]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/extent-tree.c
Merge tag 'rproc-v4.20' of git://github.com/andersson/remoteproc
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48 enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 int force);
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
91 }
92
93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 {
95 return (cache->flags & bits) == bits;
96 }
97
98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 {
100 atomic_inc(&cache->count);
101 }
102
103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 {
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
119 kfree(cache);
120 }
121 }
122
123 /*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
129 {
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161 }
162
163 /*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167 static struct btrfs_block_group_cache *
168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170 {
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
199 if (ret) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
217 return 0;
218 }
219
220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221 {
222 struct btrfs_fs_info *fs_info = cache->fs_info;
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
232 }
233
234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235 {
236 struct btrfs_fs_info *fs_info = cache->fs_info;
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
246 stripe_len);
247 if (ret)
248 return ret;
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
255 if (ret)
256 return ret;
257
258 while (nr--) {
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
284 }
285
286 kfree(logical);
287 }
288 return 0;
289 }
290
291 static struct btrfs_caching_control *
292 get_caching_control(struct btrfs_block_group_cache *cache)
293 {
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
305 return ctl;
306 }
307
308 static void put_caching_control(struct btrfs_caching_control *ctl)
309 {
310 if (refcount_dec_and_test(&ctl->count))
311 kfree(ctl);
312 }
313
314 #ifdef CONFIG_BTRFS_DEBUG
315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316 {
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332 }
333 #endif
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 u64 start, u64 end)
342 {
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380 {
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret;
391 bool wakeup = true;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398
399 #ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
405 if (btrfs_should_fragment_free_space(block_group))
406 wakeup = false;
407 #endif
408 /*
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
413 */
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
417
418 key.objectid = last;
419 key.offset = 0;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto out;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 if (wakeup)
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
454 }
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
458 goto out;
459 if (ret)
460 break;
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
464 }
465
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 goto next;
475 }
476
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
479 continue;
480 }
481
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
484 break;
485
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
489 key.objectid);
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
492 fs_info->nodesize;
493 else
494 last = key.objectid + key.offset;
495
496 if (total_found > CACHING_CTL_WAKE_UP) {
497 total_found = 0;
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
500 }
501 }
502 path->slots[0]++;
503 }
504 ret = 0;
505
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
510
511 out:
512 btrfs_free_path(path);
513 return ret;
514 }
515
516 static noinline void caching_thread(struct btrfs_work *work)
517 {
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
534
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
539
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
552 }
553 #endif
554
555 caching_ctl->progress = (u64)-1;
556
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
560
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
565 }
566
567 static int cache_block_group(struct btrfs_block_group_cache *cache,
568 int load_cache_only)
569 {
570 DEFINE_WAIT(wait);
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
573 int ret = 0;
574
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 if (!caching_ctl)
577 return -ENOMEM;
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
619 return 0;
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
625
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
636 } else {
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
643 }
644 }
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
648 btrfs_should_fragment_free_space(cache)) {
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
659 }
660 #endif
661 mutex_unlock(&caching_ctl->mutex);
662
663 wake_up(&caching_ctl->wait);
664 if (ret == 1) {
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
667 return 0;
668 }
669 } else {
670 /*
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
684 }
685
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
688 return 0;
689 }
690
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
695
696 btrfs_get_block_group(cache);
697
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699
700 return ret;
701 }
702
703 /*
704 * return the block group that starts at or after bytenr
705 */
706 static struct btrfs_block_group_cache *
707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708 {
709 return block_group_cache_tree_search(info, bytenr, 0);
710 }
711
712 /*
713 * return the block group that contains the given bytenr
714 */
715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
718 {
719 return block_group_cache_tree_search(info, bytenr, 1);
720 }
721
722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
724 {
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
727
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
733 rcu_read_unlock();
734 return found;
735 }
736 }
737 rcu_read_unlock();
738 return NULL;
739 }
740
741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
743 {
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
747 if (metadata) {
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
757 ASSERT(space_info);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
760 }
761
762 /*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775 }
776
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 if (ret < 0)
848 goto out_free;
849
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
858 ret = 0;
859 }
860 }
861
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
879 }
880
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
898
899 btrfs_release_path(path);
900
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
908 goto search_again;
909 }
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921 out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927 out_free:
928 btrfs_free_path(path);
929 return ret;
930 }
931
932 /*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
964 * When a tree block is COWed through a tree, there are four cases:
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
996 *
997 * The extent ref structure for the implicit back refs has fields for:
998 *
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1003 *
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
1006 *
1007 * The extent ref structure for the full back refs has field for:
1008 *
1009 * - number of pointers in the tree leaf
1010 *
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
1013 *
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1016 *
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1018 *
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1021 *
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1023 *
1024 * Btree extents can be referenced by:
1025 *
1026 * - Different subvolumes
1027 *
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1032 *
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1036 */
1037
1038 /*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046 {
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 return type;
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1062 * nodesize.
1063 */
1064 if (offset &&
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 return type;
1067 }
1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1070 return type;
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1073 /*
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1076 * nodesize.
1077 */
1078 if (offset &&
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 return type;
1081 }
1082 } else {
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 return type;
1085 }
1086 }
1087
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 eb->start, type);
1091 WARN_ON(1);
1092
1093 return BTRFS_REF_TYPE_INVALID;
1094 }
1095
1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1100 __le64 lenum;
1101
1102 lenum = cpu_to_le64(root_objectid);
1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 lenum = cpu_to_le64(owner);
1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 lenum = cpu_to_le64(offset);
1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1108
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1110 }
1111
1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1114 {
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1118 }
1119
1120 static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1123 {
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 return 0;
1128 return 1;
1129 }
1130
1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1134 u64 root_objectid,
1135 u64 owner, u64 offset)
1136 {
1137 struct btrfs_root *root = trans->fs_info->extent_root;
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
1140 struct extent_buffer *leaf;
1141 u32 nritems;
1142 int ret;
1143 int recow;
1144 int err = -ENOENT;
1145
1146 key.objectid = bytenr;
1147 if (parent) {
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1150 } else {
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1153 owner, offset);
1154 }
1155 again:
1156 recow = 0;
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 if (ret < 0) {
1159 err = ret;
1160 goto fail;
1161 }
1162
1163 if (parent) {
1164 if (!ret)
1165 return 0;
1166 goto fail;
1167 }
1168
1169 leaf = path->nodes[0];
1170 nritems = btrfs_header_nritems(leaf);
1171 while (1) {
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret < 0)
1175 err = ret;
1176 if (ret)
1177 goto fail;
1178
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1181 recow = 1;
1182 }
1183
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 goto fail;
1188
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1191
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1193 owner, offset)) {
1194 if (recow) {
1195 btrfs_release_path(path);
1196 goto again;
1197 }
1198 err = 0;
1199 break;
1200 }
1201 path->slots[0]++;
1202 }
1203 fail:
1204 return err;
1205 }
1206
1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
1212 {
1213 struct btrfs_root *root = trans->fs_info->extent_root;
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
1216 u32 size;
1217 u32 num_refs;
1218 int ret;
1219
1220 key.objectid = bytenr;
1221 if (parent) {
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1225 } else {
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1228 owner, offset);
1229 size = sizeof(struct btrfs_extent_data_ref);
1230 }
1231
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1234 goto fail;
1235
1236 leaf = path->nodes[0];
1237 if (parent) {
1238 struct btrfs_shared_data_ref *ref;
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_shared_data_ref);
1241 if (ret == 0) {
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 } else {
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1247 }
1248 } else {
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1254 owner, offset))
1255 break;
1256 btrfs_release_path(path);
1257 key.offset++;
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 size);
1260 if (ret && ret != -EEXIST)
1261 goto fail;
1262
1263 leaf = path->nodes[0];
1264 }
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1267 if (ret == 0) {
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1269 root_objectid);
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 } else {
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1277 }
1278 }
1279 btrfs_mark_buffer_dirty(leaf);
1280 ret = 0;
1281 fail:
1282 btrfs_release_path(path);
1283 return ret;
1284 }
1285
1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 struct btrfs_path *path,
1288 int refs_to_drop, int *last_ref)
1289 {
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
1293 struct extent_buffer *leaf;
1294 u32 num_refs = 0;
1295 int ret = 0;
1296
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1311 return -EINVAL;
1312 } else {
1313 BUG();
1314 }
1315
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
1318
1319 if (num_refs == 0) {
1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1321 *last_ref = 1;
1322 } else {
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 btrfs_mark_buffer_dirty(leaf);
1328 }
1329 return ret;
1330 }
1331
1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 struct btrfs_extent_inline_ref *iref)
1334 {
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1339 u32 num_refs = 0;
1340 int type;
1341
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1346 if (iref) {
1347 /*
1348 * If type is invalid, we should have bailed out earlier than
1349 * this call.
1350 */
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 } else {
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 }
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1368 } else {
1369 WARN_ON(1);
1370 }
1371 return num_refs;
1372 }
1373
1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1377 u64 root_objectid)
1378 {
1379 struct btrfs_root *root = trans->fs_info->extent_root;
1380 struct btrfs_key key;
1381 int ret;
1382
1383 key.objectid = bytenr;
1384 if (parent) {
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1387 } else {
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1390 }
1391
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
1395 return ret;
1396 }
1397
1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1401 u64 root_objectid)
1402 {
1403 struct btrfs_key key;
1404 int ret;
1405
1406 key.objectid = bytenr;
1407 if (parent) {
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1410 } else {
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1413 }
1414
1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1416 path, &key, 0);
1417 btrfs_release_path(path);
1418 return ret;
1419 }
1420
1421 static inline int extent_ref_type(u64 parent, u64 owner)
1422 {
1423 int type;
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 else
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1429 } else {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1432 else
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1434 }
1435 return type;
1436 }
1437
1438 static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
1440
1441 {
1442 for (; level < BTRFS_MAX_LEVEL; level++) {
1443 if (!path->nodes[level])
1444 break;
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1447 continue;
1448 if (level == 0)
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 else
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 return 0;
1455 }
1456 return 1;
1457 }
1458
1459 /*
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1462 *
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1465 *
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1468 *
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1471 */
1472 static noinline_for_stack
1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1479 {
1480 struct btrfs_fs_info *fs_info = trans->fs_info;
1481 struct btrfs_root *root = fs_info->extent_root;
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1496 int needed;
1497
1498 key.objectid = bytenr;
1499 key.type = BTRFS_EXTENT_ITEM_KEY;
1500 key.offset = num_bytes;
1501
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
1505 path->keep_locks = 1;
1506 } else
1507 extra_size = -1;
1508
1509 /*
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518 again:
1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 if (ret < 0) {
1521 err = ret;
1522 goto out;
1523 }
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
1541 key.objectid = bytenr;
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1545 goto again;
1546 }
1547 }
1548
1549 if (ret && !insert) {
1550 err = -ENOENT;
1551 goto out;
1552 } else if (WARN_ON(ret)) {
1553 err = -EIO;
1554 goto out;
1555 }
1556
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 if (unlikely(item_size < sizeof(*ei))) {
1560 err = -EINVAL;
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1563 goto out;
1564 }
1565
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1568
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1571
1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 ptr += sizeof(struct btrfs_tree_block_info);
1574 BUG_ON(ptr > end);
1575 }
1576
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1579 else
1580 needed = BTRFS_REF_TYPE_BLOCK;
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
1591 err = -EUCLEAN;
1592 goto out;
1593 }
1594
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654 out:
1655 if (insert) {
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660 }
1661
1662 /*
1663 * helper to add new inline back ref
1664 */
1665 static noinline_for_stack
1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
1672 {
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
1689 btrfs_extend_item(fs_info, path, size);
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
1724 }
1725
1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1731 {
1732 int ret;
1733
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1736 owner, offset, 0);
1737 if (ret != -ENOENT)
1738 return ret;
1739
1740 btrfs_release_path(path);
1741 *ref_ret = NULL;
1742
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 root_objectid);
1746 } else {
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
1749 }
1750 return ret;
1751 }
1752
1753 /*
1754 * helper to update/remove inline back ref
1755 */
1756 static noinline_for_stack
1757 void update_inline_extent_backref(struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
1762 {
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
1773 u64 refs;
1774
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
1783 /*
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1786 */
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 *last_ref = 1;
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
1819 btrfs_truncate_item(fs_info, path, item_size, 1);
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
1822 }
1823
1824 static noinline_for_stack
1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1837 owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(path, iref, refs_to_add,
1841 extent_op, NULL);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855 {
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 root_objectid);
1861 } else {
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1864 refs_to_add);
1865 }
1866 return ret;
1867 }
1868
1869 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data, int *last_ref)
1873 {
1874 int ret = 0;
1875
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 last_ref);
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1882 last_ref);
1883 } else {
1884 *last_ref = 1;
1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1886 }
1887 return ret;
1888 }
1889
1890 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
1893 {
1894 int j, ret = 0;
1895 u64 bytes_left, end;
1896 u64 aligned_start = ALIGN(start, 1 << 9);
1897
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1902 }
1903
1904 *discarded_bytes = 0;
1905
1906 if (!len)
1907 return 0;
1908
1909 end = start + len;
1910 bytes_left = len;
1911
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1917
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 continue;
1922
1923 /*
1924 * Superblock spans beginning of range. Adjust start and
1925 * try again.
1926 */
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1929 if (start > end) {
1930 bytes_left = 0;
1931 break;
1932 }
1933 bytes_left = end - start;
1934 continue;
1935 }
1936
1937 if (size) {
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 GFP_NOFS, 0);
1940 if (!ret)
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1943 return ret;
1944 }
1945
1946 start = sb_end;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 }
1953
1954 if (bytes_left) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1956 GFP_NOFS, 0);
1957 if (!ret)
1958 *discarded_bytes += bytes_left;
1959 }
1960 return ret;
1961 }
1962
1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 u64 num_bytes, u64 *actual_bytes)
1965 {
1966 int ret;
1967 u64 discarded_bytes = 0;
1968 struct btrfs_bio *bbio = NULL;
1969
1970
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1974 */
1975 btrfs_bio_counter_inc_blocked(fs_info);
1976 /* Tell the block device(s) that the sectors can be discarded */
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 &bbio, 0);
1979 /* Error condition is -ENOMEM */
1980 if (!ret) {
1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
1982 int i;
1983
1984
1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1986 u64 bytes;
1987 struct request_queue *req_q;
1988
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 continue;
1992 }
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
1995 continue;
1996
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
1998 stripe->physical,
1999 stripe->length,
2000 &bytes);
2001 if (!ret)
2002 discarded_bytes += bytes;
2003 else if (ret != -EOPNOTSUPP)
2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2005
2006 /*
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2010 */
2011 ret = 0;
2012 }
2013 btrfs_put_bbio(bbio);
2014 }
2015 btrfs_bio_counter_dec(fs_info);
2016
2017 if (actual_bytes)
2018 *actual_bytes = discarded_bytes;
2019
2020
2021 if (ret == -EOPNOTSUPP)
2022 ret = 0;
2023 return ret;
2024 }
2025
2026 /* Can return -ENOMEM */
2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 u64 bytenr, u64 num_bytes, u64 parent,
2030 u64 root_objectid, u64 owner, u64 offset)
2031 {
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 int old_ref_mod, new_ref_mod;
2034 int ret;
2035
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2041
2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2044 num_bytes, parent,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
2047 &old_ref_mod, &new_ref_mod);
2048 } else {
2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2050 num_bytes, parent,
2051 root_objectid, owner, offset,
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
2054 }
2055
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 }
2061
2062 return ret;
2063 }
2064
2065 /*
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2067 *
2068 * @trans: Handle of transaction
2069 *
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2072 *
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079 * be 0
2080 *
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2084 *
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2088 *
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2092 *
2093 * @refs_to_add Number of references to add
2094 *
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2097 *
2098 */
2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_delayed_ref_node *node,
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2104 {
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2111 u64 refs;
2112 int ret;
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
2118 path->reada = READA_FORWARD;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
2125 goto out;
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
2132 leaf = path->nodes[0];
2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
2139
2140 btrfs_mark_buffer_dirty(leaf);
2141 btrfs_release_path(path);
2142
2143 path->reada = READA_FORWARD;
2144 path->leave_spinning = 1;
2145 /* now insert the actual backref */
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
2148 if (ret)
2149 btrfs_abort_transaction(trans, ret);
2150 out:
2151 btrfs_free_path(path);
2152 return ret;
2153 }
2154
2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
2159 {
2160 int ret = 0;
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2163 u64 parent = 0;
2164 u64 ref_root = 0;
2165 u64 flags = 0;
2166
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2170
2171 ref = btrfs_delayed_node_to_data_ref(node);
2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2173
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
2176 ref_root = ref->root;
2177
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2179 if (extent_op)
2180 flags |= extent_op->flags_to_set;
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2183 ref->offset, &ins,
2184 node->ref_mod);
2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 ret = __btrfs_free_extent(trans, node, parent,
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
2193 extent_op);
2194 } else {
2195 BUG();
2196 }
2197 return ret;
2198 }
2199
2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2203 {
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2208 }
2209
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 }
2216 }
2217
2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 struct btrfs_delayed_ref_head *head,
2220 struct btrfs_delayed_extent_op *extent_op)
2221 {
2222 struct btrfs_fs_info *fs_info = trans->fs_info;
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2227 u32 item_size;
2228 int ret;
2229 int err = 0;
2230 int metadata = !extent_op->is_data;
2231
2232 if (trans->aborted)
2233 return 0;
2234
2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2236 metadata = 0;
2237
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
2242 key.objectid = head->bytenr;
2243
2244 if (metadata) {
2245 key.type = BTRFS_METADATA_ITEM_KEY;
2246 key.offset = extent_op->level;
2247 } else {
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
2249 key.offset = head->num_bytes;
2250 }
2251
2252 again:
2253 path->reada = READA_FORWARD;
2254 path->leave_spinning = 1;
2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2256 if (ret < 0) {
2257 err = ret;
2258 goto out;
2259 }
2260 if (ret > 0) {
2261 if (metadata) {
2262 if (path->slots[0] > 0) {
2263 path->slots[0]--;
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 path->slots[0]);
2266 if (key.objectid == head->bytenr &&
2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 key.offset == head->num_bytes)
2269 ret = 0;
2270 }
2271 if (ret > 0) {
2272 btrfs_release_path(path);
2273 metadata = 0;
2274
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2278 goto again;
2279 }
2280 } else {
2281 err = -EIO;
2282 goto out;
2283 }
2284 }
2285
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2288
2289 if (unlikely(item_size < sizeof(*ei))) {
2290 err = -EINVAL;
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2293 goto out;
2294 }
2295
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
2298
2299 btrfs_mark_buffer_dirty(leaf);
2300 out:
2301 btrfs_free_path(path);
2302 return err;
2303 }
2304
2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
2309 {
2310 int ret = 0;
2311 struct btrfs_delayed_tree_ref *ref;
2312 u64 parent = 0;
2313 u64 ref_root = 0;
2314
2315 ref = btrfs_delayed_node_to_tree_ref(node);
2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2317
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
2320 ref_root = ref->root;
2321
2322 if (node->ref_mod != 1) {
2323 btrfs_err(trans->fs_info,
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2326 parent);
2327 return -EIO;
2328 }
2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 BUG_ON(!extent_op || !extent_op->update_flags);
2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 ref->level, 0, 1, extent_op);
2338 } else {
2339 BUG();
2340 }
2341 return ret;
2342 }
2343
2344 /* helper function to actually process a single delayed ref entry */
2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
2349 {
2350 int ret = 0;
2351
2352 if (trans->aborted) {
2353 if (insert_reserved)
2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 node->num_bytes, 1);
2356 return 0;
2357 }
2358
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 ret = run_delayed_tree_ref(trans, node, extent_op,
2362 insert_reserved);
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 ret = run_delayed_data_ref(trans, node, extent_op,
2366 insert_reserved);
2367 else
2368 BUG();
2369 return ret;
2370 }
2371
2372 static inline struct btrfs_delayed_ref_node *
2373 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2374 {
2375 struct btrfs_delayed_ref_node *ref;
2376
2377 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2378 return NULL;
2379
2380 /*
2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 * This is to prevent a ref count from going down to zero, which deletes
2383 * the extent item from the extent tree, when there still are references
2384 * to add, which would fail because they would not find the extent item.
2385 */
2386 if (!list_empty(&head->ref_add_list))
2387 return list_first_entry(&head->ref_add_list,
2388 struct btrfs_delayed_ref_node, add_list);
2389
2390 ref = rb_entry(rb_first_cached(&head->ref_tree),
2391 struct btrfs_delayed_ref_node, ref_node);
2392 ASSERT(list_empty(&ref->add_list));
2393 return ref;
2394 }
2395
2396 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 struct btrfs_delayed_ref_head *head)
2398 {
2399 spin_lock(&delayed_refs->lock);
2400 head->processing = 0;
2401 delayed_refs->num_heads_ready++;
2402 spin_unlock(&delayed_refs->lock);
2403 btrfs_delayed_ref_unlock(head);
2404 }
2405
2406 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2407 struct btrfs_delayed_ref_head *head)
2408 {
2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2410 int ret;
2411
2412 if (!extent_op)
2413 return 0;
2414 head->extent_op = NULL;
2415 if (head->must_insert_reserved) {
2416 btrfs_free_delayed_extent_op(extent_op);
2417 return 0;
2418 }
2419 spin_unlock(&head->lock);
2420 ret = run_delayed_extent_op(trans, head, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2422 return ret ? ret : 1;
2423 }
2424
2425 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2426 struct btrfs_delayed_ref_head *head)
2427 {
2428
2429 struct btrfs_fs_info *fs_info = trans->fs_info;
2430 struct btrfs_delayed_ref_root *delayed_refs;
2431 int ret;
2432
2433 delayed_refs = &trans->transaction->delayed_refs;
2434
2435 ret = cleanup_extent_op(trans, head);
2436 if (ret < 0) {
2437 unselect_delayed_ref_head(delayed_refs, head);
2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2439 return ret;
2440 } else if (ret) {
2441 return ret;
2442 }
2443
2444 /*
2445 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 * and then re-check to make sure nobody got added.
2447 */
2448 spin_unlock(&head->lock);
2449 spin_lock(&delayed_refs->lock);
2450 spin_lock(&head->lock);
2451 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2452 spin_unlock(&head->lock);
2453 spin_unlock(&delayed_refs->lock);
2454 return 1;
2455 }
2456 delayed_refs->num_heads--;
2457 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
2458 RB_CLEAR_NODE(&head->href_node);
2459 spin_unlock(&head->lock);
2460 spin_unlock(&delayed_refs->lock);
2461 atomic_dec(&delayed_refs->num_entries);
2462
2463 trace_run_delayed_ref_head(fs_info, head, 0);
2464
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
2468
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480
2481 if (head->is_data) {
2482 spin_lock(&delayed_refs->lock);
2483 delayed_refs->pending_csums -= head->num_bytes;
2484 spin_unlock(&delayed_refs->lock);
2485 }
2486 }
2487
2488 if (head->must_insert_reserved) {
2489 btrfs_pin_extent(fs_info, head->bytenr,
2490 head->num_bytes, 1);
2491 if (head->is_data) {
2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2493 head->num_bytes);
2494 }
2495 }
2496
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
2500 btrfs_delayed_ref_unlock(head);
2501 btrfs_put_delayed_ref_head(head);
2502 return 0;
2503 }
2504
2505 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2506 struct btrfs_trans_handle *trans)
2507 {
2508 struct btrfs_delayed_ref_root *delayed_refs =
2509 &trans->transaction->delayed_refs;
2510 struct btrfs_delayed_ref_head *head = NULL;
2511 int ret;
2512
2513 spin_lock(&delayed_refs->lock);
2514 head = btrfs_select_ref_head(delayed_refs);
2515 if (!head) {
2516 spin_unlock(&delayed_refs->lock);
2517 return head;
2518 }
2519
2520 /*
2521 * Grab the lock that says we are going to process all the refs for
2522 * this head
2523 */
2524 ret = btrfs_delayed_ref_lock(delayed_refs, head);
2525 spin_unlock(&delayed_refs->lock);
2526
2527 /*
2528 * We may have dropped the spin lock to get the head mutex lock, and
2529 * that might have given someone else time to free the head. If that's
2530 * true, it has been removed from our list and we can move on.
2531 */
2532 if (ret == -EAGAIN)
2533 head = ERR_PTR(-EAGAIN);
2534
2535 return head;
2536 }
2537
2538 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2539 struct btrfs_delayed_ref_head *locked_ref,
2540 unsigned long *run_refs)
2541 {
2542 struct btrfs_fs_info *fs_info = trans->fs_info;
2543 struct btrfs_delayed_ref_root *delayed_refs;
2544 struct btrfs_delayed_extent_op *extent_op;
2545 struct btrfs_delayed_ref_node *ref;
2546 int must_insert_reserved = 0;
2547 int ret;
2548
2549 delayed_refs = &trans->transaction->delayed_refs;
2550
2551 lockdep_assert_held(&locked_ref->mutex);
2552 lockdep_assert_held(&locked_ref->lock);
2553
2554 while ((ref = select_delayed_ref(locked_ref))) {
2555 if (ref->seq &&
2556 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2557 spin_unlock(&locked_ref->lock);
2558 unselect_delayed_ref_head(delayed_refs, locked_ref);
2559 return -EAGAIN;
2560 }
2561
2562 (*run_refs)++;
2563 ref->in_tree = 0;
2564 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2565 RB_CLEAR_NODE(&ref->ref_node);
2566 if (!list_empty(&ref->add_list))
2567 list_del(&ref->add_list);
2568 /*
2569 * When we play the delayed ref, also correct the ref_mod on
2570 * head
2571 */
2572 switch (ref->action) {
2573 case BTRFS_ADD_DELAYED_REF:
2574 case BTRFS_ADD_DELAYED_EXTENT:
2575 locked_ref->ref_mod -= ref->ref_mod;
2576 break;
2577 case BTRFS_DROP_DELAYED_REF:
2578 locked_ref->ref_mod += ref->ref_mod;
2579 break;
2580 default:
2581 WARN_ON(1);
2582 }
2583 atomic_dec(&delayed_refs->num_entries);
2584
2585 /*
2586 * Record the must_insert_reserved flag before we drop the
2587 * spin lock.
2588 */
2589 must_insert_reserved = locked_ref->must_insert_reserved;
2590 locked_ref->must_insert_reserved = 0;
2591
2592 extent_op = locked_ref->extent_op;
2593 locked_ref->extent_op = NULL;
2594 spin_unlock(&locked_ref->lock);
2595
2596 ret = run_one_delayed_ref(trans, ref, extent_op,
2597 must_insert_reserved);
2598
2599 btrfs_free_delayed_extent_op(extent_op);
2600 if (ret) {
2601 unselect_delayed_ref_head(delayed_refs, locked_ref);
2602 btrfs_put_delayed_ref(ref);
2603 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2604 ret);
2605 return ret;
2606 }
2607
2608 btrfs_put_delayed_ref(ref);
2609 cond_resched();
2610
2611 spin_lock(&locked_ref->lock);
2612 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2613 }
2614
2615 return 0;
2616 }
2617
2618 /*
2619 * Returns 0 on success or if called with an already aborted transaction.
2620 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2621 */
2622 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2623 unsigned long nr)
2624 {
2625 struct btrfs_fs_info *fs_info = trans->fs_info;
2626 struct btrfs_delayed_ref_root *delayed_refs;
2627 struct btrfs_delayed_ref_head *locked_ref = NULL;
2628 ktime_t start = ktime_get();
2629 int ret;
2630 unsigned long count = 0;
2631 unsigned long actual_count = 0;
2632
2633 delayed_refs = &trans->transaction->delayed_refs;
2634 do {
2635 if (!locked_ref) {
2636 locked_ref = btrfs_obtain_ref_head(trans);
2637 if (IS_ERR_OR_NULL(locked_ref)) {
2638 if (PTR_ERR(locked_ref) == -EAGAIN) {
2639 continue;
2640 } else {
2641 break;
2642 }
2643 }
2644 count++;
2645 }
2646 /*
2647 * We need to try and merge add/drops of the same ref since we
2648 * can run into issues with relocate dropping the implicit ref
2649 * and then it being added back again before the drop can
2650 * finish. If we merged anything we need to re-loop so we can
2651 * get a good ref.
2652 * Or we can get node references of the same type that weren't
2653 * merged when created due to bumps in the tree mod seq, and
2654 * we need to merge them to prevent adding an inline extent
2655 * backref before dropping it (triggering a BUG_ON at
2656 * insert_inline_extent_backref()).
2657 */
2658 spin_lock(&locked_ref->lock);
2659 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2660
2661 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2662 &actual_count);
2663 if (ret < 0 && ret != -EAGAIN) {
2664 /*
2665 * Error, btrfs_run_delayed_refs_for_head already
2666 * unlocked everything so just bail out
2667 */
2668 return ret;
2669 } else if (!ret) {
2670 /*
2671 * Success, perform the usual cleanup of a processed
2672 * head
2673 */
2674 ret = cleanup_ref_head(trans, locked_ref);
2675 if (ret > 0 ) {
2676 /* We dropped our lock, we need to loop. */
2677 ret = 0;
2678 continue;
2679 } else if (ret) {
2680 return ret;
2681 }
2682 }
2683
2684 /*
2685 * Either success case or btrfs_run_delayed_refs_for_head
2686 * returned -EAGAIN, meaning we need to select another head
2687 */
2688
2689 locked_ref = NULL;
2690 cond_resched();
2691 } while ((nr != -1 && count < nr) || locked_ref);
2692
2693 /*
2694 * We don't want to include ref heads since we can have empty ref heads
2695 * and those will drastically skew our runtime down since we just do
2696 * accounting, no actual extent tree updates.
2697 */
2698 if (actual_count > 0) {
2699 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2700 u64 avg;
2701
2702 /*
2703 * We weigh the current average higher than our current runtime
2704 * to avoid large swings in the average.
2705 */
2706 spin_lock(&delayed_refs->lock);
2707 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2708 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2709 spin_unlock(&delayed_refs->lock);
2710 }
2711 return 0;
2712 }
2713
2714 #ifdef SCRAMBLE_DELAYED_REFS
2715 /*
2716 * Normally delayed refs get processed in ascending bytenr order. This
2717 * correlates in most cases to the order added. To expose dependencies on this
2718 * order, we start to process the tree in the middle instead of the beginning
2719 */
2720 static u64 find_middle(struct rb_root *root)
2721 {
2722 struct rb_node *n = root->rb_node;
2723 struct btrfs_delayed_ref_node *entry;
2724 int alt = 1;
2725 u64 middle;
2726 u64 first = 0, last = 0;
2727
2728 n = rb_first(root);
2729 if (n) {
2730 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2731 first = entry->bytenr;
2732 }
2733 n = rb_last(root);
2734 if (n) {
2735 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2736 last = entry->bytenr;
2737 }
2738 n = root->rb_node;
2739
2740 while (n) {
2741 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2742 WARN_ON(!entry->in_tree);
2743
2744 middle = entry->bytenr;
2745
2746 if (alt)
2747 n = n->rb_left;
2748 else
2749 n = n->rb_right;
2750
2751 alt = 1 - alt;
2752 }
2753 return middle;
2754 }
2755 #endif
2756
2757 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2758 {
2759 u64 num_bytes;
2760
2761 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2762 sizeof(struct btrfs_extent_inline_ref));
2763 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2764 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2765
2766 /*
2767 * We don't ever fill up leaves all the way so multiply by 2 just to be
2768 * closer to what we're really going to want to use.
2769 */
2770 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2771 }
2772
2773 /*
2774 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2775 * would require to store the csums for that many bytes.
2776 */
2777 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2778 {
2779 u64 csum_size;
2780 u64 num_csums_per_leaf;
2781 u64 num_csums;
2782
2783 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2784 num_csums_per_leaf = div64_u64(csum_size,
2785 (u64)btrfs_super_csum_size(fs_info->super_copy));
2786 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2787 num_csums += num_csums_per_leaf - 1;
2788 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2789 return num_csums;
2790 }
2791
2792 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans)
2793 {
2794 struct btrfs_fs_info *fs_info = trans->fs_info;
2795 struct btrfs_block_rsv *global_rsv;
2796 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2797 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2798 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2799 u64 num_bytes, num_dirty_bgs_bytes;
2800 int ret = 0;
2801
2802 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2803 num_heads = heads_to_leaves(fs_info, num_heads);
2804 if (num_heads > 1)
2805 num_bytes += (num_heads - 1) * fs_info->nodesize;
2806 num_bytes <<= 1;
2807 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2808 fs_info->nodesize;
2809 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2810 num_dirty_bgs);
2811 global_rsv = &fs_info->global_block_rsv;
2812
2813 /*
2814 * If we can't allocate any more chunks lets make sure we have _lots_ of
2815 * wiggle room since running delayed refs can create more delayed refs.
2816 */
2817 if (global_rsv->space_info->full) {
2818 num_dirty_bgs_bytes <<= 1;
2819 num_bytes <<= 1;
2820 }
2821
2822 spin_lock(&global_rsv->lock);
2823 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2824 ret = 1;
2825 spin_unlock(&global_rsv->lock);
2826 return ret;
2827 }
2828
2829 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2830 {
2831 u64 num_entries =
2832 atomic_read(&trans->transaction->delayed_refs.num_entries);
2833 u64 avg_runtime;
2834 u64 val;
2835
2836 smp_mb();
2837 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2838 val = num_entries * avg_runtime;
2839 if (val >= NSEC_PER_SEC)
2840 return 1;
2841 if (val >= NSEC_PER_SEC / 2)
2842 return 2;
2843
2844 return btrfs_check_space_for_delayed_refs(trans);
2845 }
2846
2847 struct async_delayed_refs {
2848 struct btrfs_root *root;
2849 u64 transid;
2850 int count;
2851 int error;
2852 int sync;
2853 struct completion wait;
2854 struct btrfs_work work;
2855 };
2856
2857 static inline struct async_delayed_refs *
2858 to_async_delayed_refs(struct btrfs_work *work)
2859 {
2860 return container_of(work, struct async_delayed_refs, work);
2861 }
2862
2863 static void delayed_ref_async_start(struct btrfs_work *work)
2864 {
2865 struct async_delayed_refs *async = to_async_delayed_refs(work);
2866 struct btrfs_trans_handle *trans;
2867 struct btrfs_fs_info *fs_info = async->root->fs_info;
2868 int ret;
2869
2870 /* if the commit is already started, we don't need to wait here */
2871 if (btrfs_transaction_blocked(fs_info))
2872 goto done;
2873
2874 trans = btrfs_join_transaction(async->root);
2875 if (IS_ERR(trans)) {
2876 async->error = PTR_ERR(trans);
2877 goto done;
2878 }
2879
2880 /*
2881 * trans->sync means that when we call end_transaction, we won't
2882 * wait on delayed refs
2883 */
2884 trans->sync = true;
2885
2886 /* Don't bother flushing if we got into a different transaction */
2887 if (trans->transid > async->transid)
2888 goto end;
2889
2890 ret = btrfs_run_delayed_refs(trans, async->count);
2891 if (ret)
2892 async->error = ret;
2893 end:
2894 ret = btrfs_end_transaction(trans);
2895 if (ret && !async->error)
2896 async->error = ret;
2897 done:
2898 if (async->sync)
2899 complete(&async->wait);
2900 else
2901 kfree(async);
2902 }
2903
2904 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2905 unsigned long count, u64 transid, int wait)
2906 {
2907 struct async_delayed_refs *async;
2908 int ret;
2909
2910 async = kmalloc(sizeof(*async), GFP_NOFS);
2911 if (!async)
2912 return -ENOMEM;
2913
2914 async->root = fs_info->tree_root;
2915 async->count = count;
2916 async->error = 0;
2917 async->transid = transid;
2918 if (wait)
2919 async->sync = 1;
2920 else
2921 async->sync = 0;
2922 init_completion(&async->wait);
2923
2924 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2925 delayed_ref_async_start, NULL, NULL);
2926
2927 btrfs_queue_work(fs_info->extent_workers, &async->work);
2928
2929 if (wait) {
2930 wait_for_completion(&async->wait);
2931 ret = async->error;
2932 kfree(async);
2933 return ret;
2934 }
2935 return 0;
2936 }
2937
2938 /*
2939 * this starts processing the delayed reference count updates and
2940 * extent insertions we have queued up so far. count can be
2941 * 0, which means to process everything in the tree at the start
2942 * of the run (but not newly added entries), or it can be some target
2943 * number you'd like to process.
2944 *
2945 * Returns 0 on success or if called with an aborted transaction
2946 * Returns <0 on error and aborts the transaction
2947 */
2948 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2949 unsigned long count)
2950 {
2951 struct btrfs_fs_info *fs_info = trans->fs_info;
2952 struct rb_node *node;
2953 struct btrfs_delayed_ref_root *delayed_refs;
2954 struct btrfs_delayed_ref_head *head;
2955 int ret;
2956 int run_all = count == (unsigned long)-1;
2957 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2958
2959 /* We'll clean this up in btrfs_cleanup_transaction */
2960 if (trans->aborted)
2961 return 0;
2962
2963 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2964 return 0;
2965
2966 delayed_refs = &trans->transaction->delayed_refs;
2967 if (count == 0)
2968 count = atomic_read(&delayed_refs->num_entries) * 2;
2969
2970 again:
2971 #ifdef SCRAMBLE_DELAYED_REFS
2972 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2973 #endif
2974 trans->can_flush_pending_bgs = false;
2975 ret = __btrfs_run_delayed_refs(trans, count);
2976 if (ret < 0) {
2977 btrfs_abort_transaction(trans, ret);
2978 return ret;
2979 }
2980
2981 if (run_all) {
2982 if (!list_empty(&trans->new_bgs))
2983 btrfs_create_pending_block_groups(trans);
2984
2985 spin_lock(&delayed_refs->lock);
2986 node = rb_first_cached(&delayed_refs->href_root);
2987 if (!node) {
2988 spin_unlock(&delayed_refs->lock);
2989 goto out;
2990 }
2991 head = rb_entry(node, struct btrfs_delayed_ref_head,
2992 href_node);
2993 refcount_inc(&head->refs);
2994 spin_unlock(&delayed_refs->lock);
2995
2996 /* Mutex was contended, block until it's released and retry. */
2997 mutex_lock(&head->mutex);
2998 mutex_unlock(&head->mutex);
2999
3000 btrfs_put_delayed_ref_head(head);
3001 cond_resched();
3002 goto again;
3003 }
3004 out:
3005 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3006 return 0;
3007 }
3008
3009 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3010 struct btrfs_fs_info *fs_info,
3011 u64 bytenr, u64 num_bytes, u64 flags,
3012 int level, int is_data)
3013 {
3014 struct btrfs_delayed_extent_op *extent_op;
3015 int ret;
3016
3017 extent_op = btrfs_alloc_delayed_extent_op();
3018 if (!extent_op)
3019 return -ENOMEM;
3020
3021 extent_op->flags_to_set = flags;
3022 extent_op->update_flags = true;
3023 extent_op->update_key = false;
3024 extent_op->is_data = is_data ? true : false;
3025 extent_op->level = level;
3026
3027 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3028 num_bytes, extent_op);
3029 if (ret)
3030 btrfs_free_delayed_extent_op(extent_op);
3031 return ret;
3032 }
3033
3034 static noinline int check_delayed_ref(struct btrfs_root *root,
3035 struct btrfs_path *path,
3036 u64 objectid, u64 offset, u64 bytenr)
3037 {
3038 struct btrfs_delayed_ref_head *head;
3039 struct btrfs_delayed_ref_node *ref;
3040 struct btrfs_delayed_data_ref *data_ref;
3041 struct btrfs_delayed_ref_root *delayed_refs;
3042 struct btrfs_transaction *cur_trans;
3043 struct rb_node *node;
3044 int ret = 0;
3045
3046 spin_lock(&root->fs_info->trans_lock);
3047 cur_trans = root->fs_info->running_transaction;
3048 if (cur_trans)
3049 refcount_inc(&cur_trans->use_count);
3050 spin_unlock(&root->fs_info->trans_lock);
3051 if (!cur_trans)
3052 return 0;
3053
3054 delayed_refs = &cur_trans->delayed_refs;
3055 spin_lock(&delayed_refs->lock);
3056 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3057 if (!head) {
3058 spin_unlock(&delayed_refs->lock);
3059 btrfs_put_transaction(cur_trans);
3060 return 0;
3061 }
3062
3063 if (!mutex_trylock(&head->mutex)) {
3064 refcount_inc(&head->refs);
3065 spin_unlock(&delayed_refs->lock);
3066
3067 btrfs_release_path(path);
3068
3069 /*
3070 * Mutex was contended, block until it's released and let
3071 * caller try again
3072 */
3073 mutex_lock(&head->mutex);
3074 mutex_unlock(&head->mutex);
3075 btrfs_put_delayed_ref_head(head);
3076 btrfs_put_transaction(cur_trans);
3077 return -EAGAIN;
3078 }
3079 spin_unlock(&delayed_refs->lock);
3080
3081 spin_lock(&head->lock);
3082 /*
3083 * XXX: We should replace this with a proper search function in the
3084 * future.
3085 */
3086 for (node = rb_first_cached(&head->ref_tree); node;
3087 node = rb_next(node)) {
3088 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3089 /* If it's a shared ref we know a cross reference exists */
3090 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3091 ret = 1;
3092 break;
3093 }
3094
3095 data_ref = btrfs_delayed_node_to_data_ref(ref);
3096
3097 /*
3098 * If our ref doesn't match the one we're currently looking at
3099 * then we have a cross reference.
3100 */
3101 if (data_ref->root != root->root_key.objectid ||
3102 data_ref->objectid != objectid ||
3103 data_ref->offset != offset) {
3104 ret = 1;
3105 break;
3106 }
3107 }
3108 spin_unlock(&head->lock);
3109 mutex_unlock(&head->mutex);
3110 btrfs_put_transaction(cur_trans);
3111 return ret;
3112 }
3113
3114 static noinline int check_committed_ref(struct btrfs_root *root,
3115 struct btrfs_path *path,
3116 u64 objectid, u64 offset, u64 bytenr)
3117 {
3118 struct btrfs_fs_info *fs_info = root->fs_info;
3119 struct btrfs_root *extent_root = fs_info->extent_root;
3120 struct extent_buffer *leaf;
3121 struct btrfs_extent_data_ref *ref;
3122 struct btrfs_extent_inline_ref *iref;
3123 struct btrfs_extent_item *ei;
3124 struct btrfs_key key;
3125 u32 item_size;
3126 int type;
3127 int ret;
3128
3129 key.objectid = bytenr;
3130 key.offset = (u64)-1;
3131 key.type = BTRFS_EXTENT_ITEM_KEY;
3132
3133 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3134 if (ret < 0)
3135 goto out;
3136 BUG_ON(ret == 0); /* Corruption */
3137
3138 ret = -ENOENT;
3139 if (path->slots[0] == 0)
3140 goto out;
3141
3142 path->slots[0]--;
3143 leaf = path->nodes[0];
3144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3145
3146 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3147 goto out;
3148
3149 ret = 1;
3150 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3151 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3152
3153 if (item_size != sizeof(*ei) +
3154 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3155 goto out;
3156
3157 if (btrfs_extent_generation(leaf, ei) <=
3158 btrfs_root_last_snapshot(&root->root_item))
3159 goto out;
3160
3161 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3162
3163 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3164 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3165 goto out;
3166
3167 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3168 if (btrfs_extent_refs(leaf, ei) !=
3169 btrfs_extent_data_ref_count(leaf, ref) ||
3170 btrfs_extent_data_ref_root(leaf, ref) !=
3171 root->root_key.objectid ||
3172 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3173 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3174 goto out;
3175
3176 ret = 0;
3177 out:
3178 return ret;
3179 }
3180
3181 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3182 u64 bytenr)
3183 {
3184 struct btrfs_path *path;
3185 int ret;
3186
3187 path = btrfs_alloc_path();
3188 if (!path)
3189 return -ENOMEM;
3190
3191 do {
3192 ret = check_committed_ref(root, path, objectid,
3193 offset, bytenr);
3194 if (ret && ret != -ENOENT)
3195 goto out;
3196
3197 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3198 } while (ret == -EAGAIN);
3199
3200 out:
3201 btrfs_free_path(path);
3202 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3203 WARN_ON(ret > 0);
3204 return ret;
3205 }
3206
3207 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *root,
3209 struct extent_buffer *buf,
3210 int full_backref, int inc)
3211 {
3212 struct btrfs_fs_info *fs_info = root->fs_info;
3213 u64 bytenr;
3214 u64 num_bytes;
3215 u64 parent;
3216 u64 ref_root;
3217 u32 nritems;
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
3223 int (*process_func)(struct btrfs_trans_handle *,
3224 struct btrfs_root *,
3225 u64, u64, u64, u64, u64, u64);
3226
3227
3228 if (btrfs_is_testing(fs_info))
3229 return 0;
3230
3231 ref_root = btrfs_header_owner(buf);
3232 nritems = btrfs_header_nritems(buf);
3233 level = btrfs_header_level(buf);
3234
3235 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3236 return 0;
3237
3238 if (inc)
3239 process_func = btrfs_inc_extent_ref;
3240 else
3241 process_func = btrfs_free_extent;
3242
3243 if (full_backref)
3244 parent = buf->start;
3245 else
3246 parent = 0;
3247
3248 for (i = 0; i < nritems; i++) {
3249 if (level == 0) {
3250 btrfs_item_key_to_cpu(buf, &key, i);
3251 if (key.type != BTRFS_EXTENT_DATA_KEY)
3252 continue;
3253 fi = btrfs_item_ptr(buf, i,
3254 struct btrfs_file_extent_item);
3255 if (btrfs_file_extent_type(buf, fi) ==
3256 BTRFS_FILE_EXTENT_INLINE)
3257 continue;
3258 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3259 if (bytenr == 0)
3260 continue;
3261
3262 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3263 key.offset -= btrfs_file_extent_offset(buf, fi);
3264 ret = process_func(trans, root, bytenr, num_bytes,
3265 parent, ref_root, key.objectid,
3266 key.offset);
3267 if (ret)
3268 goto fail;
3269 } else {
3270 bytenr = btrfs_node_blockptr(buf, i);
3271 num_bytes = fs_info->nodesize;
3272 ret = process_func(trans, root, bytenr, num_bytes,
3273 parent, ref_root, level - 1, 0);
3274 if (ret)
3275 goto fail;
3276 }
3277 }
3278 return 0;
3279 fail:
3280 return ret;
3281 }
3282
3283 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3284 struct extent_buffer *buf, int full_backref)
3285 {
3286 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3287 }
3288
3289 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3290 struct extent_buffer *buf, int full_backref)
3291 {
3292 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3293 }
3294
3295 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3296 struct btrfs_fs_info *fs_info,
3297 struct btrfs_path *path,
3298 struct btrfs_block_group_cache *cache)
3299 {
3300 int ret;
3301 struct btrfs_root *extent_root = fs_info->extent_root;
3302 unsigned long bi;
3303 struct extent_buffer *leaf;
3304
3305 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3306 if (ret) {
3307 if (ret > 0)
3308 ret = -ENOENT;
3309 goto fail;
3310 }
3311
3312 leaf = path->nodes[0];
3313 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3314 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3315 btrfs_mark_buffer_dirty(leaf);
3316 fail:
3317 btrfs_release_path(path);
3318 return ret;
3319
3320 }
3321
3322 static struct btrfs_block_group_cache *
3323 next_block_group(struct btrfs_fs_info *fs_info,
3324 struct btrfs_block_group_cache *cache)
3325 {
3326 struct rb_node *node;
3327
3328 spin_lock(&fs_info->block_group_cache_lock);
3329
3330 /* If our block group was removed, we need a full search. */
3331 if (RB_EMPTY_NODE(&cache->cache_node)) {
3332 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3333
3334 spin_unlock(&fs_info->block_group_cache_lock);
3335 btrfs_put_block_group(cache);
3336 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3337 }
3338 node = rb_next(&cache->cache_node);
3339 btrfs_put_block_group(cache);
3340 if (node) {
3341 cache = rb_entry(node, struct btrfs_block_group_cache,
3342 cache_node);
3343 btrfs_get_block_group(cache);
3344 } else
3345 cache = NULL;
3346 spin_unlock(&fs_info->block_group_cache_lock);
3347 return cache;
3348 }
3349
3350 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3351 struct btrfs_trans_handle *trans,
3352 struct btrfs_path *path)
3353 {
3354 struct btrfs_fs_info *fs_info = block_group->fs_info;
3355 struct btrfs_root *root = fs_info->tree_root;
3356 struct inode *inode = NULL;
3357 struct extent_changeset *data_reserved = NULL;
3358 u64 alloc_hint = 0;
3359 int dcs = BTRFS_DC_ERROR;
3360 u64 num_pages = 0;
3361 int retries = 0;
3362 int ret = 0;
3363
3364 /*
3365 * If this block group is smaller than 100 megs don't bother caching the
3366 * block group.
3367 */
3368 if (block_group->key.offset < (100 * SZ_1M)) {
3369 spin_lock(&block_group->lock);
3370 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3371 spin_unlock(&block_group->lock);
3372 return 0;
3373 }
3374
3375 if (trans->aborted)
3376 return 0;
3377 again:
3378 inode = lookup_free_space_inode(fs_info, block_group, path);
3379 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3380 ret = PTR_ERR(inode);
3381 btrfs_release_path(path);
3382 goto out;
3383 }
3384
3385 if (IS_ERR(inode)) {
3386 BUG_ON(retries);
3387 retries++;
3388
3389 if (block_group->ro)
3390 goto out_free;
3391
3392 ret = create_free_space_inode(fs_info, trans, block_group,
3393 path);
3394 if (ret)
3395 goto out_free;
3396 goto again;
3397 }
3398
3399 /*
3400 * We want to set the generation to 0, that way if anything goes wrong
3401 * from here on out we know not to trust this cache when we load up next
3402 * time.
3403 */
3404 BTRFS_I(inode)->generation = 0;
3405 ret = btrfs_update_inode(trans, root, inode);
3406 if (ret) {
3407 /*
3408 * So theoretically we could recover from this, simply set the
3409 * super cache generation to 0 so we know to invalidate the
3410 * cache, but then we'd have to keep track of the block groups
3411 * that fail this way so we know we _have_ to reset this cache
3412 * before the next commit or risk reading stale cache. So to
3413 * limit our exposure to horrible edge cases lets just abort the
3414 * transaction, this only happens in really bad situations
3415 * anyway.
3416 */
3417 btrfs_abort_transaction(trans, ret);
3418 goto out_put;
3419 }
3420 WARN_ON(ret);
3421
3422 /* We've already setup this transaction, go ahead and exit */
3423 if (block_group->cache_generation == trans->transid &&
3424 i_size_read(inode)) {
3425 dcs = BTRFS_DC_SETUP;
3426 goto out_put;
3427 }
3428
3429 if (i_size_read(inode) > 0) {
3430 ret = btrfs_check_trunc_cache_free_space(fs_info,
3431 &fs_info->global_block_rsv);
3432 if (ret)
3433 goto out_put;
3434
3435 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3436 if (ret)
3437 goto out_put;
3438 }
3439
3440 spin_lock(&block_group->lock);
3441 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3442 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3443 /*
3444 * don't bother trying to write stuff out _if_
3445 * a) we're not cached,
3446 * b) we're with nospace_cache mount option,
3447 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3448 */
3449 dcs = BTRFS_DC_WRITTEN;
3450 spin_unlock(&block_group->lock);
3451 goto out_put;
3452 }
3453 spin_unlock(&block_group->lock);
3454
3455 /*
3456 * We hit an ENOSPC when setting up the cache in this transaction, just
3457 * skip doing the setup, we've already cleared the cache so we're safe.
3458 */
3459 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3460 ret = -ENOSPC;
3461 goto out_put;
3462 }
3463
3464 /*
3465 * Try to preallocate enough space based on how big the block group is.
3466 * Keep in mind this has to include any pinned space which could end up
3467 * taking up quite a bit since it's not folded into the other space
3468 * cache.
3469 */
3470 num_pages = div_u64(block_group->key.offset, SZ_256M);
3471 if (!num_pages)
3472 num_pages = 1;
3473
3474 num_pages *= 16;
3475 num_pages *= PAGE_SIZE;
3476
3477 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3478 if (ret)
3479 goto out_put;
3480
3481 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3482 num_pages, num_pages,
3483 &alloc_hint);
3484 /*
3485 * Our cache requires contiguous chunks so that we don't modify a bunch
3486 * of metadata or split extents when writing the cache out, which means
3487 * we can enospc if we are heavily fragmented in addition to just normal
3488 * out of space conditions. So if we hit this just skip setting up any
3489 * other block groups for this transaction, maybe we'll unpin enough
3490 * space the next time around.
3491 */
3492 if (!ret)
3493 dcs = BTRFS_DC_SETUP;
3494 else if (ret == -ENOSPC)
3495 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3496
3497 out_put:
3498 iput(inode);
3499 out_free:
3500 btrfs_release_path(path);
3501 out:
3502 spin_lock(&block_group->lock);
3503 if (!ret && dcs == BTRFS_DC_SETUP)
3504 block_group->cache_generation = trans->transid;
3505 block_group->disk_cache_state = dcs;
3506 spin_unlock(&block_group->lock);
3507
3508 extent_changeset_free(data_reserved);
3509 return ret;
3510 }
3511
3512 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3513 struct btrfs_fs_info *fs_info)
3514 {
3515 struct btrfs_block_group_cache *cache, *tmp;
3516 struct btrfs_transaction *cur_trans = trans->transaction;
3517 struct btrfs_path *path;
3518
3519 if (list_empty(&cur_trans->dirty_bgs) ||
3520 !btrfs_test_opt(fs_info, SPACE_CACHE))
3521 return 0;
3522
3523 path = btrfs_alloc_path();
3524 if (!path)
3525 return -ENOMEM;
3526
3527 /* Could add new block groups, use _safe just in case */
3528 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3529 dirty_list) {
3530 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3531 cache_save_setup(cache, trans, path);
3532 }
3533
3534 btrfs_free_path(path);
3535 return 0;
3536 }
3537
3538 /*
3539 * transaction commit does final block group cache writeback during a
3540 * critical section where nothing is allowed to change the FS. This is
3541 * required in order for the cache to actually match the block group,
3542 * but can introduce a lot of latency into the commit.
3543 *
3544 * So, btrfs_start_dirty_block_groups is here to kick off block group
3545 * cache IO. There's a chance we'll have to redo some of it if the
3546 * block group changes again during the commit, but it greatly reduces
3547 * the commit latency by getting rid of the easy block groups while
3548 * we're still allowing others to join the commit.
3549 */
3550 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3551 {
3552 struct btrfs_fs_info *fs_info = trans->fs_info;
3553 struct btrfs_block_group_cache *cache;
3554 struct btrfs_transaction *cur_trans = trans->transaction;
3555 int ret = 0;
3556 int should_put;
3557 struct btrfs_path *path = NULL;
3558 LIST_HEAD(dirty);
3559 struct list_head *io = &cur_trans->io_bgs;
3560 int num_started = 0;
3561 int loops = 0;
3562
3563 spin_lock(&cur_trans->dirty_bgs_lock);
3564 if (list_empty(&cur_trans->dirty_bgs)) {
3565 spin_unlock(&cur_trans->dirty_bgs_lock);
3566 return 0;
3567 }
3568 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3569 spin_unlock(&cur_trans->dirty_bgs_lock);
3570
3571 again:
3572 /*
3573 * make sure all the block groups on our dirty list actually
3574 * exist
3575 */
3576 btrfs_create_pending_block_groups(trans);
3577
3578 if (!path) {
3579 path = btrfs_alloc_path();
3580 if (!path)
3581 return -ENOMEM;
3582 }
3583
3584 /*
3585 * cache_write_mutex is here only to save us from balance or automatic
3586 * removal of empty block groups deleting this block group while we are
3587 * writing out the cache
3588 */
3589 mutex_lock(&trans->transaction->cache_write_mutex);
3590 while (!list_empty(&dirty)) {
3591 cache = list_first_entry(&dirty,
3592 struct btrfs_block_group_cache,
3593 dirty_list);
3594 /*
3595 * this can happen if something re-dirties a block
3596 * group that is already under IO. Just wait for it to
3597 * finish and then do it all again
3598 */
3599 if (!list_empty(&cache->io_list)) {
3600 list_del_init(&cache->io_list);
3601 btrfs_wait_cache_io(trans, cache, path);
3602 btrfs_put_block_group(cache);
3603 }
3604
3605
3606 /*
3607 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3608 * if it should update the cache_state. Don't delete
3609 * until after we wait.
3610 *
3611 * Since we're not running in the commit critical section
3612 * we need the dirty_bgs_lock to protect from update_block_group
3613 */
3614 spin_lock(&cur_trans->dirty_bgs_lock);
3615 list_del_init(&cache->dirty_list);
3616 spin_unlock(&cur_trans->dirty_bgs_lock);
3617
3618 should_put = 1;
3619
3620 cache_save_setup(cache, trans, path);
3621
3622 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3623 cache->io_ctl.inode = NULL;
3624 ret = btrfs_write_out_cache(fs_info, trans,
3625 cache, path);
3626 if (ret == 0 && cache->io_ctl.inode) {
3627 num_started++;
3628 should_put = 0;
3629
3630 /*
3631 * The cache_write_mutex is protecting the
3632 * io_list, also refer to the definition of
3633 * btrfs_transaction::io_bgs for more details
3634 */
3635 list_add_tail(&cache->io_list, io);
3636 } else {
3637 /*
3638 * if we failed to write the cache, the
3639 * generation will be bad and life goes on
3640 */
3641 ret = 0;
3642 }
3643 }
3644 if (!ret) {
3645 ret = write_one_cache_group(trans, fs_info,
3646 path, cache);
3647 /*
3648 * Our block group might still be attached to the list
3649 * of new block groups in the transaction handle of some
3650 * other task (struct btrfs_trans_handle->new_bgs). This
3651 * means its block group item isn't yet in the extent
3652 * tree. If this happens ignore the error, as we will
3653 * try again later in the critical section of the
3654 * transaction commit.
3655 */
3656 if (ret == -ENOENT) {
3657 ret = 0;
3658 spin_lock(&cur_trans->dirty_bgs_lock);
3659 if (list_empty(&cache->dirty_list)) {
3660 list_add_tail(&cache->dirty_list,
3661 &cur_trans->dirty_bgs);
3662 btrfs_get_block_group(cache);
3663 }
3664 spin_unlock(&cur_trans->dirty_bgs_lock);
3665 } else if (ret) {
3666 btrfs_abort_transaction(trans, ret);
3667 }
3668 }
3669
3670 /* if its not on the io list, we need to put the block group */
3671 if (should_put)
3672 btrfs_put_block_group(cache);
3673
3674 if (ret)
3675 break;
3676
3677 /*
3678 * Avoid blocking other tasks for too long. It might even save
3679 * us from writing caches for block groups that are going to be
3680 * removed.
3681 */
3682 mutex_unlock(&trans->transaction->cache_write_mutex);
3683 mutex_lock(&trans->transaction->cache_write_mutex);
3684 }
3685 mutex_unlock(&trans->transaction->cache_write_mutex);
3686
3687 /*
3688 * go through delayed refs for all the stuff we've just kicked off
3689 * and then loop back (just once)
3690 */
3691 ret = btrfs_run_delayed_refs(trans, 0);
3692 if (!ret && loops == 0) {
3693 loops++;
3694 spin_lock(&cur_trans->dirty_bgs_lock);
3695 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3696 /*
3697 * dirty_bgs_lock protects us from concurrent block group
3698 * deletes too (not just cache_write_mutex).
3699 */
3700 if (!list_empty(&dirty)) {
3701 spin_unlock(&cur_trans->dirty_bgs_lock);
3702 goto again;
3703 }
3704 spin_unlock(&cur_trans->dirty_bgs_lock);
3705 } else if (ret < 0) {
3706 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3707 }
3708
3709 btrfs_free_path(path);
3710 return ret;
3711 }
3712
3713 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3714 struct btrfs_fs_info *fs_info)
3715 {
3716 struct btrfs_block_group_cache *cache;
3717 struct btrfs_transaction *cur_trans = trans->transaction;
3718 int ret = 0;
3719 int should_put;
3720 struct btrfs_path *path;
3721 struct list_head *io = &cur_trans->io_bgs;
3722 int num_started = 0;
3723
3724 path = btrfs_alloc_path();
3725 if (!path)
3726 return -ENOMEM;
3727
3728 /*
3729 * Even though we are in the critical section of the transaction commit,
3730 * we can still have concurrent tasks adding elements to this
3731 * transaction's list of dirty block groups. These tasks correspond to
3732 * endio free space workers started when writeback finishes for a
3733 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3734 * allocate new block groups as a result of COWing nodes of the root
3735 * tree when updating the free space inode. The writeback for the space
3736 * caches is triggered by an earlier call to
3737 * btrfs_start_dirty_block_groups() and iterations of the following
3738 * loop.
3739 * Also we want to do the cache_save_setup first and then run the
3740 * delayed refs to make sure we have the best chance at doing this all
3741 * in one shot.
3742 */
3743 spin_lock(&cur_trans->dirty_bgs_lock);
3744 while (!list_empty(&cur_trans->dirty_bgs)) {
3745 cache = list_first_entry(&cur_trans->dirty_bgs,
3746 struct btrfs_block_group_cache,
3747 dirty_list);
3748
3749 /*
3750 * this can happen if cache_save_setup re-dirties a block
3751 * group that is already under IO. Just wait for it to
3752 * finish and then do it all again
3753 */
3754 if (!list_empty(&cache->io_list)) {
3755 spin_unlock(&cur_trans->dirty_bgs_lock);
3756 list_del_init(&cache->io_list);
3757 btrfs_wait_cache_io(trans, cache, path);
3758 btrfs_put_block_group(cache);
3759 spin_lock(&cur_trans->dirty_bgs_lock);
3760 }
3761
3762 /*
3763 * don't remove from the dirty list until after we've waited
3764 * on any pending IO
3765 */
3766 list_del_init(&cache->dirty_list);
3767 spin_unlock(&cur_trans->dirty_bgs_lock);
3768 should_put = 1;
3769
3770 cache_save_setup(cache, trans, path);
3771
3772 if (!ret)
3773 ret = btrfs_run_delayed_refs(trans,
3774 (unsigned long) -1);
3775
3776 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3777 cache->io_ctl.inode = NULL;
3778 ret = btrfs_write_out_cache(fs_info, trans,
3779 cache, path);
3780 if (ret == 0 && cache->io_ctl.inode) {
3781 num_started++;
3782 should_put = 0;
3783 list_add_tail(&cache->io_list, io);
3784 } else {
3785 /*
3786 * if we failed to write the cache, the
3787 * generation will be bad and life goes on
3788 */
3789 ret = 0;
3790 }
3791 }
3792 if (!ret) {
3793 ret = write_one_cache_group(trans, fs_info,
3794 path, cache);
3795 /*
3796 * One of the free space endio workers might have
3797 * created a new block group while updating a free space
3798 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3799 * and hasn't released its transaction handle yet, in
3800 * which case the new block group is still attached to
3801 * its transaction handle and its creation has not
3802 * finished yet (no block group item in the extent tree
3803 * yet, etc). If this is the case, wait for all free
3804 * space endio workers to finish and retry. This is a
3805 * a very rare case so no need for a more efficient and
3806 * complex approach.
3807 */
3808 if (ret == -ENOENT) {
3809 wait_event(cur_trans->writer_wait,
3810 atomic_read(&cur_trans->num_writers) == 1);
3811 ret = write_one_cache_group(trans, fs_info,
3812 path, cache);
3813 }
3814 if (ret)
3815 btrfs_abort_transaction(trans, ret);
3816 }
3817
3818 /* if its not on the io list, we need to put the block group */
3819 if (should_put)
3820 btrfs_put_block_group(cache);
3821 spin_lock(&cur_trans->dirty_bgs_lock);
3822 }
3823 spin_unlock(&cur_trans->dirty_bgs_lock);
3824
3825 /*
3826 * Refer to the definition of io_bgs member for details why it's safe
3827 * to use it without any locking
3828 */
3829 while (!list_empty(io)) {
3830 cache = list_first_entry(io, struct btrfs_block_group_cache,
3831 io_list);
3832 list_del_init(&cache->io_list);
3833 btrfs_wait_cache_io(trans, cache, path);
3834 btrfs_put_block_group(cache);
3835 }
3836
3837 btrfs_free_path(path);
3838 return ret;
3839 }
3840
3841 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3842 {
3843 struct btrfs_block_group_cache *block_group;
3844 int readonly = 0;
3845
3846 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3847 if (!block_group || block_group->ro)
3848 readonly = 1;
3849 if (block_group)
3850 btrfs_put_block_group(block_group);
3851 return readonly;
3852 }
3853
3854 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3855 {
3856 struct btrfs_block_group_cache *bg;
3857 bool ret = true;
3858
3859 bg = btrfs_lookup_block_group(fs_info, bytenr);
3860 if (!bg)
3861 return false;
3862
3863 spin_lock(&bg->lock);
3864 if (bg->ro)
3865 ret = false;
3866 else
3867 atomic_inc(&bg->nocow_writers);
3868 spin_unlock(&bg->lock);
3869
3870 /* no put on block group, done by btrfs_dec_nocow_writers */
3871 if (!ret)
3872 btrfs_put_block_group(bg);
3873
3874 return ret;
3875
3876 }
3877
3878 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3879 {
3880 struct btrfs_block_group_cache *bg;
3881
3882 bg = btrfs_lookup_block_group(fs_info, bytenr);
3883 ASSERT(bg);
3884 if (atomic_dec_and_test(&bg->nocow_writers))
3885 wake_up_var(&bg->nocow_writers);
3886 /*
3887 * Once for our lookup and once for the lookup done by a previous call
3888 * to btrfs_inc_nocow_writers()
3889 */
3890 btrfs_put_block_group(bg);
3891 btrfs_put_block_group(bg);
3892 }
3893
3894 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3895 {
3896 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3897 }
3898
3899 static const char *alloc_name(u64 flags)
3900 {
3901 switch (flags) {
3902 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3903 return "mixed";
3904 case BTRFS_BLOCK_GROUP_METADATA:
3905 return "metadata";
3906 case BTRFS_BLOCK_GROUP_DATA:
3907 return "data";
3908 case BTRFS_BLOCK_GROUP_SYSTEM:
3909 return "system";
3910 default:
3911 WARN_ON(1);
3912 return "invalid-combination";
3913 };
3914 }
3915
3916 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3917 {
3918
3919 struct btrfs_space_info *space_info;
3920 int i;
3921 int ret;
3922
3923 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3924 if (!space_info)
3925 return -ENOMEM;
3926
3927 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3928 GFP_KERNEL);
3929 if (ret) {
3930 kfree(space_info);
3931 return ret;
3932 }
3933
3934 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3935 INIT_LIST_HEAD(&space_info->block_groups[i]);
3936 init_rwsem(&space_info->groups_sem);
3937 spin_lock_init(&space_info->lock);
3938 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3939 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3940 init_waitqueue_head(&space_info->wait);
3941 INIT_LIST_HEAD(&space_info->ro_bgs);
3942 INIT_LIST_HEAD(&space_info->tickets);
3943 INIT_LIST_HEAD(&space_info->priority_tickets);
3944
3945 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3946 info->space_info_kobj, "%s",
3947 alloc_name(space_info->flags));
3948 if (ret) {
3949 percpu_counter_destroy(&space_info->total_bytes_pinned);
3950 kfree(space_info);
3951 return ret;
3952 }
3953
3954 list_add_rcu(&space_info->list, &info->space_info);
3955 if (flags & BTRFS_BLOCK_GROUP_DATA)
3956 info->data_sinfo = space_info;
3957
3958 return ret;
3959 }
3960
3961 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3962 u64 total_bytes, u64 bytes_used,
3963 u64 bytes_readonly,
3964 struct btrfs_space_info **space_info)
3965 {
3966 struct btrfs_space_info *found;
3967 int factor;
3968
3969 factor = btrfs_bg_type_to_factor(flags);
3970
3971 found = __find_space_info(info, flags);
3972 ASSERT(found);
3973 spin_lock(&found->lock);
3974 found->total_bytes += total_bytes;
3975 found->disk_total += total_bytes * factor;
3976 found->bytes_used += bytes_used;
3977 found->disk_used += bytes_used * factor;
3978 found->bytes_readonly += bytes_readonly;
3979 if (total_bytes > 0)
3980 found->full = 0;
3981 space_info_add_new_bytes(info, found, total_bytes -
3982 bytes_used - bytes_readonly);
3983 spin_unlock(&found->lock);
3984 *space_info = found;
3985 }
3986
3987 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3988 {
3989 u64 extra_flags = chunk_to_extended(flags) &
3990 BTRFS_EXTENDED_PROFILE_MASK;
3991
3992 write_seqlock(&fs_info->profiles_lock);
3993 if (flags & BTRFS_BLOCK_GROUP_DATA)
3994 fs_info->avail_data_alloc_bits |= extra_flags;
3995 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3996 fs_info->avail_metadata_alloc_bits |= extra_flags;
3997 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3998 fs_info->avail_system_alloc_bits |= extra_flags;
3999 write_sequnlock(&fs_info->profiles_lock);
4000 }
4001
4002 /*
4003 * returns target flags in extended format or 0 if restripe for this
4004 * chunk_type is not in progress
4005 *
4006 * should be called with balance_lock held
4007 */
4008 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4009 {
4010 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4011 u64 target = 0;
4012
4013 if (!bctl)
4014 return 0;
4015
4016 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4017 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4018 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4019 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4020 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4021 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4022 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4023 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4024 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4025 }
4026
4027 return target;
4028 }
4029
4030 /*
4031 * @flags: available profiles in extended format (see ctree.h)
4032 *
4033 * Returns reduced profile in chunk format. If profile changing is in
4034 * progress (either running or paused) picks the target profile (if it's
4035 * already available), otherwise falls back to plain reducing.
4036 */
4037 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4038 {
4039 u64 num_devices = fs_info->fs_devices->rw_devices;
4040 u64 target;
4041 u64 raid_type;
4042 u64 allowed = 0;
4043
4044 /*
4045 * see if restripe for this chunk_type is in progress, if so
4046 * try to reduce to the target profile
4047 */
4048 spin_lock(&fs_info->balance_lock);
4049 target = get_restripe_target(fs_info, flags);
4050 if (target) {
4051 /* pick target profile only if it's already available */
4052 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4053 spin_unlock(&fs_info->balance_lock);
4054 return extended_to_chunk(target);
4055 }
4056 }
4057 spin_unlock(&fs_info->balance_lock);
4058
4059 /* First, mask out the RAID levels which aren't possible */
4060 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4061 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4062 allowed |= btrfs_raid_array[raid_type].bg_flag;
4063 }
4064 allowed &= flags;
4065
4066 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4067 allowed = BTRFS_BLOCK_GROUP_RAID6;
4068 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4069 allowed = BTRFS_BLOCK_GROUP_RAID5;
4070 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4071 allowed = BTRFS_BLOCK_GROUP_RAID10;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4073 allowed = BTRFS_BLOCK_GROUP_RAID1;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4075 allowed = BTRFS_BLOCK_GROUP_RAID0;
4076
4077 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4078
4079 return extended_to_chunk(flags | allowed);
4080 }
4081
4082 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4083 {
4084 unsigned seq;
4085 u64 flags;
4086
4087 do {
4088 flags = orig_flags;
4089 seq = read_seqbegin(&fs_info->profiles_lock);
4090
4091 if (flags & BTRFS_BLOCK_GROUP_DATA)
4092 flags |= fs_info->avail_data_alloc_bits;
4093 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4094 flags |= fs_info->avail_system_alloc_bits;
4095 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4096 flags |= fs_info->avail_metadata_alloc_bits;
4097 } while (read_seqretry(&fs_info->profiles_lock, seq));
4098
4099 return btrfs_reduce_alloc_profile(fs_info, flags);
4100 }
4101
4102 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4103 {
4104 struct btrfs_fs_info *fs_info = root->fs_info;
4105 u64 flags;
4106 u64 ret;
4107
4108 if (data)
4109 flags = BTRFS_BLOCK_GROUP_DATA;
4110 else if (root == fs_info->chunk_root)
4111 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4112 else
4113 flags = BTRFS_BLOCK_GROUP_METADATA;
4114
4115 ret = get_alloc_profile(fs_info, flags);
4116 return ret;
4117 }
4118
4119 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4120 {
4121 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4122 }
4123
4124 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4125 {
4126 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4127 }
4128
4129 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4130 {
4131 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4132 }
4133
4134 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4135 bool may_use_included)
4136 {
4137 ASSERT(s_info);
4138 return s_info->bytes_used + s_info->bytes_reserved +
4139 s_info->bytes_pinned + s_info->bytes_readonly +
4140 (may_use_included ? s_info->bytes_may_use : 0);
4141 }
4142
4143 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4144 {
4145 struct btrfs_root *root = inode->root;
4146 struct btrfs_fs_info *fs_info = root->fs_info;
4147 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4148 u64 used;
4149 int ret = 0;
4150 int need_commit = 2;
4151 int have_pinned_space;
4152
4153 /* make sure bytes are sectorsize aligned */
4154 bytes = ALIGN(bytes, fs_info->sectorsize);
4155
4156 if (btrfs_is_free_space_inode(inode)) {
4157 need_commit = 0;
4158 ASSERT(current->journal_info);
4159 }
4160
4161 again:
4162 /* make sure we have enough space to handle the data first */
4163 spin_lock(&data_sinfo->lock);
4164 used = btrfs_space_info_used(data_sinfo, true);
4165
4166 if (used + bytes > data_sinfo->total_bytes) {
4167 struct btrfs_trans_handle *trans;
4168
4169 /*
4170 * if we don't have enough free bytes in this space then we need
4171 * to alloc a new chunk.
4172 */
4173 if (!data_sinfo->full) {
4174 u64 alloc_target;
4175
4176 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4177 spin_unlock(&data_sinfo->lock);
4178
4179 alloc_target = btrfs_data_alloc_profile(fs_info);
4180 /*
4181 * It is ugly that we don't call nolock join
4182 * transaction for the free space inode case here.
4183 * But it is safe because we only do the data space
4184 * reservation for the free space cache in the
4185 * transaction context, the common join transaction
4186 * just increase the counter of the current transaction
4187 * handler, doesn't try to acquire the trans_lock of
4188 * the fs.
4189 */
4190 trans = btrfs_join_transaction(root);
4191 if (IS_ERR(trans))
4192 return PTR_ERR(trans);
4193
4194 ret = do_chunk_alloc(trans, alloc_target,
4195 CHUNK_ALLOC_NO_FORCE);
4196 btrfs_end_transaction(trans);
4197 if (ret < 0) {
4198 if (ret != -ENOSPC)
4199 return ret;
4200 else {
4201 have_pinned_space = 1;
4202 goto commit_trans;
4203 }
4204 }
4205
4206 goto again;
4207 }
4208
4209 /*
4210 * If we don't have enough pinned space to deal with this
4211 * allocation, and no removed chunk in current transaction,
4212 * don't bother committing the transaction.
4213 */
4214 have_pinned_space = __percpu_counter_compare(
4215 &data_sinfo->total_bytes_pinned,
4216 used + bytes - data_sinfo->total_bytes,
4217 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4218 spin_unlock(&data_sinfo->lock);
4219
4220 /* commit the current transaction and try again */
4221 commit_trans:
4222 if (need_commit) {
4223 need_commit--;
4224
4225 if (need_commit > 0) {
4226 btrfs_start_delalloc_roots(fs_info, -1);
4227 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4228 (u64)-1);
4229 }
4230
4231 trans = btrfs_join_transaction(root);
4232 if (IS_ERR(trans))
4233 return PTR_ERR(trans);
4234 if (have_pinned_space >= 0 ||
4235 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4236 &trans->transaction->flags) ||
4237 need_commit > 0) {
4238 ret = btrfs_commit_transaction(trans);
4239 if (ret)
4240 return ret;
4241 /*
4242 * The cleaner kthread might still be doing iput
4243 * operations. Wait for it to finish so that
4244 * more space is released.
4245 */
4246 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4247 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4248 goto again;
4249 } else {
4250 btrfs_end_transaction(trans);
4251 }
4252 }
4253
4254 trace_btrfs_space_reservation(fs_info,
4255 "space_info:enospc",
4256 data_sinfo->flags, bytes, 1);
4257 return -ENOSPC;
4258 }
4259 data_sinfo->bytes_may_use += bytes;
4260 trace_btrfs_space_reservation(fs_info, "space_info",
4261 data_sinfo->flags, bytes, 1);
4262 spin_unlock(&data_sinfo->lock);
4263
4264 return 0;
4265 }
4266
4267 int btrfs_check_data_free_space(struct inode *inode,
4268 struct extent_changeset **reserved, u64 start, u64 len)
4269 {
4270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4271 int ret;
4272
4273 /* align the range */
4274 len = round_up(start + len, fs_info->sectorsize) -
4275 round_down(start, fs_info->sectorsize);
4276 start = round_down(start, fs_info->sectorsize);
4277
4278 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4279 if (ret < 0)
4280 return ret;
4281
4282 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4283 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4284 if (ret < 0)
4285 btrfs_free_reserved_data_space_noquota(inode, start, len);
4286 else
4287 ret = 0;
4288 return ret;
4289 }
4290
4291 /*
4292 * Called if we need to clear a data reservation for this inode
4293 * Normally in a error case.
4294 *
4295 * This one will *NOT* use accurate qgroup reserved space API, just for case
4296 * which we can't sleep and is sure it won't affect qgroup reserved space.
4297 * Like clear_bit_hook().
4298 */
4299 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4300 u64 len)
4301 {
4302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4303 struct btrfs_space_info *data_sinfo;
4304
4305 /* Make sure the range is aligned to sectorsize */
4306 len = round_up(start + len, fs_info->sectorsize) -
4307 round_down(start, fs_info->sectorsize);
4308 start = round_down(start, fs_info->sectorsize);
4309
4310 data_sinfo = fs_info->data_sinfo;
4311 spin_lock(&data_sinfo->lock);
4312 if (WARN_ON(data_sinfo->bytes_may_use < len))
4313 data_sinfo->bytes_may_use = 0;
4314 else
4315 data_sinfo->bytes_may_use -= len;
4316 trace_btrfs_space_reservation(fs_info, "space_info",
4317 data_sinfo->flags, len, 0);
4318 spin_unlock(&data_sinfo->lock);
4319 }
4320
4321 /*
4322 * Called if we need to clear a data reservation for this inode
4323 * Normally in a error case.
4324 *
4325 * This one will handle the per-inode data rsv map for accurate reserved
4326 * space framework.
4327 */
4328 void btrfs_free_reserved_data_space(struct inode *inode,
4329 struct extent_changeset *reserved, u64 start, u64 len)
4330 {
4331 struct btrfs_root *root = BTRFS_I(inode)->root;
4332
4333 /* Make sure the range is aligned to sectorsize */
4334 len = round_up(start + len, root->fs_info->sectorsize) -
4335 round_down(start, root->fs_info->sectorsize);
4336 start = round_down(start, root->fs_info->sectorsize);
4337
4338 btrfs_free_reserved_data_space_noquota(inode, start, len);
4339 btrfs_qgroup_free_data(inode, reserved, start, len);
4340 }
4341
4342 static void force_metadata_allocation(struct btrfs_fs_info *info)
4343 {
4344 struct list_head *head = &info->space_info;
4345 struct btrfs_space_info *found;
4346
4347 rcu_read_lock();
4348 list_for_each_entry_rcu(found, head, list) {
4349 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4350 found->force_alloc = CHUNK_ALLOC_FORCE;
4351 }
4352 rcu_read_unlock();
4353 }
4354
4355 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4356 {
4357 return (global->size << 1);
4358 }
4359
4360 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4361 struct btrfs_space_info *sinfo, int force)
4362 {
4363 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4364 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4365 u64 thresh;
4366
4367 if (force == CHUNK_ALLOC_FORCE)
4368 return 1;
4369
4370 /*
4371 * We need to take into account the global rsv because for all intents
4372 * and purposes it's used space. Don't worry about locking the
4373 * global_rsv, it doesn't change except when the transaction commits.
4374 */
4375 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4376 bytes_used += calc_global_rsv_need_space(global_rsv);
4377
4378 /*
4379 * in limited mode, we want to have some free space up to
4380 * about 1% of the FS size.
4381 */
4382 if (force == CHUNK_ALLOC_LIMITED) {
4383 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4384 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4385
4386 if (sinfo->total_bytes - bytes_used < thresh)
4387 return 1;
4388 }
4389
4390 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4391 return 0;
4392 return 1;
4393 }
4394
4395 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4396 {
4397 u64 num_dev;
4398
4399 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4400 BTRFS_BLOCK_GROUP_RAID0 |
4401 BTRFS_BLOCK_GROUP_RAID5 |
4402 BTRFS_BLOCK_GROUP_RAID6))
4403 num_dev = fs_info->fs_devices->rw_devices;
4404 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4405 num_dev = 2;
4406 else
4407 num_dev = 1; /* DUP or single */
4408
4409 return num_dev;
4410 }
4411
4412 /*
4413 * If @is_allocation is true, reserve space in the system space info necessary
4414 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4415 * removing a chunk.
4416 */
4417 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4418 {
4419 struct btrfs_fs_info *fs_info = trans->fs_info;
4420 struct btrfs_space_info *info;
4421 u64 left;
4422 u64 thresh;
4423 int ret = 0;
4424 u64 num_devs;
4425
4426 /*
4427 * Needed because we can end up allocating a system chunk and for an
4428 * atomic and race free space reservation in the chunk block reserve.
4429 */
4430 lockdep_assert_held(&fs_info->chunk_mutex);
4431
4432 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4433 spin_lock(&info->lock);
4434 left = info->total_bytes - btrfs_space_info_used(info, true);
4435 spin_unlock(&info->lock);
4436
4437 num_devs = get_profile_num_devs(fs_info, type);
4438
4439 /* num_devs device items to update and 1 chunk item to add or remove */
4440 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4441 btrfs_calc_trans_metadata_size(fs_info, 1);
4442
4443 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4444 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4445 left, thresh, type);
4446 dump_space_info(fs_info, info, 0, 0);
4447 }
4448
4449 if (left < thresh) {
4450 u64 flags = btrfs_system_alloc_profile(fs_info);
4451
4452 /*
4453 * Ignore failure to create system chunk. We might end up not
4454 * needing it, as we might not need to COW all nodes/leafs from
4455 * the paths we visit in the chunk tree (they were already COWed
4456 * or created in the current transaction for example).
4457 */
4458 ret = btrfs_alloc_chunk(trans, flags);
4459 }
4460
4461 if (!ret) {
4462 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4463 &fs_info->chunk_block_rsv,
4464 thresh, BTRFS_RESERVE_NO_FLUSH);
4465 if (!ret)
4466 trans->chunk_bytes_reserved += thresh;
4467 }
4468 }
4469
4470 /*
4471 * If force is CHUNK_ALLOC_FORCE:
4472 * - return 1 if it successfully allocates a chunk,
4473 * - return errors including -ENOSPC otherwise.
4474 * If force is NOT CHUNK_ALLOC_FORCE:
4475 * - return 0 if it doesn't need to allocate a new chunk,
4476 * - return 1 if it successfully allocates a chunk,
4477 * - return errors including -ENOSPC otherwise.
4478 */
4479 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4480 int force)
4481 {
4482 struct btrfs_fs_info *fs_info = trans->fs_info;
4483 struct btrfs_space_info *space_info;
4484 bool wait_for_alloc = false;
4485 bool should_alloc = false;
4486 int ret = 0;
4487
4488 /* Don't re-enter if we're already allocating a chunk */
4489 if (trans->allocating_chunk)
4490 return -ENOSPC;
4491
4492 space_info = __find_space_info(fs_info, flags);
4493 ASSERT(space_info);
4494
4495 do {
4496 spin_lock(&space_info->lock);
4497 if (force < space_info->force_alloc)
4498 force = space_info->force_alloc;
4499 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4500 if (space_info->full) {
4501 /* No more free physical space */
4502 if (should_alloc)
4503 ret = -ENOSPC;
4504 else
4505 ret = 0;
4506 spin_unlock(&space_info->lock);
4507 return ret;
4508 } else if (!should_alloc) {
4509 spin_unlock(&space_info->lock);
4510 return 0;
4511 } else if (space_info->chunk_alloc) {
4512 /*
4513 * Someone is already allocating, so we need to block
4514 * until this someone is finished and then loop to
4515 * recheck if we should continue with our allocation
4516 * attempt.
4517 */
4518 wait_for_alloc = true;
4519 spin_unlock(&space_info->lock);
4520 mutex_lock(&fs_info->chunk_mutex);
4521 mutex_unlock(&fs_info->chunk_mutex);
4522 } else {
4523 /* Proceed with allocation */
4524 space_info->chunk_alloc = 1;
4525 wait_for_alloc = false;
4526 spin_unlock(&space_info->lock);
4527 }
4528
4529 cond_resched();
4530 } while (wait_for_alloc);
4531
4532 mutex_lock(&fs_info->chunk_mutex);
4533 trans->allocating_chunk = true;
4534
4535 /*
4536 * If we have mixed data/metadata chunks we want to make sure we keep
4537 * allocating mixed chunks instead of individual chunks.
4538 */
4539 if (btrfs_mixed_space_info(space_info))
4540 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4541
4542 /*
4543 * if we're doing a data chunk, go ahead and make sure that
4544 * we keep a reasonable number of metadata chunks allocated in the
4545 * FS as well.
4546 */
4547 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4548 fs_info->data_chunk_allocations++;
4549 if (!(fs_info->data_chunk_allocations %
4550 fs_info->metadata_ratio))
4551 force_metadata_allocation(fs_info);
4552 }
4553
4554 /*
4555 * Check if we have enough space in SYSTEM chunk because we may need
4556 * to update devices.
4557 */
4558 check_system_chunk(trans, flags);
4559
4560 ret = btrfs_alloc_chunk(trans, flags);
4561 trans->allocating_chunk = false;
4562
4563 spin_lock(&space_info->lock);
4564 if (ret < 0) {
4565 if (ret == -ENOSPC)
4566 space_info->full = 1;
4567 else
4568 goto out;
4569 } else {
4570 ret = 1;
4571 }
4572
4573 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4574 out:
4575 space_info->chunk_alloc = 0;
4576 spin_unlock(&space_info->lock);
4577 mutex_unlock(&fs_info->chunk_mutex);
4578 /*
4579 * When we allocate a new chunk we reserve space in the chunk block
4580 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4581 * add new nodes/leafs to it if we end up needing to do it when
4582 * inserting the chunk item and updating device items as part of the
4583 * second phase of chunk allocation, performed by
4584 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4585 * large number of new block groups to create in our transaction
4586 * handle's new_bgs list to avoid exhausting the chunk block reserve
4587 * in extreme cases - like having a single transaction create many new
4588 * block groups when starting to write out the free space caches of all
4589 * the block groups that were made dirty during the lifetime of the
4590 * transaction.
4591 */
4592 if (trans->can_flush_pending_bgs &&
4593 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4594 btrfs_create_pending_block_groups(trans);
4595 btrfs_trans_release_chunk_metadata(trans);
4596 }
4597 return ret;
4598 }
4599
4600 static int can_overcommit(struct btrfs_fs_info *fs_info,
4601 struct btrfs_space_info *space_info, u64 bytes,
4602 enum btrfs_reserve_flush_enum flush,
4603 bool system_chunk)
4604 {
4605 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4606 u64 profile;
4607 u64 space_size;
4608 u64 avail;
4609 u64 used;
4610 int factor;
4611
4612 /* Don't overcommit when in mixed mode. */
4613 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4614 return 0;
4615
4616 if (system_chunk)
4617 profile = btrfs_system_alloc_profile(fs_info);
4618 else
4619 profile = btrfs_metadata_alloc_profile(fs_info);
4620
4621 used = btrfs_space_info_used(space_info, false);
4622
4623 /*
4624 * We only want to allow over committing if we have lots of actual space
4625 * free, but if we don't have enough space to handle the global reserve
4626 * space then we could end up having a real enospc problem when trying
4627 * to allocate a chunk or some other such important allocation.
4628 */
4629 spin_lock(&global_rsv->lock);
4630 space_size = calc_global_rsv_need_space(global_rsv);
4631 spin_unlock(&global_rsv->lock);
4632 if (used + space_size >= space_info->total_bytes)
4633 return 0;
4634
4635 used += space_info->bytes_may_use;
4636
4637 avail = atomic64_read(&fs_info->free_chunk_space);
4638
4639 /*
4640 * If we have dup, raid1 or raid10 then only half of the free
4641 * space is actually useable. For raid56, the space info used
4642 * doesn't include the parity drive, so we don't have to
4643 * change the math
4644 */
4645 factor = btrfs_bg_type_to_factor(profile);
4646 avail = div_u64(avail, factor);
4647
4648 /*
4649 * If we aren't flushing all things, let us overcommit up to
4650 * 1/2th of the space. If we can flush, don't let us overcommit
4651 * too much, let it overcommit up to 1/8 of the space.
4652 */
4653 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4654 avail >>= 3;
4655 else
4656 avail >>= 1;
4657
4658 if (used + bytes < space_info->total_bytes + avail)
4659 return 1;
4660 return 0;
4661 }
4662
4663 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4664 unsigned long nr_pages, int nr_items)
4665 {
4666 struct super_block *sb = fs_info->sb;
4667
4668 if (down_read_trylock(&sb->s_umount)) {
4669 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4670 up_read(&sb->s_umount);
4671 } else {
4672 /*
4673 * We needn't worry the filesystem going from r/w to r/o though
4674 * we don't acquire ->s_umount mutex, because the filesystem
4675 * should guarantee the delalloc inodes list be empty after
4676 * the filesystem is readonly(all dirty pages are written to
4677 * the disk).
4678 */
4679 btrfs_start_delalloc_roots(fs_info, nr_items);
4680 if (!current->journal_info)
4681 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4682 }
4683 }
4684
4685 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4686 u64 to_reclaim)
4687 {
4688 u64 bytes;
4689 u64 nr;
4690
4691 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4692 nr = div64_u64(to_reclaim, bytes);
4693 if (!nr)
4694 nr = 1;
4695 return nr;
4696 }
4697
4698 #define EXTENT_SIZE_PER_ITEM SZ_256K
4699
4700 /*
4701 * shrink metadata reservation for delalloc
4702 */
4703 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4704 u64 orig, bool wait_ordered)
4705 {
4706 struct btrfs_space_info *space_info;
4707 struct btrfs_trans_handle *trans;
4708 u64 delalloc_bytes;
4709 u64 max_reclaim;
4710 u64 items;
4711 long time_left;
4712 unsigned long nr_pages;
4713 int loops;
4714
4715 /* Calc the number of the pages we need flush for space reservation */
4716 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4717 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4718
4719 trans = (struct btrfs_trans_handle *)current->journal_info;
4720 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4721
4722 delalloc_bytes = percpu_counter_sum_positive(
4723 &fs_info->delalloc_bytes);
4724 if (delalloc_bytes == 0) {
4725 if (trans)
4726 return;
4727 if (wait_ordered)
4728 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4729 return;
4730 }
4731
4732 loops = 0;
4733 while (delalloc_bytes && loops < 3) {
4734 max_reclaim = min(delalloc_bytes, to_reclaim);
4735 nr_pages = max_reclaim >> PAGE_SHIFT;
4736 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4737 /*
4738 * We need to wait for the async pages to actually start before
4739 * we do anything.
4740 */
4741 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4742 if (!max_reclaim)
4743 goto skip_async;
4744
4745 if (max_reclaim <= nr_pages)
4746 max_reclaim = 0;
4747 else
4748 max_reclaim -= nr_pages;
4749
4750 wait_event(fs_info->async_submit_wait,
4751 atomic_read(&fs_info->async_delalloc_pages) <=
4752 (int)max_reclaim);
4753 skip_async:
4754 spin_lock(&space_info->lock);
4755 if (list_empty(&space_info->tickets) &&
4756 list_empty(&space_info->priority_tickets)) {
4757 spin_unlock(&space_info->lock);
4758 break;
4759 }
4760 spin_unlock(&space_info->lock);
4761
4762 loops++;
4763 if (wait_ordered && !trans) {
4764 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4765 } else {
4766 time_left = schedule_timeout_killable(1);
4767 if (time_left)
4768 break;
4769 }
4770 delalloc_bytes = percpu_counter_sum_positive(
4771 &fs_info->delalloc_bytes);
4772 }
4773 }
4774
4775 struct reserve_ticket {
4776 u64 bytes;
4777 int error;
4778 struct list_head list;
4779 wait_queue_head_t wait;
4780 };
4781
4782 /**
4783 * maybe_commit_transaction - possibly commit the transaction if its ok to
4784 * @root - the root we're allocating for
4785 * @bytes - the number of bytes we want to reserve
4786 * @force - force the commit
4787 *
4788 * This will check to make sure that committing the transaction will actually
4789 * get us somewhere and then commit the transaction if it does. Otherwise it
4790 * will return -ENOSPC.
4791 */
4792 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4793 struct btrfs_space_info *space_info)
4794 {
4795 struct reserve_ticket *ticket = NULL;
4796 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4797 struct btrfs_trans_handle *trans;
4798 u64 bytes;
4799
4800 trans = (struct btrfs_trans_handle *)current->journal_info;
4801 if (trans)
4802 return -EAGAIN;
4803
4804 spin_lock(&space_info->lock);
4805 if (!list_empty(&space_info->priority_tickets))
4806 ticket = list_first_entry(&space_info->priority_tickets,
4807 struct reserve_ticket, list);
4808 else if (!list_empty(&space_info->tickets))
4809 ticket = list_first_entry(&space_info->tickets,
4810 struct reserve_ticket, list);
4811 bytes = (ticket) ? ticket->bytes : 0;
4812 spin_unlock(&space_info->lock);
4813
4814 if (!bytes)
4815 return 0;
4816
4817 /* See if there is enough pinned space to make this reservation */
4818 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4819 bytes,
4820 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4821 goto commit;
4822
4823 /*
4824 * See if there is some space in the delayed insertion reservation for
4825 * this reservation.
4826 */
4827 if (space_info != delayed_rsv->space_info)
4828 return -ENOSPC;
4829
4830 spin_lock(&delayed_rsv->lock);
4831 if (delayed_rsv->size > bytes)
4832 bytes = 0;
4833 else
4834 bytes -= delayed_rsv->size;
4835 spin_unlock(&delayed_rsv->lock);
4836
4837 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4838 bytes,
4839 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4840 return -ENOSPC;
4841 }
4842
4843 commit:
4844 trans = btrfs_join_transaction(fs_info->extent_root);
4845 if (IS_ERR(trans))
4846 return -ENOSPC;
4847
4848 return btrfs_commit_transaction(trans);
4849 }
4850
4851 /*
4852 * Try to flush some data based on policy set by @state. This is only advisory
4853 * and may fail for various reasons. The caller is supposed to examine the
4854 * state of @space_info to detect the outcome.
4855 */
4856 static void flush_space(struct btrfs_fs_info *fs_info,
4857 struct btrfs_space_info *space_info, u64 num_bytes,
4858 int state)
4859 {
4860 struct btrfs_root *root = fs_info->extent_root;
4861 struct btrfs_trans_handle *trans;
4862 int nr;
4863 int ret = 0;
4864
4865 switch (state) {
4866 case FLUSH_DELAYED_ITEMS_NR:
4867 case FLUSH_DELAYED_ITEMS:
4868 if (state == FLUSH_DELAYED_ITEMS_NR)
4869 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4870 else
4871 nr = -1;
4872
4873 trans = btrfs_join_transaction(root);
4874 if (IS_ERR(trans)) {
4875 ret = PTR_ERR(trans);
4876 break;
4877 }
4878 ret = btrfs_run_delayed_items_nr(trans, nr);
4879 btrfs_end_transaction(trans);
4880 break;
4881 case FLUSH_DELALLOC:
4882 case FLUSH_DELALLOC_WAIT:
4883 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4884 state == FLUSH_DELALLOC_WAIT);
4885 break;
4886 case ALLOC_CHUNK:
4887 trans = btrfs_join_transaction(root);
4888 if (IS_ERR(trans)) {
4889 ret = PTR_ERR(trans);
4890 break;
4891 }
4892 ret = do_chunk_alloc(trans,
4893 btrfs_metadata_alloc_profile(fs_info),
4894 CHUNK_ALLOC_NO_FORCE);
4895 btrfs_end_transaction(trans);
4896 if (ret > 0 || ret == -ENOSPC)
4897 ret = 0;
4898 break;
4899 case COMMIT_TRANS:
4900 ret = may_commit_transaction(fs_info, space_info);
4901 break;
4902 default:
4903 ret = -ENOSPC;
4904 break;
4905 }
4906
4907 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4908 ret);
4909 return;
4910 }
4911
4912 static inline u64
4913 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4914 struct btrfs_space_info *space_info,
4915 bool system_chunk)
4916 {
4917 struct reserve_ticket *ticket;
4918 u64 used;
4919 u64 expected;
4920 u64 to_reclaim = 0;
4921
4922 list_for_each_entry(ticket, &space_info->tickets, list)
4923 to_reclaim += ticket->bytes;
4924 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4925 to_reclaim += ticket->bytes;
4926 if (to_reclaim)
4927 return to_reclaim;
4928
4929 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4930 if (can_overcommit(fs_info, space_info, to_reclaim,
4931 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4932 return 0;
4933
4934 used = btrfs_space_info_used(space_info, true);
4935
4936 if (can_overcommit(fs_info, space_info, SZ_1M,
4937 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4938 expected = div_factor_fine(space_info->total_bytes, 95);
4939 else
4940 expected = div_factor_fine(space_info->total_bytes, 90);
4941
4942 if (used > expected)
4943 to_reclaim = used - expected;
4944 else
4945 to_reclaim = 0;
4946 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4947 space_info->bytes_reserved);
4948 return to_reclaim;
4949 }
4950
4951 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4952 struct btrfs_space_info *space_info,
4953 u64 used, bool system_chunk)
4954 {
4955 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4956
4957 /* If we're just plain full then async reclaim just slows us down. */
4958 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4959 return 0;
4960
4961 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4962 system_chunk))
4963 return 0;
4964
4965 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4966 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4967 }
4968
4969 static void wake_all_tickets(struct list_head *head)
4970 {
4971 struct reserve_ticket *ticket;
4972
4973 while (!list_empty(head)) {
4974 ticket = list_first_entry(head, struct reserve_ticket, list);
4975 list_del_init(&ticket->list);
4976 ticket->error = -ENOSPC;
4977 wake_up(&ticket->wait);
4978 }
4979 }
4980
4981 /*
4982 * This is for normal flushers, we can wait all goddamned day if we want to. We
4983 * will loop and continuously try to flush as long as we are making progress.
4984 * We count progress as clearing off tickets each time we have to loop.
4985 */
4986 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4987 {
4988 struct btrfs_fs_info *fs_info;
4989 struct btrfs_space_info *space_info;
4990 u64 to_reclaim;
4991 int flush_state;
4992 int commit_cycles = 0;
4993 u64 last_tickets_id;
4994
4995 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4996 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4997
4998 spin_lock(&space_info->lock);
4999 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5000 false);
5001 if (!to_reclaim) {
5002 space_info->flush = 0;
5003 spin_unlock(&space_info->lock);
5004 return;
5005 }
5006 last_tickets_id = space_info->tickets_id;
5007 spin_unlock(&space_info->lock);
5008
5009 flush_state = FLUSH_DELAYED_ITEMS_NR;
5010 do {
5011 flush_space(fs_info, space_info, to_reclaim, flush_state);
5012 spin_lock(&space_info->lock);
5013 if (list_empty(&space_info->tickets)) {
5014 space_info->flush = 0;
5015 spin_unlock(&space_info->lock);
5016 return;
5017 }
5018 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5019 space_info,
5020 false);
5021 if (last_tickets_id == space_info->tickets_id) {
5022 flush_state++;
5023 } else {
5024 last_tickets_id = space_info->tickets_id;
5025 flush_state = FLUSH_DELAYED_ITEMS_NR;
5026 if (commit_cycles)
5027 commit_cycles--;
5028 }
5029
5030 if (flush_state > COMMIT_TRANS) {
5031 commit_cycles++;
5032 if (commit_cycles > 2) {
5033 wake_all_tickets(&space_info->tickets);
5034 space_info->flush = 0;
5035 } else {
5036 flush_state = FLUSH_DELAYED_ITEMS_NR;
5037 }
5038 }
5039 spin_unlock(&space_info->lock);
5040 } while (flush_state <= COMMIT_TRANS);
5041 }
5042
5043 void btrfs_init_async_reclaim_work(struct work_struct *work)
5044 {
5045 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5046 }
5047
5048 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5049 struct btrfs_space_info *space_info,
5050 struct reserve_ticket *ticket)
5051 {
5052 u64 to_reclaim;
5053 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5054
5055 spin_lock(&space_info->lock);
5056 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5057 false);
5058 if (!to_reclaim) {
5059 spin_unlock(&space_info->lock);
5060 return;
5061 }
5062 spin_unlock(&space_info->lock);
5063
5064 do {
5065 flush_space(fs_info, space_info, to_reclaim, flush_state);
5066 flush_state++;
5067 spin_lock(&space_info->lock);
5068 if (ticket->bytes == 0) {
5069 spin_unlock(&space_info->lock);
5070 return;
5071 }
5072 spin_unlock(&space_info->lock);
5073
5074 /*
5075 * Priority flushers can't wait on delalloc without
5076 * deadlocking.
5077 */
5078 if (flush_state == FLUSH_DELALLOC ||
5079 flush_state == FLUSH_DELALLOC_WAIT)
5080 flush_state = ALLOC_CHUNK;
5081 } while (flush_state < COMMIT_TRANS);
5082 }
5083
5084 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5085 struct btrfs_space_info *space_info,
5086 struct reserve_ticket *ticket, u64 orig_bytes)
5087
5088 {
5089 DEFINE_WAIT(wait);
5090 int ret = 0;
5091
5092 spin_lock(&space_info->lock);
5093 while (ticket->bytes > 0 && ticket->error == 0) {
5094 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5095 if (ret) {
5096 ret = -EINTR;
5097 break;
5098 }
5099 spin_unlock(&space_info->lock);
5100
5101 schedule();
5102
5103 finish_wait(&ticket->wait, &wait);
5104 spin_lock(&space_info->lock);
5105 }
5106 if (!ret)
5107 ret = ticket->error;
5108 if (!list_empty(&ticket->list))
5109 list_del_init(&ticket->list);
5110 if (ticket->bytes && ticket->bytes < orig_bytes) {
5111 u64 num_bytes = orig_bytes - ticket->bytes;
5112 space_info->bytes_may_use -= num_bytes;
5113 trace_btrfs_space_reservation(fs_info, "space_info",
5114 space_info->flags, num_bytes, 0);
5115 }
5116 spin_unlock(&space_info->lock);
5117
5118 return ret;
5119 }
5120
5121 /**
5122 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5123 * @root - the root we're allocating for
5124 * @space_info - the space info we want to allocate from
5125 * @orig_bytes - the number of bytes we want
5126 * @flush - whether or not we can flush to make our reservation
5127 *
5128 * This will reserve orig_bytes number of bytes from the space info associated
5129 * with the block_rsv. If there is not enough space it will make an attempt to
5130 * flush out space to make room. It will do this by flushing delalloc if
5131 * possible or committing the transaction. If flush is 0 then no attempts to
5132 * regain reservations will be made and this will fail if there is not enough
5133 * space already.
5134 */
5135 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5136 struct btrfs_space_info *space_info,
5137 u64 orig_bytes,
5138 enum btrfs_reserve_flush_enum flush,
5139 bool system_chunk)
5140 {
5141 struct reserve_ticket ticket;
5142 u64 used;
5143 int ret = 0;
5144
5145 ASSERT(orig_bytes);
5146 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5147
5148 spin_lock(&space_info->lock);
5149 ret = -ENOSPC;
5150 used = btrfs_space_info_used(space_info, true);
5151
5152 /*
5153 * If we have enough space then hooray, make our reservation and carry
5154 * on. If not see if we can overcommit, and if we can, hooray carry on.
5155 * If not things get more complicated.
5156 */
5157 if (used + orig_bytes <= space_info->total_bytes) {
5158 space_info->bytes_may_use += orig_bytes;
5159 trace_btrfs_space_reservation(fs_info, "space_info",
5160 space_info->flags, orig_bytes, 1);
5161 ret = 0;
5162 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5163 system_chunk)) {
5164 space_info->bytes_may_use += orig_bytes;
5165 trace_btrfs_space_reservation(fs_info, "space_info",
5166 space_info->flags, orig_bytes, 1);
5167 ret = 0;
5168 }
5169
5170 /*
5171 * If we couldn't make a reservation then setup our reservation ticket
5172 * and kick the async worker if it's not already running.
5173 *
5174 * If we are a priority flusher then we just need to add our ticket to
5175 * the list and we will do our own flushing further down.
5176 */
5177 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5178 ticket.bytes = orig_bytes;
5179 ticket.error = 0;
5180 init_waitqueue_head(&ticket.wait);
5181 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5182 list_add_tail(&ticket.list, &space_info->tickets);
5183 if (!space_info->flush) {
5184 space_info->flush = 1;
5185 trace_btrfs_trigger_flush(fs_info,
5186 space_info->flags,
5187 orig_bytes, flush,
5188 "enospc");
5189 queue_work(system_unbound_wq,
5190 &fs_info->async_reclaim_work);
5191 }
5192 } else {
5193 list_add_tail(&ticket.list,
5194 &space_info->priority_tickets);
5195 }
5196 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5197 used += orig_bytes;
5198 /*
5199 * We will do the space reservation dance during log replay,
5200 * which means we won't have fs_info->fs_root set, so don't do
5201 * the async reclaim as we will panic.
5202 */
5203 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5204 need_do_async_reclaim(fs_info, space_info,
5205 used, system_chunk) &&
5206 !work_busy(&fs_info->async_reclaim_work)) {
5207 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5208 orig_bytes, flush, "preempt");
5209 queue_work(system_unbound_wq,
5210 &fs_info->async_reclaim_work);
5211 }
5212 }
5213 spin_unlock(&space_info->lock);
5214 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5215 return ret;
5216
5217 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5218 return wait_reserve_ticket(fs_info, space_info, &ticket,
5219 orig_bytes);
5220
5221 ret = 0;
5222 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5223 spin_lock(&space_info->lock);
5224 if (ticket.bytes) {
5225 if (ticket.bytes < orig_bytes) {
5226 u64 num_bytes = orig_bytes - ticket.bytes;
5227 space_info->bytes_may_use -= num_bytes;
5228 trace_btrfs_space_reservation(fs_info, "space_info",
5229 space_info->flags,
5230 num_bytes, 0);
5231
5232 }
5233 list_del_init(&ticket.list);
5234 ret = -ENOSPC;
5235 }
5236 spin_unlock(&space_info->lock);
5237 ASSERT(list_empty(&ticket.list));
5238 return ret;
5239 }
5240
5241 /**
5242 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5243 * @root - the root we're allocating for
5244 * @block_rsv - the block_rsv we're allocating for
5245 * @orig_bytes - the number of bytes we want
5246 * @flush - whether or not we can flush to make our reservation
5247 *
5248 * This will reserve orgi_bytes number of bytes from the space info associated
5249 * with the block_rsv. If there is not enough space it will make an attempt to
5250 * flush out space to make room. It will do this by flushing delalloc if
5251 * possible or committing the transaction. If flush is 0 then no attempts to
5252 * regain reservations will be made and this will fail if there is not enough
5253 * space already.
5254 */
5255 static int reserve_metadata_bytes(struct btrfs_root *root,
5256 struct btrfs_block_rsv *block_rsv,
5257 u64 orig_bytes,
5258 enum btrfs_reserve_flush_enum flush)
5259 {
5260 struct btrfs_fs_info *fs_info = root->fs_info;
5261 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5262 int ret;
5263 bool system_chunk = (root == fs_info->chunk_root);
5264
5265 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5266 orig_bytes, flush, system_chunk);
5267 if (ret == -ENOSPC &&
5268 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5269 if (block_rsv != global_rsv &&
5270 !block_rsv_use_bytes(global_rsv, orig_bytes))
5271 ret = 0;
5272 }
5273 if (ret == -ENOSPC) {
5274 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5275 block_rsv->space_info->flags,
5276 orig_bytes, 1);
5277
5278 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5279 dump_space_info(fs_info, block_rsv->space_info,
5280 orig_bytes, 0);
5281 }
5282 return ret;
5283 }
5284
5285 static struct btrfs_block_rsv *get_block_rsv(
5286 const struct btrfs_trans_handle *trans,
5287 const struct btrfs_root *root)
5288 {
5289 struct btrfs_fs_info *fs_info = root->fs_info;
5290 struct btrfs_block_rsv *block_rsv = NULL;
5291
5292 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5293 (root == fs_info->csum_root && trans->adding_csums) ||
5294 (root == fs_info->uuid_root))
5295 block_rsv = trans->block_rsv;
5296
5297 if (!block_rsv)
5298 block_rsv = root->block_rsv;
5299
5300 if (!block_rsv)
5301 block_rsv = &fs_info->empty_block_rsv;
5302
5303 return block_rsv;
5304 }
5305
5306 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5307 u64 num_bytes)
5308 {
5309 int ret = -ENOSPC;
5310 spin_lock(&block_rsv->lock);
5311 if (block_rsv->reserved >= num_bytes) {
5312 block_rsv->reserved -= num_bytes;
5313 if (block_rsv->reserved < block_rsv->size)
5314 block_rsv->full = 0;
5315 ret = 0;
5316 }
5317 spin_unlock(&block_rsv->lock);
5318 return ret;
5319 }
5320
5321 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5322 u64 num_bytes, bool update_size)
5323 {
5324 spin_lock(&block_rsv->lock);
5325 block_rsv->reserved += num_bytes;
5326 if (update_size)
5327 block_rsv->size += num_bytes;
5328 else if (block_rsv->reserved >= block_rsv->size)
5329 block_rsv->full = 1;
5330 spin_unlock(&block_rsv->lock);
5331 }
5332
5333 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5334 struct btrfs_block_rsv *dest, u64 num_bytes,
5335 int min_factor)
5336 {
5337 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5338 u64 min_bytes;
5339
5340 if (global_rsv->space_info != dest->space_info)
5341 return -ENOSPC;
5342
5343 spin_lock(&global_rsv->lock);
5344 min_bytes = div_factor(global_rsv->size, min_factor);
5345 if (global_rsv->reserved < min_bytes + num_bytes) {
5346 spin_unlock(&global_rsv->lock);
5347 return -ENOSPC;
5348 }
5349 global_rsv->reserved -= num_bytes;
5350 if (global_rsv->reserved < global_rsv->size)
5351 global_rsv->full = 0;
5352 spin_unlock(&global_rsv->lock);
5353
5354 block_rsv_add_bytes(dest, num_bytes, true);
5355 return 0;
5356 }
5357
5358 /*
5359 * This is for space we already have accounted in space_info->bytes_may_use, so
5360 * basically when we're returning space from block_rsv's.
5361 */
5362 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5363 struct btrfs_space_info *space_info,
5364 u64 num_bytes)
5365 {
5366 struct reserve_ticket *ticket;
5367 struct list_head *head;
5368 u64 used;
5369 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5370 bool check_overcommit = false;
5371
5372 spin_lock(&space_info->lock);
5373 head = &space_info->priority_tickets;
5374
5375 /*
5376 * If we are over our limit then we need to check and see if we can
5377 * overcommit, and if we can't then we just need to free up our space
5378 * and not satisfy any requests.
5379 */
5380 used = btrfs_space_info_used(space_info, true);
5381 if (used - num_bytes >= space_info->total_bytes)
5382 check_overcommit = true;
5383 again:
5384 while (!list_empty(head) && num_bytes) {
5385 ticket = list_first_entry(head, struct reserve_ticket,
5386 list);
5387 /*
5388 * We use 0 bytes because this space is already reserved, so
5389 * adding the ticket space would be a double count.
5390 */
5391 if (check_overcommit &&
5392 !can_overcommit(fs_info, space_info, 0, flush, false))
5393 break;
5394 if (num_bytes >= ticket->bytes) {
5395 list_del_init(&ticket->list);
5396 num_bytes -= ticket->bytes;
5397 ticket->bytes = 0;
5398 space_info->tickets_id++;
5399 wake_up(&ticket->wait);
5400 } else {
5401 ticket->bytes -= num_bytes;
5402 num_bytes = 0;
5403 }
5404 }
5405
5406 if (num_bytes && head == &space_info->priority_tickets) {
5407 head = &space_info->tickets;
5408 flush = BTRFS_RESERVE_FLUSH_ALL;
5409 goto again;
5410 }
5411 space_info->bytes_may_use -= num_bytes;
5412 trace_btrfs_space_reservation(fs_info, "space_info",
5413 space_info->flags, num_bytes, 0);
5414 spin_unlock(&space_info->lock);
5415 }
5416
5417 /*
5418 * This is for newly allocated space that isn't accounted in
5419 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5420 * we use this helper.
5421 */
5422 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5423 struct btrfs_space_info *space_info,
5424 u64 num_bytes)
5425 {
5426 struct reserve_ticket *ticket;
5427 struct list_head *head = &space_info->priority_tickets;
5428
5429 again:
5430 while (!list_empty(head) && num_bytes) {
5431 ticket = list_first_entry(head, struct reserve_ticket,
5432 list);
5433 if (num_bytes >= ticket->bytes) {
5434 trace_btrfs_space_reservation(fs_info, "space_info",
5435 space_info->flags,
5436 ticket->bytes, 1);
5437 list_del_init(&ticket->list);
5438 num_bytes -= ticket->bytes;
5439 space_info->bytes_may_use += ticket->bytes;
5440 ticket->bytes = 0;
5441 space_info->tickets_id++;
5442 wake_up(&ticket->wait);
5443 } else {
5444 trace_btrfs_space_reservation(fs_info, "space_info",
5445 space_info->flags,
5446 num_bytes, 1);
5447 space_info->bytes_may_use += num_bytes;
5448 ticket->bytes -= num_bytes;
5449 num_bytes = 0;
5450 }
5451 }
5452
5453 if (num_bytes && head == &space_info->priority_tickets) {
5454 head = &space_info->tickets;
5455 goto again;
5456 }
5457 }
5458
5459 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5460 struct btrfs_block_rsv *block_rsv,
5461 struct btrfs_block_rsv *dest, u64 num_bytes,
5462 u64 *qgroup_to_release_ret)
5463 {
5464 struct btrfs_space_info *space_info = block_rsv->space_info;
5465 u64 qgroup_to_release = 0;
5466 u64 ret;
5467
5468 spin_lock(&block_rsv->lock);
5469 if (num_bytes == (u64)-1) {
5470 num_bytes = block_rsv->size;
5471 qgroup_to_release = block_rsv->qgroup_rsv_size;
5472 }
5473 block_rsv->size -= num_bytes;
5474 if (block_rsv->reserved >= block_rsv->size) {
5475 num_bytes = block_rsv->reserved - block_rsv->size;
5476 block_rsv->reserved = block_rsv->size;
5477 block_rsv->full = 1;
5478 } else {
5479 num_bytes = 0;
5480 }
5481 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5482 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5483 block_rsv->qgroup_rsv_size;
5484 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5485 } else {
5486 qgroup_to_release = 0;
5487 }
5488 spin_unlock(&block_rsv->lock);
5489
5490 ret = num_bytes;
5491 if (num_bytes > 0) {
5492 if (dest) {
5493 spin_lock(&dest->lock);
5494 if (!dest->full) {
5495 u64 bytes_to_add;
5496
5497 bytes_to_add = dest->size - dest->reserved;
5498 bytes_to_add = min(num_bytes, bytes_to_add);
5499 dest->reserved += bytes_to_add;
5500 if (dest->reserved >= dest->size)
5501 dest->full = 1;
5502 num_bytes -= bytes_to_add;
5503 }
5504 spin_unlock(&dest->lock);
5505 }
5506 if (num_bytes)
5507 space_info_add_old_bytes(fs_info, space_info,
5508 num_bytes);
5509 }
5510 if (qgroup_to_release_ret)
5511 *qgroup_to_release_ret = qgroup_to_release;
5512 return ret;
5513 }
5514
5515 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5516 struct btrfs_block_rsv *dst, u64 num_bytes,
5517 bool update_size)
5518 {
5519 int ret;
5520
5521 ret = block_rsv_use_bytes(src, num_bytes);
5522 if (ret)
5523 return ret;
5524
5525 block_rsv_add_bytes(dst, num_bytes, update_size);
5526 return 0;
5527 }
5528
5529 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5530 {
5531 memset(rsv, 0, sizeof(*rsv));
5532 spin_lock_init(&rsv->lock);
5533 rsv->type = type;
5534 }
5535
5536 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5537 struct btrfs_block_rsv *rsv,
5538 unsigned short type)
5539 {
5540 btrfs_init_block_rsv(rsv, type);
5541 rsv->space_info = __find_space_info(fs_info,
5542 BTRFS_BLOCK_GROUP_METADATA);
5543 }
5544
5545 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5546 unsigned short type)
5547 {
5548 struct btrfs_block_rsv *block_rsv;
5549
5550 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5551 if (!block_rsv)
5552 return NULL;
5553
5554 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5555 return block_rsv;
5556 }
5557
5558 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5559 struct btrfs_block_rsv *rsv)
5560 {
5561 if (!rsv)
5562 return;
5563 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5564 kfree(rsv);
5565 }
5566
5567 int btrfs_block_rsv_add(struct btrfs_root *root,
5568 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5569 enum btrfs_reserve_flush_enum flush)
5570 {
5571 int ret;
5572
5573 if (num_bytes == 0)
5574 return 0;
5575
5576 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5577 if (!ret)
5578 block_rsv_add_bytes(block_rsv, num_bytes, true);
5579
5580 return ret;
5581 }
5582
5583 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5584 {
5585 u64 num_bytes = 0;
5586 int ret = -ENOSPC;
5587
5588 if (!block_rsv)
5589 return 0;
5590
5591 spin_lock(&block_rsv->lock);
5592 num_bytes = div_factor(block_rsv->size, min_factor);
5593 if (block_rsv->reserved >= num_bytes)
5594 ret = 0;
5595 spin_unlock(&block_rsv->lock);
5596
5597 return ret;
5598 }
5599
5600 int btrfs_block_rsv_refill(struct btrfs_root *root,
5601 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5602 enum btrfs_reserve_flush_enum flush)
5603 {
5604 u64 num_bytes = 0;
5605 int ret = -ENOSPC;
5606
5607 if (!block_rsv)
5608 return 0;
5609
5610 spin_lock(&block_rsv->lock);
5611 num_bytes = min_reserved;
5612 if (block_rsv->reserved >= num_bytes)
5613 ret = 0;
5614 else
5615 num_bytes -= block_rsv->reserved;
5616 spin_unlock(&block_rsv->lock);
5617
5618 if (!ret)
5619 return 0;
5620
5621 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5622 if (!ret) {
5623 block_rsv_add_bytes(block_rsv, num_bytes, false);
5624 return 0;
5625 }
5626
5627 return ret;
5628 }
5629
5630 /**
5631 * btrfs_inode_rsv_refill - refill the inode block rsv.
5632 * @inode - the inode we are refilling.
5633 * @flush - the flusing restriction.
5634 *
5635 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5636 * block_rsv->size as the minimum size. We'll either refill the missing amount
5637 * or return if we already have enough space. This will also handle the resreve
5638 * tracepoint for the reserved amount.
5639 */
5640 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5641 enum btrfs_reserve_flush_enum flush)
5642 {
5643 struct btrfs_root *root = inode->root;
5644 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5645 u64 num_bytes = 0;
5646 u64 qgroup_num_bytes = 0;
5647 int ret = -ENOSPC;
5648
5649 spin_lock(&block_rsv->lock);
5650 if (block_rsv->reserved < block_rsv->size)
5651 num_bytes = block_rsv->size - block_rsv->reserved;
5652 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5653 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5654 block_rsv->qgroup_rsv_reserved;
5655 spin_unlock(&block_rsv->lock);
5656
5657 if (num_bytes == 0)
5658 return 0;
5659
5660 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5661 if (ret)
5662 return ret;
5663 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5664 if (!ret) {
5665 block_rsv_add_bytes(block_rsv, num_bytes, false);
5666 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5667 btrfs_ino(inode), num_bytes, 1);
5668
5669 /* Don't forget to increase qgroup_rsv_reserved */
5670 spin_lock(&block_rsv->lock);
5671 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5672 spin_unlock(&block_rsv->lock);
5673 } else
5674 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5675 return ret;
5676 }
5677
5678 /**
5679 * btrfs_inode_rsv_release - release any excessive reservation.
5680 * @inode - the inode we need to release from.
5681 * @qgroup_free - free or convert qgroup meta.
5682 * Unlike normal operation, qgroup meta reservation needs to know if we are
5683 * freeing qgroup reservation or just converting it into per-trans. Normally
5684 * @qgroup_free is true for error handling, and false for normal release.
5685 *
5686 * This is the same as btrfs_block_rsv_release, except that it handles the
5687 * tracepoint for the reservation.
5688 */
5689 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5690 {
5691 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5692 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5693 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5694 u64 released = 0;
5695 u64 qgroup_to_release = 0;
5696
5697 /*
5698 * Since we statically set the block_rsv->size we just want to say we
5699 * are releasing 0 bytes, and then we'll just get the reservation over
5700 * the size free'd.
5701 */
5702 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5703 &qgroup_to_release);
5704 if (released > 0)
5705 trace_btrfs_space_reservation(fs_info, "delalloc",
5706 btrfs_ino(inode), released, 0);
5707 if (qgroup_free)
5708 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5709 else
5710 btrfs_qgroup_convert_reserved_meta(inode->root,
5711 qgroup_to_release);
5712 }
5713
5714 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5715 struct btrfs_block_rsv *block_rsv,
5716 u64 num_bytes)
5717 {
5718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5719
5720 if (global_rsv == block_rsv ||
5721 block_rsv->space_info != global_rsv->space_info)
5722 global_rsv = NULL;
5723 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5724 }
5725
5726 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5727 {
5728 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5729 struct btrfs_space_info *sinfo = block_rsv->space_info;
5730 u64 num_bytes;
5731
5732 /*
5733 * The global block rsv is based on the size of the extent tree, the
5734 * checksum tree and the root tree. If the fs is empty we want to set
5735 * it to a minimal amount for safety.
5736 */
5737 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5738 btrfs_root_used(&fs_info->csum_root->root_item) +
5739 btrfs_root_used(&fs_info->tree_root->root_item);
5740 num_bytes = max_t(u64, num_bytes, SZ_16M);
5741
5742 spin_lock(&sinfo->lock);
5743 spin_lock(&block_rsv->lock);
5744
5745 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5746
5747 if (block_rsv->reserved < block_rsv->size) {
5748 num_bytes = btrfs_space_info_used(sinfo, true);
5749 if (sinfo->total_bytes > num_bytes) {
5750 num_bytes = sinfo->total_bytes - num_bytes;
5751 num_bytes = min(num_bytes,
5752 block_rsv->size - block_rsv->reserved);
5753 block_rsv->reserved += num_bytes;
5754 sinfo->bytes_may_use += num_bytes;
5755 trace_btrfs_space_reservation(fs_info, "space_info",
5756 sinfo->flags, num_bytes,
5757 1);
5758 }
5759 } else if (block_rsv->reserved > block_rsv->size) {
5760 num_bytes = block_rsv->reserved - block_rsv->size;
5761 sinfo->bytes_may_use -= num_bytes;
5762 trace_btrfs_space_reservation(fs_info, "space_info",
5763 sinfo->flags, num_bytes, 0);
5764 block_rsv->reserved = block_rsv->size;
5765 }
5766
5767 if (block_rsv->reserved == block_rsv->size)
5768 block_rsv->full = 1;
5769 else
5770 block_rsv->full = 0;
5771
5772 spin_unlock(&block_rsv->lock);
5773 spin_unlock(&sinfo->lock);
5774 }
5775
5776 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5777 {
5778 struct btrfs_space_info *space_info;
5779
5780 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5781 fs_info->chunk_block_rsv.space_info = space_info;
5782
5783 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5784 fs_info->global_block_rsv.space_info = space_info;
5785 fs_info->trans_block_rsv.space_info = space_info;
5786 fs_info->empty_block_rsv.space_info = space_info;
5787 fs_info->delayed_block_rsv.space_info = space_info;
5788
5789 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5790 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5791 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5792 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5793 if (fs_info->quota_root)
5794 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5795 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5796
5797 update_global_block_rsv(fs_info);
5798 }
5799
5800 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5801 {
5802 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5803 (u64)-1, NULL);
5804 WARN_ON(fs_info->trans_block_rsv.size > 0);
5805 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5806 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5807 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5808 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5809 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5810 }
5811
5812
5813 /*
5814 * To be called after all the new block groups attached to the transaction
5815 * handle have been created (btrfs_create_pending_block_groups()).
5816 */
5817 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5818 {
5819 struct btrfs_fs_info *fs_info = trans->fs_info;
5820
5821 if (!trans->chunk_bytes_reserved)
5822 return;
5823
5824 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5825
5826 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5827 trans->chunk_bytes_reserved, NULL);
5828 trans->chunk_bytes_reserved = 0;
5829 }
5830
5831 /*
5832 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5833 * root: the root of the parent directory
5834 * rsv: block reservation
5835 * items: the number of items that we need do reservation
5836 * use_global_rsv: allow fallback to the global block reservation
5837 *
5838 * This function is used to reserve the space for snapshot/subvolume
5839 * creation and deletion. Those operations are different with the
5840 * common file/directory operations, they change two fs/file trees
5841 * and root tree, the number of items that the qgroup reserves is
5842 * different with the free space reservation. So we can not use
5843 * the space reservation mechanism in start_transaction().
5844 */
5845 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5846 struct btrfs_block_rsv *rsv, int items,
5847 bool use_global_rsv)
5848 {
5849 u64 qgroup_num_bytes = 0;
5850 u64 num_bytes;
5851 int ret;
5852 struct btrfs_fs_info *fs_info = root->fs_info;
5853 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5854
5855 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5856 /* One for parent inode, two for dir entries */
5857 qgroup_num_bytes = 3 * fs_info->nodesize;
5858 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5859 qgroup_num_bytes, true);
5860 if (ret)
5861 return ret;
5862 }
5863
5864 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5865 rsv->space_info = __find_space_info(fs_info,
5866 BTRFS_BLOCK_GROUP_METADATA);
5867 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5868 BTRFS_RESERVE_FLUSH_ALL);
5869
5870 if (ret == -ENOSPC && use_global_rsv)
5871 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
5872
5873 if (ret && qgroup_num_bytes)
5874 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5875
5876 return ret;
5877 }
5878
5879 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5880 struct btrfs_block_rsv *rsv)
5881 {
5882 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5883 }
5884
5885 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5886 struct btrfs_inode *inode)
5887 {
5888 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5889 u64 reserve_size = 0;
5890 u64 qgroup_rsv_size = 0;
5891 u64 csum_leaves;
5892 unsigned outstanding_extents;
5893
5894 lockdep_assert_held(&inode->lock);
5895 outstanding_extents = inode->outstanding_extents;
5896 if (outstanding_extents)
5897 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5898 outstanding_extents + 1);
5899 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5900 inode->csum_bytes);
5901 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5902 csum_leaves);
5903 /*
5904 * For qgroup rsv, the calculation is very simple:
5905 * account one nodesize for each outstanding extent
5906 *
5907 * This is overestimating in most cases.
5908 */
5909 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
5910
5911 spin_lock(&block_rsv->lock);
5912 block_rsv->size = reserve_size;
5913 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5914 spin_unlock(&block_rsv->lock);
5915 }
5916
5917 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5918 {
5919 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5920 unsigned nr_extents;
5921 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5922 int ret = 0;
5923 bool delalloc_lock = true;
5924
5925 /* If we are a free space inode we need to not flush since we will be in
5926 * the middle of a transaction commit. We also don't need the delalloc
5927 * mutex since we won't race with anybody. We need this mostly to make
5928 * lockdep shut its filthy mouth.
5929 *
5930 * If we have a transaction open (can happen if we call truncate_block
5931 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5932 */
5933 if (btrfs_is_free_space_inode(inode)) {
5934 flush = BTRFS_RESERVE_NO_FLUSH;
5935 delalloc_lock = false;
5936 } else {
5937 if (current->journal_info)
5938 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5939
5940 if (btrfs_transaction_in_commit(fs_info))
5941 schedule_timeout(1);
5942 }
5943
5944 if (delalloc_lock)
5945 mutex_lock(&inode->delalloc_mutex);
5946
5947 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5948
5949 /* Add our new extents and calculate the new rsv size. */
5950 spin_lock(&inode->lock);
5951 nr_extents = count_max_extents(num_bytes);
5952 btrfs_mod_outstanding_extents(inode, nr_extents);
5953 inode->csum_bytes += num_bytes;
5954 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5955 spin_unlock(&inode->lock);
5956
5957 ret = btrfs_inode_rsv_refill(inode, flush);
5958 if (unlikely(ret))
5959 goto out_fail;
5960
5961 if (delalloc_lock)
5962 mutex_unlock(&inode->delalloc_mutex);
5963 return 0;
5964
5965 out_fail:
5966 spin_lock(&inode->lock);
5967 nr_extents = count_max_extents(num_bytes);
5968 btrfs_mod_outstanding_extents(inode, -nr_extents);
5969 inode->csum_bytes -= num_bytes;
5970 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5971 spin_unlock(&inode->lock);
5972
5973 btrfs_inode_rsv_release(inode, true);
5974 if (delalloc_lock)
5975 mutex_unlock(&inode->delalloc_mutex);
5976 return ret;
5977 }
5978
5979 /**
5980 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5981 * @inode: the inode to release the reservation for.
5982 * @num_bytes: the number of bytes we are releasing.
5983 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5984 *
5985 * This will release the metadata reservation for an inode. This can be called
5986 * once we complete IO for a given set of bytes to release their metadata
5987 * reservations, or on error for the same reason.
5988 */
5989 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5990 bool qgroup_free)
5991 {
5992 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5993
5994 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5995 spin_lock(&inode->lock);
5996 inode->csum_bytes -= num_bytes;
5997 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5998 spin_unlock(&inode->lock);
5999
6000 if (btrfs_is_testing(fs_info))
6001 return;
6002
6003 btrfs_inode_rsv_release(inode, qgroup_free);
6004 }
6005
6006 /**
6007 * btrfs_delalloc_release_extents - release our outstanding_extents
6008 * @inode: the inode to balance the reservation for.
6009 * @num_bytes: the number of bytes we originally reserved with
6010 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6011 *
6012 * When we reserve space we increase outstanding_extents for the extents we may
6013 * add. Once we've set the range as delalloc or created our ordered extents we
6014 * have outstanding_extents to track the real usage, so we use this to free our
6015 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6016 * with btrfs_delalloc_reserve_metadata.
6017 */
6018 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6019 bool qgroup_free)
6020 {
6021 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6022 unsigned num_extents;
6023
6024 spin_lock(&inode->lock);
6025 num_extents = count_max_extents(num_bytes);
6026 btrfs_mod_outstanding_extents(inode, -num_extents);
6027 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6028 spin_unlock(&inode->lock);
6029
6030 if (btrfs_is_testing(fs_info))
6031 return;
6032
6033 btrfs_inode_rsv_release(inode, qgroup_free);
6034 }
6035
6036 /**
6037 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6038 * delalloc
6039 * @inode: inode we're writing to
6040 * @start: start range we are writing to
6041 * @len: how long the range we are writing to
6042 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6043 * current reservation.
6044 *
6045 * This will do the following things
6046 *
6047 * o reserve space in data space info for num bytes
6048 * and reserve precious corresponding qgroup space
6049 * (Done in check_data_free_space)
6050 *
6051 * o reserve space for metadata space, based on the number of outstanding
6052 * extents and how much csums will be needed
6053 * also reserve metadata space in a per root over-reserve method.
6054 * o add to the inodes->delalloc_bytes
6055 * o add it to the fs_info's delalloc inodes list.
6056 * (Above 3 all done in delalloc_reserve_metadata)
6057 *
6058 * Return 0 for success
6059 * Return <0 for error(-ENOSPC or -EQUOT)
6060 */
6061 int btrfs_delalloc_reserve_space(struct inode *inode,
6062 struct extent_changeset **reserved, u64 start, u64 len)
6063 {
6064 int ret;
6065
6066 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6067 if (ret < 0)
6068 return ret;
6069 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6070 if (ret < 0)
6071 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6072 return ret;
6073 }
6074
6075 /**
6076 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6077 * @inode: inode we're releasing space for
6078 * @start: start position of the space already reserved
6079 * @len: the len of the space already reserved
6080 * @release_bytes: the len of the space we consumed or didn't use
6081 *
6082 * This function will release the metadata space that was not used and will
6083 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6084 * list if there are no delalloc bytes left.
6085 * Also it will handle the qgroup reserved space.
6086 */
6087 void btrfs_delalloc_release_space(struct inode *inode,
6088 struct extent_changeset *reserved,
6089 u64 start, u64 len, bool qgroup_free)
6090 {
6091 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6092 btrfs_free_reserved_data_space(inode, reserved, start, len);
6093 }
6094
6095 static int update_block_group(struct btrfs_trans_handle *trans,
6096 struct btrfs_fs_info *info, u64 bytenr,
6097 u64 num_bytes, int alloc)
6098 {
6099 struct btrfs_block_group_cache *cache = NULL;
6100 u64 total = num_bytes;
6101 u64 old_val;
6102 u64 byte_in_group;
6103 int factor;
6104
6105 /* block accounting for super block */
6106 spin_lock(&info->delalloc_root_lock);
6107 old_val = btrfs_super_bytes_used(info->super_copy);
6108 if (alloc)
6109 old_val += num_bytes;
6110 else
6111 old_val -= num_bytes;
6112 btrfs_set_super_bytes_used(info->super_copy, old_val);
6113 spin_unlock(&info->delalloc_root_lock);
6114
6115 while (total) {
6116 cache = btrfs_lookup_block_group(info, bytenr);
6117 if (!cache)
6118 return -ENOENT;
6119 factor = btrfs_bg_type_to_factor(cache->flags);
6120
6121 /*
6122 * If this block group has free space cache written out, we
6123 * need to make sure to load it if we are removing space. This
6124 * is because we need the unpinning stage to actually add the
6125 * space back to the block group, otherwise we will leak space.
6126 */
6127 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6128 cache_block_group(cache, 1);
6129
6130 byte_in_group = bytenr - cache->key.objectid;
6131 WARN_ON(byte_in_group > cache->key.offset);
6132
6133 spin_lock(&cache->space_info->lock);
6134 spin_lock(&cache->lock);
6135
6136 if (btrfs_test_opt(info, SPACE_CACHE) &&
6137 cache->disk_cache_state < BTRFS_DC_CLEAR)
6138 cache->disk_cache_state = BTRFS_DC_CLEAR;
6139
6140 old_val = btrfs_block_group_used(&cache->item);
6141 num_bytes = min(total, cache->key.offset - byte_in_group);
6142 if (alloc) {
6143 old_val += num_bytes;
6144 btrfs_set_block_group_used(&cache->item, old_val);
6145 cache->reserved -= num_bytes;
6146 cache->space_info->bytes_reserved -= num_bytes;
6147 cache->space_info->bytes_used += num_bytes;
6148 cache->space_info->disk_used += num_bytes * factor;
6149 spin_unlock(&cache->lock);
6150 spin_unlock(&cache->space_info->lock);
6151 } else {
6152 old_val -= num_bytes;
6153 btrfs_set_block_group_used(&cache->item, old_val);
6154 cache->pinned += num_bytes;
6155 cache->space_info->bytes_pinned += num_bytes;
6156 cache->space_info->bytes_used -= num_bytes;
6157 cache->space_info->disk_used -= num_bytes * factor;
6158 spin_unlock(&cache->lock);
6159 spin_unlock(&cache->space_info->lock);
6160
6161 trace_btrfs_space_reservation(info, "pinned",
6162 cache->space_info->flags,
6163 num_bytes, 1);
6164 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6165 num_bytes,
6166 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6167 set_extent_dirty(info->pinned_extents,
6168 bytenr, bytenr + num_bytes - 1,
6169 GFP_NOFS | __GFP_NOFAIL);
6170 }
6171
6172 spin_lock(&trans->transaction->dirty_bgs_lock);
6173 if (list_empty(&cache->dirty_list)) {
6174 list_add_tail(&cache->dirty_list,
6175 &trans->transaction->dirty_bgs);
6176 trans->transaction->num_dirty_bgs++;
6177 btrfs_get_block_group(cache);
6178 }
6179 spin_unlock(&trans->transaction->dirty_bgs_lock);
6180
6181 /*
6182 * No longer have used bytes in this block group, queue it for
6183 * deletion. We do this after adding the block group to the
6184 * dirty list to avoid races between cleaner kthread and space
6185 * cache writeout.
6186 */
6187 if (!alloc && old_val == 0)
6188 btrfs_mark_bg_unused(cache);
6189
6190 btrfs_put_block_group(cache);
6191 total -= num_bytes;
6192 bytenr += num_bytes;
6193 }
6194 return 0;
6195 }
6196
6197 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6198 {
6199 struct btrfs_block_group_cache *cache;
6200 u64 bytenr;
6201
6202 spin_lock(&fs_info->block_group_cache_lock);
6203 bytenr = fs_info->first_logical_byte;
6204 spin_unlock(&fs_info->block_group_cache_lock);
6205
6206 if (bytenr < (u64)-1)
6207 return bytenr;
6208
6209 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6210 if (!cache)
6211 return 0;
6212
6213 bytenr = cache->key.objectid;
6214 btrfs_put_block_group(cache);
6215
6216 return bytenr;
6217 }
6218
6219 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6220 struct btrfs_block_group_cache *cache,
6221 u64 bytenr, u64 num_bytes, int reserved)
6222 {
6223 spin_lock(&cache->space_info->lock);
6224 spin_lock(&cache->lock);
6225 cache->pinned += num_bytes;
6226 cache->space_info->bytes_pinned += num_bytes;
6227 if (reserved) {
6228 cache->reserved -= num_bytes;
6229 cache->space_info->bytes_reserved -= num_bytes;
6230 }
6231 spin_unlock(&cache->lock);
6232 spin_unlock(&cache->space_info->lock);
6233
6234 trace_btrfs_space_reservation(fs_info, "pinned",
6235 cache->space_info->flags, num_bytes, 1);
6236 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6237 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6238 set_extent_dirty(fs_info->pinned_extents, bytenr,
6239 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6240 return 0;
6241 }
6242
6243 /*
6244 * this function must be called within transaction
6245 */
6246 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6247 u64 bytenr, u64 num_bytes, int reserved)
6248 {
6249 struct btrfs_block_group_cache *cache;
6250
6251 cache = btrfs_lookup_block_group(fs_info, bytenr);
6252 BUG_ON(!cache); /* Logic error */
6253
6254 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6255
6256 btrfs_put_block_group(cache);
6257 return 0;
6258 }
6259
6260 /*
6261 * this function must be called within transaction
6262 */
6263 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6264 u64 bytenr, u64 num_bytes)
6265 {
6266 struct btrfs_block_group_cache *cache;
6267 int ret;
6268
6269 cache = btrfs_lookup_block_group(fs_info, bytenr);
6270 if (!cache)
6271 return -EINVAL;
6272
6273 /*
6274 * pull in the free space cache (if any) so that our pin
6275 * removes the free space from the cache. We have load_only set
6276 * to one because the slow code to read in the free extents does check
6277 * the pinned extents.
6278 */
6279 cache_block_group(cache, 1);
6280
6281 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6282
6283 /* remove us from the free space cache (if we're there at all) */
6284 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6285 btrfs_put_block_group(cache);
6286 return ret;
6287 }
6288
6289 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6290 u64 start, u64 num_bytes)
6291 {
6292 int ret;
6293 struct btrfs_block_group_cache *block_group;
6294 struct btrfs_caching_control *caching_ctl;
6295
6296 block_group = btrfs_lookup_block_group(fs_info, start);
6297 if (!block_group)
6298 return -EINVAL;
6299
6300 cache_block_group(block_group, 0);
6301 caching_ctl = get_caching_control(block_group);
6302
6303 if (!caching_ctl) {
6304 /* Logic error */
6305 BUG_ON(!block_group_cache_done(block_group));
6306 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6307 } else {
6308 mutex_lock(&caching_ctl->mutex);
6309
6310 if (start >= caching_ctl->progress) {
6311 ret = add_excluded_extent(fs_info, start, num_bytes);
6312 } else if (start + num_bytes <= caching_ctl->progress) {
6313 ret = btrfs_remove_free_space(block_group,
6314 start, num_bytes);
6315 } else {
6316 num_bytes = caching_ctl->progress - start;
6317 ret = btrfs_remove_free_space(block_group,
6318 start, num_bytes);
6319 if (ret)
6320 goto out_lock;
6321
6322 num_bytes = (start + num_bytes) -
6323 caching_ctl->progress;
6324 start = caching_ctl->progress;
6325 ret = add_excluded_extent(fs_info, start, num_bytes);
6326 }
6327 out_lock:
6328 mutex_unlock(&caching_ctl->mutex);
6329 put_caching_control(caching_ctl);
6330 }
6331 btrfs_put_block_group(block_group);
6332 return ret;
6333 }
6334
6335 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6336 struct extent_buffer *eb)
6337 {
6338 struct btrfs_file_extent_item *item;
6339 struct btrfs_key key;
6340 int found_type;
6341 int i;
6342 int ret = 0;
6343
6344 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6345 return 0;
6346
6347 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6348 btrfs_item_key_to_cpu(eb, &key, i);
6349 if (key.type != BTRFS_EXTENT_DATA_KEY)
6350 continue;
6351 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6352 found_type = btrfs_file_extent_type(eb, item);
6353 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6354 continue;
6355 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6356 continue;
6357 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6358 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6359 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6360 if (ret)
6361 break;
6362 }
6363
6364 return ret;
6365 }
6366
6367 static void
6368 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6369 {
6370 atomic_inc(&bg->reservations);
6371 }
6372
6373 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6374 const u64 start)
6375 {
6376 struct btrfs_block_group_cache *bg;
6377
6378 bg = btrfs_lookup_block_group(fs_info, start);
6379 ASSERT(bg);
6380 if (atomic_dec_and_test(&bg->reservations))
6381 wake_up_var(&bg->reservations);
6382 btrfs_put_block_group(bg);
6383 }
6384
6385 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6386 {
6387 struct btrfs_space_info *space_info = bg->space_info;
6388
6389 ASSERT(bg->ro);
6390
6391 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6392 return;
6393
6394 /*
6395 * Our block group is read only but before we set it to read only,
6396 * some task might have had allocated an extent from it already, but it
6397 * has not yet created a respective ordered extent (and added it to a
6398 * root's list of ordered extents).
6399 * Therefore wait for any task currently allocating extents, since the
6400 * block group's reservations counter is incremented while a read lock
6401 * on the groups' semaphore is held and decremented after releasing
6402 * the read access on that semaphore and creating the ordered extent.
6403 */
6404 down_write(&space_info->groups_sem);
6405 up_write(&space_info->groups_sem);
6406
6407 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6408 }
6409
6410 /**
6411 * btrfs_add_reserved_bytes - update the block_group and space info counters
6412 * @cache: The cache we are manipulating
6413 * @ram_bytes: The number of bytes of file content, and will be same to
6414 * @num_bytes except for the compress path.
6415 * @num_bytes: The number of bytes in question
6416 * @delalloc: The blocks are allocated for the delalloc write
6417 *
6418 * This is called by the allocator when it reserves space. If this is a
6419 * reservation and the block group has become read only we cannot make the
6420 * reservation and return -EAGAIN, otherwise this function always succeeds.
6421 */
6422 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6423 u64 ram_bytes, u64 num_bytes, int delalloc)
6424 {
6425 struct btrfs_space_info *space_info = cache->space_info;
6426 int ret = 0;
6427
6428 spin_lock(&space_info->lock);
6429 spin_lock(&cache->lock);
6430 if (cache->ro) {
6431 ret = -EAGAIN;
6432 } else {
6433 cache->reserved += num_bytes;
6434 space_info->bytes_reserved += num_bytes;
6435 space_info->bytes_may_use -= ram_bytes;
6436 if (delalloc)
6437 cache->delalloc_bytes += num_bytes;
6438 }
6439 spin_unlock(&cache->lock);
6440 spin_unlock(&space_info->lock);
6441 return ret;
6442 }
6443
6444 /**
6445 * btrfs_free_reserved_bytes - update the block_group and space info counters
6446 * @cache: The cache we are manipulating
6447 * @num_bytes: The number of bytes in question
6448 * @delalloc: The blocks are allocated for the delalloc write
6449 *
6450 * This is called by somebody who is freeing space that was never actually used
6451 * on disk. For example if you reserve some space for a new leaf in transaction
6452 * A and before transaction A commits you free that leaf, you call this with
6453 * reserve set to 0 in order to clear the reservation.
6454 */
6455
6456 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6457 u64 num_bytes, int delalloc)
6458 {
6459 struct btrfs_space_info *space_info = cache->space_info;
6460
6461 spin_lock(&space_info->lock);
6462 spin_lock(&cache->lock);
6463 if (cache->ro)
6464 space_info->bytes_readonly += num_bytes;
6465 cache->reserved -= num_bytes;
6466 space_info->bytes_reserved -= num_bytes;
6467
6468 if (delalloc)
6469 cache->delalloc_bytes -= num_bytes;
6470 spin_unlock(&cache->lock);
6471 spin_unlock(&space_info->lock);
6472 }
6473 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6474 {
6475 struct btrfs_caching_control *next;
6476 struct btrfs_caching_control *caching_ctl;
6477 struct btrfs_block_group_cache *cache;
6478
6479 down_write(&fs_info->commit_root_sem);
6480
6481 list_for_each_entry_safe(caching_ctl, next,
6482 &fs_info->caching_block_groups, list) {
6483 cache = caching_ctl->block_group;
6484 if (block_group_cache_done(cache)) {
6485 cache->last_byte_to_unpin = (u64)-1;
6486 list_del_init(&caching_ctl->list);
6487 put_caching_control(caching_ctl);
6488 } else {
6489 cache->last_byte_to_unpin = caching_ctl->progress;
6490 }
6491 }
6492
6493 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6494 fs_info->pinned_extents = &fs_info->freed_extents[1];
6495 else
6496 fs_info->pinned_extents = &fs_info->freed_extents[0];
6497
6498 up_write(&fs_info->commit_root_sem);
6499
6500 update_global_block_rsv(fs_info);
6501 }
6502
6503 /*
6504 * Returns the free cluster for the given space info and sets empty_cluster to
6505 * what it should be based on the mount options.
6506 */
6507 static struct btrfs_free_cluster *
6508 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6509 struct btrfs_space_info *space_info, u64 *empty_cluster)
6510 {
6511 struct btrfs_free_cluster *ret = NULL;
6512
6513 *empty_cluster = 0;
6514 if (btrfs_mixed_space_info(space_info))
6515 return ret;
6516
6517 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6518 ret = &fs_info->meta_alloc_cluster;
6519 if (btrfs_test_opt(fs_info, SSD))
6520 *empty_cluster = SZ_2M;
6521 else
6522 *empty_cluster = SZ_64K;
6523 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6524 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6525 *empty_cluster = SZ_2M;
6526 ret = &fs_info->data_alloc_cluster;
6527 }
6528
6529 return ret;
6530 }
6531
6532 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6533 u64 start, u64 end,
6534 const bool return_free_space)
6535 {
6536 struct btrfs_block_group_cache *cache = NULL;
6537 struct btrfs_space_info *space_info;
6538 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6539 struct btrfs_free_cluster *cluster = NULL;
6540 u64 len;
6541 u64 total_unpinned = 0;
6542 u64 empty_cluster = 0;
6543 bool readonly;
6544
6545 while (start <= end) {
6546 readonly = false;
6547 if (!cache ||
6548 start >= cache->key.objectid + cache->key.offset) {
6549 if (cache)
6550 btrfs_put_block_group(cache);
6551 total_unpinned = 0;
6552 cache = btrfs_lookup_block_group(fs_info, start);
6553 BUG_ON(!cache); /* Logic error */
6554
6555 cluster = fetch_cluster_info(fs_info,
6556 cache->space_info,
6557 &empty_cluster);
6558 empty_cluster <<= 1;
6559 }
6560
6561 len = cache->key.objectid + cache->key.offset - start;
6562 len = min(len, end + 1 - start);
6563
6564 if (start < cache->last_byte_to_unpin) {
6565 len = min(len, cache->last_byte_to_unpin - start);
6566 if (return_free_space)
6567 btrfs_add_free_space(cache, start, len);
6568 }
6569
6570 start += len;
6571 total_unpinned += len;
6572 space_info = cache->space_info;
6573
6574 /*
6575 * If this space cluster has been marked as fragmented and we've
6576 * unpinned enough in this block group to potentially allow a
6577 * cluster to be created inside of it go ahead and clear the
6578 * fragmented check.
6579 */
6580 if (cluster && cluster->fragmented &&
6581 total_unpinned > empty_cluster) {
6582 spin_lock(&cluster->lock);
6583 cluster->fragmented = 0;
6584 spin_unlock(&cluster->lock);
6585 }
6586
6587 spin_lock(&space_info->lock);
6588 spin_lock(&cache->lock);
6589 cache->pinned -= len;
6590 space_info->bytes_pinned -= len;
6591
6592 trace_btrfs_space_reservation(fs_info, "pinned",
6593 space_info->flags, len, 0);
6594 space_info->max_extent_size = 0;
6595 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6596 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6597 if (cache->ro) {
6598 space_info->bytes_readonly += len;
6599 readonly = true;
6600 }
6601 spin_unlock(&cache->lock);
6602 if (!readonly && return_free_space &&
6603 global_rsv->space_info == space_info) {
6604 u64 to_add = len;
6605
6606 spin_lock(&global_rsv->lock);
6607 if (!global_rsv->full) {
6608 to_add = min(len, global_rsv->size -
6609 global_rsv->reserved);
6610 global_rsv->reserved += to_add;
6611 space_info->bytes_may_use += to_add;
6612 if (global_rsv->reserved >= global_rsv->size)
6613 global_rsv->full = 1;
6614 trace_btrfs_space_reservation(fs_info,
6615 "space_info",
6616 space_info->flags,
6617 to_add, 1);
6618 len -= to_add;
6619 }
6620 spin_unlock(&global_rsv->lock);
6621 /* Add to any tickets we may have */
6622 if (len)
6623 space_info_add_new_bytes(fs_info, space_info,
6624 len);
6625 }
6626 spin_unlock(&space_info->lock);
6627 }
6628
6629 if (cache)
6630 btrfs_put_block_group(cache);
6631 return 0;
6632 }
6633
6634 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6635 {
6636 struct btrfs_fs_info *fs_info = trans->fs_info;
6637 struct btrfs_block_group_cache *block_group, *tmp;
6638 struct list_head *deleted_bgs;
6639 struct extent_io_tree *unpin;
6640 u64 start;
6641 u64 end;
6642 int ret;
6643
6644 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6645 unpin = &fs_info->freed_extents[1];
6646 else
6647 unpin = &fs_info->freed_extents[0];
6648
6649 while (!trans->aborted) {
6650 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6651 ret = find_first_extent_bit(unpin, 0, &start, &end,
6652 EXTENT_DIRTY, NULL);
6653 if (ret) {
6654 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6655 break;
6656 }
6657
6658 if (btrfs_test_opt(fs_info, DISCARD))
6659 ret = btrfs_discard_extent(fs_info, start,
6660 end + 1 - start, NULL);
6661
6662 clear_extent_dirty(unpin, start, end);
6663 unpin_extent_range(fs_info, start, end, true);
6664 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6665 cond_resched();
6666 }
6667
6668 /*
6669 * Transaction is finished. We don't need the lock anymore. We
6670 * do need to clean up the block groups in case of a transaction
6671 * abort.
6672 */
6673 deleted_bgs = &trans->transaction->deleted_bgs;
6674 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6675 u64 trimmed = 0;
6676
6677 ret = -EROFS;
6678 if (!trans->aborted)
6679 ret = btrfs_discard_extent(fs_info,
6680 block_group->key.objectid,
6681 block_group->key.offset,
6682 &trimmed);
6683
6684 list_del_init(&block_group->bg_list);
6685 btrfs_put_block_group_trimming(block_group);
6686 btrfs_put_block_group(block_group);
6687
6688 if (ret) {
6689 const char *errstr = btrfs_decode_error(ret);
6690 btrfs_warn(fs_info,
6691 "discard failed while removing blockgroup: errno=%d %s",
6692 ret, errstr);
6693 }
6694 }
6695
6696 return 0;
6697 }
6698
6699 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6700 struct btrfs_delayed_ref_node *node, u64 parent,
6701 u64 root_objectid, u64 owner_objectid,
6702 u64 owner_offset, int refs_to_drop,
6703 struct btrfs_delayed_extent_op *extent_op)
6704 {
6705 struct btrfs_fs_info *info = trans->fs_info;
6706 struct btrfs_key key;
6707 struct btrfs_path *path;
6708 struct btrfs_root *extent_root = info->extent_root;
6709 struct extent_buffer *leaf;
6710 struct btrfs_extent_item *ei;
6711 struct btrfs_extent_inline_ref *iref;
6712 int ret;
6713 int is_data;
6714 int extent_slot = 0;
6715 int found_extent = 0;
6716 int num_to_del = 1;
6717 u32 item_size;
6718 u64 refs;
6719 u64 bytenr = node->bytenr;
6720 u64 num_bytes = node->num_bytes;
6721 int last_ref = 0;
6722 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6723
6724 path = btrfs_alloc_path();
6725 if (!path)
6726 return -ENOMEM;
6727
6728 path->reada = READA_FORWARD;
6729 path->leave_spinning = 1;
6730
6731 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6732 BUG_ON(!is_data && refs_to_drop != 1);
6733
6734 if (is_data)
6735 skinny_metadata = false;
6736
6737 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6738 parent, root_objectid, owner_objectid,
6739 owner_offset);
6740 if (ret == 0) {
6741 extent_slot = path->slots[0];
6742 while (extent_slot >= 0) {
6743 btrfs_item_key_to_cpu(path->nodes[0], &key,
6744 extent_slot);
6745 if (key.objectid != bytenr)
6746 break;
6747 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6748 key.offset == num_bytes) {
6749 found_extent = 1;
6750 break;
6751 }
6752 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6753 key.offset == owner_objectid) {
6754 found_extent = 1;
6755 break;
6756 }
6757 if (path->slots[0] - extent_slot > 5)
6758 break;
6759 extent_slot--;
6760 }
6761
6762 if (!found_extent) {
6763 BUG_ON(iref);
6764 ret = remove_extent_backref(trans, path, NULL,
6765 refs_to_drop,
6766 is_data, &last_ref);
6767 if (ret) {
6768 btrfs_abort_transaction(trans, ret);
6769 goto out;
6770 }
6771 btrfs_release_path(path);
6772 path->leave_spinning = 1;
6773
6774 key.objectid = bytenr;
6775 key.type = BTRFS_EXTENT_ITEM_KEY;
6776 key.offset = num_bytes;
6777
6778 if (!is_data && skinny_metadata) {
6779 key.type = BTRFS_METADATA_ITEM_KEY;
6780 key.offset = owner_objectid;
6781 }
6782
6783 ret = btrfs_search_slot(trans, extent_root,
6784 &key, path, -1, 1);
6785 if (ret > 0 && skinny_metadata && path->slots[0]) {
6786 /*
6787 * Couldn't find our skinny metadata item,
6788 * see if we have ye olde extent item.
6789 */
6790 path->slots[0]--;
6791 btrfs_item_key_to_cpu(path->nodes[0], &key,
6792 path->slots[0]);
6793 if (key.objectid == bytenr &&
6794 key.type == BTRFS_EXTENT_ITEM_KEY &&
6795 key.offset == num_bytes)
6796 ret = 0;
6797 }
6798
6799 if (ret > 0 && skinny_metadata) {
6800 skinny_metadata = false;
6801 key.objectid = bytenr;
6802 key.type = BTRFS_EXTENT_ITEM_KEY;
6803 key.offset = num_bytes;
6804 btrfs_release_path(path);
6805 ret = btrfs_search_slot(trans, extent_root,
6806 &key, path, -1, 1);
6807 }
6808
6809 if (ret) {
6810 btrfs_err(info,
6811 "umm, got %d back from search, was looking for %llu",
6812 ret, bytenr);
6813 if (ret > 0)
6814 btrfs_print_leaf(path->nodes[0]);
6815 }
6816 if (ret < 0) {
6817 btrfs_abort_transaction(trans, ret);
6818 goto out;
6819 }
6820 extent_slot = path->slots[0];
6821 }
6822 } else if (WARN_ON(ret == -ENOENT)) {
6823 btrfs_print_leaf(path->nodes[0]);
6824 btrfs_err(info,
6825 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6826 bytenr, parent, root_objectid, owner_objectid,
6827 owner_offset);
6828 btrfs_abort_transaction(trans, ret);
6829 goto out;
6830 } else {
6831 btrfs_abort_transaction(trans, ret);
6832 goto out;
6833 }
6834
6835 leaf = path->nodes[0];
6836 item_size = btrfs_item_size_nr(leaf, extent_slot);
6837 if (unlikely(item_size < sizeof(*ei))) {
6838 ret = -EINVAL;
6839 btrfs_print_v0_err(info);
6840 btrfs_abort_transaction(trans, ret);
6841 goto out;
6842 }
6843 ei = btrfs_item_ptr(leaf, extent_slot,
6844 struct btrfs_extent_item);
6845 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6846 key.type == BTRFS_EXTENT_ITEM_KEY) {
6847 struct btrfs_tree_block_info *bi;
6848 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6849 bi = (struct btrfs_tree_block_info *)(ei + 1);
6850 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6851 }
6852
6853 refs = btrfs_extent_refs(leaf, ei);
6854 if (refs < refs_to_drop) {
6855 btrfs_err(info,
6856 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6857 refs_to_drop, refs, bytenr);
6858 ret = -EINVAL;
6859 btrfs_abort_transaction(trans, ret);
6860 goto out;
6861 }
6862 refs -= refs_to_drop;
6863
6864 if (refs > 0) {
6865 if (extent_op)
6866 __run_delayed_extent_op(extent_op, leaf, ei);
6867 /*
6868 * In the case of inline back ref, reference count will
6869 * be updated by remove_extent_backref
6870 */
6871 if (iref) {
6872 BUG_ON(!found_extent);
6873 } else {
6874 btrfs_set_extent_refs(leaf, ei, refs);
6875 btrfs_mark_buffer_dirty(leaf);
6876 }
6877 if (found_extent) {
6878 ret = remove_extent_backref(trans, path, iref,
6879 refs_to_drop, is_data,
6880 &last_ref);
6881 if (ret) {
6882 btrfs_abort_transaction(trans, ret);
6883 goto out;
6884 }
6885 }
6886 } else {
6887 if (found_extent) {
6888 BUG_ON(is_data && refs_to_drop !=
6889 extent_data_ref_count(path, iref));
6890 if (iref) {
6891 BUG_ON(path->slots[0] != extent_slot);
6892 } else {
6893 BUG_ON(path->slots[0] != extent_slot + 1);
6894 path->slots[0] = extent_slot;
6895 num_to_del = 2;
6896 }
6897 }
6898
6899 last_ref = 1;
6900 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6901 num_to_del);
6902 if (ret) {
6903 btrfs_abort_transaction(trans, ret);
6904 goto out;
6905 }
6906 btrfs_release_path(path);
6907
6908 if (is_data) {
6909 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
6910 if (ret) {
6911 btrfs_abort_transaction(trans, ret);
6912 goto out;
6913 }
6914 }
6915
6916 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6917 if (ret) {
6918 btrfs_abort_transaction(trans, ret);
6919 goto out;
6920 }
6921
6922 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6923 if (ret) {
6924 btrfs_abort_transaction(trans, ret);
6925 goto out;
6926 }
6927 }
6928 btrfs_release_path(path);
6929
6930 out:
6931 btrfs_free_path(path);
6932 return ret;
6933 }
6934
6935 /*
6936 * when we free an block, it is possible (and likely) that we free the last
6937 * delayed ref for that extent as well. This searches the delayed ref tree for
6938 * a given extent, and if there are no other delayed refs to be processed, it
6939 * removes it from the tree.
6940 */
6941 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6942 u64 bytenr)
6943 {
6944 struct btrfs_delayed_ref_head *head;
6945 struct btrfs_delayed_ref_root *delayed_refs;
6946 int ret = 0;
6947
6948 delayed_refs = &trans->transaction->delayed_refs;
6949 spin_lock(&delayed_refs->lock);
6950 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6951 if (!head)
6952 goto out_delayed_unlock;
6953
6954 spin_lock(&head->lock);
6955 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
6956 goto out;
6957
6958 if (head->extent_op) {
6959 if (!head->must_insert_reserved)
6960 goto out;
6961 btrfs_free_delayed_extent_op(head->extent_op);
6962 head->extent_op = NULL;
6963 }
6964
6965 /*
6966 * waiting for the lock here would deadlock. If someone else has it
6967 * locked they are already in the process of dropping it anyway
6968 */
6969 if (!mutex_trylock(&head->mutex))
6970 goto out;
6971
6972 /*
6973 * at this point we have a head with no other entries. Go
6974 * ahead and process it.
6975 */
6976 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
6977 RB_CLEAR_NODE(&head->href_node);
6978 atomic_dec(&delayed_refs->num_entries);
6979
6980 /*
6981 * we don't take a ref on the node because we're removing it from the
6982 * tree, so we just steal the ref the tree was holding.
6983 */
6984 delayed_refs->num_heads--;
6985 if (head->processing == 0)
6986 delayed_refs->num_heads_ready--;
6987 head->processing = 0;
6988 spin_unlock(&head->lock);
6989 spin_unlock(&delayed_refs->lock);
6990
6991 BUG_ON(head->extent_op);
6992 if (head->must_insert_reserved)
6993 ret = 1;
6994
6995 mutex_unlock(&head->mutex);
6996 btrfs_put_delayed_ref_head(head);
6997 return ret;
6998 out:
6999 spin_unlock(&head->lock);
7000
7001 out_delayed_unlock:
7002 spin_unlock(&delayed_refs->lock);
7003 return 0;
7004 }
7005
7006 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7007 struct btrfs_root *root,
7008 struct extent_buffer *buf,
7009 u64 parent, int last_ref)
7010 {
7011 struct btrfs_fs_info *fs_info = root->fs_info;
7012 int pin = 1;
7013 int ret;
7014
7015 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7016 int old_ref_mod, new_ref_mod;
7017
7018 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7019 root->root_key.objectid,
7020 btrfs_header_level(buf), 0,
7021 BTRFS_DROP_DELAYED_REF);
7022 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7023 buf->len, parent,
7024 root->root_key.objectid,
7025 btrfs_header_level(buf),
7026 BTRFS_DROP_DELAYED_REF, NULL,
7027 &old_ref_mod, &new_ref_mod);
7028 BUG_ON(ret); /* -ENOMEM */
7029 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7030 }
7031
7032 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7033 struct btrfs_block_group_cache *cache;
7034
7035 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7036 ret = check_ref_cleanup(trans, buf->start);
7037 if (!ret)
7038 goto out;
7039 }
7040
7041 pin = 0;
7042 cache = btrfs_lookup_block_group(fs_info, buf->start);
7043
7044 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7045 pin_down_extent(fs_info, cache, buf->start,
7046 buf->len, 1);
7047 btrfs_put_block_group(cache);
7048 goto out;
7049 }
7050
7051 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7052
7053 btrfs_add_free_space(cache, buf->start, buf->len);
7054 btrfs_free_reserved_bytes(cache, buf->len, 0);
7055 btrfs_put_block_group(cache);
7056 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7057 }
7058 out:
7059 if (pin)
7060 add_pinned_bytes(fs_info, buf->len, true,
7061 root->root_key.objectid);
7062
7063 if (last_ref) {
7064 /*
7065 * Deleting the buffer, clear the corrupt flag since it doesn't
7066 * matter anymore.
7067 */
7068 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7069 }
7070 }
7071
7072 /* Can return -ENOMEM */
7073 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7074 struct btrfs_root *root,
7075 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7076 u64 owner, u64 offset)
7077 {
7078 struct btrfs_fs_info *fs_info = root->fs_info;
7079 int old_ref_mod, new_ref_mod;
7080 int ret;
7081
7082 if (btrfs_is_testing(fs_info))
7083 return 0;
7084
7085 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7086 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7087 root_objectid, owner, offset,
7088 BTRFS_DROP_DELAYED_REF);
7089
7090 /*
7091 * tree log blocks never actually go into the extent allocation
7092 * tree, just update pinning info and exit early.
7093 */
7094 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7095 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7096 /* unlocks the pinned mutex */
7097 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7098 old_ref_mod = new_ref_mod = 0;
7099 ret = 0;
7100 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7101 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7102 num_bytes, parent,
7103 root_objectid, (int)owner,
7104 BTRFS_DROP_DELAYED_REF, NULL,
7105 &old_ref_mod, &new_ref_mod);
7106 } else {
7107 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7108 num_bytes, parent,
7109 root_objectid, owner, offset,
7110 0, BTRFS_DROP_DELAYED_REF,
7111 &old_ref_mod, &new_ref_mod);
7112 }
7113
7114 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7115 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7116
7117 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7118 }
7119
7120 return ret;
7121 }
7122
7123 /*
7124 * when we wait for progress in the block group caching, its because
7125 * our allocation attempt failed at least once. So, we must sleep
7126 * and let some progress happen before we try again.
7127 *
7128 * This function will sleep at least once waiting for new free space to
7129 * show up, and then it will check the block group free space numbers
7130 * for our min num_bytes. Another option is to have it go ahead
7131 * and look in the rbtree for a free extent of a given size, but this
7132 * is a good start.
7133 *
7134 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7135 * any of the information in this block group.
7136 */
7137 static noinline void
7138 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7139 u64 num_bytes)
7140 {
7141 struct btrfs_caching_control *caching_ctl;
7142
7143 caching_ctl = get_caching_control(cache);
7144 if (!caching_ctl)
7145 return;
7146
7147 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7148 (cache->free_space_ctl->free_space >= num_bytes));
7149
7150 put_caching_control(caching_ctl);
7151 }
7152
7153 static noinline int
7154 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7155 {
7156 struct btrfs_caching_control *caching_ctl;
7157 int ret = 0;
7158
7159 caching_ctl = get_caching_control(cache);
7160 if (!caching_ctl)
7161 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7162
7163 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7164 if (cache->cached == BTRFS_CACHE_ERROR)
7165 ret = -EIO;
7166 put_caching_control(caching_ctl);
7167 return ret;
7168 }
7169
7170 enum btrfs_loop_type {
7171 LOOP_CACHING_NOWAIT = 0,
7172 LOOP_CACHING_WAIT = 1,
7173 LOOP_ALLOC_CHUNK = 2,
7174 LOOP_NO_EMPTY_SIZE = 3,
7175 };
7176
7177 static inline void
7178 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7179 int delalloc)
7180 {
7181 if (delalloc)
7182 down_read(&cache->data_rwsem);
7183 }
7184
7185 static inline void
7186 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7187 int delalloc)
7188 {
7189 btrfs_get_block_group(cache);
7190 if (delalloc)
7191 down_read(&cache->data_rwsem);
7192 }
7193
7194 static struct btrfs_block_group_cache *
7195 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7196 struct btrfs_free_cluster *cluster,
7197 int delalloc)
7198 {
7199 struct btrfs_block_group_cache *used_bg = NULL;
7200
7201 spin_lock(&cluster->refill_lock);
7202 while (1) {
7203 used_bg = cluster->block_group;
7204 if (!used_bg)
7205 return NULL;
7206
7207 if (used_bg == block_group)
7208 return used_bg;
7209
7210 btrfs_get_block_group(used_bg);
7211
7212 if (!delalloc)
7213 return used_bg;
7214
7215 if (down_read_trylock(&used_bg->data_rwsem))
7216 return used_bg;
7217
7218 spin_unlock(&cluster->refill_lock);
7219
7220 /* We should only have one-level nested. */
7221 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7222
7223 spin_lock(&cluster->refill_lock);
7224 if (used_bg == cluster->block_group)
7225 return used_bg;
7226
7227 up_read(&used_bg->data_rwsem);
7228 btrfs_put_block_group(used_bg);
7229 }
7230 }
7231
7232 static inline void
7233 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7234 int delalloc)
7235 {
7236 if (delalloc)
7237 up_read(&cache->data_rwsem);
7238 btrfs_put_block_group(cache);
7239 }
7240
7241 /*
7242 * walks the btree of allocated extents and find a hole of a given size.
7243 * The key ins is changed to record the hole:
7244 * ins->objectid == start position
7245 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7246 * ins->offset == the size of the hole.
7247 * Any available blocks before search_start are skipped.
7248 *
7249 * If there is no suitable free space, we will record the max size of
7250 * the free space extent currently.
7251 */
7252 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7253 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7254 u64 hint_byte, struct btrfs_key *ins,
7255 u64 flags, int delalloc)
7256 {
7257 int ret = 0;
7258 struct btrfs_root *root = fs_info->extent_root;
7259 struct btrfs_free_cluster *last_ptr = NULL;
7260 struct btrfs_block_group_cache *block_group = NULL;
7261 u64 search_start = 0;
7262 u64 max_extent_size = 0;
7263 u64 empty_cluster = 0;
7264 struct btrfs_space_info *space_info;
7265 int loop = 0;
7266 int index = btrfs_bg_flags_to_raid_index(flags);
7267 bool failed_cluster_refill = false;
7268 bool failed_alloc = false;
7269 bool use_cluster = true;
7270 bool have_caching_bg = false;
7271 bool orig_have_caching_bg = false;
7272 bool full_search = false;
7273
7274 WARN_ON(num_bytes < fs_info->sectorsize);
7275 ins->type = BTRFS_EXTENT_ITEM_KEY;
7276 ins->objectid = 0;
7277 ins->offset = 0;
7278
7279 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7280
7281 space_info = __find_space_info(fs_info, flags);
7282 if (!space_info) {
7283 btrfs_err(fs_info, "No space info for %llu", flags);
7284 return -ENOSPC;
7285 }
7286
7287 /*
7288 * If our free space is heavily fragmented we may not be able to make
7289 * big contiguous allocations, so instead of doing the expensive search
7290 * for free space, simply return ENOSPC with our max_extent_size so we
7291 * can go ahead and search for a more manageable chunk.
7292 *
7293 * If our max_extent_size is large enough for our allocation simply
7294 * disable clustering since we will likely not be able to find enough
7295 * space to create a cluster and induce latency trying.
7296 */
7297 if (unlikely(space_info->max_extent_size)) {
7298 spin_lock(&space_info->lock);
7299 if (space_info->max_extent_size &&
7300 num_bytes > space_info->max_extent_size) {
7301 ins->offset = space_info->max_extent_size;
7302 spin_unlock(&space_info->lock);
7303 return -ENOSPC;
7304 } else if (space_info->max_extent_size) {
7305 use_cluster = false;
7306 }
7307 spin_unlock(&space_info->lock);
7308 }
7309
7310 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7311 if (last_ptr) {
7312 spin_lock(&last_ptr->lock);
7313 if (last_ptr->block_group)
7314 hint_byte = last_ptr->window_start;
7315 if (last_ptr->fragmented) {
7316 /*
7317 * We still set window_start so we can keep track of the
7318 * last place we found an allocation to try and save
7319 * some time.
7320 */
7321 hint_byte = last_ptr->window_start;
7322 use_cluster = false;
7323 }
7324 spin_unlock(&last_ptr->lock);
7325 }
7326
7327 search_start = max(search_start, first_logical_byte(fs_info, 0));
7328 search_start = max(search_start, hint_byte);
7329 if (search_start == hint_byte) {
7330 block_group = btrfs_lookup_block_group(fs_info, search_start);
7331 /*
7332 * we don't want to use the block group if it doesn't match our
7333 * allocation bits, or if its not cached.
7334 *
7335 * However if we are re-searching with an ideal block group
7336 * picked out then we don't care that the block group is cached.
7337 */
7338 if (block_group && block_group_bits(block_group, flags) &&
7339 block_group->cached != BTRFS_CACHE_NO) {
7340 down_read(&space_info->groups_sem);
7341 if (list_empty(&block_group->list) ||
7342 block_group->ro) {
7343 /*
7344 * someone is removing this block group,
7345 * we can't jump into the have_block_group
7346 * target because our list pointers are not
7347 * valid
7348 */
7349 btrfs_put_block_group(block_group);
7350 up_read(&space_info->groups_sem);
7351 } else {
7352 index = btrfs_bg_flags_to_raid_index(
7353 block_group->flags);
7354 btrfs_lock_block_group(block_group, delalloc);
7355 goto have_block_group;
7356 }
7357 } else if (block_group) {
7358 btrfs_put_block_group(block_group);
7359 }
7360 }
7361 search:
7362 have_caching_bg = false;
7363 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7364 full_search = true;
7365 down_read(&space_info->groups_sem);
7366 list_for_each_entry(block_group, &space_info->block_groups[index],
7367 list) {
7368 u64 offset;
7369 int cached;
7370
7371 /* If the block group is read-only, we can skip it entirely. */
7372 if (unlikely(block_group->ro))
7373 continue;
7374
7375 btrfs_grab_block_group(block_group, delalloc);
7376 search_start = block_group->key.objectid;
7377
7378 /*
7379 * this can happen if we end up cycling through all the
7380 * raid types, but we want to make sure we only allocate
7381 * for the proper type.
7382 */
7383 if (!block_group_bits(block_group, flags)) {
7384 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7385 BTRFS_BLOCK_GROUP_RAID1 |
7386 BTRFS_BLOCK_GROUP_RAID5 |
7387 BTRFS_BLOCK_GROUP_RAID6 |
7388 BTRFS_BLOCK_GROUP_RAID10;
7389
7390 /*
7391 * if they asked for extra copies and this block group
7392 * doesn't provide them, bail. This does allow us to
7393 * fill raid0 from raid1.
7394 */
7395 if ((flags & extra) && !(block_group->flags & extra))
7396 goto loop;
7397 }
7398
7399 have_block_group:
7400 cached = block_group_cache_done(block_group);
7401 if (unlikely(!cached)) {
7402 have_caching_bg = true;
7403 ret = cache_block_group(block_group, 0);
7404 BUG_ON(ret < 0);
7405 ret = 0;
7406 }
7407
7408 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7409 goto loop;
7410
7411 /*
7412 * Ok we want to try and use the cluster allocator, so
7413 * lets look there
7414 */
7415 if (last_ptr && use_cluster) {
7416 struct btrfs_block_group_cache *used_block_group;
7417 unsigned long aligned_cluster;
7418 /*
7419 * the refill lock keeps out other
7420 * people trying to start a new cluster
7421 */
7422 used_block_group = btrfs_lock_cluster(block_group,
7423 last_ptr,
7424 delalloc);
7425 if (!used_block_group)
7426 goto refill_cluster;
7427
7428 if (used_block_group != block_group &&
7429 (used_block_group->ro ||
7430 !block_group_bits(used_block_group, flags)))
7431 goto release_cluster;
7432
7433 offset = btrfs_alloc_from_cluster(used_block_group,
7434 last_ptr,
7435 num_bytes,
7436 used_block_group->key.objectid,
7437 &max_extent_size);
7438 if (offset) {
7439 /* we have a block, we're done */
7440 spin_unlock(&last_ptr->refill_lock);
7441 trace_btrfs_reserve_extent_cluster(
7442 used_block_group,
7443 search_start, num_bytes);
7444 if (used_block_group != block_group) {
7445 btrfs_release_block_group(block_group,
7446 delalloc);
7447 block_group = used_block_group;
7448 }
7449 goto checks;
7450 }
7451
7452 WARN_ON(last_ptr->block_group != used_block_group);
7453 release_cluster:
7454 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7455 * set up a new clusters, so lets just skip it
7456 * and let the allocator find whatever block
7457 * it can find. If we reach this point, we
7458 * will have tried the cluster allocator
7459 * plenty of times and not have found
7460 * anything, so we are likely way too
7461 * fragmented for the clustering stuff to find
7462 * anything.
7463 *
7464 * However, if the cluster is taken from the
7465 * current block group, release the cluster
7466 * first, so that we stand a better chance of
7467 * succeeding in the unclustered
7468 * allocation. */
7469 if (loop >= LOOP_NO_EMPTY_SIZE &&
7470 used_block_group != block_group) {
7471 spin_unlock(&last_ptr->refill_lock);
7472 btrfs_release_block_group(used_block_group,
7473 delalloc);
7474 goto unclustered_alloc;
7475 }
7476
7477 /*
7478 * this cluster didn't work out, free it and
7479 * start over
7480 */
7481 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7482
7483 if (used_block_group != block_group)
7484 btrfs_release_block_group(used_block_group,
7485 delalloc);
7486 refill_cluster:
7487 if (loop >= LOOP_NO_EMPTY_SIZE) {
7488 spin_unlock(&last_ptr->refill_lock);
7489 goto unclustered_alloc;
7490 }
7491
7492 aligned_cluster = max_t(unsigned long,
7493 empty_cluster + empty_size,
7494 block_group->full_stripe_len);
7495
7496 /* allocate a cluster in this block group */
7497 ret = btrfs_find_space_cluster(fs_info, block_group,
7498 last_ptr, search_start,
7499 num_bytes,
7500 aligned_cluster);
7501 if (ret == 0) {
7502 /*
7503 * now pull our allocation out of this
7504 * cluster
7505 */
7506 offset = btrfs_alloc_from_cluster(block_group,
7507 last_ptr,
7508 num_bytes,
7509 search_start,
7510 &max_extent_size);
7511 if (offset) {
7512 /* we found one, proceed */
7513 spin_unlock(&last_ptr->refill_lock);
7514 trace_btrfs_reserve_extent_cluster(
7515 block_group, search_start,
7516 num_bytes);
7517 goto checks;
7518 }
7519 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7520 && !failed_cluster_refill) {
7521 spin_unlock(&last_ptr->refill_lock);
7522
7523 failed_cluster_refill = true;
7524 wait_block_group_cache_progress(block_group,
7525 num_bytes + empty_cluster + empty_size);
7526 goto have_block_group;
7527 }
7528
7529 /*
7530 * at this point we either didn't find a cluster
7531 * or we weren't able to allocate a block from our
7532 * cluster. Free the cluster we've been trying
7533 * to use, and go to the next block group
7534 */
7535 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7536 spin_unlock(&last_ptr->refill_lock);
7537 goto loop;
7538 }
7539
7540 unclustered_alloc:
7541 /*
7542 * We are doing an unclustered alloc, set the fragmented flag so
7543 * we don't bother trying to setup a cluster again until we get
7544 * more space.
7545 */
7546 if (unlikely(last_ptr)) {
7547 spin_lock(&last_ptr->lock);
7548 last_ptr->fragmented = 1;
7549 spin_unlock(&last_ptr->lock);
7550 }
7551 if (cached) {
7552 struct btrfs_free_space_ctl *ctl =
7553 block_group->free_space_ctl;
7554
7555 spin_lock(&ctl->tree_lock);
7556 if (ctl->free_space <
7557 num_bytes + empty_cluster + empty_size) {
7558 if (ctl->free_space > max_extent_size)
7559 max_extent_size = ctl->free_space;
7560 spin_unlock(&ctl->tree_lock);
7561 goto loop;
7562 }
7563 spin_unlock(&ctl->tree_lock);
7564 }
7565
7566 offset = btrfs_find_space_for_alloc(block_group, search_start,
7567 num_bytes, empty_size,
7568 &max_extent_size);
7569 /*
7570 * If we didn't find a chunk, and we haven't failed on this
7571 * block group before, and this block group is in the middle of
7572 * caching and we are ok with waiting, then go ahead and wait
7573 * for progress to be made, and set failed_alloc to true.
7574 *
7575 * If failed_alloc is true then we've already waited on this
7576 * block group once and should move on to the next block group.
7577 */
7578 if (!offset && !failed_alloc && !cached &&
7579 loop > LOOP_CACHING_NOWAIT) {
7580 wait_block_group_cache_progress(block_group,
7581 num_bytes + empty_size);
7582 failed_alloc = true;
7583 goto have_block_group;
7584 } else if (!offset) {
7585 goto loop;
7586 }
7587 checks:
7588 search_start = round_up(offset, fs_info->stripesize);
7589
7590 /* move on to the next group */
7591 if (search_start + num_bytes >
7592 block_group->key.objectid + block_group->key.offset) {
7593 btrfs_add_free_space(block_group, offset, num_bytes);
7594 goto loop;
7595 }
7596
7597 if (offset < search_start)
7598 btrfs_add_free_space(block_group, offset,
7599 search_start - offset);
7600
7601 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7602 num_bytes, delalloc);
7603 if (ret == -EAGAIN) {
7604 btrfs_add_free_space(block_group, offset, num_bytes);
7605 goto loop;
7606 }
7607 btrfs_inc_block_group_reservations(block_group);
7608
7609 /* we are all good, lets return */
7610 ins->objectid = search_start;
7611 ins->offset = num_bytes;
7612
7613 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7614 btrfs_release_block_group(block_group, delalloc);
7615 break;
7616 loop:
7617 failed_cluster_refill = false;
7618 failed_alloc = false;
7619 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7620 index);
7621 btrfs_release_block_group(block_group, delalloc);
7622 cond_resched();
7623 }
7624 up_read(&space_info->groups_sem);
7625
7626 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7627 && !orig_have_caching_bg)
7628 orig_have_caching_bg = true;
7629
7630 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7631 goto search;
7632
7633 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7634 goto search;
7635
7636 /*
7637 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7638 * caching kthreads as we move along
7639 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7640 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7641 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7642 * again
7643 */
7644 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7645 index = 0;
7646 if (loop == LOOP_CACHING_NOWAIT) {
7647 /*
7648 * We want to skip the LOOP_CACHING_WAIT step if we
7649 * don't have any uncached bgs and we've already done a
7650 * full search through.
7651 */
7652 if (orig_have_caching_bg || !full_search)
7653 loop = LOOP_CACHING_WAIT;
7654 else
7655 loop = LOOP_ALLOC_CHUNK;
7656 } else {
7657 loop++;
7658 }
7659
7660 if (loop == LOOP_ALLOC_CHUNK) {
7661 struct btrfs_trans_handle *trans;
7662 int exist = 0;
7663
7664 trans = current->journal_info;
7665 if (trans)
7666 exist = 1;
7667 else
7668 trans = btrfs_join_transaction(root);
7669
7670 if (IS_ERR(trans)) {
7671 ret = PTR_ERR(trans);
7672 goto out;
7673 }
7674
7675 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7676
7677 /*
7678 * If we can't allocate a new chunk we've already looped
7679 * through at least once, move on to the NO_EMPTY_SIZE
7680 * case.
7681 */
7682 if (ret == -ENOSPC)
7683 loop = LOOP_NO_EMPTY_SIZE;
7684
7685 /*
7686 * Do not bail out on ENOSPC since we
7687 * can do more things.
7688 */
7689 if (ret < 0 && ret != -ENOSPC)
7690 btrfs_abort_transaction(trans, ret);
7691 else
7692 ret = 0;
7693 if (!exist)
7694 btrfs_end_transaction(trans);
7695 if (ret)
7696 goto out;
7697 }
7698
7699 if (loop == LOOP_NO_EMPTY_SIZE) {
7700 /*
7701 * Don't loop again if we already have no empty_size and
7702 * no empty_cluster.
7703 */
7704 if (empty_size == 0 &&
7705 empty_cluster == 0) {
7706 ret = -ENOSPC;
7707 goto out;
7708 }
7709 empty_size = 0;
7710 empty_cluster = 0;
7711 }
7712
7713 goto search;
7714 } else if (!ins->objectid) {
7715 ret = -ENOSPC;
7716 } else if (ins->objectid) {
7717 if (!use_cluster && last_ptr) {
7718 spin_lock(&last_ptr->lock);
7719 last_ptr->window_start = ins->objectid;
7720 spin_unlock(&last_ptr->lock);
7721 }
7722 ret = 0;
7723 }
7724 out:
7725 if (ret == -ENOSPC) {
7726 spin_lock(&space_info->lock);
7727 space_info->max_extent_size = max_extent_size;
7728 spin_unlock(&space_info->lock);
7729 ins->offset = max_extent_size;
7730 }
7731 return ret;
7732 }
7733
7734 static void dump_space_info(struct btrfs_fs_info *fs_info,
7735 struct btrfs_space_info *info, u64 bytes,
7736 int dump_block_groups)
7737 {
7738 struct btrfs_block_group_cache *cache;
7739 int index = 0;
7740
7741 spin_lock(&info->lock);
7742 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7743 info->flags,
7744 info->total_bytes - btrfs_space_info_used(info, true),
7745 info->full ? "" : "not ");
7746 btrfs_info(fs_info,
7747 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7748 info->total_bytes, info->bytes_used, info->bytes_pinned,
7749 info->bytes_reserved, info->bytes_may_use,
7750 info->bytes_readonly);
7751 spin_unlock(&info->lock);
7752
7753 if (!dump_block_groups)
7754 return;
7755
7756 down_read(&info->groups_sem);
7757 again:
7758 list_for_each_entry(cache, &info->block_groups[index], list) {
7759 spin_lock(&cache->lock);
7760 btrfs_info(fs_info,
7761 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7762 cache->key.objectid, cache->key.offset,
7763 btrfs_block_group_used(&cache->item), cache->pinned,
7764 cache->reserved, cache->ro ? "[readonly]" : "");
7765 btrfs_dump_free_space(cache, bytes);
7766 spin_unlock(&cache->lock);
7767 }
7768 if (++index < BTRFS_NR_RAID_TYPES)
7769 goto again;
7770 up_read(&info->groups_sem);
7771 }
7772
7773 /*
7774 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7775 * hole that is at least as big as @num_bytes.
7776 *
7777 * @root - The root that will contain this extent
7778 *
7779 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7780 * is used for accounting purposes. This value differs
7781 * from @num_bytes only in the case of compressed extents.
7782 *
7783 * @num_bytes - Number of bytes to allocate on-disk.
7784 *
7785 * @min_alloc_size - Indicates the minimum amount of space that the
7786 * allocator should try to satisfy. In some cases
7787 * @num_bytes may be larger than what is required and if
7788 * the filesystem is fragmented then allocation fails.
7789 * However, the presence of @min_alloc_size gives a
7790 * chance to try and satisfy the smaller allocation.
7791 *
7792 * @empty_size - A hint that you plan on doing more COW. This is the
7793 * size in bytes the allocator should try to find free
7794 * next to the block it returns. This is just a hint and
7795 * may be ignored by the allocator.
7796 *
7797 * @hint_byte - Hint to the allocator to start searching above the byte
7798 * address passed. It might be ignored.
7799 *
7800 * @ins - This key is modified to record the found hole. It will
7801 * have the following values:
7802 * ins->objectid == start position
7803 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7804 * ins->offset == the size of the hole.
7805 *
7806 * @is_data - Boolean flag indicating whether an extent is
7807 * allocated for data (true) or metadata (false)
7808 *
7809 * @delalloc - Boolean flag indicating whether this allocation is for
7810 * delalloc or not. If 'true' data_rwsem of block groups
7811 * is going to be acquired.
7812 *
7813 *
7814 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7815 * case -ENOSPC is returned then @ins->offset will contain the size of the
7816 * largest available hole the allocator managed to find.
7817 */
7818 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7819 u64 num_bytes, u64 min_alloc_size,
7820 u64 empty_size, u64 hint_byte,
7821 struct btrfs_key *ins, int is_data, int delalloc)
7822 {
7823 struct btrfs_fs_info *fs_info = root->fs_info;
7824 bool final_tried = num_bytes == min_alloc_size;
7825 u64 flags;
7826 int ret;
7827
7828 flags = get_alloc_profile_by_root(root, is_data);
7829 again:
7830 WARN_ON(num_bytes < fs_info->sectorsize);
7831 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7832 hint_byte, ins, flags, delalloc);
7833 if (!ret && !is_data) {
7834 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7835 } else if (ret == -ENOSPC) {
7836 if (!final_tried && ins->offset) {
7837 num_bytes = min(num_bytes >> 1, ins->offset);
7838 num_bytes = round_down(num_bytes,
7839 fs_info->sectorsize);
7840 num_bytes = max(num_bytes, min_alloc_size);
7841 ram_bytes = num_bytes;
7842 if (num_bytes == min_alloc_size)
7843 final_tried = true;
7844 goto again;
7845 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7846 struct btrfs_space_info *sinfo;
7847
7848 sinfo = __find_space_info(fs_info, flags);
7849 btrfs_err(fs_info,
7850 "allocation failed flags %llu, wanted %llu",
7851 flags, num_bytes);
7852 if (sinfo)
7853 dump_space_info(fs_info, sinfo, num_bytes, 1);
7854 }
7855 }
7856
7857 return ret;
7858 }
7859
7860 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7861 u64 start, u64 len,
7862 int pin, int delalloc)
7863 {
7864 struct btrfs_block_group_cache *cache;
7865 int ret = 0;
7866
7867 cache = btrfs_lookup_block_group(fs_info, start);
7868 if (!cache) {
7869 btrfs_err(fs_info, "Unable to find block group for %llu",
7870 start);
7871 return -ENOSPC;
7872 }
7873
7874 if (pin)
7875 pin_down_extent(fs_info, cache, start, len, 1);
7876 else {
7877 if (btrfs_test_opt(fs_info, DISCARD))
7878 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7879 btrfs_add_free_space(cache, start, len);
7880 btrfs_free_reserved_bytes(cache, len, delalloc);
7881 trace_btrfs_reserved_extent_free(fs_info, start, len);
7882 }
7883
7884 btrfs_put_block_group(cache);
7885 return ret;
7886 }
7887
7888 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7889 u64 start, u64 len, int delalloc)
7890 {
7891 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7892 }
7893
7894 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7895 u64 start, u64 len)
7896 {
7897 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7898 }
7899
7900 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7901 u64 parent, u64 root_objectid,
7902 u64 flags, u64 owner, u64 offset,
7903 struct btrfs_key *ins, int ref_mod)
7904 {
7905 struct btrfs_fs_info *fs_info = trans->fs_info;
7906 int ret;
7907 struct btrfs_extent_item *extent_item;
7908 struct btrfs_extent_inline_ref *iref;
7909 struct btrfs_path *path;
7910 struct extent_buffer *leaf;
7911 int type;
7912 u32 size;
7913
7914 if (parent > 0)
7915 type = BTRFS_SHARED_DATA_REF_KEY;
7916 else
7917 type = BTRFS_EXTENT_DATA_REF_KEY;
7918
7919 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7920
7921 path = btrfs_alloc_path();
7922 if (!path)
7923 return -ENOMEM;
7924
7925 path->leave_spinning = 1;
7926 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7927 ins, size);
7928 if (ret) {
7929 btrfs_free_path(path);
7930 return ret;
7931 }
7932
7933 leaf = path->nodes[0];
7934 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7935 struct btrfs_extent_item);
7936 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7937 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7938 btrfs_set_extent_flags(leaf, extent_item,
7939 flags | BTRFS_EXTENT_FLAG_DATA);
7940
7941 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7942 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7943 if (parent > 0) {
7944 struct btrfs_shared_data_ref *ref;
7945 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7946 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7947 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7948 } else {
7949 struct btrfs_extent_data_ref *ref;
7950 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7951 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7952 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7953 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7954 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7955 }
7956
7957 btrfs_mark_buffer_dirty(path->nodes[0]);
7958 btrfs_free_path(path);
7959
7960 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7961 if (ret)
7962 return ret;
7963
7964 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7965 if (ret) { /* -ENOENT, logic error */
7966 btrfs_err(fs_info, "update block group failed for %llu %llu",
7967 ins->objectid, ins->offset);
7968 BUG();
7969 }
7970 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7971 return ret;
7972 }
7973
7974 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7975 struct btrfs_delayed_ref_node *node,
7976 struct btrfs_delayed_extent_op *extent_op)
7977 {
7978 struct btrfs_fs_info *fs_info = trans->fs_info;
7979 int ret;
7980 struct btrfs_extent_item *extent_item;
7981 struct btrfs_key extent_key;
7982 struct btrfs_tree_block_info *block_info;
7983 struct btrfs_extent_inline_ref *iref;
7984 struct btrfs_path *path;
7985 struct extent_buffer *leaf;
7986 struct btrfs_delayed_tree_ref *ref;
7987 u32 size = sizeof(*extent_item) + sizeof(*iref);
7988 u64 num_bytes;
7989 u64 flags = extent_op->flags_to_set;
7990 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7991
7992 ref = btrfs_delayed_node_to_tree_ref(node);
7993
7994 extent_key.objectid = node->bytenr;
7995 if (skinny_metadata) {
7996 extent_key.offset = ref->level;
7997 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7998 num_bytes = fs_info->nodesize;
7999 } else {
8000 extent_key.offset = node->num_bytes;
8001 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8002 size += sizeof(*block_info);
8003 num_bytes = node->num_bytes;
8004 }
8005
8006 path = btrfs_alloc_path();
8007 if (!path) {
8008 btrfs_free_and_pin_reserved_extent(fs_info,
8009 extent_key.objectid,
8010 fs_info->nodesize);
8011 return -ENOMEM;
8012 }
8013
8014 path->leave_spinning = 1;
8015 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8016 &extent_key, size);
8017 if (ret) {
8018 btrfs_free_path(path);
8019 btrfs_free_and_pin_reserved_extent(fs_info,
8020 extent_key.objectid,
8021 fs_info->nodesize);
8022 return ret;
8023 }
8024
8025 leaf = path->nodes[0];
8026 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8027 struct btrfs_extent_item);
8028 btrfs_set_extent_refs(leaf, extent_item, 1);
8029 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8030 btrfs_set_extent_flags(leaf, extent_item,
8031 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8032
8033 if (skinny_metadata) {
8034 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8035 } else {
8036 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8037 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8038 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8039 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8040 }
8041
8042 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8043 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8044 btrfs_set_extent_inline_ref_type(leaf, iref,
8045 BTRFS_SHARED_BLOCK_REF_KEY);
8046 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8047 } else {
8048 btrfs_set_extent_inline_ref_type(leaf, iref,
8049 BTRFS_TREE_BLOCK_REF_KEY);
8050 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8051 }
8052
8053 btrfs_mark_buffer_dirty(leaf);
8054 btrfs_free_path(path);
8055
8056 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8057 num_bytes);
8058 if (ret)
8059 return ret;
8060
8061 ret = update_block_group(trans, fs_info, extent_key.objectid,
8062 fs_info->nodesize, 1);
8063 if (ret) { /* -ENOENT, logic error */
8064 btrfs_err(fs_info, "update block group failed for %llu %llu",
8065 extent_key.objectid, extent_key.offset);
8066 BUG();
8067 }
8068
8069 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8070 fs_info->nodesize);
8071 return ret;
8072 }
8073
8074 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8075 struct btrfs_root *root, u64 owner,
8076 u64 offset, u64 ram_bytes,
8077 struct btrfs_key *ins)
8078 {
8079 int ret;
8080
8081 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8082
8083 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8084 root->root_key.objectid, owner, offset,
8085 BTRFS_ADD_DELAYED_EXTENT);
8086
8087 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8088 ins->offset, 0,
8089 root->root_key.objectid, owner,
8090 offset, ram_bytes,
8091 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8092 return ret;
8093 }
8094
8095 /*
8096 * this is used by the tree logging recovery code. It records that
8097 * an extent has been allocated and makes sure to clear the free
8098 * space cache bits as well
8099 */
8100 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8101 u64 root_objectid, u64 owner, u64 offset,
8102 struct btrfs_key *ins)
8103 {
8104 struct btrfs_fs_info *fs_info = trans->fs_info;
8105 int ret;
8106 struct btrfs_block_group_cache *block_group;
8107 struct btrfs_space_info *space_info;
8108
8109 /*
8110 * Mixed block groups will exclude before processing the log so we only
8111 * need to do the exclude dance if this fs isn't mixed.
8112 */
8113 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8114 ret = __exclude_logged_extent(fs_info, ins->objectid,
8115 ins->offset);
8116 if (ret)
8117 return ret;
8118 }
8119
8120 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8121 if (!block_group)
8122 return -EINVAL;
8123
8124 space_info = block_group->space_info;
8125 spin_lock(&space_info->lock);
8126 spin_lock(&block_group->lock);
8127 space_info->bytes_reserved += ins->offset;
8128 block_group->reserved += ins->offset;
8129 spin_unlock(&block_group->lock);
8130 spin_unlock(&space_info->lock);
8131
8132 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8133 offset, ins, 1);
8134 btrfs_put_block_group(block_group);
8135 return ret;
8136 }
8137
8138 static struct extent_buffer *
8139 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8140 u64 bytenr, int level, u64 owner)
8141 {
8142 struct btrfs_fs_info *fs_info = root->fs_info;
8143 struct extent_buffer *buf;
8144
8145 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8146 if (IS_ERR(buf))
8147 return buf;
8148
8149 /*
8150 * Extra safety check in case the extent tree is corrupted and extent
8151 * allocator chooses to use a tree block which is already used and
8152 * locked.
8153 */
8154 if (buf->lock_owner == current->pid) {
8155 btrfs_err_rl(fs_info,
8156 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8157 buf->start, btrfs_header_owner(buf), current->pid);
8158 free_extent_buffer(buf);
8159 return ERR_PTR(-EUCLEAN);
8160 }
8161
8162 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8163 btrfs_tree_lock(buf);
8164 clean_tree_block(fs_info, buf);
8165 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8166
8167 btrfs_set_lock_blocking(buf);
8168 set_extent_buffer_uptodate(buf);
8169
8170 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8171 btrfs_set_header_level(buf, level);
8172 btrfs_set_header_bytenr(buf, buf->start);
8173 btrfs_set_header_generation(buf, trans->transid);
8174 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8175 btrfs_set_header_owner(buf, owner);
8176 write_extent_buffer_fsid(buf, fs_info->fsid);
8177 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8178 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8179 buf->log_index = root->log_transid % 2;
8180 /*
8181 * we allow two log transactions at a time, use different
8182 * EXENT bit to differentiate dirty pages.
8183 */
8184 if (buf->log_index == 0)
8185 set_extent_dirty(&root->dirty_log_pages, buf->start,
8186 buf->start + buf->len - 1, GFP_NOFS);
8187 else
8188 set_extent_new(&root->dirty_log_pages, buf->start,
8189 buf->start + buf->len - 1);
8190 } else {
8191 buf->log_index = -1;
8192 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8193 buf->start + buf->len - 1, GFP_NOFS);
8194 }
8195 trans->dirty = true;
8196 /* this returns a buffer locked for blocking */
8197 return buf;
8198 }
8199
8200 static struct btrfs_block_rsv *
8201 use_block_rsv(struct btrfs_trans_handle *trans,
8202 struct btrfs_root *root, u32 blocksize)
8203 {
8204 struct btrfs_fs_info *fs_info = root->fs_info;
8205 struct btrfs_block_rsv *block_rsv;
8206 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8207 int ret;
8208 bool global_updated = false;
8209
8210 block_rsv = get_block_rsv(trans, root);
8211
8212 if (unlikely(block_rsv->size == 0))
8213 goto try_reserve;
8214 again:
8215 ret = block_rsv_use_bytes(block_rsv, blocksize);
8216 if (!ret)
8217 return block_rsv;
8218
8219 if (block_rsv->failfast)
8220 return ERR_PTR(ret);
8221
8222 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8223 global_updated = true;
8224 update_global_block_rsv(fs_info);
8225 goto again;
8226 }
8227
8228 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8229 static DEFINE_RATELIMIT_STATE(_rs,
8230 DEFAULT_RATELIMIT_INTERVAL * 10,
8231 /*DEFAULT_RATELIMIT_BURST*/ 1);
8232 if (__ratelimit(&_rs))
8233 WARN(1, KERN_DEBUG
8234 "BTRFS: block rsv returned %d\n", ret);
8235 }
8236 try_reserve:
8237 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8238 BTRFS_RESERVE_NO_FLUSH);
8239 if (!ret)
8240 return block_rsv;
8241 /*
8242 * If we couldn't reserve metadata bytes try and use some from
8243 * the global reserve if its space type is the same as the global
8244 * reservation.
8245 */
8246 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8247 block_rsv->space_info == global_rsv->space_info) {
8248 ret = block_rsv_use_bytes(global_rsv, blocksize);
8249 if (!ret)
8250 return global_rsv;
8251 }
8252 return ERR_PTR(ret);
8253 }
8254
8255 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8256 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8257 {
8258 block_rsv_add_bytes(block_rsv, blocksize, false);
8259 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8260 }
8261
8262 /*
8263 * finds a free extent and does all the dirty work required for allocation
8264 * returns the tree buffer or an ERR_PTR on error.
8265 */
8266 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8267 struct btrfs_root *root,
8268 u64 parent, u64 root_objectid,
8269 const struct btrfs_disk_key *key,
8270 int level, u64 hint,
8271 u64 empty_size)
8272 {
8273 struct btrfs_fs_info *fs_info = root->fs_info;
8274 struct btrfs_key ins;
8275 struct btrfs_block_rsv *block_rsv;
8276 struct extent_buffer *buf;
8277 struct btrfs_delayed_extent_op *extent_op;
8278 u64 flags = 0;
8279 int ret;
8280 u32 blocksize = fs_info->nodesize;
8281 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8282
8283 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8284 if (btrfs_is_testing(fs_info)) {
8285 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8286 level, root_objectid);
8287 if (!IS_ERR(buf))
8288 root->alloc_bytenr += blocksize;
8289 return buf;
8290 }
8291 #endif
8292
8293 block_rsv = use_block_rsv(trans, root, blocksize);
8294 if (IS_ERR(block_rsv))
8295 return ERR_CAST(block_rsv);
8296
8297 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8298 empty_size, hint, &ins, 0, 0);
8299 if (ret)
8300 goto out_unuse;
8301
8302 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8303 root_objectid);
8304 if (IS_ERR(buf)) {
8305 ret = PTR_ERR(buf);
8306 goto out_free_reserved;
8307 }
8308
8309 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8310 if (parent == 0)
8311 parent = ins.objectid;
8312 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8313 } else
8314 BUG_ON(parent > 0);
8315
8316 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8317 extent_op = btrfs_alloc_delayed_extent_op();
8318 if (!extent_op) {
8319 ret = -ENOMEM;
8320 goto out_free_buf;
8321 }
8322 if (key)
8323 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8324 else
8325 memset(&extent_op->key, 0, sizeof(extent_op->key));
8326 extent_op->flags_to_set = flags;
8327 extent_op->update_key = skinny_metadata ? false : true;
8328 extent_op->update_flags = true;
8329 extent_op->is_data = false;
8330 extent_op->level = level;
8331
8332 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8333 root_objectid, level, 0,
8334 BTRFS_ADD_DELAYED_EXTENT);
8335 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8336 ins.offset, parent,
8337 root_objectid, level,
8338 BTRFS_ADD_DELAYED_EXTENT,
8339 extent_op, NULL, NULL);
8340 if (ret)
8341 goto out_free_delayed;
8342 }
8343 return buf;
8344
8345 out_free_delayed:
8346 btrfs_free_delayed_extent_op(extent_op);
8347 out_free_buf:
8348 free_extent_buffer(buf);
8349 out_free_reserved:
8350 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8351 out_unuse:
8352 unuse_block_rsv(fs_info, block_rsv, blocksize);
8353 return ERR_PTR(ret);
8354 }
8355
8356 struct walk_control {
8357 u64 refs[BTRFS_MAX_LEVEL];
8358 u64 flags[BTRFS_MAX_LEVEL];
8359 struct btrfs_key update_progress;
8360 int stage;
8361 int level;
8362 int shared_level;
8363 int update_ref;
8364 int keep_locks;
8365 int reada_slot;
8366 int reada_count;
8367 };
8368
8369 #define DROP_REFERENCE 1
8370 #define UPDATE_BACKREF 2
8371
8372 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8373 struct btrfs_root *root,
8374 struct walk_control *wc,
8375 struct btrfs_path *path)
8376 {
8377 struct btrfs_fs_info *fs_info = root->fs_info;
8378 u64 bytenr;
8379 u64 generation;
8380 u64 refs;
8381 u64 flags;
8382 u32 nritems;
8383 struct btrfs_key key;
8384 struct extent_buffer *eb;
8385 int ret;
8386 int slot;
8387 int nread = 0;
8388
8389 if (path->slots[wc->level] < wc->reada_slot) {
8390 wc->reada_count = wc->reada_count * 2 / 3;
8391 wc->reada_count = max(wc->reada_count, 2);
8392 } else {
8393 wc->reada_count = wc->reada_count * 3 / 2;
8394 wc->reada_count = min_t(int, wc->reada_count,
8395 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8396 }
8397
8398 eb = path->nodes[wc->level];
8399 nritems = btrfs_header_nritems(eb);
8400
8401 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8402 if (nread >= wc->reada_count)
8403 break;
8404
8405 cond_resched();
8406 bytenr = btrfs_node_blockptr(eb, slot);
8407 generation = btrfs_node_ptr_generation(eb, slot);
8408
8409 if (slot == path->slots[wc->level])
8410 goto reada;
8411
8412 if (wc->stage == UPDATE_BACKREF &&
8413 generation <= root->root_key.offset)
8414 continue;
8415
8416 /* We don't lock the tree block, it's OK to be racy here */
8417 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8418 wc->level - 1, 1, &refs,
8419 &flags);
8420 /* We don't care about errors in readahead. */
8421 if (ret < 0)
8422 continue;
8423 BUG_ON(refs == 0);
8424
8425 if (wc->stage == DROP_REFERENCE) {
8426 if (refs == 1)
8427 goto reada;
8428
8429 if (wc->level == 1 &&
8430 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8431 continue;
8432 if (!wc->update_ref ||
8433 generation <= root->root_key.offset)
8434 continue;
8435 btrfs_node_key_to_cpu(eb, &key, slot);
8436 ret = btrfs_comp_cpu_keys(&key,
8437 &wc->update_progress);
8438 if (ret < 0)
8439 continue;
8440 } else {
8441 if (wc->level == 1 &&
8442 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8443 continue;
8444 }
8445 reada:
8446 readahead_tree_block(fs_info, bytenr);
8447 nread++;
8448 }
8449 wc->reada_slot = slot;
8450 }
8451
8452 /*
8453 * helper to process tree block while walking down the tree.
8454 *
8455 * when wc->stage == UPDATE_BACKREF, this function updates
8456 * back refs for pointers in the block.
8457 *
8458 * NOTE: return value 1 means we should stop walking down.
8459 */
8460 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8461 struct btrfs_root *root,
8462 struct btrfs_path *path,
8463 struct walk_control *wc, int lookup_info)
8464 {
8465 struct btrfs_fs_info *fs_info = root->fs_info;
8466 int level = wc->level;
8467 struct extent_buffer *eb = path->nodes[level];
8468 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8469 int ret;
8470
8471 if (wc->stage == UPDATE_BACKREF &&
8472 btrfs_header_owner(eb) != root->root_key.objectid)
8473 return 1;
8474
8475 /*
8476 * when reference count of tree block is 1, it won't increase
8477 * again. once full backref flag is set, we never clear it.
8478 */
8479 if (lookup_info &&
8480 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8481 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8482 BUG_ON(!path->locks[level]);
8483 ret = btrfs_lookup_extent_info(trans, fs_info,
8484 eb->start, level, 1,
8485 &wc->refs[level],
8486 &wc->flags[level]);
8487 BUG_ON(ret == -ENOMEM);
8488 if (ret)
8489 return ret;
8490 BUG_ON(wc->refs[level] == 0);
8491 }
8492
8493 if (wc->stage == DROP_REFERENCE) {
8494 if (wc->refs[level] > 1)
8495 return 1;
8496
8497 if (path->locks[level] && !wc->keep_locks) {
8498 btrfs_tree_unlock_rw(eb, path->locks[level]);
8499 path->locks[level] = 0;
8500 }
8501 return 0;
8502 }
8503
8504 /* wc->stage == UPDATE_BACKREF */
8505 if (!(wc->flags[level] & flag)) {
8506 BUG_ON(!path->locks[level]);
8507 ret = btrfs_inc_ref(trans, root, eb, 1);
8508 BUG_ON(ret); /* -ENOMEM */
8509 ret = btrfs_dec_ref(trans, root, eb, 0);
8510 BUG_ON(ret); /* -ENOMEM */
8511 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8512 eb->len, flag,
8513 btrfs_header_level(eb), 0);
8514 BUG_ON(ret); /* -ENOMEM */
8515 wc->flags[level] |= flag;
8516 }
8517
8518 /*
8519 * the block is shared by multiple trees, so it's not good to
8520 * keep the tree lock
8521 */
8522 if (path->locks[level] && level > 0) {
8523 btrfs_tree_unlock_rw(eb, path->locks[level]);
8524 path->locks[level] = 0;
8525 }
8526 return 0;
8527 }
8528
8529 /*
8530 * helper to process tree block pointer.
8531 *
8532 * when wc->stage == DROP_REFERENCE, this function checks
8533 * reference count of the block pointed to. if the block
8534 * is shared and we need update back refs for the subtree
8535 * rooted at the block, this function changes wc->stage to
8536 * UPDATE_BACKREF. if the block is shared and there is no
8537 * need to update back, this function drops the reference
8538 * to the block.
8539 *
8540 * NOTE: return value 1 means we should stop walking down.
8541 */
8542 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8543 struct btrfs_root *root,
8544 struct btrfs_path *path,
8545 struct walk_control *wc, int *lookup_info)
8546 {
8547 struct btrfs_fs_info *fs_info = root->fs_info;
8548 u64 bytenr;
8549 u64 generation;
8550 u64 parent;
8551 u32 blocksize;
8552 struct btrfs_key key;
8553 struct btrfs_key first_key;
8554 struct extent_buffer *next;
8555 int level = wc->level;
8556 int reada = 0;
8557 int ret = 0;
8558 bool need_account = false;
8559
8560 generation = btrfs_node_ptr_generation(path->nodes[level],
8561 path->slots[level]);
8562 /*
8563 * if the lower level block was created before the snapshot
8564 * was created, we know there is no need to update back refs
8565 * for the subtree
8566 */
8567 if (wc->stage == UPDATE_BACKREF &&
8568 generation <= root->root_key.offset) {
8569 *lookup_info = 1;
8570 return 1;
8571 }
8572
8573 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8574 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8575 path->slots[level]);
8576 blocksize = fs_info->nodesize;
8577
8578 next = find_extent_buffer(fs_info, bytenr);
8579 if (!next) {
8580 next = btrfs_find_create_tree_block(fs_info, bytenr);
8581 if (IS_ERR(next))
8582 return PTR_ERR(next);
8583
8584 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8585 level - 1);
8586 reada = 1;
8587 }
8588 btrfs_tree_lock(next);
8589 btrfs_set_lock_blocking(next);
8590
8591 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8592 &wc->refs[level - 1],
8593 &wc->flags[level - 1]);
8594 if (ret < 0)
8595 goto out_unlock;
8596
8597 if (unlikely(wc->refs[level - 1] == 0)) {
8598 btrfs_err(fs_info, "Missing references.");
8599 ret = -EIO;
8600 goto out_unlock;
8601 }
8602 *lookup_info = 0;
8603
8604 if (wc->stage == DROP_REFERENCE) {
8605 if (wc->refs[level - 1] > 1) {
8606 need_account = true;
8607 if (level == 1 &&
8608 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8609 goto skip;
8610
8611 if (!wc->update_ref ||
8612 generation <= root->root_key.offset)
8613 goto skip;
8614
8615 btrfs_node_key_to_cpu(path->nodes[level], &key,
8616 path->slots[level]);
8617 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8618 if (ret < 0)
8619 goto skip;
8620
8621 wc->stage = UPDATE_BACKREF;
8622 wc->shared_level = level - 1;
8623 }
8624 } else {
8625 if (level == 1 &&
8626 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8627 goto skip;
8628 }
8629
8630 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8631 btrfs_tree_unlock(next);
8632 free_extent_buffer(next);
8633 next = NULL;
8634 *lookup_info = 1;
8635 }
8636
8637 if (!next) {
8638 if (reada && level == 1)
8639 reada_walk_down(trans, root, wc, path);
8640 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8641 &first_key);
8642 if (IS_ERR(next)) {
8643 return PTR_ERR(next);
8644 } else if (!extent_buffer_uptodate(next)) {
8645 free_extent_buffer(next);
8646 return -EIO;
8647 }
8648 btrfs_tree_lock(next);
8649 btrfs_set_lock_blocking(next);
8650 }
8651
8652 level--;
8653 ASSERT(level == btrfs_header_level(next));
8654 if (level != btrfs_header_level(next)) {
8655 btrfs_err(root->fs_info, "mismatched level");
8656 ret = -EIO;
8657 goto out_unlock;
8658 }
8659 path->nodes[level] = next;
8660 path->slots[level] = 0;
8661 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8662 wc->level = level;
8663 if (wc->level == 1)
8664 wc->reada_slot = 0;
8665 return 0;
8666 skip:
8667 wc->refs[level - 1] = 0;
8668 wc->flags[level - 1] = 0;
8669 if (wc->stage == DROP_REFERENCE) {
8670 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8671 parent = path->nodes[level]->start;
8672 } else {
8673 ASSERT(root->root_key.objectid ==
8674 btrfs_header_owner(path->nodes[level]));
8675 if (root->root_key.objectid !=
8676 btrfs_header_owner(path->nodes[level])) {
8677 btrfs_err(root->fs_info,
8678 "mismatched block owner");
8679 ret = -EIO;
8680 goto out_unlock;
8681 }
8682 parent = 0;
8683 }
8684
8685 /*
8686 * Reloc tree doesn't contribute to qgroup numbers, and we have
8687 * already accounted them at merge time (replace_path),
8688 * thus we could skip expensive subtree trace here.
8689 */
8690 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
8691 need_account) {
8692 ret = btrfs_qgroup_trace_subtree(trans, next,
8693 generation, level - 1);
8694 if (ret) {
8695 btrfs_err_rl(fs_info,
8696 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8697 ret);
8698 }
8699 }
8700 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8701 parent, root->root_key.objectid,
8702 level - 1, 0);
8703 if (ret)
8704 goto out_unlock;
8705 }
8706
8707 *lookup_info = 1;
8708 ret = 1;
8709
8710 out_unlock:
8711 btrfs_tree_unlock(next);
8712 free_extent_buffer(next);
8713
8714 return ret;
8715 }
8716
8717 /*
8718 * helper to process tree block while walking up the tree.
8719 *
8720 * when wc->stage == DROP_REFERENCE, this function drops
8721 * reference count on the block.
8722 *
8723 * when wc->stage == UPDATE_BACKREF, this function changes
8724 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8725 * to UPDATE_BACKREF previously while processing the block.
8726 *
8727 * NOTE: return value 1 means we should stop walking up.
8728 */
8729 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8730 struct btrfs_root *root,
8731 struct btrfs_path *path,
8732 struct walk_control *wc)
8733 {
8734 struct btrfs_fs_info *fs_info = root->fs_info;
8735 int ret;
8736 int level = wc->level;
8737 struct extent_buffer *eb = path->nodes[level];
8738 u64 parent = 0;
8739
8740 if (wc->stage == UPDATE_BACKREF) {
8741 BUG_ON(wc->shared_level < level);
8742 if (level < wc->shared_level)
8743 goto out;
8744
8745 ret = find_next_key(path, level + 1, &wc->update_progress);
8746 if (ret > 0)
8747 wc->update_ref = 0;
8748
8749 wc->stage = DROP_REFERENCE;
8750 wc->shared_level = -1;
8751 path->slots[level] = 0;
8752
8753 /*
8754 * check reference count again if the block isn't locked.
8755 * we should start walking down the tree again if reference
8756 * count is one.
8757 */
8758 if (!path->locks[level]) {
8759 BUG_ON(level == 0);
8760 btrfs_tree_lock(eb);
8761 btrfs_set_lock_blocking(eb);
8762 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8763
8764 ret = btrfs_lookup_extent_info(trans, fs_info,
8765 eb->start, level, 1,
8766 &wc->refs[level],
8767 &wc->flags[level]);
8768 if (ret < 0) {
8769 btrfs_tree_unlock_rw(eb, path->locks[level]);
8770 path->locks[level] = 0;
8771 return ret;
8772 }
8773 BUG_ON(wc->refs[level] == 0);
8774 if (wc->refs[level] == 1) {
8775 btrfs_tree_unlock_rw(eb, path->locks[level]);
8776 path->locks[level] = 0;
8777 return 1;
8778 }
8779 }
8780 }
8781
8782 /* wc->stage == DROP_REFERENCE */
8783 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8784
8785 if (wc->refs[level] == 1) {
8786 if (level == 0) {
8787 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8788 ret = btrfs_dec_ref(trans, root, eb, 1);
8789 else
8790 ret = btrfs_dec_ref(trans, root, eb, 0);
8791 BUG_ON(ret); /* -ENOMEM */
8792 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8793 if (ret) {
8794 btrfs_err_rl(fs_info,
8795 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8796 ret);
8797 }
8798 }
8799 /* make block locked assertion in clean_tree_block happy */
8800 if (!path->locks[level] &&
8801 btrfs_header_generation(eb) == trans->transid) {
8802 btrfs_tree_lock(eb);
8803 btrfs_set_lock_blocking(eb);
8804 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8805 }
8806 clean_tree_block(fs_info, eb);
8807 }
8808
8809 if (eb == root->node) {
8810 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8811 parent = eb->start;
8812 else if (root->root_key.objectid != btrfs_header_owner(eb))
8813 goto owner_mismatch;
8814 } else {
8815 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8816 parent = path->nodes[level + 1]->start;
8817 else if (root->root_key.objectid !=
8818 btrfs_header_owner(path->nodes[level + 1]))
8819 goto owner_mismatch;
8820 }
8821
8822 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8823 out:
8824 wc->refs[level] = 0;
8825 wc->flags[level] = 0;
8826 return 0;
8827
8828 owner_mismatch:
8829 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8830 btrfs_header_owner(eb), root->root_key.objectid);
8831 return -EUCLEAN;
8832 }
8833
8834 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8835 struct btrfs_root *root,
8836 struct btrfs_path *path,
8837 struct walk_control *wc)
8838 {
8839 int level = wc->level;
8840 int lookup_info = 1;
8841 int ret;
8842
8843 while (level >= 0) {
8844 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8845 if (ret > 0)
8846 break;
8847
8848 if (level == 0)
8849 break;
8850
8851 if (path->slots[level] >=
8852 btrfs_header_nritems(path->nodes[level]))
8853 break;
8854
8855 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8856 if (ret > 0) {
8857 path->slots[level]++;
8858 continue;
8859 } else if (ret < 0)
8860 return ret;
8861 level = wc->level;
8862 }
8863 return 0;
8864 }
8865
8866 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8867 struct btrfs_root *root,
8868 struct btrfs_path *path,
8869 struct walk_control *wc, int max_level)
8870 {
8871 int level = wc->level;
8872 int ret;
8873
8874 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8875 while (level < max_level && path->nodes[level]) {
8876 wc->level = level;
8877 if (path->slots[level] + 1 <
8878 btrfs_header_nritems(path->nodes[level])) {
8879 path->slots[level]++;
8880 return 0;
8881 } else {
8882 ret = walk_up_proc(trans, root, path, wc);
8883 if (ret > 0)
8884 return 0;
8885 if (ret < 0)
8886 return ret;
8887
8888 if (path->locks[level]) {
8889 btrfs_tree_unlock_rw(path->nodes[level],
8890 path->locks[level]);
8891 path->locks[level] = 0;
8892 }
8893 free_extent_buffer(path->nodes[level]);
8894 path->nodes[level] = NULL;
8895 level++;
8896 }
8897 }
8898 return 1;
8899 }
8900
8901 /*
8902 * drop a subvolume tree.
8903 *
8904 * this function traverses the tree freeing any blocks that only
8905 * referenced by the tree.
8906 *
8907 * when a shared tree block is found. this function decreases its
8908 * reference count by one. if update_ref is true, this function
8909 * also make sure backrefs for the shared block and all lower level
8910 * blocks are properly updated.
8911 *
8912 * If called with for_reloc == 0, may exit early with -EAGAIN
8913 */
8914 int btrfs_drop_snapshot(struct btrfs_root *root,
8915 struct btrfs_block_rsv *block_rsv, int update_ref,
8916 int for_reloc)
8917 {
8918 struct btrfs_fs_info *fs_info = root->fs_info;
8919 struct btrfs_path *path;
8920 struct btrfs_trans_handle *trans;
8921 struct btrfs_root *tree_root = fs_info->tree_root;
8922 struct btrfs_root_item *root_item = &root->root_item;
8923 struct walk_control *wc;
8924 struct btrfs_key key;
8925 int err = 0;
8926 int ret;
8927 int level;
8928 bool root_dropped = false;
8929
8930 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
8931
8932 path = btrfs_alloc_path();
8933 if (!path) {
8934 err = -ENOMEM;
8935 goto out;
8936 }
8937
8938 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8939 if (!wc) {
8940 btrfs_free_path(path);
8941 err = -ENOMEM;
8942 goto out;
8943 }
8944
8945 trans = btrfs_start_transaction(tree_root, 0);
8946 if (IS_ERR(trans)) {
8947 err = PTR_ERR(trans);
8948 goto out_free;
8949 }
8950
8951 if (block_rsv)
8952 trans->block_rsv = block_rsv;
8953
8954 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8955 level = btrfs_header_level(root->node);
8956 path->nodes[level] = btrfs_lock_root_node(root);
8957 btrfs_set_lock_blocking(path->nodes[level]);
8958 path->slots[level] = 0;
8959 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8960 memset(&wc->update_progress, 0,
8961 sizeof(wc->update_progress));
8962 } else {
8963 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8964 memcpy(&wc->update_progress, &key,
8965 sizeof(wc->update_progress));
8966
8967 level = root_item->drop_level;
8968 BUG_ON(level == 0);
8969 path->lowest_level = level;
8970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8971 path->lowest_level = 0;
8972 if (ret < 0) {
8973 err = ret;
8974 goto out_end_trans;
8975 }
8976 WARN_ON(ret > 0);
8977
8978 /*
8979 * unlock our path, this is safe because only this
8980 * function is allowed to delete this snapshot
8981 */
8982 btrfs_unlock_up_safe(path, 0);
8983
8984 level = btrfs_header_level(root->node);
8985 while (1) {
8986 btrfs_tree_lock(path->nodes[level]);
8987 btrfs_set_lock_blocking(path->nodes[level]);
8988 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8989
8990 ret = btrfs_lookup_extent_info(trans, fs_info,
8991 path->nodes[level]->start,
8992 level, 1, &wc->refs[level],
8993 &wc->flags[level]);
8994 if (ret < 0) {
8995 err = ret;
8996 goto out_end_trans;
8997 }
8998 BUG_ON(wc->refs[level] == 0);
8999
9000 if (level == root_item->drop_level)
9001 break;
9002
9003 btrfs_tree_unlock(path->nodes[level]);
9004 path->locks[level] = 0;
9005 WARN_ON(wc->refs[level] != 1);
9006 level--;
9007 }
9008 }
9009
9010 wc->level = level;
9011 wc->shared_level = -1;
9012 wc->stage = DROP_REFERENCE;
9013 wc->update_ref = update_ref;
9014 wc->keep_locks = 0;
9015 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9016
9017 while (1) {
9018
9019 ret = walk_down_tree(trans, root, path, wc);
9020 if (ret < 0) {
9021 err = ret;
9022 break;
9023 }
9024
9025 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9026 if (ret < 0) {
9027 err = ret;
9028 break;
9029 }
9030
9031 if (ret > 0) {
9032 BUG_ON(wc->stage != DROP_REFERENCE);
9033 break;
9034 }
9035
9036 if (wc->stage == DROP_REFERENCE) {
9037 level = wc->level;
9038 btrfs_node_key(path->nodes[level],
9039 &root_item->drop_progress,
9040 path->slots[level]);
9041 root_item->drop_level = level;
9042 }
9043
9044 BUG_ON(wc->level == 0);
9045 if (btrfs_should_end_transaction(trans) ||
9046 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9047 ret = btrfs_update_root(trans, tree_root,
9048 &root->root_key,
9049 root_item);
9050 if (ret) {
9051 btrfs_abort_transaction(trans, ret);
9052 err = ret;
9053 goto out_end_trans;
9054 }
9055
9056 btrfs_end_transaction_throttle(trans);
9057 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9058 btrfs_debug(fs_info,
9059 "drop snapshot early exit");
9060 err = -EAGAIN;
9061 goto out_free;
9062 }
9063
9064 trans = btrfs_start_transaction(tree_root, 0);
9065 if (IS_ERR(trans)) {
9066 err = PTR_ERR(trans);
9067 goto out_free;
9068 }
9069 if (block_rsv)
9070 trans->block_rsv = block_rsv;
9071 }
9072 }
9073 btrfs_release_path(path);
9074 if (err)
9075 goto out_end_trans;
9076
9077 ret = btrfs_del_root(trans, &root->root_key);
9078 if (ret) {
9079 btrfs_abort_transaction(trans, ret);
9080 err = ret;
9081 goto out_end_trans;
9082 }
9083
9084 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9085 ret = btrfs_find_root(tree_root, &root->root_key, path,
9086 NULL, NULL);
9087 if (ret < 0) {
9088 btrfs_abort_transaction(trans, ret);
9089 err = ret;
9090 goto out_end_trans;
9091 } else if (ret > 0) {
9092 /* if we fail to delete the orphan item this time
9093 * around, it'll get picked up the next time.
9094 *
9095 * The most common failure here is just -ENOENT.
9096 */
9097 btrfs_del_orphan_item(trans, tree_root,
9098 root->root_key.objectid);
9099 }
9100 }
9101
9102 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9103 btrfs_add_dropped_root(trans, root);
9104 } else {
9105 free_extent_buffer(root->node);
9106 free_extent_buffer(root->commit_root);
9107 btrfs_put_fs_root(root);
9108 }
9109 root_dropped = true;
9110 out_end_trans:
9111 btrfs_end_transaction_throttle(trans);
9112 out_free:
9113 kfree(wc);
9114 btrfs_free_path(path);
9115 out:
9116 /*
9117 * So if we need to stop dropping the snapshot for whatever reason we
9118 * need to make sure to add it back to the dead root list so that we
9119 * keep trying to do the work later. This also cleans up roots if we
9120 * don't have it in the radix (like when we recover after a power fail
9121 * or unmount) so we don't leak memory.
9122 */
9123 if (!for_reloc && !root_dropped)
9124 btrfs_add_dead_root(root);
9125 if (err && err != -EAGAIN)
9126 btrfs_handle_fs_error(fs_info, err, NULL);
9127 return err;
9128 }
9129
9130 /*
9131 * drop subtree rooted at tree block 'node'.
9132 *
9133 * NOTE: this function will unlock and release tree block 'node'
9134 * only used by relocation code
9135 */
9136 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9137 struct btrfs_root *root,
9138 struct extent_buffer *node,
9139 struct extent_buffer *parent)
9140 {
9141 struct btrfs_fs_info *fs_info = root->fs_info;
9142 struct btrfs_path *path;
9143 struct walk_control *wc;
9144 int level;
9145 int parent_level;
9146 int ret = 0;
9147 int wret;
9148
9149 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9150
9151 path = btrfs_alloc_path();
9152 if (!path)
9153 return -ENOMEM;
9154
9155 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9156 if (!wc) {
9157 btrfs_free_path(path);
9158 return -ENOMEM;
9159 }
9160
9161 btrfs_assert_tree_locked(parent);
9162 parent_level = btrfs_header_level(parent);
9163 extent_buffer_get(parent);
9164 path->nodes[parent_level] = parent;
9165 path->slots[parent_level] = btrfs_header_nritems(parent);
9166
9167 btrfs_assert_tree_locked(node);
9168 level = btrfs_header_level(node);
9169 path->nodes[level] = node;
9170 path->slots[level] = 0;
9171 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9172
9173 wc->refs[parent_level] = 1;
9174 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9175 wc->level = level;
9176 wc->shared_level = -1;
9177 wc->stage = DROP_REFERENCE;
9178 wc->update_ref = 0;
9179 wc->keep_locks = 1;
9180 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9181
9182 while (1) {
9183 wret = walk_down_tree(trans, root, path, wc);
9184 if (wret < 0) {
9185 ret = wret;
9186 break;
9187 }
9188
9189 wret = walk_up_tree(trans, root, path, wc, parent_level);
9190 if (wret < 0)
9191 ret = wret;
9192 if (wret != 0)
9193 break;
9194 }
9195
9196 kfree(wc);
9197 btrfs_free_path(path);
9198 return ret;
9199 }
9200
9201 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9202 {
9203 u64 num_devices;
9204 u64 stripped;
9205
9206 /*
9207 * if restripe for this chunk_type is on pick target profile and
9208 * return, otherwise do the usual balance
9209 */
9210 stripped = get_restripe_target(fs_info, flags);
9211 if (stripped)
9212 return extended_to_chunk(stripped);
9213
9214 num_devices = fs_info->fs_devices->rw_devices;
9215
9216 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9217 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9218 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9219
9220 if (num_devices == 1) {
9221 stripped |= BTRFS_BLOCK_GROUP_DUP;
9222 stripped = flags & ~stripped;
9223
9224 /* turn raid0 into single device chunks */
9225 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9226 return stripped;
9227
9228 /* turn mirroring into duplication */
9229 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9230 BTRFS_BLOCK_GROUP_RAID10))
9231 return stripped | BTRFS_BLOCK_GROUP_DUP;
9232 } else {
9233 /* they already had raid on here, just return */
9234 if (flags & stripped)
9235 return flags;
9236
9237 stripped |= BTRFS_BLOCK_GROUP_DUP;
9238 stripped = flags & ~stripped;
9239
9240 /* switch duplicated blocks with raid1 */
9241 if (flags & BTRFS_BLOCK_GROUP_DUP)
9242 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9243
9244 /* this is drive concat, leave it alone */
9245 }
9246
9247 return flags;
9248 }
9249
9250 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9251 {
9252 struct btrfs_space_info *sinfo = cache->space_info;
9253 u64 num_bytes;
9254 u64 min_allocable_bytes;
9255 int ret = -ENOSPC;
9256
9257 /*
9258 * We need some metadata space and system metadata space for
9259 * allocating chunks in some corner cases until we force to set
9260 * it to be readonly.
9261 */
9262 if ((sinfo->flags &
9263 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9264 !force)
9265 min_allocable_bytes = SZ_1M;
9266 else
9267 min_allocable_bytes = 0;
9268
9269 spin_lock(&sinfo->lock);
9270 spin_lock(&cache->lock);
9271
9272 if (cache->ro) {
9273 cache->ro++;
9274 ret = 0;
9275 goto out;
9276 }
9277
9278 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9279 cache->bytes_super - btrfs_block_group_used(&cache->item);
9280
9281 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9282 min_allocable_bytes <= sinfo->total_bytes) {
9283 sinfo->bytes_readonly += num_bytes;
9284 cache->ro++;
9285 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9286 ret = 0;
9287 }
9288 out:
9289 spin_unlock(&cache->lock);
9290 spin_unlock(&sinfo->lock);
9291 return ret;
9292 }
9293
9294 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9295
9296 {
9297 struct btrfs_fs_info *fs_info = cache->fs_info;
9298 struct btrfs_trans_handle *trans;
9299 u64 alloc_flags;
9300 int ret;
9301
9302 again:
9303 trans = btrfs_join_transaction(fs_info->extent_root);
9304 if (IS_ERR(trans))
9305 return PTR_ERR(trans);
9306
9307 /*
9308 * we're not allowed to set block groups readonly after the dirty
9309 * block groups cache has started writing. If it already started,
9310 * back off and let this transaction commit
9311 */
9312 mutex_lock(&fs_info->ro_block_group_mutex);
9313 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9314 u64 transid = trans->transid;
9315
9316 mutex_unlock(&fs_info->ro_block_group_mutex);
9317 btrfs_end_transaction(trans);
9318
9319 ret = btrfs_wait_for_commit(fs_info, transid);
9320 if (ret)
9321 return ret;
9322 goto again;
9323 }
9324
9325 /*
9326 * if we are changing raid levels, try to allocate a corresponding
9327 * block group with the new raid level.
9328 */
9329 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9330 if (alloc_flags != cache->flags) {
9331 ret = do_chunk_alloc(trans, alloc_flags,
9332 CHUNK_ALLOC_FORCE);
9333 /*
9334 * ENOSPC is allowed here, we may have enough space
9335 * already allocated at the new raid level to
9336 * carry on
9337 */
9338 if (ret == -ENOSPC)
9339 ret = 0;
9340 if (ret < 0)
9341 goto out;
9342 }
9343
9344 ret = inc_block_group_ro(cache, 0);
9345 if (!ret)
9346 goto out;
9347 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9348 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9349 if (ret < 0)
9350 goto out;
9351 ret = inc_block_group_ro(cache, 0);
9352 out:
9353 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9354 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9355 mutex_lock(&fs_info->chunk_mutex);
9356 check_system_chunk(trans, alloc_flags);
9357 mutex_unlock(&fs_info->chunk_mutex);
9358 }
9359 mutex_unlock(&fs_info->ro_block_group_mutex);
9360
9361 btrfs_end_transaction(trans);
9362 return ret;
9363 }
9364
9365 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9366 {
9367 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9368
9369 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9370 }
9371
9372 /*
9373 * helper to account the unused space of all the readonly block group in the
9374 * space_info. takes mirrors into account.
9375 */
9376 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9377 {
9378 struct btrfs_block_group_cache *block_group;
9379 u64 free_bytes = 0;
9380 int factor;
9381
9382 /* It's df, we don't care if it's racy */
9383 if (list_empty(&sinfo->ro_bgs))
9384 return 0;
9385
9386 spin_lock(&sinfo->lock);
9387 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9388 spin_lock(&block_group->lock);
9389
9390 if (!block_group->ro) {
9391 spin_unlock(&block_group->lock);
9392 continue;
9393 }
9394
9395 factor = btrfs_bg_type_to_factor(block_group->flags);
9396 free_bytes += (block_group->key.offset -
9397 btrfs_block_group_used(&block_group->item)) *
9398 factor;
9399
9400 spin_unlock(&block_group->lock);
9401 }
9402 spin_unlock(&sinfo->lock);
9403
9404 return free_bytes;
9405 }
9406
9407 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9408 {
9409 struct btrfs_space_info *sinfo = cache->space_info;
9410 u64 num_bytes;
9411
9412 BUG_ON(!cache->ro);
9413
9414 spin_lock(&sinfo->lock);
9415 spin_lock(&cache->lock);
9416 if (!--cache->ro) {
9417 num_bytes = cache->key.offset - cache->reserved -
9418 cache->pinned - cache->bytes_super -
9419 btrfs_block_group_used(&cache->item);
9420 sinfo->bytes_readonly -= num_bytes;
9421 list_del_init(&cache->ro_list);
9422 }
9423 spin_unlock(&cache->lock);
9424 spin_unlock(&sinfo->lock);
9425 }
9426
9427 /*
9428 * checks to see if its even possible to relocate this block group.
9429 *
9430 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9431 * ok to go ahead and try.
9432 */
9433 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9434 {
9435 struct btrfs_root *root = fs_info->extent_root;
9436 struct btrfs_block_group_cache *block_group;
9437 struct btrfs_space_info *space_info;
9438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9439 struct btrfs_device *device;
9440 struct btrfs_trans_handle *trans;
9441 u64 min_free;
9442 u64 dev_min = 1;
9443 u64 dev_nr = 0;
9444 u64 target;
9445 int debug;
9446 int index;
9447 int full = 0;
9448 int ret = 0;
9449
9450 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9451
9452 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9453
9454 /* odd, couldn't find the block group, leave it alone */
9455 if (!block_group) {
9456 if (debug)
9457 btrfs_warn(fs_info,
9458 "can't find block group for bytenr %llu",
9459 bytenr);
9460 return -1;
9461 }
9462
9463 min_free = btrfs_block_group_used(&block_group->item);
9464
9465 /* no bytes used, we're good */
9466 if (!min_free)
9467 goto out;
9468
9469 space_info = block_group->space_info;
9470 spin_lock(&space_info->lock);
9471
9472 full = space_info->full;
9473
9474 /*
9475 * if this is the last block group we have in this space, we can't
9476 * relocate it unless we're able to allocate a new chunk below.
9477 *
9478 * Otherwise, we need to make sure we have room in the space to handle
9479 * all of the extents from this block group. If we can, we're good
9480 */
9481 if ((space_info->total_bytes != block_group->key.offset) &&
9482 (btrfs_space_info_used(space_info, false) + min_free <
9483 space_info->total_bytes)) {
9484 spin_unlock(&space_info->lock);
9485 goto out;
9486 }
9487 spin_unlock(&space_info->lock);
9488
9489 /*
9490 * ok we don't have enough space, but maybe we have free space on our
9491 * devices to allocate new chunks for relocation, so loop through our
9492 * alloc devices and guess if we have enough space. if this block
9493 * group is going to be restriped, run checks against the target
9494 * profile instead of the current one.
9495 */
9496 ret = -1;
9497
9498 /*
9499 * index:
9500 * 0: raid10
9501 * 1: raid1
9502 * 2: dup
9503 * 3: raid0
9504 * 4: single
9505 */
9506 target = get_restripe_target(fs_info, block_group->flags);
9507 if (target) {
9508 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9509 } else {
9510 /*
9511 * this is just a balance, so if we were marked as full
9512 * we know there is no space for a new chunk
9513 */
9514 if (full) {
9515 if (debug)
9516 btrfs_warn(fs_info,
9517 "no space to alloc new chunk for block group %llu",
9518 block_group->key.objectid);
9519 goto out;
9520 }
9521
9522 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9523 }
9524
9525 if (index == BTRFS_RAID_RAID10) {
9526 dev_min = 4;
9527 /* Divide by 2 */
9528 min_free >>= 1;
9529 } else if (index == BTRFS_RAID_RAID1) {
9530 dev_min = 2;
9531 } else if (index == BTRFS_RAID_DUP) {
9532 /* Multiply by 2 */
9533 min_free <<= 1;
9534 } else if (index == BTRFS_RAID_RAID0) {
9535 dev_min = fs_devices->rw_devices;
9536 min_free = div64_u64(min_free, dev_min);
9537 }
9538
9539 /* We need to do this so that we can look at pending chunks */
9540 trans = btrfs_join_transaction(root);
9541 if (IS_ERR(trans)) {
9542 ret = PTR_ERR(trans);
9543 goto out;
9544 }
9545
9546 mutex_lock(&fs_info->chunk_mutex);
9547 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9548 u64 dev_offset;
9549
9550 /*
9551 * check to make sure we can actually find a chunk with enough
9552 * space to fit our block group in.
9553 */
9554 if (device->total_bytes > device->bytes_used + min_free &&
9555 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9556 ret = find_free_dev_extent(trans, device, min_free,
9557 &dev_offset, NULL);
9558 if (!ret)
9559 dev_nr++;
9560
9561 if (dev_nr >= dev_min)
9562 break;
9563
9564 ret = -1;
9565 }
9566 }
9567 if (debug && ret == -1)
9568 btrfs_warn(fs_info,
9569 "no space to allocate a new chunk for block group %llu",
9570 block_group->key.objectid);
9571 mutex_unlock(&fs_info->chunk_mutex);
9572 btrfs_end_transaction(trans);
9573 out:
9574 btrfs_put_block_group(block_group);
9575 return ret;
9576 }
9577
9578 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9579 struct btrfs_path *path,
9580 struct btrfs_key *key)
9581 {
9582 struct btrfs_root *root = fs_info->extent_root;
9583 int ret = 0;
9584 struct btrfs_key found_key;
9585 struct extent_buffer *leaf;
9586 struct btrfs_block_group_item bg;
9587 u64 flags;
9588 int slot;
9589
9590 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9591 if (ret < 0)
9592 goto out;
9593
9594 while (1) {
9595 slot = path->slots[0];
9596 leaf = path->nodes[0];
9597 if (slot >= btrfs_header_nritems(leaf)) {
9598 ret = btrfs_next_leaf(root, path);
9599 if (ret == 0)
9600 continue;
9601 if (ret < 0)
9602 goto out;
9603 break;
9604 }
9605 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9606
9607 if (found_key.objectid >= key->objectid &&
9608 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9609 struct extent_map_tree *em_tree;
9610 struct extent_map *em;
9611
9612 em_tree = &root->fs_info->mapping_tree.map_tree;
9613 read_lock(&em_tree->lock);
9614 em = lookup_extent_mapping(em_tree, found_key.objectid,
9615 found_key.offset);
9616 read_unlock(&em_tree->lock);
9617 if (!em) {
9618 btrfs_err(fs_info,
9619 "logical %llu len %llu found bg but no related chunk",
9620 found_key.objectid, found_key.offset);
9621 ret = -ENOENT;
9622 } else if (em->start != found_key.objectid ||
9623 em->len != found_key.offset) {
9624 btrfs_err(fs_info,
9625 "block group %llu len %llu mismatch with chunk %llu len %llu",
9626 found_key.objectid, found_key.offset,
9627 em->start, em->len);
9628 ret = -EUCLEAN;
9629 } else {
9630 read_extent_buffer(leaf, &bg,
9631 btrfs_item_ptr_offset(leaf, slot),
9632 sizeof(bg));
9633 flags = btrfs_block_group_flags(&bg) &
9634 BTRFS_BLOCK_GROUP_TYPE_MASK;
9635
9636 if (flags != (em->map_lookup->type &
9637 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9638 btrfs_err(fs_info,
9639 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9640 found_key.objectid,
9641 found_key.offset, flags,
9642 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9643 em->map_lookup->type));
9644 ret = -EUCLEAN;
9645 } else {
9646 ret = 0;
9647 }
9648 }
9649 free_extent_map(em);
9650 goto out;
9651 }
9652 path->slots[0]++;
9653 }
9654 out:
9655 return ret;
9656 }
9657
9658 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9659 {
9660 struct btrfs_block_group_cache *block_group;
9661 u64 last = 0;
9662
9663 while (1) {
9664 struct inode *inode;
9665
9666 block_group = btrfs_lookup_first_block_group(info, last);
9667 while (block_group) {
9668 wait_block_group_cache_done(block_group);
9669 spin_lock(&block_group->lock);
9670 if (block_group->iref)
9671 break;
9672 spin_unlock(&block_group->lock);
9673 block_group = next_block_group(info, block_group);
9674 }
9675 if (!block_group) {
9676 if (last == 0)
9677 break;
9678 last = 0;
9679 continue;
9680 }
9681
9682 inode = block_group->inode;
9683 block_group->iref = 0;
9684 block_group->inode = NULL;
9685 spin_unlock(&block_group->lock);
9686 ASSERT(block_group->io_ctl.inode == NULL);
9687 iput(inode);
9688 last = block_group->key.objectid + block_group->key.offset;
9689 btrfs_put_block_group(block_group);
9690 }
9691 }
9692
9693 /*
9694 * Must be called only after stopping all workers, since we could have block
9695 * group caching kthreads running, and therefore they could race with us if we
9696 * freed the block groups before stopping them.
9697 */
9698 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9699 {
9700 struct btrfs_block_group_cache *block_group;
9701 struct btrfs_space_info *space_info;
9702 struct btrfs_caching_control *caching_ctl;
9703 struct rb_node *n;
9704
9705 down_write(&info->commit_root_sem);
9706 while (!list_empty(&info->caching_block_groups)) {
9707 caching_ctl = list_entry(info->caching_block_groups.next,
9708 struct btrfs_caching_control, list);
9709 list_del(&caching_ctl->list);
9710 put_caching_control(caching_ctl);
9711 }
9712 up_write(&info->commit_root_sem);
9713
9714 spin_lock(&info->unused_bgs_lock);
9715 while (!list_empty(&info->unused_bgs)) {
9716 block_group = list_first_entry(&info->unused_bgs,
9717 struct btrfs_block_group_cache,
9718 bg_list);
9719 list_del_init(&block_group->bg_list);
9720 btrfs_put_block_group(block_group);
9721 }
9722 spin_unlock(&info->unused_bgs_lock);
9723
9724 spin_lock(&info->block_group_cache_lock);
9725 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9726 block_group = rb_entry(n, struct btrfs_block_group_cache,
9727 cache_node);
9728 rb_erase(&block_group->cache_node,
9729 &info->block_group_cache_tree);
9730 RB_CLEAR_NODE(&block_group->cache_node);
9731 spin_unlock(&info->block_group_cache_lock);
9732
9733 down_write(&block_group->space_info->groups_sem);
9734 list_del(&block_group->list);
9735 up_write(&block_group->space_info->groups_sem);
9736
9737 /*
9738 * We haven't cached this block group, which means we could
9739 * possibly have excluded extents on this block group.
9740 */
9741 if (block_group->cached == BTRFS_CACHE_NO ||
9742 block_group->cached == BTRFS_CACHE_ERROR)
9743 free_excluded_extents(block_group);
9744
9745 btrfs_remove_free_space_cache(block_group);
9746 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9747 ASSERT(list_empty(&block_group->dirty_list));
9748 ASSERT(list_empty(&block_group->io_list));
9749 ASSERT(list_empty(&block_group->bg_list));
9750 ASSERT(atomic_read(&block_group->count) == 1);
9751 btrfs_put_block_group(block_group);
9752
9753 spin_lock(&info->block_group_cache_lock);
9754 }
9755 spin_unlock(&info->block_group_cache_lock);
9756
9757 /* now that all the block groups are freed, go through and
9758 * free all the space_info structs. This is only called during
9759 * the final stages of unmount, and so we know nobody is
9760 * using them. We call synchronize_rcu() once before we start,
9761 * just to be on the safe side.
9762 */
9763 synchronize_rcu();
9764
9765 release_global_block_rsv(info);
9766
9767 while (!list_empty(&info->space_info)) {
9768 int i;
9769
9770 space_info = list_entry(info->space_info.next,
9771 struct btrfs_space_info,
9772 list);
9773
9774 /*
9775 * Do not hide this behind enospc_debug, this is actually
9776 * important and indicates a real bug if this happens.
9777 */
9778 if (WARN_ON(space_info->bytes_pinned > 0 ||
9779 space_info->bytes_reserved > 0 ||
9780 space_info->bytes_may_use > 0))
9781 dump_space_info(info, space_info, 0, 0);
9782 list_del(&space_info->list);
9783 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9784 struct kobject *kobj;
9785 kobj = space_info->block_group_kobjs[i];
9786 space_info->block_group_kobjs[i] = NULL;
9787 if (kobj) {
9788 kobject_del(kobj);
9789 kobject_put(kobj);
9790 }
9791 }
9792 kobject_del(&space_info->kobj);
9793 kobject_put(&space_info->kobj);
9794 }
9795 return 0;
9796 }
9797
9798 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9799 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9800 {
9801 struct btrfs_space_info *space_info;
9802 struct raid_kobject *rkobj;
9803 LIST_HEAD(list);
9804 int index;
9805 int ret = 0;
9806
9807 spin_lock(&fs_info->pending_raid_kobjs_lock);
9808 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9809 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9810
9811 list_for_each_entry(rkobj, &list, list) {
9812 space_info = __find_space_info(fs_info, rkobj->flags);
9813 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9814
9815 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9816 "%s", get_raid_name(index));
9817 if (ret) {
9818 kobject_put(&rkobj->kobj);
9819 break;
9820 }
9821 }
9822 if (ret)
9823 btrfs_warn(fs_info,
9824 "failed to add kobject for block cache, ignoring");
9825 }
9826
9827 static void link_block_group(struct btrfs_block_group_cache *cache)
9828 {
9829 struct btrfs_space_info *space_info = cache->space_info;
9830 struct btrfs_fs_info *fs_info = cache->fs_info;
9831 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9832 bool first = false;
9833
9834 down_write(&space_info->groups_sem);
9835 if (list_empty(&space_info->block_groups[index]))
9836 first = true;
9837 list_add_tail(&cache->list, &space_info->block_groups[index]);
9838 up_write(&space_info->groups_sem);
9839
9840 if (first) {
9841 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9842 if (!rkobj) {
9843 btrfs_warn(cache->fs_info,
9844 "couldn't alloc memory for raid level kobject");
9845 return;
9846 }
9847 rkobj->flags = cache->flags;
9848 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9849
9850 spin_lock(&fs_info->pending_raid_kobjs_lock);
9851 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9852 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9853 space_info->block_group_kobjs[index] = &rkobj->kobj;
9854 }
9855 }
9856
9857 static struct btrfs_block_group_cache *
9858 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9859 u64 start, u64 size)
9860 {
9861 struct btrfs_block_group_cache *cache;
9862
9863 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9864 if (!cache)
9865 return NULL;
9866
9867 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9868 GFP_NOFS);
9869 if (!cache->free_space_ctl) {
9870 kfree(cache);
9871 return NULL;
9872 }
9873
9874 cache->key.objectid = start;
9875 cache->key.offset = size;
9876 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9877
9878 cache->fs_info = fs_info;
9879 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9880 set_free_space_tree_thresholds(cache);
9881
9882 atomic_set(&cache->count, 1);
9883 spin_lock_init(&cache->lock);
9884 init_rwsem(&cache->data_rwsem);
9885 INIT_LIST_HEAD(&cache->list);
9886 INIT_LIST_HEAD(&cache->cluster_list);
9887 INIT_LIST_HEAD(&cache->bg_list);
9888 INIT_LIST_HEAD(&cache->ro_list);
9889 INIT_LIST_HEAD(&cache->dirty_list);
9890 INIT_LIST_HEAD(&cache->io_list);
9891 btrfs_init_free_space_ctl(cache);
9892 atomic_set(&cache->trimming, 0);
9893 mutex_init(&cache->free_space_lock);
9894 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9895
9896 return cache;
9897 }
9898
9899
9900 /*
9901 * Iterate all chunks and verify that each of them has the corresponding block
9902 * group
9903 */
9904 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9905 {
9906 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9907 struct extent_map *em;
9908 struct btrfs_block_group_cache *bg;
9909 u64 start = 0;
9910 int ret = 0;
9911
9912 while (1) {
9913 read_lock(&map_tree->map_tree.lock);
9914 /*
9915 * lookup_extent_mapping will return the first extent map
9916 * intersecting the range, so setting @len to 1 is enough to
9917 * get the first chunk.
9918 */
9919 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9920 read_unlock(&map_tree->map_tree.lock);
9921 if (!em)
9922 break;
9923
9924 bg = btrfs_lookup_block_group(fs_info, em->start);
9925 if (!bg) {
9926 btrfs_err(fs_info,
9927 "chunk start=%llu len=%llu doesn't have corresponding block group",
9928 em->start, em->len);
9929 ret = -EUCLEAN;
9930 free_extent_map(em);
9931 break;
9932 }
9933 if (bg->key.objectid != em->start ||
9934 bg->key.offset != em->len ||
9935 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9936 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9937 btrfs_err(fs_info,
9938 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9939 em->start, em->len,
9940 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9941 bg->key.objectid, bg->key.offset,
9942 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9943 ret = -EUCLEAN;
9944 free_extent_map(em);
9945 btrfs_put_block_group(bg);
9946 break;
9947 }
9948 start = em->start + em->len;
9949 free_extent_map(em);
9950 btrfs_put_block_group(bg);
9951 }
9952 return ret;
9953 }
9954
9955 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9956 {
9957 struct btrfs_path *path;
9958 int ret;
9959 struct btrfs_block_group_cache *cache;
9960 struct btrfs_space_info *space_info;
9961 struct btrfs_key key;
9962 struct btrfs_key found_key;
9963 struct extent_buffer *leaf;
9964 int need_clear = 0;
9965 u64 cache_gen;
9966 u64 feature;
9967 int mixed;
9968
9969 feature = btrfs_super_incompat_flags(info->super_copy);
9970 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9971
9972 key.objectid = 0;
9973 key.offset = 0;
9974 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9975 path = btrfs_alloc_path();
9976 if (!path)
9977 return -ENOMEM;
9978 path->reada = READA_FORWARD;
9979
9980 cache_gen = btrfs_super_cache_generation(info->super_copy);
9981 if (btrfs_test_opt(info, SPACE_CACHE) &&
9982 btrfs_super_generation(info->super_copy) != cache_gen)
9983 need_clear = 1;
9984 if (btrfs_test_opt(info, CLEAR_CACHE))
9985 need_clear = 1;
9986
9987 while (1) {
9988 ret = find_first_block_group(info, path, &key);
9989 if (ret > 0)
9990 break;
9991 if (ret != 0)
9992 goto error;
9993
9994 leaf = path->nodes[0];
9995 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9996
9997 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9998 found_key.offset);
9999 if (!cache) {
10000 ret = -ENOMEM;
10001 goto error;
10002 }
10003
10004 if (need_clear) {
10005 /*
10006 * When we mount with old space cache, we need to
10007 * set BTRFS_DC_CLEAR and set dirty flag.
10008 *
10009 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10010 * truncate the old free space cache inode and
10011 * setup a new one.
10012 * b) Setting 'dirty flag' makes sure that we flush
10013 * the new space cache info onto disk.
10014 */
10015 if (btrfs_test_opt(info, SPACE_CACHE))
10016 cache->disk_cache_state = BTRFS_DC_CLEAR;
10017 }
10018
10019 read_extent_buffer(leaf, &cache->item,
10020 btrfs_item_ptr_offset(leaf, path->slots[0]),
10021 sizeof(cache->item));
10022 cache->flags = btrfs_block_group_flags(&cache->item);
10023 if (!mixed &&
10024 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10025 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10026 btrfs_err(info,
10027 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10028 cache->key.objectid);
10029 ret = -EINVAL;
10030 goto error;
10031 }
10032
10033 key.objectid = found_key.objectid + found_key.offset;
10034 btrfs_release_path(path);
10035
10036 /*
10037 * We need to exclude the super stripes now so that the space
10038 * info has super bytes accounted for, otherwise we'll think
10039 * we have more space than we actually do.
10040 */
10041 ret = exclude_super_stripes(cache);
10042 if (ret) {
10043 /*
10044 * We may have excluded something, so call this just in
10045 * case.
10046 */
10047 free_excluded_extents(cache);
10048 btrfs_put_block_group(cache);
10049 goto error;
10050 }
10051
10052 /*
10053 * check for two cases, either we are full, and therefore
10054 * don't need to bother with the caching work since we won't
10055 * find any space, or we are empty, and we can just add all
10056 * the space in and be done with it. This saves us _alot_ of
10057 * time, particularly in the full case.
10058 */
10059 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10060 cache->last_byte_to_unpin = (u64)-1;
10061 cache->cached = BTRFS_CACHE_FINISHED;
10062 free_excluded_extents(cache);
10063 } else if (btrfs_block_group_used(&cache->item) == 0) {
10064 cache->last_byte_to_unpin = (u64)-1;
10065 cache->cached = BTRFS_CACHE_FINISHED;
10066 add_new_free_space(cache, found_key.objectid,
10067 found_key.objectid +
10068 found_key.offset);
10069 free_excluded_extents(cache);
10070 }
10071
10072 ret = btrfs_add_block_group_cache(info, cache);
10073 if (ret) {
10074 btrfs_remove_free_space_cache(cache);
10075 btrfs_put_block_group(cache);
10076 goto error;
10077 }
10078
10079 trace_btrfs_add_block_group(info, cache, 0);
10080 update_space_info(info, cache->flags, found_key.offset,
10081 btrfs_block_group_used(&cache->item),
10082 cache->bytes_super, &space_info);
10083
10084 cache->space_info = space_info;
10085
10086 link_block_group(cache);
10087
10088 set_avail_alloc_bits(info, cache->flags);
10089 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10090 inc_block_group_ro(cache, 1);
10091 } else if (btrfs_block_group_used(&cache->item) == 0) {
10092 ASSERT(list_empty(&cache->bg_list));
10093 btrfs_mark_bg_unused(cache);
10094 }
10095 }
10096
10097 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10098 if (!(get_alloc_profile(info, space_info->flags) &
10099 (BTRFS_BLOCK_GROUP_RAID10 |
10100 BTRFS_BLOCK_GROUP_RAID1 |
10101 BTRFS_BLOCK_GROUP_RAID5 |
10102 BTRFS_BLOCK_GROUP_RAID6 |
10103 BTRFS_BLOCK_GROUP_DUP)))
10104 continue;
10105 /*
10106 * avoid allocating from un-mirrored block group if there are
10107 * mirrored block groups.
10108 */
10109 list_for_each_entry(cache,
10110 &space_info->block_groups[BTRFS_RAID_RAID0],
10111 list)
10112 inc_block_group_ro(cache, 1);
10113 list_for_each_entry(cache,
10114 &space_info->block_groups[BTRFS_RAID_SINGLE],
10115 list)
10116 inc_block_group_ro(cache, 1);
10117 }
10118
10119 btrfs_add_raid_kobjects(info);
10120 init_global_block_rsv(info);
10121 ret = check_chunk_block_group_mappings(info);
10122 error:
10123 btrfs_free_path(path);
10124 return ret;
10125 }
10126
10127 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10128 {
10129 struct btrfs_fs_info *fs_info = trans->fs_info;
10130 struct btrfs_block_group_cache *block_group;
10131 struct btrfs_root *extent_root = fs_info->extent_root;
10132 struct btrfs_block_group_item item;
10133 struct btrfs_key key;
10134 int ret = 0;
10135 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10136
10137 trans->can_flush_pending_bgs = false;
10138 while (!list_empty(&trans->new_bgs)) {
10139 block_group = list_first_entry(&trans->new_bgs,
10140 struct btrfs_block_group_cache,
10141 bg_list);
10142 if (ret)
10143 goto next;
10144
10145 spin_lock(&block_group->lock);
10146 memcpy(&item, &block_group->item, sizeof(item));
10147 memcpy(&key, &block_group->key, sizeof(key));
10148 spin_unlock(&block_group->lock);
10149
10150 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10151 sizeof(item));
10152 if (ret)
10153 btrfs_abort_transaction(trans, ret);
10154 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10155 if (ret)
10156 btrfs_abort_transaction(trans, ret);
10157 add_block_group_free_space(trans, block_group);
10158 /* already aborted the transaction if it failed. */
10159 next:
10160 list_del_init(&block_group->bg_list);
10161 }
10162 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10163 }
10164
10165 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10166 u64 type, u64 chunk_offset, u64 size)
10167 {
10168 struct btrfs_fs_info *fs_info = trans->fs_info;
10169 struct btrfs_block_group_cache *cache;
10170 int ret;
10171
10172 btrfs_set_log_full_commit(fs_info, trans);
10173
10174 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10175 if (!cache)
10176 return -ENOMEM;
10177
10178 btrfs_set_block_group_used(&cache->item, bytes_used);
10179 btrfs_set_block_group_chunk_objectid(&cache->item,
10180 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10181 btrfs_set_block_group_flags(&cache->item, type);
10182
10183 cache->flags = type;
10184 cache->last_byte_to_unpin = (u64)-1;
10185 cache->cached = BTRFS_CACHE_FINISHED;
10186 cache->needs_free_space = 1;
10187 ret = exclude_super_stripes(cache);
10188 if (ret) {
10189 /*
10190 * We may have excluded something, so call this just in
10191 * case.
10192 */
10193 free_excluded_extents(cache);
10194 btrfs_put_block_group(cache);
10195 return ret;
10196 }
10197
10198 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10199
10200 free_excluded_extents(cache);
10201
10202 #ifdef CONFIG_BTRFS_DEBUG
10203 if (btrfs_should_fragment_free_space(cache)) {
10204 u64 new_bytes_used = size - bytes_used;
10205
10206 bytes_used += new_bytes_used >> 1;
10207 fragment_free_space(cache);
10208 }
10209 #endif
10210 /*
10211 * Ensure the corresponding space_info object is created and
10212 * assigned to our block group. We want our bg to be added to the rbtree
10213 * with its ->space_info set.
10214 */
10215 cache->space_info = __find_space_info(fs_info, cache->flags);
10216 ASSERT(cache->space_info);
10217
10218 ret = btrfs_add_block_group_cache(fs_info, cache);
10219 if (ret) {
10220 btrfs_remove_free_space_cache(cache);
10221 btrfs_put_block_group(cache);
10222 return ret;
10223 }
10224
10225 /*
10226 * Now that our block group has its ->space_info set and is inserted in
10227 * the rbtree, update the space info's counters.
10228 */
10229 trace_btrfs_add_block_group(fs_info, cache, 1);
10230 update_space_info(fs_info, cache->flags, size, bytes_used,
10231 cache->bytes_super, &cache->space_info);
10232 update_global_block_rsv(fs_info);
10233
10234 link_block_group(cache);
10235
10236 list_add_tail(&cache->bg_list, &trans->new_bgs);
10237
10238 set_avail_alloc_bits(fs_info, type);
10239 return 0;
10240 }
10241
10242 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10243 {
10244 u64 extra_flags = chunk_to_extended(flags) &
10245 BTRFS_EXTENDED_PROFILE_MASK;
10246
10247 write_seqlock(&fs_info->profiles_lock);
10248 if (flags & BTRFS_BLOCK_GROUP_DATA)
10249 fs_info->avail_data_alloc_bits &= ~extra_flags;
10250 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10251 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10252 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10253 fs_info->avail_system_alloc_bits &= ~extra_flags;
10254 write_sequnlock(&fs_info->profiles_lock);
10255 }
10256
10257 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10258 u64 group_start, struct extent_map *em)
10259 {
10260 struct btrfs_fs_info *fs_info = trans->fs_info;
10261 struct btrfs_root *root = fs_info->extent_root;
10262 struct btrfs_path *path;
10263 struct btrfs_block_group_cache *block_group;
10264 struct btrfs_free_cluster *cluster;
10265 struct btrfs_root *tree_root = fs_info->tree_root;
10266 struct btrfs_key key;
10267 struct inode *inode;
10268 struct kobject *kobj = NULL;
10269 int ret;
10270 int index;
10271 int factor;
10272 struct btrfs_caching_control *caching_ctl = NULL;
10273 bool remove_em;
10274
10275 block_group = btrfs_lookup_block_group(fs_info, group_start);
10276 BUG_ON(!block_group);
10277 BUG_ON(!block_group->ro);
10278
10279 trace_btrfs_remove_block_group(block_group);
10280 /*
10281 * Free the reserved super bytes from this block group before
10282 * remove it.
10283 */
10284 free_excluded_extents(block_group);
10285 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10286 block_group->key.offset);
10287
10288 memcpy(&key, &block_group->key, sizeof(key));
10289 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10290 factor = btrfs_bg_type_to_factor(block_group->flags);
10291
10292 /* make sure this block group isn't part of an allocation cluster */
10293 cluster = &fs_info->data_alloc_cluster;
10294 spin_lock(&cluster->refill_lock);
10295 btrfs_return_cluster_to_free_space(block_group, cluster);
10296 spin_unlock(&cluster->refill_lock);
10297
10298 /*
10299 * make sure this block group isn't part of a metadata
10300 * allocation cluster
10301 */
10302 cluster = &fs_info->meta_alloc_cluster;
10303 spin_lock(&cluster->refill_lock);
10304 btrfs_return_cluster_to_free_space(block_group, cluster);
10305 spin_unlock(&cluster->refill_lock);
10306
10307 path = btrfs_alloc_path();
10308 if (!path) {
10309 ret = -ENOMEM;
10310 goto out;
10311 }
10312
10313 /*
10314 * get the inode first so any iput calls done for the io_list
10315 * aren't the final iput (no unlinks allowed now)
10316 */
10317 inode = lookup_free_space_inode(fs_info, block_group, path);
10318
10319 mutex_lock(&trans->transaction->cache_write_mutex);
10320 /*
10321 * make sure our free spache cache IO is done before remove the
10322 * free space inode
10323 */
10324 spin_lock(&trans->transaction->dirty_bgs_lock);
10325 if (!list_empty(&block_group->io_list)) {
10326 list_del_init(&block_group->io_list);
10327
10328 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10329
10330 spin_unlock(&trans->transaction->dirty_bgs_lock);
10331 btrfs_wait_cache_io(trans, block_group, path);
10332 btrfs_put_block_group(block_group);
10333 spin_lock(&trans->transaction->dirty_bgs_lock);
10334 }
10335
10336 if (!list_empty(&block_group->dirty_list)) {
10337 list_del_init(&block_group->dirty_list);
10338 btrfs_put_block_group(block_group);
10339 }
10340 spin_unlock(&trans->transaction->dirty_bgs_lock);
10341 mutex_unlock(&trans->transaction->cache_write_mutex);
10342
10343 if (!IS_ERR(inode)) {
10344 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10345 if (ret) {
10346 btrfs_add_delayed_iput(inode);
10347 goto out;
10348 }
10349 clear_nlink(inode);
10350 /* One for the block groups ref */
10351 spin_lock(&block_group->lock);
10352 if (block_group->iref) {
10353 block_group->iref = 0;
10354 block_group->inode = NULL;
10355 spin_unlock(&block_group->lock);
10356 iput(inode);
10357 } else {
10358 spin_unlock(&block_group->lock);
10359 }
10360 /* One for our lookup ref */
10361 btrfs_add_delayed_iput(inode);
10362 }
10363
10364 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10365 key.offset = block_group->key.objectid;
10366 key.type = 0;
10367
10368 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10369 if (ret < 0)
10370 goto out;
10371 if (ret > 0)
10372 btrfs_release_path(path);
10373 if (ret == 0) {
10374 ret = btrfs_del_item(trans, tree_root, path);
10375 if (ret)
10376 goto out;
10377 btrfs_release_path(path);
10378 }
10379
10380 spin_lock(&fs_info->block_group_cache_lock);
10381 rb_erase(&block_group->cache_node,
10382 &fs_info->block_group_cache_tree);
10383 RB_CLEAR_NODE(&block_group->cache_node);
10384
10385 if (fs_info->first_logical_byte == block_group->key.objectid)
10386 fs_info->first_logical_byte = (u64)-1;
10387 spin_unlock(&fs_info->block_group_cache_lock);
10388
10389 down_write(&block_group->space_info->groups_sem);
10390 /*
10391 * we must use list_del_init so people can check to see if they
10392 * are still on the list after taking the semaphore
10393 */
10394 list_del_init(&block_group->list);
10395 if (list_empty(&block_group->space_info->block_groups[index])) {
10396 kobj = block_group->space_info->block_group_kobjs[index];
10397 block_group->space_info->block_group_kobjs[index] = NULL;
10398 clear_avail_alloc_bits(fs_info, block_group->flags);
10399 }
10400 up_write(&block_group->space_info->groups_sem);
10401 if (kobj) {
10402 kobject_del(kobj);
10403 kobject_put(kobj);
10404 }
10405
10406 if (block_group->has_caching_ctl)
10407 caching_ctl = get_caching_control(block_group);
10408 if (block_group->cached == BTRFS_CACHE_STARTED)
10409 wait_block_group_cache_done(block_group);
10410 if (block_group->has_caching_ctl) {
10411 down_write(&fs_info->commit_root_sem);
10412 if (!caching_ctl) {
10413 struct btrfs_caching_control *ctl;
10414
10415 list_for_each_entry(ctl,
10416 &fs_info->caching_block_groups, list)
10417 if (ctl->block_group == block_group) {
10418 caching_ctl = ctl;
10419 refcount_inc(&caching_ctl->count);
10420 break;
10421 }
10422 }
10423 if (caching_ctl)
10424 list_del_init(&caching_ctl->list);
10425 up_write(&fs_info->commit_root_sem);
10426 if (caching_ctl) {
10427 /* Once for the caching bgs list and once for us. */
10428 put_caching_control(caching_ctl);
10429 put_caching_control(caching_ctl);
10430 }
10431 }
10432
10433 spin_lock(&trans->transaction->dirty_bgs_lock);
10434 if (!list_empty(&block_group->dirty_list)) {
10435 WARN_ON(1);
10436 }
10437 if (!list_empty(&block_group->io_list)) {
10438 WARN_ON(1);
10439 }
10440 spin_unlock(&trans->transaction->dirty_bgs_lock);
10441 btrfs_remove_free_space_cache(block_group);
10442
10443 spin_lock(&block_group->space_info->lock);
10444 list_del_init(&block_group->ro_list);
10445
10446 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10447 WARN_ON(block_group->space_info->total_bytes
10448 < block_group->key.offset);
10449 WARN_ON(block_group->space_info->bytes_readonly
10450 < block_group->key.offset);
10451 WARN_ON(block_group->space_info->disk_total
10452 < block_group->key.offset * factor);
10453 }
10454 block_group->space_info->total_bytes -= block_group->key.offset;
10455 block_group->space_info->bytes_readonly -= block_group->key.offset;
10456 block_group->space_info->disk_total -= block_group->key.offset * factor;
10457
10458 spin_unlock(&block_group->space_info->lock);
10459
10460 memcpy(&key, &block_group->key, sizeof(key));
10461
10462 mutex_lock(&fs_info->chunk_mutex);
10463 if (!list_empty(&em->list)) {
10464 /* We're in the transaction->pending_chunks list. */
10465 free_extent_map(em);
10466 }
10467 spin_lock(&block_group->lock);
10468 block_group->removed = 1;
10469 /*
10470 * At this point trimming can't start on this block group, because we
10471 * removed the block group from the tree fs_info->block_group_cache_tree
10472 * so no one can't find it anymore and even if someone already got this
10473 * block group before we removed it from the rbtree, they have already
10474 * incremented block_group->trimming - if they didn't, they won't find
10475 * any free space entries because we already removed them all when we
10476 * called btrfs_remove_free_space_cache().
10477 *
10478 * And we must not remove the extent map from the fs_info->mapping_tree
10479 * to prevent the same logical address range and physical device space
10480 * ranges from being reused for a new block group. This is because our
10481 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10482 * completely transactionless, so while it is trimming a range the
10483 * currently running transaction might finish and a new one start,
10484 * allowing for new block groups to be created that can reuse the same
10485 * physical device locations unless we take this special care.
10486 *
10487 * There may also be an implicit trim operation if the file system
10488 * is mounted with -odiscard. The same protections must remain
10489 * in place until the extents have been discarded completely when
10490 * the transaction commit has completed.
10491 */
10492 remove_em = (atomic_read(&block_group->trimming) == 0);
10493 /*
10494 * Make sure a trimmer task always sees the em in the pinned_chunks list
10495 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10496 * before checking block_group->removed).
10497 */
10498 if (!remove_em) {
10499 /*
10500 * Our em might be in trans->transaction->pending_chunks which
10501 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10502 * and so is the fs_info->pinned_chunks list.
10503 *
10504 * So at this point we must be holding the chunk_mutex to avoid
10505 * any races with chunk allocation (more specifically at
10506 * volumes.c:contains_pending_extent()), to ensure it always
10507 * sees the em, either in the pending_chunks list or in the
10508 * pinned_chunks list.
10509 */
10510 list_move_tail(&em->list, &fs_info->pinned_chunks);
10511 }
10512 spin_unlock(&block_group->lock);
10513
10514 if (remove_em) {
10515 struct extent_map_tree *em_tree;
10516
10517 em_tree = &fs_info->mapping_tree.map_tree;
10518 write_lock(&em_tree->lock);
10519 /*
10520 * The em might be in the pending_chunks list, so make sure the
10521 * chunk mutex is locked, since remove_extent_mapping() will
10522 * delete us from that list.
10523 */
10524 remove_extent_mapping(em_tree, em);
10525 write_unlock(&em_tree->lock);
10526 /* once for the tree */
10527 free_extent_map(em);
10528 }
10529
10530 mutex_unlock(&fs_info->chunk_mutex);
10531
10532 ret = remove_block_group_free_space(trans, block_group);
10533 if (ret)
10534 goto out;
10535
10536 btrfs_put_block_group(block_group);
10537 btrfs_put_block_group(block_group);
10538
10539 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10540 if (ret > 0)
10541 ret = -EIO;
10542 if (ret < 0)
10543 goto out;
10544
10545 ret = btrfs_del_item(trans, root, path);
10546 out:
10547 btrfs_free_path(path);
10548 return ret;
10549 }
10550
10551 struct btrfs_trans_handle *
10552 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10553 const u64 chunk_offset)
10554 {
10555 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10556 struct extent_map *em;
10557 struct map_lookup *map;
10558 unsigned int num_items;
10559
10560 read_lock(&em_tree->lock);
10561 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10562 read_unlock(&em_tree->lock);
10563 ASSERT(em && em->start == chunk_offset);
10564
10565 /*
10566 * We need to reserve 3 + N units from the metadata space info in order
10567 * to remove a block group (done at btrfs_remove_chunk() and at
10568 * btrfs_remove_block_group()), which are used for:
10569 *
10570 * 1 unit for adding the free space inode's orphan (located in the tree
10571 * of tree roots).
10572 * 1 unit for deleting the block group item (located in the extent
10573 * tree).
10574 * 1 unit for deleting the free space item (located in tree of tree
10575 * roots).
10576 * N units for deleting N device extent items corresponding to each
10577 * stripe (located in the device tree).
10578 *
10579 * In order to remove a block group we also need to reserve units in the
10580 * system space info in order to update the chunk tree (update one or
10581 * more device items and remove one chunk item), but this is done at
10582 * btrfs_remove_chunk() through a call to check_system_chunk().
10583 */
10584 map = em->map_lookup;
10585 num_items = 3 + map->num_stripes;
10586 free_extent_map(em);
10587
10588 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10589 num_items, 1);
10590 }
10591
10592 /*
10593 * Process the unused_bgs list and remove any that don't have any allocated
10594 * space inside of them.
10595 */
10596 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10597 {
10598 struct btrfs_block_group_cache *block_group;
10599 struct btrfs_space_info *space_info;
10600 struct btrfs_trans_handle *trans;
10601 int ret = 0;
10602
10603 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10604 return;
10605
10606 spin_lock(&fs_info->unused_bgs_lock);
10607 while (!list_empty(&fs_info->unused_bgs)) {
10608 u64 start, end;
10609 int trimming;
10610
10611 block_group = list_first_entry(&fs_info->unused_bgs,
10612 struct btrfs_block_group_cache,
10613 bg_list);
10614 list_del_init(&block_group->bg_list);
10615
10616 space_info = block_group->space_info;
10617
10618 if (ret || btrfs_mixed_space_info(space_info)) {
10619 btrfs_put_block_group(block_group);
10620 continue;
10621 }
10622 spin_unlock(&fs_info->unused_bgs_lock);
10623
10624 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10625
10626 /* Don't want to race with allocators so take the groups_sem */
10627 down_write(&space_info->groups_sem);
10628 spin_lock(&block_group->lock);
10629 if (block_group->reserved || block_group->pinned ||
10630 btrfs_block_group_used(&block_group->item) ||
10631 block_group->ro ||
10632 list_is_singular(&block_group->list)) {
10633 /*
10634 * We want to bail if we made new allocations or have
10635 * outstanding allocations in this block group. We do
10636 * the ro check in case balance is currently acting on
10637 * this block group.
10638 */
10639 trace_btrfs_skip_unused_block_group(block_group);
10640 spin_unlock(&block_group->lock);
10641 up_write(&space_info->groups_sem);
10642 goto next;
10643 }
10644 spin_unlock(&block_group->lock);
10645
10646 /* We don't want to force the issue, only flip if it's ok. */
10647 ret = inc_block_group_ro(block_group, 0);
10648 up_write(&space_info->groups_sem);
10649 if (ret < 0) {
10650 ret = 0;
10651 goto next;
10652 }
10653
10654 /*
10655 * Want to do this before we do anything else so we can recover
10656 * properly if we fail to join the transaction.
10657 */
10658 trans = btrfs_start_trans_remove_block_group(fs_info,
10659 block_group->key.objectid);
10660 if (IS_ERR(trans)) {
10661 btrfs_dec_block_group_ro(block_group);
10662 ret = PTR_ERR(trans);
10663 goto next;
10664 }
10665
10666 /*
10667 * We could have pending pinned extents for this block group,
10668 * just delete them, we don't care about them anymore.
10669 */
10670 start = block_group->key.objectid;
10671 end = start + block_group->key.offset - 1;
10672 /*
10673 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10674 * btrfs_finish_extent_commit(). If we are at transaction N,
10675 * another task might be running finish_extent_commit() for the
10676 * previous transaction N - 1, and have seen a range belonging
10677 * to the block group in freed_extents[] before we were able to
10678 * clear the whole block group range from freed_extents[]. This
10679 * means that task can lookup for the block group after we
10680 * unpinned it from freed_extents[] and removed it, leading to
10681 * a BUG_ON() at btrfs_unpin_extent_range().
10682 */
10683 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10684 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10685 EXTENT_DIRTY);
10686 if (ret) {
10687 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10688 btrfs_dec_block_group_ro(block_group);
10689 goto end_trans;
10690 }
10691 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10692 EXTENT_DIRTY);
10693 if (ret) {
10694 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10695 btrfs_dec_block_group_ro(block_group);
10696 goto end_trans;
10697 }
10698 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10699
10700 /* Reset pinned so btrfs_put_block_group doesn't complain */
10701 spin_lock(&space_info->lock);
10702 spin_lock(&block_group->lock);
10703
10704 space_info->bytes_pinned -= block_group->pinned;
10705 space_info->bytes_readonly += block_group->pinned;
10706 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10707 -block_group->pinned,
10708 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10709 block_group->pinned = 0;
10710
10711 spin_unlock(&block_group->lock);
10712 spin_unlock(&space_info->lock);
10713
10714 /* DISCARD can flip during remount */
10715 trimming = btrfs_test_opt(fs_info, DISCARD);
10716
10717 /* Implicit trim during transaction commit. */
10718 if (trimming)
10719 btrfs_get_block_group_trimming(block_group);
10720
10721 /*
10722 * Btrfs_remove_chunk will abort the transaction if things go
10723 * horribly wrong.
10724 */
10725 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10726
10727 if (ret) {
10728 if (trimming)
10729 btrfs_put_block_group_trimming(block_group);
10730 goto end_trans;
10731 }
10732
10733 /*
10734 * If we're not mounted with -odiscard, we can just forget
10735 * about this block group. Otherwise we'll need to wait
10736 * until transaction commit to do the actual discard.
10737 */
10738 if (trimming) {
10739 spin_lock(&fs_info->unused_bgs_lock);
10740 /*
10741 * A concurrent scrub might have added us to the list
10742 * fs_info->unused_bgs, so use a list_move operation
10743 * to add the block group to the deleted_bgs list.
10744 */
10745 list_move(&block_group->bg_list,
10746 &trans->transaction->deleted_bgs);
10747 spin_unlock(&fs_info->unused_bgs_lock);
10748 btrfs_get_block_group(block_group);
10749 }
10750 end_trans:
10751 btrfs_end_transaction(trans);
10752 next:
10753 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10754 btrfs_put_block_group(block_group);
10755 spin_lock(&fs_info->unused_bgs_lock);
10756 }
10757 spin_unlock(&fs_info->unused_bgs_lock);
10758 }
10759
10760 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10761 {
10762 struct btrfs_super_block *disk_super;
10763 u64 features;
10764 u64 flags;
10765 int mixed = 0;
10766 int ret;
10767
10768 disk_super = fs_info->super_copy;
10769 if (!btrfs_super_root(disk_super))
10770 return -EINVAL;
10771
10772 features = btrfs_super_incompat_flags(disk_super);
10773 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10774 mixed = 1;
10775
10776 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10777 ret = create_space_info(fs_info, flags);
10778 if (ret)
10779 goto out;
10780
10781 if (mixed) {
10782 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10783 ret = create_space_info(fs_info, flags);
10784 } else {
10785 flags = BTRFS_BLOCK_GROUP_METADATA;
10786 ret = create_space_info(fs_info, flags);
10787 if (ret)
10788 goto out;
10789
10790 flags = BTRFS_BLOCK_GROUP_DATA;
10791 ret = create_space_info(fs_info, flags);
10792 }
10793 out:
10794 return ret;
10795 }
10796
10797 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10798 u64 start, u64 end)
10799 {
10800 return unpin_extent_range(fs_info, start, end, false);
10801 }
10802
10803 /*
10804 * It used to be that old block groups would be left around forever.
10805 * Iterating over them would be enough to trim unused space. Since we
10806 * now automatically remove them, we also need to iterate over unallocated
10807 * space.
10808 *
10809 * We don't want a transaction for this since the discard may take a
10810 * substantial amount of time. We don't require that a transaction be
10811 * running, but we do need to take a running transaction into account
10812 * to ensure that we're not discarding chunks that were released or
10813 * allocated in the current transaction.
10814 *
10815 * Holding the chunks lock will prevent other threads from allocating
10816 * or releasing chunks, but it won't prevent a running transaction
10817 * from committing and releasing the memory that the pending chunks
10818 * list head uses. For that, we need to take a reference to the
10819 * transaction and hold the commit root sem. We only need to hold
10820 * it while performing the free space search since we have already
10821 * held back allocations.
10822 */
10823 static int btrfs_trim_free_extents(struct btrfs_device *device,
10824 u64 minlen, u64 *trimmed)
10825 {
10826 u64 start = 0, len = 0;
10827 int ret;
10828
10829 *trimmed = 0;
10830
10831 /* Discard not supported = nothing to do. */
10832 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10833 return 0;
10834
10835 /* Not writeable = nothing to do. */
10836 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10837 return 0;
10838
10839 /* No free space = nothing to do. */
10840 if (device->total_bytes <= device->bytes_used)
10841 return 0;
10842
10843 ret = 0;
10844
10845 while (1) {
10846 struct btrfs_fs_info *fs_info = device->fs_info;
10847 struct btrfs_transaction *trans;
10848 u64 bytes;
10849
10850 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10851 if (ret)
10852 break;
10853
10854 ret = down_read_killable(&fs_info->commit_root_sem);
10855 if (ret) {
10856 mutex_unlock(&fs_info->chunk_mutex);
10857 break;
10858 }
10859
10860 spin_lock(&fs_info->trans_lock);
10861 trans = fs_info->running_transaction;
10862 if (trans)
10863 refcount_inc(&trans->use_count);
10864 spin_unlock(&fs_info->trans_lock);
10865
10866 if (!trans)
10867 up_read(&fs_info->commit_root_sem);
10868
10869 ret = find_free_dev_extent_start(trans, device, minlen, start,
10870 &start, &len);
10871 if (trans) {
10872 up_read(&fs_info->commit_root_sem);
10873 btrfs_put_transaction(trans);
10874 }
10875
10876 if (ret) {
10877 mutex_unlock(&fs_info->chunk_mutex);
10878 if (ret == -ENOSPC)
10879 ret = 0;
10880 break;
10881 }
10882
10883 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10884 mutex_unlock(&fs_info->chunk_mutex);
10885
10886 if (ret)
10887 break;
10888
10889 start += len;
10890 *trimmed += bytes;
10891
10892 if (fatal_signal_pending(current)) {
10893 ret = -ERESTARTSYS;
10894 break;
10895 }
10896
10897 cond_resched();
10898 }
10899
10900 return ret;
10901 }
10902
10903 /*
10904 * Trim the whole filesystem by:
10905 * 1) trimming the free space in each block group
10906 * 2) trimming the unallocated space on each device
10907 *
10908 * This will also continue trimming even if a block group or device encounters
10909 * an error. The return value will be the last error, or 0 if nothing bad
10910 * happens.
10911 */
10912 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10913 {
10914 struct btrfs_block_group_cache *cache = NULL;
10915 struct btrfs_device *device;
10916 struct list_head *devices;
10917 u64 group_trimmed;
10918 u64 start;
10919 u64 end;
10920 u64 trimmed = 0;
10921 u64 bg_failed = 0;
10922 u64 dev_failed = 0;
10923 int bg_ret = 0;
10924 int dev_ret = 0;
10925 int ret = 0;
10926
10927 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10928 for (; cache; cache = next_block_group(fs_info, cache)) {
10929 if (cache->key.objectid >= (range->start + range->len)) {
10930 btrfs_put_block_group(cache);
10931 break;
10932 }
10933
10934 start = max(range->start, cache->key.objectid);
10935 end = min(range->start + range->len,
10936 cache->key.objectid + cache->key.offset);
10937
10938 if (end - start >= range->minlen) {
10939 if (!block_group_cache_done(cache)) {
10940 ret = cache_block_group(cache, 0);
10941 if (ret) {
10942 bg_failed++;
10943 bg_ret = ret;
10944 continue;
10945 }
10946 ret = wait_block_group_cache_done(cache);
10947 if (ret) {
10948 bg_failed++;
10949 bg_ret = ret;
10950 continue;
10951 }
10952 }
10953 ret = btrfs_trim_block_group(cache,
10954 &group_trimmed,
10955 start,
10956 end,
10957 range->minlen);
10958
10959 trimmed += group_trimmed;
10960 if (ret) {
10961 bg_failed++;
10962 bg_ret = ret;
10963 continue;
10964 }
10965 }
10966 }
10967
10968 if (bg_failed)
10969 btrfs_warn(fs_info,
10970 "failed to trim %llu block group(s), last error %d",
10971 bg_failed, bg_ret);
10972 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10973 devices = &fs_info->fs_devices->devices;
10974 list_for_each_entry(device, devices, dev_list) {
10975 ret = btrfs_trim_free_extents(device, range->minlen,
10976 &group_trimmed);
10977 if (ret) {
10978 dev_failed++;
10979 dev_ret = ret;
10980 break;
10981 }
10982
10983 trimmed += group_trimmed;
10984 }
10985 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10986
10987 if (dev_failed)
10988 btrfs_warn(fs_info,
10989 "failed to trim %llu device(s), last error %d",
10990 dev_failed, dev_ret);
10991 range->len = trimmed;
10992 if (bg_ret)
10993 return bg_ret;
10994 return dev_ret;
10995 }
10996
10997 /*
10998 * btrfs_{start,end}_write_no_snapshotting() are similar to
10999 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11000 * data into the page cache through nocow before the subvolume is snapshoted,
11001 * but flush the data into disk after the snapshot creation, or to prevent
11002 * operations while snapshotting is ongoing and that cause the snapshot to be
11003 * inconsistent (writes followed by expanding truncates for example).
11004 */
11005 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11006 {
11007 percpu_counter_dec(&root->subv_writers->counter);
11008 cond_wake_up(&root->subv_writers->wait);
11009 }
11010
11011 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11012 {
11013 if (atomic_read(&root->will_be_snapshotted))
11014 return 0;
11015
11016 percpu_counter_inc(&root->subv_writers->counter);
11017 /*
11018 * Make sure counter is updated before we check for snapshot creation.
11019 */
11020 smp_mb();
11021 if (atomic_read(&root->will_be_snapshotted)) {
11022 btrfs_end_write_no_snapshotting(root);
11023 return 0;
11024 }
11025 return 1;
11026 }
11027
11028 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11029 {
11030 while (true) {
11031 int ret;
11032
11033 ret = btrfs_start_write_no_snapshotting(root);
11034 if (ret)
11035 break;
11036 wait_var_event(&root->will_be_snapshotted,
11037 !atomic_read(&root->will_be_snapshotted));
11038 }
11039 }
11040
11041 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11042 {
11043 struct btrfs_fs_info *fs_info = bg->fs_info;
11044
11045 spin_lock(&fs_info->unused_bgs_lock);
11046 if (list_empty(&bg->bg_list)) {
11047 btrfs_get_block_group(bg);
11048 trace_btrfs_add_unused_block_group(bg);
11049 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11050 }
11051 spin_unlock(&fs_info->unused_bgs_lock);
11052 }