]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134
135 /*
136 * If not empty, someone is still holding mutex of
137 * full_stripe_lock, which can only be released by caller.
138 * And it will definitely cause use-after-free when caller
139 * tries to release full stripe lock.
140 *
141 * No better way to resolve, but only to warn.
142 */
143 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
144 kfree(cache->free_space_ctl);
145 kfree(cache);
146 }
147 }
148
149 /*
150 * this adds the block group to the fs_info rb tree for the block group
151 * cache
152 */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 struct btrfs_block_group_cache *block_group)
155 {
156 struct rb_node **p;
157 struct rb_node *parent = NULL;
158 struct btrfs_block_group_cache *cache;
159
160 spin_lock(&info->block_group_cache_lock);
161 p = &info->block_group_cache_tree.rb_node;
162
163 while (*p) {
164 parent = *p;
165 cache = rb_entry(parent, struct btrfs_block_group_cache,
166 cache_node);
167 if (block_group->key.objectid < cache->key.objectid) {
168 p = &(*p)->rb_left;
169 } else if (block_group->key.objectid > cache->key.objectid) {
170 p = &(*p)->rb_right;
171 } else {
172 spin_unlock(&info->block_group_cache_lock);
173 return -EEXIST;
174 }
175 }
176
177 rb_link_node(&block_group->cache_node, parent, p);
178 rb_insert_color(&block_group->cache_node,
179 &info->block_group_cache_tree);
180
181 if (info->first_logical_byte > block_group->key.objectid)
182 info->first_logical_byte = block_group->key.objectid;
183
184 spin_unlock(&info->block_group_cache_lock);
185
186 return 0;
187 }
188
189 /*
190 * This will return the block group at or after bytenr if contains is 0, else
191 * it will return the block group that contains the bytenr
192 */
193 static struct btrfs_block_group_cache *
194 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
195 int contains)
196 {
197 struct btrfs_block_group_cache *cache, *ret = NULL;
198 struct rb_node *n;
199 u64 end, start;
200
201 spin_lock(&info->block_group_cache_lock);
202 n = info->block_group_cache_tree.rb_node;
203
204 while (n) {
205 cache = rb_entry(n, struct btrfs_block_group_cache,
206 cache_node);
207 end = cache->key.objectid + cache->key.offset - 1;
208 start = cache->key.objectid;
209
210 if (bytenr < start) {
211 if (!contains && (!ret || start < ret->key.objectid))
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
227 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
228 info->first_logical_byte = ret->key.objectid;
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233 }
234
235 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
236 u64 start, u64 num_bytes)
237 {
238 u64 end = start + num_bytes - 1;
239 set_extent_bits(&fs_info->freed_extents[0],
240 start, end, EXTENT_UPTODATE);
241 set_extent_bits(&fs_info->freed_extents[1],
242 start, end, EXTENT_UPTODATE);
243 return 0;
244 }
245
246 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
247 struct btrfs_block_group_cache *cache)
248 {
249 u64 start, end;
250
251 start = cache->key.objectid;
252 end = start + cache->key.offset - 1;
253
254 clear_extent_bits(&fs_info->freed_extents[0],
255 start, end, EXTENT_UPTODATE);
256 clear_extent_bits(&fs_info->freed_extents[1],
257 start, end, EXTENT_UPTODATE);
258 }
259
260 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
261 struct btrfs_block_group_cache *cache)
262 {
263 u64 bytenr;
264 u64 *logical;
265 int stripe_len;
266 int i, nr, ret;
267
268 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
269 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
270 cache->bytes_super += stripe_len;
271 ret = add_excluded_extent(fs_info, cache->key.objectid,
272 stripe_len);
273 if (ret)
274 return ret;
275 }
276
277 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
278 bytenr = btrfs_sb_offset(i);
279 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
280 bytenr, 0, &logical, &nr, &stripe_len);
281 if (ret)
282 return ret;
283
284 while (nr--) {
285 u64 start, len;
286
287 if (logical[nr] > cache->key.objectid +
288 cache->key.offset)
289 continue;
290
291 if (logical[nr] + stripe_len <= cache->key.objectid)
292 continue;
293
294 start = logical[nr];
295 if (start < cache->key.objectid) {
296 start = cache->key.objectid;
297 len = (logical[nr] + stripe_len) - start;
298 } else {
299 len = min_t(u64, stripe_len,
300 cache->key.objectid +
301 cache->key.offset - start);
302 }
303
304 cache->bytes_super += len;
305 ret = add_excluded_extent(fs_info, start, len);
306 if (ret) {
307 kfree(logical);
308 return ret;
309 }
310 }
311
312 kfree(logical);
313 }
314 return 0;
315 }
316
317 static struct btrfs_caching_control *
318 get_caching_control(struct btrfs_block_group_cache *cache)
319 {
320 struct btrfs_caching_control *ctl;
321
322 spin_lock(&cache->lock);
323 if (!cache->caching_ctl) {
324 spin_unlock(&cache->lock);
325 return NULL;
326 }
327
328 ctl = cache->caching_ctl;
329 refcount_inc(&ctl->count);
330 spin_unlock(&cache->lock);
331 return ctl;
332 }
333
334 static void put_caching_control(struct btrfs_caching_control *ctl)
335 {
336 if (refcount_dec_and_test(&ctl->count))
337 kfree(ctl);
338 }
339
340 #ifdef CONFIG_BTRFS_DEBUG
341 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
342 {
343 struct btrfs_fs_info *fs_info = block_group->fs_info;
344 u64 start = block_group->key.objectid;
345 u64 len = block_group->key.offset;
346 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
347 fs_info->nodesize : fs_info->sectorsize;
348 u64 step = chunk << 1;
349
350 while (len > chunk) {
351 btrfs_remove_free_space(block_group, start, chunk);
352 start += step;
353 if (len < step)
354 len = 0;
355 else
356 len -= step;
357 }
358 }
359 #endif
360
361 /*
362 * this is only called by cache_block_group, since we could have freed extents
363 * we need to check the pinned_extents for any extents that can't be used yet
364 * since their free space will be released as soon as the transaction commits.
365 */
366 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
367 struct btrfs_fs_info *info, u64 start, u64 end)
368 {
369 u64 extent_start, extent_end, size, total_added = 0;
370 int ret;
371
372 while (start < end) {
373 ret = find_first_extent_bit(info->pinned_extents, start,
374 &extent_start, &extent_end,
375 EXTENT_DIRTY | EXTENT_UPTODATE,
376 NULL);
377 if (ret)
378 break;
379
380 if (extent_start <= start) {
381 start = extent_end + 1;
382 } else if (extent_start > start && extent_start < end) {
383 size = extent_start - start;
384 total_added += size;
385 ret = btrfs_add_free_space(block_group, start,
386 size);
387 BUG_ON(ret); /* -ENOMEM or logic error */
388 start = extent_end + 1;
389 } else {
390 break;
391 }
392 }
393
394 if (start < end) {
395 size = end - start;
396 total_added += size;
397 ret = btrfs_add_free_space(block_group, start, size);
398 BUG_ON(ret); /* -ENOMEM or logic error */
399 }
400
401 return total_added;
402 }
403
404 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
405 {
406 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
407 struct btrfs_fs_info *fs_info = block_group->fs_info;
408 struct btrfs_root *extent_root = fs_info->extent_root;
409 struct btrfs_path *path;
410 struct extent_buffer *leaf;
411 struct btrfs_key key;
412 u64 total_found = 0;
413 u64 last = 0;
414 u32 nritems;
415 int ret;
416 bool wakeup = true;
417
418 path = btrfs_alloc_path();
419 if (!path)
420 return -ENOMEM;
421
422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425 /*
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
428 * the free space.
429 */
430 if (btrfs_should_fragment_free_space(block_group))
431 wakeup = false;
432 #endif
433 /*
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
438 */
439 path->skip_locking = 1;
440 path->search_commit_root = 1;
441 path->reada = READA_FORWARD;
442
443 key.objectid = last;
444 key.offset = 0;
445 key.type = BTRFS_EXTENT_ITEM_KEY;
446
447 next:
448 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
449 if (ret < 0)
450 goto out;
451
452 leaf = path->nodes[0];
453 nritems = btrfs_header_nritems(leaf);
454
455 while (1) {
456 if (btrfs_fs_closing(fs_info) > 1) {
457 last = (u64)-1;
458 break;
459 }
460
461 if (path->slots[0] < nritems) {
462 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463 } else {
464 ret = find_next_key(path, 0, &key);
465 if (ret)
466 break;
467
468 if (need_resched() ||
469 rwsem_is_contended(&fs_info->commit_root_sem)) {
470 if (wakeup)
471 caching_ctl->progress = last;
472 btrfs_release_path(path);
473 up_read(&fs_info->commit_root_sem);
474 mutex_unlock(&caching_ctl->mutex);
475 cond_resched();
476 mutex_lock(&caching_ctl->mutex);
477 down_read(&fs_info->commit_root_sem);
478 goto next;
479 }
480
481 ret = btrfs_next_leaf(extent_root, path);
482 if (ret < 0)
483 goto out;
484 if (ret)
485 break;
486 leaf = path->nodes[0];
487 nritems = btrfs_header_nritems(leaf);
488 continue;
489 }
490
491 if (key.objectid < last) {
492 key.objectid = last;
493 key.offset = 0;
494 key.type = BTRFS_EXTENT_ITEM_KEY;
495
496 if (wakeup)
497 caching_ctl->progress = last;
498 btrfs_release_path(path);
499 goto next;
500 }
501
502 if (key.objectid < block_group->key.objectid) {
503 path->slots[0]++;
504 continue;
505 }
506
507 if (key.objectid >= block_group->key.objectid +
508 block_group->key.offset)
509 break;
510
511 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
512 key.type == BTRFS_METADATA_ITEM_KEY) {
513 total_found += add_new_free_space(block_group,
514 fs_info, last,
515 key.objectid);
516 if (key.type == BTRFS_METADATA_ITEM_KEY)
517 last = key.objectid +
518 fs_info->nodesize;
519 else
520 last = key.objectid + key.offset;
521
522 if (total_found > CACHING_CTL_WAKE_UP) {
523 total_found = 0;
524 if (wakeup)
525 wake_up(&caching_ctl->wait);
526 }
527 }
528 path->slots[0]++;
529 }
530 ret = 0;
531
532 total_found += add_new_free_space(block_group, fs_info, last,
533 block_group->key.objectid +
534 block_group->key.offset);
535 caching_ctl->progress = (u64)-1;
536
537 out:
538 btrfs_free_path(path);
539 return ret;
540 }
541
542 static noinline void caching_thread(struct btrfs_work *work)
543 {
544 struct btrfs_block_group_cache *block_group;
545 struct btrfs_fs_info *fs_info;
546 struct btrfs_caching_control *caching_ctl;
547 struct btrfs_root *extent_root;
548 int ret;
549
550 caching_ctl = container_of(work, struct btrfs_caching_control, work);
551 block_group = caching_ctl->block_group;
552 fs_info = block_group->fs_info;
553 extent_root = fs_info->extent_root;
554
555 mutex_lock(&caching_ctl->mutex);
556 down_read(&fs_info->commit_root_sem);
557
558 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
559 ret = load_free_space_tree(caching_ctl);
560 else
561 ret = load_extent_tree_free(caching_ctl);
562
563 spin_lock(&block_group->lock);
564 block_group->caching_ctl = NULL;
565 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
566 spin_unlock(&block_group->lock);
567
568 #ifdef CONFIG_BTRFS_DEBUG
569 if (btrfs_should_fragment_free_space(block_group)) {
570 u64 bytes_used;
571
572 spin_lock(&block_group->space_info->lock);
573 spin_lock(&block_group->lock);
574 bytes_used = block_group->key.offset -
575 btrfs_block_group_used(&block_group->item);
576 block_group->space_info->bytes_used += bytes_used >> 1;
577 spin_unlock(&block_group->lock);
578 spin_unlock(&block_group->space_info->lock);
579 fragment_free_space(block_group);
580 }
581 #endif
582
583 caching_ctl->progress = (u64)-1;
584
585 up_read(&fs_info->commit_root_sem);
586 free_excluded_extents(fs_info, block_group);
587 mutex_unlock(&caching_ctl->mutex);
588
589 wake_up(&caching_ctl->wait);
590
591 put_caching_control(caching_ctl);
592 btrfs_put_block_group(block_group);
593 }
594
595 static int cache_block_group(struct btrfs_block_group_cache *cache,
596 int load_cache_only)
597 {
598 DEFINE_WAIT(wait);
599 struct btrfs_fs_info *fs_info = cache->fs_info;
600 struct btrfs_caching_control *caching_ctl;
601 int ret = 0;
602
603 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
604 if (!caching_ctl)
605 return -ENOMEM;
606
607 INIT_LIST_HEAD(&caching_ctl->list);
608 mutex_init(&caching_ctl->mutex);
609 init_waitqueue_head(&caching_ctl->wait);
610 caching_ctl->block_group = cache;
611 caching_ctl->progress = cache->key.objectid;
612 refcount_set(&caching_ctl->count, 1);
613 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
614 caching_thread, NULL, NULL);
615
616 spin_lock(&cache->lock);
617 /*
618 * This should be a rare occasion, but this could happen I think in the
619 * case where one thread starts to load the space cache info, and then
620 * some other thread starts a transaction commit which tries to do an
621 * allocation while the other thread is still loading the space cache
622 * info. The previous loop should have kept us from choosing this block
623 * group, but if we've moved to the state where we will wait on caching
624 * block groups we need to first check if we're doing a fast load here,
625 * so we can wait for it to finish, otherwise we could end up allocating
626 * from a block group who's cache gets evicted for one reason or
627 * another.
628 */
629 while (cache->cached == BTRFS_CACHE_FAST) {
630 struct btrfs_caching_control *ctl;
631
632 ctl = cache->caching_ctl;
633 refcount_inc(&ctl->count);
634 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
635 spin_unlock(&cache->lock);
636
637 schedule();
638
639 finish_wait(&ctl->wait, &wait);
640 put_caching_control(ctl);
641 spin_lock(&cache->lock);
642 }
643
644 if (cache->cached != BTRFS_CACHE_NO) {
645 spin_unlock(&cache->lock);
646 kfree(caching_ctl);
647 return 0;
648 }
649 WARN_ON(cache->caching_ctl);
650 cache->caching_ctl = caching_ctl;
651 cache->cached = BTRFS_CACHE_FAST;
652 spin_unlock(&cache->lock);
653
654 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
655 mutex_lock(&caching_ctl->mutex);
656 ret = load_free_space_cache(fs_info, cache);
657
658 spin_lock(&cache->lock);
659 if (ret == 1) {
660 cache->caching_ctl = NULL;
661 cache->cached = BTRFS_CACHE_FINISHED;
662 cache->last_byte_to_unpin = (u64)-1;
663 caching_ctl->progress = (u64)-1;
664 } else {
665 if (load_cache_only) {
666 cache->caching_ctl = NULL;
667 cache->cached = BTRFS_CACHE_NO;
668 } else {
669 cache->cached = BTRFS_CACHE_STARTED;
670 cache->has_caching_ctl = 1;
671 }
672 }
673 spin_unlock(&cache->lock);
674 #ifdef CONFIG_BTRFS_DEBUG
675 if (ret == 1 &&
676 btrfs_should_fragment_free_space(cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(cache);
687 }
688 #endif
689 mutex_unlock(&caching_ctl->mutex);
690
691 wake_up(&caching_ctl->wait);
692 if (ret == 1) {
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info, cache);
695 return 0;
696 }
697 } else {
698 /*
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
712 }
713
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
716 return 0;
717 }
718
719 down_write(&fs_info->commit_root_sem);
720 refcount_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
723
724 btrfs_get_block_group(cache);
725
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728 return ret;
729 }
730
731 /*
732 * return the block group that starts at or after bytenr
733 */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 return block_group_cache_tree_search(info, bytenr, 0);
738 }
739
740 /*
741 * return the block group that contains the given bytenr
742 */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
746 {
747 return block_group_cache_tree_search(info, bytenr, 1);
748 }
749
750 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
751 u64 flags)
752 {
753 struct list_head *head = &info->space_info;
754 struct btrfs_space_info *found;
755
756 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
757
758 rcu_read_lock();
759 list_for_each_entry_rcu(found, head, list) {
760 if (found->flags & flags) {
761 rcu_read_unlock();
762 return found;
763 }
764 }
765 rcu_read_unlock();
766 return NULL;
767 }
768
769 /*
770 * after adding space to the filesystem, we need to clear the full flags
771 * on all the space infos.
772 */
773 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
774 {
775 struct list_head *head = &info->space_info;
776 struct btrfs_space_info *found;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(found, head, list)
780 found->full = 0;
781 rcu_read_unlock();
782 }
783
784 /* simple helper to search for an existing data extent at a given offset */
785 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
786 {
787 int ret;
788 struct btrfs_key key;
789 struct btrfs_path *path;
790
791 path = btrfs_alloc_path();
792 if (!path)
793 return -ENOMEM;
794
795 key.objectid = start;
796 key.offset = len;
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
799 btrfs_free_path(path);
800 return ret;
801 }
802
803 /*
804 * helper function to lookup reference count and flags of a tree block.
805 *
806 * the head node for delayed ref is used to store the sum of all the
807 * reference count modifications queued up in the rbtree. the head
808 * node may also store the extent flags to set. This way you can check
809 * to see what the reference count and extent flags would be if all of
810 * the delayed refs are not processed.
811 */
812 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
813 struct btrfs_fs_info *fs_info, u64 bytenr,
814 u64 offset, int metadata, u64 *refs, u64 *flags)
815 {
816 struct btrfs_delayed_ref_head *head;
817 struct btrfs_delayed_ref_root *delayed_refs;
818 struct btrfs_path *path;
819 struct btrfs_extent_item *ei;
820 struct extent_buffer *leaf;
821 struct btrfs_key key;
822 u32 item_size;
823 u64 num_refs;
824 u64 extent_flags;
825 int ret;
826
827 /*
828 * If we don't have skinny metadata, don't bother doing anything
829 * different
830 */
831 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
832 offset = fs_info->nodesize;
833 metadata = 0;
834 }
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return -ENOMEM;
839
840 if (!trans) {
841 path->skip_locking = 1;
842 path->search_commit_root = 1;
843 }
844
845 search_again:
846 key.objectid = bytenr;
847 key.offset = offset;
848 if (metadata)
849 key.type = BTRFS_METADATA_ITEM_KEY;
850 else
851 key.type = BTRFS_EXTENT_ITEM_KEY;
852
853 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
854 if (ret < 0)
855 goto out_free;
856
857 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
858 if (path->slots[0]) {
859 path->slots[0]--;
860 btrfs_item_key_to_cpu(path->nodes[0], &key,
861 path->slots[0]);
862 if (key.objectid == bytenr &&
863 key.type == BTRFS_EXTENT_ITEM_KEY &&
864 key.offset == fs_info->nodesize)
865 ret = 0;
866 }
867 }
868
869 if (ret == 0) {
870 leaf = path->nodes[0];
871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
872 if (item_size >= sizeof(*ei)) {
873 ei = btrfs_item_ptr(leaf, path->slots[0],
874 struct btrfs_extent_item);
875 num_refs = btrfs_extent_refs(leaf, ei);
876 extent_flags = btrfs_extent_flags(leaf, ei);
877 } else {
878 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
879 struct btrfs_extent_item_v0 *ei0;
880 BUG_ON(item_size != sizeof(*ei0));
881 ei0 = btrfs_item_ptr(leaf, path->slots[0],
882 struct btrfs_extent_item_v0);
883 num_refs = btrfs_extent_refs_v0(leaf, ei0);
884 /* FIXME: this isn't correct for data */
885 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
886 #else
887 BUG();
888 #endif
889 }
890 BUG_ON(num_refs == 0);
891 } else {
892 num_refs = 0;
893 extent_flags = 0;
894 ret = 0;
895 }
896
897 if (!trans)
898 goto out;
899
900 delayed_refs = &trans->transaction->delayed_refs;
901 spin_lock(&delayed_refs->lock);
902 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
903 if (head) {
904 if (!mutex_trylock(&head->mutex)) {
905 refcount_inc(&head->node.refs);
906 spin_unlock(&delayed_refs->lock);
907
908 btrfs_release_path(path);
909
910 /*
911 * Mutex was contended, block until it's released and try
912 * again
913 */
914 mutex_lock(&head->mutex);
915 mutex_unlock(&head->mutex);
916 btrfs_put_delayed_ref(&head->node);
917 goto search_again;
918 }
919 spin_lock(&head->lock);
920 if (head->extent_op && head->extent_op->update_flags)
921 extent_flags |= head->extent_op->flags_to_set;
922 else
923 BUG_ON(num_refs == 0);
924
925 num_refs += head->node.ref_mod;
926 spin_unlock(&head->lock);
927 mutex_unlock(&head->mutex);
928 }
929 spin_unlock(&delayed_refs->lock);
930 out:
931 WARN_ON(num_refs == 0);
932 if (refs)
933 *refs = num_refs;
934 if (flags)
935 *flags = extent_flags;
936 out_free:
937 btrfs_free_path(path);
938 return ret;
939 }
940
941 /*
942 * Back reference rules. Back refs have three main goals:
943 *
944 * 1) differentiate between all holders of references to an extent so that
945 * when a reference is dropped we can make sure it was a valid reference
946 * before freeing the extent.
947 *
948 * 2) Provide enough information to quickly find the holders of an extent
949 * if we notice a given block is corrupted or bad.
950 *
951 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
952 * maintenance. This is actually the same as #2, but with a slightly
953 * different use case.
954 *
955 * There are two kinds of back refs. The implicit back refs is optimized
956 * for pointers in non-shared tree blocks. For a given pointer in a block,
957 * back refs of this kind provide information about the block's owner tree
958 * and the pointer's key. These information allow us to find the block by
959 * b-tree searching. The full back refs is for pointers in tree blocks not
960 * referenced by their owner trees. The location of tree block is recorded
961 * in the back refs. Actually the full back refs is generic, and can be
962 * used in all cases the implicit back refs is used. The major shortcoming
963 * of the full back refs is its overhead. Every time a tree block gets
964 * COWed, we have to update back refs entry for all pointers in it.
965 *
966 * For a newly allocated tree block, we use implicit back refs for
967 * pointers in it. This means most tree related operations only involve
968 * implicit back refs. For a tree block created in old transaction, the
969 * only way to drop a reference to it is COW it. So we can detect the
970 * event that tree block loses its owner tree's reference and do the
971 * back refs conversion.
972 *
973 * When a tree block is COWed through a tree, there are four cases:
974 *
975 * The reference count of the block is one and the tree is the block's
976 * owner tree. Nothing to do in this case.
977 *
978 * The reference count of the block is one and the tree is not the
979 * block's owner tree. In this case, full back refs is used for pointers
980 * in the block. Remove these full back refs, add implicit back refs for
981 * every pointers in the new block.
982 *
983 * The reference count of the block is greater than one and the tree is
984 * the block's owner tree. In this case, implicit back refs is used for
985 * pointers in the block. Add full back refs for every pointers in the
986 * block, increase lower level extents' reference counts. The original
987 * implicit back refs are entailed to the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * not the block's owner tree. Add implicit back refs for every pointer in
991 * the new block, increase lower level extents' reference count.
992 *
993 * Back Reference Key composing:
994 *
995 * The key objectid corresponds to the first byte in the extent,
996 * The key type is used to differentiate between types of back refs.
997 * There are different meanings of the key offset for different types
998 * of back refs.
999 *
1000 * File extents can be referenced by:
1001 *
1002 * - multiple snapshots, subvolumes, or different generations in one subvol
1003 * - different files inside a single subvolume
1004 * - different offsets inside a file (bookend extents in file.c)
1005 *
1006 * The extent ref structure for the implicit back refs has fields for:
1007 *
1008 * - Objectid of the subvolume root
1009 * - objectid of the file holding the reference
1010 * - original offset in the file
1011 * - how many bookend extents
1012 *
1013 * The key offset for the implicit back refs is hash of the first
1014 * three fields.
1015 *
1016 * The extent ref structure for the full back refs has field for:
1017 *
1018 * - number of pointers in the tree leaf
1019 *
1020 * The key offset for the implicit back refs is the first byte of
1021 * the tree leaf
1022 *
1023 * When a file extent is allocated, The implicit back refs is used.
1024 * the fields are filled in:
1025 *
1026 * (root_key.objectid, inode objectid, offset in file, 1)
1027 *
1028 * When a file extent is removed file truncation, we find the
1029 * corresponding implicit back refs and check the following fields:
1030 *
1031 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1032 *
1033 * Btree extents can be referenced by:
1034 *
1035 * - Different subvolumes
1036 *
1037 * Both the implicit back refs and the full back refs for tree blocks
1038 * only consist of key. The key offset for the implicit back refs is
1039 * objectid of block's owner tree. The key offset for the full back refs
1040 * is the first byte of parent block.
1041 *
1042 * When implicit back refs is used, information about the lowest key and
1043 * level of the tree block are required. These information are stored in
1044 * tree block info structure.
1045 */
1046
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1049 struct btrfs_fs_info *fs_info,
1050 struct btrfs_path *path,
1051 u64 owner, u32 extra_size)
1052 {
1053 struct btrfs_root *root = fs_info->extent_root;
1054 struct btrfs_extent_item *item;
1055 struct btrfs_extent_item_v0 *ei0;
1056 struct btrfs_extent_ref_v0 *ref0;
1057 struct btrfs_tree_block_info *bi;
1058 struct extent_buffer *leaf;
1059 struct btrfs_key key;
1060 struct btrfs_key found_key;
1061 u32 new_size = sizeof(*item);
1062 u64 refs;
1063 int ret;
1064
1065 leaf = path->nodes[0];
1066 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1067
1068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1069 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1070 struct btrfs_extent_item_v0);
1071 refs = btrfs_extent_refs_v0(leaf, ei0);
1072
1073 if (owner == (u64)-1) {
1074 while (1) {
1075 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1076 ret = btrfs_next_leaf(root, path);
1077 if (ret < 0)
1078 return ret;
1079 BUG_ON(ret > 0); /* Corruption */
1080 leaf = path->nodes[0];
1081 }
1082 btrfs_item_key_to_cpu(leaf, &found_key,
1083 path->slots[0]);
1084 BUG_ON(key.objectid != found_key.objectid);
1085 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086 path->slots[0]++;
1087 continue;
1088 }
1089 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1090 struct btrfs_extent_ref_v0);
1091 owner = btrfs_ref_objectid_v0(leaf, ref0);
1092 break;
1093 }
1094 }
1095 btrfs_release_path(path);
1096
1097 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1098 new_size += sizeof(*bi);
1099
1100 new_size -= sizeof(*ei0);
1101 ret = btrfs_search_slot(trans, root, &key, path,
1102 new_size + extra_size, 1);
1103 if (ret < 0)
1104 return ret;
1105 BUG_ON(ret); /* Corruption */
1106
1107 btrfs_extend_item(fs_info, path, new_size);
1108
1109 leaf = path->nodes[0];
1110 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1111 btrfs_set_extent_refs(leaf, item, refs);
1112 /* FIXME: get real generation */
1113 btrfs_set_extent_generation(leaf, item, 0);
1114 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1115 btrfs_set_extent_flags(leaf, item,
1116 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1117 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1118 bi = (struct btrfs_tree_block_info *)(item + 1);
1119 /* FIXME: get first key of the block */
1120 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1121 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1122 } else {
1123 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1124 }
1125 btrfs_mark_buffer_dirty(leaf);
1126 return 0;
1127 }
1128 #endif
1129
1130 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1131 {
1132 u32 high_crc = ~(u32)0;
1133 u32 low_crc = ~(u32)0;
1134 __le64 lenum;
1135
1136 lenum = cpu_to_le64(root_objectid);
1137 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1138 lenum = cpu_to_le64(owner);
1139 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1140 lenum = cpu_to_le64(offset);
1141 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1142
1143 return ((u64)high_crc << 31) ^ (u64)low_crc;
1144 }
1145
1146 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1147 struct btrfs_extent_data_ref *ref)
1148 {
1149 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1150 btrfs_extent_data_ref_objectid(leaf, ref),
1151 btrfs_extent_data_ref_offset(leaf, ref));
1152 }
1153
1154 static int match_extent_data_ref(struct extent_buffer *leaf,
1155 struct btrfs_extent_data_ref *ref,
1156 u64 root_objectid, u64 owner, u64 offset)
1157 {
1158 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1159 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1160 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1161 return 0;
1162 return 1;
1163 }
1164
1165 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1166 struct btrfs_fs_info *fs_info,
1167 struct btrfs_path *path,
1168 u64 bytenr, u64 parent,
1169 u64 root_objectid,
1170 u64 owner, u64 offset)
1171 {
1172 struct btrfs_root *root = fs_info->extent_root;
1173 struct btrfs_key key;
1174 struct btrfs_extent_data_ref *ref;
1175 struct extent_buffer *leaf;
1176 u32 nritems;
1177 int ret;
1178 int recow;
1179 int err = -ENOENT;
1180
1181 key.objectid = bytenr;
1182 if (parent) {
1183 key.type = BTRFS_SHARED_DATA_REF_KEY;
1184 key.offset = parent;
1185 } else {
1186 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1187 key.offset = hash_extent_data_ref(root_objectid,
1188 owner, offset);
1189 }
1190 again:
1191 recow = 0;
1192 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1193 if (ret < 0) {
1194 err = ret;
1195 goto fail;
1196 }
1197
1198 if (parent) {
1199 if (!ret)
1200 return 0;
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 key.type = BTRFS_EXTENT_REF_V0_KEY;
1203 btrfs_release_path(path);
1204 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1205 if (ret < 0) {
1206 err = ret;
1207 goto fail;
1208 }
1209 if (!ret)
1210 return 0;
1211 #endif
1212 goto fail;
1213 }
1214
1215 leaf = path->nodes[0];
1216 nritems = btrfs_header_nritems(leaf);
1217 while (1) {
1218 if (path->slots[0] >= nritems) {
1219 ret = btrfs_next_leaf(root, path);
1220 if (ret < 0)
1221 err = ret;
1222 if (ret)
1223 goto fail;
1224
1225 leaf = path->nodes[0];
1226 nritems = btrfs_header_nritems(leaf);
1227 recow = 1;
1228 }
1229
1230 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1231 if (key.objectid != bytenr ||
1232 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1233 goto fail;
1234
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset)) {
1240 if (recow) {
1241 btrfs_release_path(path);
1242 goto again;
1243 }
1244 err = 0;
1245 break;
1246 }
1247 path->slots[0]++;
1248 }
1249 fail:
1250 return err;
1251 }
1252
1253 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1255 struct btrfs_path *path,
1256 u64 bytenr, u64 parent,
1257 u64 root_objectid, u64 owner,
1258 u64 offset, int refs_to_add)
1259 {
1260 struct btrfs_root *root = fs_info->extent_root;
1261 struct btrfs_key key;
1262 struct extent_buffer *leaf;
1263 u32 size;
1264 u32 num_refs;
1265 int ret;
1266
1267 key.objectid = bytenr;
1268 if (parent) {
1269 key.type = BTRFS_SHARED_DATA_REF_KEY;
1270 key.offset = parent;
1271 size = sizeof(struct btrfs_shared_data_ref);
1272 } else {
1273 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1274 key.offset = hash_extent_data_ref(root_objectid,
1275 owner, offset);
1276 size = sizeof(struct btrfs_extent_data_ref);
1277 }
1278
1279 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1280 if (ret && ret != -EEXIST)
1281 goto fail;
1282
1283 leaf = path->nodes[0];
1284 if (parent) {
1285 struct btrfs_shared_data_ref *ref;
1286 ref = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_shared_data_ref);
1288 if (ret == 0) {
1289 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1290 } else {
1291 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1292 num_refs += refs_to_add;
1293 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1294 }
1295 } else {
1296 struct btrfs_extent_data_ref *ref;
1297 while (ret == -EEXIST) {
1298 ref = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_extent_data_ref);
1300 if (match_extent_data_ref(leaf, ref, root_objectid,
1301 owner, offset))
1302 break;
1303 btrfs_release_path(path);
1304 key.offset++;
1305 ret = btrfs_insert_empty_item(trans, root, path, &key,
1306 size);
1307 if (ret && ret != -EEXIST)
1308 goto fail;
1309
1310 leaf = path->nodes[0];
1311 }
1312 ref = btrfs_item_ptr(leaf, path->slots[0],
1313 struct btrfs_extent_data_ref);
1314 if (ret == 0) {
1315 btrfs_set_extent_data_ref_root(leaf, ref,
1316 root_objectid);
1317 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1318 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1319 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1320 } else {
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1322 num_refs += refs_to_add;
1323 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1324 }
1325 }
1326 btrfs_mark_buffer_dirty(leaf);
1327 ret = 0;
1328 fail:
1329 btrfs_release_path(path);
1330 return ret;
1331 }
1332
1333 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info,
1335 struct btrfs_path *path,
1336 int refs_to_drop, int *last_ref)
1337 {
1338 struct btrfs_key key;
1339 struct btrfs_extent_data_ref *ref1 = NULL;
1340 struct btrfs_shared_data_ref *ref2 = NULL;
1341 struct extent_buffer *leaf;
1342 u32 num_refs = 0;
1343 int ret = 0;
1344
1345 leaf = path->nodes[0];
1346 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1347
1348 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 BUG();
1365 }
1366
1367 BUG_ON(num_refs < refs_to_drop);
1368 num_refs -= refs_to_drop;
1369
1370 if (num_refs == 0) {
1371 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1372 *last_ref = 1;
1373 } else {
1374 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1375 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1376 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1377 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1378 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1379 else {
1380 struct btrfs_extent_ref_v0 *ref0;
1381 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_ref_v0);
1383 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1384 }
1385 #endif
1386 btrfs_mark_buffer_dirty(leaf);
1387 }
1388 return ret;
1389 }
1390
1391 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1392 struct btrfs_extent_inline_ref *iref)
1393 {
1394 struct btrfs_key key;
1395 struct extent_buffer *leaf;
1396 struct btrfs_extent_data_ref *ref1;
1397 struct btrfs_shared_data_ref *ref2;
1398 u32 num_refs = 0;
1399
1400 leaf = path->nodes[0];
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 if (iref) {
1403 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1404 BTRFS_EXTENT_DATA_REF_KEY) {
1405 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else {
1408 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 }
1411 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_data_ref);
1414 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1416 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1417 struct btrfs_shared_data_ref);
1418 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1420 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1421 struct btrfs_extent_ref_v0 *ref0;
1422 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_extent_ref_v0);
1424 num_refs = btrfs_ref_count_v0(leaf, ref0);
1425 #endif
1426 } else {
1427 WARN_ON(1);
1428 }
1429 return num_refs;
1430 }
1431
1432 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1433 struct btrfs_fs_info *fs_info,
1434 struct btrfs_path *path,
1435 u64 bytenr, u64 parent,
1436 u64 root_objectid)
1437 {
1438 struct btrfs_root *root = fs_info->extent_root;
1439 struct btrfs_key key;
1440 int ret;
1441
1442 key.objectid = bytenr;
1443 if (parent) {
1444 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 key.offset = parent;
1446 } else {
1447 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1448 key.offset = root_objectid;
1449 }
1450
1451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1452 if (ret > 0)
1453 ret = -ENOENT;
1454 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1455 if (ret == -ENOENT && parent) {
1456 btrfs_release_path(path);
1457 key.type = BTRFS_EXTENT_REF_V0_KEY;
1458 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1459 if (ret > 0)
1460 ret = -ENOENT;
1461 }
1462 #endif
1463 return ret;
1464 }
1465
1466 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1467 struct btrfs_fs_info *fs_info,
1468 struct btrfs_path *path,
1469 u64 bytenr, u64 parent,
1470 u64 root_objectid)
1471 {
1472 struct btrfs_key key;
1473 int ret;
1474
1475 key.objectid = bytenr;
1476 if (parent) {
1477 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1478 key.offset = parent;
1479 } else {
1480 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1481 key.offset = root_objectid;
1482 }
1483
1484 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1485 path, &key, 0);
1486 btrfs_release_path(path);
1487 return ret;
1488 }
1489
1490 static inline int extent_ref_type(u64 parent, u64 owner)
1491 {
1492 int type;
1493 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1494 if (parent > 0)
1495 type = BTRFS_SHARED_BLOCK_REF_KEY;
1496 else
1497 type = BTRFS_TREE_BLOCK_REF_KEY;
1498 } else {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_DATA_REF_KEY;
1501 else
1502 type = BTRFS_EXTENT_DATA_REF_KEY;
1503 }
1504 return type;
1505 }
1506
1507 static int find_next_key(struct btrfs_path *path, int level,
1508 struct btrfs_key *key)
1509
1510 {
1511 for (; level < BTRFS_MAX_LEVEL; level++) {
1512 if (!path->nodes[level])
1513 break;
1514 if (path->slots[level] + 1 >=
1515 btrfs_header_nritems(path->nodes[level]))
1516 continue;
1517 if (level == 0)
1518 btrfs_item_key_to_cpu(path->nodes[level], key,
1519 path->slots[level] + 1);
1520 else
1521 btrfs_node_key_to_cpu(path->nodes[level], key,
1522 path->slots[level] + 1);
1523 return 0;
1524 }
1525 return 1;
1526 }
1527
1528 /*
1529 * look for inline back ref. if back ref is found, *ref_ret is set
1530 * to the address of inline back ref, and 0 is returned.
1531 *
1532 * if back ref isn't found, *ref_ret is set to the address where it
1533 * should be inserted, and -ENOENT is returned.
1534 *
1535 * if insert is true and there are too many inline back refs, the path
1536 * points to the extent item, and -EAGAIN is returned.
1537 *
1538 * NOTE: inline back refs are ordered in the same way that back ref
1539 * items in the tree are ordered.
1540 */
1541 static noinline_for_stack
1542 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1543 struct btrfs_fs_info *fs_info,
1544 struct btrfs_path *path,
1545 struct btrfs_extent_inline_ref **ref_ret,
1546 u64 bytenr, u64 num_bytes,
1547 u64 parent, u64 root_objectid,
1548 u64 owner, u64 offset, int insert)
1549 {
1550 struct btrfs_root *root = fs_info->extent_root;
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
1564 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1565
1566 key.objectid = bytenr;
1567 key.type = BTRFS_EXTENT_ITEM_KEY;
1568 key.offset = num_bytes;
1569
1570 want = extent_ref_type(parent, owner);
1571 if (insert) {
1572 extra_size = btrfs_extent_inline_ref_size(want);
1573 path->keep_locks = 1;
1574 } else
1575 extra_size = -1;
1576
1577 /*
1578 * Owner is our parent level, so we can just add one to get the level
1579 * for the block we are interested in.
1580 */
1581 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1582 key.type = BTRFS_METADATA_ITEM_KEY;
1583 key.offset = owner;
1584 }
1585
1586 again:
1587 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1588 if (ret < 0) {
1589 err = ret;
1590 goto out;
1591 }
1592
1593 /*
1594 * We may be a newly converted file system which still has the old fat
1595 * extent entries for metadata, so try and see if we have one of those.
1596 */
1597 if (ret > 0 && skinny_metadata) {
1598 skinny_metadata = false;
1599 if (path->slots[0]) {
1600 path->slots[0]--;
1601 btrfs_item_key_to_cpu(path->nodes[0], &key,
1602 path->slots[0]);
1603 if (key.objectid == bytenr &&
1604 key.type == BTRFS_EXTENT_ITEM_KEY &&
1605 key.offset == num_bytes)
1606 ret = 0;
1607 }
1608 if (ret) {
1609 key.objectid = bytenr;
1610 key.type = BTRFS_EXTENT_ITEM_KEY;
1611 key.offset = num_bytes;
1612 btrfs_release_path(path);
1613 goto again;
1614 }
1615 }
1616
1617 if (ret && !insert) {
1618 err = -ENOENT;
1619 goto out;
1620 } else if (WARN_ON(ret)) {
1621 err = -EIO;
1622 goto out;
1623 }
1624
1625 leaf = path->nodes[0];
1626 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1628 if (item_size < sizeof(*ei)) {
1629 if (!insert) {
1630 err = -ENOENT;
1631 goto out;
1632 }
1633 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1634 extra_size);
1635 if (ret < 0) {
1636 err = ret;
1637 goto out;
1638 }
1639 leaf = path->nodes[0];
1640 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 }
1642 #endif
1643 BUG_ON(item_size < sizeof(*ei));
1644
1645 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1646 flags = btrfs_extent_flags(leaf, ei);
1647
1648 ptr = (unsigned long)(ei + 1);
1649 end = (unsigned long)ei + item_size;
1650
1651 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1652 ptr += sizeof(struct btrfs_tree_block_info);
1653 BUG_ON(ptr > end);
1654 }
1655
1656 err = -ENOENT;
1657 while (1) {
1658 if (ptr >= end) {
1659 WARN_ON(ptr > end);
1660 break;
1661 }
1662 iref = (struct btrfs_extent_inline_ref *)ptr;
1663 type = btrfs_extent_inline_ref_type(leaf, iref);
1664 if (want < type)
1665 break;
1666 if (want > type) {
1667 ptr += btrfs_extent_inline_ref_size(type);
1668 continue;
1669 }
1670
1671 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1672 struct btrfs_extent_data_ref *dref;
1673 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1674 if (match_extent_data_ref(leaf, dref, root_objectid,
1675 owner, offset)) {
1676 err = 0;
1677 break;
1678 }
1679 if (hash_extent_data_ref_item(leaf, dref) <
1680 hash_extent_data_ref(root_objectid, owner, offset))
1681 break;
1682 } else {
1683 u64 ref_offset;
1684 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1685 if (parent > 0) {
1686 if (parent == ref_offset) {
1687 err = 0;
1688 break;
1689 }
1690 if (ref_offset < parent)
1691 break;
1692 } else {
1693 if (root_objectid == ref_offset) {
1694 err = 0;
1695 break;
1696 }
1697 if (ref_offset < root_objectid)
1698 break;
1699 }
1700 }
1701 ptr += btrfs_extent_inline_ref_size(type);
1702 }
1703 if (err == -ENOENT && insert) {
1704 if (item_size + extra_size >=
1705 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1706 err = -EAGAIN;
1707 goto out;
1708 }
1709 /*
1710 * To add new inline back ref, we have to make sure
1711 * there is no corresponding back ref item.
1712 * For simplicity, we just do not add new inline back
1713 * ref if there is any kind of item for this block
1714 */
1715 if (find_next_key(path, 0, &key) == 0 &&
1716 key.objectid == bytenr &&
1717 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1718 err = -EAGAIN;
1719 goto out;
1720 }
1721 }
1722 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1723 out:
1724 if (insert) {
1725 path->keep_locks = 0;
1726 btrfs_unlock_up_safe(path, 1);
1727 }
1728 return err;
1729 }
1730
1731 /*
1732 * helper to add new inline back ref
1733 */
1734 static noinline_for_stack
1735 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1736 struct btrfs_path *path,
1737 struct btrfs_extent_inline_ref *iref,
1738 u64 parent, u64 root_objectid,
1739 u64 owner, u64 offset, int refs_to_add,
1740 struct btrfs_delayed_extent_op *extent_op)
1741 {
1742 struct extent_buffer *leaf;
1743 struct btrfs_extent_item *ei;
1744 unsigned long ptr;
1745 unsigned long end;
1746 unsigned long item_offset;
1747 u64 refs;
1748 int size;
1749 int type;
1750
1751 leaf = path->nodes[0];
1752 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1753 item_offset = (unsigned long)iref - (unsigned long)ei;
1754
1755 type = extent_ref_type(parent, owner);
1756 size = btrfs_extent_inline_ref_size(type);
1757
1758 btrfs_extend_item(fs_info, path, size);
1759
1760 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1761 refs = btrfs_extent_refs(leaf, ei);
1762 refs += refs_to_add;
1763 btrfs_set_extent_refs(leaf, ei, refs);
1764 if (extent_op)
1765 __run_delayed_extent_op(extent_op, leaf, ei);
1766
1767 ptr = (unsigned long)ei + item_offset;
1768 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1769 if (ptr < end - size)
1770 memmove_extent_buffer(leaf, ptr + size, ptr,
1771 end - size - ptr);
1772
1773 iref = (struct btrfs_extent_inline_ref *)ptr;
1774 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1775 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1776 struct btrfs_extent_data_ref *dref;
1777 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1778 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1779 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1780 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1781 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1782 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1783 struct btrfs_shared_data_ref *sref;
1784 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1785 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1786 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1787 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1788 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1789 } else {
1790 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1791 }
1792 btrfs_mark_buffer_dirty(leaf);
1793 }
1794
1795 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1796 struct btrfs_fs_info *fs_info,
1797 struct btrfs_path *path,
1798 struct btrfs_extent_inline_ref **ref_ret,
1799 u64 bytenr, u64 num_bytes, u64 parent,
1800 u64 root_objectid, u64 owner, u64 offset)
1801 {
1802 int ret;
1803
1804 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1805 bytenr, num_bytes, parent,
1806 root_objectid, owner, offset, 0);
1807 if (ret != -ENOENT)
1808 return ret;
1809
1810 btrfs_release_path(path);
1811 *ref_ret = NULL;
1812
1813 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1814 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1815 parent, root_objectid);
1816 } else {
1817 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1818 parent, root_objectid, owner,
1819 offset);
1820 }
1821 return ret;
1822 }
1823
1824 /*
1825 * helper to update/remove inline back ref
1826 */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
1834 {
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
1866 }
1867
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
1877 *last_ref = 1;
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
1886 btrfs_truncate_item(fs_info, path, item_size, 1);
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
1889 }
1890
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_fs_info *fs_info,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 update_inline_extent_backref(fs_info, path, iref,
1909 refs_to_add, extent_op, NULL);
1910 } else if (ret == -ENOENT) {
1911 setup_inline_extent_backref(fs_info, path, iref, parent,
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
1915 }
1916 return ret;
1917 }
1918
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_fs_info *fs_info,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936 }
1937
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_fs_info *fs_info,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
1942 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 int ret = 0;
1945
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
1948 update_inline_extent_backref(fs_info, path, iref,
1949 -refs_to_drop, NULL, last_ref);
1950 } else if (is_data) {
1951 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1952 last_ref);
1953 } else {
1954 *last_ref = 1;
1955 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1956 }
1957 return ret;
1958 }
1959
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
1963 {
1964 int j, ret = 0;
1965 u64 bytes_left, end;
1966 u64 aligned_start = ALIGN(start, 1 << 9);
1967
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
1973
1974 *discarded_bytes = 0;
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 GFP_NOFS, 0);
2027 if (!ret)
2028 *discarded_bytes += bytes_left;
2029 }
2030 return ret;
2031 }
2032
2033 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 int ret;
2037 u64 discarded_bytes = 0;
2038 struct btrfs_bio *bbio = NULL;
2039
2040
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(fs_info);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2048 &bbio, 0);
2049 /* Error condition is -ENOMEM */
2050 if (!ret) {
2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 int i;
2053
2054
2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 u64 bytes;
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
2062 stripe->length,
2063 &bytes);
2064 if (!ret)
2065 discarded_bytes += bytes;
2066 else if (ret != -EOPNOTSUPP)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
2075 }
2076 btrfs_put_bbio(bbio);
2077 }
2078 btrfs_bio_counter_dec(fs_info);
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
2083
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
2086 return ret;
2087 }
2088
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_fs_info *fs_info,
2092 u64 bytenr, u64 num_bytes, u64 parent,
2093 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 int ret;
2096
2097 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2098 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2099
2100 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2101 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2102 num_bytes,
2103 parent, root_objectid, (int)owner,
2104 BTRFS_ADD_DELAYED_REF, NULL);
2105 } else {
2106 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2107 num_bytes, parent, root_objectid,
2108 owner, offset, 0,
2109 BTRFS_ADD_DELAYED_REF);
2110 }
2111 return ret;
2112 }
2113
2114 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2115 struct btrfs_fs_info *fs_info,
2116 struct btrfs_delayed_ref_node *node,
2117 u64 parent, u64 root_objectid,
2118 u64 owner, u64 offset, int refs_to_add,
2119 struct btrfs_delayed_extent_op *extent_op)
2120 {
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
2124 struct btrfs_key key;
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
2127 u64 refs;
2128 int ret;
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
2134 path->reada = READA_FORWARD;
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
2137 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2138 num_bytes, parent, root_objectid,
2139 owner, offset,
2140 refs_to_add, extent_op);
2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
2142 goto out;
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
2149 leaf = path->nodes[0];
2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
2156
2157 btrfs_mark_buffer_dirty(leaf);
2158 btrfs_release_path(path);
2159
2160 path->reada = READA_FORWARD;
2161 path->leave_spinning = 1;
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2164 root_objectid, owner, offset, refs_to_add);
2165 if (ret)
2166 btrfs_abort_transaction(trans, ret);
2167 out:
2168 btrfs_free_path(path);
2169 return ret;
2170 }
2171
2172 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2173 struct btrfs_fs_info *fs_info,
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
2177 {
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2190 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2191
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
2194 ref_root = ref->root;
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197 if (extent_op)
2198 flags |= extent_op->flags_to_set;
2199 ret = alloc_reserved_file_extent(trans, fs_info,
2200 parent, ref_root, flags,
2201 ref->objectid, ref->offset,
2202 &ins, node->ref_mod);
2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
2207 extent_op);
2208 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2209 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2210 ref_root, ref->objectid,
2211 ref->offset, node->ref_mod,
2212 extent_op);
2213 } else {
2214 BUG();
2215 }
2216 return ret;
2217 }
2218
2219 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2220 struct extent_buffer *leaf,
2221 struct btrfs_extent_item *ei)
2222 {
2223 u64 flags = btrfs_extent_flags(leaf, ei);
2224 if (extent_op->update_flags) {
2225 flags |= extent_op->flags_to_set;
2226 btrfs_set_extent_flags(leaf, ei, flags);
2227 }
2228
2229 if (extent_op->update_key) {
2230 struct btrfs_tree_block_info *bi;
2231 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2232 bi = (struct btrfs_tree_block_info *)(ei + 1);
2233 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2234 }
2235 }
2236
2237 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2238 struct btrfs_fs_info *fs_info,
2239 struct btrfs_delayed_ref_node *node,
2240 struct btrfs_delayed_extent_op *extent_op)
2241 {
2242 struct btrfs_key key;
2243 struct btrfs_path *path;
2244 struct btrfs_extent_item *ei;
2245 struct extent_buffer *leaf;
2246 u32 item_size;
2247 int ret;
2248 int err = 0;
2249 int metadata = !extent_op->is_data;
2250
2251 if (trans->aborted)
2252 return 0;
2253
2254 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2255 metadata = 0;
2256
2257 path = btrfs_alloc_path();
2258 if (!path)
2259 return -ENOMEM;
2260
2261 key.objectid = node->bytenr;
2262
2263 if (metadata) {
2264 key.type = BTRFS_METADATA_ITEM_KEY;
2265 key.offset = extent_op->level;
2266 } else {
2267 key.type = BTRFS_EXTENT_ITEM_KEY;
2268 key.offset = node->num_bytes;
2269 }
2270
2271 again:
2272 path->reada = READA_FORWARD;
2273 path->leave_spinning = 1;
2274 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2275 if (ret < 0) {
2276 err = ret;
2277 goto out;
2278 }
2279 if (ret > 0) {
2280 if (metadata) {
2281 if (path->slots[0] > 0) {
2282 path->slots[0]--;
2283 btrfs_item_key_to_cpu(path->nodes[0], &key,
2284 path->slots[0]);
2285 if (key.objectid == node->bytenr &&
2286 key.type == BTRFS_EXTENT_ITEM_KEY &&
2287 key.offset == node->num_bytes)
2288 ret = 0;
2289 }
2290 if (ret > 0) {
2291 btrfs_release_path(path);
2292 metadata = 0;
2293
2294 key.objectid = node->bytenr;
2295 key.offset = node->num_bytes;
2296 key.type = BTRFS_EXTENT_ITEM_KEY;
2297 goto again;
2298 }
2299 } else {
2300 err = -EIO;
2301 goto out;
2302 }
2303 }
2304
2305 leaf = path->nodes[0];
2306 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2308 if (item_size < sizeof(*ei)) {
2309 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2310 if (ret < 0) {
2311 err = ret;
2312 goto out;
2313 }
2314 leaf = path->nodes[0];
2315 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2316 }
2317 #endif
2318 BUG_ON(item_size < sizeof(*ei));
2319 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2320 __run_delayed_extent_op(extent_op, leaf, ei);
2321
2322 btrfs_mark_buffer_dirty(leaf);
2323 out:
2324 btrfs_free_path(path);
2325 return err;
2326 }
2327
2328 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2329 struct btrfs_fs_info *fs_info,
2330 struct btrfs_delayed_ref_node *node,
2331 struct btrfs_delayed_extent_op *extent_op,
2332 int insert_reserved)
2333 {
2334 int ret = 0;
2335 struct btrfs_delayed_tree_ref *ref;
2336 struct btrfs_key ins;
2337 u64 parent = 0;
2338 u64 ref_root = 0;
2339 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2340
2341 ref = btrfs_delayed_node_to_tree_ref(node);
2342 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2343
2344 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2345 parent = ref->parent;
2346 ref_root = ref->root;
2347
2348 ins.objectid = node->bytenr;
2349 if (skinny_metadata) {
2350 ins.offset = ref->level;
2351 ins.type = BTRFS_METADATA_ITEM_KEY;
2352 } else {
2353 ins.offset = node->num_bytes;
2354 ins.type = BTRFS_EXTENT_ITEM_KEY;
2355 }
2356
2357 if (node->ref_mod != 1) {
2358 btrfs_err(fs_info,
2359 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2360 node->bytenr, node->ref_mod, node->action, ref_root,
2361 parent);
2362 return -EIO;
2363 }
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 BUG_ON(!extent_op || !extent_op->update_flags);
2366 ret = alloc_reserved_tree_block(trans, fs_info,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
2370 ref->level, &ins);
2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
2375 extent_op);
2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 ret = __btrfs_free_extent(trans, fs_info, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
2380 } else {
2381 BUG();
2382 }
2383 return ret;
2384 }
2385
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_fs_info *fs_info,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
2392 {
2393 int ret = 0;
2394
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(fs_info, node->bytenr,
2398 node->num_bytes, 1);
2399 return 0;
2400 }
2401
2402 if (btrfs_delayed_ref_is_head(node)) {
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
2412 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2413
2414 if (insert_reserved) {
2415 btrfs_pin_extent(fs_info, node->bytenr,
2416 node->num_bytes, 1);
2417 if (head->is_data) {
2418 ret = btrfs_del_csums(trans, fs_info,
2419 node->bytenr,
2420 node->num_bytes);
2421 }
2422 }
2423
2424 /* Also free its reserved qgroup space */
2425 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2426 head->qgroup_reserved);
2427 return ret;
2428 }
2429
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2433 insert_reserved);
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2437 insert_reserved);
2438 else
2439 BUG();
2440 return ret;
2441 }
2442
2443 static inline struct btrfs_delayed_ref_node *
2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446 struct btrfs_delayed_ref_node *ref;
2447
2448 if (list_empty(&head->ref_list))
2449 return NULL;
2450
2451 /*
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2456 */
2457 if (!list_empty(&head->ref_add_list))
2458 return list_first_entry(&head->ref_add_list,
2459 struct btrfs_delayed_ref_node, add_list);
2460
2461 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462 list);
2463 ASSERT(list_empty(&ref->add_list));
2464 return ref;
2465 }
2466
2467 /*
2468 * Returns 0 on success or if called with an already aborted transaction.
2469 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 */
2471 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2472 struct btrfs_fs_info *fs_info,
2473 unsigned long nr)
2474 {
2475 struct btrfs_delayed_ref_root *delayed_refs;
2476 struct btrfs_delayed_ref_node *ref;
2477 struct btrfs_delayed_ref_head *locked_ref = NULL;
2478 struct btrfs_delayed_extent_op *extent_op;
2479 ktime_t start = ktime_get();
2480 int ret;
2481 unsigned long count = 0;
2482 unsigned long actual_count = 0;
2483 int must_insert_reserved = 0;
2484
2485 delayed_refs = &trans->transaction->delayed_refs;
2486 while (1) {
2487 if (!locked_ref) {
2488 if (count >= nr)
2489 break;
2490
2491 spin_lock(&delayed_refs->lock);
2492 locked_ref = btrfs_select_ref_head(trans);
2493 if (!locked_ref) {
2494 spin_unlock(&delayed_refs->lock);
2495 break;
2496 }
2497
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 spin_unlock(&delayed_refs->lock);
2502 /*
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2507 */
2508 if (ret == -EAGAIN) {
2509 locked_ref = NULL;
2510 count++;
2511 continue;
2512 }
2513 }
2514
2515 /*
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2520 * get a good ref.
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2526 */
2527 spin_lock(&locked_ref->lock);
2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 locked_ref);
2530
2531 /*
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2534 */
2535 ref = select_delayed_ref(locked_ref);
2536
2537 if (ref && ref->seq &&
2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 spin_unlock(&locked_ref->lock);
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 btrfs_delayed_ref_unlock(locked_ref);
2545 locked_ref = NULL;
2546 cond_resched();
2547 count++;
2548 continue;
2549 }
2550
2551 /*
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2554 */
2555 must_insert_reserved = locked_ref->must_insert_reserved;
2556 locked_ref->must_insert_reserved = 0;
2557
2558 extent_op = locked_ref->extent_op;
2559 locked_ref->extent_op = NULL;
2560
2561 if (!ref) {
2562
2563
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2567 */
2568 ref = &locked_ref->node;
2569
2570 if (extent_op && must_insert_reserved) {
2571 btrfs_free_delayed_extent_op(extent_op);
2572 extent_op = NULL;
2573 }
2574
2575 if (extent_op) {
2576 spin_unlock(&locked_ref->lock);
2577 ret = run_delayed_extent_op(trans, fs_info,
2578 ref, extent_op);
2579 btrfs_free_delayed_extent_op(extent_op);
2580
2581 if (ret) {
2582 /*
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2586 * properly.
2587 */
2588 if (must_insert_reserved)
2589 locked_ref->must_insert_reserved = 1;
2590 spin_lock(&delayed_refs->lock);
2591 locked_ref->processing = 0;
2592 delayed_refs->num_heads_ready++;
2593 spin_unlock(&delayed_refs->lock);
2594 btrfs_debug(fs_info,
2595 "run_delayed_extent_op returned %d",
2596 ret);
2597 btrfs_delayed_ref_unlock(locked_ref);
2598 return ret;
2599 }
2600 continue;
2601 }
2602
2603 /*
2604 * Need to drop our head ref lock and re-acquire the
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
2611 if (!list_empty(&locked_ref->ref_list) ||
2612 locked_ref->extent_op) {
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
2623 actual_count++;
2624 ref->in_tree = 0;
2625 list_del(&ref->list);
2626 if (!list_empty(&ref->add_list))
2627 list_del(&ref->add_list);
2628 }
2629 atomic_dec(&delayed_refs->num_entries);
2630
2631 if (!btrfs_delayed_ref_is_head(ref)) {
2632 /*
2633 * when we play the delayed ref, also correct the
2634 * ref_mod on head
2635 */
2636 switch (ref->action) {
2637 case BTRFS_ADD_DELAYED_REF:
2638 case BTRFS_ADD_DELAYED_EXTENT:
2639 locked_ref->node.ref_mod -= ref->ref_mod;
2640 break;
2641 case BTRFS_DROP_DELAYED_REF:
2642 locked_ref->node.ref_mod += ref->ref_mod;
2643 break;
2644 default:
2645 WARN_ON(1);
2646 }
2647 }
2648 spin_unlock(&locked_ref->lock);
2649
2650 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2651 must_insert_reserved);
2652
2653 btrfs_free_delayed_extent_op(extent_op);
2654 if (ret) {
2655 spin_lock(&delayed_refs->lock);
2656 locked_ref->processing = 0;
2657 delayed_refs->num_heads_ready++;
2658 spin_unlock(&delayed_refs->lock);
2659 btrfs_delayed_ref_unlock(locked_ref);
2660 btrfs_put_delayed_ref(ref);
2661 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2662 ret);
2663 return ret;
2664 }
2665
2666 /*
2667 * If this node is a head, that means all the refs in this head
2668 * have been dealt with, and we will pick the next head to deal
2669 * with, so we must unlock the head and drop it from the cluster
2670 * list before we release it.
2671 */
2672 if (btrfs_delayed_ref_is_head(ref)) {
2673 if (locked_ref->is_data &&
2674 locked_ref->total_ref_mod < 0) {
2675 spin_lock(&delayed_refs->lock);
2676 delayed_refs->pending_csums -= ref->num_bytes;
2677 spin_unlock(&delayed_refs->lock);
2678 }
2679 btrfs_delayed_ref_unlock(locked_ref);
2680 locked_ref = NULL;
2681 }
2682 btrfs_put_delayed_ref(ref);
2683 count++;
2684 cond_resched();
2685 }
2686
2687 /*
2688 * We don't want to include ref heads since we can have empty ref heads
2689 * and those will drastically skew our runtime down since we just do
2690 * accounting, no actual extent tree updates.
2691 */
2692 if (actual_count > 0) {
2693 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2694 u64 avg;
2695
2696 /*
2697 * We weigh the current average higher than our current runtime
2698 * to avoid large swings in the average.
2699 */
2700 spin_lock(&delayed_refs->lock);
2701 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2702 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2703 spin_unlock(&delayed_refs->lock);
2704 }
2705 return 0;
2706 }
2707
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 /*
2710 * Normally delayed refs get processed in ascending bytenr order. This
2711 * correlates in most cases to the order added. To expose dependencies on this
2712 * order, we start to process the tree in the middle instead of the beginning
2713 */
2714 static u64 find_middle(struct rb_root *root)
2715 {
2716 struct rb_node *n = root->rb_node;
2717 struct btrfs_delayed_ref_node *entry;
2718 int alt = 1;
2719 u64 middle;
2720 u64 first = 0, last = 0;
2721
2722 n = rb_first(root);
2723 if (n) {
2724 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 first = entry->bytenr;
2726 }
2727 n = rb_last(root);
2728 if (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 last = entry->bytenr;
2731 }
2732 n = root->rb_node;
2733
2734 while (n) {
2735 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2736 WARN_ON(!entry->in_tree);
2737
2738 middle = entry->bytenr;
2739
2740 if (alt)
2741 n = n->rb_left;
2742 else
2743 n = n->rb_right;
2744
2745 alt = 1 - alt;
2746 }
2747 return middle;
2748 }
2749 #endif
2750
2751 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2752 {
2753 u64 num_bytes;
2754
2755 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2756 sizeof(struct btrfs_extent_inline_ref));
2757 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2758 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2759
2760 /*
2761 * We don't ever fill up leaves all the way so multiply by 2 just to be
2762 * closer to what we're really going to want to use.
2763 */
2764 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2765 }
2766
2767 /*
2768 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2769 * would require to store the csums for that many bytes.
2770 */
2771 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2772 {
2773 u64 csum_size;
2774 u64 num_csums_per_leaf;
2775 u64 num_csums;
2776
2777 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2778 num_csums_per_leaf = div64_u64(csum_size,
2779 (u64)btrfs_super_csum_size(fs_info->super_copy));
2780 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2781 num_csums += num_csums_per_leaf - 1;
2782 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2783 return num_csums;
2784 }
2785
2786 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2787 struct btrfs_fs_info *fs_info)
2788 {
2789 struct btrfs_block_rsv *global_rsv;
2790 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2791 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2792 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2793 u64 num_bytes, num_dirty_bgs_bytes;
2794 int ret = 0;
2795
2796 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2797 num_heads = heads_to_leaves(fs_info, num_heads);
2798 if (num_heads > 1)
2799 num_bytes += (num_heads - 1) * fs_info->nodesize;
2800 num_bytes <<= 1;
2801 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2802 fs_info->nodesize;
2803 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2804 num_dirty_bgs);
2805 global_rsv = &fs_info->global_block_rsv;
2806
2807 /*
2808 * If we can't allocate any more chunks lets make sure we have _lots_ of
2809 * wiggle room since running delayed refs can create more delayed refs.
2810 */
2811 if (global_rsv->space_info->full) {
2812 num_dirty_bgs_bytes <<= 1;
2813 num_bytes <<= 1;
2814 }
2815
2816 spin_lock(&global_rsv->lock);
2817 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2818 ret = 1;
2819 spin_unlock(&global_rsv->lock);
2820 return ret;
2821 }
2822
2823 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_fs_info *fs_info)
2825 {
2826 u64 num_entries =
2827 atomic_read(&trans->transaction->delayed_refs.num_entries);
2828 u64 avg_runtime;
2829 u64 val;
2830
2831 smp_mb();
2832 avg_runtime = fs_info->avg_delayed_ref_runtime;
2833 val = num_entries * avg_runtime;
2834 if (val >= NSEC_PER_SEC)
2835 return 1;
2836 if (val >= NSEC_PER_SEC / 2)
2837 return 2;
2838
2839 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2840 }
2841
2842 struct async_delayed_refs {
2843 struct btrfs_root *root;
2844 u64 transid;
2845 int count;
2846 int error;
2847 int sync;
2848 struct completion wait;
2849 struct btrfs_work work;
2850 };
2851
2852 static inline struct async_delayed_refs *
2853 to_async_delayed_refs(struct btrfs_work *work)
2854 {
2855 return container_of(work, struct async_delayed_refs, work);
2856 }
2857
2858 static void delayed_ref_async_start(struct btrfs_work *work)
2859 {
2860 struct async_delayed_refs *async = to_async_delayed_refs(work);
2861 struct btrfs_trans_handle *trans;
2862 struct btrfs_fs_info *fs_info = async->root->fs_info;
2863 int ret;
2864
2865 /* if the commit is already started, we don't need to wait here */
2866 if (btrfs_transaction_blocked(fs_info))
2867 goto done;
2868
2869 trans = btrfs_join_transaction(async->root);
2870 if (IS_ERR(trans)) {
2871 async->error = PTR_ERR(trans);
2872 goto done;
2873 }
2874
2875 /*
2876 * trans->sync means that when we call end_transaction, we won't
2877 * wait on delayed refs
2878 */
2879 trans->sync = true;
2880
2881 /* Don't bother flushing if we got into a different transaction */
2882 if (trans->transid > async->transid)
2883 goto end;
2884
2885 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2886 if (ret)
2887 async->error = ret;
2888 end:
2889 ret = btrfs_end_transaction(trans);
2890 if (ret && !async->error)
2891 async->error = ret;
2892 done:
2893 if (async->sync)
2894 complete(&async->wait);
2895 else
2896 kfree(async);
2897 }
2898
2899 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2900 unsigned long count, u64 transid, int wait)
2901 {
2902 struct async_delayed_refs *async;
2903 int ret;
2904
2905 async = kmalloc(sizeof(*async), GFP_NOFS);
2906 if (!async)
2907 return -ENOMEM;
2908
2909 async->root = fs_info->tree_root;
2910 async->count = count;
2911 async->error = 0;
2912 async->transid = transid;
2913 if (wait)
2914 async->sync = 1;
2915 else
2916 async->sync = 0;
2917 init_completion(&async->wait);
2918
2919 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920 delayed_ref_async_start, NULL, NULL);
2921
2922 btrfs_queue_work(fs_info->extent_workers, &async->work);
2923
2924 if (wait) {
2925 wait_for_completion(&async->wait);
2926 ret = async->error;
2927 kfree(async);
2928 return ret;
2929 }
2930 return 0;
2931 }
2932
2933 /*
2934 * this starts processing the delayed reference count updates and
2935 * extent insertions we have queued up so far. count can be
2936 * 0, which means to process everything in the tree at the start
2937 * of the run (but not newly added entries), or it can be some target
2938 * number you'd like to process.
2939 *
2940 * Returns 0 on success or if called with an aborted transaction
2941 * Returns <0 on error and aborts the transaction
2942 */
2943 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2944 struct btrfs_fs_info *fs_info, unsigned long count)
2945 {
2946 struct rb_node *node;
2947 struct btrfs_delayed_ref_root *delayed_refs;
2948 struct btrfs_delayed_ref_head *head;
2949 int ret;
2950 int run_all = count == (unsigned long)-1;
2951 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2952
2953 /* We'll clean this up in btrfs_cleanup_transaction */
2954 if (trans->aborted)
2955 return 0;
2956
2957 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2958 return 0;
2959
2960 delayed_refs = &trans->transaction->delayed_refs;
2961 if (count == 0)
2962 count = atomic_read(&delayed_refs->num_entries) * 2;
2963
2964 again:
2965 #ifdef SCRAMBLE_DELAYED_REFS
2966 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2967 #endif
2968 trans->can_flush_pending_bgs = false;
2969 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2970 if (ret < 0) {
2971 btrfs_abort_transaction(trans, ret);
2972 return ret;
2973 }
2974
2975 if (run_all) {
2976 if (!list_empty(&trans->new_bgs))
2977 btrfs_create_pending_block_groups(trans, fs_info);
2978
2979 spin_lock(&delayed_refs->lock);
2980 node = rb_first(&delayed_refs->href_root);
2981 if (!node) {
2982 spin_unlock(&delayed_refs->lock);
2983 goto out;
2984 }
2985
2986 while (node) {
2987 head = rb_entry(node, struct btrfs_delayed_ref_head,
2988 href_node);
2989 if (btrfs_delayed_ref_is_head(&head->node)) {
2990 struct btrfs_delayed_ref_node *ref;
2991
2992 ref = &head->node;
2993 refcount_inc(&ref->refs);
2994
2995 spin_unlock(&delayed_refs->lock);
2996 /*
2997 * Mutex was contended, block until it's
2998 * released and try again
2999 */
3000 mutex_lock(&head->mutex);
3001 mutex_unlock(&head->mutex);
3002
3003 btrfs_put_delayed_ref(ref);
3004 cond_resched();
3005 goto again;
3006 } else {
3007 WARN_ON(1);
3008 }
3009 node = rb_next(node);
3010 }
3011 spin_unlock(&delayed_refs->lock);
3012 cond_resched();
3013 goto again;
3014 }
3015 out:
3016 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3017 return 0;
3018 }
3019
3020 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3021 struct btrfs_fs_info *fs_info,
3022 u64 bytenr, u64 num_bytes, u64 flags,
3023 int level, int is_data)
3024 {
3025 struct btrfs_delayed_extent_op *extent_op;
3026 int ret;
3027
3028 extent_op = btrfs_alloc_delayed_extent_op();
3029 if (!extent_op)
3030 return -ENOMEM;
3031
3032 extent_op->flags_to_set = flags;
3033 extent_op->update_flags = true;
3034 extent_op->update_key = false;
3035 extent_op->is_data = is_data ? true : false;
3036 extent_op->level = level;
3037
3038 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3039 num_bytes, extent_op);
3040 if (ret)
3041 btrfs_free_delayed_extent_op(extent_op);
3042 return ret;
3043 }
3044
3045 static noinline int check_delayed_ref(struct btrfs_root *root,
3046 struct btrfs_path *path,
3047 u64 objectid, u64 offset, u64 bytenr)
3048 {
3049 struct btrfs_delayed_ref_head *head;
3050 struct btrfs_delayed_ref_node *ref;
3051 struct btrfs_delayed_data_ref *data_ref;
3052 struct btrfs_delayed_ref_root *delayed_refs;
3053 struct btrfs_transaction *cur_trans;
3054 int ret = 0;
3055
3056 cur_trans = root->fs_info->running_transaction;
3057 if (!cur_trans)
3058 return 0;
3059
3060 delayed_refs = &cur_trans->delayed_refs;
3061 spin_lock(&delayed_refs->lock);
3062 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3063 if (!head) {
3064 spin_unlock(&delayed_refs->lock);
3065 return 0;
3066 }
3067
3068 if (!mutex_trylock(&head->mutex)) {
3069 refcount_inc(&head->node.refs);
3070 spin_unlock(&delayed_refs->lock);
3071
3072 btrfs_release_path(path);
3073
3074 /*
3075 * Mutex was contended, block until it's released and let
3076 * caller try again
3077 */
3078 mutex_lock(&head->mutex);
3079 mutex_unlock(&head->mutex);
3080 btrfs_put_delayed_ref(&head->node);
3081 return -EAGAIN;
3082 }
3083 spin_unlock(&delayed_refs->lock);
3084
3085 spin_lock(&head->lock);
3086 list_for_each_entry(ref, &head->ref_list, list) {
3087 /* If it's a shared ref we know a cross reference exists */
3088 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089 ret = 1;
3090 break;
3091 }
3092
3093 data_ref = btrfs_delayed_node_to_data_ref(ref);
3094
3095 /*
3096 * If our ref doesn't match the one we're currently looking at
3097 * then we have a cross reference.
3098 */
3099 if (data_ref->root != root->root_key.objectid ||
3100 data_ref->objectid != objectid ||
3101 data_ref->offset != offset) {
3102 ret = 1;
3103 break;
3104 }
3105 }
3106 spin_unlock(&head->lock);
3107 mutex_unlock(&head->mutex);
3108 return ret;
3109 }
3110
3111 static noinline int check_committed_ref(struct btrfs_root *root,
3112 struct btrfs_path *path,
3113 u64 objectid, u64 offset, u64 bytenr)
3114 {
3115 struct btrfs_fs_info *fs_info = root->fs_info;
3116 struct btrfs_root *extent_root = fs_info->extent_root;
3117 struct extent_buffer *leaf;
3118 struct btrfs_extent_data_ref *ref;
3119 struct btrfs_extent_inline_ref *iref;
3120 struct btrfs_extent_item *ei;
3121 struct btrfs_key key;
3122 u32 item_size;
3123 int ret;
3124
3125 key.objectid = bytenr;
3126 key.offset = (u64)-1;
3127 key.type = BTRFS_EXTENT_ITEM_KEY;
3128
3129 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130 if (ret < 0)
3131 goto out;
3132 BUG_ON(ret == 0); /* Corruption */
3133
3134 ret = -ENOENT;
3135 if (path->slots[0] == 0)
3136 goto out;
3137
3138 path->slots[0]--;
3139 leaf = path->nodes[0];
3140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3141
3142 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3143 goto out;
3144
3145 ret = 1;
3146 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148 if (item_size < sizeof(*ei)) {
3149 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150 goto out;
3151 }
3152 #endif
3153 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3154
3155 if (item_size != sizeof(*ei) +
3156 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157 goto out;
3158
3159 if (btrfs_extent_generation(leaf, ei) <=
3160 btrfs_root_last_snapshot(&root->root_item))
3161 goto out;
3162
3163 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165 BTRFS_EXTENT_DATA_REF_KEY)
3166 goto out;
3167
3168 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169 if (btrfs_extent_refs(leaf, ei) !=
3170 btrfs_extent_data_ref_count(leaf, ref) ||
3171 btrfs_extent_data_ref_root(leaf, ref) !=
3172 root->root_key.objectid ||
3173 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175 goto out;
3176
3177 ret = 0;
3178 out:
3179 return ret;
3180 }
3181
3182 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3183 u64 bytenr)
3184 {
3185 struct btrfs_path *path;
3186 int ret;
3187 int ret2;
3188
3189 path = btrfs_alloc_path();
3190 if (!path)
3191 return -ENOENT;
3192
3193 do {
3194 ret = check_committed_ref(root, path, objectid,
3195 offset, bytenr);
3196 if (ret && ret != -ENOENT)
3197 goto out;
3198
3199 ret2 = check_delayed_ref(root, path, objectid,
3200 offset, bytenr);
3201 } while (ret2 == -EAGAIN);
3202
3203 if (ret2 && ret2 != -ENOENT) {
3204 ret = ret2;
3205 goto out;
3206 }
3207
3208 if (ret != -ENOENT || ret2 != -ENOENT)
3209 ret = 0;
3210 out:
3211 btrfs_free_path(path);
3212 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3213 WARN_ON(ret > 0);
3214 return ret;
3215 }
3216
3217 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root,
3219 struct extent_buffer *buf,
3220 int full_backref, int inc)
3221 {
3222 struct btrfs_fs_info *fs_info = root->fs_info;
3223 u64 bytenr;
3224 u64 num_bytes;
3225 u64 parent;
3226 u64 ref_root;
3227 u32 nritems;
3228 struct btrfs_key key;
3229 struct btrfs_file_extent_item *fi;
3230 int i;
3231 int level;
3232 int ret = 0;
3233 int (*process_func)(struct btrfs_trans_handle *,
3234 struct btrfs_fs_info *,
3235 u64, u64, u64, u64, u64, u64);
3236
3237
3238 if (btrfs_is_testing(fs_info))
3239 return 0;
3240
3241 ref_root = btrfs_header_owner(buf);
3242 nritems = btrfs_header_nritems(buf);
3243 level = btrfs_header_level(buf);
3244
3245 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3246 return 0;
3247
3248 if (inc)
3249 process_func = btrfs_inc_extent_ref;
3250 else
3251 process_func = btrfs_free_extent;
3252
3253 if (full_backref)
3254 parent = buf->start;
3255 else
3256 parent = 0;
3257
3258 for (i = 0; i < nritems; i++) {
3259 if (level == 0) {
3260 btrfs_item_key_to_cpu(buf, &key, i);
3261 if (key.type != BTRFS_EXTENT_DATA_KEY)
3262 continue;
3263 fi = btrfs_item_ptr(buf, i,
3264 struct btrfs_file_extent_item);
3265 if (btrfs_file_extent_type(buf, fi) ==
3266 BTRFS_FILE_EXTENT_INLINE)
3267 continue;
3268 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269 if (bytenr == 0)
3270 continue;
3271
3272 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273 key.offset -= btrfs_file_extent_offset(buf, fi);
3274 ret = process_func(trans, fs_info, bytenr, num_bytes,
3275 parent, ref_root, key.objectid,
3276 key.offset);
3277 if (ret)
3278 goto fail;
3279 } else {
3280 bytenr = btrfs_node_blockptr(buf, i);
3281 num_bytes = fs_info->nodesize;
3282 ret = process_func(trans, fs_info, bytenr, num_bytes,
3283 parent, ref_root, level - 1, 0);
3284 if (ret)
3285 goto fail;
3286 }
3287 }
3288 return 0;
3289 fail:
3290 return ret;
3291 }
3292
3293 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3294 struct extent_buffer *buf, int full_backref)
3295 {
3296 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3297 }
3298
3299 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3300 struct extent_buffer *buf, int full_backref)
3301 {
3302 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3303 }
3304
3305 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3306 struct btrfs_fs_info *fs_info,
3307 struct btrfs_path *path,
3308 struct btrfs_block_group_cache *cache)
3309 {
3310 int ret;
3311 struct btrfs_root *extent_root = fs_info->extent_root;
3312 unsigned long bi;
3313 struct extent_buffer *leaf;
3314
3315 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3316 if (ret) {
3317 if (ret > 0)
3318 ret = -ENOENT;
3319 goto fail;
3320 }
3321
3322 leaf = path->nodes[0];
3323 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325 btrfs_mark_buffer_dirty(leaf);
3326 fail:
3327 btrfs_release_path(path);
3328 return ret;
3329
3330 }
3331
3332 static struct btrfs_block_group_cache *
3333 next_block_group(struct btrfs_fs_info *fs_info,
3334 struct btrfs_block_group_cache *cache)
3335 {
3336 struct rb_node *node;
3337
3338 spin_lock(&fs_info->block_group_cache_lock);
3339
3340 /* If our block group was removed, we need a full search. */
3341 if (RB_EMPTY_NODE(&cache->cache_node)) {
3342 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343
3344 spin_unlock(&fs_info->block_group_cache_lock);
3345 btrfs_put_block_group(cache);
3346 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3347 }
3348 node = rb_next(&cache->cache_node);
3349 btrfs_put_block_group(cache);
3350 if (node) {
3351 cache = rb_entry(node, struct btrfs_block_group_cache,
3352 cache_node);
3353 btrfs_get_block_group(cache);
3354 } else
3355 cache = NULL;
3356 spin_unlock(&fs_info->block_group_cache_lock);
3357 return cache;
3358 }
3359
3360 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3361 struct btrfs_trans_handle *trans,
3362 struct btrfs_path *path)
3363 {
3364 struct btrfs_fs_info *fs_info = block_group->fs_info;
3365 struct btrfs_root *root = fs_info->tree_root;
3366 struct inode *inode = NULL;
3367 u64 alloc_hint = 0;
3368 int dcs = BTRFS_DC_ERROR;
3369 u64 num_pages = 0;
3370 int retries = 0;
3371 int ret = 0;
3372
3373 /*
3374 * If this block group is smaller than 100 megs don't bother caching the
3375 * block group.
3376 */
3377 if (block_group->key.offset < (100 * SZ_1M)) {
3378 spin_lock(&block_group->lock);
3379 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380 spin_unlock(&block_group->lock);
3381 return 0;
3382 }
3383
3384 if (trans->aborted)
3385 return 0;
3386 again:
3387 inode = lookup_free_space_inode(fs_info, block_group, path);
3388 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389 ret = PTR_ERR(inode);
3390 btrfs_release_path(path);
3391 goto out;
3392 }
3393
3394 if (IS_ERR(inode)) {
3395 BUG_ON(retries);
3396 retries++;
3397
3398 if (block_group->ro)
3399 goto out_free;
3400
3401 ret = create_free_space_inode(fs_info, trans, block_group,
3402 path);
3403 if (ret)
3404 goto out_free;
3405 goto again;
3406 }
3407
3408 /* We've already setup this transaction, go ahead and exit */
3409 if (block_group->cache_generation == trans->transid &&
3410 i_size_read(inode)) {
3411 dcs = BTRFS_DC_SETUP;
3412 goto out_put;
3413 }
3414
3415 /*
3416 * We want to set the generation to 0, that way if anything goes wrong
3417 * from here on out we know not to trust this cache when we load up next
3418 * time.
3419 */
3420 BTRFS_I(inode)->generation = 0;
3421 ret = btrfs_update_inode(trans, root, inode);
3422 if (ret) {
3423 /*
3424 * So theoretically we could recover from this, simply set the
3425 * super cache generation to 0 so we know to invalidate the
3426 * cache, but then we'd have to keep track of the block groups
3427 * that fail this way so we know we _have_ to reset this cache
3428 * before the next commit or risk reading stale cache. So to
3429 * limit our exposure to horrible edge cases lets just abort the
3430 * transaction, this only happens in really bad situations
3431 * anyway.
3432 */
3433 btrfs_abort_transaction(trans, ret);
3434 goto out_put;
3435 }
3436 WARN_ON(ret);
3437
3438 if (i_size_read(inode) > 0) {
3439 ret = btrfs_check_trunc_cache_free_space(fs_info,
3440 &fs_info->global_block_rsv);
3441 if (ret)
3442 goto out_put;
3443
3444 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3445 if (ret)
3446 goto out_put;
3447 }
3448
3449 spin_lock(&block_group->lock);
3450 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3451 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3452 /*
3453 * don't bother trying to write stuff out _if_
3454 * a) we're not cached,
3455 * b) we're with nospace_cache mount option,
3456 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3457 */
3458 dcs = BTRFS_DC_WRITTEN;
3459 spin_unlock(&block_group->lock);
3460 goto out_put;
3461 }
3462 spin_unlock(&block_group->lock);
3463
3464 /*
3465 * We hit an ENOSPC when setting up the cache in this transaction, just
3466 * skip doing the setup, we've already cleared the cache so we're safe.
3467 */
3468 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3469 ret = -ENOSPC;
3470 goto out_put;
3471 }
3472
3473 /*
3474 * Try to preallocate enough space based on how big the block group is.
3475 * Keep in mind this has to include any pinned space which could end up
3476 * taking up quite a bit since it's not folded into the other space
3477 * cache.
3478 */
3479 num_pages = div_u64(block_group->key.offset, SZ_256M);
3480 if (!num_pages)
3481 num_pages = 1;
3482
3483 num_pages *= 16;
3484 num_pages *= PAGE_SIZE;
3485
3486 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3487 if (ret)
3488 goto out_put;
3489
3490 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3491 num_pages, num_pages,
3492 &alloc_hint);
3493 /*
3494 * Our cache requires contiguous chunks so that we don't modify a bunch
3495 * of metadata or split extents when writing the cache out, which means
3496 * we can enospc if we are heavily fragmented in addition to just normal
3497 * out of space conditions. So if we hit this just skip setting up any
3498 * other block groups for this transaction, maybe we'll unpin enough
3499 * space the next time around.
3500 */
3501 if (!ret)
3502 dcs = BTRFS_DC_SETUP;
3503 else if (ret == -ENOSPC)
3504 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3505
3506 out_put:
3507 iput(inode);
3508 out_free:
3509 btrfs_release_path(path);
3510 out:
3511 spin_lock(&block_group->lock);
3512 if (!ret && dcs == BTRFS_DC_SETUP)
3513 block_group->cache_generation = trans->transid;
3514 block_group->disk_cache_state = dcs;
3515 spin_unlock(&block_group->lock);
3516
3517 return ret;
3518 }
3519
3520 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3521 struct btrfs_fs_info *fs_info)
3522 {
3523 struct btrfs_block_group_cache *cache, *tmp;
3524 struct btrfs_transaction *cur_trans = trans->transaction;
3525 struct btrfs_path *path;
3526
3527 if (list_empty(&cur_trans->dirty_bgs) ||
3528 !btrfs_test_opt(fs_info, SPACE_CACHE))
3529 return 0;
3530
3531 path = btrfs_alloc_path();
3532 if (!path)
3533 return -ENOMEM;
3534
3535 /* Could add new block groups, use _safe just in case */
3536 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537 dirty_list) {
3538 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539 cache_save_setup(cache, trans, path);
3540 }
3541
3542 btrfs_free_path(path);
3543 return 0;
3544 }
3545
3546 /*
3547 * transaction commit does final block group cache writeback during a
3548 * critical section where nothing is allowed to change the FS. This is
3549 * required in order for the cache to actually match the block group,
3550 * but can introduce a lot of latency into the commit.
3551 *
3552 * So, btrfs_start_dirty_block_groups is here to kick off block group
3553 * cache IO. There's a chance we'll have to redo some of it if the
3554 * block group changes again during the commit, but it greatly reduces
3555 * the commit latency by getting rid of the easy block groups while
3556 * we're still allowing others to join the commit.
3557 */
3558 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3559 struct btrfs_fs_info *fs_info)
3560 {
3561 struct btrfs_block_group_cache *cache;
3562 struct btrfs_transaction *cur_trans = trans->transaction;
3563 int ret = 0;
3564 int should_put;
3565 struct btrfs_path *path = NULL;
3566 LIST_HEAD(dirty);
3567 struct list_head *io = &cur_trans->io_bgs;
3568 int num_started = 0;
3569 int loops = 0;
3570
3571 spin_lock(&cur_trans->dirty_bgs_lock);
3572 if (list_empty(&cur_trans->dirty_bgs)) {
3573 spin_unlock(&cur_trans->dirty_bgs_lock);
3574 return 0;
3575 }
3576 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3577 spin_unlock(&cur_trans->dirty_bgs_lock);
3578
3579 again:
3580 /*
3581 * make sure all the block groups on our dirty list actually
3582 * exist
3583 */
3584 btrfs_create_pending_block_groups(trans, fs_info);
3585
3586 if (!path) {
3587 path = btrfs_alloc_path();
3588 if (!path)
3589 return -ENOMEM;
3590 }
3591
3592 /*
3593 * cache_write_mutex is here only to save us from balance or automatic
3594 * removal of empty block groups deleting this block group while we are
3595 * writing out the cache
3596 */
3597 mutex_lock(&trans->transaction->cache_write_mutex);
3598 while (!list_empty(&dirty)) {
3599 cache = list_first_entry(&dirty,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
3602 /*
3603 * this can happen if something re-dirties a block
3604 * group that is already under IO. Just wait for it to
3605 * finish and then do it all again
3606 */
3607 if (!list_empty(&cache->io_list)) {
3608 list_del_init(&cache->io_list);
3609 btrfs_wait_cache_io(trans, cache, path);
3610 btrfs_put_block_group(cache);
3611 }
3612
3613
3614 /*
3615 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3616 * if it should update the cache_state. Don't delete
3617 * until after we wait.
3618 *
3619 * Since we're not running in the commit critical section
3620 * we need the dirty_bgs_lock to protect from update_block_group
3621 */
3622 spin_lock(&cur_trans->dirty_bgs_lock);
3623 list_del_init(&cache->dirty_list);
3624 spin_unlock(&cur_trans->dirty_bgs_lock);
3625
3626 should_put = 1;
3627
3628 cache_save_setup(cache, trans, path);
3629
3630 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3631 cache->io_ctl.inode = NULL;
3632 ret = btrfs_write_out_cache(fs_info, trans,
3633 cache, path);
3634 if (ret == 0 && cache->io_ctl.inode) {
3635 num_started++;
3636 should_put = 0;
3637
3638 /*
3639 * the cache_write_mutex is protecting
3640 * the io_list
3641 */
3642 list_add_tail(&cache->io_list, io);
3643 } else {
3644 /*
3645 * if we failed to write the cache, the
3646 * generation will be bad and life goes on
3647 */
3648 ret = 0;
3649 }
3650 }
3651 if (!ret) {
3652 ret = write_one_cache_group(trans, fs_info,
3653 path, cache);
3654 /*
3655 * Our block group might still be attached to the list
3656 * of new block groups in the transaction handle of some
3657 * other task (struct btrfs_trans_handle->new_bgs). This
3658 * means its block group item isn't yet in the extent
3659 * tree. If this happens ignore the error, as we will
3660 * try again later in the critical section of the
3661 * transaction commit.
3662 */
3663 if (ret == -ENOENT) {
3664 ret = 0;
3665 spin_lock(&cur_trans->dirty_bgs_lock);
3666 if (list_empty(&cache->dirty_list)) {
3667 list_add_tail(&cache->dirty_list,
3668 &cur_trans->dirty_bgs);
3669 btrfs_get_block_group(cache);
3670 }
3671 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 } else if (ret) {
3673 btrfs_abort_transaction(trans, ret);
3674 }
3675 }
3676
3677 /* if its not on the io list, we need to put the block group */
3678 if (should_put)
3679 btrfs_put_block_group(cache);
3680
3681 if (ret)
3682 break;
3683
3684 /*
3685 * Avoid blocking other tasks for too long. It might even save
3686 * us from writing caches for block groups that are going to be
3687 * removed.
3688 */
3689 mutex_unlock(&trans->transaction->cache_write_mutex);
3690 mutex_lock(&trans->transaction->cache_write_mutex);
3691 }
3692 mutex_unlock(&trans->transaction->cache_write_mutex);
3693
3694 /*
3695 * go through delayed refs for all the stuff we've just kicked off
3696 * and then loop back (just once)
3697 */
3698 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3699 if (!ret && loops == 0) {
3700 loops++;
3701 spin_lock(&cur_trans->dirty_bgs_lock);
3702 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3703 /*
3704 * dirty_bgs_lock protects us from concurrent block group
3705 * deletes too (not just cache_write_mutex).
3706 */
3707 if (!list_empty(&dirty)) {
3708 spin_unlock(&cur_trans->dirty_bgs_lock);
3709 goto again;
3710 }
3711 spin_unlock(&cur_trans->dirty_bgs_lock);
3712 } else if (ret < 0) {
3713 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3714 }
3715
3716 btrfs_free_path(path);
3717 return ret;
3718 }
3719
3720 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3721 struct btrfs_fs_info *fs_info)
3722 {
3723 struct btrfs_block_group_cache *cache;
3724 struct btrfs_transaction *cur_trans = trans->transaction;
3725 int ret = 0;
3726 int should_put;
3727 struct btrfs_path *path;
3728 struct list_head *io = &cur_trans->io_bgs;
3729 int num_started = 0;
3730
3731 path = btrfs_alloc_path();
3732 if (!path)
3733 return -ENOMEM;
3734
3735 /*
3736 * Even though we are in the critical section of the transaction commit,
3737 * we can still have concurrent tasks adding elements to this
3738 * transaction's list of dirty block groups. These tasks correspond to
3739 * endio free space workers started when writeback finishes for a
3740 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3741 * allocate new block groups as a result of COWing nodes of the root
3742 * tree when updating the free space inode. The writeback for the space
3743 * caches is triggered by an earlier call to
3744 * btrfs_start_dirty_block_groups() and iterations of the following
3745 * loop.
3746 * Also we want to do the cache_save_setup first and then run the
3747 * delayed refs to make sure we have the best chance at doing this all
3748 * in one shot.
3749 */
3750 spin_lock(&cur_trans->dirty_bgs_lock);
3751 while (!list_empty(&cur_trans->dirty_bgs)) {
3752 cache = list_first_entry(&cur_trans->dirty_bgs,
3753 struct btrfs_block_group_cache,
3754 dirty_list);
3755
3756 /*
3757 * this can happen if cache_save_setup re-dirties a block
3758 * group that is already under IO. Just wait for it to
3759 * finish and then do it all again
3760 */
3761 if (!list_empty(&cache->io_list)) {
3762 spin_unlock(&cur_trans->dirty_bgs_lock);
3763 list_del_init(&cache->io_list);
3764 btrfs_wait_cache_io(trans, cache, path);
3765 btrfs_put_block_group(cache);
3766 spin_lock(&cur_trans->dirty_bgs_lock);
3767 }
3768
3769 /*
3770 * don't remove from the dirty list until after we've waited
3771 * on any pending IO
3772 */
3773 list_del_init(&cache->dirty_list);
3774 spin_unlock(&cur_trans->dirty_bgs_lock);
3775 should_put = 1;
3776
3777 cache_save_setup(cache, trans, path);
3778
3779 if (!ret)
3780 ret = btrfs_run_delayed_refs(trans, fs_info,
3781 (unsigned long) -1);
3782
3783 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3784 cache->io_ctl.inode = NULL;
3785 ret = btrfs_write_out_cache(fs_info, trans,
3786 cache, path);
3787 if (ret == 0 && cache->io_ctl.inode) {
3788 num_started++;
3789 should_put = 0;
3790 list_add_tail(&cache->io_list, io);
3791 } else {
3792 /*
3793 * if we failed to write the cache, the
3794 * generation will be bad and life goes on
3795 */
3796 ret = 0;
3797 }
3798 }
3799 if (!ret) {
3800 ret = write_one_cache_group(trans, fs_info,
3801 path, cache);
3802 /*
3803 * One of the free space endio workers might have
3804 * created a new block group while updating a free space
3805 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3806 * and hasn't released its transaction handle yet, in
3807 * which case the new block group is still attached to
3808 * its transaction handle and its creation has not
3809 * finished yet (no block group item in the extent tree
3810 * yet, etc). If this is the case, wait for all free
3811 * space endio workers to finish and retry. This is a
3812 * a very rare case so no need for a more efficient and
3813 * complex approach.
3814 */
3815 if (ret == -ENOENT) {
3816 wait_event(cur_trans->writer_wait,
3817 atomic_read(&cur_trans->num_writers) == 1);
3818 ret = write_one_cache_group(trans, fs_info,
3819 path, cache);
3820 }
3821 if (ret)
3822 btrfs_abort_transaction(trans, ret);
3823 }
3824
3825 /* if its not on the io list, we need to put the block group */
3826 if (should_put)
3827 btrfs_put_block_group(cache);
3828 spin_lock(&cur_trans->dirty_bgs_lock);
3829 }
3830 spin_unlock(&cur_trans->dirty_bgs_lock);
3831
3832 while (!list_empty(io)) {
3833 cache = list_first_entry(io, struct btrfs_block_group_cache,
3834 io_list);
3835 list_del_init(&cache->io_list);
3836 btrfs_wait_cache_io(trans, cache, path);
3837 btrfs_put_block_group(cache);
3838 }
3839
3840 btrfs_free_path(path);
3841 return ret;
3842 }
3843
3844 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846 struct btrfs_block_group_cache *block_group;
3847 int readonly = 0;
3848
3849 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3850 if (!block_group || block_group->ro)
3851 readonly = 1;
3852 if (block_group)
3853 btrfs_put_block_group(block_group);
3854 return readonly;
3855 }
3856
3857 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858 {
3859 struct btrfs_block_group_cache *bg;
3860 bool ret = true;
3861
3862 bg = btrfs_lookup_block_group(fs_info, bytenr);
3863 if (!bg)
3864 return false;
3865
3866 spin_lock(&bg->lock);
3867 if (bg->ro)
3868 ret = false;
3869 else
3870 atomic_inc(&bg->nocow_writers);
3871 spin_unlock(&bg->lock);
3872
3873 /* no put on block group, done by btrfs_dec_nocow_writers */
3874 if (!ret)
3875 btrfs_put_block_group(bg);
3876
3877 return ret;
3878
3879 }
3880
3881 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3882 {
3883 struct btrfs_block_group_cache *bg;
3884
3885 bg = btrfs_lookup_block_group(fs_info, bytenr);
3886 ASSERT(bg);
3887 if (atomic_dec_and_test(&bg->nocow_writers))
3888 wake_up_atomic_t(&bg->nocow_writers);
3889 /*
3890 * Once for our lookup and once for the lookup done by a previous call
3891 * to btrfs_inc_nocow_writers()
3892 */
3893 btrfs_put_block_group(bg);
3894 btrfs_put_block_group(bg);
3895 }
3896
3897 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3898 {
3899 schedule();
3900 return 0;
3901 }
3902
3903 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3904 {
3905 wait_on_atomic_t(&bg->nocow_writers,
3906 btrfs_wait_nocow_writers_atomic_t,
3907 TASK_UNINTERRUPTIBLE);
3908 }
3909
3910 static const char *alloc_name(u64 flags)
3911 {
3912 switch (flags) {
3913 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3914 return "mixed";
3915 case BTRFS_BLOCK_GROUP_METADATA:
3916 return "metadata";
3917 case BTRFS_BLOCK_GROUP_DATA:
3918 return "data";
3919 case BTRFS_BLOCK_GROUP_SYSTEM:
3920 return "system";
3921 default:
3922 WARN_ON(1);
3923 return "invalid-combination";
3924 };
3925 }
3926
3927 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3928 u64 total_bytes, u64 bytes_used,
3929 u64 bytes_readonly,
3930 struct btrfs_space_info **space_info)
3931 {
3932 struct btrfs_space_info *found;
3933 int i;
3934 int factor;
3935 int ret;
3936
3937 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3938 BTRFS_BLOCK_GROUP_RAID10))
3939 factor = 2;
3940 else
3941 factor = 1;
3942
3943 found = __find_space_info(info, flags);
3944 if (found) {
3945 spin_lock(&found->lock);
3946 found->total_bytes += total_bytes;
3947 found->disk_total += total_bytes * factor;
3948 found->bytes_used += bytes_used;
3949 found->disk_used += bytes_used * factor;
3950 found->bytes_readonly += bytes_readonly;
3951 if (total_bytes > 0)
3952 found->full = 0;
3953 space_info_add_new_bytes(info, found, total_bytes -
3954 bytes_used - bytes_readonly);
3955 spin_unlock(&found->lock);
3956 *space_info = found;
3957 return 0;
3958 }
3959 found = kzalloc(sizeof(*found), GFP_NOFS);
3960 if (!found)
3961 return -ENOMEM;
3962
3963 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3964 if (ret) {
3965 kfree(found);
3966 return ret;
3967 }
3968
3969 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3970 INIT_LIST_HEAD(&found->block_groups[i]);
3971 init_rwsem(&found->groups_sem);
3972 spin_lock_init(&found->lock);
3973 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3974 found->total_bytes = total_bytes;
3975 found->disk_total = total_bytes * factor;
3976 found->bytes_used = bytes_used;
3977 found->disk_used = bytes_used * factor;
3978 found->bytes_pinned = 0;
3979 found->bytes_reserved = 0;
3980 found->bytes_readonly = bytes_readonly;
3981 found->bytes_may_use = 0;
3982 found->full = 0;
3983 found->max_extent_size = 0;
3984 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3985 found->chunk_alloc = 0;
3986 found->flush = 0;
3987 init_waitqueue_head(&found->wait);
3988 INIT_LIST_HEAD(&found->ro_bgs);
3989 INIT_LIST_HEAD(&found->tickets);
3990 INIT_LIST_HEAD(&found->priority_tickets);
3991
3992 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3993 info->space_info_kobj, "%s",
3994 alloc_name(found->flags));
3995 if (ret) {
3996 percpu_counter_destroy(&found->total_bytes_pinned);
3997 kfree(found);
3998 return ret;
3999 }
4000
4001 *space_info = found;
4002 list_add_rcu(&found->list, &info->space_info);
4003 if (flags & BTRFS_BLOCK_GROUP_DATA)
4004 info->data_sinfo = found;
4005
4006 return ret;
4007 }
4008
4009 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4010 {
4011 u64 extra_flags = chunk_to_extended(flags) &
4012 BTRFS_EXTENDED_PROFILE_MASK;
4013
4014 write_seqlock(&fs_info->profiles_lock);
4015 if (flags & BTRFS_BLOCK_GROUP_DATA)
4016 fs_info->avail_data_alloc_bits |= extra_flags;
4017 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4018 fs_info->avail_metadata_alloc_bits |= extra_flags;
4019 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4020 fs_info->avail_system_alloc_bits |= extra_flags;
4021 write_sequnlock(&fs_info->profiles_lock);
4022 }
4023
4024 /*
4025 * returns target flags in extended format or 0 if restripe for this
4026 * chunk_type is not in progress
4027 *
4028 * should be called with either volume_mutex or balance_lock held
4029 */
4030 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4031 {
4032 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4033 u64 target = 0;
4034
4035 if (!bctl)
4036 return 0;
4037
4038 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4039 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4040 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4041 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4042 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4043 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4044 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4045 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4046 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4047 }
4048
4049 return target;
4050 }
4051
4052 /*
4053 * @flags: available profiles in extended format (see ctree.h)
4054 *
4055 * Returns reduced profile in chunk format. If profile changing is in
4056 * progress (either running or paused) picks the target profile (if it's
4057 * already available), otherwise falls back to plain reducing.
4058 */
4059 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4060 {
4061 u64 num_devices = fs_info->fs_devices->rw_devices;
4062 u64 target;
4063 u64 raid_type;
4064 u64 allowed = 0;
4065
4066 /*
4067 * see if restripe for this chunk_type is in progress, if so
4068 * try to reduce to the target profile
4069 */
4070 spin_lock(&fs_info->balance_lock);
4071 target = get_restripe_target(fs_info, flags);
4072 if (target) {
4073 /* pick target profile only if it's already available */
4074 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4075 spin_unlock(&fs_info->balance_lock);
4076 return extended_to_chunk(target);
4077 }
4078 }
4079 spin_unlock(&fs_info->balance_lock);
4080
4081 /* First, mask out the RAID levels which aren't possible */
4082 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4083 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4084 allowed |= btrfs_raid_group[raid_type];
4085 }
4086 allowed &= flags;
4087
4088 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4089 allowed = BTRFS_BLOCK_GROUP_RAID6;
4090 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4091 allowed = BTRFS_BLOCK_GROUP_RAID5;
4092 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4093 allowed = BTRFS_BLOCK_GROUP_RAID10;
4094 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4095 allowed = BTRFS_BLOCK_GROUP_RAID1;
4096 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4097 allowed = BTRFS_BLOCK_GROUP_RAID0;
4098
4099 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4100
4101 return extended_to_chunk(flags | allowed);
4102 }
4103
4104 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4105 {
4106 unsigned seq;
4107 u64 flags;
4108
4109 do {
4110 flags = orig_flags;
4111 seq = read_seqbegin(&fs_info->profiles_lock);
4112
4113 if (flags & BTRFS_BLOCK_GROUP_DATA)
4114 flags |= fs_info->avail_data_alloc_bits;
4115 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4116 flags |= fs_info->avail_system_alloc_bits;
4117 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4118 flags |= fs_info->avail_metadata_alloc_bits;
4119 } while (read_seqretry(&fs_info->profiles_lock, seq));
4120
4121 return btrfs_reduce_alloc_profile(fs_info, flags);
4122 }
4123
4124 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4125 {
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 u64 flags;
4128 u64 ret;
4129
4130 if (data)
4131 flags = BTRFS_BLOCK_GROUP_DATA;
4132 else if (root == fs_info->chunk_root)
4133 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4134 else
4135 flags = BTRFS_BLOCK_GROUP_METADATA;
4136
4137 ret = get_alloc_profile(fs_info, flags);
4138 return ret;
4139 }
4140
4141 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4142 bool may_use_included)
4143 {
4144 ASSERT(s_info);
4145 return s_info->bytes_used + s_info->bytes_reserved +
4146 s_info->bytes_pinned + s_info->bytes_readonly +
4147 (may_use_included ? s_info->bytes_may_use : 0);
4148 }
4149
4150 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4151 {
4152 struct btrfs_space_info *data_sinfo;
4153 struct btrfs_root *root = inode->root;
4154 struct btrfs_fs_info *fs_info = root->fs_info;
4155 u64 used;
4156 int ret = 0;
4157 int need_commit = 2;
4158 int have_pinned_space;
4159
4160 /* make sure bytes are sectorsize aligned */
4161 bytes = ALIGN(bytes, fs_info->sectorsize);
4162
4163 if (btrfs_is_free_space_inode(inode)) {
4164 need_commit = 0;
4165 ASSERT(current->journal_info);
4166 }
4167
4168 data_sinfo = fs_info->data_sinfo;
4169 if (!data_sinfo)
4170 goto alloc;
4171
4172 again:
4173 /* make sure we have enough space to handle the data first */
4174 spin_lock(&data_sinfo->lock);
4175 used = btrfs_space_info_used(data_sinfo, true);
4176
4177 if (used + bytes > data_sinfo->total_bytes) {
4178 struct btrfs_trans_handle *trans;
4179
4180 /*
4181 * if we don't have enough free bytes in this space then we need
4182 * to alloc a new chunk.
4183 */
4184 if (!data_sinfo->full) {
4185 u64 alloc_target;
4186
4187 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4188 spin_unlock(&data_sinfo->lock);
4189 alloc:
4190 alloc_target = btrfs_get_alloc_profile(root, 1);
4191 /*
4192 * It is ugly that we don't call nolock join
4193 * transaction for the free space inode case here.
4194 * But it is safe because we only do the data space
4195 * reservation for the free space cache in the
4196 * transaction context, the common join transaction
4197 * just increase the counter of the current transaction
4198 * handler, doesn't try to acquire the trans_lock of
4199 * the fs.
4200 */
4201 trans = btrfs_join_transaction(root);
4202 if (IS_ERR(trans))
4203 return PTR_ERR(trans);
4204
4205 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4206 CHUNK_ALLOC_NO_FORCE);
4207 btrfs_end_transaction(trans);
4208 if (ret < 0) {
4209 if (ret != -ENOSPC)
4210 return ret;
4211 else {
4212 have_pinned_space = 1;
4213 goto commit_trans;
4214 }
4215 }
4216
4217 if (!data_sinfo)
4218 data_sinfo = fs_info->data_sinfo;
4219
4220 goto again;
4221 }
4222
4223 /*
4224 * If we don't have enough pinned space to deal with this
4225 * allocation, and no removed chunk in current transaction,
4226 * don't bother committing the transaction.
4227 */
4228 have_pinned_space = percpu_counter_compare(
4229 &data_sinfo->total_bytes_pinned,
4230 used + bytes - data_sinfo->total_bytes);
4231 spin_unlock(&data_sinfo->lock);
4232
4233 /* commit the current transaction and try again */
4234 commit_trans:
4235 if (need_commit &&
4236 !atomic_read(&fs_info->open_ioctl_trans)) {
4237 need_commit--;
4238
4239 if (need_commit > 0) {
4240 btrfs_start_delalloc_roots(fs_info, 0, -1);
4241 btrfs_wait_ordered_roots(fs_info, -1, 0,
4242 (u64)-1);
4243 }
4244
4245 trans = btrfs_join_transaction(root);
4246 if (IS_ERR(trans))
4247 return PTR_ERR(trans);
4248 if (have_pinned_space >= 0 ||
4249 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4250 &trans->transaction->flags) ||
4251 need_commit > 0) {
4252 ret = btrfs_commit_transaction(trans);
4253 if (ret)
4254 return ret;
4255 /*
4256 * The cleaner kthread might still be doing iput
4257 * operations. Wait for it to finish so that
4258 * more space is released.
4259 */
4260 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4261 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4262 goto again;
4263 } else {
4264 btrfs_end_transaction(trans);
4265 }
4266 }
4267
4268 trace_btrfs_space_reservation(fs_info,
4269 "space_info:enospc",
4270 data_sinfo->flags, bytes, 1);
4271 return -ENOSPC;
4272 }
4273 data_sinfo->bytes_may_use += bytes;
4274 trace_btrfs_space_reservation(fs_info, "space_info",
4275 data_sinfo->flags, bytes, 1);
4276 spin_unlock(&data_sinfo->lock);
4277
4278 return ret;
4279 }
4280
4281 /*
4282 * New check_data_free_space() with ability for precious data reservation
4283 * Will replace old btrfs_check_data_free_space(), but for patch split,
4284 * add a new function first and then replace it.
4285 */
4286 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4287 {
4288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4289 int ret;
4290
4291 /* align the range */
4292 len = round_up(start + len, fs_info->sectorsize) -
4293 round_down(start, fs_info->sectorsize);
4294 start = round_down(start, fs_info->sectorsize);
4295
4296 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4297 if (ret < 0)
4298 return ret;
4299
4300 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4301 ret = btrfs_qgroup_reserve_data(inode, start, len);
4302 if (ret)
4303 btrfs_free_reserved_data_space_noquota(inode, start, len);
4304 return ret;
4305 }
4306
4307 /*
4308 * Called if we need to clear a data reservation for this inode
4309 * Normally in a error case.
4310 *
4311 * This one will *NOT* use accurate qgroup reserved space API, just for case
4312 * which we can't sleep and is sure it won't affect qgroup reserved space.
4313 * Like clear_bit_hook().
4314 */
4315 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4316 u64 len)
4317 {
4318 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4319 struct btrfs_space_info *data_sinfo;
4320
4321 /* Make sure the range is aligned to sectorsize */
4322 len = round_up(start + len, fs_info->sectorsize) -
4323 round_down(start, fs_info->sectorsize);
4324 start = round_down(start, fs_info->sectorsize);
4325
4326 data_sinfo = fs_info->data_sinfo;
4327 spin_lock(&data_sinfo->lock);
4328 if (WARN_ON(data_sinfo->bytes_may_use < len))
4329 data_sinfo->bytes_may_use = 0;
4330 else
4331 data_sinfo->bytes_may_use -= len;
4332 trace_btrfs_space_reservation(fs_info, "space_info",
4333 data_sinfo->flags, len, 0);
4334 spin_unlock(&data_sinfo->lock);
4335 }
4336
4337 /*
4338 * Called if we need to clear a data reservation for this inode
4339 * Normally in a error case.
4340 *
4341 * This one will handle the per-inode data rsv map for accurate reserved
4342 * space framework.
4343 */
4344 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4345 {
4346 struct btrfs_root *root = BTRFS_I(inode)->root;
4347
4348 /* Make sure the range is aligned to sectorsize */
4349 len = round_up(start + len, root->fs_info->sectorsize) -
4350 round_down(start, root->fs_info->sectorsize);
4351 start = round_down(start, root->fs_info->sectorsize);
4352
4353 btrfs_free_reserved_data_space_noquota(inode, start, len);
4354 btrfs_qgroup_free_data(inode, start, len);
4355 }
4356
4357 static void force_metadata_allocation(struct btrfs_fs_info *info)
4358 {
4359 struct list_head *head = &info->space_info;
4360 struct btrfs_space_info *found;
4361
4362 rcu_read_lock();
4363 list_for_each_entry_rcu(found, head, list) {
4364 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4365 found->force_alloc = CHUNK_ALLOC_FORCE;
4366 }
4367 rcu_read_unlock();
4368 }
4369
4370 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4371 {
4372 return (global->size << 1);
4373 }
4374
4375 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4376 struct btrfs_space_info *sinfo, int force)
4377 {
4378 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4379 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4380 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4381 u64 thresh;
4382
4383 if (force == CHUNK_ALLOC_FORCE)
4384 return 1;
4385
4386 /*
4387 * We need to take into account the global rsv because for all intents
4388 * and purposes it's used space. Don't worry about locking the
4389 * global_rsv, it doesn't change except when the transaction commits.
4390 */
4391 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4392 num_allocated += calc_global_rsv_need_space(global_rsv);
4393
4394 /*
4395 * in limited mode, we want to have some free space up to
4396 * about 1% of the FS size.
4397 */
4398 if (force == CHUNK_ALLOC_LIMITED) {
4399 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4400 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4401
4402 if (num_bytes - num_allocated < thresh)
4403 return 1;
4404 }
4405
4406 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4407 return 0;
4408 return 1;
4409 }
4410
4411 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4412 {
4413 u64 num_dev;
4414
4415 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4416 BTRFS_BLOCK_GROUP_RAID0 |
4417 BTRFS_BLOCK_GROUP_RAID5 |
4418 BTRFS_BLOCK_GROUP_RAID6))
4419 num_dev = fs_info->fs_devices->rw_devices;
4420 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4421 num_dev = 2;
4422 else
4423 num_dev = 1; /* DUP or single */
4424
4425 return num_dev;
4426 }
4427
4428 /*
4429 * If @is_allocation is true, reserve space in the system space info necessary
4430 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4431 * removing a chunk.
4432 */
4433 void check_system_chunk(struct btrfs_trans_handle *trans,
4434 struct btrfs_fs_info *fs_info, u64 type)
4435 {
4436 struct btrfs_space_info *info;
4437 u64 left;
4438 u64 thresh;
4439 int ret = 0;
4440 u64 num_devs;
4441
4442 /*
4443 * Needed because we can end up allocating a system chunk and for an
4444 * atomic and race free space reservation in the chunk block reserve.
4445 */
4446 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4447
4448 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4449 spin_lock(&info->lock);
4450 left = info->total_bytes - btrfs_space_info_used(info, true);
4451 spin_unlock(&info->lock);
4452
4453 num_devs = get_profile_num_devs(fs_info, type);
4454
4455 /* num_devs device items to update and 1 chunk item to add or remove */
4456 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4457 btrfs_calc_trans_metadata_size(fs_info, 1);
4458
4459 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4460 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4461 left, thresh, type);
4462 dump_space_info(fs_info, info, 0, 0);
4463 }
4464
4465 if (left < thresh) {
4466 u64 flags;
4467
4468 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4469 /*
4470 * Ignore failure to create system chunk. We might end up not
4471 * needing it, as we might not need to COW all nodes/leafs from
4472 * the paths we visit in the chunk tree (they were already COWed
4473 * or created in the current transaction for example).
4474 */
4475 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4476 }
4477
4478 if (!ret) {
4479 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4480 &fs_info->chunk_block_rsv,
4481 thresh, BTRFS_RESERVE_NO_FLUSH);
4482 if (!ret)
4483 trans->chunk_bytes_reserved += thresh;
4484 }
4485 }
4486
4487 /*
4488 * If force is CHUNK_ALLOC_FORCE:
4489 * - return 1 if it successfully allocates a chunk,
4490 * - return errors including -ENOSPC otherwise.
4491 * If force is NOT CHUNK_ALLOC_FORCE:
4492 * - return 0 if it doesn't need to allocate a new chunk,
4493 * - return 1 if it successfully allocates a chunk,
4494 * - return errors including -ENOSPC otherwise.
4495 */
4496 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4497 struct btrfs_fs_info *fs_info, u64 flags, int force)
4498 {
4499 struct btrfs_space_info *space_info;
4500 int wait_for_alloc = 0;
4501 int ret = 0;
4502
4503 /* Don't re-enter if we're already allocating a chunk */
4504 if (trans->allocating_chunk)
4505 return -ENOSPC;
4506
4507 space_info = __find_space_info(fs_info, flags);
4508 if (!space_info) {
4509 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4510 BUG_ON(ret); /* -ENOMEM */
4511 }
4512 BUG_ON(!space_info); /* Logic error */
4513
4514 again:
4515 spin_lock(&space_info->lock);
4516 if (force < space_info->force_alloc)
4517 force = space_info->force_alloc;
4518 if (space_info->full) {
4519 if (should_alloc_chunk(fs_info, space_info, force))
4520 ret = -ENOSPC;
4521 else
4522 ret = 0;
4523 spin_unlock(&space_info->lock);
4524 return ret;
4525 }
4526
4527 if (!should_alloc_chunk(fs_info, space_info, force)) {
4528 spin_unlock(&space_info->lock);
4529 return 0;
4530 } else if (space_info->chunk_alloc) {
4531 wait_for_alloc = 1;
4532 } else {
4533 space_info->chunk_alloc = 1;
4534 }
4535
4536 spin_unlock(&space_info->lock);
4537
4538 mutex_lock(&fs_info->chunk_mutex);
4539
4540 /*
4541 * The chunk_mutex is held throughout the entirety of a chunk
4542 * allocation, so once we've acquired the chunk_mutex we know that the
4543 * other guy is done and we need to recheck and see if we should
4544 * allocate.
4545 */
4546 if (wait_for_alloc) {
4547 mutex_unlock(&fs_info->chunk_mutex);
4548 wait_for_alloc = 0;
4549 goto again;
4550 }
4551
4552 trans->allocating_chunk = true;
4553
4554 /*
4555 * If we have mixed data/metadata chunks we want to make sure we keep
4556 * allocating mixed chunks instead of individual chunks.
4557 */
4558 if (btrfs_mixed_space_info(space_info))
4559 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4560
4561 /*
4562 * if we're doing a data chunk, go ahead and make sure that
4563 * we keep a reasonable number of metadata chunks allocated in the
4564 * FS as well.
4565 */
4566 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4567 fs_info->data_chunk_allocations++;
4568 if (!(fs_info->data_chunk_allocations %
4569 fs_info->metadata_ratio))
4570 force_metadata_allocation(fs_info);
4571 }
4572
4573 /*
4574 * Check if we have enough space in SYSTEM chunk because we may need
4575 * to update devices.
4576 */
4577 check_system_chunk(trans, fs_info, flags);
4578
4579 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4580 trans->allocating_chunk = false;
4581
4582 spin_lock(&space_info->lock);
4583 if (ret < 0 && ret != -ENOSPC)
4584 goto out;
4585 if (ret)
4586 space_info->full = 1;
4587 else
4588 ret = 1;
4589
4590 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4591 out:
4592 space_info->chunk_alloc = 0;
4593 spin_unlock(&space_info->lock);
4594 mutex_unlock(&fs_info->chunk_mutex);
4595 /*
4596 * When we allocate a new chunk we reserve space in the chunk block
4597 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4598 * add new nodes/leafs to it if we end up needing to do it when
4599 * inserting the chunk item and updating device items as part of the
4600 * second phase of chunk allocation, performed by
4601 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4602 * large number of new block groups to create in our transaction
4603 * handle's new_bgs list to avoid exhausting the chunk block reserve
4604 * in extreme cases - like having a single transaction create many new
4605 * block groups when starting to write out the free space caches of all
4606 * the block groups that were made dirty during the lifetime of the
4607 * transaction.
4608 */
4609 if (trans->can_flush_pending_bgs &&
4610 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4611 btrfs_create_pending_block_groups(trans, fs_info);
4612 btrfs_trans_release_chunk_metadata(trans);
4613 }
4614 return ret;
4615 }
4616
4617 static int can_overcommit(struct btrfs_root *root,
4618 struct btrfs_space_info *space_info, u64 bytes,
4619 enum btrfs_reserve_flush_enum flush)
4620 {
4621 struct btrfs_fs_info *fs_info = root->fs_info;
4622 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4623 u64 profile;
4624 u64 space_size;
4625 u64 avail;
4626 u64 used;
4627
4628 /* Don't overcommit when in mixed mode. */
4629 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4630 return 0;
4631
4632 profile = btrfs_get_alloc_profile(root, 0);
4633 used = btrfs_space_info_used(space_info, false);
4634
4635 /*
4636 * We only want to allow over committing if we have lots of actual space
4637 * free, but if we don't have enough space to handle the global reserve
4638 * space then we could end up having a real enospc problem when trying
4639 * to allocate a chunk or some other such important allocation.
4640 */
4641 spin_lock(&global_rsv->lock);
4642 space_size = calc_global_rsv_need_space(global_rsv);
4643 spin_unlock(&global_rsv->lock);
4644 if (used + space_size >= space_info->total_bytes)
4645 return 0;
4646
4647 used += space_info->bytes_may_use;
4648
4649 spin_lock(&fs_info->free_chunk_lock);
4650 avail = fs_info->free_chunk_space;
4651 spin_unlock(&fs_info->free_chunk_lock);
4652
4653 /*
4654 * If we have dup, raid1 or raid10 then only half of the free
4655 * space is actually useable. For raid56, the space info used
4656 * doesn't include the parity drive, so we don't have to
4657 * change the math
4658 */
4659 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4660 BTRFS_BLOCK_GROUP_RAID1 |
4661 BTRFS_BLOCK_GROUP_RAID10))
4662 avail >>= 1;
4663
4664 /*
4665 * If we aren't flushing all things, let us overcommit up to
4666 * 1/2th of the space. If we can flush, don't let us overcommit
4667 * too much, let it overcommit up to 1/8 of the space.
4668 */
4669 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4670 avail >>= 3;
4671 else
4672 avail >>= 1;
4673
4674 if (used + bytes < space_info->total_bytes + avail)
4675 return 1;
4676 return 0;
4677 }
4678
4679 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4680 unsigned long nr_pages, int nr_items)
4681 {
4682 struct super_block *sb = fs_info->sb;
4683
4684 if (down_read_trylock(&sb->s_umount)) {
4685 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4686 up_read(&sb->s_umount);
4687 } else {
4688 /*
4689 * We needn't worry the filesystem going from r/w to r/o though
4690 * we don't acquire ->s_umount mutex, because the filesystem
4691 * should guarantee the delalloc inodes list be empty after
4692 * the filesystem is readonly(all dirty pages are written to
4693 * the disk).
4694 */
4695 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4696 if (!current->journal_info)
4697 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4698 }
4699 }
4700
4701 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4702 u64 to_reclaim)
4703 {
4704 u64 bytes;
4705 int nr;
4706
4707 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4708 nr = (int)div64_u64(to_reclaim, bytes);
4709 if (!nr)
4710 nr = 1;
4711 return nr;
4712 }
4713
4714 #define EXTENT_SIZE_PER_ITEM SZ_256K
4715
4716 /*
4717 * shrink metadata reservation for delalloc
4718 */
4719 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4720 bool wait_ordered)
4721 {
4722 struct btrfs_fs_info *fs_info = root->fs_info;
4723 struct btrfs_block_rsv *block_rsv;
4724 struct btrfs_space_info *space_info;
4725 struct btrfs_trans_handle *trans;
4726 u64 delalloc_bytes;
4727 u64 max_reclaim;
4728 long time_left;
4729 unsigned long nr_pages;
4730 int loops;
4731 int items;
4732 enum btrfs_reserve_flush_enum flush;
4733
4734 /* Calc the number of the pages we need flush for space reservation */
4735 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4736 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4737
4738 trans = (struct btrfs_trans_handle *)current->journal_info;
4739 block_rsv = &fs_info->delalloc_block_rsv;
4740 space_info = block_rsv->space_info;
4741
4742 delalloc_bytes = percpu_counter_sum_positive(
4743 &fs_info->delalloc_bytes);
4744 if (delalloc_bytes == 0) {
4745 if (trans)
4746 return;
4747 if (wait_ordered)
4748 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4749 return;
4750 }
4751
4752 loops = 0;
4753 while (delalloc_bytes && loops < 3) {
4754 max_reclaim = min(delalloc_bytes, to_reclaim);
4755 nr_pages = max_reclaim >> PAGE_SHIFT;
4756 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4757 /*
4758 * We need to wait for the async pages to actually start before
4759 * we do anything.
4760 */
4761 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4762 if (!max_reclaim)
4763 goto skip_async;
4764
4765 if (max_reclaim <= nr_pages)
4766 max_reclaim = 0;
4767 else
4768 max_reclaim -= nr_pages;
4769
4770 wait_event(fs_info->async_submit_wait,
4771 atomic_read(&fs_info->async_delalloc_pages) <=
4772 (int)max_reclaim);
4773 skip_async:
4774 if (!trans)
4775 flush = BTRFS_RESERVE_FLUSH_ALL;
4776 else
4777 flush = BTRFS_RESERVE_NO_FLUSH;
4778 spin_lock(&space_info->lock);
4779 if (can_overcommit(root, space_info, orig, flush)) {
4780 spin_unlock(&space_info->lock);
4781 break;
4782 }
4783 if (list_empty(&space_info->tickets) &&
4784 list_empty(&space_info->priority_tickets)) {
4785 spin_unlock(&space_info->lock);
4786 break;
4787 }
4788 spin_unlock(&space_info->lock);
4789
4790 loops++;
4791 if (wait_ordered && !trans) {
4792 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4793 } else {
4794 time_left = schedule_timeout_killable(1);
4795 if (time_left)
4796 break;
4797 }
4798 delalloc_bytes = percpu_counter_sum_positive(
4799 &fs_info->delalloc_bytes);
4800 }
4801 }
4802
4803 /**
4804 * maybe_commit_transaction - possibly commit the transaction if its ok to
4805 * @root - the root we're allocating for
4806 * @bytes - the number of bytes we want to reserve
4807 * @force - force the commit
4808 *
4809 * This will check to make sure that committing the transaction will actually
4810 * get us somewhere and then commit the transaction if it does. Otherwise it
4811 * will return -ENOSPC.
4812 */
4813 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4814 struct btrfs_space_info *space_info,
4815 u64 bytes, int force)
4816 {
4817 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4818 struct btrfs_trans_handle *trans;
4819
4820 trans = (struct btrfs_trans_handle *)current->journal_info;
4821 if (trans)
4822 return -EAGAIN;
4823
4824 if (force)
4825 goto commit;
4826
4827 /* See if there is enough pinned space to make this reservation */
4828 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4829 bytes) >= 0)
4830 goto commit;
4831
4832 /*
4833 * See if there is some space in the delayed insertion reservation for
4834 * this reservation.
4835 */
4836 if (space_info != delayed_rsv->space_info)
4837 return -ENOSPC;
4838
4839 spin_lock(&delayed_rsv->lock);
4840 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4841 bytes - delayed_rsv->size) >= 0) {
4842 spin_unlock(&delayed_rsv->lock);
4843 return -ENOSPC;
4844 }
4845 spin_unlock(&delayed_rsv->lock);
4846
4847 commit:
4848 trans = btrfs_join_transaction(fs_info->extent_root);
4849 if (IS_ERR(trans))
4850 return -ENOSPC;
4851
4852 return btrfs_commit_transaction(trans);
4853 }
4854
4855 struct reserve_ticket {
4856 u64 bytes;
4857 int error;
4858 struct list_head list;
4859 wait_queue_head_t wait;
4860 };
4861
4862 static int flush_space(struct btrfs_fs_info *fs_info,
4863 struct btrfs_space_info *space_info, u64 num_bytes,
4864 u64 orig_bytes, int state)
4865 {
4866 struct btrfs_root *root = fs_info->extent_root;
4867 struct btrfs_trans_handle *trans;
4868 int nr;
4869 int ret = 0;
4870
4871 switch (state) {
4872 case FLUSH_DELAYED_ITEMS_NR:
4873 case FLUSH_DELAYED_ITEMS:
4874 if (state == FLUSH_DELAYED_ITEMS_NR)
4875 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4876 else
4877 nr = -1;
4878
4879 trans = btrfs_join_transaction(root);
4880 if (IS_ERR(trans)) {
4881 ret = PTR_ERR(trans);
4882 break;
4883 }
4884 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4885 btrfs_end_transaction(trans);
4886 break;
4887 case FLUSH_DELALLOC:
4888 case FLUSH_DELALLOC_WAIT:
4889 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4890 state == FLUSH_DELALLOC_WAIT);
4891 break;
4892 case ALLOC_CHUNK:
4893 trans = btrfs_join_transaction(root);
4894 if (IS_ERR(trans)) {
4895 ret = PTR_ERR(trans);
4896 break;
4897 }
4898 ret = do_chunk_alloc(trans, fs_info,
4899 btrfs_get_alloc_profile(root, 0),
4900 CHUNK_ALLOC_NO_FORCE);
4901 btrfs_end_transaction(trans);
4902 if (ret > 0 || ret == -ENOSPC)
4903 ret = 0;
4904 break;
4905 case COMMIT_TRANS:
4906 ret = may_commit_transaction(fs_info, space_info,
4907 orig_bytes, 0);
4908 break;
4909 default:
4910 ret = -ENOSPC;
4911 break;
4912 }
4913
4914 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4915 orig_bytes, state, ret);
4916 return ret;
4917 }
4918
4919 static inline u64
4920 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4921 struct btrfs_space_info *space_info)
4922 {
4923 struct reserve_ticket *ticket;
4924 u64 used;
4925 u64 expected;
4926 u64 to_reclaim = 0;
4927
4928 list_for_each_entry(ticket, &space_info->tickets, list)
4929 to_reclaim += ticket->bytes;
4930 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4931 to_reclaim += ticket->bytes;
4932 if (to_reclaim)
4933 return to_reclaim;
4934
4935 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4936 if (can_overcommit(root, space_info, to_reclaim,
4937 BTRFS_RESERVE_FLUSH_ALL))
4938 return 0;
4939
4940 used = space_info->bytes_used + space_info->bytes_reserved +
4941 space_info->bytes_pinned + space_info->bytes_readonly +
4942 space_info->bytes_may_use;
4943 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4944 expected = div_factor_fine(space_info->total_bytes, 95);
4945 else
4946 expected = div_factor_fine(space_info->total_bytes, 90);
4947
4948 if (used > expected)
4949 to_reclaim = used - expected;
4950 else
4951 to_reclaim = 0;
4952 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4953 space_info->bytes_reserved);
4954 return to_reclaim;
4955 }
4956
4957 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4958 struct btrfs_root *root, u64 used)
4959 {
4960 struct btrfs_fs_info *fs_info = root->fs_info;
4961 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4962
4963 /* If we're just plain full then async reclaim just slows us down. */
4964 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4965 return 0;
4966
4967 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4968 return 0;
4969
4970 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4971 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4972 }
4973
4974 static void wake_all_tickets(struct list_head *head)
4975 {
4976 struct reserve_ticket *ticket;
4977
4978 while (!list_empty(head)) {
4979 ticket = list_first_entry(head, struct reserve_ticket, list);
4980 list_del_init(&ticket->list);
4981 ticket->error = -ENOSPC;
4982 wake_up(&ticket->wait);
4983 }
4984 }
4985
4986 /*
4987 * This is for normal flushers, we can wait all goddamned day if we want to. We
4988 * will loop and continuously try to flush as long as we are making progress.
4989 * We count progress as clearing off tickets each time we have to loop.
4990 */
4991 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4992 {
4993 struct btrfs_fs_info *fs_info;
4994 struct btrfs_space_info *space_info;
4995 u64 to_reclaim;
4996 int flush_state;
4997 int commit_cycles = 0;
4998 u64 last_tickets_id;
4999
5000 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5001 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5002
5003 spin_lock(&space_info->lock);
5004 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5005 space_info);
5006 if (!to_reclaim) {
5007 space_info->flush = 0;
5008 spin_unlock(&space_info->lock);
5009 return;
5010 }
5011 last_tickets_id = space_info->tickets_id;
5012 spin_unlock(&space_info->lock);
5013
5014 flush_state = FLUSH_DELAYED_ITEMS_NR;
5015 do {
5016 struct reserve_ticket *ticket;
5017 int ret;
5018
5019 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5020 flush_state);
5021 spin_lock(&space_info->lock);
5022 if (list_empty(&space_info->tickets)) {
5023 space_info->flush = 0;
5024 spin_unlock(&space_info->lock);
5025 return;
5026 }
5027 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5028 space_info);
5029 ticket = list_first_entry(&space_info->tickets,
5030 struct reserve_ticket, list);
5031 if (last_tickets_id == space_info->tickets_id) {
5032 flush_state++;
5033 } else {
5034 last_tickets_id = space_info->tickets_id;
5035 flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 if (commit_cycles)
5037 commit_cycles--;
5038 }
5039
5040 if (flush_state > COMMIT_TRANS) {
5041 commit_cycles++;
5042 if (commit_cycles > 2) {
5043 wake_all_tickets(&space_info->tickets);
5044 space_info->flush = 0;
5045 } else {
5046 flush_state = FLUSH_DELAYED_ITEMS_NR;
5047 }
5048 }
5049 spin_unlock(&space_info->lock);
5050 } while (flush_state <= COMMIT_TRANS);
5051 }
5052
5053 void btrfs_init_async_reclaim_work(struct work_struct *work)
5054 {
5055 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5056 }
5057
5058 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5059 struct btrfs_space_info *space_info,
5060 struct reserve_ticket *ticket)
5061 {
5062 u64 to_reclaim;
5063 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5064
5065 spin_lock(&space_info->lock);
5066 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->extent_root,
5067 space_info);
5068 if (!to_reclaim) {
5069 spin_unlock(&space_info->lock);
5070 return;
5071 }
5072 spin_unlock(&space_info->lock);
5073
5074 do {
5075 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5076 flush_state);
5077 flush_state++;
5078 spin_lock(&space_info->lock);
5079 if (ticket->bytes == 0) {
5080 spin_unlock(&space_info->lock);
5081 return;
5082 }
5083 spin_unlock(&space_info->lock);
5084
5085 /*
5086 * Priority flushers can't wait on delalloc without
5087 * deadlocking.
5088 */
5089 if (flush_state == FLUSH_DELALLOC ||
5090 flush_state == FLUSH_DELALLOC_WAIT)
5091 flush_state = ALLOC_CHUNK;
5092 } while (flush_state < COMMIT_TRANS);
5093 }
5094
5095 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5096 struct btrfs_space_info *space_info,
5097 struct reserve_ticket *ticket, u64 orig_bytes)
5098
5099 {
5100 DEFINE_WAIT(wait);
5101 int ret = 0;
5102
5103 spin_lock(&space_info->lock);
5104 while (ticket->bytes > 0 && ticket->error == 0) {
5105 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5106 if (ret) {
5107 ret = -EINTR;
5108 break;
5109 }
5110 spin_unlock(&space_info->lock);
5111
5112 schedule();
5113
5114 finish_wait(&ticket->wait, &wait);
5115 spin_lock(&space_info->lock);
5116 }
5117 if (!ret)
5118 ret = ticket->error;
5119 if (!list_empty(&ticket->list))
5120 list_del_init(&ticket->list);
5121 if (ticket->bytes && ticket->bytes < orig_bytes) {
5122 u64 num_bytes = orig_bytes - ticket->bytes;
5123 space_info->bytes_may_use -= num_bytes;
5124 trace_btrfs_space_reservation(fs_info, "space_info",
5125 space_info->flags, num_bytes, 0);
5126 }
5127 spin_unlock(&space_info->lock);
5128
5129 return ret;
5130 }
5131
5132 /**
5133 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5134 * @root - the root we're allocating for
5135 * @space_info - the space info we want to allocate from
5136 * @orig_bytes - the number of bytes we want
5137 * @flush - whether or not we can flush to make our reservation
5138 *
5139 * This will reserve orig_bytes number of bytes from the space info associated
5140 * with the block_rsv. If there is not enough space it will make an attempt to
5141 * flush out space to make room. It will do this by flushing delalloc if
5142 * possible or committing the transaction. If flush is 0 then no attempts to
5143 * regain reservations will be made and this will fail if there is not enough
5144 * space already.
5145 */
5146 static int __reserve_metadata_bytes(struct btrfs_root *root,
5147 struct btrfs_space_info *space_info,
5148 u64 orig_bytes,
5149 enum btrfs_reserve_flush_enum flush)
5150 {
5151 struct btrfs_fs_info *fs_info = root->fs_info;
5152 struct reserve_ticket ticket;
5153 u64 used;
5154 int ret = 0;
5155
5156 ASSERT(orig_bytes);
5157 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5158
5159 spin_lock(&space_info->lock);
5160 ret = -ENOSPC;
5161 used = btrfs_space_info_used(space_info, true);
5162
5163 /*
5164 * If we have enough space then hooray, make our reservation and carry
5165 * on. If not see if we can overcommit, and if we can, hooray carry on.
5166 * If not things get more complicated.
5167 */
5168 if (used + orig_bytes <= space_info->total_bytes) {
5169 space_info->bytes_may_use += orig_bytes;
5170 trace_btrfs_space_reservation(fs_info, "space_info",
5171 space_info->flags, orig_bytes, 1);
5172 ret = 0;
5173 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5174 space_info->bytes_may_use += orig_bytes;
5175 trace_btrfs_space_reservation(fs_info, "space_info",
5176 space_info->flags, orig_bytes, 1);
5177 ret = 0;
5178 }
5179
5180 /*
5181 * If we couldn't make a reservation then setup our reservation ticket
5182 * and kick the async worker if it's not already running.
5183 *
5184 * If we are a priority flusher then we just need to add our ticket to
5185 * the list and we will do our own flushing further down.
5186 */
5187 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5188 ticket.bytes = orig_bytes;
5189 ticket.error = 0;
5190 init_waitqueue_head(&ticket.wait);
5191 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5192 list_add_tail(&ticket.list, &space_info->tickets);
5193 if (!space_info->flush) {
5194 space_info->flush = 1;
5195 trace_btrfs_trigger_flush(fs_info,
5196 space_info->flags,
5197 orig_bytes, flush,
5198 "enospc");
5199 queue_work(system_unbound_wq,
5200 &root->fs_info->async_reclaim_work);
5201 }
5202 } else {
5203 list_add_tail(&ticket.list,
5204 &space_info->priority_tickets);
5205 }
5206 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5207 used += orig_bytes;
5208 /*
5209 * We will do the space reservation dance during log replay,
5210 * which means we won't have fs_info->fs_root set, so don't do
5211 * the async reclaim as we will panic.
5212 */
5213 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5214 need_do_async_reclaim(space_info, root, used) &&
5215 !work_busy(&fs_info->async_reclaim_work)) {
5216 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5217 orig_bytes, flush, "preempt");
5218 queue_work(system_unbound_wq,
5219 &fs_info->async_reclaim_work);
5220 }
5221 }
5222 spin_unlock(&space_info->lock);
5223 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5224 return ret;
5225
5226 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5227 return wait_reserve_ticket(fs_info, space_info, &ticket,
5228 orig_bytes);
5229
5230 ret = 0;
5231 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5232 spin_lock(&space_info->lock);
5233 if (ticket.bytes) {
5234 if (ticket.bytes < orig_bytes) {
5235 u64 num_bytes = orig_bytes - ticket.bytes;
5236 space_info->bytes_may_use -= num_bytes;
5237 trace_btrfs_space_reservation(fs_info, "space_info",
5238 space_info->flags,
5239 num_bytes, 0);
5240
5241 }
5242 list_del_init(&ticket.list);
5243 ret = -ENOSPC;
5244 }
5245 spin_unlock(&space_info->lock);
5246 ASSERT(list_empty(&ticket.list));
5247 return ret;
5248 }
5249
5250 /**
5251 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5252 * @root - the root we're allocating for
5253 * @block_rsv - the block_rsv we're allocating for
5254 * @orig_bytes - the number of bytes we want
5255 * @flush - whether or not we can flush to make our reservation
5256 *
5257 * This will reserve orgi_bytes number of bytes from the space info associated
5258 * with the block_rsv. If there is not enough space it will make an attempt to
5259 * flush out space to make room. It will do this by flushing delalloc if
5260 * possible or committing the transaction. If flush is 0 then no attempts to
5261 * regain reservations will be made and this will fail if there is not enough
5262 * space already.
5263 */
5264 static int reserve_metadata_bytes(struct btrfs_root *root,
5265 struct btrfs_block_rsv *block_rsv,
5266 u64 orig_bytes,
5267 enum btrfs_reserve_flush_enum flush)
5268 {
5269 struct btrfs_fs_info *fs_info = root->fs_info;
5270 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5271 int ret;
5272
5273 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5274 flush);
5275 if (ret == -ENOSPC &&
5276 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5277 if (block_rsv != global_rsv &&
5278 !block_rsv_use_bytes(global_rsv, orig_bytes))
5279 ret = 0;
5280 }
5281 if (ret == -ENOSPC)
5282 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5283 block_rsv->space_info->flags,
5284 orig_bytes, 1);
5285 return ret;
5286 }
5287
5288 static struct btrfs_block_rsv *get_block_rsv(
5289 const struct btrfs_trans_handle *trans,
5290 const struct btrfs_root *root)
5291 {
5292 struct btrfs_fs_info *fs_info = root->fs_info;
5293 struct btrfs_block_rsv *block_rsv = NULL;
5294
5295 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5296 (root == fs_info->csum_root && trans->adding_csums) ||
5297 (root == fs_info->uuid_root))
5298 block_rsv = trans->block_rsv;
5299
5300 if (!block_rsv)
5301 block_rsv = root->block_rsv;
5302
5303 if (!block_rsv)
5304 block_rsv = &fs_info->empty_block_rsv;
5305
5306 return block_rsv;
5307 }
5308
5309 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5310 u64 num_bytes)
5311 {
5312 int ret = -ENOSPC;
5313 spin_lock(&block_rsv->lock);
5314 if (block_rsv->reserved >= num_bytes) {
5315 block_rsv->reserved -= num_bytes;
5316 if (block_rsv->reserved < block_rsv->size)
5317 block_rsv->full = 0;
5318 ret = 0;
5319 }
5320 spin_unlock(&block_rsv->lock);
5321 return ret;
5322 }
5323
5324 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5325 u64 num_bytes, int update_size)
5326 {
5327 spin_lock(&block_rsv->lock);
5328 block_rsv->reserved += num_bytes;
5329 if (update_size)
5330 block_rsv->size += num_bytes;
5331 else if (block_rsv->reserved >= block_rsv->size)
5332 block_rsv->full = 1;
5333 spin_unlock(&block_rsv->lock);
5334 }
5335
5336 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5337 struct btrfs_block_rsv *dest, u64 num_bytes,
5338 int min_factor)
5339 {
5340 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5341 u64 min_bytes;
5342
5343 if (global_rsv->space_info != dest->space_info)
5344 return -ENOSPC;
5345
5346 spin_lock(&global_rsv->lock);
5347 min_bytes = div_factor(global_rsv->size, min_factor);
5348 if (global_rsv->reserved < min_bytes + num_bytes) {
5349 spin_unlock(&global_rsv->lock);
5350 return -ENOSPC;
5351 }
5352 global_rsv->reserved -= num_bytes;
5353 if (global_rsv->reserved < global_rsv->size)
5354 global_rsv->full = 0;
5355 spin_unlock(&global_rsv->lock);
5356
5357 block_rsv_add_bytes(dest, num_bytes, 1);
5358 return 0;
5359 }
5360
5361 /*
5362 * This is for space we already have accounted in space_info->bytes_may_use, so
5363 * basically when we're returning space from block_rsv's.
5364 */
5365 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5366 struct btrfs_space_info *space_info,
5367 u64 num_bytes)
5368 {
5369 struct reserve_ticket *ticket;
5370 struct list_head *head;
5371 u64 used;
5372 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5373 bool check_overcommit = false;
5374
5375 spin_lock(&space_info->lock);
5376 head = &space_info->priority_tickets;
5377
5378 /*
5379 * If we are over our limit then we need to check and see if we can
5380 * overcommit, and if we can't then we just need to free up our space
5381 * and not satisfy any requests.
5382 */
5383 used = space_info->bytes_used + space_info->bytes_reserved +
5384 space_info->bytes_pinned + space_info->bytes_readonly +
5385 space_info->bytes_may_use;
5386 if (used - num_bytes >= space_info->total_bytes)
5387 check_overcommit = true;
5388 again:
5389 while (!list_empty(head) && num_bytes) {
5390 ticket = list_first_entry(head, struct reserve_ticket,
5391 list);
5392 /*
5393 * We use 0 bytes because this space is already reserved, so
5394 * adding the ticket space would be a double count.
5395 */
5396 if (check_overcommit &&
5397 !can_overcommit(fs_info->extent_root, space_info, 0,
5398 flush))
5399 break;
5400 if (num_bytes >= ticket->bytes) {
5401 list_del_init(&ticket->list);
5402 num_bytes -= ticket->bytes;
5403 ticket->bytes = 0;
5404 space_info->tickets_id++;
5405 wake_up(&ticket->wait);
5406 } else {
5407 ticket->bytes -= num_bytes;
5408 num_bytes = 0;
5409 }
5410 }
5411
5412 if (num_bytes && head == &space_info->priority_tickets) {
5413 head = &space_info->tickets;
5414 flush = BTRFS_RESERVE_FLUSH_ALL;
5415 goto again;
5416 }
5417 space_info->bytes_may_use -= num_bytes;
5418 trace_btrfs_space_reservation(fs_info, "space_info",
5419 space_info->flags, num_bytes, 0);
5420 spin_unlock(&space_info->lock);
5421 }
5422
5423 /*
5424 * This is for newly allocated space that isn't accounted in
5425 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5426 * we use this helper.
5427 */
5428 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5429 struct btrfs_space_info *space_info,
5430 u64 num_bytes)
5431 {
5432 struct reserve_ticket *ticket;
5433 struct list_head *head = &space_info->priority_tickets;
5434
5435 again:
5436 while (!list_empty(head) && num_bytes) {
5437 ticket = list_first_entry(head, struct reserve_ticket,
5438 list);
5439 if (num_bytes >= ticket->bytes) {
5440 trace_btrfs_space_reservation(fs_info, "space_info",
5441 space_info->flags,
5442 ticket->bytes, 1);
5443 list_del_init(&ticket->list);
5444 num_bytes -= ticket->bytes;
5445 space_info->bytes_may_use += ticket->bytes;
5446 ticket->bytes = 0;
5447 space_info->tickets_id++;
5448 wake_up(&ticket->wait);
5449 } else {
5450 trace_btrfs_space_reservation(fs_info, "space_info",
5451 space_info->flags,
5452 num_bytes, 1);
5453 space_info->bytes_may_use += num_bytes;
5454 ticket->bytes -= num_bytes;
5455 num_bytes = 0;
5456 }
5457 }
5458
5459 if (num_bytes && head == &space_info->priority_tickets) {
5460 head = &space_info->tickets;
5461 goto again;
5462 }
5463 }
5464
5465 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5466 struct btrfs_block_rsv *block_rsv,
5467 struct btrfs_block_rsv *dest, u64 num_bytes)
5468 {
5469 struct btrfs_space_info *space_info = block_rsv->space_info;
5470
5471 spin_lock(&block_rsv->lock);
5472 if (num_bytes == (u64)-1)
5473 num_bytes = block_rsv->size;
5474 block_rsv->size -= num_bytes;
5475 if (block_rsv->reserved >= block_rsv->size) {
5476 num_bytes = block_rsv->reserved - block_rsv->size;
5477 block_rsv->reserved = block_rsv->size;
5478 block_rsv->full = 1;
5479 } else {
5480 num_bytes = 0;
5481 }
5482 spin_unlock(&block_rsv->lock);
5483
5484 if (num_bytes > 0) {
5485 if (dest) {
5486 spin_lock(&dest->lock);
5487 if (!dest->full) {
5488 u64 bytes_to_add;
5489
5490 bytes_to_add = dest->size - dest->reserved;
5491 bytes_to_add = min(num_bytes, bytes_to_add);
5492 dest->reserved += bytes_to_add;
5493 if (dest->reserved >= dest->size)
5494 dest->full = 1;
5495 num_bytes -= bytes_to_add;
5496 }
5497 spin_unlock(&dest->lock);
5498 }
5499 if (num_bytes)
5500 space_info_add_old_bytes(fs_info, space_info,
5501 num_bytes);
5502 }
5503 }
5504
5505 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5506 struct btrfs_block_rsv *dst, u64 num_bytes,
5507 int update_size)
5508 {
5509 int ret;
5510
5511 ret = block_rsv_use_bytes(src, num_bytes);
5512 if (ret)
5513 return ret;
5514
5515 block_rsv_add_bytes(dst, num_bytes, update_size);
5516 return 0;
5517 }
5518
5519 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5520 {
5521 memset(rsv, 0, sizeof(*rsv));
5522 spin_lock_init(&rsv->lock);
5523 rsv->type = type;
5524 }
5525
5526 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5527 unsigned short type)
5528 {
5529 struct btrfs_block_rsv *block_rsv;
5530
5531 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5532 if (!block_rsv)
5533 return NULL;
5534
5535 btrfs_init_block_rsv(block_rsv, type);
5536 block_rsv->space_info = __find_space_info(fs_info,
5537 BTRFS_BLOCK_GROUP_METADATA);
5538 return block_rsv;
5539 }
5540
5541 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5542 struct btrfs_block_rsv *rsv)
5543 {
5544 if (!rsv)
5545 return;
5546 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5547 kfree(rsv);
5548 }
5549
5550 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5551 {
5552 kfree(rsv);
5553 }
5554
5555 int btrfs_block_rsv_add(struct btrfs_root *root,
5556 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5557 enum btrfs_reserve_flush_enum flush)
5558 {
5559 int ret;
5560
5561 if (num_bytes == 0)
5562 return 0;
5563
5564 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5565 if (!ret) {
5566 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5567 return 0;
5568 }
5569
5570 return ret;
5571 }
5572
5573 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5574 {
5575 u64 num_bytes = 0;
5576 int ret = -ENOSPC;
5577
5578 if (!block_rsv)
5579 return 0;
5580
5581 spin_lock(&block_rsv->lock);
5582 num_bytes = div_factor(block_rsv->size, min_factor);
5583 if (block_rsv->reserved >= num_bytes)
5584 ret = 0;
5585 spin_unlock(&block_rsv->lock);
5586
5587 return ret;
5588 }
5589
5590 int btrfs_block_rsv_refill(struct btrfs_root *root,
5591 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5592 enum btrfs_reserve_flush_enum flush)
5593 {
5594 u64 num_bytes = 0;
5595 int ret = -ENOSPC;
5596
5597 if (!block_rsv)
5598 return 0;
5599
5600 spin_lock(&block_rsv->lock);
5601 num_bytes = min_reserved;
5602 if (block_rsv->reserved >= num_bytes)
5603 ret = 0;
5604 else
5605 num_bytes -= block_rsv->reserved;
5606 spin_unlock(&block_rsv->lock);
5607
5608 if (!ret)
5609 return 0;
5610
5611 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5612 if (!ret) {
5613 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5614 return 0;
5615 }
5616
5617 return ret;
5618 }
5619
5620 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5621 struct btrfs_block_rsv *block_rsv,
5622 u64 num_bytes)
5623 {
5624 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5625
5626 if (global_rsv == block_rsv ||
5627 block_rsv->space_info != global_rsv->space_info)
5628 global_rsv = NULL;
5629 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5630 }
5631
5632 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5633 {
5634 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5635 struct btrfs_space_info *sinfo = block_rsv->space_info;
5636 u64 num_bytes;
5637
5638 /*
5639 * The global block rsv is based on the size of the extent tree, the
5640 * checksum tree and the root tree. If the fs is empty we want to set
5641 * it to a minimal amount for safety.
5642 */
5643 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5644 btrfs_root_used(&fs_info->csum_root->root_item) +
5645 btrfs_root_used(&fs_info->tree_root->root_item);
5646 num_bytes = max_t(u64, num_bytes, SZ_16M);
5647
5648 spin_lock(&sinfo->lock);
5649 spin_lock(&block_rsv->lock);
5650
5651 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5652
5653 if (block_rsv->reserved < block_rsv->size) {
5654 num_bytes = btrfs_space_info_used(sinfo, true);
5655 if (sinfo->total_bytes > num_bytes) {
5656 num_bytes = sinfo->total_bytes - num_bytes;
5657 num_bytes = min(num_bytes,
5658 block_rsv->size - block_rsv->reserved);
5659 block_rsv->reserved += num_bytes;
5660 sinfo->bytes_may_use += num_bytes;
5661 trace_btrfs_space_reservation(fs_info, "space_info",
5662 sinfo->flags, num_bytes,
5663 1);
5664 }
5665 } else if (block_rsv->reserved > block_rsv->size) {
5666 num_bytes = block_rsv->reserved - block_rsv->size;
5667 sinfo->bytes_may_use -= num_bytes;
5668 trace_btrfs_space_reservation(fs_info, "space_info",
5669 sinfo->flags, num_bytes, 0);
5670 block_rsv->reserved = block_rsv->size;
5671 }
5672
5673 if (block_rsv->reserved == block_rsv->size)
5674 block_rsv->full = 1;
5675 else
5676 block_rsv->full = 0;
5677
5678 spin_unlock(&block_rsv->lock);
5679 spin_unlock(&sinfo->lock);
5680 }
5681
5682 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5683 {
5684 struct btrfs_space_info *space_info;
5685
5686 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5687 fs_info->chunk_block_rsv.space_info = space_info;
5688
5689 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5690 fs_info->global_block_rsv.space_info = space_info;
5691 fs_info->delalloc_block_rsv.space_info = space_info;
5692 fs_info->trans_block_rsv.space_info = space_info;
5693 fs_info->empty_block_rsv.space_info = space_info;
5694 fs_info->delayed_block_rsv.space_info = space_info;
5695
5696 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5697 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5698 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5699 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5700 if (fs_info->quota_root)
5701 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5702 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5703
5704 update_global_block_rsv(fs_info);
5705 }
5706
5707 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5708 {
5709 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5710 (u64)-1);
5711 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5712 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5713 WARN_ON(fs_info->trans_block_rsv.size > 0);
5714 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5715 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5716 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5717 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5718 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5719 }
5720
5721 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5722 struct btrfs_fs_info *fs_info)
5723 {
5724 if (!trans->block_rsv)
5725 return;
5726
5727 if (!trans->bytes_reserved)
5728 return;
5729
5730 trace_btrfs_space_reservation(fs_info, "transaction",
5731 trans->transid, trans->bytes_reserved, 0);
5732 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5733 trans->bytes_reserved);
5734 trans->bytes_reserved = 0;
5735 }
5736
5737 /*
5738 * To be called after all the new block groups attached to the transaction
5739 * handle have been created (btrfs_create_pending_block_groups()).
5740 */
5741 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5742 {
5743 struct btrfs_fs_info *fs_info = trans->fs_info;
5744
5745 if (!trans->chunk_bytes_reserved)
5746 return;
5747
5748 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5749
5750 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5751 trans->chunk_bytes_reserved);
5752 trans->chunk_bytes_reserved = 0;
5753 }
5754
5755 /* Can only return 0 or -ENOSPC */
5756 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5757 struct btrfs_inode *inode)
5758 {
5759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5760 struct btrfs_root *root = inode->root;
5761 /*
5762 * We always use trans->block_rsv here as we will have reserved space
5763 * for our orphan when starting the transaction, using get_block_rsv()
5764 * here will sometimes make us choose the wrong block rsv as we could be
5765 * doing a reloc inode for a non refcounted root.
5766 */
5767 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5768 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5769
5770 /*
5771 * We need to hold space in order to delete our orphan item once we've
5772 * added it, so this takes the reservation so we can release it later
5773 * when we are truly done with the orphan item.
5774 */
5775 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5776
5777 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5778 num_bytes, 1);
5779 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5780 }
5781
5782 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5783 {
5784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5785 struct btrfs_root *root = inode->root;
5786 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5787
5788 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5789 num_bytes, 0);
5790 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5791 }
5792
5793 /*
5794 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5795 * root: the root of the parent directory
5796 * rsv: block reservation
5797 * items: the number of items that we need do reservation
5798 * qgroup_reserved: used to return the reserved size in qgroup
5799 *
5800 * This function is used to reserve the space for snapshot/subvolume
5801 * creation and deletion. Those operations are different with the
5802 * common file/directory operations, they change two fs/file trees
5803 * and root tree, the number of items that the qgroup reserves is
5804 * different with the free space reservation. So we can not use
5805 * the space reservation mechanism in start_transaction().
5806 */
5807 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5808 struct btrfs_block_rsv *rsv,
5809 int items,
5810 u64 *qgroup_reserved,
5811 bool use_global_rsv)
5812 {
5813 u64 num_bytes;
5814 int ret;
5815 struct btrfs_fs_info *fs_info = root->fs_info;
5816 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5817
5818 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5819 /* One for parent inode, two for dir entries */
5820 num_bytes = 3 * fs_info->nodesize;
5821 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5822 if (ret)
5823 return ret;
5824 } else {
5825 num_bytes = 0;
5826 }
5827
5828 *qgroup_reserved = num_bytes;
5829
5830 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5831 rsv->space_info = __find_space_info(fs_info,
5832 BTRFS_BLOCK_GROUP_METADATA);
5833 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5834 BTRFS_RESERVE_FLUSH_ALL);
5835
5836 if (ret == -ENOSPC && use_global_rsv)
5837 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5838
5839 if (ret && *qgroup_reserved)
5840 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5841
5842 return ret;
5843 }
5844
5845 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5846 struct btrfs_block_rsv *rsv)
5847 {
5848 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5849 }
5850
5851 /**
5852 * drop_outstanding_extent - drop an outstanding extent
5853 * @inode: the inode we're dropping the extent for
5854 * @num_bytes: the number of bytes we're releasing.
5855 *
5856 * This is called when we are freeing up an outstanding extent, either called
5857 * after an error or after an extent is written. This will return the number of
5858 * reserved extents that need to be freed. This must be called with
5859 * BTRFS_I(inode)->lock held.
5860 */
5861 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5862 u64 num_bytes)
5863 {
5864 unsigned drop_inode_space = 0;
5865 unsigned dropped_extents = 0;
5866 unsigned num_extents;
5867
5868 num_extents = count_max_extents(num_bytes);
5869 ASSERT(num_extents);
5870 ASSERT(inode->outstanding_extents >= num_extents);
5871 inode->outstanding_extents -= num_extents;
5872
5873 if (inode->outstanding_extents == 0 &&
5874 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5875 &inode->runtime_flags))
5876 drop_inode_space = 1;
5877
5878 /*
5879 * If we have more or the same amount of outstanding extents than we have
5880 * reserved then we need to leave the reserved extents count alone.
5881 */
5882 if (inode->outstanding_extents >= inode->reserved_extents)
5883 return drop_inode_space;
5884
5885 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5886 inode->reserved_extents -= dropped_extents;
5887 return dropped_extents + drop_inode_space;
5888 }
5889
5890 /**
5891 * calc_csum_metadata_size - return the amount of metadata space that must be
5892 * reserved/freed for the given bytes.
5893 * @inode: the inode we're manipulating
5894 * @num_bytes: the number of bytes in question
5895 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5896 *
5897 * This adjusts the number of csum_bytes in the inode and then returns the
5898 * correct amount of metadata that must either be reserved or freed. We
5899 * calculate how many checksums we can fit into one leaf and then divide the
5900 * number of bytes that will need to be checksumed by this value to figure out
5901 * how many checksums will be required. If we are adding bytes then the number
5902 * may go up and we will return the number of additional bytes that must be
5903 * reserved. If it is going down we will return the number of bytes that must
5904 * be freed.
5905 *
5906 * This must be called with BTRFS_I(inode)->lock held.
5907 */
5908 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5909 int reserve)
5910 {
5911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5912 u64 old_csums, num_csums;
5913
5914 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5915 return 0;
5916
5917 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5918 if (reserve)
5919 inode->csum_bytes += num_bytes;
5920 else
5921 inode->csum_bytes -= num_bytes;
5922 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5923
5924 /* No change, no need to reserve more */
5925 if (old_csums == num_csums)
5926 return 0;
5927
5928 if (reserve)
5929 return btrfs_calc_trans_metadata_size(fs_info,
5930 num_csums - old_csums);
5931
5932 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5933 }
5934
5935 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5936 {
5937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5938 struct btrfs_root *root = inode->root;
5939 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5940 u64 to_reserve = 0;
5941 u64 csum_bytes;
5942 unsigned nr_extents;
5943 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5944 int ret = 0;
5945 bool delalloc_lock = true;
5946 u64 to_free = 0;
5947 unsigned dropped;
5948 bool release_extra = false;
5949
5950 /* If we are a free space inode we need to not flush since we will be in
5951 * the middle of a transaction commit. We also don't need the delalloc
5952 * mutex since we won't race with anybody. We need this mostly to make
5953 * lockdep shut its filthy mouth.
5954 *
5955 * If we have a transaction open (can happen if we call truncate_block
5956 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5957 */
5958 if (btrfs_is_free_space_inode(inode)) {
5959 flush = BTRFS_RESERVE_NO_FLUSH;
5960 delalloc_lock = false;
5961 } else if (current->journal_info) {
5962 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5963 }
5964
5965 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5966 btrfs_transaction_in_commit(fs_info))
5967 schedule_timeout(1);
5968
5969 if (delalloc_lock)
5970 mutex_lock(&inode->delalloc_mutex);
5971
5972 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5973
5974 spin_lock(&inode->lock);
5975 nr_extents = count_max_extents(num_bytes);
5976 inode->outstanding_extents += nr_extents;
5977
5978 nr_extents = 0;
5979 if (inode->outstanding_extents > inode->reserved_extents)
5980 nr_extents += inode->outstanding_extents -
5981 inode->reserved_extents;
5982
5983 /* We always want to reserve a slot for updating the inode. */
5984 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5985 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5986 csum_bytes = inode->csum_bytes;
5987 spin_unlock(&inode->lock);
5988
5989 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5990 ret = btrfs_qgroup_reserve_meta(root,
5991 nr_extents * fs_info->nodesize, true);
5992 if (ret)
5993 goto out_fail;
5994 }
5995
5996 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5997 if (unlikely(ret)) {
5998 btrfs_qgroup_free_meta(root,
5999 nr_extents * fs_info->nodesize);
6000 goto out_fail;
6001 }
6002
6003 spin_lock(&inode->lock);
6004 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6005 &inode->runtime_flags)) {
6006 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6007 release_extra = true;
6008 }
6009 inode->reserved_extents += nr_extents;
6010 spin_unlock(&inode->lock);
6011
6012 if (delalloc_lock)
6013 mutex_unlock(&inode->delalloc_mutex);
6014
6015 if (to_reserve)
6016 trace_btrfs_space_reservation(fs_info, "delalloc",
6017 btrfs_ino(inode), to_reserve, 1);
6018 if (release_extra)
6019 btrfs_block_rsv_release(fs_info, block_rsv,
6020 btrfs_calc_trans_metadata_size(fs_info, 1));
6021 return 0;
6022
6023 out_fail:
6024 spin_lock(&inode->lock);
6025 dropped = drop_outstanding_extent(inode, num_bytes);
6026 /*
6027 * If the inodes csum_bytes is the same as the original
6028 * csum_bytes then we know we haven't raced with any free()ers
6029 * so we can just reduce our inodes csum bytes and carry on.
6030 */
6031 if (inode->csum_bytes == csum_bytes) {
6032 calc_csum_metadata_size(inode, num_bytes, 0);
6033 } else {
6034 u64 orig_csum_bytes = inode->csum_bytes;
6035 u64 bytes;
6036
6037 /*
6038 * This is tricky, but first we need to figure out how much we
6039 * freed from any free-ers that occurred during this
6040 * reservation, so we reset ->csum_bytes to the csum_bytes
6041 * before we dropped our lock, and then call the free for the
6042 * number of bytes that were freed while we were trying our
6043 * reservation.
6044 */
6045 bytes = csum_bytes - inode->csum_bytes;
6046 inode->csum_bytes = csum_bytes;
6047 to_free = calc_csum_metadata_size(inode, bytes, 0);
6048
6049
6050 /*
6051 * Now we need to see how much we would have freed had we not
6052 * been making this reservation and our ->csum_bytes were not
6053 * artificially inflated.
6054 */
6055 inode->csum_bytes = csum_bytes - num_bytes;
6056 bytes = csum_bytes - orig_csum_bytes;
6057 bytes = calc_csum_metadata_size(inode, bytes, 0);
6058
6059 /*
6060 * Now reset ->csum_bytes to what it should be. If bytes is
6061 * more than to_free then we would have freed more space had we
6062 * not had an artificially high ->csum_bytes, so we need to free
6063 * the remainder. If bytes is the same or less then we don't
6064 * need to do anything, the other free-ers did the correct
6065 * thing.
6066 */
6067 inode->csum_bytes = orig_csum_bytes - num_bytes;
6068 if (bytes > to_free)
6069 to_free = bytes - to_free;
6070 else
6071 to_free = 0;
6072 }
6073 spin_unlock(&inode->lock);
6074 if (dropped)
6075 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6076
6077 if (to_free) {
6078 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6079 trace_btrfs_space_reservation(fs_info, "delalloc",
6080 btrfs_ino(inode), to_free, 0);
6081 }
6082 if (delalloc_lock)
6083 mutex_unlock(&inode->delalloc_mutex);
6084 return ret;
6085 }
6086
6087 /**
6088 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6089 * @inode: the inode to release the reservation for
6090 * @num_bytes: the number of bytes we're releasing
6091 *
6092 * This will release the metadata reservation for an inode. This can be called
6093 * once we complete IO for a given set of bytes to release their metadata
6094 * reservations.
6095 */
6096 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6097 {
6098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6099 u64 to_free = 0;
6100 unsigned dropped;
6101
6102 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6103 spin_lock(&inode->lock);
6104 dropped = drop_outstanding_extent(inode, num_bytes);
6105
6106 if (num_bytes)
6107 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6108 spin_unlock(&inode->lock);
6109 if (dropped > 0)
6110 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6111
6112 if (btrfs_is_testing(fs_info))
6113 return;
6114
6115 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6116 to_free, 0);
6117
6118 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6119 }
6120
6121 /**
6122 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6123 * delalloc
6124 * @inode: inode we're writing to
6125 * @start: start range we are writing to
6126 * @len: how long the range we are writing to
6127 *
6128 * This will do the following things
6129 *
6130 * o reserve space in data space info for num bytes
6131 * and reserve precious corresponding qgroup space
6132 * (Done in check_data_free_space)
6133 *
6134 * o reserve space for metadata space, based on the number of outstanding
6135 * extents and how much csums will be needed
6136 * also reserve metadata space in a per root over-reserve method.
6137 * o add to the inodes->delalloc_bytes
6138 * o add it to the fs_info's delalloc inodes list.
6139 * (Above 3 all done in delalloc_reserve_metadata)
6140 *
6141 * Return 0 for success
6142 * Return <0 for error(-ENOSPC or -EQUOT)
6143 */
6144 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6145 {
6146 int ret;
6147
6148 ret = btrfs_check_data_free_space(inode, start, len);
6149 if (ret < 0)
6150 return ret;
6151 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6152 if (ret < 0)
6153 btrfs_free_reserved_data_space(inode, start, len);
6154 return ret;
6155 }
6156
6157 /**
6158 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6159 * @inode: inode we're releasing space for
6160 * @start: start position of the space already reserved
6161 * @len: the len of the space already reserved
6162 *
6163 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6164 * called in the case that we don't need the metadata AND data reservations
6165 * anymore. So if there is an error or we insert an inline extent.
6166 *
6167 * This function will release the metadata space that was not used and will
6168 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6169 * list if there are no delalloc bytes left.
6170 * Also it will handle the qgroup reserved space.
6171 */
6172 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6173 {
6174 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6175 btrfs_free_reserved_data_space(inode, start, len);
6176 }
6177
6178 static int update_block_group(struct btrfs_trans_handle *trans,
6179 struct btrfs_fs_info *info, u64 bytenr,
6180 u64 num_bytes, int alloc)
6181 {
6182 struct btrfs_block_group_cache *cache = NULL;
6183 u64 total = num_bytes;
6184 u64 old_val;
6185 u64 byte_in_group;
6186 int factor;
6187
6188 /* block accounting for super block */
6189 spin_lock(&info->delalloc_root_lock);
6190 old_val = btrfs_super_bytes_used(info->super_copy);
6191 if (alloc)
6192 old_val += num_bytes;
6193 else
6194 old_val -= num_bytes;
6195 btrfs_set_super_bytes_used(info->super_copy, old_val);
6196 spin_unlock(&info->delalloc_root_lock);
6197
6198 while (total) {
6199 cache = btrfs_lookup_block_group(info, bytenr);
6200 if (!cache)
6201 return -ENOENT;
6202 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6203 BTRFS_BLOCK_GROUP_RAID1 |
6204 BTRFS_BLOCK_GROUP_RAID10))
6205 factor = 2;
6206 else
6207 factor = 1;
6208 /*
6209 * If this block group has free space cache written out, we
6210 * need to make sure to load it if we are removing space. This
6211 * is because we need the unpinning stage to actually add the
6212 * space back to the block group, otherwise we will leak space.
6213 */
6214 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6215 cache_block_group(cache, 1);
6216
6217 byte_in_group = bytenr - cache->key.objectid;
6218 WARN_ON(byte_in_group > cache->key.offset);
6219
6220 spin_lock(&cache->space_info->lock);
6221 spin_lock(&cache->lock);
6222
6223 if (btrfs_test_opt(info, SPACE_CACHE) &&
6224 cache->disk_cache_state < BTRFS_DC_CLEAR)
6225 cache->disk_cache_state = BTRFS_DC_CLEAR;
6226
6227 old_val = btrfs_block_group_used(&cache->item);
6228 num_bytes = min(total, cache->key.offset - byte_in_group);
6229 if (alloc) {
6230 old_val += num_bytes;
6231 btrfs_set_block_group_used(&cache->item, old_val);
6232 cache->reserved -= num_bytes;
6233 cache->space_info->bytes_reserved -= num_bytes;
6234 cache->space_info->bytes_used += num_bytes;
6235 cache->space_info->disk_used += num_bytes * factor;
6236 spin_unlock(&cache->lock);
6237 spin_unlock(&cache->space_info->lock);
6238 } else {
6239 old_val -= num_bytes;
6240 btrfs_set_block_group_used(&cache->item, old_val);
6241 cache->pinned += num_bytes;
6242 cache->space_info->bytes_pinned += num_bytes;
6243 cache->space_info->bytes_used -= num_bytes;
6244 cache->space_info->disk_used -= num_bytes * factor;
6245 spin_unlock(&cache->lock);
6246 spin_unlock(&cache->space_info->lock);
6247
6248 trace_btrfs_space_reservation(info, "pinned",
6249 cache->space_info->flags,
6250 num_bytes, 1);
6251 set_extent_dirty(info->pinned_extents,
6252 bytenr, bytenr + num_bytes - 1,
6253 GFP_NOFS | __GFP_NOFAIL);
6254 }
6255
6256 spin_lock(&trans->transaction->dirty_bgs_lock);
6257 if (list_empty(&cache->dirty_list)) {
6258 list_add_tail(&cache->dirty_list,
6259 &trans->transaction->dirty_bgs);
6260 trans->transaction->num_dirty_bgs++;
6261 btrfs_get_block_group(cache);
6262 }
6263 spin_unlock(&trans->transaction->dirty_bgs_lock);
6264
6265 /*
6266 * No longer have used bytes in this block group, queue it for
6267 * deletion. We do this after adding the block group to the
6268 * dirty list to avoid races between cleaner kthread and space
6269 * cache writeout.
6270 */
6271 if (!alloc && old_val == 0) {
6272 spin_lock(&info->unused_bgs_lock);
6273 if (list_empty(&cache->bg_list)) {
6274 btrfs_get_block_group(cache);
6275 list_add_tail(&cache->bg_list,
6276 &info->unused_bgs);
6277 }
6278 spin_unlock(&info->unused_bgs_lock);
6279 }
6280
6281 btrfs_put_block_group(cache);
6282 total -= num_bytes;
6283 bytenr += num_bytes;
6284 }
6285 return 0;
6286 }
6287
6288 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6289 {
6290 struct btrfs_block_group_cache *cache;
6291 u64 bytenr;
6292
6293 spin_lock(&fs_info->block_group_cache_lock);
6294 bytenr = fs_info->first_logical_byte;
6295 spin_unlock(&fs_info->block_group_cache_lock);
6296
6297 if (bytenr < (u64)-1)
6298 return bytenr;
6299
6300 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6301 if (!cache)
6302 return 0;
6303
6304 bytenr = cache->key.objectid;
6305 btrfs_put_block_group(cache);
6306
6307 return bytenr;
6308 }
6309
6310 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6311 struct btrfs_block_group_cache *cache,
6312 u64 bytenr, u64 num_bytes, int reserved)
6313 {
6314 spin_lock(&cache->space_info->lock);
6315 spin_lock(&cache->lock);
6316 cache->pinned += num_bytes;
6317 cache->space_info->bytes_pinned += num_bytes;
6318 if (reserved) {
6319 cache->reserved -= num_bytes;
6320 cache->space_info->bytes_reserved -= num_bytes;
6321 }
6322 spin_unlock(&cache->lock);
6323 spin_unlock(&cache->space_info->lock);
6324
6325 trace_btrfs_space_reservation(fs_info, "pinned",
6326 cache->space_info->flags, num_bytes, 1);
6327 set_extent_dirty(fs_info->pinned_extents, bytenr,
6328 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6329 return 0;
6330 }
6331
6332 /*
6333 * this function must be called within transaction
6334 */
6335 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6336 u64 bytenr, u64 num_bytes, int reserved)
6337 {
6338 struct btrfs_block_group_cache *cache;
6339
6340 cache = btrfs_lookup_block_group(fs_info, bytenr);
6341 BUG_ON(!cache); /* Logic error */
6342
6343 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6344
6345 btrfs_put_block_group(cache);
6346 return 0;
6347 }
6348
6349 /*
6350 * this function must be called within transaction
6351 */
6352 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6353 u64 bytenr, u64 num_bytes)
6354 {
6355 struct btrfs_block_group_cache *cache;
6356 int ret;
6357
6358 cache = btrfs_lookup_block_group(fs_info, bytenr);
6359 if (!cache)
6360 return -EINVAL;
6361
6362 /*
6363 * pull in the free space cache (if any) so that our pin
6364 * removes the free space from the cache. We have load_only set
6365 * to one because the slow code to read in the free extents does check
6366 * the pinned extents.
6367 */
6368 cache_block_group(cache, 1);
6369
6370 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6371
6372 /* remove us from the free space cache (if we're there at all) */
6373 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6374 btrfs_put_block_group(cache);
6375 return ret;
6376 }
6377
6378 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6379 u64 start, u64 num_bytes)
6380 {
6381 int ret;
6382 struct btrfs_block_group_cache *block_group;
6383 struct btrfs_caching_control *caching_ctl;
6384
6385 block_group = btrfs_lookup_block_group(fs_info, start);
6386 if (!block_group)
6387 return -EINVAL;
6388
6389 cache_block_group(block_group, 0);
6390 caching_ctl = get_caching_control(block_group);
6391
6392 if (!caching_ctl) {
6393 /* Logic error */
6394 BUG_ON(!block_group_cache_done(block_group));
6395 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6396 } else {
6397 mutex_lock(&caching_ctl->mutex);
6398
6399 if (start >= caching_ctl->progress) {
6400 ret = add_excluded_extent(fs_info, start, num_bytes);
6401 } else if (start + num_bytes <= caching_ctl->progress) {
6402 ret = btrfs_remove_free_space(block_group,
6403 start, num_bytes);
6404 } else {
6405 num_bytes = caching_ctl->progress - start;
6406 ret = btrfs_remove_free_space(block_group,
6407 start, num_bytes);
6408 if (ret)
6409 goto out_lock;
6410
6411 num_bytes = (start + num_bytes) -
6412 caching_ctl->progress;
6413 start = caching_ctl->progress;
6414 ret = add_excluded_extent(fs_info, start, num_bytes);
6415 }
6416 out_lock:
6417 mutex_unlock(&caching_ctl->mutex);
6418 put_caching_control(caching_ctl);
6419 }
6420 btrfs_put_block_group(block_group);
6421 return ret;
6422 }
6423
6424 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6425 struct extent_buffer *eb)
6426 {
6427 struct btrfs_file_extent_item *item;
6428 struct btrfs_key key;
6429 int found_type;
6430 int i;
6431
6432 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6433 return 0;
6434
6435 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6436 btrfs_item_key_to_cpu(eb, &key, i);
6437 if (key.type != BTRFS_EXTENT_DATA_KEY)
6438 continue;
6439 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6440 found_type = btrfs_file_extent_type(eb, item);
6441 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6442 continue;
6443 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6444 continue;
6445 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6446 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6447 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6448 }
6449
6450 return 0;
6451 }
6452
6453 static void
6454 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6455 {
6456 atomic_inc(&bg->reservations);
6457 }
6458
6459 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6460 const u64 start)
6461 {
6462 struct btrfs_block_group_cache *bg;
6463
6464 bg = btrfs_lookup_block_group(fs_info, start);
6465 ASSERT(bg);
6466 if (atomic_dec_and_test(&bg->reservations))
6467 wake_up_atomic_t(&bg->reservations);
6468 btrfs_put_block_group(bg);
6469 }
6470
6471 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6472 {
6473 schedule();
6474 return 0;
6475 }
6476
6477 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6478 {
6479 struct btrfs_space_info *space_info = bg->space_info;
6480
6481 ASSERT(bg->ro);
6482
6483 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6484 return;
6485
6486 /*
6487 * Our block group is read only but before we set it to read only,
6488 * some task might have had allocated an extent from it already, but it
6489 * has not yet created a respective ordered extent (and added it to a
6490 * root's list of ordered extents).
6491 * Therefore wait for any task currently allocating extents, since the
6492 * block group's reservations counter is incremented while a read lock
6493 * on the groups' semaphore is held and decremented after releasing
6494 * the read access on that semaphore and creating the ordered extent.
6495 */
6496 down_write(&space_info->groups_sem);
6497 up_write(&space_info->groups_sem);
6498
6499 wait_on_atomic_t(&bg->reservations,
6500 btrfs_wait_bg_reservations_atomic_t,
6501 TASK_UNINTERRUPTIBLE);
6502 }
6503
6504 /**
6505 * btrfs_add_reserved_bytes - update the block_group and space info counters
6506 * @cache: The cache we are manipulating
6507 * @ram_bytes: The number of bytes of file content, and will be same to
6508 * @num_bytes except for the compress path.
6509 * @num_bytes: The number of bytes in question
6510 * @delalloc: The blocks are allocated for the delalloc write
6511 *
6512 * This is called by the allocator when it reserves space. If this is a
6513 * reservation and the block group has become read only we cannot make the
6514 * reservation and return -EAGAIN, otherwise this function always succeeds.
6515 */
6516 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6517 u64 ram_bytes, u64 num_bytes, int delalloc)
6518 {
6519 struct btrfs_space_info *space_info = cache->space_info;
6520 int ret = 0;
6521
6522 spin_lock(&space_info->lock);
6523 spin_lock(&cache->lock);
6524 if (cache->ro) {
6525 ret = -EAGAIN;
6526 } else {
6527 cache->reserved += num_bytes;
6528 space_info->bytes_reserved += num_bytes;
6529
6530 trace_btrfs_space_reservation(cache->fs_info,
6531 "space_info", space_info->flags,
6532 ram_bytes, 0);
6533 space_info->bytes_may_use -= ram_bytes;
6534 if (delalloc)
6535 cache->delalloc_bytes += num_bytes;
6536 }
6537 spin_unlock(&cache->lock);
6538 spin_unlock(&space_info->lock);
6539 return ret;
6540 }
6541
6542 /**
6543 * btrfs_free_reserved_bytes - update the block_group and space info counters
6544 * @cache: The cache we are manipulating
6545 * @num_bytes: The number of bytes in question
6546 * @delalloc: The blocks are allocated for the delalloc write
6547 *
6548 * This is called by somebody who is freeing space that was never actually used
6549 * on disk. For example if you reserve some space for a new leaf in transaction
6550 * A and before transaction A commits you free that leaf, you call this with
6551 * reserve set to 0 in order to clear the reservation.
6552 */
6553
6554 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6555 u64 num_bytes, int delalloc)
6556 {
6557 struct btrfs_space_info *space_info = cache->space_info;
6558 int ret = 0;
6559
6560 spin_lock(&space_info->lock);
6561 spin_lock(&cache->lock);
6562 if (cache->ro)
6563 space_info->bytes_readonly += num_bytes;
6564 cache->reserved -= num_bytes;
6565 space_info->bytes_reserved -= num_bytes;
6566
6567 if (delalloc)
6568 cache->delalloc_bytes -= num_bytes;
6569 spin_unlock(&cache->lock);
6570 spin_unlock(&space_info->lock);
6571 return ret;
6572 }
6573 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6574 {
6575 struct btrfs_caching_control *next;
6576 struct btrfs_caching_control *caching_ctl;
6577 struct btrfs_block_group_cache *cache;
6578
6579 down_write(&fs_info->commit_root_sem);
6580
6581 list_for_each_entry_safe(caching_ctl, next,
6582 &fs_info->caching_block_groups, list) {
6583 cache = caching_ctl->block_group;
6584 if (block_group_cache_done(cache)) {
6585 cache->last_byte_to_unpin = (u64)-1;
6586 list_del_init(&caching_ctl->list);
6587 put_caching_control(caching_ctl);
6588 } else {
6589 cache->last_byte_to_unpin = caching_ctl->progress;
6590 }
6591 }
6592
6593 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6594 fs_info->pinned_extents = &fs_info->freed_extents[1];
6595 else
6596 fs_info->pinned_extents = &fs_info->freed_extents[0];
6597
6598 up_write(&fs_info->commit_root_sem);
6599
6600 update_global_block_rsv(fs_info);
6601 }
6602
6603 /*
6604 * Returns the free cluster for the given space info and sets empty_cluster to
6605 * what it should be based on the mount options.
6606 */
6607 static struct btrfs_free_cluster *
6608 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6609 struct btrfs_space_info *space_info, u64 *empty_cluster)
6610 {
6611 struct btrfs_free_cluster *ret = NULL;
6612 bool ssd = btrfs_test_opt(fs_info, SSD);
6613
6614 *empty_cluster = 0;
6615 if (btrfs_mixed_space_info(space_info))
6616 return ret;
6617
6618 if (ssd)
6619 *empty_cluster = SZ_2M;
6620 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6621 ret = &fs_info->meta_alloc_cluster;
6622 if (!ssd)
6623 *empty_cluster = SZ_64K;
6624 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6625 ret = &fs_info->data_alloc_cluster;
6626 }
6627
6628 return ret;
6629 }
6630
6631 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6632 u64 start, u64 end,
6633 const bool return_free_space)
6634 {
6635 struct btrfs_block_group_cache *cache = NULL;
6636 struct btrfs_space_info *space_info;
6637 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6638 struct btrfs_free_cluster *cluster = NULL;
6639 u64 len;
6640 u64 total_unpinned = 0;
6641 u64 empty_cluster = 0;
6642 bool readonly;
6643
6644 while (start <= end) {
6645 readonly = false;
6646 if (!cache ||
6647 start >= cache->key.objectid + cache->key.offset) {
6648 if (cache)
6649 btrfs_put_block_group(cache);
6650 total_unpinned = 0;
6651 cache = btrfs_lookup_block_group(fs_info, start);
6652 BUG_ON(!cache); /* Logic error */
6653
6654 cluster = fetch_cluster_info(fs_info,
6655 cache->space_info,
6656 &empty_cluster);
6657 empty_cluster <<= 1;
6658 }
6659
6660 len = cache->key.objectid + cache->key.offset - start;
6661 len = min(len, end + 1 - start);
6662
6663 if (start < cache->last_byte_to_unpin) {
6664 len = min(len, cache->last_byte_to_unpin - start);
6665 if (return_free_space)
6666 btrfs_add_free_space(cache, start, len);
6667 }
6668
6669 start += len;
6670 total_unpinned += len;
6671 space_info = cache->space_info;
6672
6673 /*
6674 * If this space cluster has been marked as fragmented and we've
6675 * unpinned enough in this block group to potentially allow a
6676 * cluster to be created inside of it go ahead and clear the
6677 * fragmented check.
6678 */
6679 if (cluster && cluster->fragmented &&
6680 total_unpinned > empty_cluster) {
6681 spin_lock(&cluster->lock);
6682 cluster->fragmented = 0;
6683 spin_unlock(&cluster->lock);
6684 }
6685
6686 spin_lock(&space_info->lock);
6687 spin_lock(&cache->lock);
6688 cache->pinned -= len;
6689 space_info->bytes_pinned -= len;
6690
6691 trace_btrfs_space_reservation(fs_info, "pinned",
6692 space_info->flags, len, 0);
6693 space_info->max_extent_size = 0;
6694 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6695 if (cache->ro) {
6696 space_info->bytes_readonly += len;
6697 readonly = true;
6698 }
6699 spin_unlock(&cache->lock);
6700 if (!readonly && return_free_space &&
6701 global_rsv->space_info == space_info) {
6702 u64 to_add = len;
6703 WARN_ON(!return_free_space);
6704 spin_lock(&global_rsv->lock);
6705 if (!global_rsv->full) {
6706 to_add = min(len, global_rsv->size -
6707 global_rsv->reserved);
6708 global_rsv->reserved += to_add;
6709 space_info->bytes_may_use += to_add;
6710 if (global_rsv->reserved >= global_rsv->size)
6711 global_rsv->full = 1;
6712 trace_btrfs_space_reservation(fs_info,
6713 "space_info",
6714 space_info->flags,
6715 to_add, 1);
6716 len -= to_add;
6717 }
6718 spin_unlock(&global_rsv->lock);
6719 /* Add to any tickets we may have */
6720 if (len)
6721 space_info_add_new_bytes(fs_info, space_info,
6722 len);
6723 }
6724 spin_unlock(&space_info->lock);
6725 }
6726
6727 if (cache)
6728 btrfs_put_block_group(cache);
6729 return 0;
6730 }
6731
6732 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6733 struct btrfs_fs_info *fs_info)
6734 {
6735 struct btrfs_block_group_cache *block_group, *tmp;
6736 struct list_head *deleted_bgs;
6737 struct extent_io_tree *unpin;
6738 u64 start;
6739 u64 end;
6740 int ret;
6741
6742 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6743 unpin = &fs_info->freed_extents[1];
6744 else
6745 unpin = &fs_info->freed_extents[0];
6746
6747 while (!trans->aborted) {
6748 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6749 ret = find_first_extent_bit(unpin, 0, &start, &end,
6750 EXTENT_DIRTY, NULL);
6751 if (ret) {
6752 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6753 break;
6754 }
6755
6756 if (btrfs_test_opt(fs_info, DISCARD))
6757 ret = btrfs_discard_extent(fs_info, start,
6758 end + 1 - start, NULL);
6759
6760 clear_extent_dirty(unpin, start, end);
6761 unpin_extent_range(fs_info, start, end, true);
6762 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6763 cond_resched();
6764 }
6765
6766 /*
6767 * Transaction is finished. We don't need the lock anymore. We
6768 * do need to clean up the block groups in case of a transaction
6769 * abort.
6770 */
6771 deleted_bgs = &trans->transaction->deleted_bgs;
6772 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6773 u64 trimmed = 0;
6774
6775 ret = -EROFS;
6776 if (!trans->aborted)
6777 ret = btrfs_discard_extent(fs_info,
6778 block_group->key.objectid,
6779 block_group->key.offset,
6780 &trimmed);
6781
6782 list_del_init(&block_group->bg_list);
6783 btrfs_put_block_group_trimming(block_group);
6784 btrfs_put_block_group(block_group);
6785
6786 if (ret) {
6787 const char *errstr = btrfs_decode_error(ret);
6788 btrfs_warn(fs_info,
6789 "Discard failed while removing blockgroup: errno=%d %s\n",
6790 ret, errstr);
6791 }
6792 }
6793
6794 return 0;
6795 }
6796
6797 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6798 u64 owner, u64 root_objectid)
6799 {
6800 struct btrfs_space_info *space_info;
6801 u64 flags;
6802
6803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6804 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6805 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6806 else
6807 flags = BTRFS_BLOCK_GROUP_METADATA;
6808 } else {
6809 flags = BTRFS_BLOCK_GROUP_DATA;
6810 }
6811
6812 space_info = __find_space_info(fs_info, flags);
6813 BUG_ON(!space_info); /* Logic bug */
6814 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6815 }
6816
6817
6818 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6819 struct btrfs_fs_info *info,
6820 struct btrfs_delayed_ref_node *node, u64 parent,
6821 u64 root_objectid, u64 owner_objectid,
6822 u64 owner_offset, int refs_to_drop,
6823 struct btrfs_delayed_extent_op *extent_op)
6824 {
6825 struct btrfs_key key;
6826 struct btrfs_path *path;
6827 struct btrfs_root *extent_root = info->extent_root;
6828 struct extent_buffer *leaf;
6829 struct btrfs_extent_item *ei;
6830 struct btrfs_extent_inline_ref *iref;
6831 int ret;
6832 int is_data;
6833 int extent_slot = 0;
6834 int found_extent = 0;
6835 int num_to_del = 1;
6836 u32 item_size;
6837 u64 refs;
6838 u64 bytenr = node->bytenr;
6839 u64 num_bytes = node->num_bytes;
6840 int last_ref = 0;
6841 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6842
6843 path = btrfs_alloc_path();
6844 if (!path)
6845 return -ENOMEM;
6846
6847 path->reada = READA_FORWARD;
6848 path->leave_spinning = 1;
6849
6850 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6851 BUG_ON(!is_data && refs_to_drop != 1);
6852
6853 if (is_data)
6854 skinny_metadata = 0;
6855
6856 ret = lookup_extent_backref(trans, info, path, &iref,
6857 bytenr, num_bytes, parent,
6858 root_objectid, owner_objectid,
6859 owner_offset);
6860 if (ret == 0) {
6861 extent_slot = path->slots[0];
6862 while (extent_slot >= 0) {
6863 btrfs_item_key_to_cpu(path->nodes[0], &key,
6864 extent_slot);
6865 if (key.objectid != bytenr)
6866 break;
6867 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6868 key.offset == num_bytes) {
6869 found_extent = 1;
6870 break;
6871 }
6872 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6873 key.offset == owner_objectid) {
6874 found_extent = 1;
6875 break;
6876 }
6877 if (path->slots[0] - extent_slot > 5)
6878 break;
6879 extent_slot--;
6880 }
6881 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6882 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6883 if (found_extent && item_size < sizeof(*ei))
6884 found_extent = 0;
6885 #endif
6886 if (!found_extent) {
6887 BUG_ON(iref);
6888 ret = remove_extent_backref(trans, info, path, NULL,
6889 refs_to_drop,
6890 is_data, &last_ref);
6891 if (ret) {
6892 btrfs_abort_transaction(trans, ret);
6893 goto out;
6894 }
6895 btrfs_release_path(path);
6896 path->leave_spinning = 1;
6897
6898 key.objectid = bytenr;
6899 key.type = BTRFS_EXTENT_ITEM_KEY;
6900 key.offset = num_bytes;
6901
6902 if (!is_data && skinny_metadata) {
6903 key.type = BTRFS_METADATA_ITEM_KEY;
6904 key.offset = owner_objectid;
6905 }
6906
6907 ret = btrfs_search_slot(trans, extent_root,
6908 &key, path, -1, 1);
6909 if (ret > 0 && skinny_metadata && path->slots[0]) {
6910 /*
6911 * Couldn't find our skinny metadata item,
6912 * see if we have ye olde extent item.
6913 */
6914 path->slots[0]--;
6915 btrfs_item_key_to_cpu(path->nodes[0], &key,
6916 path->slots[0]);
6917 if (key.objectid == bytenr &&
6918 key.type == BTRFS_EXTENT_ITEM_KEY &&
6919 key.offset == num_bytes)
6920 ret = 0;
6921 }
6922
6923 if (ret > 0 && skinny_metadata) {
6924 skinny_metadata = false;
6925 key.objectid = bytenr;
6926 key.type = BTRFS_EXTENT_ITEM_KEY;
6927 key.offset = num_bytes;
6928 btrfs_release_path(path);
6929 ret = btrfs_search_slot(trans, extent_root,
6930 &key, path, -1, 1);
6931 }
6932
6933 if (ret) {
6934 btrfs_err(info,
6935 "umm, got %d back from search, was looking for %llu",
6936 ret, bytenr);
6937 if (ret > 0)
6938 btrfs_print_leaf(info, path->nodes[0]);
6939 }
6940 if (ret < 0) {
6941 btrfs_abort_transaction(trans, ret);
6942 goto out;
6943 }
6944 extent_slot = path->slots[0];
6945 }
6946 } else if (WARN_ON(ret == -ENOENT)) {
6947 btrfs_print_leaf(info, path->nodes[0]);
6948 btrfs_err(info,
6949 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6950 bytenr, parent, root_objectid, owner_objectid,
6951 owner_offset);
6952 btrfs_abort_transaction(trans, ret);
6953 goto out;
6954 } else {
6955 btrfs_abort_transaction(trans, ret);
6956 goto out;
6957 }
6958
6959 leaf = path->nodes[0];
6960 item_size = btrfs_item_size_nr(leaf, extent_slot);
6961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6962 if (item_size < sizeof(*ei)) {
6963 BUG_ON(found_extent || extent_slot != path->slots[0]);
6964 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6965 0);
6966 if (ret < 0) {
6967 btrfs_abort_transaction(trans, ret);
6968 goto out;
6969 }
6970
6971 btrfs_release_path(path);
6972 path->leave_spinning = 1;
6973
6974 key.objectid = bytenr;
6975 key.type = BTRFS_EXTENT_ITEM_KEY;
6976 key.offset = num_bytes;
6977
6978 ret = btrfs_search_slot(trans, extent_root, &key, path,
6979 -1, 1);
6980 if (ret) {
6981 btrfs_err(info,
6982 "umm, got %d back from search, was looking for %llu",
6983 ret, bytenr);
6984 btrfs_print_leaf(info, path->nodes[0]);
6985 }
6986 if (ret < 0) {
6987 btrfs_abort_transaction(trans, ret);
6988 goto out;
6989 }
6990
6991 extent_slot = path->slots[0];
6992 leaf = path->nodes[0];
6993 item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 }
6995 #endif
6996 BUG_ON(item_size < sizeof(*ei));
6997 ei = btrfs_item_ptr(leaf, extent_slot,
6998 struct btrfs_extent_item);
6999 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7000 key.type == BTRFS_EXTENT_ITEM_KEY) {
7001 struct btrfs_tree_block_info *bi;
7002 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7003 bi = (struct btrfs_tree_block_info *)(ei + 1);
7004 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7005 }
7006
7007 refs = btrfs_extent_refs(leaf, ei);
7008 if (refs < refs_to_drop) {
7009 btrfs_err(info,
7010 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7011 refs_to_drop, refs, bytenr);
7012 ret = -EINVAL;
7013 btrfs_abort_transaction(trans, ret);
7014 goto out;
7015 }
7016 refs -= refs_to_drop;
7017
7018 if (refs > 0) {
7019 if (extent_op)
7020 __run_delayed_extent_op(extent_op, leaf, ei);
7021 /*
7022 * In the case of inline back ref, reference count will
7023 * be updated by remove_extent_backref
7024 */
7025 if (iref) {
7026 BUG_ON(!found_extent);
7027 } else {
7028 btrfs_set_extent_refs(leaf, ei, refs);
7029 btrfs_mark_buffer_dirty(leaf);
7030 }
7031 if (found_extent) {
7032 ret = remove_extent_backref(trans, info, path,
7033 iref, refs_to_drop,
7034 is_data, &last_ref);
7035 if (ret) {
7036 btrfs_abort_transaction(trans, ret);
7037 goto out;
7038 }
7039 }
7040 add_pinned_bytes(info, -num_bytes, owner_objectid,
7041 root_objectid);
7042 } else {
7043 if (found_extent) {
7044 BUG_ON(is_data && refs_to_drop !=
7045 extent_data_ref_count(path, iref));
7046 if (iref) {
7047 BUG_ON(path->slots[0] != extent_slot);
7048 } else {
7049 BUG_ON(path->slots[0] != extent_slot + 1);
7050 path->slots[0] = extent_slot;
7051 num_to_del = 2;
7052 }
7053 }
7054
7055 last_ref = 1;
7056 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7057 num_to_del);
7058 if (ret) {
7059 btrfs_abort_transaction(trans, ret);
7060 goto out;
7061 }
7062 btrfs_release_path(path);
7063
7064 if (is_data) {
7065 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7066 if (ret) {
7067 btrfs_abort_transaction(trans, ret);
7068 goto out;
7069 }
7070 }
7071
7072 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7073 if (ret) {
7074 btrfs_abort_transaction(trans, ret);
7075 goto out;
7076 }
7077
7078 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7079 if (ret) {
7080 btrfs_abort_transaction(trans, ret);
7081 goto out;
7082 }
7083 }
7084 btrfs_release_path(path);
7085
7086 out:
7087 btrfs_free_path(path);
7088 return ret;
7089 }
7090
7091 /*
7092 * when we free an block, it is possible (and likely) that we free the last
7093 * delayed ref for that extent as well. This searches the delayed ref tree for
7094 * a given extent, and if there are no other delayed refs to be processed, it
7095 * removes it from the tree.
7096 */
7097 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7098 u64 bytenr)
7099 {
7100 struct btrfs_delayed_ref_head *head;
7101 struct btrfs_delayed_ref_root *delayed_refs;
7102 int ret = 0;
7103
7104 delayed_refs = &trans->transaction->delayed_refs;
7105 spin_lock(&delayed_refs->lock);
7106 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7107 if (!head)
7108 goto out_delayed_unlock;
7109
7110 spin_lock(&head->lock);
7111 if (!list_empty(&head->ref_list))
7112 goto out;
7113
7114 if (head->extent_op) {
7115 if (!head->must_insert_reserved)
7116 goto out;
7117 btrfs_free_delayed_extent_op(head->extent_op);
7118 head->extent_op = NULL;
7119 }
7120
7121 /*
7122 * waiting for the lock here would deadlock. If someone else has it
7123 * locked they are already in the process of dropping it anyway
7124 */
7125 if (!mutex_trylock(&head->mutex))
7126 goto out;
7127
7128 /*
7129 * at this point we have a head with no other entries. Go
7130 * ahead and process it.
7131 */
7132 head->node.in_tree = 0;
7133 rb_erase(&head->href_node, &delayed_refs->href_root);
7134
7135 atomic_dec(&delayed_refs->num_entries);
7136
7137 /*
7138 * we don't take a ref on the node because we're removing it from the
7139 * tree, so we just steal the ref the tree was holding.
7140 */
7141 delayed_refs->num_heads--;
7142 if (head->processing == 0)
7143 delayed_refs->num_heads_ready--;
7144 head->processing = 0;
7145 spin_unlock(&head->lock);
7146 spin_unlock(&delayed_refs->lock);
7147
7148 BUG_ON(head->extent_op);
7149 if (head->must_insert_reserved)
7150 ret = 1;
7151
7152 mutex_unlock(&head->mutex);
7153 btrfs_put_delayed_ref(&head->node);
7154 return ret;
7155 out:
7156 spin_unlock(&head->lock);
7157
7158 out_delayed_unlock:
7159 spin_unlock(&delayed_refs->lock);
7160 return 0;
7161 }
7162
7163 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7164 struct btrfs_root *root,
7165 struct extent_buffer *buf,
7166 u64 parent, int last_ref)
7167 {
7168 struct btrfs_fs_info *fs_info = root->fs_info;
7169 int pin = 1;
7170 int ret;
7171
7172 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7173 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7174 buf->start, buf->len,
7175 parent,
7176 root->root_key.objectid,
7177 btrfs_header_level(buf),
7178 BTRFS_DROP_DELAYED_REF, NULL);
7179 BUG_ON(ret); /* -ENOMEM */
7180 }
7181
7182 if (!last_ref)
7183 return;
7184
7185 if (btrfs_header_generation(buf) == trans->transid) {
7186 struct btrfs_block_group_cache *cache;
7187
7188 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7189 ret = check_ref_cleanup(trans, buf->start);
7190 if (!ret)
7191 goto out;
7192 }
7193
7194 cache = btrfs_lookup_block_group(fs_info, buf->start);
7195
7196 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7197 pin_down_extent(fs_info, cache, buf->start,
7198 buf->len, 1);
7199 btrfs_put_block_group(cache);
7200 goto out;
7201 }
7202
7203 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7204
7205 btrfs_add_free_space(cache, buf->start, buf->len);
7206 btrfs_free_reserved_bytes(cache, buf->len, 0);
7207 btrfs_put_block_group(cache);
7208 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7209 pin = 0;
7210 }
7211 out:
7212 if (pin)
7213 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7214 root->root_key.objectid);
7215
7216 /*
7217 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7218 * anymore.
7219 */
7220 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7221 }
7222
7223 /* Can return -ENOMEM */
7224 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7225 struct btrfs_fs_info *fs_info,
7226 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7227 u64 owner, u64 offset)
7228 {
7229 int ret;
7230
7231 if (btrfs_is_testing(fs_info))
7232 return 0;
7233
7234 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7235
7236 /*
7237 * tree log blocks never actually go into the extent allocation
7238 * tree, just update pinning info and exit early.
7239 */
7240 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7241 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7242 /* unlocks the pinned mutex */
7243 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7244 ret = 0;
7245 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7246 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7247 num_bytes,
7248 parent, root_objectid, (int)owner,
7249 BTRFS_DROP_DELAYED_REF, NULL);
7250 } else {
7251 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7252 num_bytes,
7253 parent, root_objectid, owner,
7254 offset, 0,
7255 BTRFS_DROP_DELAYED_REF);
7256 }
7257 return ret;
7258 }
7259
7260 /*
7261 * when we wait for progress in the block group caching, its because
7262 * our allocation attempt failed at least once. So, we must sleep
7263 * and let some progress happen before we try again.
7264 *
7265 * This function will sleep at least once waiting for new free space to
7266 * show up, and then it will check the block group free space numbers
7267 * for our min num_bytes. Another option is to have it go ahead
7268 * and look in the rbtree for a free extent of a given size, but this
7269 * is a good start.
7270 *
7271 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7272 * any of the information in this block group.
7273 */
7274 static noinline void
7275 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7276 u64 num_bytes)
7277 {
7278 struct btrfs_caching_control *caching_ctl;
7279
7280 caching_ctl = get_caching_control(cache);
7281 if (!caching_ctl)
7282 return;
7283
7284 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7285 (cache->free_space_ctl->free_space >= num_bytes));
7286
7287 put_caching_control(caching_ctl);
7288 }
7289
7290 static noinline int
7291 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7292 {
7293 struct btrfs_caching_control *caching_ctl;
7294 int ret = 0;
7295
7296 caching_ctl = get_caching_control(cache);
7297 if (!caching_ctl)
7298 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7299
7300 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7301 if (cache->cached == BTRFS_CACHE_ERROR)
7302 ret = -EIO;
7303 put_caching_control(caching_ctl);
7304 return ret;
7305 }
7306
7307 int __get_raid_index(u64 flags)
7308 {
7309 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7310 return BTRFS_RAID_RAID10;
7311 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7312 return BTRFS_RAID_RAID1;
7313 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7314 return BTRFS_RAID_DUP;
7315 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7316 return BTRFS_RAID_RAID0;
7317 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7318 return BTRFS_RAID_RAID5;
7319 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7320 return BTRFS_RAID_RAID6;
7321
7322 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7323 }
7324
7325 int get_block_group_index(struct btrfs_block_group_cache *cache)
7326 {
7327 return __get_raid_index(cache->flags);
7328 }
7329
7330 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7331 [BTRFS_RAID_RAID10] = "raid10",
7332 [BTRFS_RAID_RAID1] = "raid1",
7333 [BTRFS_RAID_DUP] = "dup",
7334 [BTRFS_RAID_RAID0] = "raid0",
7335 [BTRFS_RAID_SINGLE] = "single",
7336 [BTRFS_RAID_RAID5] = "raid5",
7337 [BTRFS_RAID_RAID6] = "raid6",
7338 };
7339
7340 static const char *get_raid_name(enum btrfs_raid_types type)
7341 {
7342 if (type >= BTRFS_NR_RAID_TYPES)
7343 return NULL;
7344
7345 return btrfs_raid_type_names[type];
7346 }
7347
7348 enum btrfs_loop_type {
7349 LOOP_CACHING_NOWAIT = 0,
7350 LOOP_CACHING_WAIT = 1,
7351 LOOP_ALLOC_CHUNK = 2,
7352 LOOP_NO_EMPTY_SIZE = 3,
7353 };
7354
7355 static inline void
7356 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7357 int delalloc)
7358 {
7359 if (delalloc)
7360 down_read(&cache->data_rwsem);
7361 }
7362
7363 static inline void
7364 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7365 int delalloc)
7366 {
7367 btrfs_get_block_group(cache);
7368 if (delalloc)
7369 down_read(&cache->data_rwsem);
7370 }
7371
7372 static struct btrfs_block_group_cache *
7373 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7374 struct btrfs_free_cluster *cluster,
7375 int delalloc)
7376 {
7377 struct btrfs_block_group_cache *used_bg = NULL;
7378
7379 spin_lock(&cluster->refill_lock);
7380 while (1) {
7381 used_bg = cluster->block_group;
7382 if (!used_bg)
7383 return NULL;
7384
7385 if (used_bg == block_group)
7386 return used_bg;
7387
7388 btrfs_get_block_group(used_bg);
7389
7390 if (!delalloc)
7391 return used_bg;
7392
7393 if (down_read_trylock(&used_bg->data_rwsem))
7394 return used_bg;
7395
7396 spin_unlock(&cluster->refill_lock);
7397
7398 /* We should only have one-level nested. */
7399 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7400
7401 spin_lock(&cluster->refill_lock);
7402 if (used_bg == cluster->block_group)
7403 return used_bg;
7404
7405 up_read(&used_bg->data_rwsem);
7406 btrfs_put_block_group(used_bg);
7407 }
7408 }
7409
7410 static inline void
7411 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7412 int delalloc)
7413 {
7414 if (delalloc)
7415 up_read(&cache->data_rwsem);
7416 btrfs_put_block_group(cache);
7417 }
7418
7419 /*
7420 * walks the btree of allocated extents and find a hole of a given size.
7421 * The key ins is changed to record the hole:
7422 * ins->objectid == start position
7423 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7424 * ins->offset == the size of the hole.
7425 * Any available blocks before search_start are skipped.
7426 *
7427 * If there is no suitable free space, we will record the max size of
7428 * the free space extent currently.
7429 */
7430 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7431 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7432 u64 hint_byte, struct btrfs_key *ins,
7433 u64 flags, int delalloc)
7434 {
7435 int ret = 0;
7436 struct btrfs_root *root = fs_info->extent_root;
7437 struct btrfs_free_cluster *last_ptr = NULL;
7438 struct btrfs_block_group_cache *block_group = NULL;
7439 u64 search_start = 0;
7440 u64 max_extent_size = 0;
7441 u64 empty_cluster = 0;
7442 struct btrfs_space_info *space_info;
7443 int loop = 0;
7444 int index = __get_raid_index(flags);
7445 bool failed_cluster_refill = false;
7446 bool failed_alloc = false;
7447 bool use_cluster = true;
7448 bool have_caching_bg = false;
7449 bool orig_have_caching_bg = false;
7450 bool full_search = false;
7451
7452 WARN_ON(num_bytes < fs_info->sectorsize);
7453 ins->type = BTRFS_EXTENT_ITEM_KEY;
7454 ins->objectid = 0;
7455 ins->offset = 0;
7456
7457 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7458
7459 space_info = __find_space_info(fs_info, flags);
7460 if (!space_info) {
7461 btrfs_err(fs_info, "No space info for %llu", flags);
7462 return -ENOSPC;
7463 }
7464
7465 /*
7466 * If our free space is heavily fragmented we may not be able to make
7467 * big contiguous allocations, so instead of doing the expensive search
7468 * for free space, simply return ENOSPC with our max_extent_size so we
7469 * can go ahead and search for a more manageable chunk.
7470 *
7471 * If our max_extent_size is large enough for our allocation simply
7472 * disable clustering since we will likely not be able to find enough
7473 * space to create a cluster and induce latency trying.
7474 */
7475 if (unlikely(space_info->max_extent_size)) {
7476 spin_lock(&space_info->lock);
7477 if (space_info->max_extent_size &&
7478 num_bytes > space_info->max_extent_size) {
7479 ins->offset = space_info->max_extent_size;
7480 spin_unlock(&space_info->lock);
7481 return -ENOSPC;
7482 } else if (space_info->max_extent_size) {
7483 use_cluster = false;
7484 }
7485 spin_unlock(&space_info->lock);
7486 }
7487
7488 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7489 if (last_ptr) {
7490 spin_lock(&last_ptr->lock);
7491 if (last_ptr->block_group)
7492 hint_byte = last_ptr->window_start;
7493 if (last_ptr->fragmented) {
7494 /*
7495 * We still set window_start so we can keep track of the
7496 * last place we found an allocation to try and save
7497 * some time.
7498 */
7499 hint_byte = last_ptr->window_start;
7500 use_cluster = false;
7501 }
7502 spin_unlock(&last_ptr->lock);
7503 }
7504
7505 search_start = max(search_start, first_logical_byte(fs_info, 0));
7506 search_start = max(search_start, hint_byte);
7507 if (search_start == hint_byte) {
7508 block_group = btrfs_lookup_block_group(fs_info, search_start);
7509 /*
7510 * we don't want to use the block group if it doesn't match our
7511 * allocation bits, or if its not cached.
7512 *
7513 * However if we are re-searching with an ideal block group
7514 * picked out then we don't care that the block group is cached.
7515 */
7516 if (block_group && block_group_bits(block_group, flags) &&
7517 block_group->cached != BTRFS_CACHE_NO) {
7518 down_read(&space_info->groups_sem);
7519 if (list_empty(&block_group->list) ||
7520 block_group->ro) {
7521 /*
7522 * someone is removing this block group,
7523 * we can't jump into the have_block_group
7524 * target because our list pointers are not
7525 * valid
7526 */
7527 btrfs_put_block_group(block_group);
7528 up_read(&space_info->groups_sem);
7529 } else {
7530 index = get_block_group_index(block_group);
7531 btrfs_lock_block_group(block_group, delalloc);
7532 goto have_block_group;
7533 }
7534 } else if (block_group) {
7535 btrfs_put_block_group(block_group);
7536 }
7537 }
7538 search:
7539 have_caching_bg = false;
7540 if (index == 0 || index == __get_raid_index(flags))
7541 full_search = true;
7542 down_read(&space_info->groups_sem);
7543 list_for_each_entry(block_group, &space_info->block_groups[index],
7544 list) {
7545 u64 offset;
7546 int cached;
7547
7548 btrfs_grab_block_group(block_group, delalloc);
7549 search_start = block_group->key.objectid;
7550
7551 /*
7552 * this can happen if we end up cycling through all the
7553 * raid types, but we want to make sure we only allocate
7554 * for the proper type.
7555 */
7556 if (!block_group_bits(block_group, flags)) {
7557 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7558 BTRFS_BLOCK_GROUP_RAID1 |
7559 BTRFS_BLOCK_GROUP_RAID5 |
7560 BTRFS_BLOCK_GROUP_RAID6 |
7561 BTRFS_BLOCK_GROUP_RAID10;
7562
7563 /*
7564 * if they asked for extra copies and this block group
7565 * doesn't provide them, bail. This does allow us to
7566 * fill raid0 from raid1.
7567 */
7568 if ((flags & extra) && !(block_group->flags & extra))
7569 goto loop;
7570 }
7571
7572 have_block_group:
7573 cached = block_group_cache_done(block_group);
7574 if (unlikely(!cached)) {
7575 have_caching_bg = true;
7576 ret = cache_block_group(block_group, 0);
7577 BUG_ON(ret < 0);
7578 ret = 0;
7579 }
7580
7581 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7582 goto loop;
7583 if (unlikely(block_group->ro))
7584 goto loop;
7585
7586 /*
7587 * Ok we want to try and use the cluster allocator, so
7588 * lets look there
7589 */
7590 if (last_ptr && use_cluster) {
7591 struct btrfs_block_group_cache *used_block_group;
7592 unsigned long aligned_cluster;
7593 /*
7594 * the refill lock keeps out other
7595 * people trying to start a new cluster
7596 */
7597 used_block_group = btrfs_lock_cluster(block_group,
7598 last_ptr,
7599 delalloc);
7600 if (!used_block_group)
7601 goto refill_cluster;
7602
7603 if (used_block_group != block_group &&
7604 (used_block_group->ro ||
7605 !block_group_bits(used_block_group, flags)))
7606 goto release_cluster;
7607
7608 offset = btrfs_alloc_from_cluster(used_block_group,
7609 last_ptr,
7610 num_bytes,
7611 used_block_group->key.objectid,
7612 &max_extent_size);
7613 if (offset) {
7614 /* we have a block, we're done */
7615 spin_unlock(&last_ptr->refill_lock);
7616 trace_btrfs_reserve_extent_cluster(fs_info,
7617 used_block_group,
7618 search_start, num_bytes);
7619 if (used_block_group != block_group) {
7620 btrfs_release_block_group(block_group,
7621 delalloc);
7622 block_group = used_block_group;
7623 }
7624 goto checks;
7625 }
7626
7627 WARN_ON(last_ptr->block_group != used_block_group);
7628 release_cluster:
7629 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7630 * set up a new clusters, so lets just skip it
7631 * and let the allocator find whatever block
7632 * it can find. If we reach this point, we
7633 * will have tried the cluster allocator
7634 * plenty of times and not have found
7635 * anything, so we are likely way too
7636 * fragmented for the clustering stuff to find
7637 * anything.
7638 *
7639 * However, if the cluster is taken from the
7640 * current block group, release the cluster
7641 * first, so that we stand a better chance of
7642 * succeeding in the unclustered
7643 * allocation. */
7644 if (loop >= LOOP_NO_EMPTY_SIZE &&
7645 used_block_group != block_group) {
7646 spin_unlock(&last_ptr->refill_lock);
7647 btrfs_release_block_group(used_block_group,
7648 delalloc);
7649 goto unclustered_alloc;
7650 }
7651
7652 /*
7653 * this cluster didn't work out, free it and
7654 * start over
7655 */
7656 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7657
7658 if (used_block_group != block_group)
7659 btrfs_release_block_group(used_block_group,
7660 delalloc);
7661 refill_cluster:
7662 if (loop >= LOOP_NO_EMPTY_SIZE) {
7663 spin_unlock(&last_ptr->refill_lock);
7664 goto unclustered_alloc;
7665 }
7666
7667 aligned_cluster = max_t(unsigned long,
7668 empty_cluster + empty_size,
7669 block_group->full_stripe_len);
7670
7671 /* allocate a cluster in this block group */
7672 ret = btrfs_find_space_cluster(fs_info, block_group,
7673 last_ptr, search_start,
7674 num_bytes,
7675 aligned_cluster);
7676 if (ret == 0) {
7677 /*
7678 * now pull our allocation out of this
7679 * cluster
7680 */
7681 offset = btrfs_alloc_from_cluster(block_group,
7682 last_ptr,
7683 num_bytes,
7684 search_start,
7685 &max_extent_size);
7686 if (offset) {
7687 /* we found one, proceed */
7688 spin_unlock(&last_ptr->refill_lock);
7689 trace_btrfs_reserve_extent_cluster(fs_info,
7690 block_group, search_start,
7691 num_bytes);
7692 goto checks;
7693 }
7694 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7695 && !failed_cluster_refill) {
7696 spin_unlock(&last_ptr->refill_lock);
7697
7698 failed_cluster_refill = true;
7699 wait_block_group_cache_progress(block_group,
7700 num_bytes + empty_cluster + empty_size);
7701 goto have_block_group;
7702 }
7703
7704 /*
7705 * at this point we either didn't find a cluster
7706 * or we weren't able to allocate a block from our
7707 * cluster. Free the cluster we've been trying
7708 * to use, and go to the next block group
7709 */
7710 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7711 spin_unlock(&last_ptr->refill_lock);
7712 goto loop;
7713 }
7714
7715 unclustered_alloc:
7716 /*
7717 * We are doing an unclustered alloc, set the fragmented flag so
7718 * we don't bother trying to setup a cluster again until we get
7719 * more space.
7720 */
7721 if (unlikely(last_ptr)) {
7722 spin_lock(&last_ptr->lock);
7723 last_ptr->fragmented = 1;
7724 spin_unlock(&last_ptr->lock);
7725 }
7726 if (cached) {
7727 struct btrfs_free_space_ctl *ctl =
7728 block_group->free_space_ctl;
7729
7730 spin_lock(&ctl->tree_lock);
7731 if (ctl->free_space <
7732 num_bytes + empty_cluster + empty_size) {
7733 if (ctl->free_space > max_extent_size)
7734 max_extent_size = ctl->free_space;
7735 spin_unlock(&ctl->tree_lock);
7736 goto loop;
7737 }
7738 spin_unlock(&ctl->tree_lock);
7739 }
7740
7741 offset = btrfs_find_space_for_alloc(block_group, search_start,
7742 num_bytes, empty_size,
7743 &max_extent_size);
7744 /*
7745 * If we didn't find a chunk, and we haven't failed on this
7746 * block group before, and this block group is in the middle of
7747 * caching and we are ok with waiting, then go ahead and wait
7748 * for progress to be made, and set failed_alloc to true.
7749 *
7750 * If failed_alloc is true then we've already waited on this
7751 * block group once and should move on to the next block group.
7752 */
7753 if (!offset && !failed_alloc && !cached &&
7754 loop > LOOP_CACHING_NOWAIT) {
7755 wait_block_group_cache_progress(block_group,
7756 num_bytes + empty_size);
7757 failed_alloc = true;
7758 goto have_block_group;
7759 } else if (!offset) {
7760 goto loop;
7761 }
7762 checks:
7763 search_start = ALIGN(offset, fs_info->stripesize);
7764
7765 /* move on to the next group */
7766 if (search_start + num_bytes >
7767 block_group->key.objectid + block_group->key.offset) {
7768 btrfs_add_free_space(block_group, offset, num_bytes);
7769 goto loop;
7770 }
7771
7772 if (offset < search_start)
7773 btrfs_add_free_space(block_group, offset,
7774 search_start - offset);
7775 BUG_ON(offset > search_start);
7776
7777 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7778 num_bytes, delalloc);
7779 if (ret == -EAGAIN) {
7780 btrfs_add_free_space(block_group, offset, num_bytes);
7781 goto loop;
7782 }
7783 btrfs_inc_block_group_reservations(block_group);
7784
7785 /* we are all good, lets return */
7786 ins->objectid = search_start;
7787 ins->offset = num_bytes;
7788
7789 trace_btrfs_reserve_extent(fs_info, block_group,
7790 search_start, num_bytes);
7791 btrfs_release_block_group(block_group, delalloc);
7792 break;
7793 loop:
7794 failed_cluster_refill = false;
7795 failed_alloc = false;
7796 BUG_ON(index != get_block_group_index(block_group));
7797 btrfs_release_block_group(block_group, delalloc);
7798 }
7799 up_read(&space_info->groups_sem);
7800
7801 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7802 && !orig_have_caching_bg)
7803 orig_have_caching_bg = true;
7804
7805 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7806 goto search;
7807
7808 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7809 goto search;
7810
7811 /*
7812 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7813 * caching kthreads as we move along
7814 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7815 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7816 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7817 * again
7818 */
7819 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7820 index = 0;
7821 if (loop == LOOP_CACHING_NOWAIT) {
7822 /*
7823 * We want to skip the LOOP_CACHING_WAIT step if we
7824 * don't have any uncached bgs and we've already done a
7825 * full search through.
7826 */
7827 if (orig_have_caching_bg || !full_search)
7828 loop = LOOP_CACHING_WAIT;
7829 else
7830 loop = LOOP_ALLOC_CHUNK;
7831 } else {
7832 loop++;
7833 }
7834
7835 if (loop == LOOP_ALLOC_CHUNK) {
7836 struct btrfs_trans_handle *trans;
7837 int exist = 0;
7838
7839 trans = current->journal_info;
7840 if (trans)
7841 exist = 1;
7842 else
7843 trans = btrfs_join_transaction(root);
7844
7845 if (IS_ERR(trans)) {
7846 ret = PTR_ERR(trans);
7847 goto out;
7848 }
7849
7850 ret = do_chunk_alloc(trans, fs_info, flags,
7851 CHUNK_ALLOC_FORCE);
7852
7853 /*
7854 * If we can't allocate a new chunk we've already looped
7855 * through at least once, move on to the NO_EMPTY_SIZE
7856 * case.
7857 */
7858 if (ret == -ENOSPC)
7859 loop = LOOP_NO_EMPTY_SIZE;
7860
7861 /*
7862 * Do not bail out on ENOSPC since we
7863 * can do more things.
7864 */
7865 if (ret < 0 && ret != -ENOSPC)
7866 btrfs_abort_transaction(trans, ret);
7867 else
7868 ret = 0;
7869 if (!exist)
7870 btrfs_end_transaction(trans);
7871 if (ret)
7872 goto out;
7873 }
7874
7875 if (loop == LOOP_NO_EMPTY_SIZE) {
7876 /*
7877 * Don't loop again if we already have no empty_size and
7878 * no empty_cluster.
7879 */
7880 if (empty_size == 0 &&
7881 empty_cluster == 0) {
7882 ret = -ENOSPC;
7883 goto out;
7884 }
7885 empty_size = 0;
7886 empty_cluster = 0;
7887 }
7888
7889 goto search;
7890 } else if (!ins->objectid) {
7891 ret = -ENOSPC;
7892 } else if (ins->objectid) {
7893 if (!use_cluster && last_ptr) {
7894 spin_lock(&last_ptr->lock);
7895 last_ptr->window_start = ins->objectid;
7896 spin_unlock(&last_ptr->lock);
7897 }
7898 ret = 0;
7899 }
7900 out:
7901 if (ret == -ENOSPC) {
7902 spin_lock(&space_info->lock);
7903 space_info->max_extent_size = max_extent_size;
7904 spin_unlock(&space_info->lock);
7905 ins->offset = max_extent_size;
7906 }
7907 return ret;
7908 }
7909
7910 static void dump_space_info(struct btrfs_fs_info *fs_info,
7911 struct btrfs_space_info *info, u64 bytes,
7912 int dump_block_groups)
7913 {
7914 struct btrfs_block_group_cache *cache;
7915 int index = 0;
7916
7917 spin_lock(&info->lock);
7918 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7919 info->flags,
7920 info->total_bytes - btrfs_space_info_used(info, true),
7921 info->full ? "" : "not ");
7922 btrfs_info(fs_info,
7923 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7924 info->total_bytes, info->bytes_used, info->bytes_pinned,
7925 info->bytes_reserved, info->bytes_may_use,
7926 info->bytes_readonly);
7927 spin_unlock(&info->lock);
7928
7929 if (!dump_block_groups)
7930 return;
7931
7932 down_read(&info->groups_sem);
7933 again:
7934 list_for_each_entry(cache, &info->block_groups[index], list) {
7935 spin_lock(&cache->lock);
7936 btrfs_info(fs_info,
7937 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7938 cache->key.objectid, cache->key.offset,
7939 btrfs_block_group_used(&cache->item), cache->pinned,
7940 cache->reserved, cache->ro ? "[readonly]" : "");
7941 btrfs_dump_free_space(cache, bytes);
7942 spin_unlock(&cache->lock);
7943 }
7944 if (++index < BTRFS_NR_RAID_TYPES)
7945 goto again;
7946 up_read(&info->groups_sem);
7947 }
7948
7949 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7950 u64 num_bytes, u64 min_alloc_size,
7951 u64 empty_size, u64 hint_byte,
7952 struct btrfs_key *ins, int is_data, int delalloc)
7953 {
7954 struct btrfs_fs_info *fs_info = root->fs_info;
7955 bool final_tried = num_bytes == min_alloc_size;
7956 u64 flags;
7957 int ret;
7958
7959 flags = btrfs_get_alloc_profile(root, is_data);
7960 again:
7961 WARN_ON(num_bytes < fs_info->sectorsize);
7962 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7963 hint_byte, ins, flags, delalloc);
7964 if (!ret && !is_data) {
7965 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7966 } else if (ret == -ENOSPC) {
7967 if (!final_tried && ins->offset) {
7968 num_bytes = min(num_bytes >> 1, ins->offset);
7969 num_bytes = round_down(num_bytes,
7970 fs_info->sectorsize);
7971 num_bytes = max(num_bytes, min_alloc_size);
7972 ram_bytes = num_bytes;
7973 if (num_bytes == min_alloc_size)
7974 final_tried = true;
7975 goto again;
7976 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7977 struct btrfs_space_info *sinfo;
7978
7979 sinfo = __find_space_info(fs_info, flags);
7980 btrfs_err(fs_info,
7981 "allocation failed flags %llu, wanted %llu",
7982 flags, num_bytes);
7983 if (sinfo)
7984 dump_space_info(fs_info, sinfo, num_bytes, 1);
7985 }
7986 }
7987
7988 return ret;
7989 }
7990
7991 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7992 u64 start, u64 len,
7993 int pin, int delalloc)
7994 {
7995 struct btrfs_block_group_cache *cache;
7996 int ret = 0;
7997
7998 cache = btrfs_lookup_block_group(fs_info, start);
7999 if (!cache) {
8000 btrfs_err(fs_info, "Unable to find block group for %llu",
8001 start);
8002 return -ENOSPC;
8003 }
8004
8005 if (pin)
8006 pin_down_extent(fs_info, cache, start, len, 1);
8007 else {
8008 if (btrfs_test_opt(fs_info, DISCARD))
8009 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8010 btrfs_add_free_space(cache, start, len);
8011 btrfs_free_reserved_bytes(cache, len, delalloc);
8012 trace_btrfs_reserved_extent_free(fs_info, start, len);
8013 }
8014
8015 btrfs_put_block_group(cache);
8016 return ret;
8017 }
8018
8019 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8020 u64 start, u64 len, int delalloc)
8021 {
8022 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8023 }
8024
8025 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8026 u64 start, u64 len)
8027 {
8028 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8029 }
8030
8031 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8032 struct btrfs_fs_info *fs_info,
8033 u64 parent, u64 root_objectid,
8034 u64 flags, u64 owner, u64 offset,
8035 struct btrfs_key *ins, int ref_mod)
8036 {
8037 int ret;
8038 struct btrfs_extent_item *extent_item;
8039 struct btrfs_extent_inline_ref *iref;
8040 struct btrfs_path *path;
8041 struct extent_buffer *leaf;
8042 int type;
8043 u32 size;
8044
8045 if (parent > 0)
8046 type = BTRFS_SHARED_DATA_REF_KEY;
8047 else
8048 type = BTRFS_EXTENT_DATA_REF_KEY;
8049
8050 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8051
8052 path = btrfs_alloc_path();
8053 if (!path)
8054 return -ENOMEM;
8055
8056 path->leave_spinning = 1;
8057 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8058 ins, size);
8059 if (ret) {
8060 btrfs_free_path(path);
8061 return ret;
8062 }
8063
8064 leaf = path->nodes[0];
8065 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8066 struct btrfs_extent_item);
8067 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8068 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8069 btrfs_set_extent_flags(leaf, extent_item,
8070 flags | BTRFS_EXTENT_FLAG_DATA);
8071
8072 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8073 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8074 if (parent > 0) {
8075 struct btrfs_shared_data_ref *ref;
8076 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8077 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8078 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8079 } else {
8080 struct btrfs_extent_data_ref *ref;
8081 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8082 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8083 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8084 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8085 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8086 }
8087
8088 btrfs_mark_buffer_dirty(path->nodes[0]);
8089 btrfs_free_path(path);
8090
8091 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8092 ins->offset);
8093 if (ret)
8094 return ret;
8095
8096 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8097 if (ret) { /* -ENOENT, logic error */
8098 btrfs_err(fs_info, "update block group failed for %llu %llu",
8099 ins->objectid, ins->offset);
8100 BUG();
8101 }
8102 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8103 return ret;
8104 }
8105
8106 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8107 struct btrfs_fs_info *fs_info,
8108 u64 parent, u64 root_objectid,
8109 u64 flags, struct btrfs_disk_key *key,
8110 int level, struct btrfs_key *ins)
8111 {
8112 int ret;
8113 struct btrfs_extent_item *extent_item;
8114 struct btrfs_tree_block_info *block_info;
8115 struct btrfs_extent_inline_ref *iref;
8116 struct btrfs_path *path;
8117 struct extent_buffer *leaf;
8118 u32 size = sizeof(*extent_item) + sizeof(*iref);
8119 u64 num_bytes = ins->offset;
8120 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8121
8122 if (!skinny_metadata)
8123 size += sizeof(*block_info);
8124
8125 path = btrfs_alloc_path();
8126 if (!path) {
8127 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8128 fs_info->nodesize);
8129 return -ENOMEM;
8130 }
8131
8132 path->leave_spinning = 1;
8133 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8134 ins, size);
8135 if (ret) {
8136 btrfs_free_path(path);
8137 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8138 fs_info->nodesize);
8139 return ret;
8140 }
8141
8142 leaf = path->nodes[0];
8143 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8144 struct btrfs_extent_item);
8145 btrfs_set_extent_refs(leaf, extent_item, 1);
8146 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8147 btrfs_set_extent_flags(leaf, extent_item,
8148 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8149
8150 if (skinny_metadata) {
8151 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8152 num_bytes = fs_info->nodesize;
8153 } else {
8154 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8155 btrfs_set_tree_block_key(leaf, block_info, key);
8156 btrfs_set_tree_block_level(leaf, block_info, level);
8157 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8158 }
8159
8160 if (parent > 0) {
8161 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8162 btrfs_set_extent_inline_ref_type(leaf, iref,
8163 BTRFS_SHARED_BLOCK_REF_KEY);
8164 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8165 } else {
8166 btrfs_set_extent_inline_ref_type(leaf, iref,
8167 BTRFS_TREE_BLOCK_REF_KEY);
8168 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8169 }
8170
8171 btrfs_mark_buffer_dirty(leaf);
8172 btrfs_free_path(path);
8173
8174 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8175 num_bytes);
8176 if (ret)
8177 return ret;
8178
8179 ret = update_block_group(trans, fs_info, ins->objectid,
8180 fs_info->nodesize, 1);
8181 if (ret) { /* -ENOENT, logic error */
8182 btrfs_err(fs_info, "update block group failed for %llu %llu",
8183 ins->objectid, ins->offset);
8184 BUG();
8185 }
8186
8187 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8188 fs_info->nodesize);
8189 return ret;
8190 }
8191
8192 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8193 u64 root_objectid, u64 owner,
8194 u64 offset, u64 ram_bytes,
8195 struct btrfs_key *ins)
8196 {
8197 struct btrfs_fs_info *fs_info = trans->fs_info;
8198 int ret;
8199
8200 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8201
8202 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8203 ins->offset, 0,
8204 root_objectid, owner, offset,
8205 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8206 return ret;
8207 }
8208
8209 /*
8210 * this is used by the tree logging recovery code. It records that
8211 * an extent has been allocated and makes sure to clear the free
8212 * space cache bits as well
8213 */
8214 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8215 struct btrfs_fs_info *fs_info,
8216 u64 root_objectid, u64 owner, u64 offset,
8217 struct btrfs_key *ins)
8218 {
8219 int ret;
8220 struct btrfs_block_group_cache *block_group;
8221 struct btrfs_space_info *space_info;
8222
8223 /*
8224 * Mixed block groups will exclude before processing the log so we only
8225 * need to do the exclude dance if this fs isn't mixed.
8226 */
8227 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8228 ret = __exclude_logged_extent(fs_info, ins->objectid,
8229 ins->offset);
8230 if (ret)
8231 return ret;
8232 }
8233
8234 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8235 if (!block_group)
8236 return -EINVAL;
8237
8238 space_info = block_group->space_info;
8239 spin_lock(&space_info->lock);
8240 spin_lock(&block_group->lock);
8241 space_info->bytes_reserved += ins->offset;
8242 block_group->reserved += ins->offset;
8243 spin_unlock(&block_group->lock);
8244 spin_unlock(&space_info->lock);
8245
8246 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8247 0, owner, offset, ins, 1);
8248 btrfs_put_block_group(block_group);
8249 return ret;
8250 }
8251
8252 static struct extent_buffer *
8253 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8254 u64 bytenr, int level)
8255 {
8256 struct btrfs_fs_info *fs_info = root->fs_info;
8257 struct extent_buffer *buf;
8258
8259 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8260 if (IS_ERR(buf))
8261 return buf;
8262
8263 btrfs_set_header_generation(buf, trans->transid);
8264 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8265 btrfs_tree_lock(buf);
8266 clean_tree_block(fs_info, buf);
8267 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8268
8269 btrfs_set_lock_blocking(buf);
8270 set_extent_buffer_uptodate(buf);
8271
8272 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8273 buf->log_index = root->log_transid % 2;
8274 /*
8275 * we allow two log transactions at a time, use different
8276 * EXENT bit to differentiate dirty pages.
8277 */
8278 if (buf->log_index == 0)
8279 set_extent_dirty(&root->dirty_log_pages, buf->start,
8280 buf->start + buf->len - 1, GFP_NOFS);
8281 else
8282 set_extent_new(&root->dirty_log_pages, buf->start,
8283 buf->start + buf->len - 1);
8284 } else {
8285 buf->log_index = -1;
8286 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8287 buf->start + buf->len - 1, GFP_NOFS);
8288 }
8289 trans->dirty = true;
8290 /* this returns a buffer locked for blocking */
8291 return buf;
8292 }
8293
8294 static struct btrfs_block_rsv *
8295 use_block_rsv(struct btrfs_trans_handle *trans,
8296 struct btrfs_root *root, u32 blocksize)
8297 {
8298 struct btrfs_fs_info *fs_info = root->fs_info;
8299 struct btrfs_block_rsv *block_rsv;
8300 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8301 int ret;
8302 bool global_updated = false;
8303
8304 block_rsv = get_block_rsv(trans, root);
8305
8306 if (unlikely(block_rsv->size == 0))
8307 goto try_reserve;
8308 again:
8309 ret = block_rsv_use_bytes(block_rsv, blocksize);
8310 if (!ret)
8311 return block_rsv;
8312
8313 if (block_rsv->failfast)
8314 return ERR_PTR(ret);
8315
8316 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8317 global_updated = true;
8318 update_global_block_rsv(fs_info);
8319 goto again;
8320 }
8321
8322 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8323 static DEFINE_RATELIMIT_STATE(_rs,
8324 DEFAULT_RATELIMIT_INTERVAL * 10,
8325 /*DEFAULT_RATELIMIT_BURST*/ 1);
8326 if (__ratelimit(&_rs))
8327 WARN(1, KERN_DEBUG
8328 "BTRFS: block rsv returned %d\n", ret);
8329 }
8330 try_reserve:
8331 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8332 BTRFS_RESERVE_NO_FLUSH);
8333 if (!ret)
8334 return block_rsv;
8335 /*
8336 * If we couldn't reserve metadata bytes try and use some from
8337 * the global reserve if its space type is the same as the global
8338 * reservation.
8339 */
8340 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8341 block_rsv->space_info == global_rsv->space_info) {
8342 ret = block_rsv_use_bytes(global_rsv, blocksize);
8343 if (!ret)
8344 return global_rsv;
8345 }
8346 return ERR_PTR(ret);
8347 }
8348
8349 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8350 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8351 {
8352 block_rsv_add_bytes(block_rsv, blocksize, 0);
8353 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8354 }
8355
8356 /*
8357 * finds a free extent and does all the dirty work required for allocation
8358 * returns the tree buffer or an ERR_PTR on error.
8359 */
8360 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8361 struct btrfs_root *root,
8362 u64 parent, u64 root_objectid,
8363 const struct btrfs_disk_key *key,
8364 int level, u64 hint,
8365 u64 empty_size)
8366 {
8367 struct btrfs_fs_info *fs_info = root->fs_info;
8368 struct btrfs_key ins;
8369 struct btrfs_block_rsv *block_rsv;
8370 struct extent_buffer *buf;
8371 struct btrfs_delayed_extent_op *extent_op;
8372 u64 flags = 0;
8373 int ret;
8374 u32 blocksize = fs_info->nodesize;
8375 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8376
8377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8378 if (btrfs_is_testing(fs_info)) {
8379 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8380 level);
8381 if (!IS_ERR(buf))
8382 root->alloc_bytenr += blocksize;
8383 return buf;
8384 }
8385 #endif
8386
8387 block_rsv = use_block_rsv(trans, root, blocksize);
8388 if (IS_ERR(block_rsv))
8389 return ERR_CAST(block_rsv);
8390
8391 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8392 empty_size, hint, &ins, 0, 0);
8393 if (ret)
8394 goto out_unuse;
8395
8396 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8397 if (IS_ERR(buf)) {
8398 ret = PTR_ERR(buf);
8399 goto out_free_reserved;
8400 }
8401
8402 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8403 if (parent == 0)
8404 parent = ins.objectid;
8405 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8406 } else
8407 BUG_ON(parent > 0);
8408
8409 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8410 extent_op = btrfs_alloc_delayed_extent_op();
8411 if (!extent_op) {
8412 ret = -ENOMEM;
8413 goto out_free_buf;
8414 }
8415 if (key)
8416 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8417 else
8418 memset(&extent_op->key, 0, sizeof(extent_op->key));
8419 extent_op->flags_to_set = flags;
8420 extent_op->update_key = skinny_metadata ? false : true;
8421 extent_op->update_flags = true;
8422 extent_op->is_data = false;
8423 extent_op->level = level;
8424
8425 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8426 ins.objectid, ins.offset,
8427 parent, root_objectid, level,
8428 BTRFS_ADD_DELAYED_EXTENT,
8429 extent_op);
8430 if (ret)
8431 goto out_free_delayed;
8432 }
8433 return buf;
8434
8435 out_free_delayed:
8436 btrfs_free_delayed_extent_op(extent_op);
8437 out_free_buf:
8438 free_extent_buffer(buf);
8439 out_free_reserved:
8440 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8441 out_unuse:
8442 unuse_block_rsv(fs_info, block_rsv, blocksize);
8443 return ERR_PTR(ret);
8444 }
8445
8446 struct walk_control {
8447 u64 refs[BTRFS_MAX_LEVEL];
8448 u64 flags[BTRFS_MAX_LEVEL];
8449 struct btrfs_key update_progress;
8450 int stage;
8451 int level;
8452 int shared_level;
8453 int update_ref;
8454 int keep_locks;
8455 int reada_slot;
8456 int reada_count;
8457 int for_reloc;
8458 };
8459
8460 #define DROP_REFERENCE 1
8461 #define UPDATE_BACKREF 2
8462
8463 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8464 struct btrfs_root *root,
8465 struct walk_control *wc,
8466 struct btrfs_path *path)
8467 {
8468 struct btrfs_fs_info *fs_info = root->fs_info;
8469 u64 bytenr;
8470 u64 generation;
8471 u64 refs;
8472 u64 flags;
8473 u32 nritems;
8474 struct btrfs_key key;
8475 struct extent_buffer *eb;
8476 int ret;
8477 int slot;
8478 int nread = 0;
8479
8480 if (path->slots[wc->level] < wc->reada_slot) {
8481 wc->reada_count = wc->reada_count * 2 / 3;
8482 wc->reada_count = max(wc->reada_count, 2);
8483 } else {
8484 wc->reada_count = wc->reada_count * 3 / 2;
8485 wc->reada_count = min_t(int, wc->reada_count,
8486 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8487 }
8488
8489 eb = path->nodes[wc->level];
8490 nritems = btrfs_header_nritems(eb);
8491
8492 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8493 if (nread >= wc->reada_count)
8494 break;
8495
8496 cond_resched();
8497 bytenr = btrfs_node_blockptr(eb, slot);
8498 generation = btrfs_node_ptr_generation(eb, slot);
8499
8500 if (slot == path->slots[wc->level])
8501 goto reada;
8502
8503 if (wc->stage == UPDATE_BACKREF &&
8504 generation <= root->root_key.offset)
8505 continue;
8506
8507 /* We don't lock the tree block, it's OK to be racy here */
8508 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8509 wc->level - 1, 1, &refs,
8510 &flags);
8511 /* We don't care about errors in readahead. */
8512 if (ret < 0)
8513 continue;
8514 BUG_ON(refs == 0);
8515
8516 if (wc->stage == DROP_REFERENCE) {
8517 if (refs == 1)
8518 goto reada;
8519
8520 if (wc->level == 1 &&
8521 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8522 continue;
8523 if (!wc->update_ref ||
8524 generation <= root->root_key.offset)
8525 continue;
8526 btrfs_node_key_to_cpu(eb, &key, slot);
8527 ret = btrfs_comp_cpu_keys(&key,
8528 &wc->update_progress);
8529 if (ret < 0)
8530 continue;
8531 } else {
8532 if (wc->level == 1 &&
8533 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8534 continue;
8535 }
8536 reada:
8537 readahead_tree_block(fs_info, bytenr);
8538 nread++;
8539 }
8540 wc->reada_slot = slot;
8541 }
8542
8543 /*
8544 * helper to process tree block while walking down the tree.
8545 *
8546 * when wc->stage == UPDATE_BACKREF, this function updates
8547 * back refs for pointers in the block.
8548 *
8549 * NOTE: return value 1 means we should stop walking down.
8550 */
8551 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8552 struct btrfs_root *root,
8553 struct btrfs_path *path,
8554 struct walk_control *wc, int lookup_info)
8555 {
8556 struct btrfs_fs_info *fs_info = root->fs_info;
8557 int level = wc->level;
8558 struct extent_buffer *eb = path->nodes[level];
8559 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8560 int ret;
8561
8562 if (wc->stage == UPDATE_BACKREF &&
8563 btrfs_header_owner(eb) != root->root_key.objectid)
8564 return 1;
8565
8566 /*
8567 * when reference count of tree block is 1, it won't increase
8568 * again. once full backref flag is set, we never clear it.
8569 */
8570 if (lookup_info &&
8571 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8572 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8573 BUG_ON(!path->locks[level]);
8574 ret = btrfs_lookup_extent_info(trans, fs_info,
8575 eb->start, level, 1,
8576 &wc->refs[level],
8577 &wc->flags[level]);
8578 BUG_ON(ret == -ENOMEM);
8579 if (ret)
8580 return ret;
8581 BUG_ON(wc->refs[level] == 0);
8582 }
8583
8584 if (wc->stage == DROP_REFERENCE) {
8585 if (wc->refs[level] > 1)
8586 return 1;
8587
8588 if (path->locks[level] && !wc->keep_locks) {
8589 btrfs_tree_unlock_rw(eb, path->locks[level]);
8590 path->locks[level] = 0;
8591 }
8592 return 0;
8593 }
8594
8595 /* wc->stage == UPDATE_BACKREF */
8596 if (!(wc->flags[level] & flag)) {
8597 BUG_ON(!path->locks[level]);
8598 ret = btrfs_inc_ref(trans, root, eb, 1);
8599 BUG_ON(ret); /* -ENOMEM */
8600 ret = btrfs_dec_ref(trans, root, eb, 0);
8601 BUG_ON(ret); /* -ENOMEM */
8602 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8603 eb->len, flag,
8604 btrfs_header_level(eb), 0);
8605 BUG_ON(ret); /* -ENOMEM */
8606 wc->flags[level] |= flag;
8607 }
8608
8609 /*
8610 * the block is shared by multiple trees, so it's not good to
8611 * keep the tree lock
8612 */
8613 if (path->locks[level] && level > 0) {
8614 btrfs_tree_unlock_rw(eb, path->locks[level]);
8615 path->locks[level] = 0;
8616 }
8617 return 0;
8618 }
8619
8620 /*
8621 * helper to process tree block pointer.
8622 *
8623 * when wc->stage == DROP_REFERENCE, this function checks
8624 * reference count of the block pointed to. if the block
8625 * is shared and we need update back refs for the subtree
8626 * rooted at the block, this function changes wc->stage to
8627 * UPDATE_BACKREF. if the block is shared and there is no
8628 * need to update back, this function drops the reference
8629 * to the block.
8630 *
8631 * NOTE: return value 1 means we should stop walking down.
8632 */
8633 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8634 struct btrfs_root *root,
8635 struct btrfs_path *path,
8636 struct walk_control *wc, int *lookup_info)
8637 {
8638 struct btrfs_fs_info *fs_info = root->fs_info;
8639 u64 bytenr;
8640 u64 generation;
8641 u64 parent;
8642 u32 blocksize;
8643 struct btrfs_key key;
8644 struct extent_buffer *next;
8645 int level = wc->level;
8646 int reada = 0;
8647 int ret = 0;
8648 bool need_account = false;
8649
8650 generation = btrfs_node_ptr_generation(path->nodes[level],
8651 path->slots[level]);
8652 /*
8653 * if the lower level block was created before the snapshot
8654 * was created, we know there is no need to update back refs
8655 * for the subtree
8656 */
8657 if (wc->stage == UPDATE_BACKREF &&
8658 generation <= root->root_key.offset) {
8659 *lookup_info = 1;
8660 return 1;
8661 }
8662
8663 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8664 blocksize = fs_info->nodesize;
8665
8666 next = find_extent_buffer(fs_info, bytenr);
8667 if (!next) {
8668 next = btrfs_find_create_tree_block(fs_info, bytenr);
8669 if (IS_ERR(next))
8670 return PTR_ERR(next);
8671
8672 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8673 level - 1);
8674 reada = 1;
8675 }
8676 btrfs_tree_lock(next);
8677 btrfs_set_lock_blocking(next);
8678
8679 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8680 &wc->refs[level - 1],
8681 &wc->flags[level - 1]);
8682 if (ret < 0)
8683 goto out_unlock;
8684
8685 if (unlikely(wc->refs[level - 1] == 0)) {
8686 btrfs_err(fs_info, "Missing references.");
8687 ret = -EIO;
8688 goto out_unlock;
8689 }
8690 *lookup_info = 0;
8691
8692 if (wc->stage == DROP_REFERENCE) {
8693 if (wc->refs[level - 1] > 1) {
8694 need_account = true;
8695 if (level == 1 &&
8696 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8697 goto skip;
8698
8699 if (!wc->update_ref ||
8700 generation <= root->root_key.offset)
8701 goto skip;
8702
8703 btrfs_node_key_to_cpu(path->nodes[level], &key,
8704 path->slots[level]);
8705 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8706 if (ret < 0)
8707 goto skip;
8708
8709 wc->stage = UPDATE_BACKREF;
8710 wc->shared_level = level - 1;
8711 }
8712 } else {
8713 if (level == 1 &&
8714 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8715 goto skip;
8716 }
8717
8718 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8719 btrfs_tree_unlock(next);
8720 free_extent_buffer(next);
8721 next = NULL;
8722 *lookup_info = 1;
8723 }
8724
8725 if (!next) {
8726 if (reada && level == 1)
8727 reada_walk_down(trans, root, wc, path);
8728 next = read_tree_block(fs_info, bytenr, generation);
8729 if (IS_ERR(next)) {
8730 return PTR_ERR(next);
8731 } else if (!extent_buffer_uptodate(next)) {
8732 free_extent_buffer(next);
8733 return -EIO;
8734 }
8735 btrfs_tree_lock(next);
8736 btrfs_set_lock_blocking(next);
8737 }
8738
8739 level--;
8740 ASSERT(level == btrfs_header_level(next));
8741 if (level != btrfs_header_level(next)) {
8742 btrfs_err(root->fs_info, "mismatched level");
8743 ret = -EIO;
8744 goto out_unlock;
8745 }
8746 path->nodes[level] = next;
8747 path->slots[level] = 0;
8748 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8749 wc->level = level;
8750 if (wc->level == 1)
8751 wc->reada_slot = 0;
8752 return 0;
8753 skip:
8754 wc->refs[level - 1] = 0;
8755 wc->flags[level - 1] = 0;
8756 if (wc->stage == DROP_REFERENCE) {
8757 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8758 parent = path->nodes[level]->start;
8759 } else {
8760 ASSERT(root->root_key.objectid ==
8761 btrfs_header_owner(path->nodes[level]));
8762 if (root->root_key.objectid !=
8763 btrfs_header_owner(path->nodes[level])) {
8764 btrfs_err(root->fs_info,
8765 "mismatched block owner");
8766 ret = -EIO;
8767 goto out_unlock;
8768 }
8769 parent = 0;
8770 }
8771
8772 if (need_account) {
8773 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8774 generation, level - 1);
8775 if (ret) {
8776 btrfs_err_rl(fs_info,
8777 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8778 ret);
8779 }
8780 }
8781 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8782 parent, root->root_key.objectid,
8783 level - 1, 0);
8784 if (ret)
8785 goto out_unlock;
8786 }
8787
8788 *lookup_info = 1;
8789 ret = 1;
8790
8791 out_unlock:
8792 btrfs_tree_unlock(next);
8793 free_extent_buffer(next);
8794
8795 return ret;
8796 }
8797
8798 /*
8799 * helper to process tree block while walking up the tree.
8800 *
8801 * when wc->stage == DROP_REFERENCE, this function drops
8802 * reference count on the block.
8803 *
8804 * when wc->stage == UPDATE_BACKREF, this function changes
8805 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8806 * to UPDATE_BACKREF previously while processing the block.
8807 *
8808 * NOTE: return value 1 means we should stop walking up.
8809 */
8810 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8811 struct btrfs_root *root,
8812 struct btrfs_path *path,
8813 struct walk_control *wc)
8814 {
8815 struct btrfs_fs_info *fs_info = root->fs_info;
8816 int ret;
8817 int level = wc->level;
8818 struct extent_buffer *eb = path->nodes[level];
8819 u64 parent = 0;
8820
8821 if (wc->stage == UPDATE_BACKREF) {
8822 BUG_ON(wc->shared_level < level);
8823 if (level < wc->shared_level)
8824 goto out;
8825
8826 ret = find_next_key(path, level + 1, &wc->update_progress);
8827 if (ret > 0)
8828 wc->update_ref = 0;
8829
8830 wc->stage = DROP_REFERENCE;
8831 wc->shared_level = -1;
8832 path->slots[level] = 0;
8833
8834 /*
8835 * check reference count again if the block isn't locked.
8836 * we should start walking down the tree again if reference
8837 * count is one.
8838 */
8839 if (!path->locks[level]) {
8840 BUG_ON(level == 0);
8841 btrfs_tree_lock(eb);
8842 btrfs_set_lock_blocking(eb);
8843 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8844
8845 ret = btrfs_lookup_extent_info(trans, fs_info,
8846 eb->start, level, 1,
8847 &wc->refs[level],
8848 &wc->flags[level]);
8849 if (ret < 0) {
8850 btrfs_tree_unlock_rw(eb, path->locks[level]);
8851 path->locks[level] = 0;
8852 return ret;
8853 }
8854 BUG_ON(wc->refs[level] == 0);
8855 if (wc->refs[level] == 1) {
8856 btrfs_tree_unlock_rw(eb, path->locks[level]);
8857 path->locks[level] = 0;
8858 return 1;
8859 }
8860 }
8861 }
8862
8863 /* wc->stage == DROP_REFERENCE */
8864 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8865
8866 if (wc->refs[level] == 1) {
8867 if (level == 0) {
8868 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8869 ret = btrfs_dec_ref(trans, root, eb, 1);
8870 else
8871 ret = btrfs_dec_ref(trans, root, eb, 0);
8872 BUG_ON(ret); /* -ENOMEM */
8873 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8874 if (ret) {
8875 btrfs_err_rl(fs_info,
8876 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8877 ret);
8878 }
8879 }
8880 /* make block locked assertion in clean_tree_block happy */
8881 if (!path->locks[level] &&
8882 btrfs_header_generation(eb) == trans->transid) {
8883 btrfs_tree_lock(eb);
8884 btrfs_set_lock_blocking(eb);
8885 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8886 }
8887 clean_tree_block(fs_info, eb);
8888 }
8889
8890 if (eb == root->node) {
8891 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8892 parent = eb->start;
8893 else
8894 BUG_ON(root->root_key.objectid !=
8895 btrfs_header_owner(eb));
8896 } else {
8897 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8898 parent = path->nodes[level + 1]->start;
8899 else
8900 BUG_ON(root->root_key.objectid !=
8901 btrfs_header_owner(path->nodes[level + 1]));
8902 }
8903
8904 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8905 out:
8906 wc->refs[level] = 0;
8907 wc->flags[level] = 0;
8908 return 0;
8909 }
8910
8911 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8912 struct btrfs_root *root,
8913 struct btrfs_path *path,
8914 struct walk_control *wc)
8915 {
8916 int level = wc->level;
8917 int lookup_info = 1;
8918 int ret;
8919
8920 while (level >= 0) {
8921 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8922 if (ret > 0)
8923 break;
8924
8925 if (level == 0)
8926 break;
8927
8928 if (path->slots[level] >=
8929 btrfs_header_nritems(path->nodes[level]))
8930 break;
8931
8932 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8933 if (ret > 0) {
8934 path->slots[level]++;
8935 continue;
8936 } else if (ret < 0)
8937 return ret;
8938 level = wc->level;
8939 }
8940 return 0;
8941 }
8942
8943 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8944 struct btrfs_root *root,
8945 struct btrfs_path *path,
8946 struct walk_control *wc, int max_level)
8947 {
8948 int level = wc->level;
8949 int ret;
8950
8951 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8952 while (level < max_level && path->nodes[level]) {
8953 wc->level = level;
8954 if (path->slots[level] + 1 <
8955 btrfs_header_nritems(path->nodes[level])) {
8956 path->slots[level]++;
8957 return 0;
8958 } else {
8959 ret = walk_up_proc(trans, root, path, wc);
8960 if (ret > 0)
8961 return 0;
8962
8963 if (path->locks[level]) {
8964 btrfs_tree_unlock_rw(path->nodes[level],
8965 path->locks[level]);
8966 path->locks[level] = 0;
8967 }
8968 free_extent_buffer(path->nodes[level]);
8969 path->nodes[level] = NULL;
8970 level++;
8971 }
8972 }
8973 return 1;
8974 }
8975
8976 /*
8977 * drop a subvolume tree.
8978 *
8979 * this function traverses the tree freeing any blocks that only
8980 * referenced by the tree.
8981 *
8982 * when a shared tree block is found. this function decreases its
8983 * reference count by one. if update_ref is true, this function
8984 * also make sure backrefs for the shared block and all lower level
8985 * blocks are properly updated.
8986 *
8987 * If called with for_reloc == 0, may exit early with -EAGAIN
8988 */
8989 int btrfs_drop_snapshot(struct btrfs_root *root,
8990 struct btrfs_block_rsv *block_rsv, int update_ref,
8991 int for_reloc)
8992 {
8993 struct btrfs_fs_info *fs_info = root->fs_info;
8994 struct btrfs_path *path;
8995 struct btrfs_trans_handle *trans;
8996 struct btrfs_root *tree_root = fs_info->tree_root;
8997 struct btrfs_root_item *root_item = &root->root_item;
8998 struct walk_control *wc;
8999 struct btrfs_key key;
9000 int err = 0;
9001 int ret;
9002 int level;
9003 bool root_dropped = false;
9004
9005 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9006
9007 path = btrfs_alloc_path();
9008 if (!path) {
9009 err = -ENOMEM;
9010 goto out;
9011 }
9012
9013 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9014 if (!wc) {
9015 btrfs_free_path(path);
9016 err = -ENOMEM;
9017 goto out;
9018 }
9019
9020 trans = btrfs_start_transaction(tree_root, 0);
9021 if (IS_ERR(trans)) {
9022 err = PTR_ERR(trans);
9023 goto out_free;
9024 }
9025
9026 if (block_rsv)
9027 trans->block_rsv = block_rsv;
9028
9029 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9030 level = btrfs_header_level(root->node);
9031 path->nodes[level] = btrfs_lock_root_node(root);
9032 btrfs_set_lock_blocking(path->nodes[level]);
9033 path->slots[level] = 0;
9034 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9035 memset(&wc->update_progress, 0,
9036 sizeof(wc->update_progress));
9037 } else {
9038 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9039 memcpy(&wc->update_progress, &key,
9040 sizeof(wc->update_progress));
9041
9042 level = root_item->drop_level;
9043 BUG_ON(level == 0);
9044 path->lowest_level = level;
9045 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9046 path->lowest_level = 0;
9047 if (ret < 0) {
9048 err = ret;
9049 goto out_end_trans;
9050 }
9051 WARN_ON(ret > 0);
9052
9053 /*
9054 * unlock our path, this is safe because only this
9055 * function is allowed to delete this snapshot
9056 */
9057 btrfs_unlock_up_safe(path, 0);
9058
9059 level = btrfs_header_level(root->node);
9060 while (1) {
9061 btrfs_tree_lock(path->nodes[level]);
9062 btrfs_set_lock_blocking(path->nodes[level]);
9063 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9064
9065 ret = btrfs_lookup_extent_info(trans, fs_info,
9066 path->nodes[level]->start,
9067 level, 1, &wc->refs[level],
9068 &wc->flags[level]);
9069 if (ret < 0) {
9070 err = ret;
9071 goto out_end_trans;
9072 }
9073 BUG_ON(wc->refs[level] == 0);
9074
9075 if (level == root_item->drop_level)
9076 break;
9077
9078 btrfs_tree_unlock(path->nodes[level]);
9079 path->locks[level] = 0;
9080 WARN_ON(wc->refs[level] != 1);
9081 level--;
9082 }
9083 }
9084
9085 wc->level = level;
9086 wc->shared_level = -1;
9087 wc->stage = DROP_REFERENCE;
9088 wc->update_ref = update_ref;
9089 wc->keep_locks = 0;
9090 wc->for_reloc = for_reloc;
9091 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9092
9093 while (1) {
9094
9095 ret = walk_down_tree(trans, root, path, wc);
9096 if (ret < 0) {
9097 err = ret;
9098 break;
9099 }
9100
9101 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9102 if (ret < 0) {
9103 err = ret;
9104 break;
9105 }
9106
9107 if (ret > 0) {
9108 BUG_ON(wc->stage != DROP_REFERENCE);
9109 break;
9110 }
9111
9112 if (wc->stage == DROP_REFERENCE) {
9113 level = wc->level;
9114 btrfs_node_key(path->nodes[level],
9115 &root_item->drop_progress,
9116 path->slots[level]);
9117 root_item->drop_level = level;
9118 }
9119
9120 BUG_ON(wc->level == 0);
9121 if (btrfs_should_end_transaction(trans) ||
9122 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9123 ret = btrfs_update_root(trans, tree_root,
9124 &root->root_key,
9125 root_item);
9126 if (ret) {
9127 btrfs_abort_transaction(trans, ret);
9128 err = ret;
9129 goto out_end_trans;
9130 }
9131
9132 btrfs_end_transaction_throttle(trans);
9133 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9134 btrfs_debug(fs_info,
9135 "drop snapshot early exit");
9136 err = -EAGAIN;
9137 goto out_free;
9138 }
9139
9140 trans = btrfs_start_transaction(tree_root, 0);
9141 if (IS_ERR(trans)) {
9142 err = PTR_ERR(trans);
9143 goto out_free;
9144 }
9145 if (block_rsv)
9146 trans->block_rsv = block_rsv;
9147 }
9148 }
9149 btrfs_release_path(path);
9150 if (err)
9151 goto out_end_trans;
9152
9153 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9154 if (ret) {
9155 btrfs_abort_transaction(trans, ret);
9156 goto out_end_trans;
9157 }
9158
9159 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9160 ret = btrfs_find_root(tree_root, &root->root_key, path,
9161 NULL, NULL);
9162 if (ret < 0) {
9163 btrfs_abort_transaction(trans, ret);
9164 err = ret;
9165 goto out_end_trans;
9166 } else if (ret > 0) {
9167 /* if we fail to delete the orphan item this time
9168 * around, it'll get picked up the next time.
9169 *
9170 * The most common failure here is just -ENOENT.
9171 */
9172 btrfs_del_orphan_item(trans, tree_root,
9173 root->root_key.objectid);
9174 }
9175 }
9176
9177 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9178 btrfs_add_dropped_root(trans, root);
9179 } else {
9180 free_extent_buffer(root->node);
9181 free_extent_buffer(root->commit_root);
9182 btrfs_put_fs_root(root);
9183 }
9184 root_dropped = true;
9185 out_end_trans:
9186 btrfs_end_transaction_throttle(trans);
9187 out_free:
9188 kfree(wc);
9189 btrfs_free_path(path);
9190 out:
9191 /*
9192 * So if we need to stop dropping the snapshot for whatever reason we
9193 * need to make sure to add it back to the dead root list so that we
9194 * keep trying to do the work later. This also cleans up roots if we
9195 * don't have it in the radix (like when we recover after a power fail
9196 * or unmount) so we don't leak memory.
9197 */
9198 if (!for_reloc && root_dropped == false)
9199 btrfs_add_dead_root(root);
9200 if (err && err != -EAGAIN)
9201 btrfs_handle_fs_error(fs_info, err, NULL);
9202 return err;
9203 }
9204
9205 /*
9206 * drop subtree rooted at tree block 'node'.
9207 *
9208 * NOTE: this function will unlock and release tree block 'node'
9209 * only used by relocation code
9210 */
9211 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9212 struct btrfs_root *root,
9213 struct extent_buffer *node,
9214 struct extent_buffer *parent)
9215 {
9216 struct btrfs_fs_info *fs_info = root->fs_info;
9217 struct btrfs_path *path;
9218 struct walk_control *wc;
9219 int level;
9220 int parent_level;
9221 int ret = 0;
9222 int wret;
9223
9224 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9225
9226 path = btrfs_alloc_path();
9227 if (!path)
9228 return -ENOMEM;
9229
9230 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9231 if (!wc) {
9232 btrfs_free_path(path);
9233 return -ENOMEM;
9234 }
9235
9236 btrfs_assert_tree_locked(parent);
9237 parent_level = btrfs_header_level(parent);
9238 extent_buffer_get(parent);
9239 path->nodes[parent_level] = parent;
9240 path->slots[parent_level] = btrfs_header_nritems(parent);
9241
9242 btrfs_assert_tree_locked(node);
9243 level = btrfs_header_level(node);
9244 path->nodes[level] = node;
9245 path->slots[level] = 0;
9246 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9247
9248 wc->refs[parent_level] = 1;
9249 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9250 wc->level = level;
9251 wc->shared_level = -1;
9252 wc->stage = DROP_REFERENCE;
9253 wc->update_ref = 0;
9254 wc->keep_locks = 1;
9255 wc->for_reloc = 1;
9256 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9257
9258 while (1) {
9259 wret = walk_down_tree(trans, root, path, wc);
9260 if (wret < 0) {
9261 ret = wret;
9262 break;
9263 }
9264
9265 wret = walk_up_tree(trans, root, path, wc, parent_level);
9266 if (wret < 0)
9267 ret = wret;
9268 if (wret != 0)
9269 break;
9270 }
9271
9272 kfree(wc);
9273 btrfs_free_path(path);
9274 return ret;
9275 }
9276
9277 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9278 {
9279 u64 num_devices;
9280 u64 stripped;
9281
9282 /*
9283 * if restripe for this chunk_type is on pick target profile and
9284 * return, otherwise do the usual balance
9285 */
9286 stripped = get_restripe_target(fs_info, flags);
9287 if (stripped)
9288 return extended_to_chunk(stripped);
9289
9290 num_devices = fs_info->fs_devices->rw_devices;
9291
9292 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9293 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9294 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9295
9296 if (num_devices == 1) {
9297 stripped |= BTRFS_BLOCK_GROUP_DUP;
9298 stripped = flags & ~stripped;
9299
9300 /* turn raid0 into single device chunks */
9301 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9302 return stripped;
9303
9304 /* turn mirroring into duplication */
9305 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9306 BTRFS_BLOCK_GROUP_RAID10))
9307 return stripped | BTRFS_BLOCK_GROUP_DUP;
9308 } else {
9309 /* they already had raid on here, just return */
9310 if (flags & stripped)
9311 return flags;
9312
9313 stripped |= BTRFS_BLOCK_GROUP_DUP;
9314 stripped = flags & ~stripped;
9315
9316 /* switch duplicated blocks with raid1 */
9317 if (flags & BTRFS_BLOCK_GROUP_DUP)
9318 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9319
9320 /* this is drive concat, leave it alone */
9321 }
9322
9323 return flags;
9324 }
9325
9326 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9327 {
9328 struct btrfs_space_info *sinfo = cache->space_info;
9329 u64 num_bytes;
9330 u64 min_allocable_bytes;
9331 int ret = -ENOSPC;
9332
9333 /*
9334 * We need some metadata space and system metadata space for
9335 * allocating chunks in some corner cases until we force to set
9336 * it to be readonly.
9337 */
9338 if ((sinfo->flags &
9339 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9340 !force)
9341 min_allocable_bytes = SZ_1M;
9342 else
9343 min_allocable_bytes = 0;
9344
9345 spin_lock(&sinfo->lock);
9346 spin_lock(&cache->lock);
9347
9348 if (cache->ro) {
9349 cache->ro++;
9350 ret = 0;
9351 goto out;
9352 }
9353
9354 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9355 cache->bytes_super - btrfs_block_group_used(&cache->item);
9356
9357 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9358 min_allocable_bytes <= sinfo->total_bytes) {
9359 sinfo->bytes_readonly += num_bytes;
9360 cache->ro++;
9361 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9362 ret = 0;
9363 }
9364 out:
9365 spin_unlock(&cache->lock);
9366 spin_unlock(&sinfo->lock);
9367 return ret;
9368 }
9369
9370 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9371 struct btrfs_block_group_cache *cache)
9372
9373 {
9374 struct btrfs_trans_handle *trans;
9375 u64 alloc_flags;
9376 int ret;
9377
9378 again:
9379 trans = btrfs_join_transaction(fs_info->extent_root);
9380 if (IS_ERR(trans))
9381 return PTR_ERR(trans);
9382
9383 /*
9384 * we're not allowed to set block groups readonly after the dirty
9385 * block groups cache has started writing. If it already started,
9386 * back off and let this transaction commit
9387 */
9388 mutex_lock(&fs_info->ro_block_group_mutex);
9389 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9390 u64 transid = trans->transid;
9391
9392 mutex_unlock(&fs_info->ro_block_group_mutex);
9393 btrfs_end_transaction(trans);
9394
9395 ret = btrfs_wait_for_commit(fs_info, transid);
9396 if (ret)
9397 return ret;
9398 goto again;
9399 }
9400
9401 /*
9402 * if we are changing raid levels, try to allocate a corresponding
9403 * block group with the new raid level.
9404 */
9405 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9406 if (alloc_flags != cache->flags) {
9407 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9408 CHUNK_ALLOC_FORCE);
9409 /*
9410 * ENOSPC is allowed here, we may have enough space
9411 * already allocated at the new raid level to
9412 * carry on
9413 */
9414 if (ret == -ENOSPC)
9415 ret = 0;
9416 if (ret < 0)
9417 goto out;
9418 }
9419
9420 ret = inc_block_group_ro(cache, 0);
9421 if (!ret)
9422 goto out;
9423 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9424 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9425 CHUNK_ALLOC_FORCE);
9426 if (ret < 0)
9427 goto out;
9428 ret = inc_block_group_ro(cache, 0);
9429 out:
9430 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9431 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9432 mutex_lock(&fs_info->chunk_mutex);
9433 check_system_chunk(trans, fs_info, alloc_flags);
9434 mutex_unlock(&fs_info->chunk_mutex);
9435 }
9436 mutex_unlock(&fs_info->ro_block_group_mutex);
9437
9438 btrfs_end_transaction(trans);
9439 return ret;
9440 }
9441
9442 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9443 struct btrfs_fs_info *fs_info, u64 type)
9444 {
9445 u64 alloc_flags = get_alloc_profile(fs_info, type);
9446
9447 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9448 }
9449
9450 /*
9451 * helper to account the unused space of all the readonly block group in the
9452 * space_info. takes mirrors into account.
9453 */
9454 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9455 {
9456 struct btrfs_block_group_cache *block_group;
9457 u64 free_bytes = 0;
9458 int factor;
9459
9460 /* It's df, we don't care if it's racy */
9461 if (list_empty(&sinfo->ro_bgs))
9462 return 0;
9463
9464 spin_lock(&sinfo->lock);
9465 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9466 spin_lock(&block_group->lock);
9467
9468 if (!block_group->ro) {
9469 spin_unlock(&block_group->lock);
9470 continue;
9471 }
9472
9473 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9474 BTRFS_BLOCK_GROUP_RAID10 |
9475 BTRFS_BLOCK_GROUP_DUP))
9476 factor = 2;
9477 else
9478 factor = 1;
9479
9480 free_bytes += (block_group->key.offset -
9481 btrfs_block_group_used(&block_group->item)) *
9482 factor;
9483
9484 spin_unlock(&block_group->lock);
9485 }
9486 spin_unlock(&sinfo->lock);
9487
9488 return free_bytes;
9489 }
9490
9491 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9492 {
9493 struct btrfs_space_info *sinfo = cache->space_info;
9494 u64 num_bytes;
9495
9496 BUG_ON(!cache->ro);
9497
9498 spin_lock(&sinfo->lock);
9499 spin_lock(&cache->lock);
9500 if (!--cache->ro) {
9501 num_bytes = cache->key.offset - cache->reserved -
9502 cache->pinned - cache->bytes_super -
9503 btrfs_block_group_used(&cache->item);
9504 sinfo->bytes_readonly -= num_bytes;
9505 list_del_init(&cache->ro_list);
9506 }
9507 spin_unlock(&cache->lock);
9508 spin_unlock(&sinfo->lock);
9509 }
9510
9511 /*
9512 * checks to see if its even possible to relocate this block group.
9513 *
9514 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9515 * ok to go ahead and try.
9516 */
9517 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9518 {
9519 struct btrfs_root *root = fs_info->extent_root;
9520 struct btrfs_block_group_cache *block_group;
9521 struct btrfs_space_info *space_info;
9522 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9523 struct btrfs_device *device;
9524 struct btrfs_trans_handle *trans;
9525 u64 min_free;
9526 u64 dev_min = 1;
9527 u64 dev_nr = 0;
9528 u64 target;
9529 int debug;
9530 int index;
9531 int full = 0;
9532 int ret = 0;
9533
9534 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9535
9536 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9537
9538 /* odd, couldn't find the block group, leave it alone */
9539 if (!block_group) {
9540 if (debug)
9541 btrfs_warn(fs_info,
9542 "can't find block group for bytenr %llu",
9543 bytenr);
9544 return -1;
9545 }
9546
9547 min_free = btrfs_block_group_used(&block_group->item);
9548
9549 /* no bytes used, we're good */
9550 if (!min_free)
9551 goto out;
9552
9553 space_info = block_group->space_info;
9554 spin_lock(&space_info->lock);
9555
9556 full = space_info->full;
9557
9558 /*
9559 * if this is the last block group we have in this space, we can't
9560 * relocate it unless we're able to allocate a new chunk below.
9561 *
9562 * Otherwise, we need to make sure we have room in the space to handle
9563 * all of the extents from this block group. If we can, we're good
9564 */
9565 if ((space_info->total_bytes != block_group->key.offset) &&
9566 (btrfs_space_info_used(space_info, false) + min_free <
9567 space_info->total_bytes)) {
9568 spin_unlock(&space_info->lock);
9569 goto out;
9570 }
9571 spin_unlock(&space_info->lock);
9572
9573 /*
9574 * ok we don't have enough space, but maybe we have free space on our
9575 * devices to allocate new chunks for relocation, so loop through our
9576 * alloc devices and guess if we have enough space. if this block
9577 * group is going to be restriped, run checks against the target
9578 * profile instead of the current one.
9579 */
9580 ret = -1;
9581
9582 /*
9583 * index:
9584 * 0: raid10
9585 * 1: raid1
9586 * 2: dup
9587 * 3: raid0
9588 * 4: single
9589 */
9590 target = get_restripe_target(fs_info, block_group->flags);
9591 if (target) {
9592 index = __get_raid_index(extended_to_chunk(target));
9593 } else {
9594 /*
9595 * this is just a balance, so if we were marked as full
9596 * we know there is no space for a new chunk
9597 */
9598 if (full) {
9599 if (debug)
9600 btrfs_warn(fs_info,
9601 "no space to alloc new chunk for block group %llu",
9602 block_group->key.objectid);
9603 goto out;
9604 }
9605
9606 index = get_block_group_index(block_group);
9607 }
9608
9609 if (index == BTRFS_RAID_RAID10) {
9610 dev_min = 4;
9611 /* Divide by 2 */
9612 min_free >>= 1;
9613 } else if (index == BTRFS_RAID_RAID1) {
9614 dev_min = 2;
9615 } else if (index == BTRFS_RAID_DUP) {
9616 /* Multiply by 2 */
9617 min_free <<= 1;
9618 } else if (index == BTRFS_RAID_RAID0) {
9619 dev_min = fs_devices->rw_devices;
9620 min_free = div64_u64(min_free, dev_min);
9621 }
9622
9623 /* We need to do this so that we can look at pending chunks */
9624 trans = btrfs_join_transaction(root);
9625 if (IS_ERR(trans)) {
9626 ret = PTR_ERR(trans);
9627 goto out;
9628 }
9629
9630 mutex_lock(&fs_info->chunk_mutex);
9631 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9632 u64 dev_offset;
9633
9634 /*
9635 * check to make sure we can actually find a chunk with enough
9636 * space to fit our block group in.
9637 */
9638 if (device->total_bytes > device->bytes_used + min_free &&
9639 !device->is_tgtdev_for_dev_replace) {
9640 ret = find_free_dev_extent(trans, device, min_free,
9641 &dev_offset, NULL);
9642 if (!ret)
9643 dev_nr++;
9644
9645 if (dev_nr >= dev_min)
9646 break;
9647
9648 ret = -1;
9649 }
9650 }
9651 if (debug && ret == -1)
9652 btrfs_warn(fs_info,
9653 "no space to allocate a new chunk for block group %llu",
9654 block_group->key.objectid);
9655 mutex_unlock(&fs_info->chunk_mutex);
9656 btrfs_end_transaction(trans);
9657 out:
9658 btrfs_put_block_group(block_group);
9659 return ret;
9660 }
9661
9662 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9663 struct btrfs_path *path,
9664 struct btrfs_key *key)
9665 {
9666 struct btrfs_root *root = fs_info->extent_root;
9667 int ret = 0;
9668 struct btrfs_key found_key;
9669 struct extent_buffer *leaf;
9670 int slot;
9671
9672 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9673 if (ret < 0)
9674 goto out;
9675
9676 while (1) {
9677 slot = path->slots[0];
9678 leaf = path->nodes[0];
9679 if (slot >= btrfs_header_nritems(leaf)) {
9680 ret = btrfs_next_leaf(root, path);
9681 if (ret == 0)
9682 continue;
9683 if (ret < 0)
9684 goto out;
9685 break;
9686 }
9687 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9688
9689 if (found_key.objectid >= key->objectid &&
9690 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9691 struct extent_map_tree *em_tree;
9692 struct extent_map *em;
9693
9694 em_tree = &root->fs_info->mapping_tree.map_tree;
9695 read_lock(&em_tree->lock);
9696 em = lookup_extent_mapping(em_tree, found_key.objectid,
9697 found_key.offset);
9698 read_unlock(&em_tree->lock);
9699 if (!em) {
9700 btrfs_err(fs_info,
9701 "logical %llu len %llu found bg but no related chunk",
9702 found_key.objectid, found_key.offset);
9703 ret = -ENOENT;
9704 } else {
9705 ret = 0;
9706 }
9707 free_extent_map(em);
9708 goto out;
9709 }
9710 path->slots[0]++;
9711 }
9712 out:
9713 return ret;
9714 }
9715
9716 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9717 {
9718 struct btrfs_block_group_cache *block_group;
9719 u64 last = 0;
9720
9721 while (1) {
9722 struct inode *inode;
9723
9724 block_group = btrfs_lookup_first_block_group(info, last);
9725 while (block_group) {
9726 spin_lock(&block_group->lock);
9727 if (block_group->iref)
9728 break;
9729 spin_unlock(&block_group->lock);
9730 block_group = next_block_group(info, block_group);
9731 }
9732 if (!block_group) {
9733 if (last == 0)
9734 break;
9735 last = 0;
9736 continue;
9737 }
9738
9739 inode = block_group->inode;
9740 block_group->iref = 0;
9741 block_group->inode = NULL;
9742 spin_unlock(&block_group->lock);
9743 ASSERT(block_group->io_ctl.inode == NULL);
9744 iput(inode);
9745 last = block_group->key.objectid + block_group->key.offset;
9746 btrfs_put_block_group(block_group);
9747 }
9748 }
9749
9750 /*
9751 * Must be called only after stopping all workers, since we could have block
9752 * group caching kthreads running, and therefore they could race with us if we
9753 * freed the block groups before stopping them.
9754 */
9755 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9756 {
9757 struct btrfs_block_group_cache *block_group;
9758 struct btrfs_space_info *space_info;
9759 struct btrfs_caching_control *caching_ctl;
9760 struct rb_node *n;
9761
9762 down_write(&info->commit_root_sem);
9763 while (!list_empty(&info->caching_block_groups)) {
9764 caching_ctl = list_entry(info->caching_block_groups.next,
9765 struct btrfs_caching_control, list);
9766 list_del(&caching_ctl->list);
9767 put_caching_control(caching_ctl);
9768 }
9769 up_write(&info->commit_root_sem);
9770
9771 spin_lock(&info->unused_bgs_lock);
9772 while (!list_empty(&info->unused_bgs)) {
9773 block_group = list_first_entry(&info->unused_bgs,
9774 struct btrfs_block_group_cache,
9775 bg_list);
9776 list_del_init(&block_group->bg_list);
9777 btrfs_put_block_group(block_group);
9778 }
9779 spin_unlock(&info->unused_bgs_lock);
9780
9781 spin_lock(&info->block_group_cache_lock);
9782 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9783 block_group = rb_entry(n, struct btrfs_block_group_cache,
9784 cache_node);
9785 rb_erase(&block_group->cache_node,
9786 &info->block_group_cache_tree);
9787 RB_CLEAR_NODE(&block_group->cache_node);
9788 spin_unlock(&info->block_group_cache_lock);
9789
9790 down_write(&block_group->space_info->groups_sem);
9791 list_del(&block_group->list);
9792 up_write(&block_group->space_info->groups_sem);
9793
9794 /*
9795 * We haven't cached this block group, which means we could
9796 * possibly have excluded extents on this block group.
9797 */
9798 if (block_group->cached == BTRFS_CACHE_NO ||
9799 block_group->cached == BTRFS_CACHE_ERROR)
9800 free_excluded_extents(info, block_group);
9801
9802 btrfs_remove_free_space_cache(block_group);
9803 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9804 ASSERT(list_empty(&block_group->dirty_list));
9805 ASSERT(list_empty(&block_group->io_list));
9806 ASSERT(list_empty(&block_group->bg_list));
9807 ASSERT(atomic_read(&block_group->count) == 1);
9808 btrfs_put_block_group(block_group);
9809
9810 spin_lock(&info->block_group_cache_lock);
9811 }
9812 spin_unlock(&info->block_group_cache_lock);
9813
9814 /* now that all the block groups are freed, go through and
9815 * free all the space_info structs. This is only called during
9816 * the final stages of unmount, and so we know nobody is
9817 * using them. We call synchronize_rcu() once before we start,
9818 * just to be on the safe side.
9819 */
9820 synchronize_rcu();
9821
9822 release_global_block_rsv(info);
9823
9824 while (!list_empty(&info->space_info)) {
9825 int i;
9826
9827 space_info = list_entry(info->space_info.next,
9828 struct btrfs_space_info,
9829 list);
9830
9831 /*
9832 * Do not hide this behind enospc_debug, this is actually
9833 * important and indicates a real bug if this happens.
9834 */
9835 if (WARN_ON(space_info->bytes_pinned > 0 ||
9836 space_info->bytes_reserved > 0 ||
9837 space_info->bytes_may_use > 0))
9838 dump_space_info(info, space_info, 0, 0);
9839 list_del(&space_info->list);
9840 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9841 struct kobject *kobj;
9842 kobj = space_info->block_group_kobjs[i];
9843 space_info->block_group_kobjs[i] = NULL;
9844 if (kobj) {
9845 kobject_del(kobj);
9846 kobject_put(kobj);
9847 }
9848 }
9849 kobject_del(&space_info->kobj);
9850 kobject_put(&space_info->kobj);
9851 }
9852 return 0;
9853 }
9854
9855 static void __link_block_group(struct btrfs_space_info *space_info,
9856 struct btrfs_block_group_cache *cache)
9857 {
9858 int index = get_block_group_index(cache);
9859 bool first = false;
9860
9861 down_write(&space_info->groups_sem);
9862 if (list_empty(&space_info->block_groups[index]))
9863 first = true;
9864 list_add_tail(&cache->list, &space_info->block_groups[index]);
9865 up_write(&space_info->groups_sem);
9866
9867 if (first) {
9868 struct raid_kobject *rkobj;
9869 int ret;
9870
9871 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9872 if (!rkobj)
9873 goto out_err;
9874 rkobj->raid_type = index;
9875 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9876 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9877 "%s", get_raid_name(index));
9878 if (ret) {
9879 kobject_put(&rkobj->kobj);
9880 goto out_err;
9881 }
9882 space_info->block_group_kobjs[index] = &rkobj->kobj;
9883 }
9884
9885 return;
9886 out_err:
9887 btrfs_warn(cache->fs_info,
9888 "failed to add kobject for block cache, ignoring");
9889 }
9890
9891 static struct btrfs_block_group_cache *
9892 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9893 u64 start, u64 size)
9894 {
9895 struct btrfs_block_group_cache *cache;
9896
9897 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9898 if (!cache)
9899 return NULL;
9900
9901 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9902 GFP_NOFS);
9903 if (!cache->free_space_ctl) {
9904 kfree(cache);
9905 return NULL;
9906 }
9907
9908 cache->key.objectid = start;
9909 cache->key.offset = size;
9910 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9911
9912 cache->sectorsize = fs_info->sectorsize;
9913 cache->fs_info = fs_info;
9914 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9915 &fs_info->mapping_tree,
9916 start);
9917 set_free_space_tree_thresholds(cache);
9918
9919 atomic_set(&cache->count, 1);
9920 spin_lock_init(&cache->lock);
9921 init_rwsem(&cache->data_rwsem);
9922 INIT_LIST_HEAD(&cache->list);
9923 INIT_LIST_HEAD(&cache->cluster_list);
9924 INIT_LIST_HEAD(&cache->bg_list);
9925 INIT_LIST_HEAD(&cache->ro_list);
9926 INIT_LIST_HEAD(&cache->dirty_list);
9927 INIT_LIST_HEAD(&cache->io_list);
9928 btrfs_init_free_space_ctl(cache);
9929 atomic_set(&cache->trimming, 0);
9930 mutex_init(&cache->free_space_lock);
9931 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9932
9933 return cache;
9934 }
9935
9936 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9937 {
9938 struct btrfs_path *path;
9939 int ret;
9940 struct btrfs_block_group_cache *cache;
9941 struct btrfs_space_info *space_info;
9942 struct btrfs_key key;
9943 struct btrfs_key found_key;
9944 struct extent_buffer *leaf;
9945 int need_clear = 0;
9946 u64 cache_gen;
9947 u64 feature;
9948 int mixed;
9949
9950 feature = btrfs_super_incompat_flags(info->super_copy);
9951 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9952
9953 key.objectid = 0;
9954 key.offset = 0;
9955 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9956 path = btrfs_alloc_path();
9957 if (!path)
9958 return -ENOMEM;
9959 path->reada = READA_FORWARD;
9960
9961 cache_gen = btrfs_super_cache_generation(info->super_copy);
9962 if (btrfs_test_opt(info, SPACE_CACHE) &&
9963 btrfs_super_generation(info->super_copy) != cache_gen)
9964 need_clear = 1;
9965 if (btrfs_test_opt(info, CLEAR_CACHE))
9966 need_clear = 1;
9967
9968 while (1) {
9969 ret = find_first_block_group(info, path, &key);
9970 if (ret > 0)
9971 break;
9972 if (ret != 0)
9973 goto error;
9974
9975 leaf = path->nodes[0];
9976 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9977
9978 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9979 found_key.offset);
9980 if (!cache) {
9981 ret = -ENOMEM;
9982 goto error;
9983 }
9984
9985 if (need_clear) {
9986 /*
9987 * When we mount with old space cache, we need to
9988 * set BTRFS_DC_CLEAR and set dirty flag.
9989 *
9990 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9991 * truncate the old free space cache inode and
9992 * setup a new one.
9993 * b) Setting 'dirty flag' makes sure that we flush
9994 * the new space cache info onto disk.
9995 */
9996 if (btrfs_test_opt(info, SPACE_CACHE))
9997 cache->disk_cache_state = BTRFS_DC_CLEAR;
9998 }
9999
10000 read_extent_buffer(leaf, &cache->item,
10001 btrfs_item_ptr_offset(leaf, path->slots[0]),
10002 sizeof(cache->item));
10003 cache->flags = btrfs_block_group_flags(&cache->item);
10004 if (!mixed &&
10005 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10006 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10007 btrfs_err(info,
10008 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10009 cache->key.objectid);
10010 ret = -EINVAL;
10011 goto error;
10012 }
10013
10014 key.objectid = found_key.objectid + found_key.offset;
10015 btrfs_release_path(path);
10016
10017 /*
10018 * We need to exclude the super stripes now so that the space
10019 * info has super bytes accounted for, otherwise we'll think
10020 * we have more space than we actually do.
10021 */
10022 ret = exclude_super_stripes(info, cache);
10023 if (ret) {
10024 /*
10025 * We may have excluded something, so call this just in
10026 * case.
10027 */
10028 free_excluded_extents(info, cache);
10029 btrfs_put_block_group(cache);
10030 goto error;
10031 }
10032
10033 /*
10034 * check for two cases, either we are full, and therefore
10035 * don't need to bother with the caching work since we won't
10036 * find any space, or we are empty, and we can just add all
10037 * the space in and be done with it. This saves us _alot_ of
10038 * time, particularly in the full case.
10039 */
10040 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10041 cache->last_byte_to_unpin = (u64)-1;
10042 cache->cached = BTRFS_CACHE_FINISHED;
10043 free_excluded_extents(info, cache);
10044 } else if (btrfs_block_group_used(&cache->item) == 0) {
10045 cache->last_byte_to_unpin = (u64)-1;
10046 cache->cached = BTRFS_CACHE_FINISHED;
10047 add_new_free_space(cache, info,
10048 found_key.objectid,
10049 found_key.objectid +
10050 found_key.offset);
10051 free_excluded_extents(info, cache);
10052 }
10053
10054 ret = btrfs_add_block_group_cache(info, cache);
10055 if (ret) {
10056 btrfs_remove_free_space_cache(cache);
10057 btrfs_put_block_group(cache);
10058 goto error;
10059 }
10060
10061 trace_btrfs_add_block_group(info, cache, 0);
10062 ret = update_space_info(info, cache->flags, found_key.offset,
10063 btrfs_block_group_used(&cache->item),
10064 cache->bytes_super, &space_info);
10065 if (ret) {
10066 btrfs_remove_free_space_cache(cache);
10067 spin_lock(&info->block_group_cache_lock);
10068 rb_erase(&cache->cache_node,
10069 &info->block_group_cache_tree);
10070 RB_CLEAR_NODE(&cache->cache_node);
10071 spin_unlock(&info->block_group_cache_lock);
10072 btrfs_put_block_group(cache);
10073 goto error;
10074 }
10075
10076 cache->space_info = space_info;
10077
10078 __link_block_group(space_info, cache);
10079
10080 set_avail_alloc_bits(info, cache->flags);
10081 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10082 inc_block_group_ro(cache, 1);
10083 } else if (btrfs_block_group_used(&cache->item) == 0) {
10084 spin_lock(&info->unused_bgs_lock);
10085 /* Should always be true but just in case. */
10086 if (list_empty(&cache->bg_list)) {
10087 btrfs_get_block_group(cache);
10088 list_add_tail(&cache->bg_list,
10089 &info->unused_bgs);
10090 }
10091 spin_unlock(&info->unused_bgs_lock);
10092 }
10093 }
10094
10095 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10096 if (!(get_alloc_profile(info, space_info->flags) &
10097 (BTRFS_BLOCK_GROUP_RAID10 |
10098 BTRFS_BLOCK_GROUP_RAID1 |
10099 BTRFS_BLOCK_GROUP_RAID5 |
10100 BTRFS_BLOCK_GROUP_RAID6 |
10101 BTRFS_BLOCK_GROUP_DUP)))
10102 continue;
10103 /*
10104 * avoid allocating from un-mirrored block group if there are
10105 * mirrored block groups.
10106 */
10107 list_for_each_entry(cache,
10108 &space_info->block_groups[BTRFS_RAID_RAID0],
10109 list)
10110 inc_block_group_ro(cache, 1);
10111 list_for_each_entry(cache,
10112 &space_info->block_groups[BTRFS_RAID_SINGLE],
10113 list)
10114 inc_block_group_ro(cache, 1);
10115 }
10116
10117 init_global_block_rsv(info);
10118 ret = 0;
10119 error:
10120 btrfs_free_path(path);
10121 return ret;
10122 }
10123
10124 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10125 struct btrfs_fs_info *fs_info)
10126 {
10127 struct btrfs_block_group_cache *block_group, *tmp;
10128 struct btrfs_root *extent_root = fs_info->extent_root;
10129 struct btrfs_block_group_item item;
10130 struct btrfs_key key;
10131 int ret = 0;
10132 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10133
10134 trans->can_flush_pending_bgs = false;
10135 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10136 if (ret)
10137 goto next;
10138
10139 spin_lock(&block_group->lock);
10140 memcpy(&item, &block_group->item, sizeof(item));
10141 memcpy(&key, &block_group->key, sizeof(key));
10142 spin_unlock(&block_group->lock);
10143
10144 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10145 sizeof(item));
10146 if (ret)
10147 btrfs_abort_transaction(trans, ret);
10148 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10149 key.offset);
10150 if (ret)
10151 btrfs_abort_transaction(trans, ret);
10152 add_block_group_free_space(trans, fs_info, block_group);
10153 /* already aborted the transaction if it failed. */
10154 next:
10155 list_del_init(&block_group->bg_list);
10156 }
10157 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10158 }
10159
10160 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10161 struct btrfs_fs_info *fs_info, u64 bytes_used,
10162 u64 type, u64 chunk_objectid, u64 chunk_offset,
10163 u64 size)
10164 {
10165 struct btrfs_block_group_cache *cache;
10166 int ret;
10167
10168 btrfs_set_log_full_commit(fs_info, trans);
10169
10170 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10171 if (!cache)
10172 return -ENOMEM;
10173
10174 btrfs_set_block_group_used(&cache->item, bytes_used);
10175 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10176 btrfs_set_block_group_flags(&cache->item, type);
10177
10178 cache->flags = type;
10179 cache->last_byte_to_unpin = (u64)-1;
10180 cache->cached = BTRFS_CACHE_FINISHED;
10181 cache->needs_free_space = 1;
10182 ret = exclude_super_stripes(fs_info, cache);
10183 if (ret) {
10184 /*
10185 * We may have excluded something, so call this just in
10186 * case.
10187 */
10188 free_excluded_extents(fs_info, cache);
10189 btrfs_put_block_group(cache);
10190 return ret;
10191 }
10192
10193 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10194
10195 free_excluded_extents(fs_info, cache);
10196
10197 #ifdef CONFIG_BTRFS_DEBUG
10198 if (btrfs_should_fragment_free_space(cache)) {
10199 u64 new_bytes_used = size - bytes_used;
10200
10201 bytes_used += new_bytes_used >> 1;
10202 fragment_free_space(cache);
10203 }
10204 #endif
10205 /*
10206 * Call to ensure the corresponding space_info object is created and
10207 * assigned to our block group, but don't update its counters just yet.
10208 * We want our bg to be added to the rbtree with its ->space_info set.
10209 */
10210 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10211 &cache->space_info);
10212 if (ret) {
10213 btrfs_remove_free_space_cache(cache);
10214 btrfs_put_block_group(cache);
10215 return ret;
10216 }
10217
10218 ret = btrfs_add_block_group_cache(fs_info, cache);
10219 if (ret) {
10220 btrfs_remove_free_space_cache(cache);
10221 btrfs_put_block_group(cache);
10222 return ret;
10223 }
10224
10225 /*
10226 * Now that our block group has its ->space_info set and is inserted in
10227 * the rbtree, update the space info's counters.
10228 */
10229 trace_btrfs_add_block_group(fs_info, cache, 1);
10230 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10231 cache->bytes_super, &cache->space_info);
10232 if (ret) {
10233 btrfs_remove_free_space_cache(cache);
10234 spin_lock(&fs_info->block_group_cache_lock);
10235 rb_erase(&cache->cache_node,
10236 &fs_info->block_group_cache_tree);
10237 RB_CLEAR_NODE(&cache->cache_node);
10238 spin_unlock(&fs_info->block_group_cache_lock);
10239 btrfs_put_block_group(cache);
10240 return ret;
10241 }
10242 update_global_block_rsv(fs_info);
10243
10244 __link_block_group(cache->space_info, cache);
10245
10246 list_add_tail(&cache->bg_list, &trans->new_bgs);
10247
10248 set_avail_alloc_bits(fs_info, type);
10249 return 0;
10250 }
10251
10252 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10253 {
10254 u64 extra_flags = chunk_to_extended(flags) &
10255 BTRFS_EXTENDED_PROFILE_MASK;
10256
10257 write_seqlock(&fs_info->profiles_lock);
10258 if (flags & BTRFS_BLOCK_GROUP_DATA)
10259 fs_info->avail_data_alloc_bits &= ~extra_flags;
10260 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10261 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10262 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10263 fs_info->avail_system_alloc_bits &= ~extra_flags;
10264 write_sequnlock(&fs_info->profiles_lock);
10265 }
10266
10267 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10268 struct btrfs_fs_info *fs_info, u64 group_start,
10269 struct extent_map *em)
10270 {
10271 struct btrfs_root *root = fs_info->extent_root;
10272 struct btrfs_path *path;
10273 struct btrfs_block_group_cache *block_group;
10274 struct btrfs_free_cluster *cluster;
10275 struct btrfs_root *tree_root = fs_info->tree_root;
10276 struct btrfs_key key;
10277 struct inode *inode;
10278 struct kobject *kobj = NULL;
10279 int ret;
10280 int index;
10281 int factor;
10282 struct btrfs_caching_control *caching_ctl = NULL;
10283 bool remove_em;
10284
10285 block_group = btrfs_lookup_block_group(fs_info, group_start);
10286 BUG_ON(!block_group);
10287 BUG_ON(!block_group->ro);
10288
10289 /*
10290 * Free the reserved super bytes from this block group before
10291 * remove it.
10292 */
10293 free_excluded_extents(fs_info, block_group);
10294
10295 memcpy(&key, &block_group->key, sizeof(key));
10296 index = get_block_group_index(block_group);
10297 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10298 BTRFS_BLOCK_GROUP_RAID1 |
10299 BTRFS_BLOCK_GROUP_RAID10))
10300 factor = 2;
10301 else
10302 factor = 1;
10303
10304 /* make sure this block group isn't part of an allocation cluster */
10305 cluster = &fs_info->data_alloc_cluster;
10306 spin_lock(&cluster->refill_lock);
10307 btrfs_return_cluster_to_free_space(block_group, cluster);
10308 spin_unlock(&cluster->refill_lock);
10309
10310 /*
10311 * make sure this block group isn't part of a metadata
10312 * allocation cluster
10313 */
10314 cluster = &fs_info->meta_alloc_cluster;
10315 spin_lock(&cluster->refill_lock);
10316 btrfs_return_cluster_to_free_space(block_group, cluster);
10317 spin_unlock(&cluster->refill_lock);
10318
10319 path = btrfs_alloc_path();
10320 if (!path) {
10321 ret = -ENOMEM;
10322 goto out;
10323 }
10324
10325 /*
10326 * get the inode first so any iput calls done for the io_list
10327 * aren't the final iput (no unlinks allowed now)
10328 */
10329 inode = lookup_free_space_inode(fs_info, block_group, path);
10330
10331 mutex_lock(&trans->transaction->cache_write_mutex);
10332 /*
10333 * make sure our free spache cache IO is done before remove the
10334 * free space inode
10335 */
10336 spin_lock(&trans->transaction->dirty_bgs_lock);
10337 if (!list_empty(&block_group->io_list)) {
10338 list_del_init(&block_group->io_list);
10339
10340 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10341
10342 spin_unlock(&trans->transaction->dirty_bgs_lock);
10343 btrfs_wait_cache_io(trans, block_group, path);
10344 btrfs_put_block_group(block_group);
10345 spin_lock(&trans->transaction->dirty_bgs_lock);
10346 }
10347
10348 if (!list_empty(&block_group->dirty_list)) {
10349 list_del_init(&block_group->dirty_list);
10350 btrfs_put_block_group(block_group);
10351 }
10352 spin_unlock(&trans->transaction->dirty_bgs_lock);
10353 mutex_unlock(&trans->transaction->cache_write_mutex);
10354
10355 if (!IS_ERR(inode)) {
10356 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10357 if (ret) {
10358 btrfs_add_delayed_iput(inode);
10359 goto out;
10360 }
10361 clear_nlink(inode);
10362 /* One for the block groups ref */
10363 spin_lock(&block_group->lock);
10364 if (block_group->iref) {
10365 block_group->iref = 0;
10366 block_group->inode = NULL;
10367 spin_unlock(&block_group->lock);
10368 iput(inode);
10369 } else {
10370 spin_unlock(&block_group->lock);
10371 }
10372 /* One for our lookup ref */
10373 btrfs_add_delayed_iput(inode);
10374 }
10375
10376 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10377 key.offset = block_group->key.objectid;
10378 key.type = 0;
10379
10380 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10381 if (ret < 0)
10382 goto out;
10383 if (ret > 0)
10384 btrfs_release_path(path);
10385 if (ret == 0) {
10386 ret = btrfs_del_item(trans, tree_root, path);
10387 if (ret)
10388 goto out;
10389 btrfs_release_path(path);
10390 }
10391
10392 spin_lock(&fs_info->block_group_cache_lock);
10393 rb_erase(&block_group->cache_node,
10394 &fs_info->block_group_cache_tree);
10395 RB_CLEAR_NODE(&block_group->cache_node);
10396
10397 if (fs_info->first_logical_byte == block_group->key.objectid)
10398 fs_info->first_logical_byte = (u64)-1;
10399 spin_unlock(&fs_info->block_group_cache_lock);
10400
10401 down_write(&block_group->space_info->groups_sem);
10402 /*
10403 * we must use list_del_init so people can check to see if they
10404 * are still on the list after taking the semaphore
10405 */
10406 list_del_init(&block_group->list);
10407 if (list_empty(&block_group->space_info->block_groups[index])) {
10408 kobj = block_group->space_info->block_group_kobjs[index];
10409 block_group->space_info->block_group_kobjs[index] = NULL;
10410 clear_avail_alloc_bits(fs_info, block_group->flags);
10411 }
10412 up_write(&block_group->space_info->groups_sem);
10413 if (kobj) {
10414 kobject_del(kobj);
10415 kobject_put(kobj);
10416 }
10417
10418 if (block_group->has_caching_ctl)
10419 caching_ctl = get_caching_control(block_group);
10420 if (block_group->cached == BTRFS_CACHE_STARTED)
10421 wait_block_group_cache_done(block_group);
10422 if (block_group->has_caching_ctl) {
10423 down_write(&fs_info->commit_root_sem);
10424 if (!caching_ctl) {
10425 struct btrfs_caching_control *ctl;
10426
10427 list_for_each_entry(ctl,
10428 &fs_info->caching_block_groups, list)
10429 if (ctl->block_group == block_group) {
10430 caching_ctl = ctl;
10431 refcount_inc(&caching_ctl->count);
10432 break;
10433 }
10434 }
10435 if (caching_ctl)
10436 list_del_init(&caching_ctl->list);
10437 up_write(&fs_info->commit_root_sem);
10438 if (caching_ctl) {
10439 /* Once for the caching bgs list and once for us. */
10440 put_caching_control(caching_ctl);
10441 put_caching_control(caching_ctl);
10442 }
10443 }
10444
10445 spin_lock(&trans->transaction->dirty_bgs_lock);
10446 if (!list_empty(&block_group->dirty_list)) {
10447 WARN_ON(1);
10448 }
10449 if (!list_empty(&block_group->io_list)) {
10450 WARN_ON(1);
10451 }
10452 spin_unlock(&trans->transaction->dirty_bgs_lock);
10453 btrfs_remove_free_space_cache(block_group);
10454
10455 spin_lock(&block_group->space_info->lock);
10456 list_del_init(&block_group->ro_list);
10457
10458 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10459 WARN_ON(block_group->space_info->total_bytes
10460 < block_group->key.offset);
10461 WARN_ON(block_group->space_info->bytes_readonly
10462 < block_group->key.offset);
10463 WARN_ON(block_group->space_info->disk_total
10464 < block_group->key.offset * factor);
10465 }
10466 block_group->space_info->total_bytes -= block_group->key.offset;
10467 block_group->space_info->bytes_readonly -= block_group->key.offset;
10468 block_group->space_info->disk_total -= block_group->key.offset * factor;
10469
10470 spin_unlock(&block_group->space_info->lock);
10471
10472 memcpy(&key, &block_group->key, sizeof(key));
10473
10474 mutex_lock(&fs_info->chunk_mutex);
10475 if (!list_empty(&em->list)) {
10476 /* We're in the transaction->pending_chunks list. */
10477 free_extent_map(em);
10478 }
10479 spin_lock(&block_group->lock);
10480 block_group->removed = 1;
10481 /*
10482 * At this point trimming can't start on this block group, because we
10483 * removed the block group from the tree fs_info->block_group_cache_tree
10484 * so no one can't find it anymore and even if someone already got this
10485 * block group before we removed it from the rbtree, they have already
10486 * incremented block_group->trimming - if they didn't, they won't find
10487 * any free space entries because we already removed them all when we
10488 * called btrfs_remove_free_space_cache().
10489 *
10490 * And we must not remove the extent map from the fs_info->mapping_tree
10491 * to prevent the same logical address range and physical device space
10492 * ranges from being reused for a new block group. This is because our
10493 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10494 * completely transactionless, so while it is trimming a range the
10495 * currently running transaction might finish and a new one start,
10496 * allowing for new block groups to be created that can reuse the same
10497 * physical device locations unless we take this special care.
10498 *
10499 * There may also be an implicit trim operation if the file system
10500 * is mounted with -odiscard. The same protections must remain
10501 * in place until the extents have been discarded completely when
10502 * the transaction commit has completed.
10503 */
10504 remove_em = (atomic_read(&block_group->trimming) == 0);
10505 /*
10506 * Make sure a trimmer task always sees the em in the pinned_chunks list
10507 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10508 * before checking block_group->removed).
10509 */
10510 if (!remove_em) {
10511 /*
10512 * Our em might be in trans->transaction->pending_chunks which
10513 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10514 * and so is the fs_info->pinned_chunks list.
10515 *
10516 * So at this point we must be holding the chunk_mutex to avoid
10517 * any races with chunk allocation (more specifically at
10518 * volumes.c:contains_pending_extent()), to ensure it always
10519 * sees the em, either in the pending_chunks list or in the
10520 * pinned_chunks list.
10521 */
10522 list_move_tail(&em->list, &fs_info->pinned_chunks);
10523 }
10524 spin_unlock(&block_group->lock);
10525
10526 if (remove_em) {
10527 struct extent_map_tree *em_tree;
10528
10529 em_tree = &fs_info->mapping_tree.map_tree;
10530 write_lock(&em_tree->lock);
10531 /*
10532 * The em might be in the pending_chunks list, so make sure the
10533 * chunk mutex is locked, since remove_extent_mapping() will
10534 * delete us from that list.
10535 */
10536 remove_extent_mapping(em_tree, em);
10537 write_unlock(&em_tree->lock);
10538 /* once for the tree */
10539 free_extent_map(em);
10540 }
10541
10542 mutex_unlock(&fs_info->chunk_mutex);
10543
10544 ret = remove_block_group_free_space(trans, fs_info, block_group);
10545 if (ret)
10546 goto out;
10547
10548 btrfs_put_block_group(block_group);
10549 btrfs_put_block_group(block_group);
10550
10551 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10552 if (ret > 0)
10553 ret = -EIO;
10554 if (ret < 0)
10555 goto out;
10556
10557 ret = btrfs_del_item(trans, root, path);
10558 out:
10559 btrfs_free_path(path);
10560 return ret;
10561 }
10562
10563 struct btrfs_trans_handle *
10564 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10565 const u64 chunk_offset)
10566 {
10567 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10568 struct extent_map *em;
10569 struct map_lookup *map;
10570 unsigned int num_items;
10571
10572 read_lock(&em_tree->lock);
10573 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10574 read_unlock(&em_tree->lock);
10575 ASSERT(em && em->start == chunk_offset);
10576
10577 /*
10578 * We need to reserve 3 + N units from the metadata space info in order
10579 * to remove a block group (done at btrfs_remove_chunk() and at
10580 * btrfs_remove_block_group()), which are used for:
10581 *
10582 * 1 unit for adding the free space inode's orphan (located in the tree
10583 * of tree roots).
10584 * 1 unit for deleting the block group item (located in the extent
10585 * tree).
10586 * 1 unit for deleting the free space item (located in tree of tree
10587 * roots).
10588 * N units for deleting N device extent items corresponding to each
10589 * stripe (located in the device tree).
10590 *
10591 * In order to remove a block group we also need to reserve units in the
10592 * system space info in order to update the chunk tree (update one or
10593 * more device items and remove one chunk item), but this is done at
10594 * btrfs_remove_chunk() through a call to check_system_chunk().
10595 */
10596 map = em->map_lookup;
10597 num_items = 3 + map->num_stripes;
10598 free_extent_map(em);
10599
10600 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10601 num_items, 1);
10602 }
10603
10604 /*
10605 * Process the unused_bgs list and remove any that don't have any allocated
10606 * space inside of them.
10607 */
10608 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10609 {
10610 struct btrfs_block_group_cache *block_group;
10611 struct btrfs_space_info *space_info;
10612 struct btrfs_trans_handle *trans;
10613 int ret = 0;
10614
10615 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10616 return;
10617
10618 spin_lock(&fs_info->unused_bgs_lock);
10619 while (!list_empty(&fs_info->unused_bgs)) {
10620 u64 start, end;
10621 int trimming;
10622
10623 block_group = list_first_entry(&fs_info->unused_bgs,
10624 struct btrfs_block_group_cache,
10625 bg_list);
10626 list_del_init(&block_group->bg_list);
10627
10628 space_info = block_group->space_info;
10629
10630 if (ret || btrfs_mixed_space_info(space_info)) {
10631 btrfs_put_block_group(block_group);
10632 continue;
10633 }
10634 spin_unlock(&fs_info->unused_bgs_lock);
10635
10636 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10637
10638 /* Don't want to race with allocators so take the groups_sem */
10639 down_write(&space_info->groups_sem);
10640 spin_lock(&block_group->lock);
10641 if (block_group->reserved ||
10642 btrfs_block_group_used(&block_group->item) ||
10643 block_group->ro ||
10644 list_is_singular(&block_group->list)) {
10645 /*
10646 * We want to bail if we made new allocations or have
10647 * outstanding allocations in this block group. We do
10648 * the ro check in case balance is currently acting on
10649 * this block group.
10650 */
10651 spin_unlock(&block_group->lock);
10652 up_write(&space_info->groups_sem);
10653 goto next;
10654 }
10655 spin_unlock(&block_group->lock);
10656
10657 /* We don't want to force the issue, only flip if it's ok. */
10658 ret = inc_block_group_ro(block_group, 0);
10659 up_write(&space_info->groups_sem);
10660 if (ret < 0) {
10661 ret = 0;
10662 goto next;
10663 }
10664
10665 /*
10666 * Want to do this before we do anything else so we can recover
10667 * properly if we fail to join the transaction.
10668 */
10669 trans = btrfs_start_trans_remove_block_group(fs_info,
10670 block_group->key.objectid);
10671 if (IS_ERR(trans)) {
10672 btrfs_dec_block_group_ro(block_group);
10673 ret = PTR_ERR(trans);
10674 goto next;
10675 }
10676
10677 /*
10678 * We could have pending pinned extents for this block group,
10679 * just delete them, we don't care about them anymore.
10680 */
10681 start = block_group->key.objectid;
10682 end = start + block_group->key.offset - 1;
10683 /*
10684 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10685 * btrfs_finish_extent_commit(). If we are at transaction N,
10686 * another task might be running finish_extent_commit() for the
10687 * previous transaction N - 1, and have seen a range belonging
10688 * to the block group in freed_extents[] before we were able to
10689 * clear the whole block group range from freed_extents[]. This
10690 * means that task can lookup for the block group after we
10691 * unpinned it from freed_extents[] and removed it, leading to
10692 * a BUG_ON() at btrfs_unpin_extent_range().
10693 */
10694 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10695 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10696 EXTENT_DIRTY);
10697 if (ret) {
10698 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10699 btrfs_dec_block_group_ro(block_group);
10700 goto end_trans;
10701 }
10702 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10703 EXTENT_DIRTY);
10704 if (ret) {
10705 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10706 btrfs_dec_block_group_ro(block_group);
10707 goto end_trans;
10708 }
10709 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10710
10711 /* Reset pinned so btrfs_put_block_group doesn't complain */
10712 spin_lock(&space_info->lock);
10713 spin_lock(&block_group->lock);
10714
10715 space_info->bytes_pinned -= block_group->pinned;
10716 space_info->bytes_readonly += block_group->pinned;
10717 percpu_counter_add(&space_info->total_bytes_pinned,
10718 -block_group->pinned);
10719 block_group->pinned = 0;
10720
10721 spin_unlock(&block_group->lock);
10722 spin_unlock(&space_info->lock);
10723
10724 /* DISCARD can flip during remount */
10725 trimming = btrfs_test_opt(fs_info, DISCARD);
10726
10727 /* Implicit trim during transaction commit. */
10728 if (trimming)
10729 btrfs_get_block_group_trimming(block_group);
10730
10731 /*
10732 * Btrfs_remove_chunk will abort the transaction if things go
10733 * horribly wrong.
10734 */
10735 ret = btrfs_remove_chunk(trans, fs_info,
10736 block_group->key.objectid);
10737
10738 if (ret) {
10739 if (trimming)
10740 btrfs_put_block_group_trimming(block_group);
10741 goto end_trans;
10742 }
10743
10744 /*
10745 * If we're not mounted with -odiscard, we can just forget
10746 * about this block group. Otherwise we'll need to wait
10747 * until transaction commit to do the actual discard.
10748 */
10749 if (trimming) {
10750 spin_lock(&fs_info->unused_bgs_lock);
10751 /*
10752 * A concurrent scrub might have added us to the list
10753 * fs_info->unused_bgs, so use a list_move operation
10754 * to add the block group to the deleted_bgs list.
10755 */
10756 list_move(&block_group->bg_list,
10757 &trans->transaction->deleted_bgs);
10758 spin_unlock(&fs_info->unused_bgs_lock);
10759 btrfs_get_block_group(block_group);
10760 }
10761 end_trans:
10762 btrfs_end_transaction(trans);
10763 next:
10764 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10765 btrfs_put_block_group(block_group);
10766 spin_lock(&fs_info->unused_bgs_lock);
10767 }
10768 spin_unlock(&fs_info->unused_bgs_lock);
10769 }
10770
10771 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10772 {
10773 struct btrfs_space_info *space_info;
10774 struct btrfs_super_block *disk_super;
10775 u64 features;
10776 u64 flags;
10777 int mixed = 0;
10778 int ret;
10779
10780 disk_super = fs_info->super_copy;
10781 if (!btrfs_super_root(disk_super))
10782 return -EINVAL;
10783
10784 features = btrfs_super_incompat_flags(disk_super);
10785 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10786 mixed = 1;
10787
10788 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10789 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10790 if (ret)
10791 goto out;
10792
10793 if (mixed) {
10794 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10795 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10796 } else {
10797 flags = BTRFS_BLOCK_GROUP_METADATA;
10798 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10799 if (ret)
10800 goto out;
10801
10802 flags = BTRFS_BLOCK_GROUP_DATA;
10803 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10804 }
10805 out:
10806 return ret;
10807 }
10808
10809 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10810 u64 start, u64 end)
10811 {
10812 return unpin_extent_range(fs_info, start, end, false);
10813 }
10814
10815 /*
10816 * It used to be that old block groups would be left around forever.
10817 * Iterating over them would be enough to trim unused space. Since we
10818 * now automatically remove them, we also need to iterate over unallocated
10819 * space.
10820 *
10821 * We don't want a transaction for this since the discard may take a
10822 * substantial amount of time. We don't require that a transaction be
10823 * running, but we do need to take a running transaction into account
10824 * to ensure that we're not discarding chunks that were released in
10825 * the current transaction.
10826 *
10827 * Holding the chunks lock will prevent other threads from allocating
10828 * or releasing chunks, but it won't prevent a running transaction
10829 * from committing and releasing the memory that the pending chunks
10830 * list head uses. For that, we need to take a reference to the
10831 * transaction.
10832 */
10833 static int btrfs_trim_free_extents(struct btrfs_device *device,
10834 u64 minlen, u64 *trimmed)
10835 {
10836 u64 start = 0, len = 0;
10837 int ret;
10838
10839 *trimmed = 0;
10840
10841 /* Not writeable = nothing to do. */
10842 if (!device->writeable)
10843 return 0;
10844
10845 /* No free space = nothing to do. */
10846 if (device->total_bytes <= device->bytes_used)
10847 return 0;
10848
10849 ret = 0;
10850
10851 while (1) {
10852 struct btrfs_fs_info *fs_info = device->fs_info;
10853 struct btrfs_transaction *trans;
10854 u64 bytes;
10855
10856 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10857 if (ret)
10858 return ret;
10859
10860 down_read(&fs_info->commit_root_sem);
10861
10862 spin_lock(&fs_info->trans_lock);
10863 trans = fs_info->running_transaction;
10864 if (trans)
10865 refcount_inc(&trans->use_count);
10866 spin_unlock(&fs_info->trans_lock);
10867
10868 ret = find_free_dev_extent_start(trans, device, minlen, start,
10869 &start, &len);
10870 if (trans)
10871 btrfs_put_transaction(trans);
10872
10873 if (ret) {
10874 up_read(&fs_info->commit_root_sem);
10875 mutex_unlock(&fs_info->chunk_mutex);
10876 if (ret == -ENOSPC)
10877 ret = 0;
10878 break;
10879 }
10880
10881 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10882 up_read(&fs_info->commit_root_sem);
10883 mutex_unlock(&fs_info->chunk_mutex);
10884
10885 if (ret)
10886 break;
10887
10888 start += len;
10889 *trimmed += bytes;
10890
10891 if (fatal_signal_pending(current)) {
10892 ret = -ERESTARTSYS;
10893 break;
10894 }
10895
10896 cond_resched();
10897 }
10898
10899 return ret;
10900 }
10901
10902 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10903 {
10904 struct btrfs_block_group_cache *cache = NULL;
10905 struct btrfs_device *device;
10906 struct list_head *devices;
10907 u64 group_trimmed;
10908 u64 start;
10909 u64 end;
10910 u64 trimmed = 0;
10911 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10912 int ret = 0;
10913
10914 /*
10915 * try to trim all FS space, our block group may start from non-zero.
10916 */
10917 if (range->len == total_bytes)
10918 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10919 else
10920 cache = btrfs_lookup_block_group(fs_info, range->start);
10921
10922 while (cache) {
10923 if (cache->key.objectid >= (range->start + range->len)) {
10924 btrfs_put_block_group(cache);
10925 break;
10926 }
10927
10928 start = max(range->start, cache->key.objectid);
10929 end = min(range->start + range->len,
10930 cache->key.objectid + cache->key.offset);
10931
10932 if (end - start >= range->minlen) {
10933 if (!block_group_cache_done(cache)) {
10934 ret = cache_block_group(cache, 0);
10935 if (ret) {
10936 btrfs_put_block_group(cache);
10937 break;
10938 }
10939 ret = wait_block_group_cache_done(cache);
10940 if (ret) {
10941 btrfs_put_block_group(cache);
10942 break;
10943 }
10944 }
10945 ret = btrfs_trim_block_group(cache,
10946 &group_trimmed,
10947 start,
10948 end,
10949 range->minlen);
10950
10951 trimmed += group_trimmed;
10952 if (ret) {
10953 btrfs_put_block_group(cache);
10954 break;
10955 }
10956 }
10957
10958 cache = next_block_group(fs_info, cache);
10959 }
10960
10961 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10962 devices = &fs_info->fs_devices->alloc_list;
10963 list_for_each_entry(device, devices, dev_alloc_list) {
10964 ret = btrfs_trim_free_extents(device, range->minlen,
10965 &group_trimmed);
10966 if (ret)
10967 break;
10968
10969 trimmed += group_trimmed;
10970 }
10971 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10972
10973 range->len = trimmed;
10974 return ret;
10975 }
10976
10977 /*
10978 * btrfs_{start,end}_write_no_snapshoting() are similar to
10979 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10980 * data into the page cache through nocow before the subvolume is snapshoted,
10981 * but flush the data into disk after the snapshot creation, or to prevent
10982 * operations while snapshoting is ongoing and that cause the snapshot to be
10983 * inconsistent (writes followed by expanding truncates for example).
10984 */
10985 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10986 {
10987 percpu_counter_dec(&root->subv_writers->counter);
10988 /*
10989 * Make sure counter is updated before we wake up waiters.
10990 */
10991 smp_mb();
10992 if (waitqueue_active(&root->subv_writers->wait))
10993 wake_up(&root->subv_writers->wait);
10994 }
10995
10996 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10997 {
10998 if (atomic_read(&root->will_be_snapshoted))
10999 return 0;
11000
11001 percpu_counter_inc(&root->subv_writers->counter);
11002 /*
11003 * Make sure counter is updated before we check for snapshot creation.
11004 */
11005 smp_mb();
11006 if (atomic_read(&root->will_be_snapshoted)) {
11007 btrfs_end_write_no_snapshoting(root);
11008 return 0;
11009 }
11010 return 1;
11011 }
11012
11013 static int wait_snapshoting_atomic_t(atomic_t *a)
11014 {
11015 schedule();
11016 return 0;
11017 }
11018
11019 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11020 {
11021 while (true) {
11022 int ret;
11023
11024 ret = btrfs_start_write_no_snapshoting(root);
11025 if (ret)
11026 break;
11027 wait_on_atomic_t(&root->will_be_snapshoted,
11028 wait_snapshoting_atomic_t,
11029 TASK_UNINTERRUPTIBLE);
11030 }
11031 }