]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent-tree.c
Btrfs: just free dummy extent buffers
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 locked_ref = NULL;
2543 }
2544 btrfs_put_delayed_ref(ref);
2545 count++;
2546 cond_resched();
2547 }
2548
2549 /*
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2553 */
2554 if (actual_count > 0) {
2555 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 u64 avg;
2557
2558 /*
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2561 */
2562 spin_lock(&delayed_refs->lock);
2563 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 avg = div64_u64(avg, 4);
2565 fs_info->avg_delayed_ref_runtime = avg;
2566 spin_unlock(&delayed_refs->lock);
2567 }
2568 return 0;
2569 }
2570
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573 * Normally delayed refs get processed in ascending bytenr order. This
2574 * correlates in most cases to the order added. To expose dependencies on this
2575 * order, we start to process the tree in the middle instead of the beginning
2576 */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 struct rb_node *n = root->rb_node;
2580 struct btrfs_delayed_ref_node *entry;
2581 int alt = 1;
2582 u64 middle;
2583 u64 first = 0, last = 0;
2584
2585 n = rb_first(root);
2586 if (n) {
2587 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 first = entry->bytenr;
2589 }
2590 n = rb_last(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 last = entry->bytenr;
2594 }
2595 n = root->rb_node;
2596
2597 while (n) {
2598 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 WARN_ON(!entry->in_tree);
2600
2601 middle = entry->bytenr;
2602
2603 if (alt)
2604 n = n->rb_left;
2605 else
2606 n = n->rb_right;
2607
2608 alt = 1 - alt;
2609 }
2610 return middle;
2611 }
2612 #endif
2613
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 u64 num_bytes;
2617
2618 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 sizeof(struct btrfs_extent_inline_ref));
2620 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622
2623 /*
2624 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 * closer to what we're really going to want to ouse.
2626 */
2627 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 struct btrfs_root *root)
2632 {
2633 struct btrfs_block_rsv *global_rsv;
2634 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 u64 num_bytes;
2636 int ret = 0;
2637
2638 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 num_heads = heads_to_leaves(root, num_heads);
2640 if (num_heads > 1)
2641 num_bytes += (num_heads - 1) * root->nodesize;
2642 num_bytes <<= 1;
2643 global_rsv = &root->fs_info->global_block_rsv;
2644
2645 /*
2646 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 * wiggle room since running delayed refs can create more delayed refs.
2648 */
2649 if (global_rsv->space_info->full)
2650 num_bytes <<= 1;
2651
2652 spin_lock(&global_rsv->lock);
2653 if (global_rsv->reserved <= num_bytes)
2654 ret = 1;
2655 spin_unlock(&global_rsv->lock);
2656 return ret;
2657 }
2658
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 struct btrfs_root *root)
2661 {
2662 struct btrfs_fs_info *fs_info = root->fs_info;
2663 u64 num_entries =
2664 atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 u64 avg_runtime;
2666 u64 val;
2667
2668 smp_mb();
2669 avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 val = num_entries * avg_runtime;
2671 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 return 1;
2673 if (val >= NSEC_PER_SEC / 2)
2674 return 2;
2675
2676 return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678
2679 struct async_delayed_refs {
2680 struct btrfs_root *root;
2681 int count;
2682 int error;
2683 int sync;
2684 struct completion wait;
2685 struct btrfs_work work;
2686 };
2687
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 struct async_delayed_refs *async;
2691 struct btrfs_trans_handle *trans;
2692 int ret;
2693
2694 async = container_of(work, struct async_delayed_refs, work);
2695
2696 trans = btrfs_join_transaction(async->root);
2697 if (IS_ERR(trans)) {
2698 async->error = PTR_ERR(trans);
2699 goto done;
2700 }
2701
2702 /*
2703 * trans->sync means that when we call end_transaciton, we won't
2704 * wait on delayed refs
2705 */
2706 trans->sync = true;
2707 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 if (ret)
2709 async->error = ret;
2710
2711 ret = btrfs_end_transaction(trans, async->root);
2712 if (ret && !async->error)
2713 async->error = ret;
2714 done:
2715 if (async->sync)
2716 complete(&async->wait);
2717 else
2718 kfree(async);
2719 }
2720
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 unsigned long count, int wait)
2723 {
2724 struct async_delayed_refs *async;
2725 int ret;
2726
2727 async = kmalloc(sizeof(*async), GFP_NOFS);
2728 if (!async)
2729 return -ENOMEM;
2730
2731 async->root = root->fs_info->tree_root;
2732 async->count = count;
2733 async->error = 0;
2734 if (wait)
2735 async->sync = 1;
2736 else
2737 async->sync = 0;
2738 init_completion(&async->wait);
2739
2740 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 delayed_ref_async_start, NULL, NULL);
2742
2743 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744
2745 if (wait) {
2746 wait_for_completion(&async->wait);
2747 ret = async->error;
2748 kfree(async);
2749 return ret;
2750 }
2751 return 0;
2752 }
2753
2754 /*
2755 * this starts processing the delayed reference count updates and
2756 * extent insertions we have queued up so far. count can be
2757 * 0, which means to process everything in the tree at the start
2758 * of the run (but not newly added entries), or it can be some target
2759 * number you'd like to process.
2760 *
2761 * Returns 0 on success or if called with an aborted transaction
2762 * Returns <0 on error and aborts the transaction
2763 */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root, unsigned long count)
2766 {
2767 struct rb_node *node;
2768 struct btrfs_delayed_ref_root *delayed_refs;
2769 struct btrfs_delayed_ref_head *head;
2770 int ret;
2771 int run_all = count == (unsigned long)-1;
2772
2773 /* We'll clean this up in btrfs_cleanup_transaction */
2774 if (trans->aborted)
2775 return 0;
2776
2777 if (root == root->fs_info->extent_root)
2778 root = root->fs_info->tree_root;
2779
2780 delayed_refs = &trans->transaction->delayed_refs;
2781 if (count == 0)
2782 count = atomic_read(&delayed_refs->num_entries) * 2;
2783
2784 again:
2785 #ifdef SCRAMBLE_DELAYED_REFS
2786 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2787 #endif
2788 ret = __btrfs_run_delayed_refs(trans, root, count);
2789 if (ret < 0) {
2790 btrfs_abort_transaction(trans, root, ret);
2791 return ret;
2792 }
2793
2794 if (run_all) {
2795 if (!list_empty(&trans->new_bgs))
2796 btrfs_create_pending_block_groups(trans, root);
2797
2798 spin_lock(&delayed_refs->lock);
2799 node = rb_first(&delayed_refs->href_root);
2800 if (!node) {
2801 spin_unlock(&delayed_refs->lock);
2802 goto out;
2803 }
2804 count = (unsigned long)-1;
2805
2806 while (node) {
2807 head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 href_node);
2809 if (btrfs_delayed_ref_is_head(&head->node)) {
2810 struct btrfs_delayed_ref_node *ref;
2811
2812 ref = &head->node;
2813 atomic_inc(&ref->refs);
2814
2815 spin_unlock(&delayed_refs->lock);
2816 /*
2817 * Mutex was contended, block until it's
2818 * released and try again
2819 */
2820 mutex_lock(&head->mutex);
2821 mutex_unlock(&head->mutex);
2822
2823 btrfs_put_delayed_ref(ref);
2824 cond_resched();
2825 goto again;
2826 } else {
2827 WARN_ON(1);
2828 }
2829 node = rb_next(node);
2830 }
2831 spin_unlock(&delayed_refs->lock);
2832 cond_resched();
2833 goto again;
2834 }
2835 out:
2836 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2837 if (ret)
2838 return ret;
2839 assert_qgroups_uptodate(trans);
2840 return 0;
2841 }
2842
2843 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 u64 bytenr, u64 num_bytes, u64 flags,
2846 int level, int is_data)
2847 {
2848 struct btrfs_delayed_extent_op *extent_op;
2849 int ret;
2850
2851 extent_op = btrfs_alloc_delayed_extent_op();
2852 if (!extent_op)
2853 return -ENOMEM;
2854
2855 extent_op->flags_to_set = flags;
2856 extent_op->update_flags = 1;
2857 extent_op->update_key = 0;
2858 extent_op->is_data = is_data ? 1 : 0;
2859 extent_op->level = level;
2860
2861 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2862 num_bytes, extent_op);
2863 if (ret)
2864 btrfs_free_delayed_extent_op(extent_op);
2865 return ret;
2866 }
2867
2868 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 struct btrfs_path *path,
2871 u64 objectid, u64 offset, u64 bytenr)
2872 {
2873 struct btrfs_delayed_ref_head *head;
2874 struct btrfs_delayed_ref_node *ref;
2875 struct btrfs_delayed_data_ref *data_ref;
2876 struct btrfs_delayed_ref_root *delayed_refs;
2877 struct rb_node *node;
2878 int ret = 0;
2879
2880 delayed_refs = &trans->transaction->delayed_refs;
2881 spin_lock(&delayed_refs->lock);
2882 head = btrfs_find_delayed_ref_head(trans, bytenr);
2883 if (!head) {
2884 spin_unlock(&delayed_refs->lock);
2885 return 0;
2886 }
2887
2888 if (!mutex_trylock(&head->mutex)) {
2889 atomic_inc(&head->node.refs);
2890 spin_unlock(&delayed_refs->lock);
2891
2892 btrfs_release_path(path);
2893
2894 /*
2895 * Mutex was contended, block until it's released and let
2896 * caller try again
2897 */
2898 mutex_lock(&head->mutex);
2899 mutex_unlock(&head->mutex);
2900 btrfs_put_delayed_ref(&head->node);
2901 return -EAGAIN;
2902 }
2903 spin_unlock(&delayed_refs->lock);
2904
2905 spin_lock(&head->lock);
2906 node = rb_first(&head->ref_root);
2907 while (node) {
2908 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2909 node = rb_next(node);
2910
2911 /* If it's a shared ref we know a cross reference exists */
2912 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2913 ret = 1;
2914 break;
2915 }
2916
2917 data_ref = btrfs_delayed_node_to_data_ref(ref);
2918
2919 /*
2920 * If our ref doesn't match the one we're currently looking at
2921 * then we have a cross reference.
2922 */
2923 if (data_ref->root != root->root_key.objectid ||
2924 data_ref->objectid != objectid ||
2925 data_ref->offset != offset) {
2926 ret = 1;
2927 break;
2928 }
2929 }
2930 spin_unlock(&head->lock);
2931 mutex_unlock(&head->mutex);
2932 return ret;
2933 }
2934
2935 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2936 struct btrfs_root *root,
2937 struct btrfs_path *path,
2938 u64 objectid, u64 offset, u64 bytenr)
2939 {
2940 struct btrfs_root *extent_root = root->fs_info->extent_root;
2941 struct extent_buffer *leaf;
2942 struct btrfs_extent_data_ref *ref;
2943 struct btrfs_extent_inline_ref *iref;
2944 struct btrfs_extent_item *ei;
2945 struct btrfs_key key;
2946 u32 item_size;
2947 int ret;
2948
2949 key.objectid = bytenr;
2950 key.offset = (u64)-1;
2951 key.type = BTRFS_EXTENT_ITEM_KEY;
2952
2953 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2954 if (ret < 0)
2955 goto out;
2956 BUG_ON(ret == 0); /* Corruption */
2957
2958 ret = -ENOENT;
2959 if (path->slots[0] == 0)
2960 goto out;
2961
2962 path->slots[0]--;
2963 leaf = path->nodes[0];
2964 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965
2966 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2967 goto out;
2968
2969 ret = 1;
2970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2972 if (item_size < sizeof(*ei)) {
2973 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2974 goto out;
2975 }
2976 #endif
2977 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978
2979 if (item_size != sizeof(*ei) +
2980 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2981 goto out;
2982
2983 if (btrfs_extent_generation(leaf, ei) <=
2984 btrfs_root_last_snapshot(&root->root_item))
2985 goto out;
2986
2987 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2988 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2989 BTRFS_EXTENT_DATA_REF_KEY)
2990 goto out;
2991
2992 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2993 if (btrfs_extent_refs(leaf, ei) !=
2994 btrfs_extent_data_ref_count(leaf, ref) ||
2995 btrfs_extent_data_ref_root(leaf, ref) !=
2996 root->root_key.objectid ||
2997 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2998 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2999 goto out;
3000
3001 ret = 0;
3002 out:
3003 return ret;
3004 }
3005
3006 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3007 struct btrfs_root *root,
3008 u64 objectid, u64 offset, u64 bytenr)
3009 {
3010 struct btrfs_path *path;
3011 int ret;
3012 int ret2;
3013
3014 path = btrfs_alloc_path();
3015 if (!path)
3016 return -ENOENT;
3017
3018 do {
3019 ret = check_committed_ref(trans, root, path, objectid,
3020 offset, bytenr);
3021 if (ret && ret != -ENOENT)
3022 goto out;
3023
3024 ret2 = check_delayed_ref(trans, root, path, objectid,
3025 offset, bytenr);
3026 } while (ret2 == -EAGAIN);
3027
3028 if (ret2 && ret2 != -ENOENT) {
3029 ret = ret2;
3030 goto out;
3031 }
3032
3033 if (ret != -ENOENT || ret2 != -ENOENT)
3034 ret = 0;
3035 out:
3036 btrfs_free_path(path);
3037 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3038 WARN_ON(ret > 0);
3039 return ret;
3040 }
3041
3042 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root,
3044 struct extent_buffer *buf,
3045 int full_backref, int inc)
3046 {
3047 u64 bytenr;
3048 u64 num_bytes;
3049 u64 parent;
3050 u64 ref_root;
3051 u32 nritems;
3052 struct btrfs_key key;
3053 struct btrfs_file_extent_item *fi;
3054 int i;
3055 int level;
3056 int ret = 0;
3057 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3058 u64, u64, u64, u64, u64, u64, int);
3059
3060
3061 if (btrfs_test_is_dummy_root(root))
3062 return 0;
3063
3064 ref_root = btrfs_header_owner(buf);
3065 nritems = btrfs_header_nritems(buf);
3066 level = btrfs_header_level(buf);
3067
3068 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3069 return 0;
3070
3071 if (inc)
3072 process_func = btrfs_inc_extent_ref;
3073 else
3074 process_func = btrfs_free_extent;
3075
3076 if (full_backref)
3077 parent = buf->start;
3078 else
3079 parent = 0;
3080
3081 for (i = 0; i < nritems; i++) {
3082 if (level == 0) {
3083 btrfs_item_key_to_cpu(buf, &key, i);
3084 if (key.type != BTRFS_EXTENT_DATA_KEY)
3085 continue;
3086 fi = btrfs_item_ptr(buf, i,
3087 struct btrfs_file_extent_item);
3088 if (btrfs_file_extent_type(buf, fi) ==
3089 BTRFS_FILE_EXTENT_INLINE)
3090 continue;
3091 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3092 if (bytenr == 0)
3093 continue;
3094
3095 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3096 key.offset -= btrfs_file_extent_offset(buf, fi);
3097 ret = process_func(trans, root, bytenr, num_bytes,
3098 parent, ref_root, key.objectid,
3099 key.offset, 1);
3100 if (ret)
3101 goto fail;
3102 } else {
3103 bytenr = btrfs_node_blockptr(buf, i);
3104 num_bytes = root->nodesize;
3105 ret = process_func(trans, root, bytenr, num_bytes,
3106 parent, ref_root, level - 1, 0,
3107 1);
3108 if (ret)
3109 goto fail;
3110 }
3111 }
3112 return 0;
3113 fail:
3114 return ret;
3115 }
3116
3117 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3118 struct extent_buffer *buf, int full_backref)
3119 {
3120 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3121 }
3122
3123 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3124 struct extent_buffer *buf, int full_backref)
3125 {
3126 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3127 }
3128
3129 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct btrfs_path *path,
3132 struct btrfs_block_group_cache *cache)
3133 {
3134 int ret;
3135 struct btrfs_root *extent_root = root->fs_info->extent_root;
3136 unsigned long bi;
3137 struct extent_buffer *leaf;
3138
3139 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3140 if (ret) {
3141 if (ret > 0)
3142 ret = -ENOENT;
3143 goto fail;
3144 }
3145
3146 leaf = path->nodes[0];
3147 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 btrfs_mark_buffer_dirty(leaf);
3150 btrfs_release_path(path);
3151 fail:
3152 if (ret)
3153 btrfs_abort_transaction(trans, root, ret);
3154 return ret;
3155
3156 }
3157
3158 static struct btrfs_block_group_cache *
3159 next_block_group(struct btrfs_root *root,
3160 struct btrfs_block_group_cache *cache)
3161 {
3162 struct rb_node *node;
3163
3164 spin_lock(&root->fs_info->block_group_cache_lock);
3165
3166 /* If our block group was removed, we need a full search. */
3167 if (RB_EMPTY_NODE(&cache->cache_node)) {
3168 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169
3170 spin_unlock(&root->fs_info->block_group_cache_lock);
3171 btrfs_put_block_group(cache);
3172 cache = btrfs_lookup_first_block_group(root->fs_info,
3173 next_bytenr);
3174 return cache;
3175 }
3176 node = rb_next(&cache->cache_node);
3177 btrfs_put_block_group(cache);
3178 if (node) {
3179 cache = rb_entry(node, struct btrfs_block_group_cache,
3180 cache_node);
3181 btrfs_get_block_group(cache);
3182 } else
3183 cache = NULL;
3184 spin_unlock(&root->fs_info->block_group_cache_lock);
3185 return cache;
3186 }
3187
3188 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3189 struct btrfs_trans_handle *trans,
3190 struct btrfs_path *path)
3191 {
3192 struct btrfs_root *root = block_group->fs_info->tree_root;
3193 struct inode *inode = NULL;
3194 u64 alloc_hint = 0;
3195 int dcs = BTRFS_DC_ERROR;
3196 int num_pages = 0;
3197 int retries = 0;
3198 int ret = 0;
3199
3200 /*
3201 * If this block group is smaller than 100 megs don't bother caching the
3202 * block group.
3203 */
3204 if (block_group->key.offset < (100 * 1024 * 1024)) {
3205 spin_lock(&block_group->lock);
3206 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3207 spin_unlock(&block_group->lock);
3208 return 0;
3209 }
3210
3211 if (trans->aborted)
3212 return 0;
3213 again:
3214 inode = lookup_free_space_inode(root, block_group, path);
3215 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 ret = PTR_ERR(inode);
3217 btrfs_release_path(path);
3218 goto out;
3219 }
3220
3221 if (IS_ERR(inode)) {
3222 BUG_ON(retries);
3223 retries++;
3224
3225 if (block_group->ro)
3226 goto out_free;
3227
3228 ret = create_free_space_inode(root, trans, block_group, path);
3229 if (ret)
3230 goto out_free;
3231 goto again;
3232 }
3233
3234 /* We've already setup this transaction, go ahead and exit */
3235 if (block_group->cache_generation == trans->transid &&
3236 i_size_read(inode)) {
3237 dcs = BTRFS_DC_SETUP;
3238 goto out_put;
3239 }
3240
3241 /*
3242 * We want to set the generation to 0, that way if anything goes wrong
3243 * from here on out we know not to trust this cache when we load up next
3244 * time.
3245 */
3246 BTRFS_I(inode)->generation = 0;
3247 ret = btrfs_update_inode(trans, root, inode);
3248 if (ret) {
3249 /*
3250 * So theoretically we could recover from this, simply set the
3251 * super cache generation to 0 so we know to invalidate the
3252 * cache, but then we'd have to keep track of the block groups
3253 * that fail this way so we know we _have_ to reset this cache
3254 * before the next commit or risk reading stale cache. So to
3255 * limit our exposure to horrible edge cases lets just abort the
3256 * transaction, this only happens in really bad situations
3257 * anyway.
3258 */
3259 btrfs_abort_transaction(trans, root, ret);
3260 goto out_put;
3261 }
3262 WARN_ON(ret);
3263
3264 if (i_size_read(inode) > 0) {
3265 ret = btrfs_check_trunc_cache_free_space(root,
3266 &root->fs_info->global_block_rsv);
3267 if (ret)
3268 goto out_put;
3269
3270 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3271 if (ret)
3272 goto out_put;
3273 }
3274
3275 spin_lock(&block_group->lock);
3276 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3277 !btrfs_test_opt(root, SPACE_CACHE) ||
3278 block_group->delalloc_bytes) {
3279 /*
3280 * don't bother trying to write stuff out _if_
3281 * a) we're not cached,
3282 * b) we're with nospace_cache mount option.
3283 */
3284 dcs = BTRFS_DC_WRITTEN;
3285 spin_unlock(&block_group->lock);
3286 goto out_put;
3287 }
3288 spin_unlock(&block_group->lock);
3289
3290 /*
3291 * Try to preallocate enough space based on how big the block group is.
3292 * Keep in mind this has to include any pinned space which could end up
3293 * taking up quite a bit since it's not folded into the other space
3294 * cache.
3295 */
3296 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3297 if (!num_pages)
3298 num_pages = 1;
3299
3300 num_pages *= 16;
3301 num_pages *= PAGE_CACHE_SIZE;
3302
3303 ret = btrfs_check_data_free_space(inode, num_pages);
3304 if (ret)
3305 goto out_put;
3306
3307 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3308 num_pages, num_pages,
3309 &alloc_hint);
3310 if (!ret)
3311 dcs = BTRFS_DC_SETUP;
3312 btrfs_free_reserved_data_space(inode, num_pages);
3313
3314 out_put:
3315 iput(inode);
3316 out_free:
3317 btrfs_release_path(path);
3318 out:
3319 spin_lock(&block_group->lock);
3320 if (!ret && dcs == BTRFS_DC_SETUP)
3321 block_group->cache_generation = trans->transid;
3322 block_group->disk_cache_state = dcs;
3323 spin_unlock(&block_group->lock);
3324
3325 return ret;
3326 }
3327
3328 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root)
3330 {
3331 struct btrfs_block_group_cache *cache, *tmp;
3332 struct btrfs_transaction *cur_trans = trans->transaction;
3333 struct btrfs_path *path;
3334
3335 if (list_empty(&cur_trans->dirty_bgs) ||
3336 !btrfs_test_opt(root, SPACE_CACHE))
3337 return 0;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
3343 /* Could add new block groups, use _safe just in case */
3344 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3345 dirty_list) {
3346 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3347 cache_save_setup(cache, trans, path);
3348 }
3349
3350 btrfs_free_path(path);
3351 return 0;
3352 }
3353
3354 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3355 struct btrfs_root *root)
3356 {
3357 struct btrfs_block_group_cache *cache;
3358 struct btrfs_transaction *cur_trans = trans->transaction;
3359 int ret = 0;
3360 struct btrfs_path *path;
3361
3362 if (list_empty(&cur_trans->dirty_bgs))
3363 return 0;
3364
3365 path = btrfs_alloc_path();
3366 if (!path)
3367 return -ENOMEM;
3368
3369 /*
3370 * We don't need the lock here since we are protected by the transaction
3371 * commit. We want to do the cache_save_setup first and then run the
3372 * delayed refs to make sure we have the best chance at doing this all
3373 * in one shot.
3374 */
3375 while (!list_empty(&cur_trans->dirty_bgs)) {
3376 cache = list_first_entry(&cur_trans->dirty_bgs,
3377 struct btrfs_block_group_cache,
3378 dirty_list);
3379 list_del_init(&cache->dirty_list);
3380 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3381 cache_save_setup(cache, trans, path);
3382 if (!ret)
3383 ret = btrfs_run_delayed_refs(trans, root,
3384 (unsigned long) -1);
3385 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3386 btrfs_write_out_cache(root, trans, cache, path);
3387 if (!ret)
3388 ret = write_one_cache_group(trans, root, path, cache);
3389 btrfs_put_block_group(cache);
3390 }
3391
3392 btrfs_free_path(path);
3393 return ret;
3394 }
3395
3396 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3397 {
3398 struct btrfs_block_group_cache *block_group;
3399 int readonly = 0;
3400
3401 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3402 if (!block_group || block_group->ro)
3403 readonly = 1;
3404 if (block_group)
3405 btrfs_put_block_group(block_group);
3406 return readonly;
3407 }
3408
3409 static const char *alloc_name(u64 flags)
3410 {
3411 switch (flags) {
3412 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3413 return "mixed";
3414 case BTRFS_BLOCK_GROUP_METADATA:
3415 return "metadata";
3416 case BTRFS_BLOCK_GROUP_DATA:
3417 return "data";
3418 case BTRFS_BLOCK_GROUP_SYSTEM:
3419 return "system";
3420 default:
3421 WARN_ON(1);
3422 return "invalid-combination";
3423 };
3424 }
3425
3426 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3427 u64 total_bytes, u64 bytes_used,
3428 struct btrfs_space_info **space_info)
3429 {
3430 struct btrfs_space_info *found;
3431 int i;
3432 int factor;
3433 int ret;
3434
3435 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3436 BTRFS_BLOCK_GROUP_RAID10))
3437 factor = 2;
3438 else
3439 factor = 1;
3440
3441 found = __find_space_info(info, flags);
3442 if (found) {
3443 spin_lock(&found->lock);
3444 found->total_bytes += total_bytes;
3445 found->disk_total += total_bytes * factor;
3446 found->bytes_used += bytes_used;
3447 found->disk_used += bytes_used * factor;
3448 found->full = 0;
3449 spin_unlock(&found->lock);
3450 *space_info = found;
3451 return 0;
3452 }
3453 found = kzalloc(sizeof(*found), GFP_NOFS);
3454 if (!found)
3455 return -ENOMEM;
3456
3457 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3458 if (ret) {
3459 kfree(found);
3460 return ret;
3461 }
3462
3463 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3464 INIT_LIST_HEAD(&found->block_groups[i]);
3465 init_rwsem(&found->groups_sem);
3466 spin_lock_init(&found->lock);
3467 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3468 found->total_bytes = total_bytes;
3469 found->disk_total = total_bytes * factor;
3470 found->bytes_used = bytes_used;
3471 found->disk_used = bytes_used * factor;
3472 found->bytes_pinned = 0;
3473 found->bytes_reserved = 0;
3474 found->bytes_readonly = 0;
3475 found->bytes_may_use = 0;
3476 found->full = 0;
3477 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3478 found->chunk_alloc = 0;
3479 found->flush = 0;
3480 init_waitqueue_head(&found->wait);
3481 INIT_LIST_HEAD(&found->ro_bgs);
3482
3483 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3484 info->space_info_kobj, "%s",
3485 alloc_name(found->flags));
3486 if (ret) {
3487 kfree(found);
3488 return ret;
3489 }
3490
3491 *space_info = found;
3492 list_add_rcu(&found->list, &info->space_info);
3493 if (flags & BTRFS_BLOCK_GROUP_DATA)
3494 info->data_sinfo = found;
3495
3496 return ret;
3497 }
3498
3499 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3500 {
3501 u64 extra_flags = chunk_to_extended(flags) &
3502 BTRFS_EXTENDED_PROFILE_MASK;
3503
3504 write_seqlock(&fs_info->profiles_lock);
3505 if (flags & BTRFS_BLOCK_GROUP_DATA)
3506 fs_info->avail_data_alloc_bits |= extra_flags;
3507 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3508 fs_info->avail_metadata_alloc_bits |= extra_flags;
3509 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3510 fs_info->avail_system_alloc_bits |= extra_flags;
3511 write_sequnlock(&fs_info->profiles_lock);
3512 }
3513
3514 /*
3515 * returns target flags in extended format or 0 if restripe for this
3516 * chunk_type is not in progress
3517 *
3518 * should be called with either volume_mutex or balance_lock held
3519 */
3520 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3521 {
3522 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3523 u64 target = 0;
3524
3525 if (!bctl)
3526 return 0;
3527
3528 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3529 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3530 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3531 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3532 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3533 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3534 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3535 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3536 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3537 }
3538
3539 return target;
3540 }
3541
3542 /*
3543 * @flags: available profiles in extended format (see ctree.h)
3544 *
3545 * Returns reduced profile in chunk format. If profile changing is in
3546 * progress (either running or paused) picks the target profile (if it's
3547 * already available), otherwise falls back to plain reducing.
3548 */
3549 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3550 {
3551 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3552 u64 target;
3553 u64 tmp;
3554
3555 /*
3556 * see if restripe for this chunk_type is in progress, if so
3557 * try to reduce to the target profile
3558 */
3559 spin_lock(&root->fs_info->balance_lock);
3560 target = get_restripe_target(root->fs_info, flags);
3561 if (target) {
3562 /* pick target profile only if it's already available */
3563 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3564 spin_unlock(&root->fs_info->balance_lock);
3565 return extended_to_chunk(target);
3566 }
3567 }
3568 spin_unlock(&root->fs_info->balance_lock);
3569
3570 /* First, mask out the RAID levels which aren't possible */
3571 if (num_devices == 1)
3572 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3573 BTRFS_BLOCK_GROUP_RAID5);
3574 if (num_devices < 3)
3575 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3576 if (num_devices < 4)
3577 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3578
3579 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3580 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3581 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3582 flags &= ~tmp;
3583
3584 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3585 tmp = BTRFS_BLOCK_GROUP_RAID6;
3586 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3587 tmp = BTRFS_BLOCK_GROUP_RAID5;
3588 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3589 tmp = BTRFS_BLOCK_GROUP_RAID10;
3590 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3591 tmp = BTRFS_BLOCK_GROUP_RAID1;
3592 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3593 tmp = BTRFS_BLOCK_GROUP_RAID0;
3594
3595 return extended_to_chunk(flags | tmp);
3596 }
3597
3598 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3599 {
3600 unsigned seq;
3601 u64 flags;
3602
3603 do {
3604 flags = orig_flags;
3605 seq = read_seqbegin(&root->fs_info->profiles_lock);
3606
3607 if (flags & BTRFS_BLOCK_GROUP_DATA)
3608 flags |= root->fs_info->avail_data_alloc_bits;
3609 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3610 flags |= root->fs_info->avail_system_alloc_bits;
3611 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3612 flags |= root->fs_info->avail_metadata_alloc_bits;
3613 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3614
3615 return btrfs_reduce_alloc_profile(root, flags);
3616 }
3617
3618 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3619 {
3620 u64 flags;
3621 u64 ret;
3622
3623 if (data)
3624 flags = BTRFS_BLOCK_GROUP_DATA;
3625 else if (root == root->fs_info->chunk_root)
3626 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3627 else
3628 flags = BTRFS_BLOCK_GROUP_METADATA;
3629
3630 ret = get_alloc_profile(root, flags);
3631 return ret;
3632 }
3633
3634 /*
3635 * This will check the space that the inode allocates from to make sure we have
3636 * enough space for bytes.
3637 */
3638 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3639 {
3640 struct btrfs_space_info *data_sinfo;
3641 struct btrfs_root *root = BTRFS_I(inode)->root;
3642 struct btrfs_fs_info *fs_info = root->fs_info;
3643 u64 used;
3644 int ret = 0, committed = 0, alloc_chunk = 1;
3645
3646 /* make sure bytes are sectorsize aligned */
3647 bytes = ALIGN(bytes, root->sectorsize);
3648
3649 if (btrfs_is_free_space_inode(inode)) {
3650 committed = 1;
3651 ASSERT(current->journal_info);
3652 }
3653
3654 data_sinfo = fs_info->data_sinfo;
3655 if (!data_sinfo)
3656 goto alloc;
3657
3658 again:
3659 /* make sure we have enough space to handle the data first */
3660 spin_lock(&data_sinfo->lock);
3661 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3662 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3663 data_sinfo->bytes_may_use;
3664
3665 if (used + bytes > data_sinfo->total_bytes) {
3666 struct btrfs_trans_handle *trans;
3667
3668 /*
3669 * if we don't have enough free bytes in this space then we need
3670 * to alloc a new chunk.
3671 */
3672 if (!data_sinfo->full && alloc_chunk) {
3673 u64 alloc_target;
3674
3675 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3676 spin_unlock(&data_sinfo->lock);
3677 alloc:
3678 alloc_target = btrfs_get_alloc_profile(root, 1);
3679 /*
3680 * It is ugly that we don't call nolock join
3681 * transaction for the free space inode case here.
3682 * But it is safe because we only do the data space
3683 * reservation for the free space cache in the
3684 * transaction context, the common join transaction
3685 * just increase the counter of the current transaction
3686 * handler, doesn't try to acquire the trans_lock of
3687 * the fs.
3688 */
3689 trans = btrfs_join_transaction(root);
3690 if (IS_ERR(trans))
3691 return PTR_ERR(trans);
3692
3693 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3694 alloc_target,
3695 CHUNK_ALLOC_NO_FORCE);
3696 btrfs_end_transaction(trans, root);
3697 if (ret < 0) {
3698 if (ret != -ENOSPC)
3699 return ret;
3700 else
3701 goto commit_trans;
3702 }
3703
3704 if (!data_sinfo)
3705 data_sinfo = fs_info->data_sinfo;
3706
3707 goto again;
3708 }
3709
3710 /*
3711 * If we don't have enough pinned space to deal with this
3712 * allocation don't bother committing the transaction.
3713 */
3714 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3715 bytes) < 0)
3716 committed = 1;
3717 spin_unlock(&data_sinfo->lock);
3718
3719 /* commit the current transaction and try again */
3720 commit_trans:
3721 if (!committed &&
3722 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3723 committed = 1;
3724
3725 trans = btrfs_join_transaction(root);
3726 if (IS_ERR(trans))
3727 return PTR_ERR(trans);
3728 ret = btrfs_commit_transaction(trans, root);
3729 if (ret)
3730 return ret;
3731 goto again;
3732 }
3733
3734 trace_btrfs_space_reservation(root->fs_info,
3735 "space_info:enospc",
3736 data_sinfo->flags, bytes, 1);
3737 return -ENOSPC;
3738 }
3739 data_sinfo->bytes_may_use += bytes;
3740 trace_btrfs_space_reservation(root->fs_info, "space_info",
3741 data_sinfo->flags, bytes, 1);
3742 spin_unlock(&data_sinfo->lock);
3743
3744 return 0;
3745 }
3746
3747 /*
3748 * Called if we need to clear a data reservation for this inode.
3749 */
3750 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3751 {
3752 struct btrfs_root *root = BTRFS_I(inode)->root;
3753 struct btrfs_space_info *data_sinfo;
3754
3755 /* make sure bytes are sectorsize aligned */
3756 bytes = ALIGN(bytes, root->sectorsize);
3757
3758 data_sinfo = root->fs_info->data_sinfo;
3759 spin_lock(&data_sinfo->lock);
3760 WARN_ON(data_sinfo->bytes_may_use < bytes);
3761 data_sinfo->bytes_may_use -= bytes;
3762 trace_btrfs_space_reservation(root->fs_info, "space_info",
3763 data_sinfo->flags, bytes, 0);
3764 spin_unlock(&data_sinfo->lock);
3765 }
3766
3767 static void force_metadata_allocation(struct btrfs_fs_info *info)
3768 {
3769 struct list_head *head = &info->space_info;
3770 struct btrfs_space_info *found;
3771
3772 rcu_read_lock();
3773 list_for_each_entry_rcu(found, head, list) {
3774 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3775 found->force_alloc = CHUNK_ALLOC_FORCE;
3776 }
3777 rcu_read_unlock();
3778 }
3779
3780 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3781 {
3782 return (global->size << 1);
3783 }
3784
3785 static int should_alloc_chunk(struct btrfs_root *root,
3786 struct btrfs_space_info *sinfo, int force)
3787 {
3788 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3789 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3790 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3791 u64 thresh;
3792
3793 if (force == CHUNK_ALLOC_FORCE)
3794 return 1;
3795
3796 /*
3797 * We need to take into account the global rsv because for all intents
3798 * and purposes it's used space. Don't worry about locking the
3799 * global_rsv, it doesn't change except when the transaction commits.
3800 */
3801 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3802 num_allocated += calc_global_rsv_need_space(global_rsv);
3803
3804 /*
3805 * in limited mode, we want to have some free space up to
3806 * about 1% of the FS size.
3807 */
3808 if (force == CHUNK_ALLOC_LIMITED) {
3809 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3810 thresh = max_t(u64, 64 * 1024 * 1024,
3811 div_factor_fine(thresh, 1));
3812
3813 if (num_bytes - num_allocated < thresh)
3814 return 1;
3815 }
3816
3817 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3818 return 0;
3819 return 1;
3820 }
3821
3822 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3823 {
3824 u64 num_dev;
3825
3826 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3827 BTRFS_BLOCK_GROUP_RAID0 |
3828 BTRFS_BLOCK_GROUP_RAID5 |
3829 BTRFS_BLOCK_GROUP_RAID6))
3830 num_dev = root->fs_info->fs_devices->rw_devices;
3831 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3832 num_dev = 2;
3833 else
3834 num_dev = 1; /* DUP or single */
3835
3836 /* metadata for updaing devices and chunk tree */
3837 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3838 }
3839
3840 static void check_system_chunk(struct btrfs_trans_handle *trans,
3841 struct btrfs_root *root, u64 type)
3842 {
3843 struct btrfs_space_info *info;
3844 u64 left;
3845 u64 thresh;
3846
3847 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3848 spin_lock(&info->lock);
3849 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3850 info->bytes_reserved - info->bytes_readonly;
3851 spin_unlock(&info->lock);
3852
3853 thresh = get_system_chunk_thresh(root, type);
3854 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3855 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3856 left, thresh, type);
3857 dump_space_info(info, 0, 0);
3858 }
3859
3860 if (left < thresh) {
3861 u64 flags;
3862
3863 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3864 btrfs_alloc_chunk(trans, root, flags);
3865 }
3866 }
3867
3868 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3869 struct btrfs_root *extent_root, u64 flags, int force)
3870 {
3871 struct btrfs_space_info *space_info;
3872 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3873 int wait_for_alloc = 0;
3874 int ret = 0;
3875
3876 /* Don't re-enter if we're already allocating a chunk */
3877 if (trans->allocating_chunk)
3878 return -ENOSPC;
3879
3880 space_info = __find_space_info(extent_root->fs_info, flags);
3881 if (!space_info) {
3882 ret = update_space_info(extent_root->fs_info, flags,
3883 0, 0, &space_info);
3884 BUG_ON(ret); /* -ENOMEM */
3885 }
3886 BUG_ON(!space_info); /* Logic error */
3887
3888 again:
3889 spin_lock(&space_info->lock);
3890 if (force < space_info->force_alloc)
3891 force = space_info->force_alloc;
3892 if (space_info->full) {
3893 if (should_alloc_chunk(extent_root, space_info, force))
3894 ret = -ENOSPC;
3895 else
3896 ret = 0;
3897 spin_unlock(&space_info->lock);
3898 return ret;
3899 }
3900
3901 if (!should_alloc_chunk(extent_root, space_info, force)) {
3902 spin_unlock(&space_info->lock);
3903 return 0;
3904 } else if (space_info->chunk_alloc) {
3905 wait_for_alloc = 1;
3906 } else {
3907 space_info->chunk_alloc = 1;
3908 }
3909
3910 spin_unlock(&space_info->lock);
3911
3912 mutex_lock(&fs_info->chunk_mutex);
3913
3914 /*
3915 * The chunk_mutex is held throughout the entirety of a chunk
3916 * allocation, so once we've acquired the chunk_mutex we know that the
3917 * other guy is done and we need to recheck and see if we should
3918 * allocate.
3919 */
3920 if (wait_for_alloc) {
3921 mutex_unlock(&fs_info->chunk_mutex);
3922 wait_for_alloc = 0;
3923 goto again;
3924 }
3925
3926 trans->allocating_chunk = true;
3927
3928 /*
3929 * If we have mixed data/metadata chunks we want to make sure we keep
3930 * allocating mixed chunks instead of individual chunks.
3931 */
3932 if (btrfs_mixed_space_info(space_info))
3933 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3934
3935 /*
3936 * if we're doing a data chunk, go ahead and make sure that
3937 * we keep a reasonable number of metadata chunks allocated in the
3938 * FS as well.
3939 */
3940 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3941 fs_info->data_chunk_allocations++;
3942 if (!(fs_info->data_chunk_allocations %
3943 fs_info->metadata_ratio))
3944 force_metadata_allocation(fs_info);
3945 }
3946
3947 /*
3948 * Check if we have enough space in SYSTEM chunk because we may need
3949 * to update devices.
3950 */
3951 check_system_chunk(trans, extent_root, flags);
3952
3953 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3954 trans->allocating_chunk = false;
3955
3956 spin_lock(&space_info->lock);
3957 if (ret < 0 && ret != -ENOSPC)
3958 goto out;
3959 if (ret)
3960 space_info->full = 1;
3961 else
3962 ret = 1;
3963
3964 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3965 out:
3966 space_info->chunk_alloc = 0;
3967 spin_unlock(&space_info->lock);
3968 mutex_unlock(&fs_info->chunk_mutex);
3969 return ret;
3970 }
3971
3972 static int can_overcommit(struct btrfs_root *root,
3973 struct btrfs_space_info *space_info, u64 bytes,
3974 enum btrfs_reserve_flush_enum flush)
3975 {
3976 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3977 u64 profile = btrfs_get_alloc_profile(root, 0);
3978 u64 space_size;
3979 u64 avail;
3980 u64 used;
3981
3982 used = space_info->bytes_used + space_info->bytes_reserved +
3983 space_info->bytes_pinned + space_info->bytes_readonly;
3984
3985 /*
3986 * We only want to allow over committing if we have lots of actual space
3987 * free, but if we don't have enough space to handle the global reserve
3988 * space then we could end up having a real enospc problem when trying
3989 * to allocate a chunk or some other such important allocation.
3990 */
3991 spin_lock(&global_rsv->lock);
3992 space_size = calc_global_rsv_need_space(global_rsv);
3993 spin_unlock(&global_rsv->lock);
3994 if (used + space_size >= space_info->total_bytes)
3995 return 0;
3996
3997 used += space_info->bytes_may_use;
3998
3999 spin_lock(&root->fs_info->free_chunk_lock);
4000 avail = root->fs_info->free_chunk_space;
4001 spin_unlock(&root->fs_info->free_chunk_lock);
4002
4003 /*
4004 * If we have dup, raid1 or raid10 then only half of the free
4005 * space is actually useable. For raid56, the space info used
4006 * doesn't include the parity drive, so we don't have to
4007 * change the math
4008 */
4009 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4010 BTRFS_BLOCK_GROUP_RAID1 |
4011 BTRFS_BLOCK_GROUP_RAID10))
4012 avail >>= 1;
4013
4014 /*
4015 * If we aren't flushing all things, let us overcommit up to
4016 * 1/2th of the space. If we can flush, don't let us overcommit
4017 * too much, let it overcommit up to 1/8 of the space.
4018 */
4019 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4020 avail >>= 3;
4021 else
4022 avail >>= 1;
4023
4024 if (used + bytes < space_info->total_bytes + avail)
4025 return 1;
4026 return 0;
4027 }
4028
4029 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4030 unsigned long nr_pages, int nr_items)
4031 {
4032 struct super_block *sb = root->fs_info->sb;
4033
4034 if (down_read_trylock(&sb->s_umount)) {
4035 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4036 up_read(&sb->s_umount);
4037 } else {
4038 /*
4039 * We needn't worry the filesystem going from r/w to r/o though
4040 * we don't acquire ->s_umount mutex, because the filesystem
4041 * should guarantee the delalloc inodes list be empty after
4042 * the filesystem is readonly(all dirty pages are written to
4043 * the disk).
4044 */
4045 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4046 if (!current->journal_info)
4047 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4048 }
4049 }
4050
4051 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4052 {
4053 u64 bytes;
4054 int nr;
4055
4056 bytes = btrfs_calc_trans_metadata_size(root, 1);
4057 nr = (int)div64_u64(to_reclaim, bytes);
4058 if (!nr)
4059 nr = 1;
4060 return nr;
4061 }
4062
4063 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4064
4065 /*
4066 * shrink metadata reservation for delalloc
4067 */
4068 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4069 bool wait_ordered)
4070 {
4071 struct btrfs_block_rsv *block_rsv;
4072 struct btrfs_space_info *space_info;
4073 struct btrfs_trans_handle *trans;
4074 u64 delalloc_bytes;
4075 u64 max_reclaim;
4076 long time_left;
4077 unsigned long nr_pages;
4078 int loops;
4079 int items;
4080 enum btrfs_reserve_flush_enum flush;
4081
4082 /* Calc the number of the pages we need flush for space reservation */
4083 items = calc_reclaim_items_nr(root, to_reclaim);
4084 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4085
4086 trans = (struct btrfs_trans_handle *)current->journal_info;
4087 block_rsv = &root->fs_info->delalloc_block_rsv;
4088 space_info = block_rsv->space_info;
4089
4090 delalloc_bytes = percpu_counter_sum_positive(
4091 &root->fs_info->delalloc_bytes);
4092 if (delalloc_bytes == 0) {
4093 if (trans)
4094 return;
4095 if (wait_ordered)
4096 btrfs_wait_ordered_roots(root->fs_info, items);
4097 return;
4098 }
4099
4100 loops = 0;
4101 while (delalloc_bytes && loops < 3) {
4102 max_reclaim = min(delalloc_bytes, to_reclaim);
4103 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4104 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4105 /*
4106 * We need to wait for the async pages to actually start before
4107 * we do anything.
4108 */
4109 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4110 if (!max_reclaim)
4111 goto skip_async;
4112
4113 if (max_reclaim <= nr_pages)
4114 max_reclaim = 0;
4115 else
4116 max_reclaim -= nr_pages;
4117
4118 wait_event(root->fs_info->async_submit_wait,
4119 atomic_read(&root->fs_info->async_delalloc_pages) <=
4120 (int)max_reclaim);
4121 skip_async:
4122 if (!trans)
4123 flush = BTRFS_RESERVE_FLUSH_ALL;
4124 else
4125 flush = BTRFS_RESERVE_NO_FLUSH;
4126 spin_lock(&space_info->lock);
4127 if (can_overcommit(root, space_info, orig, flush)) {
4128 spin_unlock(&space_info->lock);
4129 break;
4130 }
4131 spin_unlock(&space_info->lock);
4132
4133 loops++;
4134 if (wait_ordered && !trans) {
4135 btrfs_wait_ordered_roots(root->fs_info, items);
4136 } else {
4137 time_left = schedule_timeout_killable(1);
4138 if (time_left)
4139 break;
4140 }
4141 delalloc_bytes = percpu_counter_sum_positive(
4142 &root->fs_info->delalloc_bytes);
4143 }
4144 }
4145
4146 /**
4147 * maybe_commit_transaction - possibly commit the transaction if its ok to
4148 * @root - the root we're allocating for
4149 * @bytes - the number of bytes we want to reserve
4150 * @force - force the commit
4151 *
4152 * This will check to make sure that committing the transaction will actually
4153 * get us somewhere and then commit the transaction if it does. Otherwise it
4154 * will return -ENOSPC.
4155 */
4156 static int may_commit_transaction(struct btrfs_root *root,
4157 struct btrfs_space_info *space_info,
4158 u64 bytes, int force)
4159 {
4160 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4161 struct btrfs_trans_handle *trans;
4162
4163 trans = (struct btrfs_trans_handle *)current->journal_info;
4164 if (trans)
4165 return -EAGAIN;
4166
4167 if (force)
4168 goto commit;
4169
4170 /* See if there is enough pinned space to make this reservation */
4171 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4172 bytes) >= 0)
4173 goto commit;
4174
4175 /*
4176 * See if there is some space in the delayed insertion reservation for
4177 * this reservation.
4178 */
4179 if (space_info != delayed_rsv->space_info)
4180 return -ENOSPC;
4181
4182 spin_lock(&delayed_rsv->lock);
4183 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4184 bytes - delayed_rsv->size) >= 0) {
4185 spin_unlock(&delayed_rsv->lock);
4186 return -ENOSPC;
4187 }
4188 spin_unlock(&delayed_rsv->lock);
4189
4190 commit:
4191 trans = btrfs_join_transaction(root);
4192 if (IS_ERR(trans))
4193 return -ENOSPC;
4194
4195 return btrfs_commit_transaction(trans, root);
4196 }
4197
4198 enum flush_state {
4199 FLUSH_DELAYED_ITEMS_NR = 1,
4200 FLUSH_DELAYED_ITEMS = 2,
4201 FLUSH_DELALLOC = 3,
4202 FLUSH_DELALLOC_WAIT = 4,
4203 ALLOC_CHUNK = 5,
4204 COMMIT_TRANS = 6,
4205 };
4206
4207 static int flush_space(struct btrfs_root *root,
4208 struct btrfs_space_info *space_info, u64 num_bytes,
4209 u64 orig_bytes, int state)
4210 {
4211 struct btrfs_trans_handle *trans;
4212 int nr;
4213 int ret = 0;
4214
4215 switch (state) {
4216 case FLUSH_DELAYED_ITEMS_NR:
4217 case FLUSH_DELAYED_ITEMS:
4218 if (state == FLUSH_DELAYED_ITEMS_NR)
4219 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4220 else
4221 nr = -1;
4222
4223 trans = btrfs_join_transaction(root);
4224 if (IS_ERR(trans)) {
4225 ret = PTR_ERR(trans);
4226 break;
4227 }
4228 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4229 btrfs_end_transaction(trans, root);
4230 break;
4231 case FLUSH_DELALLOC:
4232 case FLUSH_DELALLOC_WAIT:
4233 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4234 state == FLUSH_DELALLOC_WAIT);
4235 break;
4236 case ALLOC_CHUNK:
4237 trans = btrfs_join_transaction(root);
4238 if (IS_ERR(trans)) {
4239 ret = PTR_ERR(trans);
4240 break;
4241 }
4242 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4243 btrfs_get_alloc_profile(root, 0),
4244 CHUNK_ALLOC_NO_FORCE);
4245 btrfs_end_transaction(trans, root);
4246 if (ret == -ENOSPC)
4247 ret = 0;
4248 break;
4249 case COMMIT_TRANS:
4250 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4251 break;
4252 default:
4253 ret = -ENOSPC;
4254 break;
4255 }
4256
4257 return ret;
4258 }
4259
4260 static inline u64
4261 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4262 struct btrfs_space_info *space_info)
4263 {
4264 u64 used;
4265 u64 expected;
4266 u64 to_reclaim;
4267
4268 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4269 16 * 1024 * 1024);
4270 spin_lock(&space_info->lock);
4271 if (can_overcommit(root, space_info, to_reclaim,
4272 BTRFS_RESERVE_FLUSH_ALL)) {
4273 to_reclaim = 0;
4274 goto out;
4275 }
4276
4277 used = space_info->bytes_used + space_info->bytes_reserved +
4278 space_info->bytes_pinned + space_info->bytes_readonly +
4279 space_info->bytes_may_use;
4280 if (can_overcommit(root, space_info, 1024 * 1024,
4281 BTRFS_RESERVE_FLUSH_ALL))
4282 expected = div_factor_fine(space_info->total_bytes, 95);
4283 else
4284 expected = div_factor_fine(space_info->total_bytes, 90);
4285
4286 if (used > expected)
4287 to_reclaim = used - expected;
4288 else
4289 to_reclaim = 0;
4290 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4291 space_info->bytes_reserved);
4292 out:
4293 spin_unlock(&space_info->lock);
4294
4295 return to_reclaim;
4296 }
4297
4298 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4299 struct btrfs_fs_info *fs_info, u64 used)
4300 {
4301 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4302 !btrfs_fs_closing(fs_info) &&
4303 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4304 }
4305
4306 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4307 struct btrfs_fs_info *fs_info,
4308 int flush_state)
4309 {
4310 u64 used;
4311
4312 spin_lock(&space_info->lock);
4313 /*
4314 * We run out of space and have not got any free space via flush_space,
4315 * so don't bother doing async reclaim.
4316 */
4317 if (flush_state > COMMIT_TRANS && space_info->full) {
4318 spin_unlock(&space_info->lock);
4319 return 0;
4320 }
4321
4322 used = space_info->bytes_used + space_info->bytes_reserved +
4323 space_info->bytes_pinned + space_info->bytes_readonly +
4324 space_info->bytes_may_use;
4325 if (need_do_async_reclaim(space_info, fs_info, used)) {
4326 spin_unlock(&space_info->lock);
4327 return 1;
4328 }
4329 spin_unlock(&space_info->lock);
4330
4331 return 0;
4332 }
4333
4334 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4335 {
4336 struct btrfs_fs_info *fs_info;
4337 struct btrfs_space_info *space_info;
4338 u64 to_reclaim;
4339 int flush_state;
4340
4341 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4342 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4343
4344 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4345 space_info);
4346 if (!to_reclaim)
4347 return;
4348
4349 flush_state = FLUSH_DELAYED_ITEMS_NR;
4350 do {
4351 flush_space(fs_info->fs_root, space_info, to_reclaim,
4352 to_reclaim, flush_state);
4353 flush_state++;
4354 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4355 flush_state))
4356 return;
4357 } while (flush_state <= COMMIT_TRANS);
4358
4359 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4360 queue_work(system_unbound_wq, work);
4361 }
4362
4363 void btrfs_init_async_reclaim_work(struct work_struct *work)
4364 {
4365 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4366 }
4367
4368 /**
4369 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4370 * @root - the root we're allocating for
4371 * @block_rsv - the block_rsv we're allocating for
4372 * @orig_bytes - the number of bytes we want
4373 * @flush - whether or not we can flush to make our reservation
4374 *
4375 * This will reserve orgi_bytes number of bytes from the space info associated
4376 * with the block_rsv. If there is not enough space it will make an attempt to
4377 * flush out space to make room. It will do this by flushing delalloc if
4378 * possible or committing the transaction. If flush is 0 then no attempts to
4379 * regain reservations will be made and this will fail if there is not enough
4380 * space already.
4381 */
4382 static int reserve_metadata_bytes(struct btrfs_root *root,
4383 struct btrfs_block_rsv *block_rsv,
4384 u64 orig_bytes,
4385 enum btrfs_reserve_flush_enum flush)
4386 {
4387 struct btrfs_space_info *space_info = block_rsv->space_info;
4388 u64 used;
4389 u64 num_bytes = orig_bytes;
4390 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4391 int ret = 0;
4392 bool flushing = false;
4393
4394 again:
4395 ret = 0;
4396 spin_lock(&space_info->lock);
4397 /*
4398 * We only want to wait if somebody other than us is flushing and we
4399 * are actually allowed to flush all things.
4400 */
4401 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4402 space_info->flush) {
4403 spin_unlock(&space_info->lock);
4404 /*
4405 * If we have a trans handle we can't wait because the flusher
4406 * may have to commit the transaction, which would mean we would
4407 * deadlock since we are waiting for the flusher to finish, but
4408 * hold the current transaction open.
4409 */
4410 if (current->journal_info)
4411 return -EAGAIN;
4412 ret = wait_event_killable(space_info->wait, !space_info->flush);
4413 /* Must have been killed, return */
4414 if (ret)
4415 return -EINTR;
4416
4417 spin_lock(&space_info->lock);
4418 }
4419
4420 ret = -ENOSPC;
4421 used = space_info->bytes_used + space_info->bytes_reserved +
4422 space_info->bytes_pinned + space_info->bytes_readonly +
4423 space_info->bytes_may_use;
4424
4425 /*
4426 * The idea here is that we've not already over-reserved the block group
4427 * then we can go ahead and save our reservation first and then start
4428 * flushing if we need to. Otherwise if we've already overcommitted
4429 * lets start flushing stuff first and then come back and try to make
4430 * our reservation.
4431 */
4432 if (used <= space_info->total_bytes) {
4433 if (used + orig_bytes <= space_info->total_bytes) {
4434 space_info->bytes_may_use += orig_bytes;
4435 trace_btrfs_space_reservation(root->fs_info,
4436 "space_info", space_info->flags, orig_bytes, 1);
4437 ret = 0;
4438 } else {
4439 /*
4440 * Ok set num_bytes to orig_bytes since we aren't
4441 * overocmmitted, this way we only try and reclaim what
4442 * we need.
4443 */
4444 num_bytes = orig_bytes;
4445 }
4446 } else {
4447 /*
4448 * Ok we're over committed, set num_bytes to the overcommitted
4449 * amount plus the amount of bytes that we need for this
4450 * reservation.
4451 */
4452 num_bytes = used - space_info->total_bytes +
4453 (orig_bytes * 2);
4454 }
4455
4456 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4457 space_info->bytes_may_use += orig_bytes;
4458 trace_btrfs_space_reservation(root->fs_info, "space_info",
4459 space_info->flags, orig_bytes,
4460 1);
4461 ret = 0;
4462 }
4463
4464 /*
4465 * Couldn't make our reservation, save our place so while we're trying
4466 * to reclaim space we can actually use it instead of somebody else
4467 * stealing it from us.
4468 *
4469 * We make the other tasks wait for the flush only when we can flush
4470 * all things.
4471 */
4472 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4473 flushing = true;
4474 space_info->flush = 1;
4475 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4476 used += orig_bytes;
4477 /*
4478 * We will do the space reservation dance during log replay,
4479 * which means we won't have fs_info->fs_root set, so don't do
4480 * the async reclaim as we will panic.
4481 */
4482 if (!root->fs_info->log_root_recovering &&
4483 need_do_async_reclaim(space_info, root->fs_info, used) &&
4484 !work_busy(&root->fs_info->async_reclaim_work))
4485 queue_work(system_unbound_wq,
4486 &root->fs_info->async_reclaim_work);
4487 }
4488 spin_unlock(&space_info->lock);
4489
4490 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4491 goto out;
4492
4493 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4494 flush_state);
4495 flush_state++;
4496
4497 /*
4498 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4499 * would happen. So skip delalloc flush.
4500 */
4501 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4502 (flush_state == FLUSH_DELALLOC ||
4503 flush_state == FLUSH_DELALLOC_WAIT))
4504 flush_state = ALLOC_CHUNK;
4505
4506 if (!ret)
4507 goto again;
4508 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4509 flush_state < COMMIT_TRANS)
4510 goto again;
4511 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4512 flush_state <= COMMIT_TRANS)
4513 goto again;
4514
4515 out:
4516 if (ret == -ENOSPC &&
4517 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4518 struct btrfs_block_rsv *global_rsv =
4519 &root->fs_info->global_block_rsv;
4520
4521 if (block_rsv != global_rsv &&
4522 !block_rsv_use_bytes(global_rsv, orig_bytes))
4523 ret = 0;
4524 }
4525 if (ret == -ENOSPC)
4526 trace_btrfs_space_reservation(root->fs_info,
4527 "space_info:enospc",
4528 space_info->flags, orig_bytes, 1);
4529 if (flushing) {
4530 spin_lock(&space_info->lock);
4531 space_info->flush = 0;
4532 wake_up_all(&space_info->wait);
4533 spin_unlock(&space_info->lock);
4534 }
4535 return ret;
4536 }
4537
4538 static struct btrfs_block_rsv *get_block_rsv(
4539 const struct btrfs_trans_handle *trans,
4540 const struct btrfs_root *root)
4541 {
4542 struct btrfs_block_rsv *block_rsv = NULL;
4543
4544 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4545 block_rsv = trans->block_rsv;
4546
4547 if (root == root->fs_info->csum_root && trans->adding_csums)
4548 block_rsv = trans->block_rsv;
4549
4550 if (root == root->fs_info->uuid_root)
4551 block_rsv = trans->block_rsv;
4552
4553 if (!block_rsv)
4554 block_rsv = root->block_rsv;
4555
4556 if (!block_rsv)
4557 block_rsv = &root->fs_info->empty_block_rsv;
4558
4559 return block_rsv;
4560 }
4561
4562 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4563 u64 num_bytes)
4564 {
4565 int ret = -ENOSPC;
4566 spin_lock(&block_rsv->lock);
4567 if (block_rsv->reserved >= num_bytes) {
4568 block_rsv->reserved -= num_bytes;
4569 if (block_rsv->reserved < block_rsv->size)
4570 block_rsv->full = 0;
4571 ret = 0;
4572 }
4573 spin_unlock(&block_rsv->lock);
4574 return ret;
4575 }
4576
4577 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4578 u64 num_bytes, int update_size)
4579 {
4580 spin_lock(&block_rsv->lock);
4581 block_rsv->reserved += num_bytes;
4582 if (update_size)
4583 block_rsv->size += num_bytes;
4584 else if (block_rsv->reserved >= block_rsv->size)
4585 block_rsv->full = 1;
4586 spin_unlock(&block_rsv->lock);
4587 }
4588
4589 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4590 struct btrfs_block_rsv *dest, u64 num_bytes,
4591 int min_factor)
4592 {
4593 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4594 u64 min_bytes;
4595
4596 if (global_rsv->space_info != dest->space_info)
4597 return -ENOSPC;
4598
4599 spin_lock(&global_rsv->lock);
4600 min_bytes = div_factor(global_rsv->size, min_factor);
4601 if (global_rsv->reserved < min_bytes + num_bytes) {
4602 spin_unlock(&global_rsv->lock);
4603 return -ENOSPC;
4604 }
4605 global_rsv->reserved -= num_bytes;
4606 if (global_rsv->reserved < global_rsv->size)
4607 global_rsv->full = 0;
4608 spin_unlock(&global_rsv->lock);
4609
4610 block_rsv_add_bytes(dest, num_bytes, 1);
4611 return 0;
4612 }
4613
4614 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4615 struct btrfs_block_rsv *block_rsv,
4616 struct btrfs_block_rsv *dest, u64 num_bytes)
4617 {
4618 struct btrfs_space_info *space_info = block_rsv->space_info;
4619
4620 spin_lock(&block_rsv->lock);
4621 if (num_bytes == (u64)-1)
4622 num_bytes = block_rsv->size;
4623 block_rsv->size -= num_bytes;
4624 if (block_rsv->reserved >= block_rsv->size) {
4625 num_bytes = block_rsv->reserved - block_rsv->size;
4626 block_rsv->reserved = block_rsv->size;
4627 block_rsv->full = 1;
4628 } else {
4629 num_bytes = 0;
4630 }
4631 spin_unlock(&block_rsv->lock);
4632
4633 if (num_bytes > 0) {
4634 if (dest) {
4635 spin_lock(&dest->lock);
4636 if (!dest->full) {
4637 u64 bytes_to_add;
4638
4639 bytes_to_add = dest->size - dest->reserved;
4640 bytes_to_add = min(num_bytes, bytes_to_add);
4641 dest->reserved += bytes_to_add;
4642 if (dest->reserved >= dest->size)
4643 dest->full = 1;
4644 num_bytes -= bytes_to_add;
4645 }
4646 spin_unlock(&dest->lock);
4647 }
4648 if (num_bytes) {
4649 spin_lock(&space_info->lock);
4650 space_info->bytes_may_use -= num_bytes;
4651 trace_btrfs_space_reservation(fs_info, "space_info",
4652 space_info->flags, num_bytes, 0);
4653 spin_unlock(&space_info->lock);
4654 }
4655 }
4656 }
4657
4658 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4659 struct btrfs_block_rsv *dst, u64 num_bytes)
4660 {
4661 int ret;
4662
4663 ret = block_rsv_use_bytes(src, num_bytes);
4664 if (ret)
4665 return ret;
4666
4667 block_rsv_add_bytes(dst, num_bytes, 1);
4668 return 0;
4669 }
4670
4671 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4672 {
4673 memset(rsv, 0, sizeof(*rsv));
4674 spin_lock_init(&rsv->lock);
4675 rsv->type = type;
4676 }
4677
4678 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4679 unsigned short type)
4680 {
4681 struct btrfs_block_rsv *block_rsv;
4682 struct btrfs_fs_info *fs_info = root->fs_info;
4683
4684 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4685 if (!block_rsv)
4686 return NULL;
4687
4688 btrfs_init_block_rsv(block_rsv, type);
4689 block_rsv->space_info = __find_space_info(fs_info,
4690 BTRFS_BLOCK_GROUP_METADATA);
4691 return block_rsv;
4692 }
4693
4694 void btrfs_free_block_rsv(struct btrfs_root *root,
4695 struct btrfs_block_rsv *rsv)
4696 {
4697 if (!rsv)
4698 return;
4699 btrfs_block_rsv_release(root, rsv, (u64)-1);
4700 kfree(rsv);
4701 }
4702
4703 int btrfs_block_rsv_add(struct btrfs_root *root,
4704 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4705 enum btrfs_reserve_flush_enum flush)
4706 {
4707 int ret;
4708
4709 if (num_bytes == 0)
4710 return 0;
4711
4712 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4713 if (!ret) {
4714 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4715 return 0;
4716 }
4717
4718 return ret;
4719 }
4720
4721 int btrfs_block_rsv_check(struct btrfs_root *root,
4722 struct btrfs_block_rsv *block_rsv, int min_factor)
4723 {
4724 u64 num_bytes = 0;
4725 int ret = -ENOSPC;
4726
4727 if (!block_rsv)
4728 return 0;
4729
4730 spin_lock(&block_rsv->lock);
4731 num_bytes = div_factor(block_rsv->size, min_factor);
4732 if (block_rsv->reserved >= num_bytes)
4733 ret = 0;
4734 spin_unlock(&block_rsv->lock);
4735
4736 return ret;
4737 }
4738
4739 int btrfs_block_rsv_refill(struct btrfs_root *root,
4740 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4741 enum btrfs_reserve_flush_enum flush)
4742 {
4743 u64 num_bytes = 0;
4744 int ret = -ENOSPC;
4745
4746 if (!block_rsv)
4747 return 0;
4748
4749 spin_lock(&block_rsv->lock);
4750 num_bytes = min_reserved;
4751 if (block_rsv->reserved >= num_bytes)
4752 ret = 0;
4753 else
4754 num_bytes -= block_rsv->reserved;
4755 spin_unlock(&block_rsv->lock);
4756
4757 if (!ret)
4758 return 0;
4759
4760 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4761 if (!ret) {
4762 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4763 return 0;
4764 }
4765
4766 return ret;
4767 }
4768
4769 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4770 struct btrfs_block_rsv *dst_rsv,
4771 u64 num_bytes)
4772 {
4773 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4774 }
4775
4776 void btrfs_block_rsv_release(struct btrfs_root *root,
4777 struct btrfs_block_rsv *block_rsv,
4778 u64 num_bytes)
4779 {
4780 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4781 if (global_rsv == block_rsv ||
4782 block_rsv->space_info != global_rsv->space_info)
4783 global_rsv = NULL;
4784 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4785 num_bytes);
4786 }
4787
4788 /*
4789 * helper to calculate size of global block reservation.
4790 * the desired value is sum of space used by extent tree,
4791 * checksum tree and root tree
4792 */
4793 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4794 {
4795 struct btrfs_space_info *sinfo;
4796 u64 num_bytes;
4797 u64 meta_used;
4798 u64 data_used;
4799 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4800
4801 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4802 spin_lock(&sinfo->lock);
4803 data_used = sinfo->bytes_used;
4804 spin_unlock(&sinfo->lock);
4805
4806 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4807 spin_lock(&sinfo->lock);
4808 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4809 data_used = 0;
4810 meta_used = sinfo->bytes_used;
4811 spin_unlock(&sinfo->lock);
4812
4813 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4814 csum_size * 2;
4815 num_bytes += div64_u64(data_used + meta_used, 50);
4816
4817 if (num_bytes * 3 > meta_used)
4818 num_bytes = div64_u64(meta_used, 3);
4819
4820 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4821 }
4822
4823 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4824 {
4825 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4826 struct btrfs_space_info *sinfo = block_rsv->space_info;
4827 u64 num_bytes;
4828
4829 num_bytes = calc_global_metadata_size(fs_info);
4830
4831 spin_lock(&sinfo->lock);
4832 spin_lock(&block_rsv->lock);
4833
4834 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4835
4836 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4837 sinfo->bytes_reserved + sinfo->bytes_readonly +
4838 sinfo->bytes_may_use;
4839
4840 if (sinfo->total_bytes > num_bytes) {
4841 num_bytes = sinfo->total_bytes - num_bytes;
4842 block_rsv->reserved += num_bytes;
4843 sinfo->bytes_may_use += num_bytes;
4844 trace_btrfs_space_reservation(fs_info, "space_info",
4845 sinfo->flags, num_bytes, 1);
4846 }
4847
4848 if (block_rsv->reserved >= block_rsv->size) {
4849 num_bytes = block_rsv->reserved - block_rsv->size;
4850 sinfo->bytes_may_use -= num_bytes;
4851 trace_btrfs_space_reservation(fs_info, "space_info",
4852 sinfo->flags, num_bytes, 0);
4853 block_rsv->reserved = block_rsv->size;
4854 block_rsv->full = 1;
4855 }
4856
4857 spin_unlock(&block_rsv->lock);
4858 spin_unlock(&sinfo->lock);
4859 }
4860
4861 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4862 {
4863 struct btrfs_space_info *space_info;
4864
4865 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4866 fs_info->chunk_block_rsv.space_info = space_info;
4867
4868 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4869 fs_info->global_block_rsv.space_info = space_info;
4870 fs_info->delalloc_block_rsv.space_info = space_info;
4871 fs_info->trans_block_rsv.space_info = space_info;
4872 fs_info->empty_block_rsv.space_info = space_info;
4873 fs_info->delayed_block_rsv.space_info = space_info;
4874
4875 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4876 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4877 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4878 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4879 if (fs_info->quota_root)
4880 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4881 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4882
4883 update_global_block_rsv(fs_info);
4884 }
4885
4886 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4887 {
4888 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4889 (u64)-1);
4890 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4891 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4892 WARN_ON(fs_info->trans_block_rsv.size > 0);
4893 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4894 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4895 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4896 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4897 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4898 }
4899
4900 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4901 struct btrfs_root *root)
4902 {
4903 if (!trans->block_rsv)
4904 return;
4905
4906 if (!trans->bytes_reserved)
4907 return;
4908
4909 trace_btrfs_space_reservation(root->fs_info, "transaction",
4910 trans->transid, trans->bytes_reserved, 0);
4911 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4912 trans->bytes_reserved = 0;
4913 }
4914
4915 /* Can only return 0 or -ENOSPC */
4916 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4917 struct inode *inode)
4918 {
4919 struct btrfs_root *root = BTRFS_I(inode)->root;
4920 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4921 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4922
4923 /*
4924 * We need to hold space in order to delete our orphan item once we've
4925 * added it, so this takes the reservation so we can release it later
4926 * when we are truly done with the orphan item.
4927 */
4928 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4929 trace_btrfs_space_reservation(root->fs_info, "orphan",
4930 btrfs_ino(inode), num_bytes, 1);
4931 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4932 }
4933
4934 void btrfs_orphan_release_metadata(struct inode *inode)
4935 {
4936 struct btrfs_root *root = BTRFS_I(inode)->root;
4937 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4938 trace_btrfs_space_reservation(root->fs_info, "orphan",
4939 btrfs_ino(inode), num_bytes, 0);
4940 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4941 }
4942
4943 /*
4944 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4945 * root: the root of the parent directory
4946 * rsv: block reservation
4947 * items: the number of items that we need do reservation
4948 * qgroup_reserved: used to return the reserved size in qgroup
4949 *
4950 * This function is used to reserve the space for snapshot/subvolume
4951 * creation and deletion. Those operations are different with the
4952 * common file/directory operations, they change two fs/file trees
4953 * and root tree, the number of items that the qgroup reserves is
4954 * different with the free space reservation. So we can not use
4955 * the space reseravtion mechanism in start_transaction().
4956 */
4957 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4958 struct btrfs_block_rsv *rsv,
4959 int items,
4960 u64 *qgroup_reserved,
4961 bool use_global_rsv)
4962 {
4963 u64 num_bytes;
4964 int ret;
4965 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4966
4967 if (root->fs_info->quota_enabled) {
4968 /* One for parent inode, two for dir entries */
4969 num_bytes = 3 * root->nodesize;
4970 ret = btrfs_qgroup_reserve(root, num_bytes);
4971 if (ret)
4972 return ret;
4973 } else {
4974 num_bytes = 0;
4975 }
4976
4977 *qgroup_reserved = num_bytes;
4978
4979 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4980 rsv->space_info = __find_space_info(root->fs_info,
4981 BTRFS_BLOCK_GROUP_METADATA);
4982 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4983 BTRFS_RESERVE_FLUSH_ALL);
4984
4985 if (ret == -ENOSPC && use_global_rsv)
4986 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4987
4988 if (ret) {
4989 if (*qgroup_reserved)
4990 btrfs_qgroup_free(root, *qgroup_reserved);
4991 }
4992
4993 return ret;
4994 }
4995
4996 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4997 struct btrfs_block_rsv *rsv,
4998 u64 qgroup_reserved)
4999 {
5000 btrfs_block_rsv_release(root, rsv, (u64)-1);
5001 if (qgroup_reserved)
5002 btrfs_qgroup_free(root, qgroup_reserved);
5003 }
5004
5005 /**
5006 * drop_outstanding_extent - drop an outstanding extent
5007 * @inode: the inode we're dropping the extent for
5008 * @num_bytes: the number of bytes we're relaseing.
5009 *
5010 * This is called when we are freeing up an outstanding extent, either called
5011 * after an error or after an extent is written. This will return the number of
5012 * reserved extents that need to be freed. This must be called with
5013 * BTRFS_I(inode)->lock held.
5014 */
5015 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5016 {
5017 unsigned drop_inode_space = 0;
5018 unsigned dropped_extents = 0;
5019 unsigned num_extents = 0;
5020
5021 num_extents = (unsigned)div64_u64(num_bytes +
5022 BTRFS_MAX_EXTENT_SIZE - 1,
5023 BTRFS_MAX_EXTENT_SIZE);
5024 ASSERT(num_extents);
5025 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5026 BTRFS_I(inode)->outstanding_extents -= num_extents;
5027
5028 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5029 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5030 &BTRFS_I(inode)->runtime_flags))
5031 drop_inode_space = 1;
5032
5033 /*
5034 * If we have more or the same amount of outsanding extents than we have
5035 * reserved then we need to leave the reserved extents count alone.
5036 */
5037 if (BTRFS_I(inode)->outstanding_extents >=
5038 BTRFS_I(inode)->reserved_extents)
5039 return drop_inode_space;
5040
5041 dropped_extents = BTRFS_I(inode)->reserved_extents -
5042 BTRFS_I(inode)->outstanding_extents;
5043 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5044 return dropped_extents + drop_inode_space;
5045 }
5046
5047 /**
5048 * calc_csum_metadata_size - return the amount of metada space that must be
5049 * reserved/free'd for the given bytes.
5050 * @inode: the inode we're manipulating
5051 * @num_bytes: the number of bytes in question
5052 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5053 *
5054 * This adjusts the number of csum_bytes in the inode and then returns the
5055 * correct amount of metadata that must either be reserved or freed. We
5056 * calculate how many checksums we can fit into one leaf and then divide the
5057 * number of bytes that will need to be checksumed by this value to figure out
5058 * how many checksums will be required. If we are adding bytes then the number
5059 * may go up and we will return the number of additional bytes that must be
5060 * reserved. If it is going down we will return the number of bytes that must
5061 * be freed.
5062 *
5063 * This must be called with BTRFS_I(inode)->lock held.
5064 */
5065 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5066 int reserve)
5067 {
5068 struct btrfs_root *root = BTRFS_I(inode)->root;
5069 u64 csum_size;
5070 int num_csums_per_leaf;
5071 int num_csums;
5072 int old_csums;
5073
5074 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5075 BTRFS_I(inode)->csum_bytes == 0)
5076 return 0;
5077
5078 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5079 if (reserve)
5080 BTRFS_I(inode)->csum_bytes += num_bytes;
5081 else
5082 BTRFS_I(inode)->csum_bytes -= num_bytes;
5083 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5084 num_csums_per_leaf = (int)div64_u64(csum_size,
5085 sizeof(struct btrfs_csum_item) +
5086 sizeof(struct btrfs_disk_key));
5087 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5088 num_csums = num_csums + num_csums_per_leaf - 1;
5089 num_csums = num_csums / num_csums_per_leaf;
5090
5091 old_csums = old_csums + num_csums_per_leaf - 1;
5092 old_csums = old_csums / num_csums_per_leaf;
5093
5094 /* No change, no need to reserve more */
5095 if (old_csums == num_csums)
5096 return 0;
5097
5098 if (reserve)
5099 return btrfs_calc_trans_metadata_size(root,
5100 num_csums - old_csums);
5101
5102 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5103 }
5104
5105 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5106 {
5107 struct btrfs_root *root = BTRFS_I(inode)->root;
5108 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5109 u64 to_reserve = 0;
5110 u64 csum_bytes;
5111 unsigned nr_extents = 0;
5112 int extra_reserve = 0;
5113 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5114 int ret = 0;
5115 bool delalloc_lock = true;
5116 u64 to_free = 0;
5117 unsigned dropped;
5118
5119 /* If we are a free space inode we need to not flush since we will be in
5120 * the middle of a transaction commit. We also don't need the delalloc
5121 * mutex since we won't race with anybody. We need this mostly to make
5122 * lockdep shut its filthy mouth.
5123 */
5124 if (btrfs_is_free_space_inode(inode)) {
5125 flush = BTRFS_RESERVE_NO_FLUSH;
5126 delalloc_lock = false;
5127 }
5128
5129 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5130 btrfs_transaction_in_commit(root->fs_info))
5131 schedule_timeout(1);
5132
5133 if (delalloc_lock)
5134 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5135
5136 num_bytes = ALIGN(num_bytes, root->sectorsize);
5137
5138 spin_lock(&BTRFS_I(inode)->lock);
5139 nr_extents = (unsigned)div64_u64(num_bytes +
5140 BTRFS_MAX_EXTENT_SIZE - 1,
5141 BTRFS_MAX_EXTENT_SIZE);
5142 BTRFS_I(inode)->outstanding_extents += nr_extents;
5143 nr_extents = 0;
5144
5145 if (BTRFS_I(inode)->outstanding_extents >
5146 BTRFS_I(inode)->reserved_extents)
5147 nr_extents = BTRFS_I(inode)->outstanding_extents -
5148 BTRFS_I(inode)->reserved_extents;
5149
5150 /*
5151 * Add an item to reserve for updating the inode when we complete the
5152 * delalloc io.
5153 */
5154 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5155 &BTRFS_I(inode)->runtime_flags)) {
5156 nr_extents++;
5157 extra_reserve = 1;
5158 }
5159
5160 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5161 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5162 csum_bytes = BTRFS_I(inode)->csum_bytes;
5163 spin_unlock(&BTRFS_I(inode)->lock);
5164
5165 if (root->fs_info->quota_enabled) {
5166 ret = btrfs_qgroup_reserve(root, num_bytes +
5167 nr_extents * root->nodesize);
5168 if (ret)
5169 goto out_fail;
5170 }
5171
5172 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5173 if (unlikely(ret)) {
5174 if (root->fs_info->quota_enabled)
5175 btrfs_qgroup_free(root, num_bytes +
5176 nr_extents * root->nodesize);
5177 goto out_fail;
5178 }
5179
5180 spin_lock(&BTRFS_I(inode)->lock);
5181 if (extra_reserve) {
5182 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5183 &BTRFS_I(inode)->runtime_flags);
5184 nr_extents--;
5185 }
5186 BTRFS_I(inode)->reserved_extents += nr_extents;
5187 spin_unlock(&BTRFS_I(inode)->lock);
5188
5189 if (delalloc_lock)
5190 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5191
5192 if (to_reserve)
5193 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5194 btrfs_ino(inode), to_reserve, 1);
5195 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5196
5197 return 0;
5198
5199 out_fail:
5200 spin_lock(&BTRFS_I(inode)->lock);
5201 dropped = drop_outstanding_extent(inode, num_bytes);
5202 /*
5203 * If the inodes csum_bytes is the same as the original
5204 * csum_bytes then we know we haven't raced with any free()ers
5205 * so we can just reduce our inodes csum bytes and carry on.
5206 */
5207 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5208 calc_csum_metadata_size(inode, num_bytes, 0);
5209 } else {
5210 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5211 u64 bytes;
5212
5213 /*
5214 * This is tricky, but first we need to figure out how much we
5215 * free'd from any free-ers that occured during this
5216 * reservation, so we reset ->csum_bytes to the csum_bytes
5217 * before we dropped our lock, and then call the free for the
5218 * number of bytes that were freed while we were trying our
5219 * reservation.
5220 */
5221 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5222 BTRFS_I(inode)->csum_bytes = csum_bytes;
5223 to_free = calc_csum_metadata_size(inode, bytes, 0);
5224
5225
5226 /*
5227 * Now we need to see how much we would have freed had we not
5228 * been making this reservation and our ->csum_bytes were not
5229 * artificially inflated.
5230 */
5231 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5232 bytes = csum_bytes - orig_csum_bytes;
5233 bytes = calc_csum_metadata_size(inode, bytes, 0);
5234
5235 /*
5236 * Now reset ->csum_bytes to what it should be. If bytes is
5237 * more than to_free then we would have free'd more space had we
5238 * not had an artificially high ->csum_bytes, so we need to free
5239 * the remainder. If bytes is the same or less then we don't
5240 * need to do anything, the other free-ers did the correct
5241 * thing.
5242 */
5243 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5244 if (bytes > to_free)
5245 to_free = bytes - to_free;
5246 else
5247 to_free = 0;
5248 }
5249 spin_unlock(&BTRFS_I(inode)->lock);
5250 if (dropped)
5251 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5252
5253 if (to_free) {
5254 btrfs_block_rsv_release(root, block_rsv, to_free);
5255 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5256 btrfs_ino(inode), to_free, 0);
5257 }
5258 if (delalloc_lock)
5259 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5260 return ret;
5261 }
5262
5263 /**
5264 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5265 * @inode: the inode to release the reservation for
5266 * @num_bytes: the number of bytes we're releasing
5267 *
5268 * This will release the metadata reservation for an inode. This can be called
5269 * once we complete IO for a given set of bytes to release their metadata
5270 * reservations.
5271 */
5272 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5273 {
5274 struct btrfs_root *root = BTRFS_I(inode)->root;
5275 u64 to_free = 0;
5276 unsigned dropped;
5277
5278 num_bytes = ALIGN(num_bytes, root->sectorsize);
5279 spin_lock(&BTRFS_I(inode)->lock);
5280 dropped = drop_outstanding_extent(inode, num_bytes);
5281
5282 if (num_bytes)
5283 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5284 spin_unlock(&BTRFS_I(inode)->lock);
5285 if (dropped > 0)
5286 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5287
5288 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5289 btrfs_ino(inode), to_free, 0);
5290 if (root->fs_info->quota_enabled) {
5291 btrfs_qgroup_free(root, num_bytes +
5292 dropped * root->nodesize);
5293 }
5294
5295 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5296 to_free);
5297 }
5298
5299 /**
5300 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5301 * @inode: inode we're writing to
5302 * @num_bytes: the number of bytes we want to allocate
5303 *
5304 * This will do the following things
5305 *
5306 * o reserve space in the data space info for num_bytes
5307 * o reserve space in the metadata space info based on number of outstanding
5308 * extents and how much csums will be needed
5309 * o add to the inodes ->delalloc_bytes
5310 * o add it to the fs_info's delalloc inodes list.
5311 *
5312 * This will return 0 for success and -ENOSPC if there is no space left.
5313 */
5314 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5315 {
5316 int ret;
5317
5318 ret = btrfs_check_data_free_space(inode, num_bytes);
5319 if (ret)
5320 return ret;
5321
5322 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5323 if (ret) {
5324 btrfs_free_reserved_data_space(inode, num_bytes);
5325 return ret;
5326 }
5327
5328 return 0;
5329 }
5330
5331 /**
5332 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5333 * @inode: inode we're releasing space for
5334 * @num_bytes: the number of bytes we want to free up
5335 *
5336 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5337 * called in the case that we don't need the metadata AND data reservations
5338 * anymore. So if there is an error or we insert an inline extent.
5339 *
5340 * This function will release the metadata space that was not used and will
5341 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5342 * list if there are no delalloc bytes left.
5343 */
5344 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5345 {
5346 btrfs_delalloc_release_metadata(inode, num_bytes);
5347 btrfs_free_reserved_data_space(inode, num_bytes);
5348 }
5349
5350 static int update_block_group(struct btrfs_trans_handle *trans,
5351 struct btrfs_root *root, u64 bytenr,
5352 u64 num_bytes, int alloc)
5353 {
5354 struct btrfs_block_group_cache *cache = NULL;
5355 struct btrfs_fs_info *info = root->fs_info;
5356 u64 total = num_bytes;
5357 u64 old_val;
5358 u64 byte_in_group;
5359 int factor;
5360
5361 /* block accounting for super block */
5362 spin_lock(&info->delalloc_root_lock);
5363 old_val = btrfs_super_bytes_used(info->super_copy);
5364 if (alloc)
5365 old_val += num_bytes;
5366 else
5367 old_val -= num_bytes;
5368 btrfs_set_super_bytes_used(info->super_copy, old_val);
5369 spin_unlock(&info->delalloc_root_lock);
5370
5371 while (total) {
5372 cache = btrfs_lookup_block_group(info, bytenr);
5373 if (!cache)
5374 return -ENOENT;
5375 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5376 BTRFS_BLOCK_GROUP_RAID1 |
5377 BTRFS_BLOCK_GROUP_RAID10))
5378 factor = 2;
5379 else
5380 factor = 1;
5381 /*
5382 * If this block group has free space cache written out, we
5383 * need to make sure to load it if we are removing space. This
5384 * is because we need the unpinning stage to actually add the
5385 * space back to the block group, otherwise we will leak space.
5386 */
5387 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5388 cache_block_group(cache, 1);
5389
5390 spin_lock(&trans->transaction->dirty_bgs_lock);
5391 if (list_empty(&cache->dirty_list)) {
5392 list_add_tail(&cache->dirty_list,
5393 &trans->transaction->dirty_bgs);
5394 btrfs_get_block_group(cache);
5395 }
5396 spin_unlock(&trans->transaction->dirty_bgs_lock);
5397
5398 byte_in_group = bytenr - cache->key.objectid;
5399 WARN_ON(byte_in_group > cache->key.offset);
5400
5401 spin_lock(&cache->space_info->lock);
5402 spin_lock(&cache->lock);
5403
5404 if (btrfs_test_opt(root, SPACE_CACHE) &&
5405 cache->disk_cache_state < BTRFS_DC_CLEAR)
5406 cache->disk_cache_state = BTRFS_DC_CLEAR;
5407
5408 old_val = btrfs_block_group_used(&cache->item);
5409 num_bytes = min(total, cache->key.offset - byte_in_group);
5410 if (alloc) {
5411 old_val += num_bytes;
5412 btrfs_set_block_group_used(&cache->item, old_val);
5413 cache->reserved -= num_bytes;
5414 cache->space_info->bytes_reserved -= num_bytes;
5415 cache->space_info->bytes_used += num_bytes;
5416 cache->space_info->disk_used += num_bytes * factor;
5417 spin_unlock(&cache->lock);
5418 spin_unlock(&cache->space_info->lock);
5419 } else {
5420 old_val -= num_bytes;
5421 btrfs_set_block_group_used(&cache->item, old_val);
5422 cache->pinned += num_bytes;
5423 cache->space_info->bytes_pinned += num_bytes;
5424 cache->space_info->bytes_used -= num_bytes;
5425 cache->space_info->disk_used -= num_bytes * factor;
5426 spin_unlock(&cache->lock);
5427 spin_unlock(&cache->space_info->lock);
5428
5429 set_extent_dirty(info->pinned_extents,
5430 bytenr, bytenr + num_bytes - 1,
5431 GFP_NOFS | __GFP_NOFAIL);
5432 /*
5433 * No longer have used bytes in this block group, queue
5434 * it for deletion.
5435 */
5436 if (old_val == 0) {
5437 spin_lock(&info->unused_bgs_lock);
5438 if (list_empty(&cache->bg_list)) {
5439 btrfs_get_block_group(cache);
5440 list_add_tail(&cache->bg_list,
5441 &info->unused_bgs);
5442 }
5443 spin_unlock(&info->unused_bgs_lock);
5444 }
5445 }
5446 btrfs_put_block_group(cache);
5447 total -= num_bytes;
5448 bytenr += num_bytes;
5449 }
5450 return 0;
5451 }
5452
5453 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5454 {
5455 struct btrfs_block_group_cache *cache;
5456 u64 bytenr;
5457
5458 spin_lock(&root->fs_info->block_group_cache_lock);
5459 bytenr = root->fs_info->first_logical_byte;
5460 spin_unlock(&root->fs_info->block_group_cache_lock);
5461
5462 if (bytenr < (u64)-1)
5463 return bytenr;
5464
5465 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5466 if (!cache)
5467 return 0;
5468
5469 bytenr = cache->key.objectid;
5470 btrfs_put_block_group(cache);
5471
5472 return bytenr;
5473 }
5474
5475 static int pin_down_extent(struct btrfs_root *root,
5476 struct btrfs_block_group_cache *cache,
5477 u64 bytenr, u64 num_bytes, int reserved)
5478 {
5479 spin_lock(&cache->space_info->lock);
5480 spin_lock(&cache->lock);
5481 cache->pinned += num_bytes;
5482 cache->space_info->bytes_pinned += num_bytes;
5483 if (reserved) {
5484 cache->reserved -= num_bytes;
5485 cache->space_info->bytes_reserved -= num_bytes;
5486 }
5487 spin_unlock(&cache->lock);
5488 spin_unlock(&cache->space_info->lock);
5489
5490 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5491 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5492 if (reserved)
5493 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5494 return 0;
5495 }
5496
5497 /*
5498 * this function must be called within transaction
5499 */
5500 int btrfs_pin_extent(struct btrfs_root *root,
5501 u64 bytenr, u64 num_bytes, int reserved)
5502 {
5503 struct btrfs_block_group_cache *cache;
5504
5505 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5506 BUG_ON(!cache); /* Logic error */
5507
5508 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5509
5510 btrfs_put_block_group(cache);
5511 return 0;
5512 }
5513
5514 /*
5515 * this function must be called within transaction
5516 */
5517 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5518 u64 bytenr, u64 num_bytes)
5519 {
5520 struct btrfs_block_group_cache *cache;
5521 int ret;
5522
5523 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5524 if (!cache)
5525 return -EINVAL;
5526
5527 /*
5528 * pull in the free space cache (if any) so that our pin
5529 * removes the free space from the cache. We have load_only set
5530 * to one because the slow code to read in the free extents does check
5531 * the pinned extents.
5532 */
5533 cache_block_group(cache, 1);
5534
5535 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5536
5537 /* remove us from the free space cache (if we're there at all) */
5538 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5539 btrfs_put_block_group(cache);
5540 return ret;
5541 }
5542
5543 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5544 {
5545 int ret;
5546 struct btrfs_block_group_cache *block_group;
5547 struct btrfs_caching_control *caching_ctl;
5548
5549 block_group = btrfs_lookup_block_group(root->fs_info, start);
5550 if (!block_group)
5551 return -EINVAL;
5552
5553 cache_block_group(block_group, 0);
5554 caching_ctl = get_caching_control(block_group);
5555
5556 if (!caching_ctl) {
5557 /* Logic error */
5558 BUG_ON(!block_group_cache_done(block_group));
5559 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5560 } else {
5561 mutex_lock(&caching_ctl->mutex);
5562
5563 if (start >= caching_ctl->progress) {
5564 ret = add_excluded_extent(root, start, num_bytes);
5565 } else if (start + num_bytes <= caching_ctl->progress) {
5566 ret = btrfs_remove_free_space(block_group,
5567 start, num_bytes);
5568 } else {
5569 num_bytes = caching_ctl->progress - start;
5570 ret = btrfs_remove_free_space(block_group,
5571 start, num_bytes);
5572 if (ret)
5573 goto out_lock;
5574
5575 num_bytes = (start + num_bytes) -
5576 caching_ctl->progress;
5577 start = caching_ctl->progress;
5578 ret = add_excluded_extent(root, start, num_bytes);
5579 }
5580 out_lock:
5581 mutex_unlock(&caching_ctl->mutex);
5582 put_caching_control(caching_ctl);
5583 }
5584 btrfs_put_block_group(block_group);
5585 return ret;
5586 }
5587
5588 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5589 struct extent_buffer *eb)
5590 {
5591 struct btrfs_file_extent_item *item;
5592 struct btrfs_key key;
5593 int found_type;
5594 int i;
5595
5596 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5597 return 0;
5598
5599 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5600 btrfs_item_key_to_cpu(eb, &key, i);
5601 if (key.type != BTRFS_EXTENT_DATA_KEY)
5602 continue;
5603 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5604 found_type = btrfs_file_extent_type(eb, item);
5605 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5606 continue;
5607 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5608 continue;
5609 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5610 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5611 __exclude_logged_extent(log, key.objectid, key.offset);
5612 }
5613
5614 return 0;
5615 }
5616
5617 /**
5618 * btrfs_update_reserved_bytes - update the block_group and space info counters
5619 * @cache: The cache we are manipulating
5620 * @num_bytes: The number of bytes in question
5621 * @reserve: One of the reservation enums
5622 * @delalloc: The blocks are allocated for the delalloc write
5623 *
5624 * This is called by the allocator when it reserves space, or by somebody who is
5625 * freeing space that was never actually used on disk. For example if you
5626 * reserve some space for a new leaf in transaction A and before transaction A
5627 * commits you free that leaf, you call this with reserve set to 0 in order to
5628 * clear the reservation.
5629 *
5630 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5631 * ENOSPC accounting. For data we handle the reservation through clearing the
5632 * delalloc bits in the io_tree. We have to do this since we could end up
5633 * allocating less disk space for the amount of data we have reserved in the
5634 * case of compression.
5635 *
5636 * If this is a reservation and the block group has become read only we cannot
5637 * make the reservation and return -EAGAIN, otherwise this function always
5638 * succeeds.
5639 */
5640 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5641 u64 num_bytes, int reserve, int delalloc)
5642 {
5643 struct btrfs_space_info *space_info = cache->space_info;
5644 int ret = 0;
5645
5646 spin_lock(&space_info->lock);
5647 spin_lock(&cache->lock);
5648 if (reserve != RESERVE_FREE) {
5649 if (cache->ro) {
5650 ret = -EAGAIN;
5651 } else {
5652 cache->reserved += num_bytes;
5653 space_info->bytes_reserved += num_bytes;
5654 if (reserve == RESERVE_ALLOC) {
5655 trace_btrfs_space_reservation(cache->fs_info,
5656 "space_info", space_info->flags,
5657 num_bytes, 0);
5658 space_info->bytes_may_use -= num_bytes;
5659 }
5660
5661 if (delalloc)
5662 cache->delalloc_bytes += num_bytes;
5663 }
5664 } else {
5665 if (cache->ro)
5666 space_info->bytes_readonly += num_bytes;
5667 cache->reserved -= num_bytes;
5668 space_info->bytes_reserved -= num_bytes;
5669
5670 if (delalloc)
5671 cache->delalloc_bytes -= num_bytes;
5672 }
5673 spin_unlock(&cache->lock);
5674 spin_unlock(&space_info->lock);
5675 return ret;
5676 }
5677
5678 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5679 struct btrfs_root *root)
5680 {
5681 struct btrfs_fs_info *fs_info = root->fs_info;
5682 struct btrfs_caching_control *next;
5683 struct btrfs_caching_control *caching_ctl;
5684 struct btrfs_block_group_cache *cache;
5685
5686 down_write(&fs_info->commit_root_sem);
5687
5688 list_for_each_entry_safe(caching_ctl, next,
5689 &fs_info->caching_block_groups, list) {
5690 cache = caching_ctl->block_group;
5691 if (block_group_cache_done(cache)) {
5692 cache->last_byte_to_unpin = (u64)-1;
5693 list_del_init(&caching_ctl->list);
5694 put_caching_control(caching_ctl);
5695 } else {
5696 cache->last_byte_to_unpin = caching_ctl->progress;
5697 }
5698 }
5699
5700 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5701 fs_info->pinned_extents = &fs_info->freed_extents[1];
5702 else
5703 fs_info->pinned_extents = &fs_info->freed_extents[0];
5704
5705 up_write(&fs_info->commit_root_sem);
5706
5707 update_global_block_rsv(fs_info);
5708 }
5709
5710 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5711 const bool return_free_space)
5712 {
5713 struct btrfs_fs_info *fs_info = root->fs_info;
5714 struct btrfs_block_group_cache *cache = NULL;
5715 struct btrfs_space_info *space_info;
5716 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5717 u64 len;
5718 bool readonly;
5719
5720 while (start <= end) {
5721 readonly = false;
5722 if (!cache ||
5723 start >= cache->key.objectid + cache->key.offset) {
5724 if (cache)
5725 btrfs_put_block_group(cache);
5726 cache = btrfs_lookup_block_group(fs_info, start);
5727 BUG_ON(!cache); /* Logic error */
5728 }
5729
5730 len = cache->key.objectid + cache->key.offset - start;
5731 len = min(len, end + 1 - start);
5732
5733 if (start < cache->last_byte_to_unpin) {
5734 len = min(len, cache->last_byte_to_unpin - start);
5735 if (return_free_space)
5736 btrfs_add_free_space(cache, start, len);
5737 }
5738
5739 start += len;
5740 space_info = cache->space_info;
5741
5742 spin_lock(&space_info->lock);
5743 spin_lock(&cache->lock);
5744 cache->pinned -= len;
5745 space_info->bytes_pinned -= len;
5746 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5747 if (cache->ro) {
5748 space_info->bytes_readonly += len;
5749 readonly = true;
5750 }
5751 spin_unlock(&cache->lock);
5752 if (!readonly && global_rsv->space_info == space_info) {
5753 spin_lock(&global_rsv->lock);
5754 if (!global_rsv->full) {
5755 len = min(len, global_rsv->size -
5756 global_rsv->reserved);
5757 global_rsv->reserved += len;
5758 space_info->bytes_may_use += len;
5759 if (global_rsv->reserved >= global_rsv->size)
5760 global_rsv->full = 1;
5761 }
5762 spin_unlock(&global_rsv->lock);
5763 }
5764 spin_unlock(&space_info->lock);
5765 }
5766
5767 if (cache)
5768 btrfs_put_block_group(cache);
5769 return 0;
5770 }
5771
5772 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5773 struct btrfs_root *root)
5774 {
5775 struct btrfs_fs_info *fs_info = root->fs_info;
5776 struct extent_io_tree *unpin;
5777 u64 start;
5778 u64 end;
5779 int ret;
5780
5781 if (trans->aborted)
5782 return 0;
5783
5784 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5785 unpin = &fs_info->freed_extents[1];
5786 else
5787 unpin = &fs_info->freed_extents[0];
5788
5789 while (1) {
5790 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5791 ret = find_first_extent_bit(unpin, 0, &start, &end,
5792 EXTENT_DIRTY, NULL);
5793 if (ret) {
5794 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5795 break;
5796 }
5797
5798 if (btrfs_test_opt(root, DISCARD))
5799 ret = btrfs_discard_extent(root, start,
5800 end + 1 - start, NULL);
5801
5802 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5803 unpin_extent_range(root, start, end, true);
5804 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5805 cond_resched();
5806 }
5807
5808 return 0;
5809 }
5810
5811 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5812 u64 owner, u64 root_objectid)
5813 {
5814 struct btrfs_space_info *space_info;
5815 u64 flags;
5816
5817 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5818 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5819 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5820 else
5821 flags = BTRFS_BLOCK_GROUP_METADATA;
5822 } else {
5823 flags = BTRFS_BLOCK_GROUP_DATA;
5824 }
5825
5826 space_info = __find_space_info(fs_info, flags);
5827 BUG_ON(!space_info); /* Logic bug */
5828 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5829 }
5830
5831
5832 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5833 struct btrfs_root *root,
5834 u64 bytenr, u64 num_bytes, u64 parent,
5835 u64 root_objectid, u64 owner_objectid,
5836 u64 owner_offset, int refs_to_drop,
5837 struct btrfs_delayed_extent_op *extent_op,
5838 int no_quota)
5839 {
5840 struct btrfs_key key;
5841 struct btrfs_path *path;
5842 struct btrfs_fs_info *info = root->fs_info;
5843 struct btrfs_root *extent_root = info->extent_root;
5844 struct extent_buffer *leaf;
5845 struct btrfs_extent_item *ei;
5846 struct btrfs_extent_inline_ref *iref;
5847 int ret;
5848 int is_data;
5849 int extent_slot = 0;
5850 int found_extent = 0;
5851 int num_to_del = 1;
5852 u32 item_size;
5853 u64 refs;
5854 int last_ref = 0;
5855 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5856 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5857 SKINNY_METADATA);
5858
5859 if (!info->quota_enabled || !is_fstree(root_objectid))
5860 no_quota = 1;
5861
5862 path = btrfs_alloc_path();
5863 if (!path)
5864 return -ENOMEM;
5865
5866 path->reada = 1;
5867 path->leave_spinning = 1;
5868
5869 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5870 BUG_ON(!is_data && refs_to_drop != 1);
5871
5872 if (is_data)
5873 skinny_metadata = 0;
5874
5875 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5876 bytenr, num_bytes, parent,
5877 root_objectid, owner_objectid,
5878 owner_offset);
5879 if (ret == 0) {
5880 extent_slot = path->slots[0];
5881 while (extent_slot >= 0) {
5882 btrfs_item_key_to_cpu(path->nodes[0], &key,
5883 extent_slot);
5884 if (key.objectid != bytenr)
5885 break;
5886 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5887 key.offset == num_bytes) {
5888 found_extent = 1;
5889 break;
5890 }
5891 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5892 key.offset == owner_objectid) {
5893 found_extent = 1;
5894 break;
5895 }
5896 if (path->slots[0] - extent_slot > 5)
5897 break;
5898 extent_slot--;
5899 }
5900 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5901 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5902 if (found_extent && item_size < sizeof(*ei))
5903 found_extent = 0;
5904 #endif
5905 if (!found_extent) {
5906 BUG_ON(iref);
5907 ret = remove_extent_backref(trans, extent_root, path,
5908 NULL, refs_to_drop,
5909 is_data, &last_ref);
5910 if (ret) {
5911 btrfs_abort_transaction(trans, extent_root, ret);
5912 goto out;
5913 }
5914 btrfs_release_path(path);
5915 path->leave_spinning = 1;
5916
5917 key.objectid = bytenr;
5918 key.type = BTRFS_EXTENT_ITEM_KEY;
5919 key.offset = num_bytes;
5920
5921 if (!is_data && skinny_metadata) {
5922 key.type = BTRFS_METADATA_ITEM_KEY;
5923 key.offset = owner_objectid;
5924 }
5925
5926 ret = btrfs_search_slot(trans, extent_root,
5927 &key, path, -1, 1);
5928 if (ret > 0 && skinny_metadata && path->slots[0]) {
5929 /*
5930 * Couldn't find our skinny metadata item,
5931 * see if we have ye olde extent item.
5932 */
5933 path->slots[0]--;
5934 btrfs_item_key_to_cpu(path->nodes[0], &key,
5935 path->slots[0]);
5936 if (key.objectid == bytenr &&
5937 key.type == BTRFS_EXTENT_ITEM_KEY &&
5938 key.offset == num_bytes)
5939 ret = 0;
5940 }
5941
5942 if (ret > 0 && skinny_metadata) {
5943 skinny_metadata = false;
5944 key.objectid = bytenr;
5945 key.type = BTRFS_EXTENT_ITEM_KEY;
5946 key.offset = num_bytes;
5947 btrfs_release_path(path);
5948 ret = btrfs_search_slot(trans, extent_root,
5949 &key, path, -1, 1);
5950 }
5951
5952 if (ret) {
5953 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5954 ret, bytenr);
5955 if (ret > 0)
5956 btrfs_print_leaf(extent_root,
5957 path->nodes[0]);
5958 }
5959 if (ret < 0) {
5960 btrfs_abort_transaction(trans, extent_root, ret);
5961 goto out;
5962 }
5963 extent_slot = path->slots[0];
5964 }
5965 } else if (WARN_ON(ret == -ENOENT)) {
5966 btrfs_print_leaf(extent_root, path->nodes[0]);
5967 btrfs_err(info,
5968 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5969 bytenr, parent, root_objectid, owner_objectid,
5970 owner_offset);
5971 btrfs_abort_transaction(trans, extent_root, ret);
5972 goto out;
5973 } else {
5974 btrfs_abort_transaction(trans, extent_root, ret);
5975 goto out;
5976 }
5977
5978 leaf = path->nodes[0];
5979 item_size = btrfs_item_size_nr(leaf, extent_slot);
5980 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5981 if (item_size < sizeof(*ei)) {
5982 BUG_ON(found_extent || extent_slot != path->slots[0]);
5983 ret = convert_extent_item_v0(trans, extent_root, path,
5984 owner_objectid, 0);
5985 if (ret < 0) {
5986 btrfs_abort_transaction(trans, extent_root, ret);
5987 goto out;
5988 }
5989
5990 btrfs_release_path(path);
5991 path->leave_spinning = 1;
5992
5993 key.objectid = bytenr;
5994 key.type = BTRFS_EXTENT_ITEM_KEY;
5995 key.offset = num_bytes;
5996
5997 ret = btrfs_search_slot(trans, extent_root, &key, path,
5998 -1, 1);
5999 if (ret) {
6000 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6001 ret, bytenr);
6002 btrfs_print_leaf(extent_root, path->nodes[0]);
6003 }
6004 if (ret < 0) {
6005 btrfs_abort_transaction(trans, extent_root, ret);
6006 goto out;
6007 }
6008
6009 extent_slot = path->slots[0];
6010 leaf = path->nodes[0];
6011 item_size = btrfs_item_size_nr(leaf, extent_slot);
6012 }
6013 #endif
6014 BUG_ON(item_size < sizeof(*ei));
6015 ei = btrfs_item_ptr(leaf, extent_slot,
6016 struct btrfs_extent_item);
6017 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6018 key.type == BTRFS_EXTENT_ITEM_KEY) {
6019 struct btrfs_tree_block_info *bi;
6020 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6021 bi = (struct btrfs_tree_block_info *)(ei + 1);
6022 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6023 }
6024
6025 refs = btrfs_extent_refs(leaf, ei);
6026 if (refs < refs_to_drop) {
6027 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6028 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6029 ret = -EINVAL;
6030 btrfs_abort_transaction(trans, extent_root, ret);
6031 goto out;
6032 }
6033 refs -= refs_to_drop;
6034
6035 if (refs > 0) {
6036 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6037 if (extent_op)
6038 __run_delayed_extent_op(extent_op, leaf, ei);
6039 /*
6040 * In the case of inline back ref, reference count will
6041 * be updated by remove_extent_backref
6042 */
6043 if (iref) {
6044 BUG_ON(!found_extent);
6045 } else {
6046 btrfs_set_extent_refs(leaf, ei, refs);
6047 btrfs_mark_buffer_dirty(leaf);
6048 }
6049 if (found_extent) {
6050 ret = remove_extent_backref(trans, extent_root, path,
6051 iref, refs_to_drop,
6052 is_data, &last_ref);
6053 if (ret) {
6054 btrfs_abort_transaction(trans, extent_root, ret);
6055 goto out;
6056 }
6057 }
6058 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6059 root_objectid);
6060 } else {
6061 if (found_extent) {
6062 BUG_ON(is_data && refs_to_drop !=
6063 extent_data_ref_count(root, path, iref));
6064 if (iref) {
6065 BUG_ON(path->slots[0] != extent_slot);
6066 } else {
6067 BUG_ON(path->slots[0] != extent_slot + 1);
6068 path->slots[0] = extent_slot;
6069 num_to_del = 2;
6070 }
6071 }
6072
6073 last_ref = 1;
6074 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6075 num_to_del);
6076 if (ret) {
6077 btrfs_abort_transaction(trans, extent_root, ret);
6078 goto out;
6079 }
6080 btrfs_release_path(path);
6081
6082 if (is_data) {
6083 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6084 if (ret) {
6085 btrfs_abort_transaction(trans, extent_root, ret);
6086 goto out;
6087 }
6088 }
6089
6090 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6091 if (ret) {
6092 btrfs_abort_transaction(trans, extent_root, ret);
6093 goto out;
6094 }
6095 }
6096 btrfs_release_path(path);
6097
6098 /* Deal with the quota accounting */
6099 if (!ret && last_ref && !no_quota) {
6100 int mod_seq = 0;
6101
6102 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6103 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6104 mod_seq = 1;
6105
6106 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6107 bytenr, num_bytes, type,
6108 mod_seq);
6109 }
6110 out:
6111 btrfs_free_path(path);
6112 return ret;
6113 }
6114
6115 /*
6116 * when we free an block, it is possible (and likely) that we free the last
6117 * delayed ref for that extent as well. This searches the delayed ref tree for
6118 * a given extent, and if there are no other delayed refs to be processed, it
6119 * removes it from the tree.
6120 */
6121 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6122 struct btrfs_root *root, u64 bytenr)
6123 {
6124 struct btrfs_delayed_ref_head *head;
6125 struct btrfs_delayed_ref_root *delayed_refs;
6126 int ret = 0;
6127
6128 delayed_refs = &trans->transaction->delayed_refs;
6129 spin_lock(&delayed_refs->lock);
6130 head = btrfs_find_delayed_ref_head(trans, bytenr);
6131 if (!head)
6132 goto out_delayed_unlock;
6133
6134 spin_lock(&head->lock);
6135 if (rb_first(&head->ref_root))
6136 goto out;
6137
6138 if (head->extent_op) {
6139 if (!head->must_insert_reserved)
6140 goto out;
6141 btrfs_free_delayed_extent_op(head->extent_op);
6142 head->extent_op = NULL;
6143 }
6144
6145 /*
6146 * waiting for the lock here would deadlock. If someone else has it
6147 * locked they are already in the process of dropping it anyway
6148 */
6149 if (!mutex_trylock(&head->mutex))
6150 goto out;
6151
6152 /*
6153 * at this point we have a head with no other entries. Go
6154 * ahead and process it.
6155 */
6156 head->node.in_tree = 0;
6157 rb_erase(&head->href_node, &delayed_refs->href_root);
6158
6159 atomic_dec(&delayed_refs->num_entries);
6160
6161 /*
6162 * we don't take a ref on the node because we're removing it from the
6163 * tree, so we just steal the ref the tree was holding.
6164 */
6165 delayed_refs->num_heads--;
6166 if (head->processing == 0)
6167 delayed_refs->num_heads_ready--;
6168 head->processing = 0;
6169 spin_unlock(&head->lock);
6170 spin_unlock(&delayed_refs->lock);
6171
6172 BUG_ON(head->extent_op);
6173 if (head->must_insert_reserved)
6174 ret = 1;
6175
6176 mutex_unlock(&head->mutex);
6177 btrfs_put_delayed_ref(&head->node);
6178 return ret;
6179 out:
6180 spin_unlock(&head->lock);
6181
6182 out_delayed_unlock:
6183 spin_unlock(&delayed_refs->lock);
6184 return 0;
6185 }
6186
6187 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6188 struct btrfs_root *root,
6189 struct extent_buffer *buf,
6190 u64 parent, int last_ref)
6191 {
6192 int pin = 1;
6193 int ret;
6194
6195 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6196 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6197 buf->start, buf->len,
6198 parent, root->root_key.objectid,
6199 btrfs_header_level(buf),
6200 BTRFS_DROP_DELAYED_REF, NULL, 0);
6201 BUG_ON(ret); /* -ENOMEM */
6202 }
6203
6204 if (!last_ref)
6205 return;
6206
6207 if (btrfs_header_generation(buf) == trans->transid) {
6208 struct btrfs_block_group_cache *cache;
6209
6210 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6211 ret = check_ref_cleanup(trans, root, buf->start);
6212 if (!ret)
6213 goto out;
6214 }
6215
6216 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6217
6218 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6219 pin_down_extent(root, cache, buf->start, buf->len, 1);
6220 btrfs_put_block_group(cache);
6221 goto out;
6222 }
6223
6224 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6225
6226 btrfs_add_free_space(cache, buf->start, buf->len);
6227 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6228 btrfs_put_block_group(cache);
6229 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6230 pin = 0;
6231 }
6232 out:
6233 if (pin)
6234 add_pinned_bytes(root->fs_info, buf->len,
6235 btrfs_header_level(buf),
6236 root->root_key.objectid);
6237
6238 /*
6239 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6240 * anymore.
6241 */
6242 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6243 }
6244
6245 /* Can return -ENOMEM */
6246 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6247 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6248 u64 owner, u64 offset, int no_quota)
6249 {
6250 int ret;
6251 struct btrfs_fs_info *fs_info = root->fs_info;
6252
6253 if (btrfs_test_is_dummy_root(root))
6254 return 0;
6255
6256 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6257
6258 /*
6259 * tree log blocks never actually go into the extent allocation
6260 * tree, just update pinning info and exit early.
6261 */
6262 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6263 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6264 /* unlocks the pinned mutex */
6265 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6266 ret = 0;
6267 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6268 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6269 num_bytes,
6270 parent, root_objectid, (int)owner,
6271 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6272 } else {
6273 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6274 num_bytes,
6275 parent, root_objectid, owner,
6276 offset, BTRFS_DROP_DELAYED_REF,
6277 NULL, no_quota);
6278 }
6279 return ret;
6280 }
6281
6282 /*
6283 * when we wait for progress in the block group caching, its because
6284 * our allocation attempt failed at least once. So, we must sleep
6285 * and let some progress happen before we try again.
6286 *
6287 * This function will sleep at least once waiting for new free space to
6288 * show up, and then it will check the block group free space numbers
6289 * for our min num_bytes. Another option is to have it go ahead
6290 * and look in the rbtree for a free extent of a given size, but this
6291 * is a good start.
6292 *
6293 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6294 * any of the information in this block group.
6295 */
6296 static noinline void
6297 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6298 u64 num_bytes)
6299 {
6300 struct btrfs_caching_control *caching_ctl;
6301
6302 caching_ctl = get_caching_control(cache);
6303 if (!caching_ctl)
6304 return;
6305
6306 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6307 (cache->free_space_ctl->free_space >= num_bytes));
6308
6309 put_caching_control(caching_ctl);
6310 }
6311
6312 static noinline int
6313 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6314 {
6315 struct btrfs_caching_control *caching_ctl;
6316 int ret = 0;
6317
6318 caching_ctl = get_caching_control(cache);
6319 if (!caching_ctl)
6320 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6321
6322 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6323 if (cache->cached == BTRFS_CACHE_ERROR)
6324 ret = -EIO;
6325 put_caching_control(caching_ctl);
6326 return ret;
6327 }
6328
6329 int __get_raid_index(u64 flags)
6330 {
6331 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6332 return BTRFS_RAID_RAID10;
6333 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6334 return BTRFS_RAID_RAID1;
6335 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6336 return BTRFS_RAID_DUP;
6337 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6338 return BTRFS_RAID_RAID0;
6339 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6340 return BTRFS_RAID_RAID5;
6341 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6342 return BTRFS_RAID_RAID6;
6343
6344 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6345 }
6346
6347 int get_block_group_index(struct btrfs_block_group_cache *cache)
6348 {
6349 return __get_raid_index(cache->flags);
6350 }
6351
6352 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6353 [BTRFS_RAID_RAID10] = "raid10",
6354 [BTRFS_RAID_RAID1] = "raid1",
6355 [BTRFS_RAID_DUP] = "dup",
6356 [BTRFS_RAID_RAID0] = "raid0",
6357 [BTRFS_RAID_SINGLE] = "single",
6358 [BTRFS_RAID_RAID5] = "raid5",
6359 [BTRFS_RAID_RAID6] = "raid6",
6360 };
6361
6362 static const char *get_raid_name(enum btrfs_raid_types type)
6363 {
6364 if (type >= BTRFS_NR_RAID_TYPES)
6365 return NULL;
6366
6367 return btrfs_raid_type_names[type];
6368 }
6369
6370 enum btrfs_loop_type {
6371 LOOP_CACHING_NOWAIT = 0,
6372 LOOP_CACHING_WAIT = 1,
6373 LOOP_ALLOC_CHUNK = 2,
6374 LOOP_NO_EMPTY_SIZE = 3,
6375 };
6376
6377 static inline void
6378 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6379 int delalloc)
6380 {
6381 if (delalloc)
6382 down_read(&cache->data_rwsem);
6383 }
6384
6385 static inline void
6386 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6387 int delalloc)
6388 {
6389 btrfs_get_block_group(cache);
6390 if (delalloc)
6391 down_read(&cache->data_rwsem);
6392 }
6393
6394 static struct btrfs_block_group_cache *
6395 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6396 struct btrfs_free_cluster *cluster,
6397 int delalloc)
6398 {
6399 struct btrfs_block_group_cache *used_bg;
6400 bool locked = false;
6401 again:
6402 spin_lock(&cluster->refill_lock);
6403 if (locked) {
6404 if (used_bg == cluster->block_group)
6405 return used_bg;
6406
6407 up_read(&used_bg->data_rwsem);
6408 btrfs_put_block_group(used_bg);
6409 }
6410
6411 used_bg = cluster->block_group;
6412 if (!used_bg)
6413 return NULL;
6414
6415 if (used_bg == block_group)
6416 return used_bg;
6417
6418 btrfs_get_block_group(used_bg);
6419
6420 if (!delalloc)
6421 return used_bg;
6422
6423 if (down_read_trylock(&used_bg->data_rwsem))
6424 return used_bg;
6425
6426 spin_unlock(&cluster->refill_lock);
6427 down_read(&used_bg->data_rwsem);
6428 locked = true;
6429 goto again;
6430 }
6431
6432 static inline void
6433 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6434 int delalloc)
6435 {
6436 if (delalloc)
6437 up_read(&cache->data_rwsem);
6438 btrfs_put_block_group(cache);
6439 }
6440
6441 /*
6442 * walks the btree of allocated extents and find a hole of a given size.
6443 * The key ins is changed to record the hole:
6444 * ins->objectid == start position
6445 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6446 * ins->offset == the size of the hole.
6447 * Any available blocks before search_start are skipped.
6448 *
6449 * If there is no suitable free space, we will record the max size of
6450 * the free space extent currently.
6451 */
6452 static noinline int find_free_extent(struct btrfs_root *orig_root,
6453 u64 num_bytes, u64 empty_size,
6454 u64 hint_byte, struct btrfs_key *ins,
6455 u64 flags, int delalloc)
6456 {
6457 int ret = 0;
6458 struct btrfs_root *root = orig_root->fs_info->extent_root;
6459 struct btrfs_free_cluster *last_ptr = NULL;
6460 struct btrfs_block_group_cache *block_group = NULL;
6461 u64 search_start = 0;
6462 u64 max_extent_size = 0;
6463 int empty_cluster = 2 * 1024 * 1024;
6464 struct btrfs_space_info *space_info;
6465 int loop = 0;
6466 int index = __get_raid_index(flags);
6467 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6468 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6469 bool failed_cluster_refill = false;
6470 bool failed_alloc = false;
6471 bool use_cluster = true;
6472 bool have_caching_bg = false;
6473
6474 WARN_ON(num_bytes < root->sectorsize);
6475 ins->type = BTRFS_EXTENT_ITEM_KEY;
6476 ins->objectid = 0;
6477 ins->offset = 0;
6478
6479 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6480
6481 space_info = __find_space_info(root->fs_info, flags);
6482 if (!space_info) {
6483 btrfs_err(root->fs_info, "No space info for %llu", flags);
6484 return -ENOSPC;
6485 }
6486
6487 /*
6488 * If the space info is for both data and metadata it means we have a
6489 * small filesystem and we can't use the clustering stuff.
6490 */
6491 if (btrfs_mixed_space_info(space_info))
6492 use_cluster = false;
6493
6494 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6495 last_ptr = &root->fs_info->meta_alloc_cluster;
6496 if (!btrfs_test_opt(root, SSD))
6497 empty_cluster = 64 * 1024;
6498 }
6499
6500 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6501 btrfs_test_opt(root, SSD)) {
6502 last_ptr = &root->fs_info->data_alloc_cluster;
6503 }
6504
6505 if (last_ptr) {
6506 spin_lock(&last_ptr->lock);
6507 if (last_ptr->block_group)
6508 hint_byte = last_ptr->window_start;
6509 spin_unlock(&last_ptr->lock);
6510 }
6511
6512 search_start = max(search_start, first_logical_byte(root, 0));
6513 search_start = max(search_start, hint_byte);
6514
6515 if (!last_ptr)
6516 empty_cluster = 0;
6517
6518 if (search_start == hint_byte) {
6519 block_group = btrfs_lookup_block_group(root->fs_info,
6520 search_start);
6521 /*
6522 * we don't want to use the block group if it doesn't match our
6523 * allocation bits, or if its not cached.
6524 *
6525 * However if we are re-searching with an ideal block group
6526 * picked out then we don't care that the block group is cached.
6527 */
6528 if (block_group && block_group_bits(block_group, flags) &&
6529 block_group->cached != BTRFS_CACHE_NO) {
6530 down_read(&space_info->groups_sem);
6531 if (list_empty(&block_group->list) ||
6532 block_group->ro) {
6533 /*
6534 * someone is removing this block group,
6535 * we can't jump into the have_block_group
6536 * target because our list pointers are not
6537 * valid
6538 */
6539 btrfs_put_block_group(block_group);
6540 up_read(&space_info->groups_sem);
6541 } else {
6542 index = get_block_group_index(block_group);
6543 btrfs_lock_block_group(block_group, delalloc);
6544 goto have_block_group;
6545 }
6546 } else if (block_group) {
6547 btrfs_put_block_group(block_group);
6548 }
6549 }
6550 search:
6551 have_caching_bg = false;
6552 down_read(&space_info->groups_sem);
6553 list_for_each_entry(block_group, &space_info->block_groups[index],
6554 list) {
6555 u64 offset;
6556 int cached;
6557
6558 btrfs_grab_block_group(block_group, delalloc);
6559 search_start = block_group->key.objectid;
6560
6561 /*
6562 * this can happen if we end up cycling through all the
6563 * raid types, but we want to make sure we only allocate
6564 * for the proper type.
6565 */
6566 if (!block_group_bits(block_group, flags)) {
6567 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6568 BTRFS_BLOCK_GROUP_RAID1 |
6569 BTRFS_BLOCK_GROUP_RAID5 |
6570 BTRFS_BLOCK_GROUP_RAID6 |
6571 BTRFS_BLOCK_GROUP_RAID10;
6572
6573 /*
6574 * if they asked for extra copies and this block group
6575 * doesn't provide them, bail. This does allow us to
6576 * fill raid0 from raid1.
6577 */
6578 if ((flags & extra) && !(block_group->flags & extra))
6579 goto loop;
6580 }
6581
6582 have_block_group:
6583 cached = block_group_cache_done(block_group);
6584 if (unlikely(!cached)) {
6585 ret = cache_block_group(block_group, 0);
6586 BUG_ON(ret < 0);
6587 ret = 0;
6588 }
6589
6590 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6591 goto loop;
6592 if (unlikely(block_group->ro))
6593 goto loop;
6594
6595 /*
6596 * Ok we want to try and use the cluster allocator, so
6597 * lets look there
6598 */
6599 if (last_ptr) {
6600 struct btrfs_block_group_cache *used_block_group;
6601 unsigned long aligned_cluster;
6602 /*
6603 * the refill lock keeps out other
6604 * people trying to start a new cluster
6605 */
6606 used_block_group = btrfs_lock_cluster(block_group,
6607 last_ptr,
6608 delalloc);
6609 if (!used_block_group)
6610 goto refill_cluster;
6611
6612 if (used_block_group != block_group &&
6613 (used_block_group->ro ||
6614 !block_group_bits(used_block_group, flags)))
6615 goto release_cluster;
6616
6617 offset = btrfs_alloc_from_cluster(used_block_group,
6618 last_ptr,
6619 num_bytes,
6620 used_block_group->key.objectid,
6621 &max_extent_size);
6622 if (offset) {
6623 /* we have a block, we're done */
6624 spin_unlock(&last_ptr->refill_lock);
6625 trace_btrfs_reserve_extent_cluster(root,
6626 used_block_group,
6627 search_start, num_bytes);
6628 if (used_block_group != block_group) {
6629 btrfs_release_block_group(block_group,
6630 delalloc);
6631 block_group = used_block_group;
6632 }
6633 goto checks;
6634 }
6635
6636 WARN_ON(last_ptr->block_group != used_block_group);
6637 release_cluster:
6638 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6639 * set up a new clusters, so lets just skip it
6640 * and let the allocator find whatever block
6641 * it can find. If we reach this point, we
6642 * will have tried the cluster allocator
6643 * plenty of times and not have found
6644 * anything, so we are likely way too
6645 * fragmented for the clustering stuff to find
6646 * anything.
6647 *
6648 * However, if the cluster is taken from the
6649 * current block group, release the cluster
6650 * first, so that we stand a better chance of
6651 * succeeding in the unclustered
6652 * allocation. */
6653 if (loop >= LOOP_NO_EMPTY_SIZE &&
6654 used_block_group != block_group) {
6655 spin_unlock(&last_ptr->refill_lock);
6656 btrfs_release_block_group(used_block_group,
6657 delalloc);
6658 goto unclustered_alloc;
6659 }
6660
6661 /*
6662 * this cluster didn't work out, free it and
6663 * start over
6664 */
6665 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6666
6667 if (used_block_group != block_group)
6668 btrfs_release_block_group(used_block_group,
6669 delalloc);
6670 refill_cluster:
6671 if (loop >= LOOP_NO_EMPTY_SIZE) {
6672 spin_unlock(&last_ptr->refill_lock);
6673 goto unclustered_alloc;
6674 }
6675
6676 aligned_cluster = max_t(unsigned long,
6677 empty_cluster + empty_size,
6678 block_group->full_stripe_len);
6679
6680 /* allocate a cluster in this block group */
6681 ret = btrfs_find_space_cluster(root, block_group,
6682 last_ptr, search_start,
6683 num_bytes,
6684 aligned_cluster);
6685 if (ret == 0) {
6686 /*
6687 * now pull our allocation out of this
6688 * cluster
6689 */
6690 offset = btrfs_alloc_from_cluster(block_group,
6691 last_ptr,
6692 num_bytes,
6693 search_start,
6694 &max_extent_size);
6695 if (offset) {
6696 /* we found one, proceed */
6697 spin_unlock(&last_ptr->refill_lock);
6698 trace_btrfs_reserve_extent_cluster(root,
6699 block_group, search_start,
6700 num_bytes);
6701 goto checks;
6702 }
6703 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6704 && !failed_cluster_refill) {
6705 spin_unlock(&last_ptr->refill_lock);
6706
6707 failed_cluster_refill = true;
6708 wait_block_group_cache_progress(block_group,
6709 num_bytes + empty_cluster + empty_size);
6710 goto have_block_group;
6711 }
6712
6713 /*
6714 * at this point we either didn't find a cluster
6715 * or we weren't able to allocate a block from our
6716 * cluster. Free the cluster we've been trying
6717 * to use, and go to the next block group
6718 */
6719 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6720 spin_unlock(&last_ptr->refill_lock);
6721 goto loop;
6722 }
6723
6724 unclustered_alloc:
6725 spin_lock(&block_group->free_space_ctl->tree_lock);
6726 if (cached &&
6727 block_group->free_space_ctl->free_space <
6728 num_bytes + empty_cluster + empty_size) {
6729 if (block_group->free_space_ctl->free_space >
6730 max_extent_size)
6731 max_extent_size =
6732 block_group->free_space_ctl->free_space;
6733 spin_unlock(&block_group->free_space_ctl->tree_lock);
6734 goto loop;
6735 }
6736 spin_unlock(&block_group->free_space_ctl->tree_lock);
6737
6738 offset = btrfs_find_space_for_alloc(block_group, search_start,
6739 num_bytes, empty_size,
6740 &max_extent_size);
6741 /*
6742 * If we didn't find a chunk, and we haven't failed on this
6743 * block group before, and this block group is in the middle of
6744 * caching and we are ok with waiting, then go ahead and wait
6745 * for progress to be made, and set failed_alloc to true.
6746 *
6747 * If failed_alloc is true then we've already waited on this
6748 * block group once and should move on to the next block group.
6749 */
6750 if (!offset && !failed_alloc && !cached &&
6751 loop > LOOP_CACHING_NOWAIT) {
6752 wait_block_group_cache_progress(block_group,
6753 num_bytes + empty_size);
6754 failed_alloc = true;
6755 goto have_block_group;
6756 } else if (!offset) {
6757 if (!cached)
6758 have_caching_bg = true;
6759 goto loop;
6760 }
6761 checks:
6762 search_start = ALIGN(offset, root->stripesize);
6763
6764 /* move on to the next group */
6765 if (search_start + num_bytes >
6766 block_group->key.objectid + block_group->key.offset) {
6767 btrfs_add_free_space(block_group, offset, num_bytes);
6768 goto loop;
6769 }
6770
6771 if (offset < search_start)
6772 btrfs_add_free_space(block_group, offset,
6773 search_start - offset);
6774 BUG_ON(offset > search_start);
6775
6776 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6777 alloc_type, delalloc);
6778 if (ret == -EAGAIN) {
6779 btrfs_add_free_space(block_group, offset, num_bytes);
6780 goto loop;
6781 }
6782
6783 /* we are all good, lets return */
6784 ins->objectid = search_start;
6785 ins->offset = num_bytes;
6786
6787 trace_btrfs_reserve_extent(orig_root, block_group,
6788 search_start, num_bytes);
6789 btrfs_release_block_group(block_group, delalloc);
6790 break;
6791 loop:
6792 failed_cluster_refill = false;
6793 failed_alloc = false;
6794 BUG_ON(index != get_block_group_index(block_group));
6795 btrfs_release_block_group(block_group, delalloc);
6796 }
6797 up_read(&space_info->groups_sem);
6798
6799 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6800 goto search;
6801
6802 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6803 goto search;
6804
6805 /*
6806 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6807 * caching kthreads as we move along
6808 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6809 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6810 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6811 * again
6812 */
6813 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6814 index = 0;
6815 loop++;
6816 if (loop == LOOP_ALLOC_CHUNK) {
6817 struct btrfs_trans_handle *trans;
6818 int exist = 0;
6819
6820 trans = current->journal_info;
6821 if (trans)
6822 exist = 1;
6823 else
6824 trans = btrfs_join_transaction(root);
6825
6826 if (IS_ERR(trans)) {
6827 ret = PTR_ERR(trans);
6828 goto out;
6829 }
6830
6831 ret = do_chunk_alloc(trans, root, flags,
6832 CHUNK_ALLOC_FORCE);
6833 /*
6834 * Do not bail out on ENOSPC since we
6835 * can do more things.
6836 */
6837 if (ret < 0 && ret != -ENOSPC)
6838 btrfs_abort_transaction(trans,
6839 root, ret);
6840 else
6841 ret = 0;
6842 if (!exist)
6843 btrfs_end_transaction(trans, root);
6844 if (ret)
6845 goto out;
6846 }
6847
6848 if (loop == LOOP_NO_EMPTY_SIZE) {
6849 empty_size = 0;
6850 empty_cluster = 0;
6851 }
6852
6853 goto search;
6854 } else if (!ins->objectid) {
6855 ret = -ENOSPC;
6856 } else if (ins->objectid) {
6857 ret = 0;
6858 }
6859 out:
6860 if (ret == -ENOSPC)
6861 ins->offset = max_extent_size;
6862 return ret;
6863 }
6864
6865 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6866 int dump_block_groups)
6867 {
6868 struct btrfs_block_group_cache *cache;
6869 int index = 0;
6870
6871 spin_lock(&info->lock);
6872 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6873 info->flags,
6874 info->total_bytes - info->bytes_used - info->bytes_pinned -
6875 info->bytes_reserved - info->bytes_readonly,
6876 (info->full) ? "" : "not ");
6877 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6878 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6879 info->total_bytes, info->bytes_used, info->bytes_pinned,
6880 info->bytes_reserved, info->bytes_may_use,
6881 info->bytes_readonly);
6882 spin_unlock(&info->lock);
6883
6884 if (!dump_block_groups)
6885 return;
6886
6887 down_read(&info->groups_sem);
6888 again:
6889 list_for_each_entry(cache, &info->block_groups[index], list) {
6890 spin_lock(&cache->lock);
6891 printk(KERN_INFO "BTRFS: "
6892 "block group %llu has %llu bytes, "
6893 "%llu used %llu pinned %llu reserved %s\n",
6894 cache->key.objectid, cache->key.offset,
6895 btrfs_block_group_used(&cache->item), cache->pinned,
6896 cache->reserved, cache->ro ? "[readonly]" : "");
6897 btrfs_dump_free_space(cache, bytes);
6898 spin_unlock(&cache->lock);
6899 }
6900 if (++index < BTRFS_NR_RAID_TYPES)
6901 goto again;
6902 up_read(&info->groups_sem);
6903 }
6904
6905 int btrfs_reserve_extent(struct btrfs_root *root,
6906 u64 num_bytes, u64 min_alloc_size,
6907 u64 empty_size, u64 hint_byte,
6908 struct btrfs_key *ins, int is_data, int delalloc)
6909 {
6910 bool final_tried = false;
6911 u64 flags;
6912 int ret;
6913
6914 flags = btrfs_get_alloc_profile(root, is_data);
6915 again:
6916 WARN_ON(num_bytes < root->sectorsize);
6917 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6918 flags, delalloc);
6919
6920 if (ret == -ENOSPC) {
6921 if (!final_tried && ins->offset) {
6922 num_bytes = min(num_bytes >> 1, ins->offset);
6923 num_bytes = round_down(num_bytes, root->sectorsize);
6924 num_bytes = max(num_bytes, min_alloc_size);
6925 if (num_bytes == min_alloc_size)
6926 final_tried = true;
6927 goto again;
6928 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6929 struct btrfs_space_info *sinfo;
6930
6931 sinfo = __find_space_info(root->fs_info, flags);
6932 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6933 flags, num_bytes);
6934 if (sinfo)
6935 dump_space_info(sinfo, num_bytes, 1);
6936 }
6937 }
6938
6939 return ret;
6940 }
6941
6942 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6943 u64 start, u64 len,
6944 int pin, int delalloc)
6945 {
6946 struct btrfs_block_group_cache *cache;
6947 int ret = 0;
6948
6949 cache = btrfs_lookup_block_group(root->fs_info, start);
6950 if (!cache) {
6951 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6952 start);
6953 return -ENOSPC;
6954 }
6955
6956 if (btrfs_test_opt(root, DISCARD))
6957 ret = btrfs_discard_extent(root, start, len, NULL);
6958
6959 if (pin)
6960 pin_down_extent(root, cache, start, len, 1);
6961 else {
6962 btrfs_add_free_space(cache, start, len);
6963 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6964 }
6965 btrfs_put_block_group(cache);
6966
6967 trace_btrfs_reserved_extent_free(root, start, len);
6968
6969 return ret;
6970 }
6971
6972 int btrfs_free_reserved_extent(struct btrfs_root *root,
6973 u64 start, u64 len, int delalloc)
6974 {
6975 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6976 }
6977
6978 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6979 u64 start, u64 len)
6980 {
6981 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6982 }
6983
6984 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6985 struct btrfs_root *root,
6986 u64 parent, u64 root_objectid,
6987 u64 flags, u64 owner, u64 offset,
6988 struct btrfs_key *ins, int ref_mod)
6989 {
6990 int ret;
6991 struct btrfs_fs_info *fs_info = root->fs_info;
6992 struct btrfs_extent_item *extent_item;
6993 struct btrfs_extent_inline_ref *iref;
6994 struct btrfs_path *path;
6995 struct extent_buffer *leaf;
6996 int type;
6997 u32 size;
6998
6999 if (parent > 0)
7000 type = BTRFS_SHARED_DATA_REF_KEY;
7001 else
7002 type = BTRFS_EXTENT_DATA_REF_KEY;
7003
7004 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7005
7006 path = btrfs_alloc_path();
7007 if (!path)
7008 return -ENOMEM;
7009
7010 path->leave_spinning = 1;
7011 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7012 ins, size);
7013 if (ret) {
7014 btrfs_free_path(path);
7015 return ret;
7016 }
7017
7018 leaf = path->nodes[0];
7019 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7020 struct btrfs_extent_item);
7021 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7022 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7023 btrfs_set_extent_flags(leaf, extent_item,
7024 flags | BTRFS_EXTENT_FLAG_DATA);
7025
7026 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7027 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7028 if (parent > 0) {
7029 struct btrfs_shared_data_ref *ref;
7030 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7031 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7032 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7033 } else {
7034 struct btrfs_extent_data_ref *ref;
7035 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7036 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7037 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7038 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7039 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7040 }
7041
7042 btrfs_mark_buffer_dirty(path->nodes[0]);
7043 btrfs_free_path(path);
7044
7045 /* Always set parent to 0 here since its exclusive anyway. */
7046 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7047 ins->objectid, ins->offset,
7048 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7049 if (ret)
7050 return ret;
7051
7052 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7053 if (ret) { /* -ENOENT, logic error */
7054 btrfs_err(fs_info, "update block group failed for %llu %llu",
7055 ins->objectid, ins->offset);
7056 BUG();
7057 }
7058 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7059 return ret;
7060 }
7061
7062 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7063 struct btrfs_root *root,
7064 u64 parent, u64 root_objectid,
7065 u64 flags, struct btrfs_disk_key *key,
7066 int level, struct btrfs_key *ins,
7067 int no_quota)
7068 {
7069 int ret;
7070 struct btrfs_fs_info *fs_info = root->fs_info;
7071 struct btrfs_extent_item *extent_item;
7072 struct btrfs_tree_block_info *block_info;
7073 struct btrfs_extent_inline_ref *iref;
7074 struct btrfs_path *path;
7075 struct extent_buffer *leaf;
7076 u32 size = sizeof(*extent_item) + sizeof(*iref);
7077 u64 num_bytes = ins->offset;
7078 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7079 SKINNY_METADATA);
7080
7081 if (!skinny_metadata)
7082 size += sizeof(*block_info);
7083
7084 path = btrfs_alloc_path();
7085 if (!path) {
7086 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7087 root->nodesize);
7088 return -ENOMEM;
7089 }
7090
7091 path->leave_spinning = 1;
7092 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7093 ins, size);
7094 if (ret) {
7095 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7096 root->nodesize);
7097 btrfs_free_path(path);
7098 return ret;
7099 }
7100
7101 leaf = path->nodes[0];
7102 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7103 struct btrfs_extent_item);
7104 btrfs_set_extent_refs(leaf, extent_item, 1);
7105 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7106 btrfs_set_extent_flags(leaf, extent_item,
7107 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7108
7109 if (skinny_metadata) {
7110 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7111 num_bytes = root->nodesize;
7112 } else {
7113 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7114 btrfs_set_tree_block_key(leaf, block_info, key);
7115 btrfs_set_tree_block_level(leaf, block_info, level);
7116 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7117 }
7118
7119 if (parent > 0) {
7120 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7121 btrfs_set_extent_inline_ref_type(leaf, iref,
7122 BTRFS_SHARED_BLOCK_REF_KEY);
7123 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7124 } else {
7125 btrfs_set_extent_inline_ref_type(leaf, iref,
7126 BTRFS_TREE_BLOCK_REF_KEY);
7127 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7128 }
7129
7130 btrfs_mark_buffer_dirty(leaf);
7131 btrfs_free_path(path);
7132
7133 if (!no_quota) {
7134 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7135 ins->objectid, num_bytes,
7136 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7137 if (ret)
7138 return ret;
7139 }
7140
7141 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7142 1);
7143 if (ret) { /* -ENOENT, logic error */
7144 btrfs_err(fs_info, "update block group failed for %llu %llu",
7145 ins->objectid, ins->offset);
7146 BUG();
7147 }
7148
7149 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7150 return ret;
7151 }
7152
7153 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7154 struct btrfs_root *root,
7155 u64 root_objectid, u64 owner,
7156 u64 offset, struct btrfs_key *ins)
7157 {
7158 int ret;
7159
7160 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7161
7162 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7163 ins->offset, 0,
7164 root_objectid, owner, offset,
7165 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7166 return ret;
7167 }
7168
7169 /*
7170 * this is used by the tree logging recovery code. It records that
7171 * an extent has been allocated and makes sure to clear the free
7172 * space cache bits as well
7173 */
7174 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7175 struct btrfs_root *root,
7176 u64 root_objectid, u64 owner, u64 offset,
7177 struct btrfs_key *ins)
7178 {
7179 int ret;
7180 struct btrfs_block_group_cache *block_group;
7181
7182 /*
7183 * Mixed block groups will exclude before processing the log so we only
7184 * need to do the exlude dance if this fs isn't mixed.
7185 */
7186 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7187 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7188 if (ret)
7189 return ret;
7190 }
7191
7192 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7193 if (!block_group)
7194 return -EINVAL;
7195
7196 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7197 RESERVE_ALLOC_NO_ACCOUNT, 0);
7198 BUG_ON(ret); /* logic error */
7199 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7200 0, owner, offset, ins, 1);
7201 btrfs_put_block_group(block_group);
7202 return ret;
7203 }
7204
7205 static struct extent_buffer *
7206 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7207 u64 bytenr, int level)
7208 {
7209 struct extent_buffer *buf;
7210
7211 buf = btrfs_find_create_tree_block(root, bytenr);
7212 if (!buf)
7213 return ERR_PTR(-ENOMEM);
7214 btrfs_set_header_generation(buf, trans->transid);
7215 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7216 btrfs_tree_lock(buf);
7217 clean_tree_block(trans, root, buf);
7218 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7219
7220 btrfs_set_lock_blocking(buf);
7221 btrfs_set_buffer_uptodate(buf);
7222
7223 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7224 buf->log_index = root->log_transid % 2;
7225 /*
7226 * we allow two log transactions at a time, use different
7227 * EXENT bit to differentiate dirty pages.
7228 */
7229 if (buf->log_index == 0)
7230 set_extent_dirty(&root->dirty_log_pages, buf->start,
7231 buf->start + buf->len - 1, GFP_NOFS);
7232 else
7233 set_extent_new(&root->dirty_log_pages, buf->start,
7234 buf->start + buf->len - 1, GFP_NOFS);
7235 } else {
7236 buf->log_index = -1;
7237 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7238 buf->start + buf->len - 1, GFP_NOFS);
7239 }
7240 trans->blocks_used++;
7241 /* this returns a buffer locked for blocking */
7242 return buf;
7243 }
7244
7245 static struct btrfs_block_rsv *
7246 use_block_rsv(struct btrfs_trans_handle *trans,
7247 struct btrfs_root *root, u32 blocksize)
7248 {
7249 struct btrfs_block_rsv *block_rsv;
7250 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7251 int ret;
7252 bool global_updated = false;
7253
7254 block_rsv = get_block_rsv(trans, root);
7255
7256 if (unlikely(block_rsv->size == 0))
7257 goto try_reserve;
7258 again:
7259 ret = block_rsv_use_bytes(block_rsv, blocksize);
7260 if (!ret)
7261 return block_rsv;
7262
7263 if (block_rsv->failfast)
7264 return ERR_PTR(ret);
7265
7266 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7267 global_updated = true;
7268 update_global_block_rsv(root->fs_info);
7269 goto again;
7270 }
7271
7272 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7273 static DEFINE_RATELIMIT_STATE(_rs,
7274 DEFAULT_RATELIMIT_INTERVAL * 10,
7275 /*DEFAULT_RATELIMIT_BURST*/ 1);
7276 if (__ratelimit(&_rs))
7277 WARN(1, KERN_DEBUG
7278 "BTRFS: block rsv returned %d\n", ret);
7279 }
7280 try_reserve:
7281 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7282 BTRFS_RESERVE_NO_FLUSH);
7283 if (!ret)
7284 return block_rsv;
7285 /*
7286 * If we couldn't reserve metadata bytes try and use some from
7287 * the global reserve if its space type is the same as the global
7288 * reservation.
7289 */
7290 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7291 block_rsv->space_info == global_rsv->space_info) {
7292 ret = block_rsv_use_bytes(global_rsv, blocksize);
7293 if (!ret)
7294 return global_rsv;
7295 }
7296 return ERR_PTR(ret);
7297 }
7298
7299 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7300 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7301 {
7302 block_rsv_add_bytes(block_rsv, blocksize, 0);
7303 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7304 }
7305
7306 /*
7307 * finds a free extent and does all the dirty work required for allocation
7308 * returns the key for the extent through ins, and a tree buffer for
7309 * the first block of the extent through buf.
7310 *
7311 * returns the tree buffer or NULL.
7312 */
7313 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7314 struct btrfs_root *root,
7315 u64 parent, u64 root_objectid,
7316 struct btrfs_disk_key *key, int level,
7317 u64 hint, u64 empty_size)
7318 {
7319 struct btrfs_key ins;
7320 struct btrfs_block_rsv *block_rsv;
7321 struct extent_buffer *buf;
7322 u64 flags = 0;
7323 int ret;
7324 u32 blocksize = root->nodesize;
7325 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7326 SKINNY_METADATA);
7327
7328 if (btrfs_test_is_dummy_root(root)) {
7329 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7330 level);
7331 if (!IS_ERR(buf))
7332 root->alloc_bytenr += blocksize;
7333 return buf;
7334 }
7335
7336 block_rsv = use_block_rsv(trans, root, blocksize);
7337 if (IS_ERR(block_rsv))
7338 return ERR_CAST(block_rsv);
7339
7340 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7341 empty_size, hint, &ins, 0, 0);
7342 if (ret) {
7343 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7344 return ERR_PTR(ret);
7345 }
7346
7347 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7348 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7349
7350 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7351 if (parent == 0)
7352 parent = ins.objectid;
7353 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7354 } else
7355 BUG_ON(parent > 0);
7356
7357 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7358 struct btrfs_delayed_extent_op *extent_op;
7359 extent_op = btrfs_alloc_delayed_extent_op();
7360 BUG_ON(!extent_op); /* -ENOMEM */
7361 if (key)
7362 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7363 else
7364 memset(&extent_op->key, 0, sizeof(extent_op->key));
7365 extent_op->flags_to_set = flags;
7366 if (skinny_metadata)
7367 extent_op->update_key = 0;
7368 else
7369 extent_op->update_key = 1;
7370 extent_op->update_flags = 1;
7371 extent_op->is_data = 0;
7372 extent_op->level = level;
7373
7374 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7375 ins.objectid,
7376 ins.offset, parent, root_objectid,
7377 level, BTRFS_ADD_DELAYED_EXTENT,
7378 extent_op, 0);
7379 BUG_ON(ret); /* -ENOMEM */
7380 }
7381 return buf;
7382 }
7383
7384 struct walk_control {
7385 u64 refs[BTRFS_MAX_LEVEL];
7386 u64 flags[BTRFS_MAX_LEVEL];
7387 struct btrfs_key update_progress;
7388 int stage;
7389 int level;
7390 int shared_level;
7391 int update_ref;
7392 int keep_locks;
7393 int reada_slot;
7394 int reada_count;
7395 int for_reloc;
7396 };
7397
7398 #define DROP_REFERENCE 1
7399 #define UPDATE_BACKREF 2
7400
7401 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7402 struct btrfs_root *root,
7403 struct walk_control *wc,
7404 struct btrfs_path *path)
7405 {
7406 u64 bytenr;
7407 u64 generation;
7408 u64 refs;
7409 u64 flags;
7410 u32 nritems;
7411 u32 blocksize;
7412 struct btrfs_key key;
7413 struct extent_buffer *eb;
7414 int ret;
7415 int slot;
7416 int nread = 0;
7417
7418 if (path->slots[wc->level] < wc->reada_slot) {
7419 wc->reada_count = wc->reada_count * 2 / 3;
7420 wc->reada_count = max(wc->reada_count, 2);
7421 } else {
7422 wc->reada_count = wc->reada_count * 3 / 2;
7423 wc->reada_count = min_t(int, wc->reada_count,
7424 BTRFS_NODEPTRS_PER_BLOCK(root));
7425 }
7426
7427 eb = path->nodes[wc->level];
7428 nritems = btrfs_header_nritems(eb);
7429 blocksize = root->nodesize;
7430
7431 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7432 if (nread >= wc->reada_count)
7433 break;
7434
7435 cond_resched();
7436 bytenr = btrfs_node_blockptr(eb, slot);
7437 generation = btrfs_node_ptr_generation(eb, slot);
7438
7439 if (slot == path->slots[wc->level])
7440 goto reada;
7441
7442 if (wc->stage == UPDATE_BACKREF &&
7443 generation <= root->root_key.offset)
7444 continue;
7445
7446 /* We don't lock the tree block, it's OK to be racy here */
7447 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7448 wc->level - 1, 1, &refs,
7449 &flags);
7450 /* We don't care about errors in readahead. */
7451 if (ret < 0)
7452 continue;
7453 BUG_ON(refs == 0);
7454
7455 if (wc->stage == DROP_REFERENCE) {
7456 if (refs == 1)
7457 goto reada;
7458
7459 if (wc->level == 1 &&
7460 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7461 continue;
7462 if (!wc->update_ref ||
7463 generation <= root->root_key.offset)
7464 continue;
7465 btrfs_node_key_to_cpu(eb, &key, slot);
7466 ret = btrfs_comp_cpu_keys(&key,
7467 &wc->update_progress);
7468 if (ret < 0)
7469 continue;
7470 } else {
7471 if (wc->level == 1 &&
7472 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7473 continue;
7474 }
7475 reada:
7476 readahead_tree_block(root, bytenr);
7477 nread++;
7478 }
7479 wc->reada_slot = slot;
7480 }
7481
7482 static int account_leaf_items(struct btrfs_trans_handle *trans,
7483 struct btrfs_root *root,
7484 struct extent_buffer *eb)
7485 {
7486 int nr = btrfs_header_nritems(eb);
7487 int i, extent_type, ret;
7488 struct btrfs_key key;
7489 struct btrfs_file_extent_item *fi;
7490 u64 bytenr, num_bytes;
7491
7492 for (i = 0; i < nr; i++) {
7493 btrfs_item_key_to_cpu(eb, &key, i);
7494
7495 if (key.type != BTRFS_EXTENT_DATA_KEY)
7496 continue;
7497
7498 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7499 /* filter out non qgroup-accountable extents */
7500 extent_type = btrfs_file_extent_type(eb, fi);
7501
7502 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7503 continue;
7504
7505 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7506 if (!bytenr)
7507 continue;
7508
7509 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7510
7511 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7512 root->objectid,
7513 bytenr, num_bytes,
7514 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7515 if (ret)
7516 return ret;
7517 }
7518 return 0;
7519 }
7520
7521 /*
7522 * Walk up the tree from the bottom, freeing leaves and any interior
7523 * nodes which have had all slots visited. If a node (leaf or
7524 * interior) is freed, the node above it will have it's slot
7525 * incremented. The root node will never be freed.
7526 *
7527 * At the end of this function, we should have a path which has all
7528 * slots incremented to the next position for a search. If we need to
7529 * read a new node it will be NULL and the node above it will have the
7530 * correct slot selected for a later read.
7531 *
7532 * If we increment the root nodes slot counter past the number of
7533 * elements, 1 is returned to signal completion of the search.
7534 */
7535 static int adjust_slots_upwards(struct btrfs_root *root,
7536 struct btrfs_path *path, int root_level)
7537 {
7538 int level = 0;
7539 int nr, slot;
7540 struct extent_buffer *eb;
7541
7542 if (root_level == 0)
7543 return 1;
7544
7545 while (level <= root_level) {
7546 eb = path->nodes[level];
7547 nr = btrfs_header_nritems(eb);
7548 path->slots[level]++;
7549 slot = path->slots[level];
7550 if (slot >= nr || level == 0) {
7551 /*
7552 * Don't free the root - we will detect this
7553 * condition after our loop and return a
7554 * positive value for caller to stop walking the tree.
7555 */
7556 if (level != root_level) {
7557 btrfs_tree_unlock_rw(eb, path->locks[level]);
7558 path->locks[level] = 0;
7559
7560 free_extent_buffer(eb);
7561 path->nodes[level] = NULL;
7562 path->slots[level] = 0;
7563 }
7564 } else {
7565 /*
7566 * We have a valid slot to walk back down
7567 * from. Stop here so caller can process these
7568 * new nodes.
7569 */
7570 break;
7571 }
7572
7573 level++;
7574 }
7575
7576 eb = path->nodes[root_level];
7577 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7578 return 1;
7579
7580 return 0;
7581 }
7582
7583 /*
7584 * root_eb is the subtree root and is locked before this function is called.
7585 */
7586 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7587 struct btrfs_root *root,
7588 struct extent_buffer *root_eb,
7589 u64 root_gen,
7590 int root_level)
7591 {
7592 int ret = 0;
7593 int level;
7594 struct extent_buffer *eb = root_eb;
7595 struct btrfs_path *path = NULL;
7596
7597 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7598 BUG_ON(root_eb == NULL);
7599
7600 if (!root->fs_info->quota_enabled)
7601 return 0;
7602
7603 if (!extent_buffer_uptodate(root_eb)) {
7604 ret = btrfs_read_buffer(root_eb, root_gen);
7605 if (ret)
7606 goto out;
7607 }
7608
7609 if (root_level == 0) {
7610 ret = account_leaf_items(trans, root, root_eb);
7611 goto out;
7612 }
7613
7614 path = btrfs_alloc_path();
7615 if (!path)
7616 return -ENOMEM;
7617
7618 /*
7619 * Walk down the tree. Missing extent blocks are filled in as
7620 * we go. Metadata is accounted every time we read a new
7621 * extent block.
7622 *
7623 * When we reach a leaf, we account for file extent items in it,
7624 * walk back up the tree (adjusting slot pointers as we go)
7625 * and restart the search process.
7626 */
7627 extent_buffer_get(root_eb); /* For path */
7628 path->nodes[root_level] = root_eb;
7629 path->slots[root_level] = 0;
7630 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7631 walk_down:
7632 level = root_level;
7633 while (level >= 0) {
7634 if (path->nodes[level] == NULL) {
7635 int parent_slot;
7636 u64 child_gen;
7637 u64 child_bytenr;
7638
7639 /* We need to get child blockptr/gen from
7640 * parent before we can read it. */
7641 eb = path->nodes[level + 1];
7642 parent_slot = path->slots[level + 1];
7643 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7644 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7645
7646 eb = read_tree_block(root, child_bytenr, child_gen);
7647 if (!eb || !extent_buffer_uptodate(eb)) {
7648 ret = -EIO;
7649 goto out;
7650 }
7651
7652 path->nodes[level] = eb;
7653 path->slots[level] = 0;
7654
7655 btrfs_tree_read_lock(eb);
7656 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7657 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7658
7659 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7660 root->objectid,
7661 child_bytenr,
7662 root->nodesize,
7663 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7664 0);
7665 if (ret)
7666 goto out;
7667
7668 }
7669
7670 if (level == 0) {
7671 ret = account_leaf_items(trans, root, path->nodes[level]);
7672 if (ret)
7673 goto out;
7674
7675 /* Nonzero return here means we completed our search */
7676 ret = adjust_slots_upwards(root, path, root_level);
7677 if (ret)
7678 break;
7679
7680 /* Restart search with new slots */
7681 goto walk_down;
7682 }
7683
7684 level--;
7685 }
7686
7687 ret = 0;
7688 out:
7689 btrfs_free_path(path);
7690
7691 return ret;
7692 }
7693
7694 /*
7695 * helper to process tree block while walking down the tree.
7696 *
7697 * when wc->stage == UPDATE_BACKREF, this function updates
7698 * back refs for pointers in the block.
7699 *
7700 * NOTE: return value 1 means we should stop walking down.
7701 */
7702 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7703 struct btrfs_root *root,
7704 struct btrfs_path *path,
7705 struct walk_control *wc, int lookup_info)
7706 {
7707 int level = wc->level;
7708 struct extent_buffer *eb = path->nodes[level];
7709 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7710 int ret;
7711
7712 if (wc->stage == UPDATE_BACKREF &&
7713 btrfs_header_owner(eb) != root->root_key.objectid)
7714 return 1;
7715
7716 /*
7717 * when reference count of tree block is 1, it won't increase
7718 * again. once full backref flag is set, we never clear it.
7719 */
7720 if (lookup_info &&
7721 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7722 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7723 BUG_ON(!path->locks[level]);
7724 ret = btrfs_lookup_extent_info(trans, root,
7725 eb->start, level, 1,
7726 &wc->refs[level],
7727 &wc->flags[level]);
7728 BUG_ON(ret == -ENOMEM);
7729 if (ret)
7730 return ret;
7731 BUG_ON(wc->refs[level] == 0);
7732 }
7733
7734 if (wc->stage == DROP_REFERENCE) {
7735 if (wc->refs[level] > 1)
7736 return 1;
7737
7738 if (path->locks[level] && !wc->keep_locks) {
7739 btrfs_tree_unlock_rw(eb, path->locks[level]);
7740 path->locks[level] = 0;
7741 }
7742 return 0;
7743 }
7744
7745 /* wc->stage == UPDATE_BACKREF */
7746 if (!(wc->flags[level] & flag)) {
7747 BUG_ON(!path->locks[level]);
7748 ret = btrfs_inc_ref(trans, root, eb, 1);
7749 BUG_ON(ret); /* -ENOMEM */
7750 ret = btrfs_dec_ref(trans, root, eb, 0);
7751 BUG_ON(ret); /* -ENOMEM */
7752 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7753 eb->len, flag,
7754 btrfs_header_level(eb), 0);
7755 BUG_ON(ret); /* -ENOMEM */
7756 wc->flags[level] |= flag;
7757 }
7758
7759 /*
7760 * the block is shared by multiple trees, so it's not good to
7761 * keep the tree lock
7762 */
7763 if (path->locks[level] && level > 0) {
7764 btrfs_tree_unlock_rw(eb, path->locks[level]);
7765 path->locks[level] = 0;
7766 }
7767 return 0;
7768 }
7769
7770 /*
7771 * helper to process tree block pointer.
7772 *
7773 * when wc->stage == DROP_REFERENCE, this function checks
7774 * reference count of the block pointed to. if the block
7775 * is shared and we need update back refs for the subtree
7776 * rooted at the block, this function changes wc->stage to
7777 * UPDATE_BACKREF. if the block is shared and there is no
7778 * need to update back, this function drops the reference
7779 * to the block.
7780 *
7781 * NOTE: return value 1 means we should stop walking down.
7782 */
7783 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7784 struct btrfs_root *root,
7785 struct btrfs_path *path,
7786 struct walk_control *wc, int *lookup_info)
7787 {
7788 u64 bytenr;
7789 u64 generation;
7790 u64 parent;
7791 u32 blocksize;
7792 struct btrfs_key key;
7793 struct extent_buffer *next;
7794 int level = wc->level;
7795 int reada = 0;
7796 int ret = 0;
7797 bool need_account = false;
7798
7799 generation = btrfs_node_ptr_generation(path->nodes[level],
7800 path->slots[level]);
7801 /*
7802 * if the lower level block was created before the snapshot
7803 * was created, we know there is no need to update back refs
7804 * for the subtree
7805 */
7806 if (wc->stage == UPDATE_BACKREF &&
7807 generation <= root->root_key.offset) {
7808 *lookup_info = 1;
7809 return 1;
7810 }
7811
7812 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7813 blocksize = root->nodesize;
7814
7815 next = btrfs_find_tree_block(root, bytenr);
7816 if (!next) {
7817 next = btrfs_find_create_tree_block(root, bytenr);
7818 if (!next)
7819 return -ENOMEM;
7820 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7821 level - 1);
7822 reada = 1;
7823 }
7824 btrfs_tree_lock(next);
7825 btrfs_set_lock_blocking(next);
7826
7827 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7828 &wc->refs[level - 1],
7829 &wc->flags[level - 1]);
7830 if (ret < 0) {
7831 btrfs_tree_unlock(next);
7832 return ret;
7833 }
7834
7835 if (unlikely(wc->refs[level - 1] == 0)) {
7836 btrfs_err(root->fs_info, "Missing references.");
7837 BUG();
7838 }
7839 *lookup_info = 0;
7840
7841 if (wc->stage == DROP_REFERENCE) {
7842 if (wc->refs[level - 1] > 1) {
7843 need_account = true;
7844 if (level == 1 &&
7845 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7846 goto skip;
7847
7848 if (!wc->update_ref ||
7849 generation <= root->root_key.offset)
7850 goto skip;
7851
7852 btrfs_node_key_to_cpu(path->nodes[level], &key,
7853 path->slots[level]);
7854 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7855 if (ret < 0)
7856 goto skip;
7857
7858 wc->stage = UPDATE_BACKREF;
7859 wc->shared_level = level - 1;
7860 }
7861 } else {
7862 if (level == 1 &&
7863 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7864 goto skip;
7865 }
7866
7867 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7868 btrfs_tree_unlock(next);
7869 free_extent_buffer(next);
7870 next = NULL;
7871 *lookup_info = 1;
7872 }
7873
7874 if (!next) {
7875 if (reada && level == 1)
7876 reada_walk_down(trans, root, wc, path);
7877 next = read_tree_block(root, bytenr, generation);
7878 if (!next || !extent_buffer_uptodate(next)) {
7879 free_extent_buffer(next);
7880 return -EIO;
7881 }
7882 btrfs_tree_lock(next);
7883 btrfs_set_lock_blocking(next);
7884 }
7885
7886 level--;
7887 BUG_ON(level != btrfs_header_level(next));
7888 path->nodes[level] = next;
7889 path->slots[level] = 0;
7890 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7891 wc->level = level;
7892 if (wc->level == 1)
7893 wc->reada_slot = 0;
7894 return 0;
7895 skip:
7896 wc->refs[level - 1] = 0;
7897 wc->flags[level - 1] = 0;
7898 if (wc->stage == DROP_REFERENCE) {
7899 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7900 parent = path->nodes[level]->start;
7901 } else {
7902 BUG_ON(root->root_key.objectid !=
7903 btrfs_header_owner(path->nodes[level]));
7904 parent = 0;
7905 }
7906
7907 if (need_account) {
7908 ret = account_shared_subtree(trans, root, next,
7909 generation, level - 1);
7910 if (ret) {
7911 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7912 "%d accounting shared subtree. Quota "
7913 "is out of sync, rescan required.\n",
7914 root->fs_info->sb->s_id, ret);
7915 }
7916 }
7917 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7918 root->root_key.objectid, level - 1, 0, 0);
7919 BUG_ON(ret); /* -ENOMEM */
7920 }
7921 btrfs_tree_unlock(next);
7922 free_extent_buffer(next);
7923 *lookup_info = 1;
7924 return 1;
7925 }
7926
7927 /*
7928 * helper to process tree block while walking up the tree.
7929 *
7930 * when wc->stage == DROP_REFERENCE, this function drops
7931 * reference count on the block.
7932 *
7933 * when wc->stage == UPDATE_BACKREF, this function changes
7934 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7935 * to UPDATE_BACKREF previously while processing the block.
7936 *
7937 * NOTE: return value 1 means we should stop walking up.
7938 */
7939 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7940 struct btrfs_root *root,
7941 struct btrfs_path *path,
7942 struct walk_control *wc)
7943 {
7944 int ret;
7945 int level = wc->level;
7946 struct extent_buffer *eb = path->nodes[level];
7947 u64 parent = 0;
7948
7949 if (wc->stage == UPDATE_BACKREF) {
7950 BUG_ON(wc->shared_level < level);
7951 if (level < wc->shared_level)
7952 goto out;
7953
7954 ret = find_next_key(path, level + 1, &wc->update_progress);
7955 if (ret > 0)
7956 wc->update_ref = 0;
7957
7958 wc->stage = DROP_REFERENCE;
7959 wc->shared_level = -1;
7960 path->slots[level] = 0;
7961
7962 /*
7963 * check reference count again if the block isn't locked.
7964 * we should start walking down the tree again if reference
7965 * count is one.
7966 */
7967 if (!path->locks[level]) {
7968 BUG_ON(level == 0);
7969 btrfs_tree_lock(eb);
7970 btrfs_set_lock_blocking(eb);
7971 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7972
7973 ret = btrfs_lookup_extent_info(trans, root,
7974 eb->start, level, 1,
7975 &wc->refs[level],
7976 &wc->flags[level]);
7977 if (ret < 0) {
7978 btrfs_tree_unlock_rw(eb, path->locks[level]);
7979 path->locks[level] = 0;
7980 return ret;
7981 }
7982 BUG_ON(wc->refs[level] == 0);
7983 if (wc->refs[level] == 1) {
7984 btrfs_tree_unlock_rw(eb, path->locks[level]);
7985 path->locks[level] = 0;
7986 return 1;
7987 }
7988 }
7989 }
7990
7991 /* wc->stage == DROP_REFERENCE */
7992 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7993
7994 if (wc->refs[level] == 1) {
7995 if (level == 0) {
7996 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7997 ret = btrfs_dec_ref(trans, root, eb, 1);
7998 else
7999 ret = btrfs_dec_ref(trans, root, eb, 0);
8000 BUG_ON(ret); /* -ENOMEM */
8001 ret = account_leaf_items(trans, root, eb);
8002 if (ret) {
8003 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8004 "%d accounting leaf items. Quota "
8005 "is out of sync, rescan required.\n",
8006 root->fs_info->sb->s_id, ret);
8007 }
8008 }
8009 /* make block locked assertion in clean_tree_block happy */
8010 if (!path->locks[level] &&
8011 btrfs_header_generation(eb) == trans->transid) {
8012 btrfs_tree_lock(eb);
8013 btrfs_set_lock_blocking(eb);
8014 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8015 }
8016 clean_tree_block(trans, root, eb);
8017 }
8018
8019 if (eb == root->node) {
8020 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8021 parent = eb->start;
8022 else
8023 BUG_ON(root->root_key.objectid !=
8024 btrfs_header_owner(eb));
8025 } else {
8026 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8027 parent = path->nodes[level + 1]->start;
8028 else
8029 BUG_ON(root->root_key.objectid !=
8030 btrfs_header_owner(path->nodes[level + 1]));
8031 }
8032
8033 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8034 out:
8035 wc->refs[level] = 0;
8036 wc->flags[level] = 0;
8037 return 0;
8038 }
8039
8040 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8041 struct btrfs_root *root,
8042 struct btrfs_path *path,
8043 struct walk_control *wc)
8044 {
8045 int level = wc->level;
8046 int lookup_info = 1;
8047 int ret;
8048
8049 while (level >= 0) {
8050 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8051 if (ret > 0)
8052 break;
8053
8054 if (level == 0)
8055 break;
8056
8057 if (path->slots[level] >=
8058 btrfs_header_nritems(path->nodes[level]))
8059 break;
8060
8061 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8062 if (ret > 0) {
8063 path->slots[level]++;
8064 continue;
8065 } else if (ret < 0)
8066 return ret;
8067 level = wc->level;
8068 }
8069 return 0;
8070 }
8071
8072 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8073 struct btrfs_root *root,
8074 struct btrfs_path *path,
8075 struct walk_control *wc, int max_level)
8076 {
8077 int level = wc->level;
8078 int ret;
8079
8080 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8081 while (level < max_level && path->nodes[level]) {
8082 wc->level = level;
8083 if (path->slots[level] + 1 <
8084 btrfs_header_nritems(path->nodes[level])) {
8085 path->slots[level]++;
8086 return 0;
8087 } else {
8088 ret = walk_up_proc(trans, root, path, wc);
8089 if (ret > 0)
8090 return 0;
8091
8092 if (path->locks[level]) {
8093 btrfs_tree_unlock_rw(path->nodes[level],
8094 path->locks[level]);
8095 path->locks[level] = 0;
8096 }
8097 free_extent_buffer(path->nodes[level]);
8098 path->nodes[level] = NULL;
8099 level++;
8100 }
8101 }
8102 return 1;
8103 }
8104
8105 /*
8106 * drop a subvolume tree.
8107 *
8108 * this function traverses the tree freeing any blocks that only
8109 * referenced by the tree.
8110 *
8111 * when a shared tree block is found. this function decreases its
8112 * reference count by one. if update_ref is true, this function
8113 * also make sure backrefs for the shared block and all lower level
8114 * blocks are properly updated.
8115 *
8116 * If called with for_reloc == 0, may exit early with -EAGAIN
8117 */
8118 int btrfs_drop_snapshot(struct btrfs_root *root,
8119 struct btrfs_block_rsv *block_rsv, int update_ref,
8120 int for_reloc)
8121 {
8122 struct btrfs_path *path;
8123 struct btrfs_trans_handle *trans;
8124 struct btrfs_root *tree_root = root->fs_info->tree_root;
8125 struct btrfs_root_item *root_item = &root->root_item;
8126 struct walk_control *wc;
8127 struct btrfs_key key;
8128 int err = 0;
8129 int ret;
8130 int level;
8131 bool root_dropped = false;
8132
8133 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8134
8135 path = btrfs_alloc_path();
8136 if (!path) {
8137 err = -ENOMEM;
8138 goto out;
8139 }
8140
8141 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8142 if (!wc) {
8143 btrfs_free_path(path);
8144 err = -ENOMEM;
8145 goto out;
8146 }
8147
8148 trans = btrfs_start_transaction(tree_root, 0);
8149 if (IS_ERR(trans)) {
8150 err = PTR_ERR(trans);
8151 goto out_free;
8152 }
8153
8154 if (block_rsv)
8155 trans->block_rsv = block_rsv;
8156
8157 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8158 level = btrfs_header_level(root->node);
8159 path->nodes[level] = btrfs_lock_root_node(root);
8160 btrfs_set_lock_blocking(path->nodes[level]);
8161 path->slots[level] = 0;
8162 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8163 memset(&wc->update_progress, 0,
8164 sizeof(wc->update_progress));
8165 } else {
8166 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8167 memcpy(&wc->update_progress, &key,
8168 sizeof(wc->update_progress));
8169
8170 level = root_item->drop_level;
8171 BUG_ON(level == 0);
8172 path->lowest_level = level;
8173 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8174 path->lowest_level = 0;
8175 if (ret < 0) {
8176 err = ret;
8177 goto out_end_trans;
8178 }
8179 WARN_ON(ret > 0);
8180
8181 /*
8182 * unlock our path, this is safe because only this
8183 * function is allowed to delete this snapshot
8184 */
8185 btrfs_unlock_up_safe(path, 0);
8186
8187 level = btrfs_header_level(root->node);
8188 while (1) {
8189 btrfs_tree_lock(path->nodes[level]);
8190 btrfs_set_lock_blocking(path->nodes[level]);
8191 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8192
8193 ret = btrfs_lookup_extent_info(trans, root,
8194 path->nodes[level]->start,
8195 level, 1, &wc->refs[level],
8196 &wc->flags[level]);
8197 if (ret < 0) {
8198 err = ret;
8199 goto out_end_trans;
8200 }
8201 BUG_ON(wc->refs[level] == 0);
8202
8203 if (level == root_item->drop_level)
8204 break;
8205
8206 btrfs_tree_unlock(path->nodes[level]);
8207 path->locks[level] = 0;
8208 WARN_ON(wc->refs[level] != 1);
8209 level--;
8210 }
8211 }
8212
8213 wc->level = level;
8214 wc->shared_level = -1;
8215 wc->stage = DROP_REFERENCE;
8216 wc->update_ref = update_ref;
8217 wc->keep_locks = 0;
8218 wc->for_reloc = for_reloc;
8219 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8220
8221 while (1) {
8222
8223 ret = walk_down_tree(trans, root, path, wc);
8224 if (ret < 0) {
8225 err = ret;
8226 break;
8227 }
8228
8229 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8230 if (ret < 0) {
8231 err = ret;
8232 break;
8233 }
8234
8235 if (ret > 0) {
8236 BUG_ON(wc->stage != DROP_REFERENCE);
8237 break;
8238 }
8239
8240 if (wc->stage == DROP_REFERENCE) {
8241 level = wc->level;
8242 btrfs_node_key(path->nodes[level],
8243 &root_item->drop_progress,
8244 path->slots[level]);
8245 root_item->drop_level = level;
8246 }
8247
8248 BUG_ON(wc->level == 0);
8249 if (btrfs_should_end_transaction(trans, tree_root) ||
8250 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8251 ret = btrfs_update_root(trans, tree_root,
8252 &root->root_key,
8253 root_item);
8254 if (ret) {
8255 btrfs_abort_transaction(trans, tree_root, ret);
8256 err = ret;
8257 goto out_end_trans;
8258 }
8259
8260 /*
8261 * Qgroup update accounting is run from
8262 * delayed ref handling. This usually works
8263 * out because delayed refs are normally the
8264 * only way qgroup updates are added. However,
8265 * we may have added updates during our tree
8266 * walk so run qgroups here to make sure we
8267 * don't lose any updates.
8268 */
8269 ret = btrfs_delayed_qgroup_accounting(trans,
8270 root->fs_info);
8271 if (ret)
8272 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8273 "running qgroup updates "
8274 "during snapshot delete. "
8275 "Quota is out of sync, "
8276 "rescan required.\n", ret);
8277
8278 btrfs_end_transaction_throttle(trans, tree_root);
8279 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8280 pr_debug("BTRFS: drop snapshot early exit\n");
8281 err = -EAGAIN;
8282 goto out_free;
8283 }
8284
8285 trans = btrfs_start_transaction(tree_root, 0);
8286 if (IS_ERR(trans)) {
8287 err = PTR_ERR(trans);
8288 goto out_free;
8289 }
8290 if (block_rsv)
8291 trans->block_rsv = block_rsv;
8292 }
8293 }
8294 btrfs_release_path(path);
8295 if (err)
8296 goto out_end_trans;
8297
8298 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8299 if (ret) {
8300 btrfs_abort_transaction(trans, tree_root, ret);
8301 goto out_end_trans;
8302 }
8303
8304 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8305 ret = btrfs_find_root(tree_root, &root->root_key, path,
8306 NULL, NULL);
8307 if (ret < 0) {
8308 btrfs_abort_transaction(trans, tree_root, ret);
8309 err = ret;
8310 goto out_end_trans;
8311 } else if (ret > 0) {
8312 /* if we fail to delete the orphan item this time
8313 * around, it'll get picked up the next time.
8314 *
8315 * The most common failure here is just -ENOENT.
8316 */
8317 btrfs_del_orphan_item(trans, tree_root,
8318 root->root_key.objectid);
8319 }
8320 }
8321
8322 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8323 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8324 } else {
8325 free_extent_buffer(root->node);
8326 free_extent_buffer(root->commit_root);
8327 btrfs_put_fs_root(root);
8328 }
8329 root_dropped = true;
8330 out_end_trans:
8331 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8332 if (ret)
8333 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8334 "running qgroup updates "
8335 "during snapshot delete. "
8336 "Quota is out of sync, "
8337 "rescan required.\n", ret);
8338
8339 btrfs_end_transaction_throttle(trans, tree_root);
8340 out_free:
8341 kfree(wc);
8342 btrfs_free_path(path);
8343 out:
8344 /*
8345 * So if we need to stop dropping the snapshot for whatever reason we
8346 * need to make sure to add it back to the dead root list so that we
8347 * keep trying to do the work later. This also cleans up roots if we
8348 * don't have it in the radix (like when we recover after a power fail
8349 * or unmount) so we don't leak memory.
8350 */
8351 if (!for_reloc && root_dropped == false)
8352 btrfs_add_dead_root(root);
8353 if (err && err != -EAGAIN)
8354 btrfs_std_error(root->fs_info, err);
8355 return err;
8356 }
8357
8358 /*
8359 * drop subtree rooted at tree block 'node'.
8360 *
8361 * NOTE: this function will unlock and release tree block 'node'
8362 * only used by relocation code
8363 */
8364 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8365 struct btrfs_root *root,
8366 struct extent_buffer *node,
8367 struct extent_buffer *parent)
8368 {
8369 struct btrfs_path *path;
8370 struct walk_control *wc;
8371 int level;
8372 int parent_level;
8373 int ret = 0;
8374 int wret;
8375
8376 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8377
8378 path = btrfs_alloc_path();
8379 if (!path)
8380 return -ENOMEM;
8381
8382 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8383 if (!wc) {
8384 btrfs_free_path(path);
8385 return -ENOMEM;
8386 }
8387
8388 btrfs_assert_tree_locked(parent);
8389 parent_level = btrfs_header_level(parent);
8390 extent_buffer_get(parent);
8391 path->nodes[parent_level] = parent;
8392 path->slots[parent_level] = btrfs_header_nritems(parent);
8393
8394 btrfs_assert_tree_locked(node);
8395 level = btrfs_header_level(node);
8396 path->nodes[level] = node;
8397 path->slots[level] = 0;
8398 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8399
8400 wc->refs[parent_level] = 1;
8401 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8402 wc->level = level;
8403 wc->shared_level = -1;
8404 wc->stage = DROP_REFERENCE;
8405 wc->update_ref = 0;
8406 wc->keep_locks = 1;
8407 wc->for_reloc = 1;
8408 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8409
8410 while (1) {
8411 wret = walk_down_tree(trans, root, path, wc);
8412 if (wret < 0) {
8413 ret = wret;
8414 break;
8415 }
8416
8417 wret = walk_up_tree(trans, root, path, wc, parent_level);
8418 if (wret < 0)
8419 ret = wret;
8420 if (wret != 0)
8421 break;
8422 }
8423
8424 kfree(wc);
8425 btrfs_free_path(path);
8426 return ret;
8427 }
8428
8429 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8430 {
8431 u64 num_devices;
8432 u64 stripped;
8433
8434 /*
8435 * if restripe for this chunk_type is on pick target profile and
8436 * return, otherwise do the usual balance
8437 */
8438 stripped = get_restripe_target(root->fs_info, flags);
8439 if (stripped)
8440 return extended_to_chunk(stripped);
8441
8442 num_devices = root->fs_info->fs_devices->rw_devices;
8443
8444 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8445 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8446 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8447
8448 if (num_devices == 1) {
8449 stripped |= BTRFS_BLOCK_GROUP_DUP;
8450 stripped = flags & ~stripped;
8451
8452 /* turn raid0 into single device chunks */
8453 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8454 return stripped;
8455
8456 /* turn mirroring into duplication */
8457 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8458 BTRFS_BLOCK_GROUP_RAID10))
8459 return stripped | BTRFS_BLOCK_GROUP_DUP;
8460 } else {
8461 /* they already had raid on here, just return */
8462 if (flags & stripped)
8463 return flags;
8464
8465 stripped |= BTRFS_BLOCK_GROUP_DUP;
8466 stripped = flags & ~stripped;
8467
8468 /* switch duplicated blocks with raid1 */
8469 if (flags & BTRFS_BLOCK_GROUP_DUP)
8470 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8471
8472 /* this is drive concat, leave it alone */
8473 }
8474
8475 return flags;
8476 }
8477
8478 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8479 {
8480 struct btrfs_space_info *sinfo = cache->space_info;
8481 u64 num_bytes;
8482 u64 min_allocable_bytes;
8483 int ret = -ENOSPC;
8484
8485
8486 /*
8487 * We need some metadata space and system metadata space for
8488 * allocating chunks in some corner cases until we force to set
8489 * it to be readonly.
8490 */
8491 if ((sinfo->flags &
8492 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8493 !force)
8494 min_allocable_bytes = 1 * 1024 * 1024;
8495 else
8496 min_allocable_bytes = 0;
8497
8498 spin_lock(&sinfo->lock);
8499 spin_lock(&cache->lock);
8500
8501 if (cache->ro) {
8502 ret = 0;
8503 goto out;
8504 }
8505
8506 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8507 cache->bytes_super - btrfs_block_group_used(&cache->item);
8508
8509 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8510 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8511 min_allocable_bytes <= sinfo->total_bytes) {
8512 sinfo->bytes_readonly += num_bytes;
8513 cache->ro = 1;
8514 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8515 ret = 0;
8516 }
8517 out:
8518 spin_unlock(&cache->lock);
8519 spin_unlock(&sinfo->lock);
8520 return ret;
8521 }
8522
8523 int btrfs_set_block_group_ro(struct btrfs_root *root,
8524 struct btrfs_block_group_cache *cache)
8525
8526 {
8527 struct btrfs_trans_handle *trans;
8528 u64 alloc_flags;
8529 int ret;
8530
8531 BUG_ON(cache->ro);
8532
8533 trans = btrfs_join_transaction(root);
8534 if (IS_ERR(trans))
8535 return PTR_ERR(trans);
8536
8537 ret = set_block_group_ro(cache, 0);
8538 if (!ret)
8539 goto out;
8540 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8541 ret = do_chunk_alloc(trans, root, alloc_flags,
8542 CHUNK_ALLOC_FORCE);
8543 if (ret < 0)
8544 goto out;
8545 ret = set_block_group_ro(cache, 0);
8546 out:
8547 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8548 alloc_flags = update_block_group_flags(root, cache->flags);
8549 check_system_chunk(trans, root, alloc_flags);
8550 }
8551
8552 btrfs_end_transaction(trans, root);
8553 return ret;
8554 }
8555
8556 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8557 struct btrfs_root *root, u64 type)
8558 {
8559 u64 alloc_flags = get_alloc_profile(root, type);
8560 return do_chunk_alloc(trans, root, alloc_flags,
8561 CHUNK_ALLOC_FORCE);
8562 }
8563
8564 /*
8565 * helper to account the unused space of all the readonly block group in the
8566 * space_info. takes mirrors into account.
8567 */
8568 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8569 {
8570 struct btrfs_block_group_cache *block_group;
8571 u64 free_bytes = 0;
8572 int factor;
8573
8574 /* It's df, we don't care if it's racey */
8575 if (list_empty(&sinfo->ro_bgs))
8576 return 0;
8577
8578 spin_lock(&sinfo->lock);
8579 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8580 spin_lock(&block_group->lock);
8581
8582 if (!block_group->ro) {
8583 spin_unlock(&block_group->lock);
8584 continue;
8585 }
8586
8587 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8588 BTRFS_BLOCK_GROUP_RAID10 |
8589 BTRFS_BLOCK_GROUP_DUP))
8590 factor = 2;
8591 else
8592 factor = 1;
8593
8594 free_bytes += (block_group->key.offset -
8595 btrfs_block_group_used(&block_group->item)) *
8596 factor;
8597
8598 spin_unlock(&block_group->lock);
8599 }
8600 spin_unlock(&sinfo->lock);
8601
8602 return free_bytes;
8603 }
8604
8605 void btrfs_set_block_group_rw(struct btrfs_root *root,
8606 struct btrfs_block_group_cache *cache)
8607 {
8608 struct btrfs_space_info *sinfo = cache->space_info;
8609 u64 num_bytes;
8610
8611 BUG_ON(!cache->ro);
8612
8613 spin_lock(&sinfo->lock);
8614 spin_lock(&cache->lock);
8615 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8616 cache->bytes_super - btrfs_block_group_used(&cache->item);
8617 sinfo->bytes_readonly -= num_bytes;
8618 cache->ro = 0;
8619 list_del_init(&cache->ro_list);
8620 spin_unlock(&cache->lock);
8621 spin_unlock(&sinfo->lock);
8622 }
8623
8624 /*
8625 * checks to see if its even possible to relocate this block group.
8626 *
8627 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8628 * ok to go ahead and try.
8629 */
8630 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8631 {
8632 struct btrfs_block_group_cache *block_group;
8633 struct btrfs_space_info *space_info;
8634 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8635 struct btrfs_device *device;
8636 struct btrfs_trans_handle *trans;
8637 u64 min_free;
8638 u64 dev_min = 1;
8639 u64 dev_nr = 0;
8640 u64 target;
8641 int index;
8642 int full = 0;
8643 int ret = 0;
8644
8645 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8646
8647 /* odd, couldn't find the block group, leave it alone */
8648 if (!block_group)
8649 return -1;
8650
8651 min_free = btrfs_block_group_used(&block_group->item);
8652
8653 /* no bytes used, we're good */
8654 if (!min_free)
8655 goto out;
8656
8657 space_info = block_group->space_info;
8658 spin_lock(&space_info->lock);
8659
8660 full = space_info->full;
8661
8662 /*
8663 * if this is the last block group we have in this space, we can't
8664 * relocate it unless we're able to allocate a new chunk below.
8665 *
8666 * Otherwise, we need to make sure we have room in the space to handle
8667 * all of the extents from this block group. If we can, we're good
8668 */
8669 if ((space_info->total_bytes != block_group->key.offset) &&
8670 (space_info->bytes_used + space_info->bytes_reserved +
8671 space_info->bytes_pinned + space_info->bytes_readonly +
8672 min_free < space_info->total_bytes)) {
8673 spin_unlock(&space_info->lock);
8674 goto out;
8675 }
8676 spin_unlock(&space_info->lock);
8677
8678 /*
8679 * ok we don't have enough space, but maybe we have free space on our
8680 * devices to allocate new chunks for relocation, so loop through our
8681 * alloc devices and guess if we have enough space. if this block
8682 * group is going to be restriped, run checks against the target
8683 * profile instead of the current one.
8684 */
8685 ret = -1;
8686
8687 /*
8688 * index:
8689 * 0: raid10
8690 * 1: raid1
8691 * 2: dup
8692 * 3: raid0
8693 * 4: single
8694 */
8695 target = get_restripe_target(root->fs_info, block_group->flags);
8696 if (target) {
8697 index = __get_raid_index(extended_to_chunk(target));
8698 } else {
8699 /*
8700 * this is just a balance, so if we were marked as full
8701 * we know there is no space for a new chunk
8702 */
8703 if (full)
8704 goto out;
8705
8706 index = get_block_group_index(block_group);
8707 }
8708
8709 if (index == BTRFS_RAID_RAID10) {
8710 dev_min = 4;
8711 /* Divide by 2 */
8712 min_free >>= 1;
8713 } else if (index == BTRFS_RAID_RAID1) {
8714 dev_min = 2;
8715 } else if (index == BTRFS_RAID_DUP) {
8716 /* Multiply by 2 */
8717 min_free <<= 1;
8718 } else if (index == BTRFS_RAID_RAID0) {
8719 dev_min = fs_devices->rw_devices;
8720 do_div(min_free, dev_min);
8721 }
8722
8723 /* We need to do this so that we can look at pending chunks */
8724 trans = btrfs_join_transaction(root);
8725 if (IS_ERR(trans)) {
8726 ret = PTR_ERR(trans);
8727 goto out;
8728 }
8729
8730 mutex_lock(&root->fs_info->chunk_mutex);
8731 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8732 u64 dev_offset;
8733
8734 /*
8735 * check to make sure we can actually find a chunk with enough
8736 * space to fit our block group in.
8737 */
8738 if (device->total_bytes > device->bytes_used + min_free &&
8739 !device->is_tgtdev_for_dev_replace) {
8740 ret = find_free_dev_extent(trans, device, min_free,
8741 &dev_offset, NULL);
8742 if (!ret)
8743 dev_nr++;
8744
8745 if (dev_nr >= dev_min)
8746 break;
8747
8748 ret = -1;
8749 }
8750 }
8751 mutex_unlock(&root->fs_info->chunk_mutex);
8752 btrfs_end_transaction(trans, root);
8753 out:
8754 btrfs_put_block_group(block_group);
8755 return ret;
8756 }
8757
8758 static int find_first_block_group(struct btrfs_root *root,
8759 struct btrfs_path *path, struct btrfs_key *key)
8760 {
8761 int ret = 0;
8762 struct btrfs_key found_key;
8763 struct extent_buffer *leaf;
8764 int slot;
8765
8766 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8767 if (ret < 0)
8768 goto out;
8769
8770 while (1) {
8771 slot = path->slots[0];
8772 leaf = path->nodes[0];
8773 if (slot >= btrfs_header_nritems(leaf)) {
8774 ret = btrfs_next_leaf(root, path);
8775 if (ret == 0)
8776 continue;
8777 if (ret < 0)
8778 goto out;
8779 break;
8780 }
8781 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8782
8783 if (found_key.objectid >= key->objectid &&
8784 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8785 ret = 0;
8786 goto out;
8787 }
8788 path->slots[0]++;
8789 }
8790 out:
8791 return ret;
8792 }
8793
8794 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8795 {
8796 struct btrfs_block_group_cache *block_group;
8797 u64 last = 0;
8798
8799 while (1) {
8800 struct inode *inode;
8801
8802 block_group = btrfs_lookup_first_block_group(info, last);
8803 while (block_group) {
8804 spin_lock(&block_group->lock);
8805 if (block_group->iref)
8806 break;
8807 spin_unlock(&block_group->lock);
8808 block_group = next_block_group(info->tree_root,
8809 block_group);
8810 }
8811 if (!block_group) {
8812 if (last == 0)
8813 break;
8814 last = 0;
8815 continue;
8816 }
8817
8818 inode = block_group->inode;
8819 block_group->iref = 0;
8820 block_group->inode = NULL;
8821 spin_unlock(&block_group->lock);
8822 iput(inode);
8823 last = block_group->key.objectid + block_group->key.offset;
8824 btrfs_put_block_group(block_group);
8825 }
8826 }
8827
8828 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8829 {
8830 struct btrfs_block_group_cache *block_group;
8831 struct btrfs_space_info *space_info;
8832 struct btrfs_caching_control *caching_ctl;
8833 struct rb_node *n;
8834
8835 down_write(&info->commit_root_sem);
8836 while (!list_empty(&info->caching_block_groups)) {
8837 caching_ctl = list_entry(info->caching_block_groups.next,
8838 struct btrfs_caching_control, list);
8839 list_del(&caching_ctl->list);
8840 put_caching_control(caching_ctl);
8841 }
8842 up_write(&info->commit_root_sem);
8843
8844 spin_lock(&info->unused_bgs_lock);
8845 while (!list_empty(&info->unused_bgs)) {
8846 block_group = list_first_entry(&info->unused_bgs,
8847 struct btrfs_block_group_cache,
8848 bg_list);
8849 list_del_init(&block_group->bg_list);
8850 btrfs_put_block_group(block_group);
8851 }
8852 spin_unlock(&info->unused_bgs_lock);
8853
8854 spin_lock(&info->block_group_cache_lock);
8855 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8856 block_group = rb_entry(n, struct btrfs_block_group_cache,
8857 cache_node);
8858 rb_erase(&block_group->cache_node,
8859 &info->block_group_cache_tree);
8860 RB_CLEAR_NODE(&block_group->cache_node);
8861 spin_unlock(&info->block_group_cache_lock);
8862
8863 down_write(&block_group->space_info->groups_sem);
8864 list_del(&block_group->list);
8865 up_write(&block_group->space_info->groups_sem);
8866
8867 if (block_group->cached == BTRFS_CACHE_STARTED)
8868 wait_block_group_cache_done(block_group);
8869
8870 /*
8871 * We haven't cached this block group, which means we could
8872 * possibly have excluded extents on this block group.
8873 */
8874 if (block_group->cached == BTRFS_CACHE_NO ||
8875 block_group->cached == BTRFS_CACHE_ERROR)
8876 free_excluded_extents(info->extent_root, block_group);
8877
8878 btrfs_remove_free_space_cache(block_group);
8879 btrfs_put_block_group(block_group);
8880
8881 spin_lock(&info->block_group_cache_lock);
8882 }
8883 spin_unlock(&info->block_group_cache_lock);
8884
8885 /* now that all the block groups are freed, go through and
8886 * free all the space_info structs. This is only called during
8887 * the final stages of unmount, and so we know nobody is
8888 * using them. We call synchronize_rcu() once before we start,
8889 * just to be on the safe side.
8890 */
8891 synchronize_rcu();
8892
8893 release_global_block_rsv(info);
8894
8895 while (!list_empty(&info->space_info)) {
8896 int i;
8897
8898 space_info = list_entry(info->space_info.next,
8899 struct btrfs_space_info,
8900 list);
8901 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8902 if (WARN_ON(space_info->bytes_pinned > 0 ||
8903 space_info->bytes_reserved > 0 ||
8904 space_info->bytes_may_use > 0)) {
8905 dump_space_info(space_info, 0, 0);
8906 }
8907 }
8908 list_del(&space_info->list);
8909 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8910 struct kobject *kobj;
8911 kobj = space_info->block_group_kobjs[i];
8912 space_info->block_group_kobjs[i] = NULL;
8913 if (kobj) {
8914 kobject_del(kobj);
8915 kobject_put(kobj);
8916 }
8917 }
8918 kobject_del(&space_info->kobj);
8919 kobject_put(&space_info->kobj);
8920 }
8921 return 0;
8922 }
8923
8924 static void __link_block_group(struct btrfs_space_info *space_info,
8925 struct btrfs_block_group_cache *cache)
8926 {
8927 int index = get_block_group_index(cache);
8928 bool first = false;
8929
8930 down_write(&space_info->groups_sem);
8931 if (list_empty(&space_info->block_groups[index]))
8932 first = true;
8933 list_add_tail(&cache->list, &space_info->block_groups[index]);
8934 up_write(&space_info->groups_sem);
8935
8936 if (first) {
8937 struct raid_kobject *rkobj;
8938 int ret;
8939
8940 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8941 if (!rkobj)
8942 goto out_err;
8943 rkobj->raid_type = index;
8944 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8945 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8946 "%s", get_raid_name(index));
8947 if (ret) {
8948 kobject_put(&rkobj->kobj);
8949 goto out_err;
8950 }
8951 space_info->block_group_kobjs[index] = &rkobj->kobj;
8952 }
8953
8954 return;
8955 out_err:
8956 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8957 }
8958
8959 static struct btrfs_block_group_cache *
8960 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8961 {
8962 struct btrfs_block_group_cache *cache;
8963
8964 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8965 if (!cache)
8966 return NULL;
8967
8968 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8969 GFP_NOFS);
8970 if (!cache->free_space_ctl) {
8971 kfree(cache);
8972 return NULL;
8973 }
8974
8975 cache->key.objectid = start;
8976 cache->key.offset = size;
8977 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8978
8979 cache->sectorsize = root->sectorsize;
8980 cache->fs_info = root->fs_info;
8981 cache->full_stripe_len = btrfs_full_stripe_len(root,
8982 &root->fs_info->mapping_tree,
8983 start);
8984 atomic_set(&cache->count, 1);
8985 spin_lock_init(&cache->lock);
8986 init_rwsem(&cache->data_rwsem);
8987 INIT_LIST_HEAD(&cache->list);
8988 INIT_LIST_HEAD(&cache->cluster_list);
8989 INIT_LIST_HEAD(&cache->bg_list);
8990 INIT_LIST_HEAD(&cache->ro_list);
8991 INIT_LIST_HEAD(&cache->dirty_list);
8992 btrfs_init_free_space_ctl(cache);
8993 atomic_set(&cache->trimming, 0);
8994
8995 return cache;
8996 }
8997
8998 int btrfs_read_block_groups(struct btrfs_root *root)
8999 {
9000 struct btrfs_path *path;
9001 int ret;
9002 struct btrfs_block_group_cache *cache;
9003 struct btrfs_fs_info *info = root->fs_info;
9004 struct btrfs_space_info *space_info;
9005 struct btrfs_key key;
9006 struct btrfs_key found_key;
9007 struct extent_buffer *leaf;
9008 int need_clear = 0;
9009 u64 cache_gen;
9010
9011 root = info->extent_root;
9012 key.objectid = 0;
9013 key.offset = 0;
9014 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9015 path = btrfs_alloc_path();
9016 if (!path)
9017 return -ENOMEM;
9018 path->reada = 1;
9019
9020 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9021 if (btrfs_test_opt(root, SPACE_CACHE) &&
9022 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9023 need_clear = 1;
9024 if (btrfs_test_opt(root, CLEAR_CACHE))
9025 need_clear = 1;
9026
9027 while (1) {
9028 ret = find_first_block_group(root, path, &key);
9029 if (ret > 0)
9030 break;
9031 if (ret != 0)
9032 goto error;
9033
9034 leaf = path->nodes[0];
9035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9036
9037 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9038 found_key.offset);
9039 if (!cache) {
9040 ret = -ENOMEM;
9041 goto error;
9042 }
9043
9044 if (need_clear) {
9045 /*
9046 * When we mount with old space cache, we need to
9047 * set BTRFS_DC_CLEAR and set dirty flag.
9048 *
9049 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9050 * truncate the old free space cache inode and
9051 * setup a new one.
9052 * b) Setting 'dirty flag' makes sure that we flush
9053 * the new space cache info onto disk.
9054 */
9055 if (btrfs_test_opt(root, SPACE_CACHE))
9056 cache->disk_cache_state = BTRFS_DC_CLEAR;
9057 }
9058
9059 read_extent_buffer(leaf, &cache->item,
9060 btrfs_item_ptr_offset(leaf, path->slots[0]),
9061 sizeof(cache->item));
9062 cache->flags = btrfs_block_group_flags(&cache->item);
9063
9064 key.objectid = found_key.objectid + found_key.offset;
9065 btrfs_release_path(path);
9066
9067 /*
9068 * We need to exclude the super stripes now so that the space
9069 * info has super bytes accounted for, otherwise we'll think
9070 * we have more space than we actually do.
9071 */
9072 ret = exclude_super_stripes(root, cache);
9073 if (ret) {
9074 /*
9075 * We may have excluded something, so call this just in
9076 * case.
9077 */
9078 free_excluded_extents(root, cache);
9079 btrfs_put_block_group(cache);
9080 goto error;
9081 }
9082
9083 /*
9084 * check for two cases, either we are full, and therefore
9085 * don't need to bother with the caching work since we won't
9086 * find any space, or we are empty, and we can just add all
9087 * the space in and be done with it. This saves us _alot_ of
9088 * time, particularly in the full case.
9089 */
9090 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9091 cache->last_byte_to_unpin = (u64)-1;
9092 cache->cached = BTRFS_CACHE_FINISHED;
9093 free_excluded_extents(root, cache);
9094 } else if (btrfs_block_group_used(&cache->item) == 0) {
9095 cache->last_byte_to_unpin = (u64)-1;
9096 cache->cached = BTRFS_CACHE_FINISHED;
9097 add_new_free_space(cache, root->fs_info,
9098 found_key.objectid,
9099 found_key.objectid +
9100 found_key.offset);
9101 free_excluded_extents(root, cache);
9102 }
9103
9104 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9105 if (ret) {
9106 btrfs_remove_free_space_cache(cache);
9107 btrfs_put_block_group(cache);
9108 goto error;
9109 }
9110
9111 ret = update_space_info(info, cache->flags, found_key.offset,
9112 btrfs_block_group_used(&cache->item),
9113 &space_info);
9114 if (ret) {
9115 btrfs_remove_free_space_cache(cache);
9116 spin_lock(&info->block_group_cache_lock);
9117 rb_erase(&cache->cache_node,
9118 &info->block_group_cache_tree);
9119 RB_CLEAR_NODE(&cache->cache_node);
9120 spin_unlock(&info->block_group_cache_lock);
9121 btrfs_put_block_group(cache);
9122 goto error;
9123 }
9124
9125 cache->space_info = space_info;
9126 spin_lock(&cache->space_info->lock);
9127 cache->space_info->bytes_readonly += cache->bytes_super;
9128 spin_unlock(&cache->space_info->lock);
9129
9130 __link_block_group(space_info, cache);
9131
9132 set_avail_alloc_bits(root->fs_info, cache->flags);
9133 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9134 set_block_group_ro(cache, 1);
9135 } else if (btrfs_block_group_used(&cache->item) == 0) {
9136 spin_lock(&info->unused_bgs_lock);
9137 /* Should always be true but just in case. */
9138 if (list_empty(&cache->bg_list)) {
9139 btrfs_get_block_group(cache);
9140 list_add_tail(&cache->bg_list,
9141 &info->unused_bgs);
9142 }
9143 spin_unlock(&info->unused_bgs_lock);
9144 }
9145 }
9146
9147 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9148 if (!(get_alloc_profile(root, space_info->flags) &
9149 (BTRFS_BLOCK_GROUP_RAID10 |
9150 BTRFS_BLOCK_GROUP_RAID1 |
9151 BTRFS_BLOCK_GROUP_RAID5 |
9152 BTRFS_BLOCK_GROUP_RAID6 |
9153 BTRFS_BLOCK_GROUP_DUP)))
9154 continue;
9155 /*
9156 * avoid allocating from un-mirrored block group if there are
9157 * mirrored block groups.
9158 */
9159 list_for_each_entry(cache,
9160 &space_info->block_groups[BTRFS_RAID_RAID0],
9161 list)
9162 set_block_group_ro(cache, 1);
9163 list_for_each_entry(cache,
9164 &space_info->block_groups[BTRFS_RAID_SINGLE],
9165 list)
9166 set_block_group_ro(cache, 1);
9167 }
9168
9169 init_global_block_rsv(info);
9170 ret = 0;
9171 error:
9172 btrfs_free_path(path);
9173 return ret;
9174 }
9175
9176 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9177 struct btrfs_root *root)
9178 {
9179 struct btrfs_block_group_cache *block_group, *tmp;
9180 struct btrfs_root *extent_root = root->fs_info->extent_root;
9181 struct btrfs_block_group_item item;
9182 struct btrfs_key key;
9183 int ret = 0;
9184
9185 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9186 if (ret)
9187 goto next;
9188
9189 spin_lock(&block_group->lock);
9190 memcpy(&item, &block_group->item, sizeof(item));
9191 memcpy(&key, &block_group->key, sizeof(key));
9192 spin_unlock(&block_group->lock);
9193
9194 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9195 sizeof(item));
9196 if (ret)
9197 btrfs_abort_transaction(trans, extent_root, ret);
9198 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9199 key.objectid, key.offset);
9200 if (ret)
9201 btrfs_abort_transaction(trans, extent_root, ret);
9202 next:
9203 list_del_init(&block_group->bg_list);
9204 }
9205 }
9206
9207 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9208 struct btrfs_root *root, u64 bytes_used,
9209 u64 type, u64 chunk_objectid, u64 chunk_offset,
9210 u64 size)
9211 {
9212 int ret;
9213 struct btrfs_root *extent_root;
9214 struct btrfs_block_group_cache *cache;
9215
9216 extent_root = root->fs_info->extent_root;
9217
9218 btrfs_set_log_full_commit(root->fs_info, trans);
9219
9220 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9221 if (!cache)
9222 return -ENOMEM;
9223
9224 btrfs_set_block_group_used(&cache->item, bytes_used);
9225 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9226 btrfs_set_block_group_flags(&cache->item, type);
9227
9228 cache->flags = type;
9229 cache->last_byte_to_unpin = (u64)-1;
9230 cache->cached = BTRFS_CACHE_FINISHED;
9231 ret = exclude_super_stripes(root, cache);
9232 if (ret) {
9233 /*
9234 * We may have excluded something, so call this just in
9235 * case.
9236 */
9237 free_excluded_extents(root, cache);
9238 btrfs_put_block_group(cache);
9239 return ret;
9240 }
9241
9242 add_new_free_space(cache, root->fs_info, chunk_offset,
9243 chunk_offset + size);
9244
9245 free_excluded_extents(root, cache);
9246
9247 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9248 if (ret) {
9249 btrfs_remove_free_space_cache(cache);
9250 btrfs_put_block_group(cache);
9251 return ret;
9252 }
9253
9254 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9255 &cache->space_info);
9256 if (ret) {
9257 btrfs_remove_free_space_cache(cache);
9258 spin_lock(&root->fs_info->block_group_cache_lock);
9259 rb_erase(&cache->cache_node,
9260 &root->fs_info->block_group_cache_tree);
9261 RB_CLEAR_NODE(&cache->cache_node);
9262 spin_unlock(&root->fs_info->block_group_cache_lock);
9263 btrfs_put_block_group(cache);
9264 return ret;
9265 }
9266 update_global_block_rsv(root->fs_info);
9267
9268 spin_lock(&cache->space_info->lock);
9269 cache->space_info->bytes_readonly += cache->bytes_super;
9270 spin_unlock(&cache->space_info->lock);
9271
9272 __link_block_group(cache->space_info, cache);
9273
9274 list_add_tail(&cache->bg_list, &trans->new_bgs);
9275
9276 set_avail_alloc_bits(extent_root->fs_info, type);
9277
9278 return 0;
9279 }
9280
9281 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9282 {
9283 u64 extra_flags = chunk_to_extended(flags) &
9284 BTRFS_EXTENDED_PROFILE_MASK;
9285
9286 write_seqlock(&fs_info->profiles_lock);
9287 if (flags & BTRFS_BLOCK_GROUP_DATA)
9288 fs_info->avail_data_alloc_bits &= ~extra_flags;
9289 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9290 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9291 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9292 fs_info->avail_system_alloc_bits &= ~extra_flags;
9293 write_sequnlock(&fs_info->profiles_lock);
9294 }
9295
9296 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9297 struct btrfs_root *root, u64 group_start,
9298 struct extent_map *em)
9299 {
9300 struct btrfs_path *path;
9301 struct btrfs_block_group_cache *block_group;
9302 struct btrfs_free_cluster *cluster;
9303 struct btrfs_root *tree_root = root->fs_info->tree_root;
9304 struct btrfs_key key;
9305 struct inode *inode;
9306 struct kobject *kobj = NULL;
9307 int ret;
9308 int index;
9309 int factor;
9310 struct btrfs_caching_control *caching_ctl = NULL;
9311 bool remove_em;
9312
9313 root = root->fs_info->extent_root;
9314
9315 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9316 BUG_ON(!block_group);
9317 BUG_ON(!block_group->ro);
9318
9319 /*
9320 * Free the reserved super bytes from this block group before
9321 * remove it.
9322 */
9323 free_excluded_extents(root, block_group);
9324
9325 memcpy(&key, &block_group->key, sizeof(key));
9326 index = get_block_group_index(block_group);
9327 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9328 BTRFS_BLOCK_GROUP_RAID1 |
9329 BTRFS_BLOCK_GROUP_RAID10))
9330 factor = 2;
9331 else
9332 factor = 1;
9333
9334 /* make sure this block group isn't part of an allocation cluster */
9335 cluster = &root->fs_info->data_alloc_cluster;
9336 spin_lock(&cluster->refill_lock);
9337 btrfs_return_cluster_to_free_space(block_group, cluster);
9338 spin_unlock(&cluster->refill_lock);
9339
9340 /*
9341 * make sure this block group isn't part of a metadata
9342 * allocation cluster
9343 */
9344 cluster = &root->fs_info->meta_alloc_cluster;
9345 spin_lock(&cluster->refill_lock);
9346 btrfs_return_cluster_to_free_space(block_group, cluster);
9347 spin_unlock(&cluster->refill_lock);
9348
9349 path = btrfs_alloc_path();
9350 if (!path) {
9351 ret = -ENOMEM;
9352 goto out;
9353 }
9354
9355 inode = lookup_free_space_inode(tree_root, block_group, path);
9356 if (!IS_ERR(inode)) {
9357 ret = btrfs_orphan_add(trans, inode);
9358 if (ret) {
9359 btrfs_add_delayed_iput(inode);
9360 goto out;
9361 }
9362 clear_nlink(inode);
9363 /* One for the block groups ref */
9364 spin_lock(&block_group->lock);
9365 if (block_group->iref) {
9366 block_group->iref = 0;
9367 block_group->inode = NULL;
9368 spin_unlock(&block_group->lock);
9369 iput(inode);
9370 } else {
9371 spin_unlock(&block_group->lock);
9372 }
9373 /* One for our lookup ref */
9374 btrfs_add_delayed_iput(inode);
9375 }
9376
9377 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9378 key.offset = block_group->key.objectid;
9379 key.type = 0;
9380
9381 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9382 if (ret < 0)
9383 goto out;
9384 if (ret > 0)
9385 btrfs_release_path(path);
9386 if (ret == 0) {
9387 ret = btrfs_del_item(trans, tree_root, path);
9388 if (ret)
9389 goto out;
9390 btrfs_release_path(path);
9391 }
9392
9393 spin_lock(&root->fs_info->block_group_cache_lock);
9394 rb_erase(&block_group->cache_node,
9395 &root->fs_info->block_group_cache_tree);
9396 RB_CLEAR_NODE(&block_group->cache_node);
9397
9398 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9399 root->fs_info->first_logical_byte = (u64)-1;
9400 spin_unlock(&root->fs_info->block_group_cache_lock);
9401
9402 down_write(&block_group->space_info->groups_sem);
9403 /*
9404 * we must use list_del_init so people can check to see if they
9405 * are still on the list after taking the semaphore
9406 */
9407 list_del_init(&block_group->list);
9408 list_del_init(&block_group->ro_list);
9409 if (list_empty(&block_group->space_info->block_groups[index])) {
9410 kobj = block_group->space_info->block_group_kobjs[index];
9411 block_group->space_info->block_group_kobjs[index] = NULL;
9412 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9413 }
9414 up_write(&block_group->space_info->groups_sem);
9415 if (kobj) {
9416 kobject_del(kobj);
9417 kobject_put(kobj);
9418 }
9419
9420 if (block_group->has_caching_ctl)
9421 caching_ctl = get_caching_control(block_group);
9422 if (block_group->cached == BTRFS_CACHE_STARTED)
9423 wait_block_group_cache_done(block_group);
9424 if (block_group->has_caching_ctl) {
9425 down_write(&root->fs_info->commit_root_sem);
9426 if (!caching_ctl) {
9427 struct btrfs_caching_control *ctl;
9428
9429 list_for_each_entry(ctl,
9430 &root->fs_info->caching_block_groups, list)
9431 if (ctl->block_group == block_group) {
9432 caching_ctl = ctl;
9433 atomic_inc(&caching_ctl->count);
9434 break;
9435 }
9436 }
9437 if (caching_ctl)
9438 list_del_init(&caching_ctl->list);
9439 up_write(&root->fs_info->commit_root_sem);
9440 if (caching_ctl) {
9441 /* Once for the caching bgs list and once for us. */
9442 put_caching_control(caching_ctl);
9443 put_caching_control(caching_ctl);
9444 }
9445 }
9446
9447 spin_lock(&trans->transaction->dirty_bgs_lock);
9448 if (!list_empty(&block_group->dirty_list)) {
9449 list_del_init(&block_group->dirty_list);
9450 btrfs_put_block_group(block_group);
9451 }
9452 spin_unlock(&trans->transaction->dirty_bgs_lock);
9453
9454 btrfs_remove_free_space_cache(block_group);
9455
9456 spin_lock(&block_group->space_info->lock);
9457 block_group->space_info->total_bytes -= block_group->key.offset;
9458 block_group->space_info->bytes_readonly -= block_group->key.offset;
9459 block_group->space_info->disk_total -= block_group->key.offset * factor;
9460 spin_unlock(&block_group->space_info->lock);
9461
9462 memcpy(&key, &block_group->key, sizeof(key));
9463
9464 lock_chunks(root);
9465 if (!list_empty(&em->list)) {
9466 /* We're in the transaction->pending_chunks list. */
9467 free_extent_map(em);
9468 }
9469 spin_lock(&block_group->lock);
9470 block_group->removed = 1;
9471 /*
9472 * At this point trimming can't start on this block group, because we
9473 * removed the block group from the tree fs_info->block_group_cache_tree
9474 * so no one can't find it anymore and even if someone already got this
9475 * block group before we removed it from the rbtree, they have already
9476 * incremented block_group->trimming - if they didn't, they won't find
9477 * any free space entries because we already removed them all when we
9478 * called btrfs_remove_free_space_cache().
9479 *
9480 * And we must not remove the extent map from the fs_info->mapping_tree
9481 * to prevent the same logical address range and physical device space
9482 * ranges from being reused for a new block group. This is because our
9483 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9484 * completely transactionless, so while it is trimming a range the
9485 * currently running transaction might finish and a new one start,
9486 * allowing for new block groups to be created that can reuse the same
9487 * physical device locations unless we take this special care.
9488 */
9489 remove_em = (atomic_read(&block_group->trimming) == 0);
9490 /*
9491 * Make sure a trimmer task always sees the em in the pinned_chunks list
9492 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9493 * before checking block_group->removed).
9494 */
9495 if (!remove_em) {
9496 /*
9497 * Our em might be in trans->transaction->pending_chunks which
9498 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9499 * and so is the fs_info->pinned_chunks list.
9500 *
9501 * So at this point we must be holding the chunk_mutex to avoid
9502 * any races with chunk allocation (more specifically at
9503 * volumes.c:contains_pending_extent()), to ensure it always
9504 * sees the em, either in the pending_chunks list or in the
9505 * pinned_chunks list.
9506 */
9507 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9508 }
9509 spin_unlock(&block_group->lock);
9510
9511 if (remove_em) {
9512 struct extent_map_tree *em_tree;
9513
9514 em_tree = &root->fs_info->mapping_tree.map_tree;
9515 write_lock(&em_tree->lock);
9516 /*
9517 * The em might be in the pending_chunks list, so make sure the
9518 * chunk mutex is locked, since remove_extent_mapping() will
9519 * delete us from that list.
9520 */
9521 remove_extent_mapping(em_tree, em);
9522 write_unlock(&em_tree->lock);
9523 /* once for the tree */
9524 free_extent_map(em);
9525 }
9526
9527 unlock_chunks(root);
9528
9529 btrfs_put_block_group(block_group);
9530 btrfs_put_block_group(block_group);
9531
9532 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9533 if (ret > 0)
9534 ret = -EIO;
9535 if (ret < 0)
9536 goto out;
9537
9538 ret = btrfs_del_item(trans, root, path);
9539 out:
9540 btrfs_free_path(path);
9541 return ret;
9542 }
9543
9544 /*
9545 * Process the unused_bgs list and remove any that don't have any allocated
9546 * space inside of them.
9547 */
9548 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9549 {
9550 struct btrfs_block_group_cache *block_group;
9551 struct btrfs_space_info *space_info;
9552 struct btrfs_root *root = fs_info->extent_root;
9553 struct btrfs_trans_handle *trans;
9554 int ret = 0;
9555
9556 if (!fs_info->open)
9557 return;
9558
9559 spin_lock(&fs_info->unused_bgs_lock);
9560 while (!list_empty(&fs_info->unused_bgs)) {
9561 u64 start, end;
9562
9563 block_group = list_first_entry(&fs_info->unused_bgs,
9564 struct btrfs_block_group_cache,
9565 bg_list);
9566 space_info = block_group->space_info;
9567 list_del_init(&block_group->bg_list);
9568 if (ret || btrfs_mixed_space_info(space_info)) {
9569 btrfs_put_block_group(block_group);
9570 continue;
9571 }
9572 spin_unlock(&fs_info->unused_bgs_lock);
9573
9574 /* Don't want to race with allocators so take the groups_sem */
9575 down_write(&space_info->groups_sem);
9576 spin_lock(&block_group->lock);
9577 if (block_group->reserved ||
9578 btrfs_block_group_used(&block_group->item) ||
9579 block_group->ro) {
9580 /*
9581 * We want to bail if we made new allocations or have
9582 * outstanding allocations in this block group. We do
9583 * the ro check in case balance is currently acting on
9584 * this block group.
9585 */
9586 spin_unlock(&block_group->lock);
9587 up_write(&space_info->groups_sem);
9588 goto next;
9589 }
9590 spin_unlock(&block_group->lock);
9591
9592 /* We don't want to force the issue, only flip if it's ok. */
9593 ret = set_block_group_ro(block_group, 0);
9594 up_write(&space_info->groups_sem);
9595 if (ret < 0) {
9596 ret = 0;
9597 goto next;
9598 }
9599
9600 /*
9601 * Want to do this before we do anything else so we can recover
9602 * properly if we fail to join the transaction.
9603 */
9604 /* 1 for btrfs_orphan_reserve_metadata() */
9605 trans = btrfs_start_transaction(root, 1);
9606 if (IS_ERR(trans)) {
9607 btrfs_set_block_group_rw(root, block_group);
9608 ret = PTR_ERR(trans);
9609 goto next;
9610 }
9611
9612 /*
9613 * We could have pending pinned extents for this block group,
9614 * just delete them, we don't care about them anymore.
9615 */
9616 start = block_group->key.objectid;
9617 end = start + block_group->key.offset - 1;
9618 /*
9619 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9620 * btrfs_finish_extent_commit(). If we are at transaction N,
9621 * another task might be running finish_extent_commit() for the
9622 * previous transaction N - 1, and have seen a range belonging
9623 * to the block group in freed_extents[] before we were able to
9624 * clear the whole block group range from freed_extents[]. This
9625 * means that task can lookup for the block group after we
9626 * unpinned it from freed_extents[] and removed it, leading to
9627 * a BUG_ON() at btrfs_unpin_extent_range().
9628 */
9629 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9630 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9631 EXTENT_DIRTY, GFP_NOFS);
9632 if (ret) {
9633 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9634 btrfs_set_block_group_rw(root, block_group);
9635 goto end_trans;
9636 }
9637 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9638 EXTENT_DIRTY, GFP_NOFS);
9639 if (ret) {
9640 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9641 btrfs_set_block_group_rw(root, block_group);
9642 goto end_trans;
9643 }
9644 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9645
9646 /* Reset pinned so btrfs_put_block_group doesn't complain */
9647 block_group->pinned = 0;
9648
9649 /*
9650 * Btrfs_remove_chunk will abort the transaction if things go
9651 * horribly wrong.
9652 */
9653 ret = btrfs_remove_chunk(trans, root,
9654 block_group->key.objectid);
9655 end_trans:
9656 btrfs_end_transaction(trans, root);
9657 next:
9658 btrfs_put_block_group(block_group);
9659 spin_lock(&fs_info->unused_bgs_lock);
9660 }
9661 spin_unlock(&fs_info->unused_bgs_lock);
9662 }
9663
9664 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9665 {
9666 struct btrfs_space_info *space_info;
9667 struct btrfs_super_block *disk_super;
9668 u64 features;
9669 u64 flags;
9670 int mixed = 0;
9671 int ret;
9672
9673 disk_super = fs_info->super_copy;
9674 if (!btrfs_super_root(disk_super))
9675 return 1;
9676
9677 features = btrfs_super_incompat_flags(disk_super);
9678 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9679 mixed = 1;
9680
9681 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9682 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9683 if (ret)
9684 goto out;
9685
9686 if (mixed) {
9687 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9688 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9689 } else {
9690 flags = BTRFS_BLOCK_GROUP_METADATA;
9691 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9692 if (ret)
9693 goto out;
9694
9695 flags = BTRFS_BLOCK_GROUP_DATA;
9696 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9697 }
9698 out:
9699 return ret;
9700 }
9701
9702 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9703 {
9704 return unpin_extent_range(root, start, end, false);
9705 }
9706
9707 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9708 {
9709 struct btrfs_fs_info *fs_info = root->fs_info;
9710 struct btrfs_block_group_cache *cache = NULL;
9711 u64 group_trimmed;
9712 u64 start;
9713 u64 end;
9714 u64 trimmed = 0;
9715 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9716 int ret = 0;
9717
9718 /*
9719 * try to trim all FS space, our block group may start from non-zero.
9720 */
9721 if (range->len == total_bytes)
9722 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9723 else
9724 cache = btrfs_lookup_block_group(fs_info, range->start);
9725
9726 while (cache) {
9727 if (cache->key.objectid >= (range->start + range->len)) {
9728 btrfs_put_block_group(cache);
9729 break;
9730 }
9731
9732 start = max(range->start, cache->key.objectid);
9733 end = min(range->start + range->len,
9734 cache->key.objectid + cache->key.offset);
9735
9736 if (end - start >= range->minlen) {
9737 if (!block_group_cache_done(cache)) {
9738 ret = cache_block_group(cache, 0);
9739 if (ret) {
9740 btrfs_put_block_group(cache);
9741 break;
9742 }
9743 ret = wait_block_group_cache_done(cache);
9744 if (ret) {
9745 btrfs_put_block_group(cache);
9746 break;
9747 }
9748 }
9749 ret = btrfs_trim_block_group(cache,
9750 &group_trimmed,
9751 start,
9752 end,
9753 range->minlen);
9754
9755 trimmed += group_trimmed;
9756 if (ret) {
9757 btrfs_put_block_group(cache);
9758 break;
9759 }
9760 }
9761
9762 cache = next_block_group(fs_info->tree_root, cache);
9763 }
9764
9765 range->len = trimmed;
9766 return ret;
9767 }
9768
9769 /*
9770 * btrfs_{start,end}_write_no_snapshoting() are similar to
9771 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9772 * data into the page cache through nocow before the subvolume is snapshoted,
9773 * but flush the data into disk after the snapshot creation, or to prevent
9774 * operations while snapshoting is ongoing and that cause the snapshot to be
9775 * inconsistent (writes followed by expanding truncates for example).
9776 */
9777 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9778 {
9779 percpu_counter_dec(&root->subv_writers->counter);
9780 /*
9781 * Make sure counter is updated before we wake up
9782 * waiters.
9783 */
9784 smp_mb();
9785 if (waitqueue_active(&root->subv_writers->wait))
9786 wake_up(&root->subv_writers->wait);
9787 }
9788
9789 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9790 {
9791 if (atomic_read(&root->will_be_snapshoted))
9792 return 0;
9793
9794 percpu_counter_inc(&root->subv_writers->counter);
9795 /*
9796 * Make sure counter is updated before we check for snapshot creation.
9797 */
9798 smp_mb();
9799 if (atomic_read(&root->will_be_snapshoted)) {
9800 btrfs_end_write_no_snapshoting(root);
9801 return 0;
9802 }
9803 return 1;
9804 }