]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
136 }
137 }
138
139 /*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
145 {
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177 }
178
179 /*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186 {
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223 }
224
225 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
226 u64 start, u64 num_bytes)
227 {
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE);
231 set_extent_bits(&fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE);
233 return 0;
234 }
235
236 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
237 struct btrfs_block_group_cache *cache)
238 {
239 u64 start, end;
240
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE);
246 clear_extent_bits(&fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE);
248 }
249
250 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
251 struct btrfs_block_group_cache *cache)
252 {
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(fs_info, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
265 }
266
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
270 bytenr, 0, &logical, &nr, &stripe_len);
271 if (ret)
272 return ret;
273
274 while (nr--) {
275 u64 start, len;
276
277 if (logical[nr] > cache->key.objectid +
278 cache->key.offset)
279 continue;
280
281 if (logical[nr] + stripe_len <= cache->key.objectid)
282 continue;
283
284 start = logical[nr];
285 if (start < cache->key.objectid) {
286 start = cache->key.objectid;
287 len = (logical[nr] + stripe_len) - start;
288 } else {
289 len = min_t(u64, stripe_len,
290 cache->key.objectid +
291 cache->key.offset - start);
292 }
293
294 cache->bytes_super += len;
295 ret = add_excluded_extent(fs_info, start, len);
296 if (ret) {
297 kfree(logical);
298 return ret;
299 }
300 }
301
302 kfree(logical);
303 }
304 return 0;
305 }
306
307 static struct btrfs_caching_control *
308 get_caching_control(struct btrfs_block_group_cache *cache)
309 {
310 struct btrfs_caching_control *ctl;
311
312 spin_lock(&cache->lock);
313 if (!cache->caching_ctl) {
314 spin_unlock(&cache->lock);
315 return NULL;
316 }
317
318 ctl = cache->caching_ctl;
319 atomic_inc(&ctl->count);
320 spin_unlock(&cache->lock);
321 return ctl;
322 }
323
324 static void put_caching_control(struct btrfs_caching_control *ctl)
325 {
326 if (atomic_dec_and_test(&ctl->count))
327 kfree(ctl);
328 }
329
330 #ifdef CONFIG_BTRFS_DEBUG
331 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
332 {
333 struct btrfs_fs_info *fs_info = block_group->fs_info;
334 u64 start = block_group->key.objectid;
335 u64 len = block_group->key.offset;
336 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
337 fs_info->nodesize : fs_info->sectorsize;
338 u64 step = chunk << 1;
339
340 while (len > chunk) {
341 btrfs_remove_free_space(block_group, start, chunk);
342 start += step;
343 if (len < step)
344 len = 0;
345 else
346 len -= step;
347 }
348 }
349 #endif
350
351 /*
352 * this is only called by cache_block_group, since we could have freed extents
353 * we need to check the pinned_extents for any extents that can't be used yet
354 * since their free space will be released as soon as the transaction commits.
355 */
356 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
357 struct btrfs_fs_info *info, u64 start, u64 end)
358 {
359 u64 extent_start, extent_end, size, total_added = 0;
360 int ret;
361
362 while (start < end) {
363 ret = find_first_extent_bit(info->pinned_extents, start,
364 &extent_start, &extent_end,
365 EXTENT_DIRTY | EXTENT_UPTODATE,
366 NULL);
367 if (ret)
368 break;
369
370 if (extent_start <= start) {
371 start = extent_end + 1;
372 } else if (extent_start > start && extent_start < end) {
373 size = extent_start - start;
374 total_added += size;
375 ret = btrfs_add_free_space(block_group, start,
376 size);
377 BUG_ON(ret); /* -ENOMEM or logic error */
378 start = extent_end + 1;
379 } else {
380 break;
381 }
382 }
383
384 if (start < end) {
385 size = end - start;
386 total_added += size;
387 ret = btrfs_add_free_space(block_group, start, size);
388 BUG_ON(ret); /* -ENOMEM or logic error */
389 }
390
391 return total_added;
392 }
393
394 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
395 {
396 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
397 struct btrfs_fs_info *fs_info = block_group->fs_info;
398 struct btrfs_root *extent_root = fs_info->extent_root;
399 struct btrfs_path *path;
400 struct extent_buffer *leaf;
401 struct btrfs_key key;
402 u64 total_found = 0;
403 u64 last = 0;
404 u32 nritems;
405 int ret;
406 bool wakeup = true;
407
408 path = btrfs_alloc_path();
409 if (!path)
410 return -ENOMEM;
411
412 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
413
414 #ifdef CONFIG_BTRFS_DEBUG
415 /*
416 * If we're fragmenting we don't want to make anybody think we can
417 * allocate from this block group until we've had a chance to fragment
418 * the free space.
419 */
420 if (btrfs_should_fragment_free_space(block_group))
421 wakeup = false;
422 #endif
423 /*
424 * We don't want to deadlock with somebody trying to allocate a new
425 * extent for the extent root while also trying to search the extent
426 * root to add free space. So we skip locking and search the commit
427 * root, since its read-only
428 */
429 path->skip_locking = 1;
430 path->search_commit_root = 1;
431 path->reada = READA_FORWARD;
432
433 key.objectid = last;
434 key.offset = 0;
435 key.type = BTRFS_EXTENT_ITEM_KEY;
436
437 next:
438 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
439 if (ret < 0)
440 goto out;
441
442 leaf = path->nodes[0];
443 nritems = btrfs_header_nritems(leaf);
444
445 while (1) {
446 if (btrfs_fs_closing(fs_info) > 1) {
447 last = (u64)-1;
448 break;
449 }
450
451 if (path->slots[0] < nritems) {
452 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
453 } else {
454 ret = find_next_key(path, 0, &key);
455 if (ret)
456 break;
457
458 if (need_resched() ||
459 rwsem_is_contended(&fs_info->commit_root_sem)) {
460 if (wakeup)
461 caching_ctl->progress = last;
462 btrfs_release_path(path);
463 up_read(&fs_info->commit_root_sem);
464 mutex_unlock(&caching_ctl->mutex);
465 cond_resched();
466 mutex_lock(&caching_ctl->mutex);
467 down_read(&fs_info->commit_root_sem);
468 goto next;
469 }
470
471 ret = btrfs_next_leaf(extent_root, path);
472 if (ret < 0)
473 goto out;
474 if (ret)
475 break;
476 leaf = path->nodes[0];
477 nritems = btrfs_header_nritems(leaf);
478 continue;
479 }
480
481 if (key.objectid < last) {
482 key.objectid = last;
483 key.offset = 0;
484 key.type = BTRFS_EXTENT_ITEM_KEY;
485
486 if (wakeup)
487 caching_ctl->progress = last;
488 btrfs_release_path(path);
489 goto next;
490 }
491
492 if (key.objectid < block_group->key.objectid) {
493 path->slots[0]++;
494 continue;
495 }
496
497 if (key.objectid >= block_group->key.objectid +
498 block_group->key.offset)
499 break;
500
501 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
502 key.type == BTRFS_METADATA_ITEM_KEY) {
503 total_found += add_new_free_space(block_group,
504 fs_info, last,
505 key.objectid);
506 if (key.type == BTRFS_METADATA_ITEM_KEY)
507 last = key.objectid +
508 fs_info->nodesize;
509 else
510 last = key.objectid + key.offset;
511
512 if (total_found > CACHING_CTL_WAKE_UP) {
513 total_found = 0;
514 if (wakeup)
515 wake_up(&caching_ctl->wait);
516 }
517 }
518 path->slots[0]++;
519 }
520 ret = 0;
521
522 total_found += add_new_free_space(block_group, fs_info, last,
523 block_group->key.objectid +
524 block_group->key.offset);
525 caching_ctl->progress = (u64)-1;
526
527 out:
528 btrfs_free_path(path);
529 return ret;
530 }
531
532 static noinline void caching_thread(struct btrfs_work *work)
533 {
534 struct btrfs_block_group_cache *block_group;
535 struct btrfs_fs_info *fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 struct btrfs_root *extent_root;
538 int ret;
539
540 caching_ctl = container_of(work, struct btrfs_caching_control, work);
541 block_group = caching_ctl->block_group;
542 fs_info = block_group->fs_info;
543 extent_root = fs_info->extent_root;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
552
553 spin_lock(&block_group->lock);
554 block_group->caching_ctl = NULL;
555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556 spin_unlock(&block_group->lock);
557
558 #ifdef CONFIG_BTRFS_DEBUG
559 if (btrfs_should_fragment_free_space(block_group)) {
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
569 fragment_free_space(block_group);
570 }
571 #endif
572
573 caching_ctl->progress = (u64)-1;
574
575 up_read(&fs_info->commit_root_sem);
576 free_excluded_extents(fs_info, block_group);
577 mutex_unlock(&caching_ctl->mutex);
578
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
582 btrfs_put_block_group(block_group);
583 }
584
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
586 int load_cache_only)
587 {
588 DEFINE_WAIT(wait);
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
591 int ret = 0;
592
593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
594 if (!caching_ctl)
595 return -ENOMEM;
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
602 atomic_set(&caching_ctl->count, 1);
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
623 atomic_inc(&ctl->count);
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
637 return 0;
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
643
644 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
645 mutex_lock(&caching_ctl->mutex);
646 ret = load_free_space_cache(fs_info, cache);
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
653 caching_ctl->progress = (u64)-1;
654 } else {
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
660 cache->has_caching_ctl = 1;
661 }
662 }
663 spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
666 btrfs_should_fragment_free_space(cache)) {
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
676 fragment_free_space(cache);
677 }
678 #endif
679 mutex_unlock(&caching_ctl->mutex);
680
681 wake_up(&caching_ctl->wait);
682 if (ret == 1) {
683 put_caching_control(caching_ctl);
684 free_excluded_extents(fs_info, cache);
685 return 0;
686 }
687 } else {
688 /*
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
698 cache->has_caching_ctl = 1;
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
702 }
703
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
706 return 0;
707 }
708
709 down_write(&fs_info->commit_root_sem);
710 atomic_inc(&caching_ctl->count);
711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712 up_write(&fs_info->commit_root_sem);
713
714 btrfs_get_block_group(cache);
715
716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
717
718 return ret;
719 }
720
721 /*
722 * return the block group that starts at or after bytenr
723 */
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
726 {
727 return block_group_cache_tree_search(info, bytenr, 0);
728 }
729
730 /*
731 * return the block group that contains the given bytenr
732 */
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
736 {
737 return block_group_cache_tree_search(info, bytenr, 1);
738 }
739
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
742 {
743 struct list_head *head = &info->space_info;
744 struct btrfs_space_info *found;
745
746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
747
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
750 if (found->flags & flags) {
751 rcu_read_unlock();
752 return found;
753 }
754 }
755 rcu_read_unlock();
756 return NULL;
757 }
758
759 /*
760 * after adding space to the filesystem, we need to clear the full flags
761 * on all the space infos.
762 */
763 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
764 {
765 struct list_head *head = &info->space_info;
766 struct btrfs_space_info *found;
767
768 rcu_read_lock();
769 list_for_each_entry_rcu(found, head, list)
770 found->full = 0;
771 rcu_read_unlock();
772 }
773
774 /* simple helper to search for an existing data extent at a given offset */
775 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
776 {
777 int ret;
778 struct btrfs_key key;
779 struct btrfs_path *path;
780
781 path = btrfs_alloc_path();
782 if (!path)
783 return -ENOMEM;
784
785 key.objectid = start;
786 key.offset = len;
787 key.type = BTRFS_EXTENT_ITEM_KEY;
788 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
789 btrfs_free_path(path);
790 return ret;
791 }
792
793 /*
794 * helper function to lookup reference count and flags of a tree block.
795 *
796 * the head node for delayed ref is used to store the sum of all the
797 * reference count modifications queued up in the rbtree. the head
798 * node may also store the extent flags to set. This way you can check
799 * to see what the reference count and extent flags would be if all of
800 * the delayed refs are not processed.
801 */
802 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
803 struct btrfs_fs_info *fs_info, u64 bytenr,
804 u64 offset, int metadata, u64 *refs, u64 *flags)
805 {
806 struct btrfs_delayed_ref_head *head;
807 struct btrfs_delayed_ref_root *delayed_refs;
808 struct btrfs_path *path;
809 struct btrfs_extent_item *ei;
810 struct extent_buffer *leaf;
811 struct btrfs_key key;
812 u32 item_size;
813 u64 num_refs;
814 u64 extent_flags;
815 int ret;
816
817 /*
818 * If we don't have skinny metadata, don't bother doing anything
819 * different
820 */
821 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
822 offset = fs_info->nodesize;
823 metadata = 0;
824 }
825
826 path = btrfs_alloc_path();
827 if (!path)
828 return -ENOMEM;
829
830 if (!trans) {
831 path->skip_locking = 1;
832 path->search_commit_root = 1;
833 }
834
835 search_again:
836 key.objectid = bytenr;
837 key.offset = offset;
838 if (metadata)
839 key.type = BTRFS_METADATA_ITEM_KEY;
840 else
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842
843 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
844 if (ret < 0)
845 goto out_free;
846
847 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
848 if (path->slots[0]) {
849 path->slots[0]--;
850 btrfs_item_key_to_cpu(path->nodes[0], &key,
851 path->slots[0]);
852 if (key.objectid == bytenr &&
853 key.type == BTRFS_EXTENT_ITEM_KEY &&
854 key.offset == fs_info->nodesize)
855 ret = 0;
856 }
857 }
858
859 if (ret == 0) {
860 leaf = path->nodes[0];
861 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
862 if (item_size >= sizeof(*ei)) {
863 ei = btrfs_item_ptr(leaf, path->slots[0],
864 struct btrfs_extent_item);
865 num_refs = btrfs_extent_refs(leaf, ei);
866 extent_flags = btrfs_extent_flags(leaf, ei);
867 } else {
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 struct btrfs_extent_item_v0 *ei0;
870 BUG_ON(item_size != sizeof(*ei0));
871 ei0 = btrfs_item_ptr(leaf, path->slots[0],
872 struct btrfs_extent_item_v0);
873 num_refs = btrfs_extent_refs_v0(leaf, ei0);
874 /* FIXME: this isn't correct for data */
875 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
876 #else
877 BUG();
878 #endif
879 }
880 BUG_ON(num_refs == 0);
881 } else {
882 num_refs = 0;
883 extent_flags = 0;
884 ret = 0;
885 }
886
887 if (!trans)
888 goto out;
889
890 delayed_refs = &trans->transaction->delayed_refs;
891 spin_lock(&delayed_refs->lock);
892 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
893 if (head) {
894 if (!mutex_trylock(&head->mutex)) {
895 atomic_inc(&head->node.refs);
896 spin_unlock(&delayed_refs->lock);
897
898 btrfs_release_path(path);
899
900 /*
901 * Mutex was contended, block until it's released and try
902 * again
903 */
904 mutex_lock(&head->mutex);
905 mutex_unlock(&head->mutex);
906 btrfs_put_delayed_ref(&head->node);
907 goto search_again;
908 }
909 spin_lock(&head->lock);
910 if (head->extent_op && head->extent_op->update_flags)
911 extent_flags |= head->extent_op->flags_to_set;
912 else
913 BUG_ON(num_refs == 0);
914
915 num_refs += head->node.ref_mod;
916 spin_unlock(&head->lock);
917 mutex_unlock(&head->mutex);
918 }
919 spin_unlock(&delayed_refs->lock);
920 out:
921 WARN_ON(num_refs == 0);
922 if (refs)
923 *refs = num_refs;
924 if (flags)
925 *flags = extent_flags;
926 out_free:
927 btrfs_free_path(path);
928 return ret;
929 }
930
931 /*
932 * Back reference rules. Back refs have three main goals:
933 *
934 * 1) differentiate between all holders of references to an extent so that
935 * when a reference is dropped we can make sure it was a valid reference
936 * before freeing the extent.
937 *
938 * 2) Provide enough information to quickly find the holders of an extent
939 * if we notice a given block is corrupted or bad.
940 *
941 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
942 * maintenance. This is actually the same as #2, but with a slightly
943 * different use case.
944 *
945 * There are two kinds of back refs. The implicit back refs is optimized
946 * for pointers in non-shared tree blocks. For a given pointer in a block,
947 * back refs of this kind provide information about the block's owner tree
948 * and the pointer's key. These information allow us to find the block by
949 * b-tree searching. The full back refs is for pointers in tree blocks not
950 * referenced by their owner trees. The location of tree block is recorded
951 * in the back refs. Actually the full back refs is generic, and can be
952 * used in all cases the implicit back refs is used. The major shortcoming
953 * of the full back refs is its overhead. Every time a tree block gets
954 * COWed, we have to update back refs entry for all pointers in it.
955 *
956 * For a newly allocated tree block, we use implicit back refs for
957 * pointers in it. This means most tree related operations only involve
958 * implicit back refs. For a tree block created in old transaction, the
959 * only way to drop a reference to it is COW it. So we can detect the
960 * event that tree block loses its owner tree's reference and do the
961 * back refs conversion.
962 *
963 * When a tree block is COWed through a tree, there are four cases:
964 *
965 * The reference count of the block is one and the tree is the block's
966 * owner tree. Nothing to do in this case.
967 *
968 * The reference count of the block is one and the tree is not the
969 * block's owner tree. In this case, full back refs is used for pointers
970 * in the block. Remove these full back refs, add implicit back refs for
971 * every pointers in the new block.
972 *
973 * The reference count of the block is greater than one and the tree is
974 * the block's owner tree. In this case, implicit back refs is used for
975 * pointers in the block. Add full back refs for every pointers in the
976 * block, increase lower level extents' reference counts. The original
977 * implicit back refs are entailed to the new block.
978 *
979 * The reference count of the block is greater than one and the tree is
980 * not the block's owner tree. Add implicit back refs for every pointer in
981 * the new block, increase lower level extents' reference count.
982 *
983 * Back Reference Key composing:
984 *
985 * The key objectid corresponds to the first byte in the extent,
986 * The key type is used to differentiate between types of back refs.
987 * There are different meanings of the key offset for different types
988 * of back refs.
989 *
990 * File extents can be referenced by:
991 *
992 * - multiple snapshots, subvolumes, or different generations in one subvol
993 * - different files inside a single subvolume
994 * - different offsets inside a file (bookend extents in file.c)
995 *
996 * The extent ref structure for the implicit back refs has fields for:
997 *
998 * - Objectid of the subvolume root
999 * - objectid of the file holding the reference
1000 * - original offset in the file
1001 * - how many bookend extents
1002 *
1003 * The key offset for the implicit back refs is hash of the first
1004 * three fields.
1005 *
1006 * The extent ref structure for the full back refs has field for:
1007 *
1008 * - number of pointers in the tree leaf
1009 *
1010 * The key offset for the implicit back refs is the first byte of
1011 * the tree leaf
1012 *
1013 * When a file extent is allocated, The implicit back refs is used.
1014 * the fields are filled in:
1015 *
1016 * (root_key.objectid, inode objectid, offset in file, 1)
1017 *
1018 * When a file extent is removed file truncation, we find the
1019 * corresponding implicit back refs and check the following fields:
1020 *
1021 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1022 *
1023 * Btree extents can be referenced by:
1024 *
1025 * - Different subvolumes
1026 *
1027 * Both the implicit back refs and the full back refs for tree blocks
1028 * only consist of key. The key offset for the implicit back refs is
1029 * objectid of block's owner tree. The key offset for the full back refs
1030 * is the first byte of parent block.
1031 *
1032 * When implicit back refs is used, information about the lowest key and
1033 * level of the tree block are required. These information are stored in
1034 * tree block info structure.
1035 */
1036
1037 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1038 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1039 struct btrfs_fs_info *fs_info,
1040 struct btrfs_path *path,
1041 u64 owner, u32 extra_size)
1042 {
1043 struct btrfs_root *root = fs_info->extent_root;
1044 struct btrfs_extent_item *item;
1045 struct btrfs_extent_item_v0 *ei0;
1046 struct btrfs_extent_ref_v0 *ref0;
1047 struct btrfs_tree_block_info *bi;
1048 struct extent_buffer *leaf;
1049 struct btrfs_key key;
1050 struct btrfs_key found_key;
1051 u32 new_size = sizeof(*item);
1052 u64 refs;
1053 int ret;
1054
1055 leaf = path->nodes[0];
1056 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1057
1058 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1059 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_extent_item_v0);
1061 refs = btrfs_extent_refs_v0(leaf, ei0);
1062
1063 if (owner == (u64)-1) {
1064 while (1) {
1065 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1066 ret = btrfs_next_leaf(root, path);
1067 if (ret < 0)
1068 return ret;
1069 BUG_ON(ret > 0); /* Corruption */
1070 leaf = path->nodes[0];
1071 }
1072 btrfs_item_key_to_cpu(leaf, &found_key,
1073 path->slots[0]);
1074 BUG_ON(key.objectid != found_key.objectid);
1075 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1076 path->slots[0]++;
1077 continue;
1078 }
1079 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1080 struct btrfs_extent_ref_v0);
1081 owner = btrfs_ref_objectid_v0(leaf, ref0);
1082 break;
1083 }
1084 }
1085 btrfs_release_path(path);
1086
1087 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1088 new_size += sizeof(*bi);
1089
1090 new_size -= sizeof(*ei0);
1091 ret = btrfs_search_slot(trans, root, &key, path,
1092 new_size + extra_size, 1);
1093 if (ret < 0)
1094 return ret;
1095 BUG_ON(ret); /* Corruption */
1096
1097 btrfs_extend_item(fs_info, path, new_size);
1098
1099 leaf = path->nodes[0];
1100 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101 btrfs_set_extent_refs(leaf, item, refs);
1102 /* FIXME: get real generation */
1103 btrfs_set_extent_generation(leaf, item, 0);
1104 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1105 btrfs_set_extent_flags(leaf, item,
1106 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1107 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1108 bi = (struct btrfs_tree_block_info *)(item + 1);
1109 /* FIXME: get first key of the block */
1110 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1111 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1112 } else {
1113 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1114 }
1115 btrfs_mark_buffer_dirty(leaf);
1116 return 0;
1117 }
1118 #endif
1119
1120 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1121 {
1122 u32 high_crc = ~(u32)0;
1123 u32 low_crc = ~(u32)0;
1124 __le64 lenum;
1125
1126 lenum = cpu_to_le64(root_objectid);
1127 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1128 lenum = cpu_to_le64(owner);
1129 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1130 lenum = cpu_to_le64(offset);
1131 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1132
1133 return ((u64)high_crc << 31) ^ (u64)low_crc;
1134 }
1135
1136 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1137 struct btrfs_extent_data_ref *ref)
1138 {
1139 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1140 btrfs_extent_data_ref_objectid(leaf, ref),
1141 btrfs_extent_data_ref_offset(leaf, ref));
1142 }
1143
1144 static int match_extent_data_ref(struct extent_buffer *leaf,
1145 struct btrfs_extent_data_ref *ref,
1146 u64 root_objectid, u64 owner, u64 offset)
1147 {
1148 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1149 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1150 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1151 return 0;
1152 return 1;
1153 }
1154
1155 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1156 struct btrfs_fs_info *fs_info,
1157 struct btrfs_path *path,
1158 u64 bytenr, u64 parent,
1159 u64 root_objectid,
1160 u64 owner, u64 offset)
1161 {
1162 struct btrfs_root *root = fs_info->extent_root;
1163 struct btrfs_key key;
1164 struct btrfs_extent_data_ref *ref;
1165 struct extent_buffer *leaf;
1166 u32 nritems;
1167 int ret;
1168 int recow;
1169 int err = -ENOENT;
1170
1171 key.objectid = bytenr;
1172 if (parent) {
1173 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 key.offset = parent;
1175 } else {
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1178 owner, offset);
1179 }
1180 again:
1181 recow = 0;
1182 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1183 if (ret < 0) {
1184 err = ret;
1185 goto fail;
1186 }
1187
1188 if (parent) {
1189 if (!ret)
1190 return 0;
1191 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1192 key.type = BTRFS_EXTENT_REF_V0_KEY;
1193 btrfs_release_path(path);
1194 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1195 if (ret < 0) {
1196 err = ret;
1197 goto fail;
1198 }
1199 if (!ret)
1200 return 0;
1201 #endif
1202 goto fail;
1203 }
1204
1205 leaf = path->nodes[0];
1206 nritems = btrfs_header_nritems(leaf);
1207 while (1) {
1208 if (path->slots[0] >= nritems) {
1209 ret = btrfs_next_leaf(root, path);
1210 if (ret < 0)
1211 err = ret;
1212 if (ret)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 nritems = btrfs_header_nritems(leaf);
1217 recow = 1;
1218 }
1219
1220 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1221 if (key.objectid != bytenr ||
1222 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1223 goto fail;
1224
1225 ref = btrfs_item_ptr(leaf, path->slots[0],
1226 struct btrfs_extent_data_ref);
1227
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset)) {
1230 if (recow) {
1231 btrfs_release_path(path);
1232 goto again;
1233 }
1234 err = 0;
1235 break;
1236 }
1237 path->slots[0]++;
1238 }
1239 fail:
1240 return err;
1241 }
1242
1243 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1244 struct btrfs_fs_info *fs_info,
1245 struct btrfs_path *path,
1246 u64 bytenr, u64 parent,
1247 u64 root_objectid, u64 owner,
1248 u64 offset, int refs_to_add)
1249 {
1250 struct btrfs_root *root = fs_info->extent_root;
1251 struct btrfs_key key;
1252 struct extent_buffer *leaf;
1253 u32 size;
1254 u32 num_refs;
1255 int ret;
1256
1257 key.objectid = bytenr;
1258 if (parent) {
1259 key.type = BTRFS_SHARED_DATA_REF_KEY;
1260 key.offset = parent;
1261 size = sizeof(struct btrfs_shared_data_ref);
1262 } else {
1263 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1264 key.offset = hash_extent_data_ref(root_objectid,
1265 owner, offset);
1266 size = sizeof(struct btrfs_extent_data_ref);
1267 }
1268
1269 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1270 if (ret && ret != -EEXIST)
1271 goto fail;
1272
1273 leaf = path->nodes[0];
1274 if (parent) {
1275 struct btrfs_shared_data_ref *ref;
1276 ref = btrfs_item_ptr(leaf, path->slots[0],
1277 struct btrfs_shared_data_ref);
1278 if (ret == 0) {
1279 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1280 } else {
1281 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1282 num_refs += refs_to_add;
1283 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1284 }
1285 } else {
1286 struct btrfs_extent_data_ref *ref;
1287 while (ret == -EEXIST) {
1288 ref = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_data_ref);
1290 if (match_extent_data_ref(leaf, ref, root_objectid,
1291 owner, offset))
1292 break;
1293 btrfs_release_path(path);
1294 key.offset++;
1295 ret = btrfs_insert_empty_item(trans, root, path, &key,
1296 size);
1297 if (ret && ret != -EEXIST)
1298 goto fail;
1299
1300 leaf = path->nodes[0];
1301 }
1302 ref = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_extent_data_ref);
1304 if (ret == 0) {
1305 btrfs_set_extent_data_ref_root(leaf, ref,
1306 root_objectid);
1307 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1308 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1309 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1310 } else {
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1312 num_refs += refs_to_add;
1313 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1314 }
1315 }
1316 btrfs_mark_buffer_dirty(leaf);
1317 ret = 0;
1318 fail:
1319 btrfs_release_path(path);
1320 return ret;
1321 }
1322
1323 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1324 struct btrfs_fs_info *fs_info,
1325 struct btrfs_path *path,
1326 int refs_to_drop, int *last_ref)
1327 {
1328 struct btrfs_key key;
1329 struct btrfs_extent_data_ref *ref1 = NULL;
1330 struct btrfs_shared_data_ref *ref2 = NULL;
1331 struct extent_buffer *leaf;
1332 u32 num_refs = 0;
1333 int ret = 0;
1334
1335 leaf = path->nodes[0];
1336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1337
1338 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1339 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1340 struct btrfs_extent_data_ref);
1341 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1342 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1343 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1344 struct btrfs_shared_data_ref);
1345 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1346 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1347 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1348 struct btrfs_extent_ref_v0 *ref0;
1349 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_ref_v0);
1351 num_refs = btrfs_ref_count_v0(leaf, ref0);
1352 #endif
1353 } else {
1354 BUG();
1355 }
1356
1357 BUG_ON(num_refs < refs_to_drop);
1358 num_refs -= refs_to_drop;
1359
1360 if (num_refs == 0) {
1361 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1362 *last_ref = 1;
1363 } else {
1364 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1365 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1366 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1367 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1368 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1369 else {
1370 struct btrfs_extent_ref_v0 *ref0;
1371 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1372 struct btrfs_extent_ref_v0);
1373 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1374 }
1375 #endif
1376 btrfs_mark_buffer_dirty(leaf);
1377 }
1378 return ret;
1379 }
1380
1381 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1382 struct btrfs_extent_inline_ref *iref)
1383 {
1384 struct btrfs_key key;
1385 struct extent_buffer *leaf;
1386 struct btrfs_extent_data_ref *ref1;
1387 struct btrfs_shared_data_ref *ref2;
1388 u32 num_refs = 0;
1389
1390 leaf = path->nodes[0];
1391 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1392 if (iref) {
1393 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1394 BTRFS_EXTENT_DATA_REF_KEY) {
1395 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1396 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1397 } else {
1398 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1399 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1400 }
1401 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1402 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_data_ref);
1404 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1405 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1406 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1407 struct btrfs_shared_data_ref);
1408 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1410 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1411 struct btrfs_extent_ref_v0 *ref0;
1412 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_ref_v0);
1414 num_refs = btrfs_ref_count_v0(leaf, ref0);
1415 #endif
1416 } else {
1417 WARN_ON(1);
1418 }
1419 return num_refs;
1420 }
1421
1422 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1423 struct btrfs_fs_info *fs_info,
1424 struct btrfs_path *path,
1425 u64 bytenr, u64 parent,
1426 u64 root_objectid)
1427 {
1428 struct btrfs_root *root = fs_info->extent_root;
1429 struct btrfs_key key;
1430 int ret;
1431
1432 key.objectid = bytenr;
1433 if (parent) {
1434 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 key.offset = parent;
1436 } else {
1437 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 key.offset = root_objectid;
1439 }
1440
1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 if (ret > 0)
1443 ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (ret == -ENOENT && parent) {
1446 btrfs_release_path(path);
1447 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 if (ret > 0)
1450 ret = -ENOENT;
1451 }
1452 #endif
1453 return ret;
1454 }
1455
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457 struct btrfs_fs_info *fs_info,
1458 struct btrfs_path *path,
1459 u64 bytenr, u64 parent,
1460 u64 root_objectid)
1461 {
1462 struct btrfs_key key;
1463 int ret;
1464
1465 key.objectid = bytenr;
1466 if (parent) {
1467 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 key.offset = parent;
1469 } else {
1470 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 key.offset = root_objectid;
1472 }
1473
1474 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1475 path, &key, 0);
1476 btrfs_release_path(path);
1477 return ret;
1478 }
1479
1480 static inline int extent_ref_type(u64 parent, u64 owner)
1481 {
1482 int type;
1483 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 if (parent > 0)
1485 type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 else
1487 type = BTRFS_TREE_BLOCK_REF_KEY;
1488 } else {
1489 if (parent > 0)
1490 type = BTRFS_SHARED_DATA_REF_KEY;
1491 else
1492 type = BTRFS_EXTENT_DATA_REF_KEY;
1493 }
1494 return type;
1495 }
1496
1497 static int find_next_key(struct btrfs_path *path, int level,
1498 struct btrfs_key *key)
1499
1500 {
1501 for (; level < BTRFS_MAX_LEVEL; level++) {
1502 if (!path->nodes[level])
1503 break;
1504 if (path->slots[level] + 1 >=
1505 btrfs_header_nritems(path->nodes[level]))
1506 continue;
1507 if (level == 0)
1508 btrfs_item_key_to_cpu(path->nodes[level], key,
1509 path->slots[level] + 1);
1510 else
1511 btrfs_node_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 return 0;
1514 }
1515 return 1;
1516 }
1517
1518 /*
1519 * look for inline back ref. if back ref is found, *ref_ret is set
1520 * to the address of inline back ref, and 0 is returned.
1521 *
1522 * if back ref isn't found, *ref_ret is set to the address where it
1523 * should be inserted, and -ENOENT is returned.
1524 *
1525 * if insert is true and there are too many inline back refs, the path
1526 * points to the extent item, and -EAGAIN is returned.
1527 *
1528 * NOTE: inline back refs are ordered in the same way that back ref
1529 * items in the tree are ordered.
1530 */
1531 static noinline_for_stack
1532 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533 struct btrfs_fs_info *fs_info,
1534 struct btrfs_path *path,
1535 struct btrfs_extent_inline_ref **ref_ret,
1536 u64 bytenr, u64 num_bytes,
1537 u64 parent, u64 root_objectid,
1538 u64 owner, u64 offset, int insert)
1539 {
1540 struct btrfs_root *root = fs_info->extent_root;
1541 struct btrfs_key key;
1542 struct extent_buffer *leaf;
1543 struct btrfs_extent_item *ei;
1544 struct btrfs_extent_inline_ref *iref;
1545 u64 flags;
1546 u64 item_size;
1547 unsigned long ptr;
1548 unsigned long end;
1549 int extra_size;
1550 int type;
1551 int want;
1552 int ret;
1553 int err = 0;
1554 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1555
1556 key.objectid = bytenr;
1557 key.type = BTRFS_EXTENT_ITEM_KEY;
1558 key.offset = num_bytes;
1559
1560 want = extent_ref_type(parent, owner);
1561 if (insert) {
1562 extra_size = btrfs_extent_inline_ref_size(want);
1563 path->keep_locks = 1;
1564 } else
1565 extra_size = -1;
1566
1567 /*
1568 * Owner is our parent level, so we can just add one to get the level
1569 * for the block we are interested in.
1570 */
1571 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 key.type = BTRFS_METADATA_ITEM_KEY;
1573 key.offset = owner;
1574 }
1575
1576 again:
1577 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1578 if (ret < 0) {
1579 err = ret;
1580 goto out;
1581 }
1582
1583 /*
1584 * We may be a newly converted file system which still has the old fat
1585 * extent entries for metadata, so try and see if we have one of those.
1586 */
1587 if (ret > 0 && skinny_metadata) {
1588 skinny_metadata = false;
1589 if (path->slots[0]) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid == bytenr &&
1594 key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 key.offset == num_bytes)
1596 ret = 0;
1597 }
1598 if (ret) {
1599 key.objectid = bytenr;
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = num_bytes;
1602 btrfs_release_path(path);
1603 goto again;
1604 }
1605 }
1606
1607 if (ret && !insert) {
1608 err = -ENOENT;
1609 goto out;
1610 } else if (WARN_ON(ret)) {
1611 err = -EIO;
1612 goto out;
1613 }
1614
1615 leaf = path->nodes[0];
1616 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 if (item_size < sizeof(*ei)) {
1619 if (!insert) {
1620 err = -ENOENT;
1621 goto out;
1622 }
1623 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1624 extra_size);
1625 if (ret < 0) {
1626 err = ret;
1627 goto out;
1628 }
1629 leaf = path->nodes[0];
1630 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631 }
1632 #endif
1633 BUG_ON(item_size < sizeof(*ei));
1634
1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 flags = btrfs_extent_flags(leaf, ei);
1637
1638 ptr = (unsigned long)(ei + 1);
1639 end = (unsigned long)ei + item_size;
1640
1641 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1642 ptr += sizeof(struct btrfs_tree_block_info);
1643 BUG_ON(ptr > end);
1644 }
1645
1646 err = -ENOENT;
1647 while (1) {
1648 if (ptr >= end) {
1649 WARN_ON(ptr > end);
1650 break;
1651 }
1652 iref = (struct btrfs_extent_inline_ref *)ptr;
1653 type = btrfs_extent_inline_ref_type(leaf, iref);
1654 if (want < type)
1655 break;
1656 if (want > type) {
1657 ptr += btrfs_extent_inline_ref_size(type);
1658 continue;
1659 }
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 struct btrfs_extent_data_ref *dref;
1663 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 if (match_extent_data_ref(leaf, dref, root_objectid,
1665 owner, offset)) {
1666 err = 0;
1667 break;
1668 }
1669 if (hash_extent_data_ref_item(leaf, dref) <
1670 hash_extent_data_ref(root_objectid, owner, offset))
1671 break;
1672 } else {
1673 u64 ref_offset;
1674 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 if (parent > 0) {
1676 if (parent == ref_offset) {
1677 err = 0;
1678 break;
1679 }
1680 if (ref_offset < parent)
1681 break;
1682 } else {
1683 if (root_objectid == ref_offset) {
1684 err = 0;
1685 break;
1686 }
1687 if (ref_offset < root_objectid)
1688 break;
1689 }
1690 }
1691 ptr += btrfs_extent_inline_ref_size(type);
1692 }
1693 if (err == -ENOENT && insert) {
1694 if (item_size + extra_size >=
1695 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699 /*
1700 * To add new inline back ref, we have to make sure
1701 * there is no corresponding back ref item.
1702 * For simplicity, we just do not add new inline back
1703 * ref if there is any kind of item for this block
1704 */
1705 if (find_next_key(path, 0, &key) == 0 &&
1706 key.objectid == bytenr &&
1707 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1708 err = -EAGAIN;
1709 goto out;
1710 }
1711 }
1712 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713 out:
1714 if (insert) {
1715 path->keep_locks = 0;
1716 btrfs_unlock_up_safe(path, 1);
1717 }
1718 return err;
1719 }
1720
1721 /*
1722 * helper to add new inline back ref
1723 */
1724 static noinline_for_stack
1725 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref *iref,
1728 u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add,
1730 struct btrfs_delayed_extent_op *extent_op)
1731 {
1732 struct extent_buffer *leaf;
1733 struct btrfs_extent_item *ei;
1734 unsigned long ptr;
1735 unsigned long end;
1736 unsigned long item_offset;
1737 u64 refs;
1738 int size;
1739 int type;
1740
1741 leaf = path->nodes[0];
1742 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 item_offset = (unsigned long)iref - (unsigned long)ei;
1744
1745 type = extent_ref_type(parent, owner);
1746 size = btrfs_extent_inline_ref_size(type);
1747
1748 btrfs_extend_item(fs_info, path, size);
1749
1750 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 refs = btrfs_extent_refs(leaf, ei);
1752 refs += refs_to_add;
1753 btrfs_set_extent_refs(leaf, ei, refs);
1754 if (extent_op)
1755 __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757 ptr = (unsigned long)ei + item_offset;
1758 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 if (ptr < end - size)
1760 memmove_extent_buffer(leaf, ptr + size, ptr,
1761 end - size - ptr);
1762
1763 iref = (struct btrfs_extent_inline_ref *)ptr;
1764 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 struct btrfs_extent_data_ref *dref;
1767 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 struct btrfs_shared_data_ref *sref;
1774 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 } else {
1780 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781 }
1782 btrfs_mark_buffer_dirty(leaf);
1783 }
1784
1785 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786 struct btrfs_fs_info *fs_info,
1787 struct btrfs_path *path,
1788 struct btrfs_extent_inline_ref **ref_ret,
1789 u64 bytenr, u64 num_bytes, u64 parent,
1790 u64 root_objectid, u64 owner, u64 offset)
1791 {
1792 int ret;
1793
1794 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1795 bytenr, num_bytes, parent,
1796 root_objectid, owner, offset, 0);
1797 if (ret != -ENOENT)
1798 return ret;
1799
1800 btrfs_release_path(path);
1801 *ref_ret = NULL;
1802
1803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1805 parent, root_objectid);
1806 } else {
1807 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1808 parent, root_objectid, owner,
1809 offset);
1810 }
1811 return ret;
1812 }
1813
1814 /*
1815 * helper to update/remove inline back ref
1816 */
1817 static noinline_for_stack
1818 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1819 struct btrfs_path *path,
1820 struct btrfs_extent_inline_ref *iref,
1821 int refs_to_mod,
1822 struct btrfs_delayed_extent_op *extent_op,
1823 int *last_ref)
1824 {
1825 struct extent_buffer *leaf;
1826 struct btrfs_extent_item *ei;
1827 struct btrfs_extent_data_ref *dref = NULL;
1828 struct btrfs_shared_data_ref *sref = NULL;
1829 unsigned long ptr;
1830 unsigned long end;
1831 u32 item_size;
1832 int size;
1833 int type;
1834 u64 refs;
1835
1836 leaf = path->nodes[0];
1837 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1838 refs = btrfs_extent_refs(leaf, ei);
1839 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1840 refs += refs_to_mod;
1841 btrfs_set_extent_refs(leaf, ei, refs);
1842 if (extent_op)
1843 __run_delayed_extent_op(extent_op, leaf, ei);
1844
1845 type = btrfs_extent_inline_ref_type(leaf, iref);
1846
1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1849 refs = btrfs_extent_data_ref_count(leaf, dref);
1850 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1851 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1852 refs = btrfs_shared_data_ref_count(leaf, sref);
1853 } else {
1854 refs = 1;
1855 BUG_ON(refs_to_mod != -1);
1856 }
1857
1858 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1859 refs += refs_to_mod;
1860
1861 if (refs > 0) {
1862 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1863 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1864 else
1865 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1866 } else {
1867 *last_ref = 1;
1868 size = btrfs_extent_inline_ref_size(type);
1869 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1870 ptr = (unsigned long)iref;
1871 end = (unsigned long)ei + item_size;
1872 if (ptr + size < end)
1873 memmove_extent_buffer(leaf, ptr, ptr + size,
1874 end - ptr - size);
1875 item_size -= size;
1876 btrfs_truncate_item(fs_info, path, item_size, 1);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static noinline_for_stack
1882 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1883 struct btrfs_fs_info *fs_info,
1884 struct btrfs_path *path,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner,
1887 u64 offset, int refs_to_add,
1888 struct btrfs_delayed_extent_op *extent_op)
1889 {
1890 struct btrfs_extent_inline_ref *iref;
1891 int ret;
1892
1893 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1894 bytenr, num_bytes, parent,
1895 root_objectid, owner, offset, 1);
1896 if (ret == 0) {
1897 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1898 update_inline_extent_backref(fs_info, path, iref,
1899 refs_to_add, extent_op, NULL);
1900 } else if (ret == -ENOENT) {
1901 setup_inline_extent_backref(fs_info, path, iref, parent,
1902 root_objectid, owner, offset,
1903 refs_to_add, extent_op);
1904 ret = 0;
1905 }
1906 return ret;
1907 }
1908
1909 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1910 struct btrfs_fs_info *fs_info,
1911 struct btrfs_path *path,
1912 u64 bytenr, u64 parent, u64 root_objectid,
1913 u64 owner, u64 offset, int refs_to_add)
1914 {
1915 int ret;
1916 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1917 BUG_ON(refs_to_add != 1);
1918 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1919 parent, root_objectid);
1920 } else {
1921 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1922 parent, root_objectid,
1923 owner, offset, refs_to_add);
1924 }
1925 return ret;
1926 }
1927
1928 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1929 struct btrfs_fs_info *fs_info,
1930 struct btrfs_path *path,
1931 struct btrfs_extent_inline_ref *iref,
1932 int refs_to_drop, int is_data, int *last_ref)
1933 {
1934 int ret = 0;
1935
1936 BUG_ON(!is_data && refs_to_drop != 1);
1937 if (iref) {
1938 update_inline_extent_backref(fs_info, path, iref,
1939 -refs_to_drop, NULL, last_ref);
1940 } else if (is_data) {
1941 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1942 last_ref);
1943 } else {
1944 *last_ref = 1;
1945 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1946 }
1947 return ret;
1948 }
1949
1950 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1951 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1952 u64 *discarded_bytes)
1953 {
1954 int j, ret = 0;
1955 u64 bytes_left, end;
1956 u64 aligned_start = ALIGN(start, 1 << 9);
1957
1958 if (WARN_ON(start != aligned_start)) {
1959 len -= aligned_start - start;
1960 len = round_down(len, 1 << 9);
1961 start = aligned_start;
1962 }
1963
1964 *discarded_bytes = 0;
1965
1966 if (!len)
1967 return 0;
1968
1969 end = start + len;
1970 bytes_left = len;
1971
1972 /* Skip any superblocks on this device. */
1973 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1974 u64 sb_start = btrfs_sb_offset(j);
1975 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1976 u64 size = sb_start - start;
1977
1978 if (!in_range(sb_start, start, bytes_left) &&
1979 !in_range(sb_end, start, bytes_left) &&
1980 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1981 continue;
1982
1983 /*
1984 * Superblock spans beginning of range. Adjust start and
1985 * try again.
1986 */
1987 if (sb_start <= start) {
1988 start += sb_end - start;
1989 if (start > end) {
1990 bytes_left = 0;
1991 break;
1992 }
1993 bytes_left = end - start;
1994 continue;
1995 }
1996
1997 if (size) {
1998 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1999 GFP_NOFS, 0);
2000 if (!ret)
2001 *discarded_bytes += size;
2002 else if (ret != -EOPNOTSUPP)
2003 return ret;
2004 }
2005
2006 start = sb_end;
2007 if (start > end) {
2008 bytes_left = 0;
2009 break;
2010 }
2011 bytes_left = end - start;
2012 }
2013
2014 if (bytes_left) {
2015 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2016 GFP_NOFS, 0);
2017 if (!ret)
2018 *discarded_bytes += bytes_left;
2019 }
2020 return ret;
2021 }
2022
2023 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2024 u64 num_bytes, u64 *actual_bytes)
2025 {
2026 int ret;
2027 u64 discarded_bytes = 0;
2028 struct btrfs_bio *bbio = NULL;
2029
2030
2031 /*
2032 * Avoid races with device replace and make sure our bbio has devices
2033 * associated to its stripes that don't go away while we are discarding.
2034 */
2035 btrfs_bio_counter_inc_blocked(fs_info);
2036 /* Tell the block device(s) that the sectors can be discarded */
2037 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2038 &bbio, 0);
2039 /* Error condition is -ENOMEM */
2040 if (!ret) {
2041 struct btrfs_bio_stripe *stripe = bbio->stripes;
2042 int i;
2043
2044
2045 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2046 u64 bytes;
2047 if (!stripe->dev->can_discard)
2048 continue;
2049
2050 ret = btrfs_issue_discard(stripe->dev->bdev,
2051 stripe->physical,
2052 stripe->length,
2053 &bytes);
2054 if (!ret)
2055 discarded_bytes += bytes;
2056 else if (ret != -EOPNOTSUPP)
2057 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2058
2059 /*
2060 * Just in case we get back EOPNOTSUPP for some reason,
2061 * just ignore the return value so we don't screw up
2062 * people calling discard_extent.
2063 */
2064 ret = 0;
2065 }
2066 btrfs_put_bbio(bbio);
2067 }
2068 btrfs_bio_counter_dec(fs_info);
2069
2070 if (actual_bytes)
2071 *actual_bytes = discarded_bytes;
2072
2073
2074 if (ret == -EOPNOTSUPP)
2075 ret = 0;
2076 return ret;
2077 }
2078
2079 /* Can return -ENOMEM */
2080 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2081 struct btrfs_fs_info *fs_info,
2082 u64 bytenr, u64 num_bytes, u64 parent,
2083 u64 root_objectid, u64 owner, u64 offset)
2084 {
2085 int ret;
2086
2087 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2088 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2089
2090 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2091 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2092 num_bytes,
2093 parent, root_objectid, (int)owner,
2094 BTRFS_ADD_DELAYED_REF, NULL);
2095 } else {
2096 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2097 num_bytes, parent, root_objectid,
2098 owner, offset, 0,
2099 BTRFS_ADD_DELAYED_REF);
2100 }
2101 return ret;
2102 }
2103
2104 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105 struct btrfs_fs_info *fs_info,
2106 struct btrfs_delayed_ref_node *node,
2107 u64 parent, u64 root_objectid,
2108 u64 owner, u64 offset, int refs_to_add,
2109 struct btrfs_delayed_extent_op *extent_op)
2110 {
2111 struct btrfs_path *path;
2112 struct extent_buffer *leaf;
2113 struct btrfs_extent_item *item;
2114 struct btrfs_key key;
2115 u64 bytenr = node->bytenr;
2116 u64 num_bytes = node->num_bytes;
2117 u64 refs;
2118 int ret;
2119
2120 path = btrfs_alloc_path();
2121 if (!path)
2122 return -ENOMEM;
2123
2124 path->reada = READA_FORWARD;
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
2127 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2128 num_bytes, parent, root_objectid,
2129 owner, offset,
2130 refs_to_add, extent_op);
2131 if ((ret < 0 && ret != -EAGAIN) || !ret)
2132 goto out;
2133
2134 /*
2135 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 * inline extent ref, so just update the reference count and add a
2137 * normal backref.
2138 */
2139 leaf = path->nodes[0];
2140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2141 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 refs = btrfs_extent_refs(leaf, item);
2143 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 if (extent_op)
2145 __run_delayed_extent_op(extent_op, leaf, item);
2146
2147 btrfs_mark_buffer_dirty(leaf);
2148 btrfs_release_path(path);
2149
2150 path->reada = READA_FORWARD;
2151 path->leave_spinning = 1;
2152 /* now insert the actual backref */
2153 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2154 root_objectid, owner, offset, refs_to_add);
2155 if (ret)
2156 btrfs_abort_transaction(trans, ret);
2157 out:
2158 btrfs_free_path(path);
2159 return ret;
2160 }
2161
2162 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2163 struct btrfs_fs_info *fs_info,
2164 struct btrfs_delayed_ref_node *node,
2165 struct btrfs_delayed_extent_op *extent_op,
2166 int insert_reserved)
2167 {
2168 int ret = 0;
2169 struct btrfs_delayed_data_ref *ref;
2170 struct btrfs_key ins;
2171 u64 parent = 0;
2172 u64 ref_root = 0;
2173 u64 flags = 0;
2174
2175 ins.objectid = node->bytenr;
2176 ins.offset = node->num_bytes;
2177 ins.type = BTRFS_EXTENT_ITEM_KEY;
2178
2179 ref = btrfs_delayed_node_to_data_ref(node);
2180 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2181
2182 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183 parent = ref->parent;
2184 ref_root = ref->root;
2185
2186 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2187 if (extent_op)
2188 flags |= extent_op->flags_to_set;
2189 ret = alloc_reserved_file_extent(trans, fs_info,
2190 parent, ref_root, flags,
2191 ref->objectid, ref->offset,
2192 &ins, node->ref_mod);
2193 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2194 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2195 ref_root, ref->objectid,
2196 ref->offset, node->ref_mod,
2197 extent_op);
2198 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2199 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2200 ref_root, ref->objectid,
2201 ref->offset, node->ref_mod,
2202 extent_op);
2203 } else {
2204 BUG();
2205 }
2206 return ret;
2207 }
2208
2209 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2210 struct extent_buffer *leaf,
2211 struct btrfs_extent_item *ei)
2212 {
2213 u64 flags = btrfs_extent_flags(leaf, ei);
2214 if (extent_op->update_flags) {
2215 flags |= extent_op->flags_to_set;
2216 btrfs_set_extent_flags(leaf, ei, flags);
2217 }
2218
2219 if (extent_op->update_key) {
2220 struct btrfs_tree_block_info *bi;
2221 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2222 bi = (struct btrfs_tree_block_info *)(ei + 1);
2223 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2224 }
2225 }
2226
2227 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2228 struct btrfs_fs_info *fs_info,
2229 struct btrfs_delayed_ref_node *node,
2230 struct btrfs_delayed_extent_op *extent_op)
2231 {
2232 struct btrfs_key key;
2233 struct btrfs_path *path;
2234 struct btrfs_extent_item *ei;
2235 struct extent_buffer *leaf;
2236 u32 item_size;
2237 int ret;
2238 int err = 0;
2239 int metadata = !extent_op->is_data;
2240
2241 if (trans->aborted)
2242 return 0;
2243
2244 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2245 metadata = 0;
2246
2247 path = btrfs_alloc_path();
2248 if (!path)
2249 return -ENOMEM;
2250
2251 key.objectid = node->bytenr;
2252
2253 if (metadata) {
2254 key.type = BTRFS_METADATA_ITEM_KEY;
2255 key.offset = extent_op->level;
2256 } else {
2257 key.type = BTRFS_EXTENT_ITEM_KEY;
2258 key.offset = node->num_bytes;
2259 }
2260
2261 again:
2262 path->reada = READA_FORWARD;
2263 path->leave_spinning = 1;
2264 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2265 if (ret < 0) {
2266 err = ret;
2267 goto out;
2268 }
2269 if (ret > 0) {
2270 if (metadata) {
2271 if (path->slots[0] > 0) {
2272 path->slots[0]--;
2273 btrfs_item_key_to_cpu(path->nodes[0], &key,
2274 path->slots[0]);
2275 if (key.objectid == node->bytenr &&
2276 key.type == BTRFS_EXTENT_ITEM_KEY &&
2277 key.offset == node->num_bytes)
2278 ret = 0;
2279 }
2280 if (ret > 0) {
2281 btrfs_release_path(path);
2282 metadata = 0;
2283
2284 key.objectid = node->bytenr;
2285 key.offset = node->num_bytes;
2286 key.type = BTRFS_EXTENT_ITEM_KEY;
2287 goto again;
2288 }
2289 } else {
2290 err = -EIO;
2291 goto out;
2292 }
2293 }
2294
2295 leaf = path->nodes[0];
2296 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2297 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2298 if (item_size < sizeof(*ei)) {
2299 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2300 if (ret < 0) {
2301 err = ret;
2302 goto out;
2303 }
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2306 }
2307 #endif
2308 BUG_ON(item_size < sizeof(*ei));
2309 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2310 __run_delayed_extent_op(extent_op, leaf, ei);
2311
2312 btrfs_mark_buffer_dirty(leaf);
2313 out:
2314 btrfs_free_path(path);
2315 return err;
2316 }
2317
2318 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2319 struct btrfs_fs_info *fs_info,
2320 struct btrfs_delayed_ref_node *node,
2321 struct btrfs_delayed_extent_op *extent_op,
2322 int insert_reserved)
2323 {
2324 int ret = 0;
2325 struct btrfs_delayed_tree_ref *ref;
2326 struct btrfs_key ins;
2327 u64 parent = 0;
2328 u64 ref_root = 0;
2329 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2330
2331 ref = btrfs_delayed_node_to_tree_ref(node);
2332 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2333
2334 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2335 parent = ref->parent;
2336 ref_root = ref->root;
2337
2338 ins.objectid = node->bytenr;
2339 if (skinny_metadata) {
2340 ins.offset = ref->level;
2341 ins.type = BTRFS_METADATA_ITEM_KEY;
2342 } else {
2343 ins.offset = node->num_bytes;
2344 ins.type = BTRFS_EXTENT_ITEM_KEY;
2345 }
2346
2347 if (node->ref_mod != 1) {
2348 btrfs_err(fs_info,
2349 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2350 node->bytenr, node->ref_mod, node->action, ref_root,
2351 parent);
2352 return -EIO;
2353 }
2354 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2355 BUG_ON(!extent_op || !extent_op->update_flags);
2356 ret = alloc_reserved_tree_block(trans, fs_info,
2357 parent, ref_root,
2358 extent_op->flags_to_set,
2359 &extent_op->key,
2360 ref->level, &ins);
2361 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2362 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2363 parent, ref_root,
2364 ref->level, 0, 1,
2365 extent_op);
2366 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2367 ret = __btrfs_free_extent(trans, fs_info, node,
2368 parent, ref_root,
2369 ref->level, 0, 1, extent_op);
2370 } else {
2371 BUG();
2372 }
2373 return ret;
2374 }
2375
2376 /* helper function to actually process a single delayed ref entry */
2377 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2378 struct btrfs_fs_info *fs_info,
2379 struct btrfs_delayed_ref_node *node,
2380 struct btrfs_delayed_extent_op *extent_op,
2381 int insert_reserved)
2382 {
2383 int ret = 0;
2384
2385 if (trans->aborted) {
2386 if (insert_reserved)
2387 btrfs_pin_extent(fs_info, node->bytenr,
2388 node->num_bytes, 1);
2389 return 0;
2390 }
2391
2392 if (btrfs_delayed_ref_is_head(node)) {
2393 struct btrfs_delayed_ref_head *head;
2394 /*
2395 * we've hit the end of the chain and we were supposed
2396 * to insert this extent into the tree. But, it got
2397 * deleted before we ever needed to insert it, so all
2398 * we have to do is clean up the accounting
2399 */
2400 BUG_ON(extent_op);
2401 head = btrfs_delayed_node_to_head(node);
2402 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2403
2404 if (insert_reserved) {
2405 btrfs_pin_extent(fs_info, node->bytenr,
2406 node->num_bytes, 1);
2407 if (head->is_data) {
2408 ret = btrfs_del_csums(trans, fs_info,
2409 node->bytenr,
2410 node->num_bytes);
2411 }
2412 }
2413
2414 /* Also free its reserved qgroup space */
2415 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2416 head->qgroup_reserved);
2417 return ret;
2418 }
2419
2420 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2421 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2422 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2423 insert_reserved);
2424 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2425 node->type == BTRFS_SHARED_DATA_REF_KEY)
2426 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2427 insert_reserved);
2428 else
2429 BUG();
2430 return ret;
2431 }
2432
2433 static inline struct btrfs_delayed_ref_node *
2434 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2435 {
2436 struct btrfs_delayed_ref_node *ref;
2437
2438 if (list_empty(&head->ref_list))
2439 return NULL;
2440
2441 /*
2442 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2443 * This is to prevent a ref count from going down to zero, which deletes
2444 * the extent item from the extent tree, when there still are references
2445 * to add, which would fail because they would not find the extent item.
2446 */
2447 if (!list_empty(&head->ref_add_list))
2448 return list_first_entry(&head->ref_add_list,
2449 struct btrfs_delayed_ref_node, add_list);
2450
2451 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2452 list);
2453 ASSERT(list_empty(&ref->add_list));
2454 return ref;
2455 }
2456
2457 /*
2458 * Returns 0 on success or if called with an already aborted transaction.
2459 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2460 */
2461 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2462 struct btrfs_fs_info *fs_info,
2463 unsigned long nr)
2464 {
2465 struct btrfs_delayed_ref_root *delayed_refs;
2466 struct btrfs_delayed_ref_node *ref;
2467 struct btrfs_delayed_ref_head *locked_ref = NULL;
2468 struct btrfs_delayed_extent_op *extent_op;
2469 ktime_t start = ktime_get();
2470 int ret;
2471 unsigned long count = 0;
2472 unsigned long actual_count = 0;
2473 int must_insert_reserved = 0;
2474
2475 delayed_refs = &trans->transaction->delayed_refs;
2476 while (1) {
2477 if (!locked_ref) {
2478 if (count >= nr)
2479 break;
2480
2481 spin_lock(&delayed_refs->lock);
2482 locked_ref = btrfs_select_ref_head(trans);
2483 if (!locked_ref) {
2484 spin_unlock(&delayed_refs->lock);
2485 break;
2486 }
2487
2488 /* grab the lock that says we are going to process
2489 * all the refs for this head */
2490 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2491 spin_unlock(&delayed_refs->lock);
2492 /*
2493 * we may have dropped the spin lock to get the head
2494 * mutex lock, and that might have given someone else
2495 * time to free the head. If that's true, it has been
2496 * removed from our list and we can move on.
2497 */
2498 if (ret == -EAGAIN) {
2499 locked_ref = NULL;
2500 count++;
2501 continue;
2502 }
2503 }
2504
2505 /*
2506 * We need to try and merge add/drops of the same ref since we
2507 * can run into issues with relocate dropping the implicit ref
2508 * and then it being added back again before the drop can
2509 * finish. If we merged anything we need to re-loop so we can
2510 * get a good ref.
2511 * Or we can get node references of the same type that weren't
2512 * merged when created due to bumps in the tree mod seq, and
2513 * we need to merge them to prevent adding an inline extent
2514 * backref before dropping it (triggering a BUG_ON at
2515 * insert_inline_extent_backref()).
2516 */
2517 spin_lock(&locked_ref->lock);
2518 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2519 locked_ref);
2520
2521 /*
2522 * locked_ref is the head node, so we have to go one
2523 * node back for any delayed ref updates
2524 */
2525 ref = select_delayed_ref(locked_ref);
2526
2527 if (ref && ref->seq &&
2528 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2529 spin_unlock(&locked_ref->lock);
2530 spin_lock(&delayed_refs->lock);
2531 locked_ref->processing = 0;
2532 delayed_refs->num_heads_ready++;
2533 spin_unlock(&delayed_refs->lock);
2534 btrfs_delayed_ref_unlock(locked_ref);
2535 locked_ref = NULL;
2536 cond_resched();
2537 count++;
2538 continue;
2539 }
2540
2541 /*
2542 * record the must insert reserved flag before we
2543 * drop the spin lock.
2544 */
2545 must_insert_reserved = locked_ref->must_insert_reserved;
2546 locked_ref->must_insert_reserved = 0;
2547
2548 extent_op = locked_ref->extent_op;
2549 locked_ref->extent_op = NULL;
2550
2551 if (!ref) {
2552
2553
2554 /* All delayed refs have been processed, Go ahead
2555 * and send the head node to run_one_delayed_ref,
2556 * so that any accounting fixes can happen
2557 */
2558 ref = &locked_ref->node;
2559
2560 if (extent_op && must_insert_reserved) {
2561 btrfs_free_delayed_extent_op(extent_op);
2562 extent_op = NULL;
2563 }
2564
2565 if (extent_op) {
2566 spin_unlock(&locked_ref->lock);
2567 ret = run_delayed_extent_op(trans, fs_info,
2568 ref, extent_op);
2569 btrfs_free_delayed_extent_op(extent_op);
2570
2571 if (ret) {
2572 /*
2573 * Need to reset must_insert_reserved if
2574 * there was an error so the abort stuff
2575 * can cleanup the reserved space
2576 * properly.
2577 */
2578 if (must_insert_reserved)
2579 locked_ref->must_insert_reserved = 1;
2580 spin_lock(&delayed_refs->lock);
2581 locked_ref->processing = 0;
2582 delayed_refs->num_heads_ready++;
2583 spin_unlock(&delayed_refs->lock);
2584 btrfs_debug(fs_info,
2585 "run_delayed_extent_op returned %d",
2586 ret);
2587 btrfs_delayed_ref_unlock(locked_ref);
2588 return ret;
2589 }
2590 continue;
2591 }
2592
2593 /*
2594 * Need to drop our head ref lock and re-acquire the
2595 * delayed ref lock and then re-check to make sure
2596 * nobody got added.
2597 */
2598 spin_unlock(&locked_ref->lock);
2599 spin_lock(&delayed_refs->lock);
2600 spin_lock(&locked_ref->lock);
2601 if (!list_empty(&locked_ref->ref_list) ||
2602 locked_ref->extent_op) {
2603 spin_unlock(&locked_ref->lock);
2604 spin_unlock(&delayed_refs->lock);
2605 continue;
2606 }
2607 ref->in_tree = 0;
2608 delayed_refs->num_heads--;
2609 rb_erase(&locked_ref->href_node,
2610 &delayed_refs->href_root);
2611 spin_unlock(&delayed_refs->lock);
2612 } else {
2613 actual_count++;
2614 ref->in_tree = 0;
2615 list_del(&ref->list);
2616 if (!list_empty(&ref->add_list))
2617 list_del(&ref->add_list);
2618 }
2619 atomic_dec(&delayed_refs->num_entries);
2620
2621 if (!btrfs_delayed_ref_is_head(ref)) {
2622 /*
2623 * when we play the delayed ref, also correct the
2624 * ref_mod on head
2625 */
2626 switch (ref->action) {
2627 case BTRFS_ADD_DELAYED_REF:
2628 case BTRFS_ADD_DELAYED_EXTENT:
2629 locked_ref->node.ref_mod -= ref->ref_mod;
2630 break;
2631 case BTRFS_DROP_DELAYED_REF:
2632 locked_ref->node.ref_mod += ref->ref_mod;
2633 break;
2634 default:
2635 WARN_ON(1);
2636 }
2637 }
2638 spin_unlock(&locked_ref->lock);
2639
2640 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2641 must_insert_reserved);
2642
2643 btrfs_free_delayed_extent_op(extent_op);
2644 if (ret) {
2645 spin_lock(&delayed_refs->lock);
2646 locked_ref->processing = 0;
2647 delayed_refs->num_heads_ready++;
2648 spin_unlock(&delayed_refs->lock);
2649 btrfs_delayed_ref_unlock(locked_ref);
2650 btrfs_put_delayed_ref(ref);
2651 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652 ret);
2653 return ret;
2654 }
2655
2656 /*
2657 * If this node is a head, that means all the refs in this head
2658 * have been dealt with, and we will pick the next head to deal
2659 * with, so we must unlock the head and drop it from the cluster
2660 * list before we release it.
2661 */
2662 if (btrfs_delayed_ref_is_head(ref)) {
2663 if (locked_ref->is_data &&
2664 locked_ref->total_ref_mod < 0) {
2665 spin_lock(&delayed_refs->lock);
2666 delayed_refs->pending_csums -= ref->num_bytes;
2667 spin_unlock(&delayed_refs->lock);
2668 }
2669 btrfs_delayed_ref_unlock(locked_ref);
2670 locked_ref = NULL;
2671 }
2672 btrfs_put_delayed_ref(ref);
2673 count++;
2674 cond_resched();
2675 }
2676
2677 /*
2678 * We don't want to include ref heads since we can have empty ref heads
2679 * and those will drastically skew our runtime down since we just do
2680 * accounting, no actual extent tree updates.
2681 */
2682 if (actual_count > 0) {
2683 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2684 u64 avg;
2685
2686 /*
2687 * We weigh the current average higher than our current runtime
2688 * to avoid large swings in the average.
2689 */
2690 spin_lock(&delayed_refs->lock);
2691 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2692 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2693 spin_unlock(&delayed_refs->lock);
2694 }
2695 return 0;
2696 }
2697
2698 #ifdef SCRAMBLE_DELAYED_REFS
2699 /*
2700 * Normally delayed refs get processed in ascending bytenr order. This
2701 * correlates in most cases to the order added. To expose dependencies on this
2702 * order, we start to process the tree in the middle instead of the beginning
2703 */
2704 static u64 find_middle(struct rb_root *root)
2705 {
2706 struct rb_node *n = root->rb_node;
2707 struct btrfs_delayed_ref_node *entry;
2708 int alt = 1;
2709 u64 middle;
2710 u64 first = 0, last = 0;
2711
2712 n = rb_first(root);
2713 if (n) {
2714 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2715 first = entry->bytenr;
2716 }
2717 n = rb_last(root);
2718 if (n) {
2719 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2720 last = entry->bytenr;
2721 }
2722 n = root->rb_node;
2723
2724 while (n) {
2725 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2726 WARN_ON(!entry->in_tree);
2727
2728 middle = entry->bytenr;
2729
2730 if (alt)
2731 n = n->rb_left;
2732 else
2733 n = n->rb_right;
2734
2735 alt = 1 - alt;
2736 }
2737 return middle;
2738 }
2739 #endif
2740
2741 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2742 {
2743 u64 num_bytes;
2744
2745 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2746 sizeof(struct btrfs_extent_inline_ref));
2747 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2748 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2749
2750 /*
2751 * We don't ever fill up leaves all the way so multiply by 2 just to be
2752 * closer to what we're really going to want to use.
2753 */
2754 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2755 }
2756
2757 /*
2758 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2759 * would require to store the csums for that many bytes.
2760 */
2761 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2762 {
2763 u64 csum_size;
2764 u64 num_csums_per_leaf;
2765 u64 num_csums;
2766
2767 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2768 num_csums_per_leaf = div64_u64(csum_size,
2769 (u64)btrfs_super_csum_size(fs_info->super_copy));
2770 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2771 num_csums += num_csums_per_leaf - 1;
2772 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2773 return num_csums;
2774 }
2775
2776 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2777 struct btrfs_fs_info *fs_info)
2778 {
2779 struct btrfs_block_rsv *global_rsv;
2780 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2781 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2782 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2783 u64 num_bytes, num_dirty_bgs_bytes;
2784 int ret = 0;
2785
2786 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2787 num_heads = heads_to_leaves(fs_info, num_heads);
2788 if (num_heads > 1)
2789 num_bytes += (num_heads - 1) * fs_info->nodesize;
2790 num_bytes <<= 1;
2791 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2792 fs_info->nodesize;
2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2794 num_dirty_bgs);
2795 global_rsv = &fs_info->global_block_rsv;
2796
2797 /*
2798 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 * wiggle room since running delayed refs can create more delayed refs.
2800 */
2801 if (global_rsv->space_info->full) {
2802 num_dirty_bgs_bytes <<= 1;
2803 num_bytes <<= 1;
2804 }
2805
2806 spin_lock(&global_rsv->lock);
2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2808 ret = 1;
2809 spin_unlock(&global_rsv->lock);
2810 return ret;
2811 }
2812
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814 struct btrfs_fs_info *fs_info)
2815 {
2816 u64 num_entries =
2817 atomic_read(&trans->transaction->delayed_refs.num_entries);
2818 u64 avg_runtime;
2819 u64 val;
2820
2821 smp_mb();
2822 avg_runtime = fs_info->avg_delayed_ref_runtime;
2823 val = num_entries * avg_runtime;
2824 if (val >= NSEC_PER_SEC)
2825 return 1;
2826 if (val >= NSEC_PER_SEC / 2)
2827 return 2;
2828
2829 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2830 }
2831
2832 struct async_delayed_refs {
2833 struct btrfs_root *root;
2834 u64 transid;
2835 int count;
2836 int error;
2837 int sync;
2838 struct completion wait;
2839 struct btrfs_work work;
2840 };
2841
2842 static inline struct async_delayed_refs *
2843 to_async_delayed_refs(struct btrfs_work *work)
2844 {
2845 return container_of(work, struct async_delayed_refs, work);
2846 }
2847
2848 static void delayed_ref_async_start(struct btrfs_work *work)
2849 {
2850 struct async_delayed_refs *async = to_async_delayed_refs(work);
2851 struct btrfs_trans_handle *trans;
2852 struct btrfs_fs_info *fs_info = async->root->fs_info;
2853 int ret;
2854
2855 /* if the commit is already started, we don't need to wait here */
2856 if (btrfs_transaction_blocked(fs_info))
2857 goto done;
2858
2859 trans = btrfs_join_transaction(async->root);
2860 if (IS_ERR(trans)) {
2861 async->error = PTR_ERR(trans);
2862 goto done;
2863 }
2864
2865 /*
2866 * trans->sync means that when we call end_transaction, we won't
2867 * wait on delayed refs
2868 */
2869 trans->sync = true;
2870
2871 /* Don't bother flushing if we got into a different transaction */
2872 if (trans->transid > async->transid)
2873 goto end;
2874
2875 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2876 if (ret)
2877 async->error = ret;
2878 end:
2879 ret = btrfs_end_transaction(trans);
2880 if (ret && !async->error)
2881 async->error = ret;
2882 done:
2883 if (async->sync)
2884 complete(&async->wait);
2885 else
2886 kfree(async);
2887 }
2888
2889 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2890 unsigned long count, u64 transid, int wait)
2891 {
2892 struct async_delayed_refs *async;
2893 int ret;
2894
2895 async = kmalloc(sizeof(*async), GFP_NOFS);
2896 if (!async)
2897 return -ENOMEM;
2898
2899 async->root = fs_info->tree_root;
2900 async->count = count;
2901 async->error = 0;
2902 async->transid = transid;
2903 if (wait)
2904 async->sync = 1;
2905 else
2906 async->sync = 0;
2907 init_completion(&async->wait);
2908
2909 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2910 delayed_ref_async_start, NULL, NULL);
2911
2912 btrfs_queue_work(fs_info->extent_workers, &async->work);
2913
2914 if (wait) {
2915 wait_for_completion(&async->wait);
2916 ret = async->error;
2917 kfree(async);
2918 return ret;
2919 }
2920 return 0;
2921 }
2922
2923 /*
2924 * this starts processing the delayed reference count updates and
2925 * extent insertions we have queued up so far. count can be
2926 * 0, which means to process everything in the tree at the start
2927 * of the run (but not newly added entries), or it can be some target
2928 * number you'd like to process.
2929 *
2930 * Returns 0 on success or if called with an aborted transaction
2931 * Returns <0 on error and aborts the transaction
2932 */
2933 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2934 struct btrfs_fs_info *fs_info, unsigned long count)
2935 {
2936 struct rb_node *node;
2937 struct btrfs_delayed_ref_root *delayed_refs;
2938 struct btrfs_delayed_ref_head *head;
2939 int ret;
2940 int run_all = count == (unsigned long)-1;
2941 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2942
2943 /* We'll clean this up in btrfs_cleanup_transaction */
2944 if (trans->aborted)
2945 return 0;
2946
2947 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2948 return 0;
2949
2950 delayed_refs = &trans->transaction->delayed_refs;
2951 if (count == 0)
2952 count = atomic_read(&delayed_refs->num_entries) * 2;
2953
2954 again:
2955 #ifdef SCRAMBLE_DELAYED_REFS
2956 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2957 #endif
2958 trans->can_flush_pending_bgs = false;
2959 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2960 if (ret < 0) {
2961 btrfs_abort_transaction(trans, ret);
2962 return ret;
2963 }
2964
2965 if (run_all) {
2966 if (!list_empty(&trans->new_bgs))
2967 btrfs_create_pending_block_groups(trans, fs_info);
2968
2969 spin_lock(&delayed_refs->lock);
2970 node = rb_first(&delayed_refs->href_root);
2971 if (!node) {
2972 spin_unlock(&delayed_refs->lock);
2973 goto out;
2974 }
2975
2976 while (node) {
2977 head = rb_entry(node, struct btrfs_delayed_ref_head,
2978 href_node);
2979 if (btrfs_delayed_ref_is_head(&head->node)) {
2980 struct btrfs_delayed_ref_node *ref;
2981
2982 ref = &head->node;
2983 atomic_inc(&ref->refs);
2984
2985 spin_unlock(&delayed_refs->lock);
2986 /*
2987 * Mutex was contended, block until it's
2988 * released and try again
2989 */
2990 mutex_lock(&head->mutex);
2991 mutex_unlock(&head->mutex);
2992
2993 btrfs_put_delayed_ref(ref);
2994 cond_resched();
2995 goto again;
2996 } else {
2997 WARN_ON(1);
2998 }
2999 node = rb_next(node);
3000 }
3001 spin_unlock(&delayed_refs->lock);
3002 cond_resched();
3003 goto again;
3004 }
3005 out:
3006 assert_qgroups_uptodate(trans);
3007 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3008 return 0;
3009 }
3010
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012 struct btrfs_fs_info *fs_info,
3013 u64 bytenr, u64 num_bytes, u64 flags,
3014 int level, int is_data)
3015 {
3016 struct btrfs_delayed_extent_op *extent_op;
3017 int ret;
3018
3019 extent_op = btrfs_alloc_delayed_extent_op();
3020 if (!extent_op)
3021 return -ENOMEM;
3022
3023 extent_op->flags_to_set = flags;
3024 extent_op->update_flags = true;
3025 extent_op->update_key = false;
3026 extent_op->is_data = is_data ? true : false;
3027 extent_op->level = level;
3028
3029 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3030 num_bytes, extent_op);
3031 if (ret)
3032 btrfs_free_delayed_extent_op(extent_op);
3033 return ret;
3034 }
3035
3036 static noinline int check_delayed_ref(struct btrfs_root *root,
3037 struct btrfs_path *path,
3038 u64 objectid, u64 offset, u64 bytenr)
3039 {
3040 struct btrfs_delayed_ref_head *head;
3041 struct btrfs_delayed_ref_node *ref;
3042 struct btrfs_delayed_data_ref *data_ref;
3043 struct btrfs_delayed_ref_root *delayed_refs;
3044 struct btrfs_transaction *cur_trans;
3045 int ret = 0;
3046
3047 cur_trans = root->fs_info->running_transaction;
3048 if (!cur_trans)
3049 return 0;
3050
3051 delayed_refs = &cur_trans->delayed_refs;
3052 spin_lock(&delayed_refs->lock);
3053 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3054 if (!head) {
3055 spin_unlock(&delayed_refs->lock);
3056 return 0;
3057 }
3058
3059 if (!mutex_trylock(&head->mutex)) {
3060 atomic_inc(&head->node.refs);
3061 spin_unlock(&delayed_refs->lock);
3062
3063 btrfs_release_path(path);
3064
3065 /*
3066 * Mutex was contended, block until it's released and let
3067 * caller try again
3068 */
3069 mutex_lock(&head->mutex);
3070 mutex_unlock(&head->mutex);
3071 btrfs_put_delayed_ref(&head->node);
3072 return -EAGAIN;
3073 }
3074 spin_unlock(&delayed_refs->lock);
3075
3076 spin_lock(&head->lock);
3077 list_for_each_entry(ref, &head->ref_list, list) {
3078 /* If it's a shared ref we know a cross reference exists */
3079 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3080 ret = 1;
3081 break;
3082 }
3083
3084 data_ref = btrfs_delayed_node_to_data_ref(ref);
3085
3086 /*
3087 * If our ref doesn't match the one we're currently looking at
3088 * then we have a cross reference.
3089 */
3090 if (data_ref->root != root->root_key.objectid ||
3091 data_ref->objectid != objectid ||
3092 data_ref->offset != offset) {
3093 ret = 1;
3094 break;
3095 }
3096 }
3097 spin_unlock(&head->lock);
3098 mutex_unlock(&head->mutex);
3099 return ret;
3100 }
3101
3102 static noinline int check_committed_ref(struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 u64 objectid, u64 offset, u64 bytenr)
3105 {
3106 struct btrfs_fs_info *fs_info = root->fs_info;
3107 struct btrfs_root *extent_root = fs_info->extent_root;
3108 struct extent_buffer *leaf;
3109 struct btrfs_extent_data_ref *ref;
3110 struct btrfs_extent_inline_ref *iref;
3111 struct btrfs_extent_item *ei;
3112 struct btrfs_key key;
3113 u32 item_size;
3114 int ret;
3115
3116 key.objectid = bytenr;
3117 key.offset = (u64)-1;
3118 key.type = BTRFS_EXTENT_ITEM_KEY;
3119
3120 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3121 if (ret < 0)
3122 goto out;
3123 BUG_ON(ret == 0); /* Corruption */
3124
3125 ret = -ENOENT;
3126 if (path->slots[0] == 0)
3127 goto out;
3128
3129 path->slots[0]--;
3130 leaf = path->nodes[0];
3131 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3132
3133 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3134 goto out;
3135
3136 ret = 1;
3137 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3139 if (item_size < sizeof(*ei)) {
3140 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3141 goto out;
3142 }
3143 #endif
3144 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3145
3146 if (item_size != sizeof(*ei) +
3147 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3148 goto out;
3149
3150 if (btrfs_extent_generation(leaf, ei) <=
3151 btrfs_root_last_snapshot(&root->root_item))
3152 goto out;
3153
3154 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3155 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3156 BTRFS_EXTENT_DATA_REF_KEY)
3157 goto out;
3158
3159 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3160 if (btrfs_extent_refs(leaf, ei) !=
3161 btrfs_extent_data_ref_count(leaf, ref) ||
3162 btrfs_extent_data_ref_root(leaf, ref) !=
3163 root->root_key.objectid ||
3164 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3165 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3166 goto out;
3167
3168 ret = 0;
3169 out:
3170 return ret;
3171 }
3172
3173 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3174 u64 bytenr)
3175 {
3176 struct btrfs_path *path;
3177 int ret;
3178 int ret2;
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOENT;
3183
3184 do {
3185 ret = check_committed_ref(root, path, objectid,
3186 offset, bytenr);
3187 if (ret && ret != -ENOENT)
3188 goto out;
3189
3190 ret2 = check_delayed_ref(root, path, objectid,
3191 offset, bytenr);
3192 } while (ret2 == -EAGAIN);
3193
3194 if (ret2 && ret2 != -ENOENT) {
3195 ret = ret2;
3196 goto out;
3197 }
3198
3199 if (ret != -ENOENT || ret2 != -ENOENT)
3200 ret = 0;
3201 out:
3202 btrfs_free_path(path);
3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 WARN_ON(ret > 0);
3205 return ret;
3206 }
3207
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209 struct btrfs_root *root,
3210 struct extent_buffer *buf,
3211 int full_backref, int inc)
3212 {
3213 struct btrfs_fs_info *fs_info = root->fs_info;
3214 u64 bytenr;
3215 u64 num_bytes;
3216 u64 parent;
3217 u64 ref_root;
3218 u32 nritems;
3219 struct btrfs_key key;
3220 struct btrfs_file_extent_item *fi;
3221 int i;
3222 int level;
3223 int ret = 0;
3224 int (*process_func)(struct btrfs_trans_handle *,
3225 struct btrfs_fs_info *,
3226 u64, u64, u64, u64, u64, u64);
3227
3228
3229 if (btrfs_is_testing(fs_info))
3230 return 0;
3231
3232 ref_root = btrfs_header_owner(buf);
3233 nritems = btrfs_header_nritems(buf);
3234 level = btrfs_header_level(buf);
3235
3236 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3237 return 0;
3238
3239 if (inc)
3240 process_func = btrfs_inc_extent_ref;
3241 else
3242 process_func = btrfs_free_extent;
3243
3244 if (full_backref)
3245 parent = buf->start;
3246 else
3247 parent = 0;
3248
3249 for (i = 0; i < nritems; i++) {
3250 if (level == 0) {
3251 btrfs_item_key_to_cpu(buf, &key, i);
3252 if (key.type != BTRFS_EXTENT_DATA_KEY)
3253 continue;
3254 fi = btrfs_item_ptr(buf, i,
3255 struct btrfs_file_extent_item);
3256 if (btrfs_file_extent_type(buf, fi) ==
3257 BTRFS_FILE_EXTENT_INLINE)
3258 continue;
3259 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3260 if (bytenr == 0)
3261 continue;
3262
3263 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3264 key.offset -= btrfs_file_extent_offset(buf, fi);
3265 ret = process_func(trans, fs_info, bytenr, num_bytes,
3266 parent, ref_root, key.objectid,
3267 key.offset);
3268 if (ret)
3269 goto fail;
3270 } else {
3271 bytenr = btrfs_node_blockptr(buf, i);
3272 num_bytes = fs_info->nodesize;
3273 ret = process_func(trans, fs_info, bytenr, num_bytes,
3274 parent, ref_root, level - 1, 0);
3275 if (ret)
3276 goto fail;
3277 }
3278 }
3279 return 0;
3280 fail:
3281 return ret;
3282 }
3283
3284 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3285 struct extent_buffer *buf, int full_backref)
3286 {
3287 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3288 }
3289
3290 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3291 struct extent_buffer *buf, int full_backref)
3292 {
3293 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3294 }
3295
3296 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3297 struct btrfs_fs_info *fs_info,
3298 struct btrfs_path *path,
3299 struct btrfs_block_group_cache *cache)
3300 {
3301 int ret;
3302 struct btrfs_root *extent_root = fs_info->extent_root;
3303 unsigned long bi;
3304 struct extent_buffer *leaf;
3305
3306 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3307 if (ret) {
3308 if (ret > 0)
3309 ret = -ENOENT;
3310 goto fail;
3311 }
3312
3313 leaf = path->nodes[0];
3314 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3315 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3316 btrfs_mark_buffer_dirty(leaf);
3317 fail:
3318 btrfs_release_path(path);
3319 return ret;
3320
3321 }
3322
3323 static struct btrfs_block_group_cache *
3324 next_block_group(struct btrfs_fs_info *fs_info,
3325 struct btrfs_block_group_cache *cache)
3326 {
3327 struct rb_node *node;
3328
3329 spin_lock(&fs_info->block_group_cache_lock);
3330
3331 /* If our block group was removed, we need a full search. */
3332 if (RB_EMPTY_NODE(&cache->cache_node)) {
3333 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3334
3335 spin_unlock(&fs_info->block_group_cache_lock);
3336 btrfs_put_block_group(cache);
3337 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3338 }
3339 node = rb_next(&cache->cache_node);
3340 btrfs_put_block_group(cache);
3341 if (node) {
3342 cache = rb_entry(node, struct btrfs_block_group_cache,
3343 cache_node);
3344 btrfs_get_block_group(cache);
3345 } else
3346 cache = NULL;
3347 spin_unlock(&fs_info->block_group_cache_lock);
3348 return cache;
3349 }
3350
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 struct btrfs_trans_handle *trans,
3353 struct btrfs_path *path)
3354 {
3355 struct btrfs_fs_info *fs_info = block_group->fs_info;
3356 struct btrfs_root *root = fs_info->tree_root;
3357 struct inode *inode = NULL;
3358 u64 alloc_hint = 0;
3359 int dcs = BTRFS_DC_ERROR;
3360 u64 num_pages = 0;
3361 int retries = 0;
3362 int ret = 0;
3363
3364 /*
3365 * If this block group is smaller than 100 megs don't bother caching the
3366 * block group.
3367 */
3368 if (block_group->key.offset < (100 * SZ_1M)) {
3369 spin_lock(&block_group->lock);
3370 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3371 spin_unlock(&block_group->lock);
3372 return 0;
3373 }
3374
3375 if (trans->aborted)
3376 return 0;
3377 again:
3378 inode = lookup_free_space_inode(fs_info, block_group, path);
3379 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3380 ret = PTR_ERR(inode);
3381 btrfs_release_path(path);
3382 goto out;
3383 }
3384
3385 if (IS_ERR(inode)) {
3386 BUG_ON(retries);
3387 retries++;
3388
3389 if (block_group->ro)
3390 goto out_free;
3391
3392 ret = create_free_space_inode(fs_info, trans, block_group,
3393 path);
3394 if (ret)
3395 goto out_free;
3396 goto again;
3397 }
3398
3399 /* We've already setup this transaction, go ahead and exit */
3400 if (block_group->cache_generation == trans->transid &&
3401 i_size_read(inode)) {
3402 dcs = BTRFS_DC_SETUP;
3403 goto out_put;
3404 }
3405
3406 /*
3407 * We want to set the generation to 0, that way if anything goes wrong
3408 * from here on out we know not to trust this cache when we load up next
3409 * time.
3410 */
3411 BTRFS_I(inode)->generation = 0;
3412 ret = btrfs_update_inode(trans, root, inode);
3413 if (ret) {
3414 /*
3415 * So theoretically we could recover from this, simply set the
3416 * super cache generation to 0 so we know to invalidate the
3417 * cache, but then we'd have to keep track of the block groups
3418 * that fail this way so we know we _have_ to reset this cache
3419 * before the next commit or risk reading stale cache. So to
3420 * limit our exposure to horrible edge cases lets just abort the
3421 * transaction, this only happens in really bad situations
3422 * anyway.
3423 */
3424 btrfs_abort_transaction(trans, ret);
3425 goto out_put;
3426 }
3427 WARN_ON(ret);
3428
3429 if (i_size_read(inode) > 0) {
3430 ret = btrfs_check_trunc_cache_free_space(fs_info,
3431 &fs_info->global_block_rsv);
3432 if (ret)
3433 goto out_put;
3434
3435 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3436 if (ret)
3437 goto out_put;
3438 }
3439
3440 spin_lock(&block_group->lock);
3441 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3442 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3443 /*
3444 * don't bother trying to write stuff out _if_
3445 * a) we're not cached,
3446 * b) we're with nospace_cache mount option.
3447 */
3448 dcs = BTRFS_DC_WRITTEN;
3449 spin_unlock(&block_group->lock);
3450 goto out_put;
3451 }
3452 spin_unlock(&block_group->lock);
3453
3454 /*
3455 * We hit an ENOSPC when setting up the cache in this transaction, just
3456 * skip doing the setup, we've already cleared the cache so we're safe.
3457 */
3458 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3459 ret = -ENOSPC;
3460 goto out_put;
3461 }
3462
3463 /*
3464 * Try to preallocate enough space based on how big the block group is.
3465 * Keep in mind this has to include any pinned space which could end up
3466 * taking up quite a bit since it's not folded into the other space
3467 * cache.
3468 */
3469 num_pages = div_u64(block_group->key.offset, SZ_256M);
3470 if (!num_pages)
3471 num_pages = 1;
3472
3473 num_pages *= 16;
3474 num_pages *= PAGE_SIZE;
3475
3476 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3477 if (ret)
3478 goto out_put;
3479
3480 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3481 num_pages, num_pages,
3482 &alloc_hint);
3483 /*
3484 * Our cache requires contiguous chunks so that we don't modify a bunch
3485 * of metadata or split extents when writing the cache out, which means
3486 * we can enospc if we are heavily fragmented in addition to just normal
3487 * out of space conditions. So if we hit this just skip setting up any
3488 * other block groups for this transaction, maybe we'll unpin enough
3489 * space the next time around.
3490 */
3491 if (!ret)
3492 dcs = BTRFS_DC_SETUP;
3493 else if (ret == -ENOSPC)
3494 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3495
3496 out_put:
3497 iput(inode);
3498 out_free:
3499 btrfs_release_path(path);
3500 out:
3501 spin_lock(&block_group->lock);
3502 if (!ret && dcs == BTRFS_DC_SETUP)
3503 block_group->cache_generation = trans->transid;
3504 block_group->disk_cache_state = dcs;
3505 spin_unlock(&block_group->lock);
3506
3507 return ret;
3508 }
3509
3510 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3511 struct btrfs_fs_info *fs_info)
3512 {
3513 struct btrfs_block_group_cache *cache, *tmp;
3514 struct btrfs_transaction *cur_trans = trans->transaction;
3515 struct btrfs_path *path;
3516
3517 if (list_empty(&cur_trans->dirty_bgs) ||
3518 !btrfs_test_opt(fs_info, SPACE_CACHE))
3519 return 0;
3520
3521 path = btrfs_alloc_path();
3522 if (!path)
3523 return -ENOMEM;
3524
3525 /* Could add new block groups, use _safe just in case */
3526 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3527 dirty_list) {
3528 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3529 cache_save_setup(cache, trans, path);
3530 }
3531
3532 btrfs_free_path(path);
3533 return 0;
3534 }
3535
3536 /*
3537 * transaction commit does final block group cache writeback during a
3538 * critical section where nothing is allowed to change the FS. This is
3539 * required in order for the cache to actually match the block group,
3540 * but can introduce a lot of latency into the commit.
3541 *
3542 * So, btrfs_start_dirty_block_groups is here to kick off block group
3543 * cache IO. There's a chance we'll have to redo some of it if the
3544 * block group changes again during the commit, but it greatly reduces
3545 * the commit latency by getting rid of the easy block groups while
3546 * we're still allowing others to join the commit.
3547 */
3548 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3549 struct btrfs_fs_info *fs_info)
3550 {
3551 struct btrfs_block_group_cache *cache;
3552 struct btrfs_transaction *cur_trans = trans->transaction;
3553 int ret = 0;
3554 int should_put;
3555 struct btrfs_path *path = NULL;
3556 LIST_HEAD(dirty);
3557 struct list_head *io = &cur_trans->io_bgs;
3558 int num_started = 0;
3559 int loops = 0;
3560
3561 spin_lock(&cur_trans->dirty_bgs_lock);
3562 if (list_empty(&cur_trans->dirty_bgs)) {
3563 spin_unlock(&cur_trans->dirty_bgs_lock);
3564 return 0;
3565 }
3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3567 spin_unlock(&cur_trans->dirty_bgs_lock);
3568
3569 again:
3570 /*
3571 * make sure all the block groups on our dirty list actually
3572 * exist
3573 */
3574 btrfs_create_pending_block_groups(trans, fs_info);
3575
3576 if (!path) {
3577 path = btrfs_alloc_path();
3578 if (!path)
3579 return -ENOMEM;
3580 }
3581
3582 /*
3583 * cache_write_mutex is here only to save us from balance or automatic
3584 * removal of empty block groups deleting this block group while we are
3585 * writing out the cache
3586 */
3587 mutex_lock(&trans->transaction->cache_write_mutex);
3588 while (!list_empty(&dirty)) {
3589 cache = list_first_entry(&dirty,
3590 struct btrfs_block_group_cache,
3591 dirty_list);
3592 /*
3593 * this can happen if something re-dirties a block
3594 * group that is already under IO. Just wait for it to
3595 * finish and then do it all again
3596 */
3597 if (!list_empty(&cache->io_list)) {
3598 list_del_init(&cache->io_list);
3599 btrfs_wait_cache_io(trans, cache, path);
3600 btrfs_put_block_group(cache);
3601 }
3602
3603
3604 /*
3605 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606 * if it should update the cache_state. Don't delete
3607 * until after we wait.
3608 *
3609 * Since we're not running in the commit critical section
3610 * we need the dirty_bgs_lock to protect from update_block_group
3611 */
3612 spin_lock(&cur_trans->dirty_bgs_lock);
3613 list_del_init(&cache->dirty_list);
3614 spin_unlock(&cur_trans->dirty_bgs_lock);
3615
3616 should_put = 1;
3617
3618 cache_save_setup(cache, trans, path);
3619
3620 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3621 cache->io_ctl.inode = NULL;
3622 ret = btrfs_write_out_cache(fs_info, trans,
3623 cache, path);
3624 if (ret == 0 && cache->io_ctl.inode) {
3625 num_started++;
3626 should_put = 0;
3627
3628 /*
3629 * the cache_write_mutex is protecting
3630 * the io_list
3631 */
3632 list_add_tail(&cache->io_list, io);
3633 } else {
3634 /*
3635 * if we failed to write the cache, the
3636 * generation will be bad and life goes on
3637 */
3638 ret = 0;
3639 }
3640 }
3641 if (!ret) {
3642 ret = write_one_cache_group(trans, fs_info,
3643 path, cache);
3644 /*
3645 * Our block group might still be attached to the list
3646 * of new block groups in the transaction handle of some
3647 * other task (struct btrfs_trans_handle->new_bgs). This
3648 * means its block group item isn't yet in the extent
3649 * tree. If this happens ignore the error, as we will
3650 * try again later in the critical section of the
3651 * transaction commit.
3652 */
3653 if (ret == -ENOENT) {
3654 ret = 0;
3655 spin_lock(&cur_trans->dirty_bgs_lock);
3656 if (list_empty(&cache->dirty_list)) {
3657 list_add_tail(&cache->dirty_list,
3658 &cur_trans->dirty_bgs);
3659 btrfs_get_block_group(cache);
3660 }
3661 spin_unlock(&cur_trans->dirty_bgs_lock);
3662 } else if (ret) {
3663 btrfs_abort_transaction(trans, ret);
3664 }
3665 }
3666
3667 /* if its not on the io list, we need to put the block group */
3668 if (should_put)
3669 btrfs_put_block_group(cache);
3670
3671 if (ret)
3672 break;
3673
3674 /*
3675 * Avoid blocking other tasks for too long. It might even save
3676 * us from writing caches for block groups that are going to be
3677 * removed.
3678 */
3679 mutex_unlock(&trans->transaction->cache_write_mutex);
3680 mutex_lock(&trans->transaction->cache_write_mutex);
3681 }
3682 mutex_unlock(&trans->transaction->cache_write_mutex);
3683
3684 /*
3685 * go through delayed refs for all the stuff we've just kicked off
3686 * and then loop back (just once)
3687 */
3688 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3689 if (!ret && loops == 0) {
3690 loops++;
3691 spin_lock(&cur_trans->dirty_bgs_lock);
3692 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3693 /*
3694 * dirty_bgs_lock protects us from concurrent block group
3695 * deletes too (not just cache_write_mutex).
3696 */
3697 if (!list_empty(&dirty)) {
3698 spin_unlock(&cur_trans->dirty_bgs_lock);
3699 goto again;
3700 }
3701 spin_unlock(&cur_trans->dirty_bgs_lock);
3702 } else if (ret < 0) {
3703 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3704 }
3705
3706 btrfs_free_path(path);
3707 return ret;
3708 }
3709
3710 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3711 struct btrfs_fs_info *fs_info)
3712 {
3713 struct btrfs_block_group_cache *cache;
3714 struct btrfs_transaction *cur_trans = trans->transaction;
3715 int ret = 0;
3716 int should_put;
3717 struct btrfs_path *path;
3718 struct list_head *io = &cur_trans->io_bgs;
3719 int num_started = 0;
3720
3721 path = btrfs_alloc_path();
3722 if (!path)
3723 return -ENOMEM;
3724
3725 /*
3726 * Even though we are in the critical section of the transaction commit,
3727 * we can still have concurrent tasks adding elements to this
3728 * transaction's list of dirty block groups. These tasks correspond to
3729 * endio free space workers started when writeback finishes for a
3730 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3731 * allocate new block groups as a result of COWing nodes of the root
3732 * tree when updating the free space inode. The writeback for the space
3733 * caches is triggered by an earlier call to
3734 * btrfs_start_dirty_block_groups() and iterations of the following
3735 * loop.
3736 * Also we want to do the cache_save_setup first and then run the
3737 * delayed refs to make sure we have the best chance at doing this all
3738 * in one shot.
3739 */
3740 spin_lock(&cur_trans->dirty_bgs_lock);
3741 while (!list_empty(&cur_trans->dirty_bgs)) {
3742 cache = list_first_entry(&cur_trans->dirty_bgs,
3743 struct btrfs_block_group_cache,
3744 dirty_list);
3745
3746 /*
3747 * this can happen if cache_save_setup re-dirties a block
3748 * group that is already under IO. Just wait for it to
3749 * finish and then do it all again
3750 */
3751 if (!list_empty(&cache->io_list)) {
3752 spin_unlock(&cur_trans->dirty_bgs_lock);
3753 list_del_init(&cache->io_list);
3754 btrfs_wait_cache_io(trans, cache, path);
3755 btrfs_put_block_group(cache);
3756 spin_lock(&cur_trans->dirty_bgs_lock);
3757 }
3758
3759 /*
3760 * don't remove from the dirty list until after we've waited
3761 * on any pending IO
3762 */
3763 list_del_init(&cache->dirty_list);
3764 spin_unlock(&cur_trans->dirty_bgs_lock);
3765 should_put = 1;
3766
3767 cache_save_setup(cache, trans, path);
3768
3769 if (!ret)
3770 ret = btrfs_run_delayed_refs(trans, fs_info,
3771 (unsigned long) -1);
3772
3773 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3774 cache->io_ctl.inode = NULL;
3775 ret = btrfs_write_out_cache(fs_info, trans,
3776 cache, path);
3777 if (ret == 0 && cache->io_ctl.inode) {
3778 num_started++;
3779 should_put = 0;
3780 list_add_tail(&cache->io_list, io);
3781 } else {
3782 /*
3783 * if we failed to write the cache, the
3784 * generation will be bad and life goes on
3785 */
3786 ret = 0;
3787 }
3788 }
3789 if (!ret) {
3790 ret = write_one_cache_group(trans, fs_info,
3791 path, cache);
3792 /*
3793 * One of the free space endio workers might have
3794 * created a new block group while updating a free space
3795 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3796 * and hasn't released its transaction handle yet, in
3797 * which case the new block group is still attached to
3798 * its transaction handle and its creation has not
3799 * finished yet (no block group item in the extent tree
3800 * yet, etc). If this is the case, wait for all free
3801 * space endio workers to finish and retry. This is a
3802 * a very rare case so no need for a more efficient and
3803 * complex approach.
3804 */
3805 if (ret == -ENOENT) {
3806 wait_event(cur_trans->writer_wait,
3807 atomic_read(&cur_trans->num_writers) == 1);
3808 ret = write_one_cache_group(trans, fs_info,
3809 path, cache);
3810 }
3811 if (ret)
3812 btrfs_abort_transaction(trans, ret);
3813 }
3814
3815 /* if its not on the io list, we need to put the block group */
3816 if (should_put)
3817 btrfs_put_block_group(cache);
3818 spin_lock(&cur_trans->dirty_bgs_lock);
3819 }
3820 spin_unlock(&cur_trans->dirty_bgs_lock);
3821
3822 while (!list_empty(io)) {
3823 cache = list_first_entry(io, struct btrfs_block_group_cache,
3824 io_list);
3825 list_del_init(&cache->io_list);
3826 btrfs_wait_cache_io(trans, cache, path);
3827 btrfs_put_block_group(cache);
3828 }
3829
3830 btrfs_free_path(path);
3831 return ret;
3832 }
3833
3834 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3835 {
3836 struct btrfs_block_group_cache *block_group;
3837 int readonly = 0;
3838
3839 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3840 if (!block_group || block_group->ro)
3841 readonly = 1;
3842 if (block_group)
3843 btrfs_put_block_group(block_group);
3844 return readonly;
3845 }
3846
3847 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3848 {
3849 struct btrfs_block_group_cache *bg;
3850 bool ret = true;
3851
3852 bg = btrfs_lookup_block_group(fs_info, bytenr);
3853 if (!bg)
3854 return false;
3855
3856 spin_lock(&bg->lock);
3857 if (bg->ro)
3858 ret = false;
3859 else
3860 atomic_inc(&bg->nocow_writers);
3861 spin_unlock(&bg->lock);
3862
3863 /* no put on block group, done by btrfs_dec_nocow_writers */
3864 if (!ret)
3865 btrfs_put_block_group(bg);
3866
3867 return ret;
3868
3869 }
3870
3871 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3872 {
3873 struct btrfs_block_group_cache *bg;
3874
3875 bg = btrfs_lookup_block_group(fs_info, bytenr);
3876 ASSERT(bg);
3877 if (atomic_dec_and_test(&bg->nocow_writers))
3878 wake_up_atomic_t(&bg->nocow_writers);
3879 /*
3880 * Once for our lookup and once for the lookup done by a previous call
3881 * to btrfs_inc_nocow_writers()
3882 */
3883 btrfs_put_block_group(bg);
3884 btrfs_put_block_group(bg);
3885 }
3886
3887 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3888 {
3889 schedule();
3890 return 0;
3891 }
3892
3893 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3894 {
3895 wait_on_atomic_t(&bg->nocow_writers,
3896 btrfs_wait_nocow_writers_atomic_t,
3897 TASK_UNINTERRUPTIBLE);
3898 }
3899
3900 static const char *alloc_name(u64 flags)
3901 {
3902 switch (flags) {
3903 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3904 return "mixed";
3905 case BTRFS_BLOCK_GROUP_METADATA:
3906 return "metadata";
3907 case BTRFS_BLOCK_GROUP_DATA:
3908 return "data";
3909 case BTRFS_BLOCK_GROUP_SYSTEM:
3910 return "system";
3911 default:
3912 WARN_ON(1);
3913 return "invalid-combination";
3914 };
3915 }
3916
3917 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3918 u64 total_bytes, u64 bytes_used,
3919 u64 bytes_readonly,
3920 struct btrfs_space_info **space_info)
3921 {
3922 struct btrfs_space_info *found;
3923 int i;
3924 int factor;
3925 int ret;
3926
3927 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3928 BTRFS_BLOCK_GROUP_RAID10))
3929 factor = 2;
3930 else
3931 factor = 1;
3932
3933 found = __find_space_info(info, flags);
3934 if (found) {
3935 spin_lock(&found->lock);
3936 found->total_bytes += total_bytes;
3937 found->disk_total += total_bytes * factor;
3938 found->bytes_used += bytes_used;
3939 found->disk_used += bytes_used * factor;
3940 found->bytes_readonly += bytes_readonly;
3941 if (total_bytes > 0)
3942 found->full = 0;
3943 space_info_add_new_bytes(info, found, total_bytes -
3944 bytes_used - bytes_readonly);
3945 spin_unlock(&found->lock);
3946 *space_info = found;
3947 return 0;
3948 }
3949 found = kzalloc(sizeof(*found), GFP_NOFS);
3950 if (!found)
3951 return -ENOMEM;
3952
3953 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3954 if (ret) {
3955 kfree(found);
3956 return ret;
3957 }
3958
3959 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3960 INIT_LIST_HEAD(&found->block_groups[i]);
3961 init_rwsem(&found->groups_sem);
3962 spin_lock_init(&found->lock);
3963 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3964 found->total_bytes = total_bytes;
3965 found->disk_total = total_bytes * factor;
3966 found->bytes_used = bytes_used;
3967 found->disk_used = bytes_used * factor;
3968 found->bytes_pinned = 0;
3969 found->bytes_reserved = 0;
3970 found->bytes_readonly = bytes_readonly;
3971 found->bytes_may_use = 0;
3972 found->full = 0;
3973 found->max_extent_size = 0;
3974 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3975 found->chunk_alloc = 0;
3976 found->flush = 0;
3977 init_waitqueue_head(&found->wait);
3978 INIT_LIST_HEAD(&found->ro_bgs);
3979 INIT_LIST_HEAD(&found->tickets);
3980 INIT_LIST_HEAD(&found->priority_tickets);
3981
3982 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3983 info->space_info_kobj, "%s",
3984 alloc_name(found->flags));
3985 if (ret) {
3986 kfree(found);
3987 return ret;
3988 }
3989
3990 *space_info = found;
3991 list_add_rcu(&found->list, &info->space_info);
3992 if (flags & BTRFS_BLOCK_GROUP_DATA)
3993 info->data_sinfo = found;
3994
3995 return ret;
3996 }
3997
3998 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3999 {
4000 u64 extra_flags = chunk_to_extended(flags) &
4001 BTRFS_EXTENDED_PROFILE_MASK;
4002
4003 write_seqlock(&fs_info->profiles_lock);
4004 if (flags & BTRFS_BLOCK_GROUP_DATA)
4005 fs_info->avail_data_alloc_bits |= extra_flags;
4006 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4007 fs_info->avail_metadata_alloc_bits |= extra_flags;
4008 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4009 fs_info->avail_system_alloc_bits |= extra_flags;
4010 write_sequnlock(&fs_info->profiles_lock);
4011 }
4012
4013 /*
4014 * returns target flags in extended format or 0 if restripe for this
4015 * chunk_type is not in progress
4016 *
4017 * should be called with either volume_mutex or balance_lock held
4018 */
4019 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4020 {
4021 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4022 u64 target = 0;
4023
4024 if (!bctl)
4025 return 0;
4026
4027 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4028 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4029 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4030 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4031 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4032 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4033 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4034 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4035 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4036 }
4037
4038 return target;
4039 }
4040
4041 /*
4042 * @flags: available profiles in extended format (see ctree.h)
4043 *
4044 * Returns reduced profile in chunk format. If profile changing is in
4045 * progress (either running or paused) picks the target profile (if it's
4046 * already available), otherwise falls back to plain reducing.
4047 */
4048 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4049 {
4050 u64 num_devices = fs_info->fs_devices->rw_devices;
4051 u64 target;
4052 u64 raid_type;
4053 u64 allowed = 0;
4054
4055 /*
4056 * see if restripe for this chunk_type is in progress, if so
4057 * try to reduce to the target profile
4058 */
4059 spin_lock(&fs_info->balance_lock);
4060 target = get_restripe_target(fs_info, flags);
4061 if (target) {
4062 /* pick target profile only if it's already available */
4063 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4064 spin_unlock(&fs_info->balance_lock);
4065 return extended_to_chunk(target);
4066 }
4067 }
4068 spin_unlock(&fs_info->balance_lock);
4069
4070 /* First, mask out the RAID levels which aren't possible */
4071 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4072 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4073 allowed |= btrfs_raid_group[raid_type];
4074 }
4075 allowed &= flags;
4076
4077 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4078 allowed = BTRFS_BLOCK_GROUP_RAID6;
4079 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4080 allowed = BTRFS_BLOCK_GROUP_RAID5;
4081 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4082 allowed = BTRFS_BLOCK_GROUP_RAID10;
4083 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4084 allowed = BTRFS_BLOCK_GROUP_RAID1;
4085 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4086 allowed = BTRFS_BLOCK_GROUP_RAID0;
4087
4088 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4089
4090 return extended_to_chunk(flags | allowed);
4091 }
4092
4093 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4094 {
4095 unsigned seq;
4096 u64 flags;
4097
4098 do {
4099 flags = orig_flags;
4100 seq = read_seqbegin(&fs_info->profiles_lock);
4101
4102 if (flags & BTRFS_BLOCK_GROUP_DATA)
4103 flags |= fs_info->avail_data_alloc_bits;
4104 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4105 flags |= fs_info->avail_system_alloc_bits;
4106 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4107 flags |= fs_info->avail_metadata_alloc_bits;
4108 } while (read_seqretry(&fs_info->profiles_lock, seq));
4109
4110 return btrfs_reduce_alloc_profile(fs_info, flags);
4111 }
4112
4113 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4114 {
4115 struct btrfs_fs_info *fs_info = root->fs_info;
4116 u64 flags;
4117 u64 ret;
4118
4119 if (data)
4120 flags = BTRFS_BLOCK_GROUP_DATA;
4121 else if (root == fs_info->chunk_root)
4122 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4123 else
4124 flags = BTRFS_BLOCK_GROUP_METADATA;
4125
4126 ret = get_alloc_profile(fs_info, flags);
4127 return ret;
4128 }
4129
4130 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4131 bool may_use_included)
4132 {
4133 ASSERT(s_info);
4134 return s_info->bytes_used + s_info->bytes_reserved +
4135 s_info->bytes_pinned + s_info->bytes_readonly +
4136 (may_use_included ? s_info->bytes_may_use : 0);
4137 }
4138
4139 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4140 {
4141 struct btrfs_space_info *data_sinfo;
4142 struct btrfs_root *root = inode->root;
4143 struct btrfs_fs_info *fs_info = root->fs_info;
4144 u64 used;
4145 int ret = 0;
4146 int need_commit = 2;
4147 int have_pinned_space;
4148
4149 /* make sure bytes are sectorsize aligned */
4150 bytes = ALIGN(bytes, fs_info->sectorsize);
4151
4152 if (btrfs_is_free_space_inode(inode)) {
4153 need_commit = 0;
4154 ASSERT(current->journal_info);
4155 }
4156
4157 data_sinfo = fs_info->data_sinfo;
4158 if (!data_sinfo)
4159 goto alloc;
4160
4161 again:
4162 /* make sure we have enough space to handle the data first */
4163 spin_lock(&data_sinfo->lock);
4164 used = btrfs_space_info_used(data_sinfo, true);
4165
4166 if (used + bytes > data_sinfo->total_bytes) {
4167 struct btrfs_trans_handle *trans;
4168
4169 /*
4170 * if we don't have enough free bytes in this space then we need
4171 * to alloc a new chunk.
4172 */
4173 if (!data_sinfo->full) {
4174 u64 alloc_target;
4175
4176 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4177 spin_unlock(&data_sinfo->lock);
4178 alloc:
4179 alloc_target = btrfs_get_alloc_profile(root, 1);
4180 /*
4181 * It is ugly that we don't call nolock join
4182 * transaction for the free space inode case here.
4183 * But it is safe because we only do the data space
4184 * reservation for the free space cache in the
4185 * transaction context, the common join transaction
4186 * just increase the counter of the current transaction
4187 * handler, doesn't try to acquire the trans_lock of
4188 * the fs.
4189 */
4190 trans = btrfs_join_transaction(root);
4191 if (IS_ERR(trans))
4192 return PTR_ERR(trans);
4193
4194 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4195 CHUNK_ALLOC_NO_FORCE);
4196 btrfs_end_transaction(trans);
4197 if (ret < 0) {
4198 if (ret != -ENOSPC)
4199 return ret;
4200 else {
4201 have_pinned_space = 1;
4202 goto commit_trans;
4203 }
4204 }
4205
4206 if (!data_sinfo)
4207 data_sinfo = fs_info->data_sinfo;
4208
4209 goto again;
4210 }
4211
4212 /*
4213 * If we don't have enough pinned space to deal with this
4214 * allocation, and no removed chunk in current transaction,
4215 * don't bother committing the transaction.
4216 */
4217 have_pinned_space = percpu_counter_compare(
4218 &data_sinfo->total_bytes_pinned,
4219 used + bytes - data_sinfo->total_bytes);
4220 spin_unlock(&data_sinfo->lock);
4221
4222 /* commit the current transaction and try again */
4223 commit_trans:
4224 if (need_commit &&
4225 !atomic_read(&fs_info->open_ioctl_trans)) {
4226 need_commit--;
4227
4228 if (need_commit > 0) {
4229 btrfs_start_delalloc_roots(fs_info, 0, -1);
4230 btrfs_wait_ordered_roots(fs_info, -1, 0,
4231 (u64)-1);
4232 }
4233
4234 trans = btrfs_join_transaction(root);
4235 if (IS_ERR(trans))
4236 return PTR_ERR(trans);
4237 if (have_pinned_space >= 0 ||
4238 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4239 &trans->transaction->flags) ||
4240 need_commit > 0) {
4241 ret = btrfs_commit_transaction(trans);
4242 if (ret)
4243 return ret;
4244 /*
4245 * The cleaner kthread might still be doing iput
4246 * operations. Wait for it to finish so that
4247 * more space is released.
4248 */
4249 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4250 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4251 goto again;
4252 } else {
4253 btrfs_end_transaction(trans);
4254 }
4255 }
4256
4257 trace_btrfs_space_reservation(fs_info,
4258 "space_info:enospc",
4259 data_sinfo->flags, bytes, 1);
4260 return -ENOSPC;
4261 }
4262 data_sinfo->bytes_may_use += bytes;
4263 trace_btrfs_space_reservation(fs_info, "space_info",
4264 data_sinfo->flags, bytes, 1);
4265 spin_unlock(&data_sinfo->lock);
4266
4267 return ret;
4268 }
4269
4270 /*
4271 * New check_data_free_space() with ability for precious data reservation
4272 * Will replace old btrfs_check_data_free_space(), but for patch split,
4273 * add a new function first and then replace it.
4274 */
4275 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4276 {
4277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4278 int ret;
4279
4280 /* align the range */
4281 len = round_up(start + len, fs_info->sectorsize) -
4282 round_down(start, fs_info->sectorsize);
4283 start = round_down(start, fs_info->sectorsize);
4284
4285 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4286 if (ret < 0)
4287 return ret;
4288
4289 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4290 ret = btrfs_qgroup_reserve_data(inode, start, len);
4291 if (ret)
4292 btrfs_free_reserved_data_space_noquota(inode, start, len);
4293 return ret;
4294 }
4295
4296 /*
4297 * Called if we need to clear a data reservation for this inode
4298 * Normally in a error case.
4299 *
4300 * This one will *NOT* use accurate qgroup reserved space API, just for case
4301 * which we can't sleep and is sure it won't affect qgroup reserved space.
4302 * Like clear_bit_hook().
4303 */
4304 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4305 u64 len)
4306 {
4307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4308 struct btrfs_space_info *data_sinfo;
4309
4310 /* Make sure the range is aligned to sectorsize */
4311 len = round_up(start + len, fs_info->sectorsize) -
4312 round_down(start, fs_info->sectorsize);
4313 start = round_down(start, fs_info->sectorsize);
4314
4315 data_sinfo = fs_info->data_sinfo;
4316 spin_lock(&data_sinfo->lock);
4317 if (WARN_ON(data_sinfo->bytes_may_use < len))
4318 data_sinfo->bytes_may_use = 0;
4319 else
4320 data_sinfo->bytes_may_use -= len;
4321 trace_btrfs_space_reservation(fs_info, "space_info",
4322 data_sinfo->flags, len, 0);
4323 spin_unlock(&data_sinfo->lock);
4324 }
4325
4326 /*
4327 * Called if we need to clear a data reservation for this inode
4328 * Normally in a error case.
4329 *
4330 * This one will handle the per-inode data rsv map for accurate reserved
4331 * space framework.
4332 */
4333 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4334 {
4335 struct btrfs_root *root = BTRFS_I(inode)->root;
4336
4337 /* Make sure the range is aligned to sectorsize */
4338 len = round_up(start + len, root->fs_info->sectorsize) -
4339 round_down(start, root->fs_info->sectorsize);
4340 start = round_down(start, root->fs_info->sectorsize);
4341
4342 btrfs_free_reserved_data_space_noquota(inode, start, len);
4343 btrfs_qgroup_free_data(inode, start, len);
4344 }
4345
4346 static void force_metadata_allocation(struct btrfs_fs_info *info)
4347 {
4348 struct list_head *head = &info->space_info;
4349 struct btrfs_space_info *found;
4350
4351 rcu_read_lock();
4352 list_for_each_entry_rcu(found, head, list) {
4353 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4354 found->force_alloc = CHUNK_ALLOC_FORCE;
4355 }
4356 rcu_read_unlock();
4357 }
4358
4359 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4360 {
4361 return (global->size << 1);
4362 }
4363
4364 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4365 struct btrfs_space_info *sinfo, int force)
4366 {
4367 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4368 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4369 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4370 u64 thresh;
4371
4372 if (force == CHUNK_ALLOC_FORCE)
4373 return 1;
4374
4375 /*
4376 * We need to take into account the global rsv because for all intents
4377 * and purposes it's used space. Don't worry about locking the
4378 * global_rsv, it doesn't change except when the transaction commits.
4379 */
4380 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4381 num_allocated += calc_global_rsv_need_space(global_rsv);
4382
4383 /*
4384 * in limited mode, we want to have some free space up to
4385 * about 1% of the FS size.
4386 */
4387 if (force == CHUNK_ALLOC_LIMITED) {
4388 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4389 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4390
4391 if (num_bytes - num_allocated < thresh)
4392 return 1;
4393 }
4394
4395 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4396 return 0;
4397 return 1;
4398 }
4399
4400 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4401 {
4402 u64 num_dev;
4403
4404 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4405 BTRFS_BLOCK_GROUP_RAID0 |
4406 BTRFS_BLOCK_GROUP_RAID5 |
4407 BTRFS_BLOCK_GROUP_RAID6))
4408 num_dev = fs_info->fs_devices->rw_devices;
4409 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4410 num_dev = 2;
4411 else
4412 num_dev = 1; /* DUP or single */
4413
4414 return num_dev;
4415 }
4416
4417 /*
4418 * If @is_allocation is true, reserve space in the system space info necessary
4419 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4420 * removing a chunk.
4421 */
4422 void check_system_chunk(struct btrfs_trans_handle *trans,
4423 struct btrfs_fs_info *fs_info, u64 type)
4424 {
4425 struct btrfs_space_info *info;
4426 u64 left;
4427 u64 thresh;
4428 int ret = 0;
4429 u64 num_devs;
4430
4431 /*
4432 * Needed because we can end up allocating a system chunk and for an
4433 * atomic and race free space reservation in the chunk block reserve.
4434 */
4435 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4436
4437 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4438 spin_lock(&info->lock);
4439 left = info->total_bytes - btrfs_space_info_used(info, true);
4440 spin_unlock(&info->lock);
4441
4442 num_devs = get_profile_num_devs(fs_info, type);
4443
4444 /* num_devs device items to update and 1 chunk item to add or remove */
4445 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4446 btrfs_calc_trans_metadata_size(fs_info, 1);
4447
4448 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4449 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4450 left, thresh, type);
4451 dump_space_info(fs_info, info, 0, 0);
4452 }
4453
4454 if (left < thresh) {
4455 u64 flags;
4456
4457 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4458 /*
4459 * Ignore failure to create system chunk. We might end up not
4460 * needing it, as we might not need to COW all nodes/leafs from
4461 * the paths we visit in the chunk tree (they were already COWed
4462 * or created in the current transaction for example).
4463 */
4464 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4465 }
4466
4467 if (!ret) {
4468 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4469 &fs_info->chunk_block_rsv,
4470 thresh, BTRFS_RESERVE_NO_FLUSH);
4471 if (!ret)
4472 trans->chunk_bytes_reserved += thresh;
4473 }
4474 }
4475
4476 /*
4477 * If force is CHUNK_ALLOC_FORCE:
4478 * - return 1 if it successfully allocates a chunk,
4479 * - return errors including -ENOSPC otherwise.
4480 * If force is NOT CHUNK_ALLOC_FORCE:
4481 * - return 0 if it doesn't need to allocate a new chunk,
4482 * - return 1 if it successfully allocates a chunk,
4483 * - return errors including -ENOSPC otherwise.
4484 */
4485 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4486 struct btrfs_fs_info *fs_info, u64 flags, int force)
4487 {
4488 struct btrfs_space_info *space_info;
4489 int wait_for_alloc = 0;
4490 int ret = 0;
4491
4492 /* Don't re-enter if we're already allocating a chunk */
4493 if (trans->allocating_chunk)
4494 return -ENOSPC;
4495
4496 space_info = __find_space_info(fs_info, flags);
4497 if (!space_info) {
4498 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4499 BUG_ON(ret); /* -ENOMEM */
4500 }
4501 BUG_ON(!space_info); /* Logic error */
4502
4503 again:
4504 spin_lock(&space_info->lock);
4505 if (force < space_info->force_alloc)
4506 force = space_info->force_alloc;
4507 if (space_info->full) {
4508 if (should_alloc_chunk(fs_info, space_info, force))
4509 ret = -ENOSPC;
4510 else
4511 ret = 0;
4512 spin_unlock(&space_info->lock);
4513 return ret;
4514 }
4515
4516 if (!should_alloc_chunk(fs_info, space_info, force)) {
4517 spin_unlock(&space_info->lock);
4518 return 0;
4519 } else if (space_info->chunk_alloc) {
4520 wait_for_alloc = 1;
4521 } else {
4522 space_info->chunk_alloc = 1;
4523 }
4524
4525 spin_unlock(&space_info->lock);
4526
4527 mutex_lock(&fs_info->chunk_mutex);
4528
4529 /*
4530 * The chunk_mutex is held throughout the entirety of a chunk
4531 * allocation, so once we've acquired the chunk_mutex we know that the
4532 * other guy is done and we need to recheck and see if we should
4533 * allocate.
4534 */
4535 if (wait_for_alloc) {
4536 mutex_unlock(&fs_info->chunk_mutex);
4537 wait_for_alloc = 0;
4538 goto again;
4539 }
4540
4541 trans->allocating_chunk = true;
4542
4543 /*
4544 * If we have mixed data/metadata chunks we want to make sure we keep
4545 * allocating mixed chunks instead of individual chunks.
4546 */
4547 if (btrfs_mixed_space_info(space_info))
4548 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4549
4550 /*
4551 * if we're doing a data chunk, go ahead and make sure that
4552 * we keep a reasonable number of metadata chunks allocated in the
4553 * FS as well.
4554 */
4555 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4556 fs_info->data_chunk_allocations++;
4557 if (!(fs_info->data_chunk_allocations %
4558 fs_info->metadata_ratio))
4559 force_metadata_allocation(fs_info);
4560 }
4561
4562 /*
4563 * Check if we have enough space in SYSTEM chunk because we may need
4564 * to update devices.
4565 */
4566 check_system_chunk(trans, fs_info, flags);
4567
4568 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4569 trans->allocating_chunk = false;
4570
4571 spin_lock(&space_info->lock);
4572 if (ret < 0 && ret != -ENOSPC)
4573 goto out;
4574 if (ret)
4575 space_info->full = 1;
4576 else
4577 ret = 1;
4578
4579 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4580 out:
4581 space_info->chunk_alloc = 0;
4582 spin_unlock(&space_info->lock);
4583 mutex_unlock(&fs_info->chunk_mutex);
4584 /*
4585 * When we allocate a new chunk we reserve space in the chunk block
4586 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4587 * add new nodes/leafs to it if we end up needing to do it when
4588 * inserting the chunk item and updating device items as part of the
4589 * second phase of chunk allocation, performed by
4590 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4591 * large number of new block groups to create in our transaction
4592 * handle's new_bgs list to avoid exhausting the chunk block reserve
4593 * in extreme cases - like having a single transaction create many new
4594 * block groups when starting to write out the free space caches of all
4595 * the block groups that were made dirty during the lifetime of the
4596 * transaction.
4597 */
4598 if (trans->can_flush_pending_bgs &&
4599 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4600 btrfs_create_pending_block_groups(trans, fs_info);
4601 btrfs_trans_release_chunk_metadata(trans);
4602 }
4603 return ret;
4604 }
4605
4606 static int can_overcommit(struct btrfs_root *root,
4607 struct btrfs_space_info *space_info, u64 bytes,
4608 enum btrfs_reserve_flush_enum flush)
4609 {
4610 struct btrfs_fs_info *fs_info = root->fs_info;
4611 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4612 u64 profile;
4613 u64 space_size;
4614 u64 avail;
4615 u64 used;
4616
4617 /* Don't overcommit when in mixed mode. */
4618 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4619 return 0;
4620
4621 profile = btrfs_get_alloc_profile(root, 0);
4622 used = btrfs_space_info_used(space_info, false);
4623
4624 /*
4625 * We only want to allow over committing if we have lots of actual space
4626 * free, but if we don't have enough space to handle the global reserve
4627 * space then we could end up having a real enospc problem when trying
4628 * to allocate a chunk or some other such important allocation.
4629 */
4630 spin_lock(&global_rsv->lock);
4631 space_size = calc_global_rsv_need_space(global_rsv);
4632 spin_unlock(&global_rsv->lock);
4633 if (used + space_size >= space_info->total_bytes)
4634 return 0;
4635
4636 used += space_info->bytes_may_use;
4637
4638 spin_lock(&fs_info->free_chunk_lock);
4639 avail = fs_info->free_chunk_space;
4640 spin_unlock(&fs_info->free_chunk_lock);
4641
4642 /*
4643 * If we have dup, raid1 or raid10 then only half of the free
4644 * space is actually useable. For raid56, the space info used
4645 * doesn't include the parity drive, so we don't have to
4646 * change the math
4647 */
4648 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4649 BTRFS_BLOCK_GROUP_RAID1 |
4650 BTRFS_BLOCK_GROUP_RAID10))
4651 avail >>= 1;
4652
4653 /*
4654 * If we aren't flushing all things, let us overcommit up to
4655 * 1/2th of the space. If we can flush, don't let us overcommit
4656 * too much, let it overcommit up to 1/8 of the space.
4657 */
4658 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4659 avail >>= 3;
4660 else
4661 avail >>= 1;
4662
4663 if (used + bytes < space_info->total_bytes + avail)
4664 return 1;
4665 return 0;
4666 }
4667
4668 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4669 unsigned long nr_pages, int nr_items)
4670 {
4671 struct super_block *sb = fs_info->sb;
4672
4673 if (down_read_trylock(&sb->s_umount)) {
4674 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4675 up_read(&sb->s_umount);
4676 } else {
4677 /*
4678 * We needn't worry the filesystem going from r/w to r/o though
4679 * we don't acquire ->s_umount mutex, because the filesystem
4680 * should guarantee the delalloc inodes list be empty after
4681 * the filesystem is readonly(all dirty pages are written to
4682 * the disk).
4683 */
4684 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4685 if (!current->journal_info)
4686 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4687 }
4688 }
4689
4690 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4691 u64 to_reclaim)
4692 {
4693 u64 bytes;
4694 int nr;
4695
4696 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4697 nr = (int)div64_u64(to_reclaim, bytes);
4698 if (!nr)
4699 nr = 1;
4700 return nr;
4701 }
4702
4703 #define EXTENT_SIZE_PER_ITEM SZ_256K
4704
4705 /*
4706 * shrink metadata reservation for delalloc
4707 */
4708 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4709 bool wait_ordered)
4710 {
4711 struct btrfs_fs_info *fs_info = root->fs_info;
4712 struct btrfs_block_rsv *block_rsv;
4713 struct btrfs_space_info *space_info;
4714 struct btrfs_trans_handle *trans;
4715 u64 delalloc_bytes;
4716 u64 max_reclaim;
4717 long time_left;
4718 unsigned long nr_pages;
4719 int loops;
4720 int items;
4721 enum btrfs_reserve_flush_enum flush;
4722
4723 /* Calc the number of the pages we need flush for space reservation */
4724 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4725 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4726
4727 trans = (struct btrfs_trans_handle *)current->journal_info;
4728 block_rsv = &fs_info->delalloc_block_rsv;
4729 space_info = block_rsv->space_info;
4730
4731 delalloc_bytes = percpu_counter_sum_positive(
4732 &fs_info->delalloc_bytes);
4733 if (delalloc_bytes == 0) {
4734 if (trans)
4735 return;
4736 if (wait_ordered)
4737 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4738 return;
4739 }
4740
4741 loops = 0;
4742 while (delalloc_bytes && loops < 3) {
4743 max_reclaim = min(delalloc_bytes, to_reclaim);
4744 nr_pages = max_reclaim >> PAGE_SHIFT;
4745 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4746 /*
4747 * We need to wait for the async pages to actually start before
4748 * we do anything.
4749 */
4750 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4751 if (!max_reclaim)
4752 goto skip_async;
4753
4754 if (max_reclaim <= nr_pages)
4755 max_reclaim = 0;
4756 else
4757 max_reclaim -= nr_pages;
4758
4759 wait_event(fs_info->async_submit_wait,
4760 atomic_read(&fs_info->async_delalloc_pages) <=
4761 (int)max_reclaim);
4762 skip_async:
4763 if (!trans)
4764 flush = BTRFS_RESERVE_FLUSH_ALL;
4765 else
4766 flush = BTRFS_RESERVE_NO_FLUSH;
4767 spin_lock(&space_info->lock);
4768 if (can_overcommit(root, space_info, orig, flush)) {
4769 spin_unlock(&space_info->lock);
4770 break;
4771 }
4772 if (list_empty(&space_info->tickets) &&
4773 list_empty(&space_info->priority_tickets)) {
4774 spin_unlock(&space_info->lock);
4775 break;
4776 }
4777 spin_unlock(&space_info->lock);
4778
4779 loops++;
4780 if (wait_ordered && !trans) {
4781 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4782 } else {
4783 time_left = schedule_timeout_killable(1);
4784 if (time_left)
4785 break;
4786 }
4787 delalloc_bytes = percpu_counter_sum_positive(
4788 &fs_info->delalloc_bytes);
4789 }
4790 }
4791
4792 /**
4793 * maybe_commit_transaction - possibly commit the transaction if its ok to
4794 * @root - the root we're allocating for
4795 * @bytes - the number of bytes we want to reserve
4796 * @force - force the commit
4797 *
4798 * This will check to make sure that committing the transaction will actually
4799 * get us somewhere and then commit the transaction if it does. Otherwise it
4800 * will return -ENOSPC.
4801 */
4802 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4803 struct btrfs_space_info *space_info,
4804 u64 bytes, int force)
4805 {
4806 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4807 struct btrfs_trans_handle *trans;
4808
4809 trans = (struct btrfs_trans_handle *)current->journal_info;
4810 if (trans)
4811 return -EAGAIN;
4812
4813 if (force)
4814 goto commit;
4815
4816 /* See if there is enough pinned space to make this reservation */
4817 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4818 bytes) >= 0)
4819 goto commit;
4820
4821 /*
4822 * See if there is some space in the delayed insertion reservation for
4823 * this reservation.
4824 */
4825 if (space_info != delayed_rsv->space_info)
4826 return -ENOSPC;
4827
4828 spin_lock(&delayed_rsv->lock);
4829 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4830 bytes - delayed_rsv->size) >= 0) {
4831 spin_unlock(&delayed_rsv->lock);
4832 return -ENOSPC;
4833 }
4834 spin_unlock(&delayed_rsv->lock);
4835
4836 commit:
4837 trans = btrfs_join_transaction(fs_info->fs_root);
4838 if (IS_ERR(trans))
4839 return -ENOSPC;
4840
4841 return btrfs_commit_transaction(trans);
4842 }
4843
4844 struct reserve_ticket {
4845 u64 bytes;
4846 int error;
4847 struct list_head list;
4848 wait_queue_head_t wait;
4849 };
4850
4851 static int flush_space(struct btrfs_fs_info *fs_info,
4852 struct btrfs_space_info *space_info, u64 num_bytes,
4853 u64 orig_bytes, int state)
4854 {
4855 struct btrfs_root *root = fs_info->fs_root;
4856 struct btrfs_trans_handle *trans;
4857 int nr;
4858 int ret = 0;
4859
4860 switch (state) {
4861 case FLUSH_DELAYED_ITEMS_NR:
4862 case FLUSH_DELAYED_ITEMS:
4863 if (state == FLUSH_DELAYED_ITEMS_NR)
4864 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4865 else
4866 nr = -1;
4867
4868 trans = btrfs_join_transaction(root);
4869 if (IS_ERR(trans)) {
4870 ret = PTR_ERR(trans);
4871 break;
4872 }
4873 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4874 btrfs_end_transaction(trans);
4875 break;
4876 case FLUSH_DELALLOC:
4877 case FLUSH_DELALLOC_WAIT:
4878 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4879 state == FLUSH_DELALLOC_WAIT);
4880 break;
4881 case ALLOC_CHUNK:
4882 trans = btrfs_join_transaction(root);
4883 if (IS_ERR(trans)) {
4884 ret = PTR_ERR(trans);
4885 break;
4886 }
4887 ret = do_chunk_alloc(trans, fs_info,
4888 btrfs_get_alloc_profile(root, 0),
4889 CHUNK_ALLOC_NO_FORCE);
4890 btrfs_end_transaction(trans);
4891 if (ret > 0 || ret == -ENOSPC)
4892 ret = 0;
4893 break;
4894 case COMMIT_TRANS:
4895 ret = may_commit_transaction(fs_info, space_info,
4896 orig_bytes, 0);
4897 break;
4898 default:
4899 ret = -ENOSPC;
4900 break;
4901 }
4902
4903 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4904 orig_bytes, state, ret);
4905 return ret;
4906 }
4907
4908 static inline u64
4909 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4910 struct btrfs_space_info *space_info)
4911 {
4912 struct reserve_ticket *ticket;
4913 u64 used;
4914 u64 expected;
4915 u64 to_reclaim = 0;
4916
4917 list_for_each_entry(ticket, &space_info->tickets, list)
4918 to_reclaim += ticket->bytes;
4919 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4920 to_reclaim += ticket->bytes;
4921 if (to_reclaim)
4922 return to_reclaim;
4923
4924 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4925 if (can_overcommit(root, space_info, to_reclaim,
4926 BTRFS_RESERVE_FLUSH_ALL))
4927 return 0;
4928
4929 used = space_info->bytes_used + space_info->bytes_reserved +
4930 space_info->bytes_pinned + space_info->bytes_readonly +
4931 space_info->bytes_may_use;
4932 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4933 expected = div_factor_fine(space_info->total_bytes, 95);
4934 else
4935 expected = div_factor_fine(space_info->total_bytes, 90);
4936
4937 if (used > expected)
4938 to_reclaim = used - expected;
4939 else
4940 to_reclaim = 0;
4941 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4942 space_info->bytes_reserved);
4943 return to_reclaim;
4944 }
4945
4946 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4947 struct btrfs_root *root, u64 used)
4948 {
4949 struct btrfs_fs_info *fs_info = root->fs_info;
4950 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4951
4952 /* If we're just plain full then async reclaim just slows us down. */
4953 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4954 return 0;
4955
4956 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4957 return 0;
4958
4959 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4960 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4961 }
4962
4963 static void wake_all_tickets(struct list_head *head)
4964 {
4965 struct reserve_ticket *ticket;
4966
4967 while (!list_empty(head)) {
4968 ticket = list_first_entry(head, struct reserve_ticket, list);
4969 list_del_init(&ticket->list);
4970 ticket->error = -ENOSPC;
4971 wake_up(&ticket->wait);
4972 }
4973 }
4974
4975 /*
4976 * This is for normal flushers, we can wait all goddamned day if we want to. We
4977 * will loop and continuously try to flush as long as we are making progress.
4978 * We count progress as clearing off tickets each time we have to loop.
4979 */
4980 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4981 {
4982 struct btrfs_fs_info *fs_info;
4983 struct btrfs_space_info *space_info;
4984 u64 to_reclaim;
4985 int flush_state;
4986 int commit_cycles = 0;
4987 u64 last_tickets_id;
4988
4989 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4990 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4991
4992 spin_lock(&space_info->lock);
4993 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4994 space_info);
4995 if (!to_reclaim) {
4996 space_info->flush = 0;
4997 spin_unlock(&space_info->lock);
4998 return;
4999 }
5000 last_tickets_id = space_info->tickets_id;
5001 spin_unlock(&space_info->lock);
5002
5003 flush_state = FLUSH_DELAYED_ITEMS_NR;
5004 do {
5005 struct reserve_ticket *ticket;
5006 int ret;
5007
5008 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5009 flush_state);
5010 spin_lock(&space_info->lock);
5011 if (list_empty(&space_info->tickets)) {
5012 space_info->flush = 0;
5013 spin_unlock(&space_info->lock);
5014 return;
5015 }
5016 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5017 space_info);
5018 ticket = list_first_entry(&space_info->tickets,
5019 struct reserve_ticket, list);
5020 if (last_tickets_id == space_info->tickets_id) {
5021 flush_state++;
5022 } else {
5023 last_tickets_id = space_info->tickets_id;
5024 flush_state = FLUSH_DELAYED_ITEMS_NR;
5025 if (commit_cycles)
5026 commit_cycles--;
5027 }
5028
5029 if (flush_state > COMMIT_TRANS) {
5030 commit_cycles++;
5031 if (commit_cycles > 2) {
5032 wake_all_tickets(&space_info->tickets);
5033 space_info->flush = 0;
5034 } else {
5035 flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 }
5037 }
5038 spin_unlock(&space_info->lock);
5039 } while (flush_state <= COMMIT_TRANS);
5040 }
5041
5042 void btrfs_init_async_reclaim_work(struct work_struct *work)
5043 {
5044 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5045 }
5046
5047 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5048 struct btrfs_space_info *space_info,
5049 struct reserve_ticket *ticket)
5050 {
5051 u64 to_reclaim;
5052 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5053
5054 spin_lock(&space_info->lock);
5055 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5056 space_info);
5057 if (!to_reclaim) {
5058 spin_unlock(&space_info->lock);
5059 return;
5060 }
5061 spin_unlock(&space_info->lock);
5062
5063 do {
5064 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5065 flush_state);
5066 flush_state++;
5067 spin_lock(&space_info->lock);
5068 if (ticket->bytes == 0) {
5069 spin_unlock(&space_info->lock);
5070 return;
5071 }
5072 spin_unlock(&space_info->lock);
5073
5074 /*
5075 * Priority flushers can't wait on delalloc without
5076 * deadlocking.
5077 */
5078 if (flush_state == FLUSH_DELALLOC ||
5079 flush_state == FLUSH_DELALLOC_WAIT)
5080 flush_state = ALLOC_CHUNK;
5081 } while (flush_state < COMMIT_TRANS);
5082 }
5083
5084 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5085 struct btrfs_space_info *space_info,
5086 struct reserve_ticket *ticket, u64 orig_bytes)
5087
5088 {
5089 DEFINE_WAIT(wait);
5090 int ret = 0;
5091
5092 spin_lock(&space_info->lock);
5093 while (ticket->bytes > 0 && ticket->error == 0) {
5094 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5095 if (ret) {
5096 ret = -EINTR;
5097 break;
5098 }
5099 spin_unlock(&space_info->lock);
5100
5101 schedule();
5102
5103 finish_wait(&ticket->wait, &wait);
5104 spin_lock(&space_info->lock);
5105 }
5106 if (!ret)
5107 ret = ticket->error;
5108 if (!list_empty(&ticket->list))
5109 list_del_init(&ticket->list);
5110 if (ticket->bytes && ticket->bytes < orig_bytes) {
5111 u64 num_bytes = orig_bytes - ticket->bytes;
5112 space_info->bytes_may_use -= num_bytes;
5113 trace_btrfs_space_reservation(fs_info, "space_info",
5114 space_info->flags, num_bytes, 0);
5115 }
5116 spin_unlock(&space_info->lock);
5117
5118 return ret;
5119 }
5120
5121 /**
5122 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5123 * @root - the root we're allocating for
5124 * @space_info - the space info we want to allocate from
5125 * @orig_bytes - the number of bytes we want
5126 * @flush - whether or not we can flush to make our reservation
5127 *
5128 * This will reserve orig_bytes number of bytes from the space info associated
5129 * with the block_rsv. If there is not enough space it will make an attempt to
5130 * flush out space to make room. It will do this by flushing delalloc if
5131 * possible or committing the transaction. If flush is 0 then no attempts to
5132 * regain reservations will be made and this will fail if there is not enough
5133 * space already.
5134 */
5135 static int __reserve_metadata_bytes(struct btrfs_root *root,
5136 struct btrfs_space_info *space_info,
5137 u64 orig_bytes,
5138 enum btrfs_reserve_flush_enum flush)
5139 {
5140 struct btrfs_fs_info *fs_info = root->fs_info;
5141 struct reserve_ticket ticket;
5142 u64 used;
5143 int ret = 0;
5144
5145 ASSERT(orig_bytes);
5146 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5147
5148 spin_lock(&space_info->lock);
5149 ret = -ENOSPC;
5150 used = btrfs_space_info_used(space_info, true);
5151
5152 /*
5153 * If we have enough space then hooray, make our reservation and carry
5154 * on. If not see if we can overcommit, and if we can, hooray carry on.
5155 * If not things get more complicated.
5156 */
5157 if (used + orig_bytes <= space_info->total_bytes) {
5158 space_info->bytes_may_use += orig_bytes;
5159 trace_btrfs_space_reservation(fs_info, "space_info",
5160 space_info->flags, orig_bytes, 1);
5161 ret = 0;
5162 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5163 space_info->bytes_may_use += orig_bytes;
5164 trace_btrfs_space_reservation(fs_info, "space_info",
5165 space_info->flags, orig_bytes, 1);
5166 ret = 0;
5167 }
5168
5169 /*
5170 * If we couldn't make a reservation then setup our reservation ticket
5171 * and kick the async worker if it's not already running.
5172 *
5173 * If we are a priority flusher then we just need to add our ticket to
5174 * the list and we will do our own flushing further down.
5175 */
5176 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5177 ticket.bytes = orig_bytes;
5178 ticket.error = 0;
5179 init_waitqueue_head(&ticket.wait);
5180 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5181 list_add_tail(&ticket.list, &space_info->tickets);
5182 if (!space_info->flush) {
5183 space_info->flush = 1;
5184 trace_btrfs_trigger_flush(fs_info,
5185 space_info->flags,
5186 orig_bytes, flush,
5187 "enospc");
5188 queue_work(system_unbound_wq,
5189 &root->fs_info->async_reclaim_work);
5190 }
5191 } else {
5192 list_add_tail(&ticket.list,
5193 &space_info->priority_tickets);
5194 }
5195 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5196 used += orig_bytes;
5197 /*
5198 * We will do the space reservation dance during log replay,
5199 * which means we won't have fs_info->fs_root set, so don't do
5200 * the async reclaim as we will panic.
5201 */
5202 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5203 need_do_async_reclaim(space_info, root, used) &&
5204 !work_busy(&fs_info->async_reclaim_work)) {
5205 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5206 orig_bytes, flush, "preempt");
5207 queue_work(system_unbound_wq,
5208 &fs_info->async_reclaim_work);
5209 }
5210 }
5211 spin_unlock(&space_info->lock);
5212 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5213 return ret;
5214
5215 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5216 return wait_reserve_ticket(fs_info, space_info, &ticket,
5217 orig_bytes);
5218
5219 ret = 0;
5220 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5221 spin_lock(&space_info->lock);
5222 if (ticket.bytes) {
5223 if (ticket.bytes < orig_bytes) {
5224 u64 num_bytes = orig_bytes - ticket.bytes;
5225 space_info->bytes_may_use -= num_bytes;
5226 trace_btrfs_space_reservation(fs_info, "space_info",
5227 space_info->flags,
5228 num_bytes, 0);
5229
5230 }
5231 list_del_init(&ticket.list);
5232 ret = -ENOSPC;
5233 }
5234 spin_unlock(&space_info->lock);
5235 ASSERT(list_empty(&ticket.list));
5236 return ret;
5237 }
5238
5239 /**
5240 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241 * @root - the root we're allocating for
5242 * @block_rsv - the block_rsv we're allocating for
5243 * @orig_bytes - the number of bytes we want
5244 * @flush - whether or not we can flush to make our reservation
5245 *
5246 * This will reserve orgi_bytes number of bytes from the space info associated
5247 * with the block_rsv. If there is not enough space it will make an attempt to
5248 * flush out space to make room. It will do this by flushing delalloc if
5249 * possible or committing the transaction. If flush is 0 then no attempts to
5250 * regain reservations will be made and this will fail if there is not enough
5251 * space already.
5252 */
5253 static int reserve_metadata_bytes(struct btrfs_root *root,
5254 struct btrfs_block_rsv *block_rsv,
5255 u64 orig_bytes,
5256 enum btrfs_reserve_flush_enum flush)
5257 {
5258 struct btrfs_fs_info *fs_info = root->fs_info;
5259 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5260 int ret;
5261
5262 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5263 flush);
5264 if (ret == -ENOSPC &&
5265 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5266 if (block_rsv != global_rsv &&
5267 !block_rsv_use_bytes(global_rsv, orig_bytes))
5268 ret = 0;
5269 }
5270 if (ret == -ENOSPC)
5271 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5272 block_rsv->space_info->flags,
5273 orig_bytes, 1);
5274 return ret;
5275 }
5276
5277 static struct btrfs_block_rsv *get_block_rsv(
5278 const struct btrfs_trans_handle *trans,
5279 const struct btrfs_root *root)
5280 {
5281 struct btrfs_fs_info *fs_info = root->fs_info;
5282 struct btrfs_block_rsv *block_rsv = NULL;
5283
5284 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5285 (root == fs_info->csum_root && trans->adding_csums) ||
5286 (root == fs_info->uuid_root))
5287 block_rsv = trans->block_rsv;
5288
5289 if (!block_rsv)
5290 block_rsv = root->block_rsv;
5291
5292 if (!block_rsv)
5293 block_rsv = &fs_info->empty_block_rsv;
5294
5295 return block_rsv;
5296 }
5297
5298 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5299 u64 num_bytes)
5300 {
5301 int ret = -ENOSPC;
5302 spin_lock(&block_rsv->lock);
5303 if (block_rsv->reserved >= num_bytes) {
5304 block_rsv->reserved -= num_bytes;
5305 if (block_rsv->reserved < block_rsv->size)
5306 block_rsv->full = 0;
5307 ret = 0;
5308 }
5309 spin_unlock(&block_rsv->lock);
5310 return ret;
5311 }
5312
5313 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5314 u64 num_bytes, int update_size)
5315 {
5316 spin_lock(&block_rsv->lock);
5317 block_rsv->reserved += num_bytes;
5318 if (update_size)
5319 block_rsv->size += num_bytes;
5320 else if (block_rsv->reserved >= block_rsv->size)
5321 block_rsv->full = 1;
5322 spin_unlock(&block_rsv->lock);
5323 }
5324
5325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5326 struct btrfs_block_rsv *dest, u64 num_bytes,
5327 int min_factor)
5328 {
5329 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5330 u64 min_bytes;
5331
5332 if (global_rsv->space_info != dest->space_info)
5333 return -ENOSPC;
5334
5335 spin_lock(&global_rsv->lock);
5336 min_bytes = div_factor(global_rsv->size, min_factor);
5337 if (global_rsv->reserved < min_bytes + num_bytes) {
5338 spin_unlock(&global_rsv->lock);
5339 return -ENOSPC;
5340 }
5341 global_rsv->reserved -= num_bytes;
5342 if (global_rsv->reserved < global_rsv->size)
5343 global_rsv->full = 0;
5344 spin_unlock(&global_rsv->lock);
5345
5346 block_rsv_add_bytes(dest, num_bytes, 1);
5347 return 0;
5348 }
5349
5350 /*
5351 * This is for space we already have accounted in space_info->bytes_may_use, so
5352 * basically when we're returning space from block_rsv's.
5353 */
5354 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5355 struct btrfs_space_info *space_info,
5356 u64 num_bytes)
5357 {
5358 struct reserve_ticket *ticket;
5359 struct list_head *head;
5360 u64 used;
5361 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5362 bool check_overcommit = false;
5363
5364 spin_lock(&space_info->lock);
5365 head = &space_info->priority_tickets;
5366
5367 /*
5368 * If we are over our limit then we need to check and see if we can
5369 * overcommit, and if we can't then we just need to free up our space
5370 * and not satisfy any requests.
5371 */
5372 used = space_info->bytes_used + space_info->bytes_reserved +
5373 space_info->bytes_pinned + space_info->bytes_readonly +
5374 space_info->bytes_may_use;
5375 if (used - num_bytes >= space_info->total_bytes)
5376 check_overcommit = true;
5377 again:
5378 while (!list_empty(head) && num_bytes) {
5379 ticket = list_first_entry(head, struct reserve_ticket,
5380 list);
5381 /*
5382 * We use 0 bytes because this space is already reserved, so
5383 * adding the ticket space would be a double count.
5384 */
5385 if (check_overcommit &&
5386 !can_overcommit(fs_info->extent_root, space_info, 0,
5387 flush))
5388 break;
5389 if (num_bytes >= ticket->bytes) {
5390 list_del_init(&ticket->list);
5391 num_bytes -= ticket->bytes;
5392 ticket->bytes = 0;
5393 space_info->tickets_id++;
5394 wake_up(&ticket->wait);
5395 } else {
5396 ticket->bytes -= num_bytes;
5397 num_bytes = 0;
5398 }
5399 }
5400
5401 if (num_bytes && head == &space_info->priority_tickets) {
5402 head = &space_info->tickets;
5403 flush = BTRFS_RESERVE_FLUSH_ALL;
5404 goto again;
5405 }
5406 space_info->bytes_may_use -= num_bytes;
5407 trace_btrfs_space_reservation(fs_info, "space_info",
5408 space_info->flags, num_bytes, 0);
5409 spin_unlock(&space_info->lock);
5410 }
5411
5412 /*
5413 * This is for newly allocated space that isn't accounted in
5414 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5415 * we use this helper.
5416 */
5417 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5418 struct btrfs_space_info *space_info,
5419 u64 num_bytes)
5420 {
5421 struct reserve_ticket *ticket;
5422 struct list_head *head = &space_info->priority_tickets;
5423
5424 again:
5425 while (!list_empty(head) && num_bytes) {
5426 ticket = list_first_entry(head, struct reserve_ticket,
5427 list);
5428 if (num_bytes >= ticket->bytes) {
5429 trace_btrfs_space_reservation(fs_info, "space_info",
5430 space_info->flags,
5431 ticket->bytes, 1);
5432 list_del_init(&ticket->list);
5433 num_bytes -= ticket->bytes;
5434 space_info->bytes_may_use += ticket->bytes;
5435 ticket->bytes = 0;
5436 space_info->tickets_id++;
5437 wake_up(&ticket->wait);
5438 } else {
5439 trace_btrfs_space_reservation(fs_info, "space_info",
5440 space_info->flags,
5441 num_bytes, 1);
5442 space_info->bytes_may_use += num_bytes;
5443 ticket->bytes -= num_bytes;
5444 num_bytes = 0;
5445 }
5446 }
5447
5448 if (num_bytes && head == &space_info->priority_tickets) {
5449 head = &space_info->tickets;
5450 goto again;
5451 }
5452 }
5453
5454 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5455 struct btrfs_block_rsv *block_rsv,
5456 struct btrfs_block_rsv *dest, u64 num_bytes)
5457 {
5458 struct btrfs_space_info *space_info = block_rsv->space_info;
5459
5460 spin_lock(&block_rsv->lock);
5461 if (num_bytes == (u64)-1)
5462 num_bytes = block_rsv->size;
5463 block_rsv->size -= num_bytes;
5464 if (block_rsv->reserved >= block_rsv->size) {
5465 num_bytes = block_rsv->reserved - block_rsv->size;
5466 block_rsv->reserved = block_rsv->size;
5467 block_rsv->full = 1;
5468 } else {
5469 num_bytes = 0;
5470 }
5471 spin_unlock(&block_rsv->lock);
5472
5473 if (num_bytes > 0) {
5474 if (dest) {
5475 spin_lock(&dest->lock);
5476 if (!dest->full) {
5477 u64 bytes_to_add;
5478
5479 bytes_to_add = dest->size - dest->reserved;
5480 bytes_to_add = min(num_bytes, bytes_to_add);
5481 dest->reserved += bytes_to_add;
5482 if (dest->reserved >= dest->size)
5483 dest->full = 1;
5484 num_bytes -= bytes_to_add;
5485 }
5486 spin_unlock(&dest->lock);
5487 }
5488 if (num_bytes)
5489 space_info_add_old_bytes(fs_info, space_info,
5490 num_bytes);
5491 }
5492 }
5493
5494 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5495 struct btrfs_block_rsv *dst, u64 num_bytes,
5496 int update_size)
5497 {
5498 int ret;
5499
5500 ret = block_rsv_use_bytes(src, num_bytes);
5501 if (ret)
5502 return ret;
5503
5504 block_rsv_add_bytes(dst, num_bytes, update_size);
5505 return 0;
5506 }
5507
5508 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5509 {
5510 memset(rsv, 0, sizeof(*rsv));
5511 spin_lock_init(&rsv->lock);
5512 rsv->type = type;
5513 }
5514
5515 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5516 unsigned short type)
5517 {
5518 struct btrfs_block_rsv *block_rsv;
5519
5520 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5521 if (!block_rsv)
5522 return NULL;
5523
5524 btrfs_init_block_rsv(block_rsv, type);
5525 block_rsv->space_info = __find_space_info(fs_info,
5526 BTRFS_BLOCK_GROUP_METADATA);
5527 return block_rsv;
5528 }
5529
5530 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5531 struct btrfs_block_rsv *rsv)
5532 {
5533 if (!rsv)
5534 return;
5535 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5536 kfree(rsv);
5537 }
5538
5539 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5540 {
5541 kfree(rsv);
5542 }
5543
5544 int btrfs_block_rsv_add(struct btrfs_root *root,
5545 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5546 enum btrfs_reserve_flush_enum flush)
5547 {
5548 int ret;
5549
5550 if (num_bytes == 0)
5551 return 0;
5552
5553 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5554 if (!ret) {
5555 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5556 return 0;
5557 }
5558
5559 return ret;
5560 }
5561
5562 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5563 {
5564 u64 num_bytes = 0;
5565 int ret = -ENOSPC;
5566
5567 if (!block_rsv)
5568 return 0;
5569
5570 spin_lock(&block_rsv->lock);
5571 num_bytes = div_factor(block_rsv->size, min_factor);
5572 if (block_rsv->reserved >= num_bytes)
5573 ret = 0;
5574 spin_unlock(&block_rsv->lock);
5575
5576 return ret;
5577 }
5578
5579 int btrfs_block_rsv_refill(struct btrfs_root *root,
5580 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5581 enum btrfs_reserve_flush_enum flush)
5582 {
5583 u64 num_bytes = 0;
5584 int ret = -ENOSPC;
5585
5586 if (!block_rsv)
5587 return 0;
5588
5589 spin_lock(&block_rsv->lock);
5590 num_bytes = min_reserved;
5591 if (block_rsv->reserved >= num_bytes)
5592 ret = 0;
5593 else
5594 num_bytes -= block_rsv->reserved;
5595 spin_unlock(&block_rsv->lock);
5596
5597 if (!ret)
5598 return 0;
5599
5600 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5601 if (!ret) {
5602 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5603 return 0;
5604 }
5605
5606 return ret;
5607 }
5608
5609 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5610 struct btrfs_block_rsv *block_rsv,
5611 u64 num_bytes)
5612 {
5613 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5614
5615 if (global_rsv == block_rsv ||
5616 block_rsv->space_info != global_rsv->space_info)
5617 global_rsv = NULL;
5618 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5619 }
5620
5621 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5622 {
5623 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5624 struct btrfs_space_info *sinfo = block_rsv->space_info;
5625 u64 num_bytes;
5626
5627 /*
5628 * The global block rsv is based on the size of the extent tree, the
5629 * checksum tree and the root tree. If the fs is empty we want to set
5630 * it to a minimal amount for safety.
5631 */
5632 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5633 btrfs_root_used(&fs_info->csum_root->root_item) +
5634 btrfs_root_used(&fs_info->tree_root->root_item);
5635 num_bytes = max_t(u64, num_bytes, SZ_16M);
5636
5637 spin_lock(&sinfo->lock);
5638 spin_lock(&block_rsv->lock);
5639
5640 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5641
5642 if (block_rsv->reserved < block_rsv->size) {
5643 num_bytes = btrfs_space_info_used(sinfo, true);
5644 if (sinfo->total_bytes > num_bytes) {
5645 num_bytes = sinfo->total_bytes - num_bytes;
5646 num_bytes = min(num_bytes,
5647 block_rsv->size - block_rsv->reserved);
5648 block_rsv->reserved += num_bytes;
5649 sinfo->bytes_may_use += num_bytes;
5650 trace_btrfs_space_reservation(fs_info, "space_info",
5651 sinfo->flags, num_bytes,
5652 1);
5653 }
5654 } else if (block_rsv->reserved > block_rsv->size) {
5655 num_bytes = block_rsv->reserved - block_rsv->size;
5656 sinfo->bytes_may_use -= num_bytes;
5657 trace_btrfs_space_reservation(fs_info, "space_info",
5658 sinfo->flags, num_bytes, 0);
5659 block_rsv->reserved = block_rsv->size;
5660 }
5661
5662 if (block_rsv->reserved == block_rsv->size)
5663 block_rsv->full = 1;
5664 else
5665 block_rsv->full = 0;
5666
5667 spin_unlock(&block_rsv->lock);
5668 spin_unlock(&sinfo->lock);
5669 }
5670
5671 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5672 {
5673 struct btrfs_space_info *space_info;
5674
5675 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5676 fs_info->chunk_block_rsv.space_info = space_info;
5677
5678 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5679 fs_info->global_block_rsv.space_info = space_info;
5680 fs_info->delalloc_block_rsv.space_info = space_info;
5681 fs_info->trans_block_rsv.space_info = space_info;
5682 fs_info->empty_block_rsv.space_info = space_info;
5683 fs_info->delayed_block_rsv.space_info = space_info;
5684
5685 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5686 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5687 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5688 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5689 if (fs_info->quota_root)
5690 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5691 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5692
5693 update_global_block_rsv(fs_info);
5694 }
5695
5696 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5697 {
5698 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5699 (u64)-1);
5700 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5701 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5702 WARN_ON(fs_info->trans_block_rsv.size > 0);
5703 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5704 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5705 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5706 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5707 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5708 }
5709
5710 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5711 struct btrfs_fs_info *fs_info)
5712 {
5713 if (!trans->block_rsv)
5714 return;
5715
5716 if (!trans->bytes_reserved)
5717 return;
5718
5719 trace_btrfs_space_reservation(fs_info, "transaction",
5720 trans->transid, trans->bytes_reserved, 0);
5721 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5722 trans->bytes_reserved);
5723 trans->bytes_reserved = 0;
5724 }
5725
5726 /*
5727 * To be called after all the new block groups attached to the transaction
5728 * handle have been created (btrfs_create_pending_block_groups()).
5729 */
5730 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5731 {
5732 struct btrfs_fs_info *fs_info = trans->fs_info;
5733
5734 if (!trans->chunk_bytes_reserved)
5735 return;
5736
5737 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5738
5739 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5740 trans->chunk_bytes_reserved);
5741 trans->chunk_bytes_reserved = 0;
5742 }
5743
5744 /* Can only return 0 or -ENOSPC */
5745 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5746 struct btrfs_inode *inode)
5747 {
5748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5749 struct btrfs_root *root = inode->root;
5750 /*
5751 * We always use trans->block_rsv here as we will have reserved space
5752 * for our orphan when starting the transaction, using get_block_rsv()
5753 * here will sometimes make us choose the wrong block rsv as we could be
5754 * doing a reloc inode for a non refcounted root.
5755 */
5756 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5757 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5758
5759 /*
5760 * We need to hold space in order to delete our orphan item once we've
5761 * added it, so this takes the reservation so we can release it later
5762 * when we are truly done with the orphan item.
5763 */
5764 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5765
5766 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5767 num_bytes, 1);
5768 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5769 }
5770
5771 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5772 {
5773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5774 struct btrfs_root *root = inode->root;
5775 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5776
5777 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5778 num_bytes, 0);
5779 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5780 }
5781
5782 /*
5783 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5784 * root: the root of the parent directory
5785 * rsv: block reservation
5786 * items: the number of items that we need do reservation
5787 * qgroup_reserved: used to return the reserved size in qgroup
5788 *
5789 * This function is used to reserve the space for snapshot/subvolume
5790 * creation and deletion. Those operations are different with the
5791 * common file/directory operations, they change two fs/file trees
5792 * and root tree, the number of items that the qgroup reserves is
5793 * different with the free space reservation. So we can not use
5794 * the space reservation mechanism in start_transaction().
5795 */
5796 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5797 struct btrfs_block_rsv *rsv,
5798 int items,
5799 u64 *qgroup_reserved,
5800 bool use_global_rsv)
5801 {
5802 u64 num_bytes;
5803 int ret;
5804 struct btrfs_fs_info *fs_info = root->fs_info;
5805 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5806
5807 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5808 /* One for parent inode, two for dir entries */
5809 num_bytes = 3 * fs_info->nodesize;
5810 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5811 if (ret)
5812 return ret;
5813 } else {
5814 num_bytes = 0;
5815 }
5816
5817 *qgroup_reserved = num_bytes;
5818
5819 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5820 rsv->space_info = __find_space_info(fs_info,
5821 BTRFS_BLOCK_GROUP_METADATA);
5822 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5823 BTRFS_RESERVE_FLUSH_ALL);
5824
5825 if (ret == -ENOSPC && use_global_rsv)
5826 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5827
5828 if (ret && *qgroup_reserved)
5829 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5830
5831 return ret;
5832 }
5833
5834 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5835 struct btrfs_block_rsv *rsv)
5836 {
5837 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5838 }
5839
5840 /**
5841 * drop_outstanding_extent - drop an outstanding extent
5842 * @inode: the inode we're dropping the extent for
5843 * @num_bytes: the number of bytes we're releasing.
5844 *
5845 * This is called when we are freeing up an outstanding extent, either called
5846 * after an error or after an extent is written. This will return the number of
5847 * reserved extents that need to be freed. This must be called with
5848 * BTRFS_I(inode)->lock held.
5849 */
5850 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5851 u64 num_bytes)
5852 {
5853 unsigned drop_inode_space = 0;
5854 unsigned dropped_extents = 0;
5855 unsigned num_extents;
5856
5857 num_extents = count_max_extents(num_bytes);
5858 ASSERT(num_extents);
5859 ASSERT(inode->outstanding_extents >= num_extents);
5860 inode->outstanding_extents -= num_extents;
5861
5862 if (inode->outstanding_extents == 0 &&
5863 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5864 &inode->runtime_flags))
5865 drop_inode_space = 1;
5866
5867 /*
5868 * If we have more or the same amount of outstanding extents than we have
5869 * reserved then we need to leave the reserved extents count alone.
5870 */
5871 if (inode->outstanding_extents >= inode->reserved_extents)
5872 return drop_inode_space;
5873
5874 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5875 inode->reserved_extents -= dropped_extents;
5876 return dropped_extents + drop_inode_space;
5877 }
5878
5879 /**
5880 * calc_csum_metadata_size - return the amount of metadata space that must be
5881 * reserved/freed for the given bytes.
5882 * @inode: the inode we're manipulating
5883 * @num_bytes: the number of bytes in question
5884 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885 *
5886 * This adjusts the number of csum_bytes in the inode and then returns the
5887 * correct amount of metadata that must either be reserved or freed. We
5888 * calculate how many checksums we can fit into one leaf and then divide the
5889 * number of bytes that will need to be checksumed by this value to figure out
5890 * how many checksums will be required. If we are adding bytes then the number
5891 * may go up and we will return the number of additional bytes that must be
5892 * reserved. If it is going down we will return the number of bytes that must
5893 * be freed.
5894 *
5895 * This must be called with BTRFS_I(inode)->lock held.
5896 */
5897 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5898 int reserve)
5899 {
5900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5901 u64 old_csums, num_csums;
5902
5903 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5904 return 0;
5905
5906 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5907 if (reserve)
5908 inode->csum_bytes += num_bytes;
5909 else
5910 inode->csum_bytes -= num_bytes;
5911 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5912
5913 /* No change, no need to reserve more */
5914 if (old_csums == num_csums)
5915 return 0;
5916
5917 if (reserve)
5918 return btrfs_calc_trans_metadata_size(fs_info,
5919 num_csums - old_csums);
5920
5921 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5922 }
5923
5924 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5925 {
5926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5927 struct btrfs_root *root = inode->root;
5928 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5929 u64 to_reserve = 0;
5930 u64 csum_bytes;
5931 unsigned nr_extents;
5932 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5933 int ret = 0;
5934 bool delalloc_lock = true;
5935 u64 to_free = 0;
5936 unsigned dropped;
5937 bool release_extra = false;
5938
5939 /* If we are a free space inode we need to not flush since we will be in
5940 * the middle of a transaction commit. We also don't need the delalloc
5941 * mutex since we won't race with anybody. We need this mostly to make
5942 * lockdep shut its filthy mouth.
5943 *
5944 * If we have a transaction open (can happen if we call truncate_block
5945 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5946 */
5947 if (btrfs_is_free_space_inode(inode)) {
5948 flush = BTRFS_RESERVE_NO_FLUSH;
5949 delalloc_lock = false;
5950 } else if (current->journal_info) {
5951 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5952 }
5953
5954 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5955 btrfs_transaction_in_commit(fs_info))
5956 schedule_timeout(1);
5957
5958 if (delalloc_lock)
5959 mutex_lock(&inode->delalloc_mutex);
5960
5961 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5962
5963 spin_lock(&inode->lock);
5964 nr_extents = count_max_extents(num_bytes);
5965 inode->outstanding_extents += nr_extents;
5966
5967 nr_extents = 0;
5968 if (inode->outstanding_extents > inode->reserved_extents)
5969 nr_extents += inode->outstanding_extents -
5970 inode->reserved_extents;
5971
5972 /* We always want to reserve a slot for updating the inode. */
5973 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5974 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5975 csum_bytes = inode->csum_bytes;
5976 spin_unlock(&inode->lock);
5977
5978 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5979 ret = btrfs_qgroup_reserve_meta(root,
5980 nr_extents * fs_info->nodesize, true);
5981 if (ret)
5982 goto out_fail;
5983 }
5984
5985 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5986 if (unlikely(ret)) {
5987 btrfs_qgroup_free_meta(root,
5988 nr_extents * fs_info->nodesize);
5989 goto out_fail;
5990 }
5991
5992 spin_lock(&inode->lock);
5993 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5994 &inode->runtime_flags)) {
5995 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
5996 release_extra = true;
5997 }
5998 inode->reserved_extents += nr_extents;
5999 spin_unlock(&inode->lock);
6000
6001 if (delalloc_lock)
6002 mutex_unlock(&inode->delalloc_mutex);
6003
6004 if (to_reserve)
6005 trace_btrfs_space_reservation(fs_info, "delalloc",
6006 btrfs_ino(inode), to_reserve, 1);
6007 if (release_extra)
6008 btrfs_block_rsv_release(fs_info, block_rsv,
6009 btrfs_calc_trans_metadata_size(fs_info, 1));
6010 return 0;
6011
6012 out_fail:
6013 spin_lock(&inode->lock);
6014 dropped = drop_outstanding_extent(inode, num_bytes);
6015 /*
6016 * If the inodes csum_bytes is the same as the original
6017 * csum_bytes then we know we haven't raced with any free()ers
6018 * so we can just reduce our inodes csum bytes and carry on.
6019 */
6020 if (inode->csum_bytes == csum_bytes) {
6021 calc_csum_metadata_size(inode, num_bytes, 0);
6022 } else {
6023 u64 orig_csum_bytes = inode->csum_bytes;
6024 u64 bytes;
6025
6026 /*
6027 * This is tricky, but first we need to figure out how much we
6028 * freed from any free-ers that occurred during this
6029 * reservation, so we reset ->csum_bytes to the csum_bytes
6030 * before we dropped our lock, and then call the free for the
6031 * number of bytes that were freed while we were trying our
6032 * reservation.
6033 */
6034 bytes = csum_bytes - inode->csum_bytes;
6035 inode->csum_bytes = csum_bytes;
6036 to_free = calc_csum_metadata_size(inode, bytes, 0);
6037
6038
6039 /*
6040 * Now we need to see how much we would have freed had we not
6041 * been making this reservation and our ->csum_bytes were not
6042 * artificially inflated.
6043 */
6044 inode->csum_bytes = csum_bytes - num_bytes;
6045 bytes = csum_bytes - orig_csum_bytes;
6046 bytes = calc_csum_metadata_size(inode, bytes, 0);
6047
6048 /*
6049 * Now reset ->csum_bytes to what it should be. If bytes is
6050 * more than to_free then we would have freed more space had we
6051 * not had an artificially high ->csum_bytes, so we need to free
6052 * the remainder. If bytes is the same or less then we don't
6053 * need to do anything, the other free-ers did the correct
6054 * thing.
6055 */
6056 inode->csum_bytes = orig_csum_bytes - num_bytes;
6057 if (bytes > to_free)
6058 to_free = bytes - to_free;
6059 else
6060 to_free = 0;
6061 }
6062 spin_unlock(&inode->lock);
6063 if (dropped)
6064 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6065
6066 if (to_free) {
6067 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6068 trace_btrfs_space_reservation(fs_info, "delalloc",
6069 btrfs_ino(inode), to_free, 0);
6070 }
6071 if (delalloc_lock)
6072 mutex_unlock(&inode->delalloc_mutex);
6073 return ret;
6074 }
6075
6076 /**
6077 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078 * @inode: the inode to release the reservation for
6079 * @num_bytes: the number of bytes we're releasing
6080 *
6081 * This will release the metadata reservation for an inode. This can be called
6082 * once we complete IO for a given set of bytes to release their metadata
6083 * reservations.
6084 */
6085 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6086 {
6087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6088 u64 to_free = 0;
6089 unsigned dropped;
6090
6091 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6092 spin_lock(&inode->lock);
6093 dropped = drop_outstanding_extent(inode, num_bytes);
6094
6095 if (num_bytes)
6096 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6097 spin_unlock(&inode->lock);
6098 if (dropped > 0)
6099 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6100
6101 if (btrfs_is_testing(fs_info))
6102 return;
6103
6104 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6105 to_free, 0);
6106
6107 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6108 }
6109
6110 /**
6111 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6112 * delalloc
6113 * @inode: inode we're writing to
6114 * @start: start range we are writing to
6115 * @len: how long the range we are writing to
6116 *
6117 * This will do the following things
6118 *
6119 * o reserve space in data space info for num bytes
6120 * and reserve precious corresponding qgroup space
6121 * (Done in check_data_free_space)
6122 *
6123 * o reserve space for metadata space, based on the number of outstanding
6124 * extents and how much csums will be needed
6125 * also reserve metadata space in a per root over-reserve method.
6126 * o add to the inodes->delalloc_bytes
6127 * o add it to the fs_info's delalloc inodes list.
6128 * (Above 3 all done in delalloc_reserve_metadata)
6129 *
6130 * Return 0 for success
6131 * Return <0 for error(-ENOSPC or -EQUOT)
6132 */
6133 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6134 {
6135 int ret;
6136
6137 ret = btrfs_check_data_free_space(inode, start, len);
6138 if (ret < 0)
6139 return ret;
6140 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6141 if (ret < 0)
6142 btrfs_free_reserved_data_space(inode, start, len);
6143 return ret;
6144 }
6145
6146 /**
6147 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6148 * @inode: inode we're releasing space for
6149 * @start: start position of the space already reserved
6150 * @len: the len of the space already reserved
6151 *
6152 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6153 * called in the case that we don't need the metadata AND data reservations
6154 * anymore. So if there is an error or we insert an inline extent.
6155 *
6156 * This function will release the metadata space that was not used and will
6157 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6158 * list if there are no delalloc bytes left.
6159 * Also it will handle the qgroup reserved space.
6160 */
6161 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6162 {
6163 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6164 btrfs_free_reserved_data_space(inode, start, len);
6165 }
6166
6167 static int update_block_group(struct btrfs_trans_handle *trans,
6168 struct btrfs_fs_info *info, u64 bytenr,
6169 u64 num_bytes, int alloc)
6170 {
6171 struct btrfs_block_group_cache *cache = NULL;
6172 u64 total = num_bytes;
6173 u64 old_val;
6174 u64 byte_in_group;
6175 int factor;
6176
6177 /* block accounting for super block */
6178 spin_lock(&info->delalloc_root_lock);
6179 old_val = btrfs_super_bytes_used(info->super_copy);
6180 if (alloc)
6181 old_val += num_bytes;
6182 else
6183 old_val -= num_bytes;
6184 btrfs_set_super_bytes_used(info->super_copy, old_val);
6185 spin_unlock(&info->delalloc_root_lock);
6186
6187 while (total) {
6188 cache = btrfs_lookup_block_group(info, bytenr);
6189 if (!cache)
6190 return -ENOENT;
6191 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6192 BTRFS_BLOCK_GROUP_RAID1 |
6193 BTRFS_BLOCK_GROUP_RAID10))
6194 factor = 2;
6195 else
6196 factor = 1;
6197 /*
6198 * If this block group has free space cache written out, we
6199 * need to make sure to load it if we are removing space. This
6200 * is because we need the unpinning stage to actually add the
6201 * space back to the block group, otherwise we will leak space.
6202 */
6203 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6204 cache_block_group(cache, 1);
6205
6206 byte_in_group = bytenr - cache->key.objectid;
6207 WARN_ON(byte_in_group > cache->key.offset);
6208
6209 spin_lock(&cache->space_info->lock);
6210 spin_lock(&cache->lock);
6211
6212 if (btrfs_test_opt(info, SPACE_CACHE) &&
6213 cache->disk_cache_state < BTRFS_DC_CLEAR)
6214 cache->disk_cache_state = BTRFS_DC_CLEAR;
6215
6216 old_val = btrfs_block_group_used(&cache->item);
6217 num_bytes = min(total, cache->key.offset - byte_in_group);
6218 if (alloc) {
6219 old_val += num_bytes;
6220 btrfs_set_block_group_used(&cache->item, old_val);
6221 cache->reserved -= num_bytes;
6222 cache->space_info->bytes_reserved -= num_bytes;
6223 cache->space_info->bytes_used += num_bytes;
6224 cache->space_info->disk_used += num_bytes * factor;
6225 spin_unlock(&cache->lock);
6226 spin_unlock(&cache->space_info->lock);
6227 } else {
6228 old_val -= num_bytes;
6229 btrfs_set_block_group_used(&cache->item, old_val);
6230 cache->pinned += num_bytes;
6231 cache->space_info->bytes_pinned += num_bytes;
6232 cache->space_info->bytes_used -= num_bytes;
6233 cache->space_info->disk_used -= num_bytes * factor;
6234 spin_unlock(&cache->lock);
6235 spin_unlock(&cache->space_info->lock);
6236
6237 trace_btrfs_space_reservation(info, "pinned",
6238 cache->space_info->flags,
6239 num_bytes, 1);
6240 set_extent_dirty(info->pinned_extents,
6241 bytenr, bytenr + num_bytes - 1,
6242 GFP_NOFS | __GFP_NOFAIL);
6243 }
6244
6245 spin_lock(&trans->transaction->dirty_bgs_lock);
6246 if (list_empty(&cache->dirty_list)) {
6247 list_add_tail(&cache->dirty_list,
6248 &trans->transaction->dirty_bgs);
6249 trans->transaction->num_dirty_bgs++;
6250 btrfs_get_block_group(cache);
6251 }
6252 spin_unlock(&trans->transaction->dirty_bgs_lock);
6253
6254 /*
6255 * No longer have used bytes in this block group, queue it for
6256 * deletion. We do this after adding the block group to the
6257 * dirty list to avoid races between cleaner kthread and space
6258 * cache writeout.
6259 */
6260 if (!alloc && old_val == 0) {
6261 spin_lock(&info->unused_bgs_lock);
6262 if (list_empty(&cache->bg_list)) {
6263 btrfs_get_block_group(cache);
6264 list_add_tail(&cache->bg_list,
6265 &info->unused_bgs);
6266 }
6267 spin_unlock(&info->unused_bgs_lock);
6268 }
6269
6270 btrfs_put_block_group(cache);
6271 total -= num_bytes;
6272 bytenr += num_bytes;
6273 }
6274 return 0;
6275 }
6276
6277 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6278 {
6279 struct btrfs_block_group_cache *cache;
6280 u64 bytenr;
6281
6282 spin_lock(&fs_info->block_group_cache_lock);
6283 bytenr = fs_info->first_logical_byte;
6284 spin_unlock(&fs_info->block_group_cache_lock);
6285
6286 if (bytenr < (u64)-1)
6287 return bytenr;
6288
6289 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6290 if (!cache)
6291 return 0;
6292
6293 bytenr = cache->key.objectid;
6294 btrfs_put_block_group(cache);
6295
6296 return bytenr;
6297 }
6298
6299 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6300 struct btrfs_block_group_cache *cache,
6301 u64 bytenr, u64 num_bytes, int reserved)
6302 {
6303 spin_lock(&cache->space_info->lock);
6304 spin_lock(&cache->lock);
6305 cache->pinned += num_bytes;
6306 cache->space_info->bytes_pinned += num_bytes;
6307 if (reserved) {
6308 cache->reserved -= num_bytes;
6309 cache->space_info->bytes_reserved -= num_bytes;
6310 }
6311 spin_unlock(&cache->lock);
6312 spin_unlock(&cache->space_info->lock);
6313
6314 trace_btrfs_space_reservation(fs_info, "pinned",
6315 cache->space_info->flags, num_bytes, 1);
6316 set_extent_dirty(fs_info->pinned_extents, bytenr,
6317 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6318 return 0;
6319 }
6320
6321 /*
6322 * this function must be called within transaction
6323 */
6324 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6325 u64 bytenr, u64 num_bytes, int reserved)
6326 {
6327 struct btrfs_block_group_cache *cache;
6328
6329 cache = btrfs_lookup_block_group(fs_info, bytenr);
6330 BUG_ON(!cache); /* Logic error */
6331
6332 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6333
6334 btrfs_put_block_group(cache);
6335 return 0;
6336 }
6337
6338 /*
6339 * this function must be called within transaction
6340 */
6341 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6342 u64 bytenr, u64 num_bytes)
6343 {
6344 struct btrfs_block_group_cache *cache;
6345 int ret;
6346
6347 cache = btrfs_lookup_block_group(fs_info, bytenr);
6348 if (!cache)
6349 return -EINVAL;
6350
6351 /*
6352 * pull in the free space cache (if any) so that our pin
6353 * removes the free space from the cache. We have load_only set
6354 * to one because the slow code to read in the free extents does check
6355 * the pinned extents.
6356 */
6357 cache_block_group(cache, 1);
6358
6359 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6360
6361 /* remove us from the free space cache (if we're there at all) */
6362 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6363 btrfs_put_block_group(cache);
6364 return ret;
6365 }
6366
6367 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6368 u64 start, u64 num_bytes)
6369 {
6370 int ret;
6371 struct btrfs_block_group_cache *block_group;
6372 struct btrfs_caching_control *caching_ctl;
6373
6374 block_group = btrfs_lookup_block_group(fs_info, start);
6375 if (!block_group)
6376 return -EINVAL;
6377
6378 cache_block_group(block_group, 0);
6379 caching_ctl = get_caching_control(block_group);
6380
6381 if (!caching_ctl) {
6382 /* Logic error */
6383 BUG_ON(!block_group_cache_done(block_group));
6384 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6385 } else {
6386 mutex_lock(&caching_ctl->mutex);
6387
6388 if (start >= caching_ctl->progress) {
6389 ret = add_excluded_extent(fs_info, start, num_bytes);
6390 } else if (start + num_bytes <= caching_ctl->progress) {
6391 ret = btrfs_remove_free_space(block_group,
6392 start, num_bytes);
6393 } else {
6394 num_bytes = caching_ctl->progress - start;
6395 ret = btrfs_remove_free_space(block_group,
6396 start, num_bytes);
6397 if (ret)
6398 goto out_lock;
6399
6400 num_bytes = (start + num_bytes) -
6401 caching_ctl->progress;
6402 start = caching_ctl->progress;
6403 ret = add_excluded_extent(fs_info, start, num_bytes);
6404 }
6405 out_lock:
6406 mutex_unlock(&caching_ctl->mutex);
6407 put_caching_control(caching_ctl);
6408 }
6409 btrfs_put_block_group(block_group);
6410 return ret;
6411 }
6412
6413 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6414 struct extent_buffer *eb)
6415 {
6416 struct btrfs_file_extent_item *item;
6417 struct btrfs_key key;
6418 int found_type;
6419 int i;
6420
6421 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6422 return 0;
6423
6424 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6425 btrfs_item_key_to_cpu(eb, &key, i);
6426 if (key.type != BTRFS_EXTENT_DATA_KEY)
6427 continue;
6428 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6429 found_type = btrfs_file_extent_type(eb, item);
6430 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6431 continue;
6432 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6433 continue;
6434 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6435 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6436 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6437 }
6438
6439 return 0;
6440 }
6441
6442 static void
6443 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6444 {
6445 atomic_inc(&bg->reservations);
6446 }
6447
6448 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6449 const u64 start)
6450 {
6451 struct btrfs_block_group_cache *bg;
6452
6453 bg = btrfs_lookup_block_group(fs_info, start);
6454 ASSERT(bg);
6455 if (atomic_dec_and_test(&bg->reservations))
6456 wake_up_atomic_t(&bg->reservations);
6457 btrfs_put_block_group(bg);
6458 }
6459
6460 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6461 {
6462 schedule();
6463 return 0;
6464 }
6465
6466 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6467 {
6468 struct btrfs_space_info *space_info = bg->space_info;
6469
6470 ASSERT(bg->ro);
6471
6472 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6473 return;
6474
6475 /*
6476 * Our block group is read only but before we set it to read only,
6477 * some task might have had allocated an extent from it already, but it
6478 * has not yet created a respective ordered extent (and added it to a
6479 * root's list of ordered extents).
6480 * Therefore wait for any task currently allocating extents, since the
6481 * block group's reservations counter is incremented while a read lock
6482 * on the groups' semaphore is held and decremented after releasing
6483 * the read access on that semaphore and creating the ordered extent.
6484 */
6485 down_write(&space_info->groups_sem);
6486 up_write(&space_info->groups_sem);
6487
6488 wait_on_atomic_t(&bg->reservations,
6489 btrfs_wait_bg_reservations_atomic_t,
6490 TASK_UNINTERRUPTIBLE);
6491 }
6492
6493 /**
6494 * btrfs_add_reserved_bytes - update the block_group and space info counters
6495 * @cache: The cache we are manipulating
6496 * @ram_bytes: The number of bytes of file content, and will be same to
6497 * @num_bytes except for the compress path.
6498 * @num_bytes: The number of bytes in question
6499 * @delalloc: The blocks are allocated for the delalloc write
6500 *
6501 * This is called by the allocator when it reserves space. If this is a
6502 * reservation and the block group has become read only we cannot make the
6503 * reservation and return -EAGAIN, otherwise this function always succeeds.
6504 */
6505 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6506 u64 ram_bytes, u64 num_bytes, int delalloc)
6507 {
6508 struct btrfs_space_info *space_info = cache->space_info;
6509 int ret = 0;
6510
6511 spin_lock(&space_info->lock);
6512 spin_lock(&cache->lock);
6513 if (cache->ro) {
6514 ret = -EAGAIN;
6515 } else {
6516 cache->reserved += num_bytes;
6517 space_info->bytes_reserved += num_bytes;
6518
6519 trace_btrfs_space_reservation(cache->fs_info,
6520 "space_info", space_info->flags,
6521 ram_bytes, 0);
6522 space_info->bytes_may_use -= ram_bytes;
6523 if (delalloc)
6524 cache->delalloc_bytes += num_bytes;
6525 }
6526 spin_unlock(&cache->lock);
6527 spin_unlock(&space_info->lock);
6528 return ret;
6529 }
6530
6531 /**
6532 * btrfs_free_reserved_bytes - update the block_group and space info counters
6533 * @cache: The cache we are manipulating
6534 * @num_bytes: The number of bytes in question
6535 * @delalloc: The blocks are allocated for the delalloc write
6536 *
6537 * This is called by somebody who is freeing space that was never actually used
6538 * on disk. For example if you reserve some space for a new leaf in transaction
6539 * A and before transaction A commits you free that leaf, you call this with
6540 * reserve set to 0 in order to clear the reservation.
6541 */
6542
6543 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6544 u64 num_bytes, int delalloc)
6545 {
6546 struct btrfs_space_info *space_info = cache->space_info;
6547 int ret = 0;
6548
6549 spin_lock(&space_info->lock);
6550 spin_lock(&cache->lock);
6551 if (cache->ro)
6552 space_info->bytes_readonly += num_bytes;
6553 cache->reserved -= num_bytes;
6554 space_info->bytes_reserved -= num_bytes;
6555
6556 if (delalloc)
6557 cache->delalloc_bytes -= num_bytes;
6558 spin_unlock(&cache->lock);
6559 spin_unlock(&space_info->lock);
6560 return ret;
6561 }
6562 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6563 {
6564 struct btrfs_caching_control *next;
6565 struct btrfs_caching_control *caching_ctl;
6566 struct btrfs_block_group_cache *cache;
6567
6568 down_write(&fs_info->commit_root_sem);
6569
6570 list_for_each_entry_safe(caching_ctl, next,
6571 &fs_info->caching_block_groups, list) {
6572 cache = caching_ctl->block_group;
6573 if (block_group_cache_done(cache)) {
6574 cache->last_byte_to_unpin = (u64)-1;
6575 list_del_init(&caching_ctl->list);
6576 put_caching_control(caching_ctl);
6577 } else {
6578 cache->last_byte_to_unpin = caching_ctl->progress;
6579 }
6580 }
6581
6582 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6583 fs_info->pinned_extents = &fs_info->freed_extents[1];
6584 else
6585 fs_info->pinned_extents = &fs_info->freed_extents[0];
6586
6587 up_write(&fs_info->commit_root_sem);
6588
6589 update_global_block_rsv(fs_info);
6590 }
6591
6592 /*
6593 * Returns the free cluster for the given space info and sets empty_cluster to
6594 * what it should be based on the mount options.
6595 */
6596 static struct btrfs_free_cluster *
6597 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6598 struct btrfs_space_info *space_info, u64 *empty_cluster)
6599 {
6600 struct btrfs_free_cluster *ret = NULL;
6601 bool ssd = btrfs_test_opt(fs_info, SSD);
6602
6603 *empty_cluster = 0;
6604 if (btrfs_mixed_space_info(space_info))
6605 return ret;
6606
6607 if (ssd)
6608 *empty_cluster = SZ_2M;
6609 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6610 ret = &fs_info->meta_alloc_cluster;
6611 if (!ssd)
6612 *empty_cluster = SZ_64K;
6613 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6614 ret = &fs_info->data_alloc_cluster;
6615 }
6616
6617 return ret;
6618 }
6619
6620 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6621 u64 start, u64 end,
6622 const bool return_free_space)
6623 {
6624 struct btrfs_block_group_cache *cache = NULL;
6625 struct btrfs_space_info *space_info;
6626 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6627 struct btrfs_free_cluster *cluster = NULL;
6628 u64 len;
6629 u64 total_unpinned = 0;
6630 u64 empty_cluster = 0;
6631 bool readonly;
6632
6633 while (start <= end) {
6634 readonly = false;
6635 if (!cache ||
6636 start >= cache->key.objectid + cache->key.offset) {
6637 if (cache)
6638 btrfs_put_block_group(cache);
6639 total_unpinned = 0;
6640 cache = btrfs_lookup_block_group(fs_info, start);
6641 BUG_ON(!cache); /* Logic error */
6642
6643 cluster = fetch_cluster_info(fs_info,
6644 cache->space_info,
6645 &empty_cluster);
6646 empty_cluster <<= 1;
6647 }
6648
6649 len = cache->key.objectid + cache->key.offset - start;
6650 len = min(len, end + 1 - start);
6651
6652 if (start < cache->last_byte_to_unpin) {
6653 len = min(len, cache->last_byte_to_unpin - start);
6654 if (return_free_space)
6655 btrfs_add_free_space(cache, start, len);
6656 }
6657
6658 start += len;
6659 total_unpinned += len;
6660 space_info = cache->space_info;
6661
6662 /*
6663 * If this space cluster has been marked as fragmented and we've
6664 * unpinned enough in this block group to potentially allow a
6665 * cluster to be created inside of it go ahead and clear the
6666 * fragmented check.
6667 */
6668 if (cluster && cluster->fragmented &&
6669 total_unpinned > empty_cluster) {
6670 spin_lock(&cluster->lock);
6671 cluster->fragmented = 0;
6672 spin_unlock(&cluster->lock);
6673 }
6674
6675 spin_lock(&space_info->lock);
6676 spin_lock(&cache->lock);
6677 cache->pinned -= len;
6678 space_info->bytes_pinned -= len;
6679
6680 trace_btrfs_space_reservation(fs_info, "pinned",
6681 space_info->flags, len, 0);
6682 space_info->max_extent_size = 0;
6683 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6684 if (cache->ro) {
6685 space_info->bytes_readonly += len;
6686 readonly = true;
6687 }
6688 spin_unlock(&cache->lock);
6689 if (!readonly && return_free_space &&
6690 global_rsv->space_info == space_info) {
6691 u64 to_add = len;
6692 WARN_ON(!return_free_space);
6693 spin_lock(&global_rsv->lock);
6694 if (!global_rsv->full) {
6695 to_add = min(len, global_rsv->size -
6696 global_rsv->reserved);
6697 global_rsv->reserved += to_add;
6698 space_info->bytes_may_use += to_add;
6699 if (global_rsv->reserved >= global_rsv->size)
6700 global_rsv->full = 1;
6701 trace_btrfs_space_reservation(fs_info,
6702 "space_info",
6703 space_info->flags,
6704 to_add, 1);
6705 len -= to_add;
6706 }
6707 spin_unlock(&global_rsv->lock);
6708 /* Add to any tickets we may have */
6709 if (len)
6710 space_info_add_new_bytes(fs_info, space_info,
6711 len);
6712 }
6713 spin_unlock(&space_info->lock);
6714 }
6715
6716 if (cache)
6717 btrfs_put_block_group(cache);
6718 return 0;
6719 }
6720
6721 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6722 struct btrfs_fs_info *fs_info)
6723 {
6724 struct btrfs_block_group_cache *block_group, *tmp;
6725 struct list_head *deleted_bgs;
6726 struct extent_io_tree *unpin;
6727 u64 start;
6728 u64 end;
6729 int ret;
6730
6731 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6732 unpin = &fs_info->freed_extents[1];
6733 else
6734 unpin = &fs_info->freed_extents[0];
6735
6736 while (!trans->aborted) {
6737 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6738 ret = find_first_extent_bit(unpin, 0, &start, &end,
6739 EXTENT_DIRTY, NULL);
6740 if (ret) {
6741 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6742 break;
6743 }
6744
6745 if (btrfs_test_opt(fs_info, DISCARD))
6746 ret = btrfs_discard_extent(fs_info, start,
6747 end + 1 - start, NULL);
6748
6749 clear_extent_dirty(unpin, start, end);
6750 unpin_extent_range(fs_info, start, end, true);
6751 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6752 cond_resched();
6753 }
6754
6755 /*
6756 * Transaction is finished. We don't need the lock anymore. We
6757 * do need to clean up the block groups in case of a transaction
6758 * abort.
6759 */
6760 deleted_bgs = &trans->transaction->deleted_bgs;
6761 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6762 u64 trimmed = 0;
6763
6764 ret = -EROFS;
6765 if (!trans->aborted)
6766 ret = btrfs_discard_extent(fs_info,
6767 block_group->key.objectid,
6768 block_group->key.offset,
6769 &trimmed);
6770
6771 list_del_init(&block_group->bg_list);
6772 btrfs_put_block_group_trimming(block_group);
6773 btrfs_put_block_group(block_group);
6774
6775 if (ret) {
6776 const char *errstr = btrfs_decode_error(ret);
6777 btrfs_warn(fs_info,
6778 "Discard failed while removing blockgroup: errno=%d %s\n",
6779 ret, errstr);
6780 }
6781 }
6782
6783 return 0;
6784 }
6785
6786 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6787 u64 owner, u64 root_objectid)
6788 {
6789 struct btrfs_space_info *space_info;
6790 u64 flags;
6791
6792 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6793 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6794 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6795 else
6796 flags = BTRFS_BLOCK_GROUP_METADATA;
6797 } else {
6798 flags = BTRFS_BLOCK_GROUP_DATA;
6799 }
6800
6801 space_info = __find_space_info(fs_info, flags);
6802 BUG_ON(!space_info); /* Logic bug */
6803 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6804 }
6805
6806
6807 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6808 struct btrfs_fs_info *info,
6809 struct btrfs_delayed_ref_node *node, u64 parent,
6810 u64 root_objectid, u64 owner_objectid,
6811 u64 owner_offset, int refs_to_drop,
6812 struct btrfs_delayed_extent_op *extent_op)
6813 {
6814 struct btrfs_key key;
6815 struct btrfs_path *path;
6816 struct btrfs_root *extent_root = info->extent_root;
6817 struct extent_buffer *leaf;
6818 struct btrfs_extent_item *ei;
6819 struct btrfs_extent_inline_ref *iref;
6820 int ret;
6821 int is_data;
6822 int extent_slot = 0;
6823 int found_extent = 0;
6824 int num_to_del = 1;
6825 u32 item_size;
6826 u64 refs;
6827 u64 bytenr = node->bytenr;
6828 u64 num_bytes = node->num_bytes;
6829 int last_ref = 0;
6830 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6831
6832 path = btrfs_alloc_path();
6833 if (!path)
6834 return -ENOMEM;
6835
6836 path->reada = READA_FORWARD;
6837 path->leave_spinning = 1;
6838
6839 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6840 BUG_ON(!is_data && refs_to_drop != 1);
6841
6842 if (is_data)
6843 skinny_metadata = 0;
6844
6845 ret = lookup_extent_backref(trans, info, path, &iref,
6846 bytenr, num_bytes, parent,
6847 root_objectid, owner_objectid,
6848 owner_offset);
6849 if (ret == 0) {
6850 extent_slot = path->slots[0];
6851 while (extent_slot >= 0) {
6852 btrfs_item_key_to_cpu(path->nodes[0], &key,
6853 extent_slot);
6854 if (key.objectid != bytenr)
6855 break;
6856 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6857 key.offset == num_bytes) {
6858 found_extent = 1;
6859 break;
6860 }
6861 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6862 key.offset == owner_objectid) {
6863 found_extent = 1;
6864 break;
6865 }
6866 if (path->slots[0] - extent_slot > 5)
6867 break;
6868 extent_slot--;
6869 }
6870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6871 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6872 if (found_extent && item_size < sizeof(*ei))
6873 found_extent = 0;
6874 #endif
6875 if (!found_extent) {
6876 BUG_ON(iref);
6877 ret = remove_extent_backref(trans, info, path, NULL,
6878 refs_to_drop,
6879 is_data, &last_ref);
6880 if (ret) {
6881 btrfs_abort_transaction(trans, ret);
6882 goto out;
6883 }
6884 btrfs_release_path(path);
6885 path->leave_spinning = 1;
6886
6887 key.objectid = bytenr;
6888 key.type = BTRFS_EXTENT_ITEM_KEY;
6889 key.offset = num_bytes;
6890
6891 if (!is_data && skinny_metadata) {
6892 key.type = BTRFS_METADATA_ITEM_KEY;
6893 key.offset = owner_objectid;
6894 }
6895
6896 ret = btrfs_search_slot(trans, extent_root,
6897 &key, path, -1, 1);
6898 if (ret > 0 && skinny_metadata && path->slots[0]) {
6899 /*
6900 * Couldn't find our skinny metadata item,
6901 * see if we have ye olde extent item.
6902 */
6903 path->slots[0]--;
6904 btrfs_item_key_to_cpu(path->nodes[0], &key,
6905 path->slots[0]);
6906 if (key.objectid == bytenr &&
6907 key.type == BTRFS_EXTENT_ITEM_KEY &&
6908 key.offset == num_bytes)
6909 ret = 0;
6910 }
6911
6912 if (ret > 0 && skinny_metadata) {
6913 skinny_metadata = false;
6914 key.objectid = bytenr;
6915 key.type = BTRFS_EXTENT_ITEM_KEY;
6916 key.offset = num_bytes;
6917 btrfs_release_path(path);
6918 ret = btrfs_search_slot(trans, extent_root,
6919 &key, path, -1, 1);
6920 }
6921
6922 if (ret) {
6923 btrfs_err(info,
6924 "umm, got %d back from search, was looking for %llu",
6925 ret, bytenr);
6926 if (ret > 0)
6927 btrfs_print_leaf(info, path->nodes[0]);
6928 }
6929 if (ret < 0) {
6930 btrfs_abort_transaction(trans, ret);
6931 goto out;
6932 }
6933 extent_slot = path->slots[0];
6934 }
6935 } else if (WARN_ON(ret == -ENOENT)) {
6936 btrfs_print_leaf(info, path->nodes[0]);
6937 btrfs_err(info,
6938 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6939 bytenr, parent, root_objectid, owner_objectid,
6940 owner_offset);
6941 btrfs_abort_transaction(trans, ret);
6942 goto out;
6943 } else {
6944 btrfs_abort_transaction(trans, ret);
6945 goto out;
6946 }
6947
6948 leaf = path->nodes[0];
6949 item_size = btrfs_item_size_nr(leaf, extent_slot);
6950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6951 if (item_size < sizeof(*ei)) {
6952 BUG_ON(found_extent || extent_slot != path->slots[0]);
6953 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6954 0);
6955 if (ret < 0) {
6956 btrfs_abort_transaction(trans, ret);
6957 goto out;
6958 }
6959
6960 btrfs_release_path(path);
6961 path->leave_spinning = 1;
6962
6963 key.objectid = bytenr;
6964 key.type = BTRFS_EXTENT_ITEM_KEY;
6965 key.offset = num_bytes;
6966
6967 ret = btrfs_search_slot(trans, extent_root, &key, path,
6968 -1, 1);
6969 if (ret) {
6970 btrfs_err(info,
6971 "umm, got %d back from search, was looking for %llu",
6972 ret, bytenr);
6973 btrfs_print_leaf(info, path->nodes[0]);
6974 }
6975 if (ret < 0) {
6976 btrfs_abort_transaction(trans, ret);
6977 goto out;
6978 }
6979
6980 extent_slot = path->slots[0];
6981 leaf = path->nodes[0];
6982 item_size = btrfs_item_size_nr(leaf, extent_slot);
6983 }
6984 #endif
6985 BUG_ON(item_size < sizeof(*ei));
6986 ei = btrfs_item_ptr(leaf, extent_slot,
6987 struct btrfs_extent_item);
6988 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6989 key.type == BTRFS_EXTENT_ITEM_KEY) {
6990 struct btrfs_tree_block_info *bi;
6991 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6992 bi = (struct btrfs_tree_block_info *)(ei + 1);
6993 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6994 }
6995
6996 refs = btrfs_extent_refs(leaf, ei);
6997 if (refs < refs_to_drop) {
6998 btrfs_err(info,
6999 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7000 refs_to_drop, refs, bytenr);
7001 ret = -EINVAL;
7002 btrfs_abort_transaction(trans, ret);
7003 goto out;
7004 }
7005 refs -= refs_to_drop;
7006
7007 if (refs > 0) {
7008 if (extent_op)
7009 __run_delayed_extent_op(extent_op, leaf, ei);
7010 /*
7011 * In the case of inline back ref, reference count will
7012 * be updated by remove_extent_backref
7013 */
7014 if (iref) {
7015 BUG_ON(!found_extent);
7016 } else {
7017 btrfs_set_extent_refs(leaf, ei, refs);
7018 btrfs_mark_buffer_dirty(leaf);
7019 }
7020 if (found_extent) {
7021 ret = remove_extent_backref(trans, info, path,
7022 iref, refs_to_drop,
7023 is_data, &last_ref);
7024 if (ret) {
7025 btrfs_abort_transaction(trans, ret);
7026 goto out;
7027 }
7028 }
7029 add_pinned_bytes(info, -num_bytes, owner_objectid,
7030 root_objectid);
7031 } else {
7032 if (found_extent) {
7033 BUG_ON(is_data && refs_to_drop !=
7034 extent_data_ref_count(path, iref));
7035 if (iref) {
7036 BUG_ON(path->slots[0] != extent_slot);
7037 } else {
7038 BUG_ON(path->slots[0] != extent_slot + 1);
7039 path->slots[0] = extent_slot;
7040 num_to_del = 2;
7041 }
7042 }
7043
7044 last_ref = 1;
7045 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7046 num_to_del);
7047 if (ret) {
7048 btrfs_abort_transaction(trans, ret);
7049 goto out;
7050 }
7051 btrfs_release_path(path);
7052
7053 if (is_data) {
7054 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7055 if (ret) {
7056 btrfs_abort_transaction(trans, ret);
7057 goto out;
7058 }
7059 }
7060
7061 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7062 if (ret) {
7063 btrfs_abort_transaction(trans, ret);
7064 goto out;
7065 }
7066
7067 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7068 if (ret) {
7069 btrfs_abort_transaction(trans, ret);
7070 goto out;
7071 }
7072 }
7073 btrfs_release_path(path);
7074
7075 out:
7076 btrfs_free_path(path);
7077 return ret;
7078 }
7079
7080 /*
7081 * when we free an block, it is possible (and likely) that we free the last
7082 * delayed ref for that extent as well. This searches the delayed ref tree for
7083 * a given extent, and if there are no other delayed refs to be processed, it
7084 * removes it from the tree.
7085 */
7086 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7087 u64 bytenr)
7088 {
7089 struct btrfs_delayed_ref_head *head;
7090 struct btrfs_delayed_ref_root *delayed_refs;
7091 int ret = 0;
7092
7093 delayed_refs = &trans->transaction->delayed_refs;
7094 spin_lock(&delayed_refs->lock);
7095 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7096 if (!head)
7097 goto out_delayed_unlock;
7098
7099 spin_lock(&head->lock);
7100 if (!list_empty(&head->ref_list))
7101 goto out;
7102
7103 if (head->extent_op) {
7104 if (!head->must_insert_reserved)
7105 goto out;
7106 btrfs_free_delayed_extent_op(head->extent_op);
7107 head->extent_op = NULL;
7108 }
7109
7110 /*
7111 * waiting for the lock here would deadlock. If someone else has it
7112 * locked they are already in the process of dropping it anyway
7113 */
7114 if (!mutex_trylock(&head->mutex))
7115 goto out;
7116
7117 /*
7118 * at this point we have a head with no other entries. Go
7119 * ahead and process it.
7120 */
7121 head->node.in_tree = 0;
7122 rb_erase(&head->href_node, &delayed_refs->href_root);
7123
7124 atomic_dec(&delayed_refs->num_entries);
7125
7126 /*
7127 * we don't take a ref on the node because we're removing it from the
7128 * tree, so we just steal the ref the tree was holding.
7129 */
7130 delayed_refs->num_heads--;
7131 if (head->processing == 0)
7132 delayed_refs->num_heads_ready--;
7133 head->processing = 0;
7134 spin_unlock(&head->lock);
7135 spin_unlock(&delayed_refs->lock);
7136
7137 BUG_ON(head->extent_op);
7138 if (head->must_insert_reserved)
7139 ret = 1;
7140
7141 mutex_unlock(&head->mutex);
7142 btrfs_put_delayed_ref(&head->node);
7143 return ret;
7144 out:
7145 spin_unlock(&head->lock);
7146
7147 out_delayed_unlock:
7148 spin_unlock(&delayed_refs->lock);
7149 return 0;
7150 }
7151
7152 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7153 struct btrfs_root *root,
7154 struct extent_buffer *buf,
7155 u64 parent, int last_ref)
7156 {
7157 struct btrfs_fs_info *fs_info = root->fs_info;
7158 int pin = 1;
7159 int ret;
7160
7161 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7162 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7163 buf->start, buf->len,
7164 parent,
7165 root->root_key.objectid,
7166 btrfs_header_level(buf),
7167 BTRFS_DROP_DELAYED_REF, NULL);
7168 BUG_ON(ret); /* -ENOMEM */
7169 }
7170
7171 if (!last_ref)
7172 return;
7173
7174 if (btrfs_header_generation(buf) == trans->transid) {
7175 struct btrfs_block_group_cache *cache;
7176
7177 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7178 ret = check_ref_cleanup(trans, buf->start);
7179 if (!ret)
7180 goto out;
7181 }
7182
7183 cache = btrfs_lookup_block_group(fs_info, buf->start);
7184
7185 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7186 pin_down_extent(fs_info, cache, buf->start,
7187 buf->len, 1);
7188 btrfs_put_block_group(cache);
7189 goto out;
7190 }
7191
7192 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7193
7194 btrfs_add_free_space(cache, buf->start, buf->len);
7195 btrfs_free_reserved_bytes(cache, buf->len, 0);
7196 btrfs_put_block_group(cache);
7197 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7198 pin = 0;
7199 }
7200 out:
7201 if (pin)
7202 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7203 root->root_key.objectid);
7204
7205 /*
7206 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7207 * anymore.
7208 */
7209 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7210 }
7211
7212 /* Can return -ENOMEM */
7213 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7214 struct btrfs_fs_info *fs_info,
7215 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7216 u64 owner, u64 offset)
7217 {
7218 int ret;
7219
7220 if (btrfs_is_testing(fs_info))
7221 return 0;
7222
7223 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7224
7225 /*
7226 * tree log blocks never actually go into the extent allocation
7227 * tree, just update pinning info and exit early.
7228 */
7229 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7230 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7231 /* unlocks the pinned mutex */
7232 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7233 ret = 0;
7234 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7235 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7236 num_bytes,
7237 parent, root_objectid, (int)owner,
7238 BTRFS_DROP_DELAYED_REF, NULL);
7239 } else {
7240 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7241 num_bytes,
7242 parent, root_objectid, owner,
7243 offset, 0,
7244 BTRFS_DROP_DELAYED_REF);
7245 }
7246 return ret;
7247 }
7248
7249 /*
7250 * when we wait for progress in the block group caching, its because
7251 * our allocation attempt failed at least once. So, we must sleep
7252 * and let some progress happen before we try again.
7253 *
7254 * This function will sleep at least once waiting for new free space to
7255 * show up, and then it will check the block group free space numbers
7256 * for our min num_bytes. Another option is to have it go ahead
7257 * and look in the rbtree for a free extent of a given size, but this
7258 * is a good start.
7259 *
7260 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261 * any of the information in this block group.
7262 */
7263 static noinline void
7264 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7265 u64 num_bytes)
7266 {
7267 struct btrfs_caching_control *caching_ctl;
7268
7269 caching_ctl = get_caching_control(cache);
7270 if (!caching_ctl)
7271 return;
7272
7273 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7274 (cache->free_space_ctl->free_space >= num_bytes));
7275
7276 put_caching_control(caching_ctl);
7277 }
7278
7279 static noinline int
7280 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7281 {
7282 struct btrfs_caching_control *caching_ctl;
7283 int ret = 0;
7284
7285 caching_ctl = get_caching_control(cache);
7286 if (!caching_ctl)
7287 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7288
7289 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7290 if (cache->cached == BTRFS_CACHE_ERROR)
7291 ret = -EIO;
7292 put_caching_control(caching_ctl);
7293 return ret;
7294 }
7295
7296 int __get_raid_index(u64 flags)
7297 {
7298 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7299 return BTRFS_RAID_RAID10;
7300 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7301 return BTRFS_RAID_RAID1;
7302 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7303 return BTRFS_RAID_DUP;
7304 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7305 return BTRFS_RAID_RAID0;
7306 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7307 return BTRFS_RAID_RAID5;
7308 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7309 return BTRFS_RAID_RAID6;
7310
7311 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7312 }
7313
7314 int get_block_group_index(struct btrfs_block_group_cache *cache)
7315 {
7316 return __get_raid_index(cache->flags);
7317 }
7318
7319 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7320 [BTRFS_RAID_RAID10] = "raid10",
7321 [BTRFS_RAID_RAID1] = "raid1",
7322 [BTRFS_RAID_DUP] = "dup",
7323 [BTRFS_RAID_RAID0] = "raid0",
7324 [BTRFS_RAID_SINGLE] = "single",
7325 [BTRFS_RAID_RAID5] = "raid5",
7326 [BTRFS_RAID_RAID6] = "raid6",
7327 };
7328
7329 static const char *get_raid_name(enum btrfs_raid_types type)
7330 {
7331 if (type >= BTRFS_NR_RAID_TYPES)
7332 return NULL;
7333
7334 return btrfs_raid_type_names[type];
7335 }
7336
7337 enum btrfs_loop_type {
7338 LOOP_CACHING_NOWAIT = 0,
7339 LOOP_CACHING_WAIT = 1,
7340 LOOP_ALLOC_CHUNK = 2,
7341 LOOP_NO_EMPTY_SIZE = 3,
7342 };
7343
7344 static inline void
7345 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7346 int delalloc)
7347 {
7348 if (delalloc)
7349 down_read(&cache->data_rwsem);
7350 }
7351
7352 static inline void
7353 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7354 int delalloc)
7355 {
7356 btrfs_get_block_group(cache);
7357 if (delalloc)
7358 down_read(&cache->data_rwsem);
7359 }
7360
7361 static struct btrfs_block_group_cache *
7362 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7363 struct btrfs_free_cluster *cluster,
7364 int delalloc)
7365 {
7366 struct btrfs_block_group_cache *used_bg = NULL;
7367
7368 spin_lock(&cluster->refill_lock);
7369 while (1) {
7370 used_bg = cluster->block_group;
7371 if (!used_bg)
7372 return NULL;
7373
7374 if (used_bg == block_group)
7375 return used_bg;
7376
7377 btrfs_get_block_group(used_bg);
7378
7379 if (!delalloc)
7380 return used_bg;
7381
7382 if (down_read_trylock(&used_bg->data_rwsem))
7383 return used_bg;
7384
7385 spin_unlock(&cluster->refill_lock);
7386
7387 /* We should only have one-level nested. */
7388 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7389
7390 spin_lock(&cluster->refill_lock);
7391 if (used_bg == cluster->block_group)
7392 return used_bg;
7393
7394 up_read(&used_bg->data_rwsem);
7395 btrfs_put_block_group(used_bg);
7396 }
7397 }
7398
7399 static inline void
7400 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7401 int delalloc)
7402 {
7403 if (delalloc)
7404 up_read(&cache->data_rwsem);
7405 btrfs_put_block_group(cache);
7406 }
7407
7408 /*
7409 * walks the btree of allocated extents and find a hole of a given size.
7410 * The key ins is changed to record the hole:
7411 * ins->objectid == start position
7412 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7413 * ins->offset == the size of the hole.
7414 * Any available blocks before search_start are skipped.
7415 *
7416 * If there is no suitable free space, we will record the max size of
7417 * the free space extent currently.
7418 */
7419 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7420 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7421 u64 hint_byte, struct btrfs_key *ins,
7422 u64 flags, int delalloc)
7423 {
7424 int ret = 0;
7425 struct btrfs_root *root = fs_info->extent_root;
7426 struct btrfs_free_cluster *last_ptr = NULL;
7427 struct btrfs_block_group_cache *block_group = NULL;
7428 u64 search_start = 0;
7429 u64 max_extent_size = 0;
7430 u64 empty_cluster = 0;
7431 struct btrfs_space_info *space_info;
7432 int loop = 0;
7433 int index = __get_raid_index(flags);
7434 bool failed_cluster_refill = false;
7435 bool failed_alloc = false;
7436 bool use_cluster = true;
7437 bool have_caching_bg = false;
7438 bool orig_have_caching_bg = false;
7439 bool full_search = false;
7440
7441 WARN_ON(num_bytes < fs_info->sectorsize);
7442 ins->type = BTRFS_EXTENT_ITEM_KEY;
7443 ins->objectid = 0;
7444 ins->offset = 0;
7445
7446 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7447
7448 space_info = __find_space_info(fs_info, flags);
7449 if (!space_info) {
7450 btrfs_err(fs_info, "No space info for %llu", flags);
7451 return -ENOSPC;
7452 }
7453
7454 /*
7455 * If our free space is heavily fragmented we may not be able to make
7456 * big contiguous allocations, so instead of doing the expensive search
7457 * for free space, simply return ENOSPC with our max_extent_size so we
7458 * can go ahead and search for a more manageable chunk.
7459 *
7460 * If our max_extent_size is large enough for our allocation simply
7461 * disable clustering since we will likely not be able to find enough
7462 * space to create a cluster and induce latency trying.
7463 */
7464 if (unlikely(space_info->max_extent_size)) {
7465 spin_lock(&space_info->lock);
7466 if (space_info->max_extent_size &&
7467 num_bytes > space_info->max_extent_size) {
7468 ins->offset = space_info->max_extent_size;
7469 spin_unlock(&space_info->lock);
7470 return -ENOSPC;
7471 } else if (space_info->max_extent_size) {
7472 use_cluster = false;
7473 }
7474 spin_unlock(&space_info->lock);
7475 }
7476
7477 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7478 if (last_ptr) {
7479 spin_lock(&last_ptr->lock);
7480 if (last_ptr->block_group)
7481 hint_byte = last_ptr->window_start;
7482 if (last_ptr->fragmented) {
7483 /*
7484 * We still set window_start so we can keep track of the
7485 * last place we found an allocation to try and save
7486 * some time.
7487 */
7488 hint_byte = last_ptr->window_start;
7489 use_cluster = false;
7490 }
7491 spin_unlock(&last_ptr->lock);
7492 }
7493
7494 search_start = max(search_start, first_logical_byte(fs_info, 0));
7495 search_start = max(search_start, hint_byte);
7496 if (search_start == hint_byte) {
7497 block_group = btrfs_lookup_block_group(fs_info, search_start);
7498 /*
7499 * we don't want to use the block group if it doesn't match our
7500 * allocation bits, or if its not cached.
7501 *
7502 * However if we are re-searching with an ideal block group
7503 * picked out then we don't care that the block group is cached.
7504 */
7505 if (block_group && block_group_bits(block_group, flags) &&
7506 block_group->cached != BTRFS_CACHE_NO) {
7507 down_read(&space_info->groups_sem);
7508 if (list_empty(&block_group->list) ||
7509 block_group->ro) {
7510 /*
7511 * someone is removing this block group,
7512 * we can't jump into the have_block_group
7513 * target because our list pointers are not
7514 * valid
7515 */
7516 btrfs_put_block_group(block_group);
7517 up_read(&space_info->groups_sem);
7518 } else {
7519 index = get_block_group_index(block_group);
7520 btrfs_lock_block_group(block_group, delalloc);
7521 goto have_block_group;
7522 }
7523 } else if (block_group) {
7524 btrfs_put_block_group(block_group);
7525 }
7526 }
7527 search:
7528 have_caching_bg = false;
7529 if (index == 0 || index == __get_raid_index(flags))
7530 full_search = true;
7531 down_read(&space_info->groups_sem);
7532 list_for_each_entry(block_group, &space_info->block_groups[index],
7533 list) {
7534 u64 offset;
7535 int cached;
7536
7537 btrfs_grab_block_group(block_group, delalloc);
7538 search_start = block_group->key.objectid;
7539
7540 /*
7541 * this can happen if we end up cycling through all the
7542 * raid types, but we want to make sure we only allocate
7543 * for the proper type.
7544 */
7545 if (!block_group_bits(block_group, flags)) {
7546 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7547 BTRFS_BLOCK_GROUP_RAID1 |
7548 BTRFS_BLOCK_GROUP_RAID5 |
7549 BTRFS_BLOCK_GROUP_RAID6 |
7550 BTRFS_BLOCK_GROUP_RAID10;
7551
7552 /*
7553 * if they asked for extra copies and this block group
7554 * doesn't provide them, bail. This does allow us to
7555 * fill raid0 from raid1.
7556 */
7557 if ((flags & extra) && !(block_group->flags & extra))
7558 goto loop;
7559 }
7560
7561 have_block_group:
7562 cached = block_group_cache_done(block_group);
7563 if (unlikely(!cached)) {
7564 have_caching_bg = true;
7565 ret = cache_block_group(block_group, 0);
7566 BUG_ON(ret < 0);
7567 ret = 0;
7568 }
7569
7570 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7571 goto loop;
7572 if (unlikely(block_group->ro))
7573 goto loop;
7574
7575 /*
7576 * Ok we want to try and use the cluster allocator, so
7577 * lets look there
7578 */
7579 if (last_ptr && use_cluster) {
7580 struct btrfs_block_group_cache *used_block_group;
7581 unsigned long aligned_cluster;
7582 /*
7583 * the refill lock keeps out other
7584 * people trying to start a new cluster
7585 */
7586 used_block_group = btrfs_lock_cluster(block_group,
7587 last_ptr,
7588 delalloc);
7589 if (!used_block_group)
7590 goto refill_cluster;
7591
7592 if (used_block_group != block_group &&
7593 (used_block_group->ro ||
7594 !block_group_bits(used_block_group, flags)))
7595 goto release_cluster;
7596
7597 offset = btrfs_alloc_from_cluster(used_block_group,
7598 last_ptr,
7599 num_bytes,
7600 used_block_group->key.objectid,
7601 &max_extent_size);
7602 if (offset) {
7603 /* we have a block, we're done */
7604 spin_unlock(&last_ptr->refill_lock);
7605 trace_btrfs_reserve_extent_cluster(fs_info,
7606 used_block_group,
7607 search_start, num_bytes);
7608 if (used_block_group != block_group) {
7609 btrfs_release_block_group(block_group,
7610 delalloc);
7611 block_group = used_block_group;
7612 }
7613 goto checks;
7614 }
7615
7616 WARN_ON(last_ptr->block_group != used_block_group);
7617 release_cluster:
7618 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7619 * set up a new clusters, so lets just skip it
7620 * and let the allocator find whatever block
7621 * it can find. If we reach this point, we
7622 * will have tried the cluster allocator
7623 * plenty of times and not have found
7624 * anything, so we are likely way too
7625 * fragmented for the clustering stuff to find
7626 * anything.
7627 *
7628 * However, if the cluster is taken from the
7629 * current block group, release the cluster
7630 * first, so that we stand a better chance of
7631 * succeeding in the unclustered
7632 * allocation. */
7633 if (loop >= LOOP_NO_EMPTY_SIZE &&
7634 used_block_group != block_group) {
7635 spin_unlock(&last_ptr->refill_lock);
7636 btrfs_release_block_group(used_block_group,
7637 delalloc);
7638 goto unclustered_alloc;
7639 }
7640
7641 /*
7642 * this cluster didn't work out, free it and
7643 * start over
7644 */
7645 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7646
7647 if (used_block_group != block_group)
7648 btrfs_release_block_group(used_block_group,
7649 delalloc);
7650 refill_cluster:
7651 if (loop >= LOOP_NO_EMPTY_SIZE) {
7652 spin_unlock(&last_ptr->refill_lock);
7653 goto unclustered_alloc;
7654 }
7655
7656 aligned_cluster = max_t(unsigned long,
7657 empty_cluster + empty_size,
7658 block_group->full_stripe_len);
7659
7660 /* allocate a cluster in this block group */
7661 ret = btrfs_find_space_cluster(fs_info, block_group,
7662 last_ptr, search_start,
7663 num_bytes,
7664 aligned_cluster);
7665 if (ret == 0) {
7666 /*
7667 * now pull our allocation out of this
7668 * cluster
7669 */
7670 offset = btrfs_alloc_from_cluster(block_group,
7671 last_ptr,
7672 num_bytes,
7673 search_start,
7674 &max_extent_size);
7675 if (offset) {
7676 /* we found one, proceed */
7677 spin_unlock(&last_ptr->refill_lock);
7678 trace_btrfs_reserve_extent_cluster(fs_info,
7679 block_group, search_start,
7680 num_bytes);
7681 goto checks;
7682 }
7683 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7684 && !failed_cluster_refill) {
7685 spin_unlock(&last_ptr->refill_lock);
7686
7687 failed_cluster_refill = true;
7688 wait_block_group_cache_progress(block_group,
7689 num_bytes + empty_cluster + empty_size);
7690 goto have_block_group;
7691 }
7692
7693 /*
7694 * at this point we either didn't find a cluster
7695 * or we weren't able to allocate a block from our
7696 * cluster. Free the cluster we've been trying
7697 * to use, and go to the next block group
7698 */
7699 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7700 spin_unlock(&last_ptr->refill_lock);
7701 goto loop;
7702 }
7703
7704 unclustered_alloc:
7705 /*
7706 * We are doing an unclustered alloc, set the fragmented flag so
7707 * we don't bother trying to setup a cluster again until we get
7708 * more space.
7709 */
7710 if (unlikely(last_ptr)) {
7711 spin_lock(&last_ptr->lock);
7712 last_ptr->fragmented = 1;
7713 spin_unlock(&last_ptr->lock);
7714 }
7715 if (cached) {
7716 struct btrfs_free_space_ctl *ctl =
7717 block_group->free_space_ctl;
7718
7719 spin_lock(&ctl->tree_lock);
7720 if (ctl->free_space <
7721 num_bytes + empty_cluster + empty_size) {
7722 if (ctl->free_space > max_extent_size)
7723 max_extent_size = ctl->free_space;
7724 spin_unlock(&ctl->tree_lock);
7725 goto loop;
7726 }
7727 spin_unlock(&ctl->tree_lock);
7728 }
7729
7730 offset = btrfs_find_space_for_alloc(block_group, search_start,
7731 num_bytes, empty_size,
7732 &max_extent_size);
7733 /*
7734 * If we didn't find a chunk, and we haven't failed on this
7735 * block group before, and this block group is in the middle of
7736 * caching and we are ok with waiting, then go ahead and wait
7737 * for progress to be made, and set failed_alloc to true.
7738 *
7739 * If failed_alloc is true then we've already waited on this
7740 * block group once and should move on to the next block group.
7741 */
7742 if (!offset && !failed_alloc && !cached &&
7743 loop > LOOP_CACHING_NOWAIT) {
7744 wait_block_group_cache_progress(block_group,
7745 num_bytes + empty_size);
7746 failed_alloc = true;
7747 goto have_block_group;
7748 } else if (!offset) {
7749 goto loop;
7750 }
7751 checks:
7752 search_start = ALIGN(offset, fs_info->stripesize);
7753
7754 /* move on to the next group */
7755 if (search_start + num_bytes >
7756 block_group->key.objectid + block_group->key.offset) {
7757 btrfs_add_free_space(block_group, offset, num_bytes);
7758 goto loop;
7759 }
7760
7761 if (offset < search_start)
7762 btrfs_add_free_space(block_group, offset,
7763 search_start - offset);
7764 BUG_ON(offset > search_start);
7765
7766 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7767 num_bytes, delalloc);
7768 if (ret == -EAGAIN) {
7769 btrfs_add_free_space(block_group, offset, num_bytes);
7770 goto loop;
7771 }
7772 btrfs_inc_block_group_reservations(block_group);
7773
7774 /* we are all good, lets return */
7775 ins->objectid = search_start;
7776 ins->offset = num_bytes;
7777
7778 trace_btrfs_reserve_extent(fs_info, block_group,
7779 search_start, num_bytes);
7780 btrfs_release_block_group(block_group, delalloc);
7781 break;
7782 loop:
7783 failed_cluster_refill = false;
7784 failed_alloc = false;
7785 BUG_ON(index != get_block_group_index(block_group));
7786 btrfs_release_block_group(block_group, delalloc);
7787 }
7788 up_read(&space_info->groups_sem);
7789
7790 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7791 && !orig_have_caching_bg)
7792 orig_have_caching_bg = true;
7793
7794 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7795 goto search;
7796
7797 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7798 goto search;
7799
7800 /*
7801 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802 * caching kthreads as we move along
7803 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806 * again
7807 */
7808 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7809 index = 0;
7810 if (loop == LOOP_CACHING_NOWAIT) {
7811 /*
7812 * We want to skip the LOOP_CACHING_WAIT step if we
7813 * don't have any uncached bgs and we've already done a
7814 * full search through.
7815 */
7816 if (orig_have_caching_bg || !full_search)
7817 loop = LOOP_CACHING_WAIT;
7818 else
7819 loop = LOOP_ALLOC_CHUNK;
7820 } else {
7821 loop++;
7822 }
7823
7824 if (loop == LOOP_ALLOC_CHUNK) {
7825 struct btrfs_trans_handle *trans;
7826 int exist = 0;
7827
7828 trans = current->journal_info;
7829 if (trans)
7830 exist = 1;
7831 else
7832 trans = btrfs_join_transaction(root);
7833
7834 if (IS_ERR(trans)) {
7835 ret = PTR_ERR(trans);
7836 goto out;
7837 }
7838
7839 ret = do_chunk_alloc(trans, fs_info, flags,
7840 CHUNK_ALLOC_FORCE);
7841
7842 /*
7843 * If we can't allocate a new chunk we've already looped
7844 * through at least once, move on to the NO_EMPTY_SIZE
7845 * case.
7846 */
7847 if (ret == -ENOSPC)
7848 loop = LOOP_NO_EMPTY_SIZE;
7849
7850 /*
7851 * Do not bail out on ENOSPC since we
7852 * can do more things.
7853 */
7854 if (ret < 0 && ret != -ENOSPC)
7855 btrfs_abort_transaction(trans, ret);
7856 else
7857 ret = 0;
7858 if (!exist)
7859 btrfs_end_transaction(trans);
7860 if (ret)
7861 goto out;
7862 }
7863
7864 if (loop == LOOP_NO_EMPTY_SIZE) {
7865 /*
7866 * Don't loop again if we already have no empty_size and
7867 * no empty_cluster.
7868 */
7869 if (empty_size == 0 &&
7870 empty_cluster == 0) {
7871 ret = -ENOSPC;
7872 goto out;
7873 }
7874 empty_size = 0;
7875 empty_cluster = 0;
7876 }
7877
7878 goto search;
7879 } else if (!ins->objectid) {
7880 ret = -ENOSPC;
7881 } else if (ins->objectid) {
7882 if (!use_cluster && last_ptr) {
7883 spin_lock(&last_ptr->lock);
7884 last_ptr->window_start = ins->objectid;
7885 spin_unlock(&last_ptr->lock);
7886 }
7887 ret = 0;
7888 }
7889 out:
7890 if (ret == -ENOSPC) {
7891 spin_lock(&space_info->lock);
7892 space_info->max_extent_size = max_extent_size;
7893 spin_unlock(&space_info->lock);
7894 ins->offset = max_extent_size;
7895 }
7896 return ret;
7897 }
7898
7899 static void dump_space_info(struct btrfs_fs_info *fs_info,
7900 struct btrfs_space_info *info, u64 bytes,
7901 int dump_block_groups)
7902 {
7903 struct btrfs_block_group_cache *cache;
7904 int index = 0;
7905
7906 spin_lock(&info->lock);
7907 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7908 info->flags,
7909 info->total_bytes - btrfs_space_info_used(info, true),
7910 info->full ? "" : "not ");
7911 btrfs_info(fs_info,
7912 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7913 info->total_bytes, info->bytes_used, info->bytes_pinned,
7914 info->bytes_reserved, info->bytes_may_use,
7915 info->bytes_readonly);
7916 spin_unlock(&info->lock);
7917
7918 if (!dump_block_groups)
7919 return;
7920
7921 down_read(&info->groups_sem);
7922 again:
7923 list_for_each_entry(cache, &info->block_groups[index], list) {
7924 spin_lock(&cache->lock);
7925 btrfs_info(fs_info,
7926 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7927 cache->key.objectid, cache->key.offset,
7928 btrfs_block_group_used(&cache->item), cache->pinned,
7929 cache->reserved, cache->ro ? "[readonly]" : "");
7930 btrfs_dump_free_space(cache, bytes);
7931 spin_unlock(&cache->lock);
7932 }
7933 if (++index < BTRFS_NR_RAID_TYPES)
7934 goto again;
7935 up_read(&info->groups_sem);
7936 }
7937
7938 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7939 u64 num_bytes, u64 min_alloc_size,
7940 u64 empty_size, u64 hint_byte,
7941 struct btrfs_key *ins, int is_data, int delalloc)
7942 {
7943 struct btrfs_fs_info *fs_info = root->fs_info;
7944 bool final_tried = num_bytes == min_alloc_size;
7945 u64 flags;
7946 int ret;
7947
7948 flags = btrfs_get_alloc_profile(root, is_data);
7949 again:
7950 WARN_ON(num_bytes < fs_info->sectorsize);
7951 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7952 hint_byte, ins, flags, delalloc);
7953 if (!ret && !is_data) {
7954 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7955 } else if (ret == -ENOSPC) {
7956 if (!final_tried && ins->offset) {
7957 num_bytes = min(num_bytes >> 1, ins->offset);
7958 num_bytes = round_down(num_bytes,
7959 fs_info->sectorsize);
7960 num_bytes = max(num_bytes, min_alloc_size);
7961 ram_bytes = num_bytes;
7962 if (num_bytes == min_alloc_size)
7963 final_tried = true;
7964 goto again;
7965 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7966 struct btrfs_space_info *sinfo;
7967
7968 sinfo = __find_space_info(fs_info, flags);
7969 btrfs_err(fs_info,
7970 "allocation failed flags %llu, wanted %llu",
7971 flags, num_bytes);
7972 if (sinfo)
7973 dump_space_info(fs_info, sinfo, num_bytes, 1);
7974 }
7975 }
7976
7977 return ret;
7978 }
7979
7980 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7981 u64 start, u64 len,
7982 int pin, int delalloc)
7983 {
7984 struct btrfs_block_group_cache *cache;
7985 int ret = 0;
7986
7987 cache = btrfs_lookup_block_group(fs_info, start);
7988 if (!cache) {
7989 btrfs_err(fs_info, "Unable to find block group for %llu",
7990 start);
7991 return -ENOSPC;
7992 }
7993
7994 if (pin)
7995 pin_down_extent(fs_info, cache, start, len, 1);
7996 else {
7997 if (btrfs_test_opt(fs_info, DISCARD))
7998 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7999 btrfs_add_free_space(cache, start, len);
8000 btrfs_free_reserved_bytes(cache, len, delalloc);
8001 trace_btrfs_reserved_extent_free(fs_info, start, len);
8002 }
8003
8004 btrfs_put_block_group(cache);
8005 return ret;
8006 }
8007
8008 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8009 u64 start, u64 len, int delalloc)
8010 {
8011 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8012 }
8013
8014 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8015 u64 start, u64 len)
8016 {
8017 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8018 }
8019
8020 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8021 struct btrfs_fs_info *fs_info,
8022 u64 parent, u64 root_objectid,
8023 u64 flags, u64 owner, u64 offset,
8024 struct btrfs_key *ins, int ref_mod)
8025 {
8026 int ret;
8027 struct btrfs_extent_item *extent_item;
8028 struct btrfs_extent_inline_ref *iref;
8029 struct btrfs_path *path;
8030 struct extent_buffer *leaf;
8031 int type;
8032 u32 size;
8033
8034 if (parent > 0)
8035 type = BTRFS_SHARED_DATA_REF_KEY;
8036 else
8037 type = BTRFS_EXTENT_DATA_REF_KEY;
8038
8039 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8040
8041 path = btrfs_alloc_path();
8042 if (!path)
8043 return -ENOMEM;
8044
8045 path->leave_spinning = 1;
8046 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8047 ins, size);
8048 if (ret) {
8049 btrfs_free_path(path);
8050 return ret;
8051 }
8052
8053 leaf = path->nodes[0];
8054 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8055 struct btrfs_extent_item);
8056 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8057 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8058 btrfs_set_extent_flags(leaf, extent_item,
8059 flags | BTRFS_EXTENT_FLAG_DATA);
8060
8061 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8062 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8063 if (parent > 0) {
8064 struct btrfs_shared_data_ref *ref;
8065 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8066 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8067 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8068 } else {
8069 struct btrfs_extent_data_ref *ref;
8070 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8071 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8072 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8073 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8074 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8075 }
8076
8077 btrfs_mark_buffer_dirty(path->nodes[0]);
8078 btrfs_free_path(path);
8079
8080 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8081 ins->offset);
8082 if (ret)
8083 return ret;
8084
8085 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8086 if (ret) { /* -ENOENT, logic error */
8087 btrfs_err(fs_info, "update block group failed for %llu %llu",
8088 ins->objectid, ins->offset);
8089 BUG();
8090 }
8091 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8092 return ret;
8093 }
8094
8095 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8096 struct btrfs_fs_info *fs_info,
8097 u64 parent, u64 root_objectid,
8098 u64 flags, struct btrfs_disk_key *key,
8099 int level, struct btrfs_key *ins)
8100 {
8101 int ret;
8102 struct btrfs_extent_item *extent_item;
8103 struct btrfs_tree_block_info *block_info;
8104 struct btrfs_extent_inline_ref *iref;
8105 struct btrfs_path *path;
8106 struct extent_buffer *leaf;
8107 u32 size = sizeof(*extent_item) + sizeof(*iref);
8108 u64 num_bytes = ins->offset;
8109 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8110
8111 if (!skinny_metadata)
8112 size += sizeof(*block_info);
8113
8114 path = btrfs_alloc_path();
8115 if (!path) {
8116 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8117 fs_info->nodesize);
8118 return -ENOMEM;
8119 }
8120
8121 path->leave_spinning = 1;
8122 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8123 ins, size);
8124 if (ret) {
8125 btrfs_free_path(path);
8126 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8127 fs_info->nodesize);
8128 return ret;
8129 }
8130
8131 leaf = path->nodes[0];
8132 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8133 struct btrfs_extent_item);
8134 btrfs_set_extent_refs(leaf, extent_item, 1);
8135 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8136 btrfs_set_extent_flags(leaf, extent_item,
8137 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8138
8139 if (skinny_metadata) {
8140 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8141 num_bytes = fs_info->nodesize;
8142 } else {
8143 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8144 btrfs_set_tree_block_key(leaf, block_info, key);
8145 btrfs_set_tree_block_level(leaf, block_info, level);
8146 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8147 }
8148
8149 if (parent > 0) {
8150 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8151 btrfs_set_extent_inline_ref_type(leaf, iref,
8152 BTRFS_SHARED_BLOCK_REF_KEY);
8153 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8154 } else {
8155 btrfs_set_extent_inline_ref_type(leaf, iref,
8156 BTRFS_TREE_BLOCK_REF_KEY);
8157 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8158 }
8159
8160 btrfs_mark_buffer_dirty(leaf);
8161 btrfs_free_path(path);
8162
8163 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8164 num_bytes);
8165 if (ret)
8166 return ret;
8167
8168 ret = update_block_group(trans, fs_info, ins->objectid,
8169 fs_info->nodesize, 1);
8170 if (ret) { /* -ENOENT, logic error */
8171 btrfs_err(fs_info, "update block group failed for %llu %llu",
8172 ins->objectid, ins->offset);
8173 BUG();
8174 }
8175
8176 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8177 fs_info->nodesize);
8178 return ret;
8179 }
8180
8181 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8182 u64 root_objectid, u64 owner,
8183 u64 offset, u64 ram_bytes,
8184 struct btrfs_key *ins)
8185 {
8186 struct btrfs_fs_info *fs_info = trans->fs_info;
8187 int ret;
8188
8189 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8190
8191 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8192 ins->offset, 0,
8193 root_objectid, owner, offset,
8194 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8195 return ret;
8196 }
8197
8198 /*
8199 * this is used by the tree logging recovery code. It records that
8200 * an extent has been allocated and makes sure to clear the free
8201 * space cache bits as well
8202 */
8203 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8204 struct btrfs_fs_info *fs_info,
8205 u64 root_objectid, u64 owner, u64 offset,
8206 struct btrfs_key *ins)
8207 {
8208 int ret;
8209 struct btrfs_block_group_cache *block_group;
8210 struct btrfs_space_info *space_info;
8211
8212 /*
8213 * Mixed block groups will exclude before processing the log so we only
8214 * need to do the exclude dance if this fs isn't mixed.
8215 */
8216 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8217 ret = __exclude_logged_extent(fs_info, ins->objectid,
8218 ins->offset);
8219 if (ret)
8220 return ret;
8221 }
8222
8223 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8224 if (!block_group)
8225 return -EINVAL;
8226
8227 space_info = block_group->space_info;
8228 spin_lock(&space_info->lock);
8229 spin_lock(&block_group->lock);
8230 space_info->bytes_reserved += ins->offset;
8231 block_group->reserved += ins->offset;
8232 spin_unlock(&block_group->lock);
8233 spin_unlock(&space_info->lock);
8234
8235 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8236 0, owner, offset, ins, 1);
8237 btrfs_put_block_group(block_group);
8238 return ret;
8239 }
8240
8241 static struct extent_buffer *
8242 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8243 u64 bytenr, int level)
8244 {
8245 struct btrfs_fs_info *fs_info = root->fs_info;
8246 struct extent_buffer *buf;
8247
8248 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8249 if (IS_ERR(buf))
8250 return buf;
8251
8252 btrfs_set_header_generation(buf, trans->transid);
8253 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8254 btrfs_tree_lock(buf);
8255 clean_tree_block(fs_info, buf);
8256 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8257
8258 btrfs_set_lock_blocking(buf);
8259 set_extent_buffer_uptodate(buf);
8260
8261 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8262 buf->log_index = root->log_transid % 2;
8263 /*
8264 * we allow two log transactions at a time, use different
8265 * EXENT bit to differentiate dirty pages.
8266 */
8267 if (buf->log_index == 0)
8268 set_extent_dirty(&root->dirty_log_pages, buf->start,
8269 buf->start + buf->len - 1, GFP_NOFS);
8270 else
8271 set_extent_new(&root->dirty_log_pages, buf->start,
8272 buf->start + buf->len - 1);
8273 } else {
8274 buf->log_index = -1;
8275 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8276 buf->start + buf->len - 1, GFP_NOFS);
8277 }
8278 trans->dirty = true;
8279 /* this returns a buffer locked for blocking */
8280 return buf;
8281 }
8282
8283 static struct btrfs_block_rsv *
8284 use_block_rsv(struct btrfs_trans_handle *trans,
8285 struct btrfs_root *root, u32 blocksize)
8286 {
8287 struct btrfs_fs_info *fs_info = root->fs_info;
8288 struct btrfs_block_rsv *block_rsv;
8289 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8290 int ret;
8291 bool global_updated = false;
8292
8293 block_rsv = get_block_rsv(trans, root);
8294
8295 if (unlikely(block_rsv->size == 0))
8296 goto try_reserve;
8297 again:
8298 ret = block_rsv_use_bytes(block_rsv, blocksize);
8299 if (!ret)
8300 return block_rsv;
8301
8302 if (block_rsv->failfast)
8303 return ERR_PTR(ret);
8304
8305 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8306 global_updated = true;
8307 update_global_block_rsv(fs_info);
8308 goto again;
8309 }
8310
8311 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8312 static DEFINE_RATELIMIT_STATE(_rs,
8313 DEFAULT_RATELIMIT_INTERVAL * 10,
8314 /*DEFAULT_RATELIMIT_BURST*/ 1);
8315 if (__ratelimit(&_rs))
8316 WARN(1, KERN_DEBUG
8317 "BTRFS: block rsv returned %d\n", ret);
8318 }
8319 try_reserve:
8320 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8321 BTRFS_RESERVE_NO_FLUSH);
8322 if (!ret)
8323 return block_rsv;
8324 /*
8325 * If we couldn't reserve metadata bytes try and use some from
8326 * the global reserve if its space type is the same as the global
8327 * reservation.
8328 */
8329 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8330 block_rsv->space_info == global_rsv->space_info) {
8331 ret = block_rsv_use_bytes(global_rsv, blocksize);
8332 if (!ret)
8333 return global_rsv;
8334 }
8335 return ERR_PTR(ret);
8336 }
8337
8338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8339 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8340 {
8341 block_rsv_add_bytes(block_rsv, blocksize, 0);
8342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8343 }
8344
8345 /*
8346 * finds a free extent and does all the dirty work required for allocation
8347 * returns the tree buffer or an ERR_PTR on error.
8348 */
8349 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8350 struct btrfs_root *root,
8351 u64 parent, u64 root_objectid,
8352 const struct btrfs_disk_key *key,
8353 int level, u64 hint,
8354 u64 empty_size)
8355 {
8356 struct btrfs_fs_info *fs_info = root->fs_info;
8357 struct btrfs_key ins;
8358 struct btrfs_block_rsv *block_rsv;
8359 struct extent_buffer *buf;
8360 struct btrfs_delayed_extent_op *extent_op;
8361 u64 flags = 0;
8362 int ret;
8363 u32 blocksize = fs_info->nodesize;
8364 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8365
8366 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8367 if (btrfs_is_testing(fs_info)) {
8368 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8369 level);
8370 if (!IS_ERR(buf))
8371 root->alloc_bytenr += blocksize;
8372 return buf;
8373 }
8374 #endif
8375
8376 block_rsv = use_block_rsv(trans, root, blocksize);
8377 if (IS_ERR(block_rsv))
8378 return ERR_CAST(block_rsv);
8379
8380 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8381 empty_size, hint, &ins, 0, 0);
8382 if (ret)
8383 goto out_unuse;
8384
8385 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8386 if (IS_ERR(buf)) {
8387 ret = PTR_ERR(buf);
8388 goto out_free_reserved;
8389 }
8390
8391 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8392 if (parent == 0)
8393 parent = ins.objectid;
8394 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8395 } else
8396 BUG_ON(parent > 0);
8397
8398 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8399 extent_op = btrfs_alloc_delayed_extent_op();
8400 if (!extent_op) {
8401 ret = -ENOMEM;
8402 goto out_free_buf;
8403 }
8404 if (key)
8405 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8406 else
8407 memset(&extent_op->key, 0, sizeof(extent_op->key));
8408 extent_op->flags_to_set = flags;
8409 extent_op->update_key = skinny_metadata ? false : true;
8410 extent_op->update_flags = true;
8411 extent_op->is_data = false;
8412 extent_op->level = level;
8413
8414 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8415 ins.objectid, ins.offset,
8416 parent, root_objectid, level,
8417 BTRFS_ADD_DELAYED_EXTENT,
8418 extent_op);
8419 if (ret)
8420 goto out_free_delayed;
8421 }
8422 return buf;
8423
8424 out_free_delayed:
8425 btrfs_free_delayed_extent_op(extent_op);
8426 out_free_buf:
8427 free_extent_buffer(buf);
8428 out_free_reserved:
8429 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8430 out_unuse:
8431 unuse_block_rsv(fs_info, block_rsv, blocksize);
8432 return ERR_PTR(ret);
8433 }
8434
8435 struct walk_control {
8436 u64 refs[BTRFS_MAX_LEVEL];
8437 u64 flags[BTRFS_MAX_LEVEL];
8438 struct btrfs_key update_progress;
8439 int stage;
8440 int level;
8441 int shared_level;
8442 int update_ref;
8443 int keep_locks;
8444 int reada_slot;
8445 int reada_count;
8446 int for_reloc;
8447 };
8448
8449 #define DROP_REFERENCE 1
8450 #define UPDATE_BACKREF 2
8451
8452 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8453 struct btrfs_root *root,
8454 struct walk_control *wc,
8455 struct btrfs_path *path)
8456 {
8457 struct btrfs_fs_info *fs_info = root->fs_info;
8458 u64 bytenr;
8459 u64 generation;
8460 u64 refs;
8461 u64 flags;
8462 u32 nritems;
8463 struct btrfs_key key;
8464 struct extent_buffer *eb;
8465 int ret;
8466 int slot;
8467 int nread = 0;
8468
8469 if (path->slots[wc->level] < wc->reada_slot) {
8470 wc->reada_count = wc->reada_count * 2 / 3;
8471 wc->reada_count = max(wc->reada_count, 2);
8472 } else {
8473 wc->reada_count = wc->reada_count * 3 / 2;
8474 wc->reada_count = min_t(int, wc->reada_count,
8475 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8476 }
8477
8478 eb = path->nodes[wc->level];
8479 nritems = btrfs_header_nritems(eb);
8480
8481 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8482 if (nread >= wc->reada_count)
8483 break;
8484
8485 cond_resched();
8486 bytenr = btrfs_node_blockptr(eb, slot);
8487 generation = btrfs_node_ptr_generation(eb, slot);
8488
8489 if (slot == path->slots[wc->level])
8490 goto reada;
8491
8492 if (wc->stage == UPDATE_BACKREF &&
8493 generation <= root->root_key.offset)
8494 continue;
8495
8496 /* We don't lock the tree block, it's OK to be racy here */
8497 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8498 wc->level - 1, 1, &refs,
8499 &flags);
8500 /* We don't care about errors in readahead. */
8501 if (ret < 0)
8502 continue;
8503 BUG_ON(refs == 0);
8504
8505 if (wc->stage == DROP_REFERENCE) {
8506 if (refs == 1)
8507 goto reada;
8508
8509 if (wc->level == 1 &&
8510 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8511 continue;
8512 if (!wc->update_ref ||
8513 generation <= root->root_key.offset)
8514 continue;
8515 btrfs_node_key_to_cpu(eb, &key, slot);
8516 ret = btrfs_comp_cpu_keys(&key,
8517 &wc->update_progress);
8518 if (ret < 0)
8519 continue;
8520 } else {
8521 if (wc->level == 1 &&
8522 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 continue;
8524 }
8525 reada:
8526 readahead_tree_block(fs_info, bytenr);
8527 nread++;
8528 }
8529 wc->reada_slot = slot;
8530 }
8531
8532 /*
8533 * helper to process tree block while walking down the tree.
8534 *
8535 * when wc->stage == UPDATE_BACKREF, this function updates
8536 * back refs for pointers in the block.
8537 *
8538 * NOTE: return value 1 means we should stop walking down.
8539 */
8540 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8541 struct btrfs_root *root,
8542 struct btrfs_path *path,
8543 struct walk_control *wc, int lookup_info)
8544 {
8545 struct btrfs_fs_info *fs_info = root->fs_info;
8546 int level = wc->level;
8547 struct extent_buffer *eb = path->nodes[level];
8548 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8549 int ret;
8550
8551 if (wc->stage == UPDATE_BACKREF &&
8552 btrfs_header_owner(eb) != root->root_key.objectid)
8553 return 1;
8554
8555 /*
8556 * when reference count of tree block is 1, it won't increase
8557 * again. once full backref flag is set, we never clear it.
8558 */
8559 if (lookup_info &&
8560 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8561 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8562 BUG_ON(!path->locks[level]);
8563 ret = btrfs_lookup_extent_info(trans, fs_info,
8564 eb->start, level, 1,
8565 &wc->refs[level],
8566 &wc->flags[level]);
8567 BUG_ON(ret == -ENOMEM);
8568 if (ret)
8569 return ret;
8570 BUG_ON(wc->refs[level] == 0);
8571 }
8572
8573 if (wc->stage == DROP_REFERENCE) {
8574 if (wc->refs[level] > 1)
8575 return 1;
8576
8577 if (path->locks[level] && !wc->keep_locks) {
8578 btrfs_tree_unlock_rw(eb, path->locks[level]);
8579 path->locks[level] = 0;
8580 }
8581 return 0;
8582 }
8583
8584 /* wc->stage == UPDATE_BACKREF */
8585 if (!(wc->flags[level] & flag)) {
8586 BUG_ON(!path->locks[level]);
8587 ret = btrfs_inc_ref(trans, root, eb, 1);
8588 BUG_ON(ret); /* -ENOMEM */
8589 ret = btrfs_dec_ref(trans, root, eb, 0);
8590 BUG_ON(ret); /* -ENOMEM */
8591 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8592 eb->len, flag,
8593 btrfs_header_level(eb), 0);
8594 BUG_ON(ret); /* -ENOMEM */
8595 wc->flags[level] |= flag;
8596 }
8597
8598 /*
8599 * the block is shared by multiple trees, so it's not good to
8600 * keep the tree lock
8601 */
8602 if (path->locks[level] && level > 0) {
8603 btrfs_tree_unlock_rw(eb, path->locks[level]);
8604 path->locks[level] = 0;
8605 }
8606 return 0;
8607 }
8608
8609 /*
8610 * helper to process tree block pointer.
8611 *
8612 * when wc->stage == DROP_REFERENCE, this function checks
8613 * reference count of the block pointed to. if the block
8614 * is shared and we need update back refs for the subtree
8615 * rooted at the block, this function changes wc->stage to
8616 * UPDATE_BACKREF. if the block is shared and there is no
8617 * need to update back, this function drops the reference
8618 * to the block.
8619 *
8620 * NOTE: return value 1 means we should stop walking down.
8621 */
8622 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8623 struct btrfs_root *root,
8624 struct btrfs_path *path,
8625 struct walk_control *wc, int *lookup_info)
8626 {
8627 struct btrfs_fs_info *fs_info = root->fs_info;
8628 u64 bytenr;
8629 u64 generation;
8630 u64 parent;
8631 u32 blocksize;
8632 struct btrfs_key key;
8633 struct extent_buffer *next;
8634 int level = wc->level;
8635 int reada = 0;
8636 int ret = 0;
8637 bool need_account = false;
8638
8639 generation = btrfs_node_ptr_generation(path->nodes[level],
8640 path->slots[level]);
8641 /*
8642 * if the lower level block was created before the snapshot
8643 * was created, we know there is no need to update back refs
8644 * for the subtree
8645 */
8646 if (wc->stage == UPDATE_BACKREF &&
8647 generation <= root->root_key.offset) {
8648 *lookup_info = 1;
8649 return 1;
8650 }
8651
8652 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8653 blocksize = fs_info->nodesize;
8654
8655 next = find_extent_buffer(fs_info, bytenr);
8656 if (!next) {
8657 next = btrfs_find_create_tree_block(fs_info, bytenr);
8658 if (IS_ERR(next))
8659 return PTR_ERR(next);
8660
8661 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8662 level - 1);
8663 reada = 1;
8664 }
8665 btrfs_tree_lock(next);
8666 btrfs_set_lock_blocking(next);
8667
8668 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8669 &wc->refs[level - 1],
8670 &wc->flags[level - 1]);
8671 if (ret < 0)
8672 goto out_unlock;
8673
8674 if (unlikely(wc->refs[level - 1] == 0)) {
8675 btrfs_err(fs_info, "Missing references.");
8676 ret = -EIO;
8677 goto out_unlock;
8678 }
8679 *lookup_info = 0;
8680
8681 if (wc->stage == DROP_REFERENCE) {
8682 if (wc->refs[level - 1] > 1) {
8683 need_account = true;
8684 if (level == 1 &&
8685 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8686 goto skip;
8687
8688 if (!wc->update_ref ||
8689 generation <= root->root_key.offset)
8690 goto skip;
8691
8692 btrfs_node_key_to_cpu(path->nodes[level], &key,
8693 path->slots[level]);
8694 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8695 if (ret < 0)
8696 goto skip;
8697
8698 wc->stage = UPDATE_BACKREF;
8699 wc->shared_level = level - 1;
8700 }
8701 } else {
8702 if (level == 1 &&
8703 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8704 goto skip;
8705 }
8706
8707 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8708 btrfs_tree_unlock(next);
8709 free_extent_buffer(next);
8710 next = NULL;
8711 *lookup_info = 1;
8712 }
8713
8714 if (!next) {
8715 if (reada && level == 1)
8716 reada_walk_down(trans, root, wc, path);
8717 next = read_tree_block(fs_info, bytenr, generation);
8718 if (IS_ERR(next)) {
8719 return PTR_ERR(next);
8720 } else if (!extent_buffer_uptodate(next)) {
8721 free_extent_buffer(next);
8722 return -EIO;
8723 }
8724 btrfs_tree_lock(next);
8725 btrfs_set_lock_blocking(next);
8726 }
8727
8728 level--;
8729 ASSERT(level == btrfs_header_level(next));
8730 if (level != btrfs_header_level(next)) {
8731 btrfs_err(root->fs_info, "mismatched level");
8732 ret = -EIO;
8733 goto out_unlock;
8734 }
8735 path->nodes[level] = next;
8736 path->slots[level] = 0;
8737 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8738 wc->level = level;
8739 if (wc->level == 1)
8740 wc->reada_slot = 0;
8741 return 0;
8742 skip:
8743 wc->refs[level - 1] = 0;
8744 wc->flags[level - 1] = 0;
8745 if (wc->stage == DROP_REFERENCE) {
8746 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8747 parent = path->nodes[level]->start;
8748 } else {
8749 ASSERT(root->root_key.objectid ==
8750 btrfs_header_owner(path->nodes[level]));
8751 if (root->root_key.objectid !=
8752 btrfs_header_owner(path->nodes[level])) {
8753 btrfs_err(root->fs_info,
8754 "mismatched block owner");
8755 ret = -EIO;
8756 goto out_unlock;
8757 }
8758 parent = 0;
8759 }
8760
8761 if (need_account) {
8762 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8763 generation, level - 1);
8764 if (ret) {
8765 btrfs_err_rl(fs_info,
8766 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8767 ret);
8768 }
8769 }
8770 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8771 parent, root->root_key.objectid,
8772 level - 1, 0);
8773 if (ret)
8774 goto out_unlock;
8775 }
8776
8777 *lookup_info = 1;
8778 ret = 1;
8779
8780 out_unlock:
8781 btrfs_tree_unlock(next);
8782 free_extent_buffer(next);
8783
8784 return ret;
8785 }
8786
8787 /*
8788 * helper to process tree block while walking up the tree.
8789 *
8790 * when wc->stage == DROP_REFERENCE, this function drops
8791 * reference count on the block.
8792 *
8793 * when wc->stage == UPDATE_BACKREF, this function changes
8794 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795 * to UPDATE_BACKREF previously while processing the block.
8796 *
8797 * NOTE: return value 1 means we should stop walking up.
8798 */
8799 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800 struct btrfs_root *root,
8801 struct btrfs_path *path,
8802 struct walk_control *wc)
8803 {
8804 struct btrfs_fs_info *fs_info = root->fs_info;
8805 int ret;
8806 int level = wc->level;
8807 struct extent_buffer *eb = path->nodes[level];
8808 u64 parent = 0;
8809
8810 if (wc->stage == UPDATE_BACKREF) {
8811 BUG_ON(wc->shared_level < level);
8812 if (level < wc->shared_level)
8813 goto out;
8814
8815 ret = find_next_key(path, level + 1, &wc->update_progress);
8816 if (ret > 0)
8817 wc->update_ref = 0;
8818
8819 wc->stage = DROP_REFERENCE;
8820 wc->shared_level = -1;
8821 path->slots[level] = 0;
8822
8823 /*
8824 * check reference count again if the block isn't locked.
8825 * we should start walking down the tree again if reference
8826 * count is one.
8827 */
8828 if (!path->locks[level]) {
8829 BUG_ON(level == 0);
8830 btrfs_tree_lock(eb);
8831 btrfs_set_lock_blocking(eb);
8832 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8833
8834 ret = btrfs_lookup_extent_info(trans, fs_info,
8835 eb->start, level, 1,
8836 &wc->refs[level],
8837 &wc->flags[level]);
8838 if (ret < 0) {
8839 btrfs_tree_unlock_rw(eb, path->locks[level]);
8840 path->locks[level] = 0;
8841 return ret;
8842 }
8843 BUG_ON(wc->refs[level] == 0);
8844 if (wc->refs[level] == 1) {
8845 btrfs_tree_unlock_rw(eb, path->locks[level]);
8846 path->locks[level] = 0;
8847 return 1;
8848 }
8849 }
8850 }
8851
8852 /* wc->stage == DROP_REFERENCE */
8853 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8854
8855 if (wc->refs[level] == 1) {
8856 if (level == 0) {
8857 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8858 ret = btrfs_dec_ref(trans, root, eb, 1);
8859 else
8860 ret = btrfs_dec_ref(trans, root, eb, 0);
8861 BUG_ON(ret); /* -ENOMEM */
8862 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8863 if (ret) {
8864 btrfs_err_rl(fs_info,
8865 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8866 ret);
8867 }
8868 }
8869 /* make block locked assertion in clean_tree_block happy */
8870 if (!path->locks[level] &&
8871 btrfs_header_generation(eb) == trans->transid) {
8872 btrfs_tree_lock(eb);
8873 btrfs_set_lock_blocking(eb);
8874 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8875 }
8876 clean_tree_block(fs_info, eb);
8877 }
8878
8879 if (eb == root->node) {
8880 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8881 parent = eb->start;
8882 else
8883 BUG_ON(root->root_key.objectid !=
8884 btrfs_header_owner(eb));
8885 } else {
8886 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8887 parent = path->nodes[level + 1]->start;
8888 else
8889 BUG_ON(root->root_key.objectid !=
8890 btrfs_header_owner(path->nodes[level + 1]));
8891 }
8892
8893 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8894 out:
8895 wc->refs[level] = 0;
8896 wc->flags[level] = 0;
8897 return 0;
8898 }
8899
8900 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8901 struct btrfs_root *root,
8902 struct btrfs_path *path,
8903 struct walk_control *wc)
8904 {
8905 int level = wc->level;
8906 int lookup_info = 1;
8907 int ret;
8908
8909 while (level >= 0) {
8910 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8911 if (ret > 0)
8912 break;
8913
8914 if (level == 0)
8915 break;
8916
8917 if (path->slots[level] >=
8918 btrfs_header_nritems(path->nodes[level]))
8919 break;
8920
8921 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8922 if (ret > 0) {
8923 path->slots[level]++;
8924 continue;
8925 } else if (ret < 0)
8926 return ret;
8927 level = wc->level;
8928 }
8929 return 0;
8930 }
8931
8932 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8933 struct btrfs_root *root,
8934 struct btrfs_path *path,
8935 struct walk_control *wc, int max_level)
8936 {
8937 int level = wc->level;
8938 int ret;
8939
8940 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8941 while (level < max_level && path->nodes[level]) {
8942 wc->level = level;
8943 if (path->slots[level] + 1 <
8944 btrfs_header_nritems(path->nodes[level])) {
8945 path->slots[level]++;
8946 return 0;
8947 } else {
8948 ret = walk_up_proc(trans, root, path, wc);
8949 if (ret > 0)
8950 return 0;
8951
8952 if (path->locks[level]) {
8953 btrfs_tree_unlock_rw(path->nodes[level],
8954 path->locks[level]);
8955 path->locks[level] = 0;
8956 }
8957 free_extent_buffer(path->nodes[level]);
8958 path->nodes[level] = NULL;
8959 level++;
8960 }
8961 }
8962 return 1;
8963 }
8964
8965 /*
8966 * drop a subvolume tree.
8967 *
8968 * this function traverses the tree freeing any blocks that only
8969 * referenced by the tree.
8970 *
8971 * when a shared tree block is found. this function decreases its
8972 * reference count by one. if update_ref is true, this function
8973 * also make sure backrefs for the shared block and all lower level
8974 * blocks are properly updated.
8975 *
8976 * If called with for_reloc == 0, may exit early with -EAGAIN
8977 */
8978 int btrfs_drop_snapshot(struct btrfs_root *root,
8979 struct btrfs_block_rsv *block_rsv, int update_ref,
8980 int for_reloc)
8981 {
8982 struct btrfs_fs_info *fs_info = root->fs_info;
8983 struct btrfs_path *path;
8984 struct btrfs_trans_handle *trans;
8985 struct btrfs_root *tree_root = fs_info->tree_root;
8986 struct btrfs_root_item *root_item = &root->root_item;
8987 struct walk_control *wc;
8988 struct btrfs_key key;
8989 int err = 0;
8990 int ret;
8991 int level;
8992 bool root_dropped = false;
8993
8994 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8995
8996 path = btrfs_alloc_path();
8997 if (!path) {
8998 err = -ENOMEM;
8999 goto out;
9000 }
9001
9002 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9003 if (!wc) {
9004 btrfs_free_path(path);
9005 err = -ENOMEM;
9006 goto out;
9007 }
9008
9009 trans = btrfs_start_transaction(tree_root, 0);
9010 if (IS_ERR(trans)) {
9011 err = PTR_ERR(trans);
9012 goto out_free;
9013 }
9014
9015 if (block_rsv)
9016 trans->block_rsv = block_rsv;
9017
9018 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9019 level = btrfs_header_level(root->node);
9020 path->nodes[level] = btrfs_lock_root_node(root);
9021 btrfs_set_lock_blocking(path->nodes[level]);
9022 path->slots[level] = 0;
9023 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9024 memset(&wc->update_progress, 0,
9025 sizeof(wc->update_progress));
9026 } else {
9027 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9028 memcpy(&wc->update_progress, &key,
9029 sizeof(wc->update_progress));
9030
9031 level = root_item->drop_level;
9032 BUG_ON(level == 0);
9033 path->lowest_level = level;
9034 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035 path->lowest_level = 0;
9036 if (ret < 0) {
9037 err = ret;
9038 goto out_end_trans;
9039 }
9040 WARN_ON(ret > 0);
9041
9042 /*
9043 * unlock our path, this is safe because only this
9044 * function is allowed to delete this snapshot
9045 */
9046 btrfs_unlock_up_safe(path, 0);
9047
9048 level = btrfs_header_level(root->node);
9049 while (1) {
9050 btrfs_tree_lock(path->nodes[level]);
9051 btrfs_set_lock_blocking(path->nodes[level]);
9052 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9053
9054 ret = btrfs_lookup_extent_info(trans, fs_info,
9055 path->nodes[level]->start,
9056 level, 1, &wc->refs[level],
9057 &wc->flags[level]);
9058 if (ret < 0) {
9059 err = ret;
9060 goto out_end_trans;
9061 }
9062 BUG_ON(wc->refs[level] == 0);
9063
9064 if (level == root_item->drop_level)
9065 break;
9066
9067 btrfs_tree_unlock(path->nodes[level]);
9068 path->locks[level] = 0;
9069 WARN_ON(wc->refs[level] != 1);
9070 level--;
9071 }
9072 }
9073
9074 wc->level = level;
9075 wc->shared_level = -1;
9076 wc->stage = DROP_REFERENCE;
9077 wc->update_ref = update_ref;
9078 wc->keep_locks = 0;
9079 wc->for_reloc = for_reloc;
9080 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9081
9082 while (1) {
9083
9084 ret = walk_down_tree(trans, root, path, wc);
9085 if (ret < 0) {
9086 err = ret;
9087 break;
9088 }
9089
9090 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091 if (ret < 0) {
9092 err = ret;
9093 break;
9094 }
9095
9096 if (ret > 0) {
9097 BUG_ON(wc->stage != DROP_REFERENCE);
9098 break;
9099 }
9100
9101 if (wc->stage == DROP_REFERENCE) {
9102 level = wc->level;
9103 btrfs_node_key(path->nodes[level],
9104 &root_item->drop_progress,
9105 path->slots[level]);
9106 root_item->drop_level = level;
9107 }
9108
9109 BUG_ON(wc->level == 0);
9110 if (btrfs_should_end_transaction(trans) ||
9111 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9112 ret = btrfs_update_root(trans, tree_root,
9113 &root->root_key,
9114 root_item);
9115 if (ret) {
9116 btrfs_abort_transaction(trans, ret);
9117 err = ret;
9118 goto out_end_trans;
9119 }
9120
9121 btrfs_end_transaction_throttle(trans);
9122 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9123 btrfs_debug(fs_info,
9124 "drop snapshot early exit");
9125 err = -EAGAIN;
9126 goto out_free;
9127 }
9128
9129 trans = btrfs_start_transaction(tree_root, 0);
9130 if (IS_ERR(trans)) {
9131 err = PTR_ERR(trans);
9132 goto out_free;
9133 }
9134 if (block_rsv)
9135 trans->block_rsv = block_rsv;
9136 }
9137 }
9138 btrfs_release_path(path);
9139 if (err)
9140 goto out_end_trans;
9141
9142 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9143 if (ret) {
9144 btrfs_abort_transaction(trans, ret);
9145 goto out_end_trans;
9146 }
9147
9148 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9149 ret = btrfs_find_root(tree_root, &root->root_key, path,
9150 NULL, NULL);
9151 if (ret < 0) {
9152 btrfs_abort_transaction(trans, ret);
9153 err = ret;
9154 goto out_end_trans;
9155 } else if (ret > 0) {
9156 /* if we fail to delete the orphan item this time
9157 * around, it'll get picked up the next time.
9158 *
9159 * The most common failure here is just -ENOENT.
9160 */
9161 btrfs_del_orphan_item(trans, tree_root,
9162 root->root_key.objectid);
9163 }
9164 }
9165
9166 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9167 btrfs_add_dropped_root(trans, root);
9168 } else {
9169 free_extent_buffer(root->node);
9170 free_extent_buffer(root->commit_root);
9171 btrfs_put_fs_root(root);
9172 }
9173 root_dropped = true;
9174 out_end_trans:
9175 btrfs_end_transaction_throttle(trans);
9176 out_free:
9177 kfree(wc);
9178 btrfs_free_path(path);
9179 out:
9180 /*
9181 * So if we need to stop dropping the snapshot for whatever reason we
9182 * need to make sure to add it back to the dead root list so that we
9183 * keep trying to do the work later. This also cleans up roots if we
9184 * don't have it in the radix (like when we recover after a power fail
9185 * or unmount) so we don't leak memory.
9186 */
9187 if (!for_reloc && root_dropped == false)
9188 btrfs_add_dead_root(root);
9189 if (err && err != -EAGAIN)
9190 btrfs_handle_fs_error(fs_info, err, NULL);
9191 return err;
9192 }
9193
9194 /*
9195 * drop subtree rooted at tree block 'node'.
9196 *
9197 * NOTE: this function will unlock and release tree block 'node'
9198 * only used by relocation code
9199 */
9200 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9201 struct btrfs_root *root,
9202 struct extent_buffer *node,
9203 struct extent_buffer *parent)
9204 {
9205 struct btrfs_fs_info *fs_info = root->fs_info;
9206 struct btrfs_path *path;
9207 struct walk_control *wc;
9208 int level;
9209 int parent_level;
9210 int ret = 0;
9211 int wret;
9212
9213 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9214
9215 path = btrfs_alloc_path();
9216 if (!path)
9217 return -ENOMEM;
9218
9219 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9220 if (!wc) {
9221 btrfs_free_path(path);
9222 return -ENOMEM;
9223 }
9224
9225 btrfs_assert_tree_locked(parent);
9226 parent_level = btrfs_header_level(parent);
9227 extent_buffer_get(parent);
9228 path->nodes[parent_level] = parent;
9229 path->slots[parent_level] = btrfs_header_nritems(parent);
9230
9231 btrfs_assert_tree_locked(node);
9232 level = btrfs_header_level(node);
9233 path->nodes[level] = node;
9234 path->slots[level] = 0;
9235 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9236
9237 wc->refs[parent_level] = 1;
9238 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9239 wc->level = level;
9240 wc->shared_level = -1;
9241 wc->stage = DROP_REFERENCE;
9242 wc->update_ref = 0;
9243 wc->keep_locks = 1;
9244 wc->for_reloc = 1;
9245 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9246
9247 while (1) {
9248 wret = walk_down_tree(trans, root, path, wc);
9249 if (wret < 0) {
9250 ret = wret;
9251 break;
9252 }
9253
9254 wret = walk_up_tree(trans, root, path, wc, parent_level);
9255 if (wret < 0)
9256 ret = wret;
9257 if (wret != 0)
9258 break;
9259 }
9260
9261 kfree(wc);
9262 btrfs_free_path(path);
9263 return ret;
9264 }
9265
9266 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9267 {
9268 u64 num_devices;
9269 u64 stripped;
9270
9271 /*
9272 * if restripe for this chunk_type is on pick target profile and
9273 * return, otherwise do the usual balance
9274 */
9275 stripped = get_restripe_target(fs_info, flags);
9276 if (stripped)
9277 return extended_to_chunk(stripped);
9278
9279 num_devices = fs_info->fs_devices->rw_devices;
9280
9281 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9282 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9283 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9284
9285 if (num_devices == 1) {
9286 stripped |= BTRFS_BLOCK_GROUP_DUP;
9287 stripped = flags & ~stripped;
9288
9289 /* turn raid0 into single device chunks */
9290 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9291 return stripped;
9292
9293 /* turn mirroring into duplication */
9294 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9295 BTRFS_BLOCK_GROUP_RAID10))
9296 return stripped | BTRFS_BLOCK_GROUP_DUP;
9297 } else {
9298 /* they already had raid on here, just return */
9299 if (flags & stripped)
9300 return flags;
9301
9302 stripped |= BTRFS_BLOCK_GROUP_DUP;
9303 stripped = flags & ~stripped;
9304
9305 /* switch duplicated blocks with raid1 */
9306 if (flags & BTRFS_BLOCK_GROUP_DUP)
9307 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9308
9309 /* this is drive concat, leave it alone */
9310 }
9311
9312 return flags;
9313 }
9314
9315 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9316 {
9317 struct btrfs_space_info *sinfo = cache->space_info;
9318 u64 num_bytes;
9319 u64 min_allocable_bytes;
9320 int ret = -ENOSPC;
9321
9322 /*
9323 * We need some metadata space and system metadata space for
9324 * allocating chunks in some corner cases until we force to set
9325 * it to be readonly.
9326 */
9327 if ((sinfo->flags &
9328 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9329 !force)
9330 min_allocable_bytes = SZ_1M;
9331 else
9332 min_allocable_bytes = 0;
9333
9334 spin_lock(&sinfo->lock);
9335 spin_lock(&cache->lock);
9336
9337 if (cache->ro) {
9338 cache->ro++;
9339 ret = 0;
9340 goto out;
9341 }
9342
9343 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9344 cache->bytes_super - btrfs_block_group_used(&cache->item);
9345
9346 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9347 min_allocable_bytes <= sinfo->total_bytes) {
9348 sinfo->bytes_readonly += num_bytes;
9349 cache->ro++;
9350 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9351 ret = 0;
9352 }
9353 out:
9354 spin_unlock(&cache->lock);
9355 spin_unlock(&sinfo->lock);
9356 return ret;
9357 }
9358
9359 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9360 struct btrfs_block_group_cache *cache)
9361
9362 {
9363 struct btrfs_trans_handle *trans;
9364 u64 alloc_flags;
9365 int ret;
9366
9367 again:
9368 trans = btrfs_join_transaction(fs_info->extent_root);
9369 if (IS_ERR(trans))
9370 return PTR_ERR(trans);
9371
9372 /*
9373 * we're not allowed to set block groups readonly after the dirty
9374 * block groups cache has started writing. If it already started,
9375 * back off and let this transaction commit
9376 */
9377 mutex_lock(&fs_info->ro_block_group_mutex);
9378 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9379 u64 transid = trans->transid;
9380
9381 mutex_unlock(&fs_info->ro_block_group_mutex);
9382 btrfs_end_transaction(trans);
9383
9384 ret = btrfs_wait_for_commit(fs_info, transid);
9385 if (ret)
9386 return ret;
9387 goto again;
9388 }
9389
9390 /*
9391 * if we are changing raid levels, try to allocate a corresponding
9392 * block group with the new raid level.
9393 */
9394 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9395 if (alloc_flags != cache->flags) {
9396 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9397 CHUNK_ALLOC_FORCE);
9398 /*
9399 * ENOSPC is allowed here, we may have enough space
9400 * already allocated at the new raid level to
9401 * carry on
9402 */
9403 if (ret == -ENOSPC)
9404 ret = 0;
9405 if (ret < 0)
9406 goto out;
9407 }
9408
9409 ret = inc_block_group_ro(cache, 0);
9410 if (!ret)
9411 goto out;
9412 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9413 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9414 CHUNK_ALLOC_FORCE);
9415 if (ret < 0)
9416 goto out;
9417 ret = inc_block_group_ro(cache, 0);
9418 out:
9419 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9420 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9421 mutex_lock(&fs_info->chunk_mutex);
9422 check_system_chunk(trans, fs_info, alloc_flags);
9423 mutex_unlock(&fs_info->chunk_mutex);
9424 }
9425 mutex_unlock(&fs_info->ro_block_group_mutex);
9426
9427 btrfs_end_transaction(trans);
9428 return ret;
9429 }
9430
9431 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9432 struct btrfs_fs_info *fs_info, u64 type)
9433 {
9434 u64 alloc_flags = get_alloc_profile(fs_info, type);
9435
9436 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9437 }
9438
9439 /*
9440 * helper to account the unused space of all the readonly block group in the
9441 * space_info. takes mirrors into account.
9442 */
9443 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9444 {
9445 struct btrfs_block_group_cache *block_group;
9446 u64 free_bytes = 0;
9447 int factor;
9448
9449 /* It's df, we don't care if it's racy */
9450 if (list_empty(&sinfo->ro_bgs))
9451 return 0;
9452
9453 spin_lock(&sinfo->lock);
9454 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9455 spin_lock(&block_group->lock);
9456
9457 if (!block_group->ro) {
9458 spin_unlock(&block_group->lock);
9459 continue;
9460 }
9461
9462 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9463 BTRFS_BLOCK_GROUP_RAID10 |
9464 BTRFS_BLOCK_GROUP_DUP))
9465 factor = 2;
9466 else
9467 factor = 1;
9468
9469 free_bytes += (block_group->key.offset -
9470 btrfs_block_group_used(&block_group->item)) *
9471 factor;
9472
9473 spin_unlock(&block_group->lock);
9474 }
9475 spin_unlock(&sinfo->lock);
9476
9477 return free_bytes;
9478 }
9479
9480 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9481 {
9482 struct btrfs_space_info *sinfo = cache->space_info;
9483 u64 num_bytes;
9484
9485 BUG_ON(!cache->ro);
9486
9487 spin_lock(&sinfo->lock);
9488 spin_lock(&cache->lock);
9489 if (!--cache->ro) {
9490 num_bytes = cache->key.offset - cache->reserved -
9491 cache->pinned - cache->bytes_super -
9492 btrfs_block_group_used(&cache->item);
9493 sinfo->bytes_readonly -= num_bytes;
9494 list_del_init(&cache->ro_list);
9495 }
9496 spin_unlock(&cache->lock);
9497 spin_unlock(&sinfo->lock);
9498 }
9499
9500 /*
9501 * checks to see if its even possible to relocate this block group.
9502 *
9503 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9504 * ok to go ahead and try.
9505 */
9506 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9507 {
9508 struct btrfs_root *root = fs_info->extent_root;
9509 struct btrfs_block_group_cache *block_group;
9510 struct btrfs_space_info *space_info;
9511 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9512 struct btrfs_device *device;
9513 struct btrfs_trans_handle *trans;
9514 u64 min_free;
9515 u64 dev_min = 1;
9516 u64 dev_nr = 0;
9517 u64 target;
9518 int debug;
9519 int index;
9520 int full = 0;
9521 int ret = 0;
9522
9523 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9524
9525 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9526
9527 /* odd, couldn't find the block group, leave it alone */
9528 if (!block_group) {
9529 if (debug)
9530 btrfs_warn(fs_info,
9531 "can't find block group for bytenr %llu",
9532 bytenr);
9533 return -1;
9534 }
9535
9536 min_free = btrfs_block_group_used(&block_group->item);
9537
9538 /* no bytes used, we're good */
9539 if (!min_free)
9540 goto out;
9541
9542 space_info = block_group->space_info;
9543 spin_lock(&space_info->lock);
9544
9545 full = space_info->full;
9546
9547 /*
9548 * if this is the last block group we have in this space, we can't
9549 * relocate it unless we're able to allocate a new chunk below.
9550 *
9551 * Otherwise, we need to make sure we have room in the space to handle
9552 * all of the extents from this block group. If we can, we're good
9553 */
9554 if ((space_info->total_bytes != block_group->key.offset) &&
9555 (btrfs_space_info_used(space_info, false) + min_free <
9556 space_info->total_bytes)) {
9557 spin_unlock(&space_info->lock);
9558 goto out;
9559 }
9560 spin_unlock(&space_info->lock);
9561
9562 /*
9563 * ok we don't have enough space, but maybe we have free space on our
9564 * devices to allocate new chunks for relocation, so loop through our
9565 * alloc devices and guess if we have enough space. if this block
9566 * group is going to be restriped, run checks against the target
9567 * profile instead of the current one.
9568 */
9569 ret = -1;
9570
9571 /*
9572 * index:
9573 * 0: raid10
9574 * 1: raid1
9575 * 2: dup
9576 * 3: raid0
9577 * 4: single
9578 */
9579 target = get_restripe_target(fs_info, block_group->flags);
9580 if (target) {
9581 index = __get_raid_index(extended_to_chunk(target));
9582 } else {
9583 /*
9584 * this is just a balance, so if we were marked as full
9585 * we know there is no space for a new chunk
9586 */
9587 if (full) {
9588 if (debug)
9589 btrfs_warn(fs_info,
9590 "no space to alloc new chunk for block group %llu",
9591 block_group->key.objectid);
9592 goto out;
9593 }
9594
9595 index = get_block_group_index(block_group);
9596 }
9597
9598 if (index == BTRFS_RAID_RAID10) {
9599 dev_min = 4;
9600 /* Divide by 2 */
9601 min_free >>= 1;
9602 } else if (index == BTRFS_RAID_RAID1) {
9603 dev_min = 2;
9604 } else if (index == BTRFS_RAID_DUP) {
9605 /* Multiply by 2 */
9606 min_free <<= 1;
9607 } else if (index == BTRFS_RAID_RAID0) {
9608 dev_min = fs_devices->rw_devices;
9609 min_free = div64_u64(min_free, dev_min);
9610 }
9611
9612 /* We need to do this so that we can look at pending chunks */
9613 trans = btrfs_join_transaction(root);
9614 if (IS_ERR(trans)) {
9615 ret = PTR_ERR(trans);
9616 goto out;
9617 }
9618
9619 mutex_lock(&fs_info->chunk_mutex);
9620 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9621 u64 dev_offset;
9622
9623 /*
9624 * check to make sure we can actually find a chunk with enough
9625 * space to fit our block group in.
9626 */
9627 if (device->total_bytes > device->bytes_used + min_free &&
9628 !device->is_tgtdev_for_dev_replace) {
9629 ret = find_free_dev_extent(trans, device, min_free,
9630 &dev_offset, NULL);
9631 if (!ret)
9632 dev_nr++;
9633
9634 if (dev_nr >= dev_min)
9635 break;
9636
9637 ret = -1;
9638 }
9639 }
9640 if (debug && ret == -1)
9641 btrfs_warn(fs_info,
9642 "no space to allocate a new chunk for block group %llu",
9643 block_group->key.objectid);
9644 mutex_unlock(&fs_info->chunk_mutex);
9645 btrfs_end_transaction(trans);
9646 out:
9647 btrfs_put_block_group(block_group);
9648 return ret;
9649 }
9650
9651 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9652 struct btrfs_path *path,
9653 struct btrfs_key *key)
9654 {
9655 struct btrfs_root *root = fs_info->extent_root;
9656 int ret = 0;
9657 struct btrfs_key found_key;
9658 struct extent_buffer *leaf;
9659 int slot;
9660
9661 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9662 if (ret < 0)
9663 goto out;
9664
9665 while (1) {
9666 slot = path->slots[0];
9667 leaf = path->nodes[0];
9668 if (slot >= btrfs_header_nritems(leaf)) {
9669 ret = btrfs_next_leaf(root, path);
9670 if (ret == 0)
9671 continue;
9672 if (ret < 0)
9673 goto out;
9674 break;
9675 }
9676 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9677
9678 if (found_key.objectid >= key->objectid &&
9679 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9680 struct extent_map_tree *em_tree;
9681 struct extent_map *em;
9682
9683 em_tree = &root->fs_info->mapping_tree.map_tree;
9684 read_lock(&em_tree->lock);
9685 em = lookup_extent_mapping(em_tree, found_key.objectid,
9686 found_key.offset);
9687 read_unlock(&em_tree->lock);
9688 if (!em) {
9689 btrfs_err(fs_info,
9690 "logical %llu len %llu found bg but no related chunk",
9691 found_key.objectid, found_key.offset);
9692 ret = -ENOENT;
9693 } else {
9694 ret = 0;
9695 }
9696 free_extent_map(em);
9697 goto out;
9698 }
9699 path->slots[0]++;
9700 }
9701 out:
9702 return ret;
9703 }
9704
9705 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9706 {
9707 struct btrfs_block_group_cache *block_group;
9708 u64 last = 0;
9709
9710 while (1) {
9711 struct inode *inode;
9712
9713 block_group = btrfs_lookup_first_block_group(info, last);
9714 while (block_group) {
9715 spin_lock(&block_group->lock);
9716 if (block_group->iref)
9717 break;
9718 spin_unlock(&block_group->lock);
9719 block_group = next_block_group(info, block_group);
9720 }
9721 if (!block_group) {
9722 if (last == 0)
9723 break;
9724 last = 0;
9725 continue;
9726 }
9727
9728 inode = block_group->inode;
9729 block_group->iref = 0;
9730 block_group->inode = NULL;
9731 spin_unlock(&block_group->lock);
9732 ASSERT(block_group->io_ctl.inode == NULL);
9733 iput(inode);
9734 last = block_group->key.objectid + block_group->key.offset;
9735 btrfs_put_block_group(block_group);
9736 }
9737 }
9738
9739 /*
9740 * Must be called only after stopping all workers, since we could have block
9741 * group caching kthreads running, and therefore they could race with us if we
9742 * freed the block groups before stopping them.
9743 */
9744 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9745 {
9746 struct btrfs_block_group_cache *block_group;
9747 struct btrfs_space_info *space_info;
9748 struct btrfs_caching_control *caching_ctl;
9749 struct rb_node *n;
9750
9751 down_write(&info->commit_root_sem);
9752 while (!list_empty(&info->caching_block_groups)) {
9753 caching_ctl = list_entry(info->caching_block_groups.next,
9754 struct btrfs_caching_control, list);
9755 list_del(&caching_ctl->list);
9756 put_caching_control(caching_ctl);
9757 }
9758 up_write(&info->commit_root_sem);
9759
9760 spin_lock(&info->unused_bgs_lock);
9761 while (!list_empty(&info->unused_bgs)) {
9762 block_group = list_first_entry(&info->unused_bgs,
9763 struct btrfs_block_group_cache,
9764 bg_list);
9765 list_del_init(&block_group->bg_list);
9766 btrfs_put_block_group(block_group);
9767 }
9768 spin_unlock(&info->unused_bgs_lock);
9769
9770 spin_lock(&info->block_group_cache_lock);
9771 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9772 block_group = rb_entry(n, struct btrfs_block_group_cache,
9773 cache_node);
9774 rb_erase(&block_group->cache_node,
9775 &info->block_group_cache_tree);
9776 RB_CLEAR_NODE(&block_group->cache_node);
9777 spin_unlock(&info->block_group_cache_lock);
9778
9779 down_write(&block_group->space_info->groups_sem);
9780 list_del(&block_group->list);
9781 up_write(&block_group->space_info->groups_sem);
9782
9783 /*
9784 * We haven't cached this block group, which means we could
9785 * possibly have excluded extents on this block group.
9786 */
9787 if (block_group->cached == BTRFS_CACHE_NO ||
9788 block_group->cached == BTRFS_CACHE_ERROR)
9789 free_excluded_extents(info, block_group);
9790
9791 btrfs_remove_free_space_cache(block_group);
9792 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9793 ASSERT(list_empty(&block_group->dirty_list));
9794 ASSERT(list_empty(&block_group->io_list));
9795 ASSERT(list_empty(&block_group->bg_list));
9796 ASSERT(atomic_read(&block_group->count) == 1);
9797 btrfs_put_block_group(block_group);
9798
9799 spin_lock(&info->block_group_cache_lock);
9800 }
9801 spin_unlock(&info->block_group_cache_lock);
9802
9803 /* now that all the block groups are freed, go through and
9804 * free all the space_info structs. This is only called during
9805 * the final stages of unmount, and so we know nobody is
9806 * using them. We call synchronize_rcu() once before we start,
9807 * just to be on the safe side.
9808 */
9809 synchronize_rcu();
9810
9811 release_global_block_rsv(info);
9812
9813 while (!list_empty(&info->space_info)) {
9814 int i;
9815
9816 space_info = list_entry(info->space_info.next,
9817 struct btrfs_space_info,
9818 list);
9819
9820 /*
9821 * Do not hide this behind enospc_debug, this is actually
9822 * important and indicates a real bug if this happens.
9823 */
9824 if (WARN_ON(space_info->bytes_pinned > 0 ||
9825 space_info->bytes_reserved > 0 ||
9826 space_info->bytes_may_use > 0))
9827 dump_space_info(info, space_info, 0, 0);
9828 list_del(&space_info->list);
9829 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9830 struct kobject *kobj;
9831 kobj = space_info->block_group_kobjs[i];
9832 space_info->block_group_kobjs[i] = NULL;
9833 if (kobj) {
9834 kobject_del(kobj);
9835 kobject_put(kobj);
9836 }
9837 }
9838 kobject_del(&space_info->kobj);
9839 kobject_put(&space_info->kobj);
9840 }
9841 return 0;
9842 }
9843
9844 static void __link_block_group(struct btrfs_space_info *space_info,
9845 struct btrfs_block_group_cache *cache)
9846 {
9847 int index = get_block_group_index(cache);
9848 bool first = false;
9849
9850 down_write(&space_info->groups_sem);
9851 if (list_empty(&space_info->block_groups[index]))
9852 first = true;
9853 list_add_tail(&cache->list, &space_info->block_groups[index]);
9854 up_write(&space_info->groups_sem);
9855
9856 if (first) {
9857 struct raid_kobject *rkobj;
9858 int ret;
9859
9860 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9861 if (!rkobj)
9862 goto out_err;
9863 rkobj->raid_type = index;
9864 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9865 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9866 "%s", get_raid_name(index));
9867 if (ret) {
9868 kobject_put(&rkobj->kobj);
9869 goto out_err;
9870 }
9871 space_info->block_group_kobjs[index] = &rkobj->kobj;
9872 }
9873
9874 return;
9875 out_err:
9876 btrfs_warn(cache->fs_info,
9877 "failed to add kobject for block cache, ignoring");
9878 }
9879
9880 static struct btrfs_block_group_cache *
9881 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9882 u64 start, u64 size)
9883 {
9884 struct btrfs_block_group_cache *cache;
9885
9886 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9887 if (!cache)
9888 return NULL;
9889
9890 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9891 GFP_NOFS);
9892 if (!cache->free_space_ctl) {
9893 kfree(cache);
9894 return NULL;
9895 }
9896
9897 cache->key.objectid = start;
9898 cache->key.offset = size;
9899 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9900
9901 cache->sectorsize = fs_info->sectorsize;
9902 cache->fs_info = fs_info;
9903 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9904 &fs_info->mapping_tree,
9905 start);
9906 set_free_space_tree_thresholds(cache);
9907
9908 atomic_set(&cache->count, 1);
9909 spin_lock_init(&cache->lock);
9910 init_rwsem(&cache->data_rwsem);
9911 INIT_LIST_HEAD(&cache->list);
9912 INIT_LIST_HEAD(&cache->cluster_list);
9913 INIT_LIST_HEAD(&cache->bg_list);
9914 INIT_LIST_HEAD(&cache->ro_list);
9915 INIT_LIST_HEAD(&cache->dirty_list);
9916 INIT_LIST_HEAD(&cache->io_list);
9917 btrfs_init_free_space_ctl(cache);
9918 atomic_set(&cache->trimming, 0);
9919 mutex_init(&cache->free_space_lock);
9920
9921 return cache;
9922 }
9923
9924 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9925 {
9926 struct btrfs_path *path;
9927 int ret;
9928 struct btrfs_block_group_cache *cache;
9929 struct btrfs_space_info *space_info;
9930 struct btrfs_key key;
9931 struct btrfs_key found_key;
9932 struct extent_buffer *leaf;
9933 int need_clear = 0;
9934 u64 cache_gen;
9935 u64 feature;
9936 int mixed;
9937
9938 feature = btrfs_super_incompat_flags(info->super_copy);
9939 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9940
9941 key.objectid = 0;
9942 key.offset = 0;
9943 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9944 path = btrfs_alloc_path();
9945 if (!path)
9946 return -ENOMEM;
9947 path->reada = READA_FORWARD;
9948
9949 cache_gen = btrfs_super_cache_generation(info->super_copy);
9950 if (btrfs_test_opt(info, SPACE_CACHE) &&
9951 btrfs_super_generation(info->super_copy) != cache_gen)
9952 need_clear = 1;
9953 if (btrfs_test_opt(info, CLEAR_CACHE))
9954 need_clear = 1;
9955
9956 while (1) {
9957 ret = find_first_block_group(info, path, &key);
9958 if (ret > 0)
9959 break;
9960 if (ret != 0)
9961 goto error;
9962
9963 leaf = path->nodes[0];
9964 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9965
9966 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9967 found_key.offset);
9968 if (!cache) {
9969 ret = -ENOMEM;
9970 goto error;
9971 }
9972
9973 if (need_clear) {
9974 /*
9975 * When we mount with old space cache, we need to
9976 * set BTRFS_DC_CLEAR and set dirty flag.
9977 *
9978 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9979 * truncate the old free space cache inode and
9980 * setup a new one.
9981 * b) Setting 'dirty flag' makes sure that we flush
9982 * the new space cache info onto disk.
9983 */
9984 if (btrfs_test_opt(info, SPACE_CACHE))
9985 cache->disk_cache_state = BTRFS_DC_CLEAR;
9986 }
9987
9988 read_extent_buffer(leaf, &cache->item,
9989 btrfs_item_ptr_offset(leaf, path->slots[0]),
9990 sizeof(cache->item));
9991 cache->flags = btrfs_block_group_flags(&cache->item);
9992 if (!mixed &&
9993 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9994 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9995 btrfs_err(info,
9996 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9997 cache->key.objectid);
9998 ret = -EINVAL;
9999 goto error;
10000 }
10001
10002 key.objectid = found_key.objectid + found_key.offset;
10003 btrfs_release_path(path);
10004
10005 /*
10006 * We need to exclude the super stripes now so that the space
10007 * info has super bytes accounted for, otherwise we'll think
10008 * we have more space than we actually do.
10009 */
10010 ret = exclude_super_stripes(info, cache);
10011 if (ret) {
10012 /*
10013 * We may have excluded something, so call this just in
10014 * case.
10015 */
10016 free_excluded_extents(info, cache);
10017 btrfs_put_block_group(cache);
10018 goto error;
10019 }
10020
10021 /*
10022 * check for two cases, either we are full, and therefore
10023 * don't need to bother with the caching work since we won't
10024 * find any space, or we are empty, and we can just add all
10025 * the space in and be done with it. This saves us _alot_ of
10026 * time, particularly in the full case.
10027 */
10028 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10029 cache->last_byte_to_unpin = (u64)-1;
10030 cache->cached = BTRFS_CACHE_FINISHED;
10031 free_excluded_extents(info, cache);
10032 } else if (btrfs_block_group_used(&cache->item) == 0) {
10033 cache->last_byte_to_unpin = (u64)-1;
10034 cache->cached = BTRFS_CACHE_FINISHED;
10035 add_new_free_space(cache, info,
10036 found_key.objectid,
10037 found_key.objectid +
10038 found_key.offset);
10039 free_excluded_extents(info, cache);
10040 }
10041
10042 ret = btrfs_add_block_group_cache(info, cache);
10043 if (ret) {
10044 btrfs_remove_free_space_cache(cache);
10045 btrfs_put_block_group(cache);
10046 goto error;
10047 }
10048
10049 trace_btrfs_add_block_group(info, cache, 0);
10050 ret = update_space_info(info, cache->flags, found_key.offset,
10051 btrfs_block_group_used(&cache->item),
10052 cache->bytes_super, &space_info);
10053 if (ret) {
10054 btrfs_remove_free_space_cache(cache);
10055 spin_lock(&info->block_group_cache_lock);
10056 rb_erase(&cache->cache_node,
10057 &info->block_group_cache_tree);
10058 RB_CLEAR_NODE(&cache->cache_node);
10059 spin_unlock(&info->block_group_cache_lock);
10060 btrfs_put_block_group(cache);
10061 goto error;
10062 }
10063
10064 cache->space_info = space_info;
10065
10066 __link_block_group(space_info, cache);
10067
10068 set_avail_alloc_bits(info, cache->flags);
10069 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10070 inc_block_group_ro(cache, 1);
10071 } else if (btrfs_block_group_used(&cache->item) == 0) {
10072 spin_lock(&info->unused_bgs_lock);
10073 /* Should always be true but just in case. */
10074 if (list_empty(&cache->bg_list)) {
10075 btrfs_get_block_group(cache);
10076 list_add_tail(&cache->bg_list,
10077 &info->unused_bgs);
10078 }
10079 spin_unlock(&info->unused_bgs_lock);
10080 }
10081 }
10082
10083 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10084 if (!(get_alloc_profile(info, space_info->flags) &
10085 (BTRFS_BLOCK_GROUP_RAID10 |
10086 BTRFS_BLOCK_GROUP_RAID1 |
10087 BTRFS_BLOCK_GROUP_RAID5 |
10088 BTRFS_BLOCK_GROUP_RAID6 |
10089 BTRFS_BLOCK_GROUP_DUP)))
10090 continue;
10091 /*
10092 * avoid allocating from un-mirrored block group if there are
10093 * mirrored block groups.
10094 */
10095 list_for_each_entry(cache,
10096 &space_info->block_groups[BTRFS_RAID_RAID0],
10097 list)
10098 inc_block_group_ro(cache, 1);
10099 list_for_each_entry(cache,
10100 &space_info->block_groups[BTRFS_RAID_SINGLE],
10101 list)
10102 inc_block_group_ro(cache, 1);
10103 }
10104
10105 init_global_block_rsv(info);
10106 ret = 0;
10107 error:
10108 btrfs_free_path(path);
10109 return ret;
10110 }
10111
10112 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10113 struct btrfs_fs_info *fs_info)
10114 {
10115 struct btrfs_block_group_cache *block_group, *tmp;
10116 struct btrfs_root *extent_root = fs_info->extent_root;
10117 struct btrfs_block_group_item item;
10118 struct btrfs_key key;
10119 int ret = 0;
10120 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10121
10122 trans->can_flush_pending_bgs = false;
10123 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10124 if (ret)
10125 goto next;
10126
10127 spin_lock(&block_group->lock);
10128 memcpy(&item, &block_group->item, sizeof(item));
10129 memcpy(&key, &block_group->key, sizeof(key));
10130 spin_unlock(&block_group->lock);
10131
10132 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10133 sizeof(item));
10134 if (ret)
10135 btrfs_abort_transaction(trans, ret);
10136 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10137 key.offset);
10138 if (ret)
10139 btrfs_abort_transaction(trans, ret);
10140 add_block_group_free_space(trans, fs_info, block_group);
10141 /* already aborted the transaction if it failed. */
10142 next:
10143 list_del_init(&block_group->bg_list);
10144 }
10145 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10146 }
10147
10148 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10149 struct btrfs_fs_info *fs_info, u64 bytes_used,
10150 u64 type, u64 chunk_objectid, u64 chunk_offset,
10151 u64 size)
10152 {
10153 struct btrfs_block_group_cache *cache;
10154 int ret;
10155
10156 btrfs_set_log_full_commit(fs_info, trans);
10157
10158 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10159 if (!cache)
10160 return -ENOMEM;
10161
10162 btrfs_set_block_group_used(&cache->item, bytes_used);
10163 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10164 btrfs_set_block_group_flags(&cache->item, type);
10165
10166 cache->flags = type;
10167 cache->last_byte_to_unpin = (u64)-1;
10168 cache->cached = BTRFS_CACHE_FINISHED;
10169 cache->needs_free_space = 1;
10170 ret = exclude_super_stripes(fs_info, cache);
10171 if (ret) {
10172 /*
10173 * We may have excluded something, so call this just in
10174 * case.
10175 */
10176 free_excluded_extents(fs_info, cache);
10177 btrfs_put_block_group(cache);
10178 return ret;
10179 }
10180
10181 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10182
10183 free_excluded_extents(fs_info, cache);
10184
10185 #ifdef CONFIG_BTRFS_DEBUG
10186 if (btrfs_should_fragment_free_space(cache)) {
10187 u64 new_bytes_used = size - bytes_used;
10188
10189 bytes_used += new_bytes_used >> 1;
10190 fragment_free_space(cache);
10191 }
10192 #endif
10193 /*
10194 * Call to ensure the corresponding space_info object is created and
10195 * assigned to our block group, but don't update its counters just yet.
10196 * We want our bg to be added to the rbtree with its ->space_info set.
10197 */
10198 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10199 &cache->space_info);
10200 if (ret) {
10201 btrfs_remove_free_space_cache(cache);
10202 btrfs_put_block_group(cache);
10203 return ret;
10204 }
10205
10206 ret = btrfs_add_block_group_cache(fs_info, cache);
10207 if (ret) {
10208 btrfs_remove_free_space_cache(cache);
10209 btrfs_put_block_group(cache);
10210 return ret;
10211 }
10212
10213 /*
10214 * Now that our block group has its ->space_info set and is inserted in
10215 * the rbtree, update the space info's counters.
10216 */
10217 trace_btrfs_add_block_group(fs_info, cache, 1);
10218 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10219 cache->bytes_super, &cache->space_info);
10220 if (ret) {
10221 btrfs_remove_free_space_cache(cache);
10222 spin_lock(&fs_info->block_group_cache_lock);
10223 rb_erase(&cache->cache_node,
10224 &fs_info->block_group_cache_tree);
10225 RB_CLEAR_NODE(&cache->cache_node);
10226 spin_unlock(&fs_info->block_group_cache_lock);
10227 btrfs_put_block_group(cache);
10228 return ret;
10229 }
10230 update_global_block_rsv(fs_info);
10231
10232 __link_block_group(cache->space_info, cache);
10233
10234 list_add_tail(&cache->bg_list, &trans->new_bgs);
10235
10236 set_avail_alloc_bits(fs_info, type);
10237 return 0;
10238 }
10239
10240 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10241 {
10242 u64 extra_flags = chunk_to_extended(flags) &
10243 BTRFS_EXTENDED_PROFILE_MASK;
10244
10245 write_seqlock(&fs_info->profiles_lock);
10246 if (flags & BTRFS_BLOCK_GROUP_DATA)
10247 fs_info->avail_data_alloc_bits &= ~extra_flags;
10248 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10249 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10250 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10251 fs_info->avail_system_alloc_bits &= ~extra_flags;
10252 write_sequnlock(&fs_info->profiles_lock);
10253 }
10254
10255 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10256 struct btrfs_fs_info *fs_info, u64 group_start,
10257 struct extent_map *em)
10258 {
10259 struct btrfs_root *root = fs_info->extent_root;
10260 struct btrfs_path *path;
10261 struct btrfs_block_group_cache *block_group;
10262 struct btrfs_free_cluster *cluster;
10263 struct btrfs_root *tree_root = fs_info->tree_root;
10264 struct btrfs_key key;
10265 struct inode *inode;
10266 struct kobject *kobj = NULL;
10267 int ret;
10268 int index;
10269 int factor;
10270 struct btrfs_caching_control *caching_ctl = NULL;
10271 bool remove_em;
10272
10273 block_group = btrfs_lookup_block_group(fs_info, group_start);
10274 BUG_ON(!block_group);
10275 BUG_ON(!block_group->ro);
10276
10277 /*
10278 * Free the reserved super bytes from this block group before
10279 * remove it.
10280 */
10281 free_excluded_extents(fs_info, block_group);
10282
10283 memcpy(&key, &block_group->key, sizeof(key));
10284 index = get_block_group_index(block_group);
10285 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10286 BTRFS_BLOCK_GROUP_RAID1 |
10287 BTRFS_BLOCK_GROUP_RAID10))
10288 factor = 2;
10289 else
10290 factor = 1;
10291
10292 /* make sure this block group isn't part of an allocation cluster */
10293 cluster = &fs_info->data_alloc_cluster;
10294 spin_lock(&cluster->refill_lock);
10295 btrfs_return_cluster_to_free_space(block_group, cluster);
10296 spin_unlock(&cluster->refill_lock);
10297
10298 /*
10299 * make sure this block group isn't part of a metadata
10300 * allocation cluster
10301 */
10302 cluster = &fs_info->meta_alloc_cluster;
10303 spin_lock(&cluster->refill_lock);
10304 btrfs_return_cluster_to_free_space(block_group, cluster);
10305 spin_unlock(&cluster->refill_lock);
10306
10307 path = btrfs_alloc_path();
10308 if (!path) {
10309 ret = -ENOMEM;
10310 goto out;
10311 }
10312
10313 /*
10314 * get the inode first so any iput calls done for the io_list
10315 * aren't the final iput (no unlinks allowed now)
10316 */
10317 inode = lookup_free_space_inode(fs_info, block_group, path);
10318
10319 mutex_lock(&trans->transaction->cache_write_mutex);
10320 /*
10321 * make sure our free spache cache IO is done before remove the
10322 * free space inode
10323 */
10324 spin_lock(&trans->transaction->dirty_bgs_lock);
10325 if (!list_empty(&block_group->io_list)) {
10326 list_del_init(&block_group->io_list);
10327
10328 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10329
10330 spin_unlock(&trans->transaction->dirty_bgs_lock);
10331 btrfs_wait_cache_io(trans, block_group, path);
10332 btrfs_put_block_group(block_group);
10333 spin_lock(&trans->transaction->dirty_bgs_lock);
10334 }
10335
10336 if (!list_empty(&block_group->dirty_list)) {
10337 list_del_init(&block_group->dirty_list);
10338 btrfs_put_block_group(block_group);
10339 }
10340 spin_unlock(&trans->transaction->dirty_bgs_lock);
10341 mutex_unlock(&trans->transaction->cache_write_mutex);
10342
10343 if (!IS_ERR(inode)) {
10344 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10345 if (ret) {
10346 btrfs_add_delayed_iput(inode);
10347 goto out;
10348 }
10349 clear_nlink(inode);
10350 /* One for the block groups ref */
10351 spin_lock(&block_group->lock);
10352 if (block_group->iref) {
10353 block_group->iref = 0;
10354 block_group->inode = NULL;
10355 spin_unlock(&block_group->lock);
10356 iput(inode);
10357 } else {
10358 spin_unlock(&block_group->lock);
10359 }
10360 /* One for our lookup ref */
10361 btrfs_add_delayed_iput(inode);
10362 }
10363
10364 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10365 key.offset = block_group->key.objectid;
10366 key.type = 0;
10367
10368 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10369 if (ret < 0)
10370 goto out;
10371 if (ret > 0)
10372 btrfs_release_path(path);
10373 if (ret == 0) {
10374 ret = btrfs_del_item(trans, tree_root, path);
10375 if (ret)
10376 goto out;
10377 btrfs_release_path(path);
10378 }
10379
10380 spin_lock(&fs_info->block_group_cache_lock);
10381 rb_erase(&block_group->cache_node,
10382 &fs_info->block_group_cache_tree);
10383 RB_CLEAR_NODE(&block_group->cache_node);
10384
10385 if (fs_info->first_logical_byte == block_group->key.objectid)
10386 fs_info->first_logical_byte = (u64)-1;
10387 spin_unlock(&fs_info->block_group_cache_lock);
10388
10389 down_write(&block_group->space_info->groups_sem);
10390 /*
10391 * we must use list_del_init so people can check to see if they
10392 * are still on the list after taking the semaphore
10393 */
10394 list_del_init(&block_group->list);
10395 if (list_empty(&block_group->space_info->block_groups[index])) {
10396 kobj = block_group->space_info->block_group_kobjs[index];
10397 block_group->space_info->block_group_kobjs[index] = NULL;
10398 clear_avail_alloc_bits(fs_info, block_group->flags);
10399 }
10400 up_write(&block_group->space_info->groups_sem);
10401 if (kobj) {
10402 kobject_del(kobj);
10403 kobject_put(kobj);
10404 }
10405
10406 if (block_group->has_caching_ctl)
10407 caching_ctl = get_caching_control(block_group);
10408 if (block_group->cached == BTRFS_CACHE_STARTED)
10409 wait_block_group_cache_done(block_group);
10410 if (block_group->has_caching_ctl) {
10411 down_write(&fs_info->commit_root_sem);
10412 if (!caching_ctl) {
10413 struct btrfs_caching_control *ctl;
10414
10415 list_for_each_entry(ctl,
10416 &fs_info->caching_block_groups, list)
10417 if (ctl->block_group == block_group) {
10418 caching_ctl = ctl;
10419 atomic_inc(&caching_ctl->count);
10420 break;
10421 }
10422 }
10423 if (caching_ctl)
10424 list_del_init(&caching_ctl->list);
10425 up_write(&fs_info->commit_root_sem);
10426 if (caching_ctl) {
10427 /* Once for the caching bgs list and once for us. */
10428 put_caching_control(caching_ctl);
10429 put_caching_control(caching_ctl);
10430 }
10431 }
10432
10433 spin_lock(&trans->transaction->dirty_bgs_lock);
10434 if (!list_empty(&block_group->dirty_list)) {
10435 WARN_ON(1);
10436 }
10437 if (!list_empty(&block_group->io_list)) {
10438 WARN_ON(1);
10439 }
10440 spin_unlock(&trans->transaction->dirty_bgs_lock);
10441 btrfs_remove_free_space_cache(block_group);
10442
10443 spin_lock(&block_group->space_info->lock);
10444 list_del_init(&block_group->ro_list);
10445
10446 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10447 WARN_ON(block_group->space_info->total_bytes
10448 < block_group->key.offset);
10449 WARN_ON(block_group->space_info->bytes_readonly
10450 < block_group->key.offset);
10451 WARN_ON(block_group->space_info->disk_total
10452 < block_group->key.offset * factor);
10453 }
10454 block_group->space_info->total_bytes -= block_group->key.offset;
10455 block_group->space_info->bytes_readonly -= block_group->key.offset;
10456 block_group->space_info->disk_total -= block_group->key.offset * factor;
10457
10458 spin_unlock(&block_group->space_info->lock);
10459
10460 memcpy(&key, &block_group->key, sizeof(key));
10461
10462 mutex_lock(&fs_info->chunk_mutex);
10463 if (!list_empty(&em->list)) {
10464 /* We're in the transaction->pending_chunks list. */
10465 free_extent_map(em);
10466 }
10467 spin_lock(&block_group->lock);
10468 block_group->removed = 1;
10469 /*
10470 * At this point trimming can't start on this block group, because we
10471 * removed the block group from the tree fs_info->block_group_cache_tree
10472 * so no one can't find it anymore and even if someone already got this
10473 * block group before we removed it from the rbtree, they have already
10474 * incremented block_group->trimming - if they didn't, they won't find
10475 * any free space entries because we already removed them all when we
10476 * called btrfs_remove_free_space_cache().
10477 *
10478 * And we must not remove the extent map from the fs_info->mapping_tree
10479 * to prevent the same logical address range and physical device space
10480 * ranges from being reused for a new block group. This is because our
10481 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10482 * completely transactionless, so while it is trimming a range the
10483 * currently running transaction might finish and a new one start,
10484 * allowing for new block groups to be created that can reuse the same
10485 * physical device locations unless we take this special care.
10486 *
10487 * There may also be an implicit trim operation if the file system
10488 * is mounted with -odiscard. The same protections must remain
10489 * in place until the extents have been discarded completely when
10490 * the transaction commit has completed.
10491 */
10492 remove_em = (atomic_read(&block_group->trimming) == 0);
10493 /*
10494 * Make sure a trimmer task always sees the em in the pinned_chunks list
10495 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10496 * before checking block_group->removed).
10497 */
10498 if (!remove_em) {
10499 /*
10500 * Our em might be in trans->transaction->pending_chunks which
10501 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10502 * and so is the fs_info->pinned_chunks list.
10503 *
10504 * So at this point we must be holding the chunk_mutex to avoid
10505 * any races with chunk allocation (more specifically at
10506 * volumes.c:contains_pending_extent()), to ensure it always
10507 * sees the em, either in the pending_chunks list or in the
10508 * pinned_chunks list.
10509 */
10510 list_move_tail(&em->list, &fs_info->pinned_chunks);
10511 }
10512 spin_unlock(&block_group->lock);
10513
10514 if (remove_em) {
10515 struct extent_map_tree *em_tree;
10516
10517 em_tree = &fs_info->mapping_tree.map_tree;
10518 write_lock(&em_tree->lock);
10519 /*
10520 * The em might be in the pending_chunks list, so make sure the
10521 * chunk mutex is locked, since remove_extent_mapping() will
10522 * delete us from that list.
10523 */
10524 remove_extent_mapping(em_tree, em);
10525 write_unlock(&em_tree->lock);
10526 /* once for the tree */
10527 free_extent_map(em);
10528 }
10529
10530 mutex_unlock(&fs_info->chunk_mutex);
10531
10532 ret = remove_block_group_free_space(trans, fs_info, block_group);
10533 if (ret)
10534 goto out;
10535
10536 btrfs_put_block_group(block_group);
10537 btrfs_put_block_group(block_group);
10538
10539 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10540 if (ret > 0)
10541 ret = -EIO;
10542 if (ret < 0)
10543 goto out;
10544
10545 ret = btrfs_del_item(trans, root, path);
10546 out:
10547 btrfs_free_path(path);
10548 return ret;
10549 }
10550
10551 struct btrfs_trans_handle *
10552 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10553 const u64 chunk_offset)
10554 {
10555 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10556 struct extent_map *em;
10557 struct map_lookup *map;
10558 unsigned int num_items;
10559
10560 read_lock(&em_tree->lock);
10561 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10562 read_unlock(&em_tree->lock);
10563 ASSERT(em && em->start == chunk_offset);
10564
10565 /*
10566 * We need to reserve 3 + N units from the metadata space info in order
10567 * to remove a block group (done at btrfs_remove_chunk() and at
10568 * btrfs_remove_block_group()), which are used for:
10569 *
10570 * 1 unit for adding the free space inode's orphan (located in the tree
10571 * of tree roots).
10572 * 1 unit for deleting the block group item (located in the extent
10573 * tree).
10574 * 1 unit for deleting the free space item (located in tree of tree
10575 * roots).
10576 * N units for deleting N device extent items corresponding to each
10577 * stripe (located in the device tree).
10578 *
10579 * In order to remove a block group we also need to reserve units in the
10580 * system space info in order to update the chunk tree (update one or
10581 * more device items and remove one chunk item), but this is done at
10582 * btrfs_remove_chunk() through a call to check_system_chunk().
10583 */
10584 map = em->map_lookup;
10585 num_items = 3 + map->num_stripes;
10586 free_extent_map(em);
10587
10588 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10589 num_items, 1);
10590 }
10591
10592 /*
10593 * Process the unused_bgs list and remove any that don't have any allocated
10594 * space inside of them.
10595 */
10596 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10597 {
10598 struct btrfs_block_group_cache *block_group;
10599 struct btrfs_space_info *space_info;
10600 struct btrfs_trans_handle *trans;
10601 int ret = 0;
10602
10603 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10604 return;
10605
10606 spin_lock(&fs_info->unused_bgs_lock);
10607 while (!list_empty(&fs_info->unused_bgs)) {
10608 u64 start, end;
10609 int trimming;
10610
10611 block_group = list_first_entry(&fs_info->unused_bgs,
10612 struct btrfs_block_group_cache,
10613 bg_list);
10614 list_del_init(&block_group->bg_list);
10615
10616 space_info = block_group->space_info;
10617
10618 if (ret || btrfs_mixed_space_info(space_info)) {
10619 btrfs_put_block_group(block_group);
10620 continue;
10621 }
10622 spin_unlock(&fs_info->unused_bgs_lock);
10623
10624 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10625
10626 /* Don't want to race with allocators so take the groups_sem */
10627 down_write(&space_info->groups_sem);
10628 spin_lock(&block_group->lock);
10629 if (block_group->reserved ||
10630 btrfs_block_group_used(&block_group->item) ||
10631 block_group->ro ||
10632 list_is_singular(&block_group->list)) {
10633 /*
10634 * We want to bail if we made new allocations or have
10635 * outstanding allocations in this block group. We do
10636 * the ro check in case balance is currently acting on
10637 * this block group.
10638 */
10639 spin_unlock(&block_group->lock);
10640 up_write(&space_info->groups_sem);
10641 goto next;
10642 }
10643 spin_unlock(&block_group->lock);
10644
10645 /* We don't want to force the issue, only flip if it's ok. */
10646 ret = inc_block_group_ro(block_group, 0);
10647 up_write(&space_info->groups_sem);
10648 if (ret < 0) {
10649 ret = 0;
10650 goto next;
10651 }
10652
10653 /*
10654 * Want to do this before we do anything else so we can recover
10655 * properly if we fail to join the transaction.
10656 */
10657 trans = btrfs_start_trans_remove_block_group(fs_info,
10658 block_group->key.objectid);
10659 if (IS_ERR(trans)) {
10660 btrfs_dec_block_group_ro(block_group);
10661 ret = PTR_ERR(trans);
10662 goto next;
10663 }
10664
10665 /*
10666 * We could have pending pinned extents for this block group,
10667 * just delete them, we don't care about them anymore.
10668 */
10669 start = block_group->key.objectid;
10670 end = start + block_group->key.offset - 1;
10671 /*
10672 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10673 * btrfs_finish_extent_commit(). If we are at transaction N,
10674 * another task might be running finish_extent_commit() for the
10675 * previous transaction N - 1, and have seen a range belonging
10676 * to the block group in freed_extents[] before we were able to
10677 * clear the whole block group range from freed_extents[]. This
10678 * means that task can lookup for the block group after we
10679 * unpinned it from freed_extents[] and removed it, leading to
10680 * a BUG_ON() at btrfs_unpin_extent_range().
10681 */
10682 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10683 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10684 EXTENT_DIRTY);
10685 if (ret) {
10686 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10687 btrfs_dec_block_group_ro(block_group);
10688 goto end_trans;
10689 }
10690 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10691 EXTENT_DIRTY);
10692 if (ret) {
10693 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10694 btrfs_dec_block_group_ro(block_group);
10695 goto end_trans;
10696 }
10697 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10698
10699 /* Reset pinned so btrfs_put_block_group doesn't complain */
10700 spin_lock(&space_info->lock);
10701 spin_lock(&block_group->lock);
10702
10703 space_info->bytes_pinned -= block_group->pinned;
10704 space_info->bytes_readonly += block_group->pinned;
10705 percpu_counter_add(&space_info->total_bytes_pinned,
10706 -block_group->pinned);
10707 block_group->pinned = 0;
10708
10709 spin_unlock(&block_group->lock);
10710 spin_unlock(&space_info->lock);
10711
10712 /* DISCARD can flip during remount */
10713 trimming = btrfs_test_opt(fs_info, DISCARD);
10714
10715 /* Implicit trim during transaction commit. */
10716 if (trimming)
10717 btrfs_get_block_group_trimming(block_group);
10718
10719 /*
10720 * Btrfs_remove_chunk will abort the transaction if things go
10721 * horribly wrong.
10722 */
10723 ret = btrfs_remove_chunk(trans, fs_info,
10724 block_group->key.objectid);
10725
10726 if (ret) {
10727 if (trimming)
10728 btrfs_put_block_group_trimming(block_group);
10729 goto end_trans;
10730 }
10731
10732 /*
10733 * If we're not mounted with -odiscard, we can just forget
10734 * about this block group. Otherwise we'll need to wait
10735 * until transaction commit to do the actual discard.
10736 */
10737 if (trimming) {
10738 spin_lock(&fs_info->unused_bgs_lock);
10739 /*
10740 * A concurrent scrub might have added us to the list
10741 * fs_info->unused_bgs, so use a list_move operation
10742 * to add the block group to the deleted_bgs list.
10743 */
10744 list_move(&block_group->bg_list,
10745 &trans->transaction->deleted_bgs);
10746 spin_unlock(&fs_info->unused_bgs_lock);
10747 btrfs_get_block_group(block_group);
10748 }
10749 end_trans:
10750 btrfs_end_transaction(trans);
10751 next:
10752 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10753 btrfs_put_block_group(block_group);
10754 spin_lock(&fs_info->unused_bgs_lock);
10755 }
10756 spin_unlock(&fs_info->unused_bgs_lock);
10757 }
10758
10759 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10760 {
10761 struct btrfs_space_info *space_info;
10762 struct btrfs_super_block *disk_super;
10763 u64 features;
10764 u64 flags;
10765 int mixed = 0;
10766 int ret;
10767
10768 disk_super = fs_info->super_copy;
10769 if (!btrfs_super_root(disk_super))
10770 return -EINVAL;
10771
10772 features = btrfs_super_incompat_flags(disk_super);
10773 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10774 mixed = 1;
10775
10776 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10777 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10778 if (ret)
10779 goto out;
10780
10781 if (mixed) {
10782 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10783 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10784 } else {
10785 flags = BTRFS_BLOCK_GROUP_METADATA;
10786 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10787 if (ret)
10788 goto out;
10789
10790 flags = BTRFS_BLOCK_GROUP_DATA;
10791 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10792 }
10793 out:
10794 return ret;
10795 }
10796
10797 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10798 u64 start, u64 end)
10799 {
10800 return unpin_extent_range(fs_info, start, end, false);
10801 }
10802
10803 /*
10804 * It used to be that old block groups would be left around forever.
10805 * Iterating over them would be enough to trim unused space. Since we
10806 * now automatically remove them, we also need to iterate over unallocated
10807 * space.
10808 *
10809 * We don't want a transaction for this since the discard may take a
10810 * substantial amount of time. We don't require that a transaction be
10811 * running, but we do need to take a running transaction into account
10812 * to ensure that we're not discarding chunks that were released in
10813 * the current transaction.
10814 *
10815 * Holding the chunks lock will prevent other threads from allocating
10816 * or releasing chunks, but it won't prevent a running transaction
10817 * from committing and releasing the memory that the pending chunks
10818 * list head uses. For that, we need to take a reference to the
10819 * transaction.
10820 */
10821 static int btrfs_trim_free_extents(struct btrfs_device *device,
10822 u64 minlen, u64 *trimmed)
10823 {
10824 u64 start = 0, len = 0;
10825 int ret;
10826
10827 *trimmed = 0;
10828
10829 /* Not writeable = nothing to do. */
10830 if (!device->writeable)
10831 return 0;
10832
10833 /* No free space = nothing to do. */
10834 if (device->total_bytes <= device->bytes_used)
10835 return 0;
10836
10837 ret = 0;
10838
10839 while (1) {
10840 struct btrfs_fs_info *fs_info = device->fs_info;
10841 struct btrfs_transaction *trans;
10842 u64 bytes;
10843
10844 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10845 if (ret)
10846 return ret;
10847
10848 down_read(&fs_info->commit_root_sem);
10849
10850 spin_lock(&fs_info->trans_lock);
10851 trans = fs_info->running_transaction;
10852 if (trans)
10853 atomic_inc(&trans->use_count);
10854 spin_unlock(&fs_info->trans_lock);
10855
10856 ret = find_free_dev_extent_start(trans, device, minlen, start,
10857 &start, &len);
10858 if (trans)
10859 btrfs_put_transaction(trans);
10860
10861 if (ret) {
10862 up_read(&fs_info->commit_root_sem);
10863 mutex_unlock(&fs_info->chunk_mutex);
10864 if (ret == -ENOSPC)
10865 ret = 0;
10866 break;
10867 }
10868
10869 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10870 up_read(&fs_info->commit_root_sem);
10871 mutex_unlock(&fs_info->chunk_mutex);
10872
10873 if (ret)
10874 break;
10875
10876 start += len;
10877 *trimmed += bytes;
10878
10879 if (fatal_signal_pending(current)) {
10880 ret = -ERESTARTSYS;
10881 break;
10882 }
10883
10884 cond_resched();
10885 }
10886
10887 return ret;
10888 }
10889
10890 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10891 {
10892 struct btrfs_block_group_cache *cache = NULL;
10893 struct btrfs_device *device;
10894 struct list_head *devices;
10895 u64 group_trimmed;
10896 u64 start;
10897 u64 end;
10898 u64 trimmed = 0;
10899 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10900 int ret = 0;
10901
10902 /*
10903 * try to trim all FS space, our block group may start from non-zero.
10904 */
10905 if (range->len == total_bytes)
10906 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10907 else
10908 cache = btrfs_lookup_block_group(fs_info, range->start);
10909
10910 while (cache) {
10911 if (cache->key.objectid >= (range->start + range->len)) {
10912 btrfs_put_block_group(cache);
10913 break;
10914 }
10915
10916 start = max(range->start, cache->key.objectid);
10917 end = min(range->start + range->len,
10918 cache->key.objectid + cache->key.offset);
10919
10920 if (end - start >= range->minlen) {
10921 if (!block_group_cache_done(cache)) {
10922 ret = cache_block_group(cache, 0);
10923 if (ret) {
10924 btrfs_put_block_group(cache);
10925 break;
10926 }
10927 ret = wait_block_group_cache_done(cache);
10928 if (ret) {
10929 btrfs_put_block_group(cache);
10930 break;
10931 }
10932 }
10933 ret = btrfs_trim_block_group(cache,
10934 &group_trimmed,
10935 start,
10936 end,
10937 range->minlen);
10938
10939 trimmed += group_trimmed;
10940 if (ret) {
10941 btrfs_put_block_group(cache);
10942 break;
10943 }
10944 }
10945
10946 cache = next_block_group(fs_info, cache);
10947 }
10948
10949 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10950 devices = &fs_info->fs_devices->alloc_list;
10951 list_for_each_entry(device, devices, dev_alloc_list) {
10952 ret = btrfs_trim_free_extents(device, range->minlen,
10953 &group_trimmed);
10954 if (ret)
10955 break;
10956
10957 trimmed += group_trimmed;
10958 }
10959 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10960
10961 range->len = trimmed;
10962 return ret;
10963 }
10964
10965 /*
10966 * btrfs_{start,end}_write_no_snapshoting() are similar to
10967 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10968 * data into the page cache through nocow before the subvolume is snapshoted,
10969 * but flush the data into disk after the snapshot creation, or to prevent
10970 * operations while snapshoting is ongoing and that cause the snapshot to be
10971 * inconsistent (writes followed by expanding truncates for example).
10972 */
10973 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10974 {
10975 percpu_counter_dec(&root->subv_writers->counter);
10976 /*
10977 * Make sure counter is updated before we wake up waiters.
10978 */
10979 smp_mb();
10980 if (waitqueue_active(&root->subv_writers->wait))
10981 wake_up(&root->subv_writers->wait);
10982 }
10983
10984 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10985 {
10986 if (atomic_read(&root->will_be_snapshoted))
10987 return 0;
10988
10989 percpu_counter_inc(&root->subv_writers->counter);
10990 /*
10991 * Make sure counter is updated before we check for snapshot creation.
10992 */
10993 smp_mb();
10994 if (atomic_read(&root->will_be_snapshoted)) {
10995 btrfs_end_write_no_snapshoting(root);
10996 return 0;
10997 }
10998 return 1;
10999 }
11000
11001 static int wait_snapshoting_atomic_t(atomic_t *a)
11002 {
11003 schedule();
11004 return 0;
11005 }
11006
11007 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11008 {
11009 while (true) {
11010 int ret;
11011
11012 ret = btrfs_start_write_no_snapshoting(root);
11013 if (ret)
11014 break;
11015 wait_on_atomic_t(&root->will_be_snapshoted,
11016 wait_snapshoting_atomic_t,
11017 TASK_UNINTERRUPTIBLE);
11018 }
11019 }