_trans = trans->transaction;
3746 int ret = 0;
3747 int should_put;
3748 struct btrfs_path *path;
3749 struct list_head *io = &cur_trans->io_bgs;
3750 int num_started = 0;
3751
3752 path = btrfs_alloc_path();
3753 if (!path)
3754 return -ENOMEM;
3755
3756 /*
3757 * Even though we are in the critical section of the transaction commit,
3758 * we can still have concurrent tasks adding elements to this
3759 * transaction's list of dirty block groups. These tasks correspond to
3760 * endio free space workers started when writeback finishes for a
3761 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3762 * allocate new block groups as a result of COWing nodes of the root
3763 * tree when updating the free space inode. The writeback for the space
3764 * caches is triggered by an earlier call to
3765 * btrfs_start_dirty_block_groups() and iterations of the following
3766 * loop.
3767 * Also we want to do the cache_save_setup first and then run the
3768 * delayed refs to make sure we have the best chance at doing this all
3769 * in one shot.
3770 */
3771 spin_lock(&cur_trans->dirty_bgs_lock);
3772 while (!list_empty(&cur_trans->dirty_bgs)) {
3773 cache = list_first_entry(&cur_trans->dirty_bgs,
3774 struct btrfs_block_group_cache,
3775 dirty_list);
3776
3777 /*
3778 * this can happen if cache_save_setup re-dirties a block
3779 * group that is already under IO. Just wait for it to
3780 * finish and then do it all again
3781 */
3782 if (!list_empty(&cache->io_list)) {
3783 spin_unlock(&cur_trans->dirty_bgs_lock);
3784 list_del_init(&cache->io_list);
3785 btrfs_wait_cache_io(trans, cache, path);
3786 btrfs_put_block_group(cache);
3787 spin_lock(&cur_trans->dirty_bgs_lock);
3788 }
3789
3790 /*
3791 * don't remove from the dirty list until after we've waited
3792 * on any pending IO
3793 */
3794 list_del_init(&cache->dirty_list);
3795 spin_unlock(&cur_trans->dirty_bgs_lock);
3796 should_put = 1;
3797
3798 cache_save_setup(cache, trans, path);
3799
3800 if (!ret)
3801 ret = btrfs_run_delayed_refs(trans, fs_info,
3802 (unsigned long) -1);
3803
3804 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3805 cache->io_ctl.inode = NULL;
3806 ret = btrfs_write_out_cache(fs_info, trans,
3807 cache, path);
3808 if (ret == 0 && cache->io_ctl.inode) {
3809 num_started++;
3810 should_put = 0;
3811 list_add_tail(&cache->io_list, io);
3812 } else {
3813 /*
3814 * if we failed to write the cache, the
3815 * generation will be bad and life goes on
3816 */
3817 ret = 0;
3818 }
3819 }
3820 if (!ret) {
3821 ret = write_one_cache_group(trans, fs_info,
3822 path, cache);
3823 /*
3824 * One of the free space endio workers might have
3825 * created a new block group while updating a free space
3826 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3827 * and hasn't released its transaction handle yet, in
3828 * which case the new block group is still attached to
3829 * its transaction handle and its creation has not
3830 * finished yet (no block group item in the extent tree
3831 * yet, etc). If this is the case, wait for all free
3832 * space endio workers to finish and retry. This is a
3833 * a very rare case so no need for a more efficient and
3834 * complex approach.
3835 */
3836 if (ret == -ENOENT) {
3837 wait_event(cur_trans->writer_wait,
3838 atomic_read(&cur_trans->num_writers) == 1);
3839 ret = write_one_cache_group(trans, fs_info,
3840 path, cache);
3841 }
3842 if (ret)
3843 btrfs_abort_transaction(trans, ret);
3844 }
3845
3846 /* if its not on the io list, we need to put the block group */
3847 if (should_put)
3848 btrfs_put_block_group(cache);
3849 spin_lock(&cur_trans->dirty_bgs_lock);
3850 }
3851 spin_unlock(&cur_trans->dirty_bgs_lock);
3852
3853 while (!list_empty(io)) {
3854 cache = list_first_entry(io, struct btrfs_block_group_cache,
3855 io_list);
3856 list_del_init(&cache->io_list);
3857 btrfs_wait_cache_io(trans, cache, path);
3858 btrfs_put_block_group(cache);
3859 }
3860
3861 btrfs_free_path(path);
3862 return ret;
3863 }
3864
3865 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3866 {
3867 struct btrfs_block_group_cache *block_group;
3868 int readonly = 0;
3869
3870 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3871 if (!block_group || block_group->ro)
3872 readonly = 1;
3873 if (block_group)
3874 btrfs_put_block_group(block_group);
3875 return readonly;
3876 }
3877
3878 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3879 {
3880 struct btrfs_block_group_cache *bg;
3881 bool ret = true;
3882
3883 bg = btrfs_lookup_block_group(fs_info, bytenr);
3884 if (!bg)
3885 return false;
3886
3887 spin_lock(&bg->lock);
3888 if (bg->ro)
3889 ret = false;
3890 else
3891 atomic_inc(&bg->nocow_writers);
3892 spin_unlock(&bg->lock);
3893
3894 /* no put on block group, done by btrfs_dec_nocow_writers */
3895 if (!ret)
3896 btrfs_put_block_group(bg);
3897
3898 return ret;
3899
3900 }
3901
3902 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3903 {
3904 struct btrfs_block_group_cache *bg;
3905
3906 bg = btrfs_lookup_block_group(fs_info, bytenr);
3907 ASSERT(bg);
3908 if (atomic_dec_and_test(&bg->nocow_writers))
3909 wake_up_atomic_t(&bg->nocow_writers);
3910 /*
3911 * Once for our lookup and once for the lookup done by a previous call
3912 * to btrfs_inc_nocow_writers()
3913 */
3914 btrfs_put_block_group(bg);
3915 btrfs_put_block_group(bg);
3916 }
3917
3918 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3919 {
3920 schedule();
3921 return 0;
3922 }
3923
3924 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3925 {
3926 wait_on_atomic_t(&bg->nocow_writers,
3927 btrfs_wait_nocow_writers_atomic_t,
3928 TASK_UNINTERRUPTIBLE);
3929 }
3930
3931 static const char *alloc_name(u64 flags)
3932 {
3933 switch (flags) {
3934 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3935 return "mixed";
3936 case BTRFS_BLOCK_GROUP_METADATA:
3937 return "metadata";
3938 case BTRFS_BLOCK_GROUP_DATA:
3939 return "data";
3940 case BTRFS_BLOCK_GROUP_SYSTEM:
3941 return "system";
3942 default:
3943 WARN_ON(1);
3944 return "invalid-combination";
3945 };
3946 }
3947
3948 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3949 struct btrfs_space_info **new)
3950 {
3951
3952 struct btrfs_space_info *space_info;
3953 int i;
3954 int ret;
3955
3956 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3957 if (!space_info)
3958 return -ENOMEM;
3959
3960 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3961 GFP_KERNEL);
3962 if (ret) {
3963 kfree(space_info);
3964 return ret;
3965 }
3966
3967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3968 INIT_LIST_HEAD(&space_info->block_groups[i]);
3969 init_rwsem(&space_info->groups_sem);
3970 spin_lock_init(&space_info->lock);
3971 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3972 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3973 init_waitqueue_head(&space_info->wait);
3974 INIT_LIST_HEAD(&space_info->ro_bgs);
3975 INIT_LIST_HEAD(&space_info->tickets);
3976 INIT_LIST_HEAD(&space_info->priority_tickets);
3977
3978 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3979 info->space_info_kobj, "%s",
3980 alloc_name(space_info->flags));
3981 if (ret) {
3982 percpu_counter_destroy(&space_info->total_bytes_pinned);
3983 kfree(space_info);
3984 return ret;
3985 }
3986
3987 *new = space_info;
3988 list_add_rcu(&space_info->list, &info->space_info);
3989 if (flags & BTRFS_BLOCK_GROUP_DATA)
3990 info->data_sinfo = space_info;
3991
3992 return ret;
3993 }
3994
3995 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3996 u64 total_bytes, u64 bytes_used,
3997 u64 bytes_readonly,
3998 struct btrfs_space_info **space_info)
3999 {
4000 struct btrfs_space_info *found;
4001 int factor;
4002
4003 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4004 BTRFS_BLOCK_GROUP_RAID10))
4005 factor = 2;
4006 else
4007 factor = 1;
4008
4009 found = __find_space_info(info, flags);
4010 ASSERT(found);
4011 spin_lock(&found->lock);
4012 found->total_bytes += total_bytes;
4013 found->disk_total += total_bytes * factor;
4014 found->bytes_used += bytes_used;
4015 found->disk_used += bytes_used * factor;
4016 found->bytes_readonly += bytes_readonly;
4017 if (total_bytes > 0)
4018 found->full = 0;
4019 space_info_add_new_bytes(info, found, total_bytes -
4020 bytes_used - bytes_readonly);
4021 spin_unlock(&found->lock);
4022 *space_info = found;
4023 }
4024
4025 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4026 {
4027 u64 extra_flags = chunk_to_extended(flags) &
4028 BTRFS_EXTENDED_PROFILE_MASK;
4029
4030 write_seqlock(&fs_info->profiles_lock);
4031 if (flags & BTRFS_BLOCK_GROUP_DATA)
4032 fs_info->avail_data_alloc_bits |= extra_flags;
4033 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4034 fs_info->avail_metadata_alloc_bits |= extra_flags;
4035 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4036 fs_info->avail_system_alloc_bits |= extra_flags;
4037 write_sequnlock(&fs_info->profiles_lock);
4038 }
4039
4040 /*
4041 * returns target flags in extended format or 0 if restripe for this
4042 * chunk_type is not in progress
4043 *
4044 * should be called with either volume_mutex or balance_lock held
4045 */
4046 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4047 {
4048 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4049 u64 target = 0;
4050
4051 if (!bctl)
4052 return 0;
4053
4054 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4055 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4056 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4057 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4058 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4059 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4060 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4061 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4062 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4063 }
4064
4065 return target;
4066 }
4067
4068 /*
4069 * @flags: available profiles in extended format (see ctree.h)
4070 *
4071 * Returns reduced profile in chunk format. If profile changing is in
4072 * progress (either running or paused) picks the target profile (if it's
4073 * already available), otherwise falls back to plain reducing.
4074 */
4075 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4076 {
4077 u64 num_devices = fs_info->fs_devices->rw_devices;
4078 u64 target;
4079 u64 raid_type;
4080 u64 allowed = 0;
4081
4082 /*
4083 * see if restripe for this chunk_type is in progress, if so
4084 * try to reduce to the target profile
4085 */
4086 spin_lock(&fs_info->balance_lock);
4087 target = get_restripe_target(fs_info, flags);
4088 if (target) {
4089 /* pick target profile only if it's already available */
4090 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4091 spin_unlock(&fs_info->balance_lock);
4092 return extended_to_chunk(target);
4093 }
4094 }
4095 spin_unlock(&fs_info->balance_lock);
4096
4097 /* First, mask out the RAID levels which aren't possible */
4098 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4099 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4100 allowed |= btrfs_raid_group[raid_type];
4101 }
4102 allowed &= flags;
4103
4104 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4105 allowed = BTRFS_BLOCK_GROUP_RAID6;
4106 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4107 allowed = BTRFS_BLOCK_GROUP_RAID5;
4108 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4109 allowed = BTRFS_BLOCK_GROUP_RAID10;
4110 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4111 allowed = BTRFS_BLOCK_GROUP_RAID1;
4112 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4113 allowed = BTRFS_BLOCK_GROUP_RAID0;
4114
4115 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4116
4117 return extended_to_chunk(flags | allowed);
4118 }
4119
4120 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4121 {
4122 unsigned seq;
4123 u64 flags;
4124
4125 do {
4126 flags = orig_flags;
4127 seq = read_seqbegin(&fs_info->profiles_lock);
4128
4129 if (flags & BTRFS_BLOCK_GROUP_DATA)
4130 flags |= fs_info->avail_data_alloc_bits;
4131 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4132 flags |= fs_info->avail_system_alloc_bits;
4133 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4134 flags |= fs_info->avail_metadata_alloc_bits;
4135 } while (read_seqretry(&fs_info->profiles_lock, seq));
4136
4137 return btrfs_reduce_alloc_profile(fs_info, flags);
4138 }
4139
4140 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4141 {
4142 struct btrfs_fs_info *fs_info = root->fs_info;
4143 u64 flags;
4144 u64 ret;
4145
4146 if (data)
4147 flags = BTRFS_BLOCK_GROUP_DATA;
4148 else if (root == fs_info->chunk_root)
4149 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4150 else
4151 flags = BTRFS_BLOCK_GROUP_METADATA;
4152
4153 ret = get_alloc_profile(fs_info, flags);
4154 return ret;
4155 }
4156
4157 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4158 {
4159 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4160 }
4161
4162 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4163 {
4164 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4165 }
4166
4167 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4168 {
4169 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4170 }
4171
4172 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4173 bool may_use_included)
4174 {
4175 ASSERT(s_info);
4176 return s_info->bytes_used + s_info->bytes_reserved +
4177 s_info->bytes_pinned + s_info->bytes_readonly +
4178 (may_use_included ? s_info->bytes_may_use : 0);
4179 }
4180
4181 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4182 {
4183 struct btrfs_space_info *data_sinfo;
4184 struct btrfs_root *root = inode->root;
4185 struct btrfs_fs_info *fs_info = root->fs_info;
4186 u64 used;
4187 int ret = 0;
4188 int need_commit = 2;
4189 int have_pinned_space;
4190
4191 /* make sure bytes are sectorsize aligned */
4192 bytes = ALIGN(bytes, fs_info->sectorsize);
4193
4194 if (btrfs_is_free_space_inode(inode)) {
4195 need_commit = 0;
4196 ASSERT(current->journal_info);
4197 }
4198
4199 data_sinfo = fs_info->data_sinfo;
4200 if (!data_sinfo)
4201 goto alloc;
4202
4203 again:
4204 /* make sure we have enough space to handle the data first */
4205 spin_lock(&data_sinfo->lock);
4206 used = btrfs_space_info_used(data_sinfo, true);
4207
4208 if (used + bytes > data_sinfo->total_bytes) {
4209 struct btrfs_trans_handle *trans;
4210
4211 /*
4212 * if we don't have enough free bytes in this space then we need
4213 * to alloc a new chunk.
4214 */
4215 if (!data_sinfo->full) {
4216 u64 alloc_target;
4217
4218 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4219 spin_unlock(&data_sinfo->lock);
4220 alloc:
4221 alloc_target = btrfs_data_alloc_profile(fs_info);
4222 /*
4223 * It is ugly that we don't call nolock join
4224 * transaction for the free space inode case here.
4225 * But it is safe because we only do the data space
4226 * reservation for the free space cache in the
4227 * transaction context, the common join transaction
4228 * just increase the counter of the current transaction
4229 * handler, doesn't try to acquire the trans_lock of
4230 * the fs.
4231 */
4232 trans = btrfs_join_transaction(root);
4233 if (IS_ERR(trans))
4234 return PTR_ERR(trans);
4235
4236 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4237 CHUNK_ALLOC_NO_FORCE);
4238 btrfs_end_transaction(trans);
4239 if (ret < 0) {
4240 if (ret != -ENOSPC)
4241 return ret;
4242 else {
4243 have_pinned_space = 1;
4244 goto commit_trans;
4245 }
4246 }
4247
4248 if (!data_sinfo)
4249 data_sinfo = fs_info->data_sinfo;
4250
4251 goto again;
4252 }
4253
4254 /*
4255 * If we don't have enough pinned space to deal with this
4256 * allocation, and no removed chunk in current transaction,
4257 * don't bother committing the transaction.
4258 */
4259 have_pinned_space = percpu_counter_compare(
4260 &data_sinfo->total_bytes_pinned,
4261 used + bytes - data_sinfo->total_bytes);
4262 spin_unlock(&data_sinfo->lock);
4263
4264 /* commit the current transaction and try again */
4265 commit_trans:
4266 if (need_commit &&
4267 !atomic_read(&fs_info->open_ioctl_trans)) {
4268 need_commit--;
4269
4270 if (need_commit > 0) {
4271 btrfs_start_delalloc_roots(fs_info, 0, -1);
4272 btrfs_wait_ordered_roots(fs_info, -1, 0,
4273 (u64)-1);
4274 }
4275
4276 trans = btrfs_join_transaction(root);
4277 if (IS_ERR(trans))
4278 return PTR_ERR(trans);
4279 if (have_pinned_space >= 0 ||
4280 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4281 &trans->transaction->flags) ||
4282 need_commit > 0) {
4283 ret = btrfs_commit_transaction(trans);
4284 if (ret)
4285 return ret;
4286 /*
4287 * The cleaner kthread might still be doing iput
4288 * operations. Wait for it to finish so that
4289 * more space is released.
4290 */
4291 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4292 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4293 goto again;
4294 } else {
4295 btrfs_end_transaction(trans);
4296 }
4297 }
4298
4299 trace_btrfs_space_reservation(fs_info,
4300 "space_info:enospc",
4301 data_sinfo->flags, bytes, 1);
4302 return -ENOSPC;
4303 }
4304 data_sinfo->bytes_may_use += bytes;
4305 trace_btrfs_space_reservation(fs_info, "space_info",
4306 data_sinfo->flags, bytes, 1);
4307 spin_unlock(&data_sinfo->lock);
4308
4309 return ret;
4310 }
4311
4312 /*
4313 * New check_data_free_space() with ability for precious data reservation
4314 * Will replace old btrfs_check_data_free_space(), but for patch split,
4315 * add a new function first and then replace it.
4316 */
4317 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4318 {
4319 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4320 int ret;
4321
4322 /* align the range */
4323 len = round_up(start + len, fs_info->sectorsize) -
4324 round_down(start, fs_info->sectorsize);
4325 start = round_down(start, fs_info->sectorsize);
4326
4327 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4328 if (ret < 0)
4329 return ret;
4330
4331 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4332 ret = btrfs_qgroup_reserve_data(inode, start, len);
4333 if (ret)
4334 btrfs_free_reserved_data_space_noquota(inode, start, len);
4335 return ret;
4336 }
4337
4338 /*
4339 * Called if we need to clear a data reservation for this inode
4340 * Normally in a error case.
4341 *
4342 * This one will *NOT* use accurate qgroup reserved space API, just for case
4343 * which we can't sleep and is sure it won't affect qgroup reserved space.
4344 * Like clear_bit_hook().
4345 */
4346 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4347 u64 len)
4348 {
4349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4350 struct btrfs_space_info *data_sinfo;
4351
4352 /* Make sure the range is aligned to sectorsize */
4353 len = round_up(start + len, fs_info->sectorsize) -
4354 round_down(start, fs_info->sectorsize);
4355 start = round_down(start, fs_info->sectorsize);
4356
4357 data_sinfo = fs_info->data_sinfo;
4358 spin_lock(&data_sinfo->lock);
4359 if (WARN_ON(data_sinfo->bytes_may_use < len))
4360 data_sinfo->bytes_may_use = 0;
4361 else
4362 data_sinfo->bytes_may_use -= len;
4363 trace_btrfs_space_reservation(fs_info, "space_info",
4364 data_sinfo->flags, len, 0);
4365 spin_unlock(&data_sinfo->lock);
4366 }
4367
4368 /*
4369 * Called if we need to clear a data reservation for this inode
4370 * Normally in a error case.
4371 *
4372 * This one will handle the per-inode data rsv map for accurate reserved
4373 * space framework.
4374 */
4375 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4376 {
4377 struct btrfs_root *root = BTRFS_I(inode)->root;
4378
4379 /* Make sure the range is aligned to sectorsize */
4380 len = round_up(start + len, root->fs_info->sectorsize) -
4381 round_down(start, root->fs_info->sectorsize);
4382 start = round_down(start, root->fs_info->sectorsize);
4383
4384 btrfs_free_reserved_data_space_noquota(inode, start, len);
4385 btrfs_qgroup_free_data(inode, start, len);
4386 }
4387
4388 static void force_metadata_allocation(struct btrfs_fs_info *info)
4389 {
4390 struct list_head *head = &info->space_info;
4391 struct btrfs_space_info *found;
4392
4393 rcu_read_lock();
4394 list_for_each_entry_rcu(found, head, list) {
4395 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4396 found->force_alloc = CHUNK_ALLOC_FORCE;
4397 }
4398 rcu_read_unlock();
4399 }
4400
4401 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4402 {
4403 return (global->size << 1);
4404 }
4405
4406 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4407 struct btrfs_space_info *sinfo, int force)
4408 {
4409 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4410 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4411 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4412 u64 thresh;
4413
4414 if (force == CHUNK_ALLOC_FORCE)
4415 return 1;
4416
4417 /*
4418 * We need to take into account the global rsv because for all intents
4419 * and purposes it's used space. Don't worry about locking the
4420 * global_rsv, it doesn't change except when the transaction commits.
4421 */
4422 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4423 num_allocated += calc_global_rsv_need_space(global_rsv);
4424
4425 /*
4426 * in limited mode, we want to have some free space up to
4427 * about 1% of the FS size.
4428 */
4429 if (force == CHUNK_ALLOC_LIMITED) {
4430 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4431 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4432
4433 if (num_bytes - num_allocated < thresh)
4434 return 1;
4435 }
4436
4437 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4438 return 0;
4439 return 1;
4440 }
4441
4442 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4443 {
4444 u64 num_dev;
4445
4446 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4447 BTRFS_BLOCK_GROUP_RAID0 |
4448 BTRFS_BLOCK_GROUP_RAID5 |
4449 BTRFS_BLOCK_GROUP_RAID6))
4450 num_dev = fs_info->fs_devices->rw_devices;
4451 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4452 num_dev = 2;
4453 else
4454 num_dev = 1; /* DUP or single */
4455
4456 return num_dev;
4457 }
4458
4459 /*
4460 * If @is_allocation is true, reserve space in the system space info necessary
4461 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4462 * removing a chunk.
4463 */
4464 void check_system_chunk(struct btrfs_trans_handle *trans,
4465 struct btrfs_fs_info *fs_info, u64 type)
4466 {
4467 struct btrfs_space_info *info;
4468 u64 left;
4469 u64 thresh;
4470 int ret = 0;
4471 u64 num_devs;
4472
4473 /*
4474 * Needed because we can end up allocating a system chunk and for an
4475 * atomic and race free space reservation in the chunk block reserve.
4476 */
4477 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4478
4479 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4480 spin_lock(&info->lock);
4481 left = info->total_bytes - btrfs_space_info_used(info, true);
4482 spin_unlock(&info->lock);
4483
4484 num_devs = get_profile_num_devs(fs_info, type);
4485
4486 /* num_devs device items to update and 1 chunk item to add or remove */
4487 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4488 btrfs_calc_trans_metadata_size(fs_info, 1);
4489
4490 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4491 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4492 left, thresh, type);
4493 dump_space_info(fs_info, info, 0, 0);
4494 }
4495
4496 if (left < thresh) {
4497 u64 flags = btrfs_system_alloc_profile(fs_info);
4498
4499 /*
4500 * Ignore failure to create system chunk. We might end up not
4501 * needing it, as we might not need to COW all nodes/leafs from
4502 * the paths we visit in the chunk tree (they were already COWed
4503 * or created in the current transaction for example).
4504 */
4505 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4506 }
4507
4508 if (!ret) {
4509 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4510 &fs_info->chunk_block_rsv,
4511 thresh, BTRFS_RESERVE_NO_FLUSH);
4512 if (!ret)
4513 trans->chunk_bytes_reserved += thresh;
4514 }
4515 }
4516
4517 /*
4518 * If force is CHUNK_ALLOC_FORCE:
4519 * - return 1 if it successfully allocates a chunk,
4520 * - return errors including -ENOSPC otherwise.
4521 * If force is NOT CHUNK_ALLOC_FORCE:
4522 * - return 0 if it doesn't need to allocate a new chunk,
4523 * - return 1 if it successfully allocates a chunk,
4524 * - return errors including -ENOSPC otherwise.
4525 */
4526 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4527 struct btrfs_fs_info *fs_info, u64 flags, int force)
4528 {
4529 struct btrfs_space_info *space_info;
4530 int wait_for_alloc = 0;
4531 int ret = 0;
4532
4533 /* Don't re-enter if we're already allocating a chunk */
4534 if (trans->allocating_chunk)
4535 return -ENOSPC;
4536
4537 space_info = __find_space_info(fs_info, flags);
4538 if (!space_info) {
4539 ret = create_space_info(fs_info, flags, &space_info);
4540 if (ret)
4541 return ret;
4542 }
4543
4544 again:
4545 spin_lock(&space_info->lock);
4546 if (force < space_info->force_alloc)
4547 force = space_info->force_alloc;
4548 if (space_info->full) {
4549 if (should_alloc_chunk(fs_info, space_info, force))
4550 ret = -ENOSPC;
4551 else
4552 ret = 0;
4553 spin_unlock(&space_info->lock);
4554 return ret;
4555 }
4556
4557 if (!should_alloc_chunk(fs_info, space_info, force)) {
4558 spin_unlock(&space_info->lock);
4559 return 0;
4560 } else if (space_info->chunk_alloc) {
4561 wait_for_alloc = 1;
4562 } else {
4563 space_info->chunk_alloc = 1;
4564 }
4565
4566 spin_unlock(&space_info->lock);
4567
4568 mutex_lock(&fs_info->chunk_mutex);
4569
4570 /*
4571 * The chunk_mutex is held throughout the entirety of a chunk
4572 * allocation, so once we've acquired the chunk_mutex we know that the
4573 * other guy is done and we need to recheck and see if we should
4574 * allocate.
4575 */
4576 if (wait_for_alloc) {
4577 mutex_unlock(&fs_info->chunk_mutex);
4578 wait_for_alloc = 0;
4579 goto again;
4580 }
4581
4582 trans->allocating_chunk = true;
4583
4584 /*
4585 * If we have mixed data/metadata chunks we want to make sure we keep
4586 * allocating mixed chunks instead of individual chunks.
4587 */
4588 if (btrfs_mixed_space_info(space_info))
4589 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4590
4591 /*
4592 * if we're doing a data chunk, go ahead and make sure that
4593 * we keep a reasonable number of metadata chunks allocated in the
4594 * FS as well.
4595 */
4596 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4597 fs_info->data_chunk_allocations++;
4598 if (!(fs_info->data_chunk_allocations %
4599 fs_info->metadata_ratio))
4600 force_metadata_allocation(fs_info);
4601 }
4602
4603 /*
4604 * Check if we have enough space in SYSTEM chunk because we may need
4605 * to update devices.
4606 */
4607 check_system_chunk(trans, fs_info, flags);
4608
4609 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4610 trans->allocating_chunk = false;
4611
4612 spin_lock(&space_info->lock);
4613 if (ret < 0 && ret != -ENOSPC)
4614 goto out;
4615 if (ret)
4616 space_info->full = 1;
4617 else
4618 ret = 1;
4619
4620 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4621 out:
4622 space_info->chunk_alloc = 0;
4623 spin_unlock(&space_info->lock);
4624 mutex_unlock(&fs_info->chunk_mutex);
4625 /*
4626 * When we allocate a new chunk we reserve space in the chunk block
4627 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4628 * add new nodes/leafs to it if we end up needing to do it when
4629 * inserting the chunk item and updating device items as part of the
4630 * second phase of chunk allocation, performed by
4631 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4632 * large number of new block groups to create in our transaction
4633 * handle's new_bgs list to avoid exhausting the chunk block reserve
4634 * in extreme cases - like having a single transaction create many new
4635 * block groups when starting to write out the free space caches of all
4636 * the block groups that were made dirty during the lifetime of the
4637 * transaction.
4638 */
4639 if (trans->can_flush_pending_bgs &&
4640 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4641 btrfs_create_pending_block_groups(trans, fs_info);
4642 btrfs_trans_release_chunk_metadata(trans);
4643 }
4644 return ret;
4645 }
4646
4647 static int can_overcommit(struct btrfs_fs_info *fs_info,
4648 struct btrfs_space_info *space_info, u64 bytes,
4649 enum btrfs_reserve_flush_enum flush,
4650 bool system_chunk)
4651 {
4652 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4653 u64 profile;
4654 u64 space_size;
4655 u64 avail;
4656 u64 used;
4657
4658 /* Don't overcommit when in mixed mode. */
4659 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4660 return 0;
4661
4662 if (system_chunk)
4663 profile = btrfs_system_alloc_profile(fs_info);
4664 else
4665 profile = btrfs_metadata_alloc_profile(fs_info);
4666
4667 used = btrfs_space_info_used(space_info, false);
4668
4669 /*
4670 * We only want to allow over committing if we have lots of actual space
4671 * free, but if we don't have enough space to handle the global reserve
4672 * space then we could end up having a real enospc problem when trying
4673 * to allocate a chunk or some other such important allocation.
4674 */
4675 spin_lock(&global_rsv->lock);
4676 space_size = calc_global_rsv_need_space(global_rsv);
4677 spin_unlock(&global_rsv->lock);
4678 if (used + space_size >= space_info->total_bytes)
4679 return 0;
4680
4681 used += space_info->bytes_may_use;
4682
4683 avail = atomic64_read(&fs_info->free_chunk_space);
4684
4685 /*
4686 * If we have dup, raid1 or raid10 then only half of the free
4687 * space is actually useable. For raid56, the space info used
4688 * doesn't include the parity drive, so we don't have to
4689 * change the math
4690 */
4691 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4692 BTRFS_BLOCK_GROUP_RAID1 |
4693 BTRFS_BLOCK_GROUP_RAID10))
4694 avail >>= 1;
4695
4696 /*
4697 * If we aren't flushing all things, let us overcommit up to
4698 * 1/2th of the space. If we can flush, don't let us overcommit
4699 * too much, let it overcommit up to 1/8 of the space.
4700 */
4701 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4702 avail >>= 3;
4703 else
4704 avail >>= 1;
4705
4706 if (used + bytes < space_info->total_bytes + avail)
4707 return 1;
4708 return 0;
4709 }
4710
4711 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4712 unsigned long nr_pages, int nr_items)
4713 {
4714 struct super_block *sb = fs_info->sb;
4715
4716 if (down_read_trylock(&sb->s_umount)) {
4717 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4718 up_read(&sb->s_umount);
4719 } else {
4720 /*
4721 * We needn't worry the filesystem going from r/w to r/o though
4722 * we don't acquire ->s_umount mutex, because the filesystem
4723 * should guarantee the delalloc inodes list be empty after
4724 * the filesystem is readonly(all dirty pages are written to
4725 * the disk).
4726 */
4727 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4728 if (!current->journal_info)
4729 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4730 }
4731 }
4732
4733 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4734 u64 to_reclaim)
4735 {
4736 u64 bytes;
4737 int nr;
4738
4739 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4740 nr = (int)div64_u64(to_reclaim, bytes);
4741 if (!nr)
4742 nr = 1;
4743 return nr;
4744 }
4745
4746 #define EXTENT_SIZE_PER_ITEM SZ_256K
4747
4748 /*
4749 * shrink metadata reservation for delalloc
4750 */
4751 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4752 u64 orig, bool wait_ordered)
4753 {
4754 struct btrfs_block_rsv *block_rsv;
4755 struct btrfs_space_info *space_info;
4756 struct btrfs_trans_handle *trans;
4757 u64 delalloc_bytes;
4758 u64 max_reclaim;
4759 long time_left;
4760 unsigned long nr_pages;
4761 int loops;
4762 int items;
4763 enum btrfs_reserve_flush_enum flush;
4764
4765 /* Calc the number of the pages we need flush for space reservation */
4766 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4767 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4768
4769 trans = (struct btrfs_trans_handle *)current->journal_info;
4770 block_rsv = &fs_info->delalloc_block_rsv;
4771 space_info = block_rsv->space_info;
4772
4773 delalloc_bytes = percpu_counter_sum_positive(
4774 &fs_info->delalloc_bytes);
4775 if (delalloc_bytes == 0) {
4776 if (trans)
4777 return;
4778 if (wait_ordered)
4779 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4780 return;
4781 }
4782
4783 loops = 0;
4784 while (delalloc_bytes && loops < 3) {
4785 max_reclaim = min(delalloc_bytes, to_reclaim);
4786 nr_pages = max_reclaim >> PAGE_SHIFT;
4787 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4788 /*
4789 * We need to wait for the async pages to actually start before
4790 * we do anything.
4791 */
4792 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4793 if (!max_reclaim)
4794 goto skip_async;
4795
4796 if (max_reclaim <= nr_pages)
4797 max_reclaim = 0;
4798 else
4799 max_reclaim -= nr_pages;
4800
4801 wait_event(fs_info->async_submit_wait,
4802 atomic_read(&fs_info->async_delalloc_pages) <=
4803 (int)max_reclaim);
4804 skip_async:
4805 if (!trans)
4806 flush = BTRFS_RESERVE_FLUSH_ALL;
4807 else
4808 flush = BTRFS_RESERVE_NO_FLUSH;
4809 spin_lock(&space_info->lock);
4810 if (can_overcommit(fs_info, space_info, orig, flush, false)) {
4811 spin_unlock(&space_info->lock);
4812 break;
4813 }
4814 if (list_empty(&space_info->tickets) &&
4815 list_empty(&space_info->priority_tickets)) {
4816 spin_unlock(&space_info->lock);
4817 break;
4818 }
4819 spin_unlock(&space_info->lock);
4820
4821 loops++;
4822 if (wait_ordered && !trans) {
4823 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4824 } else {
4825 time_left = schedule_timeout_killable(1);
4826 if (time_left)
4827 break;
4828 }
4829 delalloc_bytes = percpu_counter_sum_positive(
4830 &fs_info->delalloc_bytes);
4831 }
4832 }
4833
4834 /**
4835 * maybe_commit_transaction - possibly commit the transaction if its ok to
4836 * @root - the root we're allocating for
4837 * @bytes - the number of bytes we want to reserve
4838 * @force - force the commit
4839 *
4840 * This will check to make sure that committing the transaction will actually
4841 * get us somewhere and then commit the transaction if it does. Otherwise it
4842 * will return -ENOSPC.
4843 */
4844 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4845 struct btrfs_space_info *space_info,
4846 u64 bytes, int force)
4847 {
4848 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4849 struct btrfs_trans_handle *trans;
4850
4851 trans = (struct btrfs_trans_handle *)current->journal_info;
4852 if (trans)
4853 return -EAGAIN;
4854
4855 if (force)
4856 goto commit;
4857
4858 /* See if there is enough pinned space to make this reservation */
4859 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4860 bytes) >= 0)
4861 goto commit;
4862
4863 /*
4864 * See if there is some space in the delayed insertion reservation for
4865 * this reservation.
4866 */
4867 if (space_info != delayed_rsv->space_info)
4868 return -ENOSPC;
4869
4870 spin_lock(&delayed_rsv->lock);
4871 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4872 bytes - delayed_rsv->size) < 0) {
4873 spin_unlock(&delayed_rsv->lock);
4874 return -ENOSPC;
4875 }
4876 spin_unlock(&delayed_rsv->lock);
4877
4878 commit:
4879 trans = btrfs_join_transaction(fs_info->extent_root);
4880 if (IS_ERR(trans))
4881 return -ENOSPC;
4882
4883 return btrfs_commit_transaction(trans);
4884 }
4885
4886 struct reserve_ticket {
4887 u64 bytes;
4888 int error;
4889 struct list_head list;
4890 wait_queue_head_t wait;
4891 };
4892
4893 static int flush_space(struct btrfs_fs_info *fs_info,
4894 struct btrfs_space_info *space_info, u64 num_bytes,
4895 u64 orig_bytes, int state)
4896 {
4897 struct btrfs_root *root = fs_info->extent_root;
4898 struct btrfs_trans_handle *trans;
4899 int nr;
4900 int ret = 0;
4901
4902 switch (state) {
4903 case FLUSH_DELAYED_ITEMS_NR:
4904 case FLUSH_DELAYED_ITEMS:
4905 if (state == FLUSH_DELAYED_ITEMS_NR)
4906 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4907 else
4908 nr = -1;
4909
4910 trans = btrfs_join_transaction(root);
4911 if (IS_ERR(trans)) {
4912 ret = PTR_ERR(trans);
4913 break;
4914 }
4915 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4916 btrfs_end_transaction(trans);
4917 break;
4918 case FLUSH_DELALLOC:
4919 case FLUSH_DELALLOC_WAIT:
4920 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
4921 state == FLUSH_DELALLOC_WAIT);
4922 break;
4923 case ALLOC_CHUNK:
4924 trans = btrfs_join_transaction(root);
4925 if (IS_ERR(trans)) {
4926 ret = PTR_ERR(trans);
4927 break;
4928 }
4929 ret = do_chunk_alloc(trans, fs_info,
4930 btrfs_metadata_alloc_profile(fs_info),
4931 CHUNK_ALLOC_NO_FORCE);
4932 btrfs_end_transaction(trans);
4933 if (ret > 0 || ret == -ENOSPC)
4934 ret = 0;
4935 break;
4936 case COMMIT_TRANS:
4937 ret = may_commit_transaction(fs_info, space_info,
4938 orig_bytes, 0);
4939 break;
4940 default:
4941 ret = -ENOSPC;
4942 break;
4943 }
4944
4945 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4946 orig_bytes, state, ret);
4947 return ret;
4948 }
4949
4950 static inline u64
4951 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4952 struct btrfs_space_info *space_info,
4953 bool system_chunk)
4954 {
4955 struct reserve_ticket *ticket;
4956 u64 used;
4957 u64 expected;
4958 u64 to_reclaim = 0;
4959
4960 list_for_each_entry(ticket, &space_info->tickets, list)
4961 to_reclaim += ticket->bytes;
4962 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4963 to_reclaim += ticket->bytes;
4964 if (to_reclaim)
4965 return to_reclaim;
4966
4967 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4968 if (can_overcommit(fs_info, space_info, to_reclaim,
4969 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4970 return 0;
4971
4972 used = btrfs_space_info_used(space_info, true);
4973
4974 if (can_overcommit(fs_info, space_info, SZ_1M,
4975 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4976 expected = div_factor_fine(space_info->total_bytes, 95);
4977 else
4978 expected = div_factor_fine(space_info->total_bytes, 90);
4979
4980 if (used > expected)
4981 to_reclaim = used - expected;
4982 else
4983 to_reclaim = 0;
4984 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4985 space_info->bytes_reserved);
4986 return to_reclaim;
4987 }
4988
4989 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4990 struct btrfs_space_info *space_info,
4991 u64 used, bool system_chunk)
4992 {
4993 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4994
4995 /* If we're just plain full then async reclaim just slows us down. */
4996 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4997 return 0;
4998
4999 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5000 system_chunk))
5001 return 0;
5002
5003 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5004 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5005 }
5006
5007 static void wake_all_tickets(struct list_head *head)
5008 {
5009 struct reserve_ticket *ticket;
5010
5011 while (!list_empty(head)) {
5012 ticket = list_first_entry(head, struct reserve_ticket, list);
5013 list_del_init(&ticket->list);
5014 ticket->error = -ENOSPC;
5015 wake_up(&ticket->wait);
5016 }
5017 }
5018
5019 /*
5020 * This is for normal flushers, we can wait all goddamned day if we want to. We
5021 * will loop and continuously try to flush as long as we are making progress.
5022 * We count progress as clearing off tickets each time we have to loop.
5023 */
5024 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5025 {
5026 struct btrfs_fs_info *fs_info;
5027 struct btrfs_space_info *space_info;
5028 u64 to_reclaim;
5029 int flush_state;
5030 int commit_cycles = 0;
5031 u64 last_tickets_id;
5032
5033 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5034 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5035
5036 spin_lock(&space_info->lock);
5037 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5038 false);
5039 if (!to_reclaim) {
5040 space_info->flush = 0;
5041 spin_unlock(&space_info->lock);
5042 return;
5043 }
5044 last_tickets_id = space_info->tickets_id;
5045 spin_unlock(&space_info->lock);
5046
5047 flush_state = FLUSH_DELAYED_ITEMS_NR;
5048 do {
5049 struct reserve_ticket *ticket;
5050 int ret;
5051
5052 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5053 flush_state);
5054 spin_lock(&space_info->lock);
5055 if (list_empty(&space_info->tickets)) {
5056 space_info->flush = 0;
5057 spin_unlock(&space_info->lock);
5058 return;
5059 }
5060 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5061 space_info,
5062 false);
5063 ticket = list_first_entry(&space_info->tickets,
5064 struct reserve_ticket, list);
5065 if (last_tickets_id == space_info->tickets_id) {
5066 flush_state++;
5067 } else {
5068 last_tickets_id = space_info->tickets_id;
5069 flush_state = FLUSH_DELAYED_ITEMS_NR;
5070 if (commit_cycles)
5071 commit_cycles--;
5072 }
5073
5074 if (flush_state > COMMIT_TRANS) {
5075 commit_cycles++;
5076 if (commit_cycles > 2) {
5077 wake_all_tickets(&space_info->tickets);
5078 space_info->flush = 0;
5079 } else {
5080 flush_state = FLUSH_DELAYED_ITEMS_NR;
5081 }
5082 }
5083 spin_unlock(&space_info->lock);
5084 } while (flush_state <= COMMIT_TRANS);
5085 }
5086
5087 void btrfs_init_async_reclaim_work(struct work_struct *work)
5088 {
5089 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5090 }
5091
5092 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5093 struct btrfs_space_info *space_info,
5094 struct reserve_ticket *ticket)
5095 {
5096 u64 to_reclaim;
5097 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5098
5099 spin_lock(&space_info->lock);
5100 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5101 false);
5102 if (!to_reclaim) {
5103 spin_unlock(&space_info->lock);
5104 return;
5105 }
5106 spin_unlock(&space_info->lock);
5107
5108 do {
5109 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5110 flush_state);
5111 flush_state++;
5112 spin_lock(&space_info->lock);
5113 if (ticket->bytes == 0) {
5114 spin_unlock(&space_info->lock);
5115 return;
5116 }
5117 spin_unlock(&space_info->lock);
5118
5119 /*
5120 * Priority flushers can't wait on delalloc without
5121 * deadlocking.
5122 */
5123 if (flush_state == FLUSH_DELALLOC ||
5124 flush_state == FLUSH_DELALLOC_WAIT)
5125 flush_state = ALLOC_CHUNK;
5126 } while (flush_state < COMMIT_TRANS);
5127 }
5128
5129 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5130 struct btrfs_space_info *space_info,
5131 struct reserve_ticket *ticket, u64 orig_bytes)
5132
5133 {
5134 DEFINE_WAIT(wait);
5135 int ret = 0;
5136
5137 spin_lock(&space_info->lock);
5138 while (ticket->bytes > 0 && ticket->error == 0) {
5139 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5140 if (ret) {
5141 ret = -EINTR;
5142 break;
5143 }
5144 spin_unlock(&space_info->lock);
5145
5146 schedule();
5147
5148 finish_wait(&ticket->wait, &wait);
5149 spin_lock(&space_info->lock);
5150 }
5151 if (!ret)
5152 ret = ticket->error;
5153 if (!list_empty(&ticket->list))
5154 list_del_init(&ticket->list);
5155 if (ticket->bytes && ticket->bytes < orig_bytes) {
5156 u64 num_bytes = orig_bytes - ticket->bytes;
5157 space_info->bytes_may_use -= num_bytes;
5158 trace_btrfs_space_reservation(fs_info, "space_info",
5159 space_info->flags, num_bytes, 0);
5160 }
5161 spin_unlock(&space_info->lock);
5162
5163 return ret;
5164 }
5165
5166 /**
5167 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5168 * @root - the root we're allocating for
5169 * @space_info - the space info we want to allocate from
5170 * @orig_bytes - the number of bytes we want
5171 * @flush - whether or not we can flush to make our reservation
5172 *
5173 * This will reserve orig_bytes number of bytes from the space info associated
5174 * with the block_rsv. If there is not enough space it will make an attempt to
5175 * flush out space to make room. It will do this by flushing delalloc if
5176 * possible or committing the transaction. If flush is 0 then no attempts to
5177 * regain reservations will be made and this will fail if there is not enough
5178 * space already.
5179 */
5180 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5181 struct btrfs_space_info *space_info,
5182 u64 orig_bytes,
5183 enum btrfs_reserve_flush_enum flush,
5184 bool system_chunk)
5185 {
5186 struct reserve_ticket ticket;
5187 u64 used;
5188 int ret = 0;
5189
5190 ASSERT(orig_bytes);
5191 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5192
5193 spin_lock(&space_info->lock);
5194 ret = -ENOSPC;
5195 used = btrfs_space_info_used(space_info, true);
5196
5197 /*
5198 * If we have enough space then hooray, make our reservation and carry
5199 * on. If not see if we can overcommit, and if we can, hooray carry on.
5200 * If not things get more complicated.
5201 */
5202 if (used + orig_bytes <= space_info->total_bytes) {
5203 space_info->bytes_may_use += orig_bytes;
5204 trace_btrfs_space_reservation(fs_info, "space_info",
5205 space_info->flags, orig_bytes, 1);
5206 ret = 0;
5207 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5208 system_chunk)) {
5209 space_info->bytes_may_use += orig_bytes;
5210 trace_btrfs_space_reservation(fs_info, "space_info",
5211 space_info->flags, orig_bytes, 1);
5212 ret = 0;
5213 }
5214
5215 /*
5216 * If we couldn't make a reservation then setup our reservation ticket
5217 * and kick the async worker if it's not already running.
5218 *
5219 * If we are a priority flusher then we just need to add our ticket to
5220 * the list and we will do our own flushing further down.
5221 */
5222 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5223 ticket.bytes = orig_bytes;
5224 ticket.error = 0;
5225 init_waitqueue_head(&ticket.wait);
5226 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5227 list_add_tail(&ticket.list, &space_info->tickets);
5228 if (!space_info->flush) {
5229 space_info->flush = 1;
5230 trace_btrfs_trigger_flush(fs_info,
5231 space_info->flags,
5232 orig_bytes, flush,
5233 "enospc");
5234 queue_work(system_unbound_wq,
5235 &fs_info->async_reclaim_work);
5236 }
5237 } else {
5238 list_add_tail(&ticket.list,
5239 &space_info->priority_tickets);
5240 }
5241 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5242 used += orig_bytes;
5243 /*
5244 * We will do the space reservation dance during log replay,
5245 * which means we won't have fs_info->fs_root set, so don't do
5246 * the async reclaim as we will panic.
5247 */
5248 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5249 need_do_async_reclaim(fs_info, space_info,
5250 used, system_chunk) &&
5251 !work_busy(&fs_info->async_reclaim_work)) {
5252 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5253 orig_bytes, flush, "preempt");
5254 queue_work(system_unbound_wq,
5255 &fs_info->async_reclaim_work);
5256 }
5257 }
5258 spin_unlock(&space_info->lock);
5259 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5260 return ret;
5261
5262 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5263 return wait_reserve_ticket(fs_info, space_info, &ticket,
5264 orig_bytes);
5265
5266 ret = 0;
5267 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5268 spin_lock(&space_info->lock);
5269 if (ticket.bytes) {
5270 if (ticket.bytes < orig_bytes) {
5271 u64 num_bytes = orig_bytes - ticket.bytes;
5272 space_info->bytes_may_use -= num_bytes;
5273 trace_btrfs_space_reservation(fs_info, "space_info",
5274 space_info->flags,
5275 num_bytes, 0);
5276
5277 }
5278 list_del_init(&ticket.list);
5279 ret = -ENOSPC;
5280 }
5281 spin_unlock(&space_info->lock);
5282 ASSERT(list_empty(&ticket.list));
5283 return ret;
5284 }
5285
5286 /**
5287 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5288 * @root - the root we're allocating for
5289 * @block_rsv - the block_rsv we're allocating for
5290 * @orig_bytes - the number of bytes we want
5291 * @flush - whether or not we can flush to make our reservation
5292 *
5293 * This will reserve orgi_bytes number of bytes from the space info associated
5294 * with the block_rsv. If there is not enough space it will make an attempt to
5295 * flush out space to make room. It will do this by flushing delalloc if
5296 * possible or committing the transaction. If flush is 0 then no attempts to
5297 * regain reservations will be made and this will fail if there is not enough
5298 * space already.
5299 */
5300 static int reserve_metadata_bytes(struct btrfs_root *root,
5301 struct btrfs_block_rsv *block_rsv,
5302 u64 orig_bytes,
5303 enum btrfs_reserve_flush_enum flush)
5304 {
5305 struct btrfs_fs_info *fs_info = root->fs_info;
5306 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5307 int ret;
5308 bool system_chunk = (root == fs_info->chunk_root);
5309
5310 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5311 orig_bytes, flush, system_chunk);
5312 if (ret == -ENOSPC &&
5313 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5314 if (block_rsv != global_rsv &&
5315 !block_rsv_use_bytes(global_rsv, orig_bytes))
5316 ret = 0;
5317 }
5318 if (ret == -ENOSPC)
5319 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5320 block_rsv->space_info->flags,
5321 orig_bytes, 1);
5322 return ret;
5323 }
5324
5325 static struct btrfs_block_rsv *get_block_rsv(
5326 const struct btrfs_trans_handle *trans,
5327 const struct btrfs_root *root)
5328 {
5329 struct btrfs_fs_info *fs_info = root->fs_info;
5330 struct btrfs_block_rsv *block_rsv = NULL;
5331
5332 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5333 (root == fs_info->csum_root && trans->adding_csums) ||
5334 (root == fs_info->uuid_root))
5335 block_rsv = trans->block_rsv;
5336
5337 if (!block_rsv)
5338 block_rsv = root->block_rsv;
5339
5340 if (!block_rsv)
5341 block_rsv = &fs_info->empty_block_rsv;
5342
5343 return block_rsv;
5344 }
5345
5346 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5347 u64 num_bytes)
5348 {
5349 int ret = -ENOSPC;
5350 spin_lock(&block_rsv->lock);
5351 if (block_rsv->reserved >= num_bytes) {
5352 block_rsv->reserved -= num_bytes;
5353 if (block_rsv->reserved < block_rsv->size)
5354 block_rsv->full = 0;
5355 ret = 0;
5356 }
5357 spin_unlock(&block_rsv->lock);
5358 return ret;
5359 }
5360
5361 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5362 u64 num_bytes, int update_size)
5363 {
5364 spin_lock(&block_rsv->lock);
5365 block_rsv->reserved += num_bytes;
5366 if (update_size)
5367 block_rsv->size += num_bytes;
5368 else if (block_rsv->reserved >= block_rsv->size)
5369 block_rsv->full = 1;
5370 spin_unlock(&block_rsv->lock);
5371 }
5372
5373 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5374 struct btrfs_block_rsv *dest, u64 num_bytes,
5375 int min_factor)
5376 {
5377 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5378 u64 min_bytes;
5379
5380 if (global_rsv->space_info != dest->space_info)
5381 return -ENOSPC;
5382
5383 spin_lock(&global_rsv->lock);
5384 min_bytes = div_factor(global_rsv->size, min_factor);
5385 if (global_rsv->reserved < min_bytes + num_bytes) {
5386 spin_unlock(&global_rsv->lock);
5387 return -ENOSPC;
5388 }
5389 global_rsv->reserved -= num_bytes;
5390 if (global_rsv->reserved < global_rsv->size)
5391 global_rsv->full = 0;
5392 spin_unlock(&global_rsv->lock);
5393
5394 block_rsv_add_bytes(dest, num_bytes, 1);
5395 return 0;
5396 }
5397
5398 /*
5399 * This is for space we already have accounted in space_info->bytes_may_use, so
5400 * basically when we're returning space from block_rsv's.
5401 */
5402 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5403 struct btrfs_space_info *space_info,
5404 u64 num_bytes)
5405 {
5406 struct reserve_ticket *ticket;
5407 struct list_head *head;
5408 u64 used;
5409 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5410 bool check_overcommit = false;
5411
5412 spin_lock(&space_info->lock);
5413 head = &space_info->priority_tickets;
5414
5415 /*
5416 * If we are over our limit then we need to check and see if we can
5417 * overcommit, and if we can't then we just need to free up our space
5418 * and not satisfy any requests.
5419 */
5420 used = btrfs_space_info_used(space_info, true);
5421 if (used - num_bytes >= space_info->total_bytes)
5422 check_overcommit = true;
5423 again:
5424 while (!list_empty(head) && num_bytes) {
5425 ticket = list_first_entry(head, struct reserve_ticket,
5426 list);
5427 /*
5428 * We use 0 bytes because this space is already reserved, so
5429 * adding the ticket space would be a double count.
5430 */
5431 if (check_overcommit &&
5432 !can_overcommit(fs_info, space_info, 0, flush, false))
5433 break;
5434 if (num_bytes >= ticket->bytes) {
5435 list_del_init(&ticket->list);
5436 num_bytes -= ticket->bytes;
5437 ticket->bytes = 0;
5438 space_info->tickets_id++;
5439 wake_up(&ticket->wait);
5440 } else {
5441 ticket->bytes -= num_bytes;
5442 num_bytes = 0;
5443 }
5444 }
5445
5446 if (num_bytes && head == &space_info->priority_tickets) {
5447 head = &space_info->tickets;
5448 flush = BTRFS_RESERVE_FLUSH_ALL;
5449 goto again;
5450 }
5451 space_info->bytes_may_use -= num_bytes;
5452 trace_btrfs_space_reservation(fs_info, "space_info",
5453 space_info->flags, num_bytes, 0);
5454 spin_unlock(&space_info->lock);
5455 }
5456
5457 /*
5458 * This is for newly allocated space that isn't accounted in
5459 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5460 * we use this helper.
5461 */
5462 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5463 struct btrfs_space_info *space_info,
5464 u64 num_bytes)
5465 {
5466 struct reserve_ticket *ticket;
5467 struct list_head *head = &space_info->priority_tickets;
5468
5469 again:
5470 while (!list_empty(head) && num_bytes) {
5471 ticket = list_first_entry(head, struct reserve_ticket,
5472 list);
5473 if (num_bytes >= ticket->bytes) {
5474 trace_btrfs_space_reservation(fs_info, "space_info",
5475 space_info->flags,
5476 ticket->bytes, 1);
5477 list_del_init(&ticket->list);
5478 num_bytes -= ticket->bytes;
5479 space_info->bytes_may_use += ticket->bytes;
5480 ticket->bytes = 0;
5481 space_info->tickets_id++;
5482 wake_up(&ticket->wait);
5483 } else {
5484 trace_btrfs_space_reservation(fs_info, "space_info",
5485 space_info->flags,
5486 num_bytes, 1);
5487 space_info->bytes_may_use += num_bytes;
5488 ticket->bytes -= num_bytes;
5489 num_bytes = 0;
5490 }
5491 }
5492
5493 if (num_bytes && head == &space_info->priority_tickets) {
5494 head = &space_info->tickets;
5495 goto again;
5496 }
5497 }
5498
5499 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5500 struct btrfs_block_rsv *block_rsv,
5501 struct btrfs_block_rsv *dest, u64 num_bytes)
5502 {
5503 struct btrfs_space_info *space_info = block_rsv->space_info;
5504
5505 spin_lock(&block_rsv->lock);
5506 if (num_bytes == (u64)-1)
5507 num_bytes = block_rsv->size;
5508 block_rsv->size -= num_bytes;
5509 if (block_rsv->reserved >= block_rsv->size) {
5510 num_bytes = block_rsv->reserved - block_rsv->size;
5511 block_rsv->reserved = block_rsv->size;
5512 block_rsv->full = 1;
5513 } else {
5514 num_bytes = 0;
5515 }
5516 spin_unlock(&block_rsv->lock);
5517
5518 if (num_bytes > 0) {
5519 if (dest) {
5520 spin_lock(&dest->lock);
5521 if (!dest->full) {
5522 u64 bytes_to_add;
5523
5524 bytes_to_add = dest->size - dest->reserved;
5525 bytes_to_add = min(num_bytes, bytes_to_add);
5526 dest->reserved += bytes_to_add;
5527 if (dest->reserved >= dest->size)
5528 dest->full = 1;
5529 num_bytes -= bytes_to_add;
5530 }
5531 spin_unlock(&dest->lock);
5532 }
5533 if (num_bytes)
5534 space_info_add_old_bytes(fs_info, space_info,
5535 num_bytes);
5536 }
5537 }
5538
5539 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5540 struct btrfs_block_rsv *dst, u64 num_bytes,
5541 int update_size)
5542 {
5543 int ret;
5544
5545 ret = block_rsv_use_bytes(src, num_bytes);
5546 if (ret)
5547 return ret;
5548
5549 block_rsv_add_bytes(dst, num_bytes, update_size);
5550 return 0;
5551 }
5552
5553 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5554 {
5555 memset(rsv, 0, sizeof(*rsv));
5556 spin_lock_init(&rsv->lock);
5557 rsv->type = type;
5558 }
5559
5560 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5561 unsigned short type)
5562 {
5563 struct btrfs_block_rsv *block_rsv;
5564
5565 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5566 if (!block_rsv)
5567 return NULL;
5568
5569 btrfs_init_block_rsv(block_rsv, type);
5570 block_rsv->space_info = __find_space_info(fs_info,
5571 BTRFS_BLOCK_GROUP_METADATA);
5572 return block_rsv;
5573 }
5574
5575 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5576 struct btrfs_block_rsv *rsv)
5577 {
5578 if (!rsv)
5579 return;
5580 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5581 kfree(rsv);
5582 }
5583
5584 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5585 {
5586 kfree(rsv);
5587 }
5588
5589 int btrfs_block_rsv_add(struct btrfs_root *root,
5590 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5591 enum btrfs_reserve_flush_enum flush)
5592 {
5593 int ret;
5594
5595 if (num_bytes == 0)
5596 return 0;
5597
5598 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5599 if (!ret) {
5600 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5601 return 0;
5602 }
5603
5604 return ret;
5605 }
5606
5607 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5608 {
5609 u64 num_bytes = 0;
5610 int ret = -ENOSPC;
5611
5612 if (!block_rsv)
5613 return 0;
5614
5615 spin_lock(&block_rsv->lock);
5616 num_bytes = div_factor(block_rsv->size, min_factor);
5617 if (block_rsv->reserved >= num_bytes)
5618 ret = 0;
5619 spin_unlock(&block_rsv->lock);
5620
5621 return ret;
5622 }
5623
5624 int btrfs_block_rsv_refill(struct btrfs_root *root,
5625 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5626 enum btrfs_reserve_flush_enum flush)
5627 {
5628 u64 num_bytes = 0;
5629 int ret = -ENOSPC;
5630
5631 if (!block_rsv)
5632 return 0;
5633
5634 spin_lock(&block_rsv->lock);
5635 num_bytes = min_reserved;
5636 if (block_rsv->reserved >= num_bytes)
5637 ret = 0;
5638 else
5639 num_bytes -= block_rsv->reserved;
5640 spin_unlock(&block_rsv->lock);
5641
5642 if (!ret)
5643 return 0;
5644
5645 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5646 if (!ret) {
5647 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5648 return 0;
5649 }
5650
5651 return ret;
5652 }
5653
5654 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5655 struct btrfs_block_rsv *block_rsv,
5656 u64 num_bytes)
5657 {
5658 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5659
5660 if (global_rsv == block_rsv ||
5661 block_rsv->space_info != global_rsv->space_info)
5662 global_rsv = NULL;
5663 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5664 }
5665
5666 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5667 {
5668 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5669 struct btrfs_space_info *sinfo = block_rsv->space_info;
5670 u64 num_bytes;
5671
5672 /*
5673 * The global block rsv is based on the size of the extent tree, the
5674 * checksum tree and the root tree. If the fs is empty we want to set
5675 * it to a minimal amount for safety.
5676 */
5677 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5678 btrfs_root_used(&fs_info->csum_root->root_item) +
5679 btrfs_root_used(&fs_info->tree_root->root_item);
5680 num_bytes = max_t(u64, num_bytes, SZ_16M);
5681
5682 spin_lock(&sinfo->lock);
5683 spin_lock(&block_rsv->lock);
5684
5685 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5686
5687 if (block_rsv->reserved < block_rsv->size) {
5688 num_bytes = btrfs_space_info_used(sinfo, true);
5689 if (sinfo->total_bytes > num_bytes) {
5690 num_bytes = sinfo->total_bytes - num_bytes;
5691 num_bytes = min(num_bytes,
5692 block_rsv->size - block_rsv->reserved);
5693 block_rsv->reserved += num_bytes;
5694 sinfo->bytes_may_use += num_bytes;
5695 trace_btrfs_space_reservation(fs_info, "space_info",
5696 sinfo->flags, num_bytes,
5697 1);
5698 }
5699 } else if (block_rsv->reserved > block_rsv->size) {
5700 num_bytes = block_rsv->reserved - block_rsv->size;
5701 sinfo->bytes_may_use -= num_bytes;
5702 trace_btrfs_space_reservation(fs_info, "space_info",
5703 sinfo->flags, num_bytes, 0);
5704 block_rsv->reserved = block_rsv->size;
5705 }
5706
5707 if (block_rsv->reserved == block_rsv->size)
5708 block_rsv->full = 1;
5709 else
5710 block_rsv->full = 0;
5711
5712 spin_unlock(&block_rsv->lock);
5713 spin_unlock(&sinfo->lock);
5714 }
5715
5716 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5717 {
5718 struct btrfs_space_info *space_info;
5719
5720 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5721 fs_info->chunk_block_rsv.space_info = space_info;
5722
5723 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5724 fs_info->global_block_rsv.space_info = space_info;
5725 fs_info->delalloc_block_rsv.space_info = space_info;
5726 fs_info->trans_block_rsv.space_info = space_info;
5727 fs_info->empty_block_rsv.space_info = space_info;
5728 fs_info->delayed_block_rsv.space_info = space_info;
5729
5730 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5731 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5732 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5733 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5734 if (fs_info->quota_root)
5735 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5736 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5737
5738 update_global_block_rsv(fs_info);
5739 }
5740
5741 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5742 {
5743 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5744 (u64)-1);
5745 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5746 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5747 WARN_ON(fs_info->trans_block_rsv.size > 0);
5748 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5749 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5750 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5751 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5752 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5753 }
5754
5755 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5756 struct btrfs_fs_info *fs_info)
5757 {
5758 if (!trans->block_rsv)
5759 return;
5760
5761 if (!trans->bytes_reserved)
5762 return;
5763
5764 trace_btrfs_space_reservation(fs_info, "transaction",
5765 trans->transid, trans->bytes_reserved, 0);
5766 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5767 trans->bytes_reserved);
5768 trans->bytes_reserved = 0;
5769 }
5770
5771 /*
5772 * To be called after all the new block groups attached to the transaction
5773 * handle have been created (btrfs_create_pending_block_groups()).
5774 */
5775 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5776 {
5777 struct btrfs_fs_info *fs_info = trans->fs_info;
5778
5779 if (!trans->chunk_bytes_reserved)
5780 return;
5781
5782 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5783
5784 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5785 trans->chunk_bytes_reserved);
5786 trans->chunk_bytes_reserved = 0;
5787 }
5788
5789 /* Can only return 0 or -ENOSPC */
5790 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5791 struct btrfs_inode *inode)
5792 {
5793 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5794 struct btrfs_root *root = inode->root;
5795 /*
5796 * We always use trans->block_rsv here as we will have reserved space
5797 * for our orphan when starting the transaction, using get_block_rsv()
5798 * here will sometimes make us choose the wrong block rsv as we could be
5799 * doing a reloc inode for a non refcounted root.
5800 */
5801 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5802 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5803
5804 /*
5805 * We need to hold space in order to delete our orphan item once we've
5806 * added it, so this takes the reservation so we can release it later
5807 * when we are truly done with the orphan item.
5808 */
5809 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5810
5811 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5812 num_bytes, 1);
5813 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5814 }
5815
5816 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5817 {
5818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5819 struct btrfs_root *root = inode->root;
5820 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5821
5822 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5823 num_bytes, 0);
5824 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5825 }
5826
5827 /*
5828 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5829 * root: the root of the parent directory
5830 * rsv: block reservation
5831 * items: the number of items that we need do reservation
5832 * qgroup_reserved: used to return the reserved size in qgroup
5833 *
5834 * This function is used to reserve the space for snapshot/subvolume
5835 * creation and deletion. Those operations are different with the
5836 * common file/directory operations, they change two fs/file trees
5837 * and root tree, the number of items that the qgroup reserves is
5838 * different with the free space reservation. So we can not use
5839 * the space reservation mechanism in start_transaction().
5840 */
5841 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5842 struct btrfs_block_rsv *rsv,
5843 int items,
5844 u64 *qgroup_reserved,
5845 bool use_global_rsv)
5846 {
5847 u64 num_bytes;
5848 int ret;
5849 struct btrfs_fs_info *fs_info = root->fs_info;
5850 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5851
5852 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5853 /* One for parent inode, two for dir entries */
5854 num_bytes = 3 * fs_info->nodesize;
5855 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5856 if (ret)
5857 return ret;
5858 } else {
5859 num_bytes = 0;
5860 }
5861
5862 *qgroup_reserved = num_bytes;
5863
5864 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5865 rsv->space_info = __find_space_info(fs_info,
5866 BTRFS_BLOCK_GROUP_METADATA);
5867 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5868 BTRFS_RESERVE_FLUSH_ALL);
5869
5870 if (ret == -ENOSPC && use_global_rsv)
5871 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5872
5873 if (ret && *qgroup_reserved)
5874 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5875
5876 return ret;
5877 }
5878
5879 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5880 struct btrfs_block_rsv *rsv)
5881 {
5882 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5883 }
5884
5885 /**
5886 * drop_outstanding_extent - drop an outstanding extent
5887 * @inode: the inode we're dropping the extent for
5888 * @num_bytes: the number of bytes we're releasing.
5889 *
5890 * This is called when we are freeing up an outstanding extent, either called
5891 * after an error or after an extent is written. This will return the number of
5892 * reserved extents that need to be freed. This must be called with
5893 * BTRFS_I(inode)->lock held.
5894 */
5895 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5896 u64 num_bytes)
5897 {
5898 unsigned drop_inode_space = 0;
5899 unsigned dropped_extents = 0;
5900 unsigned num_extents;
5901
5902 num_extents = count_max_extents(num_bytes);
5903 ASSERT(num_extents);
5904 ASSERT(inode->outstanding_extents >= num_extents);
5905 inode->outstanding_extents -= num_extents;
5906
5907 if (inode->outstanding_extents == 0 &&
5908 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5909 &inode->runtime_flags))
5910 drop_inode_space = 1;
5911
5912 /*
5913 * If we have more or the same amount of outstanding extents than we have
5914 * reserved then we need to leave the reserved extents count alone.
5915 */
5916 if (inode->outstanding_extents >= inode->reserved_extents)
5917 return drop_inode_space;
5918
5919 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5920 inode->reserved_extents -= dropped_extents;
5921 return dropped_extents + drop_inode_space;
5922 }
5923
5924 /**
5925 * calc_csum_metadata_size - return the amount of metadata space that must be
5926 * reserved/freed for the given bytes.
5927 * @inode: the inode we're manipulating
5928 * @num_bytes: the number of bytes in question
5929 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5930 *
5931 * This adjusts the number of csum_bytes in the inode and then returns the
5932 * correct amount of metadata that must either be reserved or freed. We
5933 * calculate how many checksums we can fit into one leaf and then divide the
5934 * number of bytes that will need to be checksumed by this value to figure out
5935 * how many checksums will be required. If we are adding bytes then the number
5936 * may go up and we will return the number of additional bytes that must be
5937 * reserved. If it is going down we will return the number of bytes that must
5938 * be freed.
5939 *
5940 * This must be called with BTRFS_I(inode)->lock held.
5941 */
5942 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5943 int reserve)
5944 {
5945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5946 u64 old_csums, num_csums;
5947
5948 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5949 return 0;
5950
5951 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5952 if (reserve)
5953 inode->csum_bytes += num_bytes;
5954 else
5955 inode->csum_bytes -= num_bytes;
5956 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5957
5958 /* No change, no need to reserve more */
5959 if (old_csums == num_csums)
5960 return 0;
5961
5962 if (reserve)
5963 return btrfs_calc_trans_metadata_size(fs_info,
5964 num_csums - old_csums);
5965
5966 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5967 }
5968
5969 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5970 {
5971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5972 struct btrfs_root *root = inode->root;
5973 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5974 u64 to_reserve = 0;
5975 u64 csum_bytes;
5976 unsigned nr_extents;
5977 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5978 int ret = 0;
5979 bool delalloc_lock = true;
5980 u64 to_free = 0;
5981 unsigned dropped;
5982 bool release_extra = false;
5983
5984 /* If we are a free space inode we need to not flush since we will be in
5985 * the middle of a transaction commit. We also don't need the delalloc
5986 * mutex since we won't race with anybody. We need this mostly to make
5987 * lockdep shut its filthy mouth.
5988 *
5989 * If we have a transaction open (can happen if we call truncate_block
5990 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5991 */
5992 if (btrfs_is_free_space_inode(inode)) {
5993 flush = BTRFS_RESERVE_NO_FLUSH;
5994 delalloc_lock = false;
5995 } else if (current->journal_info) {
5996 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5997 }
5998
5999 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6000 btrfs_transaction_in_commit(fs_info))
6001 schedule_timeout(1);
6002
6003 if (delalloc_lock)
6004 mutex_lock(&inode->delalloc_mutex);
6005
6006 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6007
6008 spin_lock(&inode->lock);
6009 nr_extents = count_max_extents(num_bytes);
6010 inode->outstanding_extents += nr_extents;
6011
6012 nr_extents = 0;
6013 if (inode->outstanding_extents > inode->reserved_extents)
6014 nr_extents += inode->outstanding_extents -
6015 inode->reserved_extents;
6016
6017 /* We always want to reserve a slot for updating the inode. */
6018 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
6019 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6020 csum_bytes = inode->csum_bytes;
6021 spin_unlock(&inode->lock);
6022
6023 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6024 ret = btrfs_qgroup_reserve_meta(root,
6025 nr_extents * fs_info->nodesize, true);
6026 if (ret)
6027 goto out_fail;
6028 }
6029
6030 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6031 if (unlikely(ret)) {
6032 btrfs_qgroup_free_meta(root,
6033 nr_extents * fs_info->nodesize);
6034 goto out_fail;
6035 }
6036
6037 spin_lock(&inode->lock);
6038 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6039 &inode->runtime_flags)) {
6040 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6041 release_extra = true;
6042 }
6043 inode->reserved_extents += nr_extents;
6044 spin_unlock(&inode->lock);
6045
6046 if (delalloc_lock)
6047 mutex_unlock(&inode->delalloc_mutex);
6048
6049 if (to_reserve)
6050 trace_btrfs_space_reservation(fs_info, "delalloc",
6051 btrfs_ino(inode), to_reserve, 1);
6052 if (release_extra)
6053 btrfs_block_rsv_release(fs_info, block_rsv,
6054 btrfs_calc_trans_metadata_size(fs_info, 1));
6055 return 0;
6056
6057 out_fail:
6058 spin_lock(&inode->lock);
6059 dropped = drop_outstanding_extent(inode, num_bytes);
6060 /*
6061 * If the inodes csum_bytes is the same as the original
6062 * csum_bytes then we know we haven't raced with any free()ers
6063 * so we can just reduce our inodes csum bytes and carry on.
6064 */
6065 if (inode->csum_bytes == csum_bytes) {
6066 calc_csum_metadata_size(inode, num_bytes, 0);
6067 } else {
6068 u64 orig_csum_bytes = inode->csum_bytes;
6069 u64 bytes;
6070
6071 /*
6072 * This is tricky, but first we need to figure out how much we
6073 * freed from any free-ers that occurred during this
6074 * reservation, so we reset ->csum_bytes to the csum_bytes
6075 * before we dropped our lock, and then call the free for the
6076 * number of bytes that were freed while we were trying our
6077 * reservation.
6078 */
6079 bytes = csum_bytes - inode->csum_bytes;
6080 inode->csum_bytes = csum_bytes;
6081 to_free = calc_csum_metadata_size(inode, bytes, 0);
6082
6083
6084 /*
6085 * Now we need to see how much we would have freed had we not
6086 * been making this reservation and our ->csum_bytes were not
6087 * artificially inflated.
6088 */
6089 inode->csum_bytes = csum_bytes - num_bytes;
6090 bytes = csum_bytes - orig_csum_bytes;
6091 bytes = calc_csum_metadata_size(inode, bytes, 0);
6092
6093 /*
6094 * Now reset ->csum_bytes to what it should be. If bytes is
6095 * more than to_free then we would have freed more space had we
6096 * not had an artificially high ->csum_bytes, so we need to free
6097 * the remainder. If bytes is the same or less then we don't
6098 * need to do anything, the other free-ers did the correct
6099 * thing.
6100 */
6101 inode->csum_bytes = orig_csum_bytes - num_bytes;
6102 if (bytes > to_free)
6103 to_free = bytes - to_free;
6104 else
6105 to_free = 0;
6106 }
6107 spin_unlock(&inode->lock);
6108 if (dropped)
6109 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6110
6111 if (to_free) {
6112 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6113 trace_btrfs_space_reservation(fs_info, "delalloc",
6114 btrfs_ino(inode), to_free, 0);
6115 }
6116 if (delalloc_lock)
6117 mutex_unlock(&inode->delalloc_mutex);
6118 return ret;
6119 }
6120
6121 /**
6122 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6123 * @inode: the inode to release the reservation for
6124 * @num_bytes: the number of bytes we're releasing
6125 *
6126 * This will release the metadata reservation for an inode. This can be called
6127 * once we complete IO for a given set of bytes to release their metadata
6128 * reservations.
6129 */
6130 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6131 {
6132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6133 u64 to_free = 0;
6134 unsigned dropped;
6135
6136 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6137 spin_lock(&inode->lock);
6138 dropped = drop_outstanding_extent(inode, num_bytes);
6139
6140 if (num_bytes)
6141 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6142 spin_unlock(&inode->lock);
6143 if (dropped > 0)
6144 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6145
6146 if (btrfs_is_testing(fs_info))
6147 return;
6148
6149 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6150 to_free, 0);
6151
6152 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6153 }
6154
6155 /**
6156 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6157 * delalloc
6158 * @inode: inode we're writing to
6159 * @start: start range we are writing to
6160 * @len: how long the range we are writing to
6161 *
6162 * This will do the following things
6163 *
6164 * o reserve space in data space info for num bytes
6165 * and reserve precious corresponding qgroup space
6166 * (Done in check_data_free_space)
6167 *
6168 * o reserve space for metadata space, based on the number of outstanding
6169 * extents and how much csums will be needed
6170 * also reserve metadata space in a per root over-reserve method.
6171 * o add to the inodes->delalloc_bytes
6172 * o add it to the fs_info's delalloc inodes list.
6173 * (Above 3 all done in delalloc_reserve_metadata)
6174 *
6175 * Return 0 for success
6176 * Return <0 for error(-ENOSPC or -EQUOT)
6177 */
6178 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6179 {
6180 int ret;
6181
6182 ret = btrfs_check_data_free_space(inode, start, len);
6183 if (ret < 0)
6184 return ret;
6185 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6186 if (ret < 0)
6187 btrfs_free_reserved_data_space(inode, start, len);
6188 return ret;
6189 }
6190
6191 /**
6192 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6193 * @inode: inode we're releasing space for
6194 * @start: start position of the space already reserved
6195 * @len: the len of the space already reserved
6196 *
6197 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6198 * called in the case that we don't need the metadata AND data reservations
6199 * anymore. So if there is an error or we insert an inline extent.
6200 *
6201 * This function will release the metadata space that was not used and will
6202 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6203 * list if there are no delalloc bytes left.
6204 * Also it will handle the qgroup reserved space.
6205 */
6206 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6207 {
6208 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6209 btrfs_free_reserved_data_space(inode, start, len);
6210 }
6211
6212 static int update_block_group(struct btrfs_trans_handle *trans,
6213 struct btrfs_fs_info *info, u64 bytenr,
6214 u64 num_bytes, int alloc)
6215 {
6216 struct btrfs_block_group_cache *cache = NULL;
6217 u64 total = num_bytes;
6218 u64 old_val;
6219 u64 byte_in_group;
6220 int factor;
6221
6222 /* block accounting for super block */
6223 spin_lock(&info->delalloc_root_lock);
6224 old_val = btrfs_super_bytes_used(info->super_copy);
6225 if (alloc)
6226 old_val += num_bytes;
6227 else
6228 old_val -= num_bytes;
6229 btrfs_set_super_bytes_used(info->super_copy, old_val);
6230 spin_unlock(&info->delalloc_root_lock);
6231
6232 while (total) {
6233 cache = btrfs_lookup_block_group(info, bytenr);
6234 if (!cache)
6235 return -ENOENT;
6236 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6237 BTRFS_BLOCK_GROUP_RAID1 |
6238 BTRFS_BLOCK_GROUP_RAID10))
6239 factor = 2;
6240 else
6241 factor = 1;
6242 /*
6243 * If this block group has free space cache written out, we
6244 * need to make sure to load it if we are removing space. This
6245 * is because we need the unpinning stage to actually add the
6246 * space back to the block group, otherwise we will leak space.
6247 */
6248 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6249 cache_block_group(cache, 1);
6250
6251 byte_in_group = bytenr - cache->key.objectid;
6252 WARN_ON(byte_in_group > cache->key.offset);
6253
6254 spin_lock(&cache->space_info->lock);
6255 spin_lock(&cache->lock);
6256
6257 if (btrfs_test_opt(info, SPACE_CACHE) &&
6258 cache->disk_cache_state < BTRFS_DC_CLEAR)
6259 cache->disk_cache_state = BTRFS_DC_CLEAR;
6260
6261 old_val = btrfs_block_group_used(&cache->item);
6262 num_bytes = min(total, cache->key.offset - byte_in_group);
6263 if (alloc) {
6264 old_val += num_bytes;
6265 btrfs_set_block_group_used(&cache->item, old_val);
6266 cache->reserved -= num_bytes;
6267 cache->space_info->bytes_reserved -= num_bytes;
6268 cache->space_info->bytes_used += num_bytes;
6269 cache->space_info->disk_used += num_bytes * factor;
6270 spin_unlock(&cache->lock);
6271 spin_unlock(&cache->space_info->lock);
6272 } else {
6273 old_val -= num_bytes;
6274 btrfs_set_block_group_used(&cache->item, old_val);
6275 cache->pinned += num_bytes;
6276 cache->space_info->bytes_pinned += num_bytes;
6277 cache->space_info->bytes_used -= num_bytes;
6278 cache->space_info->disk_used -= num_bytes * factor;
6279 spin_unlock(&cache->lock);
6280 spin_unlock(&cache->space_info->lock);
6281
6282 trace_btrfs_space_reservation(info, "pinned",
6283 cache->space_info->flags,
6284 num_bytes, 1);
6285 set_extent_dirty(info->pinned_extents,
6286 bytenr, bytenr + num_bytes - 1,
6287 GFP_NOFS | __GFP_NOFAIL);
6288 }
6289
6290 spin_lock(&trans->transaction->dirty_bgs_lock);
6291 if (list_empty(&cache->dirty_list)) {
6292 list_add_tail(&cache->dirty_list,
6293 &trans->transaction->dirty_bgs);
6294 trans->transaction->num_dirty_bgs++;
6295 btrfs_get_block_group(cache);
6296 }
6297 spin_unlock(&trans->transaction->dirty_bgs_lock);
6298
6299 /*
6300 * No longer have used bytes in this block group, queue it for
6301 * deletion. We do this after adding the block group to the
6302 * dirty list to avoid races between cleaner kthread and space
6303 * cache writeout.
6304 */
6305 if (!alloc && old_val == 0) {
6306 spin_lock(&info->unused_bgs_lock);
6307 if (list_empty(&cache->bg_list)) {
6308 btrfs_get_block_group(cache);
6309 list_add_tail(&cache->bg_list,
6310 &info->unused_bgs);
6311 }
6312 spin_unlock(&info->unused_bgs_lock);
6313 }
6314
6315 btrfs_put_block_group(cache);
6316 total -= num_bytes;
6317 bytenr += num_bytes;
6318 }
6319 return 0;
6320 }
6321
6322 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6323 {
6324 struct btrfs_block_group_cache *cache;
6325 u64 bytenr;
6326
6327 spin_lock(&fs_info->block_group_cache_lock);
6328 bytenr = fs_info->first_logical_byte;
6329 spin_unlock(&fs_info->block_group_cache_lock);
6330
6331 if (bytenr < (u64)-1)
6332 return bytenr;
6333
6334 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6335 if (!cache)
6336 return 0;
6337
6338 bytenr = cache->key.objectid;
6339 btrfs_put_block_group(cache);
6340
6341 return bytenr;
6342 }
6343
6344 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6345 struct btrfs_block_group_cache *cache,
6346 u64 bytenr, u64 num_bytes, int reserved)
6347 {
6348 spin_lock(&cache->space_info->lock);
6349 spin_lock(&cache->lock);
6350 cache->pinned += num_bytes;
6351 cache->space_info->bytes_pinned += num_bytes;
6352 if (reserved) {
6353 cache->reserved -= num_bytes;
6354 cache->space_info->bytes_reserved -= num_bytes;
6355 }
6356 spin_unlock(&cache->lock);
6357 spin_unlock(&cache->space_info->lock);
6358
6359 trace_btrfs_space_reservation(fs_info, "pinned",
6360 cache->space_info->flags, num_bytes, 1);
6361 set_extent_dirty(fs_info->pinned_extents, bytenr,
6362 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6363 return 0;
6364 }
6365
6366 /*
6367 * this function must be called within transaction
6368 */
6369 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6370 u64 bytenr, u64 num_bytes, int reserved)
6371 {
6372 struct btrfs_block_group_cache *cache;
6373
6374 cache = btrfs_lookup_block_group(fs_info, bytenr);
6375 BUG_ON(!cache); /* Logic error */
6376
6377 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6378
6379 btrfs_put_block_group(cache);
6380 return 0;
6381 }
6382
6383 /*
6384 * this function must be called within transaction
6385 */
6386 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6387 u64 bytenr, u64 num_bytes)
6388 {
6389 struct btrfs_block_group_cache *cache;
6390 int ret;
6391
6392 cache = btrfs_lookup_block_group(fs_info, bytenr);
6393 if (!cache)
6394 return -EINVAL;
6395
6396 /*
6397 * pull in the free space cache (if any) so that our pin
6398 * removes the free space from the cache. We have load_only set
6399 * to one because the slow code to read in the free extents does check
6400 * the pinned extents.
6401 */
6402 cache_block_group(cache, 1);
6403
6404 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6405
6406 /* remove us from the free space cache (if we're there at all) */
6407 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6408 btrfs_put_block_group(cache);
6409 return ret;
6410 }
6411
6412 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6413 u64 start, u64 num_bytes)
6414 {
6415 int ret;
6416 struct btrfs_block_group_cache *block_group;
6417 struct btrfs_caching_control *caching_ctl;
6418
6419 block_group = btrfs_lookup_block_group(fs_info, start);
6420 if (!block_group)
6421 return -EINVAL;
6422
6423 cache_block_group(block_group, 0);
6424 caching_ctl = get_caching_control(block_group);
6425
6426 if (!caching_ctl) {
6427 /* Logic error */
6428 BUG_ON(!block_group_cache_done(block_group));
6429 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6430 } else {
6431 mutex_lock(&caching_ctl->mutex);
6432
6433 if (start >= caching_ctl->progress) {
6434 ret = add_excluded_extent(fs_info, start, num_bytes);
6435 } else if (start + num_bytes <= caching_ctl->progress) {
6436 ret = btrfs_remove_free_space(block_group,
6437 start, num_bytes);
6438 } else {
6439 num_bytes = caching_ctl->progress - start;
6440 ret = btrfs_remove_free_space(block_group,
6441 start, num_bytes);
6442 if (ret)
6443 goto out_lock;
6444
6445 num_bytes = (start + num_bytes) -
6446 caching_ctl->progress;
6447 start = caching_ctl->progress;
6448 ret = add_excluded_extent(fs_info, start, num_bytes);
6449 }
6450 out_lock:
6451 mutex_unlock(&caching_ctl->mutex);
6452 put_caching_control(caching_ctl);
6453 }
6454 btrfs_put_block_group(block_group);
6455 return ret;
6456 }
6457
6458 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6459 struct extent_buffer *eb)
6460 {
6461 struct btrfs_file_extent_item *item;
6462 struct btrfs_key key;
6463 int found_type;
6464 int i;
6465
6466 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6467 return 0;
6468
6469 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6470 btrfs_item_key_to_cpu(eb, &key, i);
6471 if (key.type != BTRFS_EXTENT_DATA_KEY)
6472 continue;
6473 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6474 found_type = btrfs_file_extent_type(eb, item);
6475 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6476 continue;
6477 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6478 continue;
6479 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6480 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6481 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6482 }
6483
6484 return 0;
6485 }
6486
6487 static void
6488 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6489 {
6490 atomic_inc(&bg->reservations);
6491 }
6492
6493 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6494 const u64 start)
6495 {
6496 struct btrfs_block_group_cache *bg;
6497
6498 bg = btrfs_lookup_block_group(fs_info, start);
6499 ASSERT(bg);
6500 if (atomic_dec_and_test(&bg->reservations))
6501 wake_up_atomic_t(&bg->reservations);
6502 btrfs_put_block_group(bg);
6503 }
6504
6505 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6506 {
6507 schedule();
6508 return 0;
6509 }
6510
6511 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6512 {
6513 struct btrfs_space_info *space_info = bg->space_info;
6514
6515 ASSERT(bg->ro);
6516
6517 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6518 return;
6519
6520 /*
6521 * Our block group is read only but before we set it to read only,
6522 * some task might have had allocated an extent from it already, but it
6523 * has not yet created a respective ordered extent (and added it to a
6524 * root's list of ordered extents).
6525 * Therefore wait for any task currently allocating extents, since the
6526 * block group's reservations counter is incremented while a read lock
6527 * on the groups' semaphore is held and decremented after releasing
6528 * the read access on that semaphore and creating the ordered extent.
6529 */
6530 down_write(&space_info->groups_sem);
6531 up_write(&space_info->groups_sem);
6532
6533 wait_on_atomic_t(&bg->reservations,
6534 btrfs_wait_bg_reservations_atomic_t,
6535 TASK_UNINTERRUPTIBLE);
6536 }
6537
6538 /**
6539 * btrfs_add_reserved_bytes - update the block_group and space info counters
6540 * @cache: The cache we are manipulating
6541 * @ram_bytes: The number of bytes of file content, and will be same to
6542 * @num_bytes except for the compress path.
6543 * @num_bytes: The number of bytes in question
6544 * @delalloc: The blocks are allocated for the delalloc write
6545 *
6546 * This is called by the allocator when it reserves space. If this is a
6547 * reservation and the block group has become read only we cannot make the
6548 * reservation and return -EAGAIN, otherwise this function always succeeds.
6549 */
6550 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6551 u64 ram_bytes, u64 num_bytes, int delalloc)
6552 {
6553 struct btrfs_space_info *space_info = cache->space_info;
6554 int ret = 0;
6555
6556 spin_lock(&space_info->lock);
6557 spin_lock(&cache->lock);
6558 if (cache->ro) {
6559 ret = -EAGAIN;
6560 } else {
6561 cache->reserved += num_bytes;
6562 space_info->bytes_reserved += num_bytes;
6563
6564 trace_btrfs_space_reservation(cache->fs_info,
6565 "space_info", space_info->flags,
6566 ram_bytes, 0);
6567 space_info->bytes_may_use -= ram_bytes;
6568 if (delalloc)
6569 cache->delalloc_bytes += num_bytes;
6570 }
6571 spin_unlock(&cache->lock);
6572 spin_unlock(&space_info->lock);
6573 return ret;
6574 }
6575
6576 /**
6577 * btrfs_free_reserved_bytes - update the block_group and space info counters
6578 * @cache: The cache we are manipulating
6579 * @num_bytes: The number of bytes in question
6580 * @delalloc: The blocks are allocated for the delalloc write
6581 *
6582 * This is called by somebody who is freeing space that was never actually used
6583 * on disk. For example if you reserve some space for a new leaf in transaction
6584 * A and before transaction A commits you free that leaf, you call this with
6585 * reserve set to 0 in order to clear the reservation.
6586 */
6587
6588 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6589 u64 num_bytes, int delalloc)
6590 {
6591 struct btrfs_space_info *space_info = cache->space_info;
6592 int ret = 0;
6593
6594 spin_lock(&space_info->lock);
6595 spin_lock(&cache->lock);
6596 if (cache->ro)
6597 space_info->bytes_readonly += num_bytes;
6598 cache->reserved -= num_bytes;
6599 space_info->bytes_reserved -= num_bytes;
6600
6601 if (delalloc)
6602 cache->delalloc_bytes -= num_bytes;
6603 spin_unlock(&cache->lock);
6604 spin_unlock(&space_info->lock);
6605 return ret;
6606 }
6607 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6608 {
6609 struct btrfs_caching_control *next;
6610 struct btrfs_caching_control *caching_ctl;
6611 struct btrfs_block_group_cache *cache;
6612
6613 down_write(&fs_info->commit_root_sem);
6614
6615 list_for_each_entry_safe(caching_ctl, next,
6616 &fs_info->caching_block_groups, list) {
6617 cache = caching_ctl->block_group;
6618 if (block_group_cache_done(cache)) {
6619 cache->last_byte_to_unpin = (u64)-1;
6620 list_del_init(&caching_ctl->list);
6621 put_caching_control(caching_ctl);
6622 } else {
6623 cache->last_byte_to_unpin = caching_ctl->progress;
6624 }
6625 }
6626
6627 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6628 fs_info->pinned_extents = &fs_info->freed_extents[1];
6629 else
6630 fs_info->pinned_extents = &fs_info->freed_extents[0];
6631
6632 up_write(&fs_info->commit_root_sem);
6633
6634 update_global_block_rsv(fs_info);
6635 }
6636
6637 /*
6638 * Returns the free cluster for the given space info and sets empty_cluster to
6639 * what it should be based on the mount options.
6640 */
6641 static struct btrfs_free_cluster *
6642 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6643 struct btrfs_space_info *space_info, u64 *empty_cluster)
6644 {
6645 struct btrfs_free_cluster *ret = NULL;
6646 bool ssd = btrfs_test_opt(fs_info, SSD);
6647
6648 *empty_cluster = 0;
6649 if (btrfs_mixed_space_info(space_info))
6650 return ret;
6651
6652 if (ssd)
6653 *empty_cluster = SZ_2M;
6654 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6655 ret = &fs_info->meta_alloc_cluster;
6656 if (!ssd)
6657 *empty_cluster = SZ_64K;
6658 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6659 ret = &fs_info->data_alloc_cluster;
6660 }
6661
6662 return ret;
6663 }
6664
6665 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6666 u64 start, u64 end,
6667 const bool return_free_space)
6668 {
6669 struct btrfs_block_group_cache *cache = NULL;
6670 struct btrfs_space_info *space_info;
6671 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6672 struct btrfs_free_cluster *cluster = NULL;
6673 u64 len;
6674 u64 total_unpinned = 0;
6675 u64 empty_cluster = 0;
6676 bool readonly;
6677
6678 while (start <= end) {
6679 readonly = false;
6680 if (!cache ||
6681 start >= cache->key.objectid + cache->key.offset) {
6682 if (cache)
6683 btrfs_put_block_group(cache);
6684 total_unpinned = 0;
6685 cache = btrfs_lookup_block_group(fs_info, start);
6686 BUG_ON(!cache); /* Logic error */
6687
6688 cluster = fetch_cluster_info(fs_info,
6689 cache->space_info,
6690 &empty_cluster);
6691 empty_cluster <<= 1;
6692 }
6693
6694 len = cache->key.objectid + cache->key.offset - start;
6695 len = min(len, end + 1 - start);
6696
6697 if (start < cache->last_byte_to_unpin) {
6698 len = min(len, cache->last_byte_to_unpin - start);
6699 if (return_free_space)
6700 btrfs_add_free_space(cache, start, len);
6701 }
6702
6703 start += len;
6704 total_unpinned += len;
6705 space_info = cache->space_info;
6706
6707 /*
6708 * If this space cluster has been marked as fragmented and we've
6709 * unpinned enough in this block group to potentially allow a
6710 * cluster to be created inside of it go ahead and clear the
6711 * fragmented check.
6712 */
6713 if (cluster && cluster->fragmented &&
6714 total_unpinned > empty_cluster) {
6715 spin_lock(&cluster->lock);
6716 cluster->fragmented = 0;
6717 spin_unlock(&cluster->lock);
6718 }
6719
6720 spin_lock(&space_info->lock);
6721 spin_lock(&cache->lock);
6722 cache->pinned -= len;
6723 space_info->bytes_pinned -= len;
6724
6725 trace_btrfs_space_reservation(fs_info, "pinned",
6726 space_info->flags, len, 0);
6727 space_info->max_extent_size = 0;
6728 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6729 if (cache->ro) {
6730 space_info->bytes_readonly += len;
6731 readonly = true;
6732 }
6733 spin_unlock(&cache->lock);
6734 if (!readonly && return_free_space &&
6735 global_rsv->space_info == space_info) {
6736 u64 to_add = len;
6737 WARN_ON(!return_free_space);
6738 spin_lock(&global_rsv->lock);
6739 if (!global_rsv->full) {
6740 to_add = min(len, global_rsv->size -
6741 global_rsv->reserved);
6742 global_rsv->reserved += to_add;
6743 space_info->bytes_may_use += to_add;
6744 if (global_rsv->reserved >= global_rsv->size)
6745 global_rsv->full = 1;
6746 trace_btrfs_space_reservation(fs_info,
6747 "space_info",
6748 space_info->flags,
6749 to_add, 1);
6750 len -= to_add;
6751 }
6752 spin_unlock(&global_rsv->lock);
6753 /* Add to any tickets we may have */
6754 if (len)
6755 space_info_add_new_bytes(fs_info, space_info,
6756 len);
6757 }
6758 spin_unlock(&space_info->lock);
6759 }
6760
6761 if (cache)
6762 btrfs_put_block_group(cache);
6763 return 0;
6764 }
6765
6766 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6767 struct btrfs_fs_info *fs_info)
6768 {
6769 struct btrfs_block_group_cache *block_group, *tmp;
6770 struct list_head *deleted_bgs;
6771 struct extent_io_tree *unpin;
6772 u64 start;
6773 u64 end;
6774 int ret;
6775
6776 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6777 unpin = &fs_info->freed_extents[1];
6778 else
6779 unpin = &fs_info->freed_extents[0];
6780
6781 while (!trans->aborted) {
6782 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6783 ret = find_first_extent_bit(unpin, 0, &start, &end,
6784 EXTENT_DIRTY, NULL);
6785 if (ret) {
6786 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6787 break;
6788 }
6789
6790 if (btrfs_test_opt(fs_info, DISCARD))
6791 ret = btrfs_discard_extent(fs_info, start,
6792 end + 1 - start, NULL);
6793
6794 clear_extent_dirty(unpin, start, end);
6795 unpin_extent_range(fs_info, start, end, true);
6796 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6797 cond_resched();
6798 }
6799
6800 /*
6801 * Transaction is finished. We don't need the lock anymore. We
6802 * do need to clean up the block groups in case of a transaction
6803 * abort.
6804 */
6805 deleted_bgs = &trans->transaction->deleted_bgs;
6806 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6807 u64 trimmed = 0;
6808
6809 ret = -EROFS;
6810 if (!trans->aborted)
6811 ret = btrfs_discard_extent(fs_info,
6812 block_group->key.objectid,
6813 block_group->key.offset,
6814 &trimmed);
6815
6816 list_del_init(&block_group->bg_list);
6817 btrfs_put_block_group_trimming(block_group);
6818 btrfs_put_block_group(block_group);
6819
6820 if (ret) {
6821 const char *errstr = btrfs_decode_error(ret);
6822 btrfs_warn(fs_info,
6823 "Discard failed while removing blockgroup: errno=%d %s\n",
6824 ret, errstr);
6825 }
6826 }
6827
6828 return 0;
6829 }
6830
6831 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6832 struct btrfs_fs_info *info,
6833 struct btrfs_delayed_ref_node *node, u64 parent,
6834 u64 root_objectid, u64 owner_objectid,
6835 u64 owner_offset, int refs_to_drop,
6836 struct btrfs_delayed_extent_op *extent_op)
6837 {
6838 struct btrfs_key key;
6839 struct btrfs_path *path;
6840 struct btrfs_root *extent_root = info->extent_root;
6841 struct extent_buffer *leaf;
6842 struct btrfs_extent_item *ei;
6843 struct btrfs_extent_inline_ref *iref;
6844 int ret;
6845 int is_data;
6846 int extent_slot = 0;
6847 int found_extent = 0;
6848 int num_to_del = 1;
6849 u32 item_size;
6850 u64 refs;
6851 u64 bytenr = node->bytenr;
6852 u64 num_bytes = node->num_bytes;
6853 int last_ref = 0;
6854 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6855
6856 path = btrfs_alloc_path();
6857 if (!path)
6858 return -ENOMEM;
6859
6860 path->reada = READA_FORWARD;
6861 path->leave_spinning = 1;
6862
6863 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6864 BUG_ON(!is_data && refs_to_drop != 1);
6865
6866 if (is_data)
6867 skinny_metadata = 0;
6868
6869 ret = lookup_extent_backref(trans, info, path, &iref,
6870 bytenr, num_bytes, parent,
6871 root_objectid, owner_objectid,
6872 owner_offset);
6873 if (ret == 0) {
6874 extent_slot = path->slots[0];
6875 while (extent_slot >= 0) {
6876 btrfs_item_key_to_cpu(path->nodes[0], &key,
6877 extent_slot);
6878 if (key.objectid != bytenr)
6879 break;
6880 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6881 key.offset == num_bytes) {
6882 found_extent = 1;
6883 break;
6884 }
6885 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6886 key.offset == owner_objectid) {
6887 found_extent = 1;
6888 break;
6889 }
6890 if (path->slots[0] - extent_slot > 5)
6891 break;
6892 extent_slot--;
6893 }
6894 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6895 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6896 if (found_extent && item_size < sizeof(*ei))
6897 found_extent = 0;
6898 #endif
6899 if (!found_extent) {
6900 BUG_ON(iref);
6901 ret = remove_extent_backref(trans, info, path, NULL,
6902 refs_to_drop,
6903 is_data, &last_ref);
6904 if (ret) {
6905 btrfs_abort_transaction(trans, ret);
6906 goto out;
6907 }
6908 btrfs_release_path(path);
6909 path->leave_spinning = 1;
6910
6911 key.objectid = bytenr;
6912 key.type = BTRFS_EXTENT_ITEM_KEY;
6913 key.offset = num_bytes;
6914
6915 if (!is_data && skinny_metadata) {
6916 key.type = BTRFS_METADATA_ITEM_KEY;
6917 key.offset = owner_objectid;
6918 }
6919
6920 ret = btrfs_search_slot(trans, extent_root,
6921 &key, path, -1, 1);
6922 if (ret > 0 && skinny_metadata && path->slots[0]) {
6923 /*
6924 * Couldn't find our skinny metadata item,
6925 * see if we have ye olde extent item.
6926 */
6927 path->slots[0]--;
6928 btrfs_item_key_to_cpu(path->nodes[0], &key,
6929 path->slots[0]);
6930 if (key.objectid == bytenr &&
6931 key.type == BTRFS_EXTENT_ITEM_KEY &&
6932 key.offset == num_bytes)
6933 ret = 0;
6934 }
6935
6936 if (ret > 0 && skinny_metadata) {
6937 skinny_metadata = false;
6938 key.objectid = bytenr;
6939 key.type = BTRFS_EXTENT_ITEM_KEY;
6940 key.offset = num_bytes;
6941 btrfs_release_path(path);
6942 ret = btrfs_search_slot(trans, extent_root,
6943 &key, path, -1, 1);
6944 }
6945
6946 if (ret) {
6947 btrfs_err(info,
6948 "umm, got %d back from search, was looking for %llu",
6949 ret, bytenr);
6950 if (ret > 0)
6951 btrfs_print_leaf(info, path->nodes[0]);
6952 }
6953 if (ret < 0) {
6954 btrfs_abort_transaction(trans, ret);
6955 goto out;
6956 }
6957 extent_slot = path->slots[0];
6958 }
6959 } else if (WARN_ON(ret == -ENOENT)) {
6960 btrfs_print_leaf(info, path->nodes[0]);
6961 btrfs_err(info,
6962 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6963 bytenr, parent, root_objectid, owner_objectid,
6964 owner_offset);
6965 btrfs_abort_transaction(trans, ret);
6966 goto out;
6967 } else {
6968 btrfs_abort_transaction(trans, ret);
6969 goto out;
6970 }
6971
6972 leaf = path->nodes[0];
6973 item_size = btrfs_item_size_nr(leaf, extent_slot);
6974 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6975 if (item_size < sizeof(*ei)) {
6976 BUG_ON(found_extent || extent_slot != path->slots[0]);
6977 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6978 0);
6979 if (ret < 0) {
6980 btrfs_abort_transaction(trans, ret);
6981 goto out;
6982 }
6983
6984 btrfs_release_path(path);
6985 path->leave_spinning = 1;
6986
6987 key.objectid = bytenr;
6988 key.type = BTRFS_EXTENT_ITEM_KEY;
6989 key.offset = num_bytes;
6990
6991 ret = btrfs_search_slot(trans, extent_root, &key, path,
6992 -1, 1);
6993 if (ret) {
6994 btrfs_err(info,
6995 "umm, got %d back from search, was looking for %llu",
6996 ret, bytenr);
6997 btrfs_print_leaf(info, path->nodes[0]);
6998 }
6999 if (ret < 0) {
7000 btrfs_abort_transaction(trans, ret);
7001 goto out;
7002 }
7003
7004 extent_slot = path->slots[0];
7005 leaf = path->nodes[0];
7006 item_size = btrfs_item_size_nr(leaf, extent_slot);
7007 }
7008 #endif
7009 BUG_ON(item_size < sizeof(*ei));
7010 ei = btrfs_item_ptr(leaf, extent_slot,
7011 struct btrfs_extent_item);
7012 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7013 key.type == BTRFS_EXTENT_ITEM_KEY) {
7014 struct btrfs_tree_block_info *bi;
7015 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7016 bi = (struct btrfs_tree_block_info *)(ei + 1);
7017 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7018 }
7019
7020 refs = btrfs_extent_refs(leaf, ei);
7021 if (refs < refs_to_drop) {
7022 btrfs_err(info,
7023 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7024 refs_to_drop, refs, bytenr);
7025 ret = -EINVAL;
7026 btrfs_abort_transaction(trans, ret);
7027 goto out;
7028 }
7029 refs -= refs_to_drop;
7030
7031 if (refs > 0) {
7032 if (extent_op)
7033 __run_delayed_extent_op(extent_op, leaf, ei);
7034 /*
7035 * In the case of inline back ref, reference count will
7036 * be updated by remove_extent_backref
7037 */
7038 if (iref) {
7039 BUG_ON(!found_extent);
7040 } else {
7041 btrfs_set_extent_refs(leaf, ei, refs);
7042 btrfs_mark_buffer_dirty(leaf);
7043 }
7044 if (found_extent) {
7045 ret = remove_extent_backref(trans, info, path,
7046 iref, refs_to_drop,
7047 is_data, &last_ref);
7048 if (ret) {
7049 btrfs_abort_transaction(trans, ret);
7050 goto out;
7051 }
7052 }
7053 add_pinned_bytes(info, -num_bytes, owner_objectid,
7054 root_objectid);
7055 } else {
7056 if (found_extent) {
7057 BUG_ON(is_data && refs_to_drop !=
7058 extent_data_ref_count(path, iref));
7059 if (iref) {
7060 BUG_ON(path->slots[0] != extent_slot);
7061 } else {
7062 BUG_ON(path->slots[0] != extent_slot + 1);
7063 path->slots[0] = extent_slot;
7064 num_to_del = 2;
7065 }
7066 }
7067
7068 last_ref = 1;
7069 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7070 num_to_del);
7071 if (ret) {
7072 btrfs_abort_transaction(trans, ret);
7073 goto out;
7074 }
7075 btrfs_release_path(path);
7076
7077 if (is_data) {
7078 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7079 if (ret) {
7080 btrfs_abort_transaction(trans, ret);
7081 goto out;
7082 }
7083 }
7084
7085 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7086 if (ret) {
7087 btrfs_abort_transaction(trans, ret);
7088 goto out;
7089 }
7090
7091 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7092 if (ret) {
7093 btrfs_abort_transaction(trans, ret);
7094 goto out;
7095 }
7096 }
7097 btrfs_release_path(path);
7098
7099 out:
7100 btrfs_free_path(path);
7101 return ret;
7102 }
7103
7104 /*
7105 * when we free an block, it is possible (and likely) that we free the last
7106 * delayed ref for that extent as well. This searches the delayed ref tree for
7107 * a given extent, and if there are no other delayed refs to be processed, it
7108 * removes it from the tree.
7109 */
7110 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7111 u64 bytenr)
7112 {
7113 struct btrfs_delayed_ref_head *head;
7114 struct btrfs_delayed_ref_root *delayed_refs;
7115 int ret = 0;
7116
7117 delayed_refs = &trans->transaction->delayed_refs;
7118 spin_lock(&delayed_refs->lock);
7119 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7120 if (!head)
7121 goto out_delayed_unlock;
7122
7123 spin_lock(&head->lock);
7124 if (!list_empty(&head->ref_list))
7125 goto out;
7126
7127 if (head->extent_op) {
7128 if (!head->must_insert_reserved)
7129 goto out;
7130 btrfs_free_delayed_extent_op(head->extent_op);
7131 head->extent_op = NULL;
7132 }
7133
7134 /*
7135 * waiting for the lock here would deadlock. If someone else has it
7136 * locked they are already in the process of dropping it anyway
7137 */
7138 if (!mutex_trylock(&head->mutex))
7139 goto out;
7140
7141 /*
7142 * at this point we have a head with no other entries. Go
7143 * ahead and process it.
7144 */
7145 head->node.in_tree = 0;
7146 rb_erase(&head->href_node, &delayed_refs->href_root);
7147
7148 atomic_dec(&delayed_refs->num_entries);
7149
7150 /*
7151 * we don't take a ref on the node because we're removing it from the
7152 * tree, so we just steal the ref the tree was holding.
7153 */
7154 delayed_refs->num_heads--;
7155 if (head->processing == 0)
7156 delayed_refs->num_heads_ready--;
7157 head->processing = 0;
7158 spin_unlock(&head->lock);
7159 spin_unlock(&delayed_refs->lock);
7160
7161 BUG_ON(head->extent_op);
7162 if (head->must_insert_reserved)
7163 ret = 1;
7164
7165 mutex_unlock(&head->mutex);
7166 btrfs_put_delayed_ref(&head->node);
7167 return ret;
7168 out:
7169 spin_unlock(&head->lock);
7170
7171 out_delayed_unlock:
7172 spin_unlock(&delayed_refs->lock);
7173 return 0;
7174 }
7175
7176 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7177 struct btrfs_root *root,
7178 struct extent_buffer *buf,
7179 u64 parent, int last_ref)
7180 {
7181 struct btrfs_fs_info *fs_info = root->fs_info;
7182 int pin = 1;
7183 int ret;
7184
7185 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7186 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7187 buf->start, buf->len,
7188 parent,
7189 root->root_key.objectid,
7190 btrfs_header_level(buf),
7191 BTRFS_DROP_DELAYED_REF, NULL);
7192 BUG_ON(ret); /* -ENOMEM */
7193 }
7194
7195 if (!last_ref)
7196 return;
7197
7198 if (btrfs_header_generation(buf) == trans->transid) {
7199 struct btrfs_block_group_cache *cache;
7200
7201 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7202 ret = check_ref_cleanup(trans, buf->start);
7203 if (!ret)
7204 goto out;
7205 }
7206
7207 cache = btrfs_lookup_block_group(fs_info, buf->start);
7208
7209 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7210 pin_down_extent(fs_info, cache, buf->start,
7211 buf->len, 1);
7212 btrfs_put_block_group(cache);
7213 goto out;
7214 }
7215
7216 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7217
7218 btrfs_add_free_space(cache, buf->start, buf->len);
7219 btrfs_free_reserved_bytes(cache, buf->len, 0);
7220 btrfs_put_block_group(cache);
7221 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7222 pin = 0;
7223 }
7224 out:
7225 if (pin)
7226 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7227 root->root_key.objectid);
7228
7229 /*
7230 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7231 * anymore.
7232 */
7233 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7234 }
7235
7236 /* Can return -ENOMEM */
7237 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7238 struct btrfs_fs_info *fs_info,
7239 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7240 u64 owner, u64 offset)
7241 {
7242 int ret;
7243
7244 if (btrfs_is_testing(fs_info))
7245 return 0;
7246
7247 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7248
7249 /*
7250 * tree log blocks never actually go into the extent allocation
7251 * tree, just update pinning info and exit early.
7252 */
7253 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7254 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7255 /* unlocks the pinned mutex */
7256 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7257 ret = 0;
7258 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7259 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7260 num_bytes,
7261 parent, root_objectid, (int)owner,
7262 BTRFS_DROP_DELAYED_REF, NULL);
7263 } else {
7264 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7265 num_bytes,
7266 parent, root_objectid, owner,
7267 offset, 0,
7268 BTRFS_DROP_DELAYED_REF);
7269 }
7270 return ret;
7271 }
7272
7273 /*
7274 * when we wait for progress in the block group caching, its because
7275 * our allocation attempt failed at least once. So, we must sleep
7276 * and let some progress happen before we try again.
7277 *
7278 * This function will sleep at least once waiting for new free space to
7279 * show up, and then it will check the block group free space numbers
7280 * for our min num_bytes. Another option is to have it go ahead
7281 * and look in the rbtree for a free extent of a given size, but this
7282 * is a good start.
7283 *
7284 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7285 * any of the information in this block group.
7286 */
7287 static noinline void
7288 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7289 u64 num_bytes)
7290 {
7291 struct btrfs_caching_control *caching_ctl;
7292
7293 caching_ctl = get_caching_control(cache);
7294 if (!caching_ctl)
7295 return;
7296
7297 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7298 (cache->free_space_ctl->free_space >= num_bytes));
7299
7300 put_caching_control(caching_ctl);
7301 }
7302
7303 static noinline int
7304 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7305 {
7306 struct btrfs_caching_control *caching_ctl;
7307 int ret = 0;
7308
7309 caching_ctl = get_caching_control(cache);
7310 if (!caching_ctl)
7311 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7312
7313 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7314 if (cache->cached == BTRFS_CACHE_ERROR)
7315 ret = -EIO;
7316 put_caching_control(caching_ctl);
7317 return ret;
7318 }
7319
7320 int __get_raid_index(u64 flags)
7321 {
7322 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7323 return BTRFS_RAID_RAID10;
7324 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7325 return BTRFS_RAID_RAID1;
7326 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7327 return BTRFS_RAID_DUP;
7328 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7329 return BTRFS_RAID_RAID0;
7330 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7331 return BTRFS_RAID_RAID5;
7332 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7333 return BTRFS_RAID_RAID6;
7334
7335 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7336 }
7337
7338 int get_block_group_index(struct btrfs_block_group_cache *cache)
7339 {
7340 return __get_raid_index(cache->flags);
7341 }
7342
7343 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7344 [BTRFS_RAID_RAID10] = "raid10",
7345 [BTRFS_RAID_RAID1] = "raid1",
7346 [BTRFS_RAID_DUP] = "dup",
7347 [BTRFS_RAID_RAID0] = "raid0",
7348 [BTRFS_RAID_SINGLE] = "single",
7349 [BTRFS_RAID_RAID5] = "raid5",
7350 [BTRFS_RAID_RAID6] = "raid6",
7351 };
7352
7353 static const char *get_raid_name(enum btrfs_raid_types type)
7354 {
7355 if (type >= BTRFS_NR_RAID_TYPES)
7356 return NULL;
7357
7358 return btrfs_raid_type_names[type];
7359 }
7360
7361 enum btrfs_loop_type {
7362 LOOP_CACHING_NOWAIT = 0,
7363 LOOP_CACHING_WAIT = 1,
7364 LOOP_ALLOC_CHUNK = 2,
7365 LOOP_NO_EMPTY_SIZE = 3,
7366 };
7367
7368 static inline void
7369 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7370 int delalloc)
7371 {
7372 if (delalloc)
7373 down_read(&cache->data_rwsem);
7374 }
7375
7376 static inline void
7377 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7378 int delalloc)
7379 {
7380 btrfs_get_block_group(cache);
7381 if (delalloc)
7382 down_read(&cache->data_rwsem);
7383 }
7384
7385 static struct btrfs_block_group_cache *
7386 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7387 struct btrfs_free_cluster *cluster,
7388 int delalloc)
7389 {
7390 struct btrfs_block_group_cache *used_bg = NULL;
7391
7392 spin_lock(&cluster->refill_lock);
7393 while (1) {
7394 used_bg = cluster->block_group;
7395 if (!used_bg)
7396 return NULL;
7397
7398 if (used_bg == block_group)
7399 return used_bg;
7400
7401 btrfs_get_block_group(used_bg);
7402
7403 if (!delalloc)
7404 return used_bg;
7405
7406 if (down_read_trylock(&used_bg->data_rwsem))
7407 return used_bg;
7408
7409 spin_unlock(&cluster->refill_lock);
7410
7411 /* We should only have one-level nested. */
7412 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7413
7414 spin_lock(&cluster->refill_lock);
7415 if (used_bg == cluster->block_group)
7416 return used_bg;
7417
7418 up_read(&used_bg->data_rwsem);
7419 btrfs_put_block_group(used_bg);
7420 }
7421 }
7422
7423 static inline void
7424 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7425 int delalloc)
7426 {
7427 if (delalloc)
7428 up_read(&cache->data_rwsem);
7429 btrfs_put_block_group(cache);
7430 }
7431
7432 /*
7433 * walks the btree of allocated extents and find a hole of a given size.
7434 * The key ins is changed to record the hole:
7435 * ins->objectid == start position
7436 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7437 * ins->offset == the size of the hole.
7438 * Any available blocks before search_start are skipped.
7439 *
7440 * If there is no suitable free space, we will record the max size of
7441 * the free space extent currently.
7442 */
7443 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7444 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7445 u64 hint_byte, struct btrfs_key *ins,
7446 u64 flags, int delalloc)
7447 {
7448 int ret = 0;
7449 struct btrfs_root *root = fs_info->extent_root;
7450 struct btrfs_free_cluster *last_ptr = NULL;
7451 struct btrfs_block_group_cache *block_group = NULL;
7452 u64 search_start = 0;
7453 u64 max_extent_size = 0;
7454 u64 empty_cluster = 0;
7455 struct btrfs_space_info *space_info;
7456 int loop = 0;
7457 int index = __get_raid_index(flags);
7458 bool failed_cluster_refill = false;
7459 bool failed_alloc = false;
7460 bool use_cluster = true;
7461 bool have_caching_bg = false;
7462 bool orig_have_caching_bg = false;
7463 bool full_search = false;
7464
7465 WARN_ON(num_bytes < fs_info->sectorsize);
7466 ins->type = BTRFS_EXTENT_ITEM_KEY;
7467 ins->objectid = 0;
7468 ins->offset = 0;
7469
7470 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7471
7472 space_info = __find_space_info(fs_info, flags);
7473 if (!space_info) {
7474 btrfs_err(fs_info, "No space info for %llu", flags);
7475 return -ENOSPC;
7476 }
7477
7478 /*
7479 * If our free space is heavily fragmented we may not be able to make
7480 * big contiguous allocations, so instead of doing the expensive search
7481 * for free space, simply return ENOSPC with our max_extent_size so we
7482 * can go ahead and search for a more manageable chunk.
7483 *
7484 * If our max_extent_size is large enough for our allocation simply
7485 * disable clustering since we will likely not be able to find enough
7486 * space to create a cluster and induce latency trying.
7487 */
7488 if (unlikely(space_info->max_extent_size)) {
7489 spin_lock(&space_info->lock);
7490 if (space_info->max_extent_size &&
7491 num_bytes > space_info->max_extent_size) {
7492 ins->offset = space_info->max_extent_size;
7493 spin_unlock(&space_info->lock);
7494 return -ENOSPC;
7495 } else if (space_info->max_extent_size) {
7496 use_cluster = false;
7497 }
7498 spin_unlock(&space_info->lock);
7499 }
7500
7501 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7502 if (last_ptr) {
7503 spin_lock(&last_ptr->lock);
7504 if (last_ptr->block_group)
7505 hint_byte = last_ptr->window_start;
7506 if (last_ptr->fragmented) {
7507 /*
7508 * We still set window_start so we can keep track of the
7509 * last place we found an allocation to try and save
7510 * some time.
7511 */
7512 hint_byte = last_ptr->window_start;
7513 use_cluster = false;
7514 }
7515 spin_unlock(&last_ptr->lock);
7516 }
7517
7518 search_start = max(search_start, first_logical_byte(fs_info, 0));
7519 search_start = max(search_start, hint_byte);
7520 if (search_start == hint_byte) {
7521 block_group = btrfs_lookup_block_group(fs_info, search_start);
7522 /*
7523 * we don't want to use the block group if it doesn't match our
7524 * allocation bits, or if its not cached.
7525 *
7526 * However if we are re-searching with an ideal block group
7527 * picked out then we don't care that the block group is cached.
7528 */
7529 if (block_group && block_group_bits(block_group, flags) &&
7530 block_group->cached != BTRFS_CACHE_NO) {
7531 down_read(&space_info->groups_sem);
7532 if (list_empty(&block_group->list) ||
7533 block_group->ro) {
7534 /*
7535 * someone is removing this block group,
7536 * we can't jump into the have_block_group
7537 * target because our list pointers are not
7538 * valid
7539 */
7540 btrfs_put_block_group(block_group);
7541 up_read(&space_info->groups_sem);
7542 } else {
7543 index = get_block_group_index(block_group);
7544 btrfs_lock_block_group(block_group, delalloc);
7545 goto have_block_group;
7546 }
7547 } else if (block_group) {
7548 btrfs_put_block_group(block_group);
7549 }
7550 }
7551 search:
7552 have_caching_bg = false;
7553 if (index == 0 || index == __get_raid_index(flags))
7554 full_search = true;
7555 down_read(&space_info->groups_sem);
7556 list_for_each_entry(block_group, &space_info->block_groups[index],
7557 list) {
7558 u64 offset;
7559 int cached;
7560
7561 btrfs_grab_block_group(block_group, delalloc);
7562 search_start = block_group->key.objectid;
7563
7564 /*
7565 * this can happen if we end up cycling through all the
7566 * raid types, but we want to make sure we only allocate
7567 * for the proper type.
7568 */
7569 if (!block_group_bits(block_group, flags)) {
7570 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7571 BTRFS_BLOCK_GROUP_RAID1 |
7572 BTRFS_BLOCK_GROUP_RAID5 |
7573 BTRFS_BLOCK_GROUP_RAID6 |
7574 BTRFS_BLOCK_GROUP_RAID10;
7575
7576 /*
7577 * if they asked for extra copies and this block group
7578 * doesn't provide them, bail. This does allow us to
7579 * fill raid0 from raid1.
7580 */
7581 if ((flags & extra) && !(block_group->flags & extra))
7582 goto loop;
7583 }
7584
7585 have_block_group:
7586 cached = block_group_cache_done(block_group);
7587 if (unlikely(!cached)) {
7588 have_caching_bg = true;
7589 ret = cache_block_group(block_group, 0);
7590 BUG_ON(ret < 0);
7591 ret = 0;
7592 }
7593
7594 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7595 goto loop;
7596 if (unlikely(block_group->ro))
7597 goto loop;
7598
7599 /*
7600 * Ok we want to try and use the cluster allocator, so
7601 * lets look there
7602 */
7603 if (last_ptr && use_cluster) {
7604 struct btrfs_block_group_cache *used_block_group;
7605 unsigned long aligned_cluster;
7606 /*
7607 * the refill lock keeps out other
7608 * people trying to start a new cluster
7609 */
7610 used_block_group = btrfs_lock_cluster(block_group,
7611 last_ptr,
7612 delalloc);
7613 if (!used_block_group)
7614 goto refill_cluster;
7615
7616 if (used_block_group != block_group &&
7617 (used_block_group->ro ||
7618 !block_group_bits(used_block_group, flags)))
7619 goto release_cluster;
7620
7621 offset = btrfs_alloc_from_cluster(used_block_group,
7622 last_ptr,
7623 num_bytes,
7624 used_block_group->key.objectid,
7625 &max_extent_size);
7626 if (offset) {
7627 /* we have a block, we're done */
7628 spin_unlock(&last_ptr->refill_lock);
7629 trace_btrfs_reserve_extent_cluster(fs_info,
7630 used_block_group,
7631 search_start, num_bytes);
7632 if (used_block_group != block_group) {
7633 btrfs_release_block_group(block_group,
7634 delalloc);
7635 block_group = used_block_group;
7636 }
7637 goto checks;
7638 }
7639
7640 WARN_ON(last_ptr->block_group != used_block_group);
7641 release_cluster:
7642 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7643 * set up a new clusters, so lets just skip it
7644 * and let the allocator find whatever block
7645 * it can find. If we reach this point, we
7646 * will have tried the cluster allocator
7647 * plenty of times and not have found
7648 * anything, so we are likely way too
7649 * fragmented for the clustering stuff to find
7650 * anything.
7651 *
7652 * However, if the cluster is taken from the
7653 * current block group, release the cluster
7654 * first, so that we stand a better chance of
7655 * succeeding in the unclustered
7656 * allocation. */
7657 if (loop >= LOOP_NO_EMPTY_SIZE &&
7658 used_block_group != block_group) {
7659 spin_unlock(&last_ptr->refill_lock);
7660 btrfs_release_block_group(used_block_group,
7661 delalloc);
7662 goto unclustered_alloc;
7663 }
7664
7665 /*
7666 * this cluster didn't work out, free it and
7667 * start over
7668 */
7669 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7670
7671 if (used_block_group != block_group)
7672 btrfs_release_block_group(used_block_group,
7673 delalloc);
7674 refill_cluster:
7675 if (loop >= LOOP_NO_EMPTY_SIZE) {
7676 spin_unlock(&last_ptr->refill_lock);
7677 goto unclustered_alloc;
7678 }
7679
7680 aligned_cluster = max_t(unsigned long,
7681 empty_cluster + empty_size,
7682 block_group->full_stripe_len);
7683
7684 /* allocate a cluster in this block group */
7685 ret = btrfs_find_space_cluster(fs_info, block_group,
7686 last_ptr, search_start,
7687 num_bytes,
7688 aligned_cluster);
7689 if (ret == 0) {
7690 /*
7691 * now pull our allocation out of this
7692 * cluster
7693 */
7694 offset = btrfs_alloc_from_cluster(block_group,
7695 last_ptr,
7696 num_bytes,
7697 search_start,
7698 &max_extent_size);
7699 if (offset) {
7700 /* we found one, proceed */
7701 spin_unlock(&last_ptr->refill_lock);
7702 trace_btrfs_reserve_extent_cluster(fs_info,
7703 block_group, search_start,
7704 num_bytes);
7705 goto checks;
7706 }
7707 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7708 && !failed_cluster_refill) {
7709 spin_unlock(&last_ptr->refill_lock);
7710
7711 failed_cluster_refill = true;
7712 wait_block_group_cache_progress(block_group,
7713 num_bytes + empty_cluster + empty_size);
7714 goto have_block_group;
7715 }
7716
7717 /*
7718 * at this point we either didn't find a cluster
7719 * or we weren't able to allocate a block from our
7720 * cluster. Free the cluster we've been trying
7721 * to use, and go to the next block group
7722 */
7723 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7724 spin_unlock(&last_ptr->refill_lock);
7725 goto loop;
7726 }
7727
7728 unclustered_alloc:
7729 /*
7730 * We are doing an unclustered alloc, set the fragmented flag so
7731 * we don't bother trying to setup a cluster again until we get
7732 * more space.
7733 */
7734 if (unlikely(last_ptr)) {
7735 spin_lock(&last_ptr->lock);
7736 last_ptr->fragmented = 1;
7737 spin_unlock(&last_ptr->lock);
7738 }
7739 if (cached) {
7740 struct btrfs_free_space_ctl *ctl =
7741 block_group->free_space_ctl;
7742
7743 spin_lock(&ctl->tree_lock);
7744 if (ctl->free_space <
7745 num_bytes + empty_cluster + empty_size) {
7746 if (ctl->free_space > max_extent_size)
7747 max_extent_size = ctl->free_space;
7748 spin_unlock(&ctl->tree_lock);
7749 goto loop;
7750 }
7751 spin_unlock(&ctl->tree_lock);
7752 }
7753
7754 offset = btrfs_find_space_for_alloc(block_group, search_start,
7755 num_bytes, empty_size,
7756 &max_extent_size);
7757 /*
7758 * If we didn't find a chunk, and we haven't failed on this
7759 * block group before, and this block group is in the middle of
7760 * caching and we are ok with waiting, then go ahead and wait
7761 * for progress to be made, and set failed_alloc to true.
7762 *
7763 * If failed_alloc is true then we've already waited on this
7764 * block group once and should move on to the next block group.
7765 */
7766 if (!offset && !failed_alloc && !cached &&
7767 loop > LOOP_CACHING_NOWAIT) {
7768 wait_block_group_cache_progress(block_group,
7769 num_bytes + empty_size);
7770 failed_alloc = true;
7771 goto have_block_group;
7772 } else if (!offset) {
7773 goto loop;
7774 }
7775 checks:
7776 search_start = ALIGN(offset, fs_info->stripesize);
7777
7778 /* move on to the next group */
7779 if (search_start + num_bytes >
7780 block_group->key.objectid + block_group->key.offset) {
7781 btrfs_add_free_space(block_group, offset, num_bytes);
7782 goto loop;
7783 }
7784
7785 if (offset < search_start)
7786 btrfs_add_free_space(block_group, offset,
7787 search_start - offset);
7788 BUG_ON(offset > search_start);
7789
7790 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7791 num_bytes, delalloc);
7792 if (ret == -EAGAIN) {
7793 btrfs_add_free_space(block_group, offset, num_bytes);
7794 goto loop;
7795 }
7796 btrfs_inc_block_group_reservations(block_group);
7797
7798 /* we are all good, lets return */
7799 ins->objectid = search_start;
7800 ins->offset = num_bytes;
7801
7802 trace_btrfs_reserve_extent(fs_info, block_group,
7803 search_start, num_bytes);
7804 btrfs_release_block_group(block_group, delalloc);
7805 break;
7806 loop:
7807 failed_cluster_refill = false;
7808 failed_alloc = false;
7809 BUG_ON(index != get_block_group_index(block_group));
7810 btrfs_release_block_group(block_group, delalloc);
7811 }
7812 up_read(&space_info->groups_sem);
7813
7814 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7815 && !orig_have_caching_bg)
7816 orig_have_caching_bg = true;
7817
7818 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7819 goto search;
7820
7821 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7822 goto search;
7823
7824 /*
7825 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7826 * caching kthreads as we move along
7827 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7828 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7829 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7830 * again
7831 */
7832 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7833 index = 0;
7834 if (loop == LOOP_CACHING_NOWAIT) {
7835 /*
7836 * We want to skip the LOOP_CACHING_WAIT step if we
7837 * don't have any uncached bgs and we've already done a
7838 * full search through.
7839 */
7840 if (orig_have_caching_bg || !full_search)
7841 loop = LOOP_CACHING_WAIT;
7842 else
7843 loop = LOOP_ALLOC_CHUNK;
7844 } else {
7845 loop++;
7846 }
7847
7848 if (loop == LOOP_ALLOC_CHUNK) {
7849 struct btrfs_trans_handle *trans;
7850 int exist = 0;
7851
7852 trans = current->journal_info;
7853 if (trans)
7854 exist = 1;
7855 else
7856 trans = btrfs_join_transaction(root);
7857
7858 if (IS_ERR(trans)) {
7859 ret = PTR_ERR(trans);
7860 goto out;
7861 }
7862
7863 ret = do_chunk_alloc(trans, fs_info, flags,
7864 CHUNK_ALLOC_FORCE);
7865
7866 /*
7867 * If we can't allocate a new chunk we've already looped
7868 * through at least once, move on to the NO_EMPTY_SIZE
7869 * case.
7870 */
7871 if (ret == -ENOSPC)
7872 loop = LOOP_NO_EMPTY_SIZE;
7873
7874 /*
7875 * Do not bail out on ENOSPC since we
7876 * can do more things.
7877 */
7878 if (ret < 0 && ret != -ENOSPC)
7879 btrfs_abort_transaction(trans, ret);
7880 else
7881 ret = 0;
7882 if (!exist)
7883 btrfs_end_transaction(trans);
7884 if (ret)
7885 goto out;
7886 }
7887
7888 if (loop == LOOP_NO_EMPTY_SIZE) {
7889 /*
7890 * Don't loop again if we already have no empty_size and
7891 * no empty_cluster.
7892 */
7893 if (empty_size == 0 &&
7894 empty_cluster == 0) {
7895 ret = -ENOSPC;
7896 goto out;
7897 }
7898 empty_size = 0;
7899 empty_cluster = 0;
7900 }
7901
7902 goto search;
7903 } else if (!ins->objectid) {
7904 ret = -ENOSPC;
7905 } else if (ins->objectid) {
7906 if (!use_cluster && last_ptr) {
7907 spin_lock(&last_ptr->lock);
7908 last_ptr->window_start = ins->objectid;
7909 spin_unlock(&last_ptr->lock);
7910 }
7911 ret = 0;
7912 }
7913 out:
7914 if (ret == -ENOSPC) {
7915 spin_lock(&space_info->lock);
7916 space_info->max_extent_size = max_extent_size;
7917 spin_unlock(&space_info->lock);
7918 ins->offset = max_extent_size;
7919 }
7920 return ret;
7921 }
7922
7923 static void dump_space_info(struct btrfs_fs_info *fs_info,
7924 struct btrfs_space_info *info, u64 bytes,
7925 int dump_block_groups)
7926 {
7927 struct btrfs_block_group_cache *cache;
7928 int index = 0;
7929
7930 spin_lock(&info->lock);
7931 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7932 info->flags,
7933 info->total_bytes - btrfs_space_info_used(info, true),
7934 info->full ? "" : "not ");
7935 btrfs_info(fs_info,
7936 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7937 info->total_bytes, info->bytes_used, info->bytes_pinned,
7938 info->bytes_reserved, info->bytes_may_use,
7939 info->bytes_readonly);
7940 spin_unlock(&info->lock);
7941
7942 if (!dump_block_groups)
7943 return;
7944
7945 down_read(&info->groups_sem);
7946 again:
7947 list_for_each_entry(cache, &info->block_groups[index], list) {
7948 spin_lock(&cache->lock);
7949 btrfs_info(fs_info,
7950 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7951 cache->key.objectid, cache->key.offset,
7952 btrfs_block_group_used(&cache->item), cache->pinned,
7953 cache->reserved, cache->ro ? "[readonly]" : "");
7954 btrfs_dump_free_space(cache, bytes);
7955 spin_unlock(&cache->lock);
7956 }
7957 if (++index < BTRFS_NR_RAID_TYPES)
7958 goto again;
7959 up_read(&info->groups_sem);
7960 }
7961
7962 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7963 u64 num_bytes, u64 min_alloc_size,
7964 u64 empty_size, u64 hint_byte,
7965 struct btrfs_key *ins, int is_data, int delalloc)
7966 {
7967 struct btrfs_fs_info *fs_info = root->fs_info;
7968 bool final_tried = num_bytes == min_alloc_size;
7969 u64 flags;
7970 int ret;
7971
7972 flags = get_alloc_profile_by_root(root, is_data);
7973 again:
7974 WARN_ON(num_bytes < fs_info->sectorsize);
7975 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7976 hint_byte, ins, flags, delalloc);
7977 if (!ret && !is_data) {
7978 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7979 } else if (ret == -ENOSPC) {
7980 if (!final_tried && ins->offset) {
7981 num_bytes = min(num_bytes >> 1, ins->offset);
7982 num_bytes = round_down(num_bytes,
7983 fs_info->sectorsize);
7984 num_bytes = max(num_bytes, min_alloc_size);
7985 ram_bytes = num_bytes;
7986 if (num_bytes == min_alloc_size)
7987 final_tried = true;
7988 goto again;
7989 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7990 struct btrfs_space_info *sinfo;
7991
7992 sinfo = __find_space_info(fs_info, flags);
7993 btrfs_err(fs_info,
7994 "allocation failed flags %llu, wanted %llu",
7995 flags, num_bytes);
7996 if (sinfo)
7997 dump_space_info(fs_info, sinfo, num_bytes, 1);
7998 }
7999 }
8000
8001 return ret;
8002 }
8003
8004 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8005 u64 start, u64 len,
8006 int pin, int delalloc)
8007 {
8008 struct btrfs_block_group_cache *cache;
8009 int ret = 0;
8010
8011 cache = btrfs_lookup_block_group(fs_info, start);
8012 if (!cache) {
8013 btrfs_err(fs_info, "Unable to find block group for %llu",
8014 start);
8015 return -ENOSPC;
8016 }
8017
8018 if (pin)
8019 pin_down_extent(fs_info, cache, start, len, 1);
8020 else {
8021 if (btrfs_test_opt(fs_info, DISCARD))
8022 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8023 btrfs_add_free_space(cache, start, len);
8024 btrfs_free_reserved_bytes(cache, len, delalloc);
8025 trace_btrfs_reserved_extent_free(fs_info, start, len);
8026 }
8027
8028 btrfs_put_block_group(cache);
8029 return ret;
8030 }
8031
8032 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8033 u64 start, u64 len, int delalloc)
8034 {
8035 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8036 }
8037
8038 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8039 u64 start, u64 len)
8040 {
8041 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8042 }
8043
8044 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8045 struct btrfs_fs_info *fs_info,
8046 u64 parent, u64 root_objectid,
8047 u64 flags, u64 owner, u64 offset,
8048 struct btrfs_key *ins, int ref_mod)
8049 {
8050 int ret;
8051 struct btrfs_extent_item *extent_item;
8052 struct btrfs_extent_inline_ref *iref;
8053 struct btrfs_path *path;
8054 struct extent_buffer *leaf;
8055 int type;
8056 u32 size;
8057
8058 if (parent > 0)
8059 type = BTRFS_SHARED_DATA_REF_KEY;
8060 else
8061 type = BTRFS_EXTENT_DATA_REF_KEY;
8062
8063 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8064
8065 path = btrfs_alloc_path();
8066 if (!path)
8067 return -ENOMEM;
8068
8069 path->leave_spinning = 1;
8070 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8071 ins, size);
8072 if (ret) {
8073 btrfs_free_path(path);
8074 return ret;
8075 }
8076
8077 leaf = path->nodes[0];
8078 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8079 struct btrfs_extent_item);
8080 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8081 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8082 btrfs_set_extent_flags(leaf, extent_item,
8083 flags | BTRFS_EXTENT_FLAG_DATA);
8084
8085 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8086 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8087 if (parent > 0) {
8088 struct btrfs_shared_data_ref *ref;
8089 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8090 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8091 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8092 } else {
8093 struct btrfs_extent_data_ref *ref;
8094 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8095 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8096 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8097 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8098 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8099 }
8100
8101 btrfs_mark_buffer_dirty(path->nodes[0]);
8102 btrfs_free_path(path);
8103
8104 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8105 ins->offset);
8106 if (ret)
8107 return ret;
8108
8109 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8110 if (ret) { /* -ENOENT, logic error */
8111 btrfs_err(fs_info, "update block group failed for %llu %llu",
8112 ins->objectid, ins->offset);
8113 BUG();
8114 }
8115 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8116 return ret;
8117 }
8118
8119 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8120 struct btrfs_fs_info *fs_info,
8121 u64 parent, u64 root_objectid,
8122 u64 flags, struct btrfs_disk_key *key,
8123 int level, struct btrfs_key *ins)
8124 {
8125 int ret;
8126 struct btrfs_extent_item *extent_item;
8127 struct btrfs_tree_block_info *block_info;
8128 struct btrfs_extent_inline_ref *iref;
8129 struct btrfs_path *path;
8130 struct extent_buffer *leaf;
8131 u32 size = sizeof(*extent_item) + sizeof(*iref);
8132 u64 num_bytes = ins->offset;
8133 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8134
8135 if (!skinny_metadata)
8136 size += sizeof(*block_info);
8137
8138 path = btrfs_alloc_path();
8139 if (!path) {
8140 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8141 fs_info->nodesize);
8142 return -ENOMEM;
8143 }
8144
8145 path->leave_spinning = 1;
8146 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8147 ins, size);
8148 if (ret) {
8149 btrfs_free_path(path);
8150 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8151 fs_info->nodesize);
8152 return ret;
8153 }
8154
8155 leaf = path->nodes[0];
8156 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8157 struct btrfs_extent_item);
8158 btrfs_set_extent_refs(leaf, extent_item, 1);
8159 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8160 btrfs_set_extent_flags(leaf, extent_item,
8161 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8162
8163 if (skinny_metadata) {
8164 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8165 num_bytes = fs_info->nodesize;
8166 } else {
8167 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8168 btrfs_set_tree_block_key(leaf, block_info, key);
8169 btrfs_set_tree_block_level(leaf, block_info, level);
8170 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8171 }
8172
8173 if (parent > 0) {
8174 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8175 btrfs_set_extent_inline_ref_type(leaf, iref,
8176 BTRFS_SHARED_BLOCK_REF_KEY);
8177 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8178 } else {
8179 btrfs_set_extent_inline_ref_type(leaf, iref,
8180 BTRFS_TREE_BLOCK_REF_KEY);
8181 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8182 }
8183
8184 btrfs_mark_buffer_dirty(leaf);
8185 btrfs_free_path(path);
8186
8187 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8188 num_bytes);
8189 if (ret)
8190 return ret;
8191
8192 ret = update_block_group(trans, fs_info, ins->objectid,
8193 fs_info->nodesize, 1);
8194 if (ret) { /* -ENOENT, logic error */
8195 btrfs_err(fs_info, "update block group failed for %llu %llu",
8196 ins->objectid, ins->offset);
8197 BUG();
8198 }
8199
8200 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8201 fs_info->nodesize);
8202 return ret;
8203 }
8204
8205 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8206 u64 root_objectid, u64 owner,
8207 u64 offset, u64 ram_bytes,
8208 struct btrfs_key *ins)
8209 {
8210 struct btrfs_fs_info *fs_info = trans->fs_info;
8211 int ret;
8212
8213 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8214
8215 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8216 ins->offset, 0,
8217 root_objectid, owner, offset,
8218 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8219 return ret;
8220 }
8221
8222 /*
8223 * this is used by the tree logging recovery code. It records that
8224 * an extent has been allocated and makes sure to clear the free
8225 * space cache bits as well
8226 */
8227 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8228 struct btrfs_fs_info *fs_info,
8229 u64 root_objectid, u64 owner, u64 offset,
8230 struct btrfs_key *ins)
8231 {
8232 int ret;
8233 struct btrfs_block_group_cache *block_group;
8234 struct btrfs_space_info *space_info;
8235
8236 /*
8237 * Mixed block groups will exclude before processing the log so we only
8238 * need to do the exclude dance if this fs isn't mixed.
8239 */
8240 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8241 ret = __exclude_logged_extent(fs_info, ins->objectid,
8242 ins->offset);
8243 if (ret)
8244 return ret;
8245 }
8246
8247 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8248 if (!block_group)
8249 return -EINVAL;
8250
8251 space_info = block_group->space_info;
8252 spin_lock(&space_info->lock);
8253 spin_lock(&block_group->lock);
8254 space_info->bytes_reserved += ins->offset;
8255 block_group->reserved += ins->offset;
8256 spin_unlock(&block_group->lock);
8257 spin_unlock(&space_info->lock);
8258
8259 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8260 0, owner, offset, ins, 1);
8261 btrfs_put_block_group(block_group);
8262 return ret;
8263 }
8264
8265 static struct extent_buffer *
8266 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8267 u64 bytenr, int level)
8268 {
8269 struct btrfs_fs_info *fs_info = root->fs_info;
8270 struct extent_buffer *buf;
8271
8272 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8273 if (IS_ERR(buf))
8274 return buf;
8275
8276 btrfs_set_header_generation(buf, trans->transid);
8277 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8278 btrfs_tree_lock(buf);
8279 clean_tree_block(fs_info, buf);
8280 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8281
8282 btrfs_set_lock_blocking(buf);
8283 set_extent_buffer_uptodate(buf);
8284
8285 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8286 buf->log_index = root->log_transid % 2;
8287 /*
8288 * we allow two log transactions at a time, use different
8289 * EXENT bit to differentiate dirty pages.
8290 */
8291 if (buf->log_index == 0)
8292 set_extent_dirty(&root->dirty_log_pages, buf->start,
8293 buf->start + buf->len - 1, GFP_NOFS);
8294 else
8295 set_extent_new(&root->dirty_log_pages, buf->start,
8296 buf->start + buf->len - 1);
8297 } else {
8298 buf->log_index = -1;
8299 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8300 buf->start + buf->len - 1, GFP_NOFS);
8301 }
8302 trans->dirty = true;
8303 /* this returns a buffer locked for blocking */
8304 return buf;
8305 }
8306
8307 static struct btrfs_block_rsv *
8308 use_block_rsv(struct btrfs_trans_handle *trans,
8309 struct btrfs_root *root, u32 blocksize)
8310 {
8311 struct btrfs_fs_info *fs_info = root->fs_info;
8312 struct btrfs_block_rsv *block_rsv;
8313 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8314 int ret;
8315 bool global_updated = false;
8316
8317 block_rsv = get_block_rsv(trans, root);
8318
8319 if (unlikely(block_rsv->size == 0))
8320 goto try_reserve;
8321 again:
8322 ret = block_rsv_use_bytes(block_rsv, blocksize);
8323 if (!ret)
8324 return block_rsv;
8325
8326 if (block_rsv->failfast)
8327 return ERR_PTR(ret);
8328
8329 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8330 global_updated = true;
8331 update_global_block_rsv(fs_info);
8332 goto again;
8333 }
8334
8335 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8336 static DEFINE_RATELIMIT_STATE(_rs,
8337 DEFAULT_RATELIMIT_INTERVAL * 10,
8338 /*DEFAULT_RATELIMIT_BURST*/ 1);
8339 if (__ratelimit(&_rs))
8340 WARN(1, KERN_DEBUG
8341 "BTRFS: block rsv returned %d\n", ret);
8342 }
8343 try_reserve:
8344 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8345 BTRFS_RESERVE_NO_FLUSH);
8346 if (!ret)
8347 return block_rsv;
8348 /*
8349 * If we couldn't reserve metadata bytes try and use some from
8350 * the global reserve if its space type is the same as the global
8351 * reservation.
8352 */
8353 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8354 block_rsv->space_info == global_rsv->space_info) {
8355 ret = block_rsv_use_bytes(global_rsv, blocksize);
8356 if (!ret)
8357 return global_rsv;
8358 }
8359 return ERR_PTR(ret);
8360 }
8361
8362 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8363 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8364 {
8365 block_rsv_add_bytes(block_rsv, blocksize, 0);
8366 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8367 }
8368
8369 /*
8370 * finds a free extent and does all the dirty work required for allocation
8371 * returns the tree buffer or an ERR_PTR on error.
8372 */
8373 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8374 struct btrfs_root *root,
8375 u64 parent, u64 root_objectid,
8376 const struct btrfs_disk_key *key,
8377 int level, u64 hint,
8378 u64 empty_size)
8379 {
8380 struct btrfs_fs_info *fs_info = root->fs_info;
8381 struct btrfs_key ins;
8382 struct btrfs_block_rsv *block_rsv;
8383 struct extent_buffer *buf;
8384 struct btrfs_delayed_extent_op *extent_op;
8385 u64 flags = 0;
8386 int ret;
8387 u32 blocksize = fs_info->nodesize;
8388 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8389
8390 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8391 if (btrfs_is_testing(fs_info)) {
8392 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8393 level);
8394 if (!IS_ERR(buf))
8395 root->alloc_bytenr += blocksize;
8396 return buf;
8397 }
8398 #endif
8399
8400 block_rsv = use_block_rsv(trans, root, blocksize);
8401 if (IS_ERR(block_rsv))
8402 return ERR_CAST(block_rsv);
8403
8404 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8405 empty_size, hint, &ins, 0, 0);
8406 if (ret)
8407 goto out_unuse;
8408
8409 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8410 if (IS_ERR(buf)) {
8411 ret = PTR_ERR(buf);
8412 goto out_free_reserved;
8413 }
8414
8415 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8416 if (parent == 0)
8417 parent = ins.objectid;
8418 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8419 } else
8420 BUG_ON(parent > 0);
8421
8422 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8423 extent_op = btrfs_alloc_delayed_extent_op();
8424 if (!extent_op) {
8425 ret = -ENOMEM;
8426 goto out_free_buf;
8427 }
8428 if (key)
8429 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8430 else
8431 memset(&extent_op->key, 0, sizeof(extent_op->key));
8432 extent_op->flags_to_set = flags;
8433 extent_op->update_key = skinny_metadata ? false : true;
8434 extent_op->update_flags = true;
8435 extent_op->is_data = false;
8436 extent_op->level = level;
8437
8438 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8439 ins.objectid, ins.offset,
8440 parent, root_objectid, level,
8441 BTRFS_ADD_DELAYED_EXTENT,
8442 extent_op);
8443 if (ret)
8444 goto out_free_delayed;
8445 }
8446 return buf;
8447
8448 out_free_delayed:
8449 btrfs_free_delayed_extent_op(extent_op);
8450 out_free_buf:
8451 free_extent_buffer(buf);
8452 out_free_reserved:
8453 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8454 out_unuse:
8455 unuse_block_rsv(fs_info, block_rsv, blocksize);
8456 return ERR_PTR(ret);
8457 }
8458
8459 struct walk_control {
8460 u64 refs[BTRFS_MAX_LEVEL];
8461 u64 flags[BTRFS_MAX_LEVEL];
8462 struct btrfs_key update_progress;
8463 int stage;
8464 int level;
8465 int shared_level;
8466 int update_ref;
8467 int keep_locks;
8468 int reada_slot;
8469 int reada_count;
8470 int for_reloc;
8471 };
8472
8473 #define DROP_REFERENCE 1
8474 #define UPDATE_BACKREF 2
8475
8476 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8477 struct btrfs_root *root,
8478 struct walk_control *wc,
8479 struct btrfs_path *path)
8480 {
8481 struct btrfs_fs_info *fs_info = root->fs_info;
8482 u64 bytenr;
8483 u64 generation;
8484 u64 refs;
8485 u64 flags;
8486 u32 nritems;
8487 struct btrfs_key key;
8488 struct extent_buffer *eb;
8489 int ret;
8490 int slot;
8491 int nread = 0;
8492
8493 if (path->slots[wc->level] < wc->reada_slot) {
8494 wc->reada_count = wc->reada_count * 2 / 3;
8495 wc->reada_count = max(wc->reada_count, 2);
8496 } else {
8497 wc->reada_count = wc->reada_count * 3 / 2;
8498 wc->reada_count = min_t(int, wc->reada_count,
8499 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8500 }
8501
8502 eb = path->nodes[wc->level];
8503 nritems = btrfs_header_nritems(eb);
8504
8505 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8506 if (nread >= wc->reada_count)
8507 break;
8508
8509 cond_resched();
8510 bytenr = btrfs_node_blockptr(eb, slot);
8511 generation = btrfs_node_ptr_generation(eb, slot);
8512
8513 if (slot == path->slots[wc->level])
8514 goto reada;
8515
8516 if (wc->stage == UPDATE_BACKREF &&
8517 generation <= root->root_key.offset)
8518 continue;
8519
8520 /* We don't lock the tree block, it's OK to be racy here */
8521 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8522 wc->level - 1, 1, &refs,
8523 &flags);
8524 /* We don't care about errors in readahead. */
8525 if (ret < 0)
8526 continue;
8527 BUG_ON(refs == 0);
8528
8529 if (wc->stage == DROP_REFERENCE) {
8530 if (refs == 1)
8531 goto reada;
8532
8533 if (wc->level == 1 &&
8534 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8535 continue;
8536 if (!wc->update_ref ||
8537 generation <= root->root_key.offset)
8538 continue;
8539 btrfs_node_key_to_cpu(eb, &key, slot);
8540 ret = btrfs_comp_cpu_keys(&key,
8541 &wc->update_progress);
8542 if (ret < 0)
8543 continue;
8544 } else {
8545 if (wc->level == 1 &&
8546 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8547 continue;
8548 }
8549 reada:
8550 readahead_tree_block(fs_info, bytenr);
8551 nread++;
8552 }
8553 wc->reada_slot = slot;
8554 }
8555
8556 /*
8557 * helper to process tree block while walking down the tree.
8558 *
8559 * when wc->stage == UPDATE_BACKREF, this function updates
8560 * back refs for pointers in the block.
8561 *
8562 * NOTE: return value 1 means we should stop walking down.
8563 */
8564 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8565 struct btrfs_root *root,
8566 struct btrfs_path *path,
8567 struct walk_control *wc, int lookup_info)
8568 {
8569 struct btrfs_fs_info *fs_info = root->fs_info;
8570 int level = wc->level;
8571 struct extent_buffer *eb = path->nodes[level];
8572 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8573 int ret;
8574
8575 if (wc->stage == UPDATE_BACKREF &&
8576 btrfs_header_owner(eb) != root->root_key.objectid)
8577 return 1;
8578
8579 /*
8580 * when reference count of tree block is 1, it won't increase
8581 * again. once full backref flag is set, we never clear it.
8582 */
8583 if (lookup_info &&
8584 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8585 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8586 BUG_ON(!path->locks[level]);
8587 ret = btrfs_lookup_extent_info(trans, fs_info,
8588 eb->start, level, 1,
8589 &wc->refs[level],
8590 &wc->flags[level]);
8591 BUG_ON(ret == -ENOMEM);
8592 if (ret)
8593 return ret;
8594 BUG_ON(wc->refs[level] == 0);
8595 }
8596
8597 if (wc->stage == DROP_REFERENCE) {
8598 if (wc->refs[level] > 1)
8599 return 1;
8600
8601 if (path->locks[level] && !wc->keep_locks) {
8602 btrfs_tree_unlock_rw(eb, path->locks[level]);
8603 path->locks[level] = 0;
8604 }
8605 return 0;
8606 }
8607
8608 /* wc->stage == UPDATE_BACKREF */
8609 if (!(wc->flags[level] & flag)) {
8610 BUG_ON(!path->locks[level]);
8611 ret = btrfs_inc_ref(trans, root, eb, 1);
8612 BUG_ON(ret); /* -ENOMEM */
8613 ret = btrfs_dec_ref(trans, root, eb, 0);
8614 BUG_ON(ret); /* -ENOMEM */
8615 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8616 eb->len, flag,
8617 btrfs_header_level(eb), 0);
8618 BUG_ON(ret); /* -ENOMEM */
8619 wc->flags[level] |= flag;
8620 }
8621
8622 /*
8623 * the block is shared by multiple trees, so it's not good to
8624 * keep the tree lock
8625 */
8626 if (path->locks[level] && level > 0) {
8627 btrfs_tree_unlock_rw(eb, path->locks[level]);
8628 path->locks[level] = 0;
8629 }
8630 return 0;
8631 }
8632
8633 /*
8634 * helper to process tree block pointer.
8635 *
8636 * when wc->stage == DROP_REFERENCE, this function checks
8637 * reference count of the block pointed to. if the block
8638 * is shared and we need update back refs for the subtree
8639 * rooted at the block, this function changes wc->stage to
8640 * UPDATE_BACKREF. if the block is shared and there is no
8641 * need to update back, this function drops the reference
8642 * to the block.
8643 *
8644 * NOTE: return value 1 means we should stop walking down.
8645 */
8646 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8647 struct btrfs_root *root,
8648 struct btrfs_path *path,
8649 struct walk_control *wc, int *lookup_info)
8650 {
8651 struct btrfs_fs_info *fs_info = root->fs_info;
8652 u64 bytenr;
8653 u64 generation;
8654 u64 parent;
8655 u32 blocksize;
8656 struct btrfs_key key;
8657 struct extent_buffer *next;
8658 int level = wc->level;
8659 int reada = 0;
8660 int ret = 0;
8661 bool need_account = false;
8662
8663 generation = btrfs_node_ptr_generation(path->nodes[level],
8664 path->slots[level]);
8665 /*
8666 * if the lower level block was created before the snapshot
8667 * was created, we know there is no need to update back refs
8668 * for the subtree
8669 */
8670 if (wc->stage == UPDATE_BACKREF &&
8671 generation <= root->root_key.offset) {
8672 *lookup_info = 1;
8673 return 1;
8674 }
8675
8676 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8677 blocksize = fs_info->nodesize;
8678
8679 next = find_extent_buffer(fs_info, bytenr);
8680 if (!next) {
8681 next = btrfs_find_create_tree_block(fs_info, bytenr);
8682 if (IS_ERR(next))
8683 return PTR_ERR(next);
8684
8685 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8686 level - 1);
8687 reada = 1;
8688 }
8689 btrfs_tree_lock(next);
8690 btrfs_set_lock_blocking(next);
8691
8692 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8693 &wc->refs[level - 1],
8694 &wc->flags[level - 1]);
8695 if (ret < 0)
8696 goto out_unlock;
8697
8698 if (unlikely(wc->refs[level - 1] == 0)) {
8699 btrfs_err(fs_info, "Missing references.");
8700 ret = -EIO;
8701 goto out_unlock;
8702 }
8703 *lookup_info = 0;
8704
8705 if (wc->stage == DROP_REFERENCE) {
8706 if (wc->refs[level - 1] > 1) {
8707 need_account = true;
8708 if (level == 1 &&
8709 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8710 goto skip;
8711
8712 if (!wc->update_ref ||
8713 generation <= root->root_key.offset)
8714 goto skip;
8715
8716 btrfs_node_key_to_cpu(path->nodes[level], &key,
8717 path->slots[level]);
8718 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8719 if (ret < 0)
8720 goto skip;
8721
8722 wc->stage = UPDATE_BACKREF;
8723 wc->shared_level = level - 1;
8724 }
8725 } else {
8726 if (level == 1 &&
8727 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8728 goto skip;
8729 }
8730
8731 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8732 btrfs_tree_unlock(next);
8733 free_extent_buffer(next);
8734 next = NULL;
8735 *lookup_info = 1;
8736 }
8737
8738 if (!next) {
8739 if (reada && level == 1)
8740 reada_walk_down(trans, root, wc, path);
8741 next = read_tree_block(fs_info, bytenr, generation);
8742 if (IS_ERR(next)) {
8743 return PTR_ERR(next);
8744 } else if (!extent_buffer_uptodate(next)) {
8745 free_extent_buffer(next);
8746 return -EIO;
8747 }
8748 btrfs_tree_lock(next);
8749 btrfs_set_lock_blocking(next);
8750 }
8751
8752 level--;
8753 ASSERT(level == btrfs_header_level(next));
8754 if (level != btrfs_header_level(next)) {
8755 btrfs_err(root->fs_info, "mismatched level");
8756 ret = -EIO;
8757 goto out_unlock;
8758 }
8759 path->nodes[level] = next;
8760 path->slots[level] = 0;
8761 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8762 wc->level = level;
8763 if (wc->level == 1)
8764 wc->reada_slot = 0;
8765 return 0;
8766 skip:
8767 wc->refs[level - 1] = 0;
8768 wc->flags[level - 1] = 0;
8769 if (wc->stage == DROP_REFERENCE) {
8770 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8771 parent = path->nodes[level]->start;
8772 } else {
8773 ASSERT(root->root_key.objectid ==
8774 btrfs_header_owner(path->nodes[level]));
8775 if (root->root_key.objectid !=
8776 btrfs_header_owner(path->nodes[level])) {
8777 btrfs_err(root->fs_info,
8778 "mismatched block owner");
8779 ret = -EIO;
8780 goto out_unlock;
8781 }
8782 parent = 0;
8783 }
8784
8785 if (need_account) {
8786 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8787 generation, level - 1);
8788 if (ret) {
8789 btrfs_err_rl(fs_info,
8790 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8791 ret);
8792 }
8793 }
8794 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8795 parent, root->root_key.objectid,
8796 level - 1, 0);
8797 if (ret)
8798 goto out_unlock;
8799 }
8800
8801 *lookup_info = 1;
8802 ret = 1;
8803
8804 out_unlock:
8805 btrfs_tree_unlock(next);
8806 free_extent_buffer(next);
8807
8808 return ret;
8809 }
8810
8811 /*
8812 * helper to process tree block while walking up the tree.
8813 *
8814 * when wc->stage == DROP_REFERENCE, this function drops
8815 * reference count on the block.
8816 *
8817 * when wc->stage == UPDATE_BACKREF, this function changes
8818 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8819 * to UPDATE_BACKREF previously while processing the block.
8820 *
8821 * NOTE: return value 1 means we should stop walking up.
8822 */
8823 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8824 struct btrfs_root *root,
8825 struct btrfs_path *path,
8826 struct walk_control *wc)
8827 {
8828 struct btrfs_fs_info *fs_info = root->fs_info;
8829 int ret;
8830 int level = wc->level;
8831 struct extent_buffer *eb = path->nodes[level];
8832 u64 parent = 0;
8833
8834 if (wc->stage == UPDATE_BACKREF) {
8835 BUG_ON(wc->shared_level < level);
8836 if (level < wc->shared_level)
8837 goto out;
8838
8839 ret = find_next_key(path, level + 1, &wc->update_progress);
8840 if (ret > 0)
8841 wc->update_ref = 0;
8842
8843 wc->stage = DROP_REFERENCE;
8844 wc->shared_level = -1;
8845 path->slots[level] = 0;
8846
8847 /*
8848 * check reference count again if the block isn't locked.
8849 * we should start walking down the tree again if reference
8850 * count is one.
8851 */
8852 if (!path->locks[level]) {
8853 BUG_ON(level == 0);
8854 btrfs_tree_lock(eb);
8855 btrfs_set_lock_blocking(eb);
8856 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8857
8858 ret = btrfs_lookup_extent_info(trans, fs_info,
8859 eb->start, level, 1,
8860 &wc->refs[level],
8861 &wc->flags[level]);
8862 if (ret < 0) {
8863 btrfs_tree_unlock_rw(eb, path->locks[level]);
8864 path->locks[level] = 0;
8865 return ret;
8866 }
8867 BUG_ON(wc->refs[level] == 0);
8868 if (wc->refs[level] == 1) {
8869 btrfs_tree_unlock_rw(eb, path->locks[level]);
8870 path->locks[level] = 0;
8871 return 1;
8872 }
8873 }
8874 }
8875
8876 /* wc->stage == DROP_REFERENCE */
8877 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8878
8879 if (wc->refs[level] == 1) {
8880 if (level == 0) {
8881 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8882 ret = btrfs_dec_ref(trans, root, eb, 1);
8883 else
8884 ret = btrfs_dec_ref(trans, root, eb, 0);
8885 BUG_ON(ret); /* -ENOMEM */
8886 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8887 if (ret) {
8888 btrfs_err_rl(fs_info,
8889 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8890 ret);
8891 }
8892 }
8893 /* make block locked assertion in clean_tree_block happy */
8894 if (!path->locks[level] &&
8895 btrfs_header_generation(eb) == trans->transid) {
8896 btrfs_tree_lock(eb);
8897 btrfs_set_lock_blocking(eb);
8898 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8899 }
8900 clean_tree_block(fs_info, eb);
8901 }
8902
8903 if (eb == root->node) {
8904 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8905 parent = eb->start;
8906 else
8907 BUG_ON(root->root_key.objectid !=
8908 btrfs_header_owner(eb));
8909 } else {
8910 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8911 parent = path->nodes[level + 1]->start;
8912 else
8913 BUG_ON(root->root_key.objectid !=
8914 btrfs_header_owner(path->nodes[level + 1]));
8915 }
8916
8917 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8918 out:
8919 wc->refs[level] = 0;
8920 wc->flags[level] = 0;
8921 return 0;
8922 }
8923
8924 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8925 struct btrfs_root *root,
8926 struct btrfs_path *path,
8927 struct walk_control *wc)
8928 {
8929 int level = wc->level;
8930 int lookup_info = 1;
8931 int ret;
8932
8933 while (level >= 0) {
8934 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8935 if (ret > 0)
8936 break;
8937
8938 if (level == 0)
8939 break;
8940
8941 if (path->slots[level] >=
8942 btrfs_header_nritems(path->nodes[level]))
8943 break;
8944
8945 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8946 if (ret > 0) {
8947 path->slots[level]++;
8948 continue;
8949 } else if (ret < 0)
8950 return ret;
8951 level = wc->level;
8952 }
8953 return 0;
8954 }
8955
8956 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8957 struct btrfs_root *root,
8958 struct btrfs_path *path,
8959 struct walk_control *wc, int max_level)
8960 {
8961 int level = wc->level;
8962 int ret;
8963
8964 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8965 while (level < max_level && path->nodes[level]) {
8966 wc->level = level;
8967 if (path->slots[level] + 1 <
8968 btrfs_header_nritems(path->nodes[level])) {
8969 path->slots[level]++;
8970 return 0;
8971 } else {
8972 ret = walk_up_proc(trans, root, path, wc);
8973 if (ret > 0)
8974 return 0;
8975
8976 if (path->locks[level]) {
8977 btrfs_tree_unlock_rw(path->nodes[level],
8978 path->locks[level]);
8979 path->locks[level] = 0;
8980 }
8981 free_extent_buffer(path->nodes[level]);
8982 path->nodes[level] = NULL;
8983 level++;
8984 }
8985 }
8986 return 1;
8987 }
8988
8989 /*
8990 * drop a subvolume tree.
8991 *
8992 * this function traverses the tree freeing any blocks that only
8993 * referenced by the tree.
8994 *
8995 * when a shared tree block is found. this function decreases its
8996 * reference count by one. if update_ref is true, this function
8997 * also make sure backrefs for the shared block and all lower level
8998 * blocks are properly updated.
8999 *
9000 * If called with for_reloc == 0, may exit early with -EAGAIN
9001 */
9002 int btrfs_drop_snapshot(struct btrfs_root *root,
9003 struct btrfs_block_rsv *block_rsv, int update_ref,
9004 int for_reloc)
9005 {
9006 struct btrfs_fs_info *fs_info = root->fs_info;
9007 struct btrfs_path *path;
9008 struct btrfs_trans_handle *trans;
9009 struct btrfs_root *tree_root = fs_info->tree_root;
9010 struct btrfs_root_item *root_item = &root->root_item;
9011 struct walk_control *wc;
9012 struct btrfs_key key;
9013 int err = 0;
9014 int ret;
9015 int level;
9016 bool root_dropped = false;
9017
9018 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9019
9020 path = btrfs_alloc_path();
9021 if (!path) {
9022 err = -ENOMEM;
9023 goto out;
9024 }
9025
9026 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9027 if (!wc) {
9028 btrfs_free_path(path);
9029 err = -ENOMEM;
9030 goto out;
9031 }
9032
9033 trans = btrfs_start_transaction(tree_root, 0);
9034 if (IS_ERR(trans)) {
9035 err = PTR_ERR(trans);
9036 goto out_free;
9037 }
9038
9039 if (block_rsv)
9040 trans->block_rsv = block_rsv;
9041
9042 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9043 level = btrfs_header_level(root->node);
9044 path->nodes[level] = btrfs_lock_root_node(root);
9045 btrfs_set_lock_blocking(path->nodes[level]);
9046 path->slots[level] = 0;
9047 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9048 memset(&wc->update_progress, 0,
9049 sizeof(wc->update_progress));
9050 } else {
9051 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9052 memcpy(&wc->update_progress, &key,
9053 sizeof(wc->update_progress));
9054
9055 level = root_item->drop_level;
9056 BUG_ON(level == 0);
9057 path->lowest_level = level;
9058 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9059 path->lowest_level = 0;
9060 if (ret < 0) {
9061 err = ret;
9062 goto out_end_trans;
9063 }
9064 WARN_ON(ret > 0);
9065
9066 /*
9067 * unlock our path, this is safe because only this
9068 * function is allowed to delete this snapshot
9069 */
9070 btrfs_unlock_up_safe(path, 0);
9071
9072 level = btrfs_header_level(root->node);
9073 while (1) {
9074 btrfs_tree_lock(path->nodes[level]);
9075 btrfs_set_lock_blocking(path->nodes[level]);
9076 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9077
9078 ret = btrfs_lookup_extent_info(trans, fs_info,
9079 path->nodes[level]->start,
9080 level, 1, &wc->refs[level],
9081 &wc->flags[level]);
9082 if (ret < 0) {
9083 err = ret;
9084 goto out_end_trans;
9085 }
9086 BUG_ON(wc->refs[level] == 0);
9087
9088 if (level == root_item->drop_level)
9089 break;
9090
9091 btrfs_tree_unlock(path->nodes[level]);
9092 path->locks[level] = 0;
9093 WARN_ON(wc->refs[level] != 1);
9094 level--;
9095 }
9096 }
9097
9098 wc->level = level;
9099 wc->shared_level = -1;
9100 wc->stage = DROP_REFERENCE;
9101 wc->update_ref = update_ref;
9102 wc->keep_locks = 0;
9103 wc->for_reloc = for_reloc;
9104 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9105
9106 while (1) {
9107
9108 ret = walk_down_tree(trans, root, path, wc);
9109 if (ret < 0) {
9110 err = ret;
9111 break;
9112 }
9113
9114 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9115 if (ret < 0) {
9116 err = ret;
9117 break;
9118 }
9119
9120 if (ret > 0) {
9121 BUG_ON(wc->stage != DROP_REFERENCE);
9122 break;
9123 }
9124
9125 if (wc->stage == DROP_REFERENCE) {
9126 level = wc->level;
9127 btrfs_node_key(path->nodes[level],
9128 &root_item->drop_progress,
9129 path->slots[level]);
9130 root_item->drop_level = level;
9131 }
9132
9133 BUG_ON(wc->level == 0);
9134 if (btrfs_should_end_transaction(trans) ||
9135 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9136 ret = btrfs_update_root(trans, tree_root,
9137 &root->root_key,
9138 root_item);
9139 if (ret) {
9140 btrfs_abort_transaction(trans, ret);
9141 err = ret;
9142 goto out_end_trans;
9143 }
9144
9145 btrfs_end_transaction_throttle(trans);
9146 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9147 btrfs_debug(fs_info,
9148 "drop snapshot early exit");
9149 err = -EAGAIN;
9150 goto out_free;
9151 }
9152
9153 trans = btrfs_start_transaction(tree_root, 0);
9154 if (IS_ERR(trans)) {
9155 err = PTR_ERR(trans);
9156 goto out_free;
9157 }
9158 if (block_rsv)
9159 trans->block_rsv = block_rsv;
9160 }
9161 }
9162 btrfs_release_path(path);
9163 if (err)
9164 goto out_end_trans;
9165
9166 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9167 if (ret) {
9168 btrfs_abort_transaction(trans, ret);
9169 goto out_end_trans;
9170 }
9171
9172 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9173 ret = btrfs_find_root(tree_root, &root->root_key, path,
9174 NULL, NULL);
9175 if (ret < 0) {
9176 btrfs_abort_transaction(trans, ret);
9177 err = ret;
9178 goto out_end_trans;
9179 } else if (ret > 0) {
9180 /* if we fail to delete the orphan item this time
9181 * around, it'll get picked up the next time.
9182 *
9183 * The most common failure here is just -ENOENT.
9184 */
9185 btrfs_del_orphan_item(trans, tree_root,
9186 root->root_key.objectid);
9187 }
9188 }
9189
9190 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9191 btrfs_add_dropped_root(trans, root);
9192 } else {
9193 free_extent_buffer(root->node);
9194 free_extent_buffer(root->commit_root);
9195 btrfs_put_fs_root(root);
9196 }
9197 root_dropped = true;
9198 out_end_trans:
9199 btrfs_end_transaction_throttle(trans);
9200 out_free:
9201 kfree(wc);
9202 btrfs_free_path(path);
9203 out:
9204 /*
9205 * So if we need to stop dropping the snapshot for whatever reason we
9206 * need to make sure to add it back to the dead root list so that we
9207 * keep trying to do the work later. This also cleans up roots if we
9208 * don't have it in the radix (like when we recover after a power fail
9209 * or unmount) so we don't leak memory.
9210 */
9211 if (!for_reloc && root_dropped == false)
9212 btrfs_add_dead_root(root);
9213 if (err && err != -EAGAIN)
9214 btrfs_handle_fs_error(fs_info, err, NULL);
9215 return err;
9216 }
9217
9218 /*
9219 * drop subtree rooted at tree block 'node'.
9220 *
9221 * NOTE: this function will unlock and release tree block 'node'
9222 * only used by relocation code
9223 */
9224 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9225 struct btrfs_root *root,
9226 struct extent_buffer *node,
9227 struct extent_buffer *parent)
9228 {
9229 struct btrfs_fs_info *fs_info = root->fs_info;
9230 struct btrfs_path *path;
9231 struct walk_control *wc;
9232 int level;
9233 int parent_level;
9234 int ret = 0;
9235 int wret;
9236
9237 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9238
9239 path = btrfs_alloc_path();
9240 if (!path)
9241 return -ENOMEM;
9242
9243 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9244 if (!wc) {
9245 btrfs_free_path(path);
9246 return -ENOMEM;
9247 }
9248
9249 btrfs_assert_tree_locked(parent);
9250 parent_level = btrfs_header_level(parent);
9251 extent_buffer_get(parent);
9252 path->nodes[parent_level] = parent;
9253 path->slots[parent_level] = btrfs_header_nritems(parent);
9254
9255 btrfs_assert_tree_locked(node);
9256 level = btrfs_header_level(node);
9257 path->nodes[level] = node;
9258 path->slots[level] = 0;
9259 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9260
9261 wc->refs[parent_level] = 1;
9262 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9263 wc->level = level;
9264 wc->shared_level = -1;
9265 wc->stage = DROP_REFERENCE;
9266 wc->update_ref = 0;
9267 wc->keep_locks = 1;
9268 wc->for_reloc = 1;
9269 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9270
9271 while (1) {
9272 wret = walk_down_tree(trans, root, path, wc);
9273 if (wret < 0) {
9274 ret = wret;
9275 break;
9276 }
9277
9278 wret = walk_up_tree(trans, root, path, wc, parent_level);
9279 if (wret < 0)
9280 ret = wret;
9281 if (wret != 0)
9282 break;
9283 }
9284
9285 kfree(wc);
9286 btrfs_free_path(path);
9287 return ret;
9288 }
9289
9290 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9291 {
9292 u64 num_devices;
9293 u64 stripped;
9294
9295 /*
9296 * if restripe for this chunk_type is on pick target profile and
9297 * return, otherwise do the usual balance
9298 */
9299 stripped = get_restripe_target(fs_info, flags);
9300 if (stripped)
9301 return extended_to_chunk(stripped);
9302
9303 num_devices = fs_info->fs_devices->rw_devices;
9304
9305 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9306 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9307 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9308
9309 if (num_devices == 1) {
9310 stripped |= BTRFS_BLOCK_GROUP_DUP;
9311 stripped = flags & ~stripped;
9312
9313 /* turn raid0 into single device chunks */
9314 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9315 return stripped;
9316
9317 /* turn mirroring into duplication */
9318 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9319 BTRFS_BLOCK_GROUP_RAID10))
9320 return stripped | BTRFS_BLOCK_GROUP_DUP;
9321 } else {
9322 /* they already had raid on here, just return */
9323 if (flags & stripped)
9324 return flags;
9325
9326 stripped |= BTRFS_BLOCK_GROUP_DUP;
9327 stripped = flags & ~stripped;
9328
9329 /* switch duplicated blocks with raid1 */
9330 if (flags & BTRFS_BLOCK_GROUP_DUP)
9331 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9332
9333 /* this is drive concat, leave it alone */
9334 }
9335
9336 return flags;
9337 }
9338
9339 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9340 {
9341 struct btrfs_space_info *sinfo = cache->space_info;
9342 u64 num_bytes;
9343 u64 min_allocable_bytes;
9344 int ret = -ENOSPC;
9345
9346 /*
9347 * We need some metadata space and system metadata space for
9348 * allocating chunks in some corner cases until we force to set
9349 * it to be readonly.
9350 */
9351 if ((sinfo->flags &
9352 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9353 !force)
9354 min_allocable_bytes = SZ_1M;
9355 else
9356 min_allocable_bytes = 0;
9357
9358 spin_lock(&sinfo->lock);
9359 spin_lock(&cache->lock);
9360
9361 if (cache->ro) {
9362 cache->ro++;
9363 ret = 0;
9364 goto out;
9365 }
9366
9367 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9368 cache->bytes_super - btrfs_block_group_used(&cache->item);
9369
9370 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9371 min_allocable_bytes <= sinfo->total_bytes) {
9372 sinfo->bytes_readonly += num_bytes;
9373 cache->ro++;
9374 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9375 ret = 0;
9376 }
9377 out:
9378 spin_unlock(&cache->lock);
9379 spin_unlock(&sinfo->lock);
9380 return ret;
9381 }
9382
9383 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9384 struct btrfs_block_group_cache *cache)
9385
9386 {
9387 struct btrfs_trans_handle *trans;
9388 u64 alloc_flags;
9389 int ret;
9390
9391 again:
9392 trans = btrfs_join_transaction(fs_info->extent_root);
9393 if (IS_ERR(trans))
9394 return PTR_ERR(trans);
9395
9396 /*
9397 * we're not allowed to set block groups readonly after the dirty
9398 * block groups cache has started writing. If it already started,
9399 * back off and let this transaction commit
9400 */
9401 mutex_lock(&fs_info->ro_block_group_mutex);
9402 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9403 u64 transid = trans->transid;
9404
9405 mutex_unlock(&fs_info->ro_block_group_mutex);
9406 btrfs_end_transaction(trans);
9407
9408 ret = btrfs_wait_for_commit(fs_info, transid);
9409 if (ret)
9410 return ret;
9411 goto again;
9412 }
9413
9414 /*
9415 * if we are changing raid levels, try to allocate a corresponding
9416 * block group with the new raid level.
9417 */
9418 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9419 if (alloc_flags != cache->flags) {
9420 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9421 CHUNK_ALLOC_FORCE);
9422 /*
9423 * ENOSPC is allowed here, we may have enough space
9424 * already allocated at the new raid level to
9425 * carry on
9426 */
9427 if (ret == -ENOSPC)
9428 ret = 0;
9429 if (ret < 0)
9430 goto out;
9431 }
9432
9433 ret = inc_block_group_ro(cache, 0);
9434 if (!ret)
9435 goto out;
9436 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9437 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9438 CHUNK_ALLOC_FORCE);
9439 if (ret < 0)
9440 goto out;
9441 ret = inc_block_group_ro(cache, 0);
9442 out:
9443 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9444 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9445 mutex_lock(&fs_info->chunk_mutex);
9446 check_system_chunk(trans, fs_info, alloc_flags);
9447 mutex_unlock(&fs_info->chunk_mutex);
9448 }
9449 mutex_unlock(&fs_info->ro_block_group_mutex);
9450
9451 btrfs_end_transaction(trans);
9452 return ret;
9453 }
9454
9455 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9456 struct btrfs_fs_info *fs_info, u64 type)
9457 {
9458 u64 alloc_flags = get_alloc_profile(fs_info, type);
9459
9460 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9461 }
9462
9463 /*
9464 * helper to account the unused space of all the readonly block group in the
9465 * space_info. takes mirrors into account.
9466 */
9467 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9468 {
9469 struct btrfs_block_group_cache *block_group;
9470 u64 free_bytes = 0;
9471 int factor;
9472
9473 /* It's df, we don't care if it's racy */
9474 if (list_empty(&sinfo->ro_bgs))
9475 return 0;
9476
9477 spin_lock(&sinfo->lock);
9478 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9479 spin_lock(&block_group->lock);
9480
9481 if (!block_group->ro) {
9482 spin_unlock(&block_group->lock);
9483 continue;
9484 }
9485
9486 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9487 BTRFS_BLOCK_GROUP_RAID10 |
9488 BTRFS_BLOCK_GROUP_DUP))
9489 factor = 2;
9490 else
9491 factor = 1;
9492
9493 free_bytes += (block_group->key.offset -
9494 btrfs_block_group_used(&block_group->item)) *
9495 factor;
9496
9497 spin_unlock(&block_group->lock);
9498 }
9499 spin_unlock(&sinfo->lock);
9500
9501 return free_bytes;
9502 }
9503
9504 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9505 {
9506 struct btrfs_space_info *sinfo = cache->space_info;
9507 u64 num_bytes;
9508
9509 BUG_ON(!cache->ro);
9510
9511 spin_lock(&sinfo->lock);
9512 spin_lock(&cache->lock);
9513 if (!--cache->ro) {
9514 num_bytes = cache->key.offset - cache->reserved -
9515 cache->pinned - cache->bytes_super -
9516 btrfs_block_group_used(&cache->item);
9517 sinfo->bytes_readonly -= num_bytes;
9518 list_del_init(&cache->ro_list);
9519 }
9520 spin_unlock(&cache->lock);
9521 spin_unlock(&sinfo->lock);
9522 }
9523
9524 /*
9525 * checks to see if its even possible to relocate this block group.
9526 *
9527 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9528 * ok to go ahead and try.
9529 */
9530 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9531 {
9532 struct btrfs_root *root = fs_info->extent_root;
9533 struct btrfs_block_group_cache *block_group;
9534 struct btrfs_space_info *space_info;
9535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9536 struct btrfs_device *device;
9537 struct btrfs_trans_handle *trans;
9538 u64 min_free;
9539 u64 dev_min = 1;
9540 u64 dev_nr = 0;
9541 u64 target;
9542 int debug;
9543 int index;
9544 int full = 0;
9545 int ret = 0;
9546
9547 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9548
9549 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9550
9551 /* odd, couldn't find the block group, leave it alone */
9552 if (!block_group) {
9553 if (debug)
9554 btrfs_warn(fs_info,
9555 "can't find block group for bytenr %llu",
9556 bytenr);
9557 return -1;
9558 }
9559
9560 min_free = btrfs_block_group_used(&block_group->item);
9561
9562 /* no bytes used, we're good */
9563 if (!min_free)
9564 goto out;
9565
9566 space_info = block_group->space_info;
9567 spin_lock(&space_info->lock);
9568
9569 full = space_info->full;
9570
9571 /*
9572 * if this is the last block group we have in this space, we can't
9573 * relocate it unless we're able to allocate a new chunk below.
9574 *
9575 * Otherwise, we need to make sure we have room in the space to handle
9576 * all of the extents from this block group. If we can, we're good
9577 */
9578 if ((space_info->total_bytes != block_group->key.offset) &&
9579 (btrfs_space_info_used(space_info, false) + min_free <
9580 space_info->total_bytes)) {
9581 spin_unlock(&space_info->lock);
9582 goto out;
9583 }
9584 spin_unlock(&space_info->lock);
9585
9586 /*
9587 * ok we don't have enough space, but maybe we have free space on our
9588 * devices to allocate new chunks for relocation, so loop through our
9589 * alloc devices and guess if we have enough space. if this block
9590 * group is going to be restriped, run checks against the target
9591 * profile instead of the current one.
9592 */
9593 ret = -1;
9594
9595 /*
9596 * index:
9597 * 0: raid10
9598 * 1: raid1
9599 * 2: dup
9600 * 3: raid0
9601 * 4: single
9602 */
9603 target = get_restripe_target(fs_info, block_group->flags);
9604 if (target) {
9605 index = __get_raid_index(extended_to_chunk(target));
9606 } else {
9607 /*
9608 * this is just a balance, so if we were marked as full
9609 * we know there is no space for a new chunk
9610 */
9611 if (full) {
9612 if (debug)
9613 btrfs_warn(fs_info,
9614 "no space to alloc new chunk for block group %llu",
9615 block_group->key.objectid);
9616 goto out;
9617 }
9618
9619 index = get_block_group_index(block_group);
9620 }
9621
9622 if (index == BTRFS_RAID_RAID10) {
9623 dev_min = 4;
9624 /* Divide by 2 */
9625 min_free >>= 1;
9626 } else if (index == BTRFS_RAID_RAID1) {
9627 dev_min = 2;
9628 } else if (index == BTRFS_RAID_DUP) {
9629 /* Multiply by 2 */
9630 min_free <<= 1;
9631 } else if (index == BTRFS_RAID_RAID0) {
9632 dev_min = fs_devices->rw_devices;
9633 min_free = div64_u64(min_free, dev_min);
9634 }
9635
9636 /* We need to do this so that we can look at pending chunks */
9637 trans = btrfs_join_transaction(root);
9638 if (IS_ERR(trans)) {
9639 ret = PTR_ERR(trans);
9640 goto out;
9641 }
9642
9643 mutex_lock(&fs_info->chunk_mutex);
9644 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9645 u64 dev_offset;
9646
9647 /*
9648 * check to make sure we can actually find a chunk with enough
9649 * space to fit our block group in.
9650 */
9651 if (device->total_bytes > device->bytes_used + min_free &&
9652 !device->is_tgtdev_for_dev_replace) {
9653 ret = find_free_dev_extent(trans, device, min_free,
9654 &dev_offset, NULL);
9655 if (!ret)
9656 dev_nr++;
9657
9658 if (dev_nr >= dev_min)
9659 break;
9660
9661 ret = -1;
9662 }
9663 }
9664 if (debug && ret == -1)
9665 btrfs_warn(fs_info,
9666 "no space to allocate a new chunk for block group %llu",
9667 block_group->key.objectid);
9668 mutex_unlock(&fs_info->chunk_mutex);
9669 btrfs_end_transaction(trans);
9670 out:
9671 btrfs_put_block_group(block_group);
9672 return ret;
9673 }
9674
9675 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9676 struct btrfs_path *path,
9677 struct btrfs_key *key)
9678 {
9679 struct btrfs_root *root = fs_info->extent_root;
9680 int ret = 0;
9681 struct btrfs_key found_key;
9682 struct extent_buffer *leaf;
9683 int slot;
9684
9685 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9686 if (ret < 0)
9687 goto out;
9688
9689 while (1) {
9690 slot = path->slots[0];
9691 leaf = path->nodes[0];
9692 if (slot >= btrfs_header_nritems(leaf)) {
9693 ret = btrfs_next_leaf(root, path);
9694 if (ret == 0)
9695 continue;
9696 if (ret < 0)
9697 goto out;
9698 break;
9699 }
9700 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9701
9702 if (found_key.objectid >= key->objectid &&
9703 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9704 struct extent_map_tree *em_tree;
9705 struct extent_map *em;
9706
9707 em_tree = &root->fs_info->mapping_tree.map_tree;
9708 read_lock(&em_tree->lock);
9709 em = lookup_extent_mapping(em_tree, found_key.objectid,
9710 found_key.offset);
9711 read_unlock(&em_tree->lock);
9712 if (!em) {
9713 btrfs_err(fs_info,
9714 "logical %llu len %llu found bg but no related chunk",
9715 found_key.objectid, found_key.offset);
9716 ret = -ENOENT;
9717 } else {
9718 ret = 0;
9719 }
9720 free_extent_map(em);
9721 goto out;
9722 }
9723 path->slots[0]++;
9724 }
9725 out:
9726 return ret;
9727 }
9728
9729 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9730 {
9731 struct btrfs_block_group_cache *block_group;
9732 u64 last = 0;
9733
9734 while (1) {
9735 struct inode *inode;
9736
9737 block_group = btrfs_lookup_first_block_group(info, last);
9738 while (block_group) {
9739 spin_lock(&block_group->lock);
9740 if (block_group->iref)
9741 break;
9742 spin_unlock(&block_group->lock);
9743 block_group = next_block_group(info, block_group);
9744 }
9745 if (!block_group) {
9746 if (last == 0)
9747 break;
9748 last = 0;
9749 continue;
9750 }
9751
9752 inode = block_group->inode;
9753 block_group->iref = 0;
9754 block_group->inode = NULL;
9755 spin_unlock(&block_group->lock);
9756 ASSERT(block_group->io_ctl.inode == NULL);
9757 iput(inode);
9758 last = block_group->key.objectid + block_group->key.offset;
9759 btrfs_put_block_group(block_group);
9760 }
9761 }
9762
9763 /*
9764 * Must be called only after stopping all workers, since we could have block
9765 * group caching kthreads running, and therefore they could race with us if we
9766 * freed the block groups before stopping them.
9767 */
9768 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9769 {
9770 struct btrfs_block_group_cache *block_group;
9771 struct btrfs_space_info *space_info;
9772 struct btrfs_caching_control *caching_ctl;
9773 struct rb_node *n;
9774
9775 down_write(&info->commit_root_sem);
9776 while (!list_empty(&info->caching_block_groups)) {
9777 caching_ctl = list_entry(info->caching_block_groups.next,
9778 struct btrfs_caching_control, list);
9779 list_del(&caching_ctl->list);
9780 put_caching_control(caching_ctl);
9781 }
9782 up_write(&info->commit_root_sem);
9783
9784 spin_lock(&info->unused_bgs_lock);
9785 while (!list_empty(&info->unused_bgs)) {
9786 block_group = list_first_entry(&info->unused_bgs,
9787 struct btrfs_block_group_cache,
9788 bg_list);
9789 list_del_init(&block_group->bg_list);
9790 btrfs_put_block_group(block_group);
9791 }
9792 spin_unlock(&info->unused_bgs_lock);
9793
9794 spin_lock(&info->block_group_cache_lock);
9795 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9796 block_group = rb_entry(n, struct btrfs_block_group_cache,
9797 cache_node);
9798 rb_erase(&block_group->cache_node,
9799 &info->block_group_cache_tree);
9800 RB_CLEAR_NODE(&block_group->cache_node);
9801 spin_unlock(&info->block_group_cache_lock);
9802
9803 down_write(&block_group->space_info->groups_sem);
9804 list_del(&block_group->list);
9805 up_write(&block_group->space_info->groups_sem);
9806
9807 /*
9808 * We haven't cached this block group, which means we could
9809 * possibly have excluded extents on this block group.
9810 */
9811 if (block_group->cached == BTRFS_CACHE_NO ||
9812 block_group->cached == BTRFS_CACHE_ERROR)
9813 free_excluded_extents(info, block_group);
9814
9815 btrfs_remove_free_space_cache(block_group);
9816 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9817 ASSERT(list_empty(&block_group->dirty_list));
9818 ASSERT(list_empty(&block_group->io_list));
9819 ASSERT(list_empty(&block_group->bg_list));
9820 ASSERT(atomic_read(&block_group->count) == 1);
9821 btrfs_put_block_group(block_group);
9822
9823 spin_lock(&info->block_group_cache_lock);
9824 }
9825 spin_unlock(&info->block_group_cache_lock);
9826
9827 /* now that all the block groups are freed, go through and
9828 * free all the space_info structs. This is only called during
9829 * the final stages of unmount, and so we know nobody is
9830 * using them. We call synchronize_rcu() once before we start,
9831 * just to be on the safe side.
9832 */
9833 synchronize_rcu();
9834
9835 release_global_block_rsv(info);
9836
9837 while (!list_empty(&info->space_info)) {
9838 int i;
9839
9840 space_info = list_entry(info->space_info.next,
9841 struct btrfs_space_info,
9842 list);
9843
9844 /*
9845 * Do not hide this behind enospc_debug, this is actually
9846 * important and indicates a real bug if this happens.
9847 */
9848 if (WARN_ON(space_info->bytes_pinned > 0 ||
9849 space_info->bytes_reserved > 0 ||
9850 space_info->bytes_may_use > 0))
9851 dump_space_info(info, space_info, 0, 0);
9852 list_del(&space_info->list);
9853 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9854 struct kobject *kobj;
9855 kobj = space_info->block_group_kobjs[i];
9856 space_info->block_group_kobjs[i] = NULL;
9857 if (kobj) {
9858 kobject_del(kobj);
9859 kobject_put(kobj);
9860 }
9861 }
9862 kobject_del(&space_info->kobj);
9863 kobject_put(&space_info->kobj);
9864 }
9865 return 0;
9866 }
9867
9868 static void __link_block_group(struct btrfs_space_info *space_info,
9869 struct btrfs_block_group_cache *cache)
9870 {
9871 int index = get_block_group_index(cache);
9872 bool first = false;
9873
9874 down_write(&space_info->groups_sem);
9875 if (list_empty(&space_info->block_groups[index]))
9876 first = true;
9877 list_add_tail(&cache->list, &space_info->block_groups[index]);
9878 up_write(&space_info->groups_sem);
9879
9880 if (first) {
9881 struct raid_kobject *rkobj;
9882 int ret;
9883
9884 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9885 if (!rkobj)
9886 goto out_err;
9887 rkobj->raid_type = index;
9888 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9889 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9890 "%s", get_raid_name(index));
9891 if (ret) {
9892 kobject_put(&rkobj->kobj);
9893 goto out_err;
9894 }
9895 space_info->block_group_kobjs[index] = &rkobj->kobj;
9896 }
9897
9898 return;
9899 out_err:
9900 btrfs_warn(cache->fs_info,
9901 "failed to add kobject for block cache, ignoring");
9902 }
9903
9904 static struct btrfs_block_group_cache *
9905 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9906 u64 start, u64 size)
9907 {
9908 struct btrfs_block_group_cache *cache;
9909
9910 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9911 if (!cache)
9912 return NULL;
9913
9914 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9915 GFP_NOFS);
9916 if (!cache->free_space_ctl) {
9917 kfree(cache);
9918 return NULL;
9919 }
9920
9921 cache->key.objectid = start;
9922 cache->key.offset = size;
9923 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9924
9925 cache->sectorsize = fs_info->sectorsize;
9926 cache->fs_info = fs_info;
9927 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9928 &fs_info->mapping_tree,
9929 start);
9930 set_free_space_tree_thresholds(cache);
9931
9932 atomic_set(&cache->count, 1);
9933 spin_lock_init(&cache->lock);
9934 init_rwsem(&cache->data_rwsem);
9935 INIT_LIST_HEAD(&cache->list);
9936 INIT_LIST_HEAD(&cache->cluster_list);
9937 INIT_LIST_HEAD(&cache->bg_list);
9938 INIT_LIST_HEAD(&cache->ro_list);
9939 INIT_LIST_HEAD(&cache->dirty_list);
9940 INIT_LIST_HEAD(&cache->io_list);
9941 btrfs_init_free_space_ctl(cache);
9942 atomic_set(&cache->trimming, 0);
9943 mutex_init(&cache->free_space_lock);
9944 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9945
9946 return cache;
9947 }
9948
9949 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9950 {
9951 struct btrfs_path *path;
9952 int ret;
9953 struct btrfs_block_group_cache *cache;
9954 struct btrfs_space_info *space_info;
9955 struct btrfs_key key;
9956 struct btrfs_key found_key;
9957 struct extent_buffer *leaf;
9958 int need_clear = 0;
9959 u64 cache_gen;
9960 u64 feature;
9961 int mixed;
9962
9963 feature = btrfs_super_incompat_flags(info->super_copy);
9964 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9965
9966 key.objectid = 0;
9967 key.offset = 0;
9968 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9969 path = btrfs_alloc_path();
9970 if (!path)
9971 return -ENOMEM;
9972 path->reada = READA_FORWARD;
9973
9974 cache_gen = btrfs_super_cache_generation(info->super_copy);
9975 if (btrfs_test_opt(info, SPACE_CACHE) &&
9976 btrfs_super_generation(info->super_copy) != cache_gen)
9977 need_clear = 1;
9978 if (btrfs_test_opt(info, CLEAR_CACHE))
9979 need_clear = 1;
9980
9981 while (1) {
9982 ret = find_first_block_group(info, path, &key);
9983 if (ret > 0)
9984 break;
9985 if (ret != 0)
9986 goto error;
9987
9988 leaf = path->nodes[0];
9989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9990
9991 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9992 found_key.offset);
9993 if (!cache) {
9994 ret = -ENOMEM;
9995 goto error;
9996 }
9997
9998 if (need_clear) {
9999 /*
10000 * When we mount with old space cache, we need to
10001 * set BTRFS_DC_CLEAR and set dirty flag.
10002 *
10003 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10004 * truncate the old free space cache inode and
10005 * setup a new one.
10006 * b) Setting 'dirty flag' makes sure that we flush
10007 * the new space cache info onto disk.
10008 */
10009 if (btrfs_test_opt(info, SPACE_CACHE))
10010 cache->disk_cache_state = BTRFS_DC_CLEAR;
10011 }
10012
10013 read_extent_buffer(leaf, &cache->item,
10014 btrfs_item_ptr_offset(leaf, path->slots[0]),
10015 sizeof(cache->item));
10016 cache->flags = btrfs_block_group_flags(&cache->item);
10017 if (!mixed &&
10018 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10019 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10020 btrfs_err(info,
10021 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10022 cache->key.objectid);
10023 ret = -EINVAL;
10024 goto error;
10025 }
10026
10027 key.objectid = found_key.objectid + found_key.offset;
10028 btrfs_release_path(path);
10029
10030 /*
10031 * We need to exclude the super stripes now so that the space
10032 * info has super bytes accounted for, otherwise we'll think
10033 * we have more space than we actually do.
10034 */
10035 ret = exclude_super_stripes(info, cache);
10036 if (ret) {
10037 /*
10038 * We may have excluded something, so call this just in
10039 * case.
10040 */
10041 free_excluded_extents(info, cache);
10042 btrfs_put_block_group(cache);
10043 goto error;
10044 }
10045
10046 /*
10047 * check for two cases, either we are full, and therefore
10048 * don't need to bother with the caching work since we won't
10049 * find any space, or we are empty, and we can just add all
10050 * the space in and be done with it. This saves us _alot_ of
10051 * time, particularly in the full case.
10052 */
10053 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10054 cache->last_byte_to_unpin = (u64)-1;
10055 cache->cached = BTRFS_CACHE_FINISHED;
10056 free_excluded_extents(info, cache);
10057 } else if (btrfs_block_group_used(&cache->item) == 0) {
10058 cache->last_byte_to_unpin = (u64)-1;
10059 cache->cached = BTRFS_CACHE_FINISHED;
10060 add_new_free_space(cache, info,
10061 found_key.objectid,
10062 found_key.objectid +
10063 found_key.offset);
10064 free_excluded_extents(info, cache);
10065 }
10066
10067 ret = btrfs_add_block_group_cache(info, cache);
10068 if (ret) {
10069 btrfs_remove_free_space_cache(cache);
10070 btrfs_put_block_group(cache);
10071 goto error;
10072 }
10073
10074 trace_btrfs_add_block_group(info, cache, 0);
10075 update_space_info(info, cache->flags, found_key.offset,
10076 btrfs_block_group_used(&cache->item),
10077 cache->bytes_super, &space_info);
10078
10079 cache->space_info = space_info;
10080
10081 __link_block_group(space_info, cache);
10082
10083 set_avail_alloc_bits(info, cache->flags);
10084 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10085 inc_block_group_ro(cache, 1);
10086 } else if (btrfs_block_group_used(&cache->item) == 0) {
10087 spin_lock(&info->unused_bgs_lock);
10088 /* Should always be true but just in case. */
10089 if (list_empty(&cache->bg_list)) {
10090 btrfs_get_block_group(cache);
10091 list_add_tail(&cache->bg_list,
10092 &info->unused_bgs);
10093 }
10094 spin_unlock(&info->unused_bgs_lock);
10095 }
10096 }
10097
10098 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10099 if (!(get_alloc_profile(info, space_info->flags) &
10100 (BTRFS_BLOCK_GROUP_RAID10 |
10101 BTRFS_BLOCK_GROUP_RAID1 |
10102 BTRFS_BLOCK_GROUP_RAID5 |
10103 BTRFS_BLOCK_GROUP_RAID6 |
10104 BTRFS_BLOCK_GROUP_DUP)))
10105 continue;
10106 /*
10107 * avoid allocating from un-mirrored block group if there are
10108 * mirrored block groups.
10109 */
10110 list_for_each_entry(cache,
10111 &space_info->block_groups[BTRFS_RAID_RAID0],
10112 list)
10113 inc_block_group_ro(cache, 1);
10114 list_for_each_entry(cache,
10115 &space_info->block_groups[BTRFS_RAID_SINGLE],
10116 list)
10117 inc_block_group_ro(cache, 1);
10118 }
10119
10120 init_global_block_rsv(info);
10121 ret = 0;
10122 error:
10123 btrfs_free_path(path);
10124 return ret;
10125 }
10126
10127 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10128 struct btrfs_fs_info *fs_info)
10129 {
10130 struct btrfs_block_group_cache *block_group, *tmp;
10131 struct btrfs_root *extent_root = fs_info->extent_root;
10132 struct btrfs_block_group_item item;
10133 struct btrfs_key key;
10134 int ret = 0;
10135 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10136
10137 trans->can_flush_pending_bgs = false;
10138 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10139 if (ret)
10140 goto next;
10141
10142 spin_lock(&block_group->lock);
10143 memcpy(&item, &block_group->item, sizeof(item));
10144 memcpy(&key, &block_group->key, sizeof(key));
10145 spin_unlock(&block_group->lock);
10146
10147 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10148 sizeof(item));
10149 if (ret)
10150 btrfs_abort_transaction(trans, ret);
10151 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10152 key.offset);
10153 if (ret)
10154 btrfs_abort_transaction(trans, ret);
10155 add_block_group_free_space(trans, fs_info, block_group);
10156 /* already aborted the transaction if it failed. */
10157 next:
10158 list_del_init(&block_group->bg_list);
10159 }
10160 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10161 }
10162
10163 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10164 struct btrfs_fs_info *fs_info, u64 bytes_used,
10165 u64 type, u64 chunk_objectid, u64 chunk_offset,
10166 u64 size)
10167 {
10168 struct btrfs_block_group_cache *cache;
10169 int ret;
10170
10171 btrfs_set_log_full_commit(fs_info, trans);
10172
10173 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10174 if (!cache)
10175 return -ENOMEM;
10176
10177 btrfs_set_block_group_used(&cache->item, bytes_used);
10178 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10179 btrfs_set_block_group_flags(&cache->item, type);
10180
10181 cache->flags = type;
10182 cache->last_byte_to_unpin = (u64)-1;
10183 cache->cached = BTRFS_CACHE_FINISHED;
10184 cache->needs_free_space = 1;
10185 ret = exclude_super_stripes(fs_info, cache);
10186 if (ret) {
10187 /*
10188 * We may have excluded something, so call this just in
10189 * case.
10190 */
10191 free_excluded_extents(fs_info, cache);
10192 btrfs_put_block_group(cache);
10193 return ret;
10194 }
10195
10196 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10197
10198 free_excluded_extents(fs_info, cache);
10199
10200 #ifdef CONFIG_BTRFS_DEBUG
10201 if (btrfs_should_fragment_free_space(cache)) {
10202 u64 new_bytes_used = size - bytes_used;
10203
10204 bytes_used += new_bytes_used >> 1;
10205 fragment_free_space(cache);
10206 }
10207 #endif
10208 /*
10209 * Ensure the corresponding space_info object is created and
10210 * assigned to our block group. We want our bg to be added to the rbtree
10211 * with its ->space_info set.
10212 */
10213 cache->space_info = __find_space_info(fs_info, cache->flags);
10214 if (!cache->space_info) {
10215 ret = create_space_info(fs_info, cache->flags,
10216 &cache->space_info);
10217 if (ret) {
10218 btrfs_remove_free_space_cache(cache);
10219 btrfs_put_block_group(cache);
10220 return ret;
10221 }
10222 }
10223
10224 ret = btrfs_add_block_group_cache(fs_info, cache);
10225 if (ret) {
10226 btrfs_remove_free_space_cache(cache);
10227 btrfs_put_block_group(cache);
10228 return ret;
10229 }
10230
10231 /*
10232 * Now that our block group has its ->space_info set and is inserted in
10233 * the rbtree, update the space info's counters.
10234 */
10235 trace_btrfs_add_block_group(fs_info, cache, 1);
10236 update_space_info(fs_info, cache->flags, size, bytes_used,
10237 cache->bytes_super, &cache->space_info);
10238 update_global_block_rsv(fs_info);
10239
10240 __link_block_group(cache->space_info, cache);
10241
10242 list_add_tail(&cache->bg_list, &trans->new_bgs);
10243
10244 set_avail_alloc_bits(fs_info, type);
10245 return 0;
10246 }
10247
10248 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10249 {
10250 u64 extra_flags = chunk_to_extended(flags) &
10251 BTRFS_EXTENDED_PROFILE_MASK;
10252
10253 write_seqlock(&fs_info->profiles_lock);
10254 if (flags & BTRFS_BLOCK_GROUP_DATA)
10255 fs_info->avail_data_alloc_bits &= ~extra_flags;
10256 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10257 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10258 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10259 fs_info->avail_system_alloc_bits &= ~extra_flags;
10260 write_sequnlock(&fs_info->profiles_lock);
10261 }
10262
10263 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10264 struct btrfs_fs_info *fs_info, u64 group_start,
10265 struct extent_map *em)
10266 {
10267 struct btrfs_root *root = fs_info->extent_root;
10268 struct btrfs_path *path;
10269 struct btrfs_block_group_cache *block_group;
10270 struct btrfs_free_cluster *cluster;
10271 struct btrfs_root *tree_root = fs_info->tree_root;
10272 struct btrfs_key key;
10273 struct inode *inode;
10274 struct kobject *kobj = NULL;
10275 int ret;
10276 int index;
10277 int factor;
10278 struct btrfs_caching_control *caching_ctl = NULL;
10279 bool remove_em;
10280
10281 block_group = btrfs_lookup_block_group(fs_info, group_start);
10282 BUG_ON(!block_group);
10283 BUG_ON(!block_group->ro);
10284
10285 /*
10286 * Free the reserved super bytes from this block group before
10287 * remove it.
10288 */
10289 free_excluded_extents(fs_info, block_group);
10290
10291 memcpy(&key, &block_group->key, sizeof(key));
10292 index = get_block_group_index(block_group);
10293 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10294 BTRFS_BLOCK_GROUP_RAID1 |
10295 BTRFS_BLOCK_GROUP_RAID10))
10296 factor = 2;
10297 else
10298 factor = 1;
10299
10300 /* make sure this block group isn't part of an allocation cluster */
10301 cluster = &fs_info->data_alloc_cluster;
10302 spin_lock(&cluster->refill_lock);
10303 btrfs_return_cluster_to_free_space(block_group, cluster);
10304 spin_unlock(&cluster->refill_lock);
10305
10306 /*
10307 * make sure this block group isn't part of a metadata
10308 * allocation cluster
10309 */
10310 cluster = &fs_info->meta_alloc_cluster;
10311 spin_lock(&cluster->refill_lock);
10312 btrfs_return_cluster_to_free_space(block_group, cluster);
10313 spin_unlock(&cluster->refill_lock);
10314
10315 path = btrfs_alloc_path();
10316 if (!path) {
10317 ret = -ENOMEM;
10318 goto out;
10319 }
10320
10321 /*
10322 * get the inode first so any iput calls done for the io_list
10323 * aren't the final iput (no unlinks allowed now)
10324 */
10325 inode = lookup_free_space_inode(fs_info, block_group, path);
10326
10327 mutex_lock(&trans->transaction->cache_write_mutex);
10328 /*
10329 * make sure our free spache cache IO is done before remove the
10330 * free space inode
10331 */
10332 spin_lock(&trans->transaction->dirty_bgs_lock);
10333 if (!list_empty(&block_group->io_list)) {
10334 list_del_init(&block_group->io_list);
10335
10336 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10337
10338 spin_unlock(&trans->transaction->dirty_bgs_lock);
10339 btrfs_wait_cache_io(trans, block_group, path);
10340 btrfs_put_block_group(block_group);
10341 spin_lock(&trans->transaction->dirty_bgs_lock);
10342 }
10343
10344 if (!list_empty(&block_group->dirty_list)) {
10345 list_del_init(&block_group->dirty_list);
10346 btrfs_put_block_group(block_group);
10347 }
10348 spin_unlock(&trans->transaction->dirty_bgs_lock);
10349 mutex_unlock(&trans->transaction->cache_write_mutex);
10350
10351 if (!IS_ERR(inode)) {
10352 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10353 if (ret) {
10354 btrfs_add_delayed_iput(inode);
10355 goto out;
10356 }
10357 clear_nlink(inode);
10358 /* One for the block groups ref */
10359 spin_lock(&block_group->lock);
10360 if (block_group->iref) {
10361 block_group->iref = 0;
10362 block_group->inode = NULL;
10363 spin_unlock(&block_group->lock);
10364 iput(inode);
10365 } else {
10366 spin_unlock(&block_group->lock);
10367 }
10368 /* One for our lookup ref */
10369 btrfs_add_delayed_iput(inode);
10370 }
10371
10372 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10373 key.offset = block_group->key.objectid;
10374 key.type = 0;
10375
10376 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10377 if (ret < 0)
10378 goto out;
10379 if (ret > 0)
10380 btrfs_release_path(path);
10381 if (ret == 0) {
10382 ret = btrfs_del_item(trans, tree_root, path);
10383 if (ret)
10384 goto out;
10385 btrfs_release_path(path);
10386 }
10387
10388 spin_lock(&fs_info->block_group_cache_lock);
10389 rb_erase(&block_group->cache_node,
10390 &fs_info->block_group_cache_tree);
10391 RB_CLEAR_NODE(&block_group->cache_node);
10392
10393 if (fs_info->first_logical_byte == block_group->key.objectid)
10394 fs_info->first_logical_byte = (u64)-1;
10395 spin_unlock(&fs_info->block_group_cache_lock);
10396
10397 down_write(&block_group->space_info->groups_sem);
10398 /*
10399 * we must use list_del_init so people can check to see if they
10400 * are still on the list after taking the semaphore
10401 */
10402 list_del_init(&block_group->list);
10403 if (list_empty(&block_group->space_info->block_groups[index])) {
10404 kobj = block_group->space_info->block_group_kobjs[index];
10405 block_group->space_info->block_group_kobjs[index] = NULL;
10406 clear_avail_alloc_bits(fs_info, block_group->flags);
10407 }
10408 up_write(&block_group->space_info->groups_sem);
10409 if (kobj) {
10410 kobject_del(kobj);
10411 kobject_put(kobj);
10412 }
10413
10414 if (block_group->has_caching_ctl)
10415 caching_ctl = get_caching_control(block_group);
10416 if (block_group->cached == BTRFS_CACHE_STARTED)
10417 wait_block_group_cache_done(block_group);
10418 if (block_group->has_caching_ctl) {
10419 down_write(&fs_info->commit_root_sem);
10420 if (!caching_ctl) {
10421 struct btrfs_caching_control *ctl;
10422
10423 list_for_each_entry(ctl,
10424 &fs_info->caching_block_groups, list)
10425 if (ctl->block_group == block_group) {
10426 caching_ctl = ctl;
10427 refcount_inc(&caching_ctl->count);
10428 break;
10429 }
10430 }
10431 if (caching_ctl)
10432 list_del_init(&caching_ctl->list);
10433 up_write(&fs_info->commit_root_sem);
10434 if (caching_ctl) {
10435 /* Once for the caching bgs list and once for us. */
10436 put_caching_control(caching_ctl);
10437 put_caching_control(caching_ctl);
10438 }
10439 }
10440
10441 spin_lock(&trans->transaction->dirty_bgs_lock);
10442 if (!list_empty(&block_group->dirty_list)) {
10443 WARN_ON(1);
10444 }
10445 if (!list_empty(&block_group->io_list)) {
10446 WARN_ON(1);
10447 }
10448 spin_unlock(&trans->transaction->dirty_bgs_lock);
10449 btrfs_remove_free_space_cache(block_group);
10450
10451 spin_lock(&block_group->space_info->lock);
10452 list_del_init(&block_group->ro_list);
10453
10454 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10455 WARN_ON(block_group->space_info->total_bytes
10456 < block_group->key.offset);
10457 WARN_ON(block_group->space_info->bytes_readonly
10458 < block_group->key.offset);
10459 WARN_ON(block_group->space_info->disk_total
10460 < block_group->key.offset * factor);
10461 }
10462 block_group->space_info->total_bytes -= block_group->key.offset;
10463 block_group->space_info->bytes_readonly -= block_group->key.offset;
10464 block_group->space_info->disk_total -= block_group->key.offset * factor;
10465
10466 spin_unlock(&block_group->space_info->lock);
10467
10468 memcpy(&key, &block_group->key, sizeof(key));
10469
10470 mutex_lock(&fs_info->chunk_mutex);
10471 if (!list_empty(&em->list)) {
10472 /* We're in the transaction->pending_chunks list. */
10473 free_extent_map(em);
10474 }
10475 spin_lock(&block_group->lock);
10476 block_group->removed = 1;
10477 /*
10478 * At this point trimming can't start on this block group, because we
10479 * removed the block group from the tree fs_info->block_group_cache_tree
10480 * so no one can't find it anymore and even if someone already got this
10481 * block group before we removed it from the rbtree, they have already
10482 * incremented block_group->trimming - if they didn't, they won't find
10483 * any free space entries because we already removed them all when we
10484 * called btrfs_remove_free_space_cache().
10485 *
10486 * And we must not remove the extent map from the fs_info->mapping_tree
10487 * to prevent the same logical address range and physical device space
10488 * ranges from being reused for a new block group. This is because our
10489 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10490 * completely transactionless, so while it is trimming a range the
10491 * currently running transaction might finish and a new one start,
10492 * allowing for new block groups to be created that can reuse the same
10493 * physical device locations unless we take this special care.
10494 *
10495 * There may also be an implicit trim operation if the file system
10496 * is mounted with -odiscard. The same protections must remain
10497 * in place until the extents have been discarded completely when
10498 * the transaction commit has completed.
10499 */
10500 remove_em = (atomic_read(&block_group->trimming) == 0);
10501 /*
10502 * Make sure a trimmer task always sees the em in the pinned_chunks list
10503 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10504 * before checking block_group->removed).
10505 */
10506 if (!remove_em) {
10507 /*
10508 * Our em might be in trans->transaction->pending_chunks which
10509 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10510 * and so is the fs_info->pinned_chunks list.
10511 *
10512 * So at this point we must be holding the chunk_mutex to avoid
10513 * any races with chunk allocation (more specifically at
10514 * volumes.c:contains_pending_extent()), to ensure it always
10515 * sees the em, either in the pending_chunks list or in the
10516 * pinned_chunks list.
10517 */
10518 list_move_tail(&em->list, &fs_info->pinned_chunks);
10519 }
10520 spin_unlock(&block_group->lock);
10521
10522 if (remove_em) {
10523 struct extent_map_tree *em_tree;
10524
10525 em_tree = &fs_info->mapping_tree.map_tree;
10526 write_lock(&em_tree->lock);
10527 /*
10528 * The em might be in the pending_chunks list, so make sure the
10529 * chunk mutex is locked, since remove_extent_mapping() will
10530 * delete us from that list.
10531 */
10532 remove_extent_mapping(em_tree, em);
10533 write_unlock(&em_tree->lock);
10534 /* once for the tree */
10535 free_extent_map(em);
10536 }
10537
10538 mutex_unlock(&fs_info->chunk_mutex);
10539
10540 ret = remove_block_group_free_space(trans, fs_info, block_group);
10541 if (ret)
10542 goto out;
10543
10544 btrfs_put_block_group(block_group);
10545 btrfs_put_block_group(block_group);
10546
10547 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10548 if (ret > 0)
10549 ret = -EIO;
10550 if (ret < 0)
10551 goto out;
10552
10553 ret = btrfs_del_item(trans, root, path);
10554 out:
10555 btrfs_free_path(path);
10556 return ret;
10557 }
10558
10559 struct btrfs_trans_handle *
10560 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10561 const u64 chunk_offset)
10562 {
10563 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10564 struct extent_map *em;
10565 struct map_lookup *map;
10566 unsigned int num_items;
10567
10568 read_lock(&em_tree->lock);
10569 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10570 read_unlock(&em_tree->lock);
10571 ASSERT(em && em->start == chunk_offset);
10572
10573 /*
10574 * We need to reserve 3 + N units from the metadata space info in order
10575 * to remove a block group (done at btrfs_remove_chunk() and at
10576 * btrfs_remove_block_group()), which are used for:
10577 *
10578 * 1 unit for adding the free space inode's orphan (located in the tree
10579 * of tree roots).
10580 * 1 unit for deleting the block group item (located in the extent
10581 * tree).
10582 * 1 unit for deleting the free space item (located in tree of tree
10583 * roots).
10584 * N units for deleting N device extent items corresponding to each
10585 * stripe (located in the device tree).
10586 *
10587 * In order to remove a block group we also need to reserve units in the
10588 * system space info in order to update the chunk tree (update one or
10589 * more device items and remove one chunk item), but this is done at
10590 * btrfs_remove_chunk() through a call to check_system_chunk().
10591 */
10592 map = em->map_lookup;
10593 num_items = 3 + map->num_stripes;
10594 free_extent_map(em);
10595
10596 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10597 num_items, 1);
10598 }
10599
10600 /*
10601 * Process the unused_bgs list and remove any that don't have any allocated
10602 * space inside of them.
10603 */
10604 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10605 {
10606 struct btrfs_block_group_cache *block_group;
10607 struct btrfs_space_info *space_info;
10608 struct btrfs_trans_handle *trans;
10609 int ret = 0;
10610
10611 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10612 return;
10613
10614 spin_lock(&fs_info->unused_bgs_lock);
10615 while (!list_empty(&fs_info->unused_bgs)) {
10616 u64 start, end;
10617 int trimming;
10618
10619 block_group = list_first_entry(&fs_info->unused_bgs,
10620 struct btrfs_block_group_cache,
10621 bg_list);
10622 list_del_init(&block_group->bg_list);
10623
10624 space_info = block_group->space_info;
10625
10626 if (ret || btrfs_mixed_space_info(space_info)) {
10627 btrfs_put_block_group(block_group);
10628 continue;
10629 }
10630 spin_unlock(&fs_info->unused_bgs_lock);
10631
10632 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10633
10634 /* Don't want to race with allocators so take the groups_sem */
10635 down_write(&space_info->groups_sem);
10636 spin_lock(&block_group->lock);
10637 if (block_group->reserved ||
10638 btrfs_block_group_used(&block_group->item) ||
10639 block_group->ro ||
10640 list_is_singular(&block_group->list)) {
10641 /*
10642 * We want to bail if we made new allocations or have
10643 * outstanding allocations in this block group. We do
10644 * the ro check in case balance is currently acting on
10645 * this block group.
10646 */
10647 spin_unlock(&block_group->lock);
10648 up_write(&space_info->groups_sem);
10649 goto next;
10650 }
10651 spin_unlock(&block_group->lock);
10652
10653 /* We don't want to force the issue, only flip if it's ok. */
10654 ret = inc_block_group_ro(block_group, 0);
10655 up_write(&space_info->groups_sem);
10656 if (ret < 0) {
10657 ret = 0;
10658 goto next;
10659 }
10660
10661 /*
10662 * Want to do this before we do anything else so we can recover
10663 * properly if we fail to join the transaction.
10664 */
10665 trans = btrfs_start_trans_remove_block_group(fs_info,
10666 block_group->key.objectid);
10667 if (IS_ERR(trans)) {
10668 btrfs_dec_block_group_ro(block_group);
10669 ret = PTR_ERR(trans);
10670 goto next;
10671 }
10672
10673 /*
10674 * We could have pending pinned extents for this block group,
10675 * just delete them, we don't care about them anymore.
10676 */
10677 start = block_group->key.objectid;
10678 end = start + block_group->key.offset - 1;
10679 /*
10680 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10681 * btrfs_finish_extent_commit(). If we are at transaction N,
10682 * another task might be running finish_extent_commit() for the
10683 * previous transaction N - 1, and have seen a range belonging
10684 * to the block group in freed_extents[] before we were able to
10685 * clear the whole block group range from freed_extents[]. This
10686 * means that task can lookup for the block group after we
10687 * unpinned it from freed_extents[] and removed it, leading to
10688 * a BUG_ON() at btrfs_unpin_extent_range().
10689 */
10690 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10691 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10692 EXTENT_DIRTY);
10693 if (ret) {
10694 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10695 btrfs_dec_block_group_ro(block_group);
10696 goto end_trans;
10697 }
10698 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10699 EXTENT_DIRTY);
10700 if (ret) {
10701 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10702 btrfs_dec_block_group_ro(block_group);
10703 goto end_trans;
10704 }
10705 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10706
10707 /* Reset pinned so btrfs_put_block_group doesn't complain */
10708 spin_lock(&space_info->lock);
10709 spin_lock(&block_group->lock);
10710
10711 space_info->bytes_pinned -= block_group->pinned;
10712 space_info->bytes_readonly += block_group->pinned;
10713 percpu_counter_add(&space_info->total_bytes_pinned,
10714 -block_group->pinned);
10715 block_group->pinned = 0;
10716
10717 spin_unlock(&block_group->lock);
10718 spin_unlock(&space_info->lock);
10719
10720 /* DISCARD can flip during remount */
10721 trimming = btrfs_test_opt(fs_info, DISCARD);
10722
10723 /* Implicit trim during transaction commit. */
10724 if (trimming)
10725 btrfs_get_block_group_trimming(block_group);
10726
10727 /*
10728 * Btrfs_remove_chunk will abort the transaction if things go
10729 * horribly wrong.
10730 */
10731 ret = btrfs_remove_chunk(trans, fs_info,
10732 block_group->key.objectid);
10733
10734 if (ret) {
10735 if (trimming)
10736 btrfs_put_block_group_trimming(block_group);
10737 goto end_trans;
10738 }
10739
10740 /*
10741 * If we're not mounted with -odiscard, we can just forget
10742 * about this block group. Otherwise we'll need to wait
10743 * until transaction commit to do the actual discard.
10744 */
10745 if (trimming) {
10746 spin_lock(&fs_info->unused_bgs_lock);
10747 /*
10748 * A concurrent scrub might have added us to the list
10749 * fs_info->unused_bgs, so use a list_move operation
10750 * to add the block group to the deleted_bgs list.
10751 */
10752 list_move(&block_group->bg_list,
10753 &trans->transaction->deleted_bgs);
10754 spin_unlock(&fs_info->unused_bgs_lock);
10755 btrfs_get_block_group(block_group);
10756 }
10757 end_trans:
10758 btrfs_end_transaction(trans);
10759 next:
10760 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10761 btrfs_put_block_group(block_group);
10762 spin_lock(&fs_info->unused_bgs_lock);
10763 }
10764 spin_unlock(&fs_info->unused_bgs_lock);
10765 }
10766
10767 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10768 {
10769 struct btrfs_space_info *space_info;
10770 struct btrfs_super_block *disk_super;
10771 u64 features;
10772 u64 flags;
10773 int mixed = 0;
10774 int ret;
10775
10776 disk_super = fs_info->super_copy;
10777 if (!btrfs_super_root(disk_super))
10778 return -EINVAL;
10779
10780 features = btrfs_super_incompat_flags(disk_super);
10781 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10782 mixed = 1;
10783
10784 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10785 ret = create_space_info(fs_info, flags, &space_info);
10786 if (ret)
10787 goto out;
10788
10789 if (mixed) {
10790 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10791 ret = create_space_info(fs_info, flags, &space_info);
10792 } else {
10793 flags = BTRFS_BLOCK_GROUP_METADATA;
10794 ret = create_space_info(fs_info, flags, &space_info);
10795 if (ret)
10796 goto out;
10797
10798 flags = BTRFS_BLOCK_GROUP_DATA;
10799 ret = create_space_info(fs_info, flags, &space_info);
10800 }
10801 out:
10802 return ret;
10803 }
10804
10805 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10806 u64 start, u64 end)
10807 {
10808 return unpin_extent_range(fs_info, start, end, false);
10809 }
10810
10811 /*
10812 * It used to be that old block groups would be left around forever.
10813 * Iterating over them would be enough to trim unused space. Since we
10814 * now automatically remove them, we also need to iterate over unallocated
10815 * space.
10816 *
10817 * We don't want a transaction for this since the discard may take a
10818 * substantial amount of time. We don't require that a transaction be
10819 * running, but we do need to take a running transaction into account
10820 * to ensure that we're not discarding chunks that were released in
10821 * the current transaction.
10822 *
10823 * Holding the chunks lock will prevent other threads from allocating
10824 * or releasing chunks, but it won't prevent a running transaction
10825 * from committing and releasing the memory that the pending chunks
10826 * list head uses. For that, we need to take a reference to the
10827 * transaction.
10828 */
10829 static int btrfs_trim_free_extents(struct btrfs_device *device,
10830 u64 minlen, u64 *trimmed)
10831 {
10832 u64 start = 0, len = 0;
10833 int ret;
10834
10835 *trimmed = 0;
10836
10837 /* Not writeable = nothing to do. */
10838 if (!device->writeable)
10839 return 0;
10840
10841 /* No free space = nothing to do. */
10842 if (device->total_bytes <= device->bytes_used)
10843 return 0;
10844
10845 ret = 0;
10846
10847 while (1) {
10848 struct btrfs_fs_info *fs_info = device->fs_info;
10849 struct btrfs_transaction *trans;
10850 u64 bytes;
10851
10852 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10853 if (ret)
10854 return ret;
10855
10856 down_read(&fs_info->commit_root_sem);
10857
10858 spin_lock(&fs_info->trans_lock);
10859 trans = fs_info->running_transaction;
10860 if (trans)
10861 refcount_inc(&trans->use_count);
10862 spin_unlock(&fs_info->trans_lock);
10863
10864 ret = find_free_dev_extent_start(trans, device, minlen, start,
10865 &start, &len);
10866 if (trans)
10867 btrfs_put_transaction(trans);
10868
10869 if (ret) {
10870 up_read(&fs_info->commit_root_sem);
10871 mutex_unlock(&fs_info->chunk_mutex);
10872 if (ret == -ENOSPC)
10873 ret = 0;
10874 break;
10875 }
10876
10877 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10878 up_read(&fs_info->commit_root_sem);
10879 mutex_unlock(&fs_info->chunk_mutex);
10880
10881 if (ret)
10882 break;
10883
10884 start += len;
10885 *trimmed += bytes;
10886
10887 if (fatal_signal_pending(current)) {
10888 ret = -ERESTARTSYS;
10889 break;
10890 }
10891
10892 cond_resched();
10893 }
10894
10895 return ret;
10896 }
10897
10898 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10899 {
10900 struct btrfs_block_group_cache *cache = NULL;
10901 struct btrfs_device *device;
10902 struct list_head *devices;
10903 u64 group_trimmed;
10904 u64 start;
10905 u64 end;
10906 u64 trimmed = 0;
10907 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10908 int ret = 0;
10909
10910 /*
10911 * try to trim all FS space, our block group may start from non-zero.
10912 */
10913 if (range->len == total_bytes)
10914 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10915 else
10916 cache = btrfs_lookup_block_group(fs_info, range->start);
10917
10918 while (cache) {
10919 if (cache->key.objectid >= (range->start + range->len)) {
10920 btrfs_put_block_group(cache);
10921 break;
10922 }
10923
10924 start = max(range->start, cache->key.objectid);
10925 end = min(range->start + range->len,
10926 cache->key.objectid + cache->key.offset);
10927
10928 if (end - start >= range->minlen) {
10929 if (!block_group_cache_done(cache)) {
10930 ret = cache_block_group(cache, 0);
10931 if (ret) {
10932 btrfs_put_block_group(cache);
10933 break;
10934 }
10935 ret = wait_block_group_cache_done(cache);
10936 if (ret) {
10937 btrfs_put_block_group(cache);
10938 break;
10939 }
10940 }
10941 ret = btrfs_trim_block_group(cache,
10942 &group_trimmed,
10943 start,
10944 end,
10945 range->minlen);
10946
10947 trimmed += group_trimmed;
10948 if (ret) {
10949 btrfs_put_block_group(cache);
10950 break;
10951 }
10952 }
10953
10954 cache = next_block_group(fs_info, cache);
10955 }
10956
10957 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10958 devices = &fs_info->fs_devices->alloc_list;
10959 list_for_each_entry(device, devices, dev_alloc_list) {
10960 ret = btrfs_trim_free_extents(device, range->minlen,
10961 &group_trimmed);
10962 if (ret)
10963 break;
10964
10965 trimmed += group_trimmed;
10966 }
10967 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10968
10969 range->len = trimmed;
10970 return ret;
10971 }
10972
10973 /*
10974 * btrfs_{start,end}_write_no_snapshoting() are similar to
10975 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10976 * data into the page cache through nocow before the subvolume is snapshoted,
10977 * but flush the data into disk after the snapshot creation, or to prevent
10978 * operations while snapshoting is ongoing and that cause the snapshot to be
10979 * inconsistent (writes followed by expanding truncates for example).
10980 */
10981 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10982 {
10983 percpu_counter_dec(&root->subv_writers->counter);
10984 /*
10985 * Make sure counter is updated before we wake up waiters.
10986 */
10987 smp_mb();
10988 if (waitqueue_active(&root->subv_writers->wait))
10989 wake_up(&root->subv_writers->wait);
10990 }
10991
10992 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10993 {
10994 if (atomic_read(&root->will_be_snapshoted))
10995 return 0;
10996
10997 percpu_counter_inc(&root->subv_writers->counter);
10998 /*
10999 * Make sure counter is updated before we check for snapshot creation.
11000 */
11001 smp_mb();
11002 if (atomic_read(&root->will_be_snapshoted)) {
11003 btrfs_end_write_no_snapshoting(root);
11004 return 0;
11005 }
11006 return 1;
11007 }
11008
11009 static int wait_snapshoting_atomic_t(atomic_t *a)
11010 {
11011 schedule();
11012 return 0;
11013 }
11014
11015 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11016 {
11017 while (true) {
11018 int ret;
11019
11020 ret = btrfs_start_write_no_snapshoting(root);
11021 if (ret)
11022 break;
11023 wait_on_atomic_t(&root->will_be_snapshoted,
11024 wait_snapshoting_atomic_t,
11025 TASK_UNINTERRUPTIBLE);
11026 }
11027 }