]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
Btrfs: do not reduce profile in do_chunk_alloc()
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
40 *
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 *
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
48 *
49 */
50 enum {
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
54 };
55
56 /*
57 * Control how reservations are dealt with.
58 *
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61 * ENOSPC accounting
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
64 */
65 enum {
66 RESERVE_FREE = 0,
67 RESERVE_ALLOC = 1,
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
69 };
70
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
102
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 smp_mb();
107 return cache->cached == BTRFS_CACHE_FINISHED;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 return (cache->flags & bits) == bits;
113 }
114
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
126 kfree(cache);
127 }
128 }
129
130 /*
131 * this adds the block group to the fs_info rb tree for the block group
132 * cache
133 */
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
136 {
137 struct rb_node **p;
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
140
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
143
144 while (*p) {
145 parent = *p;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
147 cache_node);
148 if (block_group->key.objectid < cache->key.objectid) {
149 p = &(*p)->rb_left;
150 } else if (block_group->key.objectid > cache->key.objectid) {
151 p = &(*p)->rb_right;
152 } else {
153 spin_unlock(&info->block_group_cache_lock);
154 return -EEXIST;
155 }
156 }
157
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164 }
165
166 /*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173 {
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
202 if (ret)
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 return 0;
218 }
219
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
222 {
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 }
233
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
236 {
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
246 stripe_len);
247 BUG_ON(ret);
248 }
249
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
255 BUG_ON(ret);
256
257 while (nr--) {
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
260 stripe_len);
261 BUG_ON(ret);
262 }
263
264 kfree(logical);
265 }
266 return 0;
267 }
268
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
271 {
272 struct btrfs_caching_control *ctl;
273
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
277 return NULL;
278 }
279
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
283 return NULL;
284 }
285
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
289 return ctl;
290 }
291
292 static void put_caching_control(struct btrfs_caching_control *ctl)
293 {
294 if (atomic_dec_and_test(&ctl->count))
295 kfree(ctl);
296 }
297
298 /*
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
302 */
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
305 {
306 u64 extent_start, extent_end, size, total_added = 0;
307 int ret;
308
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
313 if (ret)
314 break;
315
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
320 total_added += size;
321 ret = btrfs_add_free_space(block_group, start,
322 size);
323 BUG_ON(ret);
324 start = extent_end + 1;
325 } else {
326 break;
327 }
328 }
329
330 if (start < end) {
331 size = end - start;
332 total_added += size;
333 ret = btrfs_add_free_space(block_group, start, size);
334 BUG_ON(ret);
335 }
336
337 return total_added;
338 }
339
340 static noinline void caching_thread(struct btrfs_work *work)
341 {
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
349 u64 total_found = 0;
350 u64 last = 0;
351 u32 nritems;
352 int ret = 0;
353
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
358
359 path = btrfs_alloc_path();
360 if (!path)
361 goto out;
362
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
364
365 /*
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
370 */
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
373 path->reada = 1;
374
375 key.objectid = last;
376 key.offset = 0;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
382
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 if (ret < 0)
385 goto err;
386
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
389
390 while (1) {
391 if (btrfs_fs_closing(fs_info) > 1) {
392 last = (u64)-1;
393 break;
394 }
395
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 } else {
399 ret = find_next_key(path, 0, &key);
400 if (ret)
401 break;
402
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
409 cond_resched();
410 goto again;
411 }
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
414 continue;
415 }
416
417 if (key.objectid < block_group->key.objectid) {
418 path->slots[0]++;
419 continue;
420 }
421
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
424 break;
425
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
428 fs_info, last,
429 key.objectid);
430 last = key.objectid + key.offset;
431
432 if (total_found > (1024 * 1024 * 2)) {
433 total_found = 0;
434 wake_up(&caching_ctl->wait);
435 }
436 }
437 path->slots[0]++;
438 }
439 ret = 0;
440
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
445
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
450
451 err:
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
454
455 free_excluded_extents(extent_root, block_group);
456
457 mutex_unlock(&caching_ctl->mutex);
458 out:
459 wake_up(&caching_ctl->wait);
460
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
463 }
464
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
468 int load_cache_only)
469 {
470 DEFINE_WAIT(wait);
471 struct btrfs_fs_info *fs_info = cache->fs_info;
472 struct btrfs_caching_control *caching_ctl;
473 int ret = 0;
474
475 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
476 BUG_ON(!caching_ctl);
477
478 INIT_LIST_HEAD(&caching_ctl->list);
479 mutex_init(&caching_ctl->mutex);
480 init_waitqueue_head(&caching_ctl->wait);
481 caching_ctl->block_group = cache;
482 caching_ctl->progress = cache->key.objectid;
483 atomic_set(&caching_ctl->count, 1);
484 caching_ctl->work.func = caching_thread;
485
486 spin_lock(&cache->lock);
487 /*
488 * This should be a rare occasion, but this could happen I think in the
489 * case where one thread starts to load the space cache info, and then
490 * some other thread starts a transaction commit which tries to do an
491 * allocation while the other thread is still loading the space cache
492 * info. The previous loop should have kept us from choosing this block
493 * group, but if we've moved to the state where we will wait on caching
494 * block groups we need to first check if we're doing a fast load here,
495 * so we can wait for it to finish, otherwise we could end up allocating
496 * from a block group who's cache gets evicted for one reason or
497 * another.
498 */
499 while (cache->cached == BTRFS_CACHE_FAST) {
500 struct btrfs_caching_control *ctl;
501
502 ctl = cache->caching_ctl;
503 atomic_inc(&ctl->count);
504 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
505 spin_unlock(&cache->lock);
506
507 schedule();
508
509 finish_wait(&ctl->wait, &wait);
510 put_caching_control(ctl);
511 spin_lock(&cache->lock);
512 }
513
514 if (cache->cached != BTRFS_CACHE_NO) {
515 spin_unlock(&cache->lock);
516 kfree(caching_ctl);
517 return 0;
518 }
519 WARN_ON(cache->caching_ctl);
520 cache->caching_ctl = caching_ctl;
521 cache->cached = BTRFS_CACHE_FAST;
522 spin_unlock(&cache->lock);
523
524 /*
525 * We can't do the read from on-disk cache during a commit since we need
526 * to have the normal tree locking. Also if we are currently trying to
527 * allocate blocks for the tree root we can't do the fast caching since
528 * we likely hold important locks.
529 */
530 if (trans && (!trans->transaction->in_commit) &&
531 (root && root != root->fs_info->tree_root) &&
532 btrfs_test_opt(root, SPACE_CACHE)) {
533 ret = load_free_space_cache(fs_info, cache);
534
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
546 }
547 }
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
554 }
555 } else {
556 /*
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
559 */
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
566 }
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
569 }
570
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
574 }
575
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
580
581 btrfs_get_block_group(cache);
582
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
584
585 return ret;
586 }
587
588 /*
589 * return the block group that starts at or after bytenr
590 */
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
593 {
594 struct btrfs_block_group_cache *cache;
595
596 cache = block_group_cache_tree_search(info, bytenr, 0);
597
598 return cache;
599 }
600
601 /*
602 * return the block group that contains the given bytenr
603 */
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
607 {
608 struct btrfs_block_group_cache *cache;
609
610 cache = block_group_cache_tree_search(info, bytenr, 1);
611
612 return cache;
613 }
614
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
617 {
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
620
621 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
622
623 rcu_read_lock();
624 list_for_each_entry_rcu(found, head, list) {
625 if (found->flags & flags) {
626 rcu_read_unlock();
627 return found;
628 }
629 }
630 rcu_read_unlock();
631 return NULL;
632 }
633
634 /*
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
637 */
638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
639 {
640 struct list_head *head = &info->space_info;
641 struct btrfs_space_info *found;
642
643 rcu_read_lock();
644 list_for_each_entry_rcu(found, head, list)
645 found->full = 0;
646 rcu_read_unlock();
647 }
648
649 static u64 div_factor(u64 num, int factor)
650 {
651 if (factor == 10)
652 return num;
653 num *= factor;
654 do_div(num, 10);
655 return num;
656 }
657
658 static u64 div_factor_fine(u64 num, int factor)
659 {
660 if (factor == 100)
661 return num;
662 num *= factor;
663 do_div(num, 100);
664 return num;
665 }
666
667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 u64 search_start, u64 search_hint, int owner)
669 {
670 struct btrfs_block_group_cache *cache;
671 u64 used;
672 u64 last = max(search_hint, search_start);
673 u64 group_start = 0;
674 int full_search = 0;
675 int factor = 9;
676 int wrapped = 0;
677 again:
678 while (1) {
679 cache = btrfs_lookup_first_block_group(root->fs_info, last);
680 if (!cache)
681 break;
682
683 spin_lock(&cache->lock);
684 last = cache->key.objectid + cache->key.offset;
685 used = btrfs_block_group_used(&cache->item);
686
687 if ((full_search || !cache->ro) &&
688 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 if (used + cache->pinned + cache->reserved <
690 div_factor(cache->key.offset, factor)) {
691 group_start = cache->key.objectid;
692 spin_unlock(&cache->lock);
693 btrfs_put_block_group(cache);
694 goto found;
695 }
696 }
697 spin_unlock(&cache->lock);
698 btrfs_put_block_group(cache);
699 cond_resched();
700 }
701 if (!wrapped) {
702 last = search_start;
703 wrapped = 1;
704 goto again;
705 }
706 if (!full_search && factor < 10) {
707 last = search_start;
708 full_search = 1;
709 factor = 10;
710 goto again;
711 }
712 found:
713 return group_start;
714 }
715
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
718 {
719 int ret;
720 struct btrfs_key key;
721 struct btrfs_path *path;
722
723 path = btrfs_alloc_path();
724 if (!path)
725 return -ENOMEM;
726
727 key.objectid = start;
728 key.offset = len;
729 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
731 0, 0);
732 btrfs_free_path(path);
733 return ret;
734 }
735
736 /*
737 * helper function to lookup reference count and flags of extent.
738 *
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
744 */
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 struct btrfs_root *root, u64 bytenr,
747 u64 num_bytes, u64 *refs, u64 *flags)
748 {
749 struct btrfs_delayed_ref_head *head;
750 struct btrfs_delayed_ref_root *delayed_refs;
751 struct btrfs_path *path;
752 struct btrfs_extent_item *ei;
753 struct extent_buffer *leaf;
754 struct btrfs_key key;
755 u32 item_size;
756 u64 num_refs;
757 u64 extent_flags;
758 int ret;
759
760 path = btrfs_alloc_path();
761 if (!path)
762 return -ENOMEM;
763
764 key.objectid = bytenr;
765 key.type = BTRFS_EXTENT_ITEM_KEY;
766 key.offset = num_bytes;
767 if (!trans) {
768 path->skip_locking = 1;
769 path->search_commit_root = 1;
770 }
771 again:
772 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
773 &key, path, 0, 0);
774 if (ret < 0)
775 goto out_free;
776
777 if (ret == 0) {
778 leaf = path->nodes[0];
779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 if (item_size >= sizeof(*ei)) {
781 ei = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item);
783 num_refs = btrfs_extent_refs(leaf, ei);
784 extent_flags = btrfs_extent_flags(leaf, ei);
785 } else {
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0 *ei0;
788 BUG_ON(item_size != sizeof(*ei0));
789 ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 struct btrfs_extent_item_v0);
791 num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 /* FIXME: this isn't correct for data */
793 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
794 #else
795 BUG();
796 #endif
797 }
798 BUG_ON(num_refs == 0);
799 } else {
800 num_refs = 0;
801 extent_flags = 0;
802 ret = 0;
803 }
804
805 if (!trans)
806 goto out;
807
808 delayed_refs = &trans->transaction->delayed_refs;
809 spin_lock(&delayed_refs->lock);
810 head = btrfs_find_delayed_ref_head(trans, bytenr);
811 if (head) {
812 if (!mutex_trylock(&head->mutex)) {
813 atomic_inc(&head->node.refs);
814 spin_unlock(&delayed_refs->lock);
815
816 btrfs_release_path(path);
817
818 /*
819 * Mutex was contended, block until it's released and try
820 * again
821 */
822 mutex_lock(&head->mutex);
823 mutex_unlock(&head->mutex);
824 btrfs_put_delayed_ref(&head->node);
825 goto again;
826 }
827 if (head->extent_op && head->extent_op->update_flags)
828 extent_flags |= head->extent_op->flags_to_set;
829 else
830 BUG_ON(num_refs == 0);
831
832 num_refs += head->node.ref_mod;
833 mutex_unlock(&head->mutex);
834 }
835 spin_unlock(&delayed_refs->lock);
836 out:
837 WARN_ON(num_refs == 0);
838 if (refs)
839 *refs = num_refs;
840 if (flags)
841 *flags = extent_flags;
842 out_free:
843 btrfs_free_path(path);
844 return ret;
845 }
846
847 /*
848 * Back reference rules. Back refs have three main goals:
849 *
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
853 *
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
856 *
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
860 *
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
871 *
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
878 *
879 * When a tree block is COW'd through a tree, there are four cases:
880 *
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
883 *
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
888 *
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
894 *
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
898 *
899 * Back Reference Key composing:
900 *
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
904 * of back refs.
905 *
906 * File extents can be referenced by:
907 *
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
911 *
912 * The extent ref structure for the implicit back refs has fields for:
913 *
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
918 *
919 * The key offset for the implicit back refs is hash of the first
920 * three fields.
921 *
922 * The extent ref structure for the full back refs has field for:
923 *
924 * - number of pointers in the tree leaf
925 *
926 * The key offset for the implicit back refs is the first byte of
927 * the tree leaf
928 *
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
931 *
932 * (root_key.objectid, inode objectid, offset in file, 1)
933 *
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
936 *
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
938 *
939 * Btree extents can be referenced by:
940 *
941 * - Different subvolumes
942 *
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
947 *
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
951 */
952
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct btrfs_path *path,
957 u64 owner, u32 extra_size)
958 {
959 struct btrfs_extent_item *item;
960 struct btrfs_extent_item_v0 *ei0;
961 struct btrfs_extent_ref_v0 *ref0;
962 struct btrfs_tree_block_info *bi;
963 struct extent_buffer *leaf;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
966 u32 new_size = sizeof(*item);
967 u64 refs;
968 int ret;
969
970 leaf = path->nodes[0];
971 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
972
973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 struct btrfs_extent_item_v0);
976 refs = btrfs_extent_refs_v0(leaf, ei0);
977
978 if (owner == (u64)-1) {
979 while (1) {
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0)
983 return ret;
984 BUG_ON(ret > 0);
985 leaf = path->nodes[0];
986 }
987 btrfs_item_key_to_cpu(leaf, &found_key,
988 path->slots[0]);
989 BUG_ON(key.objectid != found_key.objectid);
990 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
991 path->slots[0]++;
992 continue;
993 }
994 ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_extent_ref_v0);
996 owner = btrfs_ref_objectid_v0(leaf, ref0);
997 break;
998 }
999 }
1000 btrfs_release_path(path);
1001
1002 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 new_size += sizeof(*bi);
1004
1005 new_size -= sizeof(*ei0);
1006 ret = btrfs_search_slot(trans, root, &key, path,
1007 new_size + extra_size, 1);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret);
1011
1012 ret = btrfs_extend_item(trans, root, path, new_size);
1013
1014 leaf = path->nodes[0];
1015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 btrfs_set_extent_refs(leaf, item, refs);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf, item, 0);
1019 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 btrfs_set_extent_flags(leaf, item,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 bi = (struct btrfs_tree_block_info *)(item + 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1027 } else {
1028 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1029 }
1030 btrfs_mark_buffer_dirty(leaf);
1031 return 0;
1032 }
1033 #endif
1034
1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1036 {
1037 u32 high_crc = ~(u32)0;
1038 u32 low_crc = ~(u32)0;
1039 __le64 lenum;
1040
1041 lenum = cpu_to_le64(root_objectid);
1042 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 lenum = cpu_to_le64(owner);
1044 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(offset);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047
1048 return ((u64)high_crc << 31) ^ (u64)low_crc;
1049 }
1050
1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref)
1053 {
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 btrfs_extent_data_ref_objectid(leaf, ref),
1056 btrfs_extent_data_ref_offset(leaf, ref));
1057 }
1058
1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 struct btrfs_extent_data_ref *ref,
1061 u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1066 return 0;
1067 return 1;
1068 }
1069
1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_path *path,
1073 u64 bytenr, u64 parent,
1074 u64 root_objectid,
1075 u64 owner, u64 offset)
1076 {
1077 struct btrfs_key key;
1078 struct btrfs_extent_data_ref *ref;
1079 struct extent_buffer *leaf;
1080 u32 nritems;
1081 int ret;
1082 int recow;
1083 int err = -ENOENT;
1084
1085 key.objectid = bytenr;
1086 if (parent) {
1087 key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 key.offset = parent;
1089 } else {
1090 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 key.offset = hash_extent_data_ref(root_objectid,
1092 owner, offset);
1093 }
1094 again:
1095 recow = 0;
1096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 if (ret < 0) {
1098 err = ret;
1099 goto fail;
1100 }
1101
1102 if (parent) {
1103 if (!ret)
1104 return 0;
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 btrfs_release_path(path);
1108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 if (ret < 0) {
1110 err = ret;
1111 goto fail;
1112 }
1113 if (!ret)
1114 return 0;
1115 #endif
1116 goto fail;
1117 }
1118
1119 leaf = path->nodes[0];
1120 nritems = btrfs_header_nritems(leaf);
1121 while (1) {
1122 if (path->slots[0] >= nritems) {
1123 ret = btrfs_next_leaf(root, path);
1124 if (ret < 0)
1125 err = ret;
1126 if (ret)
1127 goto fail;
1128
1129 leaf = path->nodes[0];
1130 nritems = btrfs_header_nritems(leaf);
1131 recow = 1;
1132 }
1133
1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 if (key.objectid != bytenr ||
1136 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1137 goto fail;
1138
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1141
1142 if (match_extent_data_ref(leaf, ref, root_objectid,
1143 owner, offset)) {
1144 if (recow) {
1145 btrfs_release_path(path);
1146 goto again;
1147 }
1148 err = 0;
1149 break;
1150 }
1151 path->slots[0]++;
1152 }
1153 fail:
1154 return err;
1155 }
1156
1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 u64 bytenr, u64 parent,
1161 u64 root_objectid, u64 owner,
1162 u64 offset, int refs_to_add)
1163 {
1164 struct btrfs_key key;
1165 struct extent_buffer *leaf;
1166 u32 size;
1167 u32 num_refs;
1168 int ret;
1169
1170 key.objectid = bytenr;
1171 if (parent) {
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 size = sizeof(struct btrfs_shared_data_ref);
1175 } else {
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1178 owner, offset);
1179 size = sizeof(struct btrfs_extent_data_ref);
1180 }
1181
1182 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 if (ret && ret != -EEXIST)
1184 goto fail;
1185
1186 leaf = path->nodes[0];
1187 if (parent) {
1188 struct btrfs_shared_data_ref *ref;
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_shared_data_ref);
1191 if (ret == 0) {
1192 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1193 } else {
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 num_refs += refs_to_add;
1196 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1197 }
1198 } else {
1199 struct btrfs_extent_data_ref *ref;
1200 while (ret == -EEXIST) {
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (match_extent_data_ref(leaf, ref, root_objectid,
1204 owner, offset))
1205 break;
1206 btrfs_release_path(path);
1207 key.offset++;
1208 ret = btrfs_insert_empty_item(trans, root, path, &key,
1209 size);
1210 if (ret && ret != -EEXIST)
1211 goto fail;
1212
1213 leaf = path->nodes[0];
1214 }
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_extent_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_extent_data_ref_root(leaf, ref,
1219 root_objectid);
1220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1223 } else {
1224 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 num_refs += refs_to_add;
1226 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1227 }
1228 }
1229 btrfs_mark_buffer_dirty(leaf);
1230 ret = 0;
1231 fail:
1232 btrfs_release_path(path);
1233 return ret;
1234 }
1235
1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct btrfs_path *path,
1239 int refs_to_drop)
1240 {
1241 struct btrfs_key key;
1242 struct btrfs_extent_data_ref *ref1 = NULL;
1243 struct btrfs_shared_data_ref *ref2 = NULL;
1244 struct extent_buffer *leaf;
1245 u32 num_refs = 0;
1246 int ret = 0;
1247
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1250
1251 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_extent_data_ref);
1254 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_shared_data_ref);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 struct btrfs_extent_ref_v0 *ref0;
1262 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_extent_ref_v0);
1264 num_refs = btrfs_ref_count_v0(leaf, ref0);
1265 #endif
1266 } else {
1267 BUG();
1268 }
1269
1270 BUG_ON(num_refs < refs_to_drop);
1271 num_refs -= refs_to_drop;
1272
1273 if (num_refs == 0) {
1274 ret = btrfs_del_item(trans, root, path);
1275 } else {
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 else {
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1286 }
1287 #endif
1288 btrfs_mark_buffer_dirty(leaf);
1289 }
1290 return ret;
1291 }
1292
1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct btrfs_extent_inline_ref *iref)
1296 {
1297 struct btrfs_key key;
1298 struct extent_buffer *leaf;
1299 struct btrfs_extent_data_ref *ref1;
1300 struct btrfs_shared_data_ref *ref2;
1301 u32 num_refs = 0;
1302
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1305 if (iref) {
1306 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 BTRFS_EXTENT_DATA_REF_KEY) {
1308 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 } else {
1311 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1313 }
1314 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_shared_data_ref);
1321 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 struct btrfs_extent_ref_v0 *ref0;
1325 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_extent_ref_v0);
1327 num_refs = btrfs_ref_count_v0(leaf, ref0);
1328 #endif
1329 } else {
1330 WARN_ON(1);
1331 }
1332 return num_refs;
1333 }
1334
1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root,
1337 struct btrfs_path *path,
1338 u64 bytenr, u64 parent,
1339 u64 root_objectid)
1340 {
1341 struct btrfs_key key;
1342 int ret;
1343
1344 key.objectid = bytenr;
1345 if (parent) {
1346 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 key.offset = parent;
1348 } else {
1349 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 key.offset = root_objectid;
1351 }
1352
1353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 if (ret > 0)
1355 ret = -ENOENT;
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret == -ENOENT && parent) {
1358 btrfs_release_path(path);
1359 key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1361 if (ret > 0)
1362 ret = -ENOENT;
1363 }
1364 #endif
1365 return ret;
1366 }
1367
1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1373 {
1374 struct btrfs_key key;
1375 int ret;
1376
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1384 }
1385
1386 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 btrfs_release_path(path);
1388 return ret;
1389 }
1390
1391 static inline int extent_ref_type(u64 parent, u64 owner)
1392 {
1393 int type;
1394 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1395 if (parent > 0)
1396 type = BTRFS_SHARED_BLOCK_REF_KEY;
1397 else
1398 type = BTRFS_TREE_BLOCK_REF_KEY;
1399 } else {
1400 if (parent > 0)
1401 type = BTRFS_SHARED_DATA_REF_KEY;
1402 else
1403 type = BTRFS_EXTENT_DATA_REF_KEY;
1404 }
1405 return type;
1406 }
1407
1408 static int find_next_key(struct btrfs_path *path, int level,
1409 struct btrfs_key *key)
1410
1411 {
1412 for (; level < BTRFS_MAX_LEVEL; level++) {
1413 if (!path->nodes[level])
1414 break;
1415 if (path->slots[level] + 1 >=
1416 btrfs_header_nritems(path->nodes[level]))
1417 continue;
1418 if (level == 0)
1419 btrfs_item_key_to_cpu(path->nodes[level], key,
1420 path->slots[level] + 1);
1421 else
1422 btrfs_node_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1424 return 0;
1425 }
1426 return 1;
1427 }
1428
1429 /*
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1432 *
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1435 *
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1438 *
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1441 */
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root,
1445 struct btrfs_path *path,
1446 struct btrfs_extent_inline_ref **ref_ret,
1447 u64 bytenr, u64 num_bytes,
1448 u64 parent, u64 root_objectid,
1449 u64 owner, u64 offset, int insert)
1450 {
1451 struct btrfs_key key;
1452 struct extent_buffer *leaf;
1453 struct btrfs_extent_item *ei;
1454 struct btrfs_extent_inline_ref *iref;
1455 u64 flags;
1456 u64 item_size;
1457 unsigned long ptr;
1458 unsigned long end;
1459 int extra_size;
1460 int type;
1461 int want;
1462 int ret;
1463 int err = 0;
1464
1465 key.objectid = bytenr;
1466 key.type = BTRFS_EXTENT_ITEM_KEY;
1467 key.offset = num_bytes;
1468
1469 want = extent_ref_type(parent, owner);
1470 if (insert) {
1471 extra_size = btrfs_extent_inline_ref_size(want);
1472 path->keep_locks = 1;
1473 } else
1474 extra_size = -1;
1475 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1476 if (ret < 0) {
1477 err = ret;
1478 goto out;
1479 }
1480 BUG_ON(ret);
1481
1482 leaf = path->nodes[0];
1483 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1484 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1485 if (item_size < sizeof(*ei)) {
1486 if (!insert) {
1487 err = -ENOENT;
1488 goto out;
1489 }
1490 ret = convert_extent_item_v0(trans, root, path, owner,
1491 extra_size);
1492 if (ret < 0) {
1493 err = ret;
1494 goto out;
1495 }
1496 leaf = path->nodes[0];
1497 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1498 }
1499 #endif
1500 BUG_ON(item_size < sizeof(*ei));
1501
1502 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1503 flags = btrfs_extent_flags(leaf, ei);
1504
1505 ptr = (unsigned long)(ei + 1);
1506 end = (unsigned long)ei + item_size;
1507
1508 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1509 ptr += sizeof(struct btrfs_tree_block_info);
1510 BUG_ON(ptr > end);
1511 } else {
1512 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1513 }
1514
1515 err = -ENOENT;
1516 while (1) {
1517 if (ptr >= end) {
1518 WARN_ON(ptr > end);
1519 break;
1520 }
1521 iref = (struct btrfs_extent_inline_ref *)ptr;
1522 type = btrfs_extent_inline_ref_type(leaf, iref);
1523 if (want < type)
1524 break;
1525 if (want > type) {
1526 ptr += btrfs_extent_inline_ref_size(type);
1527 continue;
1528 }
1529
1530 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1531 struct btrfs_extent_data_ref *dref;
1532 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1533 if (match_extent_data_ref(leaf, dref, root_objectid,
1534 owner, offset)) {
1535 err = 0;
1536 break;
1537 }
1538 if (hash_extent_data_ref_item(leaf, dref) <
1539 hash_extent_data_ref(root_objectid, owner, offset))
1540 break;
1541 } else {
1542 u64 ref_offset;
1543 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1544 if (parent > 0) {
1545 if (parent == ref_offset) {
1546 err = 0;
1547 break;
1548 }
1549 if (ref_offset < parent)
1550 break;
1551 } else {
1552 if (root_objectid == ref_offset) {
1553 err = 0;
1554 break;
1555 }
1556 if (ref_offset < root_objectid)
1557 break;
1558 }
1559 }
1560 ptr += btrfs_extent_inline_ref_size(type);
1561 }
1562 if (err == -ENOENT && insert) {
1563 if (item_size + extra_size >=
1564 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1565 err = -EAGAIN;
1566 goto out;
1567 }
1568 /*
1569 * To add new inline back ref, we have to make sure
1570 * there is no corresponding back ref item.
1571 * For simplicity, we just do not add new inline back
1572 * ref if there is any kind of item for this block
1573 */
1574 if (find_next_key(path, 0, &key) == 0 &&
1575 key.objectid == bytenr &&
1576 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1577 err = -EAGAIN;
1578 goto out;
1579 }
1580 }
1581 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1582 out:
1583 if (insert) {
1584 path->keep_locks = 0;
1585 btrfs_unlock_up_safe(path, 1);
1586 }
1587 return err;
1588 }
1589
1590 /*
1591 * helper to add new inline back ref
1592 */
1593 static noinline_for_stack
1594 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1595 struct btrfs_root *root,
1596 struct btrfs_path *path,
1597 struct btrfs_extent_inline_ref *iref,
1598 u64 parent, u64 root_objectid,
1599 u64 owner, u64 offset, int refs_to_add,
1600 struct btrfs_delayed_extent_op *extent_op)
1601 {
1602 struct extent_buffer *leaf;
1603 struct btrfs_extent_item *ei;
1604 unsigned long ptr;
1605 unsigned long end;
1606 unsigned long item_offset;
1607 u64 refs;
1608 int size;
1609 int type;
1610 int ret;
1611
1612 leaf = path->nodes[0];
1613 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1614 item_offset = (unsigned long)iref - (unsigned long)ei;
1615
1616 type = extent_ref_type(parent, owner);
1617 size = btrfs_extent_inline_ref_size(type);
1618
1619 ret = btrfs_extend_item(trans, root, path, size);
1620
1621 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1622 refs = btrfs_extent_refs(leaf, ei);
1623 refs += refs_to_add;
1624 btrfs_set_extent_refs(leaf, ei, refs);
1625 if (extent_op)
1626 __run_delayed_extent_op(extent_op, leaf, ei);
1627
1628 ptr = (unsigned long)ei + item_offset;
1629 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1630 if (ptr < end - size)
1631 memmove_extent_buffer(leaf, ptr + size, ptr,
1632 end - size - ptr);
1633
1634 iref = (struct btrfs_extent_inline_ref *)ptr;
1635 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1636 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1637 struct btrfs_extent_data_ref *dref;
1638 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1639 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1640 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1641 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1642 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1643 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1644 struct btrfs_shared_data_ref *sref;
1645 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1647 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1648 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1649 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1650 } else {
1651 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1652 }
1653 btrfs_mark_buffer_dirty(leaf);
1654 return 0;
1655 }
1656
1657 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1658 struct btrfs_root *root,
1659 struct btrfs_path *path,
1660 struct btrfs_extent_inline_ref **ref_ret,
1661 u64 bytenr, u64 num_bytes, u64 parent,
1662 u64 root_objectid, u64 owner, u64 offset)
1663 {
1664 int ret;
1665
1666 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1667 bytenr, num_bytes, parent,
1668 root_objectid, owner, offset, 0);
1669 if (ret != -ENOENT)
1670 return ret;
1671
1672 btrfs_release_path(path);
1673 *ref_ret = NULL;
1674
1675 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1676 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1677 root_objectid);
1678 } else {
1679 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1680 root_objectid, owner, offset);
1681 }
1682 return ret;
1683 }
1684
1685 /*
1686 * helper to update/remove inline back ref
1687 */
1688 static noinline_for_stack
1689 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1690 struct btrfs_root *root,
1691 struct btrfs_path *path,
1692 struct btrfs_extent_inline_ref *iref,
1693 int refs_to_mod,
1694 struct btrfs_delayed_extent_op *extent_op)
1695 {
1696 struct extent_buffer *leaf;
1697 struct btrfs_extent_item *ei;
1698 struct btrfs_extent_data_ref *dref = NULL;
1699 struct btrfs_shared_data_ref *sref = NULL;
1700 unsigned long ptr;
1701 unsigned long end;
1702 u32 item_size;
1703 int size;
1704 int type;
1705 int ret;
1706 u64 refs;
1707
1708 leaf = path->nodes[0];
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1712 refs += refs_to_mod;
1713 btrfs_set_extent_refs(leaf, ei, refs);
1714 if (extent_op)
1715 __run_delayed_extent_op(extent_op, leaf, ei);
1716
1717 type = btrfs_extent_inline_ref_type(leaf, iref);
1718
1719 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1720 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1721 refs = btrfs_extent_data_ref_count(leaf, dref);
1722 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1723 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1724 refs = btrfs_shared_data_ref_count(leaf, sref);
1725 } else {
1726 refs = 1;
1727 BUG_ON(refs_to_mod != -1);
1728 }
1729
1730 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1731 refs += refs_to_mod;
1732
1733 if (refs > 0) {
1734 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1735 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1736 else
1737 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1738 } else {
1739 size = btrfs_extent_inline_ref_size(type);
1740 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1741 ptr = (unsigned long)iref;
1742 end = (unsigned long)ei + item_size;
1743 if (ptr + size < end)
1744 memmove_extent_buffer(leaf, ptr, ptr + size,
1745 end - ptr - size);
1746 item_size -= size;
1747 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1748 }
1749 btrfs_mark_buffer_dirty(leaf);
1750 return 0;
1751 }
1752
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 u64 bytenr, u64 num_bytes, u64 parent,
1758 u64 root_objectid, u64 owner,
1759 u64 offset, int refs_to_add,
1760 struct btrfs_delayed_extent_op *extent_op)
1761 {
1762 struct btrfs_extent_inline_ref *iref;
1763 int ret;
1764
1765 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 bytenr, num_bytes, parent,
1767 root_objectid, owner, offset, 1);
1768 if (ret == 0) {
1769 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 ret = update_inline_extent_backref(trans, root, path, iref,
1771 refs_to_add, extent_op);
1772 } else if (ret == -ENOENT) {
1773 ret = setup_inline_extent_backref(trans, root, path, iref,
1774 parent, root_objectid,
1775 owner, offset, refs_to_add,
1776 extent_op);
1777 }
1778 return ret;
1779 }
1780
1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path,
1784 u64 bytenr, u64 parent, u64 root_objectid,
1785 u64 owner, u64 offset, int refs_to_add)
1786 {
1787 int ret;
1788 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 BUG_ON(refs_to_add != 1);
1790 ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 parent, root_objectid);
1792 } else {
1793 ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 parent, root_objectid,
1795 owner, offset, refs_to_add);
1796 }
1797 return ret;
1798 }
1799
1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref *iref,
1804 int refs_to_drop, int is_data)
1805 {
1806 int ret;
1807
1808 BUG_ON(!is_data && refs_to_drop != 1);
1809 if (iref) {
1810 ret = update_inline_extent_backref(trans, root, path, iref,
1811 -refs_to_drop, NULL);
1812 } else if (is_data) {
1813 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1814 } else {
1815 ret = btrfs_del_item(trans, root, path);
1816 }
1817 return ret;
1818 }
1819
1820 static int btrfs_issue_discard(struct block_device *bdev,
1821 u64 start, u64 len)
1822 {
1823 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1824 }
1825
1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 u64 num_bytes, u64 *actual_bytes)
1828 {
1829 int ret;
1830 u64 discarded_bytes = 0;
1831 struct btrfs_bio *bbio = NULL;
1832
1833
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 bytenr, &num_bytes, &bbio, 0);
1837 if (!ret) {
1838 struct btrfs_bio_stripe *stripe = bbio->stripes;
1839 int i;
1840
1841
1842 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1843 if (!stripe->dev->can_discard)
1844 continue;
1845
1846 ret = btrfs_issue_discard(stripe->dev->bdev,
1847 stripe->physical,
1848 stripe->length);
1849 if (!ret)
1850 discarded_bytes += stripe->length;
1851 else if (ret != -EOPNOTSUPP)
1852 break;
1853
1854 /*
1855 * Just in case we get back EOPNOTSUPP for some reason,
1856 * just ignore the return value so we don't screw up
1857 * people calling discard_extent.
1858 */
1859 ret = 0;
1860 }
1861 kfree(bbio);
1862 }
1863
1864 if (actual_bytes)
1865 *actual_bytes = discarded_bytes;
1866
1867
1868 return ret;
1869 }
1870
1871 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1872 struct btrfs_root *root,
1873 u64 bytenr, u64 num_bytes, u64 parent,
1874 u64 root_objectid, u64 owner, u64 offset)
1875 {
1876 int ret;
1877 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1878 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1879
1880 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1881 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1882 parent, root_objectid, (int)owner,
1883 BTRFS_ADD_DELAYED_REF, NULL);
1884 } else {
1885 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1886 parent, root_objectid, owner, offset,
1887 BTRFS_ADD_DELAYED_REF, NULL);
1888 }
1889 return ret;
1890 }
1891
1892 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 u64 bytenr, u64 num_bytes,
1895 u64 parent, u64 root_objectid,
1896 u64 owner, u64 offset, int refs_to_add,
1897 struct btrfs_delayed_extent_op *extent_op)
1898 {
1899 struct btrfs_path *path;
1900 struct extent_buffer *leaf;
1901 struct btrfs_extent_item *item;
1902 u64 refs;
1903 int ret;
1904 int err = 0;
1905
1906 path = btrfs_alloc_path();
1907 if (!path)
1908 return -ENOMEM;
1909
1910 path->reada = 1;
1911 path->leave_spinning = 1;
1912 /* this will setup the path even if it fails to insert the back ref */
1913 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1914 path, bytenr, num_bytes, parent,
1915 root_objectid, owner, offset,
1916 refs_to_add, extent_op);
1917 if (ret == 0)
1918 goto out;
1919
1920 if (ret != -EAGAIN) {
1921 err = ret;
1922 goto out;
1923 }
1924
1925 leaf = path->nodes[0];
1926 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1927 refs = btrfs_extent_refs(leaf, item);
1928 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1929 if (extent_op)
1930 __run_delayed_extent_op(extent_op, leaf, item);
1931
1932 btrfs_mark_buffer_dirty(leaf);
1933 btrfs_release_path(path);
1934
1935 path->reada = 1;
1936 path->leave_spinning = 1;
1937
1938 /* now insert the actual backref */
1939 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1940 path, bytenr, parent, root_objectid,
1941 owner, offset, refs_to_add);
1942 BUG_ON(ret);
1943 out:
1944 btrfs_free_path(path);
1945 return err;
1946 }
1947
1948 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1949 struct btrfs_root *root,
1950 struct btrfs_delayed_ref_node *node,
1951 struct btrfs_delayed_extent_op *extent_op,
1952 int insert_reserved)
1953 {
1954 int ret = 0;
1955 struct btrfs_delayed_data_ref *ref;
1956 struct btrfs_key ins;
1957 u64 parent = 0;
1958 u64 ref_root = 0;
1959 u64 flags = 0;
1960
1961 ins.objectid = node->bytenr;
1962 ins.offset = node->num_bytes;
1963 ins.type = BTRFS_EXTENT_ITEM_KEY;
1964
1965 ref = btrfs_delayed_node_to_data_ref(node);
1966 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1967 parent = ref->parent;
1968 else
1969 ref_root = ref->root;
1970
1971 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1972 if (extent_op) {
1973 BUG_ON(extent_op->update_key);
1974 flags |= extent_op->flags_to_set;
1975 }
1976 ret = alloc_reserved_file_extent(trans, root,
1977 parent, ref_root, flags,
1978 ref->objectid, ref->offset,
1979 &ins, node->ref_mod);
1980 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1981 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1982 node->num_bytes, parent,
1983 ref_root, ref->objectid,
1984 ref->offset, node->ref_mod,
1985 extent_op);
1986 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1987 ret = __btrfs_free_extent(trans, root, node->bytenr,
1988 node->num_bytes, parent,
1989 ref_root, ref->objectid,
1990 ref->offset, node->ref_mod,
1991 extent_op);
1992 } else {
1993 BUG();
1994 }
1995 return ret;
1996 }
1997
1998 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1999 struct extent_buffer *leaf,
2000 struct btrfs_extent_item *ei)
2001 {
2002 u64 flags = btrfs_extent_flags(leaf, ei);
2003 if (extent_op->update_flags) {
2004 flags |= extent_op->flags_to_set;
2005 btrfs_set_extent_flags(leaf, ei, flags);
2006 }
2007
2008 if (extent_op->update_key) {
2009 struct btrfs_tree_block_info *bi;
2010 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2011 bi = (struct btrfs_tree_block_info *)(ei + 1);
2012 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2013 }
2014 }
2015
2016 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2017 struct btrfs_root *root,
2018 struct btrfs_delayed_ref_node *node,
2019 struct btrfs_delayed_extent_op *extent_op)
2020 {
2021 struct btrfs_key key;
2022 struct btrfs_path *path;
2023 struct btrfs_extent_item *ei;
2024 struct extent_buffer *leaf;
2025 u32 item_size;
2026 int ret;
2027 int err = 0;
2028
2029 path = btrfs_alloc_path();
2030 if (!path)
2031 return -ENOMEM;
2032
2033 key.objectid = node->bytenr;
2034 key.type = BTRFS_EXTENT_ITEM_KEY;
2035 key.offset = node->num_bytes;
2036
2037 path->reada = 1;
2038 path->leave_spinning = 1;
2039 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2040 path, 0, 1);
2041 if (ret < 0) {
2042 err = ret;
2043 goto out;
2044 }
2045 if (ret > 0) {
2046 err = -EIO;
2047 goto out;
2048 }
2049
2050 leaf = path->nodes[0];
2051 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2052 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2053 if (item_size < sizeof(*ei)) {
2054 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2055 path, (u64)-1, 0);
2056 if (ret < 0) {
2057 err = ret;
2058 goto out;
2059 }
2060 leaf = path->nodes[0];
2061 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2062 }
2063 #endif
2064 BUG_ON(item_size < sizeof(*ei));
2065 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2066 __run_delayed_extent_op(extent_op, leaf, ei);
2067
2068 btrfs_mark_buffer_dirty(leaf);
2069 out:
2070 btrfs_free_path(path);
2071 return err;
2072 }
2073
2074 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2075 struct btrfs_root *root,
2076 struct btrfs_delayed_ref_node *node,
2077 struct btrfs_delayed_extent_op *extent_op,
2078 int insert_reserved)
2079 {
2080 int ret = 0;
2081 struct btrfs_delayed_tree_ref *ref;
2082 struct btrfs_key ins;
2083 u64 parent = 0;
2084 u64 ref_root = 0;
2085
2086 ins.objectid = node->bytenr;
2087 ins.offset = node->num_bytes;
2088 ins.type = BTRFS_EXTENT_ITEM_KEY;
2089
2090 ref = btrfs_delayed_node_to_tree_ref(node);
2091 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2092 parent = ref->parent;
2093 else
2094 ref_root = ref->root;
2095
2096 BUG_ON(node->ref_mod != 1);
2097 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2098 BUG_ON(!extent_op || !extent_op->update_flags ||
2099 !extent_op->update_key);
2100 ret = alloc_reserved_tree_block(trans, root,
2101 parent, ref_root,
2102 extent_op->flags_to_set,
2103 &extent_op->key,
2104 ref->level, &ins);
2105 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2106 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2107 node->num_bytes, parent, ref_root,
2108 ref->level, 0, 1, extent_op);
2109 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2110 ret = __btrfs_free_extent(trans, root, node->bytenr,
2111 node->num_bytes, parent, ref_root,
2112 ref->level, 0, 1, extent_op);
2113 } else {
2114 BUG();
2115 }
2116 return ret;
2117 }
2118
2119 /* helper function to actually process a single delayed ref entry */
2120 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2121 struct btrfs_root *root,
2122 struct btrfs_delayed_ref_node *node,
2123 struct btrfs_delayed_extent_op *extent_op,
2124 int insert_reserved)
2125 {
2126 int ret;
2127 if (btrfs_delayed_ref_is_head(node)) {
2128 struct btrfs_delayed_ref_head *head;
2129 /*
2130 * we've hit the end of the chain and we were supposed
2131 * to insert this extent into the tree. But, it got
2132 * deleted before we ever needed to insert it, so all
2133 * we have to do is clean up the accounting
2134 */
2135 BUG_ON(extent_op);
2136 head = btrfs_delayed_node_to_head(node);
2137 if (insert_reserved) {
2138 btrfs_pin_extent(root, node->bytenr,
2139 node->num_bytes, 1);
2140 if (head->is_data) {
2141 ret = btrfs_del_csums(trans, root,
2142 node->bytenr,
2143 node->num_bytes);
2144 BUG_ON(ret);
2145 }
2146 }
2147 mutex_unlock(&head->mutex);
2148 return 0;
2149 }
2150
2151 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2152 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2153 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2154 insert_reserved);
2155 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2156 node->type == BTRFS_SHARED_DATA_REF_KEY)
2157 ret = run_delayed_data_ref(trans, root, node, extent_op,
2158 insert_reserved);
2159 else
2160 BUG();
2161 return ret;
2162 }
2163
2164 static noinline struct btrfs_delayed_ref_node *
2165 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2166 {
2167 struct rb_node *node;
2168 struct btrfs_delayed_ref_node *ref;
2169 int action = BTRFS_ADD_DELAYED_REF;
2170 again:
2171 /*
2172 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2173 * this prevents ref count from going down to zero when
2174 * there still are pending delayed ref.
2175 */
2176 node = rb_prev(&head->node.rb_node);
2177 while (1) {
2178 if (!node)
2179 break;
2180 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2181 rb_node);
2182 if (ref->bytenr != head->node.bytenr)
2183 break;
2184 if (ref->action == action)
2185 return ref;
2186 node = rb_prev(node);
2187 }
2188 if (action == BTRFS_ADD_DELAYED_REF) {
2189 action = BTRFS_DROP_DELAYED_REF;
2190 goto again;
2191 }
2192 return NULL;
2193 }
2194
2195 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2196 struct btrfs_root *root,
2197 struct list_head *cluster)
2198 {
2199 struct btrfs_delayed_ref_root *delayed_refs;
2200 struct btrfs_delayed_ref_node *ref;
2201 struct btrfs_delayed_ref_head *locked_ref = NULL;
2202 struct btrfs_delayed_extent_op *extent_op;
2203 int ret;
2204 int count = 0;
2205 int must_insert_reserved = 0;
2206
2207 delayed_refs = &trans->transaction->delayed_refs;
2208 while (1) {
2209 if (!locked_ref) {
2210 /* pick a new head ref from the cluster list */
2211 if (list_empty(cluster))
2212 break;
2213
2214 locked_ref = list_entry(cluster->next,
2215 struct btrfs_delayed_ref_head, cluster);
2216
2217 /* grab the lock that says we are going to process
2218 * all the refs for this head */
2219 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2220
2221 /*
2222 * we may have dropped the spin lock to get the head
2223 * mutex lock, and that might have given someone else
2224 * time to free the head. If that's true, it has been
2225 * removed from our list and we can move on.
2226 */
2227 if (ret == -EAGAIN) {
2228 locked_ref = NULL;
2229 count++;
2230 continue;
2231 }
2232 }
2233
2234 /*
2235 * record the must insert reserved flag before we
2236 * drop the spin lock.
2237 */
2238 must_insert_reserved = locked_ref->must_insert_reserved;
2239 locked_ref->must_insert_reserved = 0;
2240
2241 extent_op = locked_ref->extent_op;
2242 locked_ref->extent_op = NULL;
2243
2244 /*
2245 * locked_ref is the head node, so we have to go one
2246 * node back for any delayed ref updates
2247 */
2248 ref = select_delayed_ref(locked_ref);
2249 if (!ref) {
2250 /* All delayed refs have been processed, Go ahead
2251 * and send the head node to run_one_delayed_ref,
2252 * so that any accounting fixes can happen
2253 */
2254 ref = &locked_ref->node;
2255
2256 if (extent_op && must_insert_reserved) {
2257 kfree(extent_op);
2258 extent_op = NULL;
2259 }
2260
2261 if (extent_op) {
2262 spin_unlock(&delayed_refs->lock);
2263
2264 ret = run_delayed_extent_op(trans, root,
2265 ref, extent_op);
2266 BUG_ON(ret);
2267 kfree(extent_op);
2268
2269 cond_resched();
2270 spin_lock(&delayed_refs->lock);
2271 continue;
2272 }
2273
2274 list_del_init(&locked_ref->cluster);
2275 locked_ref = NULL;
2276 }
2277
2278 ref->in_tree = 0;
2279 rb_erase(&ref->rb_node, &delayed_refs->root);
2280 delayed_refs->num_entries--;
2281
2282 spin_unlock(&delayed_refs->lock);
2283
2284 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2285 must_insert_reserved);
2286 BUG_ON(ret);
2287
2288 btrfs_put_delayed_ref(ref);
2289 kfree(extent_op);
2290 count++;
2291
2292 cond_resched();
2293 spin_lock(&delayed_refs->lock);
2294 }
2295 return count;
2296 }
2297
2298 /*
2299 * this starts processing the delayed reference count updates and
2300 * extent insertions we have queued up so far. count can be
2301 * 0, which means to process everything in the tree at the start
2302 * of the run (but not newly added entries), or it can be some target
2303 * number you'd like to process.
2304 */
2305 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2306 struct btrfs_root *root, unsigned long count)
2307 {
2308 struct rb_node *node;
2309 struct btrfs_delayed_ref_root *delayed_refs;
2310 struct btrfs_delayed_ref_node *ref;
2311 struct list_head cluster;
2312 int ret;
2313 int run_all = count == (unsigned long)-1;
2314 int run_most = 0;
2315
2316 if (root == root->fs_info->extent_root)
2317 root = root->fs_info->tree_root;
2318
2319 delayed_refs = &trans->transaction->delayed_refs;
2320 INIT_LIST_HEAD(&cluster);
2321 again:
2322 spin_lock(&delayed_refs->lock);
2323 if (count == 0) {
2324 count = delayed_refs->num_entries * 2;
2325 run_most = 1;
2326 }
2327 while (1) {
2328 if (!(run_all || run_most) &&
2329 delayed_refs->num_heads_ready < 64)
2330 break;
2331
2332 /*
2333 * go find something we can process in the rbtree. We start at
2334 * the beginning of the tree, and then build a cluster
2335 * of refs to process starting at the first one we are able to
2336 * lock
2337 */
2338 ret = btrfs_find_ref_cluster(trans, &cluster,
2339 delayed_refs->run_delayed_start);
2340 if (ret)
2341 break;
2342
2343 ret = run_clustered_refs(trans, root, &cluster);
2344 BUG_ON(ret < 0);
2345
2346 count -= min_t(unsigned long, ret, count);
2347
2348 if (count == 0)
2349 break;
2350 }
2351
2352 if (run_all) {
2353 node = rb_first(&delayed_refs->root);
2354 if (!node)
2355 goto out;
2356 count = (unsigned long)-1;
2357
2358 while (node) {
2359 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2360 rb_node);
2361 if (btrfs_delayed_ref_is_head(ref)) {
2362 struct btrfs_delayed_ref_head *head;
2363
2364 head = btrfs_delayed_node_to_head(ref);
2365 atomic_inc(&ref->refs);
2366
2367 spin_unlock(&delayed_refs->lock);
2368 /*
2369 * Mutex was contended, block until it's
2370 * released and try again
2371 */
2372 mutex_lock(&head->mutex);
2373 mutex_unlock(&head->mutex);
2374
2375 btrfs_put_delayed_ref(ref);
2376 cond_resched();
2377 goto again;
2378 }
2379 node = rb_next(node);
2380 }
2381 spin_unlock(&delayed_refs->lock);
2382 schedule_timeout(1);
2383 goto again;
2384 }
2385 out:
2386 spin_unlock(&delayed_refs->lock);
2387 return 0;
2388 }
2389
2390 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2391 struct btrfs_root *root,
2392 u64 bytenr, u64 num_bytes, u64 flags,
2393 int is_data)
2394 {
2395 struct btrfs_delayed_extent_op *extent_op;
2396 int ret;
2397
2398 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2399 if (!extent_op)
2400 return -ENOMEM;
2401
2402 extent_op->flags_to_set = flags;
2403 extent_op->update_flags = 1;
2404 extent_op->update_key = 0;
2405 extent_op->is_data = is_data ? 1 : 0;
2406
2407 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2408 if (ret)
2409 kfree(extent_op);
2410 return ret;
2411 }
2412
2413 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2414 struct btrfs_root *root,
2415 struct btrfs_path *path,
2416 u64 objectid, u64 offset, u64 bytenr)
2417 {
2418 struct btrfs_delayed_ref_head *head;
2419 struct btrfs_delayed_ref_node *ref;
2420 struct btrfs_delayed_data_ref *data_ref;
2421 struct btrfs_delayed_ref_root *delayed_refs;
2422 struct rb_node *node;
2423 int ret = 0;
2424
2425 ret = -ENOENT;
2426 delayed_refs = &trans->transaction->delayed_refs;
2427 spin_lock(&delayed_refs->lock);
2428 head = btrfs_find_delayed_ref_head(trans, bytenr);
2429 if (!head)
2430 goto out;
2431
2432 if (!mutex_trylock(&head->mutex)) {
2433 atomic_inc(&head->node.refs);
2434 spin_unlock(&delayed_refs->lock);
2435
2436 btrfs_release_path(path);
2437
2438 /*
2439 * Mutex was contended, block until it's released and let
2440 * caller try again
2441 */
2442 mutex_lock(&head->mutex);
2443 mutex_unlock(&head->mutex);
2444 btrfs_put_delayed_ref(&head->node);
2445 return -EAGAIN;
2446 }
2447
2448 node = rb_prev(&head->node.rb_node);
2449 if (!node)
2450 goto out_unlock;
2451
2452 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2453
2454 if (ref->bytenr != bytenr)
2455 goto out_unlock;
2456
2457 ret = 1;
2458 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2459 goto out_unlock;
2460
2461 data_ref = btrfs_delayed_node_to_data_ref(ref);
2462
2463 node = rb_prev(node);
2464 if (node) {
2465 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2466 if (ref->bytenr == bytenr)
2467 goto out_unlock;
2468 }
2469
2470 if (data_ref->root != root->root_key.objectid ||
2471 data_ref->objectid != objectid || data_ref->offset != offset)
2472 goto out_unlock;
2473
2474 ret = 0;
2475 out_unlock:
2476 mutex_unlock(&head->mutex);
2477 out:
2478 spin_unlock(&delayed_refs->lock);
2479 return ret;
2480 }
2481
2482 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2483 struct btrfs_root *root,
2484 struct btrfs_path *path,
2485 u64 objectid, u64 offset, u64 bytenr)
2486 {
2487 struct btrfs_root *extent_root = root->fs_info->extent_root;
2488 struct extent_buffer *leaf;
2489 struct btrfs_extent_data_ref *ref;
2490 struct btrfs_extent_inline_ref *iref;
2491 struct btrfs_extent_item *ei;
2492 struct btrfs_key key;
2493 u32 item_size;
2494 int ret;
2495
2496 key.objectid = bytenr;
2497 key.offset = (u64)-1;
2498 key.type = BTRFS_EXTENT_ITEM_KEY;
2499
2500 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2501 if (ret < 0)
2502 goto out;
2503 BUG_ON(ret == 0);
2504
2505 ret = -ENOENT;
2506 if (path->slots[0] == 0)
2507 goto out;
2508
2509 path->slots[0]--;
2510 leaf = path->nodes[0];
2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2512
2513 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2514 goto out;
2515
2516 ret = 1;
2517 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2518 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2519 if (item_size < sizeof(*ei)) {
2520 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2521 goto out;
2522 }
2523 #endif
2524 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2525
2526 if (item_size != sizeof(*ei) +
2527 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2528 goto out;
2529
2530 if (btrfs_extent_generation(leaf, ei) <=
2531 btrfs_root_last_snapshot(&root->root_item))
2532 goto out;
2533
2534 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2535 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2536 BTRFS_EXTENT_DATA_REF_KEY)
2537 goto out;
2538
2539 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2540 if (btrfs_extent_refs(leaf, ei) !=
2541 btrfs_extent_data_ref_count(leaf, ref) ||
2542 btrfs_extent_data_ref_root(leaf, ref) !=
2543 root->root_key.objectid ||
2544 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2545 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2546 goto out;
2547
2548 ret = 0;
2549 out:
2550 return ret;
2551 }
2552
2553 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2554 struct btrfs_root *root,
2555 u64 objectid, u64 offset, u64 bytenr)
2556 {
2557 struct btrfs_path *path;
2558 int ret;
2559 int ret2;
2560
2561 path = btrfs_alloc_path();
2562 if (!path)
2563 return -ENOENT;
2564
2565 do {
2566 ret = check_committed_ref(trans, root, path, objectid,
2567 offset, bytenr);
2568 if (ret && ret != -ENOENT)
2569 goto out;
2570
2571 ret2 = check_delayed_ref(trans, root, path, objectid,
2572 offset, bytenr);
2573 } while (ret2 == -EAGAIN);
2574
2575 if (ret2 && ret2 != -ENOENT) {
2576 ret = ret2;
2577 goto out;
2578 }
2579
2580 if (ret != -ENOENT || ret2 != -ENOENT)
2581 ret = 0;
2582 out:
2583 btrfs_free_path(path);
2584 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2585 WARN_ON(ret > 0);
2586 return ret;
2587 }
2588
2589 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2590 struct btrfs_root *root,
2591 struct extent_buffer *buf,
2592 int full_backref, int inc)
2593 {
2594 u64 bytenr;
2595 u64 num_bytes;
2596 u64 parent;
2597 u64 ref_root;
2598 u32 nritems;
2599 struct btrfs_key key;
2600 struct btrfs_file_extent_item *fi;
2601 int i;
2602 int level;
2603 int ret = 0;
2604 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2605 u64, u64, u64, u64, u64, u64);
2606
2607 ref_root = btrfs_header_owner(buf);
2608 nritems = btrfs_header_nritems(buf);
2609 level = btrfs_header_level(buf);
2610
2611 if (!root->ref_cows && level == 0)
2612 return 0;
2613
2614 if (inc)
2615 process_func = btrfs_inc_extent_ref;
2616 else
2617 process_func = btrfs_free_extent;
2618
2619 if (full_backref)
2620 parent = buf->start;
2621 else
2622 parent = 0;
2623
2624 for (i = 0; i < nritems; i++) {
2625 if (level == 0) {
2626 btrfs_item_key_to_cpu(buf, &key, i);
2627 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2628 continue;
2629 fi = btrfs_item_ptr(buf, i,
2630 struct btrfs_file_extent_item);
2631 if (btrfs_file_extent_type(buf, fi) ==
2632 BTRFS_FILE_EXTENT_INLINE)
2633 continue;
2634 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2635 if (bytenr == 0)
2636 continue;
2637
2638 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2639 key.offset -= btrfs_file_extent_offset(buf, fi);
2640 ret = process_func(trans, root, bytenr, num_bytes,
2641 parent, ref_root, key.objectid,
2642 key.offset);
2643 if (ret)
2644 goto fail;
2645 } else {
2646 bytenr = btrfs_node_blockptr(buf, i);
2647 num_bytes = btrfs_level_size(root, level - 1);
2648 ret = process_func(trans, root, bytenr, num_bytes,
2649 parent, ref_root, level - 1, 0);
2650 if (ret)
2651 goto fail;
2652 }
2653 }
2654 return 0;
2655 fail:
2656 BUG();
2657 return ret;
2658 }
2659
2660 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2661 struct extent_buffer *buf, int full_backref)
2662 {
2663 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2664 }
2665
2666 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2667 struct extent_buffer *buf, int full_backref)
2668 {
2669 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2670 }
2671
2672 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2673 struct btrfs_root *root,
2674 struct btrfs_path *path,
2675 struct btrfs_block_group_cache *cache)
2676 {
2677 int ret;
2678 struct btrfs_root *extent_root = root->fs_info->extent_root;
2679 unsigned long bi;
2680 struct extent_buffer *leaf;
2681
2682 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2683 if (ret < 0)
2684 goto fail;
2685 BUG_ON(ret);
2686
2687 leaf = path->nodes[0];
2688 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2689 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2690 btrfs_mark_buffer_dirty(leaf);
2691 btrfs_release_path(path);
2692 fail:
2693 if (ret)
2694 return ret;
2695 return 0;
2696
2697 }
2698
2699 static struct btrfs_block_group_cache *
2700 next_block_group(struct btrfs_root *root,
2701 struct btrfs_block_group_cache *cache)
2702 {
2703 struct rb_node *node;
2704 spin_lock(&root->fs_info->block_group_cache_lock);
2705 node = rb_next(&cache->cache_node);
2706 btrfs_put_block_group(cache);
2707 if (node) {
2708 cache = rb_entry(node, struct btrfs_block_group_cache,
2709 cache_node);
2710 btrfs_get_block_group(cache);
2711 } else
2712 cache = NULL;
2713 spin_unlock(&root->fs_info->block_group_cache_lock);
2714 return cache;
2715 }
2716
2717 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2718 struct btrfs_trans_handle *trans,
2719 struct btrfs_path *path)
2720 {
2721 struct btrfs_root *root = block_group->fs_info->tree_root;
2722 struct inode *inode = NULL;
2723 u64 alloc_hint = 0;
2724 int dcs = BTRFS_DC_ERROR;
2725 int num_pages = 0;
2726 int retries = 0;
2727 int ret = 0;
2728
2729 /*
2730 * If this block group is smaller than 100 megs don't bother caching the
2731 * block group.
2732 */
2733 if (block_group->key.offset < (100 * 1024 * 1024)) {
2734 spin_lock(&block_group->lock);
2735 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2736 spin_unlock(&block_group->lock);
2737 return 0;
2738 }
2739
2740 again:
2741 inode = lookup_free_space_inode(root, block_group, path);
2742 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2743 ret = PTR_ERR(inode);
2744 btrfs_release_path(path);
2745 goto out;
2746 }
2747
2748 if (IS_ERR(inode)) {
2749 BUG_ON(retries);
2750 retries++;
2751
2752 if (block_group->ro)
2753 goto out_free;
2754
2755 ret = create_free_space_inode(root, trans, block_group, path);
2756 if (ret)
2757 goto out_free;
2758 goto again;
2759 }
2760
2761 /* We've already setup this transaction, go ahead and exit */
2762 if (block_group->cache_generation == trans->transid &&
2763 i_size_read(inode)) {
2764 dcs = BTRFS_DC_SETUP;
2765 goto out_put;
2766 }
2767
2768 /*
2769 * We want to set the generation to 0, that way if anything goes wrong
2770 * from here on out we know not to trust this cache when we load up next
2771 * time.
2772 */
2773 BTRFS_I(inode)->generation = 0;
2774 ret = btrfs_update_inode(trans, root, inode);
2775 WARN_ON(ret);
2776
2777 if (i_size_read(inode) > 0) {
2778 ret = btrfs_truncate_free_space_cache(root, trans, path,
2779 inode);
2780 if (ret)
2781 goto out_put;
2782 }
2783
2784 spin_lock(&block_group->lock);
2785 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2786 /* We're not cached, don't bother trying to write stuff out */
2787 dcs = BTRFS_DC_WRITTEN;
2788 spin_unlock(&block_group->lock);
2789 goto out_put;
2790 }
2791 spin_unlock(&block_group->lock);
2792
2793 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2794 if (!num_pages)
2795 num_pages = 1;
2796
2797 /*
2798 * Just to make absolutely sure we have enough space, we're going to
2799 * preallocate 12 pages worth of space for each block group. In
2800 * practice we ought to use at most 8, but we need extra space so we can
2801 * add our header and have a terminator between the extents and the
2802 * bitmaps.
2803 */
2804 num_pages *= 16;
2805 num_pages *= PAGE_CACHE_SIZE;
2806
2807 ret = btrfs_check_data_free_space(inode, num_pages);
2808 if (ret)
2809 goto out_put;
2810
2811 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2812 num_pages, num_pages,
2813 &alloc_hint);
2814 if (!ret)
2815 dcs = BTRFS_DC_SETUP;
2816 btrfs_free_reserved_data_space(inode, num_pages);
2817
2818 out_put:
2819 iput(inode);
2820 out_free:
2821 btrfs_release_path(path);
2822 out:
2823 spin_lock(&block_group->lock);
2824 if (!ret && dcs == BTRFS_DC_SETUP)
2825 block_group->cache_generation = trans->transid;
2826 block_group->disk_cache_state = dcs;
2827 spin_unlock(&block_group->lock);
2828
2829 return ret;
2830 }
2831
2832 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2833 struct btrfs_root *root)
2834 {
2835 struct btrfs_block_group_cache *cache;
2836 int err = 0;
2837 struct btrfs_path *path;
2838 u64 last = 0;
2839
2840 path = btrfs_alloc_path();
2841 if (!path)
2842 return -ENOMEM;
2843
2844 again:
2845 while (1) {
2846 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2847 while (cache) {
2848 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2849 break;
2850 cache = next_block_group(root, cache);
2851 }
2852 if (!cache) {
2853 if (last == 0)
2854 break;
2855 last = 0;
2856 continue;
2857 }
2858 err = cache_save_setup(cache, trans, path);
2859 last = cache->key.objectid + cache->key.offset;
2860 btrfs_put_block_group(cache);
2861 }
2862
2863 while (1) {
2864 if (last == 0) {
2865 err = btrfs_run_delayed_refs(trans, root,
2866 (unsigned long)-1);
2867 BUG_ON(err);
2868 }
2869
2870 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2871 while (cache) {
2872 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2873 btrfs_put_block_group(cache);
2874 goto again;
2875 }
2876
2877 if (cache->dirty)
2878 break;
2879 cache = next_block_group(root, cache);
2880 }
2881 if (!cache) {
2882 if (last == 0)
2883 break;
2884 last = 0;
2885 continue;
2886 }
2887
2888 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2889 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2890 cache->dirty = 0;
2891 last = cache->key.objectid + cache->key.offset;
2892
2893 err = write_one_cache_group(trans, root, path, cache);
2894 BUG_ON(err);
2895 btrfs_put_block_group(cache);
2896 }
2897
2898 while (1) {
2899 /*
2900 * I don't think this is needed since we're just marking our
2901 * preallocated extent as written, but just in case it can't
2902 * hurt.
2903 */
2904 if (last == 0) {
2905 err = btrfs_run_delayed_refs(trans, root,
2906 (unsigned long)-1);
2907 BUG_ON(err);
2908 }
2909
2910 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2911 while (cache) {
2912 /*
2913 * Really this shouldn't happen, but it could if we
2914 * couldn't write the entire preallocated extent and
2915 * splitting the extent resulted in a new block.
2916 */
2917 if (cache->dirty) {
2918 btrfs_put_block_group(cache);
2919 goto again;
2920 }
2921 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2922 break;
2923 cache = next_block_group(root, cache);
2924 }
2925 if (!cache) {
2926 if (last == 0)
2927 break;
2928 last = 0;
2929 continue;
2930 }
2931
2932 btrfs_write_out_cache(root, trans, cache, path);
2933
2934 /*
2935 * If we didn't have an error then the cache state is still
2936 * NEED_WRITE, so we can set it to WRITTEN.
2937 */
2938 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2939 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2940 last = cache->key.objectid + cache->key.offset;
2941 btrfs_put_block_group(cache);
2942 }
2943
2944 btrfs_free_path(path);
2945 return 0;
2946 }
2947
2948 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2949 {
2950 struct btrfs_block_group_cache *block_group;
2951 int readonly = 0;
2952
2953 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2954 if (!block_group || block_group->ro)
2955 readonly = 1;
2956 if (block_group)
2957 btrfs_put_block_group(block_group);
2958 return readonly;
2959 }
2960
2961 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2962 u64 total_bytes, u64 bytes_used,
2963 struct btrfs_space_info **space_info)
2964 {
2965 struct btrfs_space_info *found;
2966 int i;
2967 int factor;
2968
2969 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2970 BTRFS_BLOCK_GROUP_RAID10))
2971 factor = 2;
2972 else
2973 factor = 1;
2974
2975 found = __find_space_info(info, flags);
2976 if (found) {
2977 spin_lock(&found->lock);
2978 found->total_bytes += total_bytes;
2979 found->disk_total += total_bytes * factor;
2980 found->bytes_used += bytes_used;
2981 found->disk_used += bytes_used * factor;
2982 found->full = 0;
2983 spin_unlock(&found->lock);
2984 *space_info = found;
2985 return 0;
2986 }
2987 found = kzalloc(sizeof(*found), GFP_NOFS);
2988 if (!found)
2989 return -ENOMEM;
2990
2991 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2992 INIT_LIST_HEAD(&found->block_groups[i]);
2993 init_rwsem(&found->groups_sem);
2994 spin_lock_init(&found->lock);
2995 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
2996 found->total_bytes = total_bytes;
2997 found->disk_total = total_bytes * factor;
2998 found->bytes_used = bytes_used;
2999 found->disk_used = bytes_used * factor;
3000 found->bytes_pinned = 0;
3001 found->bytes_reserved = 0;
3002 found->bytes_readonly = 0;
3003 found->bytes_may_use = 0;
3004 found->full = 0;
3005 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3006 found->chunk_alloc = 0;
3007 found->flush = 0;
3008 init_waitqueue_head(&found->wait);
3009 *space_info = found;
3010 list_add_rcu(&found->list, &info->space_info);
3011 return 0;
3012 }
3013
3014 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3015 {
3016 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3017
3018 /* chunk -> extended profile */
3019 if (extra_flags == 0)
3020 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3021
3022 if (flags & BTRFS_BLOCK_GROUP_DATA)
3023 fs_info->avail_data_alloc_bits |= extra_flags;
3024 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3025 fs_info->avail_metadata_alloc_bits |= extra_flags;
3026 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3027 fs_info->avail_system_alloc_bits |= extra_flags;
3028 }
3029
3030 /*
3031 * @flags: available profiles in extended format (see ctree.h)
3032 *
3033 * Returns reduced profile in chunk format.
3034 */
3035 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3036 {
3037 /*
3038 * we add in the count of missing devices because we want
3039 * to make sure that any RAID levels on a degraded FS
3040 * continue to be honored.
3041 */
3042 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3043 root->fs_info->fs_devices->missing_devices;
3044
3045 if (num_devices == 1)
3046 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3047 if (num_devices < 4)
3048 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3049
3050 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3051 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3052 BTRFS_BLOCK_GROUP_RAID10))) {
3053 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3054 }
3055
3056 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3057 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3058 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3059 }
3060
3061 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3062 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3063 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3064 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3065 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3066 }
3067
3068 /* extended -> chunk profile */
3069 flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3070 return flags;
3071 }
3072
3073 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3074 {
3075 if (flags & BTRFS_BLOCK_GROUP_DATA)
3076 flags |= root->fs_info->avail_data_alloc_bits;
3077 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3078 flags |= root->fs_info->avail_system_alloc_bits;
3079 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3080 flags |= root->fs_info->avail_metadata_alloc_bits;
3081
3082 return btrfs_reduce_alloc_profile(root, flags);
3083 }
3084
3085 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3086 {
3087 u64 flags;
3088
3089 if (data)
3090 flags = BTRFS_BLOCK_GROUP_DATA;
3091 else if (root == root->fs_info->chunk_root)
3092 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3093 else
3094 flags = BTRFS_BLOCK_GROUP_METADATA;
3095
3096 return get_alloc_profile(root, flags);
3097 }
3098
3099 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3100 {
3101 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3102 BTRFS_BLOCK_GROUP_DATA);
3103 }
3104
3105 /*
3106 * This will check the space that the inode allocates from to make sure we have
3107 * enough space for bytes.
3108 */
3109 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3110 {
3111 struct btrfs_space_info *data_sinfo;
3112 struct btrfs_root *root = BTRFS_I(inode)->root;
3113 u64 used;
3114 int ret = 0, committed = 0, alloc_chunk = 1;
3115
3116 /* make sure bytes are sectorsize aligned */
3117 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3118
3119 if (root == root->fs_info->tree_root ||
3120 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3121 alloc_chunk = 0;
3122 committed = 1;
3123 }
3124
3125 data_sinfo = BTRFS_I(inode)->space_info;
3126 if (!data_sinfo)
3127 goto alloc;
3128
3129 again:
3130 /* make sure we have enough space to handle the data first */
3131 spin_lock(&data_sinfo->lock);
3132 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3133 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3134 data_sinfo->bytes_may_use;
3135
3136 if (used + bytes > data_sinfo->total_bytes) {
3137 struct btrfs_trans_handle *trans;
3138
3139 /*
3140 * if we don't have enough free bytes in this space then we need
3141 * to alloc a new chunk.
3142 */
3143 if (!data_sinfo->full && alloc_chunk) {
3144 u64 alloc_target;
3145
3146 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3147 spin_unlock(&data_sinfo->lock);
3148 alloc:
3149 alloc_target = btrfs_get_alloc_profile(root, 1);
3150 trans = btrfs_join_transaction(root);
3151 if (IS_ERR(trans))
3152 return PTR_ERR(trans);
3153
3154 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3155 bytes + 2 * 1024 * 1024,
3156 alloc_target,
3157 CHUNK_ALLOC_NO_FORCE);
3158 btrfs_end_transaction(trans, root);
3159 if (ret < 0) {
3160 if (ret != -ENOSPC)
3161 return ret;
3162 else
3163 goto commit_trans;
3164 }
3165
3166 if (!data_sinfo) {
3167 btrfs_set_inode_space_info(root, inode);
3168 data_sinfo = BTRFS_I(inode)->space_info;
3169 }
3170 goto again;
3171 }
3172
3173 /*
3174 * If we have less pinned bytes than we want to allocate then
3175 * don't bother committing the transaction, it won't help us.
3176 */
3177 if (data_sinfo->bytes_pinned < bytes)
3178 committed = 1;
3179 spin_unlock(&data_sinfo->lock);
3180
3181 /* commit the current transaction and try again */
3182 commit_trans:
3183 if (!committed &&
3184 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3185 committed = 1;
3186 trans = btrfs_join_transaction(root);
3187 if (IS_ERR(trans))
3188 return PTR_ERR(trans);
3189 ret = btrfs_commit_transaction(trans, root);
3190 if (ret)
3191 return ret;
3192 goto again;
3193 }
3194
3195 return -ENOSPC;
3196 }
3197 data_sinfo->bytes_may_use += bytes;
3198 spin_unlock(&data_sinfo->lock);
3199
3200 return 0;
3201 }
3202
3203 /*
3204 * Called if we need to clear a data reservation for this inode.
3205 */
3206 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3207 {
3208 struct btrfs_root *root = BTRFS_I(inode)->root;
3209 struct btrfs_space_info *data_sinfo;
3210
3211 /* make sure bytes are sectorsize aligned */
3212 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3213
3214 data_sinfo = BTRFS_I(inode)->space_info;
3215 spin_lock(&data_sinfo->lock);
3216 data_sinfo->bytes_may_use -= bytes;
3217 spin_unlock(&data_sinfo->lock);
3218 }
3219
3220 static void force_metadata_allocation(struct btrfs_fs_info *info)
3221 {
3222 struct list_head *head = &info->space_info;
3223 struct btrfs_space_info *found;
3224
3225 rcu_read_lock();
3226 list_for_each_entry_rcu(found, head, list) {
3227 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3228 found->force_alloc = CHUNK_ALLOC_FORCE;
3229 }
3230 rcu_read_unlock();
3231 }
3232
3233 static int should_alloc_chunk(struct btrfs_root *root,
3234 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3235 int force)
3236 {
3237 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3238 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3239 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3240 u64 thresh;
3241
3242 if (force == CHUNK_ALLOC_FORCE)
3243 return 1;
3244
3245 /*
3246 * We need to take into account the global rsv because for all intents
3247 * and purposes it's used space. Don't worry about locking the
3248 * global_rsv, it doesn't change except when the transaction commits.
3249 */
3250 num_allocated += global_rsv->size;
3251
3252 /*
3253 * in limited mode, we want to have some free space up to
3254 * about 1% of the FS size.
3255 */
3256 if (force == CHUNK_ALLOC_LIMITED) {
3257 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3258 thresh = max_t(u64, 64 * 1024 * 1024,
3259 div_factor_fine(thresh, 1));
3260
3261 if (num_bytes - num_allocated < thresh)
3262 return 1;
3263 }
3264
3265 /*
3266 * we have two similar checks here, one based on percentage
3267 * and once based on a hard number of 256MB. The idea
3268 * is that if we have a good amount of free
3269 * room, don't allocate a chunk. A good mount is
3270 * less than 80% utilized of the chunks we have allocated,
3271 * or more than 256MB free
3272 */
3273 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3274 return 0;
3275
3276 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3277 return 0;
3278
3279 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3280
3281 /* 256MB or 5% of the FS */
3282 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3283
3284 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3285 return 0;
3286 return 1;
3287 }
3288
3289 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3290 struct btrfs_root *extent_root, u64 alloc_bytes,
3291 u64 flags, int force)
3292 {
3293 struct btrfs_space_info *space_info;
3294 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3295 int wait_for_alloc = 0;
3296 int ret = 0;
3297
3298 BUG_ON(!profile_is_valid(flags, 0));
3299
3300 space_info = __find_space_info(extent_root->fs_info, flags);
3301 if (!space_info) {
3302 ret = update_space_info(extent_root->fs_info, flags,
3303 0, 0, &space_info);
3304 BUG_ON(ret);
3305 }
3306 BUG_ON(!space_info);
3307
3308 again:
3309 spin_lock(&space_info->lock);
3310 if (space_info->force_alloc)
3311 force = space_info->force_alloc;
3312 if (space_info->full) {
3313 spin_unlock(&space_info->lock);
3314 return 0;
3315 }
3316
3317 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3318 spin_unlock(&space_info->lock);
3319 return 0;
3320 } else if (space_info->chunk_alloc) {
3321 wait_for_alloc = 1;
3322 } else {
3323 space_info->chunk_alloc = 1;
3324 }
3325
3326 spin_unlock(&space_info->lock);
3327
3328 mutex_lock(&fs_info->chunk_mutex);
3329
3330 /*
3331 * The chunk_mutex is held throughout the entirety of a chunk
3332 * allocation, so once we've acquired the chunk_mutex we know that the
3333 * other guy is done and we need to recheck and see if we should
3334 * allocate.
3335 */
3336 if (wait_for_alloc) {
3337 mutex_unlock(&fs_info->chunk_mutex);
3338 wait_for_alloc = 0;
3339 goto again;
3340 }
3341
3342 /*
3343 * If we have mixed data/metadata chunks we want to make sure we keep
3344 * allocating mixed chunks instead of individual chunks.
3345 */
3346 if (btrfs_mixed_space_info(space_info))
3347 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3348
3349 /*
3350 * if we're doing a data chunk, go ahead and make sure that
3351 * we keep a reasonable number of metadata chunks allocated in the
3352 * FS as well.
3353 */
3354 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3355 fs_info->data_chunk_allocations++;
3356 if (!(fs_info->data_chunk_allocations %
3357 fs_info->metadata_ratio))
3358 force_metadata_allocation(fs_info);
3359 }
3360
3361 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3362 if (ret < 0 && ret != -ENOSPC)
3363 goto out;
3364
3365 spin_lock(&space_info->lock);
3366 if (ret)
3367 space_info->full = 1;
3368 else
3369 ret = 1;
3370
3371 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3372 space_info->chunk_alloc = 0;
3373 spin_unlock(&space_info->lock);
3374 out:
3375 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3376 return ret;
3377 }
3378
3379 /*
3380 * shrink metadata reservation for delalloc
3381 */
3382 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3383 bool wait_ordered)
3384 {
3385 struct btrfs_block_rsv *block_rsv;
3386 struct btrfs_space_info *space_info;
3387 struct btrfs_trans_handle *trans;
3388 u64 reserved;
3389 u64 max_reclaim;
3390 u64 reclaimed = 0;
3391 long time_left;
3392 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3393 int loops = 0;
3394 unsigned long progress;
3395
3396 trans = (struct btrfs_trans_handle *)current->journal_info;
3397 block_rsv = &root->fs_info->delalloc_block_rsv;
3398 space_info = block_rsv->space_info;
3399
3400 smp_mb();
3401 reserved = space_info->bytes_may_use;
3402 progress = space_info->reservation_progress;
3403
3404 if (reserved == 0)
3405 return 0;
3406
3407 smp_mb();
3408 if (root->fs_info->delalloc_bytes == 0) {
3409 if (trans)
3410 return 0;
3411 btrfs_wait_ordered_extents(root, 0, 0);
3412 return 0;
3413 }
3414
3415 max_reclaim = min(reserved, to_reclaim);
3416 nr_pages = max_t(unsigned long, nr_pages,
3417 max_reclaim >> PAGE_CACHE_SHIFT);
3418 while (loops < 1024) {
3419 /* have the flusher threads jump in and do some IO */
3420 smp_mb();
3421 nr_pages = min_t(unsigned long, nr_pages,
3422 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3423 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3424
3425 spin_lock(&space_info->lock);
3426 if (reserved > space_info->bytes_may_use)
3427 reclaimed += reserved - space_info->bytes_may_use;
3428 reserved = space_info->bytes_may_use;
3429 spin_unlock(&space_info->lock);
3430
3431 loops++;
3432
3433 if (reserved == 0 || reclaimed >= max_reclaim)
3434 break;
3435
3436 if (trans && trans->transaction->blocked)
3437 return -EAGAIN;
3438
3439 if (wait_ordered && !trans) {
3440 btrfs_wait_ordered_extents(root, 0, 0);
3441 } else {
3442 time_left = schedule_timeout_interruptible(1);
3443
3444 /* We were interrupted, exit */
3445 if (time_left)
3446 break;
3447 }
3448
3449 /* we've kicked the IO a few times, if anything has been freed,
3450 * exit. There is no sense in looping here for a long time
3451 * when we really need to commit the transaction, or there are
3452 * just too many writers without enough free space
3453 */
3454
3455 if (loops > 3) {
3456 smp_mb();
3457 if (progress != space_info->reservation_progress)
3458 break;
3459 }
3460
3461 }
3462
3463 return reclaimed >= to_reclaim;
3464 }
3465
3466 /**
3467 * maybe_commit_transaction - possibly commit the transaction if its ok to
3468 * @root - the root we're allocating for
3469 * @bytes - the number of bytes we want to reserve
3470 * @force - force the commit
3471 *
3472 * This will check to make sure that committing the transaction will actually
3473 * get us somewhere and then commit the transaction if it does. Otherwise it
3474 * will return -ENOSPC.
3475 */
3476 static int may_commit_transaction(struct btrfs_root *root,
3477 struct btrfs_space_info *space_info,
3478 u64 bytes, int force)
3479 {
3480 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3481 struct btrfs_trans_handle *trans;
3482
3483 trans = (struct btrfs_trans_handle *)current->journal_info;
3484 if (trans)
3485 return -EAGAIN;
3486
3487 if (force)
3488 goto commit;
3489
3490 /* See if there is enough pinned space to make this reservation */
3491 spin_lock(&space_info->lock);
3492 if (space_info->bytes_pinned >= bytes) {
3493 spin_unlock(&space_info->lock);
3494 goto commit;
3495 }
3496 spin_unlock(&space_info->lock);
3497
3498 /*
3499 * See if there is some space in the delayed insertion reservation for
3500 * this reservation.
3501 */
3502 if (space_info != delayed_rsv->space_info)
3503 return -ENOSPC;
3504
3505 spin_lock(&delayed_rsv->lock);
3506 if (delayed_rsv->size < bytes) {
3507 spin_unlock(&delayed_rsv->lock);
3508 return -ENOSPC;
3509 }
3510 spin_unlock(&delayed_rsv->lock);
3511
3512 commit:
3513 trans = btrfs_join_transaction(root);
3514 if (IS_ERR(trans))
3515 return -ENOSPC;
3516
3517 return btrfs_commit_transaction(trans, root);
3518 }
3519
3520 /**
3521 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3522 * @root - the root we're allocating for
3523 * @block_rsv - the block_rsv we're allocating for
3524 * @orig_bytes - the number of bytes we want
3525 * @flush - wether or not we can flush to make our reservation
3526 *
3527 * This will reserve orgi_bytes number of bytes from the space info associated
3528 * with the block_rsv. If there is not enough space it will make an attempt to
3529 * flush out space to make room. It will do this by flushing delalloc if
3530 * possible or committing the transaction. If flush is 0 then no attempts to
3531 * regain reservations will be made and this will fail if there is not enough
3532 * space already.
3533 */
3534 static int reserve_metadata_bytes(struct btrfs_root *root,
3535 struct btrfs_block_rsv *block_rsv,
3536 u64 orig_bytes, int flush)
3537 {
3538 struct btrfs_space_info *space_info = block_rsv->space_info;
3539 u64 used;
3540 u64 num_bytes = orig_bytes;
3541 int retries = 0;
3542 int ret = 0;
3543 bool committed = false;
3544 bool flushing = false;
3545 bool wait_ordered = false;
3546
3547 again:
3548 ret = 0;
3549 spin_lock(&space_info->lock);
3550 /*
3551 * We only want to wait if somebody other than us is flushing and we are
3552 * actually alloed to flush.
3553 */
3554 while (flush && !flushing && space_info->flush) {
3555 spin_unlock(&space_info->lock);
3556 /*
3557 * If we have a trans handle we can't wait because the flusher
3558 * may have to commit the transaction, which would mean we would
3559 * deadlock since we are waiting for the flusher to finish, but
3560 * hold the current transaction open.
3561 */
3562 if (current->journal_info)
3563 return -EAGAIN;
3564 ret = wait_event_interruptible(space_info->wait,
3565 !space_info->flush);
3566 /* Must have been interrupted, return */
3567 if (ret)
3568 return -EINTR;
3569
3570 spin_lock(&space_info->lock);
3571 }
3572
3573 ret = -ENOSPC;
3574 used = space_info->bytes_used + space_info->bytes_reserved +
3575 space_info->bytes_pinned + space_info->bytes_readonly +
3576 space_info->bytes_may_use;
3577
3578 /*
3579 * The idea here is that we've not already over-reserved the block group
3580 * then we can go ahead and save our reservation first and then start
3581 * flushing if we need to. Otherwise if we've already overcommitted
3582 * lets start flushing stuff first and then come back and try to make
3583 * our reservation.
3584 */
3585 if (used <= space_info->total_bytes) {
3586 if (used + orig_bytes <= space_info->total_bytes) {
3587 space_info->bytes_may_use += orig_bytes;
3588 ret = 0;
3589 } else {
3590 /*
3591 * Ok set num_bytes to orig_bytes since we aren't
3592 * overocmmitted, this way we only try and reclaim what
3593 * we need.
3594 */
3595 num_bytes = orig_bytes;
3596 }
3597 } else {
3598 /*
3599 * Ok we're over committed, set num_bytes to the overcommitted
3600 * amount plus the amount of bytes that we need for this
3601 * reservation.
3602 */
3603 wait_ordered = true;
3604 num_bytes = used - space_info->total_bytes +
3605 (orig_bytes * (retries + 1));
3606 }
3607
3608 if (ret) {
3609 u64 profile = btrfs_get_alloc_profile(root, 0);
3610 u64 avail;
3611
3612 /*
3613 * If we have a lot of space that's pinned, don't bother doing
3614 * the overcommit dance yet and just commit the transaction.
3615 */
3616 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3617 do_div(avail, 10);
3618 if (space_info->bytes_pinned >= avail && flush && !committed) {
3619 space_info->flush = 1;
3620 flushing = true;
3621 spin_unlock(&space_info->lock);
3622 ret = may_commit_transaction(root, space_info,
3623 orig_bytes, 1);
3624 if (ret)
3625 goto out;
3626 committed = true;
3627 goto again;
3628 }
3629
3630 spin_lock(&root->fs_info->free_chunk_lock);
3631 avail = root->fs_info->free_chunk_space;
3632
3633 /*
3634 * If we have dup, raid1 or raid10 then only half of the free
3635 * space is actually useable.
3636 */
3637 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3638 BTRFS_BLOCK_GROUP_RAID1 |
3639 BTRFS_BLOCK_GROUP_RAID10))
3640 avail >>= 1;
3641
3642 /*
3643 * If we aren't flushing don't let us overcommit too much, say
3644 * 1/8th of the space. If we can flush, let it overcommit up to
3645 * 1/2 of the space.
3646 */
3647 if (flush)
3648 avail >>= 3;
3649 else
3650 avail >>= 1;
3651 spin_unlock(&root->fs_info->free_chunk_lock);
3652
3653 if (used + num_bytes < space_info->total_bytes + avail) {
3654 space_info->bytes_may_use += orig_bytes;
3655 ret = 0;
3656 } else {
3657 wait_ordered = true;
3658 }
3659 }
3660
3661 /*
3662 * Couldn't make our reservation, save our place so while we're trying
3663 * to reclaim space we can actually use it instead of somebody else
3664 * stealing it from us.
3665 */
3666 if (ret && flush) {
3667 flushing = true;
3668 space_info->flush = 1;
3669 }
3670
3671 spin_unlock(&space_info->lock);
3672
3673 if (!ret || !flush)
3674 goto out;
3675
3676 /*
3677 * We do synchronous shrinking since we don't actually unreserve
3678 * metadata until after the IO is completed.
3679 */
3680 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3681 if (ret < 0)
3682 goto out;
3683
3684 ret = 0;
3685
3686 /*
3687 * So if we were overcommitted it's possible that somebody else flushed
3688 * out enough space and we simply didn't have enough space to reclaim,
3689 * so go back around and try again.
3690 */
3691 if (retries < 2) {
3692 wait_ordered = true;
3693 retries++;
3694 goto again;
3695 }
3696
3697 ret = -ENOSPC;
3698 if (committed)
3699 goto out;
3700
3701 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3702 if (!ret) {
3703 committed = true;
3704 goto again;
3705 }
3706
3707 out:
3708 if (flushing) {
3709 spin_lock(&space_info->lock);
3710 space_info->flush = 0;
3711 wake_up_all(&space_info->wait);
3712 spin_unlock(&space_info->lock);
3713 }
3714 return ret;
3715 }
3716
3717 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *root)
3719 {
3720 struct btrfs_block_rsv *block_rsv = NULL;
3721
3722 if (root->ref_cows || root == root->fs_info->csum_root)
3723 block_rsv = trans->block_rsv;
3724
3725 if (!block_rsv)
3726 block_rsv = root->block_rsv;
3727
3728 if (!block_rsv)
3729 block_rsv = &root->fs_info->empty_block_rsv;
3730
3731 return block_rsv;
3732 }
3733
3734 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3735 u64 num_bytes)
3736 {
3737 int ret = -ENOSPC;
3738 spin_lock(&block_rsv->lock);
3739 if (block_rsv->reserved >= num_bytes) {
3740 block_rsv->reserved -= num_bytes;
3741 if (block_rsv->reserved < block_rsv->size)
3742 block_rsv->full = 0;
3743 ret = 0;
3744 }
3745 spin_unlock(&block_rsv->lock);
3746 return ret;
3747 }
3748
3749 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3750 u64 num_bytes, int update_size)
3751 {
3752 spin_lock(&block_rsv->lock);
3753 block_rsv->reserved += num_bytes;
3754 if (update_size)
3755 block_rsv->size += num_bytes;
3756 else if (block_rsv->reserved >= block_rsv->size)
3757 block_rsv->full = 1;
3758 spin_unlock(&block_rsv->lock);
3759 }
3760
3761 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3762 struct btrfs_block_rsv *dest, u64 num_bytes)
3763 {
3764 struct btrfs_space_info *space_info = block_rsv->space_info;
3765
3766 spin_lock(&block_rsv->lock);
3767 if (num_bytes == (u64)-1)
3768 num_bytes = block_rsv->size;
3769 block_rsv->size -= num_bytes;
3770 if (block_rsv->reserved >= block_rsv->size) {
3771 num_bytes = block_rsv->reserved - block_rsv->size;
3772 block_rsv->reserved = block_rsv->size;
3773 block_rsv->full = 1;
3774 } else {
3775 num_bytes = 0;
3776 }
3777 spin_unlock(&block_rsv->lock);
3778
3779 if (num_bytes > 0) {
3780 if (dest) {
3781 spin_lock(&dest->lock);
3782 if (!dest->full) {
3783 u64 bytes_to_add;
3784
3785 bytes_to_add = dest->size - dest->reserved;
3786 bytes_to_add = min(num_bytes, bytes_to_add);
3787 dest->reserved += bytes_to_add;
3788 if (dest->reserved >= dest->size)
3789 dest->full = 1;
3790 num_bytes -= bytes_to_add;
3791 }
3792 spin_unlock(&dest->lock);
3793 }
3794 if (num_bytes) {
3795 spin_lock(&space_info->lock);
3796 space_info->bytes_may_use -= num_bytes;
3797 space_info->reservation_progress++;
3798 spin_unlock(&space_info->lock);
3799 }
3800 }
3801 }
3802
3803 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3804 struct btrfs_block_rsv *dst, u64 num_bytes)
3805 {
3806 int ret;
3807
3808 ret = block_rsv_use_bytes(src, num_bytes);
3809 if (ret)
3810 return ret;
3811
3812 block_rsv_add_bytes(dst, num_bytes, 1);
3813 return 0;
3814 }
3815
3816 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3817 {
3818 memset(rsv, 0, sizeof(*rsv));
3819 spin_lock_init(&rsv->lock);
3820 }
3821
3822 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3823 {
3824 struct btrfs_block_rsv *block_rsv;
3825 struct btrfs_fs_info *fs_info = root->fs_info;
3826
3827 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3828 if (!block_rsv)
3829 return NULL;
3830
3831 btrfs_init_block_rsv(block_rsv);
3832 block_rsv->space_info = __find_space_info(fs_info,
3833 BTRFS_BLOCK_GROUP_METADATA);
3834 return block_rsv;
3835 }
3836
3837 void btrfs_free_block_rsv(struct btrfs_root *root,
3838 struct btrfs_block_rsv *rsv)
3839 {
3840 btrfs_block_rsv_release(root, rsv, (u64)-1);
3841 kfree(rsv);
3842 }
3843
3844 static inline int __block_rsv_add(struct btrfs_root *root,
3845 struct btrfs_block_rsv *block_rsv,
3846 u64 num_bytes, int flush)
3847 {
3848 int ret;
3849
3850 if (num_bytes == 0)
3851 return 0;
3852
3853 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3854 if (!ret) {
3855 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3856 return 0;
3857 }
3858
3859 return ret;
3860 }
3861
3862 int btrfs_block_rsv_add(struct btrfs_root *root,
3863 struct btrfs_block_rsv *block_rsv,
3864 u64 num_bytes)
3865 {
3866 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3867 }
3868
3869 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3870 struct btrfs_block_rsv *block_rsv,
3871 u64 num_bytes)
3872 {
3873 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3874 }
3875
3876 int btrfs_block_rsv_check(struct btrfs_root *root,
3877 struct btrfs_block_rsv *block_rsv, int min_factor)
3878 {
3879 u64 num_bytes = 0;
3880 int ret = -ENOSPC;
3881
3882 if (!block_rsv)
3883 return 0;
3884
3885 spin_lock(&block_rsv->lock);
3886 num_bytes = div_factor(block_rsv->size, min_factor);
3887 if (block_rsv->reserved >= num_bytes)
3888 ret = 0;
3889 spin_unlock(&block_rsv->lock);
3890
3891 return ret;
3892 }
3893
3894 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
3895 struct btrfs_block_rsv *block_rsv,
3896 u64 min_reserved, int flush)
3897 {
3898 u64 num_bytes = 0;
3899 int ret = -ENOSPC;
3900
3901 if (!block_rsv)
3902 return 0;
3903
3904 spin_lock(&block_rsv->lock);
3905 num_bytes = min_reserved;
3906 if (block_rsv->reserved >= num_bytes)
3907 ret = 0;
3908 else
3909 num_bytes -= block_rsv->reserved;
3910 spin_unlock(&block_rsv->lock);
3911
3912 if (!ret)
3913 return 0;
3914
3915 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3916 if (!ret) {
3917 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3918 return 0;
3919 }
3920
3921 return ret;
3922 }
3923
3924 int btrfs_block_rsv_refill(struct btrfs_root *root,
3925 struct btrfs_block_rsv *block_rsv,
3926 u64 min_reserved)
3927 {
3928 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
3929 }
3930
3931 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
3932 struct btrfs_block_rsv *block_rsv,
3933 u64 min_reserved)
3934 {
3935 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
3936 }
3937
3938 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3939 struct btrfs_block_rsv *dst_rsv,
3940 u64 num_bytes)
3941 {
3942 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3943 }
3944
3945 void btrfs_block_rsv_release(struct btrfs_root *root,
3946 struct btrfs_block_rsv *block_rsv,
3947 u64 num_bytes)
3948 {
3949 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3950 if (global_rsv->full || global_rsv == block_rsv ||
3951 block_rsv->space_info != global_rsv->space_info)
3952 global_rsv = NULL;
3953 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3954 }
3955
3956 /*
3957 * helper to calculate size of global block reservation.
3958 * the desired value is sum of space used by extent tree,
3959 * checksum tree and root tree
3960 */
3961 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3962 {
3963 struct btrfs_space_info *sinfo;
3964 u64 num_bytes;
3965 u64 meta_used;
3966 u64 data_used;
3967 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
3968
3969 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3970 spin_lock(&sinfo->lock);
3971 data_used = sinfo->bytes_used;
3972 spin_unlock(&sinfo->lock);
3973
3974 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3975 spin_lock(&sinfo->lock);
3976 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3977 data_used = 0;
3978 meta_used = sinfo->bytes_used;
3979 spin_unlock(&sinfo->lock);
3980
3981 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3982 csum_size * 2;
3983 num_bytes += div64_u64(data_used + meta_used, 50);
3984
3985 if (num_bytes * 3 > meta_used)
3986 num_bytes = div64_u64(meta_used, 3);
3987
3988 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3989 }
3990
3991 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3992 {
3993 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3994 struct btrfs_space_info *sinfo = block_rsv->space_info;
3995 u64 num_bytes;
3996
3997 num_bytes = calc_global_metadata_size(fs_info);
3998
3999 spin_lock(&block_rsv->lock);
4000 spin_lock(&sinfo->lock);
4001
4002 block_rsv->size = num_bytes;
4003
4004 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4005 sinfo->bytes_reserved + sinfo->bytes_readonly +
4006 sinfo->bytes_may_use;
4007
4008 if (sinfo->total_bytes > num_bytes) {
4009 num_bytes = sinfo->total_bytes - num_bytes;
4010 block_rsv->reserved += num_bytes;
4011 sinfo->bytes_may_use += num_bytes;
4012 }
4013
4014 if (block_rsv->reserved >= block_rsv->size) {
4015 num_bytes = block_rsv->reserved - block_rsv->size;
4016 sinfo->bytes_may_use -= num_bytes;
4017 sinfo->reservation_progress++;
4018 block_rsv->reserved = block_rsv->size;
4019 block_rsv->full = 1;
4020 }
4021
4022 spin_unlock(&sinfo->lock);
4023 spin_unlock(&block_rsv->lock);
4024 }
4025
4026 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4027 {
4028 struct btrfs_space_info *space_info;
4029
4030 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4031 fs_info->chunk_block_rsv.space_info = space_info;
4032
4033 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4034 fs_info->global_block_rsv.space_info = space_info;
4035 fs_info->delalloc_block_rsv.space_info = space_info;
4036 fs_info->trans_block_rsv.space_info = space_info;
4037 fs_info->empty_block_rsv.space_info = space_info;
4038 fs_info->delayed_block_rsv.space_info = space_info;
4039
4040 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4041 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4042 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4043 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4044 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4045
4046 update_global_block_rsv(fs_info);
4047 }
4048
4049 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4050 {
4051 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
4052 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4053 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4054 WARN_ON(fs_info->trans_block_rsv.size > 0);
4055 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4056 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4057 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4058 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4059 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4060 }
4061
4062 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4063 struct btrfs_root *root)
4064 {
4065 if (!trans->bytes_reserved)
4066 return;
4067
4068 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4069 trans->bytes_reserved = 0;
4070 }
4071
4072 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4073 struct inode *inode)
4074 {
4075 struct btrfs_root *root = BTRFS_I(inode)->root;
4076 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4077 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4078
4079 /*
4080 * We need to hold space in order to delete our orphan item once we've
4081 * added it, so this takes the reservation so we can release it later
4082 * when we are truly done with the orphan item.
4083 */
4084 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4085 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4086 }
4087
4088 void btrfs_orphan_release_metadata(struct inode *inode)
4089 {
4090 struct btrfs_root *root = BTRFS_I(inode)->root;
4091 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4092 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4093 }
4094
4095 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4096 struct btrfs_pending_snapshot *pending)
4097 {
4098 struct btrfs_root *root = pending->root;
4099 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4100 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4101 /*
4102 * two for root back/forward refs, two for directory entries
4103 * and one for root of the snapshot.
4104 */
4105 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4106 dst_rsv->space_info = src_rsv->space_info;
4107 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4108 }
4109
4110 /**
4111 * drop_outstanding_extent - drop an outstanding extent
4112 * @inode: the inode we're dropping the extent for
4113 *
4114 * This is called when we are freeing up an outstanding extent, either called
4115 * after an error or after an extent is written. This will return the number of
4116 * reserved extents that need to be freed. This must be called with
4117 * BTRFS_I(inode)->lock held.
4118 */
4119 static unsigned drop_outstanding_extent(struct inode *inode)
4120 {
4121 unsigned drop_inode_space = 0;
4122 unsigned dropped_extents = 0;
4123
4124 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4125 BTRFS_I(inode)->outstanding_extents--;
4126
4127 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4128 BTRFS_I(inode)->delalloc_meta_reserved) {
4129 drop_inode_space = 1;
4130 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4131 }
4132
4133 /*
4134 * If we have more or the same amount of outsanding extents than we have
4135 * reserved then we need to leave the reserved extents count alone.
4136 */
4137 if (BTRFS_I(inode)->outstanding_extents >=
4138 BTRFS_I(inode)->reserved_extents)
4139 return drop_inode_space;
4140
4141 dropped_extents = BTRFS_I(inode)->reserved_extents -
4142 BTRFS_I(inode)->outstanding_extents;
4143 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4144 return dropped_extents + drop_inode_space;
4145 }
4146
4147 /**
4148 * calc_csum_metadata_size - return the amount of metada space that must be
4149 * reserved/free'd for the given bytes.
4150 * @inode: the inode we're manipulating
4151 * @num_bytes: the number of bytes in question
4152 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4153 *
4154 * This adjusts the number of csum_bytes in the inode and then returns the
4155 * correct amount of metadata that must either be reserved or freed. We
4156 * calculate how many checksums we can fit into one leaf and then divide the
4157 * number of bytes that will need to be checksumed by this value to figure out
4158 * how many checksums will be required. If we are adding bytes then the number
4159 * may go up and we will return the number of additional bytes that must be
4160 * reserved. If it is going down we will return the number of bytes that must
4161 * be freed.
4162 *
4163 * This must be called with BTRFS_I(inode)->lock held.
4164 */
4165 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4166 int reserve)
4167 {
4168 struct btrfs_root *root = BTRFS_I(inode)->root;
4169 u64 csum_size;
4170 int num_csums_per_leaf;
4171 int num_csums;
4172 int old_csums;
4173
4174 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4175 BTRFS_I(inode)->csum_bytes == 0)
4176 return 0;
4177
4178 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4179 if (reserve)
4180 BTRFS_I(inode)->csum_bytes += num_bytes;
4181 else
4182 BTRFS_I(inode)->csum_bytes -= num_bytes;
4183 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4184 num_csums_per_leaf = (int)div64_u64(csum_size,
4185 sizeof(struct btrfs_csum_item) +
4186 sizeof(struct btrfs_disk_key));
4187 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4188 num_csums = num_csums + num_csums_per_leaf - 1;
4189 num_csums = num_csums / num_csums_per_leaf;
4190
4191 old_csums = old_csums + num_csums_per_leaf - 1;
4192 old_csums = old_csums / num_csums_per_leaf;
4193
4194 /* No change, no need to reserve more */
4195 if (old_csums == num_csums)
4196 return 0;
4197
4198 if (reserve)
4199 return btrfs_calc_trans_metadata_size(root,
4200 num_csums - old_csums);
4201
4202 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4203 }
4204
4205 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4206 {
4207 struct btrfs_root *root = BTRFS_I(inode)->root;
4208 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4209 u64 to_reserve = 0;
4210 u64 csum_bytes;
4211 unsigned nr_extents = 0;
4212 int extra_reserve = 0;
4213 int flush = 1;
4214 int ret;
4215
4216 /* Need to be holding the i_mutex here if we aren't free space cache */
4217 if (btrfs_is_free_space_inode(root, inode))
4218 flush = 0;
4219 else
4220 WARN_ON(!mutex_is_locked(&inode->i_mutex));
4221
4222 if (flush && btrfs_transaction_in_commit(root->fs_info))
4223 schedule_timeout(1);
4224
4225 num_bytes = ALIGN(num_bytes, root->sectorsize);
4226
4227 spin_lock(&BTRFS_I(inode)->lock);
4228 BTRFS_I(inode)->outstanding_extents++;
4229
4230 if (BTRFS_I(inode)->outstanding_extents >
4231 BTRFS_I(inode)->reserved_extents)
4232 nr_extents = BTRFS_I(inode)->outstanding_extents -
4233 BTRFS_I(inode)->reserved_extents;
4234
4235 /*
4236 * Add an item to reserve for updating the inode when we complete the
4237 * delalloc io.
4238 */
4239 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4240 nr_extents++;
4241 extra_reserve = 1;
4242 }
4243
4244 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4245 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4246 csum_bytes = BTRFS_I(inode)->csum_bytes;
4247 spin_unlock(&BTRFS_I(inode)->lock);
4248
4249 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4250 if (ret) {
4251 u64 to_free = 0;
4252 unsigned dropped;
4253
4254 spin_lock(&BTRFS_I(inode)->lock);
4255 dropped = drop_outstanding_extent(inode);
4256 /*
4257 * If the inodes csum_bytes is the same as the original
4258 * csum_bytes then we know we haven't raced with any free()ers
4259 * so we can just reduce our inodes csum bytes and carry on.
4260 * Otherwise we have to do the normal free thing to account for
4261 * the case that the free side didn't free up its reserve
4262 * because of this outstanding reservation.
4263 */
4264 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4265 calc_csum_metadata_size(inode, num_bytes, 0);
4266 else
4267 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4268 spin_unlock(&BTRFS_I(inode)->lock);
4269 if (dropped)
4270 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4271
4272 if (to_free)
4273 btrfs_block_rsv_release(root, block_rsv, to_free);
4274 return ret;
4275 }
4276
4277 spin_lock(&BTRFS_I(inode)->lock);
4278 if (extra_reserve) {
4279 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4280 nr_extents--;
4281 }
4282 BTRFS_I(inode)->reserved_extents += nr_extents;
4283 spin_unlock(&BTRFS_I(inode)->lock);
4284
4285 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4286
4287 return 0;
4288 }
4289
4290 /**
4291 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4292 * @inode: the inode to release the reservation for
4293 * @num_bytes: the number of bytes we're releasing
4294 *
4295 * This will release the metadata reservation for an inode. This can be called
4296 * once we complete IO for a given set of bytes to release their metadata
4297 * reservations.
4298 */
4299 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4300 {
4301 struct btrfs_root *root = BTRFS_I(inode)->root;
4302 u64 to_free = 0;
4303 unsigned dropped;
4304
4305 num_bytes = ALIGN(num_bytes, root->sectorsize);
4306 spin_lock(&BTRFS_I(inode)->lock);
4307 dropped = drop_outstanding_extent(inode);
4308
4309 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4310 spin_unlock(&BTRFS_I(inode)->lock);
4311 if (dropped > 0)
4312 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4313
4314 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4315 to_free);
4316 }
4317
4318 /**
4319 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4320 * @inode: inode we're writing to
4321 * @num_bytes: the number of bytes we want to allocate
4322 *
4323 * This will do the following things
4324 *
4325 * o reserve space in the data space info for num_bytes
4326 * o reserve space in the metadata space info based on number of outstanding
4327 * extents and how much csums will be needed
4328 * o add to the inodes ->delalloc_bytes
4329 * o add it to the fs_info's delalloc inodes list.
4330 *
4331 * This will return 0 for success and -ENOSPC if there is no space left.
4332 */
4333 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4334 {
4335 int ret;
4336
4337 ret = btrfs_check_data_free_space(inode, num_bytes);
4338 if (ret)
4339 return ret;
4340
4341 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4342 if (ret) {
4343 btrfs_free_reserved_data_space(inode, num_bytes);
4344 return ret;
4345 }
4346
4347 return 0;
4348 }
4349
4350 /**
4351 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4352 * @inode: inode we're releasing space for
4353 * @num_bytes: the number of bytes we want to free up
4354 *
4355 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4356 * called in the case that we don't need the metadata AND data reservations
4357 * anymore. So if there is an error or we insert an inline extent.
4358 *
4359 * This function will release the metadata space that was not used and will
4360 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4361 * list if there are no delalloc bytes left.
4362 */
4363 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4364 {
4365 btrfs_delalloc_release_metadata(inode, num_bytes);
4366 btrfs_free_reserved_data_space(inode, num_bytes);
4367 }
4368
4369 static int update_block_group(struct btrfs_trans_handle *trans,
4370 struct btrfs_root *root,
4371 u64 bytenr, u64 num_bytes, int alloc)
4372 {
4373 struct btrfs_block_group_cache *cache = NULL;
4374 struct btrfs_fs_info *info = root->fs_info;
4375 u64 total = num_bytes;
4376 u64 old_val;
4377 u64 byte_in_group;
4378 int factor;
4379
4380 /* block accounting for super block */
4381 spin_lock(&info->delalloc_lock);
4382 old_val = btrfs_super_bytes_used(info->super_copy);
4383 if (alloc)
4384 old_val += num_bytes;
4385 else
4386 old_val -= num_bytes;
4387 btrfs_set_super_bytes_used(info->super_copy, old_val);
4388 spin_unlock(&info->delalloc_lock);
4389
4390 while (total) {
4391 cache = btrfs_lookup_block_group(info, bytenr);
4392 if (!cache)
4393 return -1;
4394 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4395 BTRFS_BLOCK_GROUP_RAID1 |
4396 BTRFS_BLOCK_GROUP_RAID10))
4397 factor = 2;
4398 else
4399 factor = 1;
4400 /*
4401 * If this block group has free space cache written out, we
4402 * need to make sure to load it if we are removing space. This
4403 * is because we need the unpinning stage to actually add the
4404 * space back to the block group, otherwise we will leak space.
4405 */
4406 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4407 cache_block_group(cache, trans, NULL, 1);
4408
4409 byte_in_group = bytenr - cache->key.objectid;
4410 WARN_ON(byte_in_group > cache->key.offset);
4411
4412 spin_lock(&cache->space_info->lock);
4413 spin_lock(&cache->lock);
4414
4415 if (btrfs_test_opt(root, SPACE_CACHE) &&
4416 cache->disk_cache_state < BTRFS_DC_CLEAR)
4417 cache->disk_cache_state = BTRFS_DC_CLEAR;
4418
4419 cache->dirty = 1;
4420 old_val = btrfs_block_group_used(&cache->item);
4421 num_bytes = min(total, cache->key.offset - byte_in_group);
4422 if (alloc) {
4423 old_val += num_bytes;
4424 btrfs_set_block_group_used(&cache->item, old_val);
4425 cache->reserved -= num_bytes;
4426 cache->space_info->bytes_reserved -= num_bytes;
4427 cache->space_info->bytes_used += num_bytes;
4428 cache->space_info->disk_used += num_bytes * factor;
4429 spin_unlock(&cache->lock);
4430 spin_unlock(&cache->space_info->lock);
4431 } else {
4432 old_val -= num_bytes;
4433 btrfs_set_block_group_used(&cache->item, old_val);
4434 cache->pinned += num_bytes;
4435 cache->space_info->bytes_pinned += num_bytes;
4436 cache->space_info->bytes_used -= num_bytes;
4437 cache->space_info->disk_used -= num_bytes * factor;
4438 spin_unlock(&cache->lock);
4439 spin_unlock(&cache->space_info->lock);
4440
4441 set_extent_dirty(info->pinned_extents,
4442 bytenr, bytenr + num_bytes - 1,
4443 GFP_NOFS | __GFP_NOFAIL);
4444 }
4445 btrfs_put_block_group(cache);
4446 total -= num_bytes;
4447 bytenr += num_bytes;
4448 }
4449 return 0;
4450 }
4451
4452 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4453 {
4454 struct btrfs_block_group_cache *cache;
4455 u64 bytenr;
4456
4457 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4458 if (!cache)
4459 return 0;
4460
4461 bytenr = cache->key.objectid;
4462 btrfs_put_block_group(cache);
4463
4464 return bytenr;
4465 }
4466
4467 static int pin_down_extent(struct btrfs_root *root,
4468 struct btrfs_block_group_cache *cache,
4469 u64 bytenr, u64 num_bytes, int reserved)
4470 {
4471 spin_lock(&cache->space_info->lock);
4472 spin_lock(&cache->lock);
4473 cache->pinned += num_bytes;
4474 cache->space_info->bytes_pinned += num_bytes;
4475 if (reserved) {
4476 cache->reserved -= num_bytes;
4477 cache->space_info->bytes_reserved -= num_bytes;
4478 }
4479 spin_unlock(&cache->lock);
4480 spin_unlock(&cache->space_info->lock);
4481
4482 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4483 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4484 return 0;
4485 }
4486
4487 /*
4488 * this function must be called within transaction
4489 */
4490 int btrfs_pin_extent(struct btrfs_root *root,
4491 u64 bytenr, u64 num_bytes, int reserved)
4492 {
4493 struct btrfs_block_group_cache *cache;
4494
4495 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4496 BUG_ON(!cache);
4497
4498 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4499
4500 btrfs_put_block_group(cache);
4501 return 0;
4502 }
4503
4504 /*
4505 * this function must be called within transaction
4506 */
4507 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4508 struct btrfs_root *root,
4509 u64 bytenr, u64 num_bytes)
4510 {
4511 struct btrfs_block_group_cache *cache;
4512
4513 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4514 BUG_ON(!cache);
4515
4516 /*
4517 * pull in the free space cache (if any) so that our pin
4518 * removes the free space from the cache. We have load_only set
4519 * to one because the slow code to read in the free extents does check
4520 * the pinned extents.
4521 */
4522 cache_block_group(cache, trans, root, 1);
4523
4524 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4525
4526 /* remove us from the free space cache (if we're there at all) */
4527 btrfs_remove_free_space(cache, bytenr, num_bytes);
4528 btrfs_put_block_group(cache);
4529 return 0;
4530 }
4531
4532 /**
4533 * btrfs_update_reserved_bytes - update the block_group and space info counters
4534 * @cache: The cache we are manipulating
4535 * @num_bytes: The number of bytes in question
4536 * @reserve: One of the reservation enums
4537 *
4538 * This is called by the allocator when it reserves space, or by somebody who is
4539 * freeing space that was never actually used on disk. For example if you
4540 * reserve some space for a new leaf in transaction A and before transaction A
4541 * commits you free that leaf, you call this with reserve set to 0 in order to
4542 * clear the reservation.
4543 *
4544 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4545 * ENOSPC accounting. For data we handle the reservation through clearing the
4546 * delalloc bits in the io_tree. We have to do this since we could end up
4547 * allocating less disk space for the amount of data we have reserved in the
4548 * case of compression.
4549 *
4550 * If this is a reservation and the block group has become read only we cannot
4551 * make the reservation and return -EAGAIN, otherwise this function always
4552 * succeeds.
4553 */
4554 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4555 u64 num_bytes, int reserve)
4556 {
4557 struct btrfs_space_info *space_info = cache->space_info;
4558 int ret = 0;
4559 spin_lock(&space_info->lock);
4560 spin_lock(&cache->lock);
4561 if (reserve != RESERVE_FREE) {
4562 if (cache->ro) {
4563 ret = -EAGAIN;
4564 } else {
4565 cache->reserved += num_bytes;
4566 space_info->bytes_reserved += num_bytes;
4567 if (reserve == RESERVE_ALLOC) {
4568 BUG_ON(space_info->bytes_may_use < num_bytes);
4569 space_info->bytes_may_use -= num_bytes;
4570 }
4571 }
4572 } else {
4573 if (cache->ro)
4574 space_info->bytes_readonly += num_bytes;
4575 cache->reserved -= num_bytes;
4576 space_info->bytes_reserved -= num_bytes;
4577 space_info->reservation_progress++;
4578 }
4579 spin_unlock(&cache->lock);
4580 spin_unlock(&space_info->lock);
4581 return ret;
4582 }
4583
4584 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4585 struct btrfs_root *root)
4586 {
4587 struct btrfs_fs_info *fs_info = root->fs_info;
4588 struct btrfs_caching_control *next;
4589 struct btrfs_caching_control *caching_ctl;
4590 struct btrfs_block_group_cache *cache;
4591
4592 down_write(&fs_info->extent_commit_sem);
4593
4594 list_for_each_entry_safe(caching_ctl, next,
4595 &fs_info->caching_block_groups, list) {
4596 cache = caching_ctl->block_group;
4597 if (block_group_cache_done(cache)) {
4598 cache->last_byte_to_unpin = (u64)-1;
4599 list_del_init(&caching_ctl->list);
4600 put_caching_control(caching_ctl);
4601 } else {
4602 cache->last_byte_to_unpin = caching_ctl->progress;
4603 }
4604 }
4605
4606 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4607 fs_info->pinned_extents = &fs_info->freed_extents[1];
4608 else
4609 fs_info->pinned_extents = &fs_info->freed_extents[0];
4610
4611 up_write(&fs_info->extent_commit_sem);
4612
4613 update_global_block_rsv(fs_info);
4614 return 0;
4615 }
4616
4617 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4618 {
4619 struct btrfs_fs_info *fs_info = root->fs_info;
4620 struct btrfs_block_group_cache *cache = NULL;
4621 u64 len;
4622
4623 while (start <= end) {
4624 if (!cache ||
4625 start >= cache->key.objectid + cache->key.offset) {
4626 if (cache)
4627 btrfs_put_block_group(cache);
4628 cache = btrfs_lookup_block_group(fs_info, start);
4629 BUG_ON(!cache);
4630 }
4631
4632 len = cache->key.objectid + cache->key.offset - start;
4633 len = min(len, end + 1 - start);
4634
4635 if (start < cache->last_byte_to_unpin) {
4636 len = min(len, cache->last_byte_to_unpin - start);
4637 btrfs_add_free_space(cache, start, len);
4638 }
4639
4640 start += len;
4641
4642 spin_lock(&cache->space_info->lock);
4643 spin_lock(&cache->lock);
4644 cache->pinned -= len;
4645 cache->space_info->bytes_pinned -= len;
4646 if (cache->ro)
4647 cache->space_info->bytes_readonly += len;
4648 spin_unlock(&cache->lock);
4649 spin_unlock(&cache->space_info->lock);
4650 }
4651
4652 if (cache)
4653 btrfs_put_block_group(cache);
4654 return 0;
4655 }
4656
4657 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4658 struct btrfs_root *root)
4659 {
4660 struct btrfs_fs_info *fs_info = root->fs_info;
4661 struct extent_io_tree *unpin;
4662 u64 start;
4663 u64 end;
4664 int ret;
4665
4666 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4667 unpin = &fs_info->freed_extents[1];
4668 else
4669 unpin = &fs_info->freed_extents[0];
4670
4671 while (1) {
4672 ret = find_first_extent_bit(unpin, 0, &start, &end,
4673 EXTENT_DIRTY);
4674 if (ret)
4675 break;
4676
4677 if (btrfs_test_opt(root, DISCARD))
4678 ret = btrfs_discard_extent(root, start,
4679 end + 1 - start, NULL);
4680
4681 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4682 unpin_extent_range(root, start, end);
4683 cond_resched();
4684 }
4685
4686 return 0;
4687 }
4688
4689 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4690 struct btrfs_root *root,
4691 u64 bytenr, u64 num_bytes, u64 parent,
4692 u64 root_objectid, u64 owner_objectid,
4693 u64 owner_offset, int refs_to_drop,
4694 struct btrfs_delayed_extent_op *extent_op)
4695 {
4696 struct btrfs_key key;
4697 struct btrfs_path *path;
4698 struct btrfs_fs_info *info = root->fs_info;
4699 struct btrfs_root *extent_root = info->extent_root;
4700 struct extent_buffer *leaf;
4701 struct btrfs_extent_item *ei;
4702 struct btrfs_extent_inline_ref *iref;
4703 int ret;
4704 int is_data;
4705 int extent_slot = 0;
4706 int found_extent = 0;
4707 int num_to_del = 1;
4708 u32 item_size;
4709 u64 refs;
4710
4711 path = btrfs_alloc_path();
4712 if (!path)
4713 return -ENOMEM;
4714
4715 path->reada = 1;
4716 path->leave_spinning = 1;
4717
4718 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4719 BUG_ON(!is_data && refs_to_drop != 1);
4720
4721 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4722 bytenr, num_bytes, parent,
4723 root_objectid, owner_objectid,
4724 owner_offset);
4725 if (ret == 0) {
4726 extent_slot = path->slots[0];
4727 while (extent_slot >= 0) {
4728 btrfs_item_key_to_cpu(path->nodes[0], &key,
4729 extent_slot);
4730 if (key.objectid != bytenr)
4731 break;
4732 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4733 key.offset == num_bytes) {
4734 found_extent = 1;
4735 break;
4736 }
4737 if (path->slots[0] - extent_slot > 5)
4738 break;
4739 extent_slot--;
4740 }
4741 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4742 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4743 if (found_extent && item_size < sizeof(*ei))
4744 found_extent = 0;
4745 #endif
4746 if (!found_extent) {
4747 BUG_ON(iref);
4748 ret = remove_extent_backref(trans, extent_root, path,
4749 NULL, refs_to_drop,
4750 is_data);
4751 BUG_ON(ret);
4752 btrfs_release_path(path);
4753 path->leave_spinning = 1;
4754
4755 key.objectid = bytenr;
4756 key.type = BTRFS_EXTENT_ITEM_KEY;
4757 key.offset = num_bytes;
4758
4759 ret = btrfs_search_slot(trans, extent_root,
4760 &key, path, -1, 1);
4761 if (ret) {
4762 printk(KERN_ERR "umm, got %d back from search"
4763 ", was looking for %llu\n", ret,
4764 (unsigned long long)bytenr);
4765 if (ret > 0)
4766 btrfs_print_leaf(extent_root,
4767 path->nodes[0]);
4768 }
4769 BUG_ON(ret);
4770 extent_slot = path->slots[0];
4771 }
4772 } else {
4773 btrfs_print_leaf(extent_root, path->nodes[0]);
4774 WARN_ON(1);
4775 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4776 "parent %llu root %llu owner %llu offset %llu\n",
4777 (unsigned long long)bytenr,
4778 (unsigned long long)parent,
4779 (unsigned long long)root_objectid,
4780 (unsigned long long)owner_objectid,
4781 (unsigned long long)owner_offset);
4782 }
4783
4784 leaf = path->nodes[0];
4785 item_size = btrfs_item_size_nr(leaf, extent_slot);
4786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4787 if (item_size < sizeof(*ei)) {
4788 BUG_ON(found_extent || extent_slot != path->slots[0]);
4789 ret = convert_extent_item_v0(trans, extent_root, path,
4790 owner_objectid, 0);
4791 BUG_ON(ret < 0);
4792
4793 btrfs_release_path(path);
4794 path->leave_spinning = 1;
4795
4796 key.objectid = bytenr;
4797 key.type = BTRFS_EXTENT_ITEM_KEY;
4798 key.offset = num_bytes;
4799
4800 ret = btrfs_search_slot(trans, extent_root, &key, path,
4801 -1, 1);
4802 if (ret) {
4803 printk(KERN_ERR "umm, got %d back from search"
4804 ", was looking for %llu\n", ret,
4805 (unsigned long long)bytenr);
4806 btrfs_print_leaf(extent_root, path->nodes[0]);
4807 }
4808 BUG_ON(ret);
4809 extent_slot = path->slots[0];
4810 leaf = path->nodes[0];
4811 item_size = btrfs_item_size_nr(leaf, extent_slot);
4812 }
4813 #endif
4814 BUG_ON(item_size < sizeof(*ei));
4815 ei = btrfs_item_ptr(leaf, extent_slot,
4816 struct btrfs_extent_item);
4817 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4818 struct btrfs_tree_block_info *bi;
4819 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4820 bi = (struct btrfs_tree_block_info *)(ei + 1);
4821 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4822 }
4823
4824 refs = btrfs_extent_refs(leaf, ei);
4825 BUG_ON(refs < refs_to_drop);
4826 refs -= refs_to_drop;
4827
4828 if (refs > 0) {
4829 if (extent_op)
4830 __run_delayed_extent_op(extent_op, leaf, ei);
4831 /*
4832 * In the case of inline back ref, reference count will
4833 * be updated by remove_extent_backref
4834 */
4835 if (iref) {
4836 BUG_ON(!found_extent);
4837 } else {
4838 btrfs_set_extent_refs(leaf, ei, refs);
4839 btrfs_mark_buffer_dirty(leaf);
4840 }
4841 if (found_extent) {
4842 ret = remove_extent_backref(trans, extent_root, path,
4843 iref, refs_to_drop,
4844 is_data);
4845 BUG_ON(ret);
4846 }
4847 } else {
4848 if (found_extent) {
4849 BUG_ON(is_data && refs_to_drop !=
4850 extent_data_ref_count(root, path, iref));
4851 if (iref) {
4852 BUG_ON(path->slots[0] != extent_slot);
4853 } else {
4854 BUG_ON(path->slots[0] != extent_slot + 1);
4855 path->slots[0] = extent_slot;
4856 num_to_del = 2;
4857 }
4858 }
4859
4860 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4861 num_to_del);
4862 BUG_ON(ret);
4863 btrfs_release_path(path);
4864
4865 if (is_data) {
4866 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4867 BUG_ON(ret);
4868 } else {
4869 invalidate_mapping_pages(info->btree_inode->i_mapping,
4870 bytenr >> PAGE_CACHE_SHIFT,
4871 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4872 }
4873
4874 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4875 BUG_ON(ret);
4876 }
4877 btrfs_free_path(path);
4878 return ret;
4879 }
4880
4881 /*
4882 * when we free an block, it is possible (and likely) that we free the last
4883 * delayed ref for that extent as well. This searches the delayed ref tree for
4884 * a given extent, and if there are no other delayed refs to be processed, it
4885 * removes it from the tree.
4886 */
4887 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4888 struct btrfs_root *root, u64 bytenr)
4889 {
4890 struct btrfs_delayed_ref_head *head;
4891 struct btrfs_delayed_ref_root *delayed_refs;
4892 struct btrfs_delayed_ref_node *ref;
4893 struct rb_node *node;
4894 int ret = 0;
4895
4896 delayed_refs = &trans->transaction->delayed_refs;
4897 spin_lock(&delayed_refs->lock);
4898 head = btrfs_find_delayed_ref_head(trans, bytenr);
4899 if (!head)
4900 goto out;
4901
4902 node = rb_prev(&head->node.rb_node);
4903 if (!node)
4904 goto out;
4905
4906 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4907
4908 /* there are still entries for this ref, we can't drop it */
4909 if (ref->bytenr == bytenr)
4910 goto out;
4911
4912 if (head->extent_op) {
4913 if (!head->must_insert_reserved)
4914 goto out;
4915 kfree(head->extent_op);
4916 head->extent_op = NULL;
4917 }
4918
4919 /*
4920 * waiting for the lock here would deadlock. If someone else has it
4921 * locked they are already in the process of dropping it anyway
4922 */
4923 if (!mutex_trylock(&head->mutex))
4924 goto out;
4925
4926 /*
4927 * at this point we have a head with no other entries. Go
4928 * ahead and process it.
4929 */
4930 head->node.in_tree = 0;
4931 rb_erase(&head->node.rb_node, &delayed_refs->root);
4932
4933 delayed_refs->num_entries--;
4934
4935 /*
4936 * we don't take a ref on the node because we're removing it from the
4937 * tree, so we just steal the ref the tree was holding.
4938 */
4939 delayed_refs->num_heads--;
4940 if (list_empty(&head->cluster))
4941 delayed_refs->num_heads_ready--;
4942
4943 list_del_init(&head->cluster);
4944 spin_unlock(&delayed_refs->lock);
4945
4946 BUG_ON(head->extent_op);
4947 if (head->must_insert_reserved)
4948 ret = 1;
4949
4950 mutex_unlock(&head->mutex);
4951 btrfs_put_delayed_ref(&head->node);
4952 return ret;
4953 out:
4954 spin_unlock(&delayed_refs->lock);
4955 return 0;
4956 }
4957
4958 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4959 struct btrfs_root *root,
4960 struct extent_buffer *buf,
4961 u64 parent, int last_ref)
4962 {
4963 struct btrfs_block_group_cache *cache = NULL;
4964 int ret;
4965
4966 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4967 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4968 parent, root->root_key.objectid,
4969 btrfs_header_level(buf),
4970 BTRFS_DROP_DELAYED_REF, NULL);
4971 BUG_ON(ret);
4972 }
4973
4974 if (!last_ref)
4975 return;
4976
4977 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4978
4979 if (btrfs_header_generation(buf) == trans->transid) {
4980 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4981 ret = check_ref_cleanup(trans, root, buf->start);
4982 if (!ret)
4983 goto out;
4984 }
4985
4986 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4987 pin_down_extent(root, cache, buf->start, buf->len, 1);
4988 goto out;
4989 }
4990
4991 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4992
4993 btrfs_add_free_space(cache, buf->start, buf->len);
4994 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4995 }
4996 out:
4997 /*
4998 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4999 * anymore.
5000 */
5001 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5002 btrfs_put_block_group(cache);
5003 }
5004
5005 int btrfs_free_extent(struct btrfs_trans_handle *trans,
5006 struct btrfs_root *root,
5007 u64 bytenr, u64 num_bytes, u64 parent,
5008 u64 root_objectid, u64 owner, u64 offset)
5009 {
5010 int ret;
5011
5012 /*
5013 * tree log blocks never actually go into the extent allocation
5014 * tree, just update pinning info and exit early.
5015 */
5016 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5017 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5018 /* unlocks the pinned mutex */
5019 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5020 ret = 0;
5021 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5022 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
5023 parent, root_objectid, (int)owner,
5024 BTRFS_DROP_DELAYED_REF, NULL);
5025 BUG_ON(ret);
5026 } else {
5027 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
5028 parent, root_objectid, owner,
5029 offset, BTRFS_DROP_DELAYED_REF, NULL);
5030 BUG_ON(ret);
5031 }
5032 return ret;
5033 }
5034
5035 static u64 stripe_align(struct btrfs_root *root, u64 val)
5036 {
5037 u64 mask = ((u64)root->stripesize - 1);
5038 u64 ret = (val + mask) & ~mask;
5039 return ret;
5040 }
5041
5042 /*
5043 * when we wait for progress in the block group caching, its because
5044 * our allocation attempt failed at least once. So, we must sleep
5045 * and let some progress happen before we try again.
5046 *
5047 * This function will sleep at least once waiting for new free space to
5048 * show up, and then it will check the block group free space numbers
5049 * for our min num_bytes. Another option is to have it go ahead
5050 * and look in the rbtree for a free extent of a given size, but this
5051 * is a good start.
5052 */
5053 static noinline int
5054 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5055 u64 num_bytes)
5056 {
5057 struct btrfs_caching_control *caching_ctl;
5058 DEFINE_WAIT(wait);
5059
5060 caching_ctl = get_caching_control(cache);
5061 if (!caching_ctl)
5062 return 0;
5063
5064 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5065 (cache->free_space_ctl->free_space >= num_bytes));
5066
5067 put_caching_control(caching_ctl);
5068 return 0;
5069 }
5070
5071 static noinline int
5072 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5073 {
5074 struct btrfs_caching_control *caching_ctl;
5075 DEFINE_WAIT(wait);
5076
5077 caching_ctl = get_caching_control(cache);
5078 if (!caching_ctl)
5079 return 0;
5080
5081 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5082
5083 put_caching_control(caching_ctl);
5084 return 0;
5085 }
5086
5087 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5088 {
5089 int index;
5090 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5091 index = 0;
5092 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5093 index = 1;
5094 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5095 index = 2;
5096 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5097 index = 3;
5098 else
5099 index = 4;
5100 return index;
5101 }
5102
5103 enum btrfs_loop_type {
5104 LOOP_FIND_IDEAL = 0,
5105 LOOP_CACHING_NOWAIT = 1,
5106 LOOP_CACHING_WAIT = 2,
5107 LOOP_ALLOC_CHUNK = 3,
5108 LOOP_NO_EMPTY_SIZE = 4,
5109 };
5110
5111 /*
5112 * walks the btree of allocated extents and find a hole of a given size.
5113 * The key ins is changed to record the hole:
5114 * ins->objectid == block start
5115 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5116 * ins->offset == number of blocks
5117 * Any available blocks before search_start are skipped.
5118 */
5119 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5120 struct btrfs_root *orig_root,
5121 u64 num_bytes, u64 empty_size,
5122 u64 search_start, u64 search_end,
5123 u64 hint_byte, struct btrfs_key *ins,
5124 u64 data)
5125 {
5126 int ret = 0;
5127 struct btrfs_root *root = orig_root->fs_info->extent_root;
5128 struct btrfs_free_cluster *last_ptr = NULL;
5129 struct btrfs_block_group_cache *block_group = NULL;
5130 struct btrfs_block_group_cache *used_block_group;
5131 int empty_cluster = 2 * 1024 * 1024;
5132 int allowed_chunk_alloc = 0;
5133 int done_chunk_alloc = 0;
5134 struct btrfs_space_info *space_info;
5135 int loop = 0;
5136 int index = 0;
5137 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5138 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5139 bool found_uncached_bg = false;
5140 bool failed_cluster_refill = false;
5141 bool failed_alloc = false;
5142 bool use_cluster = true;
5143 bool have_caching_bg = false;
5144 u64 ideal_cache_percent = 0;
5145 u64 ideal_cache_offset = 0;
5146
5147 WARN_ON(num_bytes < root->sectorsize);
5148 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5149 ins->objectid = 0;
5150 ins->offset = 0;
5151
5152 space_info = __find_space_info(root->fs_info, data);
5153 if (!space_info) {
5154 printk(KERN_ERR "No space info for %llu\n", data);
5155 return -ENOSPC;
5156 }
5157
5158 /*
5159 * If the space info is for both data and metadata it means we have a
5160 * small filesystem and we can't use the clustering stuff.
5161 */
5162 if (btrfs_mixed_space_info(space_info))
5163 use_cluster = false;
5164
5165 if (orig_root->ref_cows || empty_size)
5166 allowed_chunk_alloc = 1;
5167
5168 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5169 last_ptr = &root->fs_info->meta_alloc_cluster;
5170 if (!btrfs_test_opt(root, SSD))
5171 empty_cluster = 64 * 1024;
5172 }
5173
5174 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5175 btrfs_test_opt(root, SSD)) {
5176 last_ptr = &root->fs_info->data_alloc_cluster;
5177 }
5178
5179 if (last_ptr) {
5180 spin_lock(&last_ptr->lock);
5181 if (last_ptr->block_group)
5182 hint_byte = last_ptr->window_start;
5183 spin_unlock(&last_ptr->lock);
5184 }
5185
5186 search_start = max(search_start, first_logical_byte(root, 0));
5187 search_start = max(search_start, hint_byte);
5188
5189 if (!last_ptr)
5190 empty_cluster = 0;
5191
5192 if (search_start == hint_byte) {
5193 ideal_cache:
5194 block_group = btrfs_lookup_block_group(root->fs_info,
5195 search_start);
5196 used_block_group = block_group;
5197 /*
5198 * we don't want to use the block group if it doesn't match our
5199 * allocation bits, or if its not cached.
5200 *
5201 * However if we are re-searching with an ideal block group
5202 * picked out then we don't care that the block group is cached.
5203 */
5204 if (block_group && block_group_bits(block_group, data) &&
5205 (block_group->cached != BTRFS_CACHE_NO ||
5206 search_start == ideal_cache_offset)) {
5207 down_read(&space_info->groups_sem);
5208 if (list_empty(&block_group->list) ||
5209 block_group->ro) {
5210 /*
5211 * someone is removing this block group,
5212 * we can't jump into the have_block_group
5213 * target because our list pointers are not
5214 * valid
5215 */
5216 btrfs_put_block_group(block_group);
5217 up_read(&space_info->groups_sem);
5218 } else {
5219 index = get_block_group_index(block_group);
5220 goto have_block_group;
5221 }
5222 } else if (block_group) {
5223 btrfs_put_block_group(block_group);
5224 }
5225 }
5226 search:
5227 have_caching_bg = false;
5228 down_read(&space_info->groups_sem);
5229 list_for_each_entry(block_group, &space_info->block_groups[index],
5230 list) {
5231 u64 offset;
5232 int cached;
5233
5234 used_block_group = block_group;
5235 btrfs_get_block_group(block_group);
5236 search_start = block_group->key.objectid;
5237
5238 /*
5239 * this can happen if we end up cycling through all the
5240 * raid types, but we want to make sure we only allocate
5241 * for the proper type.
5242 */
5243 if (!block_group_bits(block_group, data)) {
5244 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5245 BTRFS_BLOCK_GROUP_RAID1 |
5246 BTRFS_BLOCK_GROUP_RAID10;
5247
5248 /*
5249 * if they asked for extra copies and this block group
5250 * doesn't provide them, bail. This does allow us to
5251 * fill raid0 from raid1.
5252 */
5253 if ((data & extra) && !(block_group->flags & extra))
5254 goto loop;
5255 }
5256
5257 have_block_group:
5258 cached = block_group_cache_done(block_group);
5259 if (unlikely(!cached)) {
5260 u64 free_percent;
5261
5262 found_uncached_bg = true;
5263 ret = cache_block_group(block_group, trans,
5264 orig_root, 1);
5265 if (block_group->cached == BTRFS_CACHE_FINISHED)
5266 goto alloc;
5267
5268 free_percent = btrfs_block_group_used(&block_group->item);
5269 free_percent *= 100;
5270 free_percent = div64_u64(free_percent,
5271 block_group->key.offset);
5272 free_percent = 100 - free_percent;
5273 if (free_percent > ideal_cache_percent &&
5274 likely(!block_group->ro)) {
5275 ideal_cache_offset = block_group->key.objectid;
5276 ideal_cache_percent = free_percent;
5277 }
5278
5279 /*
5280 * The caching workers are limited to 2 threads, so we
5281 * can queue as much work as we care to.
5282 */
5283 if (loop > LOOP_FIND_IDEAL) {
5284 ret = cache_block_group(block_group, trans,
5285 orig_root, 0);
5286 BUG_ON(ret);
5287 }
5288
5289 /*
5290 * If loop is set for cached only, try the next block
5291 * group.
5292 */
5293 if (loop == LOOP_FIND_IDEAL)
5294 goto loop;
5295 }
5296
5297 alloc:
5298 if (unlikely(block_group->ro))
5299 goto loop;
5300
5301 spin_lock(&block_group->free_space_ctl->tree_lock);
5302 if (cached &&
5303 block_group->free_space_ctl->free_space <
5304 num_bytes + empty_cluster + empty_size) {
5305 spin_unlock(&block_group->free_space_ctl->tree_lock);
5306 goto loop;
5307 }
5308 spin_unlock(&block_group->free_space_ctl->tree_lock);
5309
5310 /*
5311 * Ok we want to try and use the cluster allocator, so
5312 * lets look there
5313 */
5314 if (last_ptr) {
5315 /*
5316 * the refill lock keeps out other
5317 * people trying to start a new cluster
5318 */
5319 spin_lock(&last_ptr->refill_lock);
5320 used_block_group = last_ptr->block_group;
5321 if (used_block_group != block_group &&
5322 (!used_block_group ||
5323 used_block_group->ro ||
5324 !block_group_bits(used_block_group, data))) {
5325 used_block_group = block_group;
5326 goto refill_cluster;
5327 }
5328
5329 if (used_block_group != block_group)
5330 btrfs_get_block_group(used_block_group);
5331
5332 offset = btrfs_alloc_from_cluster(used_block_group,
5333 last_ptr, num_bytes, used_block_group->key.objectid);
5334 if (offset) {
5335 /* we have a block, we're done */
5336 spin_unlock(&last_ptr->refill_lock);
5337 goto checks;
5338 }
5339
5340 WARN_ON(last_ptr->block_group != used_block_group);
5341 if (used_block_group != block_group) {
5342 btrfs_put_block_group(used_block_group);
5343 used_block_group = block_group;
5344 }
5345 refill_cluster:
5346 BUG_ON(used_block_group != block_group);
5347 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5348 * set up a new clusters, so lets just skip it
5349 * and let the allocator find whatever block
5350 * it can find. If we reach this point, we
5351 * will have tried the cluster allocator
5352 * plenty of times and not have found
5353 * anything, so we are likely way too
5354 * fragmented for the clustering stuff to find
5355 * anything. */
5356 if (loop >= LOOP_NO_EMPTY_SIZE) {
5357 spin_unlock(&last_ptr->refill_lock);
5358 goto unclustered_alloc;
5359 }
5360
5361 /*
5362 * this cluster didn't work out, free it and
5363 * start over
5364 */
5365 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5366
5367 /* allocate a cluster in this block group */
5368 ret = btrfs_find_space_cluster(trans, root,
5369 block_group, last_ptr,
5370 search_start, num_bytes,
5371 empty_cluster + empty_size);
5372 if (ret == 0) {
5373 /*
5374 * now pull our allocation out of this
5375 * cluster
5376 */
5377 offset = btrfs_alloc_from_cluster(block_group,
5378 last_ptr, num_bytes,
5379 search_start);
5380 if (offset) {
5381 /* we found one, proceed */
5382 spin_unlock(&last_ptr->refill_lock);
5383 goto checks;
5384 }
5385 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5386 && !failed_cluster_refill) {
5387 spin_unlock(&last_ptr->refill_lock);
5388
5389 failed_cluster_refill = true;
5390 wait_block_group_cache_progress(block_group,
5391 num_bytes + empty_cluster + empty_size);
5392 goto have_block_group;
5393 }
5394
5395 /*
5396 * at this point we either didn't find a cluster
5397 * or we weren't able to allocate a block from our
5398 * cluster. Free the cluster we've been trying
5399 * to use, and go to the next block group
5400 */
5401 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5402 spin_unlock(&last_ptr->refill_lock);
5403 goto loop;
5404 }
5405
5406 unclustered_alloc:
5407 offset = btrfs_find_space_for_alloc(block_group, search_start,
5408 num_bytes, empty_size);
5409 /*
5410 * If we didn't find a chunk, and we haven't failed on this
5411 * block group before, and this block group is in the middle of
5412 * caching and we are ok with waiting, then go ahead and wait
5413 * for progress to be made, and set failed_alloc to true.
5414 *
5415 * If failed_alloc is true then we've already waited on this
5416 * block group once and should move on to the next block group.
5417 */
5418 if (!offset && !failed_alloc && !cached &&
5419 loop > LOOP_CACHING_NOWAIT) {
5420 wait_block_group_cache_progress(block_group,
5421 num_bytes + empty_size);
5422 failed_alloc = true;
5423 goto have_block_group;
5424 } else if (!offset) {
5425 if (!cached)
5426 have_caching_bg = true;
5427 goto loop;
5428 }
5429 checks:
5430 search_start = stripe_align(root, offset);
5431 /* move on to the next group */
5432 if (search_start + num_bytes >= search_end) {
5433 btrfs_add_free_space(used_block_group, offset, num_bytes);
5434 goto loop;
5435 }
5436
5437 /* move on to the next group */
5438 if (search_start + num_bytes >
5439 used_block_group->key.objectid + used_block_group->key.offset) {
5440 btrfs_add_free_space(used_block_group, offset, num_bytes);
5441 goto loop;
5442 }
5443
5444 ins->objectid = search_start;
5445 ins->offset = num_bytes;
5446
5447 if (offset < search_start)
5448 btrfs_add_free_space(used_block_group, offset,
5449 search_start - offset);
5450 BUG_ON(offset > search_start);
5451
5452 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5453 alloc_type);
5454 if (ret == -EAGAIN) {
5455 btrfs_add_free_space(used_block_group, offset, num_bytes);
5456 goto loop;
5457 }
5458
5459 /* we are all good, lets return */
5460 ins->objectid = search_start;
5461 ins->offset = num_bytes;
5462
5463 if (offset < search_start)
5464 btrfs_add_free_space(used_block_group, offset,
5465 search_start - offset);
5466 BUG_ON(offset > search_start);
5467 if (used_block_group != block_group)
5468 btrfs_put_block_group(used_block_group);
5469 btrfs_put_block_group(block_group);
5470 break;
5471 loop:
5472 failed_cluster_refill = false;
5473 failed_alloc = false;
5474 BUG_ON(index != get_block_group_index(block_group));
5475 if (used_block_group != block_group)
5476 btrfs_put_block_group(used_block_group);
5477 btrfs_put_block_group(block_group);
5478 }
5479 up_read(&space_info->groups_sem);
5480
5481 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5482 goto search;
5483
5484 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5485 goto search;
5486
5487 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5488 * for them to make caching progress. Also
5489 * determine the best possible bg to cache
5490 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5491 * caching kthreads as we move along
5492 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5493 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5494 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5495 * again
5496 */
5497 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5498 index = 0;
5499 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5500 found_uncached_bg = false;
5501 loop++;
5502 if (!ideal_cache_percent)
5503 goto search;
5504
5505 /*
5506 * 1 of the following 2 things have happened so far
5507 *
5508 * 1) We found an ideal block group for caching that
5509 * is mostly full and will cache quickly, so we might
5510 * as well wait for it.
5511 *
5512 * 2) We searched for cached only and we didn't find
5513 * anything, and we didn't start any caching kthreads
5514 * either, so chances are we will loop through and
5515 * start a couple caching kthreads, and then come back
5516 * around and just wait for them. This will be slower
5517 * because we will have 2 caching kthreads reading at
5518 * the same time when we could have just started one
5519 * and waited for it to get far enough to give us an
5520 * allocation, so go ahead and go to the wait caching
5521 * loop.
5522 */
5523 loop = LOOP_CACHING_WAIT;
5524 search_start = ideal_cache_offset;
5525 ideal_cache_percent = 0;
5526 goto ideal_cache;
5527 } else if (loop == LOOP_FIND_IDEAL) {
5528 /*
5529 * Didn't find a uncached bg, wait on anything we find
5530 * next.
5531 */
5532 loop = LOOP_CACHING_WAIT;
5533 goto search;
5534 }
5535
5536 loop++;
5537
5538 if (loop == LOOP_ALLOC_CHUNK) {
5539 if (allowed_chunk_alloc) {
5540 ret = do_chunk_alloc(trans, root, num_bytes +
5541 2 * 1024 * 1024, data,
5542 CHUNK_ALLOC_LIMITED);
5543 allowed_chunk_alloc = 0;
5544 if (ret == 1)
5545 done_chunk_alloc = 1;
5546 } else if (!done_chunk_alloc &&
5547 space_info->force_alloc ==
5548 CHUNK_ALLOC_NO_FORCE) {
5549 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5550 }
5551
5552 /*
5553 * We didn't allocate a chunk, go ahead and drop the
5554 * empty size and loop again.
5555 */
5556 if (!done_chunk_alloc)
5557 loop = LOOP_NO_EMPTY_SIZE;
5558 }
5559
5560 if (loop == LOOP_NO_EMPTY_SIZE) {
5561 empty_size = 0;
5562 empty_cluster = 0;
5563 }
5564
5565 goto search;
5566 } else if (!ins->objectid) {
5567 ret = -ENOSPC;
5568 } else if (ins->objectid) {
5569 ret = 0;
5570 }
5571
5572 return ret;
5573 }
5574
5575 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5576 int dump_block_groups)
5577 {
5578 struct btrfs_block_group_cache *cache;
5579 int index = 0;
5580
5581 spin_lock(&info->lock);
5582 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5583 (unsigned long long)info->flags,
5584 (unsigned long long)(info->total_bytes - info->bytes_used -
5585 info->bytes_pinned - info->bytes_reserved -
5586 info->bytes_readonly),
5587 (info->full) ? "" : "not ");
5588 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5589 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5590 (unsigned long long)info->total_bytes,
5591 (unsigned long long)info->bytes_used,
5592 (unsigned long long)info->bytes_pinned,
5593 (unsigned long long)info->bytes_reserved,
5594 (unsigned long long)info->bytes_may_use,
5595 (unsigned long long)info->bytes_readonly);
5596 spin_unlock(&info->lock);
5597
5598 if (!dump_block_groups)
5599 return;
5600
5601 down_read(&info->groups_sem);
5602 again:
5603 list_for_each_entry(cache, &info->block_groups[index], list) {
5604 spin_lock(&cache->lock);
5605 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5606 "%llu pinned %llu reserved\n",
5607 (unsigned long long)cache->key.objectid,
5608 (unsigned long long)cache->key.offset,
5609 (unsigned long long)btrfs_block_group_used(&cache->item),
5610 (unsigned long long)cache->pinned,
5611 (unsigned long long)cache->reserved);
5612 btrfs_dump_free_space(cache, bytes);
5613 spin_unlock(&cache->lock);
5614 }
5615 if (++index < BTRFS_NR_RAID_TYPES)
5616 goto again;
5617 up_read(&info->groups_sem);
5618 }
5619
5620 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5621 struct btrfs_root *root,
5622 u64 num_bytes, u64 min_alloc_size,
5623 u64 empty_size, u64 hint_byte,
5624 u64 search_end, struct btrfs_key *ins,
5625 u64 data)
5626 {
5627 int ret;
5628 u64 search_start = 0;
5629
5630 data = btrfs_get_alloc_profile(root, data);
5631 again:
5632 /*
5633 * the only place that sets empty_size is btrfs_realloc_node, which
5634 * is not called recursively on allocations
5635 */
5636 if (empty_size || root->ref_cows)
5637 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5638 num_bytes + 2 * 1024 * 1024, data,
5639 CHUNK_ALLOC_NO_FORCE);
5640
5641 WARN_ON(num_bytes < root->sectorsize);
5642 ret = find_free_extent(trans, root, num_bytes, empty_size,
5643 search_start, search_end, hint_byte,
5644 ins, data);
5645
5646 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5647 num_bytes = num_bytes >> 1;
5648 num_bytes = num_bytes & ~(root->sectorsize - 1);
5649 num_bytes = max(num_bytes, min_alloc_size);
5650 do_chunk_alloc(trans, root->fs_info->extent_root,
5651 num_bytes, data, CHUNK_ALLOC_FORCE);
5652 goto again;
5653 }
5654 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5655 struct btrfs_space_info *sinfo;
5656
5657 sinfo = __find_space_info(root->fs_info, data);
5658 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5659 "wanted %llu\n", (unsigned long long)data,
5660 (unsigned long long)num_bytes);
5661 dump_space_info(sinfo, num_bytes, 1);
5662 }
5663
5664 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5665
5666 return ret;
5667 }
5668
5669 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5670 u64 start, u64 len, int pin)
5671 {
5672 struct btrfs_block_group_cache *cache;
5673 int ret = 0;
5674
5675 cache = btrfs_lookup_block_group(root->fs_info, start);
5676 if (!cache) {
5677 printk(KERN_ERR "Unable to find block group for %llu\n",
5678 (unsigned long long)start);
5679 return -ENOSPC;
5680 }
5681
5682 if (btrfs_test_opt(root, DISCARD))
5683 ret = btrfs_discard_extent(root, start, len, NULL);
5684
5685 if (pin)
5686 pin_down_extent(root, cache, start, len, 1);
5687 else {
5688 btrfs_add_free_space(cache, start, len);
5689 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5690 }
5691 btrfs_put_block_group(cache);
5692
5693 trace_btrfs_reserved_extent_free(root, start, len);
5694
5695 return ret;
5696 }
5697
5698 int btrfs_free_reserved_extent(struct btrfs_root *root,
5699 u64 start, u64 len)
5700 {
5701 return __btrfs_free_reserved_extent(root, start, len, 0);
5702 }
5703
5704 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5705 u64 start, u64 len)
5706 {
5707 return __btrfs_free_reserved_extent(root, start, len, 1);
5708 }
5709
5710 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5711 struct btrfs_root *root,
5712 u64 parent, u64 root_objectid,
5713 u64 flags, u64 owner, u64 offset,
5714 struct btrfs_key *ins, int ref_mod)
5715 {
5716 int ret;
5717 struct btrfs_fs_info *fs_info = root->fs_info;
5718 struct btrfs_extent_item *extent_item;
5719 struct btrfs_extent_inline_ref *iref;
5720 struct btrfs_path *path;
5721 struct extent_buffer *leaf;
5722 int type;
5723 u32 size;
5724
5725 if (parent > 0)
5726 type = BTRFS_SHARED_DATA_REF_KEY;
5727 else
5728 type = BTRFS_EXTENT_DATA_REF_KEY;
5729
5730 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5731
5732 path = btrfs_alloc_path();
5733 if (!path)
5734 return -ENOMEM;
5735
5736 path->leave_spinning = 1;
5737 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5738 ins, size);
5739 BUG_ON(ret);
5740
5741 leaf = path->nodes[0];
5742 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5743 struct btrfs_extent_item);
5744 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5745 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5746 btrfs_set_extent_flags(leaf, extent_item,
5747 flags | BTRFS_EXTENT_FLAG_DATA);
5748
5749 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5750 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5751 if (parent > 0) {
5752 struct btrfs_shared_data_ref *ref;
5753 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5754 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5755 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5756 } else {
5757 struct btrfs_extent_data_ref *ref;
5758 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5759 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5760 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5761 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5762 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5763 }
5764
5765 btrfs_mark_buffer_dirty(path->nodes[0]);
5766 btrfs_free_path(path);
5767
5768 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5769 if (ret) {
5770 printk(KERN_ERR "btrfs update block group failed for %llu "
5771 "%llu\n", (unsigned long long)ins->objectid,
5772 (unsigned long long)ins->offset);
5773 BUG();
5774 }
5775 return ret;
5776 }
5777
5778 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5779 struct btrfs_root *root,
5780 u64 parent, u64 root_objectid,
5781 u64 flags, struct btrfs_disk_key *key,
5782 int level, struct btrfs_key *ins)
5783 {
5784 int ret;
5785 struct btrfs_fs_info *fs_info = root->fs_info;
5786 struct btrfs_extent_item *extent_item;
5787 struct btrfs_tree_block_info *block_info;
5788 struct btrfs_extent_inline_ref *iref;
5789 struct btrfs_path *path;
5790 struct extent_buffer *leaf;
5791 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5792
5793 path = btrfs_alloc_path();
5794 if (!path)
5795 return -ENOMEM;
5796
5797 path->leave_spinning = 1;
5798 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5799 ins, size);
5800 BUG_ON(ret);
5801
5802 leaf = path->nodes[0];
5803 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5804 struct btrfs_extent_item);
5805 btrfs_set_extent_refs(leaf, extent_item, 1);
5806 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5807 btrfs_set_extent_flags(leaf, extent_item,
5808 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5809 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5810
5811 btrfs_set_tree_block_key(leaf, block_info, key);
5812 btrfs_set_tree_block_level(leaf, block_info, level);
5813
5814 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5815 if (parent > 0) {
5816 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5817 btrfs_set_extent_inline_ref_type(leaf, iref,
5818 BTRFS_SHARED_BLOCK_REF_KEY);
5819 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5820 } else {
5821 btrfs_set_extent_inline_ref_type(leaf, iref,
5822 BTRFS_TREE_BLOCK_REF_KEY);
5823 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5824 }
5825
5826 btrfs_mark_buffer_dirty(leaf);
5827 btrfs_free_path(path);
5828
5829 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5830 if (ret) {
5831 printk(KERN_ERR "btrfs update block group failed for %llu "
5832 "%llu\n", (unsigned long long)ins->objectid,
5833 (unsigned long long)ins->offset);
5834 BUG();
5835 }
5836 return ret;
5837 }
5838
5839 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5840 struct btrfs_root *root,
5841 u64 root_objectid, u64 owner,
5842 u64 offset, struct btrfs_key *ins)
5843 {
5844 int ret;
5845
5846 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5847
5848 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5849 0, root_objectid, owner, offset,
5850 BTRFS_ADD_DELAYED_EXTENT, NULL);
5851 return ret;
5852 }
5853
5854 /*
5855 * this is used by the tree logging recovery code. It records that
5856 * an extent has been allocated and makes sure to clear the free
5857 * space cache bits as well
5858 */
5859 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5860 struct btrfs_root *root,
5861 u64 root_objectid, u64 owner, u64 offset,
5862 struct btrfs_key *ins)
5863 {
5864 int ret;
5865 struct btrfs_block_group_cache *block_group;
5866 struct btrfs_caching_control *caching_ctl;
5867 u64 start = ins->objectid;
5868 u64 num_bytes = ins->offset;
5869
5870 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5871 cache_block_group(block_group, trans, NULL, 0);
5872 caching_ctl = get_caching_control(block_group);
5873
5874 if (!caching_ctl) {
5875 BUG_ON(!block_group_cache_done(block_group));
5876 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5877 BUG_ON(ret);
5878 } else {
5879 mutex_lock(&caching_ctl->mutex);
5880
5881 if (start >= caching_ctl->progress) {
5882 ret = add_excluded_extent(root, start, num_bytes);
5883 BUG_ON(ret);
5884 } else if (start + num_bytes <= caching_ctl->progress) {
5885 ret = btrfs_remove_free_space(block_group,
5886 start, num_bytes);
5887 BUG_ON(ret);
5888 } else {
5889 num_bytes = caching_ctl->progress - start;
5890 ret = btrfs_remove_free_space(block_group,
5891 start, num_bytes);
5892 BUG_ON(ret);
5893
5894 start = caching_ctl->progress;
5895 num_bytes = ins->objectid + ins->offset -
5896 caching_ctl->progress;
5897 ret = add_excluded_extent(root, start, num_bytes);
5898 BUG_ON(ret);
5899 }
5900
5901 mutex_unlock(&caching_ctl->mutex);
5902 put_caching_control(caching_ctl);
5903 }
5904
5905 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5906 RESERVE_ALLOC_NO_ACCOUNT);
5907 BUG_ON(ret);
5908 btrfs_put_block_group(block_group);
5909 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5910 0, owner, offset, ins, 1);
5911 return ret;
5912 }
5913
5914 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5915 struct btrfs_root *root,
5916 u64 bytenr, u32 blocksize,
5917 int level)
5918 {
5919 struct extent_buffer *buf;
5920
5921 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5922 if (!buf)
5923 return ERR_PTR(-ENOMEM);
5924 btrfs_set_header_generation(buf, trans->transid);
5925 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5926 btrfs_tree_lock(buf);
5927 clean_tree_block(trans, root, buf);
5928
5929 btrfs_set_lock_blocking(buf);
5930 btrfs_set_buffer_uptodate(buf);
5931
5932 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5933 /*
5934 * we allow two log transactions at a time, use different
5935 * EXENT bit to differentiate dirty pages.
5936 */
5937 if (root->log_transid % 2 == 0)
5938 set_extent_dirty(&root->dirty_log_pages, buf->start,
5939 buf->start + buf->len - 1, GFP_NOFS);
5940 else
5941 set_extent_new(&root->dirty_log_pages, buf->start,
5942 buf->start + buf->len - 1, GFP_NOFS);
5943 } else {
5944 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5945 buf->start + buf->len - 1, GFP_NOFS);
5946 }
5947 trans->blocks_used++;
5948 /* this returns a buffer locked for blocking */
5949 return buf;
5950 }
5951
5952 static struct btrfs_block_rsv *
5953 use_block_rsv(struct btrfs_trans_handle *trans,
5954 struct btrfs_root *root, u32 blocksize)
5955 {
5956 struct btrfs_block_rsv *block_rsv;
5957 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5958 int ret;
5959
5960 block_rsv = get_block_rsv(trans, root);
5961
5962 if (block_rsv->size == 0) {
5963 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5964 /*
5965 * If we couldn't reserve metadata bytes try and use some from
5966 * the global reserve.
5967 */
5968 if (ret && block_rsv != global_rsv) {
5969 ret = block_rsv_use_bytes(global_rsv, blocksize);
5970 if (!ret)
5971 return global_rsv;
5972 return ERR_PTR(ret);
5973 } else if (ret) {
5974 return ERR_PTR(ret);
5975 }
5976 return block_rsv;
5977 }
5978
5979 ret = block_rsv_use_bytes(block_rsv, blocksize);
5980 if (!ret)
5981 return block_rsv;
5982 if (ret) {
5983 static DEFINE_RATELIMIT_STATE(_rs,
5984 DEFAULT_RATELIMIT_INTERVAL,
5985 /*DEFAULT_RATELIMIT_BURST*/ 2);
5986 if (__ratelimit(&_rs)) {
5987 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
5988 WARN_ON(1);
5989 }
5990 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5991 if (!ret) {
5992 return block_rsv;
5993 } else if (ret && block_rsv != global_rsv) {
5994 ret = block_rsv_use_bytes(global_rsv, blocksize);
5995 if (!ret)
5996 return global_rsv;
5997 }
5998 }
5999
6000 return ERR_PTR(-ENOSPC);
6001 }
6002
6003 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
6004 {
6005 block_rsv_add_bytes(block_rsv, blocksize, 0);
6006 block_rsv_release_bytes(block_rsv, NULL, 0);
6007 }
6008
6009 /*
6010 * finds a free extent and does all the dirty work required for allocation
6011 * returns the key for the extent through ins, and a tree buffer for
6012 * the first block of the extent through buf.
6013 *
6014 * returns the tree buffer or NULL.
6015 */
6016 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6017 struct btrfs_root *root, u32 blocksize,
6018 u64 parent, u64 root_objectid,
6019 struct btrfs_disk_key *key, int level,
6020 u64 hint, u64 empty_size)
6021 {
6022 struct btrfs_key ins;
6023 struct btrfs_block_rsv *block_rsv;
6024 struct extent_buffer *buf;
6025 u64 flags = 0;
6026 int ret;
6027
6028
6029 block_rsv = use_block_rsv(trans, root, blocksize);
6030 if (IS_ERR(block_rsv))
6031 return ERR_CAST(block_rsv);
6032
6033 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6034 empty_size, hint, (u64)-1, &ins, 0);
6035 if (ret) {
6036 unuse_block_rsv(block_rsv, blocksize);
6037 return ERR_PTR(ret);
6038 }
6039
6040 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6041 blocksize, level);
6042 BUG_ON(IS_ERR(buf));
6043
6044 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6045 if (parent == 0)
6046 parent = ins.objectid;
6047 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6048 } else
6049 BUG_ON(parent > 0);
6050
6051 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6052 struct btrfs_delayed_extent_op *extent_op;
6053 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6054 BUG_ON(!extent_op);
6055 if (key)
6056 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6057 else
6058 memset(&extent_op->key, 0, sizeof(extent_op->key));
6059 extent_op->flags_to_set = flags;
6060 extent_op->update_key = 1;
6061 extent_op->update_flags = 1;
6062 extent_op->is_data = 0;
6063
6064 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
6065 ins.offset, parent, root_objectid,
6066 level, BTRFS_ADD_DELAYED_EXTENT,
6067 extent_op);
6068 BUG_ON(ret);
6069 }
6070 return buf;
6071 }
6072
6073 struct walk_control {
6074 u64 refs[BTRFS_MAX_LEVEL];
6075 u64 flags[BTRFS_MAX_LEVEL];
6076 struct btrfs_key update_progress;
6077 int stage;
6078 int level;
6079 int shared_level;
6080 int update_ref;
6081 int keep_locks;
6082 int reada_slot;
6083 int reada_count;
6084 };
6085
6086 #define DROP_REFERENCE 1
6087 #define UPDATE_BACKREF 2
6088
6089 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6090 struct btrfs_root *root,
6091 struct walk_control *wc,
6092 struct btrfs_path *path)
6093 {
6094 u64 bytenr;
6095 u64 generation;
6096 u64 refs;
6097 u64 flags;
6098 u32 nritems;
6099 u32 blocksize;
6100 struct btrfs_key key;
6101 struct extent_buffer *eb;
6102 int ret;
6103 int slot;
6104 int nread = 0;
6105
6106 if (path->slots[wc->level] < wc->reada_slot) {
6107 wc->reada_count = wc->reada_count * 2 / 3;
6108 wc->reada_count = max(wc->reada_count, 2);
6109 } else {
6110 wc->reada_count = wc->reada_count * 3 / 2;
6111 wc->reada_count = min_t(int, wc->reada_count,
6112 BTRFS_NODEPTRS_PER_BLOCK(root));
6113 }
6114
6115 eb = path->nodes[wc->level];
6116 nritems = btrfs_header_nritems(eb);
6117 blocksize = btrfs_level_size(root, wc->level - 1);
6118
6119 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6120 if (nread >= wc->reada_count)
6121 break;
6122
6123 cond_resched();
6124 bytenr = btrfs_node_blockptr(eb, slot);
6125 generation = btrfs_node_ptr_generation(eb, slot);
6126
6127 if (slot == path->slots[wc->level])
6128 goto reada;
6129
6130 if (wc->stage == UPDATE_BACKREF &&
6131 generation <= root->root_key.offset)
6132 continue;
6133
6134 /* We don't lock the tree block, it's OK to be racy here */
6135 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6136 &refs, &flags);
6137 BUG_ON(ret);
6138 BUG_ON(refs == 0);
6139
6140 if (wc->stage == DROP_REFERENCE) {
6141 if (refs == 1)
6142 goto reada;
6143
6144 if (wc->level == 1 &&
6145 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6146 continue;
6147 if (!wc->update_ref ||
6148 generation <= root->root_key.offset)
6149 continue;
6150 btrfs_node_key_to_cpu(eb, &key, slot);
6151 ret = btrfs_comp_cpu_keys(&key,
6152 &wc->update_progress);
6153 if (ret < 0)
6154 continue;
6155 } else {
6156 if (wc->level == 1 &&
6157 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6158 continue;
6159 }
6160 reada:
6161 ret = readahead_tree_block(root, bytenr, blocksize,
6162 generation);
6163 if (ret)
6164 break;
6165 nread++;
6166 }
6167 wc->reada_slot = slot;
6168 }
6169
6170 /*
6171 * hepler to process tree block while walking down the tree.
6172 *
6173 * when wc->stage == UPDATE_BACKREF, this function updates
6174 * back refs for pointers in the block.
6175 *
6176 * NOTE: return value 1 means we should stop walking down.
6177 */
6178 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6179 struct btrfs_root *root,
6180 struct btrfs_path *path,
6181 struct walk_control *wc, int lookup_info)
6182 {
6183 int level = wc->level;
6184 struct extent_buffer *eb = path->nodes[level];
6185 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6186 int ret;
6187
6188 if (wc->stage == UPDATE_BACKREF &&
6189 btrfs_header_owner(eb) != root->root_key.objectid)
6190 return 1;
6191
6192 /*
6193 * when reference count of tree block is 1, it won't increase
6194 * again. once full backref flag is set, we never clear it.
6195 */
6196 if (lookup_info &&
6197 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6198 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6199 BUG_ON(!path->locks[level]);
6200 ret = btrfs_lookup_extent_info(trans, root,
6201 eb->start, eb->len,
6202 &wc->refs[level],
6203 &wc->flags[level]);
6204 BUG_ON(ret);
6205 BUG_ON(wc->refs[level] == 0);
6206 }
6207
6208 if (wc->stage == DROP_REFERENCE) {
6209 if (wc->refs[level] > 1)
6210 return 1;
6211
6212 if (path->locks[level] && !wc->keep_locks) {
6213 btrfs_tree_unlock_rw(eb, path->locks[level]);
6214 path->locks[level] = 0;
6215 }
6216 return 0;
6217 }
6218
6219 /* wc->stage == UPDATE_BACKREF */
6220 if (!(wc->flags[level] & flag)) {
6221 BUG_ON(!path->locks[level]);
6222 ret = btrfs_inc_ref(trans, root, eb, 1);
6223 BUG_ON(ret);
6224 ret = btrfs_dec_ref(trans, root, eb, 0);
6225 BUG_ON(ret);
6226 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6227 eb->len, flag, 0);
6228 BUG_ON(ret);
6229 wc->flags[level] |= flag;
6230 }
6231
6232 /*
6233 * the block is shared by multiple trees, so it's not good to
6234 * keep the tree lock
6235 */
6236 if (path->locks[level] && level > 0) {
6237 btrfs_tree_unlock_rw(eb, path->locks[level]);
6238 path->locks[level] = 0;
6239 }
6240 return 0;
6241 }
6242
6243 /*
6244 * hepler to process tree block pointer.
6245 *
6246 * when wc->stage == DROP_REFERENCE, this function checks
6247 * reference count of the block pointed to. if the block
6248 * is shared and we need update back refs for the subtree
6249 * rooted at the block, this function changes wc->stage to
6250 * UPDATE_BACKREF. if the block is shared and there is no
6251 * need to update back, this function drops the reference
6252 * to the block.
6253 *
6254 * NOTE: return value 1 means we should stop walking down.
6255 */
6256 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6257 struct btrfs_root *root,
6258 struct btrfs_path *path,
6259 struct walk_control *wc, int *lookup_info)
6260 {
6261 u64 bytenr;
6262 u64 generation;
6263 u64 parent;
6264 u32 blocksize;
6265 struct btrfs_key key;
6266 struct extent_buffer *next;
6267 int level = wc->level;
6268 int reada = 0;
6269 int ret = 0;
6270
6271 generation = btrfs_node_ptr_generation(path->nodes[level],
6272 path->slots[level]);
6273 /*
6274 * if the lower level block was created before the snapshot
6275 * was created, we know there is no need to update back refs
6276 * for the subtree
6277 */
6278 if (wc->stage == UPDATE_BACKREF &&
6279 generation <= root->root_key.offset) {
6280 *lookup_info = 1;
6281 return 1;
6282 }
6283
6284 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6285 blocksize = btrfs_level_size(root, level - 1);
6286
6287 next = btrfs_find_tree_block(root, bytenr, blocksize);
6288 if (!next) {
6289 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6290 if (!next)
6291 return -ENOMEM;
6292 reada = 1;
6293 }
6294 btrfs_tree_lock(next);
6295 btrfs_set_lock_blocking(next);
6296
6297 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6298 &wc->refs[level - 1],
6299 &wc->flags[level - 1]);
6300 BUG_ON(ret);
6301 BUG_ON(wc->refs[level - 1] == 0);
6302 *lookup_info = 0;
6303
6304 if (wc->stage == DROP_REFERENCE) {
6305 if (wc->refs[level - 1] > 1) {
6306 if (level == 1 &&
6307 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6308 goto skip;
6309
6310 if (!wc->update_ref ||
6311 generation <= root->root_key.offset)
6312 goto skip;
6313
6314 btrfs_node_key_to_cpu(path->nodes[level], &key,
6315 path->slots[level]);
6316 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6317 if (ret < 0)
6318 goto skip;
6319
6320 wc->stage = UPDATE_BACKREF;
6321 wc->shared_level = level - 1;
6322 }
6323 } else {
6324 if (level == 1 &&
6325 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6326 goto skip;
6327 }
6328
6329 if (!btrfs_buffer_uptodate(next, generation)) {
6330 btrfs_tree_unlock(next);
6331 free_extent_buffer(next);
6332 next = NULL;
6333 *lookup_info = 1;
6334 }
6335
6336 if (!next) {
6337 if (reada && level == 1)
6338 reada_walk_down(trans, root, wc, path);
6339 next = read_tree_block(root, bytenr, blocksize, generation);
6340 if (!next)
6341 return -EIO;
6342 btrfs_tree_lock(next);
6343 btrfs_set_lock_blocking(next);
6344 }
6345
6346 level--;
6347 BUG_ON(level != btrfs_header_level(next));
6348 path->nodes[level] = next;
6349 path->slots[level] = 0;
6350 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6351 wc->level = level;
6352 if (wc->level == 1)
6353 wc->reada_slot = 0;
6354 return 0;
6355 skip:
6356 wc->refs[level - 1] = 0;
6357 wc->flags[level - 1] = 0;
6358 if (wc->stage == DROP_REFERENCE) {
6359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6360 parent = path->nodes[level]->start;
6361 } else {
6362 BUG_ON(root->root_key.objectid !=
6363 btrfs_header_owner(path->nodes[level]));
6364 parent = 0;
6365 }
6366
6367 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6368 root->root_key.objectid, level - 1, 0);
6369 BUG_ON(ret);
6370 }
6371 btrfs_tree_unlock(next);
6372 free_extent_buffer(next);
6373 *lookup_info = 1;
6374 return 1;
6375 }
6376
6377 /*
6378 * hepler to process tree block while walking up the tree.
6379 *
6380 * when wc->stage == DROP_REFERENCE, this function drops
6381 * reference count on the block.
6382 *
6383 * when wc->stage == UPDATE_BACKREF, this function changes
6384 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6385 * to UPDATE_BACKREF previously while processing the block.
6386 *
6387 * NOTE: return value 1 means we should stop walking up.
6388 */
6389 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6390 struct btrfs_root *root,
6391 struct btrfs_path *path,
6392 struct walk_control *wc)
6393 {
6394 int ret;
6395 int level = wc->level;
6396 struct extent_buffer *eb = path->nodes[level];
6397 u64 parent = 0;
6398
6399 if (wc->stage == UPDATE_BACKREF) {
6400 BUG_ON(wc->shared_level < level);
6401 if (level < wc->shared_level)
6402 goto out;
6403
6404 ret = find_next_key(path, level + 1, &wc->update_progress);
6405 if (ret > 0)
6406 wc->update_ref = 0;
6407
6408 wc->stage = DROP_REFERENCE;
6409 wc->shared_level = -1;
6410 path->slots[level] = 0;
6411
6412 /*
6413 * check reference count again if the block isn't locked.
6414 * we should start walking down the tree again if reference
6415 * count is one.
6416 */
6417 if (!path->locks[level]) {
6418 BUG_ON(level == 0);
6419 btrfs_tree_lock(eb);
6420 btrfs_set_lock_blocking(eb);
6421 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6422
6423 ret = btrfs_lookup_extent_info(trans, root,
6424 eb->start, eb->len,
6425 &wc->refs[level],
6426 &wc->flags[level]);
6427 BUG_ON(ret);
6428 BUG_ON(wc->refs[level] == 0);
6429 if (wc->refs[level] == 1) {
6430 btrfs_tree_unlock_rw(eb, path->locks[level]);
6431 return 1;
6432 }
6433 }
6434 }
6435
6436 /* wc->stage == DROP_REFERENCE */
6437 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6438
6439 if (wc->refs[level] == 1) {
6440 if (level == 0) {
6441 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6442 ret = btrfs_dec_ref(trans, root, eb, 1);
6443 else
6444 ret = btrfs_dec_ref(trans, root, eb, 0);
6445 BUG_ON(ret);
6446 }
6447 /* make block locked assertion in clean_tree_block happy */
6448 if (!path->locks[level] &&
6449 btrfs_header_generation(eb) == trans->transid) {
6450 btrfs_tree_lock(eb);
6451 btrfs_set_lock_blocking(eb);
6452 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6453 }
6454 clean_tree_block(trans, root, eb);
6455 }
6456
6457 if (eb == root->node) {
6458 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6459 parent = eb->start;
6460 else
6461 BUG_ON(root->root_key.objectid !=
6462 btrfs_header_owner(eb));
6463 } else {
6464 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6465 parent = path->nodes[level + 1]->start;
6466 else
6467 BUG_ON(root->root_key.objectid !=
6468 btrfs_header_owner(path->nodes[level + 1]));
6469 }
6470
6471 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6472 out:
6473 wc->refs[level] = 0;
6474 wc->flags[level] = 0;
6475 return 0;
6476 }
6477
6478 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6479 struct btrfs_root *root,
6480 struct btrfs_path *path,
6481 struct walk_control *wc)
6482 {
6483 int level = wc->level;
6484 int lookup_info = 1;
6485 int ret;
6486
6487 while (level >= 0) {
6488 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6489 if (ret > 0)
6490 break;
6491
6492 if (level == 0)
6493 break;
6494
6495 if (path->slots[level] >=
6496 btrfs_header_nritems(path->nodes[level]))
6497 break;
6498
6499 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6500 if (ret > 0) {
6501 path->slots[level]++;
6502 continue;
6503 } else if (ret < 0)
6504 return ret;
6505 level = wc->level;
6506 }
6507 return 0;
6508 }
6509
6510 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6511 struct btrfs_root *root,
6512 struct btrfs_path *path,
6513 struct walk_control *wc, int max_level)
6514 {
6515 int level = wc->level;
6516 int ret;
6517
6518 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6519 while (level < max_level && path->nodes[level]) {
6520 wc->level = level;
6521 if (path->slots[level] + 1 <
6522 btrfs_header_nritems(path->nodes[level])) {
6523 path->slots[level]++;
6524 return 0;
6525 } else {
6526 ret = walk_up_proc(trans, root, path, wc);
6527 if (ret > 0)
6528 return 0;
6529
6530 if (path->locks[level]) {
6531 btrfs_tree_unlock_rw(path->nodes[level],
6532 path->locks[level]);
6533 path->locks[level] = 0;
6534 }
6535 free_extent_buffer(path->nodes[level]);
6536 path->nodes[level] = NULL;
6537 level++;
6538 }
6539 }
6540 return 1;
6541 }
6542
6543 /*
6544 * drop a subvolume tree.
6545 *
6546 * this function traverses the tree freeing any blocks that only
6547 * referenced by the tree.
6548 *
6549 * when a shared tree block is found. this function decreases its
6550 * reference count by one. if update_ref is true, this function
6551 * also make sure backrefs for the shared block and all lower level
6552 * blocks are properly updated.
6553 */
6554 void btrfs_drop_snapshot(struct btrfs_root *root,
6555 struct btrfs_block_rsv *block_rsv, int update_ref)
6556 {
6557 struct btrfs_path *path;
6558 struct btrfs_trans_handle *trans;
6559 struct btrfs_root *tree_root = root->fs_info->tree_root;
6560 struct btrfs_root_item *root_item = &root->root_item;
6561 struct walk_control *wc;
6562 struct btrfs_key key;
6563 int err = 0;
6564 int ret;
6565 int level;
6566
6567 path = btrfs_alloc_path();
6568 if (!path) {
6569 err = -ENOMEM;
6570 goto out;
6571 }
6572
6573 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6574 if (!wc) {
6575 btrfs_free_path(path);
6576 err = -ENOMEM;
6577 goto out;
6578 }
6579
6580 trans = btrfs_start_transaction(tree_root, 0);
6581 BUG_ON(IS_ERR(trans));
6582
6583 if (block_rsv)
6584 trans->block_rsv = block_rsv;
6585
6586 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6587 level = btrfs_header_level(root->node);
6588 path->nodes[level] = btrfs_lock_root_node(root);
6589 btrfs_set_lock_blocking(path->nodes[level]);
6590 path->slots[level] = 0;
6591 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6592 memset(&wc->update_progress, 0,
6593 sizeof(wc->update_progress));
6594 } else {
6595 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6596 memcpy(&wc->update_progress, &key,
6597 sizeof(wc->update_progress));
6598
6599 level = root_item->drop_level;
6600 BUG_ON(level == 0);
6601 path->lowest_level = level;
6602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6603 path->lowest_level = 0;
6604 if (ret < 0) {
6605 err = ret;
6606 goto out_free;
6607 }
6608 WARN_ON(ret > 0);
6609
6610 /*
6611 * unlock our path, this is safe because only this
6612 * function is allowed to delete this snapshot
6613 */
6614 btrfs_unlock_up_safe(path, 0);
6615
6616 level = btrfs_header_level(root->node);
6617 while (1) {
6618 btrfs_tree_lock(path->nodes[level]);
6619 btrfs_set_lock_blocking(path->nodes[level]);
6620
6621 ret = btrfs_lookup_extent_info(trans, root,
6622 path->nodes[level]->start,
6623 path->nodes[level]->len,
6624 &wc->refs[level],
6625 &wc->flags[level]);
6626 BUG_ON(ret);
6627 BUG_ON(wc->refs[level] == 0);
6628
6629 if (level == root_item->drop_level)
6630 break;
6631
6632 btrfs_tree_unlock(path->nodes[level]);
6633 WARN_ON(wc->refs[level] != 1);
6634 level--;
6635 }
6636 }
6637
6638 wc->level = level;
6639 wc->shared_level = -1;
6640 wc->stage = DROP_REFERENCE;
6641 wc->update_ref = update_ref;
6642 wc->keep_locks = 0;
6643 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6644
6645 while (1) {
6646 ret = walk_down_tree(trans, root, path, wc);
6647 if (ret < 0) {
6648 err = ret;
6649 break;
6650 }
6651
6652 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6653 if (ret < 0) {
6654 err = ret;
6655 break;
6656 }
6657
6658 if (ret > 0) {
6659 BUG_ON(wc->stage != DROP_REFERENCE);
6660 break;
6661 }
6662
6663 if (wc->stage == DROP_REFERENCE) {
6664 level = wc->level;
6665 btrfs_node_key(path->nodes[level],
6666 &root_item->drop_progress,
6667 path->slots[level]);
6668 root_item->drop_level = level;
6669 }
6670
6671 BUG_ON(wc->level == 0);
6672 if (btrfs_should_end_transaction(trans, tree_root)) {
6673 ret = btrfs_update_root(trans, tree_root,
6674 &root->root_key,
6675 root_item);
6676 BUG_ON(ret);
6677
6678 btrfs_end_transaction_throttle(trans, tree_root);
6679 trans = btrfs_start_transaction(tree_root, 0);
6680 BUG_ON(IS_ERR(trans));
6681 if (block_rsv)
6682 trans->block_rsv = block_rsv;
6683 }
6684 }
6685 btrfs_release_path(path);
6686 BUG_ON(err);
6687
6688 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6689 BUG_ON(ret);
6690
6691 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6692 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6693 NULL, NULL);
6694 BUG_ON(ret < 0);
6695 if (ret > 0) {
6696 /* if we fail to delete the orphan item this time
6697 * around, it'll get picked up the next time.
6698 *
6699 * The most common failure here is just -ENOENT.
6700 */
6701 btrfs_del_orphan_item(trans, tree_root,
6702 root->root_key.objectid);
6703 }
6704 }
6705
6706 if (root->in_radix) {
6707 btrfs_free_fs_root(tree_root->fs_info, root);
6708 } else {
6709 free_extent_buffer(root->node);
6710 free_extent_buffer(root->commit_root);
6711 kfree(root);
6712 }
6713 out_free:
6714 btrfs_end_transaction_throttle(trans, tree_root);
6715 kfree(wc);
6716 btrfs_free_path(path);
6717 out:
6718 if (err)
6719 btrfs_std_error(root->fs_info, err);
6720 return;
6721 }
6722
6723 /*
6724 * drop subtree rooted at tree block 'node'.
6725 *
6726 * NOTE: this function will unlock and release tree block 'node'
6727 */
6728 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6729 struct btrfs_root *root,
6730 struct extent_buffer *node,
6731 struct extent_buffer *parent)
6732 {
6733 struct btrfs_path *path;
6734 struct walk_control *wc;
6735 int level;
6736 int parent_level;
6737 int ret = 0;
6738 int wret;
6739
6740 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6741
6742 path = btrfs_alloc_path();
6743 if (!path)
6744 return -ENOMEM;
6745
6746 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6747 if (!wc) {
6748 btrfs_free_path(path);
6749 return -ENOMEM;
6750 }
6751
6752 btrfs_assert_tree_locked(parent);
6753 parent_level = btrfs_header_level(parent);
6754 extent_buffer_get(parent);
6755 path->nodes[parent_level] = parent;
6756 path->slots[parent_level] = btrfs_header_nritems(parent);
6757
6758 btrfs_assert_tree_locked(node);
6759 level = btrfs_header_level(node);
6760 path->nodes[level] = node;
6761 path->slots[level] = 0;
6762 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6763
6764 wc->refs[parent_level] = 1;
6765 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6766 wc->level = level;
6767 wc->shared_level = -1;
6768 wc->stage = DROP_REFERENCE;
6769 wc->update_ref = 0;
6770 wc->keep_locks = 1;
6771 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6772
6773 while (1) {
6774 wret = walk_down_tree(trans, root, path, wc);
6775 if (wret < 0) {
6776 ret = wret;
6777 break;
6778 }
6779
6780 wret = walk_up_tree(trans, root, path, wc, parent_level);
6781 if (wret < 0)
6782 ret = wret;
6783 if (wret != 0)
6784 break;
6785 }
6786
6787 kfree(wc);
6788 btrfs_free_path(path);
6789 return ret;
6790 }
6791
6792 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6793 {
6794 u64 num_devices;
6795 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6797
6798 /*
6799 * we add in the count of missing devices because we want
6800 * to make sure that any RAID levels on a degraded FS
6801 * continue to be honored.
6802 */
6803 num_devices = root->fs_info->fs_devices->rw_devices +
6804 root->fs_info->fs_devices->missing_devices;
6805
6806 if (num_devices == 1) {
6807 stripped |= BTRFS_BLOCK_GROUP_DUP;
6808 stripped = flags & ~stripped;
6809
6810 /* turn raid0 into single device chunks */
6811 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6812 return stripped;
6813
6814 /* turn mirroring into duplication */
6815 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6816 BTRFS_BLOCK_GROUP_RAID10))
6817 return stripped | BTRFS_BLOCK_GROUP_DUP;
6818 return flags;
6819 } else {
6820 /* they already had raid on here, just return */
6821 if (flags & stripped)
6822 return flags;
6823
6824 stripped |= BTRFS_BLOCK_GROUP_DUP;
6825 stripped = flags & ~stripped;
6826
6827 /* switch duplicated blocks with raid1 */
6828 if (flags & BTRFS_BLOCK_GROUP_DUP)
6829 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6830
6831 /* turn single device chunks into raid0 */
6832 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6833 }
6834 return flags;
6835 }
6836
6837 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6838 {
6839 struct btrfs_space_info *sinfo = cache->space_info;
6840 u64 num_bytes;
6841 u64 min_allocable_bytes;
6842 int ret = -ENOSPC;
6843
6844
6845 /*
6846 * We need some metadata space and system metadata space for
6847 * allocating chunks in some corner cases until we force to set
6848 * it to be readonly.
6849 */
6850 if ((sinfo->flags &
6851 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6852 !force)
6853 min_allocable_bytes = 1 * 1024 * 1024;
6854 else
6855 min_allocable_bytes = 0;
6856
6857 spin_lock(&sinfo->lock);
6858 spin_lock(&cache->lock);
6859
6860 if (cache->ro) {
6861 ret = 0;
6862 goto out;
6863 }
6864
6865 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6866 cache->bytes_super - btrfs_block_group_used(&cache->item);
6867
6868 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6869 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6870 min_allocable_bytes <= sinfo->total_bytes) {
6871 sinfo->bytes_readonly += num_bytes;
6872 cache->ro = 1;
6873 ret = 0;
6874 }
6875 out:
6876 spin_unlock(&cache->lock);
6877 spin_unlock(&sinfo->lock);
6878 return ret;
6879 }
6880
6881 int btrfs_set_block_group_ro(struct btrfs_root *root,
6882 struct btrfs_block_group_cache *cache)
6883
6884 {
6885 struct btrfs_trans_handle *trans;
6886 u64 alloc_flags;
6887 int ret;
6888
6889 BUG_ON(cache->ro);
6890
6891 trans = btrfs_join_transaction(root);
6892 BUG_ON(IS_ERR(trans));
6893
6894 alloc_flags = update_block_group_flags(root, cache->flags);
6895 if (alloc_flags != cache->flags)
6896 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6897 CHUNK_ALLOC_FORCE);
6898
6899 ret = set_block_group_ro(cache, 0);
6900 if (!ret)
6901 goto out;
6902 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6903 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6904 CHUNK_ALLOC_FORCE);
6905 if (ret < 0)
6906 goto out;
6907 ret = set_block_group_ro(cache, 0);
6908 out:
6909 btrfs_end_transaction(trans, root);
6910 return ret;
6911 }
6912
6913 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6914 struct btrfs_root *root, u64 type)
6915 {
6916 u64 alloc_flags = get_alloc_profile(root, type);
6917 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6918 CHUNK_ALLOC_FORCE);
6919 }
6920
6921 /*
6922 * helper to account the unused space of all the readonly block group in the
6923 * list. takes mirrors into account.
6924 */
6925 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6926 {
6927 struct btrfs_block_group_cache *block_group;
6928 u64 free_bytes = 0;
6929 int factor;
6930
6931 list_for_each_entry(block_group, groups_list, list) {
6932 spin_lock(&block_group->lock);
6933
6934 if (!block_group->ro) {
6935 spin_unlock(&block_group->lock);
6936 continue;
6937 }
6938
6939 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6940 BTRFS_BLOCK_GROUP_RAID10 |
6941 BTRFS_BLOCK_GROUP_DUP))
6942 factor = 2;
6943 else
6944 factor = 1;
6945
6946 free_bytes += (block_group->key.offset -
6947 btrfs_block_group_used(&block_group->item)) *
6948 factor;
6949
6950 spin_unlock(&block_group->lock);
6951 }
6952
6953 return free_bytes;
6954 }
6955
6956 /*
6957 * helper to account the unused space of all the readonly block group in the
6958 * space_info. takes mirrors into account.
6959 */
6960 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6961 {
6962 int i;
6963 u64 free_bytes = 0;
6964
6965 spin_lock(&sinfo->lock);
6966
6967 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6968 if (!list_empty(&sinfo->block_groups[i]))
6969 free_bytes += __btrfs_get_ro_block_group_free_space(
6970 &sinfo->block_groups[i]);
6971
6972 spin_unlock(&sinfo->lock);
6973
6974 return free_bytes;
6975 }
6976
6977 int btrfs_set_block_group_rw(struct btrfs_root *root,
6978 struct btrfs_block_group_cache *cache)
6979 {
6980 struct btrfs_space_info *sinfo = cache->space_info;
6981 u64 num_bytes;
6982
6983 BUG_ON(!cache->ro);
6984
6985 spin_lock(&sinfo->lock);
6986 spin_lock(&cache->lock);
6987 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6988 cache->bytes_super - btrfs_block_group_used(&cache->item);
6989 sinfo->bytes_readonly -= num_bytes;
6990 cache->ro = 0;
6991 spin_unlock(&cache->lock);
6992 spin_unlock(&sinfo->lock);
6993 return 0;
6994 }
6995
6996 /*
6997 * checks to see if its even possible to relocate this block group.
6998 *
6999 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7000 * ok to go ahead and try.
7001 */
7002 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7003 {
7004 struct btrfs_block_group_cache *block_group;
7005 struct btrfs_space_info *space_info;
7006 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7007 struct btrfs_device *device;
7008 u64 min_free;
7009 u64 dev_min = 1;
7010 u64 dev_nr = 0;
7011 int index;
7012 int full = 0;
7013 int ret = 0;
7014
7015 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7016
7017 /* odd, couldn't find the block group, leave it alone */
7018 if (!block_group)
7019 return -1;
7020
7021 min_free = btrfs_block_group_used(&block_group->item);
7022
7023 /* no bytes used, we're good */
7024 if (!min_free)
7025 goto out;
7026
7027 space_info = block_group->space_info;
7028 spin_lock(&space_info->lock);
7029
7030 full = space_info->full;
7031
7032 /*
7033 * if this is the last block group we have in this space, we can't
7034 * relocate it unless we're able to allocate a new chunk below.
7035 *
7036 * Otherwise, we need to make sure we have room in the space to handle
7037 * all of the extents from this block group. If we can, we're good
7038 */
7039 if ((space_info->total_bytes != block_group->key.offset) &&
7040 (space_info->bytes_used + space_info->bytes_reserved +
7041 space_info->bytes_pinned + space_info->bytes_readonly +
7042 min_free < space_info->total_bytes)) {
7043 spin_unlock(&space_info->lock);
7044 goto out;
7045 }
7046 spin_unlock(&space_info->lock);
7047
7048 /*
7049 * ok we don't have enough space, but maybe we have free space on our
7050 * devices to allocate new chunks for relocation, so loop through our
7051 * alloc devices and guess if we have enough space. However, if we
7052 * were marked as full, then we know there aren't enough chunks, and we
7053 * can just return.
7054 */
7055 ret = -1;
7056 if (full)
7057 goto out;
7058
7059 /*
7060 * index:
7061 * 0: raid10
7062 * 1: raid1
7063 * 2: dup
7064 * 3: raid0
7065 * 4: single
7066 */
7067 index = get_block_group_index(block_group);
7068 if (index == 0) {
7069 dev_min = 4;
7070 /* Divide by 2 */
7071 min_free >>= 1;
7072 } else if (index == 1) {
7073 dev_min = 2;
7074 } else if (index == 2) {
7075 /* Multiply by 2 */
7076 min_free <<= 1;
7077 } else if (index == 3) {
7078 dev_min = fs_devices->rw_devices;
7079 do_div(min_free, dev_min);
7080 }
7081
7082 mutex_lock(&root->fs_info->chunk_mutex);
7083 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7084 u64 dev_offset;
7085
7086 /*
7087 * check to make sure we can actually find a chunk with enough
7088 * space to fit our block group in.
7089 */
7090 if (device->total_bytes > device->bytes_used + min_free) {
7091 ret = find_free_dev_extent(NULL, device, min_free,
7092 &dev_offset, NULL);
7093 if (!ret)
7094 dev_nr++;
7095
7096 if (dev_nr >= dev_min)
7097 break;
7098
7099 ret = -1;
7100 }
7101 }
7102 mutex_unlock(&root->fs_info->chunk_mutex);
7103 out:
7104 btrfs_put_block_group(block_group);
7105 return ret;
7106 }
7107
7108 static int find_first_block_group(struct btrfs_root *root,
7109 struct btrfs_path *path, struct btrfs_key *key)
7110 {
7111 int ret = 0;
7112 struct btrfs_key found_key;
7113 struct extent_buffer *leaf;
7114 int slot;
7115
7116 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7117 if (ret < 0)
7118 goto out;
7119
7120 while (1) {
7121 slot = path->slots[0];
7122 leaf = path->nodes[0];
7123 if (slot >= btrfs_header_nritems(leaf)) {
7124 ret = btrfs_next_leaf(root, path);
7125 if (ret == 0)
7126 continue;
7127 if (ret < 0)
7128 goto out;
7129 break;
7130 }
7131 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7132
7133 if (found_key.objectid >= key->objectid &&
7134 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7135 ret = 0;
7136 goto out;
7137 }
7138 path->slots[0]++;
7139 }
7140 out:
7141 return ret;
7142 }
7143
7144 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7145 {
7146 struct btrfs_block_group_cache *block_group;
7147 u64 last = 0;
7148
7149 while (1) {
7150 struct inode *inode;
7151
7152 block_group = btrfs_lookup_first_block_group(info, last);
7153 while (block_group) {
7154 spin_lock(&block_group->lock);
7155 if (block_group->iref)
7156 break;
7157 spin_unlock(&block_group->lock);
7158 block_group = next_block_group(info->tree_root,
7159 block_group);
7160 }
7161 if (!block_group) {
7162 if (last == 0)
7163 break;
7164 last = 0;
7165 continue;
7166 }
7167
7168 inode = block_group->inode;
7169 block_group->iref = 0;
7170 block_group->inode = NULL;
7171 spin_unlock(&block_group->lock);
7172 iput(inode);
7173 last = block_group->key.objectid + block_group->key.offset;
7174 btrfs_put_block_group(block_group);
7175 }
7176 }
7177
7178 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7179 {
7180 struct btrfs_block_group_cache *block_group;
7181 struct btrfs_space_info *space_info;
7182 struct btrfs_caching_control *caching_ctl;
7183 struct rb_node *n;
7184
7185 down_write(&info->extent_commit_sem);
7186 while (!list_empty(&info->caching_block_groups)) {
7187 caching_ctl = list_entry(info->caching_block_groups.next,
7188 struct btrfs_caching_control, list);
7189 list_del(&caching_ctl->list);
7190 put_caching_control(caching_ctl);
7191 }
7192 up_write(&info->extent_commit_sem);
7193
7194 spin_lock(&info->block_group_cache_lock);
7195 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7196 block_group = rb_entry(n, struct btrfs_block_group_cache,
7197 cache_node);
7198 rb_erase(&block_group->cache_node,
7199 &info->block_group_cache_tree);
7200 spin_unlock(&info->block_group_cache_lock);
7201
7202 down_write(&block_group->space_info->groups_sem);
7203 list_del(&block_group->list);
7204 up_write(&block_group->space_info->groups_sem);
7205
7206 if (block_group->cached == BTRFS_CACHE_STARTED)
7207 wait_block_group_cache_done(block_group);
7208
7209 /*
7210 * We haven't cached this block group, which means we could
7211 * possibly have excluded extents on this block group.
7212 */
7213 if (block_group->cached == BTRFS_CACHE_NO)
7214 free_excluded_extents(info->extent_root, block_group);
7215
7216 btrfs_remove_free_space_cache(block_group);
7217 btrfs_put_block_group(block_group);
7218
7219 spin_lock(&info->block_group_cache_lock);
7220 }
7221 spin_unlock(&info->block_group_cache_lock);
7222
7223 /* now that all the block groups are freed, go through and
7224 * free all the space_info structs. This is only called during
7225 * the final stages of unmount, and so we know nobody is
7226 * using them. We call synchronize_rcu() once before we start,
7227 * just to be on the safe side.
7228 */
7229 synchronize_rcu();
7230
7231 release_global_block_rsv(info);
7232
7233 while(!list_empty(&info->space_info)) {
7234 space_info = list_entry(info->space_info.next,
7235 struct btrfs_space_info,
7236 list);
7237 if (space_info->bytes_pinned > 0 ||
7238 space_info->bytes_reserved > 0 ||
7239 space_info->bytes_may_use > 0) {
7240 WARN_ON(1);
7241 dump_space_info(space_info, 0, 0);
7242 }
7243 list_del(&space_info->list);
7244 kfree(space_info);
7245 }
7246 return 0;
7247 }
7248
7249 static void __link_block_group(struct btrfs_space_info *space_info,
7250 struct btrfs_block_group_cache *cache)
7251 {
7252 int index = get_block_group_index(cache);
7253
7254 down_write(&space_info->groups_sem);
7255 list_add_tail(&cache->list, &space_info->block_groups[index]);
7256 up_write(&space_info->groups_sem);
7257 }
7258
7259 int btrfs_read_block_groups(struct btrfs_root *root)
7260 {
7261 struct btrfs_path *path;
7262 int ret;
7263 struct btrfs_block_group_cache *cache;
7264 struct btrfs_fs_info *info = root->fs_info;
7265 struct btrfs_space_info *space_info;
7266 struct btrfs_key key;
7267 struct btrfs_key found_key;
7268 struct extent_buffer *leaf;
7269 int need_clear = 0;
7270 u64 cache_gen;
7271
7272 root = info->extent_root;
7273 key.objectid = 0;
7274 key.offset = 0;
7275 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7276 path = btrfs_alloc_path();
7277 if (!path)
7278 return -ENOMEM;
7279 path->reada = 1;
7280
7281 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7282 if (btrfs_test_opt(root, SPACE_CACHE) &&
7283 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7284 need_clear = 1;
7285 if (btrfs_test_opt(root, CLEAR_CACHE))
7286 need_clear = 1;
7287
7288 while (1) {
7289 ret = find_first_block_group(root, path, &key);
7290 if (ret > 0)
7291 break;
7292 if (ret != 0)
7293 goto error;
7294 leaf = path->nodes[0];
7295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7296 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7297 if (!cache) {
7298 ret = -ENOMEM;
7299 goto error;
7300 }
7301 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7302 GFP_NOFS);
7303 if (!cache->free_space_ctl) {
7304 kfree(cache);
7305 ret = -ENOMEM;
7306 goto error;
7307 }
7308
7309 atomic_set(&cache->count, 1);
7310 spin_lock_init(&cache->lock);
7311 cache->fs_info = info;
7312 INIT_LIST_HEAD(&cache->list);
7313 INIT_LIST_HEAD(&cache->cluster_list);
7314
7315 if (need_clear)
7316 cache->disk_cache_state = BTRFS_DC_CLEAR;
7317
7318 read_extent_buffer(leaf, &cache->item,
7319 btrfs_item_ptr_offset(leaf, path->slots[0]),
7320 sizeof(cache->item));
7321 memcpy(&cache->key, &found_key, sizeof(found_key));
7322
7323 key.objectid = found_key.objectid + found_key.offset;
7324 btrfs_release_path(path);
7325 cache->flags = btrfs_block_group_flags(&cache->item);
7326 cache->sectorsize = root->sectorsize;
7327
7328 btrfs_init_free_space_ctl(cache);
7329
7330 /*
7331 * We need to exclude the super stripes now so that the space
7332 * info has super bytes accounted for, otherwise we'll think
7333 * we have more space than we actually do.
7334 */
7335 exclude_super_stripes(root, cache);
7336
7337 /*
7338 * check for two cases, either we are full, and therefore
7339 * don't need to bother with the caching work since we won't
7340 * find any space, or we are empty, and we can just add all
7341 * the space in and be done with it. This saves us _alot_ of
7342 * time, particularly in the full case.
7343 */
7344 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7345 cache->last_byte_to_unpin = (u64)-1;
7346 cache->cached = BTRFS_CACHE_FINISHED;
7347 free_excluded_extents(root, cache);
7348 } else if (btrfs_block_group_used(&cache->item) == 0) {
7349 cache->last_byte_to_unpin = (u64)-1;
7350 cache->cached = BTRFS_CACHE_FINISHED;
7351 add_new_free_space(cache, root->fs_info,
7352 found_key.objectid,
7353 found_key.objectid +
7354 found_key.offset);
7355 free_excluded_extents(root, cache);
7356 }
7357
7358 ret = update_space_info(info, cache->flags, found_key.offset,
7359 btrfs_block_group_used(&cache->item),
7360 &space_info);
7361 BUG_ON(ret);
7362 cache->space_info = space_info;
7363 spin_lock(&cache->space_info->lock);
7364 cache->space_info->bytes_readonly += cache->bytes_super;
7365 spin_unlock(&cache->space_info->lock);
7366
7367 __link_block_group(space_info, cache);
7368
7369 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7370 BUG_ON(ret);
7371
7372 set_avail_alloc_bits(root->fs_info, cache->flags);
7373 if (btrfs_chunk_readonly(root, cache->key.objectid))
7374 set_block_group_ro(cache, 1);
7375 }
7376
7377 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7378 if (!(get_alloc_profile(root, space_info->flags) &
7379 (BTRFS_BLOCK_GROUP_RAID10 |
7380 BTRFS_BLOCK_GROUP_RAID1 |
7381 BTRFS_BLOCK_GROUP_DUP)))
7382 continue;
7383 /*
7384 * avoid allocating from un-mirrored block group if there are
7385 * mirrored block groups.
7386 */
7387 list_for_each_entry(cache, &space_info->block_groups[3], list)
7388 set_block_group_ro(cache, 1);
7389 list_for_each_entry(cache, &space_info->block_groups[4], list)
7390 set_block_group_ro(cache, 1);
7391 }
7392
7393 init_global_block_rsv(info);
7394 ret = 0;
7395 error:
7396 btrfs_free_path(path);
7397 return ret;
7398 }
7399
7400 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7401 struct btrfs_root *root, u64 bytes_used,
7402 u64 type, u64 chunk_objectid, u64 chunk_offset,
7403 u64 size)
7404 {
7405 int ret;
7406 struct btrfs_root *extent_root;
7407 struct btrfs_block_group_cache *cache;
7408
7409 extent_root = root->fs_info->extent_root;
7410
7411 root->fs_info->last_trans_log_full_commit = trans->transid;
7412
7413 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7414 if (!cache)
7415 return -ENOMEM;
7416 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7417 GFP_NOFS);
7418 if (!cache->free_space_ctl) {
7419 kfree(cache);
7420 return -ENOMEM;
7421 }
7422
7423 cache->key.objectid = chunk_offset;
7424 cache->key.offset = size;
7425 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7426 cache->sectorsize = root->sectorsize;
7427 cache->fs_info = root->fs_info;
7428
7429 atomic_set(&cache->count, 1);
7430 spin_lock_init(&cache->lock);
7431 INIT_LIST_HEAD(&cache->list);
7432 INIT_LIST_HEAD(&cache->cluster_list);
7433
7434 btrfs_init_free_space_ctl(cache);
7435
7436 btrfs_set_block_group_used(&cache->item, bytes_used);
7437 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7438 cache->flags = type;
7439 btrfs_set_block_group_flags(&cache->item, type);
7440
7441 cache->last_byte_to_unpin = (u64)-1;
7442 cache->cached = BTRFS_CACHE_FINISHED;
7443 exclude_super_stripes(root, cache);
7444
7445 add_new_free_space(cache, root->fs_info, chunk_offset,
7446 chunk_offset + size);
7447
7448 free_excluded_extents(root, cache);
7449
7450 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7451 &cache->space_info);
7452 BUG_ON(ret);
7453
7454 spin_lock(&cache->space_info->lock);
7455 cache->space_info->bytes_readonly += cache->bytes_super;
7456 spin_unlock(&cache->space_info->lock);
7457
7458 __link_block_group(cache->space_info, cache);
7459
7460 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7461 BUG_ON(ret);
7462
7463 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7464 sizeof(cache->item));
7465 BUG_ON(ret);
7466
7467 set_avail_alloc_bits(extent_root->fs_info, type);
7468
7469 return 0;
7470 }
7471
7472 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7473 {
7474 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7475
7476 /* chunk -> extended profile */
7477 if (extra_flags == 0)
7478 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7479
7480 if (flags & BTRFS_BLOCK_GROUP_DATA)
7481 fs_info->avail_data_alloc_bits &= ~extra_flags;
7482 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7483 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7484 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7485 fs_info->avail_system_alloc_bits &= ~extra_flags;
7486 }
7487
7488 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7489 struct btrfs_root *root, u64 group_start)
7490 {
7491 struct btrfs_path *path;
7492 struct btrfs_block_group_cache *block_group;
7493 struct btrfs_free_cluster *cluster;
7494 struct btrfs_root *tree_root = root->fs_info->tree_root;
7495 struct btrfs_key key;
7496 struct inode *inode;
7497 int ret;
7498 int index;
7499 int factor;
7500
7501 root = root->fs_info->extent_root;
7502
7503 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7504 BUG_ON(!block_group);
7505 BUG_ON(!block_group->ro);
7506
7507 /*
7508 * Free the reserved super bytes from this block group before
7509 * remove it.
7510 */
7511 free_excluded_extents(root, block_group);
7512
7513 memcpy(&key, &block_group->key, sizeof(key));
7514 index = get_block_group_index(block_group);
7515 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7516 BTRFS_BLOCK_GROUP_RAID1 |
7517 BTRFS_BLOCK_GROUP_RAID10))
7518 factor = 2;
7519 else
7520 factor = 1;
7521
7522 /* make sure this block group isn't part of an allocation cluster */
7523 cluster = &root->fs_info->data_alloc_cluster;
7524 spin_lock(&cluster->refill_lock);
7525 btrfs_return_cluster_to_free_space(block_group, cluster);
7526 spin_unlock(&cluster->refill_lock);
7527
7528 /*
7529 * make sure this block group isn't part of a metadata
7530 * allocation cluster
7531 */
7532 cluster = &root->fs_info->meta_alloc_cluster;
7533 spin_lock(&cluster->refill_lock);
7534 btrfs_return_cluster_to_free_space(block_group, cluster);
7535 spin_unlock(&cluster->refill_lock);
7536
7537 path = btrfs_alloc_path();
7538 if (!path) {
7539 ret = -ENOMEM;
7540 goto out;
7541 }
7542
7543 inode = lookup_free_space_inode(tree_root, block_group, path);
7544 if (!IS_ERR(inode)) {
7545 ret = btrfs_orphan_add(trans, inode);
7546 BUG_ON(ret);
7547 clear_nlink(inode);
7548 /* One for the block groups ref */
7549 spin_lock(&block_group->lock);
7550 if (block_group->iref) {
7551 block_group->iref = 0;
7552 block_group->inode = NULL;
7553 spin_unlock(&block_group->lock);
7554 iput(inode);
7555 } else {
7556 spin_unlock(&block_group->lock);
7557 }
7558 /* One for our lookup ref */
7559 btrfs_add_delayed_iput(inode);
7560 }
7561
7562 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7563 key.offset = block_group->key.objectid;
7564 key.type = 0;
7565
7566 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7567 if (ret < 0)
7568 goto out;
7569 if (ret > 0)
7570 btrfs_release_path(path);
7571 if (ret == 0) {
7572 ret = btrfs_del_item(trans, tree_root, path);
7573 if (ret)
7574 goto out;
7575 btrfs_release_path(path);
7576 }
7577
7578 spin_lock(&root->fs_info->block_group_cache_lock);
7579 rb_erase(&block_group->cache_node,
7580 &root->fs_info->block_group_cache_tree);
7581 spin_unlock(&root->fs_info->block_group_cache_lock);
7582
7583 down_write(&block_group->space_info->groups_sem);
7584 /*
7585 * we must use list_del_init so people can check to see if they
7586 * are still on the list after taking the semaphore
7587 */
7588 list_del_init(&block_group->list);
7589 if (list_empty(&block_group->space_info->block_groups[index]))
7590 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7591 up_write(&block_group->space_info->groups_sem);
7592
7593 if (block_group->cached == BTRFS_CACHE_STARTED)
7594 wait_block_group_cache_done(block_group);
7595
7596 btrfs_remove_free_space_cache(block_group);
7597
7598 spin_lock(&block_group->space_info->lock);
7599 block_group->space_info->total_bytes -= block_group->key.offset;
7600 block_group->space_info->bytes_readonly -= block_group->key.offset;
7601 block_group->space_info->disk_total -= block_group->key.offset * factor;
7602 spin_unlock(&block_group->space_info->lock);
7603
7604 memcpy(&key, &block_group->key, sizeof(key));
7605
7606 btrfs_clear_space_info_full(root->fs_info);
7607
7608 btrfs_put_block_group(block_group);
7609 btrfs_put_block_group(block_group);
7610
7611 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7612 if (ret > 0)
7613 ret = -EIO;
7614 if (ret < 0)
7615 goto out;
7616
7617 ret = btrfs_del_item(trans, root, path);
7618 out:
7619 btrfs_free_path(path);
7620 return ret;
7621 }
7622
7623 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7624 {
7625 struct btrfs_space_info *space_info;
7626 struct btrfs_super_block *disk_super;
7627 u64 features;
7628 u64 flags;
7629 int mixed = 0;
7630 int ret;
7631
7632 disk_super = fs_info->super_copy;
7633 if (!btrfs_super_root(disk_super))
7634 return 1;
7635
7636 features = btrfs_super_incompat_flags(disk_super);
7637 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7638 mixed = 1;
7639
7640 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7641 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7642 if (ret)
7643 goto out;
7644
7645 if (mixed) {
7646 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7647 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7648 } else {
7649 flags = BTRFS_BLOCK_GROUP_METADATA;
7650 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7651 if (ret)
7652 goto out;
7653
7654 flags = BTRFS_BLOCK_GROUP_DATA;
7655 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7656 }
7657 out:
7658 return ret;
7659 }
7660
7661 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7662 {
7663 return unpin_extent_range(root, start, end);
7664 }
7665
7666 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7667 u64 num_bytes, u64 *actual_bytes)
7668 {
7669 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7670 }
7671
7672 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7673 {
7674 struct btrfs_fs_info *fs_info = root->fs_info;
7675 struct btrfs_block_group_cache *cache = NULL;
7676 u64 group_trimmed;
7677 u64 start;
7678 u64 end;
7679 u64 trimmed = 0;
7680 int ret = 0;
7681
7682 cache = btrfs_lookup_block_group(fs_info, range->start);
7683
7684 while (cache) {
7685 if (cache->key.objectid >= (range->start + range->len)) {
7686 btrfs_put_block_group(cache);
7687 break;
7688 }
7689
7690 start = max(range->start, cache->key.objectid);
7691 end = min(range->start + range->len,
7692 cache->key.objectid + cache->key.offset);
7693
7694 if (end - start >= range->minlen) {
7695 if (!block_group_cache_done(cache)) {
7696 ret = cache_block_group(cache, NULL, root, 0);
7697 if (!ret)
7698 wait_block_group_cache_done(cache);
7699 }
7700 ret = btrfs_trim_block_group(cache,
7701 &group_trimmed,
7702 start,
7703 end,
7704 range->minlen);
7705
7706 trimmed += group_trimmed;
7707 if (ret) {
7708 btrfs_put_block_group(cache);
7709 break;
7710 }
7711 }
7712
7713 cache = next_block_group(fs_info->tree_root, cache);
7714 }
7715
7716 range->len = trimmed;
7717 return ret;
7718 }