]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
btrfs: Convert fs_info->free_chunk_space to atomic64_t
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134
135 /*
136 * If not empty, someone is still holding mutex of
137 * full_stripe_lock, which can only be released by caller.
138 * And it will definitely cause use-after-free when caller
139 * tries to release full stripe lock.
140 *
141 * No better way to resolve, but only to warn.
142 */
143 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
144 kfree(cache->free_space_ctl);
145 kfree(cache);
146 }
147 }
148
149 /*
150 * this adds the block group to the fs_info rb tree for the block group
151 * cache
152 */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 struct btrfs_block_group_cache *block_group)
155 {
156 struct rb_node **p;
157 struct rb_node *parent = NULL;
158 struct btrfs_block_group_cache *cache;
159
160 spin_lock(&info->block_group_cache_lock);
161 p = &info->block_group_cache_tree.rb_node;
162
163 while (*p) {
164 parent = *p;
165 cache = rb_entry(parent, struct btrfs_block_group_cache,
166 cache_node);
167 if (block_group->key.objectid < cache->key.objectid) {
168 p = &(*p)->rb_left;
169 } else if (block_group->key.objectid > cache->key.objectid) {
170 p = &(*p)->rb_right;
171 } else {
172 spin_unlock(&info->block_group_cache_lock);
173 return -EEXIST;
174 }
175 }
176
177 rb_link_node(&block_group->cache_node, parent, p);
178 rb_insert_color(&block_group->cache_node,
179 &info->block_group_cache_tree);
180
181 if (info->first_logical_byte > block_group->key.objectid)
182 info->first_logical_byte = block_group->key.objectid;
183
184 spin_unlock(&info->block_group_cache_lock);
185
186 return 0;
187 }
188
189 /*
190 * This will return the block group at or after bytenr if contains is 0, else
191 * it will return the block group that contains the bytenr
192 */
193 static struct btrfs_block_group_cache *
194 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
195 int contains)
196 {
197 struct btrfs_block_group_cache *cache, *ret = NULL;
198 struct rb_node *n;
199 u64 end, start;
200
201 spin_lock(&info->block_group_cache_lock);
202 n = info->block_group_cache_tree.rb_node;
203
204 while (n) {
205 cache = rb_entry(n, struct btrfs_block_group_cache,
206 cache_node);
207 end = cache->key.objectid + cache->key.offset - 1;
208 start = cache->key.objectid;
209
210 if (bytenr < start) {
211 if (!contains && (!ret || start < ret->key.objectid))
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
227 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
228 info->first_logical_byte = ret->key.objectid;
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233 }
234
235 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
236 u64 start, u64 num_bytes)
237 {
238 u64 end = start + num_bytes - 1;
239 set_extent_bits(&fs_info->freed_extents[0],
240 start, end, EXTENT_UPTODATE);
241 set_extent_bits(&fs_info->freed_extents[1],
242 start, end, EXTENT_UPTODATE);
243 return 0;
244 }
245
246 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
247 struct btrfs_block_group_cache *cache)
248 {
249 u64 start, end;
250
251 start = cache->key.objectid;
252 end = start + cache->key.offset - 1;
253
254 clear_extent_bits(&fs_info->freed_extents[0],
255 start, end, EXTENT_UPTODATE);
256 clear_extent_bits(&fs_info->freed_extents[1],
257 start, end, EXTENT_UPTODATE);
258 }
259
260 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
261 struct btrfs_block_group_cache *cache)
262 {
263 u64 bytenr;
264 u64 *logical;
265 int stripe_len;
266 int i, nr, ret;
267
268 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
269 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
270 cache->bytes_super += stripe_len;
271 ret = add_excluded_extent(fs_info, cache->key.objectid,
272 stripe_len);
273 if (ret)
274 return ret;
275 }
276
277 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
278 bytenr = btrfs_sb_offset(i);
279 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
280 bytenr, 0, &logical, &nr, &stripe_len);
281 if (ret)
282 return ret;
283
284 while (nr--) {
285 u64 start, len;
286
287 if (logical[nr] > cache->key.objectid +
288 cache->key.offset)
289 continue;
290
291 if (logical[nr] + stripe_len <= cache->key.objectid)
292 continue;
293
294 start = logical[nr];
295 if (start < cache->key.objectid) {
296 start = cache->key.objectid;
297 len = (logical[nr] + stripe_len) - start;
298 } else {
299 len = min_t(u64, stripe_len,
300 cache->key.objectid +
301 cache->key.offset - start);
302 }
303
304 cache->bytes_super += len;
305 ret = add_excluded_extent(fs_info, start, len);
306 if (ret) {
307 kfree(logical);
308 return ret;
309 }
310 }
311
312 kfree(logical);
313 }
314 return 0;
315 }
316
317 static struct btrfs_caching_control *
318 get_caching_control(struct btrfs_block_group_cache *cache)
319 {
320 struct btrfs_caching_control *ctl;
321
322 spin_lock(&cache->lock);
323 if (!cache->caching_ctl) {
324 spin_unlock(&cache->lock);
325 return NULL;
326 }
327
328 ctl = cache->caching_ctl;
329 refcount_inc(&ctl->count);
330 spin_unlock(&cache->lock);
331 return ctl;
332 }
333
334 static void put_caching_control(struct btrfs_caching_control *ctl)
335 {
336 if (refcount_dec_and_test(&ctl->count))
337 kfree(ctl);
338 }
339
340 #ifdef CONFIG_BTRFS_DEBUG
341 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
342 {
343 struct btrfs_fs_info *fs_info = block_group->fs_info;
344 u64 start = block_group->key.objectid;
345 u64 len = block_group->key.offset;
346 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
347 fs_info->nodesize : fs_info->sectorsize;
348 u64 step = chunk << 1;
349
350 while (len > chunk) {
351 btrfs_remove_free_space(block_group, start, chunk);
352 start += step;
353 if (len < step)
354 len = 0;
355 else
356 len -= step;
357 }
358 }
359 #endif
360
361 /*
362 * this is only called by cache_block_group, since we could have freed extents
363 * we need to check the pinned_extents for any extents that can't be used yet
364 * since their free space will be released as soon as the transaction commits.
365 */
366 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
367 struct btrfs_fs_info *info, u64 start, u64 end)
368 {
369 u64 extent_start, extent_end, size, total_added = 0;
370 int ret;
371
372 while (start < end) {
373 ret = find_first_extent_bit(info->pinned_extents, start,
374 &extent_start, &extent_end,
375 EXTENT_DIRTY | EXTENT_UPTODATE,
376 NULL);
377 if (ret)
378 break;
379
380 if (extent_start <= start) {
381 start = extent_end + 1;
382 } else if (extent_start > start && extent_start < end) {
383 size = extent_start - start;
384 total_added += size;
385 ret = btrfs_add_free_space(block_group, start,
386 size);
387 BUG_ON(ret); /* -ENOMEM or logic error */
388 start = extent_end + 1;
389 } else {
390 break;
391 }
392 }
393
394 if (start < end) {
395 size = end - start;
396 total_added += size;
397 ret = btrfs_add_free_space(block_group, start, size);
398 BUG_ON(ret); /* -ENOMEM or logic error */
399 }
400
401 return total_added;
402 }
403
404 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
405 {
406 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
407 struct btrfs_fs_info *fs_info = block_group->fs_info;
408 struct btrfs_root *extent_root = fs_info->extent_root;
409 struct btrfs_path *path;
410 struct extent_buffer *leaf;
411 struct btrfs_key key;
412 u64 total_found = 0;
413 u64 last = 0;
414 u32 nritems;
415 int ret;
416 bool wakeup = true;
417
418 path = btrfs_alloc_path();
419 if (!path)
420 return -ENOMEM;
421
422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425 /*
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
428 * the free space.
429 */
430 if (btrfs_should_fragment_free_space(block_group))
431 wakeup = false;
432 #endif
433 /*
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
438 */
439 path->skip_locking = 1;
440 path->search_commit_root = 1;
441 path->reada = READA_FORWARD;
442
443 key.objectid = last;
444 key.offset = 0;
445 key.type = BTRFS_EXTENT_ITEM_KEY;
446
447 next:
448 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
449 if (ret < 0)
450 goto out;
451
452 leaf = path->nodes[0];
453 nritems = btrfs_header_nritems(leaf);
454
455 while (1) {
456 if (btrfs_fs_closing(fs_info) > 1) {
457 last = (u64)-1;
458 break;
459 }
460
461 if (path->slots[0] < nritems) {
462 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463 } else {
464 ret = find_next_key(path, 0, &key);
465 if (ret)
466 break;
467
468 if (need_resched() ||
469 rwsem_is_contended(&fs_info->commit_root_sem)) {
470 if (wakeup)
471 caching_ctl->progress = last;
472 btrfs_release_path(path);
473 up_read(&fs_info->commit_root_sem);
474 mutex_unlock(&caching_ctl->mutex);
475 cond_resched();
476 mutex_lock(&caching_ctl->mutex);
477 down_read(&fs_info->commit_root_sem);
478 goto next;
479 }
480
481 ret = btrfs_next_leaf(extent_root, path);
482 if (ret < 0)
483 goto out;
484 if (ret)
485 break;
486 leaf = path->nodes[0];
487 nritems = btrfs_header_nritems(leaf);
488 continue;
489 }
490
491 if (key.objectid < last) {
492 key.objectid = last;
493 key.offset = 0;
494 key.type = BTRFS_EXTENT_ITEM_KEY;
495
496 if (wakeup)
497 caching_ctl->progress = last;
498 btrfs_release_path(path);
499 goto next;
500 }
501
502 if (key.objectid < block_group->key.objectid) {
503 path->slots[0]++;
504 continue;
505 }
506
507 if (key.objectid >= block_group->key.objectid +
508 block_group->key.offset)
509 break;
510
511 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
512 key.type == BTRFS_METADATA_ITEM_KEY) {
513 total_found += add_new_free_space(block_group,
514 fs_info, last,
515 key.objectid);
516 if (key.type == BTRFS_METADATA_ITEM_KEY)
517 last = key.objectid +
518 fs_info->nodesize;
519 else
520 last = key.objectid + key.offset;
521
522 if (total_found > CACHING_CTL_WAKE_UP) {
523 total_found = 0;
524 if (wakeup)
525 wake_up(&caching_ctl->wait);
526 }
527 }
528 path->slots[0]++;
529 }
530 ret = 0;
531
532 total_found += add_new_free_space(block_group, fs_info, last,
533 block_group->key.objectid +
534 block_group->key.offset);
535 caching_ctl->progress = (u64)-1;
536
537 out:
538 btrfs_free_path(path);
539 return ret;
540 }
541
542 static noinline void caching_thread(struct btrfs_work *work)
543 {
544 struct btrfs_block_group_cache *block_group;
545 struct btrfs_fs_info *fs_info;
546 struct btrfs_caching_control *caching_ctl;
547 struct btrfs_root *extent_root;
548 int ret;
549
550 caching_ctl = container_of(work, struct btrfs_caching_control, work);
551 block_group = caching_ctl->block_group;
552 fs_info = block_group->fs_info;
553 extent_root = fs_info->extent_root;
554
555 mutex_lock(&caching_ctl->mutex);
556 down_read(&fs_info->commit_root_sem);
557
558 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
559 ret = load_free_space_tree(caching_ctl);
560 else
561 ret = load_extent_tree_free(caching_ctl);
562
563 spin_lock(&block_group->lock);
564 block_group->caching_ctl = NULL;
565 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
566 spin_unlock(&block_group->lock);
567
568 #ifdef CONFIG_BTRFS_DEBUG
569 if (btrfs_should_fragment_free_space(block_group)) {
570 u64 bytes_used;
571
572 spin_lock(&block_group->space_info->lock);
573 spin_lock(&block_group->lock);
574 bytes_used = block_group->key.offset -
575 btrfs_block_group_used(&block_group->item);
576 block_group->space_info->bytes_used += bytes_used >> 1;
577 spin_unlock(&block_group->lock);
578 spin_unlock(&block_group->space_info->lock);
579 fragment_free_space(block_group);
580 }
581 #endif
582
583 caching_ctl->progress = (u64)-1;
584
585 up_read(&fs_info->commit_root_sem);
586 free_excluded_extents(fs_info, block_group);
587 mutex_unlock(&caching_ctl->mutex);
588
589 wake_up(&caching_ctl->wait);
590
591 put_caching_control(caching_ctl);
592 btrfs_put_block_group(block_group);
593 }
594
595 static int cache_block_group(struct btrfs_block_group_cache *cache,
596 int load_cache_only)
597 {
598 DEFINE_WAIT(wait);
599 struct btrfs_fs_info *fs_info = cache->fs_info;
600 struct btrfs_caching_control *caching_ctl;
601 int ret = 0;
602
603 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
604 if (!caching_ctl)
605 return -ENOMEM;
606
607 INIT_LIST_HEAD(&caching_ctl->list);
608 mutex_init(&caching_ctl->mutex);
609 init_waitqueue_head(&caching_ctl->wait);
610 caching_ctl->block_group = cache;
611 caching_ctl->progress = cache->key.objectid;
612 refcount_set(&caching_ctl->count, 1);
613 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
614 caching_thread, NULL, NULL);
615
616 spin_lock(&cache->lock);
617 /*
618 * This should be a rare occasion, but this could happen I think in the
619 * case where one thread starts to load the space cache info, and then
620 * some other thread starts a transaction commit which tries to do an
621 * allocation while the other thread is still loading the space cache
622 * info. The previous loop should have kept us from choosing this block
623 * group, but if we've moved to the state where we will wait on caching
624 * block groups we need to first check if we're doing a fast load here,
625 * so we can wait for it to finish, otherwise we could end up allocating
626 * from a block group who's cache gets evicted for one reason or
627 * another.
628 */
629 while (cache->cached == BTRFS_CACHE_FAST) {
630 struct btrfs_caching_control *ctl;
631
632 ctl = cache->caching_ctl;
633 refcount_inc(&ctl->count);
634 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
635 spin_unlock(&cache->lock);
636
637 schedule();
638
639 finish_wait(&ctl->wait, &wait);
640 put_caching_control(ctl);
641 spin_lock(&cache->lock);
642 }
643
644 if (cache->cached != BTRFS_CACHE_NO) {
645 spin_unlock(&cache->lock);
646 kfree(caching_ctl);
647 return 0;
648 }
649 WARN_ON(cache->caching_ctl);
650 cache->caching_ctl = caching_ctl;
651 cache->cached = BTRFS_CACHE_FAST;
652 spin_unlock(&cache->lock);
653
654 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
655 mutex_lock(&caching_ctl->mutex);
656 ret = load_free_space_cache(fs_info, cache);
657
658 spin_lock(&cache->lock);
659 if (ret == 1) {
660 cache->caching_ctl = NULL;
661 cache->cached = BTRFS_CACHE_FINISHED;
662 cache->last_byte_to_unpin = (u64)-1;
663 caching_ctl->progress = (u64)-1;
664 } else {
665 if (load_cache_only) {
666 cache->caching_ctl = NULL;
667 cache->cached = BTRFS_CACHE_NO;
668 } else {
669 cache->cached = BTRFS_CACHE_STARTED;
670 cache->has_caching_ctl = 1;
671 }
672 }
673 spin_unlock(&cache->lock);
674 #ifdef CONFIG_BTRFS_DEBUG
675 if (ret == 1 &&
676 btrfs_should_fragment_free_space(cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(cache);
687 }
688 #endif
689 mutex_unlock(&caching_ctl->mutex);
690
691 wake_up(&caching_ctl->wait);
692 if (ret == 1) {
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info, cache);
695 return 0;
696 }
697 } else {
698 /*
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
712 }
713
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
716 return 0;
717 }
718
719 down_write(&fs_info->commit_root_sem);
720 refcount_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
723
724 btrfs_get_block_group(cache);
725
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728 return ret;
729 }
730
731 /*
732 * return the block group that starts at or after bytenr
733 */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 return block_group_cache_tree_search(info, bytenr, 0);
738 }
739
740 /*
741 * return the block group that contains the given bytenr
742 */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
746 {
747 return block_group_cache_tree_search(info, bytenr, 1);
748 }
749
750 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
751 u64 flags)
752 {
753 struct list_head *head = &info->space_info;
754 struct btrfs_space_info *found;
755
756 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
757
758 rcu_read_lock();
759 list_for_each_entry_rcu(found, head, list) {
760 if (found->flags & flags) {
761 rcu_read_unlock();
762 return found;
763 }
764 }
765 rcu_read_unlock();
766 return NULL;
767 }
768
769 /*
770 * after adding space to the filesystem, we need to clear the full flags
771 * on all the space infos.
772 */
773 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
774 {
775 struct list_head *head = &info->space_info;
776 struct btrfs_space_info *found;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(found, head, list)
780 found->full = 0;
781 rcu_read_unlock();
782 }
783
784 /* simple helper to search for an existing data extent at a given offset */
785 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
786 {
787 int ret;
788 struct btrfs_key key;
789 struct btrfs_path *path;
790
791 path = btrfs_alloc_path();
792 if (!path)
793 return -ENOMEM;
794
795 key.objectid = start;
796 key.offset = len;
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
799 btrfs_free_path(path);
800 return ret;
801 }
802
803 /*
804 * helper function to lookup reference count and flags of a tree block.
805 *
806 * the head node for delayed ref is used to store the sum of all the
807 * reference count modifications queued up in the rbtree. the head
808 * node may also store the extent flags to set. This way you can check
809 * to see what the reference count and extent flags would be if all of
810 * the delayed refs are not processed.
811 */
812 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
813 struct btrfs_fs_info *fs_info, u64 bytenr,
814 u64 offset, int metadata, u64 *refs, u64 *flags)
815 {
816 struct btrfs_delayed_ref_head *head;
817 struct btrfs_delayed_ref_root *delayed_refs;
818 struct btrfs_path *path;
819 struct btrfs_extent_item *ei;
820 struct extent_buffer *leaf;
821 struct btrfs_key key;
822 u32 item_size;
823 u64 num_refs;
824 u64 extent_flags;
825 int ret;
826
827 /*
828 * If we don't have skinny metadata, don't bother doing anything
829 * different
830 */
831 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
832 offset = fs_info->nodesize;
833 metadata = 0;
834 }
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return -ENOMEM;
839
840 if (!trans) {
841 path->skip_locking = 1;
842 path->search_commit_root = 1;
843 }
844
845 search_again:
846 key.objectid = bytenr;
847 key.offset = offset;
848 if (metadata)
849 key.type = BTRFS_METADATA_ITEM_KEY;
850 else
851 key.type = BTRFS_EXTENT_ITEM_KEY;
852
853 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
854 if (ret < 0)
855 goto out_free;
856
857 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
858 if (path->slots[0]) {
859 path->slots[0]--;
860 btrfs_item_key_to_cpu(path->nodes[0], &key,
861 path->slots[0]);
862 if (key.objectid == bytenr &&
863 key.type == BTRFS_EXTENT_ITEM_KEY &&
864 key.offset == fs_info->nodesize)
865 ret = 0;
866 }
867 }
868
869 if (ret == 0) {
870 leaf = path->nodes[0];
871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
872 if (item_size >= sizeof(*ei)) {
873 ei = btrfs_item_ptr(leaf, path->slots[0],
874 struct btrfs_extent_item);
875 num_refs = btrfs_extent_refs(leaf, ei);
876 extent_flags = btrfs_extent_flags(leaf, ei);
877 } else {
878 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
879 struct btrfs_extent_item_v0 *ei0;
880 BUG_ON(item_size != sizeof(*ei0));
881 ei0 = btrfs_item_ptr(leaf, path->slots[0],
882 struct btrfs_extent_item_v0);
883 num_refs = btrfs_extent_refs_v0(leaf, ei0);
884 /* FIXME: this isn't correct for data */
885 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
886 #else
887 BUG();
888 #endif
889 }
890 BUG_ON(num_refs == 0);
891 } else {
892 num_refs = 0;
893 extent_flags = 0;
894 ret = 0;
895 }
896
897 if (!trans)
898 goto out;
899
900 delayed_refs = &trans->transaction->delayed_refs;
901 spin_lock(&delayed_refs->lock);
902 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
903 if (head) {
904 if (!mutex_trylock(&head->mutex)) {
905 refcount_inc(&head->node.refs);
906 spin_unlock(&delayed_refs->lock);
907
908 btrfs_release_path(path);
909
910 /*
911 * Mutex was contended, block until it's released and try
912 * again
913 */
914 mutex_lock(&head->mutex);
915 mutex_unlock(&head->mutex);
916 btrfs_put_delayed_ref(&head->node);
917 goto search_again;
918 }
919 spin_lock(&head->lock);
920 if (head->extent_op && head->extent_op->update_flags)
921 extent_flags |= head->extent_op->flags_to_set;
922 else
923 BUG_ON(num_refs == 0);
924
925 num_refs += head->node.ref_mod;
926 spin_unlock(&head->lock);
927 mutex_unlock(&head->mutex);
928 }
929 spin_unlock(&delayed_refs->lock);
930 out:
931 WARN_ON(num_refs == 0);
932 if (refs)
933 *refs = num_refs;
934 if (flags)
935 *flags = extent_flags;
936 out_free:
937 btrfs_free_path(path);
938 return ret;
939 }
940
941 /*
942 * Back reference rules. Back refs have three main goals:
943 *
944 * 1) differentiate between all holders of references to an extent so that
945 * when a reference is dropped we can make sure it was a valid reference
946 * before freeing the extent.
947 *
948 * 2) Provide enough information to quickly find the holders of an extent
949 * if we notice a given block is corrupted or bad.
950 *
951 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
952 * maintenance. This is actually the same as #2, but with a slightly
953 * different use case.
954 *
955 * There are two kinds of back refs. The implicit back refs is optimized
956 * for pointers in non-shared tree blocks. For a given pointer in a block,
957 * back refs of this kind provide information about the block's owner tree
958 * and the pointer's key. These information allow us to find the block by
959 * b-tree searching. The full back refs is for pointers in tree blocks not
960 * referenced by their owner trees. The location of tree block is recorded
961 * in the back refs. Actually the full back refs is generic, and can be
962 * used in all cases the implicit back refs is used. The major shortcoming
963 * of the full back refs is its overhead. Every time a tree block gets
964 * COWed, we have to update back refs entry for all pointers in it.
965 *
966 * For a newly allocated tree block, we use implicit back refs for
967 * pointers in it. This means most tree related operations only involve
968 * implicit back refs. For a tree block created in old transaction, the
969 * only way to drop a reference to it is COW it. So we can detect the
970 * event that tree block loses its owner tree's reference and do the
971 * back refs conversion.
972 *
973 * When a tree block is COWed through a tree, there are four cases:
974 *
975 * The reference count of the block is one and the tree is the block's
976 * owner tree. Nothing to do in this case.
977 *
978 * The reference count of the block is one and the tree is not the
979 * block's owner tree. In this case, full back refs is used for pointers
980 * in the block. Remove these full back refs, add implicit back refs for
981 * every pointers in the new block.
982 *
983 * The reference count of the block is greater than one and the tree is
984 * the block's owner tree. In this case, implicit back refs is used for
985 * pointers in the block. Add full back refs for every pointers in the
986 * block, increase lower level extents' reference counts. The original
987 * implicit back refs are entailed to the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * not the block's owner tree. Add implicit back refs for every pointer in
991 * the new block, increase lower level extents' reference count.
992 *
993 * Back Reference Key composing:
994 *
995 * The key objectid corresponds to the first byte in the extent,
996 * The key type is used to differentiate between types of back refs.
997 * There are different meanings of the key offset for different types
998 * of back refs.
999 *
1000 * File extents can be referenced by:
1001 *
1002 * - multiple snapshots, subvolumes, or different generations in one subvol
1003 * - different files inside a single subvolume
1004 * - different offsets inside a file (bookend extents in file.c)
1005 *
1006 * The extent ref structure for the implicit back refs has fields for:
1007 *
1008 * - Objectid of the subvolume root
1009 * - objectid of the file holding the reference
1010 * - original offset in the file
1011 * - how many bookend extents
1012 *
1013 * The key offset for the implicit back refs is hash of the first
1014 * three fields.
1015 *
1016 * The extent ref structure for the full back refs has field for:
1017 *
1018 * - number of pointers in the tree leaf
1019 *
1020 * The key offset for the implicit back refs is the first byte of
1021 * the tree leaf
1022 *
1023 * When a file extent is allocated, The implicit back refs is used.
1024 * the fields are filled in:
1025 *
1026 * (root_key.objectid, inode objectid, offset in file, 1)
1027 *
1028 * When a file extent is removed file truncation, we find the
1029 * corresponding implicit back refs and check the following fields:
1030 *
1031 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1032 *
1033 * Btree extents can be referenced by:
1034 *
1035 * - Different subvolumes
1036 *
1037 * Both the implicit back refs and the full back refs for tree blocks
1038 * only consist of key. The key offset for the implicit back refs is
1039 * objectid of block's owner tree. The key offset for the full back refs
1040 * is the first byte of parent block.
1041 *
1042 * When implicit back refs is used, information about the lowest key and
1043 * level of the tree block are required. These information are stored in
1044 * tree block info structure.
1045 */
1046
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1049 struct btrfs_fs_info *fs_info,
1050 struct btrfs_path *path,
1051 u64 owner, u32 extra_size)
1052 {
1053 struct btrfs_root *root = fs_info->extent_root;
1054 struct btrfs_extent_item *item;
1055 struct btrfs_extent_item_v0 *ei0;
1056 struct btrfs_extent_ref_v0 *ref0;
1057 struct btrfs_tree_block_info *bi;
1058 struct extent_buffer *leaf;
1059 struct btrfs_key key;
1060 struct btrfs_key found_key;
1061 u32 new_size = sizeof(*item);
1062 u64 refs;
1063 int ret;
1064
1065 leaf = path->nodes[0];
1066 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1067
1068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1069 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1070 struct btrfs_extent_item_v0);
1071 refs = btrfs_extent_refs_v0(leaf, ei0);
1072
1073 if (owner == (u64)-1) {
1074 while (1) {
1075 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1076 ret = btrfs_next_leaf(root, path);
1077 if (ret < 0)
1078 return ret;
1079 BUG_ON(ret > 0); /* Corruption */
1080 leaf = path->nodes[0];
1081 }
1082 btrfs_item_key_to_cpu(leaf, &found_key,
1083 path->slots[0]);
1084 BUG_ON(key.objectid != found_key.objectid);
1085 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086 path->slots[0]++;
1087 continue;
1088 }
1089 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1090 struct btrfs_extent_ref_v0);
1091 owner = btrfs_ref_objectid_v0(leaf, ref0);
1092 break;
1093 }
1094 }
1095 btrfs_release_path(path);
1096
1097 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1098 new_size += sizeof(*bi);
1099
1100 new_size -= sizeof(*ei0);
1101 ret = btrfs_search_slot(trans, root, &key, path,
1102 new_size + extra_size, 1);
1103 if (ret < 0)
1104 return ret;
1105 BUG_ON(ret); /* Corruption */
1106
1107 btrfs_extend_item(fs_info, path, new_size);
1108
1109 leaf = path->nodes[0];
1110 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1111 btrfs_set_extent_refs(leaf, item, refs);
1112 /* FIXME: get real generation */
1113 btrfs_set_extent_generation(leaf, item, 0);
1114 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1115 btrfs_set_extent_flags(leaf, item,
1116 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1117 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1118 bi = (struct btrfs_tree_block_info *)(item + 1);
1119 /* FIXME: get first key of the block */
1120 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1121 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1122 } else {
1123 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1124 }
1125 btrfs_mark_buffer_dirty(leaf);
1126 return 0;
1127 }
1128 #endif
1129
1130 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1131 {
1132 u32 high_crc = ~(u32)0;
1133 u32 low_crc = ~(u32)0;
1134 __le64 lenum;
1135
1136 lenum = cpu_to_le64(root_objectid);
1137 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1138 lenum = cpu_to_le64(owner);
1139 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1140 lenum = cpu_to_le64(offset);
1141 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1142
1143 return ((u64)high_crc << 31) ^ (u64)low_crc;
1144 }
1145
1146 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1147 struct btrfs_extent_data_ref *ref)
1148 {
1149 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1150 btrfs_extent_data_ref_objectid(leaf, ref),
1151 btrfs_extent_data_ref_offset(leaf, ref));
1152 }
1153
1154 static int match_extent_data_ref(struct extent_buffer *leaf,
1155 struct btrfs_extent_data_ref *ref,
1156 u64 root_objectid, u64 owner, u64 offset)
1157 {
1158 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1159 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1160 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1161 return 0;
1162 return 1;
1163 }
1164
1165 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1166 struct btrfs_fs_info *fs_info,
1167 struct btrfs_path *path,
1168 u64 bytenr, u64 parent,
1169 u64 root_objectid,
1170 u64 owner, u64 offset)
1171 {
1172 struct btrfs_root *root = fs_info->extent_root;
1173 struct btrfs_key key;
1174 struct btrfs_extent_data_ref *ref;
1175 struct extent_buffer *leaf;
1176 u32 nritems;
1177 int ret;
1178 int recow;
1179 int err = -ENOENT;
1180
1181 key.objectid = bytenr;
1182 if (parent) {
1183 key.type = BTRFS_SHARED_DATA_REF_KEY;
1184 key.offset = parent;
1185 } else {
1186 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1187 key.offset = hash_extent_data_ref(root_objectid,
1188 owner, offset);
1189 }
1190 again:
1191 recow = 0;
1192 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1193 if (ret < 0) {
1194 err = ret;
1195 goto fail;
1196 }
1197
1198 if (parent) {
1199 if (!ret)
1200 return 0;
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 key.type = BTRFS_EXTENT_REF_V0_KEY;
1203 btrfs_release_path(path);
1204 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1205 if (ret < 0) {
1206 err = ret;
1207 goto fail;
1208 }
1209 if (!ret)
1210 return 0;
1211 #endif
1212 goto fail;
1213 }
1214
1215 leaf = path->nodes[0];
1216 nritems = btrfs_header_nritems(leaf);
1217 while (1) {
1218 if (path->slots[0] >= nritems) {
1219 ret = btrfs_next_leaf(root, path);
1220 if (ret < 0)
1221 err = ret;
1222 if (ret)
1223 goto fail;
1224
1225 leaf = path->nodes[0];
1226 nritems = btrfs_header_nritems(leaf);
1227 recow = 1;
1228 }
1229
1230 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1231 if (key.objectid != bytenr ||
1232 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1233 goto fail;
1234
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset)) {
1240 if (recow) {
1241 btrfs_release_path(path);
1242 goto again;
1243 }
1244 err = 0;
1245 break;
1246 }
1247 path->slots[0]++;
1248 }
1249 fail:
1250 return err;
1251 }
1252
1253 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1255 struct btrfs_path *path,
1256 u64 bytenr, u64 parent,
1257 u64 root_objectid, u64 owner,
1258 u64 offset, int refs_to_add)
1259 {
1260 struct btrfs_root *root = fs_info->extent_root;
1261 struct btrfs_key key;
1262 struct extent_buffer *leaf;
1263 u32 size;
1264 u32 num_refs;
1265 int ret;
1266
1267 key.objectid = bytenr;
1268 if (parent) {
1269 key.type = BTRFS_SHARED_DATA_REF_KEY;
1270 key.offset = parent;
1271 size = sizeof(struct btrfs_shared_data_ref);
1272 } else {
1273 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1274 key.offset = hash_extent_data_ref(root_objectid,
1275 owner, offset);
1276 size = sizeof(struct btrfs_extent_data_ref);
1277 }
1278
1279 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1280 if (ret && ret != -EEXIST)
1281 goto fail;
1282
1283 leaf = path->nodes[0];
1284 if (parent) {
1285 struct btrfs_shared_data_ref *ref;
1286 ref = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_shared_data_ref);
1288 if (ret == 0) {
1289 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1290 } else {
1291 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1292 num_refs += refs_to_add;
1293 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1294 }
1295 } else {
1296 struct btrfs_extent_data_ref *ref;
1297 while (ret == -EEXIST) {
1298 ref = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_extent_data_ref);
1300 if (match_extent_data_ref(leaf, ref, root_objectid,
1301 owner, offset))
1302 break;
1303 btrfs_release_path(path);
1304 key.offset++;
1305 ret = btrfs_insert_empty_item(trans, root, path, &key,
1306 size);
1307 if (ret && ret != -EEXIST)
1308 goto fail;
1309
1310 leaf = path->nodes[0];
1311 }
1312 ref = btrfs_item_ptr(leaf, path->slots[0],
1313 struct btrfs_extent_data_ref);
1314 if (ret == 0) {
1315 btrfs_set_extent_data_ref_root(leaf, ref,
1316 root_objectid);
1317 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1318 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1319 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1320 } else {
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1322 num_refs += refs_to_add;
1323 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1324 }
1325 }
1326 btrfs_mark_buffer_dirty(leaf);
1327 ret = 0;
1328 fail:
1329 btrfs_release_path(path);
1330 return ret;
1331 }
1332
1333 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info,
1335 struct btrfs_path *path,
1336 int refs_to_drop, int *last_ref)
1337 {
1338 struct btrfs_key key;
1339 struct btrfs_extent_data_ref *ref1 = NULL;
1340 struct btrfs_shared_data_ref *ref2 = NULL;
1341 struct extent_buffer *leaf;
1342 u32 num_refs = 0;
1343 int ret = 0;
1344
1345 leaf = path->nodes[0];
1346 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1347
1348 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 BUG();
1365 }
1366
1367 BUG_ON(num_refs < refs_to_drop);
1368 num_refs -= refs_to_drop;
1369
1370 if (num_refs == 0) {
1371 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1372 *last_ref = 1;
1373 } else {
1374 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1375 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1376 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1377 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1378 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1379 else {
1380 struct btrfs_extent_ref_v0 *ref0;
1381 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_ref_v0);
1383 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1384 }
1385 #endif
1386 btrfs_mark_buffer_dirty(leaf);
1387 }
1388 return ret;
1389 }
1390
1391 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1392 struct btrfs_extent_inline_ref *iref)
1393 {
1394 struct btrfs_key key;
1395 struct extent_buffer *leaf;
1396 struct btrfs_extent_data_ref *ref1;
1397 struct btrfs_shared_data_ref *ref2;
1398 u32 num_refs = 0;
1399
1400 leaf = path->nodes[0];
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 if (iref) {
1403 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1404 BTRFS_EXTENT_DATA_REF_KEY) {
1405 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else {
1408 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 }
1411 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_data_ref);
1414 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1416 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1417 struct btrfs_shared_data_ref);
1418 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1420 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1421 struct btrfs_extent_ref_v0 *ref0;
1422 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_extent_ref_v0);
1424 num_refs = btrfs_ref_count_v0(leaf, ref0);
1425 #endif
1426 } else {
1427 WARN_ON(1);
1428 }
1429 return num_refs;
1430 }
1431
1432 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1433 struct btrfs_fs_info *fs_info,
1434 struct btrfs_path *path,
1435 u64 bytenr, u64 parent,
1436 u64 root_objectid)
1437 {
1438 struct btrfs_root *root = fs_info->extent_root;
1439 struct btrfs_key key;
1440 int ret;
1441
1442 key.objectid = bytenr;
1443 if (parent) {
1444 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 key.offset = parent;
1446 } else {
1447 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1448 key.offset = root_objectid;
1449 }
1450
1451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1452 if (ret > 0)
1453 ret = -ENOENT;
1454 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1455 if (ret == -ENOENT && parent) {
1456 btrfs_release_path(path);
1457 key.type = BTRFS_EXTENT_REF_V0_KEY;
1458 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1459 if (ret > 0)
1460 ret = -ENOENT;
1461 }
1462 #endif
1463 return ret;
1464 }
1465
1466 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1467 struct btrfs_fs_info *fs_info,
1468 struct btrfs_path *path,
1469 u64 bytenr, u64 parent,
1470 u64 root_objectid)
1471 {
1472 struct btrfs_key key;
1473 int ret;
1474
1475 key.objectid = bytenr;
1476 if (parent) {
1477 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1478 key.offset = parent;
1479 } else {
1480 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1481 key.offset = root_objectid;
1482 }
1483
1484 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1485 path, &key, 0);
1486 btrfs_release_path(path);
1487 return ret;
1488 }
1489
1490 static inline int extent_ref_type(u64 parent, u64 owner)
1491 {
1492 int type;
1493 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1494 if (parent > 0)
1495 type = BTRFS_SHARED_BLOCK_REF_KEY;
1496 else
1497 type = BTRFS_TREE_BLOCK_REF_KEY;
1498 } else {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_DATA_REF_KEY;
1501 else
1502 type = BTRFS_EXTENT_DATA_REF_KEY;
1503 }
1504 return type;
1505 }
1506
1507 static int find_next_key(struct btrfs_path *path, int level,
1508 struct btrfs_key *key)
1509
1510 {
1511 for (; level < BTRFS_MAX_LEVEL; level++) {
1512 if (!path->nodes[level])
1513 break;
1514 if (path->slots[level] + 1 >=
1515 btrfs_header_nritems(path->nodes[level]))
1516 continue;
1517 if (level == 0)
1518 btrfs_item_key_to_cpu(path->nodes[level], key,
1519 path->slots[level] + 1);
1520 else
1521 btrfs_node_key_to_cpu(path->nodes[level], key,
1522 path->slots[level] + 1);
1523 return 0;
1524 }
1525 return 1;
1526 }
1527
1528 /*
1529 * look for inline back ref. if back ref is found, *ref_ret is set
1530 * to the address of inline back ref, and 0 is returned.
1531 *
1532 * if back ref isn't found, *ref_ret is set to the address where it
1533 * should be inserted, and -ENOENT is returned.
1534 *
1535 * if insert is true and there are too many inline back refs, the path
1536 * points to the extent item, and -EAGAIN is returned.
1537 *
1538 * NOTE: inline back refs are ordered in the same way that back ref
1539 * items in the tree are ordered.
1540 */
1541 static noinline_for_stack
1542 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1543 struct btrfs_fs_info *fs_info,
1544 struct btrfs_path *path,
1545 struct btrfs_extent_inline_ref **ref_ret,
1546 u64 bytenr, u64 num_bytes,
1547 u64 parent, u64 root_objectid,
1548 u64 owner, u64 offset, int insert)
1549 {
1550 struct btrfs_root *root = fs_info->extent_root;
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
1564 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1565
1566 key.objectid = bytenr;
1567 key.type = BTRFS_EXTENT_ITEM_KEY;
1568 key.offset = num_bytes;
1569
1570 want = extent_ref_type(parent, owner);
1571 if (insert) {
1572 extra_size = btrfs_extent_inline_ref_size(want);
1573 path->keep_locks = 1;
1574 } else
1575 extra_size = -1;
1576
1577 /*
1578 * Owner is our parent level, so we can just add one to get the level
1579 * for the block we are interested in.
1580 */
1581 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1582 key.type = BTRFS_METADATA_ITEM_KEY;
1583 key.offset = owner;
1584 }
1585
1586 again:
1587 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1588 if (ret < 0) {
1589 err = ret;
1590 goto out;
1591 }
1592
1593 /*
1594 * We may be a newly converted file system which still has the old fat
1595 * extent entries for metadata, so try and see if we have one of those.
1596 */
1597 if (ret > 0 && skinny_metadata) {
1598 skinny_metadata = false;
1599 if (path->slots[0]) {
1600 path->slots[0]--;
1601 btrfs_item_key_to_cpu(path->nodes[0], &key,
1602 path->slots[0]);
1603 if (key.objectid == bytenr &&
1604 key.type == BTRFS_EXTENT_ITEM_KEY &&
1605 key.offset == num_bytes)
1606 ret = 0;
1607 }
1608 if (ret) {
1609 key.objectid = bytenr;
1610 key.type = BTRFS_EXTENT_ITEM_KEY;
1611 key.offset = num_bytes;
1612 btrfs_release_path(path);
1613 goto again;
1614 }
1615 }
1616
1617 if (ret && !insert) {
1618 err = -ENOENT;
1619 goto out;
1620 } else if (WARN_ON(ret)) {
1621 err = -EIO;
1622 goto out;
1623 }
1624
1625 leaf = path->nodes[0];
1626 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1628 if (item_size < sizeof(*ei)) {
1629 if (!insert) {
1630 err = -ENOENT;
1631 goto out;
1632 }
1633 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1634 extra_size);
1635 if (ret < 0) {
1636 err = ret;
1637 goto out;
1638 }
1639 leaf = path->nodes[0];
1640 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 }
1642 #endif
1643 BUG_ON(item_size < sizeof(*ei));
1644
1645 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1646 flags = btrfs_extent_flags(leaf, ei);
1647
1648 ptr = (unsigned long)(ei + 1);
1649 end = (unsigned long)ei + item_size;
1650
1651 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1652 ptr += sizeof(struct btrfs_tree_block_info);
1653 BUG_ON(ptr > end);
1654 }
1655
1656 err = -ENOENT;
1657 while (1) {
1658 if (ptr >= end) {
1659 WARN_ON(ptr > end);
1660 break;
1661 }
1662 iref = (struct btrfs_extent_inline_ref *)ptr;
1663 type = btrfs_extent_inline_ref_type(leaf, iref);
1664 if (want < type)
1665 break;
1666 if (want > type) {
1667 ptr += btrfs_extent_inline_ref_size(type);
1668 continue;
1669 }
1670
1671 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1672 struct btrfs_extent_data_ref *dref;
1673 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1674 if (match_extent_data_ref(leaf, dref, root_objectid,
1675 owner, offset)) {
1676 err = 0;
1677 break;
1678 }
1679 if (hash_extent_data_ref_item(leaf, dref) <
1680 hash_extent_data_ref(root_objectid, owner, offset))
1681 break;
1682 } else {
1683 u64 ref_offset;
1684 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1685 if (parent > 0) {
1686 if (parent == ref_offset) {
1687 err = 0;
1688 break;
1689 }
1690 if (ref_offset < parent)
1691 break;
1692 } else {
1693 if (root_objectid == ref_offset) {
1694 err = 0;
1695 break;
1696 }
1697 if (ref_offset < root_objectid)
1698 break;
1699 }
1700 }
1701 ptr += btrfs_extent_inline_ref_size(type);
1702 }
1703 if (err == -ENOENT && insert) {
1704 if (item_size + extra_size >=
1705 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1706 err = -EAGAIN;
1707 goto out;
1708 }
1709 /*
1710 * To add new inline back ref, we have to make sure
1711 * there is no corresponding back ref item.
1712 * For simplicity, we just do not add new inline back
1713 * ref if there is any kind of item for this block
1714 */
1715 if (find_next_key(path, 0, &key) == 0 &&
1716 key.objectid == bytenr &&
1717 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1718 err = -EAGAIN;
1719 goto out;
1720 }
1721 }
1722 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1723 out:
1724 if (insert) {
1725 path->keep_locks = 0;
1726 btrfs_unlock_up_safe(path, 1);
1727 }
1728 return err;
1729 }
1730
1731 /*
1732 * helper to add new inline back ref
1733 */
1734 static noinline_for_stack
1735 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1736 struct btrfs_path *path,
1737 struct btrfs_extent_inline_ref *iref,
1738 u64 parent, u64 root_objectid,
1739 u64 owner, u64 offset, int refs_to_add,
1740 struct btrfs_delayed_extent_op *extent_op)
1741 {
1742 struct extent_buffer *leaf;
1743 struct btrfs_extent_item *ei;
1744 unsigned long ptr;
1745 unsigned long end;
1746 unsigned long item_offset;
1747 u64 refs;
1748 int size;
1749 int type;
1750
1751 leaf = path->nodes[0];
1752 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1753 item_offset = (unsigned long)iref - (unsigned long)ei;
1754
1755 type = extent_ref_type(parent, owner);
1756 size = btrfs_extent_inline_ref_size(type);
1757
1758 btrfs_extend_item(fs_info, path, size);
1759
1760 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1761 refs = btrfs_extent_refs(leaf, ei);
1762 refs += refs_to_add;
1763 btrfs_set_extent_refs(leaf, ei, refs);
1764 if (extent_op)
1765 __run_delayed_extent_op(extent_op, leaf, ei);
1766
1767 ptr = (unsigned long)ei + item_offset;
1768 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1769 if (ptr < end - size)
1770 memmove_extent_buffer(leaf, ptr + size, ptr,
1771 end - size - ptr);
1772
1773 iref = (struct btrfs_extent_inline_ref *)ptr;
1774 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1775 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1776 struct btrfs_extent_data_ref *dref;
1777 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1778 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1779 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1780 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1781 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1782 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1783 struct btrfs_shared_data_ref *sref;
1784 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1785 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1786 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1787 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1788 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1789 } else {
1790 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1791 }
1792 btrfs_mark_buffer_dirty(leaf);
1793 }
1794
1795 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1796 struct btrfs_fs_info *fs_info,
1797 struct btrfs_path *path,
1798 struct btrfs_extent_inline_ref **ref_ret,
1799 u64 bytenr, u64 num_bytes, u64 parent,
1800 u64 root_objectid, u64 owner, u64 offset)
1801 {
1802 int ret;
1803
1804 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1805 bytenr, num_bytes, parent,
1806 root_objectid, owner, offset, 0);
1807 if (ret != -ENOENT)
1808 return ret;
1809
1810 btrfs_release_path(path);
1811 *ref_ret = NULL;
1812
1813 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1814 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1815 parent, root_objectid);
1816 } else {
1817 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1818 parent, root_objectid, owner,
1819 offset);
1820 }
1821 return ret;
1822 }
1823
1824 /*
1825 * helper to update/remove inline back ref
1826 */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
1834 {
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
1866 }
1867
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
1877 *last_ref = 1;
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
1886 btrfs_truncate_item(fs_info, path, item_size, 1);
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
1889 }
1890
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_fs_info *fs_info,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 update_inline_extent_backref(fs_info, path, iref,
1909 refs_to_add, extent_op, NULL);
1910 } else if (ret == -ENOENT) {
1911 setup_inline_extent_backref(fs_info, path, iref, parent,
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
1915 }
1916 return ret;
1917 }
1918
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_fs_info *fs_info,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936 }
1937
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_fs_info *fs_info,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
1942 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 int ret = 0;
1945
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
1948 update_inline_extent_backref(fs_info, path, iref,
1949 -refs_to_drop, NULL, last_ref);
1950 } else if (is_data) {
1951 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1952 last_ref);
1953 } else {
1954 *last_ref = 1;
1955 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1956 }
1957 return ret;
1958 }
1959
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
1963 {
1964 int j, ret = 0;
1965 u64 bytes_left, end;
1966 u64 aligned_start = ALIGN(start, 1 << 9);
1967
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
1973
1974 *discarded_bytes = 0;
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 GFP_NOFS, 0);
2027 if (!ret)
2028 *discarded_bytes += bytes_left;
2029 }
2030 return ret;
2031 }
2032
2033 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 int ret;
2037 u64 discarded_bytes = 0;
2038 struct btrfs_bio *bbio = NULL;
2039
2040
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(fs_info);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2048 &bbio, 0);
2049 /* Error condition is -ENOMEM */
2050 if (!ret) {
2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 int i;
2053
2054
2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 u64 bytes;
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
2062 stripe->length,
2063 &bytes);
2064 if (!ret)
2065 discarded_bytes += bytes;
2066 else if (ret != -EOPNOTSUPP)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
2075 }
2076 btrfs_put_bbio(bbio);
2077 }
2078 btrfs_bio_counter_dec(fs_info);
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
2083
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
2086 return ret;
2087 }
2088
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_fs_info *fs_info,
2092 u64 bytenr, u64 num_bytes, u64 parent,
2093 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 int ret;
2096
2097 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2098 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2099
2100 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2101 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2102 num_bytes,
2103 parent, root_objectid, (int)owner,
2104 BTRFS_ADD_DELAYED_REF, NULL);
2105 } else {
2106 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2107 num_bytes, parent, root_objectid,
2108 owner, offset, 0,
2109 BTRFS_ADD_DELAYED_REF);
2110 }
2111 return ret;
2112 }
2113
2114 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2115 struct btrfs_fs_info *fs_info,
2116 struct btrfs_delayed_ref_node *node,
2117 u64 parent, u64 root_objectid,
2118 u64 owner, u64 offset, int refs_to_add,
2119 struct btrfs_delayed_extent_op *extent_op)
2120 {
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
2124 struct btrfs_key key;
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
2127 u64 refs;
2128 int ret;
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
2134 path->reada = READA_FORWARD;
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
2137 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2138 num_bytes, parent, root_objectid,
2139 owner, offset,
2140 refs_to_add, extent_op);
2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
2142 goto out;
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
2149 leaf = path->nodes[0];
2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
2156
2157 btrfs_mark_buffer_dirty(leaf);
2158 btrfs_release_path(path);
2159
2160 path->reada = READA_FORWARD;
2161 path->leave_spinning = 1;
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2164 root_objectid, owner, offset, refs_to_add);
2165 if (ret)
2166 btrfs_abort_transaction(trans, ret);
2167 out:
2168 btrfs_free_path(path);
2169 return ret;
2170 }
2171
2172 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2173 struct btrfs_fs_info *fs_info,
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
2177 {
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2190 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2191
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
2194 ref_root = ref->root;
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197 if (extent_op)
2198 flags |= extent_op->flags_to_set;
2199 ret = alloc_reserved_file_extent(trans, fs_info,
2200 parent, ref_root, flags,
2201 ref->objectid, ref->offset,
2202 &ins, node->ref_mod);
2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
2207 extent_op);
2208 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2209 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2210 ref_root, ref->objectid,
2211 ref->offset, node->ref_mod,
2212 extent_op);
2213 } else {
2214 BUG();
2215 }
2216 return ret;
2217 }
2218
2219 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2220 struct extent_buffer *leaf,
2221 struct btrfs_extent_item *ei)
2222 {
2223 u64 flags = btrfs_extent_flags(leaf, ei);
2224 if (extent_op->update_flags) {
2225 flags |= extent_op->flags_to_set;
2226 btrfs_set_extent_flags(leaf, ei, flags);
2227 }
2228
2229 if (extent_op->update_key) {
2230 struct btrfs_tree_block_info *bi;
2231 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2232 bi = (struct btrfs_tree_block_info *)(ei + 1);
2233 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2234 }
2235 }
2236
2237 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2238 struct btrfs_fs_info *fs_info,
2239 struct btrfs_delayed_ref_node *node,
2240 struct btrfs_delayed_extent_op *extent_op)
2241 {
2242 struct btrfs_key key;
2243 struct btrfs_path *path;
2244 struct btrfs_extent_item *ei;
2245 struct extent_buffer *leaf;
2246 u32 item_size;
2247 int ret;
2248 int err = 0;
2249 int metadata = !extent_op->is_data;
2250
2251 if (trans->aborted)
2252 return 0;
2253
2254 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2255 metadata = 0;
2256
2257 path = btrfs_alloc_path();
2258 if (!path)
2259 return -ENOMEM;
2260
2261 key.objectid = node->bytenr;
2262
2263 if (metadata) {
2264 key.type = BTRFS_METADATA_ITEM_KEY;
2265 key.offset = extent_op->level;
2266 } else {
2267 key.type = BTRFS_EXTENT_ITEM_KEY;
2268 key.offset = node->num_bytes;
2269 }
2270
2271 again:
2272 path->reada = READA_FORWARD;
2273 path->leave_spinning = 1;
2274 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2275 if (ret < 0) {
2276 err = ret;
2277 goto out;
2278 }
2279 if (ret > 0) {
2280 if (metadata) {
2281 if (path->slots[0] > 0) {
2282 path->slots[0]--;
2283 btrfs_item_key_to_cpu(path->nodes[0], &key,
2284 path->slots[0]);
2285 if (key.objectid == node->bytenr &&
2286 key.type == BTRFS_EXTENT_ITEM_KEY &&
2287 key.offset == node->num_bytes)
2288 ret = 0;
2289 }
2290 if (ret > 0) {
2291 btrfs_release_path(path);
2292 metadata = 0;
2293
2294 key.objectid = node->bytenr;
2295 key.offset = node->num_bytes;
2296 key.type = BTRFS_EXTENT_ITEM_KEY;
2297 goto again;
2298 }
2299 } else {
2300 err = -EIO;
2301 goto out;
2302 }
2303 }
2304
2305 leaf = path->nodes[0];
2306 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2308 if (item_size < sizeof(*ei)) {
2309 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2310 if (ret < 0) {
2311 err = ret;
2312 goto out;
2313 }
2314 leaf = path->nodes[0];
2315 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2316 }
2317 #endif
2318 BUG_ON(item_size < sizeof(*ei));
2319 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2320 __run_delayed_extent_op(extent_op, leaf, ei);
2321
2322 btrfs_mark_buffer_dirty(leaf);
2323 out:
2324 btrfs_free_path(path);
2325 return err;
2326 }
2327
2328 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2329 struct btrfs_fs_info *fs_info,
2330 struct btrfs_delayed_ref_node *node,
2331 struct btrfs_delayed_extent_op *extent_op,
2332 int insert_reserved)
2333 {
2334 int ret = 0;
2335 struct btrfs_delayed_tree_ref *ref;
2336 struct btrfs_key ins;
2337 u64 parent = 0;
2338 u64 ref_root = 0;
2339 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2340
2341 ref = btrfs_delayed_node_to_tree_ref(node);
2342 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2343
2344 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2345 parent = ref->parent;
2346 ref_root = ref->root;
2347
2348 ins.objectid = node->bytenr;
2349 if (skinny_metadata) {
2350 ins.offset = ref->level;
2351 ins.type = BTRFS_METADATA_ITEM_KEY;
2352 } else {
2353 ins.offset = node->num_bytes;
2354 ins.type = BTRFS_EXTENT_ITEM_KEY;
2355 }
2356
2357 if (node->ref_mod != 1) {
2358 btrfs_err(fs_info,
2359 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2360 node->bytenr, node->ref_mod, node->action, ref_root,
2361 parent);
2362 return -EIO;
2363 }
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 BUG_ON(!extent_op || !extent_op->update_flags);
2366 ret = alloc_reserved_tree_block(trans, fs_info,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
2370 ref->level, &ins);
2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
2375 extent_op);
2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 ret = __btrfs_free_extent(trans, fs_info, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
2380 } else {
2381 BUG();
2382 }
2383 return ret;
2384 }
2385
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_fs_info *fs_info,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
2392 {
2393 int ret = 0;
2394
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(fs_info, node->bytenr,
2398 node->num_bytes, 1);
2399 return 0;
2400 }
2401
2402 if (btrfs_delayed_ref_is_head(node)) {
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
2412 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2413
2414 if (insert_reserved) {
2415 btrfs_pin_extent(fs_info, node->bytenr,
2416 node->num_bytes, 1);
2417 if (head->is_data) {
2418 ret = btrfs_del_csums(trans, fs_info,
2419 node->bytenr,
2420 node->num_bytes);
2421 }
2422 }
2423
2424 /* Also free its reserved qgroup space */
2425 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2426 head->qgroup_reserved);
2427 return ret;
2428 }
2429
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2433 insert_reserved);
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2437 insert_reserved);
2438 else
2439 BUG();
2440 return ret;
2441 }
2442
2443 static inline struct btrfs_delayed_ref_node *
2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446 struct btrfs_delayed_ref_node *ref;
2447
2448 if (list_empty(&head->ref_list))
2449 return NULL;
2450
2451 /*
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2456 */
2457 if (!list_empty(&head->ref_add_list))
2458 return list_first_entry(&head->ref_add_list,
2459 struct btrfs_delayed_ref_node, add_list);
2460
2461 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462 list);
2463 ASSERT(list_empty(&ref->add_list));
2464 return ref;
2465 }
2466
2467 /*
2468 * Returns 0 on success or if called with an already aborted transaction.
2469 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 */
2471 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2472 struct btrfs_fs_info *fs_info,
2473 unsigned long nr)
2474 {
2475 struct btrfs_delayed_ref_root *delayed_refs;
2476 struct btrfs_delayed_ref_node *ref;
2477 struct btrfs_delayed_ref_head *locked_ref = NULL;
2478 struct btrfs_delayed_extent_op *extent_op;
2479 ktime_t start = ktime_get();
2480 int ret;
2481 unsigned long count = 0;
2482 unsigned long actual_count = 0;
2483 int must_insert_reserved = 0;
2484
2485 delayed_refs = &trans->transaction->delayed_refs;
2486 while (1) {
2487 if (!locked_ref) {
2488 if (count >= nr)
2489 break;
2490
2491 spin_lock(&delayed_refs->lock);
2492 locked_ref = btrfs_select_ref_head(trans);
2493 if (!locked_ref) {
2494 spin_unlock(&delayed_refs->lock);
2495 break;
2496 }
2497
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 spin_unlock(&delayed_refs->lock);
2502 /*
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2507 */
2508 if (ret == -EAGAIN) {
2509 locked_ref = NULL;
2510 count++;
2511 continue;
2512 }
2513 }
2514
2515 /*
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2520 * get a good ref.
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2526 */
2527 spin_lock(&locked_ref->lock);
2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 locked_ref);
2530
2531 /*
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2534 */
2535 ref = select_delayed_ref(locked_ref);
2536
2537 if (ref && ref->seq &&
2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 spin_unlock(&locked_ref->lock);
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 btrfs_delayed_ref_unlock(locked_ref);
2545 locked_ref = NULL;
2546 cond_resched();
2547 count++;
2548 continue;
2549 }
2550
2551 /*
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2554 */
2555 must_insert_reserved = locked_ref->must_insert_reserved;
2556 locked_ref->must_insert_reserved = 0;
2557
2558 extent_op = locked_ref->extent_op;
2559 locked_ref->extent_op = NULL;
2560
2561 if (!ref) {
2562
2563
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2567 */
2568 ref = &locked_ref->node;
2569
2570 if (extent_op && must_insert_reserved) {
2571 btrfs_free_delayed_extent_op(extent_op);
2572 extent_op = NULL;
2573 }
2574
2575 if (extent_op) {
2576 spin_unlock(&locked_ref->lock);
2577 ret = run_delayed_extent_op(trans, fs_info,
2578 ref, extent_op);
2579 btrfs_free_delayed_extent_op(extent_op);
2580
2581 if (ret) {
2582 /*
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2586 * properly.
2587 */
2588 if (must_insert_reserved)
2589 locked_ref->must_insert_reserved = 1;
2590 spin_lock(&delayed_refs->lock);
2591 locked_ref->processing = 0;
2592 delayed_refs->num_heads_ready++;
2593 spin_unlock(&delayed_refs->lock);
2594 btrfs_debug(fs_info,
2595 "run_delayed_extent_op returned %d",
2596 ret);
2597 btrfs_delayed_ref_unlock(locked_ref);
2598 return ret;
2599 }
2600 continue;
2601 }
2602
2603 /*
2604 * Need to drop our head ref lock and re-acquire the
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
2611 if (!list_empty(&locked_ref->ref_list) ||
2612 locked_ref->extent_op) {
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
2623 actual_count++;
2624 ref->in_tree = 0;
2625 list_del(&ref->list);
2626 if (!list_empty(&ref->add_list))
2627 list_del(&ref->add_list);
2628 }
2629 atomic_dec(&delayed_refs->num_entries);
2630
2631 if (!btrfs_delayed_ref_is_head(ref)) {
2632 /*
2633 * when we play the delayed ref, also correct the
2634 * ref_mod on head
2635 */
2636 switch (ref->action) {
2637 case BTRFS_ADD_DELAYED_REF:
2638 case BTRFS_ADD_DELAYED_EXTENT:
2639 locked_ref->node.ref_mod -= ref->ref_mod;
2640 break;
2641 case BTRFS_DROP_DELAYED_REF:
2642 locked_ref->node.ref_mod += ref->ref_mod;
2643 break;
2644 default:
2645 WARN_ON(1);
2646 }
2647 }
2648 spin_unlock(&locked_ref->lock);
2649
2650 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2651 must_insert_reserved);
2652
2653 btrfs_free_delayed_extent_op(extent_op);
2654 if (ret) {
2655 spin_lock(&delayed_refs->lock);
2656 locked_ref->processing = 0;
2657 delayed_refs->num_heads_ready++;
2658 spin_unlock(&delayed_refs->lock);
2659 btrfs_delayed_ref_unlock(locked_ref);
2660 btrfs_put_delayed_ref(ref);
2661 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2662 ret);
2663 return ret;
2664 }
2665
2666 /*
2667 * If this node is a head, that means all the refs in this head
2668 * have been dealt with, and we will pick the next head to deal
2669 * with, so we must unlock the head and drop it from the cluster
2670 * list before we release it.
2671 */
2672 if (btrfs_delayed_ref_is_head(ref)) {
2673 if (locked_ref->is_data &&
2674 locked_ref->total_ref_mod < 0) {
2675 spin_lock(&delayed_refs->lock);
2676 delayed_refs->pending_csums -= ref->num_bytes;
2677 spin_unlock(&delayed_refs->lock);
2678 }
2679 btrfs_delayed_ref_unlock(locked_ref);
2680 locked_ref = NULL;
2681 }
2682 btrfs_put_delayed_ref(ref);
2683 count++;
2684 cond_resched();
2685 }
2686
2687 /*
2688 * We don't want to include ref heads since we can have empty ref heads
2689 * and those will drastically skew our runtime down since we just do
2690 * accounting, no actual extent tree updates.
2691 */
2692 if (actual_count > 0) {
2693 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2694 u64 avg;
2695
2696 /*
2697 * We weigh the current average higher than our current runtime
2698 * to avoid large swings in the average.
2699 */
2700 spin_lock(&delayed_refs->lock);
2701 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2702 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2703 spin_unlock(&delayed_refs->lock);
2704 }
2705 return 0;
2706 }
2707
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 /*
2710 * Normally delayed refs get processed in ascending bytenr order. This
2711 * correlates in most cases to the order added. To expose dependencies on this
2712 * order, we start to process the tree in the middle instead of the beginning
2713 */
2714 static u64 find_middle(struct rb_root *root)
2715 {
2716 struct rb_node *n = root->rb_node;
2717 struct btrfs_delayed_ref_node *entry;
2718 int alt = 1;
2719 u64 middle;
2720 u64 first = 0, last = 0;
2721
2722 n = rb_first(root);
2723 if (n) {
2724 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 first = entry->bytenr;
2726 }
2727 n = rb_last(root);
2728 if (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 last = entry->bytenr;
2731 }
2732 n = root->rb_node;
2733
2734 while (n) {
2735 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2736 WARN_ON(!entry->in_tree);
2737
2738 middle = entry->bytenr;
2739
2740 if (alt)
2741 n = n->rb_left;
2742 else
2743 n = n->rb_right;
2744
2745 alt = 1 - alt;
2746 }
2747 return middle;
2748 }
2749 #endif
2750
2751 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2752 {
2753 u64 num_bytes;
2754
2755 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2756 sizeof(struct btrfs_extent_inline_ref));
2757 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2758 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2759
2760 /*
2761 * We don't ever fill up leaves all the way so multiply by 2 just to be
2762 * closer to what we're really going to want to use.
2763 */
2764 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2765 }
2766
2767 /*
2768 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2769 * would require to store the csums for that many bytes.
2770 */
2771 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2772 {
2773 u64 csum_size;
2774 u64 num_csums_per_leaf;
2775 u64 num_csums;
2776
2777 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2778 num_csums_per_leaf = div64_u64(csum_size,
2779 (u64)btrfs_super_csum_size(fs_info->super_copy));
2780 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2781 num_csums += num_csums_per_leaf - 1;
2782 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2783 return num_csums;
2784 }
2785
2786 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2787 struct btrfs_fs_info *fs_info)
2788 {
2789 struct btrfs_block_rsv *global_rsv;
2790 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2791 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2792 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2793 u64 num_bytes, num_dirty_bgs_bytes;
2794 int ret = 0;
2795
2796 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2797 num_heads = heads_to_leaves(fs_info, num_heads);
2798 if (num_heads > 1)
2799 num_bytes += (num_heads - 1) * fs_info->nodesize;
2800 num_bytes <<= 1;
2801 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2802 fs_info->nodesize;
2803 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2804 num_dirty_bgs);
2805 global_rsv = &fs_info->global_block_rsv;
2806
2807 /*
2808 * If we can't allocate any more chunks lets make sure we have _lots_ of
2809 * wiggle room since running delayed refs can create more delayed refs.
2810 */
2811 if (global_rsv->space_info->full) {
2812 num_dirty_bgs_bytes <<= 1;
2813 num_bytes <<= 1;
2814 }
2815
2816 spin_lock(&global_rsv->lock);
2817 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2818 ret = 1;
2819 spin_unlock(&global_rsv->lock);
2820 return ret;
2821 }
2822
2823 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_fs_info *fs_info)
2825 {
2826 u64 num_entries =
2827 atomic_read(&trans->transaction->delayed_refs.num_entries);
2828 u64 avg_runtime;
2829 u64 val;
2830
2831 smp_mb();
2832 avg_runtime = fs_info->avg_delayed_ref_runtime;
2833 val = num_entries * avg_runtime;
2834 if (val >= NSEC_PER_SEC)
2835 return 1;
2836 if (val >= NSEC_PER_SEC / 2)
2837 return 2;
2838
2839 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2840 }
2841
2842 struct async_delayed_refs {
2843 struct btrfs_root *root;
2844 u64 transid;
2845 int count;
2846 int error;
2847 int sync;
2848 struct completion wait;
2849 struct btrfs_work work;
2850 };
2851
2852 static inline struct async_delayed_refs *
2853 to_async_delayed_refs(struct btrfs_work *work)
2854 {
2855 return container_of(work, struct async_delayed_refs, work);
2856 }
2857
2858 static void delayed_ref_async_start(struct btrfs_work *work)
2859 {
2860 struct async_delayed_refs *async = to_async_delayed_refs(work);
2861 struct btrfs_trans_handle *trans;
2862 struct btrfs_fs_info *fs_info = async->root->fs_info;
2863 int ret;
2864
2865 /* if the commit is already started, we don't need to wait here */
2866 if (btrfs_transaction_blocked(fs_info))
2867 goto done;
2868
2869 trans = btrfs_join_transaction(async->root);
2870 if (IS_ERR(trans)) {
2871 async->error = PTR_ERR(trans);
2872 goto done;
2873 }
2874
2875 /*
2876 * trans->sync means that when we call end_transaction, we won't
2877 * wait on delayed refs
2878 */
2879 trans->sync = true;
2880
2881 /* Don't bother flushing if we got into a different transaction */
2882 if (trans->transid > async->transid)
2883 goto end;
2884
2885 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2886 if (ret)
2887 async->error = ret;
2888 end:
2889 ret = btrfs_end_transaction(trans);
2890 if (ret && !async->error)
2891 async->error = ret;
2892 done:
2893 if (async->sync)
2894 complete(&async->wait);
2895 else
2896 kfree(async);
2897 }
2898
2899 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2900 unsigned long count, u64 transid, int wait)
2901 {
2902 struct async_delayed_refs *async;
2903 int ret;
2904
2905 async = kmalloc(sizeof(*async), GFP_NOFS);
2906 if (!async)
2907 return -ENOMEM;
2908
2909 async->root = fs_info->tree_root;
2910 async->count = count;
2911 async->error = 0;
2912 async->transid = transid;
2913 if (wait)
2914 async->sync = 1;
2915 else
2916 async->sync = 0;
2917 init_completion(&async->wait);
2918
2919 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920 delayed_ref_async_start, NULL, NULL);
2921
2922 btrfs_queue_work(fs_info->extent_workers, &async->work);
2923
2924 if (wait) {
2925 wait_for_completion(&async->wait);
2926 ret = async->error;
2927 kfree(async);
2928 return ret;
2929 }
2930 return 0;
2931 }
2932
2933 /*
2934 * this starts processing the delayed reference count updates and
2935 * extent insertions we have queued up so far. count can be
2936 * 0, which means to process everything in the tree at the start
2937 * of the run (but not newly added entries), or it can be some target
2938 * number you'd like to process.
2939 *
2940 * Returns 0 on success or if called with an aborted transaction
2941 * Returns <0 on error and aborts the transaction
2942 */
2943 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2944 struct btrfs_fs_info *fs_info, unsigned long count)
2945 {
2946 struct rb_node *node;
2947 struct btrfs_delayed_ref_root *delayed_refs;
2948 struct btrfs_delayed_ref_head *head;
2949 int ret;
2950 int run_all = count == (unsigned long)-1;
2951 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2952
2953 /* We'll clean this up in btrfs_cleanup_transaction */
2954 if (trans->aborted)
2955 return 0;
2956
2957 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2958 return 0;
2959
2960 delayed_refs = &trans->transaction->delayed_refs;
2961 if (count == 0)
2962 count = atomic_read(&delayed_refs->num_entries) * 2;
2963
2964 again:
2965 #ifdef SCRAMBLE_DELAYED_REFS
2966 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2967 #endif
2968 trans->can_flush_pending_bgs = false;
2969 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2970 if (ret < 0) {
2971 btrfs_abort_transaction(trans, ret);
2972 return ret;
2973 }
2974
2975 if (run_all) {
2976 if (!list_empty(&trans->new_bgs))
2977 btrfs_create_pending_block_groups(trans, fs_info);
2978
2979 spin_lock(&delayed_refs->lock);
2980 node = rb_first(&delayed_refs->href_root);
2981 if (!node) {
2982 spin_unlock(&delayed_refs->lock);
2983 goto out;
2984 }
2985
2986 while (node) {
2987 head = rb_entry(node, struct btrfs_delayed_ref_head,
2988 href_node);
2989 if (btrfs_delayed_ref_is_head(&head->node)) {
2990 struct btrfs_delayed_ref_node *ref;
2991
2992 ref = &head->node;
2993 refcount_inc(&ref->refs);
2994
2995 spin_unlock(&delayed_refs->lock);
2996 /*
2997 * Mutex was contended, block until it's
2998 * released and try again
2999 */
3000 mutex_lock(&head->mutex);
3001 mutex_unlock(&head->mutex);
3002
3003 btrfs_put_delayed_ref(ref);
3004 cond_resched();
3005 goto again;
3006 } else {
3007 WARN_ON(1);
3008 }
3009 node = rb_next(node);
3010 }
3011 spin_unlock(&delayed_refs->lock);
3012 cond_resched();
3013 goto again;
3014 }
3015 out:
3016 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3017 return 0;
3018 }
3019
3020 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3021 struct btrfs_fs_info *fs_info,
3022 u64 bytenr, u64 num_bytes, u64 flags,
3023 int level, int is_data)
3024 {
3025 struct btrfs_delayed_extent_op *extent_op;
3026 int ret;
3027
3028 extent_op = btrfs_alloc_delayed_extent_op();
3029 if (!extent_op)
3030 return -ENOMEM;
3031
3032 extent_op->flags_to_set = flags;
3033 extent_op->update_flags = true;
3034 extent_op->update_key = false;
3035 extent_op->is_data = is_data ? true : false;
3036 extent_op->level = level;
3037
3038 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3039 num_bytes, extent_op);
3040 if (ret)
3041 btrfs_free_delayed_extent_op(extent_op);
3042 return ret;
3043 }
3044
3045 static noinline int check_delayed_ref(struct btrfs_root *root,
3046 struct btrfs_path *path,
3047 u64 objectid, u64 offset, u64 bytenr)
3048 {
3049 struct btrfs_delayed_ref_head *head;
3050 struct btrfs_delayed_ref_node *ref;
3051 struct btrfs_delayed_data_ref *data_ref;
3052 struct btrfs_delayed_ref_root *delayed_refs;
3053 struct btrfs_transaction *cur_trans;
3054 int ret = 0;
3055
3056 cur_trans = root->fs_info->running_transaction;
3057 if (!cur_trans)
3058 return 0;
3059
3060 delayed_refs = &cur_trans->delayed_refs;
3061 spin_lock(&delayed_refs->lock);
3062 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3063 if (!head) {
3064 spin_unlock(&delayed_refs->lock);
3065 return 0;
3066 }
3067
3068 if (!mutex_trylock(&head->mutex)) {
3069 refcount_inc(&head->node.refs);
3070 spin_unlock(&delayed_refs->lock);
3071
3072 btrfs_release_path(path);
3073
3074 /*
3075 * Mutex was contended, block until it's released and let
3076 * caller try again
3077 */
3078 mutex_lock(&head->mutex);
3079 mutex_unlock(&head->mutex);
3080 btrfs_put_delayed_ref(&head->node);
3081 return -EAGAIN;
3082 }
3083 spin_unlock(&delayed_refs->lock);
3084
3085 spin_lock(&head->lock);
3086 list_for_each_entry(ref, &head->ref_list, list) {
3087 /* If it's a shared ref we know a cross reference exists */
3088 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089 ret = 1;
3090 break;
3091 }
3092
3093 data_ref = btrfs_delayed_node_to_data_ref(ref);
3094
3095 /*
3096 * If our ref doesn't match the one we're currently looking at
3097 * then we have a cross reference.
3098 */
3099 if (data_ref->root != root->root_key.objectid ||
3100 data_ref->objectid != objectid ||
3101 data_ref->offset != offset) {
3102 ret = 1;
3103 break;
3104 }
3105 }
3106 spin_unlock(&head->lock);
3107 mutex_unlock(&head->mutex);
3108 return ret;
3109 }
3110
3111 static noinline int check_committed_ref(struct btrfs_root *root,
3112 struct btrfs_path *path,
3113 u64 objectid, u64 offset, u64 bytenr)
3114 {
3115 struct btrfs_fs_info *fs_info = root->fs_info;
3116 struct btrfs_root *extent_root = fs_info->extent_root;
3117 struct extent_buffer *leaf;
3118 struct btrfs_extent_data_ref *ref;
3119 struct btrfs_extent_inline_ref *iref;
3120 struct btrfs_extent_item *ei;
3121 struct btrfs_key key;
3122 u32 item_size;
3123 int ret;
3124
3125 key.objectid = bytenr;
3126 key.offset = (u64)-1;
3127 key.type = BTRFS_EXTENT_ITEM_KEY;
3128
3129 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130 if (ret < 0)
3131 goto out;
3132 BUG_ON(ret == 0); /* Corruption */
3133
3134 ret = -ENOENT;
3135 if (path->slots[0] == 0)
3136 goto out;
3137
3138 path->slots[0]--;
3139 leaf = path->nodes[0];
3140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3141
3142 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3143 goto out;
3144
3145 ret = 1;
3146 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148 if (item_size < sizeof(*ei)) {
3149 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150 goto out;
3151 }
3152 #endif
3153 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3154
3155 if (item_size != sizeof(*ei) +
3156 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157 goto out;
3158
3159 if (btrfs_extent_generation(leaf, ei) <=
3160 btrfs_root_last_snapshot(&root->root_item))
3161 goto out;
3162
3163 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165 BTRFS_EXTENT_DATA_REF_KEY)
3166 goto out;
3167
3168 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169 if (btrfs_extent_refs(leaf, ei) !=
3170 btrfs_extent_data_ref_count(leaf, ref) ||
3171 btrfs_extent_data_ref_root(leaf, ref) !=
3172 root->root_key.objectid ||
3173 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175 goto out;
3176
3177 ret = 0;
3178 out:
3179 return ret;
3180 }
3181
3182 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3183 u64 bytenr)
3184 {
3185 struct btrfs_path *path;
3186 int ret;
3187 int ret2;
3188
3189 path = btrfs_alloc_path();
3190 if (!path)
3191 return -ENOENT;
3192
3193 do {
3194 ret = check_committed_ref(root, path, objectid,
3195 offset, bytenr);
3196 if (ret && ret != -ENOENT)
3197 goto out;
3198
3199 ret2 = check_delayed_ref(root, path, objectid,
3200 offset, bytenr);
3201 } while (ret2 == -EAGAIN);
3202
3203 if (ret2 && ret2 != -ENOENT) {
3204 ret = ret2;
3205 goto out;
3206 }
3207
3208 if (ret != -ENOENT || ret2 != -ENOENT)
3209 ret = 0;
3210 out:
3211 btrfs_free_path(path);
3212 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3213 WARN_ON(ret > 0);
3214 return ret;
3215 }
3216
3217 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root,
3219 struct extent_buffer *buf,
3220 int full_backref, int inc)
3221 {
3222 struct btrfs_fs_info *fs_info = root->fs_info;
3223 u64 bytenr;
3224 u64 num_bytes;
3225 u64 parent;
3226 u64 ref_root;
3227 u32 nritems;
3228 struct btrfs_key key;
3229 struct btrfs_file_extent_item *fi;
3230 int i;
3231 int level;
3232 int ret = 0;
3233 int (*process_func)(struct btrfs_trans_handle *,
3234 struct btrfs_fs_info *,
3235 u64, u64, u64, u64, u64, u64);
3236
3237
3238 if (btrfs_is_testing(fs_info))
3239 return 0;
3240
3241 ref_root = btrfs_header_owner(buf);
3242 nritems = btrfs_header_nritems(buf);
3243 level = btrfs_header_level(buf);
3244
3245 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3246 return 0;
3247
3248 if (inc)
3249 process_func = btrfs_inc_extent_ref;
3250 else
3251 process_func = btrfs_free_extent;
3252
3253 if (full_backref)
3254 parent = buf->start;
3255 else
3256 parent = 0;
3257
3258 for (i = 0; i < nritems; i++) {
3259 if (level == 0) {
3260 btrfs_item_key_to_cpu(buf, &key, i);
3261 if (key.type != BTRFS_EXTENT_DATA_KEY)
3262 continue;
3263 fi = btrfs_item_ptr(buf, i,
3264 struct btrfs_file_extent_item);
3265 if (btrfs_file_extent_type(buf, fi) ==
3266 BTRFS_FILE_EXTENT_INLINE)
3267 continue;
3268 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269 if (bytenr == 0)
3270 continue;
3271
3272 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273 key.offset -= btrfs_file_extent_offset(buf, fi);
3274 ret = process_func(trans, fs_info, bytenr, num_bytes,
3275 parent, ref_root, key.objectid,
3276 key.offset);
3277 if (ret)
3278 goto fail;
3279 } else {
3280 bytenr = btrfs_node_blockptr(buf, i);
3281 num_bytes = fs_info->nodesize;
3282 ret = process_func(trans, fs_info, bytenr, num_bytes,
3283 parent, ref_root, level - 1, 0);
3284 if (ret)
3285 goto fail;
3286 }
3287 }
3288 return 0;
3289 fail:
3290 return ret;
3291 }
3292
3293 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3294 struct extent_buffer *buf, int full_backref)
3295 {
3296 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3297 }
3298
3299 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3300 struct extent_buffer *buf, int full_backref)
3301 {
3302 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3303 }
3304
3305 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3306 struct btrfs_fs_info *fs_info,
3307 struct btrfs_path *path,
3308 struct btrfs_block_group_cache *cache)
3309 {
3310 int ret;
3311 struct btrfs_root *extent_root = fs_info->extent_root;
3312 unsigned long bi;
3313 struct extent_buffer *leaf;
3314
3315 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3316 if (ret) {
3317 if (ret > 0)
3318 ret = -ENOENT;
3319 goto fail;
3320 }
3321
3322 leaf = path->nodes[0];
3323 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325 btrfs_mark_buffer_dirty(leaf);
3326 fail:
3327 btrfs_release_path(path);
3328 return ret;
3329
3330 }
3331
3332 static struct btrfs_block_group_cache *
3333 next_block_group(struct btrfs_fs_info *fs_info,
3334 struct btrfs_block_group_cache *cache)
3335 {
3336 struct rb_node *node;
3337
3338 spin_lock(&fs_info->block_group_cache_lock);
3339
3340 /* If our block group was removed, we need a full search. */
3341 if (RB_EMPTY_NODE(&cache->cache_node)) {
3342 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343
3344 spin_unlock(&fs_info->block_group_cache_lock);
3345 btrfs_put_block_group(cache);
3346 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3347 }
3348 node = rb_next(&cache->cache_node);
3349 btrfs_put_block_group(cache);
3350 if (node) {
3351 cache = rb_entry(node, struct btrfs_block_group_cache,
3352 cache_node);
3353 btrfs_get_block_group(cache);
3354 } else
3355 cache = NULL;
3356 spin_unlock(&fs_info->block_group_cache_lock);
3357 return cache;
3358 }
3359
3360 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3361 struct btrfs_trans_handle *trans,
3362 struct btrfs_path *path)
3363 {
3364 struct btrfs_fs_info *fs_info = block_group->fs_info;
3365 struct btrfs_root *root = fs_info->tree_root;
3366 struct inode *inode = NULL;
3367 u64 alloc_hint = 0;
3368 int dcs = BTRFS_DC_ERROR;
3369 u64 num_pages = 0;
3370 int retries = 0;
3371 int ret = 0;
3372
3373 /*
3374 * If this block group is smaller than 100 megs don't bother caching the
3375 * block group.
3376 */
3377 if (block_group->key.offset < (100 * SZ_1M)) {
3378 spin_lock(&block_group->lock);
3379 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380 spin_unlock(&block_group->lock);
3381 return 0;
3382 }
3383
3384 if (trans->aborted)
3385 return 0;
3386 again:
3387 inode = lookup_free_space_inode(fs_info, block_group, path);
3388 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389 ret = PTR_ERR(inode);
3390 btrfs_release_path(path);
3391 goto out;
3392 }
3393
3394 if (IS_ERR(inode)) {
3395 BUG_ON(retries);
3396 retries++;
3397
3398 if (block_group->ro)
3399 goto out_free;
3400
3401 ret = create_free_space_inode(fs_info, trans, block_group,
3402 path);
3403 if (ret)
3404 goto out_free;
3405 goto again;
3406 }
3407
3408 /* We've already setup this transaction, go ahead and exit */
3409 if (block_group->cache_generation == trans->transid &&
3410 i_size_read(inode)) {
3411 dcs = BTRFS_DC_SETUP;
3412 goto out_put;
3413 }
3414
3415 /*
3416 * We want to set the generation to 0, that way if anything goes wrong
3417 * from here on out we know not to trust this cache when we load up next
3418 * time.
3419 */
3420 BTRFS_I(inode)->generation = 0;
3421 ret = btrfs_update_inode(trans, root, inode);
3422 if (ret) {
3423 /*
3424 * So theoretically we could recover from this, simply set the
3425 * super cache generation to 0 so we know to invalidate the
3426 * cache, but then we'd have to keep track of the block groups
3427 * that fail this way so we know we _have_ to reset this cache
3428 * before the next commit or risk reading stale cache. So to
3429 * limit our exposure to horrible edge cases lets just abort the
3430 * transaction, this only happens in really bad situations
3431 * anyway.
3432 */
3433 btrfs_abort_transaction(trans, ret);
3434 goto out_put;
3435 }
3436 WARN_ON(ret);
3437
3438 if (i_size_read(inode) > 0) {
3439 ret = btrfs_check_trunc_cache_free_space(fs_info,
3440 &fs_info->global_block_rsv);
3441 if (ret)
3442 goto out_put;
3443
3444 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3445 if (ret)
3446 goto out_put;
3447 }
3448
3449 spin_lock(&block_group->lock);
3450 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3451 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3452 /*
3453 * don't bother trying to write stuff out _if_
3454 * a) we're not cached,
3455 * b) we're with nospace_cache mount option,
3456 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3457 */
3458 dcs = BTRFS_DC_WRITTEN;
3459 spin_unlock(&block_group->lock);
3460 goto out_put;
3461 }
3462 spin_unlock(&block_group->lock);
3463
3464 /*
3465 * We hit an ENOSPC when setting up the cache in this transaction, just
3466 * skip doing the setup, we've already cleared the cache so we're safe.
3467 */
3468 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3469 ret = -ENOSPC;
3470 goto out_put;
3471 }
3472
3473 /*
3474 * Try to preallocate enough space based on how big the block group is.
3475 * Keep in mind this has to include any pinned space which could end up
3476 * taking up quite a bit since it's not folded into the other space
3477 * cache.
3478 */
3479 num_pages = div_u64(block_group->key.offset, SZ_256M);
3480 if (!num_pages)
3481 num_pages = 1;
3482
3483 num_pages *= 16;
3484 num_pages *= PAGE_SIZE;
3485
3486 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3487 if (ret)
3488 goto out_put;
3489
3490 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3491 num_pages, num_pages,
3492 &alloc_hint);
3493 /*
3494 * Our cache requires contiguous chunks so that we don't modify a bunch
3495 * of metadata or split extents when writing the cache out, which means
3496 * we can enospc if we are heavily fragmented in addition to just normal
3497 * out of space conditions. So if we hit this just skip setting up any
3498 * other block groups for this transaction, maybe we'll unpin enough
3499 * space the next time around.
3500 */
3501 if (!ret)
3502 dcs = BTRFS_DC_SETUP;
3503 else if (ret == -ENOSPC)
3504 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3505
3506 out_put:
3507 iput(inode);
3508 out_free:
3509 btrfs_release_path(path);
3510 out:
3511 spin_lock(&block_group->lock);
3512 if (!ret && dcs == BTRFS_DC_SETUP)
3513 block_group->cache_generation = trans->transid;
3514 block_group->disk_cache_state = dcs;
3515 spin_unlock(&block_group->lock);
3516
3517 return ret;
3518 }
3519
3520 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3521 struct btrfs_fs_info *fs_info)
3522 {
3523 struct btrfs_block_group_cache *cache, *tmp;
3524 struct btrfs_transaction *cur_trans = trans->transaction;
3525 struct btrfs_path *path;
3526
3527 if (list_empty(&cur_trans->dirty_bgs) ||
3528 !btrfs_test_opt(fs_info, SPACE_CACHE))
3529 return 0;
3530
3531 path = btrfs_alloc_path();
3532 if (!path)
3533 return -ENOMEM;
3534
3535 /* Could add new block groups, use _safe just in case */
3536 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537 dirty_list) {
3538 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539 cache_save_setup(cache, trans, path);
3540 }
3541
3542 btrfs_free_path(path);
3543 return 0;
3544 }
3545
3546 /*
3547 * transaction commit does final block group cache writeback during a
3548 * critical section where nothing is allowed to change the FS. This is
3549 * required in order for the cache to actually match the block group,
3550 * but can introduce a lot of latency into the commit.
3551 *
3552 * So, btrfs_start_dirty_block_groups is here to kick off block group
3553 * cache IO. There's a chance we'll have to redo some of it if the
3554 * block group changes again during the commit, but it greatly reduces
3555 * the commit latency by getting rid of the easy block groups while
3556 * we're still allowing others to join the commit.
3557 */
3558 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3559 struct btrfs_fs_info *fs_info)
3560 {
3561 struct btrfs_block_group_cache *cache;
3562 struct btrfs_transaction *cur_trans = trans->transaction;
3563 int ret = 0;
3564 int should_put;
3565 struct btrfs_path *path = NULL;
3566 LIST_HEAD(dirty);
3567 struct list_head *io = &cur_trans->io_bgs;
3568 int num_started = 0;
3569 int loops = 0;
3570
3571 spin_lock(&cur_trans->dirty_bgs_lock);
3572 if (list_empty(&cur_trans->dirty_bgs)) {
3573 spin_unlock(&cur_trans->dirty_bgs_lock);
3574 return 0;
3575 }
3576 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3577 spin_unlock(&cur_trans->dirty_bgs_lock);
3578
3579 again:
3580 /*
3581 * make sure all the block groups on our dirty list actually
3582 * exist
3583 */
3584 btrfs_create_pending_block_groups(trans, fs_info);
3585
3586 if (!path) {
3587 path = btrfs_alloc_path();
3588 if (!path)
3589 return -ENOMEM;
3590 }
3591
3592 /*
3593 * cache_write_mutex is here only to save us from balance or automatic
3594 * removal of empty block groups deleting this block group while we are
3595 * writing out the cache
3596 */
3597 mutex_lock(&trans->transaction->cache_write_mutex);
3598 while (!list_empty(&dirty)) {
3599 cache = list_first_entry(&dirty,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
3602 /*
3603 * this can happen if something re-dirties a block
3604 * group that is already under IO. Just wait for it to
3605 * finish and then do it all again
3606 */
3607 if (!list_empty(&cache->io_list)) {
3608 list_del_init(&cache->io_list);
3609 btrfs_wait_cache_io(trans, cache, path);
3610 btrfs_put_block_group(cache);
3611 }
3612
3613
3614 /*
3615 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3616 * if it should update the cache_state. Don't delete
3617 * until after we wait.
3618 *
3619 * Since we're not running in the commit critical section
3620 * we need the dirty_bgs_lock to protect from update_block_group
3621 */
3622 spin_lock(&cur_trans->dirty_bgs_lock);
3623 list_del_init(&cache->dirty_list);
3624 spin_unlock(&cur_trans->dirty_bgs_lock);
3625
3626 should_put = 1;
3627
3628 cache_save_setup(cache, trans, path);
3629
3630 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3631 cache->io_ctl.inode = NULL;
3632 ret = btrfs_write_out_cache(fs_info, trans,
3633 cache, path);
3634 if (ret == 0 && cache->io_ctl.inode) {
3635 num_started++;
3636 should_put = 0;
3637
3638 /*
3639 * the cache_write_mutex is protecting
3640 * the io_list
3641 */
3642 list_add_tail(&cache->io_list, io);
3643 } else {
3644 /*
3645 * if we failed to write the cache, the
3646 * generation will be bad and life goes on
3647 */
3648 ret = 0;
3649 }
3650 }
3651 if (!ret) {
3652 ret = write_one_cache_group(trans, fs_info,
3653 path, cache);
3654 /*
3655 * Our block group might still be attached to the list
3656 * of new block groups in the transaction handle of some
3657 * other task (struct btrfs_trans_handle->new_bgs). This
3658 * means its block group item isn't yet in the extent
3659 * tree. If this happens ignore the error, as we will
3660 * try again later in the critical section of the
3661 * transaction commit.
3662 */
3663 if (ret == -ENOENT) {
3664 ret = 0;
3665 spin_lock(&cur_trans->dirty_bgs_lock);
3666 if (list_empty(&cache->dirty_list)) {
3667 list_add_tail(&cache->dirty_list,
3668 &cur_trans->dirty_bgs);
3669 btrfs_get_block_group(cache);
3670 }
3671 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 } else if (ret) {
3673 btrfs_abort_transaction(trans, ret);
3674 }
3675 }
3676
3677 /* if its not on the io list, we need to put the block group */
3678 if (should_put)
3679 btrfs_put_block_group(cache);
3680
3681 if (ret)
3682 break;
3683
3684 /*
3685 * Avoid blocking other tasks for too long. It might even save
3686 * us from writing caches for block groups that are going to be
3687 * removed.
3688 */
3689 mutex_unlock(&trans->transaction->cache_write_mutex);
3690 mutex_lock(&trans->transaction->cache_write_mutex);
3691 }
3692 mutex_unlock(&trans->transaction->cache_write_mutex);
3693
3694 /*
3695 * go through delayed refs for all the stuff we've just kicked off
3696 * and then loop back (just once)
3697 */
3698 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3699 if (!ret && loops == 0) {
3700 loops++;
3701 spin_lock(&cur_trans->dirty_bgs_lock);
3702 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3703 /*
3704 * dirty_bgs_lock protects us from concurrent block group
3705 * deletes too (not just cache_write_mutex).
3706 */
3707 if (!list_empty(&dirty)) {
3708 spin_unlock(&cur_trans->dirty_bgs_lock);
3709 goto again;
3710 }
3711 spin_unlock(&cur_trans->dirty_bgs_lock);
3712 } else if (ret < 0) {
3713 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3714 }
3715
3716 btrfs_free_path(path);
3717 return ret;
3718 }
3719
3720 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3721 struct btrfs_fs_info *fs_info)
3722 {
3723 struct btrfs_block_group_cache *cache;
3724 struct btrfs_transaction *cur_trans = trans->transaction;
3725 int ret = 0;
3726 int should_put;
3727 struct btrfs_path *path;
3728 struct list_head *io = &cur_trans->io_bgs;
3729 int num_started = 0;
3730
3731 path = btrfs_alloc_path();
3732 if (!path)
3733 return -ENOMEM;
3734
3735 /*
3736 * Even though we are in the critical section of the transaction commit,
3737 * we can still have concurrent tasks adding elements to this
3738 * transaction's list of dirty block groups. These tasks correspond to
3739 * endio free space workers started when writeback finishes for a
3740 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3741 * allocate new block groups as a result of COWing nodes of the root
3742 * tree when updating the free space inode. The writeback for the space
3743 * caches is triggered by an earlier call to
3744 * btrfs_start_dirty_block_groups() and iterations of the following
3745 * loop.
3746 * Also we want to do the cache_save_setup first and then run the
3747 * delayed refs to make sure we have the best chance at doing this all
3748 * in one shot.
3749 */
3750 spin_lock(&cur_trans->dirty_bgs_lock);
3751 while (!list_empty(&cur_trans->dirty_bgs)) {
3752 cache = list_first_entry(&cur_trans->dirty_bgs,
3753 struct btrfs_block_group_cache,
3754 dirty_list);
3755
3756 /*
3757 * this can happen if cache_save_setup re-dirties a block
3758 * group that is already under IO. Just wait for it to
3759 * finish and then do it all again
3760 */
3761 if (!list_empty(&cache->io_list)) {
3762 spin_unlock(&cur_trans->dirty_bgs_lock);
3763 list_del_init(&cache->io_list);
3764 btrfs_wait_cache_io(trans, cache, path);
3765 btrfs_put_block_group(cache);
3766 spin_lock(&cur_trans->dirty_bgs_lock);
3767 }
3768
3769 /*
3770 * don't remove from the dirty list until after we've waited
3771 * on any pending IO
3772 */
3773 list_del_init(&cache->dirty_list);
3774 spin_unlock(&cur_trans->dirty_bgs_lock);
3775 should_put = 1;
3776
3777 cache_save_setup(cache, trans, path);
3778
3779 if (!ret)
3780 ret = btrfs_run_delayed_refs(trans, fs_info,
3781 (unsigned long) -1);
3782
3783 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3784 cache->io_ctl.inode = NULL;
3785 ret = btrfs_write_out_cache(fs_info, trans,
3786 cache, path);
3787 if (ret == 0 && cache->io_ctl.inode) {
3788 num_started++;
3789 should_put = 0;
3790 list_add_tail(&cache->io_list, io);
3791 } else {
3792 /*
3793 * if we failed to write the cache, the
3794 * generation will be bad and life goes on
3795 */
3796 ret = 0;
3797 }
3798 }
3799 if (!ret) {
3800 ret = write_one_cache_group(trans, fs_info,
3801 path, cache);
3802 /*
3803 * One of the free space endio workers might have
3804 * created a new block group while updating a free space
3805 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3806 * and hasn't released its transaction handle yet, in
3807 * which case the new block group is still attached to
3808 * its transaction handle and its creation has not
3809 * finished yet (no block group item in the extent tree
3810 * yet, etc). If this is the case, wait for all free
3811 * space endio workers to finish and retry. This is a
3812 * a very rare case so no need for a more efficient and
3813 * complex approach.
3814 */
3815 if (ret == -ENOENT) {
3816 wait_event(cur_trans->writer_wait,
3817 atomic_read(&cur_trans->num_writers) == 1);
3818 ret = write_one_cache_group(trans, fs_info,
3819 path, cache);
3820 }
3821 if (ret)
3822 btrfs_abort_transaction(trans, ret);
3823 }
3824
3825 /* if its not on the io list, we need to put the block group */
3826 if (should_put)
3827 btrfs_put_block_group(cache);
3828 spin_lock(&cur_trans->dirty_bgs_lock);
3829 }
3830 spin_unlock(&cur_trans->dirty_bgs_lock);
3831
3832 while (!list_empty(io)) {
3833 cache = list_first_entry(io, struct btrfs_block_group_cache,
3834 io_list);
3835 list_del_init(&cache->io_list);
3836 btrfs_wait_cache_io(trans, cache, path);
3837 btrfs_put_block_group(cache);
3838 }
3839
3840 btrfs_free_path(path);
3841 return ret;
3842 }
3843
3844 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846 struct btrfs_block_group_cache *block_group;
3847 int readonly = 0;
3848
3849 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3850 if (!block_group || block_group->ro)
3851 readonly = 1;
3852 if (block_group)
3853 btrfs_put_block_group(block_group);
3854 return readonly;
3855 }
3856
3857 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858 {
3859 struct btrfs_block_group_cache *bg;
3860 bool ret = true;
3861
3862 bg = btrfs_lookup_block_group(fs_info, bytenr);
3863 if (!bg)
3864 return false;
3865
3866 spin_lock(&bg->lock);
3867 if (bg->ro)
3868 ret = false;
3869 else
3870 atomic_inc(&bg->nocow_writers);
3871 spin_unlock(&bg->lock);
3872
3873 /* no put on block group, done by btrfs_dec_nocow_writers */
3874 if (!ret)
3875 btrfs_put_block_group(bg);
3876
3877 return ret;
3878
3879 }
3880
3881 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3882 {
3883 struct btrfs_block_group_cache *bg;
3884
3885 bg = btrfs_lookup_block_group(fs_info, bytenr);
3886 ASSERT(bg);
3887 if (atomic_dec_and_test(&bg->nocow_writers))
3888 wake_up_atomic_t(&bg->nocow_writers);
3889 /*
3890 * Once for our lookup and once for the lookup done by a previous call
3891 * to btrfs_inc_nocow_writers()
3892 */
3893 btrfs_put_block_group(bg);
3894 btrfs_put_block_group(bg);
3895 }
3896
3897 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3898 {
3899 schedule();
3900 return 0;
3901 }
3902
3903 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3904 {
3905 wait_on_atomic_t(&bg->nocow_writers,
3906 btrfs_wait_nocow_writers_atomic_t,
3907 TASK_UNINTERRUPTIBLE);
3908 }
3909
3910 static const char *alloc_name(u64 flags)
3911 {
3912 switch (flags) {
3913 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3914 return "mixed";
3915 case BTRFS_BLOCK_GROUP_METADATA:
3916 return "metadata";
3917 case BTRFS_BLOCK_GROUP_DATA:
3918 return "data";
3919 case BTRFS_BLOCK_GROUP_SYSTEM:
3920 return "system";
3921 default:
3922 WARN_ON(1);
3923 return "invalid-combination";
3924 };
3925 }
3926
3927 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3928 u64 total_bytes, u64 bytes_used,
3929 u64 bytes_readonly,
3930 struct btrfs_space_info **space_info)
3931 {
3932 struct btrfs_space_info *found;
3933 int i;
3934 int factor;
3935 int ret;
3936
3937 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3938 BTRFS_BLOCK_GROUP_RAID10))
3939 factor = 2;
3940 else
3941 factor = 1;
3942
3943 found = __find_space_info(info, flags);
3944 if (found) {
3945 spin_lock(&found->lock);
3946 found->total_bytes += total_bytes;
3947 found->disk_total += total_bytes * factor;
3948 found->bytes_used += bytes_used;
3949 found->disk_used += bytes_used * factor;
3950 found->bytes_readonly += bytes_readonly;
3951 if (total_bytes > 0)
3952 found->full = 0;
3953 space_info_add_new_bytes(info, found, total_bytes -
3954 bytes_used - bytes_readonly);
3955 spin_unlock(&found->lock);
3956 *space_info = found;
3957 return 0;
3958 }
3959 found = kzalloc(sizeof(*found), GFP_NOFS);
3960 if (!found)
3961 return -ENOMEM;
3962
3963 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3964 if (ret) {
3965 kfree(found);
3966 return ret;
3967 }
3968
3969 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3970 INIT_LIST_HEAD(&found->block_groups[i]);
3971 init_rwsem(&found->groups_sem);
3972 spin_lock_init(&found->lock);
3973 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3974 found->total_bytes = total_bytes;
3975 found->disk_total = total_bytes * factor;
3976 found->bytes_used = bytes_used;
3977 found->disk_used = bytes_used * factor;
3978 found->bytes_pinned = 0;
3979 found->bytes_reserved = 0;
3980 found->bytes_readonly = bytes_readonly;
3981 found->bytes_may_use = 0;
3982 found->full = 0;
3983 found->max_extent_size = 0;
3984 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3985 found->chunk_alloc = 0;
3986 found->flush = 0;
3987 init_waitqueue_head(&found->wait);
3988 INIT_LIST_HEAD(&found->ro_bgs);
3989 INIT_LIST_HEAD(&found->tickets);
3990 INIT_LIST_HEAD(&found->priority_tickets);
3991
3992 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3993 info->space_info_kobj, "%s",
3994 alloc_name(found->flags));
3995 if (ret) {
3996 percpu_counter_destroy(&found->total_bytes_pinned);
3997 kfree(found);
3998 return ret;
3999 }
4000
4001 *space_info = found;
4002 list_add_rcu(&found->list, &info->space_info);
4003 if (flags & BTRFS_BLOCK_GROUP_DATA)
4004 info->data_sinfo = found;
4005
4006 return ret;
4007 }
4008
4009 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4010 {
4011 u64 extra_flags = chunk_to_extended(flags) &
4012 BTRFS_EXTENDED_PROFILE_MASK;
4013
4014 write_seqlock(&fs_info->profiles_lock);
4015 if (flags & BTRFS_BLOCK_GROUP_DATA)
4016 fs_info->avail_data_alloc_bits |= extra_flags;
4017 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4018 fs_info->avail_metadata_alloc_bits |= extra_flags;
4019 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4020 fs_info->avail_system_alloc_bits |= extra_flags;
4021 write_sequnlock(&fs_info->profiles_lock);
4022 }
4023
4024 /*
4025 * returns target flags in extended format or 0 if restripe for this
4026 * chunk_type is not in progress
4027 *
4028 * should be called with either volume_mutex or balance_lock held
4029 */
4030 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4031 {
4032 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4033 u64 target = 0;
4034
4035 if (!bctl)
4036 return 0;
4037
4038 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4039 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4040 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4041 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4042 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4043 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4044 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4045 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4046 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4047 }
4048
4049 return target;
4050 }
4051
4052 /*
4053 * @flags: available profiles in extended format (see ctree.h)
4054 *
4055 * Returns reduced profile in chunk format. If profile changing is in
4056 * progress (either running or paused) picks the target profile (if it's
4057 * already available), otherwise falls back to plain reducing.
4058 */
4059 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4060 {
4061 u64 num_devices = fs_info->fs_devices->rw_devices;
4062 u64 target;
4063 u64 raid_type;
4064 u64 allowed = 0;
4065
4066 /*
4067 * see if restripe for this chunk_type is in progress, if so
4068 * try to reduce to the target profile
4069 */
4070 spin_lock(&fs_info->balance_lock);
4071 target = get_restripe_target(fs_info, flags);
4072 if (target) {
4073 /* pick target profile only if it's already available */
4074 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4075 spin_unlock(&fs_info->balance_lock);
4076 return extended_to_chunk(target);
4077 }
4078 }
4079 spin_unlock(&fs_info->balance_lock);
4080
4081 /* First, mask out the RAID levels which aren't possible */
4082 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4083 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4084 allowed |= btrfs_raid_group[raid_type];
4085 }
4086 allowed &= flags;
4087
4088 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4089 allowed = BTRFS_BLOCK_GROUP_RAID6;
4090 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4091 allowed = BTRFS_BLOCK_GROUP_RAID5;
4092 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4093 allowed = BTRFS_BLOCK_GROUP_RAID10;
4094 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4095 allowed = BTRFS_BLOCK_GROUP_RAID1;
4096 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4097 allowed = BTRFS_BLOCK_GROUP_RAID0;
4098
4099 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4100
4101 return extended_to_chunk(flags | allowed);
4102 }
4103
4104 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4105 {
4106 unsigned seq;
4107 u64 flags;
4108
4109 do {
4110 flags = orig_flags;
4111 seq = read_seqbegin(&fs_info->profiles_lock);
4112
4113 if (flags & BTRFS_BLOCK_GROUP_DATA)
4114 flags |= fs_info->avail_data_alloc_bits;
4115 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4116 flags |= fs_info->avail_system_alloc_bits;
4117 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4118 flags |= fs_info->avail_metadata_alloc_bits;
4119 } while (read_seqretry(&fs_info->profiles_lock, seq));
4120
4121 return btrfs_reduce_alloc_profile(fs_info, flags);
4122 }
4123
4124 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4125 {
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 u64 flags;
4128 u64 ret;
4129
4130 if (data)
4131 flags = BTRFS_BLOCK_GROUP_DATA;
4132 else if (root == fs_info->chunk_root)
4133 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4134 else
4135 flags = BTRFS_BLOCK_GROUP_METADATA;
4136
4137 ret = get_alloc_profile(fs_info, flags);
4138 return ret;
4139 }
4140
4141 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4142 bool may_use_included)
4143 {
4144 ASSERT(s_info);
4145 return s_info->bytes_used + s_info->bytes_reserved +
4146 s_info->bytes_pinned + s_info->bytes_readonly +
4147 (may_use_included ? s_info->bytes_may_use : 0);
4148 }
4149
4150 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4151 {
4152 struct btrfs_space_info *data_sinfo;
4153 struct btrfs_root *root = inode->root;
4154 struct btrfs_fs_info *fs_info = root->fs_info;
4155 u64 used;
4156 int ret = 0;
4157 int need_commit = 2;
4158 int have_pinned_space;
4159
4160 /* make sure bytes are sectorsize aligned */
4161 bytes = ALIGN(bytes, fs_info->sectorsize);
4162
4163 if (btrfs_is_free_space_inode(inode)) {
4164 need_commit = 0;
4165 ASSERT(current->journal_info);
4166 }
4167
4168 data_sinfo = fs_info->data_sinfo;
4169 if (!data_sinfo)
4170 goto alloc;
4171
4172 again:
4173 /* make sure we have enough space to handle the data first */
4174 spin_lock(&data_sinfo->lock);
4175 used = btrfs_space_info_used(data_sinfo, true);
4176
4177 if (used + bytes > data_sinfo->total_bytes) {
4178 struct btrfs_trans_handle *trans;
4179
4180 /*
4181 * if we don't have enough free bytes in this space then we need
4182 * to alloc a new chunk.
4183 */
4184 if (!data_sinfo->full) {
4185 u64 alloc_target;
4186
4187 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4188 spin_unlock(&data_sinfo->lock);
4189 alloc:
4190 alloc_target = btrfs_get_alloc_profile(root, 1);
4191 /*
4192 * It is ugly that we don't call nolock join
4193 * transaction for the free space inode case here.
4194 * But it is safe because we only do the data space
4195 * reservation for the free space cache in the
4196 * transaction context, the common join transaction
4197 * just increase the counter of the current transaction
4198 * handler, doesn't try to acquire the trans_lock of
4199 * the fs.
4200 */
4201 trans = btrfs_join_transaction(root);
4202 if (IS_ERR(trans))
4203 return PTR_ERR(trans);
4204
4205 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4206 CHUNK_ALLOC_NO_FORCE);
4207 btrfs_end_transaction(trans);
4208 if (ret < 0) {
4209 if (ret != -ENOSPC)
4210 return ret;
4211 else {
4212 have_pinned_space = 1;
4213 goto commit_trans;
4214 }
4215 }
4216
4217 if (!data_sinfo)
4218 data_sinfo = fs_info->data_sinfo;
4219
4220 goto again;
4221 }
4222
4223 /*
4224 * If we don't have enough pinned space to deal with this
4225 * allocation, and no removed chunk in current transaction,
4226 * don't bother committing the transaction.
4227 */
4228 have_pinned_space = percpu_counter_compare(
4229 &data_sinfo->total_bytes_pinned,
4230 used + bytes - data_sinfo->total_bytes);
4231 spin_unlock(&data_sinfo->lock);
4232
4233 /* commit the current transaction and try again */
4234 commit_trans:
4235 if (need_commit &&
4236 !atomic_read(&fs_info->open_ioctl_trans)) {
4237 need_commit--;
4238
4239 if (need_commit > 0) {
4240 btrfs_start_delalloc_roots(fs_info, 0, -1);
4241 btrfs_wait_ordered_roots(fs_info, -1, 0,
4242 (u64)-1);
4243 }
4244
4245 trans = btrfs_join_transaction(root);
4246 if (IS_ERR(trans))
4247 return PTR_ERR(trans);
4248 if (have_pinned_space >= 0 ||
4249 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4250 &trans->transaction->flags) ||
4251 need_commit > 0) {
4252 ret = btrfs_commit_transaction(trans);
4253 if (ret)
4254 return ret;
4255 /*
4256 * The cleaner kthread might still be doing iput
4257 * operations. Wait for it to finish so that
4258 * more space is released.
4259 */
4260 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4261 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4262 goto again;
4263 } else {
4264 btrfs_end_transaction(trans);
4265 }
4266 }
4267
4268 trace_btrfs_space_reservation(fs_info,
4269 "space_info:enospc",
4270 data_sinfo->flags, bytes, 1);
4271 return -ENOSPC;
4272 }
4273 data_sinfo->bytes_may_use += bytes;
4274 trace_btrfs_space_reservation(fs_info, "space_info",
4275 data_sinfo->flags, bytes, 1);
4276 spin_unlock(&data_sinfo->lock);
4277
4278 return ret;
4279 }
4280
4281 /*
4282 * New check_data_free_space() with ability for precious data reservation
4283 * Will replace old btrfs_check_data_free_space(), but for patch split,
4284 * add a new function first and then replace it.
4285 */
4286 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4287 {
4288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4289 int ret;
4290
4291 /* align the range */
4292 len = round_up(start + len, fs_info->sectorsize) -
4293 round_down(start, fs_info->sectorsize);
4294 start = round_down(start, fs_info->sectorsize);
4295
4296 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4297 if (ret < 0)
4298 return ret;
4299
4300 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4301 ret = btrfs_qgroup_reserve_data(inode, start, len);
4302 if (ret)
4303 btrfs_free_reserved_data_space_noquota(inode, start, len);
4304 return ret;
4305 }
4306
4307 /*
4308 * Called if we need to clear a data reservation for this inode
4309 * Normally in a error case.
4310 *
4311 * This one will *NOT* use accurate qgroup reserved space API, just for case
4312 * which we can't sleep and is sure it won't affect qgroup reserved space.
4313 * Like clear_bit_hook().
4314 */
4315 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4316 u64 len)
4317 {
4318 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4319 struct btrfs_space_info *data_sinfo;
4320
4321 /* Make sure the range is aligned to sectorsize */
4322 len = round_up(start + len, fs_info->sectorsize) -
4323 round_down(start, fs_info->sectorsize);
4324 start = round_down(start, fs_info->sectorsize);
4325
4326 data_sinfo = fs_info->data_sinfo;
4327 spin_lock(&data_sinfo->lock);
4328 if (WARN_ON(data_sinfo->bytes_may_use < len))
4329 data_sinfo->bytes_may_use = 0;
4330 else
4331 data_sinfo->bytes_may_use -= len;
4332 trace_btrfs_space_reservation(fs_info, "space_info",
4333 data_sinfo->flags, len, 0);
4334 spin_unlock(&data_sinfo->lock);
4335 }
4336
4337 /*
4338 * Called if we need to clear a data reservation for this inode
4339 * Normally in a error case.
4340 *
4341 * This one will handle the per-inode data rsv map for accurate reserved
4342 * space framework.
4343 */
4344 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4345 {
4346 struct btrfs_root *root = BTRFS_I(inode)->root;
4347
4348 /* Make sure the range is aligned to sectorsize */
4349 len = round_up(start + len, root->fs_info->sectorsize) -
4350 round_down(start, root->fs_info->sectorsize);
4351 start = round_down(start, root->fs_info->sectorsize);
4352
4353 btrfs_free_reserved_data_space_noquota(inode, start, len);
4354 btrfs_qgroup_free_data(inode, start, len);
4355 }
4356
4357 static void force_metadata_allocation(struct btrfs_fs_info *info)
4358 {
4359 struct list_head *head = &info->space_info;
4360 struct btrfs_space_info *found;
4361
4362 rcu_read_lock();
4363 list_for_each_entry_rcu(found, head, list) {
4364 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4365 found->force_alloc = CHUNK_ALLOC_FORCE;
4366 }
4367 rcu_read_unlock();
4368 }
4369
4370 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4371 {
4372 return (global->size << 1);
4373 }
4374
4375 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4376 struct btrfs_space_info *sinfo, int force)
4377 {
4378 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4379 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4380 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4381 u64 thresh;
4382
4383 if (force == CHUNK_ALLOC_FORCE)
4384 return 1;
4385
4386 /*
4387 * We need to take into account the global rsv because for all intents
4388 * and purposes it's used space. Don't worry about locking the
4389 * global_rsv, it doesn't change except when the transaction commits.
4390 */
4391 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4392 num_allocated += calc_global_rsv_need_space(global_rsv);
4393
4394 /*
4395 * in limited mode, we want to have some free space up to
4396 * about 1% of the FS size.
4397 */
4398 if (force == CHUNK_ALLOC_LIMITED) {
4399 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4400 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4401
4402 if (num_bytes - num_allocated < thresh)
4403 return 1;
4404 }
4405
4406 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4407 return 0;
4408 return 1;
4409 }
4410
4411 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4412 {
4413 u64 num_dev;
4414
4415 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4416 BTRFS_BLOCK_GROUP_RAID0 |
4417 BTRFS_BLOCK_GROUP_RAID5 |
4418 BTRFS_BLOCK_GROUP_RAID6))
4419 num_dev = fs_info->fs_devices->rw_devices;
4420 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4421 num_dev = 2;
4422 else
4423 num_dev = 1; /* DUP or single */
4424
4425 return num_dev;
4426 }
4427
4428 /*
4429 * If @is_allocation is true, reserve space in the system space info necessary
4430 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4431 * removing a chunk.
4432 */
4433 void check_system_chunk(struct btrfs_trans_handle *trans,
4434 struct btrfs_fs_info *fs_info, u64 type)
4435 {
4436 struct btrfs_space_info *info;
4437 u64 left;
4438 u64 thresh;
4439 int ret = 0;
4440 u64 num_devs;
4441
4442 /*
4443 * Needed because we can end up allocating a system chunk and for an
4444 * atomic and race free space reservation in the chunk block reserve.
4445 */
4446 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4447
4448 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4449 spin_lock(&info->lock);
4450 left = info->total_bytes - btrfs_space_info_used(info, true);
4451 spin_unlock(&info->lock);
4452
4453 num_devs = get_profile_num_devs(fs_info, type);
4454
4455 /* num_devs device items to update and 1 chunk item to add or remove */
4456 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4457 btrfs_calc_trans_metadata_size(fs_info, 1);
4458
4459 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4460 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4461 left, thresh, type);
4462 dump_space_info(fs_info, info, 0, 0);
4463 }
4464
4465 if (left < thresh) {
4466 u64 flags;
4467
4468 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4469 /*
4470 * Ignore failure to create system chunk. We might end up not
4471 * needing it, as we might not need to COW all nodes/leafs from
4472 * the paths we visit in the chunk tree (they were already COWed
4473 * or created in the current transaction for example).
4474 */
4475 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4476 }
4477
4478 if (!ret) {
4479 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4480 &fs_info->chunk_block_rsv,
4481 thresh, BTRFS_RESERVE_NO_FLUSH);
4482 if (!ret)
4483 trans->chunk_bytes_reserved += thresh;
4484 }
4485 }
4486
4487 /*
4488 * If force is CHUNK_ALLOC_FORCE:
4489 * - return 1 if it successfully allocates a chunk,
4490 * - return errors including -ENOSPC otherwise.
4491 * If force is NOT CHUNK_ALLOC_FORCE:
4492 * - return 0 if it doesn't need to allocate a new chunk,
4493 * - return 1 if it successfully allocates a chunk,
4494 * - return errors including -ENOSPC otherwise.
4495 */
4496 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4497 struct btrfs_fs_info *fs_info, u64 flags, int force)
4498 {
4499 struct btrfs_space_info *space_info;
4500 int wait_for_alloc = 0;
4501 int ret = 0;
4502
4503 /* Don't re-enter if we're already allocating a chunk */
4504 if (trans->allocating_chunk)
4505 return -ENOSPC;
4506
4507 space_info = __find_space_info(fs_info, flags);
4508 if (!space_info) {
4509 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4510 BUG_ON(ret); /* -ENOMEM */
4511 }
4512 BUG_ON(!space_info); /* Logic error */
4513
4514 again:
4515 spin_lock(&space_info->lock);
4516 if (force < space_info->force_alloc)
4517 force = space_info->force_alloc;
4518 if (space_info->full) {
4519 if (should_alloc_chunk(fs_info, space_info, force))
4520 ret = -ENOSPC;
4521 else
4522 ret = 0;
4523 spin_unlock(&space_info->lock);
4524 return ret;
4525 }
4526
4527 if (!should_alloc_chunk(fs_info, space_info, force)) {
4528 spin_unlock(&space_info->lock);
4529 return 0;
4530 } else if (space_info->chunk_alloc) {
4531 wait_for_alloc = 1;
4532 } else {
4533 space_info->chunk_alloc = 1;
4534 }
4535
4536 spin_unlock(&space_info->lock);
4537
4538 mutex_lock(&fs_info->chunk_mutex);
4539
4540 /*
4541 * The chunk_mutex is held throughout the entirety of a chunk
4542 * allocation, so once we've acquired the chunk_mutex we know that the
4543 * other guy is done and we need to recheck and see if we should
4544 * allocate.
4545 */
4546 if (wait_for_alloc) {
4547 mutex_unlock(&fs_info->chunk_mutex);
4548 wait_for_alloc = 0;
4549 goto again;
4550 }
4551
4552 trans->allocating_chunk = true;
4553
4554 /*
4555 * If we have mixed data/metadata chunks we want to make sure we keep
4556 * allocating mixed chunks instead of individual chunks.
4557 */
4558 if (btrfs_mixed_space_info(space_info))
4559 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4560
4561 /*
4562 * if we're doing a data chunk, go ahead and make sure that
4563 * we keep a reasonable number of metadata chunks allocated in the
4564 * FS as well.
4565 */
4566 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4567 fs_info->data_chunk_allocations++;
4568 if (!(fs_info->data_chunk_allocations %
4569 fs_info->metadata_ratio))
4570 force_metadata_allocation(fs_info);
4571 }
4572
4573 /*
4574 * Check if we have enough space in SYSTEM chunk because we may need
4575 * to update devices.
4576 */
4577 check_system_chunk(trans, fs_info, flags);
4578
4579 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4580 trans->allocating_chunk = false;
4581
4582 spin_lock(&space_info->lock);
4583 if (ret < 0 && ret != -ENOSPC)
4584 goto out;
4585 if (ret)
4586 space_info->full = 1;
4587 else
4588 ret = 1;
4589
4590 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4591 out:
4592 space_info->chunk_alloc = 0;
4593 spin_unlock(&space_info->lock);
4594 mutex_unlock(&fs_info->chunk_mutex);
4595 /*
4596 * When we allocate a new chunk we reserve space in the chunk block
4597 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4598 * add new nodes/leafs to it if we end up needing to do it when
4599 * inserting the chunk item and updating device items as part of the
4600 * second phase of chunk allocation, performed by
4601 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4602 * large number of new block groups to create in our transaction
4603 * handle's new_bgs list to avoid exhausting the chunk block reserve
4604 * in extreme cases - like having a single transaction create many new
4605 * block groups when starting to write out the free space caches of all
4606 * the block groups that were made dirty during the lifetime of the
4607 * transaction.
4608 */
4609 if (trans->can_flush_pending_bgs &&
4610 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4611 btrfs_create_pending_block_groups(trans, fs_info);
4612 btrfs_trans_release_chunk_metadata(trans);
4613 }
4614 return ret;
4615 }
4616
4617 static int can_overcommit(struct btrfs_root *root,
4618 struct btrfs_space_info *space_info, u64 bytes,
4619 enum btrfs_reserve_flush_enum flush)
4620 {
4621 struct btrfs_fs_info *fs_info = root->fs_info;
4622 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4623 u64 profile;
4624 u64 space_size;
4625 u64 avail;
4626 u64 used;
4627
4628 /* Don't overcommit when in mixed mode. */
4629 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4630 return 0;
4631
4632 profile = btrfs_get_alloc_profile(root, 0);
4633 used = btrfs_space_info_used(space_info, false);
4634
4635 /*
4636 * We only want to allow over committing if we have lots of actual space
4637 * free, but if we don't have enough space to handle the global reserve
4638 * space then we could end up having a real enospc problem when trying
4639 * to allocate a chunk or some other such important allocation.
4640 */
4641 spin_lock(&global_rsv->lock);
4642 space_size = calc_global_rsv_need_space(global_rsv);
4643 spin_unlock(&global_rsv->lock);
4644 if (used + space_size >= space_info->total_bytes)
4645 return 0;
4646
4647 used += space_info->bytes_may_use;
4648
4649 avail = atomic64_read(&fs_info->free_chunk_space);
4650
4651 /*
4652 * If we have dup, raid1 or raid10 then only half of the free
4653 * space is actually useable. For raid56, the space info used
4654 * doesn't include the parity drive, so we don't have to
4655 * change the math
4656 */
4657 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4658 BTRFS_BLOCK_GROUP_RAID1 |
4659 BTRFS_BLOCK_GROUP_RAID10))
4660 avail >>= 1;
4661
4662 /*
4663 * If we aren't flushing all things, let us overcommit up to
4664 * 1/2th of the space. If we can flush, don't let us overcommit
4665 * too much, let it overcommit up to 1/8 of the space.
4666 */
4667 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4668 avail >>= 3;
4669 else
4670 avail >>= 1;
4671
4672 if (used + bytes < space_info->total_bytes + avail)
4673 return 1;
4674 return 0;
4675 }
4676
4677 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4678 unsigned long nr_pages, int nr_items)
4679 {
4680 struct super_block *sb = fs_info->sb;
4681
4682 if (down_read_trylock(&sb->s_umount)) {
4683 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4684 up_read(&sb->s_umount);
4685 } else {
4686 /*
4687 * We needn't worry the filesystem going from r/w to r/o though
4688 * we don't acquire ->s_umount mutex, because the filesystem
4689 * should guarantee the delalloc inodes list be empty after
4690 * the filesystem is readonly(all dirty pages are written to
4691 * the disk).
4692 */
4693 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4694 if (!current->journal_info)
4695 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4696 }
4697 }
4698
4699 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4700 u64 to_reclaim)
4701 {
4702 u64 bytes;
4703 int nr;
4704
4705 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4706 nr = (int)div64_u64(to_reclaim, bytes);
4707 if (!nr)
4708 nr = 1;
4709 return nr;
4710 }
4711
4712 #define EXTENT_SIZE_PER_ITEM SZ_256K
4713
4714 /*
4715 * shrink metadata reservation for delalloc
4716 */
4717 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4718 bool wait_ordered)
4719 {
4720 struct btrfs_fs_info *fs_info = root->fs_info;
4721 struct btrfs_block_rsv *block_rsv;
4722 struct btrfs_space_info *space_info;
4723 struct btrfs_trans_handle *trans;
4724 u64 delalloc_bytes;
4725 u64 max_reclaim;
4726 long time_left;
4727 unsigned long nr_pages;
4728 int loops;
4729 int items;
4730 enum btrfs_reserve_flush_enum flush;
4731
4732 /* Calc the number of the pages we need flush for space reservation */
4733 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4734 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4735
4736 trans = (struct btrfs_trans_handle *)current->journal_info;
4737 block_rsv = &fs_info->delalloc_block_rsv;
4738 space_info = block_rsv->space_info;
4739
4740 delalloc_bytes = percpu_counter_sum_positive(
4741 &fs_info->delalloc_bytes);
4742 if (delalloc_bytes == 0) {
4743 if (trans)
4744 return;
4745 if (wait_ordered)
4746 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4747 return;
4748 }
4749
4750 loops = 0;
4751 while (delalloc_bytes && loops < 3) {
4752 max_reclaim = min(delalloc_bytes, to_reclaim);
4753 nr_pages = max_reclaim >> PAGE_SHIFT;
4754 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4755 /*
4756 * We need to wait for the async pages to actually start before
4757 * we do anything.
4758 */
4759 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4760 if (!max_reclaim)
4761 goto skip_async;
4762
4763 if (max_reclaim <= nr_pages)
4764 max_reclaim = 0;
4765 else
4766 max_reclaim -= nr_pages;
4767
4768 wait_event(fs_info->async_submit_wait,
4769 atomic_read(&fs_info->async_delalloc_pages) <=
4770 (int)max_reclaim);
4771 skip_async:
4772 if (!trans)
4773 flush = BTRFS_RESERVE_FLUSH_ALL;
4774 else
4775 flush = BTRFS_RESERVE_NO_FLUSH;
4776 spin_lock(&space_info->lock);
4777 if (can_overcommit(root, space_info, orig, flush)) {
4778 spin_unlock(&space_info->lock);
4779 break;
4780 }
4781 if (list_empty(&space_info->tickets) &&
4782 list_empty(&space_info->priority_tickets)) {
4783 spin_unlock(&space_info->lock);
4784 break;
4785 }
4786 spin_unlock(&space_info->lock);
4787
4788 loops++;
4789 if (wait_ordered && !trans) {
4790 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4791 } else {
4792 time_left = schedule_timeout_killable(1);
4793 if (time_left)
4794 break;
4795 }
4796 delalloc_bytes = percpu_counter_sum_positive(
4797 &fs_info->delalloc_bytes);
4798 }
4799 }
4800
4801 /**
4802 * maybe_commit_transaction - possibly commit the transaction if its ok to
4803 * @root - the root we're allocating for
4804 * @bytes - the number of bytes we want to reserve
4805 * @force - force the commit
4806 *
4807 * This will check to make sure that committing the transaction will actually
4808 * get us somewhere and then commit the transaction if it does. Otherwise it
4809 * will return -ENOSPC.
4810 */
4811 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4812 struct btrfs_space_info *space_info,
4813 u64 bytes, int force)
4814 {
4815 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4816 struct btrfs_trans_handle *trans;
4817
4818 trans = (struct btrfs_trans_handle *)current->journal_info;
4819 if (trans)
4820 return -EAGAIN;
4821
4822 if (force)
4823 goto commit;
4824
4825 /* See if there is enough pinned space to make this reservation */
4826 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4827 bytes) >= 0)
4828 goto commit;
4829
4830 /*
4831 * See if there is some space in the delayed insertion reservation for
4832 * this reservation.
4833 */
4834 if (space_info != delayed_rsv->space_info)
4835 return -ENOSPC;
4836
4837 spin_lock(&delayed_rsv->lock);
4838 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4839 bytes - delayed_rsv->size) >= 0) {
4840 spin_unlock(&delayed_rsv->lock);
4841 return -ENOSPC;
4842 }
4843 spin_unlock(&delayed_rsv->lock);
4844
4845 commit:
4846 trans = btrfs_join_transaction(fs_info->extent_root);
4847 if (IS_ERR(trans))
4848 return -ENOSPC;
4849
4850 return btrfs_commit_transaction(trans);
4851 }
4852
4853 struct reserve_ticket {
4854 u64 bytes;
4855 int error;
4856 struct list_head list;
4857 wait_queue_head_t wait;
4858 };
4859
4860 static int flush_space(struct btrfs_fs_info *fs_info,
4861 struct btrfs_space_info *space_info, u64 num_bytes,
4862 u64 orig_bytes, int state)
4863 {
4864 struct btrfs_root *root = fs_info->extent_root;
4865 struct btrfs_trans_handle *trans;
4866 int nr;
4867 int ret = 0;
4868
4869 switch (state) {
4870 case FLUSH_DELAYED_ITEMS_NR:
4871 case FLUSH_DELAYED_ITEMS:
4872 if (state == FLUSH_DELAYED_ITEMS_NR)
4873 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4874 else
4875 nr = -1;
4876
4877 trans = btrfs_join_transaction(root);
4878 if (IS_ERR(trans)) {
4879 ret = PTR_ERR(trans);
4880 break;
4881 }
4882 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4883 btrfs_end_transaction(trans);
4884 break;
4885 case FLUSH_DELALLOC:
4886 case FLUSH_DELALLOC_WAIT:
4887 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4888 state == FLUSH_DELALLOC_WAIT);
4889 break;
4890 case ALLOC_CHUNK:
4891 trans = btrfs_join_transaction(root);
4892 if (IS_ERR(trans)) {
4893 ret = PTR_ERR(trans);
4894 break;
4895 }
4896 ret = do_chunk_alloc(trans, fs_info,
4897 btrfs_get_alloc_profile(root, 0),
4898 CHUNK_ALLOC_NO_FORCE);
4899 btrfs_end_transaction(trans);
4900 if (ret > 0 || ret == -ENOSPC)
4901 ret = 0;
4902 break;
4903 case COMMIT_TRANS:
4904 ret = may_commit_transaction(fs_info, space_info,
4905 orig_bytes, 0);
4906 break;
4907 default:
4908 ret = -ENOSPC;
4909 break;
4910 }
4911
4912 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4913 orig_bytes, state, ret);
4914 return ret;
4915 }
4916
4917 static inline u64
4918 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4919 struct btrfs_space_info *space_info)
4920 {
4921 struct reserve_ticket *ticket;
4922 u64 used;
4923 u64 expected;
4924 u64 to_reclaim = 0;
4925
4926 list_for_each_entry(ticket, &space_info->tickets, list)
4927 to_reclaim += ticket->bytes;
4928 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4929 to_reclaim += ticket->bytes;
4930 if (to_reclaim)
4931 return to_reclaim;
4932
4933 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4934 if (can_overcommit(root, space_info, to_reclaim,
4935 BTRFS_RESERVE_FLUSH_ALL))
4936 return 0;
4937
4938 used = space_info->bytes_used + space_info->bytes_reserved +
4939 space_info->bytes_pinned + space_info->bytes_readonly +
4940 space_info->bytes_may_use;
4941 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4942 expected = div_factor_fine(space_info->total_bytes, 95);
4943 else
4944 expected = div_factor_fine(space_info->total_bytes, 90);
4945
4946 if (used > expected)
4947 to_reclaim = used - expected;
4948 else
4949 to_reclaim = 0;
4950 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4951 space_info->bytes_reserved);
4952 return to_reclaim;
4953 }
4954
4955 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4956 struct btrfs_root *root, u64 used)
4957 {
4958 struct btrfs_fs_info *fs_info = root->fs_info;
4959 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4960
4961 /* If we're just plain full then async reclaim just slows us down. */
4962 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4963 return 0;
4964
4965 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4966 return 0;
4967
4968 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4969 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4970 }
4971
4972 static void wake_all_tickets(struct list_head *head)
4973 {
4974 struct reserve_ticket *ticket;
4975
4976 while (!list_empty(head)) {
4977 ticket = list_first_entry(head, struct reserve_ticket, list);
4978 list_del_init(&ticket->list);
4979 ticket->error = -ENOSPC;
4980 wake_up(&ticket->wait);
4981 }
4982 }
4983
4984 /*
4985 * This is for normal flushers, we can wait all goddamned day if we want to. We
4986 * will loop and continuously try to flush as long as we are making progress.
4987 * We count progress as clearing off tickets each time we have to loop.
4988 */
4989 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4990 {
4991 struct btrfs_fs_info *fs_info;
4992 struct btrfs_space_info *space_info;
4993 u64 to_reclaim;
4994 int flush_state;
4995 int commit_cycles = 0;
4996 u64 last_tickets_id;
4997
4998 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4999 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5000
5001 spin_lock(&space_info->lock);
5002 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5003 space_info);
5004 if (!to_reclaim) {
5005 space_info->flush = 0;
5006 spin_unlock(&space_info->lock);
5007 return;
5008 }
5009 last_tickets_id = space_info->tickets_id;
5010 spin_unlock(&space_info->lock);
5011
5012 flush_state = FLUSH_DELAYED_ITEMS_NR;
5013 do {
5014 struct reserve_ticket *ticket;
5015 int ret;
5016
5017 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5018 flush_state);
5019 spin_lock(&space_info->lock);
5020 if (list_empty(&space_info->tickets)) {
5021 space_info->flush = 0;
5022 spin_unlock(&space_info->lock);
5023 return;
5024 }
5025 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5026 space_info);
5027 ticket = list_first_entry(&space_info->tickets,
5028 struct reserve_ticket, list);
5029 if (last_tickets_id == space_info->tickets_id) {
5030 flush_state++;
5031 } else {
5032 last_tickets_id = space_info->tickets_id;
5033 flush_state = FLUSH_DELAYED_ITEMS_NR;
5034 if (commit_cycles)
5035 commit_cycles--;
5036 }
5037
5038 if (flush_state > COMMIT_TRANS) {
5039 commit_cycles++;
5040 if (commit_cycles > 2) {
5041 wake_all_tickets(&space_info->tickets);
5042 space_info->flush = 0;
5043 } else {
5044 flush_state = FLUSH_DELAYED_ITEMS_NR;
5045 }
5046 }
5047 spin_unlock(&space_info->lock);
5048 } while (flush_state <= COMMIT_TRANS);
5049 }
5050
5051 void btrfs_init_async_reclaim_work(struct work_struct *work)
5052 {
5053 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5054 }
5055
5056 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5057 struct btrfs_space_info *space_info,
5058 struct reserve_ticket *ticket)
5059 {
5060 u64 to_reclaim;
5061 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5062
5063 spin_lock(&space_info->lock);
5064 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->extent_root,
5065 space_info);
5066 if (!to_reclaim) {
5067 spin_unlock(&space_info->lock);
5068 return;
5069 }
5070 spin_unlock(&space_info->lock);
5071
5072 do {
5073 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5074 flush_state);
5075 flush_state++;
5076 spin_lock(&space_info->lock);
5077 if (ticket->bytes == 0) {
5078 spin_unlock(&space_info->lock);
5079 return;
5080 }
5081 spin_unlock(&space_info->lock);
5082
5083 /*
5084 * Priority flushers can't wait on delalloc without
5085 * deadlocking.
5086 */
5087 if (flush_state == FLUSH_DELALLOC ||
5088 flush_state == FLUSH_DELALLOC_WAIT)
5089 flush_state = ALLOC_CHUNK;
5090 } while (flush_state < COMMIT_TRANS);
5091 }
5092
5093 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5094 struct btrfs_space_info *space_info,
5095 struct reserve_ticket *ticket, u64 orig_bytes)
5096
5097 {
5098 DEFINE_WAIT(wait);
5099 int ret = 0;
5100
5101 spin_lock(&space_info->lock);
5102 while (ticket->bytes > 0 && ticket->error == 0) {
5103 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5104 if (ret) {
5105 ret = -EINTR;
5106 break;
5107 }
5108 spin_unlock(&space_info->lock);
5109
5110 schedule();
5111
5112 finish_wait(&ticket->wait, &wait);
5113 spin_lock(&space_info->lock);
5114 }
5115 if (!ret)
5116 ret = ticket->error;
5117 if (!list_empty(&ticket->list))
5118 list_del_init(&ticket->list);
5119 if (ticket->bytes && ticket->bytes < orig_bytes) {
5120 u64 num_bytes = orig_bytes - ticket->bytes;
5121 space_info->bytes_may_use -= num_bytes;
5122 trace_btrfs_space_reservation(fs_info, "space_info",
5123 space_info->flags, num_bytes, 0);
5124 }
5125 spin_unlock(&space_info->lock);
5126
5127 return ret;
5128 }
5129
5130 /**
5131 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5132 * @root - the root we're allocating for
5133 * @space_info - the space info we want to allocate from
5134 * @orig_bytes - the number of bytes we want
5135 * @flush - whether or not we can flush to make our reservation
5136 *
5137 * This will reserve orig_bytes number of bytes from the space info associated
5138 * with the block_rsv. If there is not enough space it will make an attempt to
5139 * flush out space to make room. It will do this by flushing delalloc if
5140 * possible or committing the transaction. If flush is 0 then no attempts to
5141 * regain reservations will be made and this will fail if there is not enough
5142 * space already.
5143 */
5144 static int __reserve_metadata_bytes(struct btrfs_root *root,
5145 struct btrfs_space_info *space_info,
5146 u64 orig_bytes,
5147 enum btrfs_reserve_flush_enum flush)
5148 {
5149 struct btrfs_fs_info *fs_info = root->fs_info;
5150 struct reserve_ticket ticket;
5151 u64 used;
5152 int ret = 0;
5153
5154 ASSERT(orig_bytes);
5155 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5156
5157 spin_lock(&space_info->lock);
5158 ret = -ENOSPC;
5159 used = btrfs_space_info_used(space_info, true);
5160
5161 /*
5162 * If we have enough space then hooray, make our reservation and carry
5163 * on. If not see if we can overcommit, and if we can, hooray carry on.
5164 * If not things get more complicated.
5165 */
5166 if (used + orig_bytes <= space_info->total_bytes) {
5167 space_info->bytes_may_use += orig_bytes;
5168 trace_btrfs_space_reservation(fs_info, "space_info",
5169 space_info->flags, orig_bytes, 1);
5170 ret = 0;
5171 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5172 space_info->bytes_may_use += orig_bytes;
5173 trace_btrfs_space_reservation(fs_info, "space_info",
5174 space_info->flags, orig_bytes, 1);
5175 ret = 0;
5176 }
5177
5178 /*
5179 * If we couldn't make a reservation then setup our reservation ticket
5180 * and kick the async worker if it's not already running.
5181 *
5182 * If we are a priority flusher then we just need to add our ticket to
5183 * the list and we will do our own flushing further down.
5184 */
5185 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5186 ticket.bytes = orig_bytes;
5187 ticket.error = 0;
5188 init_waitqueue_head(&ticket.wait);
5189 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5190 list_add_tail(&ticket.list, &space_info->tickets);
5191 if (!space_info->flush) {
5192 space_info->flush = 1;
5193 trace_btrfs_trigger_flush(fs_info,
5194 space_info->flags,
5195 orig_bytes, flush,
5196 "enospc");
5197 queue_work(system_unbound_wq,
5198 &root->fs_info->async_reclaim_work);
5199 }
5200 } else {
5201 list_add_tail(&ticket.list,
5202 &space_info->priority_tickets);
5203 }
5204 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5205 used += orig_bytes;
5206 /*
5207 * We will do the space reservation dance during log replay,
5208 * which means we won't have fs_info->fs_root set, so don't do
5209 * the async reclaim as we will panic.
5210 */
5211 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5212 need_do_async_reclaim(space_info, root, used) &&
5213 !work_busy(&fs_info->async_reclaim_work)) {
5214 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5215 orig_bytes, flush, "preempt");
5216 queue_work(system_unbound_wq,
5217 &fs_info->async_reclaim_work);
5218 }
5219 }
5220 spin_unlock(&space_info->lock);
5221 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5222 return ret;
5223
5224 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5225 return wait_reserve_ticket(fs_info, space_info, &ticket,
5226 orig_bytes);
5227
5228 ret = 0;
5229 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5230 spin_lock(&space_info->lock);
5231 if (ticket.bytes) {
5232 if (ticket.bytes < orig_bytes) {
5233 u64 num_bytes = orig_bytes - ticket.bytes;
5234 space_info->bytes_may_use -= num_bytes;
5235 trace_btrfs_space_reservation(fs_info, "space_info",
5236 space_info->flags,
5237 num_bytes, 0);
5238
5239 }
5240 list_del_init(&ticket.list);
5241 ret = -ENOSPC;
5242 }
5243 spin_unlock(&space_info->lock);
5244 ASSERT(list_empty(&ticket.list));
5245 return ret;
5246 }
5247
5248 /**
5249 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5250 * @root - the root we're allocating for
5251 * @block_rsv - the block_rsv we're allocating for
5252 * @orig_bytes - the number of bytes we want
5253 * @flush - whether or not we can flush to make our reservation
5254 *
5255 * This will reserve orgi_bytes number of bytes from the space info associated
5256 * with the block_rsv. If there is not enough space it will make an attempt to
5257 * flush out space to make room. It will do this by flushing delalloc if
5258 * possible or committing the transaction. If flush is 0 then no attempts to
5259 * regain reservations will be made and this will fail if there is not enough
5260 * space already.
5261 */
5262 static int reserve_metadata_bytes(struct btrfs_root *root,
5263 struct btrfs_block_rsv *block_rsv,
5264 u64 orig_bytes,
5265 enum btrfs_reserve_flush_enum flush)
5266 {
5267 struct btrfs_fs_info *fs_info = root->fs_info;
5268 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5269 int ret;
5270
5271 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5272 flush);
5273 if (ret == -ENOSPC &&
5274 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5275 if (block_rsv != global_rsv &&
5276 !block_rsv_use_bytes(global_rsv, orig_bytes))
5277 ret = 0;
5278 }
5279 if (ret == -ENOSPC)
5280 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5281 block_rsv->space_info->flags,
5282 orig_bytes, 1);
5283 return ret;
5284 }
5285
5286 static struct btrfs_block_rsv *get_block_rsv(
5287 const struct btrfs_trans_handle *trans,
5288 const struct btrfs_root *root)
5289 {
5290 struct btrfs_fs_info *fs_info = root->fs_info;
5291 struct btrfs_block_rsv *block_rsv = NULL;
5292
5293 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5294 (root == fs_info->csum_root && trans->adding_csums) ||
5295 (root == fs_info->uuid_root))
5296 block_rsv = trans->block_rsv;
5297
5298 if (!block_rsv)
5299 block_rsv = root->block_rsv;
5300
5301 if (!block_rsv)
5302 block_rsv = &fs_info->empty_block_rsv;
5303
5304 return block_rsv;
5305 }
5306
5307 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5308 u64 num_bytes)
5309 {
5310 int ret = -ENOSPC;
5311 spin_lock(&block_rsv->lock);
5312 if (block_rsv->reserved >= num_bytes) {
5313 block_rsv->reserved -= num_bytes;
5314 if (block_rsv->reserved < block_rsv->size)
5315 block_rsv->full = 0;
5316 ret = 0;
5317 }
5318 spin_unlock(&block_rsv->lock);
5319 return ret;
5320 }
5321
5322 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5323 u64 num_bytes, int update_size)
5324 {
5325 spin_lock(&block_rsv->lock);
5326 block_rsv->reserved += num_bytes;
5327 if (update_size)
5328 block_rsv->size += num_bytes;
5329 else if (block_rsv->reserved >= block_rsv->size)
5330 block_rsv->full = 1;
5331 spin_unlock(&block_rsv->lock);
5332 }
5333
5334 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5335 struct btrfs_block_rsv *dest, u64 num_bytes,
5336 int min_factor)
5337 {
5338 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5339 u64 min_bytes;
5340
5341 if (global_rsv->space_info != dest->space_info)
5342 return -ENOSPC;
5343
5344 spin_lock(&global_rsv->lock);
5345 min_bytes = div_factor(global_rsv->size, min_factor);
5346 if (global_rsv->reserved < min_bytes + num_bytes) {
5347 spin_unlock(&global_rsv->lock);
5348 return -ENOSPC;
5349 }
5350 global_rsv->reserved -= num_bytes;
5351 if (global_rsv->reserved < global_rsv->size)
5352 global_rsv->full = 0;
5353 spin_unlock(&global_rsv->lock);
5354
5355 block_rsv_add_bytes(dest, num_bytes, 1);
5356 return 0;
5357 }
5358
5359 /*
5360 * This is for space we already have accounted in space_info->bytes_may_use, so
5361 * basically when we're returning space from block_rsv's.
5362 */
5363 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5364 struct btrfs_space_info *space_info,
5365 u64 num_bytes)
5366 {
5367 struct reserve_ticket *ticket;
5368 struct list_head *head;
5369 u64 used;
5370 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5371 bool check_overcommit = false;
5372
5373 spin_lock(&space_info->lock);
5374 head = &space_info->priority_tickets;
5375
5376 /*
5377 * If we are over our limit then we need to check and see if we can
5378 * overcommit, and if we can't then we just need to free up our space
5379 * and not satisfy any requests.
5380 */
5381 used = space_info->bytes_used + space_info->bytes_reserved +
5382 space_info->bytes_pinned + space_info->bytes_readonly +
5383 space_info->bytes_may_use;
5384 if (used - num_bytes >= space_info->total_bytes)
5385 check_overcommit = true;
5386 again:
5387 while (!list_empty(head) && num_bytes) {
5388 ticket = list_first_entry(head, struct reserve_ticket,
5389 list);
5390 /*
5391 * We use 0 bytes because this space is already reserved, so
5392 * adding the ticket space would be a double count.
5393 */
5394 if (check_overcommit &&
5395 !can_overcommit(fs_info->extent_root, space_info, 0,
5396 flush))
5397 break;
5398 if (num_bytes >= ticket->bytes) {
5399 list_del_init(&ticket->list);
5400 num_bytes -= ticket->bytes;
5401 ticket->bytes = 0;
5402 space_info->tickets_id++;
5403 wake_up(&ticket->wait);
5404 } else {
5405 ticket->bytes -= num_bytes;
5406 num_bytes = 0;
5407 }
5408 }
5409
5410 if (num_bytes && head == &space_info->priority_tickets) {
5411 head = &space_info->tickets;
5412 flush = BTRFS_RESERVE_FLUSH_ALL;
5413 goto again;
5414 }
5415 space_info->bytes_may_use -= num_bytes;
5416 trace_btrfs_space_reservation(fs_info, "space_info",
5417 space_info->flags, num_bytes, 0);
5418 spin_unlock(&space_info->lock);
5419 }
5420
5421 /*
5422 * This is for newly allocated space that isn't accounted in
5423 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5424 * we use this helper.
5425 */
5426 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5427 struct btrfs_space_info *space_info,
5428 u64 num_bytes)
5429 {
5430 struct reserve_ticket *ticket;
5431 struct list_head *head = &space_info->priority_tickets;
5432
5433 again:
5434 while (!list_empty(head) && num_bytes) {
5435 ticket = list_first_entry(head, struct reserve_ticket,
5436 list);
5437 if (num_bytes >= ticket->bytes) {
5438 trace_btrfs_space_reservation(fs_info, "space_info",
5439 space_info->flags,
5440 ticket->bytes, 1);
5441 list_del_init(&ticket->list);
5442 num_bytes -= ticket->bytes;
5443 space_info->bytes_may_use += ticket->bytes;
5444 ticket->bytes = 0;
5445 space_info->tickets_id++;
5446 wake_up(&ticket->wait);
5447 } else {
5448 trace_btrfs_space_reservation(fs_info, "space_info",
5449 space_info->flags,
5450 num_bytes, 1);
5451 space_info->bytes_may_use += num_bytes;
5452 ticket->bytes -= num_bytes;
5453 num_bytes = 0;
5454 }
5455 }
5456
5457 if (num_bytes && head == &space_info->priority_tickets) {
5458 head = &space_info->tickets;
5459 goto again;
5460 }
5461 }
5462
5463 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5464 struct btrfs_block_rsv *block_rsv,
5465 struct btrfs_block_rsv *dest, u64 num_bytes)
5466 {
5467 struct btrfs_space_info *space_info = block_rsv->space_info;
5468
5469 spin_lock(&block_rsv->lock);
5470 if (num_bytes == (u64)-1)
5471 num_bytes = block_rsv->size;
5472 block_rsv->size -= num_bytes;
5473 if (block_rsv->reserved >= block_rsv->size) {
5474 num_bytes = block_rsv->reserved - block_rsv->size;
5475 block_rsv->reserved = block_rsv->size;
5476 block_rsv->full = 1;
5477 } else {
5478 num_bytes = 0;
5479 }
5480 spin_unlock(&block_rsv->lock);
5481
5482 if (num_bytes > 0) {
5483 if (dest) {
5484 spin_lock(&dest->lock);
5485 if (!dest->full) {
5486 u64 bytes_to_add;
5487
5488 bytes_to_add = dest->size - dest->reserved;
5489 bytes_to_add = min(num_bytes, bytes_to_add);
5490 dest->reserved += bytes_to_add;
5491 if (dest->reserved >= dest->size)
5492 dest->full = 1;
5493 num_bytes -= bytes_to_add;
5494 }
5495 spin_unlock(&dest->lock);
5496 }
5497 if (num_bytes)
5498 space_info_add_old_bytes(fs_info, space_info,
5499 num_bytes);
5500 }
5501 }
5502
5503 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5504 struct btrfs_block_rsv *dst, u64 num_bytes,
5505 int update_size)
5506 {
5507 int ret;
5508
5509 ret = block_rsv_use_bytes(src, num_bytes);
5510 if (ret)
5511 return ret;
5512
5513 block_rsv_add_bytes(dst, num_bytes, update_size);
5514 return 0;
5515 }
5516
5517 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5518 {
5519 memset(rsv, 0, sizeof(*rsv));
5520 spin_lock_init(&rsv->lock);
5521 rsv->type = type;
5522 }
5523
5524 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5525 unsigned short type)
5526 {
5527 struct btrfs_block_rsv *block_rsv;
5528
5529 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5530 if (!block_rsv)
5531 return NULL;
5532
5533 btrfs_init_block_rsv(block_rsv, type);
5534 block_rsv->space_info = __find_space_info(fs_info,
5535 BTRFS_BLOCK_GROUP_METADATA);
5536 return block_rsv;
5537 }
5538
5539 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5540 struct btrfs_block_rsv *rsv)
5541 {
5542 if (!rsv)
5543 return;
5544 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5545 kfree(rsv);
5546 }
5547
5548 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5549 {
5550 kfree(rsv);
5551 }
5552
5553 int btrfs_block_rsv_add(struct btrfs_root *root,
5554 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5555 enum btrfs_reserve_flush_enum flush)
5556 {
5557 int ret;
5558
5559 if (num_bytes == 0)
5560 return 0;
5561
5562 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5563 if (!ret) {
5564 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5565 return 0;
5566 }
5567
5568 return ret;
5569 }
5570
5571 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5572 {
5573 u64 num_bytes = 0;
5574 int ret = -ENOSPC;
5575
5576 if (!block_rsv)
5577 return 0;
5578
5579 spin_lock(&block_rsv->lock);
5580 num_bytes = div_factor(block_rsv->size, min_factor);
5581 if (block_rsv->reserved >= num_bytes)
5582 ret = 0;
5583 spin_unlock(&block_rsv->lock);
5584
5585 return ret;
5586 }
5587
5588 int btrfs_block_rsv_refill(struct btrfs_root *root,
5589 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5590 enum btrfs_reserve_flush_enum flush)
5591 {
5592 u64 num_bytes = 0;
5593 int ret = -ENOSPC;
5594
5595 if (!block_rsv)
5596 return 0;
5597
5598 spin_lock(&block_rsv->lock);
5599 num_bytes = min_reserved;
5600 if (block_rsv->reserved >= num_bytes)
5601 ret = 0;
5602 else
5603 num_bytes -= block_rsv->reserved;
5604 spin_unlock(&block_rsv->lock);
5605
5606 if (!ret)
5607 return 0;
5608
5609 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5610 if (!ret) {
5611 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5612 return 0;
5613 }
5614
5615 return ret;
5616 }
5617
5618 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5619 struct btrfs_block_rsv *block_rsv,
5620 u64 num_bytes)
5621 {
5622 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5623
5624 if (global_rsv == block_rsv ||
5625 block_rsv->space_info != global_rsv->space_info)
5626 global_rsv = NULL;
5627 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5628 }
5629
5630 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5631 {
5632 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5633 struct btrfs_space_info *sinfo = block_rsv->space_info;
5634 u64 num_bytes;
5635
5636 /*
5637 * The global block rsv is based on the size of the extent tree, the
5638 * checksum tree and the root tree. If the fs is empty we want to set
5639 * it to a minimal amount for safety.
5640 */
5641 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5642 btrfs_root_used(&fs_info->csum_root->root_item) +
5643 btrfs_root_used(&fs_info->tree_root->root_item);
5644 num_bytes = max_t(u64, num_bytes, SZ_16M);
5645
5646 spin_lock(&sinfo->lock);
5647 spin_lock(&block_rsv->lock);
5648
5649 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5650
5651 if (block_rsv->reserved < block_rsv->size) {
5652 num_bytes = btrfs_space_info_used(sinfo, true);
5653 if (sinfo->total_bytes > num_bytes) {
5654 num_bytes = sinfo->total_bytes - num_bytes;
5655 num_bytes = min(num_bytes,
5656 block_rsv->size - block_rsv->reserved);
5657 block_rsv->reserved += num_bytes;
5658 sinfo->bytes_may_use += num_bytes;
5659 trace_btrfs_space_reservation(fs_info, "space_info",
5660 sinfo->flags, num_bytes,
5661 1);
5662 }
5663 } else if (block_rsv->reserved > block_rsv->size) {
5664 num_bytes = block_rsv->reserved - block_rsv->size;
5665 sinfo->bytes_may_use -= num_bytes;
5666 trace_btrfs_space_reservation(fs_info, "space_info",
5667 sinfo->flags, num_bytes, 0);
5668 block_rsv->reserved = block_rsv->size;
5669 }
5670
5671 if (block_rsv->reserved == block_rsv->size)
5672 block_rsv->full = 1;
5673 else
5674 block_rsv->full = 0;
5675
5676 spin_unlock(&block_rsv->lock);
5677 spin_unlock(&sinfo->lock);
5678 }
5679
5680 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5681 {
5682 struct btrfs_space_info *space_info;
5683
5684 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5685 fs_info->chunk_block_rsv.space_info = space_info;
5686
5687 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5688 fs_info->global_block_rsv.space_info = space_info;
5689 fs_info->delalloc_block_rsv.space_info = space_info;
5690 fs_info->trans_block_rsv.space_info = space_info;
5691 fs_info->empty_block_rsv.space_info = space_info;
5692 fs_info->delayed_block_rsv.space_info = space_info;
5693
5694 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5695 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5696 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5697 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5698 if (fs_info->quota_root)
5699 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5700 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5701
5702 update_global_block_rsv(fs_info);
5703 }
5704
5705 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5706 {
5707 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5708 (u64)-1);
5709 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5710 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5711 WARN_ON(fs_info->trans_block_rsv.size > 0);
5712 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5713 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5714 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5715 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5716 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5717 }
5718
5719 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5720 struct btrfs_fs_info *fs_info)
5721 {
5722 if (!trans->block_rsv)
5723 return;
5724
5725 if (!trans->bytes_reserved)
5726 return;
5727
5728 trace_btrfs_space_reservation(fs_info, "transaction",
5729 trans->transid, trans->bytes_reserved, 0);
5730 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5731 trans->bytes_reserved);
5732 trans->bytes_reserved = 0;
5733 }
5734
5735 /*
5736 * To be called after all the new block groups attached to the transaction
5737 * handle have been created (btrfs_create_pending_block_groups()).
5738 */
5739 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5740 {
5741 struct btrfs_fs_info *fs_info = trans->fs_info;
5742
5743 if (!trans->chunk_bytes_reserved)
5744 return;
5745
5746 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5747
5748 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5749 trans->chunk_bytes_reserved);
5750 trans->chunk_bytes_reserved = 0;
5751 }
5752
5753 /* Can only return 0 or -ENOSPC */
5754 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5755 struct btrfs_inode *inode)
5756 {
5757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5758 struct btrfs_root *root = inode->root;
5759 /*
5760 * We always use trans->block_rsv here as we will have reserved space
5761 * for our orphan when starting the transaction, using get_block_rsv()
5762 * here will sometimes make us choose the wrong block rsv as we could be
5763 * doing a reloc inode for a non refcounted root.
5764 */
5765 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5766 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5767
5768 /*
5769 * We need to hold space in order to delete our orphan item once we've
5770 * added it, so this takes the reservation so we can release it later
5771 * when we are truly done with the orphan item.
5772 */
5773 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5774
5775 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5776 num_bytes, 1);
5777 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5778 }
5779
5780 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5781 {
5782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5783 struct btrfs_root *root = inode->root;
5784 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5785
5786 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5787 num_bytes, 0);
5788 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5789 }
5790
5791 /*
5792 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5793 * root: the root of the parent directory
5794 * rsv: block reservation
5795 * items: the number of items that we need do reservation
5796 * qgroup_reserved: used to return the reserved size in qgroup
5797 *
5798 * This function is used to reserve the space for snapshot/subvolume
5799 * creation and deletion. Those operations are different with the
5800 * common file/directory operations, they change two fs/file trees
5801 * and root tree, the number of items that the qgroup reserves is
5802 * different with the free space reservation. So we can not use
5803 * the space reservation mechanism in start_transaction().
5804 */
5805 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5806 struct btrfs_block_rsv *rsv,
5807 int items,
5808 u64 *qgroup_reserved,
5809 bool use_global_rsv)
5810 {
5811 u64 num_bytes;
5812 int ret;
5813 struct btrfs_fs_info *fs_info = root->fs_info;
5814 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5815
5816 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5817 /* One for parent inode, two for dir entries */
5818 num_bytes = 3 * fs_info->nodesize;
5819 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5820 if (ret)
5821 return ret;
5822 } else {
5823 num_bytes = 0;
5824 }
5825
5826 *qgroup_reserved = num_bytes;
5827
5828 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5829 rsv->space_info = __find_space_info(fs_info,
5830 BTRFS_BLOCK_GROUP_METADATA);
5831 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5832 BTRFS_RESERVE_FLUSH_ALL);
5833
5834 if (ret == -ENOSPC && use_global_rsv)
5835 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5836
5837 if (ret && *qgroup_reserved)
5838 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5839
5840 return ret;
5841 }
5842
5843 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5844 struct btrfs_block_rsv *rsv)
5845 {
5846 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5847 }
5848
5849 /**
5850 * drop_outstanding_extent - drop an outstanding extent
5851 * @inode: the inode we're dropping the extent for
5852 * @num_bytes: the number of bytes we're releasing.
5853 *
5854 * This is called when we are freeing up an outstanding extent, either called
5855 * after an error or after an extent is written. This will return the number of
5856 * reserved extents that need to be freed. This must be called with
5857 * BTRFS_I(inode)->lock held.
5858 */
5859 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5860 u64 num_bytes)
5861 {
5862 unsigned drop_inode_space = 0;
5863 unsigned dropped_extents = 0;
5864 unsigned num_extents;
5865
5866 num_extents = count_max_extents(num_bytes);
5867 ASSERT(num_extents);
5868 ASSERT(inode->outstanding_extents >= num_extents);
5869 inode->outstanding_extents -= num_extents;
5870
5871 if (inode->outstanding_extents == 0 &&
5872 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5873 &inode->runtime_flags))
5874 drop_inode_space = 1;
5875
5876 /*
5877 * If we have more or the same amount of outstanding extents than we have
5878 * reserved then we need to leave the reserved extents count alone.
5879 */
5880 if (inode->outstanding_extents >= inode->reserved_extents)
5881 return drop_inode_space;
5882
5883 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5884 inode->reserved_extents -= dropped_extents;
5885 return dropped_extents + drop_inode_space;
5886 }
5887
5888 /**
5889 * calc_csum_metadata_size - return the amount of metadata space that must be
5890 * reserved/freed for the given bytes.
5891 * @inode: the inode we're manipulating
5892 * @num_bytes: the number of bytes in question
5893 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5894 *
5895 * This adjusts the number of csum_bytes in the inode and then returns the
5896 * correct amount of metadata that must either be reserved or freed. We
5897 * calculate how many checksums we can fit into one leaf and then divide the
5898 * number of bytes that will need to be checksumed by this value to figure out
5899 * how many checksums will be required. If we are adding bytes then the number
5900 * may go up and we will return the number of additional bytes that must be
5901 * reserved. If it is going down we will return the number of bytes that must
5902 * be freed.
5903 *
5904 * This must be called with BTRFS_I(inode)->lock held.
5905 */
5906 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5907 int reserve)
5908 {
5909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5910 u64 old_csums, num_csums;
5911
5912 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5913 return 0;
5914
5915 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5916 if (reserve)
5917 inode->csum_bytes += num_bytes;
5918 else
5919 inode->csum_bytes -= num_bytes;
5920 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5921
5922 /* No change, no need to reserve more */
5923 if (old_csums == num_csums)
5924 return 0;
5925
5926 if (reserve)
5927 return btrfs_calc_trans_metadata_size(fs_info,
5928 num_csums - old_csums);
5929
5930 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5931 }
5932
5933 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5934 {
5935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5936 struct btrfs_root *root = inode->root;
5937 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5938 u64 to_reserve = 0;
5939 u64 csum_bytes;
5940 unsigned nr_extents;
5941 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5942 int ret = 0;
5943 bool delalloc_lock = true;
5944 u64 to_free = 0;
5945 unsigned dropped;
5946 bool release_extra = false;
5947
5948 /* If we are a free space inode we need to not flush since we will be in
5949 * the middle of a transaction commit. We also don't need the delalloc
5950 * mutex since we won't race with anybody. We need this mostly to make
5951 * lockdep shut its filthy mouth.
5952 *
5953 * If we have a transaction open (can happen if we call truncate_block
5954 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5955 */
5956 if (btrfs_is_free_space_inode(inode)) {
5957 flush = BTRFS_RESERVE_NO_FLUSH;
5958 delalloc_lock = false;
5959 } else if (current->journal_info) {
5960 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5961 }
5962
5963 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5964 btrfs_transaction_in_commit(fs_info))
5965 schedule_timeout(1);
5966
5967 if (delalloc_lock)
5968 mutex_lock(&inode->delalloc_mutex);
5969
5970 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5971
5972 spin_lock(&inode->lock);
5973 nr_extents = count_max_extents(num_bytes);
5974 inode->outstanding_extents += nr_extents;
5975
5976 nr_extents = 0;
5977 if (inode->outstanding_extents > inode->reserved_extents)
5978 nr_extents += inode->outstanding_extents -
5979 inode->reserved_extents;
5980
5981 /* We always want to reserve a slot for updating the inode. */
5982 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5983 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5984 csum_bytes = inode->csum_bytes;
5985 spin_unlock(&inode->lock);
5986
5987 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5988 ret = btrfs_qgroup_reserve_meta(root,
5989 nr_extents * fs_info->nodesize, true);
5990 if (ret)
5991 goto out_fail;
5992 }
5993
5994 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5995 if (unlikely(ret)) {
5996 btrfs_qgroup_free_meta(root,
5997 nr_extents * fs_info->nodesize);
5998 goto out_fail;
5999 }
6000
6001 spin_lock(&inode->lock);
6002 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6003 &inode->runtime_flags)) {
6004 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6005 release_extra = true;
6006 }
6007 inode->reserved_extents += nr_extents;
6008 spin_unlock(&inode->lock);
6009
6010 if (delalloc_lock)
6011 mutex_unlock(&inode->delalloc_mutex);
6012
6013 if (to_reserve)
6014 trace_btrfs_space_reservation(fs_info, "delalloc",
6015 btrfs_ino(inode), to_reserve, 1);
6016 if (release_extra)
6017 btrfs_block_rsv_release(fs_info, block_rsv,
6018 btrfs_calc_trans_metadata_size(fs_info, 1));
6019 return 0;
6020
6021 out_fail:
6022 spin_lock(&inode->lock);
6023 dropped = drop_outstanding_extent(inode, num_bytes);
6024 /*
6025 * If the inodes csum_bytes is the same as the original
6026 * csum_bytes then we know we haven't raced with any free()ers
6027 * so we can just reduce our inodes csum bytes and carry on.
6028 */
6029 if (inode->csum_bytes == csum_bytes) {
6030 calc_csum_metadata_size(inode, num_bytes, 0);
6031 } else {
6032 u64 orig_csum_bytes = inode->csum_bytes;
6033 u64 bytes;
6034
6035 /*
6036 * This is tricky, but first we need to figure out how much we
6037 * freed from any free-ers that occurred during this
6038 * reservation, so we reset ->csum_bytes to the csum_bytes
6039 * before we dropped our lock, and then call the free for the
6040 * number of bytes that were freed while we were trying our
6041 * reservation.
6042 */
6043 bytes = csum_bytes - inode->csum_bytes;
6044 inode->csum_bytes = csum_bytes;
6045 to_free = calc_csum_metadata_size(inode, bytes, 0);
6046
6047
6048 /*
6049 * Now we need to see how much we would have freed had we not
6050 * been making this reservation and our ->csum_bytes were not
6051 * artificially inflated.
6052 */
6053 inode->csum_bytes = csum_bytes - num_bytes;
6054 bytes = csum_bytes - orig_csum_bytes;
6055 bytes = calc_csum_metadata_size(inode, bytes, 0);
6056
6057 /*
6058 * Now reset ->csum_bytes to what it should be. If bytes is
6059 * more than to_free then we would have freed more space had we
6060 * not had an artificially high ->csum_bytes, so we need to free
6061 * the remainder. If bytes is the same or less then we don't
6062 * need to do anything, the other free-ers did the correct
6063 * thing.
6064 */
6065 inode->csum_bytes = orig_csum_bytes - num_bytes;
6066 if (bytes > to_free)
6067 to_free = bytes - to_free;
6068 else
6069 to_free = 0;
6070 }
6071 spin_unlock(&inode->lock);
6072 if (dropped)
6073 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6074
6075 if (to_free) {
6076 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6077 trace_btrfs_space_reservation(fs_info, "delalloc",
6078 btrfs_ino(inode), to_free, 0);
6079 }
6080 if (delalloc_lock)
6081 mutex_unlock(&inode->delalloc_mutex);
6082 return ret;
6083 }
6084
6085 /**
6086 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6087 * @inode: the inode to release the reservation for
6088 * @num_bytes: the number of bytes we're releasing
6089 *
6090 * This will release the metadata reservation for an inode. This can be called
6091 * once we complete IO for a given set of bytes to release their metadata
6092 * reservations.
6093 */
6094 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6095 {
6096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6097 u64 to_free = 0;
6098 unsigned dropped;
6099
6100 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6101 spin_lock(&inode->lock);
6102 dropped = drop_outstanding_extent(inode, num_bytes);
6103
6104 if (num_bytes)
6105 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6106 spin_unlock(&inode->lock);
6107 if (dropped > 0)
6108 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6109
6110 if (btrfs_is_testing(fs_info))
6111 return;
6112
6113 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6114 to_free, 0);
6115
6116 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6117 }
6118
6119 /**
6120 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6121 * delalloc
6122 * @inode: inode we're writing to
6123 * @start: start range we are writing to
6124 * @len: how long the range we are writing to
6125 *
6126 * This will do the following things
6127 *
6128 * o reserve space in data space info for num bytes
6129 * and reserve precious corresponding qgroup space
6130 * (Done in check_data_free_space)
6131 *
6132 * o reserve space for metadata space, based on the number of outstanding
6133 * extents and how much csums will be needed
6134 * also reserve metadata space in a per root over-reserve method.
6135 * o add to the inodes->delalloc_bytes
6136 * o add it to the fs_info's delalloc inodes list.
6137 * (Above 3 all done in delalloc_reserve_metadata)
6138 *
6139 * Return 0 for success
6140 * Return <0 for error(-ENOSPC or -EQUOT)
6141 */
6142 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6143 {
6144 int ret;
6145
6146 ret = btrfs_check_data_free_space(inode, start, len);
6147 if (ret < 0)
6148 return ret;
6149 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6150 if (ret < 0)
6151 btrfs_free_reserved_data_space(inode, start, len);
6152 return ret;
6153 }
6154
6155 /**
6156 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6157 * @inode: inode we're releasing space for
6158 * @start: start position of the space already reserved
6159 * @len: the len of the space already reserved
6160 *
6161 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6162 * called in the case that we don't need the metadata AND data reservations
6163 * anymore. So if there is an error or we insert an inline extent.
6164 *
6165 * This function will release the metadata space that was not used and will
6166 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6167 * list if there are no delalloc bytes left.
6168 * Also it will handle the qgroup reserved space.
6169 */
6170 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6171 {
6172 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6173 btrfs_free_reserved_data_space(inode, start, len);
6174 }
6175
6176 static int update_block_group(struct btrfs_trans_handle *trans,
6177 struct btrfs_fs_info *info, u64 bytenr,
6178 u64 num_bytes, int alloc)
6179 {
6180 struct btrfs_block_group_cache *cache = NULL;
6181 u64 total = num_bytes;
6182 u64 old_val;
6183 u64 byte_in_group;
6184 int factor;
6185
6186 /* block accounting for super block */
6187 spin_lock(&info->delalloc_root_lock);
6188 old_val = btrfs_super_bytes_used(info->super_copy);
6189 if (alloc)
6190 old_val += num_bytes;
6191 else
6192 old_val -= num_bytes;
6193 btrfs_set_super_bytes_used(info->super_copy, old_val);
6194 spin_unlock(&info->delalloc_root_lock);
6195
6196 while (total) {
6197 cache = btrfs_lookup_block_group(info, bytenr);
6198 if (!cache)
6199 return -ENOENT;
6200 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6201 BTRFS_BLOCK_GROUP_RAID1 |
6202 BTRFS_BLOCK_GROUP_RAID10))
6203 factor = 2;
6204 else
6205 factor = 1;
6206 /*
6207 * If this block group has free space cache written out, we
6208 * need to make sure to load it if we are removing space. This
6209 * is because we need the unpinning stage to actually add the
6210 * space back to the block group, otherwise we will leak space.
6211 */
6212 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6213 cache_block_group(cache, 1);
6214
6215 byte_in_group = bytenr - cache->key.objectid;
6216 WARN_ON(byte_in_group > cache->key.offset);
6217
6218 spin_lock(&cache->space_info->lock);
6219 spin_lock(&cache->lock);
6220
6221 if (btrfs_test_opt(info, SPACE_CACHE) &&
6222 cache->disk_cache_state < BTRFS_DC_CLEAR)
6223 cache->disk_cache_state = BTRFS_DC_CLEAR;
6224
6225 old_val = btrfs_block_group_used(&cache->item);
6226 num_bytes = min(total, cache->key.offset - byte_in_group);
6227 if (alloc) {
6228 old_val += num_bytes;
6229 btrfs_set_block_group_used(&cache->item, old_val);
6230 cache->reserved -= num_bytes;
6231 cache->space_info->bytes_reserved -= num_bytes;
6232 cache->space_info->bytes_used += num_bytes;
6233 cache->space_info->disk_used += num_bytes * factor;
6234 spin_unlock(&cache->lock);
6235 spin_unlock(&cache->space_info->lock);
6236 } else {
6237 old_val -= num_bytes;
6238 btrfs_set_block_group_used(&cache->item, old_val);
6239 cache->pinned += num_bytes;
6240 cache->space_info->bytes_pinned += num_bytes;
6241 cache->space_info->bytes_used -= num_bytes;
6242 cache->space_info->disk_used -= num_bytes * factor;
6243 spin_unlock(&cache->lock);
6244 spin_unlock(&cache->space_info->lock);
6245
6246 trace_btrfs_space_reservation(info, "pinned",
6247 cache->space_info->flags,
6248 num_bytes, 1);
6249 set_extent_dirty(info->pinned_extents,
6250 bytenr, bytenr + num_bytes - 1,
6251 GFP_NOFS | __GFP_NOFAIL);
6252 }
6253
6254 spin_lock(&trans->transaction->dirty_bgs_lock);
6255 if (list_empty(&cache->dirty_list)) {
6256 list_add_tail(&cache->dirty_list,
6257 &trans->transaction->dirty_bgs);
6258 trans->transaction->num_dirty_bgs++;
6259 btrfs_get_block_group(cache);
6260 }
6261 spin_unlock(&trans->transaction->dirty_bgs_lock);
6262
6263 /*
6264 * No longer have used bytes in this block group, queue it for
6265 * deletion. We do this after adding the block group to the
6266 * dirty list to avoid races between cleaner kthread and space
6267 * cache writeout.
6268 */
6269 if (!alloc && old_val == 0) {
6270 spin_lock(&info->unused_bgs_lock);
6271 if (list_empty(&cache->bg_list)) {
6272 btrfs_get_block_group(cache);
6273 list_add_tail(&cache->bg_list,
6274 &info->unused_bgs);
6275 }
6276 spin_unlock(&info->unused_bgs_lock);
6277 }
6278
6279 btrfs_put_block_group(cache);
6280 total -= num_bytes;
6281 bytenr += num_bytes;
6282 }
6283 return 0;
6284 }
6285
6286 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6287 {
6288 struct btrfs_block_group_cache *cache;
6289 u64 bytenr;
6290
6291 spin_lock(&fs_info->block_group_cache_lock);
6292 bytenr = fs_info->first_logical_byte;
6293 spin_unlock(&fs_info->block_group_cache_lock);
6294
6295 if (bytenr < (u64)-1)
6296 return bytenr;
6297
6298 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6299 if (!cache)
6300 return 0;
6301
6302 bytenr = cache->key.objectid;
6303 btrfs_put_block_group(cache);
6304
6305 return bytenr;
6306 }
6307
6308 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6309 struct btrfs_block_group_cache *cache,
6310 u64 bytenr, u64 num_bytes, int reserved)
6311 {
6312 spin_lock(&cache->space_info->lock);
6313 spin_lock(&cache->lock);
6314 cache->pinned += num_bytes;
6315 cache->space_info->bytes_pinned += num_bytes;
6316 if (reserved) {
6317 cache->reserved -= num_bytes;
6318 cache->space_info->bytes_reserved -= num_bytes;
6319 }
6320 spin_unlock(&cache->lock);
6321 spin_unlock(&cache->space_info->lock);
6322
6323 trace_btrfs_space_reservation(fs_info, "pinned",
6324 cache->space_info->flags, num_bytes, 1);
6325 set_extent_dirty(fs_info->pinned_extents, bytenr,
6326 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6327 return 0;
6328 }
6329
6330 /*
6331 * this function must be called within transaction
6332 */
6333 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6334 u64 bytenr, u64 num_bytes, int reserved)
6335 {
6336 struct btrfs_block_group_cache *cache;
6337
6338 cache = btrfs_lookup_block_group(fs_info, bytenr);
6339 BUG_ON(!cache); /* Logic error */
6340
6341 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6342
6343 btrfs_put_block_group(cache);
6344 return 0;
6345 }
6346
6347 /*
6348 * this function must be called within transaction
6349 */
6350 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6351 u64 bytenr, u64 num_bytes)
6352 {
6353 struct btrfs_block_group_cache *cache;
6354 int ret;
6355
6356 cache = btrfs_lookup_block_group(fs_info, bytenr);
6357 if (!cache)
6358 return -EINVAL;
6359
6360 /*
6361 * pull in the free space cache (if any) so that our pin
6362 * removes the free space from the cache. We have load_only set
6363 * to one because the slow code to read in the free extents does check
6364 * the pinned extents.
6365 */
6366 cache_block_group(cache, 1);
6367
6368 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6369
6370 /* remove us from the free space cache (if we're there at all) */
6371 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6372 btrfs_put_block_group(cache);
6373 return ret;
6374 }
6375
6376 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6377 u64 start, u64 num_bytes)
6378 {
6379 int ret;
6380 struct btrfs_block_group_cache *block_group;
6381 struct btrfs_caching_control *caching_ctl;
6382
6383 block_group = btrfs_lookup_block_group(fs_info, start);
6384 if (!block_group)
6385 return -EINVAL;
6386
6387 cache_block_group(block_group, 0);
6388 caching_ctl = get_caching_control(block_group);
6389
6390 if (!caching_ctl) {
6391 /* Logic error */
6392 BUG_ON(!block_group_cache_done(block_group));
6393 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6394 } else {
6395 mutex_lock(&caching_ctl->mutex);
6396
6397 if (start >= caching_ctl->progress) {
6398 ret = add_excluded_extent(fs_info, start, num_bytes);
6399 } else if (start + num_bytes <= caching_ctl->progress) {
6400 ret = btrfs_remove_free_space(block_group,
6401 start, num_bytes);
6402 } else {
6403 num_bytes = caching_ctl->progress - start;
6404 ret = btrfs_remove_free_space(block_group,
6405 start, num_bytes);
6406 if (ret)
6407 goto out_lock;
6408
6409 num_bytes = (start + num_bytes) -
6410 caching_ctl->progress;
6411 start = caching_ctl->progress;
6412 ret = add_excluded_extent(fs_info, start, num_bytes);
6413 }
6414 out_lock:
6415 mutex_unlock(&caching_ctl->mutex);
6416 put_caching_control(caching_ctl);
6417 }
6418 btrfs_put_block_group(block_group);
6419 return ret;
6420 }
6421
6422 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6423 struct extent_buffer *eb)
6424 {
6425 struct btrfs_file_extent_item *item;
6426 struct btrfs_key key;
6427 int found_type;
6428 int i;
6429
6430 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6431 return 0;
6432
6433 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6434 btrfs_item_key_to_cpu(eb, &key, i);
6435 if (key.type != BTRFS_EXTENT_DATA_KEY)
6436 continue;
6437 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6438 found_type = btrfs_file_extent_type(eb, item);
6439 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6440 continue;
6441 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6442 continue;
6443 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6444 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6445 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6446 }
6447
6448 return 0;
6449 }
6450
6451 static void
6452 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6453 {
6454 atomic_inc(&bg->reservations);
6455 }
6456
6457 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6458 const u64 start)
6459 {
6460 struct btrfs_block_group_cache *bg;
6461
6462 bg = btrfs_lookup_block_group(fs_info, start);
6463 ASSERT(bg);
6464 if (atomic_dec_and_test(&bg->reservations))
6465 wake_up_atomic_t(&bg->reservations);
6466 btrfs_put_block_group(bg);
6467 }
6468
6469 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6470 {
6471 schedule();
6472 return 0;
6473 }
6474
6475 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6476 {
6477 struct btrfs_space_info *space_info = bg->space_info;
6478
6479 ASSERT(bg->ro);
6480
6481 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6482 return;
6483
6484 /*
6485 * Our block group is read only but before we set it to read only,
6486 * some task might have had allocated an extent from it already, but it
6487 * has not yet created a respective ordered extent (and added it to a
6488 * root's list of ordered extents).
6489 * Therefore wait for any task currently allocating extents, since the
6490 * block group's reservations counter is incremented while a read lock
6491 * on the groups' semaphore is held and decremented after releasing
6492 * the read access on that semaphore and creating the ordered extent.
6493 */
6494 down_write(&space_info->groups_sem);
6495 up_write(&space_info->groups_sem);
6496
6497 wait_on_atomic_t(&bg->reservations,
6498 btrfs_wait_bg_reservations_atomic_t,
6499 TASK_UNINTERRUPTIBLE);
6500 }
6501
6502 /**
6503 * btrfs_add_reserved_bytes - update the block_group and space info counters
6504 * @cache: The cache we are manipulating
6505 * @ram_bytes: The number of bytes of file content, and will be same to
6506 * @num_bytes except for the compress path.
6507 * @num_bytes: The number of bytes in question
6508 * @delalloc: The blocks are allocated for the delalloc write
6509 *
6510 * This is called by the allocator when it reserves space. If this is a
6511 * reservation and the block group has become read only we cannot make the
6512 * reservation and return -EAGAIN, otherwise this function always succeeds.
6513 */
6514 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6515 u64 ram_bytes, u64 num_bytes, int delalloc)
6516 {
6517 struct btrfs_space_info *space_info = cache->space_info;
6518 int ret = 0;
6519
6520 spin_lock(&space_info->lock);
6521 spin_lock(&cache->lock);
6522 if (cache->ro) {
6523 ret = -EAGAIN;
6524 } else {
6525 cache->reserved += num_bytes;
6526 space_info->bytes_reserved += num_bytes;
6527
6528 trace_btrfs_space_reservation(cache->fs_info,
6529 "space_info", space_info->flags,
6530 ram_bytes, 0);
6531 space_info->bytes_may_use -= ram_bytes;
6532 if (delalloc)
6533 cache->delalloc_bytes += num_bytes;
6534 }
6535 spin_unlock(&cache->lock);
6536 spin_unlock(&space_info->lock);
6537 return ret;
6538 }
6539
6540 /**
6541 * btrfs_free_reserved_bytes - update the block_group and space info counters
6542 * @cache: The cache we are manipulating
6543 * @num_bytes: The number of bytes in question
6544 * @delalloc: The blocks are allocated for the delalloc write
6545 *
6546 * This is called by somebody who is freeing space that was never actually used
6547 * on disk. For example if you reserve some space for a new leaf in transaction
6548 * A and before transaction A commits you free that leaf, you call this with
6549 * reserve set to 0 in order to clear the reservation.
6550 */
6551
6552 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6553 u64 num_bytes, int delalloc)
6554 {
6555 struct btrfs_space_info *space_info = cache->space_info;
6556 int ret = 0;
6557
6558 spin_lock(&space_info->lock);
6559 spin_lock(&cache->lock);
6560 if (cache->ro)
6561 space_info->bytes_readonly += num_bytes;
6562 cache->reserved -= num_bytes;
6563 space_info->bytes_reserved -= num_bytes;
6564
6565 if (delalloc)
6566 cache->delalloc_bytes -= num_bytes;
6567 spin_unlock(&cache->lock);
6568 spin_unlock(&space_info->lock);
6569 return ret;
6570 }
6571 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6572 {
6573 struct btrfs_caching_control *next;
6574 struct btrfs_caching_control *caching_ctl;
6575 struct btrfs_block_group_cache *cache;
6576
6577 down_write(&fs_info->commit_root_sem);
6578
6579 list_for_each_entry_safe(caching_ctl, next,
6580 &fs_info->caching_block_groups, list) {
6581 cache = caching_ctl->block_group;
6582 if (block_group_cache_done(cache)) {
6583 cache->last_byte_to_unpin = (u64)-1;
6584 list_del_init(&caching_ctl->list);
6585 put_caching_control(caching_ctl);
6586 } else {
6587 cache->last_byte_to_unpin = caching_ctl->progress;
6588 }
6589 }
6590
6591 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6592 fs_info->pinned_extents = &fs_info->freed_extents[1];
6593 else
6594 fs_info->pinned_extents = &fs_info->freed_extents[0];
6595
6596 up_write(&fs_info->commit_root_sem);
6597
6598 update_global_block_rsv(fs_info);
6599 }
6600
6601 /*
6602 * Returns the free cluster for the given space info and sets empty_cluster to
6603 * what it should be based on the mount options.
6604 */
6605 static struct btrfs_free_cluster *
6606 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6607 struct btrfs_space_info *space_info, u64 *empty_cluster)
6608 {
6609 struct btrfs_free_cluster *ret = NULL;
6610 bool ssd = btrfs_test_opt(fs_info, SSD);
6611
6612 *empty_cluster = 0;
6613 if (btrfs_mixed_space_info(space_info))
6614 return ret;
6615
6616 if (ssd)
6617 *empty_cluster = SZ_2M;
6618 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6619 ret = &fs_info->meta_alloc_cluster;
6620 if (!ssd)
6621 *empty_cluster = SZ_64K;
6622 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6623 ret = &fs_info->data_alloc_cluster;
6624 }
6625
6626 return ret;
6627 }
6628
6629 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6630 u64 start, u64 end,
6631 const bool return_free_space)
6632 {
6633 struct btrfs_block_group_cache *cache = NULL;
6634 struct btrfs_space_info *space_info;
6635 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6636 struct btrfs_free_cluster *cluster = NULL;
6637 u64 len;
6638 u64 total_unpinned = 0;
6639 u64 empty_cluster = 0;
6640 bool readonly;
6641
6642 while (start <= end) {
6643 readonly = false;
6644 if (!cache ||
6645 start >= cache->key.objectid + cache->key.offset) {
6646 if (cache)
6647 btrfs_put_block_group(cache);
6648 total_unpinned = 0;
6649 cache = btrfs_lookup_block_group(fs_info, start);
6650 BUG_ON(!cache); /* Logic error */
6651
6652 cluster = fetch_cluster_info(fs_info,
6653 cache->space_info,
6654 &empty_cluster);
6655 empty_cluster <<= 1;
6656 }
6657
6658 len = cache->key.objectid + cache->key.offset - start;
6659 len = min(len, end + 1 - start);
6660
6661 if (start < cache->last_byte_to_unpin) {
6662 len = min(len, cache->last_byte_to_unpin - start);
6663 if (return_free_space)
6664 btrfs_add_free_space(cache, start, len);
6665 }
6666
6667 start += len;
6668 total_unpinned += len;
6669 space_info = cache->space_info;
6670
6671 /*
6672 * If this space cluster has been marked as fragmented and we've
6673 * unpinned enough in this block group to potentially allow a
6674 * cluster to be created inside of it go ahead and clear the
6675 * fragmented check.
6676 */
6677 if (cluster && cluster->fragmented &&
6678 total_unpinned > empty_cluster) {
6679 spin_lock(&cluster->lock);
6680 cluster->fragmented = 0;
6681 spin_unlock(&cluster->lock);
6682 }
6683
6684 spin_lock(&space_info->lock);
6685 spin_lock(&cache->lock);
6686 cache->pinned -= len;
6687 space_info->bytes_pinned -= len;
6688
6689 trace_btrfs_space_reservation(fs_info, "pinned",
6690 space_info->flags, len, 0);
6691 space_info->max_extent_size = 0;
6692 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6693 if (cache->ro) {
6694 space_info->bytes_readonly += len;
6695 readonly = true;
6696 }
6697 spin_unlock(&cache->lock);
6698 if (!readonly && return_free_space &&
6699 global_rsv->space_info == space_info) {
6700 u64 to_add = len;
6701 WARN_ON(!return_free_space);
6702 spin_lock(&global_rsv->lock);
6703 if (!global_rsv->full) {
6704 to_add = min(len, global_rsv->size -
6705 global_rsv->reserved);
6706 global_rsv->reserved += to_add;
6707 space_info->bytes_may_use += to_add;
6708 if (global_rsv->reserved >= global_rsv->size)
6709 global_rsv->full = 1;
6710 trace_btrfs_space_reservation(fs_info,
6711 "space_info",
6712 space_info->flags,
6713 to_add, 1);
6714 len -= to_add;
6715 }
6716 spin_unlock(&global_rsv->lock);
6717 /* Add to any tickets we may have */
6718 if (len)
6719 space_info_add_new_bytes(fs_info, space_info,
6720 len);
6721 }
6722 spin_unlock(&space_info->lock);
6723 }
6724
6725 if (cache)
6726 btrfs_put_block_group(cache);
6727 return 0;
6728 }
6729
6730 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6731 struct btrfs_fs_info *fs_info)
6732 {
6733 struct btrfs_block_group_cache *block_group, *tmp;
6734 struct list_head *deleted_bgs;
6735 struct extent_io_tree *unpin;
6736 u64 start;
6737 u64 end;
6738 int ret;
6739
6740 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6741 unpin = &fs_info->freed_extents[1];
6742 else
6743 unpin = &fs_info->freed_extents[0];
6744
6745 while (!trans->aborted) {
6746 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6747 ret = find_first_extent_bit(unpin, 0, &start, &end,
6748 EXTENT_DIRTY, NULL);
6749 if (ret) {
6750 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6751 break;
6752 }
6753
6754 if (btrfs_test_opt(fs_info, DISCARD))
6755 ret = btrfs_discard_extent(fs_info, start,
6756 end + 1 - start, NULL);
6757
6758 clear_extent_dirty(unpin, start, end);
6759 unpin_extent_range(fs_info, start, end, true);
6760 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6761 cond_resched();
6762 }
6763
6764 /*
6765 * Transaction is finished. We don't need the lock anymore. We
6766 * do need to clean up the block groups in case of a transaction
6767 * abort.
6768 */
6769 deleted_bgs = &trans->transaction->deleted_bgs;
6770 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6771 u64 trimmed = 0;
6772
6773 ret = -EROFS;
6774 if (!trans->aborted)
6775 ret = btrfs_discard_extent(fs_info,
6776 block_group->key.objectid,
6777 block_group->key.offset,
6778 &trimmed);
6779
6780 list_del_init(&block_group->bg_list);
6781 btrfs_put_block_group_trimming(block_group);
6782 btrfs_put_block_group(block_group);
6783
6784 if (ret) {
6785 const char *errstr = btrfs_decode_error(ret);
6786 btrfs_warn(fs_info,
6787 "Discard failed while removing blockgroup: errno=%d %s\n",
6788 ret, errstr);
6789 }
6790 }
6791
6792 return 0;
6793 }
6794
6795 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6796 u64 owner, u64 root_objectid)
6797 {
6798 struct btrfs_space_info *space_info;
6799 u64 flags;
6800
6801 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6802 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6803 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6804 else
6805 flags = BTRFS_BLOCK_GROUP_METADATA;
6806 } else {
6807 flags = BTRFS_BLOCK_GROUP_DATA;
6808 }
6809
6810 space_info = __find_space_info(fs_info, flags);
6811 BUG_ON(!space_info); /* Logic bug */
6812 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6813 }
6814
6815
6816 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6817 struct btrfs_fs_info *info,
6818 struct btrfs_delayed_ref_node *node, u64 parent,
6819 u64 root_objectid, u64 owner_objectid,
6820 u64 owner_offset, int refs_to_drop,
6821 struct btrfs_delayed_extent_op *extent_op)
6822 {
6823 struct btrfs_key key;
6824 struct btrfs_path *path;
6825 struct btrfs_root *extent_root = info->extent_root;
6826 struct extent_buffer *leaf;
6827 struct btrfs_extent_item *ei;
6828 struct btrfs_extent_inline_ref *iref;
6829 int ret;
6830 int is_data;
6831 int extent_slot = 0;
6832 int found_extent = 0;
6833 int num_to_del = 1;
6834 u32 item_size;
6835 u64 refs;
6836 u64 bytenr = node->bytenr;
6837 u64 num_bytes = node->num_bytes;
6838 int last_ref = 0;
6839 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6840
6841 path = btrfs_alloc_path();
6842 if (!path)
6843 return -ENOMEM;
6844
6845 path->reada = READA_FORWARD;
6846 path->leave_spinning = 1;
6847
6848 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6849 BUG_ON(!is_data && refs_to_drop != 1);
6850
6851 if (is_data)
6852 skinny_metadata = 0;
6853
6854 ret = lookup_extent_backref(trans, info, path, &iref,
6855 bytenr, num_bytes, parent,
6856 root_objectid, owner_objectid,
6857 owner_offset);
6858 if (ret == 0) {
6859 extent_slot = path->slots[0];
6860 while (extent_slot >= 0) {
6861 btrfs_item_key_to_cpu(path->nodes[0], &key,
6862 extent_slot);
6863 if (key.objectid != bytenr)
6864 break;
6865 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6866 key.offset == num_bytes) {
6867 found_extent = 1;
6868 break;
6869 }
6870 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6871 key.offset == owner_objectid) {
6872 found_extent = 1;
6873 break;
6874 }
6875 if (path->slots[0] - extent_slot > 5)
6876 break;
6877 extent_slot--;
6878 }
6879 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6880 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6881 if (found_extent && item_size < sizeof(*ei))
6882 found_extent = 0;
6883 #endif
6884 if (!found_extent) {
6885 BUG_ON(iref);
6886 ret = remove_extent_backref(trans, info, path, NULL,
6887 refs_to_drop,
6888 is_data, &last_ref);
6889 if (ret) {
6890 btrfs_abort_transaction(trans, ret);
6891 goto out;
6892 }
6893 btrfs_release_path(path);
6894 path->leave_spinning = 1;
6895
6896 key.objectid = bytenr;
6897 key.type = BTRFS_EXTENT_ITEM_KEY;
6898 key.offset = num_bytes;
6899
6900 if (!is_data && skinny_metadata) {
6901 key.type = BTRFS_METADATA_ITEM_KEY;
6902 key.offset = owner_objectid;
6903 }
6904
6905 ret = btrfs_search_slot(trans, extent_root,
6906 &key, path, -1, 1);
6907 if (ret > 0 && skinny_metadata && path->slots[0]) {
6908 /*
6909 * Couldn't find our skinny metadata item,
6910 * see if we have ye olde extent item.
6911 */
6912 path->slots[0]--;
6913 btrfs_item_key_to_cpu(path->nodes[0], &key,
6914 path->slots[0]);
6915 if (key.objectid == bytenr &&
6916 key.type == BTRFS_EXTENT_ITEM_KEY &&
6917 key.offset == num_bytes)
6918 ret = 0;
6919 }
6920
6921 if (ret > 0 && skinny_metadata) {
6922 skinny_metadata = false;
6923 key.objectid = bytenr;
6924 key.type = BTRFS_EXTENT_ITEM_KEY;
6925 key.offset = num_bytes;
6926 btrfs_release_path(path);
6927 ret = btrfs_search_slot(trans, extent_root,
6928 &key, path, -1, 1);
6929 }
6930
6931 if (ret) {
6932 btrfs_err(info,
6933 "umm, got %d back from search, was looking for %llu",
6934 ret, bytenr);
6935 if (ret > 0)
6936 btrfs_print_leaf(info, path->nodes[0]);
6937 }
6938 if (ret < 0) {
6939 btrfs_abort_transaction(trans, ret);
6940 goto out;
6941 }
6942 extent_slot = path->slots[0];
6943 }
6944 } else if (WARN_ON(ret == -ENOENT)) {
6945 btrfs_print_leaf(info, path->nodes[0]);
6946 btrfs_err(info,
6947 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6948 bytenr, parent, root_objectid, owner_objectid,
6949 owner_offset);
6950 btrfs_abort_transaction(trans, ret);
6951 goto out;
6952 } else {
6953 btrfs_abort_transaction(trans, ret);
6954 goto out;
6955 }
6956
6957 leaf = path->nodes[0];
6958 item_size = btrfs_item_size_nr(leaf, extent_slot);
6959 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6960 if (item_size < sizeof(*ei)) {
6961 BUG_ON(found_extent || extent_slot != path->slots[0]);
6962 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6963 0);
6964 if (ret < 0) {
6965 btrfs_abort_transaction(trans, ret);
6966 goto out;
6967 }
6968
6969 btrfs_release_path(path);
6970 path->leave_spinning = 1;
6971
6972 key.objectid = bytenr;
6973 key.type = BTRFS_EXTENT_ITEM_KEY;
6974 key.offset = num_bytes;
6975
6976 ret = btrfs_search_slot(trans, extent_root, &key, path,
6977 -1, 1);
6978 if (ret) {
6979 btrfs_err(info,
6980 "umm, got %d back from search, was looking for %llu",
6981 ret, bytenr);
6982 btrfs_print_leaf(info, path->nodes[0]);
6983 }
6984 if (ret < 0) {
6985 btrfs_abort_transaction(trans, ret);
6986 goto out;
6987 }
6988
6989 extent_slot = path->slots[0];
6990 leaf = path->nodes[0];
6991 item_size = btrfs_item_size_nr(leaf, extent_slot);
6992 }
6993 #endif
6994 BUG_ON(item_size < sizeof(*ei));
6995 ei = btrfs_item_ptr(leaf, extent_slot,
6996 struct btrfs_extent_item);
6997 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6998 key.type == BTRFS_EXTENT_ITEM_KEY) {
6999 struct btrfs_tree_block_info *bi;
7000 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7001 bi = (struct btrfs_tree_block_info *)(ei + 1);
7002 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7003 }
7004
7005 refs = btrfs_extent_refs(leaf, ei);
7006 if (refs < refs_to_drop) {
7007 btrfs_err(info,
7008 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7009 refs_to_drop, refs, bytenr);
7010 ret = -EINVAL;
7011 btrfs_abort_transaction(trans, ret);
7012 goto out;
7013 }
7014 refs -= refs_to_drop;
7015
7016 if (refs > 0) {
7017 if (extent_op)
7018 __run_delayed_extent_op(extent_op, leaf, ei);
7019 /*
7020 * In the case of inline back ref, reference count will
7021 * be updated by remove_extent_backref
7022 */
7023 if (iref) {
7024 BUG_ON(!found_extent);
7025 } else {
7026 btrfs_set_extent_refs(leaf, ei, refs);
7027 btrfs_mark_buffer_dirty(leaf);
7028 }
7029 if (found_extent) {
7030 ret = remove_extent_backref(trans, info, path,
7031 iref, refs_to_drop,
7032 is_data, &last_ref);
7033 if (ret) {
7034 btrfs_abort_transaction(trans, ret);
7035 goto out;
7036 }
7037 }
7038 add_pinned_bytes(info, -num_bytes, owner_objectid,
7039 root_objectid);
7040 } else {
7041 if (found_extent) {
7042 BUG_ON(is_data && refs_to_drop !=
7043 extent_data_ref_count(path, iref));
7044 if (iref) {
7045 BUG_ON(path->slots[0] != extent_slot);
7046 } else {
7047 BUG_ON(path->slots[0] != extent_slot + 1);
7048 path->slots[0] = extent_slot;
7049 num_to_del = 2;
7050 }
7051 }
7052
7053 last_ref = 1;
7054 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7055 num_to_del);
7056 if (ret) {
7057 btrfs_abort_transaction(trans, ret);
7058 goto out;
7059 }
7060 btrfs_release_path(path);
7061
7062 if (is_data) {
7063 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7064 if (ret) {
7065 btrfs_abort_transaction(trans, ret);
7066 goto out;
7067 }
7068 }
7069
7070 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7071 if (ret) {
7072 btrfs_abort_transaction(trans, ret);
7073 goto out;
7074 }
7075
7076 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7077 if (ret) {
7078 btrfs_abort_transaction(trans, ret);
7079 goto out;
7080 }
7081 }
7082 btrfs_release_path(path);
7083
7084 out:
7085 btrfs_free_path(path);
7086 return ret;
7087 }
7088
7089 /*
7090 * when we free an block, it is possible (and likely) that we free the last
7091 * delayed ref for that extent as well. This searches the delayed ref tree for
7092 * a given extent, and if there are no other delayed refs to be processed, it
7093 * removes it from the tree.
7094 */
7095 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7096 u64 bytenr)
7097 {
7098 struct btrfs_delayed_ref_head *head;
7099 struct btrfs_delayed_ref_root *delayed_refs;
7100 int ret = 0;
7101
7102 delayed_refs = &trans->transaction->delayed_refs;
7103 spin_lock(&delayed_refs->lock);
7104 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7105 if (!head)
7106 goto out_delayed_unlock;
7107
7108 spin_lock(&head->lock);
7109 if (!list_empty(&head->ref_list))
7110 goto out;
7111
7112 if (head->extent_op) {
7113 if (!head->must_insert_reserved)
7114 goto out;
7115 btrfs_free_delayed_extent_op(head->extent_op);
7116 head->extent_op = NULL;
7117 }
7118
7119 /*
7120 * waiting for the lock here would deadlock. If someone else has it
7121 * locked they are already in the process of dropping it anyway
7122 */
7123 if (!mutex_trylock(&head->mutex))
7124 goto out;
7125
7126 /*
7127 * at this point we have a head with no other entries. Go
7128 * ahead and process it.
7129 */
7130 head->node.in_tree = 0;
7131 rb_erase(&head->href_node, &delayed_refs->href_root);
7132
7133 atomic_dec(&delayed_refs->num_entries);
7134
7135 /*
7136 * we don't take a ref on the node because we're removing it from the
7137 * tree, so we just steal the ref the tree was holding.
7138 */
7139 delayed_refs->num_heads--;
7140 if (head->processing == 0)
7141 delayed_refs->num_heads_ready--;
7142 head->processing = 0;
7143 spin_unlock(&head->lock);
7144 spin_unlock(&delayed_refs->lock);
7145
7146 BUG_ON(head->extent_op);
7147 if (head->must_insert_reserved)
7148 ret = 1;
7149
7150 mutex_unlock(&head->mutex);
7151 btrfs_put_delayed_ref(&head->node);
7152 return ret;
7153 out:
7154 spin_unlock(&head->lock);
7155
7156 out_delayed_unlock:
7157 spin_unlock(&delayed_refs->lock);
7158 return 0;
7159 }
7160
7161 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7162 struct btrfs_root *root,
7163 struct extent_buffer *buf,
7164 u64 parent, int last_ref)
7165 {
7166 struct btrfs_fs_info *fs_info = root->fs_info;
7167 int pin = 1;
7168 int ret;
7169
7170 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7171 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7172 buf->start, buf->len,
7173 parent,
7174 root->root_key.objectid,
7175 btrfs_header_level(buf),
7176 BTRFS_DROP_DELAYED_REF, NULL);
7177 BUG_ON(ret); /* -ENOMEM */
7178 }
7179
7180 if (!last_ref)
7181 return;
7182
7183 if (btrfs_header_generation(buf) == trans->transid) {
7184 struct btrfs_block_group_cache *cache;
7185
7186 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7187 ret = check_ref_cleanup(trans, buf->start);
7188 if (!ret)
7189 goto out;
7190 }
7191
7192 cache = btrfs_lookup_block_group(fs_info, buf->start);
7193
7194 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7195 pin_down_extent(fs_info, cache, buf->start,
7196 buf->len, 1);
7197 btrfs_put_block_group(cache);
7198 goto out;
7199 }
7200
7201 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7202
7203 btrfs_add_free_space(cache, buf->start, buf->len);
7204 btrfs_free_reserved_bytes(cache, buf->len, 0);
7205 btrfs_put_block_group(cache);
7206 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7207 pin = 0;
7208 }
7209 out:
7210 if (pin)
7211 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7212 root->root_key.objectid);
7213
7214 /*
7215 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7216 * anymore.
7217 */
7218 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7219 }
7220
7221 /* Can return -ENOMEM */
7222 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7223 struct btrfs_fs_info *fs_info,
7224 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7225 u64 owner, u64 offset)
7226 {
7227 int ret;
7228
7229 if (btrfs_is_testing(fs_info))
7230 return 0;
7231
7232 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7233
7234 /*
7235 * tree log blocks never actually go into the extent allocation
7236 * tree, just update pinning info and exit early.
7237 */
7238 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7239 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7240 /* unlocks the pinned mutex */
7241 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7242 ret = 0;
7243 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7244 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7245 num_bytes,
7246 parent, root_objectid, (int)owner,
7247 BTRFS_DROP_DELAYED_REF, NULL);
7248 } else {
7249 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7250 num_bytes,
7251 parent, root_objectid, owner,
7252 offset, 0,
7253 BTRFS_DROP_DELAYED_REF);
7254 }
7255 return ret;
7256 }
7257
7258 /*
7259 * when we wait for progress in the block group caching, its because
7260 * our allocation attempt failed at least once. So, we must sleep
7261 * and let some progress happen before we try again.
7262 *
7263 * This function will sleep at least once waiting for new free space to
7264 * show up, and then it will check the block group free space numbers
7265 * for our min num_bytes. Another option is to have it go ahead
7266 * and look in the rbtree for a free extent of a given size, but this
7267 * is a good start.
7268 *
7269 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7270 * any of the information in this block group.
7271 */
7272 static noinline void
7273 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7274 u64 num_bytes)
7275 {
7276 struct btrfs_caching_control *caching_ctl;
7277
7278 caching_ctl = get_caching_control(cache);
7279 if (!caching_ctl)
7280 return;
7281
7282 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7283 (cache->free_space_ctl->free_space >= num_bytes));
7284
7285 put_caching_control(caching_ctl);
7286 }
7287
7288 static noinline int
7289 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7290 {
7291 struct btrfs_caching_control *caching_ctl;
7292 int ret = 0;
7293
7294 caching_ctl = get_caching_control(cache);
7295 if (!caching_ctl)
7296 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7297
7298 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7299 if (cache->cached == BTRFS_CACHE_ERROR)
7300 ret = -EIO;
7301 put_caching_control(caching_ctl);
7302 return ret;
7303 }
7304
7305 int __get_raid_index(u64 flags)
7306 {
7307 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7308 return BTRFS_RAID_RAID10;
7309 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7310 return BTRFS_RAID_RAID1;
7311 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7312 return BTRFS_RAID_DUP;
7313 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7314 return BTRFS_RAID_RAID0;
7315 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7316 return BTRFS_RAID_RAID5;
7317 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7318 return BTRFS_RAID_RAID6;
7319
7320 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7321 }
7322
7323 int get_block_group_index(struct btrfs_block_group_cache *cache)
7324 {
7325 return __get_raid_index(cache->flags);
7326 }
7327
7328 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7329 [BTRFS_RAID_RAID10] = "raid10",
7330 [BTRFS_RAID_RAID1] = "raid1",
7331 [BTRFS_RAID_DUP] = "dup",
7332 [BTRFS_RAID_RAID0] = "raid0",
7333 [BTRFS_RAID_SINGLE] = "single",
7334 [BTRFS_RAID_RAID5] = "raid5",
7335 [BTRFS_RAID_RAID6] = "raid6",
7336 };
7337
7338 static const char *get_raid_name(enum btrfs_raid_types type)
7339 {
7340 if (type >= BTRFS_NR_RAID_TYPES)
7341 return NULL;
7342
7343 return btrfs_raid_type_names[type];
7344 }
7345
7346 enum btrfs_loop_type {
7347 LOOP_CACHING_NOWAIT = 0,
7348 LOOP_CACHING_WAIT = 1,
7349 LOOP_ALLOC_CHUNK = 2,
7350 LOOP_NO_EMPTY_SIZE = 3,
7351 };
7352
7353 static inline void
7354 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7355 int delalloc)
7356 {
7357 if (delalloc)
7358 down_read(&cache->data_rwsem);
7359 }
7360
7361 static inline void
7362 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7363 int delalloc)
7364 {
7365 btrfs_get_block_group(cache);
7366 if (delalloc)
7367 down_read(&cache->data_rwsem);
7368 }
7369
7370 static struct btrfs_block_group_cache *
7371 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7372 struct btrfs_free_cluster *cluster,
7373 int delalloc)
7374 {
7375 struct btrfs_block_group_cache *used_bg = NULL;
7376
7377 spin_lock(&cluster->refill_lock);
7378 while (1) {
7379 used_bg = cluster->block_group;
7380 if (!used_bg)
7381 return NULL;
7382
7383 if (used_bg == block_group)
7384 return used_bg;
7385
7386 btrfs_get_block_group(used_bg);
7387
7388 if (!delalloc)
7389 return used_bg;
7390
7391 if (down_read_trylock(&used_bg->data_rwsem))
7392 return used_bg;
7393
7394 spin_unlock(&cluster->refill_lock);
7395
7396 /* We should only have one-level nested. */
7397 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7398
7399 spin_lock(&cluster->refill_lock);
7400 if (used_bg == cluster->block_group)
7401 return used_bg;
7402
7403 up_read(&used_bg->data_rwsem);
7404 btrfs_put_block_group(used_bg);
7405 }
7406 }
7407
7408 static inline void
7409 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7410 int delalloc)
7411 {
7412 if (delalloc)
7413 up_read(&cache->data_rwsem);
7414 btrfs_put_block_group(cache);
7415 }
7416
7417 /*
7418 * walks the btree of allocated extents and find a hole of a given size.
7419 * The key ins is changed to record the hole:
7420 * ins->objectid == start position
7421 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7422 * ins->offset == the size of the hole.
7423 * Any available blocks before search_start are skipped.
7424 *
7425 * If there is no suitable free space, we will record the max size of
7426 * the free space extent currently.
7427 */
7428 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7429 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7430 u64 hint_byte, struct btrfs_key *ins,
7431 u64 flags, int delalloc)
7432 {
7433 int ret = 0;
7434 struct btrfs_root *root = fs_info->extent_root;
7435 struct btrfs_free_cluster *last_ptr = NULL;
7436 struct btrfs_block_group_cache *block_group = NULL;
7437 u64 search_start = 0;
7438 u64 max_extent_size = 0;
7439 u64 empty_cluster = 0;
7440 struct btrfs_space_info *space_info;
7441 int loop = 0;
7442 int index = __get_raid_index(flags);
7443 bool failed_cluster_refill = false;
7444 bool failed_alloc = false;
7445 bool use_cluster = true;
7446 bool have_caching_bg = false;
7447 bool orig_have_caching_bg = false;
7448 bool full_search = false;
7449
7450 WARN_ON(num_bytes < fs_info->sectorsize);
7451 ins->type = BTRFS_EXTENT_ITEM_KEY;
7452 ins->objectid = 0;
7453 ins->offset = 0;
7454
7455 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7456
7457 space_info = __find_space_info(fs_info, flags);
7458 if (!space_info) {
7459 btrfs_err(fs_info, "No space info for %llu", flags);
7460 return -ENOSPC;
7461 }
7462
7463 /*
7464 * If our free space is heavily fragmented we may not be able to make
7465 * big contiguous allocations, so instead of doing the expensive search
7466 * for free space, simply return ENOSPC with our max_extent_size so we
7467 * can go ahead and search for a more manageable chunk.
7468 *
7469 * If our max_extent_size is large enough for our allocation simply
7470 * disable clustering since we will likely not be able to find enough
7471 * space to create a cluster and induce latency trying.
7472 */
7473 if (unlikely(space_info->max_extent_size)) {
7474 spin_lock(&space_info->lock);
7475 if (space_info->max_extent_size &&
7476 num_bytes > space_info->max_extent_size) {
7477 ins->offset = space_info->max_extent_size;
7478 spin_unlock(&space_info->lock);
7479 return -ENOSPC;
7480 } else if (space_info->max_extent_size) {
7481 use_cluster = false;
7482 }
7483 spin_unlock(&space_info->lock);
7484 }
7485
7486 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7487 if (last_ptr) {
7488 spin_lock(&last_ptr->lock);
7489 if (last_ptr->block_group)
7490 hint_byte = last_ptr->window_start;
7491 if (last_ptr->fragmented) {
7492 /*
7493 * We still set window_start so we can keep track of the
7494 * last place we found an allocation to try and save
7495 * some time.
7496 */
7497 hint_byte = last_ptr->window_start;
7498 use_cluster = false;
7499 }
7500 spin_unlock(&last_ptr->lock);
7501 }
7502
7503 search_start = max(search_start, first_logical_byte(fs_info, 0));
7504 search_start = max(search_start, hint_byte);
7505 if (search_start == hint_byte) {
7506 block_group = btrfs_lookup_block_group(fs_info, search_start);
7507 /*
7508 * we don't want to use the block group if it doesn't match our
7509 * allocation bits, or if its not cached.
7510 *
7511 * However if we are re-searching with an ideal block group
7512 * picked out then we don't care that the block group is cached.
7513 */
7514 if (block_group && block_group_bits(block_group, flags) &&
7515 block_group->cached != BTRFS_CACHE_NO) {
7516 down_read(&space_info->groups_sem);
7517 if (list_empty(&block_group->list) ||
7518 block_group->ro) {
7519 /*
7520 * someone is removing this block group,
7521 * we can't jump into the have_block_group
7522 * target because our list pointers are not
7523 * valid
7524 */
7525 btrfs_put_block_group(block_group);
7526 up_read(&space_info->groups_sem);
7527 } else {
7528 index = get_block_group_index(block_group);
7529 btrfs_lock_block_group(block_group, delalloc);
7530 goto have_block_group;
7531 }
7532 } else if (block_group) {
7533 btrfs_put_block_group(block_group);
7534 }
7535 }
7536 search:
7537 have_caching_bg = false;
7538 if (index == 0 || index == __get_raid_index(flags))
7539 full_search = true;
7540 down_read(&space_info->groups_sem);
7541 list_for_each_entry(block_group, &space_info->block_groups[index],
7542 list) {
7543 u64 offset;
7544 int cached;
7545
7546 btrfs_grab_block_group(block_group, delalloc);
7547 search_start = block_group->key.objectid;
7548
7549 /*
7550 * this can happen if we end up cycling through all the
7551 * raid types, but we want to make sure we only allocate
7552 * for the proper type.
7553 */
7554 if (!block_group_bits(block_group, flags)) {
7555 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7556 BTRFS_BLOCK_GROUP_RAID1 |
7557 BTRFS_BLOCK_GROUP_RAID5 |
7558 BTRFS_BLOCK_GROUP_RAID6 |
7559 BTRFS_BLOCK_GROUP_RAID10;
7560
7561 /*
7562 * if they asked for extra copies and this block group
7563 * doesn't provide them, bail. This does allow us to
7564 * fill raid0 from raid1.
7565 */
7566 if ((flags & extra) && !(block_group->flags & extra))
7567 goto loop;
7568 }
7569
7570 have_block_group:
7571 cached = block_group_cache_done(block_group);
7572 if (unlikely(!cached)) {
7573 have_caching_bg = true;
7574 ret = cache_block_group(block_group, 0);
7575 BUG_ON(ret < 0);
7576 ret = 0;
7577 }
7578
7579 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7580 goto loop;
7581 if (unlikely(block_group->ro))
7582 goto loop;
7583
7584 /*
7585 * Ok we want to try and use the cluster allocator, so
7586 * lets look there
7587 */
7588 if (last_ptr && use_cluster) {
7589 struct btrfs_block_group_cache *used_block_group;
7590 unsigned long aligned_cluster;
7591 /*
7592 * the refill lock keeps out other
7593 * people trying to start a new cluster
7594 */
7595 used_block_group = btrfs_lock_cluster(block_group,
7596 last_ptr,
7597 delalloc);
7598 if (!used_block_group)
7599 goto refill_cluster;
7600
7601 if (used_block_group != block_group &&
7602 (used_block_group->ro ||
7603 !block_group_bits(used_block_group, flags)))
7604 goto release_cluster;
7605
7606 offset = btrfs_alloc_from_cluster(used_block_group,
7607 last_ptr,
7608 num_bytes,
7609 used_block_group->key.objectid,
7610 &max_extent_size);
7611 if (offset) {
7612 /* we have a block, we're done */
7613 spin_unlock(&last_ptr->refill_lock);
7614 trace_btrfs_reserve_extent_cluster(fs_info,
7615 used_block_group,
7616 search_start, num_bytes);
7617 if (used_block_group != block_group) {
7618 btrfs_release_block_group(block_group,
7619 delalloc);
7620 block_group = used_block_group;
7621 }
7622 goto checks;
7623 }
7624
7625 WARN_ON(last_ptr->block_group != used_block_group);
7626 release_cluster:
7627 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7628 * set up a new clusters, so lets just skip it
7629 * and let the allocator find whatever block
7630 * it can find. If we reach this point, we
7631 * will have tried the cluster allocator
7632 * plenty of times and not have found
7633 * anything, so we are likely way too
7634 * fragmented for the clustering stuff to find
7635 * anything.
7636 *
7637 * However, if the cluster is taken from the
7638 * current block group, release the cluster
7639 * first, so that we stand a better chance of
7640 * succeeding in the unclustered
7641 * allocation. */
7642 if (loop >= LOOP_NO_EMPTY_SIZE &&
7643 used_block_group != block_group) {
7644 spin_unlock(&last_ptr->refill_lock);
7645 btrfs_release_block_group(used_block_group,
7646 delalloc);
7647 goto unclustered_alloc;
7648 }
7649
7650 /*
7651 * this cluster didn't work out, free it and
7652 * start over
7653 */
7654 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7655
7656 if (used_block_group != block_group)
7657 btrfs_release_block_group(used_block_group,
7658 delalloc);
7659 refill_cluster:
7660 if (loop >= LOOP_NO_EMPTY_SIZE) {
7661 spin_unlock(&last_ptr->refill_lock);
7662 goto unclustered_alloc;
7663 }
7664
7665 aligned_cluster = max_t(unsigned long,
7666 empty_cluster + empty_size,
7667 block_group->full_stripe_len);
7668
7669 /* allocate a cluster in this block group */
7670 ret = btrfs_find_space_cluster(fs_info, block_group,
7671 last_ptr, search_start,
7672 num_bytes,
7673 aligned_cluster);
7674 if (ret == 0) {
7675 /*
7676 * now pull our allocation out of this
7677 * cluster
7678 */
7679 offset = btrfs_alloc_from_cluster(block_group,
7680 last_ptr,
7681 num_bytes,
7682 search_start,
7683 &max_extent_size);
7684 if (offset) {
7685 /* we found one, proceed */
7686 spin_unlock(&last_ptr->refill_lock);
7687 trace_btrfs_reserve_extent_cluster(fs_info,
7688 block_group, search_start,
7689 num_bytes);
7690 goto checks;
7691 }
7692 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7693 && !failed_cluster_refill) {
7694 spin_unlock(&last_ptr->refill_lock);
7695
7696 failed_cluster_refill = true;
7697 wait_block_group_cache_progress(block_group,
7698 num_bytes + empty_cluster + empty_size);
7699 goto have_block_group;
7700 }
7701
7702 /*
7703 * at this point we either didn't find a cluster
7704 * or we weren't able to allocate a block from our
7705 * cluster. Free the cluster we've been trying
7706 * to use, and go to the next block group
7707 */
7708 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7709 spin_unlock(&last_ptr->refill_lock);
7710 goto loop;
7711 }
7712
7713 unclustered_alloc:
7714 /*
7715 * We are doing an unclustered alloc, set the fragmented flag so
7716 * we don't bother trying to setup a cluster again until we get
7717 * more space.
7718 */
7719 if (unlikely(last_ptr)) {
7720 spin_lock(&last_ptr->lock);
7721 last_ptr->fragmented = 1;
7722 spin_unlock(&last_ptr->lock);
7723 }
7724 if (cached) {
7725 struct btrfs_free_space_ctl *ctl =
7726 block_group->free_space_ctl;
7727
7728 spin_lock(&ctl->tree_lock);
7729 if (ctl->free_space <
7730 num_bytes + empty_cluster + empty_size) {
7731 if (ctl->free_space > max_extent_size)
7732 max_extent_size = ctl->free_space;
7733 spin_unlock(&ctl->tree_lock);
7734 goto loop;
7735 }
7736 spin_unlock(&ctl->tree_lock);
7737 }
7738
7739 offset = btrfs_find_space_for_alloc(block_group, search_start,
7740 num_bytes, empty_size,
7741 &max_extent_size);
7742 /*
7743 * If we didn't find a chunk, and we haven't failed on this
7744 * block group before, and this block group is in the middle of
7745 * caching and we are ok with waiting, then go ahead and wait
7746 * for progress to be made, and set failed_alloc to true.
7747 *
7748 * If failed_alloc is true then we've already waited on this
7749 * block group once and should move on to the next block group.
7750 */
7751 if (!offset && !failed_alloc && !cached &&
7752 loop > LOOP_CACHING_NOWAIT) {
7753 wait_block_group_cache_progress(block_group,
7754 num_bytes + empty_size);
7755 failed_alloc = true;
7756 goto have_block_group;
7757 } else if (!offset) {
7758 goto loop;
7759 }
7760 checks:
7761 search_start = ALIGN(offset, fs_info->stripesize);
7762
7763 /* move on to the next group */
7764 if (search_start + num_bytes >
7765 block_group->key.objectid + block_group->key.offset) {
7766 btrfs_add_free_space(block_group, offset, num_bytes);
7767 goto loop;
7768 }
7769
7770 if (offset < search_start)
7771 btrfs_add_free_space(block_group, offset,
7772 search_start - offset);
7773 BUG_ON(offset > search_start);
7774
7775 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7776 num_bytes, delalloc);
7777 if (ret == -EAGAIN) {
7778 btrfs_add_free_space(block_group, offset, num_bytes);
7779 goto loop;
7780 }
7781 btrfs_inc_block_group_reservations(block_group);
7782
7783 /* we are all good, lets return */
7784 ins->objectid = search_start;
7785 ins->offset = num_bytes;
7786
7787 trace_btrfs_reserve_extent(fs_info, block_group,
7788 search_start, num_bytes);
7789 btrfs_release_block_group(block_group, delalloc);
7790 break;
7791 loop:
7792 failed_cluster_refill = false;
7793 failed_alloc = false;
7794 BUG_ON(index != get_block_group_index(block_group));
7795 btrfs_release_block_group(block_group, delalloc);
7796 }
7797 up_read(&space_info->groups_sem);
7798
7799 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7800 && !orig_have_caching_bg)
7801 orig_have_caching_bg = true;
7802
7803 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7804 goto search;
7805
7806 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7807 goto search;
7808
7809 /*
7810 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7811 * caching kthreads as we move along
7812 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7813 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7814 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7815 * again
7816 */
7817 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7818 index = 0;
7819 if (loop == LOOP_CACHING_NOWAIT) {
7820 /*
7821 * We want to skip the LOOP_CACHING_WAIT step if we
7822 * don't have any uncached bgs and we've already done a
7823 * full search through.
7824 */
7825 if (orig_have_caching_bg || !full_search)
7826 loop = LOOP_CACHING_WAIT;
7827 else
7828 loop = LOOP_ALLOC_CHUNK;
7829 } else {
7830 loop++;
7831 }
7832
7833 if (loop == LOOP_ALLOC_CHUNK) {
7834 struct btrfs_trans_handle *trans;
7835 int exist = 0;
7836
7837 trans = current->journal_info;
7838 if (trans)
7839 exist = 1;
7840 else
7841 trans = btrfs_join_transaction(root);
7842
7843 if (IS_ERR(trans)) {
7844 ret = PTR_ERR(trans);
7845 goto out;
7846 }
7847
7848 ret = do_chunk_alloc(trans, fs_info, flags,
7849 CHUNK_ALLOC_FORCE);
7850
7851 /*
7852 * If we can't allocate a new chunk we've already looped
7853 * through at least once, move on to the NO_EMPTY_SIZE
7854 * case.
7855 */
7856 if (ret == -ENOSPC)
7857 loop = LOOP_NO_EMPTY_SIZE;
7858
7859 /*
7860 * Do not bail out on ENOSPC since we
7861 * can do more things.
7862 */
7863 if (ret < 0 && ret != -ENOSPC)
7864 btrfs_abort_transaction(trans, ret);
7865 else
7866 ret = 0;
7867 if (!exist)
7868 btrfs_end_transaction(trans);
7869 if (ret)
7870 goto out;
7871 }
7872
7873 if (loop == LOOP_NO_EMPTY_SIZE) {
7874 /*
7875 * Don't loop again if we already have no empty_size and
7876 * no empty_cluster.
7877 */
7878 if (empty_size == 0 &&
7879 empty_cluster == 0) {
7880 ret = -ENOSPC;
7881 goto out;
7882 }
7883 empty_size = 0;
7884 empty_cluster = 0;
7885 }
7886
7887 goto search;
7888 } else if (!ins->objectid) {
7889 ret = -ENOSPC;
7890 } else if (ins->objectid) {
7891 if (!use_cluster && last_ptr) {
7892 spin_lock(&last_ptr->lock);
7893 last_ptr->window_start = ins->objectid;
7894 spin_unlock(&last_ptr->lock);
7895 }
7896 ret = 0;
7897 }
7898 out:
7899 if (ret == -ENOSPC) {
7900 spin_lock(&space_info->lock);
7901 space_info->max_extent_size = max_extent_size;
7902 spin_unlock(&space_info->lock);
7903 ins->offset = max_extent_size;
7904 }
7905 return ret;
7906 }
7907
7908 static void dump_space_info(struct btrfs_fs_info *fs_info,
7909 struct btrfs_space_info *info, u64 bytes,
7910 int dump_block_groups)
7911 {
7912 struct btrfs_block_group_cache *cache;
7913 int index = 0;
7914
7915 spin_lock(&info->lock);
7916 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7917 info->flags,
7918 info->total_bytes - btrfs_space_info_used(info, true),
7919 info->full ? "" : "not ");
7920 btrfs_info(fs_info,
7921 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7922 info->total_bytes, info->bytes_used, info->bytes_pinned,
7923 info->bytes_reserved, info->bytes_may_use,
7924 info->bytes_readonly);
7925 spin_unlock(&info->lock);
7926
7927 if (!dump_block_groups)
7928 return;
7929
7930 down_read(&info->groups_sem);
7931 again:
7932 list_for_each_entry(cache, &info->block_groups[index], list) {
7933 spin_lock(&cache->lock);
7934 btrfs_info(fs_info,
7935 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7936 cache->key.objectid, cache->key.offset,
7937 btrfs_block_group_used(&cache->item), cache->pinned,
7938 cache->reserved, cache->ro ? "[readonly]" : "");
7939 btrfs_dump_free_space(cache, bytes);
7940 spin_unlock(&cache->lock);
7941 }
7942 if (++index < BTRFS_NR_RAID_TYPES)
7943 goto again;
7944 up_read(&info->groups_sem);
7945 }
7946
7947 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7948 u64 num_bytes, u64 min_alloc_size,
7949 u64 empty_size, u64 hint_byte,
7950 struct btrfs_key *ins, int is_data, int delalloc)
7951 {
7952 struct btrfs_fs_info *fs_info = root->fs_info;
7953 bool final_tried = num_bytes == min_alloc_size;
7954 u64 flags;
7955 int ret;
7956
7957 flags = btrfs_get_alloc_profile(root, is_data);
7958 again:
7959 WARN_ON(num_bytes < fs_info->sectorsize);
7960 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7961 hint_byte, ins, flags, delalloc);
7962 if (!ret && !is_data) {
7963 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7964 } else if (ret == -ENOSPC) {
7965 if (!final_tried && ins->offset) {
7966 num_bytes = min(num_bytes >> 1, ins->offset);
7967 num_bytes = round_down(num_bytes,
7968 fs_info->sectorsize);
7969 num_bytes = max(num_bytes, min_alloc_size);
7970 ram_bytes = num_bytes;
7971 if (num_bytes == min_alloc_size)
7972 final_tried = true;
7973 goto again;
7974 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7975 struct btrfs_space_info *sinfo;
7976
7977 sinfo = __find_space_info(fs_info, flags);
7978 btrfs_err(fs_info,
7979 "allocation failed flags %llu, wanted %llu",
7980 flags, num_bytes);
7981 if (sinfo)
7982 dump_space_info(fs_info, sinfo, num_bytes, 1);
7983 }
7984 }
7985
7986 return ret;
7987 }
7988
7989 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7990 u64 start, u64 len,
7991 int pin, int delalloc)
7992 {
7993 struct btrfs_block_group_cache *cache;
7994 int ret = 0;
7995
7996 cache = btrfs_lookup_block_group(fs_info, start);
7997 if (!cache) {
7998 btrfs_err(fs_info, "Unable to find block group for %llu",
7999 start);
8000 return -ENOSPC;
8001 }
8002
8003 if (pin)
8004 pin_down_extent(fs_info, cache, start, len, 1);
8005 else {
8006 if (btrfs_test_opt(fs_info, DISCARD))
8007 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8008 btrfs_add_free_space(cache, start, len);
8009 btrfs_free_reserved_bytes(cache, len, delalloc);
8010 trace_btrfs_reserved_extent_free(fs_info, start, len);
8011 }
8012
8013 btrfs_put_block_group(cache);
8014 return ret;
8015 }
8016
8017 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8018 u64 start, u64 len, int delalloc)
8019 {
8020 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8021 }
8022
8023 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8024 u64 start, u64 len)
8025 {
8026 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8027 }
8028
8029 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8030 struct btrfs_fs_info *fs_info,
8031 u64 parent, u64 root_objectid,
8032 u64 flags, u64 owner, u64 offset,
8033 struct btrfs_key *ins, int ref_mod)
8034 {
8035 int ret;
8036 struct btrfs_extent_item *extent_item;
8037 struct btrfs_extent_inline_ref *iref;
8038 struct btrfs_path *path;
8039 struct extent_buffer *leaf;
8040 int type;
8041 u32 size;
8042
8043 if (parent > 0)
8044 type = BTRFS_SHARED_DATA_REF_KEY;
8045 else
8046 type = BTRFS_EXTENT_DATA_REF_KEY;
8047
8048 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8049
8050 path = btrfs_alloc_path();
8051 if (!path)
8052 return -ENOMEM;
8053
8054 path->leave_spinning = 1;
8055 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8056 ins, size);
8057 if (ret) {
8058 btrfs_free_path(path);
8059 return ret;
8060 }
8061
8062 leaf = path->nodes[0];
8063 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8064 struct btrfs_extent_item);
8065 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8066 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8067 btrfs_set_extent_flags(leaf, extent_item,
8068 flags | BTRFS_EXTENT_FLAG_DATA);
8069
8070 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8071 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8072 if (parent > 0) {
8073 struct btrfs_shared_data_ref *ref;
8074 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8075 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8076 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8077 } else {
8078 struct btrfs_extent_data_ref *ref;
8079 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8080 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8081 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8082 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8083 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8084 }
8085
8086 btrfs_mark_buffer_dirty(path->nodes[0]);
8087 btrfs_free_path(path);
8088
8089 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8090 ins->offset);
8091 if (ret)
8092 return ret;
8093
8094 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8095 if (ret) { /* -ENOENT, logic error */
8096 btrfs_err(fs_info, "update block group failed for %llu %llu",
8097 ins->objectid, ins->offset);
8098 BUG();
8099 }
8100 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8101 return ret;
8102 }
8103
8104 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8105 struct btrfs_fs_info *fs_info,
8106 u64 parent, u64 root_objectid,
8107 u64 flags, struct btrfs_disk_key *key,
8108 int level, struct btrfs_key *ins)
8109 {
8110 int ret;
8111 struct btrfs_extent_item *extent_item;
8112 struct btrfs_tree_block_info *block_info;
8113 struct btrfs_extent_inline_ref *iref;
8114 struct btrfs_path *path;
8115 struct extent_buffer *leaf;
8116 u32 size = sizeof(*extent_item) + sizeof(*iref);
8117 u64 num_bytes = ins->offset;
8118 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8119
8120 if (!skinny_metadata)
8121 size += sizeof(*block_info);
8122
8123 path = btrfs_alloc_path();
8124 if (!path) {
8125 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8126 fs_info->nodesize);
8127 return -ENOMEM;
8128 }
8129
8130 path->leave_spinning = 1;
8131 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8132 ins, size);
8133 if (ret) {
8134 btrfs_free_path(path);
8135 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8136 fs_info->nodesize);
8137 return ret;
8138 }
8139
8140 leaf = path->nodes[0];
8141 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8142 struct btrfs_extent_item);
8143 btrfs_set_extent_refs(leaf, extent_item, 1);
8144 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8145 btrfs_set_extent_flags(leaf, extent_item,
8146 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8147
8148 if (skinny_metadata) {
8149 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8150 num_bytes = fs_info->nodesize;
8151 } else {
8152 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8153 btrfs_set_tree_block_key(leaf, block_info, key);
8154 btrfs_set_tree_block_level(leaf, block_info, level);
8155 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8156 }
8157
8158 if (parent > 0) {
8159 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8160 btrfs_set_extent_inline_ref_type(leaf, iref,
8161 BTRFS_SHARED_BLOCK_REF_KEY);
8162 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8163 } else {
8164 btrfs_set_extent_inline_ref_type(leaf, iref,
8165 BTRFS_TREE_BLOCK_REF_KEY);
8166 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8167 }
8168
8169 btrfs_mark_buffer_dirty(leaf);
8170 btrfs_free_path(path);
8171
8172 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8173 num_bytes);
8174 if (ret)
8175 return ret;
8176
8177 ret = update_block_group(trans, fs_info, ins->objectid,
8178 fs_info->nodesize, 1);
8179 if (ret) { /* -ENOENT, logic error */
8180 btrfs_err(fs_info, "update block group failed for %llu %llu",
8181 ins->objectid, ins->offset);
8182 BUG();
8183 }
8184
8185 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8186 fs_info->nodesize);
8187 return ret;
8188 }
8189
8190 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8191 u64 root_objectid, u64 owner,
8192 u64 offset, u64 ram_bytes,
8193 struct btrfs_key *ins)
8194 {
8195 struct btrfs_fs_info *fs_info = trans->fs_info;
8196 int ret;
8197
8198 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8199
8200 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8201 ins->offset, 0,
8202 root_objectid, owner, offset,
8203 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8204 return ret;
8205 }
8206
8207 /*
8208 * this is used by the tree logging recovery code. It records that
8209 * an extent has been allocated and makes sure to clear the free
8210 * space cache bits as well
8211 */
8212 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8213 struct btrfs_fs_info *fs_info,
8214 u64 root_objectid, u64 owner, u64 offset,
8215 struct btrfs_key *ins)
8216 {
8217 int ret;
8218 struct btrfs_block_group_cache *block_group;
8219 struct btrfs_space_info *space_info;
8220
8221 /*
8222 * Mixed block groups will exclude before processing the log so we only
8223 * need to do the exclude dance if this fs isn't mixed.
8224 */
8225 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8226 ret = __exclude_logged_extent(fs_info, ins->objectid,
8227 ins->offset);
8228 if (ret)
8229 return ret;
8230 }
8231
8232 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8233 if (!block_group)
8234 return -EINVAL;
8235
8236 space_info = block_group->space_info;
8237 spin_lock(&space_info->lock);
8238 spin_lock(&block_group->lock);
8239 space_info->bytes_reserved += ins->offset;
8240 block_group->reserved += ins->offset;
8241 spin_unlock(&block_group->lock);
8242 spin_unlock(&space_info->lock);
8243
8244 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8245 0, owner, offset, ins, 1);
8246 btrfs_put_block_group(block_group);
8247 return ret;
8248 }
8249
8250 static struct extent_buffer *
8251 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8252 u64 bytenr, int level)
8253 {
8254 struct btrfs_fs_info *fs_info = root->fs_info;
8255 struct extent_buffer *buf;
8256
8257 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8258 if (IS_ERR(buf))
8259 return buf;
8260
8261 btrfs_set_header_generation(buf, trans->transid);
8262 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8263 btrfs_tree_lock(buf);
8264 clean_tree_block(fs_info, buf);
8265 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8266
8267 btrfs_set_lock_blocking(buf);
8268 set_extent_buffer_uptodate(buf);
8269
8270 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8271 buf->log_index = root->log_transid % 2;
8272 /*
8273 * we allow two log transactions at a time, use different
8274 * EXENT bit to differentiate dirty pages.
8275 */
8276 if (buf->log_index == 0)
8277 set_extent_dirty(&root->dirty_log_pages, buf->start,
8278 buf->start + buf->len - 1, GFP_NOFS);
8279 else
8280 set_extent_new(&root->dirty_log_pages, buf->start,
8281 buf->start + buf->len - 1);
8282 } else {
8283 buf->log_index = -1;
8284 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8285 buf->start + buf->len - 1, GFP_NOFS);
8286 }
8287 trans->dirty = true;
8288 /* this returns a buffer locked for blocking */
8289 return buf;
8290 }
8291
8292 static struct btrfs_block_rsv *
8293 use_block_rsv(struct btrfs_trans_handle *trans,
8294 struct btrfs_root *root, u32 blocksize)
8295 {
8296 struct btrfs_fs_info *fs_info = root->fs_info;
8297 struct btrfs_block_rsv *block_rsv;
8298 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8299 int ret;
8300 bool global_updated = false;
8301
8302 block_rsv = get_block_rsv(trans, root);
8303
8304 if (unlikely(block_rsv->size == 0))
8305 goto try_reserve;
8306 again:
8307 ret = block_rsv_use_bytes(block_rsv, blocksize);
8308 if (!ret)
8309 return block_rsv;
8310
8311 if (block_rsv->failfast)
8312 return ERR_PTR(ret);
8313
8314 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8315 global_updated = true;
8316 update_global_block_rsv(fs_info);
8317 goto again;
8318 }
8319
8320 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8321 static DEFINE_RATELIMIT_STATE(_rs,
8322 DEFAULT_RATELIMIT_INTERVAL * 10,
8323 /*DEFAULT_RATELIMIT_BURST*/ 1);
8324 if (__ratelimit(&_rs))
8325 WARN(1, KERN_DEBUG
8326 "BTRFS: block rsv returned %d\n", ret);
8327 }
8328 try_reserve:
8329 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8330 BTRFS_RESERVE_NO_FLUSH);
8331 if (!ret)
8332 return block_rsv;
8333 /*
8334 * If we couldn't reserve metadata bytes try and use some from
8335 * the global reserve if its space type is the same as the global
8336 * reservation.
8337 */
8338 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8339 block_rsv->space_info == global_rsv->space_info) {
8340 ret = block_rsv_use_bytes(global_rsv, blocksize);
8341 if (!ret)
8342 return global_rsv;
8343 }
8344 return ERR_PTR(ret);
8345 }
8346
8347 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8348 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8349 {
8350 block_rsv_add_bytes(block_rsv, blocksize, 0);
8351 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8352 }
8353
8354 /*
8355 * finds a free extent and does all the dirty work required for allocation
8356 * returns the tree buffer or an ERR_PTR on error.
8357 */
8358 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8359 struct btrfs_root *root,
8360 u64 parent, u64 root_objectid,
8361 const struct btrfs_disk_key *key,
8362 int level, u64 hint,
8363 u64 empty_size)
8364 {
8365 struct btrfs_fs_info *fs_info = root->fs_info;
8366 struct btrfs_key ins;
8367 struct btrfs_block_rsv *block_rsv;
8368 struct extent_buffer *buf;
8369 struct btrfs_delayed_extent_op *extent_op;
8370 u64 flags = 0;
8371 int ret;
8372 u32 blocksize = fs_info->nodesize;
8373 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8374
8375 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8376 if (btrfs_is_testing(fs_info)) {
8377 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8378 level);
8379 if (!IS_ERR(buf))
8380 root->alloc_bytenr += blocksize;
8381 return buf;
8382 }
8383 #endif
8384
8385 block_rsv = use_block_rsv(trans, root, blocksize);
8386 if (IS_ERR(block_rsv))
8387 return ERR_CAST(block_rsv);
8388
8389 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8390 empty_size, hint, &ins, 0, 0);
8391 if (ret)
8392 goto out_unuse;
8393
8394 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8395 if (IS_ERR(buf)) {
8396 ret = PTR_ERR(buf);
8397 goto out_free_reserved;
8398 }
8399
8400 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8401 if (parent == 0)
8402 parent = ins.objectid;
8403 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8404 } else
8405 BUG_ON(parent > 0);
8406
8407 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8408 extent_op = btrfs_alloc_delayed_extent_op();
8409 if (!extent_op) {
8410 ret = -ENOMEM;
8411 goto out_free_buf;
8412 }
8413 if (key)
8414 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8415 else
8416 memset(&extent_op->key, 0, sizeof(extent_op->key));
8417 extent_op->flags_to_set = flags;
8418 extent_op->update_key = skinny_metadata ? false : true;
8419 extent_op->update_flags = true;
8420 extent_op->is_data = false;
8421 extent_op->level = level;
8422
8423 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8424 ins.objectid, ins.offset,
8425 parent, root_objectid, level,
8426 BTRFS_ADD_DELAYED_EXTENT,
8427 extent_op);
8428 if (ret)
8429 goto out_free_delayed;
8430 }
8431 return buf;
8432
8433 out_free_delayed:
8434 btrfs_free_delayed_extent_op(extent_op);
8435 out_free_buf:
8436 free_extent_buffer(buf);
8437 out_free_reserved:
8438 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8439 out_unuse:
8440 unuse_block_rsv(fs_info, block_rsv, blocksize);
8441 return ERR_PTR(ret);
8442 }
8443
8444 struct walk_control {
8445 u64 refs[BTRFS_MAX_LEVEL];
8446 u64 flags[BTRFS_MAX_LEVEL];
8447 struct btrfs_key update_progress;
8448 int stage;
8449 int level;
8450 int shared_level;
8451 int update_ref;
8452 int keep_locks;
8453 int reada_slot;
8454 int reada_count;
8455 int for_reloc;
8456 };
8457
8458 #define DROP_REFERENCE 1
8459 #define UPDATE_BACKREF 2
8460
8461 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8462 struct btrfs_root *root,
8463 struct walk_control *wc,
8464 struct btrfs_path *path)
8465 {
8466 struct btrfs_fs_info *fs_info = root->fs_info;
8467 u64 bytenr;
8468 u64 generation;
8469 u64 refs;
8470 u64 flags;
8471 u32 nritems;
8472 struct btrfs_key key;
8473 struct extent_buffer *eb;
8474 int ret;
8475 int slot;
8476 int nread = 0;
8477
8478 if (path->slots[wc->level] < wc->reada_slot) {
8479 wc->reada_count = wc->reada_count * 2 / 3;
8480 wc->reada_count = max(wc->reada_count, 2);
8481 } else {
8482 wc->reada_count = wc->reada_count * 3 / 2;
8483 wc->reada_count = min_t(int, wc->reada_count,
8484 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8485 }
8486
8487 eb = path->nodes[wc->level];
8488 nritems = btrfs_header_nritems(eb);
8489
8490 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8491 if (nread >= wc->reada_count)
8492 break;
8493
8494 cond_resched();
8495 bytenr = btrfs_node_blockptr(eb, slot);
8496 generation = btrfs_node_ptr_generation(eb, slot);
8497
8498 if (slot == path->slots[wc->level])
8499 goto reada;
8500
8501 if (wc->stage == UPDATE_BACKREF &&
8502 generation <= root->root_key.offset)
8503 continue;
8504
8505 /* We don't lock the tree block, it's OK to be racy here */
8506 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8507 wc->level - 1, 1, &refs,
8508 &flags);
8509 /* We don't care about errors in readahead. */
8510 if (ret < 0)
8511 continue;
8512 BUG_ON(refs == 0);
8513
8514 if (wc->stage == DROP_REFERENCE) {
8515 if (refs == 1)
8516 goto reada;
8517
8518 if (wc->level == 1 &&
8519 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8520 continue;
8521 if (!wc->update_ref ||
8522 generation <= root->root_key.offset)
8523 continue;
8524 btrfs_node_key_to_cpu(eb, &key, slot);
8525 ret = btrfs_comp_cpu_keys(&key,
8526 &wc->update_progress);
8527 if (ret < 0)
8528 continue;
8529 } else {
8530 if (wc->level == 1 &&
8531 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8532 continue;
8533 }
8534 reada:
8535 readahead_tree_block(fs_info, bytenr);
8536 nread++;
8537 }
8538 wc->reada_slot = slot;
8539 }
8540
8541 /*
8542 * helper to process tree block while walking down the tree.
8543 *
8544 * when wc->stage == UPDATE_BACKREF, this function updates
8545 * back refs for pointers in the block.
8546 *
8547 * NOTE: return value 1 means we should stop walking down.
8548 */
8549 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8550 struct btrfs_root *root,
8551 struct btrfs_path *path,
8552 struct walk_control *wc, int lookup_info)
8553 {
8554 struct btrfs_fs_info *fs_info = root->fs_info;
8555 int level = wc->level;
8556 struct extent_buffer *eb = path->nodes[level];
8557 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8558 int ret;
8559
8560 if (wc->stage == UPDATE_BACKREF &&
8561 btrfs_header_owner(eb) != root->root_key.objectid)
8562 return 1;
8563
8564 /*
8565 * when reference count of tree block is 1, it won't increase
8566 * again. once full backref flag is set, we never clear it.
8567 */
8568 if (lookup_info &&
8569 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8570 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8571 BUG_ON(!path->locks[level]);
8572 ret = btrfs_lookup_extent_info(trans, fs_info,
8573 eb->start, level, 1,
8574 &wc->refs[level],
8575 &wc->flags[level]);
8576 BUG_ON(ret == -ENOMEM);
8577 if (ret)
8578 return ret;
8579 BUG_ON(wc->refs[level] == 0);
8580 }
8581
8582 if (wc->stage == DROP_REFERENCE) {
8583 if (wc->refs[level] > 1)
8584 return 1;
8585
8586 if (path->locks[level] && !wc->keep_locks) {
8587 btrfs_tree_unlock_rw(eb, path->locks[level]);
8588 path->locks[level] = 0;
8589 }
8590 return 0;
8591 }
8592
8593 /* wc->stage == UPDATE_BACKREF */
8594 if (!(wc->flags[level] & flag)) {
8595 BUG_ON(!path->locks[level]);
8596 ret = btrfs_inc_ref(trans, root, eb, 1);
8597 BUG_ON(ret); /* -ENOMEM */
8598 ret = btrfs_dec_ref(trans, root, eb, 0);
8599 BUG_ON(ret); /* -ENOMEM */
8600 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8601 eb->len, flag,
8602 btrfs_header_level(eb), 0);
8603 BUG_ON(ret); /* -ENOMEM */
8604 wc->flags[level] |= flag;
8605 }
8606
8607 /*
8608 * the block is shared by multiple trees, so it's not good to
8609 * keep the tree lock
8610 */
8611 if (path->locks[level] && level > 0) {
8612 btrfs_tree_unlock_rw(eb, path->locks[level]);
8613 path->locks[level] = 0;
8614 }
8615 return 0;
8616 }
8617
8618 /*
8619 * helper to process tree block pointer.
8620 *
8621 * when wc->stage == DROP_REFERENCE, this function checks
8622 * reference count of the block pointed to. if the block
8623 * is shared and we need update back refs for the subtree
8624 * rooted at the block, this function changes wc->stage to
8625 * UPDATE_BACKREF. if the block is shared and there is no
8626 * need to update back, this function drops the reference
8627 * to the block.
8628 *
8629 * NOTE: return value 1 means we should stop walking down.
8630 */
8631 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8632 struct btrfs_root *root,
8633 struct btrfs_path *path,
8634 struct walk_control *wc, int *lookup_info)
8635 {
8636 struct btrfs_fs_info *fs_info = root->fs_info;
8637 u64 bytenr;
8638 u64 generation;
8639 u64 parent;
8640 u32 blocksize;
8641 struct btrfs_key key;
8642 struct extent_buffer *next;
8643 int level = wc->level;
8644 int reada = 0;
8645 int ret = 0;
8646 bool need_account = false;
8647
8648 generation = btrfs_node_ptr_generation(path->nodes[level],
8649 path->slots[level]);
8650 /*
8651 * if the lower level block was created before the snapshot
8652 * was created, we know there is no need to update back refs
8653 * for the subtree
8654 */
8655 if (wc->stage == UPDATE_BACKREF &&
8656 generation <= root->root_key.offset) {
8657 *lookup_info = 1;
8658 return 1;
8659 }
8660
8661 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8662 blocksize = fs_info->nodesize;
8663
8664 next = find_extent_buffer(fs_info, bytenr);
8665 if (!next) {
8666 next = btrfs_find_create_tree_block(fs_info, bytenr);
8667 if (IS_ERR(next))
8668 return PTR_ERR(next);
8669
8670 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8671 level - 1);
8672 reada = 1;
8673 }
8674 btrfs_tree_lock(next);
8675 btrfs_set_lock_blocking(next);
8676
8677 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8678 &wc->refs[level - 1],
8679 &wc->flags[level - 1]);
8680 if (ret < 0)
8681 goto out_unlock;
8682
8683 if (unlikely(wc->refs[level - 1] == 0)) {
8684 btrfs_err(fs_info, "Missing references.");
8685 ret = -EIO;
8686 goto out_unlock;
8687 }
8688 *lookup_info = 0;
8689
8690 if (wc->stage == DROP_REFERENCE) {
8691 if (wc->refs[level - 1] > 1) {
8692 need_account = true;
8693 if (level == 1 &&
8694 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8695 goto skip;
8696
8697 if (!wc->update_ref ||
8698 generation <= root->root_key.offset)
8699 goto skip;
8700
8701 btrfs_node_key_to_cpu(path->nodes[level], &key,
8702 path->slots[level]);
8703 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8704 if (ret < 0)
8705 goto skip;
8706
8707 wc->stage = UPDATE_BACKREF;
8708 wc->shared_level = level - 1;
8709 }
8710 } else {
8711 if (level == 1 &&
8712 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8713 goto skip;
8714 }
8715
8716 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8717 btrfs_tree_unlock(next);
8718 free_extent_buffer(next);
8719 next = NULL;
8720 *lookup_info = 1;
8721 }
8722
8723 if (!next) {
8724 if (reada && level == 1)
8725 reada_walk_down(trans, root, wc, path);
8726 next = read_tree_block(fs_info, bytenr, generation);
8727 if (IS_ERR(next)) {
8728 return PTR_ERR(next);
8729 } else if (!extent_buffer_uptodate(next)) {
8730 free_extent_buffer(next);
8731 return -EIO;
8732 }
8733 btrfs_tree_lock(next);
8734 btrfs_set_lock_blocking(next);
8735 }
8736
8737 level--;
8738 ASSERT(level == btrfs_header_level(next));
8739 if (level != btrfs_header_level(next)) {
8740 btrfs_err(root->fs_info, "mismatched level");
8741 ret = -EIO;
8742 goto out_unlock;
8743 }
8744 path->nodes[level] = next;
8745 path->slots[level] = 0;
8746 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8747 wc->level = level;
8748 if (wc->level == 1)
8749 wc->reada_slot = 0;
8750 return 0;
8751 skip:
8752 wc->refs[level - 1] = 0;
8753 wc->flags[level - 1] = 0;
8754 if (wc->stage == DROP_REFERENCE) {
8755 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8756 parent = path->nodes[level]->start;
8757 } else {
8758 ASSERT(root->root_key.objectid ==
8759 btrfs_header_owner(path->nodes[level]));
8760 if (root->root_key.objectid !=
8761 btrfs_header_owner(path->nodes[level])) {
8762 btrfs_err(root->fs_info,
8763 "mismatched block owner");
8764 ret = -EIO;
8765 goto out_unlock;
8766 }
8767 parent = 0;
8768 }
8769
8770 if (need_account) {
8771 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8772 generation, level - 1);
8773 if (ret) {
8774 btrfs_err_rl(fs_info,
8775 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8776 ret);
8777 }
8778 }
8779 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8780 parent, root->root_key.objectid,
8781 level - 1, 0);
8782 if (ret)
8783 goto out_unlock;
8784 }
8785
8786 *lookup_info = 1;
8787 ret = 1;
8788
8789 out_unlock:
8790 btrfs_tree_unlock(next);
8791 free_extent_buffer(next);
8792
8793 return ret;
8794 }
8795
8796 /*
8797 * helper to process tree block while walking up the tree.
8798 *
8799 * when wc->stage == DROP_REFERENCE, this function drops
8800 * reference count on the block.
8801 *
8802 * when wc->stage == UPDATE_BACKREF, this function changes
8803 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8804 * to UPDATE_BACKREF previously while processing the block.
8805 *
8806 * NOTE: return value 1 means we should stop walking up.
8807 */
8808 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8809 struct btrfs_root *root,
8810 struct btrfs_path *path,
8811 struct walk_control *wc)
8812 {
8813 struct btrfs_fs_info *fs_info = root->fs_info;
8814 int ret;
8815 int level = wc->level;
8816 struct extent_buffer *eb = path->nodes[level];
8817 u64 parent = 0;
8818
8819 if (wc->stage == UPDATE_BACKREF) {
8820 BUG_ON(wc->shared_level < level);
8821 if (level < wc->shared_level)
8822 goto out;
8823
8824 ret = find_next_key(path, level + 1, &wc->update_progress);
8825 if (ret > 0)
8826 wc->update_ref = 0;
8827
8828 wc->stage = DROP_REFERENCE;
8829 wc->shared_level = -1;
8830 path->slots[level] = 0;
8831
8832 /*
8833 * check reference count again if the block isn't locked.
8834 * we should start walking down the tree again if reference
8835 * count is one.
8836 */
8837 if (!path->locks[level]) {
8838 BUG_ON(level == 0);
8839 btrfs_tree_lock(eb);
8840 btrfs_set_lock_blocking(eb);
8841 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8842
8843 ret = btrfs_lookup_extent_info(trans, fs_info,
8844 eb->start, level, 1,
8845 &wc->refs[level],
8846 &wc->flags[level]);
8847 if (ret < 0) {
8848 btrfs_tree_unlock_rw(eb, path->locks[level]);
8849 path->locks[level] = 0;
8850 return ret;
8851 }
8852 BUG_ON(wc->refs[level] == 0);
8853 if (wc->refs[level] == 1) {
8854 btrfs_tree_unlock_rw(eb, path->locks[level]);
8855 path->locks[level] = 0;
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 /* wc->stage == DROP_REFERENCE */
8862 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8863
8864 if (wc->refs[level] == 1) {
8865 if (level == 0) {
8866 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8867 ret = btrfs_dec_ref(trans, root, eb, 1);
8868 else
8869 ret = btrfs_dec_ref(trans, root, eb, 0);
8870 BUG_ON(ret); /* -ENOMEM */
8871 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8872 if (ret) {
8873 btrfs_err_rl(fs_info,
8874 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8875 ret);
8876 }
8877 }
8878 /* make block locked assertion in clean_tree_block happy */
8879 if (!path->locks[level] &&
8880 btrfs_header_generation(eb) == trans->transid) {
8881 btrfs_tree_lock(eb);
8882 btrfs_set_lock_blocking(eb);
8883 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8884 }
8885 clean_tree_block(fs_info, eb);
8886 }
8887
8888 if (eb == root->node) {
8889 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8890 parent = eb->start;
8891 else
8892 BUG_ON(root->root_key.objectid !=
8893 btrfs_header_owner(eb));
8894 } else {
8895 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8896 parent = path->nodes[level + 1]->start;
8897 else
8898 BUG_ON(root->root_key.objectid !=
8899 btrfs_header_owner(path->nodes[level + 1]));
8900 }
8901
8902 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8903 out:
8904 wc->refs[level] = 0;
8905 wc->flags[level] = 0;
8906 return 0;
8907 }
8908
8909 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8910 struct btrfs_root *root,
8911 struct btrfs_path *path,
8912 struct walk_control *wc)
8913 {
8914 int level = wc->level;
8915 int lookup_info = 1;
8916 int ret;
8917
8918 while (level >= 0) {
8919 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8920 if (ret > 0)
8921 break;
8922
8923 if (level == 0)
8924 break;
8925
8926 if (path->slots[level] >=
8927 btrfs_header_nritems(path->nodes[level]))
8928 break;
8929
8930 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8931 if (ret > 0) {
8932 path->slots[level]++;
8933 continue;
8934 } else if (ret < 0)
8935 return ret;
8936 level = wc->level;
8937 }
8938 return 0;
8939 }
8940
8941 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8942 struct btrfs_root *root,
8943 struct btrfs_path *path,
8944 struct walk_control *wc, int max_level)
8945 {
8946 int level = wc->level;
8947 int ret;
8948
8949 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8950 while (level < max_level && path->nodes[level]) {
8951 wc->level = level;
8952 if (path->slots[level] + 1 <
8953 btrfs_header_nritems(path->nodes[level])) {
8954 path->slots[level]++;
8955 return 0;
8956 } else {
8957 ret = walk_up_proc(trans, root, path, wc);
8958 if (ret > 0)
8959 return 0;
8960
8961 if (path->locks[level]) {
8962 btrfs_tree_unlock_rw(path->nodes[level],
8963 path->locks[level]);
8964 path->locks[level] = 0;
8965 }
8966 free_extent_buffer(path->nodes[level]);
8967 path->nodes[level] = NULL;
8968 level++;
8969 }
8970 }
8971 return 1;
8972 }
8973
8974 /*
8975 * drop a subvolume tree.
8976 *
8977 * this function traverses the tree freeing any blocks that only
8978 * referenced by the tree.
8979 *
8980 * when a shared tree block is found. this function decreases its
8981 * reference count by one. if update_ref is true, this function
8982 * also make sure backrefs for the shared block and all lower level
8983 * blocks are properly updated.
8984 *
8985 * If called with for_reloc == 0, may exit early with -EAGAIN
8986 */
8987 int btrfs_drop_snapshot(struct btrfs_root *root,
8988 struct btrfs_block_rsv *block_rsv, int update_ref,
8989 int for_reloc)
8990 {
8991 struct btrfs_fs_info *fs_info = root->fs_info;
8992 struct btrfs_path *path;
8993 struct btrfs_trans_handle *trans;
8994 struct btrfs_root *tree_root = fs_info->tree_root;
8995 struct btrfs_root_item *root_item = &root->root_item;
8996 struct walk_control *wc;
8997 struct btrfs_key key;
8998 int err = 0;
8999 int ret;
9000 int level;
9001 bool root_dropped = false;
9002
9003 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9004
9005 path = btrfs_alloc_path();
9006 if (!path) {
9007 err = -ENOMEM;
9008 goto out;
9009 }
9010
9011 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9012 if (!wc) {
9013 btrfs_free_path(path);
9014 err = -ENOMEM;
9015 goto out;
9016 }
9017
9018 trans = btrfs_start_transaction(tree_root, 0);
9019 if (IS_ERR(trans)) {
9020 err = PTR_ERR(trans);
9021 goto out_free;
9022 }
9023
9024 if (block_rsv)
9025 trans->block_rsv = block_rsv;
9026
9027 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9028 level = btrfs_header_level(root->node);
9029 path->nodes[level] = btrfs_lock_root_node(root);
9030 btrfs_set_lock_blocking(path->nodes[level]);
9031 path->slots[level] = 0;
9032 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9033 memset(&wc->update_progress, 0,
9034 sizeof(wc->update_progress));
9035 } else {
9036 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9037 memcpy(&wc->update_progress, &key,
9038 sizeof(wc->update_progress));
9039
9040 level = root_item->drop_level;
9041 BUG_ON(level == 0);
9042 path->lowest_level = level;
9043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9044 path->lowest_level = 0;
9045 if (ret < 0) {
9046 err = ret;
9047 goto out_end_trans;
9048 }
9049 WARN_ON(ret > 0);
9050
9051 /*
9052 * unlock our path, this is safe because only this
9053 * function is allowed to delete this snapshot
9054 */
9055 btrfs_unlock_up_safe(path, 0);
9056
9057 level = btrfs_header_level(root->node);
9058 while (1) {
9059 btrfs_tree_lock(path->nodes[level]);
9060 btrfs_set_lock_blocking(path->nodes[level]);
9061 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9062
9063 ret = btrfs_lookup_extent_info(trans, fs_info,
9064 path->nodes[level]->start,
9065 level, 1, &wc->refs[level],
9066 &wc->flags[level]);
9067 if (ret < 0) {
9068 err = ret;
9069 goto out_end_trans;
9070 }
9071 BUG_ON(wc->refs[level] == 0);
9072
9073 if (level == root_item->drop_level)
9074 break;
9075
9076 btrfs_tree_unlock(path->nodes[level]);
9077 path->locks[level] = 0;
9078 WARN_ON(wc->refs[level] != 1);
9079 level--;
9080 }
9081 }
9082
9083 wc->level = level;
9084 wc->shared_level = -1;
9085 wc->stage = DROP_REFERENCE;
9086 wc->update_ref = update_ref;
9087 wc->keep_locks = 0;
9088 wc->for_reloc = for_reloc;
9089 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9090
9091 while (1) {
9092
9093 ret = walk_down_tree(trans, root, path, wc);
9094 if (ret < 0) {
9095 err = ret;
9096 break;
9097 }
9098
9099 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9100 if (ret < 0) {
9101 err = ret;
9102 break;
9103 }
9104
9105 if (ret > 0) {
9106 BUG_ON(wc->stage != DROP_REFERENCE);
9107 break;
9108 }
9109
9110 if (wc->stage == DROP_REFERENCE) {
9111 level = wc->level;
9112 btrfs_node_key(path->nodes[level],
9113 &root_item->drop_progress,
9114 path->slots[level]);
9115 root_item->drop_level = level;
9116 }
9117
9118 BUG_ON(wc->level == 0);
9119 if (btrfs_should_end_transaction(trans) ||
9120 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9121 ret = btrfs_update_root(trans, tree_root,
9122 &root->root_key,
9123 root_item);
9124 if (ret) {
9125 btrfs_abort_transaction(trans, ret);
9126 err = ret;
9127 goto out_end_trans;
9128 }
9129
9130 btrfs_end_transaction_throttle(trans);
9131 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9132 btrfs_debug(fs_info,
9133 "drop snapshot early exit");
9134 err = -EAGAIN;
9135 goto out_free;
9136 }
9137
9138 trans = btrfs_start_transaction(tree_root, 0);
9139 if (IS_ERR(trans)) {
9140 err = PTR_ERR(trans);
9141 goto out_free;
9142 }
9143 if (block_rsv)
9144 trans->block_rsv = block_rsv;
9145 }
9146 }
9147 btrfs_release_path(path);
9148 if (err)
9149 goto out_end_trans;
9150
9151 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9152 if (ret) {
9153 btrfs_abort_transaction(trans, ret);
9154 goto out_end_trans;
9155 }
9156
9157 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9158 ret = btrfs_find_root(tree_root, &root->root_key, path,
9159 NULL, NULL);
9160 if (ret < 0) {
9161 btrfs_abort_transaction(trans, ret);
9162 err = ret;
9163 goto out_end_trans;
9164 } else if (ret > 0) {
9165 /* if we fail to delete the orphan item this time
9166 * around, it'll get picked up the next time.
9167 *
9168 * The most common failure here is just -ENOENT.
9169 */
9170 btrfs_del_orphan_item(trans, tree_root,
9171 root->root_key.objectid);
9172 }
9173 }
9174
9175 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9176 btrfs_add_dropped_root(trans, root);
9177 } else {
9178 free_extent_buffer(root->node);
9179 free_extent_buffer(root->commit_root);
9180 btrfs_put_fs_root(root);
9181 }
9182 root_dropped = true;
9183 out_end_trans:
9184 btrfs_end_transaction_throttle(trans);
9185 out_free:
9186 kfree(wc);
9187 btrfs_free_path(path);
9188 out:
9189 /*
9190 * So if we need to stop dropping the snapshot for whatever reason we
9191 * need to make sure to add it back to the dead root list so that we
9192 * keep trying to do the work later. This also cleans up roots if we
9193 * don't have it in the radix (like when we recover after a power fail
9194 * or unmount) so we don't leak memory.
9195 */
9196 if (!for_reloc && root_dropped == false)
9197 btrfs_add_dead_root(root);
9198 if (err && err != -EAGAIN)
9199 btrfs_handle_fs_error(fs_info, err, NULL);
9200 return err;
9201 }
9202
9203 /*
9204 * drop subtree rooted at tree block 'node'.
9205 *
9206 * NOTE: this function will unlock and release tree block 'node'
9207 * only used by relocation code
9208 */
9209 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9210 struct btrfs_root *root,
9211 struct extent_buffer *node,
9212 struct extent_buffer *parent)
9213 {
9214 struct btrfs_fs_info *fs_info = root->fs_info;
9215 struct btrfs_path *path;
9216 struct walk_control *wc;
9217 int level;
9218 int parent_level;
9219 int ret = 0;
9220 int wret;
9221
9222 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9223
9224 path = btrfs_alloc_path();
9225 if (!path)
9226 return -ENOMEM;
9227
9228 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9229 if (!wc) {
9230 btrfs_free_path(path);
9231 return -ENOMEM;
9232 }
9233
9234 btrfs_assert_tree_locked(parent);
9235 parent_level = btrfs_header_level(parent);
9236 extent_buffer_get(parent);
9237 path->nodes[parent_level] = parent;
9238 path->slots[parent_level] = btrfs_header_nritems(parent);
9239
9240 btrfs_assert_tree_locked(node);
9241 level = btrfs_header_level(node);
9242 path->nodes[level] = node;
9243 path->slots[level] = 0;
9244 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9245
9246 wc->refs[parent_level] = 1;
9247 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9248 wc->level = level;
9249 wc->shared_level = -1;
9250 wc->stage = DROP_REFERENCE;
9251 wc->update_ref = 0;
9252 wc->keep_locks = 1;
9253 wc->for_reloc = 1;
9254 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9255
9256 while (1) {
9257 wret = walk_down_tree(trans, root, path, wc);
9258 if (wret < 0) {
9259 ret = wret;
9260 break;
9261 }
9262
9263 wret = walk_up_tree(trans, root, path, wc, parent_level);
9264 if (wret < 0)
9265 ret = wret;
9266 if (wret != 0)
9267 break;
9268 }
9269
9270 kfree(wc);
9271 btrfs_free_path(path);
9272 return ret;
9273 }
9274
9275 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9276 {
9277 u64 num_devices;
9278 u64 stripped;
9279
9280 /*
9281 * if restripe for this chunk_type is on pick target profile and
9282 * return, otherwise do the usual balance
9283 */
9284 stripped = get_restripe_target(fs_info, flags);
9285 if (stripped)
9286 return extended_to_chunk(stripped);
9287
9288 num_devices = fs_info->fs_devices->rw_devices;
9289
9290 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9291 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9292 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9293
9294 if (num_devices == 1) {
9295 stripped |= BTRFS_BLOCK_GROUP_DUP;
9296 stripped = flags & ~stripped;
9297
9298 /* turn raid0 into single device chunks */
9299 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9300 return stripped;
9301
9302 /* turn mirroring into duplication */
9303 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9304 BTRFS_BLOCK_GROUP_RAID10))
9305 return stripped | BTRFS_BLOCK_GROUP_DUP;
9306 } else {
9307 /* they already had raid on here, just return */
9308 if (flags & stripped)
9309 return flags;
9310
9311 stripped |= BTRFS_BLOCK_GROUP_DUP;
9312 stripped = flags & ~stripped;
9313
9314 /* switch duplicated blocks with raid1 */
9315 if (flags & BTRFS_BLOCK_GROUP_DUP)
9316 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9317
9318 /* this is drive concat, leave it alone */
9319 }
9320
9321 return flags;
9322 }
9323
9324 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9325 {
9326 struct btrfs_space_info *sinfo = cache->space_info;
9327 u64 num_bytes;
9328 u64 min_allocable_bytes;
9329 int ret = -ENOSPC;
9330
9331 /*
9332 * We need some metadata space and system metadata space for
9333 * allocating chunks in some corner cases until we force to set
9334 * it to be readonly.
9335 */
9336 if ((sinfo->flags &
9337 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9338 !force)
9339 min_allocable_bytes = SZ_1M;
9340 else
9341 min_allocable_bytes = 0;
9342
9343 spin_lock(&sinfo->lock);
9344 spin_lock(&cache->lock);
9345
9346 if (cache->ro) {
9347 cache->ro++;
9348 ret = 0;
9349 goto out;
9350 }
9351
9352 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9353 cache->bytes_super - btrfs_block_group_used(&cache->item);
9354
9355 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9356 min_allocable_bytes <= sinfo->total_bytes) {
9357 sinfo->bytes_readonly += num_bytes;
9358 cache->ro++;
9359 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9360 ret = 0;
9361 }
9362 out:
9363 spin_unlock(&cache->lock);
9364 spin_unlock(&sinfo->lock);
9365 return ret;
9366 }
9367
9368 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9369 struct btrfs_block_group_cache *cache)
9370
9371 {
9372 struct btrfs_trans_handle *trans;
9373 u64 alloc_flags;
9374 int ret;
9375
9376 again:
9377 trans = btrfs_join_transaction(fs_info->extent_root);
9378 if (IS_ERR(trans))
9379 return PTR_ERR(trans);
9380
9381 /*
9382 * we're not allowed to set block groups readonly after the dirty
9383 * block groups cache has started writing. If it already started,
9384 * back off and let this transaction commit
9385 */
9386 mutex_lock(&fs_info->ro_block_group_mutex);
9387 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9388 u64 transid = trans->transid;
9389
9390 mutex_unlock(&fs_info->ro_block_group_mutex);
9391 btrfs_end_transaction(trans);
9392
9393 ret = btrfs_wait_for_commit(fs_info, transid);
9394 if (ret)
9395 return ret;
9396 goto again;
9397 }
9398
9399 /*
9400 * if we are changing raid levels, try to allocate a corresponding
9401 * block group with the new raid level.
9402 */
9403 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9404 if (alloc_flags != cache->flags) {
9405 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9406 CHUNK_ALLOC_FORCE);
9407 /*
9408 * ENOSPC is allowed here, we may have enough space
9409 * already allocated at the new raid level to
9410 * carry on
9411 */
9412 if (ret == -ENOSPC)
9413 ret = 0;
9414 if (ret < 0)
9415 goto out;
9416 }
9417
9418 ret = inc_block_group_ro(cache, 0);
9419 if (!ret)
9420 goto out;
9421 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9422 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9423 CHUNK_ALLOC_FORCE);
9424 if (ret < 0)
9425 goto out;
9426 ret = inc_block_group_ro(cache, 0);
9427 out:
9428 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9429 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9430 mutex_lock(&fs_info->chunk_mutex);
9431 check_system_chunk(trans, fs_info, alloc_flags);
9432 mutex_unlock(&fs_info->chunk_mutex);
9433 }
9434 mutex_unlock(&fs_info->ro_block_group_mutex);
9435
9436 btrfs_end_transaction(trans);
9437 return ret;
9438 }
9439
9440 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9441 struct btrfs_fs_info *fs_info, u64 type)
9442 {
9443 u64 alloc_flags = get_alloc_profile(fs_info, type);
9444
9445 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9446 }
9447
9448 /*
9449 * helper to account the unused space of all the readonly block group in the
9450 * space_info. takes mirrors into account.
9451 */
9452 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9453 {
9454 struct btrfs_block_group_cache *block_group;
9455 u64 free_bytes = 0;
9456 int factor;
9457
9458 /* It's df, we don't care if it's racy */
9459 if (list_empty(&sinfo->ro_bgs))
9460 return 0;
9461
9462 spin_lock(&sinfo->lock);
9463 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9464 spin_lock(&block_group->lock);
9465
9466 if (!block_group->ro) {
9467 spin_unlock(&block_group->lock);
9468 continue;
9469 }
9470
9471 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9472 BTRFS_BLOCK_GROUP_RAID10 |
9473 BTRFS_BLOCK_GROUP_DUP))
9474 factor = 2;
9475 else
9476 factor = 1;
9477
9478 free_bytes += (block_group->key.offset -
9479 btrfs_block_group_used(&block_group->item)) *
9480 factor;
9481
9482 spin_unlock(&block_group->lock);
9483 }
9484 spin_unlock(&sinfo->lock);
9485
9486 return free_bytes;
9487 }
9488
9489 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9490 {
9491 struct btrfs_space_info *sinfo = cache->space_info;
9492 u64 num_bytes;
9493
9494 BUG_ON(!cache->ro);
9495
9496 spin_lock(&sinfo->lock);
9497 spin_lock(&cache->lock);
9498 if (!--cache->ro) {
9499 num_bytes = cache->key.offset - cache->reserved -
9500 cache->pinned - cache->bytes_super -
9501 btrfs_block_group_used(&cache->item);
9502 sinfo->bytes_readonly -= num_bytes;
9503 list_del_init(&cache->ro_list);
9504 }
9505 spin_unlock(&cache->lock);
9506 spin_unlock(&sinfo->lock);
9507 }
9508
9509 /*
9510 * checks to see if its even possible to relocate this block group.
9511 *
9512 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9513 * ok to go ahead and try.
9514 */
9515 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9516 {
9517 struct btrfs_root *root = fs_info->extent_root;
9518 struct btrfs_block_group_cache *block_group;
9519 struct btrfs_space_info *space_info;
9520 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9521 struct btrfs_device *device;
9522 struct btrfs_trans_handle *trans;
9523 u64 min_free;
9524 u64 dev_min = 1;
9525 u64 dev_nr = 0;
9526 u64 target;
9527 int debug;
9528 int index;
9529 int full = 0;
9530 int ret = 0;
9531
9532 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9533
9534 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9535
9536 /* odd, couldn't find the block group, leave it alone */
9537 if (!block_group) {
9538 if (debug)
9539 btrfs_warn(fs_info,
9540 "can't find block group for bytenr %llu",
9541 bytenr);
9542 return -1;
9543 }
9544
9545 min_free = btrfs_block_group_used(&block_group->item);
9546
9547 /* no bytes used, we're good */
9548 if (!min_free)
9549 goto out;
9550
9551 space_info = block_group->space_info;
9552 spin_lock(&space_info->lock);
9553
9554 full = space_info->full;
9555
9556 /*
9557 * if this is the last block group we have in this space, we can't
9558 * relocate it unless we're able to allocate a new chunk below.
9559 *
9560 * Otherwise, we need to make sure we have room in the space to handle
9561 * all of the extents from this block group. If we can, we're good
9562 */
9563 if ((space_info->total_bytes != block_group->key.offset) &&
9564 (btrfs_space_info_used(space_info, false) + min_free <
9565 space_info->total_bytes)) {
9566 spin_unlock(&space_info->lock);
9567 goto out;
9568 }
9569 spin_unlock(&space_info->lock);
9570
9571 /*
9572 * ok we don't have enough space, but maybe we have free space on our
9573 * devices to allocate new chunks for relocation, so loop through our
9574 * alloc devices and guess if we have enough space. if this block
9575 * group is going to be restriped, run checks against the target
9576 * profile instead of the current one.
9577 */
9578 ret = -1;
9579
9580 /*
9581 * index:
9582 * 0: raid10
9583 * 1: raid1
9584 * 2: dup
9585 * 3: raid0
9586 * 4: single
9587 */
9588 target = get_restripe_target(fs_info, block_group->flags);
9589 if (target) {
9590 index = __get_raid_index(extended_to_chunk(target));
9591 } else {
9592 /*
9593 * this is just a balance, so if we were marked as full
9594 * we know there is no space for a new chunk
9595 */
9596 if (full) {
9597 if (debug)
9598 btrfs_warn(fs_info,
9599 "no space to alloc new chunk for block group %llu",
9600 block_group->key.objectid);
9601 goto out;
9602 }
9603
9604 index = get_block_group_index(block_group);
9605 }
9606
9607 if (index == BTRFS_RAID_RAID10) {
9608 dev_min = 4;
9609 /* Divide by 2 */
9610 min_free >>= 1;
9611 } else if (index == BTRFS_RAID_RAID1) {
9612 dev_min = 2;
9613 } else if (index == BTRFS_RAID_DUP) {
9614 /* Multiply by 2 */
9615 min_free <<= 1;
9616 } else if (index == BTRFS_RAID_RAID0) {
9617 dev_min = fs_devices->rw_devices;
9618 min_free = div64_u64(min_free, dev_min);
9619 }
9620
9621 /* We need to do this so that we can look at pending chunks */
9622 trans = btrfs_join_transaction(root);
9623 if (IS_ERR(trans)) {
9624 ret = PTR_ERR(trans);
9625 goto out;
9626 }
9627
9628 mutex_lock(&fs_info->chunk_mutex);
9629 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9630 u64 dev_offset;
9631
9632 /*
9633 * check to make sure we can actually find a chunk with enough
9634 * space to fit our block group in.
9635 */
9636 if (device->total_bytes > device->bytes_used + min_free &&
9637 !device->is_tgtdev_for_dev_replace) {
9638 ret = find_free_dev_extent(trans, device, min_free,
9639 &dev_offset, NULL);
9640 if (!ret)
9641 dev_nr++;
9642
9643 if (dev_nr >= dev_min)
9644 break;
9645
9646 ret = -1;
9647 }
9648 }
9649 if (debug && ret == -1)
9650 btrfs_warn(fs_info,
9651 "no space to allocate a new chunk for block group %llu",
9652 block_group->key.objectid);
9653 mutex_unlock(&fs_info->chunk_mutex);
9654 btrfs_end_transaction(trans);
9655 out:
9656 btrfs_put_block_group(block_group);
9657 return ret;
9658 }
9659
9660 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9661 struct btrfs_path *path,
9662 struct btrfs_key *key)
9663 {
9664 struct btrfs_root *root = fs_info->extent_root;
9665 int ret = 0;
9666 struct btrfs_key found_key;
9667 struct extent_buffer *leaf;
9668 int slot;
9669
9670 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9671 if (ret < 0)
9672 goto out;
9673
9674 while (1) {
9675 slot = path->slots[0];
9676 leaf = path->nodes[0];
9677 if (slot >= btrfs_header_nritems(leaf)) {
9678 ret = btrfs_next_leaf(root, path);
9679 if (ret == 0)
9680 continue;
9681 if (ret < 0)
9682 goto out;
9683 break;
9684 }
9685 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9686
9687 if (found_key.objectid >= key->objectid &&
9688 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9689 struct extent_map_tree *em_tree;
9690 struct extent_map *em;
9691
9692 em_tree = &root->fs_info->mapping_tree.map_tree;
9693 read_lock(&em_tree->lock);
9694 em = lookup_extent_mapping(em_tree, found_key.objectid,
9695 found_key.offset);
9696 read_unlock(&em_tree->lock);
9697 if (!em) {
9698 btrfs_err(fs_info,
9699 "logical %llu len %llu found bg but no related chunk",
9700 found_key.objectid, found_key.offset);
9701 ret = -ENOENT;
9702 } else {
9703 ret = 0;
9704 }
9705 free_extent_map(em);
9706 goto out;
9707 }
9708 path->slots[0]++;
9709 }
9710 out:
9711 return ret;
9712 }
9713
9714 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9715 {
9716 struct btrfs_block_group_cache *block_group;
9717 u64 last = 0;
9718
9719 while (1) {
9720 struct inode *inode;
9721
9722 block_group = btrfs_lookup_first_block_group(info, last);
9723 while (block_group) {
9724 spin_lock(&block_group->lock);
9725 if (block_group->iref)
9726 break;
9727 spin_unlock(&block_group->lock);
9728 block_group = next_block_group(info, block_group);
9729 }
9730 if (!block_group) {
9731 if (last == 0)
9732 break;
9733 last = 0;
9734 continue;
9735 }
9736
9737 inode = block_group->inode;
9738 block_group->iref = 0;
9739 block_group->inode = NULL;
9740 spin_unlock(&block_group->lock);
9741 ASSERT(block_group->io_ctl.inode == NULL);
9742 iput(inode);
9743 last = block_group->key.objectid + block_group->key.offset;
9744 btrfs_put_block_group(block_group);
9745 }
9746 }
9747
9748 /*
9749 * Must be called only after stopping all workers, since we could have block
9750 * group caching kthreads running, and therefore they could race with us if we
9751 * freed the block groups before stopping them.
9752 */
9753 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9754 {
9755 struct btrfs_block_group_cache *block_group;
9756 struct btrfs_space_info *space_info;
9757 struct btrfs_caching_control *caching_ctl;
9758 struct rb_node *n;
9759
9760 down_write(&info->commit_root_sem);
9761 while (!list_empty(&info->caching_block_groups)) {
9762 caching_ctl = list_entry(info->caching_block_groups.next,
9763 struct btrfs_caching_control, list);
9764 list_del(&caching_ctl->list);
9765 put_caching_control(caching_ctl);
9766 }
9767 up_write(&info->commit_root_sem);
9768
9769 spin_lock(&info->unused_bgs_lock);
9770 while (!list_empty(&info->unused_bgs)) {
9771 block_group = list_first_entry(&info->unused_bgs,
9772 struct btrfs_block_group_cache,
9773 bg_list);
9774 list_del_init(&block_group->bg_list);
9775 btrfs_put_block_group(block_group);
9776 }
9777 spin_unlock(&info->unused_bgs_lock);
9778
9779 spin_lock(&info->block_group_cache_lock);
9780 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9781 block_group = rb_entry(n, struct btrfs_block_group_cache,
9782 cache_node);
9783 rb_erase(&block_group->cache_node,
9784 &info->block_group_cache_tree);
9785 RB_CLEAR_NODE(&block_group->cache_node);
9786 spin_unlock(&info->block_group_cache_lock);
9787
9788 down_write(&block_group->space_info->groups_sem);
9789 list_del(&block_group->list);
9790 up_write(&block_group->space_info->groups_sem);
9791
9792 /*
9793 * We haven't cached this block group, which means we could
9794 * possibly have excluded extents on this block group.
9795 */
9796 if (block_group->cached == BTRFS_CACHE_NO ||
9797 block_group->cached == BTRFS_CACHE_ERROR)
9798 free_excluded_extents(info, block_group);
9799
9800 btrfs_remove_free_space_cache(block_group);
9801 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9802 ASSERT(list_empty(&block_group->dirty_list));
9803 ASSERT(list_empty(&block_group->io_list));
9804 ASSERT(list_empty(&block_group->bg_list));
9805 ASSERT(atomic_read(&block_group->count) == 1);
9806 btrfs_put_block_group(block_group);
9807
9808 spin_lock(&info->block_group_cache_lock);
9809 }
9810 spin_unlock(&info->block_group_cache_lock);
9811
9812 /* now that all the block groups are freed, go through and
9813 * free all the space_info structs. This is only called during
9814 * the final stages of unmount, and so we know nobody is
9815 * using them. We call synchronize_rcu() once before we start,
9816 * just to be on the safe side.
9817 */
9818 synchronize_rcu();
9819
9820 release_global_block_rsv(info);
9821
9822 while (!list_empty(&info->space_info)) {
9823 int i;
9824
9825 space_info = list_entry(info->space_info.next,
9826 struct btrfs_space_info,
9827 list);
9828
9829 /*
9830 * Do not hide this behind enospc_debug, this is actually
9831 * important and indicates a real bug if this happens.
9832 */
9833 if (WARN_ON(space_info->bytes_pinned > 0 ||
9834 space_info->bytes_reserved > 0 ||
9835 space_info->bytes_may_use > 0))
9836 dump_space_info(info, space_info, 0, 0);
9837 list_del(&space_info->list);
9838 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9839 struct kobject *kobj;
9840 kobj = space_info->block_group_kobjs[i];
9841 space_info->block_group_kobjs[i] = NULL;
9842 if (kobj) {
9843 kobject_del(kobj);
9844 kobject_put(kobj);
9845 }
9846 }
9847 kobject_del(&space_info->kobj);
9848 kobject_put(&space_info->kobj);
9849 }
9850 return 0;
9851 }
9852
9853 static void __link_block_group(struct btrfs_space_info *space_info,
9854 struct btrfs_block_group_cache *cache)
9855 {
9856 int index = get_block_group_index(cache);
9857 bool first = false;
9858
9859 down_write(&space_info->groups_sem);
9860 if (list_empty(&space_info->block_groups[index]))
9861 first = true;
9862 list_add_tail(&cache->list, &space_info->block_groups[index]);
9863 up_write(&space_info->groups_sem);
9864
9865 if (first) {
9866 struct raid_kobject *rkobj;
9867 int ret;
9868
9869 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9870 if (!rkobj)
9871 goto out_err;
9872 rkobj->raid_type = index;
9873 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9874 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9875 "%s", get_raid_name(index));
9876 if (ret) {
9877 kobject_put(&rkobj->kobj);
9878 goto out_err;
9879 }
9880 space_info->block_group_kobjs[index] = &rkobj->kobj;
9881 }
9882
9883 return;
9884 out_err:
9885 btrfs_warn(cache->fs_info,
9886 "failed to add kobject for block cache, ignoring");
9887 }
9888
9889 static struct btrfs_block_group_cache *
9890 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9891 u64 start, u64 size)
9892 {
9893 struct btrfs_block_group_cache *cache;
9894
9895 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9896 if (!cache)
9897 return NULL;
9898
9899 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9900 GFP_NOFS);
9901 if (!cache->free_space_ctl) {
9902 kfree(cache);
9903 return NULL;
9904 }
9905
9906 cache->key.objectid = start;
9907 cache->key.offset = size;
9908 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9909
9910 cache->sectorsize = fs_info->sectorsize;
9911 cache->fs_info = fs_info;
9912 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9913 &fs_info->mapping_tree,
9914 start);
9915 set_free_space_tree_thresholds(cache);
9916
9917 atomic_set(&cache->count, 1);
9918 spin_lock_init(&cache->lock);
9919 init_rwsem(&cache->data_rwsem);
9920 INIT_LIST_HEAD(&cache->list);
9921 INIT_LIST_HEAD(&cache->cluster_list);
9922 INIT_LIST_HEAD(&cache->bg_list);
9923 INIT_LIST_HEAD(&cache->ro_list);
9924 INIT_LIST_HEAD(&cache->dirty_list);
9925 INIT_LIST_HEAD(&cache->io_list);
9926 btrfs_init_free_space_ctl(cache);
9927 atomic_set(&cache->trimming, 0);
9928 mutex_init(&cache->free_space_lock);
9929 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9930
9931 return cache;
9932 }
9933
9934 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9935 {
9936 struct btrfs_path *path;
9937 int ret;
9938 struct btrfs_block_group_cache *cache;
9939 struct btrfs_space_info *space_info;
9940 struct btrfs_key key;
9941 struct btrfs_key found_key;
9942 struct extent_buffer *leaf;
9943 int need_clear = 0;
9944 u64 cache_gen;
9945 u64 feature;
9946 int mixed;
9947
9948 feature = btrfs_super_incompat_flags(info->super_copy);
9949 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9950
9951 key.objectid = 0;
9952 key.offset = 0;
9953 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9954 path = btrfs_alloc_path();
9955 if (!path)
9956 return -ENOMEM;
9957 path->reada = READA_FORWARD;
9958
9959 cache_gen = btrfs_super_cache_generation(info->super_copy);
9960 if (btrfs_test_opt(info, SPACE_CACHE) &&
9961 btrfs_super_generation(info->super_copy) != cache_gen)
9962 need_clear = 1;
9963 if (btrfs_test_opt(info, CLEAR_CACHE))
9964 need_clear = 1;
9965
9966 while (1) {
9967 ret = find_first_block_group(info, path, &key);
9968 if (ret > 0)
9969 break;
9970 if (ret != 0)
9971 goto error;
9972
9973 leaf = path->nodes[0];
9974 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9975
9976 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9977 found_key.offset);
9978 if (!cache) {
9979 ret = -ENOMEM;
9980 goto error;
9981 }
9982
9983 if (need_clear) {
9984 /*
9985 * When we mount with old space cache, we need to
9986 * set BTRFS_DC_CLEAR and set dirty flag.
9987 *
9988 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9989 * truncate the old free space cache inode and
9990 * setup a new one.
9991 * b) Setting 'dirty flag' makes sure that we flush
9992 * the new space cache info onto disk.
9993 */
9994 if (btrfs_test_opt(info, SPACE_CACHE))
9995 cache->disk_cache_state = BTRFS_DC_CLEAR;
9996 }
9997
9998 read_extent_buffer(leaf, &cache->item,
9999 btrfs_item_ptr_offset(leaf, path->slots[0]),
10000 sizeof(cache->item));
10001 cache->flags = btrfs_block_group_flags(&cache->item);
10002 if (!mixed &&
10003 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10004 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10005 btrfs_err(info,
10006 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10007 cache->key.objectid);
10008 ret = -EINVAL;
10009 goto error;
10010 }
10011
10012 key.objectid = found_key.objectid + found_key.offset;
10013 btrfs_release_path(path);
10014
10015 /*
10016 * We need to exclude the super stripes now so that the space
10017 * info has super bytes accounted for, otherwise we'll think
10018 * we have more space than we actually do.
10019 */
10020 ret = exclude_super_stripes(info, cache);
10021 if (ret) {
10022 /*
10023 * We may have excluded something, so call this just in
10024 * case.
10025 */
10026 free_excluded_extents(info, cache);
10027 btrfs_put_block_group(cache);
10028 goto error;
10029 }
10030
10031 /*
10032 * check for two cases, either we are full, and therefore
10033 * don't need to bother with the caching work since we won't
10034 * find any space, or we are empty, and we can just add all
10035 * the space in and be done with it. This saves us _alot_ of
10036 * time, particularly in the full case.
10037 */
10038 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10039 cache->last_byte_to_unpin = (u64)-1;
10040 cache->cached = BTRFS_CACHE_FINISHED;
10041 free_excluded_extents(info, cache);
10042 } else if (btrfs_block_group_used(&cache->item) == 0) {
10043 cache->last_byte_to_unpin = (u64)-1;
10044 cache->cached = BTRFS_CACHE_FINISHED;
10045 add_new_free_space(cache, info,
10046 found_key.objectid,
10047 found_key.objectid +
10048 found_key.offset);
10049 free_excluded_extents(info, cache);
10050 }
10051
10052 ret = btrfs_add_block_group_cache(info, cache);
10053 if (ret) {
10054 btrfs_remove_free_space_cache(cache);
10055 btrfs_put_block_group(cache);
10056 goto error;
10057 }
10058
10059 trace_btrfs_add_block_group(info, cache, 0);
10060 ret = update_space_info(info, cache->flags, found_key.offset,
10061 btrfs_block_group_used(&cache->item),
10062 cache->bytes_super, &space_info);
10063 if (ret) {
10064 btrfs_remove_free_space_cache(cache);
10065 spin_lock(&info->block_group_cache_lock);
10066 rb_erase(&cache->cache_node,
10067 &info->block_group_cache_tree);
10068 RB_CLEAR_NODE(&cache->cache_node);
10069 spin_unlock(&info->block_group_cache_lock);
10070 btrfs_put_block_group(cache);
10071 goto error;
10072 }
10073
10074 cache->space_info = space_info;
10075
10076 __link_block_group(space_info, cache);
10077
10078 set_avail_alloc_bits(info, cache->flags);
10079 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10080 inc_block_group_ro(cache, 1);
10081 } else if (btrfs_block_group_used(&cache->item) == 0) {
10082 spin_lock(&info->unused_bgs_lock);
10083 /* Should always be true but just in case. */
10084 if (list_empty(&cache->bg_list)) {
10085 btrfs_get_block_group(cache);
10086 list_add_tail(&cache->bg_list,
10087 &info->unused_bgs);
10088 }
10089 spin_unlock(&info->unused_bgs_lock);
10090 }
10091 }
10092
10093 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10094 if (!(get_alloc_profile(info, space_info->flags) &
10095 (BTRFS_BLOCK_GROUP_RAID10 |
10096 BTRFS_BLOCK_GROUP_RAID1 |
10097 BTRFS_BLOCK_GROUP_RAID5 |
10098 BTRFS_BLOCK_GROUP_RAID6 |
10099 BTRFS_BLOCK_GROUP_DUP)))
10100 continue;
10101 /*
10102 * avoid allocating from un-mirrored block group if there are
10103 * mirrored block groups.
10104 */
10105 list_for_each_entry(cache,
10106 &space_info->block_groups[BTRFS_RAID_RAID0],
10107 list)
10108 inc_block_group_ro(cache, 1);
10109 list_for_each_entry(cache,
10110 &space_info->block_groups[BTRFS_RAID_SINGLE],
10111 list)
10112 inc_block_group_ro(cache, 1);
10113 }
10114
10115 init_global_block_rsv(info);
10116 ret = 0;
10117 error:
10118 btrfs_free_path(path);
10119 return ret;
10120 }
10121
10122 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10123 struct btrfs_fs_info *fs_info)
10124 {
10125 struct btrfs_block_group_cache *block_group, *tmp;
10126 struct btrfs_root *extent_root = fs_info->extent_root;
10127 struct btrfs_block_group_item item;
10128 struct btrfs_key key;
10129 int ret = 0;
10130 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10131
10132 trans->can_flush_pending_bgs = false;
10133 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10134 if (ret)
10135 goto next;
10136
10137 spin_lock(&block_group->lock);
10138 memcpy(&item, &block_group->item, sizeof(item));
10139 memcpy(&key, &block_group->key, sizeof(key));
10140 spin_unlock(&block_group->lock);
10141
10142 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10143 sizeof(item));
10144 if (ret)
10145 btrfs_abort_transaction(trans, ret);
10146 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10147 key.offset);
10148 if (ret)
10149 btrfs_abort_transaction(trans, ret);
10150 add_block_group_free_space(trans, fs_info, block_group);
10151 /* already aborted the transaction if it failed. */
10152 next:
10153 list_del_init(&block_group->bg_list);
10154 }
10155 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10156 }
10157
10158 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10159 struct btrfs_fs_info *fs_info, u64 bytes_used,
10160 u64 type, u64 chunk_objectid, u64 chunk_offset,
10161 u64 size)
10162 {
10163 struct btrfs_block_group_cache *cache;
10164 int ret;
10165
10166 btrfs_set_log_full_commit(fs_info, trans);
10167
10168 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10169 if (!cache)
10170 return -ENOMEM;
10171
10172 btrfs_set_block_group_used(&cache->item, bytes_used);
10173 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10174 btrfs_set_block_group_flags(&cache->item, type);
10175
10176 cache->flags = type;
10177 cache->last_byte_to_unpin = (u64)-1;
10178 cache->cached = BTRFS_CACHE_FINISHED;
10179 cache->needs_free_space = 1;
10180 ret = exclude_super_stripes(fs_info, cache);
10181 if (ret) {
10182 /*
10183 * We may have excluded something, so call this just in
10184 * case.
10185 */
10186 free_excluded_extents(fs_info, cache);
10187 btrfs_put_block_group(cache);
10188 return ret;
10189 }
10190
10191 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10192
10193 free_excluded_extents(fs_info, cache);
10194
10195 #ifdef CONFIG_BTRFS_DEBUG
10196 if (btrfs_should_fragment_free_space(cache)) {
10197 u64 new_bytes_used = size - bytes_used;
10198
10199 bytes_used += new_bytes_used >> 1;
10200 fragment_free_space(cache);
10201 }
10202 #endif
10203 /*
10204 * Call to ensure the corresponding space_info object is created and
10205 * assigned to our block group, but don't update its counters just yet.
10206 * We want our bg to be added to the rbtree with its ->space_info set.
10207 */
10208 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10209 &cache->space_info);
10210 if (ret) {
10211 btrfs_remove_free_space_cache(cache);
10212 btrfs_put_block_group(cache);
10213 return ret;
10214 }
10215
10216 ret = btrfs_add_block_group_cache(fs_info, cache);
10217 if (ret) {
10218 btrfs_remove_free_space_cache(cache);
10219 btrfs_put_block_group(cache);
10220 return ret;
10221 }
10222
10223 /*
10224 * Now that our block group has its ->space_info set and is inserted in
10225 * the rbtree, update the space info's counters.
10226 */
10227 trace_btrfs_add_block_group(fs_info, cache, 1);
10228 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10229 cache->bytes_super, &cache->space_info);
10230 if (ret) {
10231 btrfs_remove_free_space_cache(cache);
10232 spin_lock(&fs_info->block_group_cache_lock);
10233 rb_erase(&cache->cache_node,
10234 &fs_info->block_group_cache_tree);
10235 RB_CLEAR_NODE(&cache->cache_node);
10236 spin_unlock(&fs_info->block_group_cache_lock);
10237 btrfs_put_block_group(cache);
10238 return ret;
10239 }
10240 update_global_block_rsv(fs_info);
10241
10242 __link_block_group(cache->space_info, cache);
10243
10244 list_add_tail(&cache->bg_list, &trans->new_bgs);
10245
10246 set_avail_alloc_bits(fs_info, type);
10247 return 0;
10248 }
10249
10250 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10251 {
10252 u64 extra_flags = chunk_to_extended(flags) &
10253 BTRFS_EXTENDED_PROFILE_MASK;
10254
10255 write_seqlock(&fs_info->profiles_lock);
10256 if (flags & BTRFS_BLOCK_GROUP_DATA)
10257 fs_info->avail_data_alloc_bits &= ~extra_flags;
10258 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10259 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10260 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10261 fs_info->avail_system_alloc_bits &= ~extra_flags;
10262 write_sequnlock(&fs_info->profiles_lock);
10263 }
10264
10265 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10266 struct btrfs_fs_info *fs_info, u64 group_start,
10267 struct extent_map *em)
10268 {
10269 struct btrfs_root *root = fs_info->extent_root;
10270 struct btrfs_path *path;
10271 struct btrfs_block_group_cache *block_group;
10272 struct btrfs_free_cluster *cluster;
10273 struct btrfs_root *tree_root = fs_info->tree_root;
10274 struct btrfs_key key;
10275 struct inode *inode;
10276 struct kobject *kobj = NULL;
10277 int ret;
10278 int index;
10279 int factor;
10280 struct btrfs_caching_control *caching_ctl = NULL;
10281 bool remove_em;
10282
10283 block_group = btrfs_lookup_block_group(fs_info, group_start);
10284 BUG_ON(!block_group);
10285 BUG_ON(!block_group->ro);
10286
10287 /*
10288 * Free the reserved super bytes from this block group before
10289 * remove it.
10290 */
10291 free_excluded_extents(fs_info, block_group);
10292
10293 memcpy(&key, &block_group->key, sizeof(key));
10294 index = get_block_group_index(block_group);
10295 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10296 BTRFS_BLOCK_GROUP_RAID1 |
10297 BTRFS_BLOCK_GROUP_RAID10))
10298 factor = 2;
10299 else
10300 factor = 1;
10301
10302 /* make sure this block group isn't part of an allocation cluster */
10303 cluster = &fs_info->data_alloc_cluster;
10304 spin_lock(&cluster->refill_lock);
10305 btrfs_return_cluster_to_free_space(block_group, cluster);
10306 spin_unlock(&cluster->refill_lock);
10307
10308 /*
10309 * make sure this block group isn't part of a metadata
10310 * allocation cluster
10311 */
10312 cluster = &fs_info->meta_alloc_cluster;
10313 spin_lock(&cluster->refill_lock);
10314 btrfs_return_cluster_to_free_space(block_group, cluster);
10315 spin_unlock(&cluster->refill_lock);
10316
10317 path = btrfs_alloc_path();
10318 if (!path) {
10319 ret = -ENOMEM;
10320 goto out;
10321 }
10322
10323 /*
10324 * get the inode first so any iput calls done for the io_list
10325 * aren't the final iput (no unlinks allowed now)
10326 */
10327 inode = lookup_free_space_inode(fs_info, block_group, path);
10328
10329 mutex_lock(&trans->transaction->cache_write_mutex);
10330 /*
10331 * make sure our free spache cache IO is done before remove the
10332 * free space inode
10333 */
10334 spin_lock(&trans->transaction->dirty_bgs_lock);
10335 if (!list_empty(&block_group->io_list)) {
10336 list_del_init(&block_group->io_list);
10337
10338 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10339
10340 spin_unlock(&trans->transaction->dirty_bgs_lock);
10341 btrfs_wait_cache_io(trans, block_group, path);
10342 btrfs_put_block_group(block_group);
10343 spin_lock(&trans->transaction->dirty_bgs_lock);
10344 }
10345
10346 if (!list_empty(&block_group->dirty_list)) {
10347 list_del_init(&block_group->dirty_list);
10348 btrfs_put_block_group(block_group);
10349 }
10350 spin_unlock(&trans->transaction->dirty_bgs_lock);
10351 mutex_unlock(&trans->transaction->cache_write_mutex);
10352
10353 if (!IS_ERR(inode)) {
10354 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10355 if (ret) {
10356 btrfs_add_delayed_iput(inode);
10357 goto out;
10358 }
10359 clear_nlink(inode);
10360 /* One for the block groups ref */
10361 spin_lock(&block_group->lock);
10362 if (block_group->iref) {
10363 block_group->iref = 0;
10364 block_group->inode = NULL;
10365 spin_unlock(&block_group->lock);
10366 iput(inode);
10367 } else {
10368 spin_unlock(&block_group->lock);
10369 }
10370 /* One for our lookup ref */
10371 btrfs_add_delayed_iput(inode);
10372 }
10373
10374 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10375 key.offset = block_group->key.objectid;
10376 key.type = 0;
10377
10378 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10379 if (ret < 0)
10380 goto out;
10381 if (ret > 0)
10382 btrfs_release_path(path);
10383 if (ret == 0) {
10384 ret = btrfs_del_item(trans, tree_root, path);
10385 if (ret)
10386 goto out;
10387 btrfs_release_path(path);
10388 }
10389
10390 spin_lock(&fs_info->block_group_cache_lock);
10391 rb_erase(&block_group->cache_node,
10392 &fs_info->block_group_cache_tree);
10393 RB_CLEAR_NODE(&block_group->cache_node);
10394
10395 if (fs_info->first_logical_byte == block_group->key.objectid)
10396 fs_info->first_logical_byte = (u64)-1;
10397 spin_unlock(&fs_info->block_group_cache_lock);
10398
10399 down_write(&block_group->space_info->groups_sem);
10400 /*
10401 * we must use list_del_init so people can check to see if they
10402 * are still on the list after taking the semaphore
10403 */
10404 list_del_init(&block_group->list);
10405 if (list_empty(&block_group->space_info->block_groups[index])) {
10406 kobj = block_group->space_info->block_group_kobjs[index];
10407 block_group->space_info->block_group_kobjs[index] = NULL;
10408 clear_avail_alloc_bits(fs_info, block_group->flags);
10409 }
10410 up_write(&block_group->space_info->groups_sem);
10411 if (kobj) {
10412 kobject_del(kobj);
10413 kobject_put(kobj);
10414 }
10415
10416 if (block_group->has_caching_ctl)
10417 caching_ctl = get_caching_control(block_group);
10418 if (block_group->cached == BTRFS_CACHE_STARTED)
10419 wait_block_group_cache_done(block_group);
10420 if (block_group->has_caching_ctl) {
10421 down_write(&fs_info->commit_root_sem);
10422 if (!caching_ctl) {
10423 struct btrfs_caching_control *ctl;
10424
10425 list_for_each_entry(ctl,
10426 &fs_info->caching_block_groups, list)
10427 if (ctl->block_group == block_group) {
10428 caching_ctl = ctl;
10429 refcount_inc(&caching_ctl->count);
10430 break;
10431 }
10432 }
10433 if (caching_ctl)
10434 list_del_init(&caching_ctl->list);
10435 up_write(&fs_info->commit_root_sem);
10436 if (caching_ctl) {
10437 /* Once for the caching bgs list and once for us. */
10438 put_caching_control(caching_ctl);
10439 put_caching_control(caching_ctl);
10440 }
10441 }
10442
10443 spin_lock(&trans->transaction->dirty_bgs_lock);
10444 if (!list_empty(&block_group->dirty_list)) {
10445 WARN_ON(1);
10446 }
10447 if (!list_empty(&block_group->io_list)) {
10448 WARN_ON(1);
10449 }
10450 spin_unlock(&trans->transaction->dirty_bgs_lock);
10451 btrfs_remove_free_space_cache(block_group);
10452
10453 spin_lock(&block_group->space_info->lock);
10454 list_del_init(&block_group->ro_list);
10455
10456 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10457 WARN_ON(block_group->space_info->total_bytes
10458 < block_group->key.offset);
10459 WARN_ON(block_group->space_info->bytes_readonly
10460 < block_group->key.offset);
10461 WARN_ON(block_group->space_info->disk_total
10462 < block_group->key.offset * factor);
10463 }
10464 block_group->space_info->total_bytes -= block_group->key.offset;
10465 block_group->space_info->bytes_readonly -= block_group->key.offset;
10466 block_group->space_info->disk_total -= block_group->key.offset * factor;
10467
10468 spin_unlock(&block_group->space_info->lock);
10469
10470 memcpy(&key, &block_group->key, sizeof(key));
10471
10472 mutex_lock(&fs_info->chunk_mutex);
10473 if (!list_empty(&em->list)) {
10474 /* We're in the transaction->pending_chunks list. */
10475 free_extent_map(em);
10476 }
10477 spin_lock(&block_group->lock);
10478 block_group->removed = 1;
10479 /*
10480 * At this point trimming can't start on this block group, because we
10481 * removed the block group from the tree fs_info->block_group_cache_tree
10482 * so no one can't find it anymore and even if someone already got this
10483 * block group before we removed it from the rbtree, they have already
10484 * incremented block_group->trimming - if they didn't, they won't find
10485 * any free space entries because we already removed them all when we
10486 * called btrfs_remove_free_space_cache().
10487 *
10488 * And we must not remove the extent map from the fs_info->mapping_tree
10489 * to prevent the same logical address range and physical device space
10490 * ranges from being reused for a new block group. This is because our
10491 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10492 * completely transactionless, so while it is trimming a range the
10493 * currently running transaction might finish and a new one start,
10494 * allowing for new block groups to be created that can reuse the same
10495 * physical device locations unless we take this special care.
10496 *
10497 * There may also be an implicit trim operation if the file system
10498 * is mounted with -odiscard. The same protections must remain
10499 * in place until the extents have been discarded completely when
10500 * the transaction commit has completed.
10501 */
10502 remove_em = (atomic_read(&block_group->trimming) == 0);
10503 /*
10504 * Make sure a trimmer task always sees the em in the pinned_chunks list
10505 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10506 * before checking block_group->removed).
10507 */
10508 if (!remove_em) {
10509 /*
10510 * Our em might be in trans->transaction->pending_chunks which
10511 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10512 * and so is the fs_info->pinned_chunks list.
10513 *
10514 * So at this point we must be holding the chunk_mutex to avoid
10515 * any races with chunk allocation (more specifically at
10516 * volumes.c:contains_pending_extent()), to ensure it always
10517 * sees the em, either in the pending_chunks list or in the
10518 * pinned_chunks list.
10519 */
10520 list_move_tail(&em->list, &fs_info->pinned_chunks);
10521 }
10522 spin_unlock(&block_group->lock);
10523
10524 if (remove_em) {
10525 struct extent_map_tree *em_tree;
10526
10527 em_tree = &fs_info->mapping_tree.map_tree;
10528 write_lock(&em_tree->lock);
10529 /*
10530 * The em might be in the pending_chunks list, so make sure the
10531 * chunk mutex is locked, since remove_extent_mapping() will
10532 * delete us from that list.
10533 */
10534 remove_extent_mapping(em_tree, em);
10535 write_unlock(&em_tree->lock);
10536 /* once for the tree */
10537 free_extent_map(em);
10538 }
10539
10540 mutex_unlock(&fs_info->chunk_mutex);
10541
10542 ret = remove_block_group_free_space(trans, fs_info, block_group);
10543 if (ret)
10544 goto out;
10545
10546 btrfs_put_block_group(block_group);
10547 btrfs_put_block_group(block_group);
10548
10549 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10550 if (ret > 0)
10551 ret = -EIO;
10552 if (ret < 0)
10553 goto out;
10554
10555 ret = btrfs_del_item(trans, root, path);
10556 out:
10557 btrfs_free_path(path);
10558 return ret;
10559 }
10560
10561 struct btrfs_trans_handle *
10562 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10563 const u64 chunk_offset)
10564 {
10565 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10566 struct extent_map *em;
10567 struct map_lookup *map;
10568 unsigned int num_items;
10569
10570 read_lock(&em_tree->lock);
10571 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10572 read_unlock(&em_tree->lock);
10573 ASSERT(em && em->start == chunk_offset);
10574
10575 /*
10576 * We need to reserve 3 + N units from the metadata space info in order
10577 * to remove a block group (done at btrfs_remove_chunk() and at
10578 * btrfs_remove_block_group()), which are used for:
10579 *
10580 * 1 unit for adding the free space inode's orphan (located in the tree
10581 * of tree roots).
10582 * 1 unit for deleting the block group item (located in the extent
10583 * tree).
10584 * 1 unit for deleting the free space item (located in tree of tree
10585 * roots).
10586 * N units for deleting N device extent items corresponding to each
10587 * stripe (located in the device tree).
10588 *
10589 * In order to remove a block group we also need to reserve units in the
10590 * system space info in order to update the chunk tree (update one or
10591 * more device items and remove one chunk item), but this is done at
10592 * btrfs_remove_chunk() through a call to check_system_chunk().
10593 */
10594 map = em->map_lookup;
10595 num_items = 3 + map->num_stripes;
10596 free_extent_map(em);
10597
10598 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10599 num_items, 1);
10600 }
10601
10602 /*
10603 * Process the unused_bgs list and remove any that don't have any allocated
10604 * space inside of them.
10605 */
10606 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10607 {
10608 struct btrfs_block_group_cache *block_group;
10609 struct btrfs_space_info *space_info;
10610 struct btrfs_trans_handle *trans;
10611 int ret = 0;
10612
10613 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10614 return;
10615
10616 spin_lock(&fs_info->unused_bgs_lock);
10617 while (!list_empty(&fs_info->unused_bgs)) {
10618 u64 start, end;
10619 int trimming;
10620
10621 block_group = list_first_entry(&fs_info->unused_bgs,
10622 struct btrfs_block_group_cache,
10623 bg_list);
10624 list_del_init(&block_group->bg_list);
10625
10626 space_info = block_group->space_info;
10627
10628 if (ret || btrfs_mixed_space_info(space_info)) {
10629 btrfs_put_block_group(block_group);
10630 continue;
10631 }
10632 spin_unlock(&fs_info->unused_bgs_lock);
10633
10634 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10635
10636 /* Don't want to race with allocators so take the groups_sem */
10637 down_write(&space_info->groups_sem);
10638 spin_lock(&block_group->lock);
10639 if (block_group->reserved ||
10640 btrfs_block_group_used(&block_group->item) ||
10641 block_group->ro ||
10642 list_is_singular(&block_group->list)) {
10643 /*
10644 * We want to bail if we made new allocations or have
10645 * outstanding allocations in this block group. We do
10646 * the ro check in case balance is currently acting on
10647 * this block group.
10648 */
10649 spin_unlock(&block_group->lock);
10650 up_write(&space_info->groups_sem);
10651 goto next;
10652 }
10653 spin_unlock(&block_group->lock);
10654
10655 /* We don't want to force the issue, only flip if it's ok. */
10656 ret = inc_block_group_ro(block_group, 0);
10657 up_write(&space_info->groups_sem);
10658 if (ret < 0) {
10659 ret = 0;
10660 goto next;
10661 }
10662
10663 /*
10664 * Want to do this before we do anything else so we can recover
10665 * properly if we fail to join the transaction.
10666 */
10667 trans = btrfs_start_trans_remove_block_group(fs_info,
10668 block_group->key.objectid);
10669 if (IS_ERR(trans)) {
10670 btrfs_dec_block_group_ro(block_group);
10671 ret = PTR_ERR(trans);
10672 goto next;
10673 }
10674
10675 /*
10676 * We could have pending pinned extents for this block group,
10677 * just delete them, we don't care about them anymore.
10678 */
10679 start = block_group->key.objectid;
10680 end = start + block_group->key.offset - 1;
10681 /*
10682 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10683 * btrfs_finish_extent_commit(). If we are at transaction N,
10684 * another task might be running finish_extent_commit() for the
10685 * previous transaction N - 1, and have seen a range belonging
10686 * to the block group in freed_extents[] before we were able to
10687 * clear the whole block group range from freed_extents[]. This
10688 * means that task can lookup for the block group after we
10689 * unpinned it from freed_extents[] and removed it, leading to
10690 * a BUG_ON() at btrfs_unpin_extent_range().
10691 */
10692 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10693 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10694 EXTENT_DIRTY);
10695 if (ret) {
10696 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10697 btrfs_dec_block_group_ro(block_group);
10698 goto end_trans;
10699 }
10700 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10701 EXTENT_DIRTY);
10702 if (ret) {
10703 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10704 btrfs_dec_block_group_ro(block_group);
10705 goto end_trans;
10706 }
10707 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10708
10709 /* Reset pinned so btrfs_put_block_group doesn't complain */
10710 spin_lock(&space_info->lock);
10711 spin_lock(&block_group->lock);
10712
10713 space_info->bytes_pinned -= block_group->pinned;
10714 space_info->bytes_readonly += block_group->pinned;
10715 percpu_counter_add(&space_info->total_bytes_pinned,
10716 -block_group->pinned);
10717 block_group->pinned = 0;
10718
10719 spin_unlock(&block_group->lock);
10720 spin_unlock(&space_info->lock);
10721
10722 /* DISCARD can flip during remount */
10723 trimming = btrfs_test_opt(fs_info, DISCARD);
10724
10725 /* Implicit trim during transaction commit. */
10726 if (trimming)
10727 btrfs_get_block_group_trimming(block_group);
10728
10729 /*
10730 * Btrfs_remove_chunk will abort the transaction if things go
10731 * horribly wrong.
10732 */
10733 ret = btrfs_remove_chunk(trans, fs_info,
10734 block_group->key.objectid);
10735
10736 if (ret) {
10737 if (trimming)
10738 btrfs_put_block_group_trimming(block_group);
10739 goto end_trans;
10740 }
10741
10742 /*
10743 * If we're not mounted with -odiscard, we can just forget
10744 * about this block group. Otherwise we'll need to wait
10745 * until transaction commit to do the actual discard.
10746 */
10747 if (trimming) {
10748 spin_lock(&fs_info->unused_bgs_lock);
10749 /*
10750 * A concurrent scrub might have added us to the list
10751 * fs_info->unused_bgs, so use a list_move operation
10752 * to add the block group to the deleted_bgs list.
10753 */
10754 list_move(&block_group->bg_list,
10755 &trans->transaction->deleted_bgs);
10756 spin_unlock(&fs_info->unused_bgs_lock);
10757 btrfs_get_block_group(block_group);
10758 }
10759 end_trans:
10760 btrfs_end_transaction(trans);
10761 next:
10762 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10763 btrfs_put_block_group(block_group);
10764 spin_lock(&fs_info->unused_bgs_lock);
10765 }
10766 spin_unlock(&fs_info->unused_bgs_lock);
10767 }
10768
10769 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10770 {
10771 struct btrfs_space_info *space_info;
10772 struct btrfs_super_block *disk_super;
10773 u64 features;
10774 u64 flags;
10775 int mixed = 0;
10776 int ret;
10777
10778 disk_super = fs_info->super_copy;
10779 if (!btrfs_super_root(disk_super))
10780 return -EINVAL;
10781
10782 features = btrfs_super_incompat_flags(disk_super);
10783 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10784 mixed = 1;
10785
10786 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10787 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10788 if (ret)
10789 goto out;
10790
10791 if (mixed) {
10792 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10793 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10794 } else {
10795 flags = BTRFS_BLOCK_GROUP_METADATA;
10796 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10797 if (ret)
10798 goto out;
10799
10800 flags = BTRFS_BLOCK_GROUP_DATA;
10801 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10802 }
10803 out:
10804 return ret;
10805 }
10806
10807 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10808 u64 start, u64 end)
10809 {
10810 return unpin_extent_range(fs_info, start, end, false);
10811 }
10812
10813 /*
10814 * It used to be that old block groups would be left around forever.
10815 * Iterating over them would be enough to trim unused space. Since we
10816 * now automatically remove them, we also need to iterate over unallocated
10817 * space.
10818 *
10819 * We don't want a transaction for this since the discard may take a
10820 * substantial amount of time. We don't require that a transaction be
10821 * running, but we do need to take a running transaction into account
10822 * to ensure that we're not discarding chunks that were released in
10823 * the current transaction.
10824 *
10825 * Holding the chunks lock will prevent other threads from allocating
10826 * or releasing chunks, but it won't prevent a running transaction
10827 * from committing and releasing the memory that the pending chunks
10828 * list head uses. For that, we need to take a reference to the
10829 * transaction.
10830 */
10831 static int btrfs_trim_free_extents(struct btrfs_device *device,
10832 u64 minlen, u64 *trimmed)
10833 {
10834 u64 start = 0, len = 0;
10835 int ret;
10836
10837 *trimmed = 0;
10838
10839 /* Not writeable = nothing to do. */
10840 if (!device->writeable)
10841 return 0;
10842
10843 /* No free space = nothing to do. */
10844 if (device->total_bytes <= device->bytes_used)
10845 return 0;
10846
10847 ret = 0;
10848
10849 while (1) {
10850 struct btrfs_fs_info *fs_info = device->fs_info;
10851 struct btrfs_transaction *trans;
10852 u64 bytes;
10853
10854 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10855 if (ret)
10856 return ret;
10857
10858 down_read(&fs_info->commit_root_sem);
10859
10860 spin_lock(&fs_info->trans_lock);
10861 trans = fs_info->running_transaction;
10862 if (trans)
10863 refcount_inc(&trans->use_count);
10864 spin_unlock(&fs_info->trans_lock);
10865
10866 ret = find_free_dev_extent_start(trans, device, minlen, start,
10867 &start, &len);
10868 if (trans)
10869 btrfs_put_transaction(trans);
10870
10871 if (ret) {
10872 up_read(&fs_info->commit_root_sem);
10873 mutex_unlock(&fs_info->chunk_mutex);
10874 if (ret == -ENOSPC)
10875 ret = 0;
10876 break;
10877 }
10878
10879 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10880 up_read(&fs_info->commit_root_sem);
10881 mutex_unlock(&fs_info->chunk_mutex);
10882
10883 if (ret)
10884 break;
10885
10886 start += len;
10887 *trimmed += bytes;
10888
10889 if (fatal_signal_pending(current)) {
10890 ret = -ERESTARTSYS;
10891 break;
10892 }
10893
10894 cond_resched();
10895 }
10896
10897 return ret;
10898 }
10899
10900 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10901 {
10902 struct btrfs_block_group_cache *cache = NULL;
10903 struct btrfs_device *device;
10904 struct list_head *devices;
10905 u64 group_trimmed;
10906 u64 start;
10907 u64 end;
10908 u64 trimmed = 0;
10909 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10910 int ret = 0;
10911
10912 /*
10913 * try to trim all FS space, our block group may start from non-zero.
10914 */
10915 if (range->len == total_bytes)
10916 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10917 else
10918 cache = btrfs_lookup_block_group(fs_info, range->start);
10919
10920 while (cache) {
10921 if (cache->key.objectid >= (range->start + range->len)) {
10922 btrfs_put_block_group(cache);
10923 break;
10924 }
10925
10926 start = max(range->start, cache->key.objectid);
10927 end = min(range->start + range->len,
10928 cache->key.objectid + cache->key.offset);
10929
10930 if (end - start >= range->minlen) {
10931 if (!block_group_cache_done(cache)) {
10932 ret = cache_block_group(cache, 0);
10933 if (ret) {
10934 btrfs_put_block_group(cache);
10935 break;
10936 }
10937 ret = wait_block_group_cache_done(cache);
10938 if (ret) {
10939 btrfs_put_block_group(cache);
10940 break;
10941 }
10942 }
10943 ret = btrfs_trim_block_group(cache,
10944 &group_trimmed,
10945 start,
10946 end,
10947 range->minlen);
10948
10949 trimmed += group_trimmed;
10950 if (ret) {
10951 btrfs_put_block_group(cache);
10952 break;
10953 }
10954 }
10955
10956 cache = next_block_group(fs_info, cache);
10957 }
10958
10959 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10960 devices = &fs_info->fs_devices->alloc_list;
10961 list_for_each_entry(device, devices, dev_alloc_list) {
10962 ret = btrfs_trim_free_extents(device, range->minlen,
10963 &group_trimmed);
10964 if (ret)
10965 break;
10966
10967 trimmed += group_trimmed;
10968 }
10969 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10970
10971 range->len = trimmed;
10972 return ret;
10973 }
10974
10975 /*
10976 * btrfs_{start,end}_write_no_snapshoting() are similar to
10977 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10978 * data into the page cache through nocow before the subvolume is snapshoted,
10979 * but flush the data into disk after the snapshot creation, or to prevent
10980 * operations while snapshoting is ongoing and that cause the snapshot to be
10981 * inconsistent (writes followed by expanding truncates for example).
10982 */
10983 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10984 {
10985 percpu_counter_dec(&root->subv_writers->counter);
10986 /*
10987 * Make sure counter is updated before we wake up waiters.
10988 */
10989 smp_mb();
10990 if (waitqueue_active(&root->subv_writers->wait))
10991 wake_up(&root->subv_writers->wait);
10992 }
10993
10994 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10995 {
10996 if (atomic_read(&root->will_be_snapshoted))
10997 return 0;
10998
10999 percpu_counter_inc(&root->subv_writers->counter);
11000 /*
11001 * Make sure counter is updated before we check for snapshot creation.
11002 */
11003 smp_mb();
11004 if (atomic_read(&root->will_be_snapshoted)) {
11005 btrfs_end_write_no_snapshoting(root);
11006 return 0;
11007 }
11008 return 1;
11009 }
11010
11011 static int wait_snapshoting_atomic_t(atomic_t *a)
11012 {
11013 schedule();
11014 return 0;
11015 }
11016
11017 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11018 {
11019 while (true) {
11020 int ret;
11021
11022 ret = btrfs_start_write_no_snapshoting(root);
11023 if (ret)
11024 break;
11025 wait_on_atomic_t(&root->will_be_snapshoted,
11026 wait_snapshoting_atomic_t,
11027 TASK_UNINTERRUPTIBLE);
11028 }
11029 }