]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'next' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36
37 #undef SCRAMBLE_DELAYED_REFS
38
39
40 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
41 struct btrfs_delayed_ref_node *node, u64 parent,
42 u64 root_objectid, u64 owner_objectid,
43 u64 owner_offset, int refs_to_drop,
44 struct btrfs_delayed_extent_op *extra_op);
45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
46 struct extent_buffer *leaf,
47 struct btrfs_extent_item *ei);
48 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
49 u64 parent, u64 root_objectid,
50 u64 flags, u64 owner, u64 offset,
51 struct btrfs_key *ins, int ref_mod);
52 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
53 struct btrfs_delayed_ref_node *node,
54 struct btrfs_delayed_extent_op *extent_op);
55 static int find_next_key(struct btrfs_path *path, int level,
56 struct btrfs_key *key);
57
58 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
59 {
60 return (cache->flags & bits) == bits;
61 }
62
63 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
64 u64 start, u64 num_bytes)
65 {
66 u64 end = start + num_bytes - 1;
67 set_extent_bits(&fs_info->excluded_extents, start, end,
68 EXTENT_UPTODATE);
69 return 0;
70 }
71
72 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
73 {
74 struct btrfs_fs_info *fs_info = cache->fs_info;
75 u64 start, end;
76
77 start = cache->start;
78 end = start + cache->length - 1;
79
80 clear_extent_bits(&fs_info->excluded_extents, start, end,
81 EXTENT_UPTODATE);
82 }
83
84 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
85 {
86 if (ref->type == BTRFS_REF_METADATA) {
87 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
88 return BTRFS_BLOCK_GROUP_SYSTEM;
89 else
90 return BTRFS_BLOCK_GROUP_METADATA;
91 }
92 return BTRFS_BLOCK_GROUP_DATA;
93 }
94
95 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_ref *ref)
97 {
98 struct btrfs_space_info *space_info;
99 u64 flags = generic_ref_to_space_flags(ref);
100
101 space_info = btrfs_find_space_info(fs_info, flags);
102 ASSERT(space_info);
103 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
104 BTRFS_TOTAL_BYTES_PINNED_BATCH);
105 }
106
107 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_ref *ref)
109 {
110 struct btrfs_space_info *space_info;
111 u64 flags = generic_ref_to_space_flags(ref);
112
113 space_info = btrfs_find_space_info(fs_info, flags);
114 ASSERT(space_info);
115 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
116 BTRFS_TOTAL_BYTES_PINNED_BATCH);
117 }
118
119 /* simple helper to search for an existing data extent at a given offset */
120 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
121 {
122 int ret;
123 struct btrfs_key key;
124 struct btrfs_path *path;
125
126 path = btrfs_alloc_path();
127 if (!path)
128 return -ENOMEM;
129
130 key.objectid = start;
131 key.offset = len;
132 key.type = BTRFS_EXTENT_ITEM_KEY;
133 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
134 btrfs_free_path(path);
135 return ret;
136 }
137
138 /*
139 * helper function to lookup reference count and flags of a tree block.
140 *
141 * the head node for delayed ref is used to store the sum of all the
142 * reference count modifications queued up in the rbtree. the head
143 * node may also store the extent flags to set. This way you can check
144 * to see what the reference count and extent flags would be if all of
145 * the delayed refs are not processed.
146 */
147 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
148 struct btrfs_fs_info *fs_info, u64 bytenr,
149 u64 offset, int metadata, u64 *refs, u64 *flags)
150 {
151 struct btrfs_delayed_ref_head *head;
152 struct btrfs_delayed_ref_root *delayed_refs;
153 struct btrfs_path *path;
154 struct btrfs_extent_item *ei;
155 struct extent_buffer *leaf;
156 struct btrfs_key key;
157 u32 item_size;
158 u64 num_refs;
159 u64 extent_flags;
160 int ret;
161
162 /*
163 * If we don't have skinny metadata, don't bother doing anything
164 * different
165 */
166 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
167 offset = fs_info->nodesize;
168 metadata = 0;
169 }
170
171 path = btrfs_alloc_path();
172 if (!path)
173 return -ENOMEM;
174
175 if (!trans) {
176 path->skip_locking = 1;
177 path->search_commit_root = 1;
178 }
179
180 search_again:
181 key.objectid = bytenr;
182 key.offset = offset;
183 if (metadata)
184 key.type = BTRFS_METADATA_ITEM_KEY;
185 else
186 key.type = BTRFS_EXTENT_ITEM_KEY;
187
188 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
189 if (ret < 0)
190 goto out_free;
191
192 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
193 if (path->slots[0]) {
194 path->slots[0]--;
195 btrfs_item_key_to_cpu(path->nodes[0], &key,
196 path->slots[0]);
197 if (key.objectid == bytenr &&
198 key.type == BTRFS_EXTENT_ITEM_KEY &&
199 key.offset == fs_info->nodesize)
200 ret = 0;
201 }
202 }
203
204 if (ret == 0) {
205 leaf = path->nodes[0];
206 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
207 if (item_size >= sizeof(*ei)) {
208 ei = btrfs_item_ptr(leaf, path->slots[0],
209 struct btrfs_extent_item);
210 num_refs = btrfs_extent_refs(leaf, ei);
211 extent_flags = btrfs_extent_flags(leaf, ei);
212 } else {
213 ret = -EINVAL;
214 btrfs_print_v0_err(fs_info);
215 if (trans)
216 btrfs_abort_transaction(trans, ret);
217 else
218 btrfs_handle_fs_error(fs_info, ret, NULL);
219
220 goto out_free;
221 }
222
223 BUG_ON(num_refs == 0);
224 } else {
225 num_refs = 0;
226 extent_flags = 0;
227 ret = 0;
228 }
229
230 if (!trans)
231 goto out;
232
233 delayed_refs = &trans->transaction->delayed_refs;
234 spin_lock(&delayed_refs->lock);
235 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
236 if (head) {
237 if (!mutex_trylock(&head->mutex)) {
238 refcount_inc(&head->refs);
239 spin_unlock(&delayed_refs->lock);
240
241 btrfs_release_path(path);
242
243 /*
244 * Mutex was contended, block until it's released and try
245 * again
246 */
247 mutex_lock(&head->mutex);
248 mutex_unlock(&head->mutex);
249 btrfs_put_delayed_ref_head(head);
250 goto search_again;
251 }
252 spin_lock(&head->lock);
253 if (head->extent_op && head->extent_op->update_flags)
254 extent_flags |= head->extent_op->flags_to_set;
255 else
256 BUG_ON(num_refs == 0);
257
258 num_refs += head->ref_mod;
259 spin_unlock(&head->lock);
260 mutex_unlock(&head->mutex);
261 }
262 spin_unlock(&delayed_refs->lock);
263 out:
264 WARN_ON(num_refs == 0);
265 if (refs)
266 *refs = num_refs;
267 if (flags)
268 *flags = extent_flags;
269 out_free:
270 btrfs_free_path(path);
271 return ret;
272 }
273
274 /*
275 * Back reference rules. Back refs have three main goals:
276 *
277 * 1) differentiate between all holders of references to an extent so that
278 * when a reference is dropped we can make sure it was a valid reference
279 * before freeing the extent.
280 *
281 * 2) Provide enough information to quickly find the holders of an extent
282 * if we notice a given block is corrupted or bad.
283 *
284 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
285 * maintenance. This is actually the same as #2, but with a slightly
286 * different use case.
287 *
288 * There are two kinds of back refs. The implicit back refs is optimized
289 * for pointers in non-shared tree blocks. For a given pointer in a block,
290 * back refs of this kind provide information about the block's owner tree
291 * and the pointer's key. These information allow us to find the block by
292 * b-tree searching. The full back refs is for pointers in tree blocks not
293 * referenced by their owner trees. The location of tree block is recorded
294 * in the back refs. Actually the full back refs is generic, and can be
295 * used in all cases the implicit back refs is used. The major shortcoming
296 * of the full back refs is its overhead. Every time a tree block gets
297 * COWed, we have to update back refs entry for all pointers in it.
298 *
299 * For a newly allocated tree block, we use implicit back refs for
300 * pointers in it. This means most tree related operations only involve
301 * implicit back refs. For a tree block created in old transaction, the
302 * only way to drop a reference to it is COW it. So we can detect the
303 * event that tree block loses its owner tree's reference and do the
304 * back refs conversion.
305 *
306 * When a tree block is COWed through a tree, there are four cases:
307 *
308 * The reference count of the block is one and the tree is the block's
309 * owner tree. Nothing to do in this case.
310 *
311 * The reference count of the block is one and the tree is not the
312 * block's owner tree. In this case, full back refs is used for pointers
313 * in the block. Remove these full back refs, add implicit back refs for
314 * every pointers in the new block.
315 *
316 * The reference count of the block is greater than one and the tree is
317 * the block's owner tree. In this case, implicit back refs is used for
318 * pointers in the block. Add full back refs for every pointers in the
319 * block, increase lower level extents' reference counts. The original
320 * implicit back refs are entailed to the new block.
321 *
322 * The reference count of the block is greater than one and the tree is
323 * not the block's owner tree. Add implicit back refs for every pointer in
324 * the new block, increase lower level extents' reference count.
325 *
326 * Back Reference Key composing:
327 *
328 * The key objectid corresponds to the first byte in the extent,
329 * The key type is used to differentiate between types of back refs.
330 * There are different meanings of the key offset for different types
331 * of back refs.
332 *
333 * File extents can be referenced by:
334 *
335 * - multiple snapshots, subvolumes, or different generations in one subvol
336 * - different files inside a single subvolume
337 * - different offsets inside a file (bookend extents in file.c)
338 *
339 * The extent ref structure for the implicit back refs has fields for:
340 *
341 * - Objectid of the subvolume root
342 * - objectid of the file holding the reference
343 * - original offset in the file
344 * - how many bookend extents
345 *
346 * The key offset for the implicit back refs is hash of the first
347 * three fields.
348 *
349 * The extent ref structure for the full back refs has field for:
350 *
351 * - number of pointers in the tree leaf
352 *
353 * The key offset for the implicit back refs is the first byte of
354 * the tree leaf
355 *
356 * When a file extent is allocated, The implicit back refs is used.
357 * the fields are filled in:
358 *
359 * (root_key.objectid, inode objectid, offset in file, 1)
360 *
361 * When a file extent is removed file truncation, we find the
362 * corresponding implicit back refs and check the following fields:
363 *
364 * (btrfs_header_owner(leaf), inode objectid, offset in file)
365 *
366 * Btree extents can be referenced by:
367 *
368 * - Different subvolumes
369 *
370 * Both the implicit back refs and the full back refs for tree blocks
371 * only consist of key. The key offset for the implicit back refs is
372 * objectid of block's owner tree. The key offset for the full back refs
373 * is the first byte of parent block.
374 *
375 * When implicit back refs is used, information about the lowest key and
376 * level of the tree block are required. These information are stored in
377 * tree block info structure.
378 */
379
380 /*
381 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
382 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
383 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
384 */
385 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
386 struct btrfs_extent_inline_ref *iref,
387 enum btrfs_inline_ref_type is_data)
388 {
389 int type = btrfs_extent_inline_ref_type(eb, iref);
390 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
391
392 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
393 type == BTRFS_SHARED_BLOCK_REF_KEY ||
394 type == BTRFS_SHARED_DATA_REF_KEY ||
395 type == BTRFS_EXTENT_DATA_REF_KEY) {
396 if (is_data == BTRFS_REF_TYPE_BLOCK) {
397 if (type == BTRFS_TREE_BLOCK_REF_KEY)
398 return type;
399 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
400 ASSERT(eb->fs_info);
401 /*
402 * Every shared one has parent tree
403 * block, which must be aligned to
404 * nodesize.
405 */
406 if (offset &&
407 IS_ALIGNED(offset, eb->fs_info->nodesize))
408 return type;
409 }
410 } else if (is_data == BTRFS_REF_TYPE_DATA) {
411 if (type == BTRFS_EXTENT_DATA_REF_KEY)
412 return type;
413 if (type == BTRFS_SHARED_DATA_REF_KEY) {
414 ASSERT(eb->fs_info);
415 /*
416 * Every shared one has parent tree
417 * block, which must be aligned to
418 * nodesize.
419 */
420 if (offset &&
421 IS_ALIGNED(offset, eb->fs_info->nodesize))
422 return type;
423 }
424 } else {
425 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
426 return type;
427 }
428 }
429
430 btrfs_print_leaf((struct extent_buffer *)eb);
431 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
432 eb->start, type);
433 WARN_ON(1);
434
435 return BTRFS_REF_TYPE_INVALID;
436 }
437
438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
439 {
440 u32 high_crc = ~(u32)0;
441 u32 low_crc = ~(u32)0;
442 __le64 lenum;
443
444 lenum = cpu_to_le64(root_objectid);
445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
446 lenum = cpu_to_le64(owner);
447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
448 lenum = cpu_to_le64(offset);
449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
450
451 return ((u64)high_crc << 31) ^ (u64)low_crc;
452 }
453
454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
455 struct btrfs_extent_data_ref *ref)
456 {
457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
458 btrfs_extent_data_ref_objectid(leaf, ref),
459 btrfs_extent_data_ref_offset(leaf, ref));
460 }
461
462 static int match_extent_data_ref(struct extent_buffer *leaf,
463 struct btrfs_extent_data_ref *ref,
464 u64 root_objectid, u64 owner, u64 offset)
465 {
466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
467 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
468 btrfs_extent_data_ref_offset(leaf, ref) != offset)
469 return 0;
470 return 1;
471 }
472
473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
474 struct btrfs_path *path,
475 u64 bytenr, u64 parent,
476 u64 root_objectid,
477 u64 owner, u64 offset)
478 {
479 struct btrfs_root *root = trans->fs_info->extent_root;
480 struct btrfs_key key;
481 struct btrfs_extent_data_ref *ref;
482 struct extent_buffer *leaf;
483 u32 nritems;
484 int ret;
485 int recow;
486 int err = -ENOENT;
487
488 key.objectid = bytenr;
489 if (parent) {
490 key.type = BTRFS_SHARED_DATA_REF_KEY;
491 key.offset = parent;
492 } else {
493 key.type = BTRFS_EXTENT_DATA_REF_KEY;
494 key.offset = hash_extent_data_ref(root_objectid,
495 owner, offset);
496 }
497 again:
498 recow = 0;
499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
500 if (ret < 0) {
501 err = ret;
502 goto fail;
503 }
504
505 if (parent) {
506 if (!ret)
507 return 0;
508 goto fail;
509 }
510
511 leaf = path->nodes[0];
512 nritems = btrfs_header_nritems(leaf);
513 while (1) {
514 if (path->slots[0] >= nritems) {
515 ret = btrfs_next_leaf(root, path);
516 if (ret < 0)
517 err = ret;
518 if (ret)
519 goto fail;
520
521 leaf = path->nodes[0];
522 nritems = btrfs_header_nritems(leaf);
523 recow = 1;
524 }
525
526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
527 if (key.objectid != bytenr ||
528 key.type != BTRFS_EXTENT_DATA_REF_KEY)
529 goto fail;
530
531 ref = btrfs_item_ptr(leaf, path->slots[0],
532 struct btrfs_extent_data_ref);
533
534 if (match_extent_data_ref(leaf, ref, root_objectid,
535 owner, offset)) {
536 if (recow) {
537 btrfs_release_path(path);
538 goto again;
539 }
540 err = 0;
541 break;
542 }
543 path->slots[0]++;
544 }
545 fail:
546 return err;
547 }
548
549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
550 struct btrfs_path *path,
551 u64 bytenr, u64 parent,
552 u64 root_objectid, u64 owner,
553 u64 offset, int refs_to_add)
554 {
555 struct btrfs_root *root = trans->fs_info->extent_root;
556 struct btrfs_key key;
557 struct extent_buffer *leaf;
558 u32 size;
559 u32 num_refs;
560 int ret;
561
562 key.objectid = bytenr;
563 if (parent) {
564 key.type = BTRFS_SHARED_DATA_REF_KEY;
565 key.offset = parent;
566 size = sizeof(struct btrfs_shared_data_ref);
567 } else {
568 key.type = BTRFS_EXTENT_DATA_REF_KEY;
569 key.offset = hash_extent_data_ref(root_objectid,
570 owner, offset);
571 size = sizeof(struct btrfs_extent_data_ref);
572 }
573
574 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
575 if (ret && ret != -EEXIST)
576 goto fail;
577
578 leaf = path->nodes[0];
579 if (parent) {
580 struct btrfs_shared_data_ref *ref;
581 ref = btrfs_item_ptr(leaf, path->slots[0],
582 struct btrfs_shared_data_ref);
583 if (ret == 0) {
584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
585 } else {
586 num_refs = btrfs_shared_data_ref_count(leaf, ref);
587 num_refs += refs_to_add;
588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
589 }
590 } else {
591 struct btrfs_extent_data_ref *ref;
592 while (ret == -EEXIST) {
593 ref = btrfs_item_ptr(leaf, path->slots[0],
594 struct btrfs_extent_data_ref);
595 if (match_extent_data_ref(leaf, ref, root_objectid,
596 owner, offset))
597 break;
598 btrfs_release_path(path);
599 key.offset++;
600 ret = btrfs_insert_empty_item(trans, root, path, &key,
601 size);
602 if (ret && ret != -EEXIST)
603 goto fail;
604
605 leaf = path->nodes[0];
606 }
607 ref = btrfs_item_ptr(leaf, path->slots[0],
608 struct btrfs_extent_data_ref);
609 if (ret == 0) {
610 btrfs_set_extent_data_ref_root(leaf, ref,
611 root_objectid);
612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
613 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
615 } else {
616 num_refs = btrfs_extent_data_ref_count(leaf, ref);
617 num_refs += refs_to_add;
618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
619 }
620 }
621 btrfs_mark_buffer_dirty(leaf);
622 ret = 0;
623 fail:
624 btrfs_release_path(path);
625 return ret;
626 }
627
628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
629 struct btrfs_path *path,
630 int refs_to_drop, int *last_ref)
631 {
632 struct btrfs_key key;
633 struct btrfs_extent_data_ref *ref1 = NULL;
634 struct btrfs_shared_data_ref *ref2 = NULL;
635 struct extent_buffer *leaf;
636 u32 num_refs = 0;
637 int ret = 0;
638
639 leaf = path->nodes[0];
640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641
642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
643 ref1 = btrfs_item_ptr(leaf, path->slots[0],
644 struct btrfs_extent_data_ref);
645 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
647 ref2 = btrfs_item_ptr(leaf, path->slots[0],
648 struct btrfs_shared_data_ref);
649 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
651 btrfs_print_v0_err(trans->fs_info);
652 btrfs_abort_transaction(trans, -EINVAL);
653 return -EINVAL;
654 } else {
655 BUG();
656 }
657
658 BUG_ON(num_refs < refs_to_drop);
659 num_refs -= refs_to_drop;
660
661 if (num_refs == 0) {
662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
663 *last_ref = 1;
664 } else {
665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
669 btrfs_mark_buffer_dirty(leaf);
670 }
671 return ret;
672 }
673
674 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
675 struct btrfs_extent_inline_ref *iref)
676 {
677 struct btrfs_key key;
678 struct extent_buffer *leaf;
679 struct btrfs_extent_data_ref *ref1;
680 struct btrfs_shared_data_ref *ref2;
681 u32 num_refs = 0;
682 int type;
683
684 leaf = path->nodes[0];
685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
686
687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
688 if (iref) {
689 /*
690 * If type is invalid, we should have bailed out earlier than
691 * this call.
692 */
693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
694 ASSERT(type != BTRFS_REF_TYPE_INVALID);
695 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
697 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
698 } else {
699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
700 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
701 }
702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
703 ref1 = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_extent_data_ref);
705 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
707 ref2 = btrfs_item_ptr(leaf, path->slots[0],
708 struct btrfs_shared_data_ref);
709 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
710 } else {
711 WARN_ON(1);
712 }
713 return num_refs;
714 }
715
716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
717 struct btrfs_path *path,
718 u64 bytenr, u64 parent,
719 u64 root_objectid)
720 {
721 struct btrfs_root *root = trans->fs_info->extent_root;
722 struct btrfs_key key;
723 int ret;
724
725 key.objectid = bytenr;
726 if (parent) {
727 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 key.offset = parent;
729 } else {
730 key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 key.offset = root_objectid;
732 }
733
734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
735 if (ret > 0)
736 ret = -ENOENT;
737 return ret;
738 }
739
740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
741 struct btrfs_path *path,
742 u64 bytenr, u64 parent,
743 u64 root_objectid)
744 {
745 struct btrfs_key key;
746 int ret;
747
748 key.objectid = bytenr;
749 if (parent) {
750 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
751 key.offset = parent;
752 } else {
753 key.type = BTRFS_TREE_BLOCK_REF_KEY;
754 key.offset = root_objectid;
755 }
756
757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
758 path, &key, 0);
759 btrfs_release_path(path);
760 return ret;
761 }
762
763 static inline int extent_ref_type(u64 parent, u64 owner)
764 {
765 int type;
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (parent > 0)
768 type = BTRFS_SHARED_BLOCK_REF_KEY;
769 else
770 type = BTRFS_TREE_BLOCK_REF_KEY;
771 } else {
772 if (parent > 0)
773 type = BTRFS_SHARED_DATA_REF_KEY;
774 else
775 type = BTRFS_EXTENT_DATA_REF_KEY;
776 }
777 return type;
778 }
779
780 static int find_next_key(struct btrfs_path *path, int level,
781 struct btrfs_key *key)
782
783 {
784 for (; level < BTRFS_MAX_LEVEL; level++) {
785 if (!path->nodes[level])
786 break;
787 if (path->slots[level] + 1 >=
788 btrfs_header_nritems(path->nodes[level]))
789 continue;
790 if (level == 0)
791 btrfs_item_key_to_cpu(path->nodes[level], key,
792 path->slots[level] + 1);
793 else
794 btrfs_node_key_to_cpu(path->nodes[level], key,
795 path->slots[level] + 1);
796 return 0;
797 }
798 return 1;
799 }
800
801 /*
802 * look for inline back ref. if back ref is found, *ref_ret is set
803 * to the address of inline back ref, and 0 is returned.
804 *
805 * if back ref isn't found, *ref_ret is set to the address where it
806 * should be inserted, and -ENOENT is returned.
807 *
808 * if insert is true and there are too many inline back refs, the path
809 * points to the extent item, and -EAGAIN is returned.
810 *
811 * NOTE: inline back refs are ordered in the same way that back ref
812 * items in the tree are ordered.
813 */
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
816 struct btrfs_path *path,
817 struct btrfs_extent_inline_ref **ref_ret,
818 u64 bytenr, u64 num_bytes,
819 u64 parent, u64 root_objectid,
820 u64 owner, u64 offset, int insert)
821 {
822 struct btrfs_fs_info *fs_info = trans->fs_info;
823 struct btrfs_root *root = fs_info->extent_root;
824 struct btrfs_key key;
825 struct extent_buffer *leaf;
826 struct btrfs_extent_item *ei;
827 struct btrfs_extent_inline_ref *iref;
828 u64 flags;
829 u64 item_size;
830 unsigned long ptr;
831 unsigned long end;
832 int extra_size;
833 int type;
834 int want;
835 int ret;
836 int err = 0;
837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
838 int needed;
839
840 key.objectid = bytenr;
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842 key.offset = num_bytes;
843
844 want = extent_ref_type(parent, owner);
845 if (insert) {
846 extra_size = btrfs_extent_inline_ref_size(want);
847 path->keep_locks = 1;
848 } else
849 extra_size = -1;
850
851 /*
852 * Owner is our level, so we can just add one to get the level for the
853 * block we are interested in.
854 */
855 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
856 key.type = BTRFS_METADATA_ITEM_KEY;
857 key.offset = owner;
858 }
859
860 again:
861 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
862 if (ret < 0) {
863 err = ret;
864 goto out;
865 }
866
867 /*
868 * We may be a newly converted file system which still has the old fat
869 * extent entries for metadata, so try and see if we have one of those.
870 */
871 if (ret > 0 && skinny_metadata) {
872 skinny_metadata = false;
873 if (path->slots[0]) {
874 path->slots[0]--;
875 btrfs_item_key_to_cpu(path->nodes[0], &key,
876 path->slots[0]);
877 if (key.objectid == bytenr &&
878 key.type == BTRFS_EXTENT_ITEM_KEY &&
879 key.offset == num_bytes)
880 ret = 0;
881 }
882 if (ret) {
883 key.objectid = bytenr;
884 key.type = BTRFS_EXTENT_ITEM_KEY;
885 key.offset = num_bytes;
886 btrfs_release_path(path);
887 goto again;
888 }
889 }
890
891 if (ret && !insert) {
892 err = -ENOENT;
893 goto out;
894 } else if (WARN_ON(ret)) {
895 err = -EIO;
896 goto out;
897 }
898
899 leaf = path->nodes[0];
900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
901 if (unlikely(item_size < sizeof(*ei))) {
902 err = -EINVAL;
903 btrfs_print_v0_err(fs_info);
904 btrfs_abort_transaction(trans, err);
905 goto out;
906 }
907
908 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
909 flags = btrfs_extent_flags(leaf, ei);
910
911 ptr = (unsigned long)(ei + 1);
912 end = (unsigned long)ei + item_size;
913
914 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
915 ptr += sizeof(struct btrfs_tree_block_info);
916 BUG_ON(ptr > end);
917 }
918
919 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
920 needed = BTRFS_REF_TYPE_DATA;
921 else
922 needed = BTRFS_REF_TYPE_BLOCK;
923
924 err = -ENOENT;
925 while (1) {
926 if (ptr >= end) {
927 WARN_ON(ptr > end);
928 break;
929 }
930 iref = (struct btrfs_extent_inline_ref *)ptr;
931 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
932 if (type == BTRFS_REF_TYPE_INVALID) {
933 err = -EUCLEAN;
934 goto out;
935 }
936
937 if (want < type)
938 break;
939 if (want > type) {
940 ptr += btrfs_extent_inline_ref_size(type);
941 continue;
942 }
943
944 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
945 struct btrfs_extent_data_ref *dref;
946 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
947 if (match_extent_data_ref(leaf, dref, root_objectid,
948 owner, offset)) {
949 err = 0;
950 break;
951 }
952 if (hash_extent_data_ref_item(leaf, dref) <
953 hash_extent_data_ref(root_objectid, owner, offset))
954 break;
955 } else {
956 u64 ref_offset;
957 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
958 if (parent > 0) {
959 if (parent == ref_offset) {
960 err = 0;
961 break;
962 }
963 if (ref_offset < parent)
964 break;
965 } else {
966 if (root_objectid == ref_offset) {
967 err = 0;
968 break;
969 }
970 if (ref_offset < root_objectid)
971 break;
972 }
973 }
974 ptr += btrfs_extent_inline_ref_size(type);
975 }
976 if (err == -ENOENT && insert) {
977 if (item_size + extra_size >=
978 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
979 err = -EAGAIN;
980 goto out;
981 }
982 /*
983 * To add new inline back ref, we have to make sure
984 * there is no corresponding back ref item.
985 * For simplicity, we just do not add new inline back
986 * ref if there is any kind of item for this block
987 */
988 if (find_next_key(path, 0, &key) == 0 &&
989 key.objectid == bytenr &&
990 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
991 err = -EAGAIN;
992 goto out;
993 }
994 }
995 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
996 out:
997 if (insert) {
998 path->keep_locks = 0;
999 btrfs_unlock_up_safe(path, 1);
1000 }
1001 return err;
1002 }
1003
1004 /*
1005 * helper to add new inline back ref
1006 */
1007 static noinline_for_stack
1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1009 struct btrfs_path *path,
1010 struct btrfs_extent_inline_ref *iref,
1011 u64 parent, u64 root_objectid,
1012 u64 owner, u64 offset, int refs_to_add,
1013 struct btrfs_delayed_extent_op *extent_op)
1014 {
1015 struct extent_buffer *leaf;
1016 struct btrfs_extent_item *ei;
1017 unsigned long ptr;
1018 unsigned long end;
1019 unsigned long item_offset;
1020 u64 refs;
1021 int size;
1022 int type;
1023
1024 leaf = path->nodes[0];
1025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1026 item_offset = (unsigned long)iref - (unsigned long)ei;
1027
1028 type = extent_ref_type(parent, owner);
1029 size = btrfs_extent_inline_ref_size(type);
1030
1031 btrfs_extend_item(path, size);
1032
1033 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1034 refs = btrfs_extent_refs(leaf, ei);
1035 refs += refs_to_add;
1036 btrfs_set_extent_refs(leaf, ei, refs);
1037 if (extent_op)
1038 __run_delayed_extent_op(extent_op, leaf, ei);
1039
1040 ptr = (unsigned long)ei + item_offset;
1041 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1042 if (ptr < end - size)
1043 memmove_extent_buffer(leaf, ptr + size, ptr,
1044 end - size - ptr);
1045
1046 iref = (struct btrfs_extent_inline_ref *)ptr;
1047 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1048 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1049 struct btrfs_extent_data_ref *dref;
1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1051 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1052 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1053 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1054 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1055 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1056 struct btrfs_shared_data_ref *sref;
1057 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1058 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1059 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1060 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1062 } else {
1063 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1064 }
1065 btrfs_mark_buffer_dirty(leaf);
1066 }
1067
1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1069 struct btrfs_path *path,
1070 struct btrfs_extent_inline_ref **ref_ret,
1071 u64 bytenr, u64 num_bytes, u64 parent,
1072 u64 root_objectid, u64 owner, u64 offset)
1073 {
1074 int ret;
1075
1076 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1077 num_bytes, parent, root_objectid,
1078 owner, offset, 0);
1079 if (ret != -ENOENT)
1080 return ret;
1081
1082 btrfs_release_path(path);
1083 *ref_ret = NULL;
1084
1085 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1086 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1087 root_objectid);
1088 } else {
1089 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1090 root_objectid, owner, offset);
1091 }
1092 return ret;
1093 }
1094
1095 /*
1096 * helper to update/remove inline back ref
1097 */
1098 static noinline_for_stack
1099 void update_inline_extent_backref(struct btrfs_path *path,
1100 struct btrfs_extent_inline_ref *iref,
1101 int refs_to_mod,
1102 struct btrfs_delayed_extent_op *extent_op,
1103 int *last_ref)
1104 {
1105 struct extent_buffer *leaf = path->nodes[0];
1106 struct btrfs_extent_item *ei;
1107 struct btrfs_extent_data_ref *dref = NULL;
1108 struct btrfs_shared_data_ref *sref = NULL;
1109 unsigned long ptr;
1110 unsigned long end;
1111 u32 item_size;
1112 int size;
1113 int type;
1114 u64 refs;
1115
1116 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1117 refs = btrfs_extent_refs(leaf, ei);
1118 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1119 refs += refs_to_mod;
1120 btrfs_set_extent_refs(leaf, ei, refs);
1121 if (extent_op)
1122 __run_delayed_extent_op(extent_op, leaf, ei);
1123
1124 /*
1125 * If type is invalid, we should have bailed out after
1126 * lookup_inline_extent_backref().
1127 */
1128 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1129 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1130
1131 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1132 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1133 refs = btrfs_extent_data_ref_count(leaf, dref);
1134 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1135 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1136 refs = btrfs_shared_data_ref_count(leaf, sref);
1137 } else {
1138 refs = 1;
1139 BUG_ON(refs_to_mod != -1);
1140 }
1141
1142 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1143 refs += refs_to_mod;
1144
1145 if (refs > 0) {
1146 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1147 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1148 else
1149 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1150 } else {
1151 *last_ref = 1;
1152 size = btrfs_extent_inline_ref_size(type);
1153 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1154 ptr = (unsigned long)iref;
1155 end = (unsigned long)ei + item_size;
1156 if (ptr + size < end)
1157 memmove_extent_buffer(leaf, ptr, ptr + size,
1158 end - ptr - size);
1159 item_size -= size;
1160 btrfs_truncate_item(path, item_size, 1);
1161 }
1162 btrfs_mark_buffer_dirty(leaf);
1163 }
1164
1165 static noinline_for_stack
1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1167 struct btrfs_path *path,
1168 u64 bytenr, u64 num_bytes, u64 parent,
1169 u64 root_objectid, u64 owner,
1170 u64 offset, int refs_to_add,
1171 struct btrfs_delayed_extent_op *extent_op)
1172 {
1173 struct btrfs_extent_inline_ref *iref;
1174 int ret;
1175
1176 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1177 num_bytes, parent, root_objectid,
1178 owner, offset, 1);
1179 if (ret == 0) {
1180 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1181 update_inline_extent_backref(path, iref, refs_to_add,
1182 extent_op, NULL);
1183 } else if (ret == -ENOENT) {
1184 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1185 root_objectid, owner, offset,
1186 refs_to_add, extent_op);
1187 ret = 0;
1188 }
1189 return ret;
1190 }
1191
1192 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1193 struct btrfs_path *path,
1194 struct btrfs_extent_inline_ref *iref,
1195 int refs_to_drop, int is_data, int *last_ref)
1196 {
1197 int ret = 0;
1198
1199 BUG_ON(!is_data && refs_to_drop != 1);
1200 if (iref) {
1201 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1202 last_ref);
1203 } else if (is_data) {
1204 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1205 last_ref);
1206 } else {
1207 *last_ref = 1;
1208 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1209 }
1210 return ret;
1211 }
1212
1213 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1214 u64 *discarded_bytes)
1215 {
1216 int j, ret = 0;
1217 u64 bytes_left, end;
1218 u64 aligned_start = ALIGN(start, 1 << 9);
1219
1220 if (WARN_ON(start != aligned_start)) {
1221 len -= aligned_start - start;
1222 len = round_down(len, 1 << 9);
1223 start = aligned_start;
1224 }
1225
1226 *discarded_bytes = 0;
1227
1228 if (!len)
1229 return 0;
1230
1231 end = start + len;
1232 bytes_left = len;
1233
1234 /* Skip any superblocks on this device. */
1235 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1236 u64 sb_start = btrfs_sb_offset(j);
1237 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1238 u64 size = sb_start - start;
1239
1240 if (!in_range(sb_start, start, bytes_left) &&
1241 !in_range(sb_end, start, bytes_left) &&
1242 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1243 continue;
1244
1245 /*
1246 * Superblock spans beginning of range. Adjust start and
1247 * try again.
1248 */
1249 if (sb_start <= start) {
1250 start += sb_end - start;
1251 if (start > end) {
1252 bytes_left = 0;
1253 break;
1254 }
1255 bytes_left = end - start;
1256 continue;
1257 }
1258
1259 if (size) {
1260 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1261 GFP_NOFS, 0);
1262 if (!ret)
1263 *discarded_bytes += size;
1264 else if (ret != -EOPNOTSUPP)
1265 return ret;
1266 }
1267
1268 start = sb_end;
1269 if (start > end) {
1270 bytes_left = 0;
1271 break;
1272 }
1273 bytes_left = end - start;
1274 }
1275
1276 if (bytes_left) {
1277 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1278 GFP_NOFS, 0);
1279 if (!ret)
1280 *discarded_bytes += bytes_left;
1281 }
1282 return ret;
1283 }
1284
1285 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1286 u64 num_bytes, u64 *actual_bytes)
1287 {
1288 int ret = 0;
1289 u64 discarded_bytes = 0;
1290 u64 end = bytenr + num_bytes;
1291 u64 cur = bytenr;
1292 struct btrfs_bio *bbio = NULL;
1293
1294
1295 /*
1296 * Avoid races with device replace and make sure our bbio has devices
1297 * associated to its stripes that don't go away while we are discarding.
1298 */
1299 btrfs_bio_counter_inc_blocked(fs_info);
1300 while (cur < end) {
1301 struct btrfs_bio_stripe *stripe;
1302 int i;
1303
1304 num_bytes = end - cur;
1305 /* Tell the block device(s) that the sectors can be discarded */
1306 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1307 &num_bytes, &bbio, 0);
1308 /*
1309 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1310 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1311 * thus we can't continue anyway.
1312 */
1313 if (ret < 0)
1314 goto out;
1315
1316 stripe = bbio->stripes;
1317 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1318 u64 bytes;
1319 struct request_queue *req_q;
1320
1321 if (!stripe->dev->bdev) {
1322 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1323 continue;
1324 }
1325 req_q = bdev_get_queue(stripe->dev->bdev);
1326 if (!blk_queue_discard(req_q))
1327 continue;
1328
1329 ret = btrfs_issue_discard(stripe->dev->bdev,
1330 stripe->physical,
1331 stripe->length,
1332 &bytes);
1333 if (!ret) {
1334 discarded_bytes += bytes;
1335 } else if (ret != -EOPNOTSUPP) {
1336 /*
1337 * Logic errors or -ENOMEM, or -EIO, but
1338 * unlikely to happen.
1339 *
1340 * And since there are two loops, explicitly
1341 * go to out to avoid confusion.
1342 */
1343 btrfs_put_bbio(bbio);
1344 goto out;
1345 }
1346
1347 /*
1348 * Just in case we get back EOPNOTSUPP for some reason,
1349 * just ignore the return value so we don't screw up
1350 * people calling discard_extent.
1351 */
1352 ret = 0;
1353 }
1354 btrfs_put_bbio(bbio);
1355 cur += num_bytes;
1356 }
1357 out:
1358 btrfs_bio_counter_dec(fs_info);
1359
1360 if (actual_bytes)
1361 *actual_bytes = discarded_bytes;
1362
1363
1364 if (ret == -EOPNOTSUPP)
1365 ret = 0;
1366 return ret;
1367 }
1368
1369 /* Can return -ENOMEM */
1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_ref *generic_ref)
1372 {
1373 struct btrfs_fs_info *fs_info = trans->fs_info;
1374 int old_ref_mod, new_ref_mod;
1375 int ret;
1376
1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378 generic_ref->action);
1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382 if (generic_ref->type == BTRFS_REF_METADATA)
1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384 NULL, &old_ref_mod, &new_ref_mod);
1385 else
1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387 &old_ref_mod, &new_ref_mod);
1388
1389 btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392 sub_pinned_bytes(fs_info, generic_ref);
1393
1394 return ret;
1395 }
1396
1397 /*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1399 *
1400 * @trans: Handle of transaction
1401 *
1402 * @node: The delayed ref node used to get the bytenr/length for
1403 * extent whose references are incremented.
1404 *
1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 * bytenr of the parent block. Since new extents are always
1408 * created with indirect references, this will only be the case
1409 * when relocating a shared extent. In that case, root_objectid
1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 * be 0
1412 *
1413 * @root_objectid: The id of the root where this modification has originated,
1414 * this can be either one of the well-known metadata trees or
1415 * the subvolume id which references this extent.
1416 *
1417 * @owner: For data extents it is the inode number of the owning file.
1418 * For metadata extents this parameter holds the level in the
1419 * tree of the extent.
1420 *
1421 * @offset: For metadata extents the offset is ignored and is currently
1422 * always passed as 0. For data extents it is the fileoffset
1423 * this extent belongs to.
1424 *
1425 * @refs_to_add Number of references to add
1426 *
1427 * @extent_op Pointer to a structure, holding information necessary when
1428 * updating a tree block's flags
1429 *
1430 */
1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432 struct btrfs_delayed_ref_node *node,
1433 u64 parent, u64 root_objectid,
1434 u64 owner, u64 offset, int refs_to_add,
1435 struct btrfs_delayed_extent_op *extent_op)
1436 {
1437 struct btrfs_path *path;
1438 struct extent_buffer *leaf;
1439 struct btrfs_extent_item *item;
1440 struct btrfs_key key;
1441 u64 bytenr = node->bytenr;
1442 u64 num_bytes = node->num_bytes;
1443 u64 refs;
1444 int ret;
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 path->leave_spinning = 1;
1451 /* this will setup the path even if it fails to insert the back ref */
1452 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1453 parent, root_objectid, owner,
1454 offset, refs_to_add, extent_op);
1455 if ((ret < 0 && ret != -EAGAIN) || !ret)
1456 goto out;
1457
1458 /*
1459 * Ok we had -EAGAIN which means we didn't have space to insert and
1460 * inline extent ref, so just update the reference count and add a
1461 * normal backref.
1462 */
1463 leaf = path->nodes[0];
1464 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1465 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1466 refs = btrfs_extent_refs(leaf, item);
1467 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1468 if (extent_op)
1469 __run_delayed_extent_op(extent_op, leaf, item);
1470
1471 btrfs_mark_buffer_dirty(leaf);
1472 btrfs_release_path(path);
1473
1474 path->leave_spinning = 1;
1475 /* now insert the actual backref */
1476 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1477 BUG_ON(refs_to_add != 1);
1478 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1479 root_objectid);
1480 } else {
1481 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1482 root_objectid, owner, offset,
1483 refs_to_add);
1484 }
1485 if (ret)
1486 btrfs_abort_transaction(trans, ret);
1487 out:
1488 btrfs_free_path(path);
1489 return ret;
1490 }
1491
1492 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1493 struct btrfs_delayed_ref_node *node,
1494 struct btrfs_delayed_extent_op *extent_op,
1495 int insert_reserved)
1496 {
1497 int ret = 0;
1498 struct btrfs_delayed_data_ref *ref;
1499 struct btrfs_key ins;
1500 u64 parent = 0;
1501 u64 ref_root = 0;
1502 u64 flags = 0;
1503
1504 ins.objectid = node->bytenr;
1505 ins.offset = node->num_bytes;
1506 ins.type = BTRFS_EXTENT_ITEM_KEY;
1507
1508 ref = btrfs_delayed_node_to_data_ref(node);
1509 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1510
1511 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1512 parent = ref->parent;
1513 ref_root = ref->root;
1514
1515 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1516 if (extent_op)
1517 flags |= extent_op->flags_to_set;
1518 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1519 flags, ref->objectid,
1520 ref->offset, &ins,
1521 node->ref_mod);
1522 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1523 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1524 ref->objectid, ref->offset,
1525 node->ref_mod, extent_op);
1526 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1527 ret = __btrfs_free_extent(trans, node, parent,
1528 ref_root, ref->objectid,
1529 ref->offset, node->ref_mod,
1530 extent_op);
1531 } else {
1532 BUG();
1533 }
1534 return ret;
1535 }
1536
1537 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1538 struct extent_buffer *leaf,
1539 struct btrfs_extent_item *ei)
1540 {
1541 u64 flags = btrfs_extent_flags(leaf, ei);
1542 if (extent_op->update_flags) {
1543 flags |= extent_op->flags_to_set;
1544 btrfs_set_extent_flags(leaf, ei, flags);
1545 }
1546
1547 if (extent_op->update_key) {
1548 struct btrfs_tree_block_info *bi;
1549 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1550 bi = (struct btrfs_tree_block_info *)(ei + 1);
1551 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1552 }
1553 }
1554
1555 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1556 struct btrfs_delayed_ref_head *head,
1557 struct btrfs_delayed_extent_op *extent_op)
1558 {
1559 struct btrfs_fs_info *fs_info = trans->fs_info;
1560 struct btrfs_key key;
1561 struct btrfs_path *path;
1562 struct btrfs_extent_item *ei;
1563 struct extent_buffer *leaf;
1564 u32 item_size;
1565 int ret;
1566 int err = 0;
1567 int metadata = !extent_op->is_data;
1568
1569 if (TRANS_ABORTED(trans))
1570 return 0;
1571
1572 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1573 metadata = 0;
1574
1575 path = btrfs_alloc_path();
1576 if (!path)
1577 return -ENOMEM;
1578
1579 key.objectid = head->bytenr;
1580
1581 if (metadata) {
1582 key.type = BTRFS_METADATA_ITEM_KEY;
1583 key.offset = extent_op->level;
1584 } else {
1585 key.type = BTRFS_EXTENT_ITEM_KEY;
1586 key.offset = head->num_bytes;
1587 }
1588
1589 again:
1590 path->leave_spinning = 1;
1591 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1592 if (ret < 0) {
1593 err = ret;
1594 goto out;
1595 }
1596 if (ret > 0) {
1597 if (metadata) {
1598 if (path->slots[0] > 0) {
1599 path->slots[0]--;
1600 btrfs_item_key_to_cpu(path->nodes[0], &key,
1601 path->slots[0]);
1602 if (key.objectid == head->bytenr &&
1603 key.type == BTRFS_EXTENT_ITEM_KEY &&
1604 key.offset == head->num_bytes)
1605 ret = 0;
1606 }
1607 if (ret > 0) {
1608 btrfs_release_path(path);
1609 metadata = 0;
1610
1611 key.objectid = head->bytenr;
1612 key.offset = head->num_bytes;
1613 key.type = BTRFS_EXTENT_ITEM_KEY;
1614 goto again;
1615 }
1616 } else {
1617 err = -EIO;
1618 goto out;
1619 }
1620 }
1621
1622 leaf = path->nodes[0];
1623 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1624
1625 if (unlikely(item_size < sizeof(*ei))) {
1626 err = -EINVAL;
1627 btrfs_print_v0_err(fs_info);
1628 btrfs_abort_transaction(trans, err);
1629 goto out;
1630 }
1631
1632 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1633 __run_delayed_extent_op(extent_op, leaf, ei);
1634
1635 btrfs_mark_buffer_dirty(leaf);
1636 out:
1637 btrfs_free_path(path);
1638 return err;
1639 }
1640
1641 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1642 struct btrfs_delayed_ref_node *node,
1643 struct btrfs_delayed_extent_op *extent_op,
1644 int insert_reserved)
1645 {
1646 int ret = 0;
1647 struct btrfs_delayed_tree_ref *ref;
1648 u64 parent = 0;
1649 u64 ref_root = 0;
1650
1651 ref = btrfs_delayed_node_to_tree_ref(node);
1652 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1653
1654 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1655 parent = ref->parent;
1656 ref_root = ref->root;
1657
1658 if (node->ref_mod != 1) {
1659 btrfs_err(trans->fs_info,
1660 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1661 node->bytenr, node->ref_mod, node->action, ref_root,
1662 parent);
1663 return -EIO;
1664 }
1665 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1666 BUG_ON(!extent_op || !extent_op->update_flags);
1667 ret = alloc_reserved_tree_block(trans, node, extent_op);
1668 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1669 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1670 ref->level, 0, 1, extent_op);
1671 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1672 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1673 ref->level, 0, 1, extent_op);
1674 } else {
1675 BUG();
1676 }
1677 return ret;
1678 }
1679
1680 /* helper function to actually process a single delayed ref entry */
1681 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1682 struct btrfs_delayed_ref_node *node,
1683 struct btrfs_delayed_extent_op *extent_op,
1684 int insert_reserved)
1685 {
1686 int ret = 0;
1687
1688 if (TRANS_ABORTED(trans)) {
1689 if (insert_reserved)
1690 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1691 return 0;
1692 }
1693
1694 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1695 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1696 ret = run_delayed_tree_ref(trans, node, extent_op,
1697 insert_reserved);
1698 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1699 node->type == BTRFS_SHARED_DATA_REF_KEY)
1700 ret = run_delayed_data_ref(trans, node, extent_op,
1701 insert_reserved);
1702 else
1703 BUG();
1704 if (ret && insert_reserved)
1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1706 return ret;
1707 }
1708
1709 static inline struct btrfs_delayed_ref_node *
1710 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1711 {
1712 struct btrfs_delayed_ref_node *ref;
1713
1714 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1715 return NULL;
1716
1717 /*
1718 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1719 * This is to prevent a ref count from going down to zero, which deletes
1720 * the extent item from the extent tree, when there still are references
1721 * to add, which would fail because they would not find the extent item.
1722 */
1723 if (!list_empty(&head->ref_add_list))
1724 return list_first_entry(&head->ref_add_list,
1725 struct btrfs_delayed_ref_node, add_list);
1726
1727 ref = rb_entry(rb_first_cached(&head->ref_tree),
1728 struct btrfs_delayed_ref_node, ref_node);
1729 ASSERT(list_empty(&ref->add_list));
1730 return ref;
1731 }
1732
1733 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1734 struct btrfs_delayed_ref_head *head)
1735 {
1736 spin_lock(&delayed_refs->lock);
1737 head->processing = 0;
1738 delayed_refs->num_heads_ready++;
1739 spin_unlock(&delayed_refs->lock);
1740 btrfs_delayed_ref_unlock(head);
1741 }
1742
1743 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1744 struct btrfs_delayed_ref_head *head)
1745 {
1746 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1747
1748 if (!extent_op)
1749 return NULL;
1750
1751 if (head->must_insert_reserved) {
1752 head->extent_op = NULL;
1753 btrfs_free_delayed_extent_op(extent_op);
1754 return NULL;
1755 }
1756 return extent_op;
1757 }
1758
1759 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1760 struct btrfs_delayed_ref_head *head)
1761 {
1762 struct btrfs_delayed_extent_op *extent_op;
1763 int ret;
1764
1765 extent_op = cleanup_extent_op(head);
1766 if (!extent_op)
1767 return 0;
1768 head->extent_op = NULL;
1769 spin_unlock(&head->lock);
1770 ret = run_delayed_extent_op(trans, head, extent_op);
1771 btrfs_free_delayed_extent_op(extent_op);
1772 return ret ? ret : 1;
1773 }
1774
1775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1776 struct btrfs_delayed_ref_root *delayed_refs,
1777 struct btrfs_delayed_ref_head *head)
1778 {
1779 int nr_items = 1; /* Dropping this ref head update. */
1780
1781 if (head->total_ref_mod < 0) {
1782 struct btrfs_space_info *space_info;
1783 u64 flags;
1784
1785 if (head->is_data)
1786 flags = BTRFS_BLOCK_GROUP_DATA;
1787 else if (head->is_system)
1788 flags = BTRFS_BLOCK_GROUP_SYSTEM;
1789 else
1790 flags = BTRFS_BLOCK_GROUP_METADATA;
1791 space_info = btrfs_find_space_info(fs_info, flags);
1792 ASSERT(space_info);
1793 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1794 -head->num_bytes,
1795 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1796
1797 /*
1798 * We had csum deletions accounted for in our delayed refs rsv,
1799 * we need to drop the csum leaves for this update from our
1800 * delayed_refs_rsv.
1801 */
1802 if (head->is_data) {
1803 spin_lock(&delayed_refs->lock);
1804 delayed_refs->pending_csums -= head->num_bytes;
1805 spin_unlock(&delayed_refs->lock);
1806 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1807 head->num_bytes);
1808 }
1809 }
1810
1811 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1812 }
1813
1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1815 struct btrfs_delayed_ref_head *head)
1816 {
1817
1818 struct btrfs_fs_info *fs_info = trans->fs_info;
1819 struct btrfs_delayed_ref_root *delayed_refs;
1820 int ret;
1821
1822 delayed_refs = &trans->transaction->delayed_refs;
1823
1824 ret = run_and_cleanup_extent_op(trans, head);
1825 if (ret < 0) {
1826 unselect_delayed_ref_head(delayed_refs, head);
1827 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1828 return ret;
1829 } else if (ret) {
1830 return ret;
1831 }
1832
1833 /*
1834 * Need to drop our head ref lock and re-acquire the delayed ref lock
1835 * and then re-check to make sure nobody got added.
1836 */
1837 spin_unlock(&head->lock);
1838 spin_lock(&delayed_refs->lock);
1839 spin_lock(&head->lock);
1840 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1841 spin_unlock(&head->lock);
1842 spin_unlock(&delayed_refs->lock);
1843 return 1;
1844 }
1845 btrfs_delete_ref_head(delayed_refs, head);
1846 spin_unlock(&head->lock);
1847 spin_unlock(&delayed_refs->lock);
1848
1849 if (head->must_insert_reserved) {
1850 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1851 if (head->is_data) {
1852 ret = btrfs_del_csums(trans, fs_info->csum_root,
1853 head->bytenr, head->num_bytes);
1854 }
1855 }
1856
1857 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1858
1859 trace_run_delayed_ref_head(fs_info, head, 0);
1860 btrfs_delayed_ref_unlock(head);
1861 btrfs_put_delayed_ref_head(head);
1862 return 0;
1863 }
1864
1865 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1866 struct btrfs_trans_handle *trans)
1867 {
1868 struct btrfs_delayed_ref_root *delayed_refs =
1869 &trans->transaction->delayed_refs;
1870 struct btrfs_delayed_ref_head *head = NULL;
1871 int ret;
1872
1873 spin_lock(&delayed_refs->lock);
1874 head = btrfs_select_ref_head(delayed_refs);
1875 if (!head) {
1876 spin_unlock(&delayed_refs->lock);
1877 return head;
1878 }
1879
1880 /*
1881 * Grab the lock that says we are going to process all the refs for
1882 * this head
1883 */
1884 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1885 spin_unlock(&delayed_refs->lock);
1886
1887 /*
1888 * We may have dropped the spin lock to get the head mutex lock, and
1889 * that might have given someone else time to free the head. If that's
1890 * true, it has been removed from our list and we can move on.
1891 */
1892 if (ret == -EAGAIN)
1893 head = ERR_PTR(-EAGAIN);
1894
1895 return head;
1896 }
1897
1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1899 struct btrfs_delayed_ref_head *locked_ref,
1900 unsigned long *run_refs)
1901 {
1902 struct btrfs_fs_info *fs_info = trans->fs_info;
1903 struct btrfs_delayed_ref_root *delayed_refs;
1904 struct btrfs_delayed_extent_op *extent_op;
1905 struct btrfs_delayed_ref_node *ref;
1906 int must_insert_reserved = 0;
1907 int ret;
1908
1909 delayed_refs = &trans->transaction->delayed_refs;
1910
1911 lockdep_assert_held(&locked_ref->mutex);
1912 lockdep_assert_held(&locked_ref->lock);
1913
1914 while ((ref = select_delayed_ref(locked_ref))) {
1915 if (ref->seq &&
1916 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1917 spin_unlock(&locked_ref->lock);
1918 unselect_delayed_ref_head(delayed_refs, locked_ref);
1919 return -EAGAIN;
1920 }
1921
1922 (*run_refs)++;
1923 ref->in_tree = 0;
1924 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1925 RB_CLEAR_NODE(&ref->ref_node);
1926 if (!list_empty(&ref->add_list))
1927 list_del(&ref->add_list);
1928 /*
1929 * When we play the delayed ref, also correct the ref_mod on
1930 * head
1931 */
1932 switch (ref->action) {
1933 case BTRFS_ADD_DELAYED_REF:
1934 case BTRFS_ADD_DELAYED_EXTENT:
1935 locked_ref->ref_mod -= ref->ref_mod;
1936 break;
1937 case BTRFS_DROP_DELAYED_REF:
1938 locked_ref->ref_mod += ref->ref_mod;
1939 break;
1940 default:
1941 WARN_ON(1);
1942 }
1943 atomic_dec(&delayed_refs->num_entries);
1944
1945 /*
1946 * Record the must_insert_reserved flag before we drop the
1947 * spin lock.
1948 */
1949 must_insert_reserved = locked_ref->must_insert_reserved;
1950 locked_ref->must_insert_reserved = 0;
1951
1952 extent_op = locked_ref->extent_op;
1953 locked_ref->extent_op = NULL;
1954 spin_unlock(&locked_ref->lock);
1955
1956 ret = run_one_delayed_ref(trans, ref, extent_op,
1957 must_insert_reserved);
1958
1959 btrfs_free_delayed_extent_op(extent_op);
1960 if (ret) {
1961 unselect_delayed_ref_head(delayed_refs, locked_ref);
1962 btrfs_put_delayed_ref(ref);
1963 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1964 ret);
1965 return ret;
1966 }
1967
1968 btrfs_put_delayed_ref(ref);
1969 cond_resched();
1970
1971 spin_lock(&locked_ref->lock);
1972 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1973 }
1974
1975 return 0;
1976 }
1977
1978 /*
1979 * Returns 0 on success or if called with an already aborted transaction.
1980 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1981 */
1982 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1983 unsigned long nr)
1984 {
1985 struct btrfs_fs_info *fs_info = trans->fs_info;
1986 struct btrfs_delayed_ref_root *delayed_refs;
1987 struct btrfs_delayed_ref_head *locked_ref = NULL;
1988 ktime_t start = ktime_get();
1989 int ret;
1990 unsigned long count = 0;
1991 unsigned long actual_count = 0;
1992
1993 delayed_refs = &trans->transaction->delayed_refs;
1994 do {
1995 if (!locked_ref) {
1996 locked_ref = btrfs_obtain_ref_head(trans);
1997 if (IS_ERR_OR_NULL(locked_ref)) {
1998 if (PTR_ERR(locked_ref) == -EAGAIN) {
1999 continue;
2000 } else {
2001 break;
2002 }
2003 }
2004 count++;
2005 }
2006 /*
2007 * We need to try and merge add/drops of the same ref since we
2008 * can run into issues with relocate dropping the implicit ref
2009 * and then it being added back again before the drop can
2010 * finish. If we merged anything we need to re-loop so we can
2011 * get a good ref.
2012 * Or we can get node references of the same type that weren't
2013 * merged when created due to bumps in the tree mod seq, and
2014 * we need to merge them to prevent adding an inline extent
2015 * backref before dropping it (triggering a BUG_ON at
2016 * insert_inline_extent_backref()).
2017 */
2018 spin_lock(&locked_ref->lock);
2019 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2020
2021 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2022 &actual_count);
2023 if (ret < 0 && ret != -EAGAIN) {
2024 /*
2025 * Error, btrfs_run_delayed_refs_for_head already
2026 * unlocked everything so just bail out
2027 */
2028 return ret;
2029 } else if (!ret) {
2030 /*
2031 * Success, perform the usual cleanup of a processed
2032 * head
2033 */
2034 ret = cleanup_ref_head(trans, locked_ref);
2035 if (ret > 0 ) {
2036 /* We dropped our lock, we need to loop. */
2037 ret = 0;
2038 continue;
2039 } else if (ret) {
2040 return ret;
2041 }
2042 }
2043
2044 /*
2045 * Either success case or btrfs_run_delayed_refs_for_head
2046 * returned -EAGAIN, meaning we need to select another head
2047 */
2048
2049 locked_ref = NULL;
2050 cond_resched();
2051 } while ((nr != -1 && count < nr) || locked_ref);
2052
2053 /*
2054 * We don't want to include ref heads since we can have empty ref heads
2055 * and those will drastically skew our runtime down since we just do
2056 * accounting, no actual extent tree updates.
2057 */
2058 if (actual_count > 0) {
2059 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2060 u64 avg;
2061
2062 /*
2063 * We weigh the current average higher than our current runtime
2064 * to avoid large swings in the average.
2065 */
2066 spin_lock(&delayed_refs->lock);
2067 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2068 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2069 spin_unlock(&delayed_refs->lock);
2070 }
2071 return 0;
2072 }
2073
2074 #ifdef SCRAMBLE_DELAYED_REFS
2075 /*
2076 * Normally delayed refs get processed in ascending bytenr order. This
2077 * correlates in most cases to the order added. To expose dependencies on this
2078 * order, we start to process the tree in the middle instead of the beginning
2079 */
2080 static u64 find_middle(struct rb_root *root)
2081 {
2082 struct rb_node *n = root->rb_node;
2083 struct btrfs_delayed_ref_node *entry;
2084 int alt = 1;
2085 u64 middle;
2086 u64 first = 0, last = 0;
2087
2088 n = rb_first(root);
2089 if (n) {
2090 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2091 first = entry->bytenr;
2092 }
2093 n = rb_last(root);
2094 if (n) {
2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2096 last = entry->bytenr;
2097 }
2098 n = root->rb_node;
2099
2100 while (n) {
2101 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2102 WARN_ON(!entry->in_tree);
2103
2104 middle = entry->bytenr;
2105
2106 if (alt)
2107 n = n->rb_left;
2108 else
2109 n = n->rb_right;
2110
2111 alt = 1 - alt;
2112 }
2113 return middle;
2114 }
2115 #endif
2116
2117 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2118 {
2119 u64 num_bytes;
2120
2121 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2122 sizeof(struct btrfs_extent_inline_ref));
2123 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2124 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2125
2126 /*
2127 * We don't ever fill up leaves all the way so multiply by 2 just to be
2128 * closer to what we're really going to want to use.
2129 */
2130 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2131 }
2132
2133 /*
2134 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2135 * would require to store the csums for that many bytes.
2136 */
2137 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2138 {
2139 u64 csum_size;
2140 u64 num_csums_per_leaf;
2141 u64 num_csums;
2142
2143 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2144 num_csums_per_leaf = div64_u64(csum_size,
2145 (u64)btrfs_super_csum_size(fs_info->super_copy));
2146 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2147 num_csums += num_csums_per_leaf - 1;
2148 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2149 return num_csums;
2150 }
2151
2152 /*
2153 * this starts processing the delayed reference count updates and
2154 * extent insertions we have queued up so far. count can be
2155 * 0, which means to process everything in the tree at the start
2156 * of the run (but not newly added entries), or it can be some target
2157 * number you'd like to process.
2158 *
2159 * Returns 0 on success or if called with an aborted transaction
2160 * Returns <0 on error and aborts the transaction
2161 */
2162 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2163 unsigned long count)
2164 {
2165 struct btrfs_fs_info *fs_info = trans->fs_info;
2166 struct rb_node *node;
2167 struct btrfs_delayed_ref_root *delayed_refs;
2168 struct btrfs_delayed_ref_head *head;
2169 int ret;
2170 int run_all = count == (unsigned long)-1;
2171
2172 /* We'll clean this up in btrfs_cleanup_transaction */
2173 if (TRANS_ABORTED(trans))
2174 return 0;
2175
2176 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2177 return 0;
2178
2179 delayed_refs = &trans->transaction->delayed_refs;
2180 if (count == 0)
2181 count = atomic_read(&delayed_refs->num_entries) * 2;
2182
2183 again:
2184 #ifdef SCRAMBLE_DELAYED_REFS
2185 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2186 #endif
2187 ret = __btrfs_run_delayed_refs(trans, count);
2188 if (ret < 0) {
2189 btrfs_abort_transaction(trans, ret);
2190 return ret;
2191 }
2192
2193 if (run_all) {
2194 btrfs_create_pending_block_groups(trans);
2195
2196 spin_lock(&delayed_refs->lock);
2197 node = rb_first_cached(&delayed_refs->href_root);
2198 if (!node) {
2199 spin_unlock(&delayed_refs->lock);
2200 goto out;
2201 }
2202 head = rb_entry(node, struct btrfs_delayed_ref_head,
2203 href_node);
2204 refcount_inc(&head->refs);
2205 spin_unlock(&delayed_refs->lock);
2206
2207 /* Mutex was contended, block until it's released and retry. */
2208 mutex_lock(&head->mutex);
2209 mutex_unlock(&head->mutex);
2210
2211 btrfs_put_delayed_ref_head(head);
2212 cond_resched();
2213 goto again;
2214 }
2215 out:
2216 return 0;
2217 }
2218
2219 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2220 struct extent_buffer *eb, u64 flags,
2221 int level, int is_data)
2222 {
2223 struct btrfs_delayed_extent_op *extent_op;
2224 int ret;
2225
2226 extent_op = btrfs_alloc_delayed_extent_op();
2227 if (!extent_op)
2228 return -ENOMEM;
2229
2230 extent_op->flags_to_set = flags;
2231 extent_op->update_flags = true;
2232 extent_op->update_key = false;
2233 extent_op->is_data = is_data ? true : false;
2234 extent_op->level = level;
2235
2236 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2237 if (ret)
2238 btrfs_free_delayed_extent_op(extent_op);
2239 return ret;
2240 }
2241
2242 static noinline int check_delayed_ref(struct btrfs_root *root,
2243 struct btrfs_path *path,
2244 u64 objectid, u64 offset, u64 bytenr)
2245 {
2246 struct btrfs_delayed_ref_head *head;
2247 struct btrfs_delayed_ref_node *ref;
2248 struct btrfs_delayed_data_ref *data_ref;
2249 struct btrfs_delayed_ref_root *delayed_refs;
2250 struct btrfs_transaction *cur_trans;
2251 struct rb_node *node;
2252 int ret = 0;
2253
2254 spin_lock(&root->fs_info->trans_lock);
2255 cur_trans = root->fs_info->running_transaction;
2256 if (cur_trans)
2257 refcount_inc(&cur_trans->use_count);
2258 spin_unlock(&root->fs_info->trans_lock);
2259 if (!cur_trans)
2260 return 0;
2261
2262 delayed_refs = &cur_trans->delayed_refs;
2263 spin_lock(&delayed_refs->lock);
2264 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2265 if (!head) {
2266 spin_unlock(&delayed_refs->lock);
2267 btrfs_put_transaction(cur_trans);
2268 return 0;
2269 }
2270
2271 if (!mutex_trylock(&head->mutex)) {
2272 refcount_inc(&head->refs);
2273 spin_unlock(&delayed_refs->lock);
2274
2275 btrfs_release_path(path);
2276
2277 /*
2278 * Mutex was contended, block until it's released and let
2279 * caller try again
2280 */
2281 mutex_lock(&head->mutex);
2282 mutex_unlock(&head->mutex);
2283 btrfs_put_delayed_ref_head(head);
2284 btrfs_put_transaction(cur_trans);
2285 return -EAGAIN;
2286 }
2287 spin_unlock(&delayed_refs->lock);
2288
2289 spin_lock(&head->lock);
2290 /*
2291 * XXX: We should replace this with a proper search function in the
2292 * future.
2293 */
2294 for (node = rb_first_cached(&head->ref_tree); node;
2295 node = rb_next(node)) {
2296 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2297 /* If it's a shared ref we know a cross reference exists */
2298 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2299 ret = 1;
2300 break;
2301 }
2302
2303 data_ref = btrfs_delayed_node_to_data_ref(ref);
2304
2305 /*
2306 * If our ref doesn't match the one we're currently looking at
2307 * then we have a cross reference.
2308 */
2309 if (data_ref->root != root->root_key.objectid ||
2310 data_ref->objectid != objectid ||
2311 data_ref->offset != offset) {
2312 ret = 1;
2313 break;
2314 }
2315 }
2316 spin_unlock(&head->lock);
2317 mutex_unlock(&head->mutex);
2318 btrfs_put_transaction(cur_trans);
2319 return ret;
2320 }
2321
2322 static noinline int check_committed_ref(struct btrfs_root *root,
2323 struct btrfs_path *path,
2324 u64 objectid, u64 offset, u64 bytenr)
2325 {
2326 struct btrfs_fs_info *fs_info = root->fs_info;
2327 struct btrfs_root *extent_root = fs_info->extent_root;
2328 struct extent_buffer *leaf;
2329 struct btrfs_extent_data_ref *ref;
2330 struct btrfs_extent_inline_ref *iref;
2331 struct btrfs_extent_item *ei;
2332 struct btrfs_key key;
2333 u32 item_size;
2334 int type;
2335 int ret;
2336
2337 key.objectid = bytenr;
2338 key.offset = (u64)-1;
2339 key.type = BTRFS_EXTENT_ITEM_KEY;
2340
2341 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2342 if (ret < 0)
2343 goto out;
2344 BUG_ON(ret == 0); /* Corruption */
2345
2346 ret = -ENOENT;
2347 if (path->slots[0] == 0)
2348 goto out;
2349
2350 path->slots[0]--;
2351 leaf = path->nodes[0];
2352 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2353
2354 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2355 goto out;
2356
2357 ret = 1;
2358 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2359 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2360
2361 /* If extent item has more than 1 inline ref then it's shared */
2362 if (item_size != sizeof(*ei) +
2363 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2364 goto out;
2365
2366 /* If extent created before last snapshot => it's definitely shared */
2367 if (btrfs_extent_generation(leaf, ei) <=
2368 btrfs_root_last_snapshot(&root->root_item))
2369 goto out;
2370
2371 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2372
2373 /* If this extent has SHARED_DATA_REF then it's shared */
2374 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2375 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2376 goto out;
2377
2378 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2379 if (btrfs_extent_refs(leaf, ei) !=
2380 btrfs_extent_data_ref_count(leaf, ref) ||
2381 btrfs_extent_data_ref_root(leaf, ref) !=
2382 root->root_key.objectid ||
2383 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2384 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2385 goto out;
2386
2387 ret = 0;
2388 out:
2389 return ret;
2390 }
2391
2392 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2393 u64 bytenr)
2394 {
2395 struct btrfs_path *path;
2396 int ret;
2397
2398 path = btrfs_alloc_path();
2399 if (!path)
2400 return -ENOMEM;
2401
2402 do {
2403 ret = check_committed_ref(root, path, objectid,
2404 offset, bytenr);
2405 if (ret && ret != -ENOENT)
2406 goto out;
2407
2408 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2409 } while (ret == -EAGAIN);
2410
2411 out:
2412 btrfs_free_path(path);
2413 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2414 WARN_ON(ret > 0);
2415 return ret;
2416 }
2417
2418 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2419 struct btrfs_root *root,
2420 struct extent_buffer *buf,
2421 int full_backref, int inc)
2422 {
2423 struct btrfs_fs_info *fs_info = root->fs_info;
2424 u64 bytenr;
2425 u64 num_bytes;
2426 u64 parent;
2427 u64 ref_root;
2428 u32 nritems;
2429 struct btrfs_key key;
2430 struct btrfs_file_extent_item *fi;
2431 struct btrfs_ref generic_ref = { 0 };
2432 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2433 int i;
2434 int action;
2435 int level;
2436 int ret = 0;
2437
2438 if (btrfs_is_testing(fs_info))
2439 return 0;
2440
2441 ref_root = btrfs_header_owner(buf);
2442 nritems = btrfs_header_nritems(buf);
2443 level = btrfs_header_level(buf);
2444
2445 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2446 return 0;
2447
2448 if (full_backref)
2449 parent = buf->start;
2450 else
2451 parent = 0;
2452 if (inc)
2453 action = BTRFS_ADD_DELAYED_REF;
2454 else
2455 action = BTRFS_DROP_DELAYED_REF;
2456
2457 for (i = 0; i < nritems; i++) {
2458 if (level == 0) {
2459 btrfs_item_key_to_cpu(buf, &key, i);
2460 if (key.type != BTRFS_EXTENT_DATA_KEY)
2461 continue;
2462 fi = btrfs_item_ptr(buf, i,
2463 struct btrfs_file_extent_item);
2464 if (btrfs_file_extent_type(buf, fi) ==
2465 BTRFS_FILE_EXTENT_INLINE)
2466 continue;
2467 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2468 if (bytenr == 0)
2469 continue;
2470
2471 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2472 key.offset -= btrfs_file_extent_offset(buf, fi);
2473 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2474 num_bytes, parent);
2475 generic_ref.real_root = root->root_key.objectid;
2476 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2477 key.offset);
2478 generic_ref.skip_qgroup = for_reloc;
2479 if (inc)
2480 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2481 else
2482 ret = btrfs_free_extent(trans, &generic_ref);
2483 if (ret)
2484 goto fail;
2485 } else {
2486 bytenr = btrfs_node_blockptr(buf, i);
2487 num_bytes = fs_info->nodesize;
2488 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2489 num_bytes, parent);
2490 generic_ref.real_root = root->root_key.objectid;
2491 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2492 generic_ref.skip_qgroup = for_reloc;
2493 if (inc)
2494 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2495 else
2496 ret = btrfs_free_extent(trans, &generic_ref);
2497 if (ret)
2498 goto fail;
2499 }
2500 }
2501 return 0;
2502 fail:
2503 return ret;
2504 }
2505
2506 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2507 struct extent_buffer *buf, int full_backref)
2508 {
2509 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2510 }
2511
2512 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2513 struct extent_buffer *buf, int full_backref)
2514 {
2515 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2516 }
2517
2518 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2519 {
2520 struct btrfs_block_group *block_group;
2521 int readonly = 0;
2522
2523 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2524 if (!block_group || block_group->ro)
2525 readonly = 1;
2526 if (block_group)
2527 btrfs_put_block_group(block_group);
2528 return readonly;
2529 }
2530
2531 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2532 {
2533 struct btrfs_fs_info *fs_info = root->fs_info;
2534 u64 flags;
2535 u64 ret;
2536
2537 if (data)
2538 flags = BTRFS_BLOCK_GROUP_DATA;
2539 else if (root == fs_info->chunk_root)
2540 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2541 else
2542 flags = BTRFS_BLOCK_GROUP_METADATA;
2543
2544 ret = btrfs_get_alloc_profile(fs_info, flags);
2545 return ret;
2546 }
2547
2548 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2549 {
2550 struct btrfs_block_group *cache;
2551 u64 bytenr;
2552
2553 spin_lock(&fs_info->block_group_cache_lock);
2554 bytenr = fs_info->first_logical_byte;
2555 spin_unlock(&fs_info->block_group_cache_lock);
2556
2557 if (bytenr < (u64)-1)
2558 return bytenr;
2559
2560 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2561 if (!cache)
2562 return 0;
2563
2564 bytenr = cache->start;
2565 btrfs_put_block_group(cache);
2566
2567 return bytenr;
2568 }
2569
2570 static int pin_down_extent(struct btrfs_trans_handle *trans,
2571 struct btrfs_block_group *cache,
2572 u64 bytenr, u64 num_bytes, int reserved)
2573 {
2574 struct btrfs_fs_info *fs_info = cache->fs_info;
2575
2576 spin_lock(&cache->space_info->lock);
2577 spin_lock(&cache->lock);
2578 cache->pinned += num_bytes;
2579 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2580 num_bytes);
2581 if (reserved) {
2582 cache->reserved -= num_bytes;
2583 cache->space_info->bytes_reserved -= num_bytes;
2584 }
2585 spin_unlock(&cache->lock);
2586 spin_unlock(&cache->space_info->lock);
2587
2588 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2589 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2590 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2591 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2592 return 0;
2593 }
2594
2595 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2596 u64 bytenr, u64 num_bytes, int reserved)
2597 {
2598 struct btrfs_block_group *cache;
2599
2600 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2601 BUG_ON(!cache); /* Logic error */
2602
2603 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2604
2605 btrfs_put_block_group(cache);
2606 return 0;
2607 }
2608
2609 /*
2610 * this function must be called within transaction
2611 */
2612 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2613 u64 bytenr, u64 num_bytes)
2614 {
2615 struct btrfs_block_group *cache;
2616 int ret;
2617
2618 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2619
2620 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2621 if (!cache)
2622 return -EINVAL;
2623
2624 /*
2625 * pull in the free space cache (if any) so that our pin
2626 * removes the free space from the cache. We have load_only set
2627 * to one because the slow code to read in the free extents does check
2628 * the pinned extents.
2629 */
2630 btrfs_cache_block_group(cache, 1);
2631
2632 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2633
2634 /* remove us from the free space cache (if we're there at all) */
2635 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2636 btrfs_put_block_group(cache);
2637 return ret;
2638 }
2639
2640 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2641 u64 start, u64 num_bytes)
2642 {
2643 int ret;
2644 struct btrfs_block_group *block_group;
2645 struct btrfs_caching_control *caching_ctl;
2646
2647 block_group = btrfs_lookup_block_group(fs_info, start);
2648 if (!block_group)
2649 return -EINVAL;
2650
2651 btrfs_cache_block_group(block_group, 0);
2652 caching_ctl = btrfs_get_caching_control(block_group);
2653
2654 if (!caching_ctl) {
2655 /* Logic error */
2656 BUG_ON(!btrfs_block_group_done(block_group));
2657 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2658 } else {
2659 mutex_lock(&caching_ctl->mutex);
2660
2661 if (start >= caching_ctl->progress) {
2662 ret = btrfs_add_excluded_extent(fs_info, start,
2663 num_bytes);
2664 } else if (start + num_bytes <= caching_ctl->progress) {
2665 ret = btrfs_remove_free_space(block_group,
2666 start, num_bytes);
2667 } else {
2668 num_bytes = caching_ctl->progress - start;
2669 ret = btrfs_remove_free_space(block_group,
2670 start, num_bytes);
2671 if (ret)
2672 goto out_lock;
2673
2674 num_bytes = (start + num_bytes) -
2675 caching_ctl->progress;
2676 start = caching_ctl->progress;
2677 ret = btrfs_add_excluded_extent(fs_info, start,
2678 num_bytes);
2679 }
2680 out_lock:
2681 mutex_unlock(&caching_ctl->mutex);
2682 btrfs_put_caching_control(caching_ctl);
2683 }
2684 btrfs_put_block_group(block_group);
2685 return ret;
2686 }
2687
2688 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2689 {
2690 struct btrfs_fs_info *fs_info = eb->fs_info;
2691 struct btrfs_file_extent_item *item;
2692 struct btrfs_key key;
2693 int found_type;
2694 int i;
2695 int ret = 0;
2696
2697 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2698 return 0;
2699
2700 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2701 btrfs_item_key_to_cpu(eb, &key, i);
2702 if (key.type != BTRFS_EXTENT_DATA_KEY)
2703 continue;
2704 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2705 found_type = btrfs_file_extent_type(eb, item);
2706 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2707 continue;
2708 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2709 continue;
2710 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2711 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2712 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2713 if (ret)
2714 break;
2715 }
2716
2717 return ret;
2718 }
2719
2720 static void
2721 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2722 {
2723 atomic_inc(&bg->reservations);
2724 }
2725
2726 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2727 {
2728 struct btrfs_caching_control *next;
2729 struct btrfs_caching_control *caching_ctl;
2730 struct btrfs_block_group *cache;
2731
2732 down_write(&fs_info->commit_root_sem);
2733
2734 list_for_each_entry_safe(caching_ctl, next,
2735 &fs_info->caching_block_groups, list) {
2736 cache = caching_ctl->block_group;
2737 if (btrfs_block_group_done(cache)) {
2738 cache->last_byte_to_unpin = (u64)-1;
2739 list_del_init(&caching_ctl->list);
2740 btrfs_put_caching_control(caching_ctl);
2741 } else {
2742 cache->last_byte_to_unpin = caching_ctl->progress;
2743 }
2744 }
2745
2746 up_write(&fs_info->commit_root_sem);
2747
2748 btrfs_update_global_block_rsv(fs_info);
2749 }
2750
2751 /*
2752 * Returns the free cluster for the given space info and sets empty_cluster to
2753 * what it should be based on the mount options.
2754 */
2755 static struct btrfs_free_cluster *
2756 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2757 struct btrfs_space_info *space_info, u64 *empty_cluster)
2758 {
2759 struct btrfs_free_cluster *ret = NULL;
2760
2761 *empty_cluster = 0;
2762 if (btrfs_mixed_space_info(space_info))
2763 return ret;
2764
2765 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2766 ret = &fs_info->meta_alloc_cluster;
2767 if (btrfs_test_opt(fs_info, SSD))
2768 *empty_cluster = SZ_2M;
2769 else
2770 *empty_cluster = SZ_64K;
2771 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2772 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2773 *empty_cluster = SZ_2M;
2774 ret = &fs_info->data_alloc_cluster;
2775 }
2776
2777 return ret;
2778 }
2779
2780 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2781 u64 start, u64 end,
2782 const bool return_free_space)
2783 {
2784 struct btrfs_block_group *cache = NULL;
2785 struct btrfs_space_info *space_info;
2786 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2787 struct btrfs_free_cluster *cluster = NULL;
2788 u64 len;
2789 u64 total_unpinned = 0;
2790 u64 empty_cluster = 0;
2791 bool readonly;
2792
2793 while (start <= end) {
2794 readonly = false;
2795 if (!cache ||
2796 start >= cache->start + cache->length) {
2797 if (cache)
2798 btrfs_put_block_group(cache);
2799 total_unpinned = 0;
2800 cache = btrfs_lookup_block_group(fs_info, start);
2801 BUG_ON(!cache); /* Logic error */
2802
2803 cluster = fetch_cluster_info(fs_info,
2804 cache->space_info,
2805 &empty_cluster);
2806 empty_cluster <<= 1;
2807 }
2808
2809 len = cache->start + cache->length - start;
2810 len = min(len, end + 1 - start);
2811
2812 if (start < cache->last_byte_to_unpin) {
2813 len = min(len, cache->last_byte_to_unpin - start);
2814 if (return_free_space)
2815 btrfs_add_free_space(cache, start, len);
2816 }
2817
2818 start += len;
2819 total_unpinned += len;
2820 space_info = cache->space_info;
2821
2822 /*
2823 * If this space cluster has been marked as fragmented and we've
2824 * unpinned enough in this block group to potentially allow a
2825 * cluster to be created inside of it go ahead and clear the
2826 * fragmented check.
2827 */
2828 if (cluster && cluster->fragmented &&
2829 total_unpinned > empty_cluster) {
2830 spin_lock(&cluster->lock);
2831 cluster->fragmented = 0;
2832 spin_unlock(&cluster->lock);
2833 }
2834
2835 spin_lock(&space_info->lock);
2836 spin_lock(&cache->lock);
2837 cache->pinned -= len;
2838 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2839 space_info->max_extent_size = 0;
2840 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2841 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2842 if (cache->ro) {
2843 space_info->bytes_readonly += len;
2844 readonly = true;
2845 }
2846 spin_unlock(&cache->lock);
2847 if (!readonly && return_free_space &&
2848 global_rsv->space_info == space_info) {
2849 u64 to_add = len;
2850
2851 spin_lock(&global_rsv->lock);
2852 if (!global_rsv->full) {
2853 to_add = min(len, global_rsv->size -
2854 global_rsv->reserved);
2855 global_rsv->reserved += to_add;
2856 btrfs_space_info_update_bytes_may_use(fs_info,
2857 space_info, to_add);
2858 if (global_rsv->reserved >= global_rsv->size)
2859 global_rsv->full = 1;
2860 len -= to_add;
2861 }
2862 spin_unlock(&global_rsv->lock);
2863 /* Add to any tickets we may have */
2864 if (len)
2865 btrfs_try_granting_tickets(fs_info,
2866 space_info);
2867 }
2868 spin_unlock(&space_info->lock);
2869 }
2870
2871 if (cache)
2872 btrfs_put_block_group(cache);
2873 return 0;
2874 }
2875
2876 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2877 {
2878 struct btrfs_fs_info *fs_info = trans->fs_info;
2879 struct btrfs_block_group *block_group, *tmp;
2880 struct list_head *deleted_bgs;
2881 struct extent_io_tree *unpin;
2882 u64 start;
2883 u64 end;
2884 int ret;
2885
2886 unpin = &trans->transaction->pinned_extents;
2887
2888 while (!TRANS_ABORTED(trans)) {
2889 struct extent_state *cached_state = NULL;
2890
2891 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2892 ret = find_first_extent_bit(unpin, 0, &start, &end,
2893 EXTENT_DIRTY, &cached_state);
2894 if (ret) {
2895 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2896 break;
2897 }
2898 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2899 clear_extent_bits(&fs_info->excluded_extents, start,
2900 end, EXTENT_UPTODATE);
2901
2902 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2903 ret = btrfs_discard_extent(fs_info, start,
2904 end + 1 - start, NULL);
2905
2906 clear_extent_dirty(unpin, start, end, &cached_state);
2907 unpin_extent_range(fs_info, start, end, true);
2908 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2909 free_extent_state(cached_state);
2910 cond_resched();
2911 }
2912
2913 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2914 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2915 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2916 }
2917
2918 /*
2919 * Transaction is finished. We don't need the lock anymore. We
2920 * do need to clean up the block groups in case of a transaction
2921 * abort.
2922 */
2923 deleted_bgs = &trans->transaction->deleted_bgs;
2924 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2925 u64 trimmed = 0;
2926
2927 ret = -EROFS;
2928 if (!TRANS_ABORTED(trans))
2929 ret = btrfs_discard_extent(fs_info,
2930 block_group->start,
2931 block_group->length,
2932 &trimmed);
2933
2934 list_del_init(&block_group->bg_list);
2935 btrfs_put_block_group_trimming(block_group);
2936 btrfs_put_block_group(block_group);
2937
2938 if (ret) {
2939 const char *errstr = btrfs_decode_error(ret);
2940 btrfs_warn(fs_info,
2941 "discard failed while removing blockgroup: errno=%d %s",
2942 ret, errstr);
2943 }
2944 }
2945
2946 return 0;
2947 }
2948
2949 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2950 struct btrfs_delayed_ref_node *node, u64 parent,
2951 u64 root_objectid, u64 owner_objectid,
2952 u64 owner_offset, int refs_to_drop,
2953 struct btrfs_delayed_extent_op *extent_op)
2954 {
2955 struct btrfs_fs_info *info = trans->fs_info;
2956 struct btrfs_key key;
2957 struct btrfs_path *path;
2958 struct btrfs_root *extent_root = info->extent_root;
2959 struct extent_buffer *leaf;
2960 struct btrfs_extent_item *ei;
2961 struct btrfs_extent_inline_ref *iref;
2962 int ret;
2963 int is_data;
2964 int extent_slot = 0;
2965 int found_extent = 0;
2966 int num_to_del = 1;
2967 u32 item_size;
2968 u64 refs;
2969 u64 bytenr = node->bytenr;
2970 u64 num_bytes = node->num_bytes;
2971 int last_ref = 0;
2972 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2973
2974 path = btrfs_alloc_path();
2975 if (!path)
2976 return -ENOMEM;
2977
2978 path->leave_spinning = 1;
2979
2980 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981 BUG_ON(!is_data && refs_to_drop != 1);
2982
2983 if (is_data)
2984 skinny_metadata = false;
2985
2986 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987 parent, root_objectid, owner_objectid,
2988 owner_offset);
2989 if (ret == 0) {
2990 extent_slot = path->slots[0];
2991 while (extent_slot >= 0) {
2992 btrfs_item_key_to_cpu(path->nodes[0], &key,
2993 extent_slot);
2994 if (key.objectid != bytenr)
2995 break;
2996 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997 key.offset == num_bytes) {
2998 found_extent = 1;
2999 break;
3000 }
3001 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002 key.offset == owner_objectid) {
3003 found_extent = 1;
3004 break;
3005 }
3006 if (path->slots[0] - extent_slot > 5)
3007 break;
3008 extent_slot--;
3009 }
3010
3011 if (!found_extent) {
3012 BUG_ON(iref);
3013 ret = remove_extent_backref(trans, path, NULL,
3014 refs_to_drop,
3015 is_data, &last_ref);
3016 if (ret) {
3017 btrfs_abort_transaction(trans, ret);
3018 goto out;
3019 }
3020 btrfs_release_path(path);
3021 path->leave_spinning = 1;
3022
3023 key.objectid = bytenr;
3024 key.type = BTRFS_EXTENT_ITEM_KEY;
3025 key.offset = num_bytes;
3026
3027 if (!is_data && skinny_metadata) {
3028 key.type = BTRFS_METADATA_ITEM_KEY;
3029 key.offset = owner_objectid;
3030 }
3031
3032 ret = btrfs_search_slot(trans, extent_root,
3033 &key, path, -1, 1);
3034 if (ret > 0 && skinny_metadata && path->slots[0]) {
3035 /*
3036 * Couldn't find our skinny metadata item,
3037 * see if we have ye olde extent item.
3038 */
3039 path->slots[0]--;
3040 btrfs_item_key_to_cpu(path->nodes[0], &key,
3041 path->slots[0]);
3042 if (key.objectid == bytenr &&
3043 key.type == BTRFS_EXTENT_ITEM_KEY &&
3044 key.offset == num_bytes)
3045 ret = 0;
3046 }
3047
3048 if (ret > 0 && skinny_metadata) {
3049 skinny_metadata = false;
3050 key.objectid = bytenr;
3051 key.type = BTRFS_EXTENT_ITEM_KEY;
3052 key.offset = num_bytes;
3053 btrfs_release_path(path);
3054 ret = btrfs_search_slot(trans, extent_root,
3055 &key, path, -1, 1);
3056 }
3057
3058 if (ret) {
3059 btrfs_err(info,
3060 "umm, got %d back from search, was looking for %llu",
3061 ret, bytenr);
3062 if (ret > 0)
3063 btrfs_print_leaf(path->nodes[0]);
3064 }
3065 if (ret < 0) {
3066 btrfs_abort_transaction(trans, ret);
3067 goto out;
3068 }
3069 extent_slot = path->slots[0];
3070 }
3071 } else if (WARN_ON(ret == -ENOENT)) {
3072 btrfs_print_leaf(path->nodes[0]);
3073 btrfs_err(info,
3074 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3075 bytenr, parent, root_objectid, owner_objectid,
3076 owner_offset);
3077 btrfs_abort_transaction(trans, ret);
3078 goto out;
3079 } else {
3080 btrfs_abort_transaction(trans, ret);
3081 goto out;
3082 }
3083
3084 leaf = path->nodes[0];
3085 item_size = btrfs_item_size_nr(leaf, extent_slot);
3086 if (unlikely(item_size < sizeof(*ei))) {
3087 ret = -EINVAL;
3088 btrfs_print_v0_err(info);
3089 btrfs_abort_transaction(trans, ret);
3090 goto out;
3091 }
3092 ei = btrfs_item_ptr(leaf, extent_slot,
3093 struct btrfs_extent_item);
3094 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095 key.type == BTRFS_EXTENT_ITEM_KEY) {
3096 struct btrfs_tree_block_info *bi;
3097 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3098 bi = (struct btrfs_tree_block_info *)(ei + 1);
3099 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100 }
3101
3102 refs = btrfs_extent_refs(leaf, ei);
3103 if (refs < refs_to_drop) {
3104 btrfs_err(info,
3105 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106 refs_to_drop, refs, bytenr);
3107 ret = -EINVAL;
3108 btrfs_abort_transaction(trans, ret);
3109 goto out;
3110 }
3111 refs -= refs_to_drop;
3112
3113 if (refs > 0) {
3114 if (extent_op)
3115 __run_delayed_extent_op(extent_op, leaf, ei);
3116 /*
3117 * In the case of inline back ref, reference count will
3118 * be updated by remove_extent_backref
3119 */
3120 if (iref) {
3121 BUG_ON(!found_extent);
3122 } else {
3123 btrfs_set_extent_refs(leaf, ei, refs);
3124 btrfs_mark_buffer_dirty(leaf);
3125 }
3126 if (found_extent) {
3127 ret = remove_extent_backref(trans, path, iref,
3128 refs_to_drop, is_data,
3129 &last_ref);
3130 if (ret) {
3131 btrfs_abort_transaction(trans, ret);
3132 goto out;
3133 }
3134 }
3135 } else {
3136 if (found_extent) {
3137 BUG_ON(is_data && refs_to_drop !=
3138 extent_data_ref_count(path, iref));
3139 if (iref) {
3140 BUG_ON(path->slots[0] != extent_slot);
3141 } else {
3142 BUG_ON(path->slots[0] != extent_slot + 1);
3143 path->slots[0] = extent_slot;
3144 num_to_del = 2;
3145 }
3146 }
3147
3148 last_ref = 1;
3149 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150 num_to_del);
3151 if (ret) {
3152 btrfs_abort_transaction(trans, ret);
3153 goto out;
3154 }
3155 btrfs_release_path(path);
3156
3157 if (is_data) {
3158 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3159 num_bytes);
3160 if (ret) {
3161 btrfs_abort_transaction(trans, ret);
3162 goto out;
3163 }
3164 }
3165
3166 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3167 if (ret) {
3168 btrfs_abort_transaction(trans, ret);
3169 goto out;
3170 }
3171
3172 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3173 if (ret) {
3174 btrfs_abort_transaction(trans, ret);
3175 goto out;
3176 }
3177 }
3178 btrfs_release_path(path);
3179
3180 out:
3181 btrfs_free_path(path);
3182 return ret;
3183 }
3184
3185 /*
3186 * when we free an block, it is possible (and likely) that we free the last
3187 * delayed ref for that extent as well. This searches the delayed ref tree for
3188 * a given extent, and if there are no other delayed refs to be processed, it
3189 * removes it from the tree.
3190 */
3191 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3192 u64 bytenr)
3193 {
3194 struct btrfs_delayed_ref_head *head;
3195 struct btrfs_delayed_ref_root *delayed_refs;
3196 int ret = 0;
3197
3198 delayed_refs = &trans->transaction->delayed_refs;
3199 spin_lock(&delayed_refs->lock);
3200 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3201 if (!head)
3202 goto out_delayed_unlock;
3203
3204 spin_lock(&head->lock);
3205 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3206 goto out;
3207
3208 if (cleanup_extent_op(head) != NULL)
3209 goto out;
3210
3211 /*
3212 * waiting for the lock here would deadlock. If someone else has it
3213 * locked they are already in the process of dropping it anyway
3214 */
3215 if (!mutex_trylock(&head->mutex))
3216 goto out;
3217
3218 btrfs_delete_ref_head(delayed_refs, head);
3219 head->processing = 0;
3220
3221 spin_unlock(&head->lock);
3222 spin_unlock(&delayed_refs->lock);
3223
3224 BUG_ON(head->extent_op);
3225 if (head->must_insert_reserved)
3226 ret = 1;
3227
3228 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3229 mutex_unlock(&head->mutex);
3230 btrfs_put_delayed_ref_head(head);
3231 return ret;
3232 out:
3233 spin_unlock(&head->lock);
3234
3235 out_delayed_unlock:
3236 spin_unlock(&delayed_refs->lock);
3237 return 0;
3238 }
3239
3240 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3241 struct btrfs_root *root,
3242 struct extent_buffer *buf,
3243 u64 parent, int last_ref)
3244 {
3245 struct btrfs_fs_info *fs_info = root->fs_info;
3246 struct btrfs_ref generic_ref = { 0 };
3247 int pin = 1;
3248 int ret;
3249
3250 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3251 buf->start, buf->len, parent);
3252 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3253 root->root_key.objectid);
3254
3255 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3256 int old_ref_mod, new_ref_mod;
3257
3258 btrfs_ref_tree_mod(fs_info, &generic_ref);
3259 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3260 &old_ref_mod, &new_ref_mod);
3261 BUG_ON(ret); /* -ENOMEM */
3262 pin = old_ref_mod >= 0 && new_ref_mod < 0;
3263 }
3264
3265 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3266 struct btrfs_block_group *cache;
3267
3268 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3269 ret = check_ref_cleanup(trans, buf->start);
3270 if (!ret)
3271 goto out;
3272 }
3273
3274 pin = 0;
3275 cache = btrfs_lookup_block_group(fs_info, buf->start);
3276
3277 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3278 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3279 btrfs_put_block_group(cache);
3280 goto out;
3281 }
3282
3283 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3284
3285 btrfs_add_free_space(cache, buf->start, buf->len);
3286 btrfs_free_reserved_bytes(cache, buf->len, 0);
3287 btrfs_put_block_group(cache);
3288 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3289 }
3290 out:
3291 if (pin)
3292 add_pinned_bytes(fs_info, &generic_ref);
3293
3294 if (last_ref) {
3295 /*
3296 * Deleting the buffer, clear the corrupt flag since it doesn't
3297 * matter anymore.
3298 */
3299 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3300 }
3301 }
3302
3303 /* Can return -ENOMEM */
3304 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3305 {
3306 struct btrfs_fs_info *fs_info = trans->fs_info;
3307 int old_ref_mod, new_ref_mod;
3308 int ret;
3309
3310 if (btrfs_is_testing(fs_info))
3311 return 0;
3312
3313 /*
3314 * tree log blocks never actually go into the extent allocation
3315 * tree, just update pinning info and exit early.
3316 */
3317 if ((ref->type == BTRFS_REF_METADATA &&
3318 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3319 (ref->type == BTRFS_REF_DATA &&
3320 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3321 /* unlocks the pinned mutex */
3322 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3323 old_ref_mod = new_ref_mod = 0;
3324 ret = 0;
3325 } else if (ref->type == BTRFS_REF_METADATA) {
3326 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3327 &old_ref_mod, &new_ref_mod);
3328 } else {
3329 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3330 &old_ref_mod, &new_ref_mod);
3331 }
3332
3333 if (!((ref->type == BTRFS_REF_METADATA &&
3334 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3335 (ref->type == BTRFS_REF_DATA &&
3336 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3337 btrfs_ref_tree_mod(fs_info, ref);
3338
3339 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3340 add_pinned_bytes(fs_info, ref);
3341
3342 return ret;
3343 }
3344
3345 enum btrfs_loop_type {
3346 LOOP_CACHING_NOWAIT,
3347 LOOP_CACHING_WAIT,
3348 LOOP_ALLOC_CHUNK,
3349 LOOP_NO_EMPTY_SIZE,
3350 };
3351
3352 static inline void
3353 btrfs_lock_block_group(struct btrfs_block_group *cache,
3354 int delalloc)
3355 {
3356 if (delalloc)
3357 down_read(&cache->data_rwsem);
3358 }
3359
3360 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3361 int delalloc)
3362 {
3363 btrfs_get_block_group(cache);
3364 if (delalloc)
3365 down_read(&cache->data_rwsem);
3366 }
3367
3368 static struct btrfs_block_group *btrfs_lock_cluster(
3369 struct btrfs_block_group *block_group,
3370 struct btrfs_free_cluster *cluster,
3371 int delalloc)
3372 {
3373 struct btrfs_block_group *used_bg = NULL;
3374
3375 spin_lock(&cluster->refill_lock);
3376 while (1) {
3377 used_bg = cluster->block_group;
3378 if (!used_bg)
3379 return NULL;
3380
3381 if (used_bg == block_group)
3382 return used_bg;
3383
3384 btrfs_get_block_group(used_bg);
3385
3386 if (!delalloc)
3387 return used_bg;
3388
3389 if (down_read_trylock(&used_bg->data_rwsem))
3390 return used_bg;
3391
3392 spin_unlock(&cluster->refill_lock);
3393
3394 /* We should only have one-level nested. */
3395 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396
3397 spin_lock(&cluster->refill_lock);
3398 if (used_bg == cluster->block_group)
3399 return used_bg;
3400
3401 up_read(&used_bg->data_rwsem);
3402 btrfs_put_block_group(used_bg);
3403 }
3404 }
3405
3406 static inline void
3407 btrfs_release_block_group(struct btrfs_block_group *cache,
3408 int delalloc)
3409 {
3410 if (delalloc)
3411 up_read(&cache->data_rwsem);
3412 btrfs_put_block_group(cache);
3413 }
3414
3415 enum btrfs_extent_allocation_policy {
3416 BTRFS_EXTENT_ALLOC_CLUSTERED,
3417 };
3418
3419 /*
3420 * Structure used internally for find_free_extent() function. Wraps needed
3421 * parameters.
3422 */
3423 struct find_free_extent_ctl {
3424 /* Basic allocation info */
3425 u64 num_bytes;
3426 u64 empty_size;
3427 u64 flags;
3428 int delalloc;
3429
3430 /* Where to start the search inside the bg */
3431 u64 search_start;
3432
3433 /* For clustered allocation */
3434 u64 empty_cluster;
3435 struct btrfs_free_cluster *last_ptr;
3436 bool use_cluster;
3437
3438 bool have_caching_bg;
3439 bool orig_have_caching_bg;
3440
3441 /* RAID index, converted from flags */
3442 int index;
3443
3444 /*
3445 * Current loop number, check find_free_extent_update_loop() for details
3446 */
3447 int loop;
3448
3449 /*
3450 * Whether we're refilling a cluster, if true we need to re-search
3451 * current block group but don't try to refill the cluster again.
3452 */
3453 bool retry_clustered;
3454
3455 /*
3456 * Whether we're updating free space cache, if true we need to re-search
3457 * current block group but don't try updating free space cache again.
3458 */
3459 bool retry_unclustered;
3460
3461 /* If current block group is cached */
3462 int cached;
3463
3464 /* Max contiguous hole found */
3465 u64 max_extent_size;
3466
3467 /* Total free space from free space cache, not always contiguous */
3468 u64 total_free_space;
3469
3470 /* Found result */
3471 u64 found_offset;
3472
3473 /* Hint where to start looking for an empty space */
3474 u64 hint_byte;
3475
3476 /* Allocation policy */
3477 enum btrfs_extent_allocation_policy policy;
3478 };
3479
3480
3481 /*
3482 * Helper function for find_free_extent().
3483 *
3484 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3485 * Return -EAGAIN to inform caller that we need to re-search this block group
3486 * Return >0 to inform caller that we find nothing
3487 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3488 */
3489 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3490 struct find_free_extent_ctl *ffe_ctl,
3491 struct btrfs_block_group **cluster_bg_ret)
3492 {
3493 struct btrfs_block_group *cluster_bg;
3494 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3495 u64 aligned_cluster;
3496 u64 offset;
3497 int ret;
3498
3499 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3500 if (!cluster_bg)
3501 goto refill_cluster;
3502 if (cluster_bg != bg && (cluster_bg->ro ||
3503 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3504 goto release_cluster;
3505
3506 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3507 ffe_ctl->num_bytes, cluster_bg->start,
3508 &ffe_ctl->max_extent_size);
3509 if (offset) {
3510 /* We have a block, we're done */
3511 spin_unlock(&last_ptr->refill_lock);
3512 trace_btrfs_reserve_extent_cluster(cluster_bg,
3513 ffe_ctl->search_start, ffe_ctl->num_bytes);
3514 *cluster_bg_ret = cluster_bg;
3515 ffe_ctl->found_offset = offset;
3516 return 0;
3517 }
3518 WARN_ON(last_ptr->block_group != cluster_bg);
3519
3520 release_cluster:
3521 /*
3522 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3523 * lets just skip it and let the allocator find whatever block it can
3524 * find. If we reach this point, we will have tried the cluster
3525 * allocator plenty of times and not have found anything, so we are
3526 * likely way too fragmented for the clustering stuff to find anything.
3527 *
3528 * However, if the cluster is taken from the current block group,
3529 * release the cluster first, so that we stand a better chance of
3530 * succeeding in the unclustered allocation.
3531 */
3532 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3533 spin_unlock(&last_ptr->refill_lock);
3534 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3535 return -ENOENT;
3536 }
3537
3538 /* This cluster didn't work out, free it and start over */
3539 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3540
3541 if (cluster_bg != bg)
3542 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3543
3544 refill_cluster:
3545 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3546 spin_unlock(&last_ptr->refill_lock);
3547 return -ENOENT;
3548 }
3549
3550 aligned_cluster = max_t(u64,
3551 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3552 bg->full_stripe_len);
3553 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3554 ffe_ctl->num_bytes, aligned_cluster);
3555 if (ret == 0) {
3556 /* Now pull our allocation out of this cluster */
3557 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3558 ffe_ctl->num_bytes, ffe_ctl->search_start,
3559 &ffe_ctl->max_extent_size);
3560 if (offset) {
3561 /* We found one, proceed */
3562 spin_unlock(&last_ptr->refill_lock);
3563 trace_btrfs_reserve_extent_cluster(bg,
3564 ffe_ctl->search_start,
3565 ffe_ctl->num_bytes);
3566 ffe_ctl->found_offset = offset;
3567 return 0;
3568 }
3569 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3570 !ffe_ctl->retry_clustered) {
3571 spin_unlock(&last_ptr->refill_lock);
3572
3573 ffe_ctl->retry_clustered = true;
3574 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3575 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3576 return -EAGAIN;
3577 }
3578 /*
3579 * At this point we either didn't find a cluster or we weren't able to
3580 * allocate a block from our cluster. Free the cluster we've been
3581 * trying to use, and go to the next block group.
3582 */
3583 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3584 spin_unlock(&last_ptr->refill_lock);
3585 return 1;
3586 }
3587
3588 /*
3589 * Return >0 to inform caller that we find nothing
3590 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3591 * Return -EAGAIN to inform caller that we need to re-search this block group
3592 */
3593 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3594 struct find_free_extent_ctl *ffe_ctl)
3595 {
3596 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3597 u64 offset;
3598
3599 /*
3600 * We are doing an unclustered allocation, set the fragmented flag so
3601 * we don't bother trying to setup a cluster again until we get more
3602 * space.
3603 */
3604 if (unlikely(last_ptr)) {
3605 spin_lock(&last_ptr->lock);
3606 last_ptr->fragmented = 1;
3607 spin_unlock(&last_ptr->lock);
3608 }
3609 if (ffe_ctl->cached) {
3610 struct btrfs_free_space_ctl *free_space_ctl;
3611
3612 free_space_ctl = bg->free_space_ctl;
3613 spin_lock(&free_space_ctl->tree_lock);
3614 if (free_space_ctl->free_space <
3615 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3616 ffe_ctl->empty_size) {
3617 ffe_ctl->total_free_space = max_t(u64,
3618 ffe_ctl->total_free_space,
3619 free_space_ctl->free_space);
3620 spin_unlock(&free_space_ctl->tree_lock);
3621 return 1;
3622 }
3623 spin_unlock(&free_space_ctl->tree_lock);
3624 }
3625
3626 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3627 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3628 &ffe_ctl->max_extent_size);
3629
3630 /*
3631 * If we didn't find a chunk, and we haven't failed on this block group
3632 * before, and this block group is in the middle of caching and we are
3633 * ok with waiting, then go ahead and wait for progress to be made, and
3634 * set @retry_unclustered to true.
3635 *
3636 * If @retry_unclustered is true then we've already waited on this
3637 * block group once and should move on to the next block group.
3638 */
3639 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3640 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3641 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3642 ffe_ctl->empty_size);
3643 ffe_ctl->retry_unclustered = true;
3644 return -EAGAIN;
3645 } else if (!offset) {
3646 return 1;
3647 }
3648 ffe_ctl->found_offset = offset;
3649 return 0;
3650 }
3651
3652 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3653 struct find_free_extent_ctl *ffe_ctl,
3654 struct btrfs_block_group **bg_ret)
3655 {
3656 int ret;
3657
3658 /* We want to try and use the cluster allocator, so lets look there */
3659 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3660 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3661 if (ret >= 0 || ret == -EAGAIN)
3662 return ret;
3663 /* ret == -ENOENT case falls through */
3664 }
3665
3666 return find_free_extent_unclustered(block_group, ffe_ctl);
3667 }
3668
3669 static int do_allocation(struct btrfs_block_group *block_group,
3670 struct find_free_extent_ctl *ffe_ctl,
3671 struct btrfs_block_group **bg_ret)
3672 {
3673 switch (ffe_ctl->policy) {
3674 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3675 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3676 default:
3677 BUG();
3678 }
3679 }
3680
3681 static void release_block_group(struct btrfs_block_group *block_group,
3682 struct find_free_extent_ctl *ffe_ctl,
3683 int delalloc)
3684 {
3685 switch (ffe_ctl->policy) {
3686 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3687 ffe_ctl->retry_clustered = false;
3688 ffe_ctl->retry_unclustered = false;
3689 break;
3690 default:
3691 BUG();
3692 }
3693
3694 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3695 ffe_ctl->index);
3696 btrfs_release_block_group(block_group, delalloc);
3697 }
3698
3699 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3700 struct btrfs_key *ins)
3701 {
3702 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3703
3704 if (!ffe_ctl->use_cluster && last_ptr) {
3705 spin_lock(&last_ptr->lock);
3706 last_ptr->window_start = ins->objectid;
3707 spin_unlock(&last_ptr->lock);
3708 }
3709 }
3710
3711 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3712 struct btrfs_key *ins)
3713 {
3714 switch (ffe_ctl->policy) {
3715 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3716 found_extent_clustered(ffe_ctl, ins);
3717 break;
3718 default:
3719 BUG();
3720 }
3721 }
3722
3723 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3724 {
3725 switch (ffe_ctl->policy) {
3726 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3727 /*
3728 * If we can't allocate a new chunk we've already looped through
3729 * at least once, move on to the NO_EMPTY_SIZE case.
3730 */
3731 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3732 return 0;
3733 default:
3734 BUG();
3735 }
3736 }
3737
3738 /*
3739 * Return >0 means caller needs to re-search for free extent
3740 * Return 0 means we have the needed free extent.
3741 * Return <0 means we failed to locate any free extent.
3742 */
3743 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3744 struct btrfs_key *ins,
3745 struct find_free_extent_ctl *ffe_ctl,
3746 bool full_search)
3747 {
3748 struct btrfs_root *root = fs_info->extent_root;
3749 int ret;
3750
3751 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3752 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3753 ffe_ctl->orig_have_caching_bg = true;
3754
3755 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3756 ffe_ctl->have_caching_bg)
3757 return 1;
3758
3759 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3760 return 1;
3761
3762 if (ins->objectid) {
3763 found_extent(ffe_ctl, ins);
3764 return 0;
3765 }
3766
3767 /*
3768 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3769 * caching kthreads as we move along
3770 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3771 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3772 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3773 * again
3774 */
3775 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3776 ffe_ctl->index = 0;
3777 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3778 /*
3779 * We want to skip the LOOP_CACHING_WAIT step if we
3780 * don't have any uncached bgs and we've already done a
3781 * full search through.
3782 */
3783 if (ffe_ctl->orig_have_caching_bg || !full_search)
3784 ffe_ctl->loop = LOOP_CACHING_WAIT;
3785 else
3786 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3787 } else {
3788 ffe_ctl->loop++;
3789 }
3790
3791 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3792 struct btrfs_trans_handle *trans;
3793 int exist = 0;
3794
3795 trans = current->journal_info;
3796 if (trans)
3797 exist = 1;
3798 else
3799 trans = btrfs_join_transaction(root);
3800
3801 if (IS_ERR(trans)) {
3802 ret = PTR_ERR(trans);
3803 return ret;
3804 }
3805
3806 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3807 CHUNK_ALLOC_FORCE);
3808
3809 /* Do not bail out on ENOSPC since we can do more. */
3810 if (ret == -ENOSPC)
3811 ret = chunk_allocation_failed(ffe_ctl);
3812 else if (ret < 0)
3813 btrfs_abort_transaction(trans, ret);
3814 else
3815 ret = 0;
3816 if (!exist)
3817 btrfs_end_transaction(trans);
3818 if (ret)
3819 return ret;
3820 }
3821
3822 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3823 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3824 return -ENOSPC;
3825
3826 /*
3827 * Don't loop again if we already have no empty_size and
3828 * no empty_cluster.
3829 */
3830 if (ffe_ctl->empty_size == 0 &&
3831 ffe_ctl->empty_cluster == 0)
3832 return -ENOSPC;
3833 ffe_ctl->empty_size = 0;
3834 ffe_ctl->empty_cluster = 0;
3835 }
3836 return 1;
3837 }
3838 return -ENOSPC;
3839 }
3840
3841 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3842 struct find_free_extent_ctl *ffe_ctl,
3843 struct btrfs_space_info *space_info,
3844 struct btrfs_key *ins)
3845 {
3846 /*
3847 * If our free space is heavily fragmented we may not be able to make
3848 * big contiguous allocations, so instead of doing the expensive search
3849 * for free space, simply return ENOSPC with our max_extent_size so we
3850 * can go ahead and search for a more manageable chunk.
3851 *
3852 * If our max_extent_size is large enough for our allocation simply
3853 * disable clustering since we will likely not be able to find enough
3854 * space to create a cluster and induce latency trying.
3855 */
3856 if (space_info->max_extent_size) {
3857 spin_lock(&space_info->lock);
3858 if (space_info->max_extent_size &&
3859 ffe_ctl->num_bytes > space_info->max_extent_size) {
3860 ins->offset = space_info->max_extent_size;
3861 spin_unlock(&space_info->lock);
3862 return -ENOSPC;
3863 } else if (space_info->max_extent_size) {
3864 ffe_ctl->use_cluster = false;
3865 }
3866 spin_unlock(&space_info->lock);
3867 }
3868
3869 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3870 &ffe_ctl->empty_cluster);
3871 if (ffe_ctl->last_ptr) {
3872 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3873
3874 spin_lock(&last_ptr->lock);
3875 if (last_ptr->block_group)
3876 ffe_ctl->hint_byte = last_ptr->window_start;
3877 if (last_ptr->fragmented) {
3878 /*
3879 * We still set window_start so we can keep track of the
3880 * last place we found an allocation to try and save
3881 * some time.
3882 */
3883 ffe_ctl->hint_byte = last_ptr->window_start;
3884 ffe_ctl->use_cluster = false;
3885 }
3886 spin_unlock(&last_ptr->lock);
3887 }
3888
3889 return 0;
3890 }
3891
3892 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3893 struct find_free_extent_ctl *ffe_ctl,
3894 struct btrfs_space_info *space_info,
3895 struct btrfs_key *ins)
3896 {
3897 switch (ffe_ctl->policy) {
3898 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3899 return prepare_allocation_clustered(fs_info, ffe_ctl,
3900 space_info, ins);
3901 default:
3902 BUG();
3903 }
3904 }
3905
3906 /*
3907 * walks the btree of allocated extents and find a hole of a given size.
3908 * The key ins is changed to record the hole:
3909 * ins->objectid == start position
3910 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3911 * ins->offset == the size of the hole.
3912 * Any available blocks before search_start are skipped.
3913 *
3914 * If there is no suitable free space, we will record the max size of
3915 * the free space extent currently.
3916 *
3917 * The overall logic and call chain:
3918 *
3919 * find_free_extent()
3920 * |- Iterate through all block groups
3921 * | |- Get a valid block group
3922 * | |- Try to do clustered allocation in that block group
3923 * | |- Try to do unclustered allocation in that block group
3924 * | |- Check if the result is valid
3925 * | | |- If valid, then exit
3926 * | |- Jump to next block group
3927 * |
3928 * |- Push harder to find free extents
3929 * |- If not found, re-iterate all block groups
3930 */
3931 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3932 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3933 u64 hint_byte_orig, struct btrfs_key *ins,
3934 u64 flags, int delalloc)
3935 {
3936 int ret = 0;
3937 int cache_block_group_error = 0;
3938 struct btrfs_block_group *block_group = NULL;
3939 struct find_free_extent_ctl ffe_ctl = {0};
3940 struct btrfs_space_info *space_info;
3941 bool full_search = false;
3942
3943 WARN_ON(num_bytes < fs_info->sectorsize);
3944
3945 ffe_ctl.num_bytes = num_bytes;
3946 ffe_ctl.empty_size = empty_size;
3947 ffe_ctl.flags = flags;
3948 ffe_ctl.search_start = 0;
3949 ffe_ctl.delalloc = delalloc;
3950 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3951 ffe_ctl.have_caching_bg = false;
3952 ffe_ctl.orig_have_caching_bg = false;
3953 ffe_ctl.found_offset = 0;
3954 ffe_ctl.hint_byte = hint_byte_orig;
3955 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
3956
3957 /* For clustered allocation */
3958 ffe_ctl.retry_clustered = false;
3959 ffe_ctl.retry_unclustered = false;
3960 ffe_ctl.last_ptr = NULL;
3961 ffe_ctl.use_cluster = true;
3962
3963 ins->type = BTRFS_EXTENT_ITEM_KEY;
3964 ins->objectid = 0;
3965 ins->offset = 0;
3966
3967 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3968
3969 space_info = btrfs_find_space_info(fs_info, flags);
3970 if (!space_info) {
3971 btrfs_err(fs_info, "No space info for %llu", flags);
3972 return -ENOSPC;
3973 }
3974
3975 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
3976 if (ret < 0)
3977 return ret;
3978
3979 ffe_ctl.search_start = max(ffe_ctl.search_start,
3980 first_logical_byte(fs_info, 0));
3981 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
3982 if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
3983 block_group = btrfs_lookup_block_group(fs_info,
3984 ffe_ctl.search_start);
3985 /*
3986 * we don't want to use the block group if it doesn't match our
3987 * allocation bits, or if its not cached.
3988 *
3989 * However if we are re-searching with an ideal block group
3990 * picked out then we don't care that the block group is cached.
3991 */
3992 if (block_group && block_group_bits(block_group, flags) &&
3993 block_group->cached != BTRFS_CACHE_NO) {
3994 down_read(&space_info->groups_sem);
3995 if (list_empty(&block_group->list) ||
3996 block_group->ro) {
3997 /*
3998 * someone is removing this block group,
3999 * we can't jump into the have_block_group
4000 * target because our list pointers are not
4001 * valid
4002 */
4003 btrfs_put_block_group(block_group);
4004 up_read(&space_info->groups_sem);
4005 } else {
4006 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4007 block_group->flags);
4008 btrfs_lock_block_group(block_group, delalloc);
4009 goto have_block_group;
4010 }
4011 } else if (block_group) {
4012 btrfs_put_block_group(block_group);
4013 }
4014 }
4015 search:
4016 ffe_ctl.have_caching_bg = false;
4017 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4018 ffe_ctl.index == 0)
4019 full_search = true;
4020 down_read(&space_info->groups_sem);
4021 list_for_each_entry(block_group,
4022 &space_info->block_groups[ffe_ctl.index], list) {
4023 struct btrfs_block_group *bg_ret;
4024
4025 /* If the block group is read-only, we can skip it entirely. */
4026 if (unlikely(block_group->ro))
4027 continue;
4028
4029 btrfs_grab_block_group(block_group, delalloc);
4030 ffe_ctl.search_start = block_group->start;
4031
4032 /*
4033 * this can happen if we end up cycling through all the
4034 * raid types, but we want to make sure we only allocate
4035 * for the proper type.
4036 */
4037 if (!block_group_bits(block_group, flags)) {
4038 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4039 BTRFS_BLOCK_GROUP_RAID1_MASK |
4040 BTRFS_BLOCK_GROUP_RAID56_MASK |
4041 BTRFS_BLOCK_GROUP_RAID10;
4042
4043 /*
4044 * if they asked for extra copies and this block group
4045 * doesn't provide them, bail. This does allow us to
4046 * fill raid0 from raid1.
4047 */
4048 if ((flags & extra) && !(block_group->flags & extra))
4049 goto loop;
4050
4051 /*
4052 * This block group has different flags than we want.
4053 * It's possible that we have MIXED_GROUP flag but no
4054 * block group is mixed. Just skip such block group.
4055 */
4056 btrfs_release_block_group(block_group, delalloc);
4057 continue;
4058 }
4059
4060 have_block_group:
4061 ffe_ctl.cached = btrfs_block_group_done(block_group);
4062 if (unlikely(!ffe_ctl.cached)) {
4063 ffe_ctl.have_caching_bg = true;
4064 ret = btrfs_cache_block_group(block_group, 0);
4065
4066 /*
4067 * If we get ENOMEM here or something else we want to
4068 * try other block groups, because it may not be fatal.
4069 * However if we can't find anything else we need to
4070 * save our return here so that we return the actual
4071 * error that caused problems, not ENOSPC.
4072 */
4073 if (ret < 0) {
4074 if (!cache_block_group_error)
4075 cache_block_group_error = ret;
4076 ret = 0;
4077 goto loop;
4078 }
4079 ret = 0;
4080 }
4081
4082 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4083 goto loop;
4084
4085 bg_ret = NULL;
4086 ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4087 if (ret == 0) {
4088 if (bg_ret && bg_ret != block_group) {
4089 btrfs_release_block_group(block_group, delalloc);
4090 block_group = bg_ret;
4091 }
4092 } else if (ret == -EAGAIN) {
4093 goto have_block_group;
4094 } else if (ret > 0) {
4095 goto loop;
4096 }
4097
4098 /* Checks */
4099 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4100 fs_info->stripesize);
4101
4102 /* move on to the next group */
4103 if (ffe_ctl.search_start + num_bytes >
4104 block_group->start + block_group->length) {
4105 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4106 num_bytes);
4107 goto loop;
4108 }
4109
4110 if (ffe_ctl.found_offset < ffe_ctl.search_start)
4111 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4112 ffe_ctl.search_start - ffe_ctl.found_offset);
4113
4114 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4115 num_bytes, delalloc);
4116 if (ret == -EAGAIN) {
4117 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4118 num_bytes);
4119 goto loop;
4120 }
4121 btrfs_inc_block_group_reservations(block_group);
4122
4123 /* we are all good, lets return */
4124 ins->objectid = ffe_ctl.search_start;
4125 ins->offset = num_bytes;
4126
4127 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4128 num_bytes);
4129 btrfs_release_block_group(block_group, delalloc);
4130 break;
4131 loop:
4132 release_block_group(block_group, &ffe_ctl, delalloc);
4133 cond_resched();
4134 }
4135 up_read(&space_info->groups_sem);
4136
4137 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4138 if (ret > 0)
4139 goto search;
4140
4141 if (ret == -ENOSPC && !cache_block_group_error) {
4142 /*
4143 * Use ffe_ctl->total_free_space as fallback if we can't find
4144 * any contiguous hole.
4145 */
4146 if (!ffe_ctl.max_extent_size)
4147 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4148 spin_lock(&space_info->lock);
4149 space_info->max_extent_size = ffe_ctl.max_extent_size;
4150 spin_unlock(&space_info->lock);
4151 ins->offset = ffe_ctl.max_extent_size;
4152 } else if (ret == -ENOSPC) {
4153 ret = cache_block_group_error;
4154 }
4155 return ret;
4156 }
4157
4158 /*
4159 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4160 * hole that is at least as big as @num_bytes.
4161 *
4162 * @root - The root that will contain this extent
4163 *
4164 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4165 * is used for accounting purposes. This value differs
4166 * from @num_bytes only in the case of compressed extents.
4167 *
4168 * @num_bytes - Number of bytes to allocate on-disk.
4169 *
4170 * @min_alloc_size - Indicates the minimum amount of space that the
4171 * allocator should try to satisfy. In some cases
4172 * @num_bytes may be larger than what is required and if
4173 * the filesystem is fragmented then allocation fails.
4174 * However, the presence of @min_alloc_size gives a
4175 * chance to try and satisfy the smaller allocation.
4176 *
4177 * @empty_size - A hint that you plan on doing more COW. This is the
4178 * size in bytes the allocator should try to find free
4179 * next to the block it returns. This is just a hint and
4180 * may be ignored by the allocator.
4181 *
4182 * @hint_byte - Hint to the allocator to start searching above the byte
4183 * address passed. It might be ignored.
4184 *
4185 * @ins - This key is modified to record the found hole. It will
4186 * have the following values:
4187 * ins->objectid == start position
4188 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4189 * ins->offset == the size of the hole.
4190 *
4191 * @is_data - Boolean flag indicating whether an extent is
4192 * allocated for data (true) or metadata (false)
4193 *
4194 * @delalloc - Boolean flag indicating whether this allocation is for
4195 * delalloc or not. If 'true' data_rwsem of block groups
4196 * is going to be acquired.
4197 *
4198 *
4199 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4200 * case -ENOSPC is returned then @ins->offset will contain the size of the
4201 * largest available hole the allocator managed to find.
4202 */
4203 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4204 u64 num_bytes, u64 min_alloc_size,
4205 u64 empty_size, u64 hint_byte,
4206 struct btrfs_key *ins, int is_data, int delalloc)
4207 {
4208 struct btrfs_fs_info *fs_info = root->fs_info;
4209 bool final_tried = num_bytes == min_alloc_size;
4210 u64 flags;
4211 int ret;
4212
4213 flags = get_alloc_profile_by_root(root, is_data);
4214 again:
4215 WARN_ON(num_bytes < fs_info->sectorsize);
4216 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4217 hint_byte, ins, flags, delalloc);
4218 if (!ret && !is_data) {
4219 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4220 } else if (ret == -ENOSPC) {
4221 if (!final_tried && ins->offset) {
4222 num_bytes = min(num_bytes >> 1, ins->offset);
4223 num_bytes = round_down(num_bytes,
4224 fs_info->sectorsize);
4225 num_bytes = max(num_bytes, min_alloc_size);
4226 ram_bytes = num_bytes;
4227 if (num_bytes == min_alloc_size)
4228 final_tried = true;
4229 goto again;
4230 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4231 struct btrfs_space_info *sinfo;
4232
4233 sinfo = btrfs_find_space_info(fs_info, flags);
4234 btrfs_err(fs_info,
4235 "allocation failed flags %llu, wanted %llu",
4236 flags, num_bytes);
4237 if (sinfo)
4238 btrfs_dump_space_info(fs_info, sinfo,
4239 num_bytes, 1);
4240 }
4241 }
4242
4243 return ret;
4244 }
4245
4246 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4247 u64 start, u64 len, int delalloc)
4248 {
4249 struct btrfs_block_group *cache;
4250
4251 cache = btrfs_lookup_block_group(fs_info, start);
4252 if (!cache) {
4253 btrfs_err(fs_info, "Unable to find block group for %llu",
4254 start);
4255 return -ENOSPC;
4256 }
4257
4258 btrfs_add_free_space(cache, start, len);
4259 btrfs_free_reserved_bytes(cache, len, delalloc);
4260 trace_btrfs_reserved_extent_free(fs_info, start, len);
4261
4262 btrfs_put_block_group(cache);
4263 return 0;
4264 }
4265
4266 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4267 u64 len)
4268 {
4269 struct btrfs_block_group *cache;
4270 int ret = 0;
4271
4272 cache = btrfs_lookup_block_group(trans->fs_info, start);
4273 if (!cache) {
4274 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4275 start);
4276 return -ENOSPC;
4277 }
4278
4279 ret = pin_down_extent(trans, cache, start, len, 1);
4280 btrfs_put_block_group(cache);
4281 return ret;
4282 }
4283
4284 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4285 u64 parent, u64 root_objectid,
4286 u64 flags, u64 owner, u64 offset,
4287 struct btrfs_key *ins, int ref_mod)
4288 {
4289 struct btrfs_fs_info *fs_info = trans->fs_info;
4290 int ret;
4291 struct btrfs_extent_item *extent_item;
4292 struct btrfs_extent_inline_ref *iref;
4293 struct btrfs_path *path;
4294 struct extent_buffer *leaf;
4295 int type;
4296 u32 size;
4297
4298 if (parent > 0)
4299 type = BTRFS_SHARED_DATA_REF_KEY;
4300 else
4301 type = BTRFS_EXTENT_DATA_REF_KEY;
4302
4303 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4304
4305 path = btrfs_alloc_path();
4306 if (!path)
4307 return -ENOMEM;
4308
4309 path->leave_spinning = 1;
4310 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4311 ins, size);
4312 if (ret) {
4313 btrfs_free_path(path);
4314 return ret;
4315 }
4316
4317 leaf = path->nodes[0];
4318 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4319 struct btrfs_extent_item);
4320 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4321 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4322 btrfs_set_extent_flags(leaf, extent_item,
4323 flags | BTRFS_EXTENT_FLAG_DATA);
4324
4325 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4326 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4327 if (parent > 0) {
4328 struct btrfs_shared_data_ref *ref;
4329 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4330 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4331 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4332 } else {
4333 struct btrfs_extent_data_ref *ref;
4334 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4335 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4336 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4337 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4338 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4339 }
4340
4341 btrfs_mark_buffer_dirty(path->nodes[0]);
4342 btrfs_free_path(path);
4343
4344 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4345 if (ret)
4346 return ret;
4347
4348 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4349 if (ret) { /* -ENOENT, logic error */
4350 btrfs_err(fs_info, "update block group failed for %llu %llu",
4351 ins->objectid, ins->offset);
4352 BUG();
4353 }
4354 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4355 return ret;
4356 }
4357
4358 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4359 struct btrfs_delayed_ref_node *node,
4360 struct btrfs_delayed_extent_op *extent_op)
4361 {
4362 struct btrfs_fs_info *fs_info = trans->fs_info;
4363 int ret;
4364 struct btrfs_extent_item *extent_item;
4365 struct btrfs_key extent_key;
4366 struct btrfs_tree_block_info *block_info;
4367 struct btrfs_extent_inline_ref *iref;
4368 struct btrfs_path *path;
4369 struct extent_buffer *leaf;
4370 struct btrfs_delayed_tree_ref *ref;
4371 u32 size = sizeof(*extent_item) + sizeof(*iref);
4372 u64 num_bytes;
4373 u64 flags = extent_op->flags_to_set;
4374 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4375
4376 ref = btrfs_delayed_node_to_tree_ref(node);
4377
4378 extent_key.objectid = node->bytenr;
4379 if (skinny_metadata) {
4380 extent_key.offset = ref->level;
4381 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4382 num_bytes = fs_info->nodesize;
4383 } else {
4384 extent_key.offset = node->num_bytes;
4385 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4386 size += sizeof(*block_info);
4387 num_bytes = node->num_bytes;
4388 }
4389
4390 path = btrfs_alloc_path();
4391 if (!path)
4392 return -ENOMEM;
4393
4394 path->leave_spinning = 1;
4395 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4396 &extent_key, size);
4397 if (ret) {
4398 btrfs_free_path(path);
4399 return ret;
4400 }
4401
4402 leaf = path->nodes[0];
4403 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4404 struct btrfs_extent_item);
4405 btrfs_set_extent_refs(leaf, extent_item, 1);
4406 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4407 btrfs_set_extent_flags(leaf, extent_item,
4408 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4409
4410 if (skinny_metadata) {
4411 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4412 } else {
4413 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4414 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4415 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4416 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4417 }
4418
4419 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4420 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4421 btrfs_set_extent_inline_ref_type(leaf, iref,
4422 BTRFS_SHARED_BLOCK_REF_KEY);
4423 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4424 } else {
4425 btrfs_set_extent_inline_ref_type(leaf, iref,
4426 BTRFS_TREE_BLOCK_REF_KEY);
4427 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4428 }
4429
4430 btrfs_mark_buffer_dirty(leaf);
4431 btrfs_free_path(path);
4432
4433 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4434 num_bytes);
4435 if (ret)
4436 return ret;
4437
4438 ret = btrfs_update_block_group(trans, extent_key.objectid,
4439 fs_info->nodesize, 1);
4440 if (ret) { /* -ENOENT, logic error */
4441 btrfs_err(fs_info, "update block group failed for %llu %llu",
4442 extent_key.objectid, extent_key.offset);
4443 BUG();
4444 }
4445
4446 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4447 fs_info->nodesize);
4448 return ret;
4449 }
4450
4451 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4452 struct btrfs_root *root, u64 owner,
4453 u64 offset, u64 ram_bytes,
4454 struct btrfs_key *ins)
4455 {
4456 struct btrfs_ref generic_ref = { 0 };
4457 int ret;
4458
4459 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4460
4461 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4462 ins->objectid, ins->offset, 0);
4463 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4464 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4465 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4466 ram_bytes, NULL, NULL);
4467 return ret;
4468 }
4469
4470 /*
4471 * this is used by the tree logging recovery code. It records that
4472 * an extent has been allocated and makes sure to clear the free
4473 * space cache bits as well
4474 */
4475 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4476 u64 root_objectid, u64 owner, u64 offset,
4477 struct btrfs_key *ins)
4478 {
4479 struct btrfs_fs_info *fs_info = trans->fs_info;
4480 int ret;
4481 struct btrfs_block_group *block_group;
4482 struct btrfs_space_info *space_info;
4483
4484 /*
4485 * Mixed block groups will exclude before processing the log so we only
4486 * need to do the exclude dance if this fs isn't mixed.
4487 */
4488 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4489 ret = __exclude_logged_extent(fs_info, ins->objectid,
4490 ins->offset);
4491 if (ret)
4492 return ret;
4493 }
4494
4495 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4496 if (!block_group)
4497 return -EINVAL;
4498
4499 space_info = block_group->space_info;
4500 spin_lock(&space_info->lock);
4501 spin_lock(&block_group->lock);
4502 space_info->bytes_reserved += ins->offset;
4503 block_group->reserved += ins->offset;
4504 spin_unlock(&block_group->lock);
4505 spin_unlock(&space_info->lock);
4506
4507 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4508 offset, ins, 1);
4509 if (ret)
4510 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4511 btrfs_put_block_group(block_group);
4512 return ret;
4513 }
4514
4515 static struct extent_buffer *
4516 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4517 u64 bytenr, int level, u64 owner)
4518 {
4519 struct btrfs_fs_info *fs_info = root->fs_info;
4520 struct extent_buffer *buf;
4521
4522 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4523 if (IS_ERR(buf))
4524 return buf;
4525
4526 /*
4527 * Extra safety check in case the extent tree is corrupted and extent
4528 * allocator chooses to use a tree block which is already used and
4529 * locked.
4530 */
4531 if (buf->lock_owner == current->pid) {
4532 btrfs_err_rl(fs_info,
4533 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4534 buf->start, btrfs_header_owner(buf), current->pid);
4535 free_extent_buffer(buf);
4536 return ERR_PTR(-EUCLEAN);
4537 }
4538
4539 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4540 btrfs_tree_lock(buf);
4541 btrfs_clean_tree_block(buf);
4542 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4543
4544 btrfs_set_lock_blocking_write(buf);
4545 set_extent_buffer_uptodate(buf);
4546
4547 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4548 btrfs_set_header_level(buf, level);
4549 btrfs_set_header_bytenr(buf, buf->start);
4550 btrfs_set_header_generation(buf, trans->transid);
4551 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4552 btrfs_set_header_owner(buf, owner);
4553 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4554 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4555 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4556 buf->log_index = root->log_transid % 2;
4557 /*
4558 * we allow two log transactions at a time, use different
4559 * EXTENT bit to differentiate dirty pages.
4560 */
4561 if (buf->log_index == 0)
4562 set_extent_dirty(&root->dirty_log_pages, buf->start,
4563 buf->start + buf->len - 1, GFP_NOFS);
4564 else
4565 set_extent_new(&root->dirty_log_pages, buf->start,
4566 buf->start + buf->len - 1);
4567 } else {
4568 buf->log_index = -1;
4569 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4570 buf->start + buf->len - 1, GFP_NOFS);
4571 }
4572 trans->dirty = true;
4573 /* this returns a buffer locked for blocking */
4574 return buf;
4575 }
4576
4577 /*
4578 * finds a free extent and does all the dirty work required for allocation
4579 * returns the tree buffer or an ERR_PTR on error.
4580 */
4581 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4582 struct btrfs_root *root,
4583 u64 parent, u64 root_objectid,
4584 const struct btrfs_disk_key *key,
4585 int level, u64 hint,
4586 u64 empty_size)
4587 {
4588 struct btrfs_fs_info *fs_info = root->fs_info;
4589 struct btrfs_key ins;
4590 struct btrfs_block_rsv *block_rsv;
4591 struct extent_buffer *buf;
4592 struct btrfs_delayed_extent_op *extent_op;
4593 struct btrfs_ref generic_ref = { 0 };
4594 u64 flags = 0;
4595 int ret;
4596 u32 blocksize = fs_info->nodesize;
4597 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4598
4599 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4600 if (btrfs_is_testing(fs_info)) {
4601 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4602 level, root_objectid);
4603 if (!IS_ERR(buf))
4604 root->alloc_bytenr += blocksize;
4605 return buf;
4606 }
4607 #endif
4608
4609 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4610 if (IS_ERR(block_rsv))
4611 return ERR_CAST(block_rsv);
4612
4613 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4614 empty_size, hint, &ins, 0, 0);
4615 if (ret)
4616 goto out_unuse;
4617
4618 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4619 root_objectid);
4620 if (IS_ERR(buf)) {
4621 ret = PTR_ERR(buf);
4622 goto out_free_reserved;
4623 }
4624
4625 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4626 if (parent == 0)
4627 parent = ins.objectid;
4628 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4629 } else
4630 BUG_ON(parent > 0);
4631
4632 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4633 extent_op = btrfs_alloc_delayed_extent_op();
4634 if (!extent_op) {
4635 ret = -ENOMEM;
4636 goto out_free_buf;
4637 }
4638 if (key)
4639 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4640 else
4641 memset(&extent_op->key, 0, sizeof(extent_op->key));
4642 extent_op->flags_to_set = flags;
4643 extent_op->update_key = skinny_metadata ? false : true;
4644 extent_op->update_flags = true;
4645 extent_op->is_data = false;
4646 extent_op->level = level;
4647
4648 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4649 ins.objectid, ins.offset, parent);
4650 generic_ref.real_root = root->root_key.objectid;
4651 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4652 btrfs_ref_tree_mod(fs_info, &generic_ref);
4653 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4654 extent_op, NULL, NULL);
4655 if (ret)
4656 goto out_free_delayed;
4657 }
4658 return buf;
4659
4660 out_free_delayed:
4661 btrfs_free_delayed_extent_op(extent_op);
4662 out_free_buf:
4663 free_extent_buffer(buf);
4664 out_free_reserved:
4665 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4666 out_unuse:
4667 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4668 return ERR_PTR(ret);
4669 }
4670
4671 struct walk_control {
4672 u64 refs[BTRFS_MAX_LEVEL];
4673 u64 flags[BTRFS_MAX_LEVEL];
4674 struct btrfs_key update_progress;
4675 struct btrfs_key drop_progress;
4676 int drop_level;
4677 int stage;
4678 int level;
4679 int shared_level;
4680 int update_ref;
4681 int keep_locks;
4682 int reada_slot;
4683 int reada_count;
4684 int restarted;
4685 };
4686
4687 #define DROP_REFERENCE 1
4688 #define UPDATE_BACKREF 2
4689
4690 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4691 struct btrfs_root *root,
4692 struct walk_control *wc,
4693 struct btrfs_path *path)
4694 {
4695 struct btrfs_fs_info *fs_info = root->fs_info;
4696 u64 bytenr;
4697 u64 generation;
4698 u64 refs;
4699 u64 flags;
4700 u32 nritems;
4701 struct btrfs_key key;
4702 struct extent_buffer *eb;
4703 int ret;
4704 int slot;
4705 int nread = 0;
4706
4707 if (path->slots[wc->level] < wc->reada_slot) {
4708 wc->reada_count = wc->reada_count * 2 / 3;
4709 wc->reada_count = max(wc->reada_count, 2);
4710 } else {
4711 wc->reada_count = wc->reada_count * 3 / 2;
4712 wc->reada_count = min_t(int, wc->reada_count,
4713 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4714 }
4715
4716 eb = path->nodes[wc->level];
4717 nritems = btrfs_header_nritems(eb);
4718
4719 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4720 if (nread >= wc->reada_count)
4721 break;
4722
4723 cond_resched();
4724 bytenr = btrfs_node_blockptr(eb, slot);
4725 generation = btrfs_node_ptr_generation(eb, slot);
4726
4727 if (slot == path->slots[wc->level])
4728 goto reada;
4729
4730 if (wc->stage == UPDATE_BACKREF &&
4731 generation <= root->root_key.offset)
4732 continue;
4733
4734 /* We don't lock the tree block, it's OK to be racy here */
4735 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4736 wc->level - 1, 1, &refs,
4737 &flags);
4738 /* We don't care about errors in readahead. */
4739 if (ret < 0)
4740 continue;
4741 BUG_ON(refs == 0);
4742
4743 if (wc->stage == DROP_REFERENCE) {
4744 if (refs == 1)
4745 goto reada;
4746
4747 if (wc->level == 1 &&
4748 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4749 continue;
4750 if (!wc->update_ref ||
4751 generation <= root->root_key.offset)
4752 continue;
4753 btrfs_node_key_to_cpu(eb, &key, slot);
4754 ret = btrfs_comp_cpu_keys(&key,
4755 &wc->update_progress);
4756 if (ret < 0)
4757 continue;
4758 } else {
4759 if (wc->level == 1 &&
4760 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4761 continue;
4762 }
4763 reada:
4764 readahead_tree_block(fs_info, bytenr);
4765 nread++;
4766 }
4767 wc->reada_slot = slot;
4768 }
4769
4770 /*
4771 * helper to process tree block while walking down the tree.
4772 *
4773 * when wc->stage == UPDATE_BACKREF, this function updates
4774 * back refs for pointers in the block.
4775 *
4776 * NOTE: return value 1 means we should stop walking down.
4777 */
4778 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4779 struct btrfs_root *root,
4780 struct btrfs_path *path,
4781 struct walk_control *wc, int lookup_info)
4782 {
4783 struct btrfs_fs_info *fs_info = root->fs_info;
4784 int level = wc->level;
4785 struct extent_buffer *eb = path->nodes[level];
4786 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4787 int ret;
4788
4789 if (wc->stage == UPDATE_BACKREF &&
4790 btrfs_header_owner(eb) != root->root_key.objectid)
4791 return 1;
4792
4793 /*
4794 * when reference count of tree block is 1, it won't increase
4795 * again. once full backref flag is set, we never clear it.
4796 */
4797 if (lookup_info &&
4798 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4799 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4800 BUG_ON(!path->locks[level]);
4801 ret = btrfs_lookup_extent_info(trans, fs_info,
4802 eb->start, level, 1,
4803 &wc->refs[level],
4804 &wc->flags[level]);
4805 BUG_ON(ret == -ENOMEM);
4806 if (ret)
4807 return ret;
4808 BUG_ON(wc->refs[level] == 0);
4809 }
4810
4811 if (wc->stage == DROP_REFERENCE) {
4812 if (wc->refs[level] > 1)
4813 return 1;
4814
4815 if (path->locks[level] && !wc->keep_locks) {
4816 btrfs_tree_unlock_rw(eb, path->locks[level]);
4817 path->locks[level] = 0;
4818 }
4819 return 0;
4820 }
4821
4822 /* wc->stage == UPDATE_BACKREF */
4823 if (!(wc->flags[level] & flag)) {
4824 BUG_ON(!path->locks[level]);
4825 ret = btrfs_inc_ref(trans, root, eb, 1);
4826 BUG_ON(ret); /* -ENOMEM */
4827 ret = btrfs_dec_ref(trans, root, eb, 0);
4828 BUG_ON(ret); /* -ENOMEM */
4829 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4830 btrfs_header_level(eb), 0);
4831 BUG_ON(ret); /* -ENOMEM */
4832 wc->flags[level] |= flag;
4833 }
4834
4835 /*
4836 * the block is shared by multiple trees, so it's not good to
4837 * keep the tree lock
4838 */
4839 if (path->locks[level] && level > 0) {
4840 btrfs_tree_unlock_rw(eb, path->locks[level]);
4841 path->locks[level] = 0;
4842 }
4843 return 0;
4844 }
4845
4846 /*
4847 * This is used to verify a ref exists for this root to deal with a bug where we
4848 * would have a drop_progress key that hadn't been updated properly.
4849 */
4850 static int check_ref_exists(struct btrfs_trans_handle *trans,
4851 struct btrfs_root *root, u64 bytenr, u64 parent,
4852 int level)
4853 {
4854 struct btrfs_path *path;
4855 struct btrfs_extent_inline_ref *iref;
4856 int ret;
4857
4858 path = btrfs_alloc_path();
4859 if (!path)
4860 return -ENOMEM;
4861
4862 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4863 root->fs_info->nodesize, parent,
4864 root->root_key.objectid, level, 0);
4865 btrfs_free_path(path);
4866 if (ret == -ENOENT)
4867 return 0;
4868 if (ret < 0)
4869 return ret;
4870 return 1;
4871 }
4872
4873 /*
4874 * helper to process tree block pointer.
4875 *
4876 * when wc->stage == DROP_REFERENCE, this function checks
4877 * reference count of the block pointed to. if the block
4878 * is shared and we need update back refs for the subtree
4879 * rooted at the block, this function changes wc->stage to
4880 * UPDATE_BACKREF. if the block is shared and there is no
4881 * need to update back, this function drops the reference
4882 * to the block.
4883 *
4884 * NOTE: return value 1 means we should stop walking down.
4885 */
4886 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4887 struct btrfs_root *root,
4888 struct btrfs_path *path,
4889 struct walk_control *wc, int *lookup_info)
4890 {
4891 struct btrfs_fs_info *fs_info = root->fs_info;
4892 u64 bytenr;
4893 u64 generation;
4894 u64 parent;
4895 struct btrfs_key key;
4896 struct btrfs_key first_key;
4897 struct btrfs_ref ref = { 0 };
4898 struct extent_buffer *next;
4899 int level = wc->level;
4900 int reada = 0;
4901 int ret = 0;
4902 bool need_account = false;
4903
4904 generation = btrfs_node_ptr_generation(path->nodes[level],
4905 path->slots[level]);
4906 /*
4907 * if the lower level block was created before the snapshot
4908 * was created, we know there is no need to update back refs
4909 * for the subtree
4910 */
4911 if (wc->stage == UPDATE_BACKREF &&
4912 generation <= root->root_key.offset) {
4913 *lookup_info = 1;
4914 return 1;
4915 }
4916
4917 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4918 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4919 path->slots[level]);
4920
4921 next = find_extent_buffer(fs_info, bytenr);
4922 if (!next) {
4923 next = btrfs_find_create_tree_block(fs_info, bytenr);
4924 if (IS_ERR(next))
4925 return PTR_ERR(next);
4926
4927 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4928 level - 1);
4929 reada = 1;
4930 }
4931 btrfs_tree_lock(next);
4932 btrfs_set_lock_blocking_write(next);
4933
4934 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4935 &wc->refs[level - 1],
4936 &wc->flags[level - 1]);
4937 if (ret < 0)
4938 goto out_unlock;
4939
4940 if (unlikely(wc->refs[level - 1] == 0)) {
4941 btrfs_err(fs_info, "Missing references.");
4942 ret = -EIO;
4943 goto out_unlock;
4944 }
4945 *lookup_info = 0;
4946
4947 if (wc->stage == DROP_REFERENCE) {
4948 if (wc->refs[level - 1] > 1) {
4949 need_account = true;
4950 if (level == 1 &&
4951 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4952 goto skip;
4953
4954 if (!wc->update_ref ||
4955 generation <= root->root_key.offset)
4956 goto skip;
4957
4958 btrfs_node_key_to_cpu(path->nodes[level], &key,
4959 path->slots[level]);
4960 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4961 if (ret < 0)
4962 goto skip;
4963
4964 wc->stage = UPDATE_BACKREF;
4965 wc->shared_level = level - 1;
4966 }
4967 } else {
4968 if (level == 1 &&
4969 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4970 goto skip;
4971 }
4972
4973 if (!btrfs_buffer_uptodate(next, generation, 0)) {
4974 btrfs_tree_unlock(next);
4975 free_extent_buffer(next);
4976 next = NULL;
4977 *lookup_info = 1;
4978 }
4979
4980 if (!next) {
4981 if (reada && level == 1)
4982 reada_walk_down(trans, root, wc, path);
4983 next = read_tree_block(fs_info, bytenr, generation, level - 1,
4984 &first_key);
4985 if (IS_ERR(next)) {
4986 return PTR_ERR(next);
4987 } else if (!extent_buffer_uptodate(next)) {
4988 free_extent_buffer(next);
4989 return -EIO;
4990 }
4991 btrfs_tree_lock(next);
4992 btrfs_set_lock_blocking_write(next);
4993 }
4994
4995 level--;
4996 ASSERT(level == btrfs_header_level(next));
4997 if (level != btrfs_header_level(next)) {
4998 btrfs_err(root->fs_info, "mismatched level");
4999 ret = -EIO;
5000 goto out_unlock;
5001 }
5002 path->nodes[level] = next;
5003 path->slots[level] = 0;
5004 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5005 wc->level = level;
5006 if (wc->level == 1)
5007 wc->reada_slot = 0;
5008 return 0;
5009 skip:
5010 wc->refs[level - 1] = 0;
5011 wc->flags[level - 1] = 0;
5012 if (wc->stage == DROP_REFERENCE) {
5013 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5014 parent = path->nodes[level]->start;
5015 } else {
5016 ASSERT(root->root_key.objectid ==
5017 btrfs_header_owner(path->nodes[level]));
5018 if (root->root_key.objectid !=
5019 btrfs_header_owner(path->nodes[level])) {
5020 btrfs_err(root->fs_info,
5021 "mismatched block owner");
5022 ret = -EIO;
5023 goto out_unlock;
5024 }
5025 parent = 0;
5026 }
5027
5028 /*
5029 * If we had a drop_progress we need to verify the refs are set
5030 * as expected. If we find our ref then we know that from here
5031 * on out everything should be correct, and we can clear the
5032 * ->restarted flag.
5033 */
5034 if (wc->restarted) {
5035 ret = check_ref_exists(trans, root, bytenr, parent,
5036 level - 1);
5037 if (ret < 0)
5038 goto out_unlock;
5039 if (ret == 0)
5040 goto no_delete;
5041 ret = 0;
5042 wc->restarted = 0;
5043 }
5044
5045 /*
5046 * Reloc tree doesn't contribute to qgroup numbers, and we have
5047 * already accounted them at merge time (replace_path),
5048 * thus we could skip expensive subtree trace here.
5049 */
5050 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5051 need_account) {
5052 ret = btrfs_qgroup_trace_subtree(trans, next,
5053 generation, level - 1);
5054 if (ret) {
5055 btrfs_err_rl(fs_info,
5056 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5057 ret);
5058 }
5059 }
5060
5061 /*
5062 * We need to update the next key in our walk control so we can
5063 * update the drop_progress key accordingly. We don't care if
5064 * find_next_key doesn't find a key because that means we're at
5065 * the end and are going to clean up now.
5066 */
5067 wc->drop_level = level;
5068 find_next_key(path, level, &wc->drop_progress);
5069
5070 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5071 fs_info->nodesize, parent);
5072 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5073 ret = btrfs_free_extent(trans, &ref);
5074 if (ret)
5075 goto out_unlock;
5076 }
5077 no_delete:
5078 *lookup_info = 1;
5079 ret = 1;
5080
5081 out_unlock:
5082 btrfs_tree_unlock(next);
5083 free_extent_buffer(next);
5084
5085 return ret;
5086 }
5087
5088 /*
5089 * helper to process tree block while walking up the tree.
5090 *
5091 * when wc->stage == DROP_REFERENCE, this function drops
5092 * reference count on the block.
5093 *
5094 * when wc->stage == UPDATE_BACKREF, this function changes
5095 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5096 * to UPDATE_BACKREF previously while processing the block.
5097 *
5098 * NOTE: return value 1 means we should stop walking up.
5099 */
5100 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5101 struct btrfs_root *root,
5102 struct btrfs_path *path,
5103 struct walk_control *wc)
5104 {
5105 struct btrfs_fs_info *fs_info = root->fs_info;
5106 int ret;
5107 int level = wc->level;
5108 struct extent_buffer *eb = path->nodes[level];
5109 u64 parent = 0;
5110
5111 if (wc->stage == UPDATE_BACKREF) {
5112 BUG_ON(wc->shared_level < level);
5113 if (level < wc->shared_level)
5114 goto out;
5115
5116 ret = find_next_key(path, level + 1, &wc->update_progress);
5117 if (ret > 0)
5118 wc->update_ref = 0;
5119
5120 wc->stage = DROP_REFERENCE;
5121 wc->shared_level = -1;
5122 path->slots[level] = 0;
5123
5124 /*
5125 * check reference count again if the block isn't locked.
5126 * we should start walking down the tree again if reference
5127 * count is one.
5128 */
5129 if (!path->locks[level]) {
5130 BUG_ON(level == 0);
5131 btrfs_tree_lock(eb);
5132 btrfs_set_lock_blocking_write(eb);
5133 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5134
5135 ret = btrfs_lookup_extent_info(trans, fs_info,
5136 eb->start, level, 1,
5137 &wc->refs[level],
5138 &wc->flags[level]);
5139 if (ret < 0) {
5140 btrfs_tree_unlock_rw(eb, path->locks[level]);
5141 path->locks[level] = 0;
5142 return ret;
5143 }
5144 BUG_ON(wc->refs[level] == 0);
5145 if (wc->refs[level] == 1) {
5146 btrfs_tree_unlock_rw(eb, path->locks[level]);
5147 path->locks[level] = 0;
5148 return 1;
5149 }
5150 }
5151 }
5152
5153 /* wc->stage == DROP_REFERENCE */
5154 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5155
5156 if (wc->refs[level] == 1) {
5157 if (level == 0) {
5158 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5159 ret = btrfs_dec_ref(trans, root, eb, 1);
5160 else
5161 ret = btrfs_dec_ref(trans, root, eb, 0);
5162 BUG_ON(ret); /* -ENOMEM */
5163 if (is_fstree(root->root_key.objectid)) {
5164 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5165 if (ret) {
5166 btrfs_err_rl(fs_info,
5167 "error %d accounting leaf items, quota is out of sync, rescan required",
5168 ret);
5169 }
5170 }
5171 }
5172 /* make block locked assertion in btrfs_clean_tree_block happy */
5173 if (!path->locks[level] &&
5174 btrfs_header_generation(eb) == trans->transid) {
5175 btrfs_tree_lock(eb);
5176 btrfs_set_lock_blocking_write(eb);
5177 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5178 }
5179 btrfs_clean_tree_block(eb);
5180 }
5181
5182 if (eb == root->node) {
5183 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5184 parent = eb->start;
5185 else if (root->root_key.objectid != btrfs_header_owner(eb))
5186 goto owner_mismatch;
5187 } else {
5188 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5189 parent = path->nodes[level + 1]->start;
5190 else if (root->root_key.objectid !=
5191 btrfs_header_owner(path->nodes[level + 1]))
5192 goto owner_mismatch;
5193 }
5194
5195 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5196 out:
5197 wc->refs[level] = 0;
5198 wc->flags[level] = 0;
5199 return 0;
5200
5201 owner_mismatch:
5202 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5203 btrfs_header_owner(eb), root->root_key.objectid);
5204 return -EUCLEAN;
5205 }
5206
5207 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5208 struct btrfs_root *root,
5209 struct btrfs_path *path,
5210 struct walk_control *wc)
5211 {
5212 int level = wc->level;
5213 int lookup_info = 1;
5214 int ret;
5215
5216 while (level >= 0) {
5217 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5218 if (ret > 0)
5219 break;
5220
5221 if (level == 0)
5222 break;
5223
5224 if (path->slots[level] >=
5225 btrfs_header_nritems(path->nodes[level]))
5226 break;
5227
5228 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5229 if (ret > 0) {
5230 path->slots[level]++;
5231 continue;
5232 } else if (ret < 0)
5233 return ret;
5234 level = wc->level;
5235 }
5236 return 0;
5237 }
5238
5239 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5240 struct btrfs_root *root,
5241 struct btrfs_path *path,
5242 struct walk_control *wc, int max_level)
5243 {
5244 int level = wc->level;
5245 int ret;
5246
5247 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5248 while (level < max_level && path->nodes[level]) {
5249 wc->level = level;
5250 if (path->slots[level] + 1 <
5251 btrfs_header_nritems(path->nodes[level])) {
5252 path->slots[level]++;
5253 return 0;
5254 } else {
5255 ret = walk_up_proc(trans, root, path, wc);
5256 if (ret > 0)
5257 return 0;
5258 if (ret < 0)
5259 return ret;
5260
5261 if (path->locks[level]) {
5262 btrfs_tree_unlock_rw(path->nodes[level],
5263 path->locks[level]);
5264 path->locks[level] = 0;
5265 }
5266 free_extent_buffer(path->nodes[level]);
5267 path->nodes[level] = NULL;
5268 level++;
5269 }
5270 }
5271 return 1;
5272 }
5273
5274 /*
5275 * drop a subvolume tree.
5276 *
5277 * this function traverses the tree freeing any blocks that only
5278 * referenced by the tree.
5279 *
5280 * when a shared tree block is found. this function decreases its
5281 * reference count by one. if update_ref is true, this function
5282 * also make sure backrefs for the shared block and all lower level
5283 * blocks are properly updated.
5284 *
5285 * If called with for_reloc == 0, may exit early with -EAGAIN
5286 */
5287 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5288 {
5289 struct btrfs_fs_info *fs_info = root->fs_info;
5290 struct btrfs_path *path;
5291 struct btrfs_trans_handle *trans;
5292 struct btrfs_root *tree_root = fs_info->tree_root;
5293 struct btrfs_root_item *root_item = &root->root_item;
5294 struct walk_control *wc;
5295 struct btrfs_key key;
5296 int err = 0;
5297 int ret;
5298 int level;
5299 bool root_dropped = false;
5300
5301 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5302
5303 path = btrfs_alloc_path();
5304 if (!path) {
5305 err = -ENOMEM;
5306 goto out;
5307 }
5308
5309 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5310 if (!wc) {
5311 btrfs_free_path(path);
5312 err = -ENOMEM;
5313 goto out;
5314 }
5315
5316 trans = btrfs_start_transaction(tree_root, 0);
5317 if (IS_ERR(trans)) {
5318 err = PTR_ERR(trans);
5319 goto out_free;
5320 }
5321
5322 err = btrfs_run_delayed_items(trans);
5323 if (err)
5324 goto out_end_trans;
5325
5326 /*
5327 * This will help us catch people modifying the fs tree while we're
5328 * dropping it. It is unsafe to mess with the fs tree while it's being
5329 * dropped as we unlock the root node and parent nodes as we walk down
5330 * the tree, assuming nothing will change. If something does change
5331 * then we'll have stale information and drop references to blocks we've
5332 * already dropped.
5333 */
5334 set_bit(BTRFS_ROOT_DELETING, &root->state);
5335 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5336 level = btrfs_header_level(root->node);
5337 path->nodes[level] = btrfs_lock_root_node(root);
5338 btrfs_set_lock_blocking_write(path->nodes[level]);
5339 path->slots[level] = 0;
5340 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5341 memset(&wc->update_progress, 0,
5342 sizeof(wc->update_progress));
5343 } else {
5344 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5345 memcpy(&wc->update_progress, &key,
5346 sizeof(wc->update_progress));
5347
5348 level = root_item->drop_level;
5349 BUG_ON(level == 0);
5350 path->lowest_level = level;
5351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5352 path->lowest_level = 0;
5353 if (ret < 0) {
5354 err = ret;
5355 goto out_end_trans;
5356 }
5357 WARN_ON(ret > 0);
5358
5359 /*
5360 * unlock our path, this is safe because only this
5361 * function is allowed to delete this snapshot
5362 */
5363 btrfs_unlock_up_safe(path, 0);
5364
5365 level = btrfs_header_level(root->node);
5366 while (1) {
5367 btrfs_tree_lock(path->nodes[level]);
5368 btrfs_set_lock_blocking_write(path->nodes[level]);
5369 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5370
5371 ret = btrfs_lookup_extent_info(trans, fs_info,
5372 path->nodes[level]->start,
5373 level, 1, &wc->refs[level],
5374 &wc->flags[level]);
5375 if (ret < 0) {
5376 err = ret;
5377 goto out_end_trans;
5378 }
5379 BUG_ON(wc->refs[level] == 0);
5380
5381 if (level == root_item->drop_level)
5382 break;
5383
5384 btrfs_tree_unlock(path->nodes[level]);
5385 path->locks[level] = 0;
5386 WARN_ON(wc->refs[level] != 1);
5387 level--;
5388 }
5389 }
5390
5391 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5392 wc->level = level;
5393 wc->shared_level = -1;
5394 wc->stage = DROP_REFERENCE;
5395 wc->update_ref = update_ref;
5396 wc->keep_locks = 0;
5397 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5398
5399 while (1) {
5400
5401 ret = walk_down_tree(trans, root, path, wc);
5402 if (ret < 0) {
5403 err = ret;
5404 break;
5405 }
5406
5407 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5408 if (ret < 0) {
5409 err = ret;
5410 break;
5411 }
5412
5413 if (ret > 0) {
5414 BUG_ON(wc->stage != DROP_REFERENCE);
5415 break;
5416 }
5417
5418 if (wc->stage == DROP_REFERENCE) {
5419 wc->drop_level = wc->level;
5420 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5421 &wc->drop_progress,
5422 path->slots[wc->drop_level]);
5423 }
5424 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5425 &wc->drop_progress);
5426 root_item->drop_level = wc->drop_level;
5427
5428 BUG_ON(wc->level == 0);
5429 if (btrfs_should_end_transaction(trans) ||
5430 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5431 ret = btrfs_update_root(trans, tree_root,
5432 &root->root_key,
5433 root_item);
5434 if (ret) {
5435 btrfs_abort_transaction(trans, ret);
5436 err = ret;
5437 goto out_end_trans;
5438 }
5439
5440 btrfs_end_transaction_throttle(trans);
5441 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5442 btrfs_debug(fs_info,
5443 "drop snapshot early exit");
5444 err = -EAGAIN;
5445 goto out_free;
5446 }
5447
5448 trans = btrfs_start_transaction(tree_root, 0);
5449 if (IS_ERR(trans)) {
5450 err = PTR_ERR(trans);
5451 goto out_free;
5452 }
5453 }
5454 }
5455 btrfs_release_path(path);
5456 if (err)
5457 goto out_end_trans;
5458
5459 ret = btrfs_del_root(trans, &root->root_key);
5460 if (ret) {
5461 btrfs_abort_transaction(trans, ret);
5462 err = ret;
5463 goto out_end_trans;
5464 }
5465
5466 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5467 ret = btrfs_find_root(tree_root, &root->root_key, path,
5468 NULL, NULL);
5469 if (ret < 0) {
5470 btrfs_abort_transaction(trans, ret);
5471 err = ret;
5472 goto out_end_trans;
5473 } else if (ret > 0) {
5474 /* if we fail to delete the orphan item this time
5475 * around, it'll get picked up the next time.
5476 *
5477 * The most common failure here is just -ENOENT.
5478 */
5479 btrfs_del_orphan_item(trans, tree_root,
5480 root->root_key.objectid);
5481 }
5482 }
5483
5484 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5485 btrfs_add_dropped_root(trans, root);
5486 else
5487 btrfs_put_root(root);
5488 root_dropped = true;
5489 out_end_trans:
5490 btrfs_end_transaction_throttle(trans);
5491 out_free:
5492 kfree(wc);
5493 btrfs_free_path(path);
5494 out:
5495 /*
5496 * So if we need to stop dropping the snapshot for whatever reason we
5497 * need to make sure to add it back to the dead root list so that we
5498 * keep trying to do the work later. This also cleans up roots if we
5499 * don't have it in the radix (like when we recover after a power fail
5500 * or unmount) so we don't leak memory.
5501 */
5502 if (!for_reloc && !root_dropped)
5503 btrfs_add_dead_root(root);
5504 if (err && err != -EAGAIN)
5505 btrfs_handle_fs_error(fs_info, err, NULL);
5506 return err;
5507 }
5508
5509 /*
5510 * drop subtree rooted at tree block 'node'.
5511 *
5512 * NOTE: this function will unlock and release tree block 'node'
5513 * only used by relocation code
5514 */
5515 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5516 struct btrfs_root *root,
5517 struct extent_buffer *node,
5518 struct extent_buffer *parent)
5519 {
5520 struct btrfs_fs_info *fs_info = root->fs_info;
5521 struct btrfs_path *path;
5522 struct walk_control *wc;
5523 int level;
5524 int parent_level;
5525 int ret = 0;
5526 int wret;
5527
5528 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5529
5530 path = btrfs_alloc_path();
5531 if (!path)
5532 return -ENOMEM;
5533
5534 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5535 if (!wc) {
5536 btrfs_free_path(path);
5537 return -ENOMEM;
5538 }
5539
5540 btrfs_assert_tree_locked(parent);
5541 parent_level = btrfs_header_level(parent);
5542 atomic_inc(&parent->refs);
5543 path->nodes[parent_level] = parent;
5544 path->slots[parent_level] = btrfs_header_nritems(parent);
5545
5546 btrfs_assert_tree_locked(node);
5547 level = btrfs_header_level(node);
5548 path->nodes[level] = node;
5549 path->slots[level] = 0;
5550 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5551
5552 wc->refs[parent_level] = 1;
5553 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5554 wc->level = level;
5555 wc->shared_level = -1;
5556 wc->stage = DROP_REFERENCE;
5557 wc->update_ref = 0;
5558 wc->keep_locks = 1;
5559 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5560
5561 while (1) {
5562 wret = walk_down_tree(trans, root, path, wc);
5563 if (wret < 0) {
5564 ret = wret;
5565 break;
5566 }
5567
5568 wret = walk_up_tree(trans, root, path, wc, parent_level);
5569 if (wret < 0)
5570 ret = wret;
5571 if (wret != 0)
5572 break;
5573 }
5574
5575 kfree(wc);
5576 btrfs_free_path(path);
5577 return ret;
5578 }
5579
5580 /*
5581 * helper to account the unused space of all the readonly block group in the
5582 * space_info. takes mirrors into account.
5583 */
5584 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5585 {
5586 struct btrfs_block_group *block_group;
5587 u64 free_bytes = 0;
5588 int factor;
5589
5590 /* It's df, we don't care if it's racy */
5591 if (list_empty(&sinfo->ro_bgs))
5592 return 0;
5593
5594 spin_lock(&sinfo->lock);
5595 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5596 spin_lock(&block_group->lock);
5597
5598 if (!block_group->ro) {
5599 spin_unlock(&block_group->lock);
5600 continue;
5601 }
5602
5603 factor = btrfs_bg_type_to_factor(block_group->flags);
5604 free_bytes += (block_group->length -
5605 block_group->used) * factor;
5606
5607 spin_unlock(&block_group->lock);
5608 }
5609 spin_unlock(&sinfo->lock);
5610
5611 return free_bytes;
5612 }
5613
5614 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5615 u64 start, u64 end)
5616 {
5617 return unpin_extent_range(fs_info, start, end, false);
5618 }
5619
5620 /*
5621 * It used to be that old block groups would be left around forever.
5622 * Iterating over them would be enough to trim unused space. Since we
5623 * now automatically remove them, we also need to iterate over unallocated
5624 * space.
5625 *
5626 * We don't want a transaction for this since the discard may take a
5627 * substantial amount of time. We don't require that a transaction be
5628 * running, but we do need to take a running transaction into account
5629 * to ensure that we're not discarding chunks that were released or
5630 * allocated in the current transaction.
5631 *
5632 * Holding the chunks lock will prevent other threads from allocating
5633 * or releasing chunks, but it won't prevent a running transaction
5634 * from committing and releasing the memory that the pending chunks
5635 * list head uses. For that, we need to take a reference to the
5636 * transaction and hold the commit root sem. We only need to hold
5637 * it while performing the free space search since we have already
5638 * held back allocations.
5639 */
5640 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5641 {
5642 u64 start = SZ_1M, len = 0, end = 0;
5643 int ret;
5644
5645 *trimmed = 0;
5646
5647 /* Discard not supported = nothing to do. */
5648 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5649 return 0;
5650
5651 /* Not writable = nothing to do. */
5652 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5653 return 0;
5654
5655 /* No free space = nothing to do. */
5656 if (device->total_bytes <= device->bytes_used)
5657 return 0;
5658
5659 ret = 0;
5660
5661 while (1) {
5662 struct btrfs_fs_info *fs_info = device->fs_info;
5663 u64 bytes;
5664
5665 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5666 if (ret)
5667 break;
5668
5669 find_first_clear_extent_bit(&device->alloc_state, start,
5670 &start, &end,
5671 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5672
5673 /* Ensure we skip the reserved area in the first 1M */
5674 start = max_t(u64, start, SZ_1M);
5675
5676 /*
5677 * If find_first_clear_extent_bit find a range that spans the
5678 * end of the device it will set end to -1, in this case it's up
5679 * to the caller to trim the value to the size of the device.
5680 */
5681 end = min(end, device->total_bytes - 1);
5682
5683 len = end - start + 1;
5684
5685 /* We didn't find any extents */
5686 if (!len) {
5687 mutex_unlock(&fs_info->chunk_mutex);
5688 ret = 0;
5689 break;
5690 }
5691
5692 ret = btrfs_issue_discard(device->bdev, start, len,
5693 &bytes);
5694 if (!ret)
5695 set_extent_bits(&device->alloc_state, start,
5696 start + bytes - 1,
5697 CHUNK_TRIMMED);
5698 mutex_unlock(&fs_info->chunk_mutex);
5699
5700 if (ret)
5701 break;
5702
5703 start += len;
5704 *trimmed += bytes;
5705
5706 if (fatal_signal_pending(current)) {
5707 ret = -ERESTARTSYS;
5708 break;
5709 }
5710
5711 cond_resched();
5712 }
5713
5714 return ret;
5715 }
5716
5717 /*
5718 * Trim the whole filesystem by:
5719 * 1) trimming the free space in each block group
5720 * 2) trimming the unallocated space on each device
5721 *
5722 * This will also continue trimming even if a block group or device encounters
5723 * an error. The return value will be the last error, or 0 if nothing bad
5724 * happens.
5725 */
5726 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5727 {
5728 struct btrfs_block_group *cache = NULL;
5729 struct btrfs_device *device;
5730 struct list_head *devices;
5731 u64 group_trimmed;
5732 u64 range_end = U64_MAX;
5733 u64 start;
5734 u64 end;
5735 u64 trimmed = 0;
5736 u64 bg_failed = 0;
5737 u64 dev_failed = 0;
5738 int bg_ret = 0;
5739 int dev_ret = 0;
5740 int ret = 0;
5741
5742 /*
5743 * Check range overflow if range->len is set.
5744 * The default range->len is U64_MAX.
5745 */
5746 if (range->len != U64_MAX &&
5747 check_add_overflow(range->start, range->len, &range_end))
5748 return -EINVAL;
5749
5750 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5751 for (; cache; cache = btrfs_next_block_group(cache)) {
5752 if (cache->start >= range_end) {
5753 btrfs_put_block_group(cache);
5754 break;
5755 }
5756
5757 start = max(range->start, cache->start);
5758 end = min(range_end, cache->start + cache->length);
5759
5760 if (end - start >= range->minlen) {
5761 if (!btrfs_block_group_done(cache)) {
5762 ret = btrfs_cache_block_group(cache, 0);
5763 if (ret) {
5764 bg_failed++;
5765 bg_ret = ret;
5766 continue;
5767 }
5768 ret = btrfs_wait_block_group_cache_done(cache);
5769 if (ret) {
5770 bg_failed++;
5771 bg_ret = ret;
5772 continue;
5773 }
5774 }
5775 ret = btrfs_trim_block_group(cache,
5776 &group_trimmed,
5777 start,
5778 end,
5779 range->minlen);
5780
5781 trimmed += group_trimmed;
5782 if (ret) {
5783 bg_failed++;
5784 bg_ret = ret;
5785 continue;
5786 }
5787 }
5788 }
5789
5790 if (bg_failed)
5791 btrfs_warn(fs_info,
5792 "failed to trim %llu block group(s), last error %d",
5793 bg_failed, bg_ret);
5794 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5795 devices = &fs_info->fs_devices->devices;
5796 list_for_each_entry(device, devices, dev_list) {
5797 ret = btrfs_trim_free_extents(device, &group_trimmed);
5798 if (ret) {
5799 dev_failed++;
5800 dev_ret = ret;
5801 break;
5802 }
5803
5804 trimmed += group_trimmed;
5805 }
5806 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5807
5808 if (dev_failed)
5809 btrfs_warn(fs_info,
5810 "failed to trim %llu device(s), last error %d",
5811 dev_failed, dev_ret);
5812 range->len = trimmed;
5813 if (bg_ret)
5814 return bg_ret;
5815 return dev_ret;
5816 }