]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
39 *
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 */
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
53 };
54
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, u64 parent,
61 u64 root_objectid, u64 owner_objectid,
62 u64 owner_offset, int refs_to_drop,
63 struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 struct extent_buffer *leaf,
66 struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_root *root,
69 u64 parent, u64 root_objectid,
70 u64 flags, u64 owner, u64 offset,
71 struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 parent, u64 root_objectid,
75 u64 flags, struct btrfs_disk_key *key,
76 int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 struct btrfs_root *extent_root, u64 alloc_bytes,
79 u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 int dump_block_groups);
84
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED;
90 }
91
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
93 {
94 return (cache->flags & bits) == bits;
95 }
96
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
98 {
99 atomic_inc(&cache->count);
100 }
101
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
103 {
104 if (atomic_dec_and_test(&cache->count)) {
105 WARN_ON(cache->pinned > 0);
106 WARN_ON(cache->reserved > 0);
107 WARN_ON(cache->reserved_pinned > 0);
108 kfree(cache->free_space_ctl);
109 kfree(cache);
110 }
111 }
112
113 /*
114 * this adds the block group to the fs_info rb tree for the block group
115 * cache
116 */
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 struct btrfs_block_group_cache *block_group)
119 {
120 struct rb_node **p;
121 struct rb_node *parent = NULL;
122 struct btrfs_block_group_cache *cache;
123
124 spin_lock(&info->block_group_cache_lock);
125 p = &info->block_group_cache_tree.rb_node;
126
127 while (*p) {
128 parent = *p;
129 cache = rb_entry(parent, struct btrfs_block_group_cache,
130 cache_node);
131 if (block_group->key.objectid < cache->key.objectid) {
132 p = &(*p)->rb_left;
133 } else if (block_group->key.objectid > cache->key.objectid) {
134 p = &(*p)->rb_right;
135 } else {
136 spin_unlock(&info->block_group_cache_lock);
137 return -EEXIST;
138 }
139 }
140
141 rb_link_node(&block_group->cache_node, parent, p);
142 rb_insert_color(&block_group->cache_node,
143 &info->block_group_cache_tree);
144 spin_unlock(&info->block_group_cache_lock);
145
146 return 0;
147 }
148
149 /*
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
152 */
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155 int contains)
156 {
157 struct btrfs_block_group_cache *cache, *ret = NULL;
158 struct rb_node *n;
159 u64 end, start;
160
161 spin_lock(&info->block_group_cache_lock);
162 n = info->block_group_cache_tree.rb_node;
163
164 while (n) {
165 cache = rb_entry(n, struct btrfs_block_group_cache,
166 cache_node);
167 end = cache->key.objectid + cache->key.offset - 1;
168 start = cache->key.objectid;
169
170 if (bytenr < start) {
171 if (!contains && (!ret || start < ret->key.objectid))
172 ret = cache;
173 n = n->rb_left;
174 } else if (bytenr > start) {
175 if (contains && bytenr <= end) {
176 ret = cache;
177 break;
178 }
179 n = n->rb_right;
180 } else {
181 ret = cache;
182 break;
183 }
184 }
185 if (ret)
186 btrfs_get_block_group(ret);
187 spin_unlock(&info->block_group_cache_lock);
188
189 return ret;
190 }
191
192 static int add_excluded_extent(struct btrfs_root *root,
193 u64 start, u64 num_bytes)
194 {
195 u64 end = start + num_bytes - 1;
196 set_extent_bits(&root->fs_info->freed_extents[0],
197 start, end, EXTENT_UPTODATE, GFP_NOFS);
198 set_extent_bits(&root->fs_info->freed_extents[1],
199 start, end, EXTENT_UPTODATE, GFP_NOFS);
200 return 0;
201 }
202
203 static void free_excluded_extents(struct btrfs_root *root,
204 struct btrfs_block_group_cache *cache)
205 {
206 u64 start, end;
207
208 start = cache->key.objectid;
209 end = start + cache->key.offset - 1;
210
211 clear_extent_bits(&root->fs_info->freed_extents[0],
212 start, end, EXTENT_UPTODATE, GFP_NOFS);
213 clear_extent_bits(&root->fs_info->freed_extents[1],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 }
216
217 static int exclude_super_stripes(struct btrfs_root *root,
218 struct btrfs_block_group_cache *cache)
219 {
220 u64 bytenr;
221 u64 *logical;
222 int stripe_len;
223 int i, nr, ret;
224
225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 cache->bytes_super += stripe_len;
228 ret = add_excluded_extent(root, cache->key.objectid,
229 stripe_len);
230 BUG_ON(ret);
231 }
232
233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 bytenr = btrfs_sb_offset(i);
235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 cache->key.objectid, bytenr,
237 0, &logical, &nr, &stripe_len);
238 BUG_ON(ret);
239
240 while (nr--) {
241 cache->bytes_super += stripe_len;
242 ret = add_excluded_extent(root, logical[nr],
243 stripe_len);
244 BUG_ON(ret);
245 }
246
247 kfree(logical);
248 }
249 return 0;
250 }
251
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
254 {
255 struct btrfs_caching_control *ctl;
256
257 spin_lock(&cache->lock);
258 if (cache->cached != BTRFS_CACHE_STARTED) {
259 spin_unlock(&cache->lock);
260 return NULL;
261 }
262
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache->caching_ctl) {
265 spin_unlock(&cache->lock);
266 return NULL;
267 }
268
269 ctl = cache->caching_ctl;
270 atomic_inc(&ctl->count);
271 spin_unlock(&cache->lock);
272 return ctl;
273 }
274
275 static void put_caching_control(struct btrfs_caching_control *ctl)
276 {
277 if (atomic_dec_and_test(&ctl->count))
278 kfree(ctl);
279 }
280
281 /*
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
285 */
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 struct btrfs_fs_info *info, u64 start, u64 end)
288 {
289 u64 extent_start, extent_end, size, total_added = 0;
290 int ret;
291
292 while (start < end) {
293 ret = find_first_extent_bit(info->pinned_extents, start,
294 &extent_start, &extent_end,
295 EXTENT_DIRTY | EXTENT_UPTODATE);
296 if (ret)
297 break;
298
299 if (extent_start <= start) {
300 start = extent_end + 1;
301 } else if (extent_start > start && extent_start < end) {
302 size = extent_start - start;
303 total_added += size;
304 ret = btrfs_add_free_space(block_group, start,
305 size);
306 BUG_ON(ret);
307 start = extent_end + 1;
308 } else {
309 break;
310 }
311 }
312
313 if (start < end) {
314 size = end - start;
315 total_added += size;
316 ret = btrfs_add_free_space(block_group, start, size);
317 BUG_ON(ret);
318 }
319
320 return total_added;
321 }
322
323 static noinline void caching_thread(struct btrfs_work *work)
324 {
325 struct btrfs_block_group_cache *block_group;
326 struct btrfs_fs_info *fs_info;
327 struct btrfs_caching_control *caching_ctl;
328 struct btrfs_root *extent_root;
329 struct btrfs_path *path;
330 struct extent_buffer *leaf;
331 struct btrfs_key key;
332 u64 total_found = 0;
333 u64 last = 0;
334 u32 nritems;
335 int ret = 0;
336
337 caching_ctl = container_of(work, struct btrfs_caching_control, work);
338 block_group = caching_ctl->block_group;
339 fs_info = block_group->fs_info;
340 extent_root = fs_info->extent_root;
341
342 path = btrfs_alloc_path();
343 if (!path)
344 goto out;
345
346 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
347
348 /*
349 * We don't want to deadlock with somebody trying to allocate a new
350 * extent for the extent root while also trying to search the extent
351 * root to add free space. So we skip locking and search the commit
352 * root, since its read-only
353 */
354 path->skip_locking = 1;
355 path->search_commit_root = 1;
356 path->reada = 1;
357
358 key.objectid = last;
359 key.offset = 0;
360 key.type = BTRFS_EXTENT_ITEM_KEY;
361 again:
362 mutex_lock(&caching_ctl->mutex);
363 /* need to make sure the commit_root doesn't disappear */
364 down_read(&fs_info->extent_commit_sem);
365
366 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
367 if (ret < 0)
368 goto err;
369
370 leaf = path->nodes[0];
371 nritems = btrfs_header_nritems(leaf);
372
373 while (1) {
374 if (btrfs_fs_closing(fs_info) > 1) {
375 last = (u64)-1;
376 break;
377 }
378
379 if (path->slots[0] < nritems) {
380 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
381 } else {
382 ret = find_next_key(path, 0, &key);
383 if (ret)
384 break;
385
386 if (need_resched() ||
387 btrfs_next_leaf(extent_root, path)) {
388 caching_ctl->progress = last;
389 btrfs_release_path(path);
390 up_read(&fs_info->extent_commit_sem);
391 mutex_unlock(&caching_ctl->mutex);
392 cond_resched();
393 goto again;
394 }
395 leaf = path->nodes[0];
396 nritems = btrfs_header_nritems(leaf);
397 continue;
398 }
399
400 if (key.objectid < block_group->key.objectid) {
401 path->slots[0]++;
402 continue;
403 }
404
405 if (key.objectid >= block_group->key.objectid +
406 block_group->key.offset)
407 break;
408
409 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
410 total_found += add_new_free_space(block_group,
411 fs_info, last,
412 key.objectid);
413 last = key.objectid + key.offset;
414
415 if (total_found > (1024 * 1024 * 2)) {
416 total_found = 0;
417 wake_up(&caching_ctl->wait);
418 }
419 }
420 path->slots[0]++;
421 }
422 ret = 0;
423
424 total_found += add_new_free_space(block_group, fs_info, last,
425 block_group->key.objectid +
426 block_group->key.offset);
427 caching_ctl->progress = (u64)-1;
428
429 spin_lock(&block_group->lock);
430 block_group->caching_ctl = NULL;
431 block_group->cached = BTRFS_CACHE_FINISHED;
432 spin_unlock(&block_group->lock);
433
434 err:
435 btrfs_free_path(path);
436 up_read(&fs_info->extent_commit_sem);
437
438 free_excluded_extents(extent_root, block_group);
439
440 mutex_unlock(&caching_ctl->mutex);
441 out:
442 wake_up(&caching_ctl->wait);
443
444 put_caching_control(caching_ctl);
445 btrfs_put_block_group(block_group);
446 }
447
448 static int cache_block_group(struct btrfs_block_group_cache *cache,
449 struct btrfs_trans_handle *trans,
450 struct btrfs_root *root,
451 int load_cache_only)
452 {
453 struct btrfs_fs_info *fs_info = cache->fs_info;
454 struct btrfs_caching_control *caching_ctl;
455 int ret = 0;
456
457 smp_mb();
458 if (cache->cached != BTRFS_CACHE_NO)
459 return 0;
460
461 /*
462 * We can't do the read from on-disk cache during a commit since we need
463 * to have the normal tree locking. Also if we are currently trying to
464 * allocate blocks for the tree root we can't do the fast caching since
465 * we likely hold important locks.
466 */
467 if (trans && (!trans->transaction->in_commit) &&
468 (root && root != root->fs_info->tree_root)) {
469 spin_lock(&cache->lock);
470 if (cache->cached != BTRFS_CACHE_NO) {
471 spin_unlock(&cache->lock);
472 return 0;
473 }
474 cache->cached = BTRFS_CACHE_STARTED;
475 spin_unlock(&cache->lock);
476
477 ret = load_free_space_cache(fs_info, cache);
478
479 spin_lock(&cache->lock);
480 if (ret == 1) {
481 cache->cached = BTRFS_CACHE_FINISHED;
482 cache->last_byte_to_unpin = (u64)-1;
483 } else {
484 cache->cached = BTRFS_CACHE_NO;
485 }
486 spin_unlock(&cache->lock);
487 if (ret == 1) {
488 free_excluded_extents(fs_info->extent_root, cache);
489 return 0;
490 }
491 }
492
493 if (load_cache_only)
494 return 0;
495
496 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
497 BUG_ON(!caching_ctl);
498
499 INIT_LIST_HEAD(&caching_ctl->list);
500 mutex_init(&caching_ctl->mutex);
501 init_waitqueue_head(&caching_ctl->wait);
502 caching_ctl->block_group = cache;
503 caching_ctl->progress = cache->key.objectid;
504 /* one for caching kthread, one for caching block group list */
505 atomic_set(&caching_ctl->count, 2);
506 caching_ctl->work.func = caching_thread;
507
508 spin_lock(&cache->lock);
509 if (cache->cached != BTRFS_CACHE_NO) {
510 spin_unlock(&cache->lock);
511 kfree(caching_ctl);
512 return 0;
513 }
514 cache->caching_ctl = caching_ctl;
515 cache->cached = BTRFS_CACHE_STARTED;
516 spin_unlock(&cache->lock);
517
518 down_write(&fs_info->extent_commit_sem);
519 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
520 up_write(&fs_info->extent_commit_sem);
521
522 btrfs_get_block_group(cache);
523
524 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
525
526 return ret;
527 }
528
529 /*
530 * return the block group that starts at or after bytenr
531 */
532 static struct btrfs_block_group_cache *
533 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
534 {
535 struct btrfs_block_group_cache *cache;
536
537 cache = block_group_cache_tree_search(info, bytenr, 0);
538
539 return cache;
540 }
541
542 /*
543 * return the block group that contains the given bytenr
544 */
545 struct btrfs_block_group_cache *btrfs_lookup_block_group(
546 struct btrfs_fs_info *info,
547 u64 bytenr)
548 {
549 struct btrfs_block_group_cache *cache;
550
551 cache = block_group_cache_tree_search(info, bytenr, 1);
552
553 return cache;
554 }
555
556 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
557 u64 flags)
558 {
559 struct list_head *head = &info->space_info;
560 struct btrfs_space_info *found;
561
562 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
563 BTRFS_BLOCK_GROUP_METADATA;
564
565 rcu_read_lock();
566 list_for_each_entry_rcu(found, head, list) {
567 if (found->flags & flags) {
568 rcu_read_unlock();
569 return found;
570 }
571 }
572 rcu_read_unlock();
573 return NULL;
574 }
575
576 /*
577 * after adding space to the filesystem, we need to clear the full flags
578 * on all the space infos.
579 */
580 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
581 {
582 struct list_head *head = &info->space_info;
583 struct btrfs_space_info *found;
584
585 rcu_read_lock();
586 list_for_each_entry_rcu(found, head, list)
587 found->full = 0;
588 rcu_read_unlock();
589 }
590
591 static u64 div_factor(u64 num, int factor)
592 {
593 if (factor == 10)
594 return num;
595 num *= factor;
596 do_div(num, 10);
597 return num;
598 }
599
600 static u64 div_factor_fine(u64 num, int factor)
601 {
602 if (factor == 100)
603 return num;
604 num *= factor;
605 do_div(num, 100);
606 return num;
607 }
608
609 u64 btrfs_find_block_group(struct btrfs_root *root,
610 u64 search_start, u64 search_hint, int owner)
611 {
612 struct btrfs_block_group_cache *cache;
613 u64 used;
614 u64 last = max(search_hint, search_start);
615 u64 group_start = 0;
616 int full_search = 0;
617 int factor = 9;
618 int wrapped = 0;
619 again:
620 while (1) {
621 cache = btrfs_lookup_first_block_group(root->fs_info, last);
622 if (!cache)
623 break;
624
625 spin_lock(&cache->lock);
626 last = cache->key.objectid + cache->key.offset;
627 used = btrfs_block_group_used(&cache->item);
628
629 if ((full_search || !cache->ro) &&
630 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
631 if (used + cache->pinned + cache->reserved <
632 div_factor(cache->key.offset, factor)) {
633 group_start = cache->key.objectid;
634 spin_unlock(&cache->lock);
635 btrfs_put_block_group(cache);
636 goto found;
637 }
638 }
639 spin_unlock(&cache->lock);
640 btrfs_put_block_group(cache);
641 cond_resched();
642 }
643 if (!wrapped) {
644 last = search_start;
645 wrapped = 1;
646 goto again;
647 }
648 if (!full_search && factor < 10) {
649 last = search_start;
650 full_search = 1;
651 factor = 10;
652 goto again;
653 }
654 found:
655 return group_start;
656 }
657
658 /* simple helper to search for an existing extent at a given offset */
659 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
660 {
661 int ret;
662 struct btrfs_key key;
663 struct btrfs_path *path;
664
665 path = btrfs_alloc_path();
666 if (!path)
667 return -ENOMEM;
668
669 key.objectid = start;
670 key.offset = len;
671 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
672 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
673 0, 0);
674 btrfs_free_path(path);
675 return ret;
676 }
677
678 /*
679 * helper function to lookup reference count and flags of extent.
680 *
681 * the head node for delayed ref is used to store the sum of all the
682 * reference count modifications queued up in the rbtree. the head
683 * node may also store the extent flags to set. This way you can check
684 * to see what the reference count and extent flags would be if all of
685 * the delayed refs are not processed.
686 */
687 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
688 struct btrfs_root *root, u64 bytenr,
689 u64 num_bytes, u64 *refs, u64 *flags)
690 {
691 struct btrfs_delayed_ref_head *head;
692 struct btrfs_delayed_ref_root *delayed_refs;
693 struct btrfs_path *path;
694 struct btrfs_extent_item *ei;
695 struct extent_buffer *leaf;
696 struct btrfs_key key;
697 u32 item_size;
698 u64 num_refs;
699 u64 extent_flags;
700 int ret;
701
702 path = btrfs_alloc_path();
703 if (!path)
704 return -ENOMEM;
705
706 key.objectid = bytenr;
707 key.type = BTRFS_EXTENT_ITEM_KEY;
708 key.offset = num_bytes;
709 if (!trans) {
710 path->skip_locking = 1;
711 path->search_commit_root = 1;
712 }
713 again:
714 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
715 &key, path, 0, 0);
716 if (ret < 0)
717 goto out_free;
718
719 if (ret == 0) {
720 leaf = path->nodes[0];
721 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
722 if (item_size >= sizeof(*ei)) {
723 ei = btrfs_item_ptr(leaf, path->slots[0],
724 struct btrfs_extent_item);
725 num_refs = btrfs_extent_refs(leaf, ei);
726 extent_flags = btrfs_extent_flags(leaf, ei);
727 } else {
728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
729 struct btrfs_extent_item_v0 *ei0;
730 BUG_ON(item_size != sizeof(*ei0));
731 ei0 = btrfs_item_ptr(leaf, path->slots[0],
732 struct btrfs_extent_item_v0);
733 num_refs = btrfs_extent_refs_v0(leaf, ei0);
734 /* FIXME: this isn't correct for data */
735 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
736 #else
737 BUG();
738 #endif
739 }
740 BUG_ON(num_refs == 0);
741 } else {
742 num_refs = 0;
743 extent_flags = 0;
744 ret = 0;
745 }
746
747 if (!trans)
748 goto out;
749
750 delayed_refs = &trans->transaction->delayed_refs;
751 spin_lock(&delayed_refs->lock);
752 head = btrfs_find_delayed_ref_head(trans, bytenr);
753 if (head) {
754 if (!mutex_trylock(&head->mutex)) {
755 atomic_inc(&head->node.refs);
756 spin_unlock(&delayed_refs->lock);
757
758 btrfs_release_path(path);
759
760 /*
761 * Mutex was contended, block until it's released and try
762 * again
763 */
764 mutex_lock(&head->mutex);
765 mutex_unlock(&head->mutex);
766 btrfs_put_delayed_ref(&head->node);
767 goto again;
768 }
769 if (head->extent_op && head->extent_op->update_flags)
770 extent_flags |= head->extent_op->flags_to_set;
771 else
772 BUG_ON(num_refs == 0);
773
774 num_refs += head->node.ref_mod;
775 mutex_unlock(&head->mutex);
776 }
777 spin_unlock(&delayed_refs->lock);
778 out:
779 WARN_ON(num_refs == 0);
780 if (refs)
781 *refs = num_refs;
782 if (flags)
783 *flags = extent_flags;
784 out_free:
785 btrfs_free_path(path);
786 return ret;
787 }
788
789 /*
790 * Back reference rules. Back refs have three main goals:
791 *
792 * 1) differentiate between all holders of references to an extent so that
793 * when a reference is dropped we can make sure it was a valid reference
794 * before freeing the extent.
795 *
796 * 2) Provide enough information to quickly find the holders of an extent
797 * if we notice a given block is corrupted or bad.
798 *
799 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
800 * maintenance. This is actually the same as #2, but with a slightly
801 * different use case.
802 *
803 * There are two kinds of back refs. The implicit back refs is optimized
804 * for pointers in non-shared tree blocks. For a given pointer in a block,
805 * back refs of this kind provide information about the block's owner tree
806 * and the pointer's key. These information allow us to find the block by
807 * b-tree searching. The full back refs is for pointers in tree blocks not
808 * referenced by their owner trees. The location of tree block is recorded
809 * in the back refs. Actually the full back refs is generic, and can be
810 * used in all cases the implicit back refs is used. The major shortcoming
811 * of the full back refs is its overhead. Every time a tree block gets
812 * COWed, we have to update back refs entry for all pointers in it.
813 *
814 * For a newly allocated tree block, we use implicit back refs for
815 * pointers in it. This means most tree related operations only involve
816 * implicit back refs. For a tree block created in old transaction, the
817 * only way to drop a reference to it is COW it. So we can detect the
818 * event that tree block loses its owner tree's reference and do the
819 * back refs conversion.
820 *
821 * When a tree block is COW'd through a tree, there are four cases:
822 *
823 * The reference count of the block is one and the tree is the block's
824 * owner tree. Nothing to do in this case.
825 *
826 * The reference count of the block is one and the tree is not the
827 * block's owner tree. In this case, full back refs is used for pointers
828 * in the block. Remove these full back refs, add implicit back refs for
829 * every pointers in the new block.
830 *
831 * The reference count of the block is greater than one and the tree is
832 * the block's owner tree. In this case, implicit back refs is used for
833 * pointers in the block. Add full back refs for every pointers in the
834 * block, increase lower level extents' reference counts. The original
835 * implicit back refs are entailed to the new block.
836 *
837 * The reference count of the block is greater than one and the tree is
838 * not the block's owner tree. Add implicit back refs for every pointer in
839 * the new block, increase lower level extents' reference count.
840 *
841 * Back Reference Key composing:
842 *
843 * The key objectid corresponds to the first byte in the extent,
844 * The key type is used to differentiate between types of back refs.
845 * There are different meanings of the key offset for different types
846 * of back refs.
847 *
848 * File extents can be referenced by:
849 *
850 * - multiple snapshots, subvolumes, or different generations in one subvol
851 * - different files inside a single subvolume
852 * - different offsets inside a file (bookend extents in file.c)
853 *
854 * The extent ref structure for the implicit back refs has fields for:
855 *
856 * - Objectid of the subvolume root
857 * - objectid of the file holding the reference
858 * - original offset in the file
859 * - how many bookend extents
860 *
861 * The key offset for the implicit back refs is hash of the first
862 * three fields.
863 *
864 * The extent ref structure for the full back refs has field for:
865 *
866 * - number of pointers in the tree leaf
867 *
868 * The key offset for the implicit back refs is the first byte of
869 * the tree leaf
870 *
871 * When a file extent is allocated, The implicit back refs is used.
872 * the fields are filled in:
873 *
874 * (root_key.objectid, inode objectid, offset in file, 1)
875 *
876 * When a file extent is removed file truncation, we find the
877 * corresponding implicit back refs and check the following fields:
878 *
879 * (btrfs_header_owner(leaf), inode objectid, offset in file)
880 *
881 * Btree extents can be referenced by:
882 *
883 * - Different subvolumes
884 *
885 * Both the implicit back refs and the full back refs for tree blocks
886 * only consist of key. The key offset for the implicit back refs is
887 * objectid of block's owner tree. The key offset for the full back refs
888 * is the first byte of parent block.
889 *
890 * When implicit back refs is used, information about the lowest key and
891 * level of the tree block are required. These information are stored in
892 * tree block info structure.
893 */
894
895 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
896 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
897 struct btrfs_root *root,
898 struct btrfs_path *path,
899 u64 owner, u32 extra_size)
900 {
901 struct btrfs_extent_item *item;
902 struct btrfs_extent_item_v0 *ei0;
903 struct btrfs_extent_ref_v0 *ref0;
904 struct btrfs_tree_block_info *bi;
905 struct extent_buffer *leaf;
906 struct btrfs_key key;
907 struct btrfs_key found_key;
908 u32 new_size = sizeof(*item);
909 u64 refs;
910 int ret;
911
912 leaf = path->nodes[0];
913 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
914
915 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
916 ei0 = btrfs_item_ptr(leaf, path->slots[0],
917 struct btrfs_extent_item_v0);
918 refs = btrfs_extent_refs_v0(leaf, ei0);
919
920 if (owner == (u64)-1) {
921 while (1) {
922 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
923 ret = btrfs_next_leaf(root, path);
924 if (ret < 0)
925 return ret;
926 BUG_ON(ret > 0);
927 leaf = path->nodes[0];
928 }
929 btrfs_item_key_to_cpu(leaf, &found_key,
930 path->slots[0]);
931 BUG_ON(key.objectid != found_key.objectid);
932 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
933 path->slots[0]++;
934 continue;
935 }
936 ref0 = btrfs_item_ptr(leaf, path->slots[0],
937 struct btrfs_extent_ref_v0);
938 owner = btrfs_ref_objectid_v0(leaf, ref0);
939 break;
940 }
941 }
942 btrfs_release_path(path);
943
944 if (owner < BTRFS_FIRST_FREE_OBJECTID)
945 new_size += sizeof(*bi);
946
947 new_size -= sizeof(*ei0);
948 ret = btrfs_search_slot(trans, root, &key, path,
949 new_size + extra_size, 1);
950 if (ret < 0)
951 return ret;
952 BUG_ON(ret);
953
954 ret = btrfs_extend_item(trans, root, path, new_size);
955
956 leaf = path->nodes[0];
957 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
958 btrfs_set_extent_refs(leaf, item, refs);
959 /* FIXME: get real generation */
960 btrfs_set_extent_generation(leaf, item, 0);
961 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
962 btrfs_set_extent_flags(leaf, item,
963 BTRFS_EXTENT_FLAG_TREE_BLOCK |
964 BTRFS_BLOCK_FLAG_FULL_BACKREF);
965 bi = (struct btrfs_tree_block_info *)(item + 1);
966 /* FIXME: get first key of the block */
967 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
968 btrfs_set_tree_block_level(leaf, bi, (int)owner);
969 } else {
970 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
971 }
972 btrfs_mark_buffer_dirty(leaf);
973 return 0;
974 }
975 #endif
976
977 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
978 {
979 u32 high_crc = ~(u32)0;
980 u32 low_crc = ~(u32)0;
981 __le64 lenum;
982
983 lenum = cpu_to_le64(root_objectid);
984 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
985 lenum = cpu_to_le64(owner);
986 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
987 lenum = cpu_to_le64(offset);
988 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
989
990 return ((u64)high_crc << 31) ^ (u64)low_crc;
991 }
992
993 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
994 struct btrfs_extent_data_ref *ref)
995 {
996 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
997 btrfs_extent_data_ref_objectid(leaf, ref),
998 btrfs_extent_data_ref_offset(leaf, ref));
999 }
1000
1001 static int match_extent_data_ref(struct extent_buffer *leaf,
1002 struct btrfs_extent_data_ref *ref,
1003 u64 root_objectid, u64 owner, u64 offset)
1004 {
1005 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1006 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1007 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1008 return 0;
1009 return 1;
1010 }
1011
1012 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root,
1014 struct btrfs_path *path,
1015 u64 bytenr, u64 parent,
1016 u64 root_objectid,
1017 u64 owner, u64 offset)
1018 {
1019 struct btrfs_key key;
1020 struct btrfs_extent_data_ref *ref;
1021 struct extent_buffer *leaf;
1022 u32 nritems;
1023 int ret;
1024 int recow;
1025 int err = -ENOENT;
1026
1027 key.objectid = bytenr;
1028 if (parent) {
1029 key.type = BTRFS_SHARED_DATA_REF_KEY;
1030 key.offset = parent;
1031 } else {
1032 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1033 key.offset = hash_extent_data_ref(root_objectid,
1034 owner, offset);
1035 }
1036 again:
1037 recow = 0;
1038 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1039 if (ret < 0) {
1040 err = ret;
1041 goto fail;
1042 }
1043
1044 if (parent) {
1045 if (!ret)
1046 return 0;
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 key.type = BTRFS_EXTENT_REF_V0_KEY;
1049 btrfs_release_path(path);
1050 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051 if (ret < 0) {
1052 err = ret;
1053 goto fail;
1054 }
1055 if (!ret)
1056 return 0;
1057 #endif
1058 goto fail;
1059 }
1060
1061 leaf = path->nodes[0];
1062 nritems = btrfs_header_nritems(leaf);
1063 while (1) {
1064 if (path->slots[0] >= nritems) {
1065 ret = btrfs_next_leaf(root, path);
1066 if (ret < 0)
1067 err = ret;
1068 if (ret)
1069 goto fail;
1070
1071 leaf = path->nodes[0];
1072 nritems = btrfs_header_nritems(leaf);
1073 recow = 1;
1074 }
1075
1076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1077 if (key.objectid != bytenr ||
1078 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1079 goto fail;
1080
1081 ref = btrfs_item_ptr(leaf, path->slots[0],
1082 struct btrfs_extent_data_ref);
1083
1084 if (match_extent_data_ref(leaf, ref, root_objectid,
1085 owner, offset)) {
1086 if (recow) {
1087 btrfs_release_path(path);
1088 goto again;
1089 }
1090 err = 0;
1091 break;
1092 }
1093 path->slots[0]++;
1094 }
1095 fail:
1096 return err;
1097 }
1098
1099 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root,
1101 struct btrfs_path *path,
1102 u64 bytenr, u64 parent,
1103 u64 root_objectid, u64 owner,
1104 u64 offset, int refs_to_add)
1105 {
1106 struct btrfs_key key;
1107 struct extent_buffer *leaf;
1108 u32 size;
1109 u32 num_refs;
1110 int ret;
1111
1112 key.objectid = bytenr;
1113 if (parent) {
1114 key.type = BTRFS_SHARED_DATA_REF_KEY;
1115 key.offset = parent;
1116 size = sizeof(struct btrfs_shared_data_ref);
1117 } else {
1118 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1119 key.offset = hash_extent_data_ref(root_objectid,
1120 owner, offset);
1121 size = sizeof(struct btrfs_extent_data_ref);
1122 }
1123
1124 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1125 if (ret && ret != -EEXIST)
1126 goto fail;
1127
1128 leaf = path->nodes[0];
1129 if (parent) {
1130 struct btrfs_shared_data_ref *ref;
1131 ref = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_shared_data_ref);
1133 if (ret == 0) {
1134 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1135 } else {
1136 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1137 num_refs += refs_to_add;
1138 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1139 }
1140 } else {
1141 struct btrfs_extent_data_ref *ref;
1142 while (ret == -EEXIST) {
1143 ref = btrfs_item_ptr(leaf, path->slots[0],
1144 struct btrfs_extent_data_ref);
1145 if (match_extent_data_ref(leaf, ref, root_objectid,
1146 owner, offset))
1147 break;
1148 btrfs_release_path(path);
1149 key.offset++;
1150 ret = btrfs_insert_empty_item(trans, root, path, &key,
1151 size);
1152 if (ret && ret != -EEXIST)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 }
1157 ref = btrfs_item_ptr(leaf, path->slots[0],
1158 struct btrfs_extent_data_ref);
1159 if (ret == 0) {
1160 btrfs_set_extent_data_ref_root(leaf, ref,
1161 root_objectid);
1162 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1163 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1164 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1165 } else {
1166 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1167 num_refs += refs_to_add;
1168 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1169 }
1170 }
1171 btrfs_mark_buffer_dirty(leaf);
1172 ret = 0;
1173 fail:
1174 btrfs_release_path(path);
1175 return ret;
1176 }
1177
1178 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1179 struct btrfs_root *root,
1180 struct btrfs_path *path,
1181 int refs_to_drop)
1182 {
1183 struct btrfs_key key;
1184 struct btrfs_extent_data_ref *ref1 = NULL;
1185 struct btrfs_shared_data_ref *ref2 = NULL;
1186 struct extent_buffer *leaf;
1187 u32 num_refs = 0;
1188 int ret = 0;
1189
1190 leaf = path->nodes[0];
1191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1192
1193 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1194 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1195 struct btrfs_extent_data_ref);
1196 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1197 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1198 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_shared_data_ref);
1200 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1203 struct btrfs_extent_ref_v0 *ref0;
1204 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_extent_ref_v0);
1206 num_refs = btrfs_ref_count_v0(leaf, ref0);
1207 #endif
1208 } else {
1209 BUG();
1210 }
1211
1212 BUG_ON(num_refs < refs_to_drop);
1213 num_refs -= refs_to_drop;
1214
1215 if (num_refs == 0) {
1216 ret = btrfs_del_item(trans, root, path);
1217 } else {
1218 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1219 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1220 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1221 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 else {
1224 struct btrfs_extent_ref_v0 *ref0;
1225 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1226 struct btrfs_extent_ref_v0);
1227 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1228 }
1229 #endif
1230 btrfs_mark_buffer_dirty(leaf);
1231 }
1232 return ret;
1233 }
1234
1235 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1236 struct btrfs_path *path,
1237 struct btrfs_extent_inline_ref *iref)
1238 {
1239 struct btrfs_key key;
1240 struct extent_buffer *leaf;
1241 struct btrfs_extent_data_ref *ref1;
1242 struct btrfs_shared_data_ref *ref2;
1243 u32 num_refs = 0;
1244
1245 leaf = path->nodes[0];
1246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1247 if (iref) {
1248 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1249 BTRFS_EXTENT_DATA_REF_KEY) {
1250 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1251 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1252 } else {
1253 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1254 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1255 }
1256 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1257 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_extent_data_ref);
1259 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1260 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1261 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1262 struct btrfs_shared_data_ref);
1263 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1264 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1265 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1266 struct btrfs_extent_ref_v0 *ref0;
1267 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1268 struct btrfs_extent_ref_v0);
1269 num_refs = btrfs_ref_count_v0(leaf, ref0);
1270 #endif
1271 } else {
1272 WARN_ON(1);
1273 }
1274 return num_refs;
1275 }
1276
1277 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1278 struct btrfs_root *root,
1279 struct btrfs_path *path,
1280 u64 bytenr, u64 parent,
1281 u64 root_objectid)
1282 {
1283 struct btrfs_key key;
1284 int ret;
1285
1286 key.objectid = bytenr;
1287 if (parent) {
1288 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1289 key.offset = parent;
1290 } else {
1291 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1292 key.offset = root_objectid;
1293 }
1294
1295 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1296 if (ret > 0)
1297 ret = -ENOENT;
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 if (ret == -ENOENT && parent) {
1300 btrfs_release_path(path);
1301 key.type = BTRFS_EXTENT_REF_V0_KEY;
1302 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1303 if (ret > 0)
1304 ret = -ENOENT;
1305 }
1306 #endif
1307 return ret;
1308 }
1309
1310 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1311 struct btrfs_root *root,
1312 struct btrfs_path *path,
1313 u64 bytenr, u64 parent,
1314 u64 root_objectid)
1315 {
1316 struct btrfs_key key;
1317 int ret;
1318
1319 key.objectid = bytenr;
1320 if (parent) {
1321 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1322 key.offset = parent;
1323 } else {
1324 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1325 key.offset = root_objectid;
1326 }
1327
1328 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1329 btrfs_release_path(path);
1330 return ret;
1331 }
1332
1333 static inline int extent_ref_type(u64 parent, u64 owner)
1334 {
1335 int type;
1336 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1337 if (parent > 0)
1338 type = BTRFS_SHARED_BLOCK_REF_KEY;
1339 else
1340 type = BTRFS_TREE_BLOCK_REF_KEY;
1341 } else {
1342 if (parent > 0)
1343 type = BTRFS_SHARED_DATA_REF_KEY;
1344 else
1345 type = BTRFS_EXTENT_DATA_REF_KEY;
1346 }
1347 return type;
1348 }
1349
1350 static int find_next_key(struct btrfs_path *path, int level,
1351 struct btrfs_key *key)
1352
1353 {
1354 for (; level < BTRFS_MAX_LEVEL; level++) {
1355 if (!path->nodes[level])
1356 break;
1357 if (path->slots[level] + 1 >=
1358 btrfs_header_nritems(path->nodes[level]))
1359 continue;
1360 if (level == 0)
1361 btrfs_item_key_to_cpu(path->nodes[level], key,
1362 path->slots[level] + 1);
1363 else
1364 btrfs_node_key_to_cpu(path->nodes[level], key,
1365 path->slots[level] + 1);
1366 return 0;
1367 }
1368 return 1;
1369 }
1370
1371 /*
1372 * look for inline back ref. if back ref is found, *ref_ret is set
1373 * to the address of inline back ref, and 0 is returned.
1374 *
1375 * if back ref isn't found, *ref_ret is set to the address where it
1376 * should be inserted, and -ENOENT is returned.
1377 *
1378 * if insert is true and there are too many inline back refs, the path
1379 * points to the extent item, and -EAGAIN is returned.
1380 *
1381 * NOTE: inline back refs are ordered in the same way that back ref
1382 * items in the tree are ordered.
1383 */
1384 static noinline_for_stack
1385 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1386 struct btrfs_root *root,
1387 struct btrfs_path *path,
1388 struct btrfs_extent_inline_ref **ref_ret,
1389 u64 bytenr, u64 num_bytes,
1390 u64 parent, u64 root_objectid,
1391 u64 owner, u64 offset, int insert)
1392 {
1393 struct btrfs_key key;
1394 struct extent_buffer *leaf;
1395 struct btrfs_extent_item *ei;
1396 struct btrfs_extent_inline_ref *iref;
1397 u64 flags;
1398 u64 item_size;
1399 unsigned long ptr;
1400 unsigned long end;
1401 int extra_size;
1402 int type;
1403 int want;
1404 int ret;
1405 int err = 0;
1406
1407 key.objectid = bytenr;
1408 key.type = BTRFS_EXTENT_ITEM_KEY;
1409 key.offset = num_bytes;
1410
1411 want = extent_ref_type(parent, owner);
1412 if (insert) {
1413 extra_size = btrfs_extent_inline_ref_size(want);
1414 path->keep_locks = 1;
1415 } else
1416 extra_size = -1;
1417 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1418 if (ret < 0) {
1419 err = ret;
1420 goto out;
1421 }
1422 BUG_ON(ret);
1423
1424 leaf = path->nodes[0];
1425 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 if (item_size < sizeof(*ei)) {
1428 if (!insert) {
1429 err = -ENOENT;
1430 goto out;
1431 }
1432 ret = convert_extent_item_v0(trans, root, path, owner,
1433 extra_size);
1434 if (ret < 0) {
1435 err = ret;
1436 goto out;
1437 }
1438 leaf = path->nodes[0];
1439 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1440 }
1441 #endif
1442 BUG_ON(item_size < sizeof(*ei));
1443
1444 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1445 flags = btrfs_extent_flags(leaf, ei);
1446
1447 ptr = (unsigned long)(ei + 1);
1448 end = (unsigned long)ei + item_size;
1449
1450 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1451 ptr += sizeof(struct btrfs_tree_block_info);
1452 BUG_ON(ptr > end);
1453 } else {
1454 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1455 }
1456
1457 err = -ENOENT;
1458 while (1) {
1459 if (ptr >= end) {
1460 WARN_ON(ptr > end);
1461 break;
1462 }
1463 iref = (struct btrfs_extent_inline_ref *)ptr;
1464 type = btrfs_extent_inline_ref_type(leaf, iref);
1465 if (want < type)
1466 break;
1467 if (want > type) {
1468 ptr += btrfs_extent_inline_ref_size(type);
1469 continue;
1470 }
1471
1472 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 struct btrfs_extent_data_ref *dref;
1474 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1475 if (match_extent_data_ref(leaf, dref, root_objectid,
1476 owner, offset)) {
1477 err = 0;
1478 break;
1479 }
1480 if (hash_extent_data_ref_item(leaf, dref) <
1481 hash_extent_data_ref(root_objectid, owner, offset))
1482 break;
1483 } else {
1484 u64 ref_offset;
1485 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1486 if (parent > 0) {
1487 if (parent == ref_offset) {
1488 err = 0;
1489 break;
1490 }
1491 if (ref_offset < parent)
1492 break;
1493 } else {
1494 if (root_objectid == ref_offset) {
1495 err = 0;
1496 break;
1497 }
1498 if (ref_offset < root_objectid)
1499 break;
1500 }
1501 }
1502 ptr += btrfs_extent_inline_ref_size(type);
1503 }
1504 if (err == -ENOENT && insert) {
1505 if (item_size + extra_size >=
1506 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1507 err = -EAGAIN;
1508 goto out;
1509 }
1510 /*
1511 * To add new inline back ref, we have to make sure
1512 * there is no corresponding back ref item.
1513 * For simplicity, we just do not add new inline back
1514 * ref if there is any kind of item for this block
1515 */
1516 if (find_next_key(path, 0, &key) == 0 &&
1517 key.objectid == bytenr &&
1518 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1519 err = -EAGAIN;
1520 goto out;
1521 }
1522 }
1523 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1524 out:
1525 if (insert) {
1526 path->keep_locks = 0;
1527 btrfs_unlock_up_safe(path, 1);
1528 }
1529 return err;
1530 }
1531
1532 /*
1533 * helper to add new inline back ref
1534 */
1535 static noinline_for_stack
1536 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1537 struct btrfs_root *root,
1538 struct btrfs_path *path,
1539 struct btrfs_extent_inline_ref *iref,
1540 u64 parent, u64 root_objectid,
1541 u64 owner, u64 offset, int refs_to_add,
1542 struct btrfs_delayed_extent_op *extent_op)
1543 {
1544 struct extent_buffer *leaf;
1545 struct btrfs_extent_item *ei;
1546 unsigned long ptr;
1547 unsigned long end;
1548 unsigned long item_offset;
1549 u64 refs;
1550 int size;
1551 int type;
1552 int ret;
1553
1554 leaf = path->nodes[0];
1555 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1556 item_offset = (unsigned long)iref - (unsigned long)ei;
1557
1558 type = extent_ref_type(parent, owner);
1559 size = btrfs_extent_inline_ref_size(type);
1560
1561 ret = btrfs_extend_item(trans, root, path, size);
1562
1563 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1564 refs = btrfs_extent_refs(leaf, ei);
1565 refs += refs_to_add;
1566 btrfs_set_extent_refs(leaf, ei, refs);
1567 if (extent_op)
1568 __run_delayed_extent_op(extent_op, leaf, ei);
1569
1570 ptr = (unsigned long)ei + item_offset;
1571 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1572 if (ptr < end - size)
1573 memmove_extent_buffer(leaf, ptr + size, ptr,
1574 end - size - ptr);
1575
1576 iref = (struct btrfs_extent_inline_ref *)ptr;
1577 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1578 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1579 struct btrfs_extent_data_ref *dref;
1580 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1581 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1582 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1583 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1584 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1585 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1586 struct btrfs_shared_data_ref *sref;
1587 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1588 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1589 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1590 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1591 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1592 } else {
1593 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1594 }
1595 btrfs_mark_buffer_dirty(leaf);
1596 return 0;
1597 }
1598
1599 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1600 struct btrfs_root *root,
1601 struct btrfs_path *path,
1602 struct btrfs_extent_inline_ref **ref_ret,
1603 u64 bytenr, u64 num_bytes, u64 parent,
1604 u64 root_objectid, u64 owner, u64 offset)
1605 {
1606 int ret;
1607
1608 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1609 bytenr, num_bytes, parent,
1610 root_objectid, owner, offset, 0);
1611 if (ret != -ENOENT)
1612 return ret;
1613
1614 btrfs_release_path(path);
1615 *ref_ret = NULL;
1616
1617 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1618 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1619 root_objectid);
1620 } else {
1621 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1622 root_objectid, owner, offset);
1623 }
1624 return ret;
1625 }
1626
1627 /*
1628 * helper to update/remove inline back ref
1629 */
1630 static noinline_for_stack
1631 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1632 struct btrfs_root *root,
1633 struct btrfs_path *path,
1634 struct btrfs_extent_inline_ref *iref,
1635 int refs_to_mod,
1636 struct btrfs_delayed_extent_op *extent_op)
1637 {
1638 struct extent_buffer *leaf;
1639 struct btrfs_extent_item *ei;
1640 struct btrfs_extent_data_ref *dref = NULL;
1641 struct btrfs_shared_data_ref *sref = NULL;
1642 unsigned long ptr;
1643 unsigned long end;
1644 u32 item_size;
1645 int size;
1646 int type;
1647 int ret;
1648 u64 refs;
1649
1650 leaf = path->nodes[0];
1651 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1652 refs = btrfs_extent_refs(leaf, ei);
1653 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1654 refs += refs_to_mod;
1655 btrfs_set_extent_refs(leaf, ei, refs);
1656 if (extent_op)
1657 __run_delayed_extent_op(extent_op, leaf, ei);
1658
1659 type = btrfs_extent_inline_ref_type(leaf, iref);
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 refs = btrfs_extent_data_ref_count(leaf, dref);
1664 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1665 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1666 refs = btrfs_shared_data_ref_count(leaf, sref);
1667 } else {
1668 refs = 1;
1669 BUG_ON(refs_to_mod != -1);
1670 }
1671
1672 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1673 refs += refs_to_mod;
1674
1675 if (refs > 0) {
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1677 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1678 else
1679 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1680 } else {
1681 size = btrfs_extent_inline_ref_size(type);
1682 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1683 ptr = (unsigned long)iref;
1684 end = (unsigned long)ei + item_size;
1685 if (ptr + size < end)
1686 memmove_extent_buffer(leaf, ptr, ptr + size,
1687 end - ptr - size);
1688 item_size -= size;
1689 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1690 }
1691 btrfs_mark_buffer_dirty(leaf);
1692 return 0;
1693 }
1694
1695 static noinline_for_stack
1696 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1697 struct btrfs_root *root,
1698 struct btrfs_path *path,
1699 u64 bytenr, u64 num_bytes, u64 parent,
1700 u64 root_objectid, u64 owner,
1701 u64 offset, int refs_to_add,
1702 struct btrfs_delayed_extent_op *extent_op)
1703 {
1704 struct btrfs_extent_inline_ref *iref;
1705 int ret;
1706
1707 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1708 bytenr, num_bytes, parent,
1709 root_objectid, owner, offset, 1);
1710 if (ret == 0) {
1711 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1712 ret = update_inline_extent_backref(trans, root, path, iref,
1713 refs_to_add, extent_op);
1714 } else if (ret == -ENOENT) {
1715 ret = setup_inline_extent_backref(trans, root, path, iref,
1716 parent, root_objectid,
1717 owner, offset, refs_to_add,
1718 extent_op);
1719 }
1720 return ret;
1721 }
1722
1723 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 u64 bytenr, u64 parent, u64 root_objectid,
1727 u64 owner, u64 offset, int refs_to_add)
1728 {
1729 int ret;
1730 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1731 BUG_ON(refs_to_add != 1);
1732 ret = insert_tree_block_ref(trans, root, path, bytenr,
1733 parent, root_objectid);
1734 } else {
1735 ret = insert_extent_data_ref(trans, root, path, bytenr,
1736 parent, root_objectid,
1737 owner, offset, refs_to_add);
1738 }
1739 return ret;
1740 }
1741
1742 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path,
1745 struct btrfs_extent_inline_ref *iref,
1746 int refs_to_drop, int is_data)
1747 {
1748 int ret;
1749
1750 BUG_ON(!is_data && refs_to_drop != 1);
1751 if (iref) {
1752 ret = update_inline_extent_backref(trans, root, path, iref,
1753 -refs_to_drop, NULL);
1754 } else if (is_data) {
1755 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1756 } else {
1757 ret = btrfs_del_item(trans, root, path);
1758 }
1759 return ret;
1760 }
1761
1762 static int btrfs_issue_discard(struct block_device *bdev,
1763 u64 start, u64 len)
1764 {
1765 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1766 }
1767
1768 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1769 u64 num_bytes, u64 *actual_bytes)
1770 {
1771 int ret;
1772 u64 discarded_bytes = 0;
1773 struct btrfs_multi_bio *multi = NULL;
1774
1775
1776 /* Tell the block device(s) that the sectors can be discarded */
1777 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1778 bytenr, &num_bytes, &multi, 0);
1779 if (!ret) {
1780 struct btrfs_bio_stripe *stripe = multi->stripes;
1781 int i;
1782
1783
1784 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1785 if (!stripe->dev->can_discard)
1786 continue;
1787
1788 ret = btrfs_issue_discard(stripe->dev->bdev,
1789 stripe->physical,
1790 stripe->length);
1791 if (!ret)
1792 discarded_bytes += stripe->length;
1793 else if (ret != -EOPNOTSUPP)
1794 break;
1795
1796 /*
1797 * Just in case we get back EOPNOTSUPP for some reason,
1798 * just ignore the return value so we don't screw up
1799 * people calling discard_extent.
1800 */
1801 ret = 0;
1802 }
1803 kfree(multi);
1804 }
1805
1806 if (actual_bytes)
1807 *actual_bytes = discarded_bytes;
1808
1809
1810 return ret;
1811 }
1812
1813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1814 struct btrfs_root *root,
1815 u64 bytenr, u64 num_bytes, u64 parent,
1816 u64 root_objectid, u64 owner, u64 offset)
1817 {
1818 int ret;
1819 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1820 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1821
1822 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1823 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1824 parent, root_objectid, (int)owner,
1825 BTRFS_ADD_DELAYED_REF, NULL);
1826 } else {
1827 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1828 parent, root_objectid, owner, offset,
1829 BTRFS_ADD_DELAYED_REF, NULL);
1830 }
1831 return ret;
1832 }
1833
1834 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1835 struct btrfs_root *root,
1836 u64 bytenr, u64 num_bytes,
1837 u64 parent, u64 root_objectid,
1838 u64 owner, u64 offset, int refs_to_add,
1839 struct btrfs_delayed_extent_op *extent_op)
1840 {
1841 struct btrfs_path *path;
1842 struct extent_buffer *leaf;
1843 struct btrfs_extent_item *item;
1844 u64 refs;
1845 int ret;
1846 int err = 0;
1847
1848 path = btrfs_alloc_path();
1849 if (!path)
1850 return -ENOMEM;
1851
1852 path->reada = 1;
1853 path->leave_spinning = 1;
1854 /* this will setup the path even if it fails to insert the back ref */
1855 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1856 path, bytenr, num_bytes, parent,
1857 root_objectid, owner, offset,
1858 refs_to_add, extent_op);
1859 if (ret == 0)
1860 goto out;
1861
1862 if (ret != -EAGAIN) {
1863 err = ret;
1864 goto out;
1865 }
1866
1867 leaf = path->nodes[0];
1868 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, item);
1870 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1871 if (extent_op)
1872 __run_delayed_extent_op(extent_op, leaf, item);
1873
1874 btrfs_mark_buffer_dirty(leaf);
1875 btrfs_release_path(path);
1876
1877 path->reada = 1;
1878 path->leave_spinning = 1;
1879
1880 /* now insert the actual backref */
1881 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1882 path, bytenr, parent, root_objectid,
1883 owner, offset, refs_to_add);
1884 BUG_ON(ret);
1885 out:
1886 btrfs_free_path(path);
1887 return err;
1888 }
1889
1890 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *root,
1892 struct btrfs_delayed_ref_node *node,
1893 struct btrfs_delayed_extent_op *extent_op,
1894 int insert_reserved)
1895 {
1896 int ret = 0;
1897 struct btrfs_delayed_data_ref *ref;
1898 struct btrfs_key ins;
1899 u64 parent = 0;
1900 u64 ref_root = 0;
1901 u64 flags = 0;
1902
1903 ins.objectid = node->bytenr;
1904 ins.offset = node->num_bytes;
1905 ins.type = BTRFS_EXTENT_ITEM_KEY;
1906
1907 ref = btrfs_delayed_node_to_data_ref(node);
1908 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1909 parent = ref->parent;
1910 else
1911 ref_root = ref->root;
1912
1913 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1914 if (extent_op) {
1915 BUG_ON(extent_op->update_key);
1916 flags |= extent_op->flags_to_set;
1917 }
1918 ret = alloc_reserved_file_extent(trans, root,
1919 parent, ref_root, flags,
1920 ref->objectid, ref->offset,
1921 &ins, node->ref_mod);
1922 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1923 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1924 node->num_bytes, parent,
1925 ref_root, ref->objectid,
1926 ref->offset, node->ref_mod,
1927 extent_op);
1928 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1929 ret = __btrfs_free_extent(trans, root, node->bytenr,
1930 node->num_bytes, parent,
1931 ref_root, ref->objectid,
1932 ref->offset, node->ref_mod,
1933 extent_op);
1934 } else {
1935 BUG();
1936 }
1937 return ret;
1938 }
1939
1940 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1941 struct extent_buffer *leaf,
1942 struct btrfs_extent_item *ei)
1943 {
1944 u64 flags = btrfs_extent_flags(leaf, ei);
1945 if (extent_op->update_flags) {
1946 flags |= extent_op->flags_to_set;
1947 btrfs_set_extent_flags(leaf, ei, flags);
1948 }
1949
1950 if (extent_op->update_key) {
1951 struct btrfs_tree_block_info *bi;
1952 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1953 bi = (struct btrfs_tree_block_info *)(ei + 1);
1954 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1955 }
1956 }
1957
1958 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_delayed_ref_node *node,
1961 struct btrfs_delayed_extent_op *extent_op)
1962 {
1963 struct btrfs_key key;
1964 struct btrfs_path *path;
1965 struct btrfs_extent_item *ei;
1966 struct extent_buffer *leaf;
1967 u32 item_size;
1968 int ret;
1969 int err = 0;
1970
1971 path = btrfs_alloc_path();
1972 if (!path)
1973 return -ENOMEM;
1974
1975 key.objectid = node->bytenr;
1976 key.type = BTRFS_EXTENT_ITEM_KEY;
1977 key.offset = node->num_bytes;
1978
1979 path->reada = 1;
1980 path->leave_spinning = 1;
1981 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1982 path, 0, 1);
1983 if (ret < 0) {
1984 err = ret;
1985 goto out;
1986 }
1987 if (ret > 0) {
1988 err = -EIO;
1989 goto out;
1990 }
1991
1992 leaf = path->nodes[0];
1993 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1995 if (item_size < sizeof(*ei)) {
1996 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1997 path, (u64)-1, 0);
1998 if (ret < 0) {
1999 err = ret;
2000 goto out;
2001 }
2002 leaf = path->nodes[0];
2003 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2004 }
2005 #endif
2006 BUG_ON(item_size < sizeof(*ei));
2007 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2008 __run_delayed_extent_op(extent_op, leaf, ei);
2009
2010 btrfs_mark_buffer_dirty(leaf);
2011 out:
2012 btrfs_free_path(path);
2013 return err;
2014 }
2015
2016 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2017 struct btrfs_root *root,
2018 struct btrfs_delayed_ref_node *node,
2019 struct btrfs_delayed_extent_op *extent_op,
2020 int insert_reserved)
2021 {
2022 int ret = 0;
2023 struct btrfs_delayed_tree_ref *ref;
2024 struct btrfs_key ins;
2025 u64 parent = 0;
2026 u64 ref_root = 0;
2027
2028 ins.objectid = node->bytenr;
2029 ins.offset = node->num_bytes;
2030 ins.type = BTRFS_EXTENT_ITEM_KEY;
2031
2032 ref = btrfs_delayed_node_to_tree_ref(node);
2033 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2034 parent = ref->parent;
2035 else
2036 ref_root = ref->root;
2037
2038 BUG_ON(node->ref_mod != 1);
2039 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2040 BUG_ON(!extent_op || !extent_op->update_flags ||
2041 !extent_op->update_key);
2042 ret = alloc_reserved_tree_block(trans, root,
2043 parent, ref_root,
2044 extent_op->flags_to_set,
2045 &extent_op->key,
2046 ref->level, &ins);
2047 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2048 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2049 node->num_bytes, parent, ref_root,
2050 ref->level, 0, 1, extent_op);
2051 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2052 ret = __btrfs_free_extent(trans, root, node->bytenr,
2053 node->num_bytes, parent, ref_root,
2054 ref->level, 0, 1, extent_op);
2055 } else {
2056 BUG();
2057 }
2058 return ret;
2059 }
2060
2061 /* helper function to actually process a single delayed ref entry */
2062 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2063 struct btrfs_root *root,
2064 struct btrfs_delayed_ref_node *node,
2065 struct btrfs_delayed_extent_op *extent_op,
2066 int insert_reserved)
2067 {
2068 int ret;
2069 if (btrfs_delayed_ref_is_head(node)) {
2070 struct btrfs_delayed_ref_head *head;
2071 /*
2072 * we've hit the end of the chain and we were supposed
2073 * to insert this extent into the tree. But, it got
2074 * deleted before we ever needed to insert it, so all
2075 * we have to do is clean up the accounting
2076 */
2077 BUG_ON(extent_op);
2078 head = btrfs_delayed_node_to_head(node);
2079 if (insert_reserved) {
2080 btrfs_pin_extent(root, node->bytenr,
2081 node->num_bytes, 1);
2082 if (head->is_data) {
2083 ret = btrfs_del_csums(trans, root,
2084 node->bytenr,
2085 node->num_bytes);
2086 BUG_ON(ret);
2087 }
2088 }
2089 mutex_unlock(&head->mutex);
2090 return 0;
2091 }
2092
2093 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2094 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2095 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2096 insert_reserved);
2097 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2098 node->type == BTRFS_SHARED_DATA_REF_KEY)
2099 ret = run_delayed_data_ref(trans, root, node, extent_op,
2100 insert_reserved);
2101 else
2102 BUG();
2103 return ret;
2104 }
2105
2106 static noinline struct btrfs_delayed_ref_node *
2107 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2108 {
2109 struct rb_node *node;
2110 struct btrfs_delayed_ref_node *ref;
2111 int action = BTRFS_ADD_DELAYED_REF;
2112 again:
2113 /*
2114 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2115 * this prevents ref count from going down to zero when
2116 * there still are pending delayed ref.
2117 */
2118 node = rb_prev(&head->node.rb_node);
2119 while (1) {
2120 if (!node)
2121 break;
2122 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2123 rb_node);
2124 if (ref->bytenr != head->node.bytenr)
2125 break;
2126 if (ref->action == action)
2127 return ref;
2128 node = rb_prev(node);
2129 }
2130 if (action == BTRFS_ADD_DELAYED_REF) {
2131 action = BTRFS_DROP_DELAYED_REF;
2132 goto again;
2133 }
2134 return NULL;
2135 }
2136
2137 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2138 struct btrfs_root *root,
2139 struct list_head *cluster)
2140 {
2141 struct btrfs_delayed_ref_root *delayed_refs;
2142 struct btrfs_delayed_ref_node *ref;
2143 struct btrfs_delayed_ref_head *locked_ref = NULL;
2144 struct btrfs_delayed_extent_op *extent_op;
2145 int ret;
2146 int count = 0;
2147 int must_insert_reserved = 0;
2148
2149 delayed_refs = &trans->transaction->delayed_refs;
2150 while (1) {
2151 if (!locked_ref) {
2152 /* pick a new head ref from the cluster list */
2153 if (list_empty(cluster))
2154 break;
2155
2156 locked_ref = list_entry(cluster->next,
2157 struct btrfs_delayed_ref_head, cluster);
2158
2159 /* grab the lock that says we are going to process
2160 * all the refs for this head */
2161 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2162
2163 /*
2164 * we may have dropped the spin lock to get the head
2165 * mutex lock, and that might have given someone else
2166 * time to free the head. If that's true, it has been
2167 * removed from our list and we can move on.
2168 */
2169 if (ret == -EAGAIN) {
2170 locked_ref = NULL;
2171 count++;
2172 continue;
2173 }
2174 }
2175
2176 /*
2177 * record the must insert reserved flag before we
2178 * drop the spin lock.
2179 */
2180 must_insert_reserved = locked_ref->must_insert_reserved;
2181 locked_ref->must_insert_reserved = 0;
2182
2183 extent_op = locked_ref->extent_op;
2184 locked_ref->extent_op = NULL;
2185
2186 /*
2187 * locked_ref is the head node, so we have to go one
2188 * node back for any delayed ref updates
2189 */
2190 ref = select_delayed_ref(locked_ref);
2191 if (!ref) {
2192 /* All delayed refs have been processed, Go ahead
2193 * and send the head node to run_one_delayed_ref,
2194 * so that any accounting fixes can happen
2195 */
2196 ref = &locked_ref->node;
2197
2198 if (extent_op && must_insert_reserved) {
2199 kfree(extent_op);
2200 extent_op = NULL;
2201 }
2202
2203 if (extent_op) {
2204 spin_unlock(&delayed_refs->lock);
2205
2206 ret = run_delayed_extent_op(trans, root,
2207 ref, extent_op);
2208 BUG_ON(ret);
2209 kfree(extent_op);
2210
2211 cond_resched();
2212 spin_lock(&delayed_refs->lock);
2213 continue;
2214 }
2215
2216 list_del_init(&locked_ref->cluster);
2217 locked_ref = NULL;
2218 }
2219
2220 ref->in_tree = 0;
2221 rb_erase(&ref->rb_node, &delayed_refs->root);
2222 delayed_refs->num_entries--;
2223
2224 spin_unlock(&delayed_refs->lock);
2225
2226 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2227 must_insert_reserved);
2228 BUG_ON(ret);
2229
2230 btrfs_put_delayed_ref(ref);
2231 kfree(extent_op);
2232 count++;
2233
2234 cond_resched();
2235 spin_lock(&delayed_refs->lock);
2236 }
2237 return count;
2238 }
2239
2240 /*
2241 * this starts processing the delayed reference count updates and
2242 * extent insertions we have queued up so far. count can be
2243 * 0, which means to process everything in the tree at the start
2244 * of the run (but not newly added entries), or it can be some target
2245 * number you'd like to process.
2246 */
2247 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2248 struct btrfs_root *root, unsigned long count)
2249 {
2250 struct rb_node *node;
2251 struct btrfs_delayed_ref_root *delayed_refs;
2252 struct btrfs_delayed_ref_node *ref;
2253 struct list_head cluster;
2254 int ret;
2255 int run_all = count == (unsigned long)-1;
2256 int run_most = 0;
2257
2258 if (root == root->fs_info->extent_root)
2259 root = root->fs_info->tree_root;
2260
2261 delayed_refs = &trans->transaction->delayed_refs;
2262 INIT_LIST_HEAD(&cluster);
2263 again:
2264 spin_lock(&delayed_refs->lock);
2265 if (count == 0) {
2266 count = delayed_refs->num_entries * 2;
2267 run_most = 1;
2268 }
2269 while (1) {
2270 if (!(run_all || run_most) &&
2271 delayed_refs->num_heads_ready < 64)
2272 break;
2273
2274 /*
2275 * go find something we can process in the rbtree. We start at
2276 * the beginning of the tree, and then build a cluster
2277 * of refs to process starting at the first one we are able to
2278 * lock
2279 */
2280 ret = btrfs_find_ref_cluster(trans, &cluster,
2281 delayed_refs->run_delayed_start);
2282 if (ret)
2283 break;
2284
2285 ret = run_clustered_refs(trans, root, &cluster);
2286 BUG_ON(ret < 0);
2287
2288 count -= min_t(unsigned long, ret, count);
2289
2290 if (count == 0)
2291 break;
2292 }
2293
2294 if (run_all) {
2295 node = rb_first(&delayed_refs->root);
2296 if (!node)
2297 goto out;
2298 count = (unsigned long)-1;
2299
2300 while (node) {
2301 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 rb_node);
2303 if (btrfs_delayed_ref_is_head(ref)) {
2304 struct btrfs_delayed_ref_head *head;
2305
2306 head = btrfs_delayed_node_to_head(ref);
2307 atomic_inc(&ref->refs);
2308
2309 spin_unlock(&delayed_refs->lock);
2310 /*
2311 * Mutex was contended, block until it's
2312 * released and try again
2313 */
2314 mutex_lock(&head->mutex);
2315 mutex_unlock(&head->mutex);
2316
2317 btrfs_put_delayed_ref(ref);
2318 cond_resched();
2319 goto again;
2320 }
2321 node = rb_next(node);
2322 }
2323 spin_unlock(&delayed_refs->lock);
2324 schedule_timeout(1);
2325 goto again;
2326 }
2327 out:
2328 spin_unlock(&delayed_refs->lock);
2329 return 0;
2330 }
2331
2332 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2333 struct btrfs_root *root,
2334 u64 bytenr, u64 num_bytes, u64 flags,
2335 int is_data)
2336 {
2337 struct btrfs_delayed_extent_op *extent_op;
2338 int ret;
2339
2340 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2341 if (!extent_op)
2342 return -ENOMEM;
2343
2344 extent_op->flags_to_set = flags;
2345 extent_op->update_flags = 1;
2346 extent_op->update_key = 0;
2347 extent_op->is_data = is_data ? 1 : 0;
2348
2349 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2350 if (ret)
2351 kfree(extent_op);
2352 return ret;
2353 }
2354
2355 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2356 struct btrfs_root *root,
2357 struct btrfs_path *path,
2358 u64 objectid, u64 offset, u64 bytenr)
2359 {
2360 struct btrfs_delayed_ref_head *head;
2361 struct btrfs_delayed_ref_node *ref;
2362 struct btrfs_delayed_data_ref *data_ref;
2363 struct btrfs_delayed_ref_root *delayed_refs;
2364 struct rb_node *node;
2365 int ret = 0;
2366
2367 ret = -ENOENT;
2368 delayed_refs = &trans->transaction->delayed_refs;
2369 spin_lock(&delayed_refs->lock);
2370 head = btrfs_find_delayed_ref_head(trans, bytenr);
2371 if (!head)
2372 goto out;
2373
2374 if (!mutex_trylock(&head->mutex)) {
2375 atomic_inc(&head->node.refs);
2376 spin_unlock(&delayed_refs->lock);
2377
2378 btrfs_release_path(path);
2379
2380 /*
2381 * Mutex was contended, block until it's released and let
2382 * caller try again
2383 */
2384 mutex_lock(&head->mutex);
2385 mutex_unlock(&head->mutex);
2386 btrfs_put_delayed_ref(&head->node);
2387 return -EAGAIN;
2388 }
2389
2390 node = rb_prev(&head->node.rb_node);
2391 if (!node)
2392 goto out_unlock;
2393
2394 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2395
2396 if (ref->bytenr != bytenr)
2397 goto out_unlock;
2398
2399 ret = 1;
2400 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2401 goto out_unlock;
2402
2403 data_ref = btrfs_delayed_node_to_data_ref(ref);
2404
2405 node = rb_prev(node);
2406 if (node) {
2407 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2408 if (ref->bytenr == bytenr)
2409 goto out_unlock;
2410 }
2411
2412 if (data_ref->root != root->root_key.objectid ||
2413 data_ref->objectid != objectid || data_ref->offset != offset)
2414 goto out_unlock;
2415
2416 ret = 0;
2417 out_unlock:
2418 mutex_unlock(&head->mutex);
2419 out:
2420 spin_unlock(&delayed_refs->lock);
2421 return ret;
2422 }
2423
2424 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2425 struct btrfs_root *root,
2426 struct btrfs_path *path,
2427 u64 objectid, u64 offset, u64 bytenr)
2428 {
2429 struct btrfs_root *extent_root = root->fs_info->extent_root;
2430 struct extent_buffer *leaf;
2431 struct btrfs_extent_data_ref *ref;
2432 struct btrfs_extent_inline_ref *iref;
2433 struct btrfs_extent_item *ei;
2434 struct btrfs_key key;
2435 u32 item_size;
2436 int ret;
2437
2438 key.objectid = bytenr;
2439 key.offset = (u64)-1;
2440 key.type = BTRFS_EXTENT_ITEM_KEY;
2441
2442 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2443 if (ret < 0)
2444 goto out;
2445 BUG_ON(ret == 0);
2446
2447 ret = -ENOENT;
2448 if (path->slots[0] == 0)
2449 goto out;
2450
2451 path->slots[0]--;
2452 leaf = path->nodes[0];
2453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2454
2455 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2456 goto out;
2457
2458 ret = 1;
2459 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2461 if (item_size < sizeof(*ei)) {
2462 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2463 goto out;
2464 }
2465 #endif
2466 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2467
2468 if (item_size != sizeof(*ei) +
2469 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2470 goto out;
2471
2472 if (btrfs_extent_generation(leaf, ei) <=
2473 btrfs_root_last_snapshot(&root->root_item))
2474 goto out;
2475
2476 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2477 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2478 BTRFS_EXTENT_DATA_REF_KEY)
2479 goto out;
2480
2481 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2482 if (btrfs_extent_refs(leaf, ei) !=
2483 btrfs_extent_data_ref_count(leaf, ref) ||
2484 btrfs_extent_data_ref_root(leaf, ref) !=
2485 root->root_key.objectid ||
2486 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2487 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2488 goto out;
2489
2490 ret = 0;
2491 out:
2492 return ret;
2493 }
2494
2495 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2496 struct btrfs_root *root,
2497 u64 objectid, u64 offset, u64 bytenr)
2498 {
2499 struct btrfs_path *path;
2500 int ret;
2501 int ret2;
2502
2503 path = btrfs_alloc_path();
2504 if (!path)
2505 return -ENOENT;
2506
2507 do {
2508 ret = check_committed_ref(trans, root, path, objectid,
2509 offset, bytenr);
2510 if (ret && ret != -ENOENT)
2511 goto out;
2512
2513 ret2 = check_delayed_ref(trans, root, path, objectid,
2514 offset, bytenr);
2515 } while (ret2 == -EAGAIN);
2516
2517 if (ret2 && ret2 != -ENOENT) {
2518 ret = ret2;
2519 goto out;
2520 }
2521
2522 if (ret != -ENOENT || ret2 != -ENOENT)
2523 ret = 0;
2524 out:
2525 btrfs_free_path(path);
2526 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2527 WARN_ON(ret > 0);
2528 return ret;
2529 }
2530
2531 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root,
2533 struct extent_buffer *buf,
2534 int full_backref, int inc)
2535 {
2536 u64 bytenr;
2537 u64 num_bytes;
2538 u64 parent;
2539 u64 ref_root;
2540 u32 nritems;
2541 struct btrfs_key key;
2542 struct btrfs_file_extent_item *fi;
2543 int i;
2544 int level;
2545 int ret = 0;
2546 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2547 u64, u64, u64, u64, u64, u64);
2548
2549 ref_root = btrfs_header_owner(buf);
2550 nritems = btrfs_header_nritems(buf);
2551 level = btrfs_header_level(buf);
2552
2553 if (!root->ref_cows && level == 0)
2554 return 0;
2555
2556 if (inc)
2557 process_func = btrfs_inc_extent_ref;
2558 else
2559 process_func = btrfs_free_extent;
2560
2561 if (full_backref)
2562 parent = buf->start;
2563 else
2564 parent = 0;
2565
2566 for (i = 0; i < nritems; i++) {
2567 if (level == 0) {
2568 btrfs_item_key_to_cpu(buf, &key, i);
2569 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2570 continue;
2571 fi = btrfs_item_ptr(buf, i,
2572 struct btrfs_file_extent_item);
2573 if (btrfs_file_extent_type(buf, fi) ==
2574 BTRFS_FILE_EXTENT_INLINE)
2575 continue;
2576 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2577 if (bytenr == 0)
2578 continue;
2579
2580 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2581 key.offset -= btrfs_file_extent_offset(buf, fi);
2582 ret = process_func(trans, root, bytenr, num_bytes,
2583 parent, ref_root, key.objectid,
2584 key.offset);
2585 if (ret)
2586 goto fail;
2587 } else {
2588 bytenr = btrfs_node_blockptr(buf, i);
2589 num_bytes = btrfs_level_size(root, level - 1);
2590 ret = process_func(trans, root, bytenr, num_bytes,
2591 parent, ref_root, level - 1, 0);
2592 if (ret)
2593 goto fail;
2594 }
2595 }
2596 return 0;
2597 fail:
2598 BUG();
2599 return ret;
2600 }
2601
2602 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2603 struct extent_buffer *buf, int full_backref)
2604 {
2605 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2606 }
2607
2608 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2609 struct extent_buffer *buf, int full_backref)
2610 {
2611 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2612 }
2613
2614 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2615 struct btrfs_root *root,
2616 struct btrfs_path *path,
2617 struct btrfs_block_group_cache *cache)
2618 {
2619 int ret;
2620 struct btrfs_root *extent_root = root->fs_info->extent_root;
2621 unsigned long bi;
2622 struct extent_buffer *leaf;
2623
2624 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2625 if (ret < 0)
2626 goto fail;
2627 BUG_ON(ret);
2628
2629 leaf = path->nodes[0];
2630 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2631 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2632 btrfs_mark_buffer_dirty(leaf);
2633 btrfs_release_path(path);
2634 fail:
2635 if (ret)
2636 return ret;
2637 return 0;
2638
2639 }
2640
2641 static struct btrfs_block_group_cache *
2642 next_block_group(struct btrfs_root *root,
2643 struct btrfs_block_group_cache *cache)
2644 {
2645 struct rb_node *node;
2646 spin_lock(&root->fs_info->block_group_cache_lock);
2647 node = rb_next(&cache->cache_node);
2648 btrfs_put_block_group(cache);
2649 if (node) {
2650 cache = rb_entry(node, struct btrfs_block_group_cache,
2651 cache_node);
2652 btrfs_get_block_group(cache);
2653 } else
2654 cache = NULL;
2655 spin_unlock(&root->fs_info->block_group_cache_lock);
2656 return cache;
2657 }
2658
2659 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2660 struct btrfs_trans_handle *trans,
2661 struct btrfs_path *path)
2662 {
2663 struct btrfs_root *root = block_group->fs_info->tree_root;
2664 struct inode *inode = NULL;
2665 u64 alloc_hint = 0;
2666 int dcs = BTRFS_DC_ERROR;
2667 int num_pages = 0;
2668 int retries = 0;
2669 int ret = 0;
2670
2671 /*
2672 * If this block group is smaller than 100 megs don't bother caching the
2673 * block group.
2674 */
2675 if (block_group->key.offset < (100 * 1024 * 1024)) {
2676 spin_lock(&block_group->lock);
2677 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2678 spin_unlock(&block_group->lock);
2679 return 0;
2680 }
2681
2682 again:
2683 inode = lookup_free_space_inode(root, block_group, path);
2684 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2685 ret = PTR_ERR(inode);
2686 btrfs_release_path(path);
2687 goto out;
2688 }
2689
2690 if (IS_ERR(inode)) {
2691 BUG_ON(retries);
2692 retries++;
2693
2694 if (block_group->ro)
2695 goto out_free;
2696
2697 ret = create_free_space_inode(root, trans, block_group, path);
2698 if (ret)
2699 goto out_free;
2700 goto again;
2701 }
2702
2703 /*
2704 * We want to set the generation to 0, that way if anything goes wrong
2705 * from here on out we know not to trust this cache when we load up next
2706 * time.
2707 */
2708 BTRFS_I(inode)->generation = 0;
2709 ret = btrfs_update_inode(trans, root, inode);
2710 WARN_ON(ret);
2711
2712 if (i_size_read(inode) > 0) {
2713 ret = btrfs_truncate_free_space_cache(root, trans, path,
2714 inode);
2715 if (ret)
2716 goto out_put;
2717 }
2718
2719 spin_lock(&block_group->lock);
2720 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2721 /* We're not cached, don't bother trying to write stuff out */
2722 dcs = BTRFS_DC_WRITTEN;
2723 spin_unlock(&block_group->lock);
2724 goto out_put;
2725 }
2726 spin_unlock(&block_group->lock);
2727
2728 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2729 if (!num_pages)
2730 num_pages = 1;
2731
2732 /*
2733 * Just to make absolutely sure we have enough space, we're going to
2734 * preallocate 12 pages worth of space for each block group. In
2735 * practice we ought to use at most 8, but we need extra space so we can
2736 * add our header and have a terminator between the extents and the
2737 * bitmaps.
2738 */
2739 num_pages *= 16;
2740 num_pages *= PAGE_CACHE_SIZE;
2741
2742 ret = btrfs_check_data_free_space(inode, num_pages);
2743 if (ret)
2744 goto out_put;
2745
2746 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2747 num_pages, num_pages,
2748 &alloc_hint);
2749 if (!ret)
2750 dcs = BTRFS_DC_SETUP;
2751 btrfs_free_reserved_data_space(inode, num_pages);
2752 out_put:
2753 iput(inode);
2754 out_free:
2755 btrfs_release_path(path);
2756 out:
2757 spin_lock(&block_group->lock);
2758 block_group->disk_cache_state = dcs;
2759 spin_unlock(&block_group->lock);
2760
2761 return ret;
2762 }
2763
2764 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root)
2766 {
2767 struct btrfs_block_group_cache *cache;
2768 int err = 0;
2769 struct btrfs_path *path;
2770 u64 last = 0;
2771
2772 path = btrfs_alloc_path();
2773 if (!path)
2774 return -ENOMEM;
2775
2776 again:
2777 while (1) {
2778 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2779 while (cache) {
2780 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2781 break;
2782 cache = next_block_group(root, cache);
2783 }
2784 if (!cache) {
2785 if (last == 0)
2786 break;
2787 last = 0;
2788 continue;
2789 }
2790 err = cache_save_setup(cache, trans, path);
2791 last = cache->key.objectid + cache->key.offset;
2792 btrfs_put_block_group(cache);
2793 }
2794
2795 while (1) {
2796 if (last == 0) {
2797 err = btrfs_run_delayed_refs(trans, root,
2798 (unsigned long)-1);
2799 BUG_ON(err);
2800 }
2801
2802 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2803 while (cache) {
2804 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2805 btrfs_put_block_group(cache);
2806 goto again;
2807 }
2808
2809 if (cache->dirty)
2810 break;
2811 cache = next_block_group(root, cache);
2812 }
2813 if (!cache) {
2814 if (last == 0)
2815 break;
2816 last = 0;
2817 continue;
2818 }
2819
2820 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2821 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2822 cache->dirty = 0;
2823 last = cache->key.objectid + cache->key.offset;
2824
2825 err = write_one_cache_group(trans, root, path, cache);
2826 BUG_ON(err);
2827 btrfs_put_block_group(cache);
2828 }
2829
2830 while (1) {
2831 /*
2832 * I don't think this is needed since we're just marking our
2833 * preallocated extent as written, but just in case it can't
2834 * hurt.
2835 */
2836 if (last == 0) {
2837 err = btrfs_run_delayed_refs(trans, root,
2838 (unsigned long)-1);
2839 BUG_ON(err);
2840 }
2841
2842 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2843 while (cache) {
2844 /*
2845 * Really this shouldn't happen, but it could if we
2846 * couldn't write the entire preallocated extent and
2847 * splitting the extent resulted in a new block.
2848 */
2849 if (cache->dirty) {
2850 btrfs_put_block_group(cache);
2851 goto again;
2852 }
2853 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2854 break;
2855 cache = next_block_group(root, cache);
2856 }
2857 if (!cache) {
2858 if (last == 0)
2859 break;
2860 last = 0;
2861 continue;
2862 }
2863
2864 btrfs_write_out_cache(root, trans, cache, path);
2865
2866 /*
2867 * If we didn't have an error then the cache state is still
2868 * NEED_WRITE, so we can set it to WRITTEN.
2869 */
2870 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2871 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2872 last = cache->key.objectid + cache->key.offset;
2873 btrfs_put_block_group(cache);
2874 }
2875
2876 btrfs_free_path(path);
2877 return 0;
2878 }
2879
2880 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2881 {
2882 struct btrfs_block_group_cache *block_group;
2883 int readonly = 0;
2884
2885 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2886 if (!block_group || block_group->ro)
2887 readonly = 1;
2888 if (block_group)
2889 btrfs_put_block_group(block_group);
2890 return readonly;
2891 }
2892
2893 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2894 u64 total_bytes, u64 bytes_used,
2895 struct btrfs_space_info **space_info)
2896 {
2897 struct btrfs_space_info *found;
2898 int i;
2899 int factor;
2900
2901 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2902 BTRFS_BLOCK_GROUP_RAID10))
2903 factor = 2;
2904 else
2905 factor = 1;
2906
2907 found = __find_space_info(info, flags);
2908 if (found) {
2909 spin_lock(&found->lock);
2910 found->total_bytes += total_bytes;
2911 found->disk_total += total_bytes * factor;
2912 found->bytes_used += bytes_used;
2913 found->disk_used += bytes_used * factor;
2914 found->full = 0;
2915 spin_unlock(&found->lock);
2916 *space_info = found;
2917 return 0;
2918 }
2919 found = kzalloc(sizeof(*found), GFP_NOFS);
2920 if (!found)
2921 return -ENOMEM;
2922
2923 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2924 INIT_LIST_HEAD(&found->block_groups[i]);
2925 init_rwsem(&found->groups_sem);
2926 spin_lock_init(&found->lock);
2927 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2928 BTRFS_BLOCK_GROUP_SYSTEM |
2929 BTRFS_BLOCK_GROUP_METADATA);
2930 found->total_bytes = total_bytes;
2931 found->disk_total = total_bytes * factor;
2932 found->bytes_used = bytes_used;
2933 found->disk_used = bytes_used * factor;
2934 found->bytes_pinned = 0;
2935 found->bytes_reserved = 0;
2936 found->bytes_readonly = 0;
2937 found->bytes_may_use = 0;
2938 found->full = 0;
2939 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2940 found->chunk_alloc = 0;
2941 found->flush = 0;
2942 init_waitqueue_head(&found->wait);
2943 *space_info = found;
2944 list_add_rcu(&found->list, &info->space_info);
2945 return 0;
2946 }
2947
2948 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2949 {
2950 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2951 BTRFS_BLOCK_GROUP_RAID1 |
2952 BTRFS_BLOCK_GROUP_RAID10 |
2953 BTRFS_BLOCK_GROUP_DUP);
2954 if (extra_flags) {
2955 if (flags & BTRFS_BLOCK_GROUP_DATA)
2956 fs_info->avail_data_alloc_bits |= extra_flags;
2957 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2958 fs_info->avail_metadata_alloc_bits |= extra_flags;
2959 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2960 fs_info->avail_system_alloc_bits |= extra_flags;
2961 }
2962 }
2963
2964 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2965 {
2966 /*
2967 * we add in the count of missing devices because we want
2968 * to make sure that any RAID levels on a degraded FS
2969 * continue to be honored.
2970 */
2971 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2972 root->fs_info->fs_devices->missing_devices;
2973
2974 if (num_devices == 1)
2975 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2976 if (num_devices < 4)
2977 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2978
2979 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2980 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2981 BTRFS_BLOCK_GROUP_RAID10))) {
2982 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2983 }
2984
2985 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2986 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2987 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2988 }
2989
2990 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2991 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2992 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2993 (flags & BTRFS_BLOCK_GROUP_DUP)))
2994 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2995 return flags;
2996 }
2997
2998 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2999 {
3000 if (flags & BTRFS_BLOCK_GROUP_DATA)
3001 flags |= root->fs_info->avail_data_alloc_bits &
3002 root->fs_info->data_alloc_profile;
3003 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3004 flags |= root->fs_info->avail_system_alloc_bits &
3005 root->fs_info->system_alloc_profile;
3006 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3007 flags |= root->fs_info->avail_metadata_alloc_bits &
3008 root->fs_info->metadata_alloc_profile;
3009 return btrfs_reduce_alloc_profile(root, flags);
3010 }
3011
3012 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3013 {
3014 u64 flags;
3015
3016 if (data)
3017 flags = BTRFS_BLOCK_GROUP_DATA;
3018 else if (root == root->fs_info->chunk_root)
3019 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3020 else
3021 flags = BTRFS_BLOCK_GROUP_METADATA;
3022
3023 return get_alloc_profile(root, flags);
3024 }
3025
3026 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3027 {
3028 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3029 BTRFS_BLOCK_GROUP_DATA);
3030 }
3031
3032 /*
3033 * This will check the space that the inode allocates from to make sure we have
3034 * enough space for bytes.
3035 */
3036 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3037 {
3038 struct btrfs_space_info *data_sinfo;
3039 struct btrfs_root *root = BTRFS_I(inode)->root;
3040 u64 used;
3041 int ret = 0, committed = 0, alloc_chunk = 1;
3042
3043 /* make sure bytes are sectorsize aligned */
3044 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3045
3046 if (root == root->fs_info->tree_root ||
3047 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3048 alloc_chunk = 0;
3049 committed = 1;
3050 }
3051
3052 data_sinfo = BTRFS_I(inode)->space_info;
3053 if (!data_sinfo)
3054 goto alloc;
3055
3056 again:
3057 /* make sure we have enough space to handle the data first */
3058 spin_lock(&data_sinfo->lock);
3059 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3060 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3061 data_sinfo->bytes_may_use;
3062
3063 if (used + bytes > data_sinfo->total_bytes) {
3064 struct btrfs_trans_handle *trans;
3065
3066 /*
3067 * if we don't have enough free bytes in this space then we need
3068 * to alloc a new chunk.
3069 */
3070 if (!data_sinfo->full && alloc_chunk) {
3071 u64 alloc_target;
3072
3073 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3074 spin_unlock(&data_sinfo->lock);
3075 alloc:
3076 alloc_target = btrfs_get_alloc_profile(root, 1);
3077 trans = btrfs_join_transaction(root);
3078 if (IS_ERR(trans))
3079 return PTR_ERR(trans);
3080
3081 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3082 bytes + 2 * 1024 * 1024,
3083 alloc_target,
3084 CHUNK_ALLOC_NO_FORCE);
3085 btrfs_end_transaction(trans, root);
3086 if (ret < 0) {
3087 if (ret != -ENOSPC)
3088 return ret;
3089 else
3090 goto commit_trans;
3091 }
3092
3093 if (!data_sinfo) {
3094 btrfs_set_inode_space_info(root, inode);
3095 data_sinfo = BTRFS_I(inode)->space_info;
3096 }
3097 goto again;
3098 }
3099
3100 /*
3101 * If we have less pinned bytes than we want to allocate then
3102 * don't bother committing the transaction, it won't help us.
3103 */
3104 if (data_sinfo->bytes_pinned < bytes)
3105 committed = 1;
3106 spin_unlock(&data_sinfo->lock);
3107
3108 /* commit the current transaction and try again */
3109 commit_trans:
3110 if (!committed &&
3111 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3112 committed = 1;
3113 trans = btrfs_join_transaction(root);
3114 if (IS_ERR(trans))
3115 return PTR_ERR(trans);
3116 ret = btrfs_commit_transaction(trans, root);
3117 if (ret)
3118 return ret;
3119 goto again;
3120 }
3121
3122 return -ENOSPC;
3123 }
3124 data_sinfo->bytes_may_use += bytes;
3125 BTRFS_I(inode)->reserved_bytes += bytes;
3126 spin_unlock(&data_sinfo->lock);
3127
3128 return 0;
3129 }
3130
3131 /*
3132 * called when we are clearing an delalloc extent from the
3133 * inode's io_tree or there was an error for whatever reason
3134 * after calling btrfs_check_data_free_space
3135 */
3136 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3137 {
3138 struct btrfs_root *root = BTRFS_I(inode)->root;
3139 struct btrfs_space_info *data_sinfo;
3140
3141 /* make sure bytes are sectorsize aligned */
3142 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3143
3144 data_sinfo = BTRFS_I(inode)->space_info;
3145 spin_lock(&data_sinfo->lock);
3146 data_sinfo->bytes_may_use -= bytes;
3147 BTRFS_I(inode)->reserved_bytes -= bytes;
3148 spin_unlock(&data_sinfo->lock);
3149 }
3150
3151 static void force_metadata_allocation(struct btrfs_fs_info *info)
3152 {
3153 struct list_head *head = &info->space_info;
3154 struct btrfs_space_info *found;
3155
3156 rcu_read_lock();
3157 list_for_each_entry_rcu(found, head, list) {
3158 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3159 found->force_alloc = CHUNK_ALLOC_FORCE;
3160 }
3161 rcu_read_unlock();
3162 }
3163
3164 static int should_alloc_chunk(struct btrfs_root *root,
3165 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3166 int force)
3167 {
3168 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3169 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3170 u64 thresh;
3171
3172 if (force == CHUNK_ALLOC_FORCE)
3173 return 1;
3174
3175 /*
3176 * in limited mode, we want to have some free space up to
3177 * about 1% of the FS size.
3178 */
3179 if (force == CHUNK_ALLOC_LIMITED) {
3180 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3181 thresh = max_t(u64, 64 * 1024 * 1024,
3182 div_factor_fine(thresh, 1));
3183
3184 if (num_bytes - num_allocated < thresh)
3185 return 1;
3186 }
3187
3188 /*
3189 * we have two similar checks here, one based on percentage
3190 * and once based on a hard number of 256MB. The idea
3191 * is that if we have a good amount of free
3192 * room, don't allocate a chunk. A good mount is
3193 * less than 80% utilized of the chunks we have allocated,
3194 * or more than 256MB free
3195 */
3196 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3197 return 0;
3198
3199 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3200 return 0;
3201
3202 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3203
3204 /* 256MB or 5% of the FS */
3205 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3206
3207 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3208 return 0;
3209 return 1;
3210 }
3211
3212 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *extent_root, u64 alloc_bytes,
3214 u64 flags, int force)
3215 {
3216 struct btrfs_space_info *space_info;
3217 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3218 int wait_for_alloc = 0;
3219 int ret = 0;
3220
3221 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3222
3223 space_info = __find_space_info(extent_root->fs_info, flags);
3224 if (!space_info) {
3225 ret = update_space_info(extent_root->fs_info, flags,
3226 0, 0, &space_info);
3227 BUG_ON(ret);
3228 }
3229 BUG_ON(!space_info);
3230
3231 again:
3232 spin_lock(&space_info->lock);
3233 if (space_info->force_alloc)
3234 force = space_info->force_alloc;
3235 if (space_info->full) {
3236 spin_unlock(&space_info->lock);
3237 return 0;
3238 }
3239
3240 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3241 spin_unlock(&space_info->lock);
3242 return 0;
3243 } else if (space_info->chunk_alloc) {
3244 wait_for_alloc = 1;
3245 } else {
3246 space_info->chunk_alloc = 1;
3247 }
3248
3249 spin_unlock(&space_info->lock);
3250
3251 mutex_lock(&fs_info->chunk_mutex);
3252
3253 /*
3254 * The chunk_mutex is held throughout the entirety of a chunk
3255 * allocation, so once we've acquired the chunk_mutex we know that the
3256 * other guy is done and we need to recheck and see if we should
3257 * allocate.
3258 */
3259 if (wait_for_alloc) {
3260 mutex_unlock(&fs_info->chunk_mutex);
3261 wait_for_alloc = 0;
3262 goto again;
3263 }
3264
3265 /*
3266 * If we have mixed data/metadata chunks we want to make sure we keep
3267 * allocating mixed chunks instead of individual chunks.
3268 */
3269 if (btrfs_mixed_space_info(space_info))
3270 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3271
3272 /*
3273 * if we're doing a data chunk, go ahead and make sure that
3274 * we keep a reasonable number of metadata chunks allocated in the
3275 * FS as well.
3276 */
3277 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3278 fs_info->data_chunk_allocations++;
3279 if (!(fs_info->data_chunk_allocations %
3280 fs_info->metadata_ratio))
3281 force_metadata_allocation(fs_info);
3282 }
3283
3284 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3285 if (ret < 0 && ret != -ENOSPC)
3286 goto out;
3287
3288 spin_lock(&space_info->lock);
3289 if (ret)
3290 space_info->full = 1;
3291 else
3292 ret = 1;
3293
3294 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3295 space_info->chunk_alloc = 0;
3296 spin_unlock(&space_info->lock);
3297 out:
3298 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3299 return ret;
3300 }
3301
3302 /*
3303 * shrink metadata reservation for delalloc
3304 */
3305 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3306 struct btrfs_root *root, u64 to_reclaim, int sync)
3307 {
3308 struct btrfs_block_rsv *block_rsv;
3309 struct btrfs_space_info *space_info;
3310 u64 reserved;
3311 u64 max_reclaim;
3312 u64 reclaimed = 0;
3313 long time_left;
3314 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3315 int loops = 0;
3316 unsigned long progress;
3317
3318 block_rsv = &root->fs_info->delalloc_block_rsv;
3319 space_info = block_rsv->space_info;
3320
3321 smp_mb();
3322 reserved = space_info->bytes_reserved;
3323 progress = space_info->reservation_progress;
3324
3325 if (reserved == 0)
3326 return 0;
3327
3328 smp_mb();
3329 if (root->fs_info->delalloc_bytes == 0) {
3330 if (trans)
3331 return 0;
3332 btrfs_wait_ordered_extents(root, 0, 0);
3333 return 0;
3334 }
3335
3336 max_reclaim = min(reserved, to_reclaim);
3337
3338 while (loops < 1024) {
3339 /* have the flusher threads jump in and do some IO */
3340 smp_mb();
3341 nr_pages = min_t(unsigned long, nr_pages,
3342 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3343 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3344
3345 spin_lock(&space_info->lock);
3346 if (reserved > space_info->bytes_reserved)
3347 reclaimed += reserved - space_info->bytes_reserved;
3348 reserved = space_info->bytes_reserved;
3349 spin_unlock(&space_info->lock);
3350
3351 loops++;
3352
3353 if (reserved == 0 || reclaimed >= max_reclaim)
3354 break;
3355
3356 if (trans && trans->transaction->blocked)
3357 return -EAGAIN;
3358
3359 time_left = schedule_timeout_interruptible(1);
3360
3361 /* We were interrupted, exit */
3362 if (time_left)
3363 break;
3364
3365 /* we've kicked the IO a few times, if anything has been freed,
3366 * exit. There is no sense in looping here for a long time
3367 * when we really need to commit the transaction, or there are
3368 * just too many writers without enough free space
3369 */
3370
3371 if (loops > 3) {
3372 smp_mb();
3373 if (progress != space_info->reservation_progress)
3374 break;
3375 }
3376
3377 }
3378 if (reclaimed >= to_reclaim && !trans)
3379 btrfs_wait_ordered_extents(root, 0, 0);
3380 return reclaimed >= to_reclaim;
3381 }
3382
3383 /*
3384 * Retries tells us how many times we've called reserve_metadata_bytes. The
3385 * idea is if this is the first call (retries == 0) then we will add to our
3386 * reserved count if we can't make the allocation in order to hold our place
3387 * while we go and try and free up space. That way for retries > 1 we don't try
3388 * and add space, we just check to see if the amount of unused space is >= the
3389 * total space, meaning that our reservation is valid.
3390 *
3391 * However if we don't intend to retry this reservation, pass -1 as retries so
3392 * that it short circuits this logic.
3393 */
3394 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *root,
3396 struct btrfs_block_rsv *block_rsv,
3397 u64 orig_bytes, int flush)
3398 {
3399 struct btrfs_space_info *space_info = block_rsv->space_info;
3400 u64 unused;
3401 u64 num_bytes = orig_bytes;
3402 int retries = 0;
3403 int ret = 0;
3404 bool committed = false;
3405 bool flushing = false;
3406
3407 again:
3408 ret = 0;
3409 spin_lock(&space_info->lock);
3410 /*
3411 * We only want to wait if somebody other than us is flushing and we are
3412 * actually alloed to flush.
3413 */
3414 while (flush && !flushing && space_info->flush) {
3415 spin_unlock(&space_info->lock);
3416 /*
3417 * If we have a trans handle we can't wait because the flusher
3418 * may have to commit the transaction, which would mean we would
3419 * deadlock since we are waiting for the flusher to finish, but
3420 * hold the current transaction open.
3421 */
3422 if (trans)
3423 return -EAGAIN;
3424 ret = wait_event_interruptible(space_info->wait,
3425 !space_info->flush);
3426 /* Must have been interrupted, return */
3427 if (ret)
3428 return -EINTR;
3429
3430 spin_lock(&space_info->lock);
3431 }
3432
3433 ret = -ENOSPC;
3434 unused = space_info->bytes_used + space_info->bytes_reserved +
3435 space_info->bytes_pinned + space_info->bytes_readonly +
3436 space_info->bytes_may_use;
3437
3438 /*
3439 * The idea here is that we've not already over-reserved the block group
3440 * then we can go ahead and save our reservation first and then start
3441 * flushing if we need to. Otherwise if we've already overcommitted
3442 * lets start flushing stuff first and then come back and try to make
3443 * our reservation.
3444 */
3445 if (unused <= space_info->total_bytes) {
3446 unused = space_info->total_bytes - unused;
3447 if (unused >= num_bytes) {
3448 space_info->bytes_reserved += orig_bytes;
3449 ret = 0;
3450 } else {
3451 /*
3452 * Ok set num_bytes to orig_bytes since we aren't
3453 * overocmmitted, this way we only try and reclaim what
3454 * we need.
3455 */
3456 num_bytes = orig_bytes;
3457 }
3458 } else {
3459 /*
3460 * Ok we're over committed, set num_bytes to the overcommitted
3461 * amount plus the amount of bytes that we need for this
3462 * reservation.
3463 */
3464 num_bytes = unused - space_info->total_bytes +
3465 (orig_bytes * (retries + 1));
3466 }
3467
3468 /*
3469 * Couldn't make our reservation, save our place so while we're trying
3470 * to reclaim space we can actually use it instead of somebody else
3471 * stealing it from us.
3472 */
3473 if (ret && flush) {
3474 flushing = true;
3475 space_info->flush = 1;
3476 }
3477
3478 spin_unlock(&space_info->lock);
3479
3480 if (!ret || !flush)
3481 goto out;
3482
3483 /*
3484 * We do synchronous shrinking since we don't actually unreserve
3485 * metadata until after the IO is completed.
3486 */
3487 ret = shrink_delalloc(trans, root, num_bytes, 1);
3488 if (ret < 0)
3489 goto out;
3490
3491 ret = 0;
3492
3493 /*
3494 * So if we were overcommitted it's possible that somebody else flushed
3495 * out enough space and we simply didn't have enough space to reclaim,
3496 * so go back around and try again.
3497 */
3498 if (retries < 2) {
3499 retries++;
3500 goto again;
3501 }
3502
3503 /*
3504 * Not enough space to be reclaimed, don't bother committing the
3505 * transaction.
3506 */
3507 spin_lock(&space_info->lock);
3508 if (space_info->bytes_pinned < orig_bytes)
3509 ret = -ENOSPC;
3510 spin_unlock(&space_info->lock);
3511 if (ret)
3512 goto out;
3513
3514 ret = -EAGAIN;
3515 if (trans)
3516 goto out;
3517
3518 ret = -ENOSPC;
3519 if (committed)
3520 goto out;
3521
3522 trans = btrfs_join_transaction(root);
3523 if (IS_ERR(trans))
3524 goto out;
3525 ret = btrfs_commit_transaction(trans, root);
3526 if (!ret) {
3527 trans = NULL;
3528 committed = true;
3529 goto again;
3530 }
3531
3532 out:
3533 if (flushing) {
3534 spin_lock(&space_info->lock);
3535 space_info->flush = 0;
3536 wake_up_all(&space_info->wait);
3537 spin_unlock(&space_info->lock);
3538 }
3539 return ret;
3540 }
3541
3542 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3543 struct btrfs_root *root)
3544 {
3545 struct btrfs_block_rsv *block_rsv;
3546 if (root->ref_cows)
3547 block_rsv = trans->block_rsv;
3548 else
3549 block_rsv = root->block_rsv;
3550
3551 if (!block_rsv)
3552 block_rsv = &root->fs_info->empty_block_rsv;
3553
3554 return block_rsv;
3555 }
3556
3557 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3558 u64 num_bytes)
3559 {
3560 int ret = -ENOSPC;
3561 spin_lock(&block_rsv->lock);
3562 if (block_rsv->reserved >= num_bytes) {
3563 block_rsv->reserved -= num_bytes;
3564 if (block_rsv->reserved < block_rsv->size)
3565 block_rsv->full = 0;
3566 ret = 0;
3567 }
3568 spin_unlock(&block_rsv->lock);
3569 return ret;
3570 }
3571
3572 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3573 u64 num_bytes, int update_size)
3574 {
3575 spin_lock(&block_rsv->lock);
3576 block_rsv->reserved += num_bytes;
3577 if (update_size)
3578 block_rsv->size += num_bytes;
3579 else if (block_rsv->reserved >= block_rsv->size)
3580 block_rsv->full = 1;
3581 spin_unlock(&block_rsv->lock);
3582 }
3583
3584 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3585 struct btrfs_block_rsv *dest, u64 num_bytes)
3586 {
3587 struct btrfs_space_info *space_info = block_rsv->space_info;
3588
3589 spin_lock(&block_rsv->lock);
3590 if (num_bytes == (u64)-1)
3591 num_bytes = block_rsv->size;
3592 block_rsv->size -= num_bytes;
3593 if (block_rsv->reserved >= block_rsv->size) {
3594 num_bytes = block_rsv->reserved - block_rsv->size;
3595 block_rsv->reserved = block_rsv->size;
3596 block_rsv->full = 1;
3597 } else {
3598 num_bytes = 0;
3599 }
3600 spin_unlock(&block_rsv->lock);
3601
3602 if (num_bytes > 0) {
3603 if (dest) {
3604 spin_lock(&dest->lock);
3605 if (!dest->full) {
3606 u64 bytes_to_add;
3607
3608 bytes_to_add = dest->size - dest->reserved;
3609 bytes_to_add = min(num_bytes, bytes_to_add);
3610 dest->reserved += bytes_to_add;
3611 if (dest->reserved >= dest->size)
3612 dest->full = 1;
3613 num_bytes -= bytes_to_add;
3614 }
3615 spin_unlock(&dest->lock);
3616 }
3617 if (num_bytes) {
3618 spin_lock(&space_info->lock);
3619 space_info->bytes_reserved -= num_bytes;
3620 space_info->reservation_progress++;
3621 spin_unlock(&space_info->lock);
3622 }
3623 }
3624 }
3625
3626 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3627 struct btrfs_block_rsv *dst, u64 num_bytes)
3628 {
3629 int ret;
3630
3631 ret = block_rsv_use_bytes(src, num_bytes);
3632 if (ret)
3633 return ret;
3634
3635 block_rsv_add_bytes(dst, num_bytes, 1);
3636 return 0;
3637 }
3638
3639 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3640 {
3641 memset(rsv, 0, sizeof(*rsv));
3642 spin_lock_init(&rsv->lock);
3643 atomic_set(&rsv->usage, 1);
3644 rsv->priority = 6;
3645 INIT_LIST_HEAD(&rsv->list);
3646 }
3647
3648 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3649 {
3650 struct btrfs_block_rsv *block_rsv;
3651 struct btrfs_fs_info *fs_info = root->fs_info;
3652
3653 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3654 if (!block_rsv)
3655 return NULL;
3656
3657 btrfs_init_block_rsv(block_rsv);
3658 block_rsv->space_info = __find_space_info(fs_info,
3659 BTRFS_BLOCK_GROUP_METADATA);
3660 return block_rsv;
3661 }
3662
3663 void btrfs_free_block_rsv(struct btrfs_root *root,
3664 struct btrfs_block_rsv *rsv)
3665 {
3666 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3667 btrfs_block_rsv_release(root, rsv, (u64)-1);
3668 if (!rsv->durable)
3669 kfree(rsv);
3670 }
3671 }
3672
3673 /*
3674 * make the block_rsv struct be able to capture freed space.
3675 * the captured space will re-add to the the block_rsv struct
3676 * after transaction commit
3677 */
3678 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3679 struct btrfs_block_rsv *block_rsv)
3680 {
3681 block_rsv->durable = 1;
3682 mutex_lock(&fs_info->durable_block_rsv_mutex);
3683 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3684 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3685 }
3686
3687 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3688 struct btrfs_root *root,
3689 struct btrfs_block_rsv *block_rsv,
3690 u64 num_bytes)
3691 {
3692 int ret;
3693
3694 if (num_bytes == 0)
3695 return 0;
3696
3697 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3698 if (!ret) {
3699 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3700 return 0;
3701 }
3702
3703 return ret;
3704 }
3705
3706 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3707 struct btrfs_root *root,
3708 struct btrfs_block_rsv *block_rsv,
3709 u64 min_reserved, int min_factor)
3710 {
3711 u64 num_bytes = 0;
3712 int commit_trans = 0;
3713 int ret = -ENOSPC;
3714
3715 if (!block_rsv)
3716 return 0;
3717
3718 spin_lock(&block_rsv->lock);
3719 if (min_factor > 0)
3720 num_bytes = div_factor(block_rsv->size, min_factor);
3721 if (min_reserved > num_bytes)
3722 num_bytes = min_reserved;
3723
3724 if (block_rsv->reserved >= num_bytes) {
3725 ret = 0;
3726 } else {
3727 num_bytes -= block_rsv->reserved;
3728 if (block_rsv->durable &&
3729 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3730 commit_trans = 1;
3731 }
3732 spin_unlock(&block_rsv->lock);
3733 if (!ret)
3734 return 0;
3735
3736 if (block_rsv->refill_used) {
3737 ret = reserve_metadata_bytes(trans, root, block_rsv,
3738 num_bytes, 0);
3739 if (!ret) {
3740 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3741 return 0;
3742 }
3743 }
3744
3745 if (commit_trans) {
3746 if (trans)
3747 return -EAGAIN;
3748 trans = btrfs_join_transaction(root);
3749 BUG_ON(IS_ERR(trans));
3750 ret = btrfs_commit_transaction(trans, root);
3751 return 0;
3752 }
3753
3754 return -ENOSPC;
3755 }
3756
3757 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3758 struct btrfs_block_rsv *dst_rsv,
3759 u64 num_bytes)
3760 {
3761 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3762 }
3763
3764 void btrfs_block_rsv_release(struct btrfs_root *root,
3765 struct btrfs_block_rsv *block_rsv,
3766 u64 num_bytes)
3767 {
3768 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3769 if (global_rsv->full || global_rsv == block_rsv ||
3770 block_rsv->space_info != global_rsv->space_info)
3771 global_rsv = NULL;
3772 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3773 }
3774
3775 /*
3776 * helper to calculate size of global block reservation.
3777 * the desired value is sum of space used by extent tree,
3778 * checksum tree and root tree
3779 */
3780 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3781 {
3782 struct btrfs_space_info *sinfo;
3783 u64 num_bytes;
3784 u64 meta_used;
3785 u64 data_used;
3786 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3787
3788 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3789 spin_lock(&sinfo->lock);
3790 data_used = sinfo->bytes_used;
3791 spin_unlock(&sinfo->lock);
3792
3793 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3794 spin_lock(&sinfo->lock);
3795 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3796 data_used = 0;
3797 meta_used = sinfo->bytes_used;
3798 spin_unlock(&sinfo->lock);
3799
3800 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3801 csum_size * 2;
3802 num_bytes += div64_u64(data_used + meta_used, 50);
3803
3804 if (num_bytes * 3 > meta_used)
3805 num_bytes = div64_u64(meta_used, 3);
3806
3807 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3808 }
3809
3810 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3811 {
3812 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3813 struct btrfs_space_info *sinfo = block_rsv->space_info;
3814 u64 num_bytes;
3815
3816 num_bytes = calc_global_metadata_size(fs_info);
3817
3818 spin_lock(&block_rsv->lock);
3819 spin_lock(&sinfo->lock);
3820
3821 block_rsv->size = num_bytes;
3822
3823 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3824 sinfo->bytes_reserved + sinfo->bytes_readonly +
3825 sinfo->bytes_may_use;
3826
3827 if (sinfo->total_bytes > num_bytes) {
3828 num_bytes = sinfo->total_bytes - num_bytes;
3829 block_rsv->reserved += num_bytes;
3830 sinfo->bytes_reserved += num_bytes;
3831 }
3832
3833 if (block_rsv->reserved >= block_rsv->size) {
3834 num_bytes = block_rsv->reserved - block_rsv->size;
3835 sinfo->bytes_reserved -= num_bytes;
3836 sinfo->reservation_progress++;
3837 block_rsv->reserved = block_rsv->size;
3838 block_rsv->full = 1;
3839 }
3840
3841 spin_unlock(&sinfo->lock);
3842 spin_unlock(&block_rsv->lock);
3843 }
3844
3845 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3846 {
3847 struct btrfs_space_info *space_info;
3848
3849 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3850 fs_info->chunk_block_rsv.space_info = space_info;
3851 fs_info->chunk_block_rsv.priority = 10;
3852
3853 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3854 fs_info->global_block_rsv.space_info = space_info;
3855 fs_info->global_block_rsv.priority = 10;
3856 fs_info->global_block_rsv.refill_used = 1;
3857 fs_info->delalloc_block_rsv.space_info = space_info;
3858 fs_info->trans_block_rsv.space_info = space_info;
3859 fs_info->empty_block_rsv.space_info = space_info;
3860 fs_info->empty_block_rsv.priority = 10;
3861
3862 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3863 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3864 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3865 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3866 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3867
3868 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3869
3870 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3871
3872 update_global_block_rsv(fs_info);
3873 }
3874
3875 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3876 {
3877 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3878 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3879 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3880 WARN_ON(fs_info->trans_block_rsv.size > 0);
3881 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3882 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3883 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3884 }
3885
3886 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3887 struct btrfs_root *root,
3888 struct btrfs_block_rsv *rsv)
3889 {
3890 struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3891 u64 num_bytes;
3892 int ret;
3893
3894 /*
3895 * Truncate should be freeing data, but give us 2 items just in case it
3896 * needs to use some space. We may want to be smarter about this in the
3897 * future.
3898 */
3899 num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3900
3901 /* We already have enough bytes, just return */
3902 if (rsv->reserved >= num_bytes)
3903 return 0;
3904
3905 num_bytes -= rsv->reserved;
3906
3907 /*
3908 * You should have reserved enough space before hand to do this, so this
3909 * should not fail.
3910 */
3911 ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3912 BUG_ON(ret);
3913
3914 return 0;
3915 }
3916
3917 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3918 struct btrfs_root *root)
3919 {
3920 if (!trans->bytes_reserved)
3921 return;
3922
3923 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3924 btrfs_block_rsv_release(root, trans->block_rsv,
3925 trans->bytes_reserved);
3926 trans->bytes_reserved = 0;
3927 }
3928
3929 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3930 struct inode *inode)
3931 {
3932 struct btrfs_root *root = BTRFS_I(inode)->root;
3933 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3934 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3935
3936 /*
3937 * We need to hold space in order to delete our orphan item once we've
3938 * added it, so this takes the reservation so we can release it later
3939 * when we are truly done with the orphan item.
3940 */
3941 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3942 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3943 }
3944
3945 void btrfs_orphan_release_metadata(struct inode *inode)
3946 {
3947 struct btrfs_root *root = BTRFS_I(inode)->root;
3948 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3949 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3950 }
3951
3952 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3953 struct btrfs_pending_snapshot *pending)
3954 {
3955 struct btrfs_root *root = pending->root;
3956 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3957 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3958 /*
3959 * two for root back/forward refs, two for directory entries
3960 * and one for root of the snapshot.
3961 */
3962 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3963 dst_rsv->space_info = src_rsv->space_info;
3964 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3965 }
3966
3967 static unsigned drop_outstanding_extent(struct inode *inode)
3968 {
3969 unsigned dropped_extents = 0;
3970
3971 spin_lock(&BTRFS_I(inode)->lock);
3972 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
3973 BTRFS_I(inode)->outstanding_extents--;
3974
3975 /*
3976 * If we have more or the same amount of outsanding extents than we have
3977 * reserved then we need to leave the reserved extents count alone.
3978 */
3979 if (BTRFS_I(inode)->outstanding_extents >=
3980 BTRFS_I(inode)->reserved_extents)
3981 goto out;
3982
3983 dropped_extents = BTRFS_I(inode)->reserved_extents -
3984 BTRFS_I(inode)->outstanding_extents;
3985 BTRFS_I(inode)->reserved_extents -= dropped_extents;
3986 out:
3987 spin_unlock(&BTRFS_I(inode)->lock);
3988 return dropped_extents;
3989 }
3990
3991 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3992 {
3993 return num_bytes >>= 3;
3994 }
3995
3996 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3997 {
3998 struct btrfs_root *root = BTRFS_I(inode)->root;
3999 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4000 u64 to_reserve = 0;
4001 unsigned nr_extents = 0;
4002 int ret;
4003
4004 if (btrfs_transaction_in_commit(root->fs_info))
4005 schedule_timeout(1);
4006
4007 num_bytes = ALIGN(num_bytes, root->sectorsize);
4008
4009 spin_lock(&BTRFS_I(inode)->lock);
4010 BTRFS_I(inode)->outstanding_extents++;
4011
4012 if (BTRFS_I(inode)->outstanding_extents >
4013 BTRFS_I(inode)->reserved_extents) {
4014 nr_extents = BTRFS_I(inode)->outstanding_extents -
4015 BTRFS_I(inode)->reserved_extents;
4016 BTRFS_I(inode)->reserved_extents += nr_extents;
4017
4018 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4019 }
4020 spin_unlock(&BTRFS_I(inode)->lock);
4021
4022 to_reserve += calc_csum_metadata_size(inode, num_bytes);
4023 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4024 if (ret) {
4025 unsigned dropped;
4026 /*
4027 * We don't need the return value since our reservation failed,
4028 * we just need to clean up our counter.
4029 */
4030 dropped = drop_outstanding_extent(inode);
4031 WARN_ON(dropped > 1);
4032 return ret;
4033 }
4034
4035 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4036
4037 return 0;
4038 }
4039
4040 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4041 {
4042 struct btrfs_root *root = BTRFS_I(inode)->root;
4043 u64 to_free = 0;
4044 unsigned dropped;
4045
4046 num_bytes = ALIGN(num_bytes, root->sectorsize);
4047 dropped = drop_outstanding_extent(inode);
4048
4049 to_free = calc_csum_metadata_size(inode, num_bytes);
4050 if (dropped > 0)
4051 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4052
4053 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4054 to_free);
4055 }
4056
4057 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4058 {
4059 int ret;
4060
4061 ret = btrfs_check_data_free_space(inode, num_bytes);
4062 if (ret)
4063 return ret;
4064
4065 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4066 if (ret) {
4067 btrfs_free_reserved_data_space(inode, num_bytes);
4068 return ret;
4069 }
4070
4071 return 0;
4072 }
4073
4074 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4075 {
4076 btrfs_delalloc_release_metadata(inode, num_bytes);
4077 btrfs_free_reserved_data_space(inode, num_bytes);
4078 }
4079
4080 static int update_block_group(struct btrfs_trans_handle *trans,
4081 struct btrfs_root *root,
4082 u64 bytenr, u64 num_bytes, int alloc)
4083 {
4084 struct btrfs_block_group_cache *cache = NULL;
4085 struct btrfs_fs_info *info = root->fs_info;
4086 u64 total = num_bytes;
4087 u64 old_val;
4088 u64 byte_in_group;
4089 int factor;
4090
4091 /* block accounting for super block */
4092 spin_lock(&info->delalloc_lock);
4093 old_val = btrfs_super_bytes_used(&info->super_copy);
4094 if (alloc)
4095 old_val += num_bytes;
4096 else
4097 old_val -= num_bytes;
4098 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4099 spin_unlock(&info->delalloc_lock);
4100
4101 while (total) {
4102 cache = btrfs_lookup_block_group(info, bytenr);
4103 if (!cache)
4104 return -1;
4105 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4106 BTRFS_BLOCK_GROUP_RAID1 |
4107 BTRFS_BLOCK_GROUP_RAID10))
4108 factor = 2;
4109 else
4110 factor = 1;
4111 /*
4112 * If this block group has free space cache written out, we
4113 * need to make sure to load it if we are removing space. This
4114 * is because we need the unpinning stage to actually add the
4115 * space back to the block group, otherwise we will leak space.
4116 */
4117 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4118 cache_block_group(cache, trans, NULL, 1);
4119
4120 byte_in_group = bytenr - cache->key.objectid;
4121 WARN_ON(byte_in_group > cache->key.offset);
4122
4123 spin_lock(&cache->space_info->lock);
4124 spin_lock(&cache->lock);
4125
4126 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4127 cache->disk_cache_state < BTRFS_DC_CLEAR)
4128 cache->disk_cache_state = BTRFS_DC_CLEAR;
4129
4130 cache->dirty = 1;
4131 old_val = btrfs_block_group_used(&cache->item);
4132 num_bytes = min(total, cache->key.offset - byte_in_group);
4133 if (alloc) {
4134 old_val += num_bytes;
4135 btrfs_set_block_group_used(&cache->item, old_val);
4136 cache->reserved -= num_bytes;
4137 cache->space_info->bytes_reserved -= num_bytes;
4138 cache->space_info->reservation_progress++;
4139 cache->space_info->bytes_used += num_bytes;
4140 cache->space_info->disk_used += num_bytes * factor;
4141 spin_unlock(&cache->lock);
4142 spin_unlock(&cache->space_info->lock);
4143 } else {
4144 old_val -= num_bytes;
4145 btrfs_set_block_group_used(&cache->item, old_val);
4146 cache->pinned += num_bytes;
4147 cache->space_info->bytes_pinned += num_bytes;
4148 cache->space_info->bytes_used -= num_bytes;
4149 cache->space_info->disk_used -= num_bytes * factor;
4150 spin_unlock(&cache->lock);
4151 spin_unlock(&cache->space_info->lock);
4152
4153 set_extent_dirty(info->pinned_extents,
4154 bytenr, bytenr + num_bytes - 1,
4155 GFP_NOFS | __GFP_NOFAIL);
4156 }
4157 btrfs_put_block_group(cache);
4158 total -= num_bytes;
4159 bytenr += num_bytes;
4160 }
4161 return 0;
4162 }
4163
4164 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4165 {
4166 struct btrfs_block_group_cache *cache;
4167 u64 bytenr;
4168
4169 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4170 if (!cache)
4171 return 0;
4172
4173 bytenr = cache->key.objectid;
4174 btrfs_put_block_group(cache);
4175
4176 return bytenr;
4177 }
4178
4179 static int pin_down_extent(struct btrfs_root *root,
4180 struct btrfs_block_group_cache *cache,
4181 u64 bytenr, u64 num_bytes, int reserved)
4182 {
4183 spin_lock(&cache->space_info->lock);
4184 spin_lock(&cache->lock);
4185 cache->pinned += num_bytes;
4186 cache->space_info->bytes_pinned += num_bytes;
4187 if (reserved) {
4188 cache->reserved -= num_bytes;
4189 cache->space_info->bytes_reserved -= num_bytes;
4190 cache->space_info->reservation_progress++;
4191 }
4192 spin_unlock(&cache->lock);
4193 spin_unlock(&cache->space_info->lock);
4194
4195 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4196 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4197 return 0;
4198 }
4199
4200 /*
4201 * this function must be called within transaction
4202 */
4203 int btrfs_pin_extent(struct btrfs_root *root,
4204 u64 bytenr, u64 num_bytes, int reserved)
4205 {
4206 struct btrfs_block_group_cache *cache;
4207
4208 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4209 BUG_ON(!cache);
4210
4211 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4212
4213 btrfs_put_block_group(cache);
4214 return 0;
4215 }
4216
4217 /*
4218 * update size of reserved extents. this function may return -EAGAIN
4219 * if 'reserve' is true or 'sinfo' is false.
4220 */
4221 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4222 u64 num_bytes, int reserve, int sinfo)
4223 {
4224 int ret = 0;
4225 if (sinfo) {
4226 struct btrfs_space_info *space_info = cache->space_info;
4227 spin_lock(&space_info->lock);
4228 spin_lock(&cache->lock);
4229 if (reserve) {
4230 if (cache->ro) {
4231 ret = -EAGAIN;
4232 } else {
4233 cache->reserved += num_bytes;
4234 space_info->bytes_reserved += num_bytes;
4235 }
4236 } else {
4237 if (cache->ro)
4238 space_info->bytes_readonly += num_bytes;
4239 cache->reserved -= num_bytes;
4240 space_info->bytes_reserved -= num_bytes;
4241 space_info->reservation_progress++;
4242 }
4243 spin_unlock(&cache->lock);
4244 spin_unlock(&space_info->lock);
4245 } else {
4246 spin_lock(&cache->lock);
4247 if (cache->ro) {
4248 ret = -EAGAIN;
4249 } else {
4250 if (reserve)
4251 cache->reserved += num_bytes;
4252 else
4253 cache->reserved -= num_bytes;
4254 }
4255 spin_unlock(&cache->lock);
4256 }
4257 return ret;
4258 }
4259
4260 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4261 struct btrfs_root *root)
4262 {
4263 struct btrfs_fs_info *fs_info = root->fs_info;
4264 struct btrfs_caching_control *next;
4265 struct btrfs_caching_control *caching_ctl;
4266 struct btrfs_block_group_cache *cache;
4267
4268 down_write(&fs_info->extent_commit_sem);
4269
4270 list_for_each_entry_safe(caching_ctl, next,
4271 &fs_info->caching_block_groups, list) {
4272 cache = caching_ctl->block_group;
4273 if (block_group_cache_done(cache)) {
4274 cache->last_byte_to_unpin = (u64)-1;
4275 list_del_init(&caching_ctl->list);
4276 put_caching_control(caching_ctl);
4277 } else {
4278 cache->last_byte_to_unpin = caching_ctl->progress;
4279 }
4280 }
4281
4282 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4283 fs_info->pinned_extents = &fs_info->freed_extents[1];
4284 else
4285 fs_info->pinned_extents = &fs_info->freed_extents[0];
4286
4287 up_write(&fs_info->extent_commit_sem);
4288
4289 update_global_block_rsv(fs_info);
4290 return 0;
4291 }
4292
4293 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4294 {
4295 struct btrfs_fs_info *fs_info = root->fs_info;
4296 struct btrfs_block_group_cache *cache = NULL;
4297 u64 len;
4298
4299 while (start <= end) {
4300 if (!cache ||
4301 start >= cache->key.objectid + cache->key.offset) {
4302 if (cache)
4303 btrfs_put_block_group(cache);
4304 cache = btrfs_lookup_block_group(fs_info, start);
4305 BUG_ON(!cache);
4306 }
4307
4308 len = cache->key.objectid + cache->key.offset - start;
4309 len = min(len, end + 1 - start);
4310
4311 if (start < cache->last_byte_to_unpin) {
4312 len = min(len, cache->last_byte_to_unpin - start);
4313 btrfs_add_free_space(cache, start, len);
4314 }
4315
4316 start += len;
4317
4318 spin_lock(&cache->space_info->lock);
4319 spin_lock(&cache->lock);
4320 cache->pinned -= len;
4321 cache->space_info->bytes_pinned -= len;
4322 if (cache->ro) {
4323 cache->space_info->bytes_readonly += len;
4324 } else if (cache->reserved_pinned > 0) {
4325 len = min(len, cache->reserved_pinned);
4326 cache->reserved_pinned -= len;
4327 cache->space_info->bytes_reserved += len;
4328 }
4329 spin_unlock(&cache->lock);
4330 spin_unlock(&cache->space_info->lock);
4331 }
4332
4333 if (cache)
4334 btrfs_put_block_group(cache);
4335 return 0;
4336 }
4337
4338 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4339 struct btrfs_root *root)
4340 {
4341 struct btrfs_fs_info *fs_info = root->fs_info;
4342 struct extent_io_tree *unpin;
4343 struct btrfs_block_rsv *block_rsv;
4344 struct btrfs_block_rsv *next_rsv;
4345 u64 start;
4346 u64 end;
4347 int idx;
4348 int ret;
4349
4350 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4351 unpin = &fs_info->freed_extents[1];
4352 else
4353 unpin = &fs_info->freed_extents[0];
4354
4355 while (1) {
4356 ret = find_first_extent_bit(unpin, 0, &start, &end,
4357 EXTENT_DIRTY);
4358 if (ret)
4359 break;
4360
4361 if (btrfs_test_opt(root, DISCARD))
4362 ret = btrfs_discard_extent(root, start,
4363 end + 1 - start, NULL);
4364
4365 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4366 unpin_extent_range(root, start, end);
4367 cond_resched();
4368 }
4369
4370 mutex_lock(&fs_info->durable_block_rsv_mutex);
4371 list_for_each_entry_safe(block_rsv, next_rsv,
4372 &fs_info->durable_block_rsv_list, list) {
4373
4374 idx = trans->transid & 0x1;
4375 if (block_rsv->freed[idx] > 0) {
4376 block_rsv_add_bytes(block_rsv,
4377 block_rsv->freed[idx], 0);
4378 block_rsv->freed[idx] = 0;
4379 }
4380 if (atomic_read(&block_rsv->usage) == 0) {
4381 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4382
4383 if (block_rsv->freed[0] == 0 &&
4384 block_rsv->freed[1] == 0) {
4385 list_del_init(&block_rsv->list);
4386 kfree(block_rsv);
4387 }
4388 } else {
4389 btrfs_block_rsv_release(root, block_rsv, 0);
4390 }
4391 }
4392 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4393
4394 return 0;
4395 }
4396
4397 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4398 struct btrfs_root *root,
4399 u64 bytenr, u64 num_bytes, u64 parent,
4400 u64 root_objectid, u64 owner_objectid,
4401 u64 owner_offset, int refs_to_drop,
4402 struct btrfs_delayed_extent_op *extent_op)
4403 {
4404 struct btrfs_key key;
4405 struct btrfs_path *path;
4406 struct btrfs_fs_info *info = root->fs_info;
4407 struct btrfs_root *extent_root = info->extent_root;
4408 struct extent_buffer *leaf;
4409 struct btrfs_extent_item *ei;
4410 struct btrfs_extent_inline_ref *iref;
4411 int ret;
4412 int is_data;
4413 int extent_slot = 0;
4414 int found_extent = 0;
4415 int num_to_del = 1;
4416 u32 item_size;
4417 u64 refs;
4418
4419 path = btrfs_alloc_path();
4420 if (!path)
4421 return -ENOMEM;
4422
4423 path->reada = 1;
4424 path->leave_spinning = 1;
4425
4426 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4427 BUG_ON(!is_data && refs_to_drop != 1);
4428
4429 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4430 bytenr, num_bytes, parent,
4431 root_objectid, owner_objectid,
4432 owner_offset);
4433 if (ret == 0) {
4434 extent_slot = path->slots[0];
4435 while (extent_slot >= 0) {
4436 btrfs_item_key_to_cpu(path->nodes[0], &key,
4437 extent_slot);
4438 if (key.objectid != bytenr)
4439 break;
4440 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4441 key.offset == num_bytes) {
4442 found_extent = 1;
4443 break;
4444 }
4445 if (path->slots[0] - extent_slot > 5)
4446 break;
4447 extent_slot--;
4448 }
4449 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4450 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4451 if (found_extent && item_size < sizeof(*ei))
4452 found_extent = 0;
4453 #endif
4454 if (!found_extent) {
4455 BUG_ON(iref);
4456 ret = remove_extent_backref(trans, extent_root, path,
4457 NULL, refs_to_drop,
4458 is_data);
4459 BUG_ON(ret);
4460 btrfs_release_path(path);
4461 path->leave_spinning = 1;
4462
4463 key.objectid = bytenr;
4464 key.type = BTRFS_EXTENT_ITEM_KEY;
4465 key.offset = num_bytes;
4466
4467 ret = btrfs_search_slot(trans, extent_root,
4468 &key, path, -1, 1);
4469 if (ret) {
4470 printk(KERN_ERR "umm, got %d back from search"
4471 ", was looking for %llu\n", ret,
4472 (unsigned long long)bytenr);
4473 if (ret > 0)
4474 btrfs_print_leaf(extent_root,
4475 path->nodes[0]);
4476 }
4477 BUG_ON(ret);
4478 extent_slot = path->slots[0];
4479 }
4480 } else {
4481 btrfs_print_leaf(extent_root, path->nodes[0]);
4482 WARN_ON(1);
4483 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4484 "parent %llu root %llu owner %llu offset %llu\n",
4485 (unsigned long long)bytenr,
4486 (unsigned long long)parent,
4487 (unsigned long long)root_objectid,
4488 (unsigned long long)owner_objectid,
4489 (unsigned long long)owner_offset);
4490 }
4491
4492 leaf = path->nodes[0];
4493 item_size = btrfs_item_size_nr(leaf, extent_slot);
4494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4495 if (item_size < sizeof(*ei)) {
4496 BUG_ON(found_extent || extent_slot != path->slots[0]);
4497 ret = convert_extent_item_v0(trans, extent_root, path,
4498 owner_objectid, 0);
4499 BUG_ON(ret < 0);
4500
4501 btrfs_release_path(path);
4502 path->leave_spinning = 1;
4503
4504 key.objectid = bytenr;
4505 key.type = BTRFS_EXTENT_ITEM_KEY;
4506 key.offset = num_bytes;
4507
4508 ret = btrfs_search_slot(trans, extent_root, &key, path,
4509 -1, 1);
4510 if (ret) {
4511 printk(KERN_ERR "umm, got %d back from search"
4512 ", was looking for %llu\n", ret,
4513 (unsigned long long)bytenr);
4514 btrfs_print_leaf(extent_root, path->nodes[0]);
4515 }
4516 BUG_ON(ret);
4517 extent_slot = path->slots[0];
4518 leaf = path->nodes[0];
4519 item_size = btrfs_item_size_nr(leaf, extent_slot);
4520 }
4521 #endif
4522 BUG_ON(item_size < sizeof(*ei));
4523 ei = btrfs_item_ptr(leaf, extent_slot,
4524 struct btrfs_extent_item);
4525 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4526 struct btrfs_tree_block_info *bi;
4527 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4528 bi = (struct btrfs_tree_block_info *)(ei + 1);
4529 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4530 }
4531
4532 refs = btrfs_extent_refs(leaf, ei);
4533 BUG_ON(refs < refs_to_drop);
4534 refs -= refs_to_drop;
4535
4536 if (refs > 0) {
4537 if (extent_op)
4538 __run_delayed_extent_op(extent_op, leaf, ei);
4539 /*
4540 * In the case of inline back ref, reference count will
4541 * be updated by remove_extent_backref
4542 */
4543 if (iref) {
4544 BUG_ON(!found_extent);
4545 } else {
4546 btrfs_set_extent_refs(leaf, ei, refs);
4547 btrfs_mark_buffer_dirty(leaf);
4548 }
4549 if (found_extent) {
4550 ret = remove_extent_backref(trans, extent_root, path,
4551 iref, refs_to_drop,
4552 is_data);
4553 BUG_ON(ret);
4554 }
4555 } else {
4556 if (found_extent) {
4557 BUG_ON(is_data && refs_to_drop !=
4558 extent_data_ref_count(root, path, iref));
4559 if (iref) {
4560 BUG_ON(path->slots[0] != extent_slot);
4561 } else {
4562 BUG_ON(path->slots[0] != extent_slot + 1);
4563 path->slots[0] = extent_slot;
4564 num_to_del = 2;
4565 }
4566 }
4567
4568 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4569 num_to_del);
4570 BUG_ON(ret);
4571 btrfs_release_path(path);
4572
4573 if (is_data) {
4574 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4575 BUG_ON(ret);
4576 } else {
4577 invalidate_mapping_pages(info->btree_inode->i_mapping,
4578 bytenr >> PAGE_CACHE_SHIFT,
4579 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4580 }
4581
4582 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4583 BUG_ON(ret);
4584 }
4585 btrfs_free_path(path);
4586 return ret;
4587 }
4588
4589 /*
4590 * when we free an block, it is possible (and likely) that we free the last
4591 * delayed ref for that extent as well. This searches the delayed ref tree for
4592 * a given extent, and if there are no other delayed refs to be processed, it
4593 * removes it from the tree.
4594 */
4595 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4596 struct btrfs_root *root, u64 bytenr)
4597 {
4598 struct btrfs_delayed_ref_head *head;
4599 struct btrfs_delayed_ref_root *delayed_refs;
4600 struct btrfs_delayed_ref_node *ref;
4601 struct rb_node *node;
4602 int ret = 0;
4603
4604 delayed_refs = &trans->transaction->delayed_refs;
4605 spin_lock(&delayed_refs->lock);
4606 head = btrfs_find_delayed_ref_head(trans, bytenr);
4607 if (!head)
4608 goto out;
4609
4610 node = rb_prev(&head->node.rb_node);
4611 if (!node)
4612 goto out;
4613
4614 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4615
4616 /* there are still entries for this ref, we can't drop it */
4617 if (ref->bytenr == bytenr)
4618 goto out;
4619
4620 if (head->extent_op) {
4621 if (!head->must_insert_reserved)
4622 goto out;
4623 kfree(head->extent_op);
4624 head->extent_op = NULL;
4625 }
4626
4627 /*
4628 * waiting for the lock here would deadlock. If someone else has it
4629 * locked they are already in the process of dropping it anyway
4630 */
4631 if (!mutex_trylock(&head->mutex))
4632 goto out;
4633
4634 /*
4635 * at this point we have a head with no other entries. Go
4636 * ahead and process it.
4637 */
4638 head->node.in_tree = 0;
4639 rb_erase(&head->node.rb_node, &delayed_refs->root);
4640
4641 delayed_refs->num_entries--;
4642
4643 /*
4644 * we don't take a ref on the node because we're removing it from the
4645 * tree, so we just steal the ref the tree was holding.
4646 */
4647 delayed_refs->num_heads--;
4648 if (list_empty(&head->cluster))
4649 delayed_refs->num_heads_ready--;
4650
4651 list_del_init(&head->cluster);
4652 spin_unlock(&delayed_refs->lock);
4653
4654 BUG_ON(head->extent_op);
4655 if (head->must_insert_reserved)
4656 ret = 1;
4657
4658 mutex_unlock(&head->mutex);
4659 btrfs_put_delayed_ref(&head->node);
4660 return ret;
4661 out:
4662 spin_unlock(&delayed_refs->lock);
4663 return 0;
4664 }
4665
4666 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4667 struct btrfs_root *root,
4668 struct extent_buffer *buf,
4669 u64 parent, int last_ref)
4670 {
4671 struct btrfs_block_rsv *block_rsv;
4672 struct btrfs_block_group_cache *cache = NULL;
4673 int ret;
4674
4675 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4676 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4677 parent, root->root_key.objectid,
4678 btrfs_header_level(buf),
4679 BTRFS_DROP_DELAYED_REF, NULL);
4680 BUG_ON(ret);
4681 }
4682
4683 if (!last_ref)
4684 return;
4685
4686 block_rsv = get_block_rsv(trans, root);
4687 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4688 if (block_rsv->space_info != cache->space_info)
4689 goto out;
4690
4691 if (btrfs_header_generation(buf) == trans->transid) {
4692 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4693 ret = check_ref_cleanup(trans, root, buf->start);
4694 if (!ret)
4695 goto pin;
4696 }
4697
4698 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4699 pin_down_extent(root, cache, buf->start, buf->len, 1);
4700 goto pin;
4701 }
4702
4703 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4704
4705 btrfs_add_free_space(cache, buf->start, buf->len);
4706 ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4707 if (ret == -EAGAIN) {
4708 /* block group became read-only */
4709 btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4710 goto out;
4711 }
4712
4713 ret = 1;
4714 spin_lock(&block_rsv->lock);
4715 if (block_rsv->reserved < block_rsv->size) {
4716 block_rsv->reserved += buf->len;
4717 ret = 0;
4718 }
4719 spin_unlock(&block_rsv->lock);
4720
4721 if (ret) {
4722 spin_lock(&cache->space_info->lock);
4723 cache->space_info->bytes_reserved -= buf->len;
4724 cache->space_info->reservation_progress++;
4725 spin_unlock(&cache->space_info->lock);
4726 }
4727 goto out;
4728 }
4729 pin:
4730 if (block_rsv->durable && !cache->ro) {
4731 ret = 0;
4732 spin_lock(&cache->lock);
4733 if (!cache->ro) {
4734 cache->reserved_pinned += buf->len;
4735 ret = 1;
4736 }
4737 spin_unlock(&cache->lock);
4738
4739 if (ret) {
4740 spin_lock(&block_rsv->lock);
4741 block_rsv->freed[trans->transid & 0x1] += buf->len;
4742 spin_unlock(&block_rsv->lock);
4743 }
4744 }
4745 out:
4746 /*
4747 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4748 * anymore.
4749 */
4750 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4751 btrfs_put_block_group(cache);
4752 }
4753
4754 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4755 struct btrfs_root *root,
4756 u64 bytenr, u64 num_bytes, u64 parent,
4757 u64 root_objectid, u64 owner, u64 offset)
4758 {
4759 int ret;
4760
4761 /*
4762 * tree log blocks never actually go into the extent allocation
4763 * tree, just update pinning info and exit early.
4764 */
4765 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4766 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4767 /* unlocks the pinned mutex */
4768 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4769 ret = 0;
4770 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4771 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4772 parent, root_objectid, (int)owner,
4773 BTRFS_DROP_DELAYED_REF, NULL);
4774 BUG_ON(ret);
4775 } else {
4776 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4777 parent, root_objectid, owner,
4778 offset, BTRFS_DROP_DELAYED_REF, NULL);
4779 BUG_ON(ret);
4780 }
4781 return ret;
4782 }
4783
4784 static u64 stripe_align(struct btrfs_root *root, u64 val)
4785 {
4786 u64 mask = ((u64)root->stripesize - 1);
4787 u64 ret = (val + mask) & ~mask;
4788 return ret;
4789 }
4790
4791 /*
4792 * when we wait for progress in the block group caching, its because
4793 * our allocation attempt failed at least once. So, we must sleep
4794 * and let some progress happen before we try again.
4795 *
4796 * This function will sleep at least once waiting for new free space to
4797 * show up, and then it will check the block group free space numbers
4798 * for our min num_bytes. Another option is to have it go ahead
4799 * and look in the rbtree for a free extent of a given size, but this
4800 * is a good start.
4801 */
4802 static noinline int
4803 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4804 u64 num_bytes)
4805 {
4806 struct btrfs_caching_control *caching_ctl;
4807 DEFINE_WAIT(wait);
4808
4809 caching_ctl = get_caching_control(cache);
4810 if (!caching_ctl)
4811 return 0;
4812
4813 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4814 (cache->free_space_ctl->free_space >= num_bytes));
4815
4816 put_caching_control(caching_ctl);
4817 return 0;
4818 }
4819
4820 static noinline int
4821 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4822 {
4823 struct btrfs_caching_control *caching_ctl;
4824 DEFINE_WAIT(wait);
4825
4826 caching_ctl = get_caching_control(cache);
4827 if (!caching_ctl)
4828 return 0;
4829
4830 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4831
4832 put_caching_control(caching_ctl);
4833 return 0;
4834 }
4835
4836 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4837 {
4838 int index;
4839 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4840 index = 0;
4841 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4842 index = 1;
4843 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4844 index = 2;
4845 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4846 index = 3;
4847 else
4848 index = 4;
4849 return index;
4850 }
4851
4852 enum btrfs_loop_type {
4853 LOOP_FIND_IDEAL = 0,
4854 LOOP_CACHING_NOWAIT = 1,
4855 LOOP_CACHING_WAIT = 2,
4856 LOOP_ALLOC_CHUNK = 3,
4857 LOOP_NO_EMPTY_SIZE = 4,
4858 };
4859
4860 /*
4861 * walks the btree of allocated extents and find a hole of a given size.
4862 * The key ins is changed to record the hole:
4863 * ins->objectid == block start
4864 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4865 * ins->offset == number of blocks
4866 * Any available blocks before search_start are skipped.
4867 */
4868 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4869 struct btrfs_root *orig_root,
4870 u64 num_bytes, u64 empty_size,
4871 u64 search_start, u64 search_end,
4872 u64 hint_byte, struct btrfs_key *ins,
4873 u64 data)
4874 {
4875 int ret = 0;
4876 struct btrfs_root *root = orig_root->fs_info->extent_root;
4877 struct btrfs_free_cluster *last_ptr = NULL;
4878 struct btrfs_block_group_cache *block_group = NULL;
4879 int empty_cluster = 2 * 1024 * 1024;
4880 int allowed_chunk_alloc = 0;
4881 int done_chunk_alloc = 0;
4882 struct btrfs_space_info *space_info;
4883 int last_ptr_loop = 0;
4884 int loop = 0;
4885 int index = 0;
4886 bool found_uncached_bg = false;
4887 bool failed_cluster_refill = false;
4888 bool failed_alloc = false;
4889 bool use_cluster = true;
4890 u64 ideal_cache_percent = 0;
4891 u64 ideal_cache_offset = 0;
4892
4893 WARN_ON(num_bytes < root->sectorsize);
4894 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4895 ins->objectid = 0;
4896 ins->offset = 0;
4897
4898 space_info = __find_space_info(root->fs_info, data);
4899 if (!space_info) {
4900 printk(KERN_ERR "No space info for %llu\n", data);
4901 return -ENOSPC;
4902 }
4903
4904 /*
4905 * If the space info is for both data and metadata it means we have a
4906 * small filesystem and we can't use the clustering stuff.
4907 */
4908 if (btrfs_mixed_space_info(space_info))
4909 use_cluster = false;
4910
4911 if (orig_root->ref_cows || empty_size)
4912 allowed_chunk_alloc = 1;
4913
4914 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4915 last_ptr = &root->fs_info->meta_alloc_cluster;
4916 if (!btrfs_test_opt(root, SSD))
4917 empty_cluster = 64 * 1024;
4918 }
4919
4920 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4921 btrfs_test_opt(root, SSD)) {
4922 last_ptr = &root->fs_info->data_alloc_cluster;
4923 }
4924
4925 if (last_ptr) {
4926 spin_lock(&last_ptr->lock);
4927 if (last_ptr->block_group)
4928 hint_byte = last_ptr->window_start;
4929 spin_unlock(&last_ptr->lock);
4930 }
4931
4932 search_start = max(search_start, first_logical_byte(root, 0));
4933 search_start = max(search_start, hint_byte);
4934
4935 if (!last_ptr)
4936 empty_cluster = 0;
4937
4938 if (search_start == hint_byte) {
4939 ideal_cache:
4940 block_group = btrfs_lookup_block_group(root->fs_info,
4941 search_start);
4942 /*
4943 * we don't want to use the block group if it doesn't match our
4944 * allocation bits, or if its not cached.
4945 *
4946 * However if we are re-searching with an ideal block group
4947 * picked out then we don't care that the block group is cached.
4948 */
4949 if (block_group && block_group_bits(block_group, data) &&
4950 (block_group->cached != BTRFS_CACHE_NO ||
4951 search_start == ideal_cache_offset)) {
4952 down_read(&space_info->groups_sem);
4953 if (list_empty(&block_group->list) ||
4954 block_group->ro) {
4955 /*
4956 * someone is removing this block group,
4957 * we can't jump into the have_block_group
4958 * target because our list pointers are not
4959 * valid
4960 */
4961 btrfs_put_block_group(block_group);
4962 up_read(&space_info->groups_sem);
4963 } else {
4964 index = get_block_group_index(block_group);
4965 goto have_block_group;
4966 }
4967 } else if (block_group) {
4968 btrfs_put_block_group(block_group);
4969 }
4970 }
4971 search:
4972 down_read(&space_info->groups_sem);
4973 list_for_each_entry(block_group, &space_info->block_groups[index],
4974 list) {
4975 u64 offset;
4976 int cached;
4977
4978 btrfs_get_block_group(block_group);
4979 search_start = block_group->key.objectid;
4980
4981 /*
4982 * this can happen if we end up cycling through all the
4983 * raid types, but we want to make sure we only allocate
4984 * for the proper type.
4985 */
4986 if (!block_group_bits(block_group, data)) {
4987 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4988 BTRFS_BLOCK_GROUP_RAID1 |
4989 BTRFS_BLOCK_GROUP_RAID10;
4990
4991 /*
4992 * if they asked for extra copies and this block group
4993 * doesn't provide them, bail. This does allow us to
4994 * fill raid0 from raid1.
4995 */
4996 if ((data & extra) && !(block_group->flags & extra))
4997 goto loop;
4998 }
4999
5000 have_block_group:
5001 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5002 u64 free_percent;
5003
5004 ret = cache_block_group(block_group, trans,
5005 orig_root, 1);
5006 if (block_group->cached == BTRFS_CACHE_FINISHED)
5007 goto have_block_group;
5008
5009 free_percent = btrfs_block_group_used(&block_group->item);
5010 free_percent *= 100;
5011 free_percent = div64_u64(free_percent,
5012 block_group->key.offset);
5013 free_percent = 100 - free_percent;
5014 if (free_percent > ideal_cache_percent &&
5015 likely(!block_group->ro)) {
5016 ideal_cache_offset = block_group->key.objectid;
5017 ideal_cache_percent = free_percent;
5018 }
5019
5020 /*
5021 * The caching workers are limited to 2 threads, so we
5022 * can queue as much work as we care to.
5023 */
5024 if (loop > LOOP_FIND_IDEAL) {
5025 ret = cache_block_group(block_group, trans,
5026 orig_root, 0);
5027 BUG_ON(ret);
5028 }
5029 found_uncached_bg = true;
5030
5031 /*
5032 * If loop is set for cached only, try the next block
5033 * group.
5034 */
5035 if (loop == LOOP_FIND_IDEAL)
5036 goto loop;
5037 }
5038
5039 cached = block_group_cache_done(block_group);
5040 if (unlikely(!cached))
5041 found_uncached_bg = true;
5042
5043 if (unlikely(block_group->ro))
5044 goto loop;
5045
5046 spin_lock(&block_group->free_space_ctl->tree_lock);
5047 if (cached &&
5048 block_group->free_space_ctl->free_space <
5049 num_bytes + empty_size) {
5050 spin_unlock(&block_group->free_space_ctl->tree_lock);
5051 goto loop;
5052 }
5053 spin_unlock(&block_group->free_space_ctl->tree_lock);
5054
5055 /*
5056 * Ok we want to try and use the cluster allocator, so lets look
5057 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5058 * have tried the cluster allocator plenty of times at this
5059 * point and not have found anything, so we are likely way too
5060 * fragmented for the clustering stuff to find anything, so lets
5061 * just skip it and let the allocator find whatever block it can
5062 * find
5063 */
5064 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5065 /*
5066 * the refill lock keeps out other
5067 * people trying to start a new cluster
5068 */
5069 spin_lock(&last_ptr->refill_lock);
5070 if (last_ptr->block_group &&
5071 (last_ptr->block_group->ro ||
5072 !block_group_bits(last_ptr->block_group, data))) {
5073 offset = 0;
5074 goto refill_cluster;
5075 }
5076
5077 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5078 num_bytes, search_start);
5079 if (offset) {
5080 /* we have a block, we're done */
5081 spin_unlock(&last_ptr->refill_lock);
5082 goto checks;
5083 }
5084
5085 spin_lock(&last_ptr->lock);
5086 /*
5087 * whoops, this cluster doesn't actually point to
5088 * this block group. Get a ref on the block
5089 * group is does point to and try again
5090 */
5091 if (!last_ptr_loop && last_ptr->block_group &&
5092 last_ptr->block_group != block_group &&
5093 index <=
5094 get_block_group_index(last_ptr->block_group)) {
5095
5096 btrfs_put_block_group(block_group);
5097 block_group = last_ptr->block_group;
5098 btrfs_get_block_group(block_group);
5099 spin_unlock(&last_ptr->lock);
5100 spin_unlock(&last_ptr->refill_lock);
5101
5102 last_ptr_loop = 1;
5103 search_start = block_group->key.objectid;
5104 /*
5105 * we know this block group is properly
5106 * in the list because
5107 * btrfs_remove_block_group, drops the
5108 * cluster before it removes the block
5109 * group from the list
5110 */
5111 goto have_block_group;
5112 }
5113 spin_unlock(&last_ptr->lock);
5114 refill_cluster:
5115 /*
5116 * this cluster didn't work out, free it and
5117 * start over
5118 */
5119 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5120
5121 last_ptr_loop = 0;
5122
5123 /* allocate a cluster in this block group */
5124 ret = btrfs_find_space_cluster(trans, root,
5125 block_group, last_ptr,
5126 offset, num_bytes,
5127 empty_cluster + empty_size);
5128 if (ret == 0) {
5129 /*
5130 * now pull our allocation out of this
5131 * cluster
5132 */
5133 offset = btrfs_alloc_from_cluster(block_group,
5134 last_ptr, num_bytes,
5135 search_start);
5136 if (offset) {
5137 /* we found one, proceed */
5138 spin_unlock(&last_ptr->refill_lock);
5139 goto checks;
5140 }
5141 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5142 && !failed_cluster_refill) {
5143 spin_unlock(&last_ptr->refill_lock);
5144
5145 failed_cluster_refill = true;
5146 wait_block_group_cache_progress(block_group,
5147 num_bytes + empty_cluster + empty_size);
5148 goto have_block_group;
5149 }
5150
5151 /*
5152 * at this point we either didn't find a cluster
5153 * or we weren't able to allocate a block from our
5154 * cluster. Free the cluster we've been trying
5155 * to use, and go to the next block group
5156 */
5157 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5158 spin_unlock(&last_ptr->refill_lock);
5159 goto loop;
5160 }
5161
5162 offset = btrfs_find_space_for_alloc(block_group, search_start,
5163 num_bytes, empty_size);
5164 /*
5165 * If we didn't find a chunk, and we haven't failed on this
5166 * block group before, and this block group is in the middle of
5167 * caching and we are ok with waiting, then go ahead and wait
5168 * for progress to be made, and set failed_alloc to true.
5169 *
5170 * If failed_alloc is true then we've already waited on this
5171 * block group once and should move on to the next block group.
5172 */
5173 if (!offset && !failed_alloc && !cached &&
5174 loop > LOOP_CACHING_NOWAIT) {
5175 wait_block_group_cache_progress(block_group,
5176 num_bytes + empty_size);
5177 failed_alloc = true;
5178 goto have_block_group;
5179 } else if (!offset) {
5180 goto loop;
5181 }
5182 checks:
5183 search_start = stripe_align(root, offset);
5184 /* move on to the next group */
5185 if (search_start + num_bytes >= search_end) {
5186 btrfs_add_free_space(block_group, offset, num_bytes);
5187 goto loop;
5188 }
5189
5190 /* move on to the next group */
5191 if (search_start + num_bytes >
5192 block_group->key.objectid + block_group->key.offset) {
5193 btrfs_add_free_space(block_group, offset, num_bytes);
5194 goto loop;
5195 }
5196
5197 ins->objectid = search_start;
5198 ins->offset = num_bytes;
5199
5200 if (offset < search_start)
5201 btrfs_add_free_space(block_group, offset,
5202 search_start - offset);
5203 BUG_ON(offset > search_start);
5204
5205 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5206 (data & BTRFS_BLOCK_GROUP_DATA));
5207 if (ret == -EAGAIN) {
5208 btrfs_add_free_space(block_group, offset, num_bytes);
5209 goto loop;
5210 }
5211
5212 /* we are all good, lets return */
5213 ins->objectid = search_start;
5214 ins->offset = num_bytes;
5215
5216 if (offset < search_start)
5217 btrfs_add_free_space(block_group, offset,
5218 search_start - offset);
5219 BUG_ON(offset > search_start);
5220 btrfs_put_block_group(block_group);
5221 break;
5222 loop:
5223 failed_cluster_refill = false;
5224 failed_alloc = false;
5225 BUG_ON(index != get_block_group_index(block_group));
5226 btrfs_put_block_group(block_group);
5227 }
5228 up_read(&space_info->groups_sem);
5229
5230 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5231 goto search;
5232
5233 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5234 * for them to make caching progress. Also
5235 * determine the best possible bg to cache
5236 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5237 * caching kthreads as we move along
5238 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5239 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5240 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5241 * again
5242 */
5243 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5244 index = 0;
5245 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5246 found_uncached_bg = false;
5247 loop++;
5248 if (!ideal_cache_percent)
5249 goto search;
5250
5251 /*
5252 * 1 of the following 2 things have happened so far
5253 *
5254 * 1) We found an ideal block group for caching that
5255 * is mostly full and will cache quickly, so we might
5256 * as well wait for it.
5257 *
5258 * 2) We searched for cached only and we didn't find
5259 * anything, and we didn't start any caching kthreads
5260 * either, so chances are we will loop through and
5261 * start a couple caching kthreads, and then come back
5262 * around and just wait for them. This will be slower
5263 * because we will have 2 caching kthreads reading at
5264 * the same time when we could have just started one
5265 * and waited for it to get far enough to give us an
5266 * allocation, so go ahead and go to the wait caching
5267 * loop.
5268 */
5269 loop = LOOP_CACHING_WAIT;
5270 search_start = ideal_cache_offset;
5271 ideal_cache_percent = 0;
5272 goto ideal_cache;
5273 } else if (loop == LOOP_FIND_IDEAL) {
5274 /*
5275 * Didn't find a uncached bg, wait on anything we find
5276 * next.
5277 */
5278 loop = LOOP_CACHING_WAIT;
5279 goto search;
5280 }
5281
5282 loop++;
5283
5284 if (loop == LOOP_ALLOC_CHUNK) {
5285 if (allowed_chunk_alloc) {
5286 ret = do_chunk_alloc(trans, root, num_bytes +
5287 2 * 1024 * 1024, data,
5288 CHUNK_ALLOC_LIMITED);
5289 allowed_chunk_alloc = 0;
5290 if (ret == 1)
5291 done_chunk_alloc = 1;
5292 } else if (!done_chunk_alloc &&
5293 space_info->force_alloc ==
5294 CHUNK_ALLOC_NO_FORCE) {
5295 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5296 }
5297
5298 /*
5299 * We didn't allocate a chunk, go ahead and drop the
5300 * empty size and loop again.
5301 */
5302 if (!done_chunk_alloc)
5303 loop = LOOP_NO_EMPTY_SIZE;
5304 }
5305
5306 if (loop == LOOP_NO_EMPTY_SIZE) {
5307 empty_size = 0;
5308 empty_cluster = 0;
5309 }
5310
5311 goto search;
5312 } else if (!ins->objectid) {
5313 ret = -ENOSPC;
5314 } else if (ins->objectid) {
5315 ret = 0;
5316 }
5317
5318 return ret;
5319 }
5320
5321 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5322 int dump_block_groups)
5323 {
5324 struct btrfs_block_group_cache *cache;
5325 int index = 0;
5326
5327 spin_lock(&info->lock);
5328 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5329 (unsigned long long)(info->total_bytes - info->bytes_used -
5330 info->bytes_pinned - info->bytes_reserved -
5331 info->bytes_readonly),
5332 (info->full) ? "" : "not ");
5333 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5334 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5335 (unsigned long long)info->total_bytes,
5336 (unsigned long long)info->bytes_used,
5337 (unsigned long long)info->bytes_pinned,
5338 (unsigned long long)info->bytes_reserved,
5339 (unsigned long long)info->bytes_may_use,
5340 (unsigned long long)info->bytes_readonly);
5341 spin_unlock(&info->lock);
5342
5343 if (!dump_block_groups)
5344 return;
5345
5346 down_read(&info->groups_sem);
5347 again:
5348 list_for_each_entry(cache, &info->block_groups[index], list) {
5349 spin_lock(&cache->lock);
5350 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5351 "%llu pinned %llu reserved\n",
5352 (unsigned long long)cache->key.objectid,
5353 (unsigned long long)cache->key.offset,
5354 (unsigned long long)btrfs_block_group_used(&cache->item),
5355 (unsigned long long)cache->pinned,
5356 (unsigned long long)cache->reserved);
5357 btrfs_dump_free_space(cache, bytes);
5358 spin_unlock(&cache->lock);
5359 }
5360 if (++index < BTRFS_NR_RAID_TYPES)
5361 goto again;
5362 up_read(&info->groups_sem);
5363 }
5364
5365 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5366 struct btrfs_root *root,
5367 u64 num_bytes, u64 min_alloc_size,
5368 u64 empty_size, u64 hint_byte,
5369 u64 search_end, struct btrfs_key *ins,
5370 u64 data)
5371 {
5372 int ret;
5373 u64 search_start = 0;
5374
5375 data = btrfs_get_alloc_profile(root, data);
5376 again:
5377 /*
5378 * the only place that sets empty_size is btrfs_realloc_node, which
5379 * is not called recursively on allocations
5380 */
5381 if (empty_size || root->ref_cows)
5382 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5383 num_bytes + 2 * 1024 * 1024, data,
5384 CHUNK_ALLOC_NO_FORCE);
5385
5386 WARN_ON(num_bytes < root->sectorsize);
5387 ret = find_free_extent(trans, root, num_bytes, empty_size,
5388 search_start, search_end, hint_byte,
5389 ins, data);
5390
5391 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5392 num_bytes = num_bytes >> 1;
5393 num_bytes = num_bytes & ~(root->sectorsize - 1);
5394 num_bytes = max(num_bytes, min_alloc_size);
5395 do_chunk_alloc(trans, root->fs_info->extent_root,
5396 num_bytes, data, CHUNK_ALLOC_FORCE);
5397 goto again;
5398 }
5399 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5400 struct btrfs_space_info *sinfo;
5401
5402 sinfo = __find_space_info(root->fs_info, data);
5403 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5404 "wanted %llu\n", (unsigned long long)data,
5405 (unsigned long long)num_bytes);
5406 dump_space_info(sinfo, num_bytes, 1);
5407 }
5408
5409 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5410
5411 return ret;
5412 }
5413
5414 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5415 {
5416 struct btrfs_block_group_cache *cache;
5417 int ret = 0;
5418
5419 cache = btrfs_lookup_block_group(root->fs_info, start);
5420 if (!cache) {
5421 printk(KERN_ERR "Unable to find block group for %llu\n",
5422 (unsigned long long)start);
5423 return -ENOSPC;
5424 }
5425
5426 if (btrfs_test_opt(root, DISCARD))
5427 ret = btrfs_discard_extent(root, start, len, NULL);
5428
5429 btrfs_add_free_space(cache, start, len);
5430 btrfs_update_reserved_bytes(cache, len, 0, 1);
5431 btrfs_put_block_group(cache);
5432
5433 trace_btrfs_reserved_extent_free(root, start, len);
5434
5435 return ret;
5436 }
5437
5438 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5439 struct btrfs_root *root,
5440 u64 parent, u64 root_objectid,
5441 u64 flags, u64 owner, u64 offset,
5442 struct btrfs_key *ins, int ref_mod)
5443 {
5444 int ret;
5445 struct btrfs_fs_info *fs_info = root->fs_info;
5446 struct btrfs_extent_item *extent_item;
5447 struct btrfs_extent_inline_ref *iref;
5448 struct btrfs_path *path;
5449 struct extent_buffer *leaf;
5450 int type;
5451 u32 size;
5452
5453 if (parent > 0)
5454 type = BTRFS_SHARED_DATA_REF_KEY;
5455 else
5456 type = BTRFS_EXTENT_DATA_REF_KEY;
5457
5458 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5459
5460 path = btrfs_alloc_path();
5461 if (!path)
5462 return -ENOMEM;
5463
5464 path->leave_spinning = 1;
5465 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5466 ins, size);
5467 BUG_ON(ret);
5468
5469 leaf = path->nodes[0];
5470 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5471 struct btrfs_extent_item);
5472 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5473 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5474 btrfs_set_extent_flags(leaf, extent_item,
5475 flags | BTRFS_EXTENT_FLAG_DATA);
5476
5477 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5478 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5479 if (parent > 0) {
5480 struct btrfs_shared_data_ref *ref;
5481 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5482 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5483 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5484 } else {
5485 struct btrfs_extent_data_ref *ref;
5486 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5487 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5488 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5489 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5490 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5491 }
5492
5493 btrfs_mark_buffer_dirty(path->nodes[0]);
5494 btrfs_free_path(path);
5495
5496 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5497 if (ret) {
5498 printk(KERN_ERR "btrfs update block group failed for %llu "
5499 "%llu\n", (unsigned long long)ins->objectid,
5500 (unsigned long long)ins->offset);
5501 BUG();
5502 }
5503 return ret;
5504 }
5505
5506 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5507 struct btrfs_root *root,
5508 u64 parent, u64 root_objectid,
5509 u64 flags, struct btrfs_disk_key *key,
5510 int level, struct btrfs_key *ins)
5511 {
5512 int ret;
5513 struct btrfs_fs_info *fs_info = root->fs_info;
5514 struct btrfs_extent_item *extent_item;
5515 struct btrfs_tree_block_info *block_info;
5516 struct btrfs_extent_inline_ref *iref;
5517 struct btrfs_path *path;
5518 struct extent_buffer *leaf;
5519 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5520
5521 path = btrfs_alloc_path();
5522 if (!path)
5523 return -ENOMEM;
5524
5525 path->leave_spinning = 1;
5526 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5527 ins, size);
5528 BUG_ON(ret);
5529
5530 leaf = path->nodes[0];
5531 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5532 struct btrfs_extent_item);
5533 btrfs_set_extent_refs(leaf, extent_item, 1);
5534 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5535 btrfs_set_extent_flags(leaf, extent_item,
5536 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5537 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5538
5539 btrfs_set_tree_block_key(leaf, block_info, key);
5540 btrfs_set_tree_block_level(leaf, block_info, level);
5541
5542 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5543 if (parent > 0) {
5544 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5545 btrfs_set_extent_inline_ref_type(leaf, iref,
5546 BTRFS_SHARED_BLOCK_REF_KEY);
5547 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5548 } else {
5549 btrfs_set_extent_inline_ref_type(leaf, iref,
5550 BTRFS_TREE_BLOCK_REF_KEY);
5551 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5552 }
5553
5554 btrfs_mark_buffer_dirty(leaf);
5555 btrfs_free_path(path);
5556
5557 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5558 if (ret) {
5559 printk(KERN_ERR "btrfs update block group failed for %llu "
5560 "%llu\n", (unsigned long long)ins->objectid,
5561 (unsigned long long)ins->offset);
5562 BUG();
5563 }
5564 return ret;
5565 }
5566
5567 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5568 struct btrfs_root *root,
5569 u64 root_objectid, u64 owner,
5570 u64 offset, struct btrfs_key *ins)
5571 {
5572 int ret;
5573
5574 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5575
5576 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5577 0, root_objectid, owner, offset,
5578 BTRFS_ADD_DELAYED_EXTENT, NULL);
5579 return ret;
5580 }
5581
5582 /*
5583 * this is used by the tree logging recovery code. It records that
5584 * an extent has been allocated and makes sure to clear the free
5585 * space cache bits as well
5586 */
5587 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5588 struct btrfs_root *root,
5589 u64 root_objectid, u64 owner, u64 offset,
5590 struct btrfs_key *ins)
5591 {
5592 int ret;
5593 struct btrfs_block_group_cache *block_group;
5594 struct btrfs_caching_control *caching_ctl;
5595 u64 start = ins->objectid;
5596 u64 num_bytes = ins->offset;
5597
5598 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5599 cache_block_group(block_group, trans, NULL, 0);
5600 caching_ctl = get_caching_control(block_group);
5601
5602 if (!caching_ctl) {
5603 BUG_ON(!block_group_cache_done(block_group));
5604 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5605 BUG_ON(ret);
5606 } else {
5607 mutex_lock(&caching_ctl->mutex);
5608
5609 if (start >= caching_ctl->progress) {
5610 ret = add_excluded_extent(root, start, num_bytes);
5611 BUG_ON(ret);
5612 } else if (start + num_bytes <= caching_ctl->progress) {
5613 ret = btrfs_remove_free_space(block_group,
5614 start, num_bytes);
5615 BUG_ON(ret);
5616 } else {
5617 num_bytes = caching_ctl->progress - start;
5618 ret = btrfs_remove_free_space(block_group,
5619 start, num_bytes);
5620 BUG_ON(ret);
5621
5622 start = caching_ctl->progress;
5623 num_bytes = ins->objectid + ins->offset -
5624 caching_ctl->progress;
5625 ret = add_excluded_extent(root, start, num_bytes);
5626 BUG_ON(ret);
5627 }
5628
5629 mutex_unlock(&caching_ctl->mutex);
5630 put_caching_control(caching_ctl);
5631 }
5632
5633 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5634 BUG_ON(ret);
5635 btrfs_put_block_group(block_group);
5636 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5637 0, owner, offset, ins, 1);
5638 return ret;
5639 }
5640
5641 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5642 struct btrfs_root *root,
5643 u64 bytenr, u32 blocksize,
5644 int level)
5645 {
5646 struct extent_buffer *buf;
5647
5648 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5649 if (!buf)
5650 return ERR_PTR(-ENOMEM);
5651 btrfs_set_header_generation(buf, trans->transid);
5652 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5653 btrfs_tree_lock(buf);
5654 clean_tree_block(trans, root, buf);
5655
5656 btrfs_set_lock_blocking(buf);
5657 btrfs_set_buffer_uptodate(buf);
5658
5659 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5660 /*
5661 * we allow two log transactions at a time, use different
5662 * EXENT bit to differentiate dirty pages.
5663 */
5664 if (root->log_transid % 2 == 0)
5665 set_extent_dirty(&root->dirty_log_pages, buf->start,
5666 buf->start + buf->len - 1, GFP_NOFS);
5667 else
5668 set_extent_new(&root->dirty_log_pages, buf->start,
5669 buf->start + buf->len - 1, GFP_NOFS);
5670 } else {
5671 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5672 buf->start + buf->len - 1, GFP_NOFS);
5673 }
5674 trans->blocks_used++;
5675 /* this returns a buffer locked for blocking */
5676 return buf;
5677 }
5678
5679 static struct btrfs_block_rsv *
5680 use_block_rsv(struct btrfs_trans_handle *trans,
5681 struct btrfs_root *root, u32 blocksize)
5682 {
5683 struct btrfs_block_rsv *block_rsv;
5684 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5685 int ret;
5686
5687 block_rsv = get_block_rsv(trans, root);
5688
5689 if (block_rsv->size == 0) {
5690 ret = reserve_metadata_bytes(trans, root, block_rsv,
5691 blocksize, 0);
5692 /*
5693 * If we couldn't reserve metadata bytes try and use some from
5694 * the global reserve.
5695 */
5696 if (ret && block_rsv != global_rsv) {
5697 ret = block_rsv_use_bytes(global_rsv, blocksize);
5698 if (!ret)
5699 return global_rsv;
5700 return ERR_PTR(ret);
5701 } else if (ret) {
5702 return ERR_PTR(ret);
5703 }
5704 return block_rsv;
5705 }
5706
5707 ret = block_rsv_use_bytes(block_rsv, blocksize);
5708 if (!ret)
5709 return block_rsv;
5710 if (ret) {
5711 WARN_ON(1);
5712 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5713 0);
5714 if (!ret) {
5715 spin_lock(&block_rsv->lock);
5716 block_rsv->size += blocksize;
5717 spin_unlock(&block_rsv->lock);
5718 return block_rsv;
5719 } else if (ret && block_rsv != global_rsv) {
5720 ret = block_rsv_use_bytes(global_rsv, blocksize);
5721 if (!ret)
5722 return global_rsv;
5723 }
5724 }
5725
5726 return ERR_PTR(-ENOSPC);
5727 }
5728
5729 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5730 {
5731 block_rsv_add_bytes(block_rsv, blocksize, 0);
5732 block_rsv_release_bytes(block_rsv, NULL, 0);
5733 }
5734
5735 /*
5736 * finds a free extent and does all the dirty work required for allocation
5737 * returns the key for the extent through ins, and a tree buffer for
5738 * the first block of the extent through buf.
5739 *
5740 * returns the tree buffer or NULL.
5741 */
5742 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5743 struct btrfs_root *root, u32 blocksize,
5744 u64 parent, u64 root_objectid,
5745 struct btrfs_disk_key *key, int level,
5746 u64 hint, u64 empty_size)
5747 {
5748 struct btrfs_key ins;
5749 struct btrfs_block_rsv *block_rsv;
5750 struct extent_buffer *buf;
5751 u64 flags = 0;
5752 int ret;
5753
5754
5755 block_rsv = use_block_rsv(trans, root, blocksize);
5756 if (IS_ERR(block_rsv))
5757 return ERR_CAST(block_rsv);
5758
5759 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5760 empty_size, hint, (u64)-1, &ins, 0);
5761 if (ret) {
5762 unuse_block_rsv(block_rsv, blocksize);
5763 return ERR_PTR(ret);
5764 }
5765
5766 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5767 blocksize, level);
5768 BUG_ON(IS_ERR(buf));
5769
5770 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5771 if (parent == 0)
5772 parent = ins.objectid;
5773 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5774 } else
5775 BUG_ON(parent > 0);
5776
5777 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5778 struct btrfs_delayed_extent_op *extent_op;
5779 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5780 BUG_ON(!extent_op);
5781 if (key)
5782 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5783 else
5784 memset(&extent_op->key, 0, sizeof(extent_op->key));
5785 extent_op->flags_to_set = flags;
5786 extent_op->update_key = 1;
5787 extent_op->update_flags = 1;
5788 extent_op->is_data = 0;
5789
5790 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5791 ins.offset, parent, root_objectid,
5792 level, BTRFS_ADD_DELAYED_EXTENT,
5793 extent_op);
5794 BUG_ON(ret);
5795 }
5796 return buf;
5797 }
5798
5799 struct walk_control {
5800 u64 refs[BTRFS_MAX_LEVEL];
5801 u64 flags[BTRFS_MAX_LEVEL];
5802 struct btrfs_key update_progress;
5803 int stage;
5804 int level;
5805 int shared_level;
5806 int update_ref;
5807 int keep_locks;
5808 int reada_slot;
5809 int reada_count;
5810 };
5811
5812 #define DROP_REFERENCE 1
5813 #define UPDATE_BACKREF 2
5814
5815 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5816 struct btrfs_root *root,
5817 struct walk_control *wc,
5818 struct btrfs_path *path)
5819 {
5820 u64 bytenr;
5821 u64 generation;
5822 u64 refs;
5823 u64 flags;
5824 u32 nritems;
5825 u32 blocksize;
5826 struct btrfs_key key;
5827 struct extent_buffer *eb;
5828 int ret;
5829 int slot;
5830 int nread = 0;
5831
5832 if (path->slots[wc->level] < wc->reada_slot) {
5833 wc->reada_count = wc->reada_count * 2 / 3;
5834 wc->reada_count = max(wc->reada_count, 2);
5835 } else {
5836 wc->reada_count = wc->reada_count * 3 / 2;
5837 wc->reada_count = min_t(int, wc->reada_count,
5838 BTRFS_NODEPTRS_PER_BLOCK(root));
5839 }
5840
5841 eb = path->nodes[wc->level];
5842 nritems = btrfs_header_nritems(eb);
5843 blocksize = btrfs_level_size(root, wc->level - 1);
5844
5845 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5846 if (nread >= wc->reada_count)
5847 break;
5848
5849 cond_resched();
5850 bytenr = btrfs_node_blockptr(eb, slot);
5851 generation = btrfs_node_ptr_generation(eb, slot);
5852
5853 if (slot == path->slots[wc->level])
5854 goto reada;
5855
5856 if (wc->stage == UPDATE_BACKREF &&
5857 generation <= root->root_key.offset)
5858 continue;
5859
5860 /* We don't lock the tree block, it's OK to be racy here */
5861 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5862 &refs, &flags);
5863 BUG_ON(ret);
5864 BUG_ON(refs == 0);
5865
5866 if (wc->stage == DROP_REFERENCE) {
5867 if (refs == 1)
5868 goto reada;
5869
5870 if (wc->level == 1 &&
5871 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5872 continue;
5873 if (!wc->update_ref ||
5874 generation <= root->root_key.offset)
5875 continue;
5876 btrfs_node_key_to_cpu(eb, &key, slot);
5877 ret = btrfs_comp_cpu_keys(&key,
5878 &wc->update_progress);
5879 if (ret < 0)
5880 continue;
5881 } else {
5882 if (wc->level == 1 &&
5883 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5884 continue;
5885 }
5886 reada:
5887 ret = readahead_tree_block(root, bytenr, blocksize,
5888 generation);
5889 if (ret)
5890 break;
5891 nread++;
5892 }
5893 wc->reada_slot = slot;
5894 }
5895
5896 /*
5897 * hepler to process tree block while walking down the tree.
5898 *
5899 * when wc->stage == UPDATE_BACKREF, this function updates
5900 * back refs for pointers in the block.
5901 *
5902 * NOTE: return value 1 means we should stop walking down.
5903 */
5904 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5905 struct btrfs_root *root,
5906 struct btrfs_path *path,
5907 struct walk_control *wc, int lookup_info)
5908 {
5909 int level = wc->level;
5910 struct extent_buffer *eb = path->nodes[level];
5911 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5912 int ret;
5913
5914 if (wc->stage == UPDATE_BACKREF &&
5915 btrfs_header_owner(eb) != root->root_key.objectid)
5916 return 1;
5917
5918 /*
5919 * when reference count of tree block is 1, it won't increase
5920 * again. once full backref flag is set, we never clear it.
5921 */
5922 if (lookup_info &&
5923 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5924 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5925 BUG_ON(!path->locks[level]);
5926 ret = btrfs_lookup_extent_info(trans, root,
5927 eb->start, eb->len,
5928 &wc->refs[level],
5929 &wc->flags[level]);
5930 BUG_ON(ret);
5931 BUG_ON(wc->refs[level] == 0);
5932 }
5933
5934 if (wc->stage == DROP_REFERENCE) {
5935 if (wc->refs[level] > 1)
5936 return 1;
5937
5938 if (path->locks[level] && !wc->keep_locks) {
5939 btrfs_tree_unlock_rw(eb, path->locks[level]);
5940 path->locks[level] = 0;
5941 }
5942 return 0;
5943 }
5944
5945 /* wc->stage == UPDATE_BACKREF */
5946 if (!(wc->flags[level] & flag)) {
5947 BUG_ON(!path->locks[level]);
5948 ret = btrfs_inc_ref(trans, root, eb, 1);
5949 BUG_ON(ret);
5950 ret = btrfs_dec_ref(trans, root, eb, 0);
5951 BUG_ON(ret);
5952 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5953 eb->len, flag, 0);
5954 BUG_ON(ret);
5955 wc->flags[level] |= flag;
5956 }
5957
5958 /*
5959 * the block is shared by multiple trees, so it's not good to
5960 * keep the tree lock
5961 */
5962 if (path->locks[level] && level > 0) {
5963 btrfs_tree_unlock_rw(eb, path->locks[level]);
5964 path->locks[level] = 0;
5965 }
5966 return 0;
5967 }
5968
5969 /*
5970 * hepler to process tree block pointer.
5971 *
5972 * when wc->stage == DROP_REFERENCE, this function checks
5973 * reference count of the block pointed to. if the block
5974 * is shared and we need update back refs for the subtree
5975 * rooted at the block, this function changes wc->stage to
5976 * UPDATE_BACKREF. if the block is shared and there is no
5977 * need to update back, this function drops the reference
5978 * to the block.
5979 *
5980 * NOTE: return value 1 means we should stop walking down.
5981 */
5982 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5983 struct btrfs_root *root,
5984 struct btrfs_path *path,
5985 struct walk_control *wc, int *lookup_info)
5986 {
5987 u64 bytenr;
5988 u64 generation;
5989 u64 parent;
5990 u32 blocksize;
5991 struct btrfs_key key;
5992 struct extent_buffer *next;
5993 int level = wc->level;
5994 int reada = 0;
5995 int ret = 0;
5996
5997 generation = btrfs_node_ptr_generation(path->nodes[level],
5998 path->slots[level]);
5999 /*
6000 * if the lower level block was created before the snapshot
6001 * was created, we know there is no need to update back refs
6002 * for the subtree
6003 */
6004 if (wc->stage == UPDATE_BACKREF &&
6005 generation <= root->root_key.offset) {
6006 *lookup_info = 1;
6007 return 1;
6008 }
6009
6010 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6011 blocksize = btrfs_level_size(root, level - 1);
6012
6013 next = btrfs_find_tree_block(root, bytenr, blocksize);
6014 if (!next) {
6015 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6016 if (!next)
6017 return -ENOMEM;
6018 reada = 1;
6019 }
6020 btrfs_tree_lock(next);
6021 btrfs_set_lock_blocking(next);
6022
6023 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6024 &wc->refs[level - 1],
6025 &wc->flags[level - 1]);
6026 BUG_ON(ret);
6027 BUG_ON(wc->refs[level - 1] == 0);
6028 *lookup_info = 0;
6029
6030 if (wc->stage == DROP_REFERENCE) {
6031 if (wc->refs[level - 1] > 1) {
6032 if (level == 1 &&
6033 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6034 goto skip;
6035
6036 if (!wc->update_ref ||
6037 generation <= root->root_key.offset)
6038 goto skip;
6039
6040 btrfs_node_key_to_cpu(path->nodes[level], &key,
6041 path->slots[level]);
6042 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6043 if (ret < 0)
6044 goto skip;
6045
6046 wc->stage = UPDATE_BACKREF;
6047 wc->shared_level = level - 1;
6048 }
6049 } else {
6050 if (level == 1 &&
6051 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6052 goto skip;
6053 }
6054
6055 if (!btrfs_buffer_uptodate(next, generation)) {
6056 btrfs_tree_unlock(next);
6057 free_extent_buffer(next);
6058 next = NULL;
6059 *lookup_info = 1;
6060 }
6061
6062 if (!next) {
6063 if (reada && level == 1)
6064 reada_walk_down(trans, root, wc, path);
6065 next = read_tree_block(root, bytenr, blocksize, generation);
6066 if (!next)
6067 return -EIO;
6068 btrfs_tree_lock(next);
6069 btrfs_set_lock_blocking(next);
6070 }
6071
6072 level--;
6073 BUG_ON(level != btrfs_header_level(next));
6074 path->nodes[level] = next;
6075 path->slots[level] = 0;
6076 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6077 wc->level = level;
6078 if (wc->level == 1)
6079 wc->reada_slot = 0;
6080 return 0;
6081 skip:
6082 wc->refs[level - 1] = 0;
6083 wc->flags[level - 1] = 0;
6084 if (wc->stage == DROP_REFERENCE) {
6085 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6086 parent = path->nodes[level]->start;
6087 } else {
6088 BUG_ON(root->root_key.objectid !=
6089 btrfs_header_owner(path->nodes[level]));
6090 parent = 0;
6091 }
6092
6093 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6094 root->root_key.objectid, level - 1, 0);
6095 BUG_ON(ret);
6096 }
6097 btrfs_tree_unlock(next);
6098 free_extent_buffer(next);
6099 *lookup_info = 1;
6100 return 1;
6101 }
6102
6103 /*
6104 * hepler to process tree block while walking up the tree.
6105 *
6106 * when wc->stage == DROP_REFERENCE, this function drops
6107 * reference count on the block.
6108 *
6109 * when wc->stage == UPDATE_BACKREF, this function changes
6110 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6111 * to UPDATE_BACKREF previously while processing the block.
6112 *
6113 * NOTE: return value 1 means we should stop walking up.
6114 */
6115 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6116 struct btrfs_root *root,
6117 struct btrfs_path *path,
6118 struct walk_control *wc)
6119 {
6120 int ret;
6121 int level = wc->level;
6122 struct extent_buffer *eb = path->nodes[level];
6123 u64 parent = 0;
6124
6125 if (wc->stage == UPDATE_BACKREF) {
6126 BUG_ON(wc->shared_level < level);
6127 if (level < wc->shared_level)
6128 goto out;
6129
6130 ret = find_next_key(path, level + 1, &wc->update_progress);
6131 if (ret > 0)
6132 wc->update_ref = 0;
6133
6134 wc->stage = DROP_REFERENCE;
6135 wc->shared_level = -1;
6136 path->slots[level] = 0;
6137
6138 /*
6139 * check reference count again if the block isn't locked.
6140 * we should start walking down the tree again if reference
6141 * count is one.
6142 */
6143 if (!path->locks[level]) {
6144 BUG_ON(level == 0);
6145 btrfs_tree_lock(eb);
6146 btrfs_set_lock_blocking(eb);
6147 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6148
6149 ret = btrfs_lookup_extent_info(trans, root,
6150 eb->start, eb->len,
6151 &wc->refs[level],
6152 &wc->flags[level]);
6153 BUG_ON(ret);
6154 BUG_ON(wc->refs[level] == 0);
6155 if (wc->refs[level] == 1) {
6156 btrfs_tree_unlock_rw(eb, path->locks[level]);
6157 return 1;
6158 }
6159 }
6160 }
6161
6162 /* wc->stage == DROP_REFERENCE */
6163 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6164
6165 if (wc->refs[level] == 1) {
6166 if (level == 0) {
6167 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6168 ret = btrfs_dec_ref(trans, root, eb, 1);
6169 else
6170 ret = btrfs_dec_ref(trans, root, eb, 0);
6171 BUG_ON(ret);
6172 }
6173 /* make block locked assertion in clean_tree_block happy */
6174 if (!path->locks[level] &&
6175 btrfs_header_generation(eb) == trans->transid) {
6176 btrfs_tree_lock(eb);
6177 btrfs_set_lock_blocking(eb);
6178 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6179 }
6180 clean_tree_block(trans, root, eb);
6181 }
6182
6183 if (eb == root->node) {
6184 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6185 parent = eb->start;
6186 else
6187 BUG_ON(root->root_key.objectid !=
6188 btrfs_header_owner(eb));
6189 } else {
6190 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6191 parent = path->nodes[level + 1]->start;
6192 else
6193 BUG_ON(root->root_key.objectid !=
6194 btrfs_header_owner(path->nodes[level + 1]));
6195 }
6196
6197 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6198 out:
6199 wc->refs[level] = 0;
6200 wc->flags[level] = 0;
6201 return 0;
6202 }
6203
6204 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6205 struct btrfs_root *root,
6206 struct btrfs_path *path,
6207 struct walk_control *wc)
6208 {
6209 int level = wc->level;
6210 int lookup_info = 1;
6211 int ret;
6212
6213 while (level >= 0) {
6214 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6215 if (ret > 0)
6216 break;
6217
6218 if (level == 0)
6219 break;
6220
6221 if (path->slots[level] >=
6222 btrfs_header_nritems(path->nodes[level]))
6223 break;
6224
6225 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6226 if (ret > 0) {
6227 path->slots[level]++;
6228 continue;
6229 } else if (ret < 0)
6230 return ret;
6231 level = wc->level;
6232 }
6233 return 0;
6234 }
6235
6236 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6237 struct btrfs_root *root,
6238 struct btrfs_path *path,
6239 struct walk_control *wc, int max_level)
6240 {
6241 int level = wc->level;
6242 int ret;
6243
6244 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6245 while (level < max_level && path->nodes[level]) {
6246 wc->level = level;
6247 if (path->slots[level] + 1 <
6248 btrfs_header_nritems(path->nodes[level])) {
6249 path->slots[level]++;
6250 return 0;
6251 } else {
6252 ret = walk_up_proc(trans, root, path, wc);
6253 if (ret > 0)
6254 return 0;
6255
6256 if (path->locks[level]) {
6257 btrfs_tree_unlock_rw(path->nodes[level],
6258 path->locks[level]);
6259 path->locks[level] = 0;
6260 }
6261 free_extent_buffer(path->nodes[level]);
6262 path->nodes[level] = NULL;
6263 level++;
6264 }
6265 }
6266 return 1;
6267 }
6268
6269 /*
6270 * drop a subvolume tree.
6271 *
6272 * this function traverses the tree freeing any blocks that only
6273 * referenced by the tree.
6274 *
6275 * when a shared tree block is found. this function decreases its
6276 * reference count by one. if update_ref is true, this function
6277 * also make sure backrefs for the shared block and all lower level
6278 * blocks are properly updated.
6279 */
6280 void btrfs_drop_snapshot(struct btrfs_root *root,
6281 struct btrfs_block_rsv *block_rsv, int update_ref)
6282 {
6283 struct btrfs_path *path;
6284 struct btrfs_trans_handle *trans;
6285 struct btrfs_root *tree_root = root->fs_info->tree_root;
6286 struct btrfs_root_item *root_item = &root->root_item;
6287 struct walk_control *wc;
6288 struct btrfs_key key;
6289 int err = 0;
6290 int ret;
6291 int level;
6292
6293 path = btrfs_alloc_path();
6294 if (!path) {
6295 err = -ENOMEM;
6296 goto out;
6297 }
6298
6299 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6300 if (!wc) {
6301 btrfs_free_path(path);
6302 err = -ENOMEM;
6303 goto out;
6304 }
6305
6306 trans = btrfs_start_transaction(tree_root, 0);
6307 BUG_ON(IS_ERR(trans));
6308
6309 if (block_rsv)
6310 trans->block_rsv = block_rsv;
6311
6312 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6313 level = btrfs_header_level(root->node);
6314 path->nodes[level] = btrfs_lock_root_node(root);
6315 btrfs_set_lock_blocking(path->nodes[level]);
6316 path->slots[level] = 0;
6317 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6318 memset(&wc->update_progress, 0,
6319 sizeof(wc->update_progress));
6320 } else {
6321 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6322 memcpy(&wc->update_progress, &key,
6323 sizeof(wc->update_progress));
6324
6325 level = root_item->drop_level;
6326 BUG_ON(level == 0);
6327 path->lowest_level = level;
6328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6329 path->lowest_level = 0;
6330 if (ret < 0) {
6331 err = ret;
6332 goto out_free;
6333 }
6334 WARN_ON(ret > 0);
6335
6336 /*
6337 * unlock our path, this is safe because only this
6338 * function is allowed to delete this snapshot
6339 */
6340 btrfs_unlock_up_safe(path, 0);
6341
6342 level = btrfs_header_level(root->node);
6343 while (1) {
6344 btrfs_tree_lock(path->nodes[level]);
6345 btrfs_set_lock_blocking(path->nodes[level]);
6346
6347 ret = btrfs_lookup_extent_info(trans, root,
6348 path->nodes[level]->start,
6349 path->nodes[level]->len,
6350 &wc->refs[level],
6351 &wc->flags[level]);
6352 BUG_ON(ret);
6353 BUG_ON(wc->refs[level] == 0);
6354
6355 if (level == root_item->drop_level)
6356 break;
6357
6358 btrfs_tree_unlock(path->nodes[level]);
6359 WARN_ON(wc->refs[level] != 1);
6360 level--;
6361 }
6362 }
6363
6364 wc->level = level;
6365 wc->shared_level = -1;
6366 wc->stage = DROP_REFERENCE;
6367 wc->update_ref = update_ref;
6368 wc->keep_locks = 0;
6369 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6370
6371 while (1) {
6372 ret = walk_down_tree(trans, root, path, wc);
6373 if (ret < 0) {
6374 err = ret;
6375 break;
6376 }
6377
6378 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6379 if (ret < 0) {
6380 err = ret;
6381 break;
6382 }
6383
6384 if (ret > 0) {
6385 BUG_ON(wc->stage != DROP_REFERENCE);
6386 break;
6387 }
6388
6389 if (wc->stage == DROP_REFERENCE) {
6390 level = wc->level;
6391 btrfs_node_key(path->nodes[level],
6392 &root_item->drop_progress,
6393 path->slots[level]);
6394 root_item->drop_level = level;
6395 }
6396
6397 BUG_ON(wc->level == 0);
6398 if (btrfs_should_end_transaction(trans, tree_root)) {
6399 ret = btrfs_update_root(trans, tree_root,
6400 &root->root_key,
6401 root_item);
6402 BUG_ON(ret);
6403
6404 btrfs_end_transaction_throttle(trans, tree_root);
6405 trans = btrfs_start_transaction(tree_root, 0);
6406 BUG_ON(IS_ERR(trans));
6407 if (block_rsv)
6408 trans->block_rsv = block_rsv;
6409 }
6410 }
6411 btrfs_release_path(path);
6412 BUG_ON(err);
6413
6414 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6415 BUG_ON(ret);
6416
6417 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6418 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6419 NULL, NULL);
6420 BUG_ON(ret < 0);
6421 if (ret > 0) {
6422 /* if we fail to delete the orphan item this time
6423 * around, it'll get picked up the next time.
6424 *
6425 * The most common failure here is just -ENOENT.
6426 */
6427 btrfs_del_orphan_item(trans, tree_root,
6428 root->root_key.objectid);
6429 }
6430 }
6431
6432 if (root->in_radix) {
6433 btrfs_free_fs_root(tree_root->fs_info, root);
6434 } else {
6435 free_extent_buffer(root->node);
6436 free_extent_buffer(root->commit_root);
6437 kfree(root);
6438 }
6439 out_free:
6440 btrfs_end_transaction_throttle(trans, tree_root);
6441 kfree(wc);
6442 btrfs_free_path(path);
6443 out:
6444 if (err)
6445 btrfs_std_error(root->fs_info, err);
6446 return;
6447 }
6448
6449 /*
6450 * drop subtree rooted at tree block 'node'.
6451 *
6452 * NOTE: this function will unlock and release tree block 'node'
6453 */
6454 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6455 struct btrfs_root *root,
6456 struct extent_buffer *node,
6457 struct extent_buffer *parent)
6458 {
6459 struct btrfs_path *path;
6460 struct walk_control *wc;
6461 int level;
6462 int parent_level;
6463 int ret = 0;
6464 int wret;
6465
6466 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6467
6468 path = btrfs_alloc_path();
6469 if (!path)
6470 return -ENOMEM;
6471
6472 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6473 if (!wc) {
6474 btrfs_free_path(path);
6475 return -ENOMEM;
6476 }
6477
6478 btrfs_assert_tree_locked(parent);
6479 parent_level = btrfs_header_level(parent);
6480 extent_buffer_get(parent);
6481 path->nodes[parent_level] = parent;
6482 path->slots[parent_level] = btrfs_header_nritems(parent);
6483
6484 btrfs_assert_tree_locked(node);
6485 level = btrfs_header_level(node);
6486 path->nodes[level] = node;
6487 path->slots[level] = 0;
6488 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6489
6490 wc->refs[parent_level] = 1;
6491 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6492 wc->level = level;
6493 wc->shared_level = -1;
6494 wc->stage = DROP_REFERENCE;
6495 wc->update_ref = 0;
6496 wc->keep_locks = 1;
6497 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6498
6499 while (1) {
6500 wret = walk_down_tree(trans, root, path, wc);
6501 if (wret < 0) {
6502 ret = wret;
6503 break;
6504 }
6505
6506 wret = walk_up_tree(trans, root, path, wc, parent_level);
6507 if (wret < 0)
6508 ret = wret;
6509 if (wret != 0)
6510 break;
6511 }
6512
6513 kfree(wc);
6514 btrfs_free_path(path);
6515 return ret;
6516 }
6517
6518 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6519 {
6520 u64 num_devices;
6521 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6522 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6523
6524 /*
6525 * we add in the count of missing devices because we want
6526 * to make sure that any RAID levels on a degraded FS
6527 * continue to be honored.
6528 */
6529 num_devices = root->fs_info->fs_devices->rw_devices +
6530 root->fs_info->fs_devices->missing_devices;
6531
6532 if (num_devices == 1) {
6533 stripped |= BTRFS_BLOCK_GROUP_DUP;
6534 stripped = flags & ~stripped;
6535
6536 /* turn raid0 into single device chunks */
6537 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6538 return stripped;
6539
6540 /* turn mirroring into duplication */
6541 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6542 BTRFS_BLOCK_GROUP_RAID10))
6543 return stripped | BTRFS_BLOCK_GROUP_DUP;
6544 return flags;
6545 } else {
6546 /* they already had raid on here, just return */
6547 if (flags & stripped)
6548 return flags;
6549
6550 stripped |= BTRFS_BLOCK_GROUP_DUP;
6551 stripped = flags & ~stripped;
6552
6553 /* switch duplicated blocks with raid1 */
6554 if (flags & BTRFS_BLOCK_GROUP_DUP)
6555 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6556
6557 /* turn single device chunks into raid0 */
6558 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6559 }
6560 return flags;
6561 }
6562
6563 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6564 {
6565 struct btrfs_space_info *sinfo = cache->space_info;
6566 u64 num_bytes;
6567 u64 min_allocable_bytes;
6568 int ret = -ENOSPC;
6569
6570
6571 /*
6572 * We need some metadata space and system metadata space for
6573 * allocating chunks in some corner cases until we force to set
6574 * it to be readonly.
6575 */
6576 if ((sinfo->flags &
6577 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6578 !force)
6579 min_allocable_bytes = 1 * 1024 * 1024;
6580 else
6581 min_allocable_bytes = 0;
6582
6583 spin_lock(&sinfo->lock);
6584 spin_lock(&cache->lock);
6585
6586 if (cache->ro) {
6587 ret = 0;
6588 goto out;
6589 }
6590
6591 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6592 cache->bytes_super - btrfs_block_group_used(&cache->item);
6593
6594 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6595 sinfo->bytes_may_use + sinfo->bytes_readonly +
6596 cache->reserved_pinned + num_bytes + min_allocable_bytes <=
6597 sinfo->total_bytes) {
6598 sinfo->bytes_readonly += num_bytes;
6599 sinfo->bytes_reserved += cache->reserved_pinned;
6600 cache->reserved_pinned = 0;
6601 cache->ro = 1;
6602 ret = 0;
6603 }
6604 out:
6605 spin_unlock(&cache->lock);
6606 spin_unlock(&sinfo->lock);
6607 return ret;
6608 }
6609
6610 int btrfs_set_block_group_ro(struct btrfs_root *root,
6611 struct btrfs_block_group_cache *cache)
6612
6613 {
6614 struct btrfs_trans_handle *trans;
6615 u64 alloc_flags;
6616 int ret;
6617
6618 BUG_ON(cache->ro);
6619
6620 trans = btrfs_join_transaction(root);
6621 BUG_ON(IS_ERR(trans));
6622
6623 alloc_flags = update_block_group_flags(root, cache->flags);
6624 if (alloc_flags != cache->flags)
6625 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6626 CHUNK_ALLOC_FORCE);
6627
6628 ret = set_block_group_ro(cache, 0);
6629 if (!ret)
6630 goto out;
6631 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6632 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6633 CHUNK_ALLOC_FORCE);
6634 if (ret < 0)
6635 goto out;
6636 ret = set_block_group_ro(cache, 0);
6637 out:
6638 btrfs_end_transaction(trans, root);
6639 return ret;
6640 }
6641
6642 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6643 struct btrfs_root *root, u64 type)
6644 {
6645 u64 alloc_flags = get_alloc_profile(root, type);
6646 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6647 CHUNK_ALLOC_FORCE);
6648 }
6649
6650 /*
6651 * helper to account the unused space of all the readonly block group in the
6652 * list. takes mirrors into account.
6653 */
6654 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6655 {
6656 struct btrfs_block_group_cache *block_group;
6657 u64 free_bytes = 0;
6658 int factor;
6659
6660 list_for_each_entry(block_group, groups_list, list) {
6661 spin_lock(&block_group->lock);
6662
6663 if (!block_group->ro) {
6664 spin_unlock(&block_group->lock);
6665 continue;
6666 }
6667
6668 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6669 BTRFS_BLOCK_GROUP_RAID10 |
6670 BTRFS_BLOCK_GROUP_DUP))
6671 factor = 2;
6672 else
6673 factor = 1;
6674
6675 free_bytes += (block_group->key.offset -
6676 btrfs_block_group_used(&block_group->item)) *
6677 factor;
6678
6679 spin_unlock(&block_group->lock);
6680 }
6681
6682 return free_bytes;
6683 }
6684
6685 /*
6686 * helper to account the unused space of all the readonly block group in the
6687 * space_info. takes mirrors into account.
6688 */
6689 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6690 {
6691 int i;
6692 u64 free_bytes = 0;
6693
6694 spin_lock(&sinfo->lock);
6695
6696 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6697 if (!list_empty(&sinfo->block_groups[i]))
6698 free_bytes += __btrfs_get_ro_block_group_free_space(
6699 &sinfo->block_groups[i]);
6700
6701 spin_unlock(&sinfo->lock);
6702
6703 return free_bytes;
6704 }
6705
6706 int btrfs_set_block_group_rw(struct btrfs_root *root,
6707 struct btrfs_block_group_cache *cache)
6708 {
6709 struct btrfs_space_info *sinfo = cache->space_info;
6710 u64 num_bytes;
6711
6712 BUG_ON(!cache->ro);
6713
6714 spin_lock(&sinfo->lock);
6715 spin_lock(&cache->lock);
6716 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6717 cache->bytes_super - btrfs_block_group_used(&cache->item);
6718 sinfo->bytes_readonly -= num_bytes;
6719 cache->ro = 0;
6720 spin_unlock(&cache->lock);
6721 spin_unlock(&sinfo->lock);
6722 return 0;
6723 }
6724
6725 /*
6726 * checks to see if its even possible to relocate this block group.
6727 *
6728 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6729 * ok to go ahead and try.
6730 */
6731 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6732 {
6733 struct btrfs_block_group_cache *block_group;
6734 struct btrfs_space_info *space_info;
6735 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6736 struct btrfs_device *device;
6737 u64 min_free;
6738 u64 dev_min = 1;
6739 u64 dev_nr = 0;
6740 int index;
6741 int full = 0;
6742 int ret = 0;
6743
6744 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6745
6746 /* odd, couldn't find the block group, leave it alone */
6747 if (!block_group)
6748 return -1;
6749
6750 min_free = btrfs_block_group_used(&block_group->item);
6751
6752 /* no bytes used, we're good */
6753 if (!min_free)
6754 goto out;
6755
6756 space_info = block_group->space_info;
6757 spin_lock(&space_info->lock);
6758
6759 full = space_info->full;
6760
6761 /*
6762 * if this is the last block group we have in this space, we can't
6763 * relocate it unless we're able to allocate a new chunk below.
6764 *
6765 * Otherwise, we need to make sure we have room in the space to handle
6766 * all of the extents from this block group. If we can, we're good
6767 */
6768 if ((space_info->total_bytes != block_group->key.offset) &&
6769 (space_info->bytes_used + space_info->bytes_reserved +
6770 space_info->bytes_pinned + space_info->bytes_readonly +
6771 min_free < space_info->total_bytes)) {
6772 spin_unlock(&space_info->lock);
6773 goto out;
6774 }
6775 spin_unlock(&space_info->lock);
6776
6777 /*
6778 * ok we don't have enough space, but maybe we have free space on our
6779 * devices to allocate new chunks for relocation, so loop through our
6780 * alloc devices and guess if we have enough space. However, if we
6781 * were marked as full, then we know there aren't enough chunks, and we
6782 * can just return.
6783 */
6784 ret = -1;
6785 if (full)
6786 goto out;
6787
6788 /*
6789 * index:
6790 * 0: raid10
6791 * 1: raid1
6792 * 2: dup
6793 * 3: raid0
6794 * 4: single
6795 */
6796 index = get_block_group_index(block_group);
6797 if (index == 0) {
6798 dev_min = 4;
6799 /* Divide by 2 */
6800 min_free >>= 1;
6801 } else if (index == 1) {
6802 dev_min = 2;
6803 } else if (index == 2) {
6804 /* Multiply by 2 */
6805 min_free <<= 1;
6806 } else if (index == 3) {
6807 dev_min = fs_devices->rw_devices;
6808 do_div(min_free, dev_min);
6809 }
6810
6811 mutex_lock(&root->fs_info->chunk_mutex);
6812 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6813 u64 dev_offset;
6814
6815 /*
6816 * check to make sure we can actually find a chunk with enough
6817 * space to fit our block group in.
6818 */
6819 if (device->total_bytes > device->bytes_used + min_free) {
6820 ret = find_free_dev_extent(NULL, device, min_free,
6821 &dev_offset, NULL);
6822 if (!ret)
6823 dev_nr++;
6824
6825 if (dev_nr >= dev_min)
6826 break;
6827
6828 ret = -1;
6829 }
6830 }
6831 mutex_unlock(&root->fs_info->chunk_mutex);
6832 out:
6833 btrfs_put_block_group(block_group);
6834 return ret;
6835 }
6836
6837 static int find_first_block_group(struct btrfs_root *root,
6838 struct btrfs_path *path, struct btrfs_key *key)
6839 {
6840 int ret = 0;
6841 struct btrfs_key found_key;
6842 struct extent_buffer *leaf;
6843 int slot;
6844
6845 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6846 if (ret < 0)
6847 goto out;
6848
6849 while (1) {
6850 slot = path->slots[0];
6851 leaf = path->nodes[0];
6852 if (slot >= btrfs_header_nritems(leaf)) {
6853 ret = btrfs_next_leaf(root, path);
6854 if (ret == 0)
6855 continue;
6856 if (ret < 0)
6857 goto out;
6858 break;
6859 }
6860 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6861
6862 if (found_key.objectid >= key->objectid &&
6863 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6864 ret = 0;
6865 goto out;
6866 }
6867 path->slots[0]++;
6868 }
6869 out:
6870 return ret;
6871 }
6872
6873 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6874 {
6875 struct btrfs_block_group_cache *block_group;
6876 u64 last = 0;
6877
6878 while (1) {
6879 struct inode *inode;
6880
6881 block_group = btrfs_lookup_first_block_group(info, last);
6882 while (block_group) {
6883 spin_lock(&block_group->lock);
6884 if (block_group->iref)
6885 break;
6886 spin_unlock(&block_group->lock);
6887 block_group = next_block_group(info->tree_root,
6888 block_group);
6889 }
6890 if (!block_group) {
6891 if (last == 0)
6892 break;
6893 last = 0;
6894 continue;
6895 }
6896
6897 inode = block_group->inode;
6898 block_group->iref = 0;
6899 block_group->inode = NULL;
6900 spin_unlock(&block_group->lock);
6901 iput(inode);
6902 last = block_group->key.objectid + block_group->key.offset;
6903 btrfs_put_block_group(block_group);
6904 }
6905 }
6906
6907 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6908 {
6909 struct btrfs_block_group_cache *block_group;
6910 struct btrfs_space_info *space_info;
6911 struct btrfs_caching_control *caching_ctl;
6912 struct rb_node *n;
6913
6914 down_write(&info->extent_commit_sem);
6915 while (!list_empty(&info->caching_block_groups)) {
6916 caching_ctl = list_entry(info->caching_block_groups.next,
6917 struct btrfs_caching_control, list);
6918 list_del(&caching_ctl->list);
6919 put_caching_control(caching_ctl);
6920 }
6921 up_write(&info->extent_commit_sem);
6922
6923 spin_lock(&info->block_group_cache_lock);
6924 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6925 block_group = rb_entry(n, struct btrfs_block_group_cache,
6926 cache_node);
6927 rb_erase(&block_group->cache_node,
6928 &info->block_group_cache_tree);
6929 spin_unlock(&info->block_group_cache_lock);
6930
6931 down_write(&block_group->space_info->groups_sem);
6932 list_del(&block_group->list);
6933 up_write(&block_group->space_info->groups_sem);
6934
6935 if (block_group->cached == BTRFS_CACHE_STARTED)
6936 wait_block_group_cache_done(block_group);
6937
6938 /*
6939 * We haven't cached this block group, which means we could
6940 * possibly have excluded extents on this block group.
6941 */
6942 if (block_group->cached == BTRFS_CACHE_NO)
6943 free_excluded_extents(info->extent_root, block_group);
6944
6945 btrfs_remove_free_space_cache(block_group);
6946 btrfs_put_block_group(block_group);
6947
6948 spin_lock(&info->block_group_cache_lock);
6949 }
6950 spin_unlock(&info->block_group_cache_lock);
6951
6952 /* now that all the block groups are freed, go through and
6953 * free all the space_info structs. This is only called during
6954 * the final stages of unmount, and so we know nobody is
6955 * using them. We call synchronize_rcu() once before we start,
6956 * just to be on the safe side.
6957 */
6958 synchronize_rcu();
6959
6960 release_global_block_rsv(info);
6961
6962 while(!list_empty(&info->space_info)) {
6963 space_info = list_entry(info->space_info.next,
6964 struct btrfs_space_info,
6965 list);
6966 if (space_info->bytes_pinned > 0 ||
6967 space_info->bytes_reserved > 0) {
6968 WARN_ON(1);
6969 dump_space_info(space_info, 0, 0);
6970 }
6971 list_del(&space_info->list);
6972 kfree(space_info);
6973 }
6974 return 0;
6975 }
6976
6977 static void __link_block_group(struct btrfs_space_info *space_info,
6978 struct btrfs_block_group_cache *cache)
6979 {
6980 int index = get_block_group_index(cache);
6981
6982 down_write(&space_info->groups_sem);
6983 list_add_tail(&cache->list, &space_info->block_groups[index]);
6984 up_write(&space_info->groups_sem);
6985 }
6986
6987 int btrfs_read_block_groups(struct btrfs_root *root)
6988 {
6989 struct btrfs_path *path;
6990 int ret;
6991 struct btrfs_block_group_cache *cache;
6992 struct btrfs_fs_info *info = root->fs_info;
6993 struct btrfs_space_info *space_info;
6994 struct btrfs_key key;
6995 struct btrfs_key found_key;
6996 struct extent_buffer *leaf;
6997 int need_clear = 0;
6998 u64 cache_gen;
6999
7000 root = info->extent_root;
7001 key.objectid = 0;
7002 key.offset = 0;
7003 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7004 path = btrfs_alloc_path();
7005 if (!path)
7006 return -ENOMEM;
7007 path->reada = 1;
7008
7009 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
7010 if (cache_gen != 0 &&
7011 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
7012 need_clear = 1;
7013 if (btrfs_test_opt(root, CLEAR_CACHE))
7014 need_clear = 1;
7015 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
7016 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
7017
7018 while (1) {
7019 ret = find_first_block_group(root, path, &key);
7020 if (ret > 0)
7021 break;
7022 if (ret != 0)
7023 goto error;
7024 leaf = path->nodes[0];
7025 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7026 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7027 if (!cache) {
7028 ret = -ENOMEM;
7029 goto error;
7030 }
7031 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7032 GFP_NOFS);
7033 if (!cache->free_space_ctl) {
7034 kfree(cache);
7035 ret = -ENOMEM;
7036 goto error;
7037 }
7038
7039 atomic_set(&cache->count, 1);
7040 spin_lock_init(&cache->lock);
7041 cache->fs_info = info;
7042 INIT_LIST_HEAD(&cache->list);
7043 INIT_LIST_HEAD(&cache->cluster_list);
7044
7045 if (need_clear)
7046 cache->disk_cache_state = BTRFS_DC_CLEAR;
7047
7048 read_extent_buffer(leaf, &cache->item,
7049 btrfs_item_ptr_offset(leaf, path->slots[0]),
7050 sizeof(cache->item));
7051 memcpy(&cache->key, &found_key, sizeof(found_key));
7052
7053 key.objectid = found_key.objectid + found_key.offset;
7054 btrfs_release_path(path);
7055 cache->flags = btrfs_block_group_flags(&cache->item);
7056 cache->sectorsize = root->sectorsize;
7057
7058 btrfs_init_free_space_ctl(cache);
7059
7060 /*
7061 * We need to exclude the super stripes now so that the space
7062 * info has super bytes accounted for, otherwise we'll think
7063 * we have more space than we actually do.
7064 */
7065 exclude_super_stripes(root, cache);
7066
7067 /*
7068 * check for two cases, either we are full, and therefore
7069 * don't need to bother with the caching work since we won't
7070 * find any space, or we are empty, and we can just add all
7071 * the space in and be done with it. This saves us _alot_ of
7072 * time, particularly in the full case.
7073 */
7074 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7075 cache->last_byte_to_unpin = (u64)-1;
7076 cache->cached = BTRFS_CACHE_FINISHED;
7077 free_excluded_extents(root, cache);
7078 } else if (btrfs_block_group_used(&cache->item) == 0) {
7079 cache->last_byte_to_unpin = (u64)-1;
7080 cache->cached = BTRFS_CACHE_FINISHED;
7081 add_new_free_space(cache, root->fs_info,
7082 found_key.objectid,
7083 found_key.objectid +
7084 found_key.offset);
7085 free_excluded_extents(root, cache);
7086 }
7087
7088 ret = update_space_info(info, cache->flags, found_key.offset,
7089 btrfs_block_group_used(&cache->item),
7090 &space_info);
7091 BUG_ON(ret);
7092 cache->space_info = space_info;
7093 spin_lock(&cache->space_info->lock);
7094 cache->space_info->bytes_readonly += cache->bytes_super;
7095 spin_unlock(&cache->space_info->lock);
7096
7097 __link_block_group(space_info, cache);
7098
7099 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7100 BUG_ON(ret);
7101
7102 set_avail_alloc_bits(root->fs_info, cache->flags);
7103 if (btrfs_chunk_readonly(root, cache->key.objectid))
7104 set_block_group_ro(cache, 1);
7105 }
7106
7107 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7108 if (!(get_alloc_profile(root, space_info->flags) &
7109 (BTRFS_BLOCK_GROUP_RAID10 |
7110 BTRFS_BLOCK_GROUP_RAID1 |
7111 BTRFS_BLOCK_GROUP_DUP)))
7112 continue;
7113 /*
7114 * avoid allocating from un-mirrored block group if there are
7115 * mirrored block groups.
7116 */
7117 list_for_each_entry(cache, &space_info->block_groups[3], list)
7118 set_block_group_ro(cache, 1);
7119 list_for_each_entry(cache, &space_info->block_groups[4], list)
7120 set_block_group_ro(cache, 1);
7121 }
7122
7123 init_global_block_rsv(info);
7124 ret = 0;
7125 error:
7126 btrfs_free_path(path);
7127 return ret;
7128 }
7129
7130 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7131 struct btrfs_root *root, u64 bytes_used,
7132 u64 type, u64 chunk_objectid, u64 chunk_offset,
7133 u64 size)
7134 {
7135 int ret;
7136 struct btrfs_root *extent_root;
7137 struct btrfs_block_group_cache *cache;
7138
7139 extent_root = root->fs_info->extent_root;
7140
7141 root->fs_info->last_trans_log_full_commit = trans->transid;
7142
7143 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7144 if (!cache)
7145 return -ENOMEM;
7146 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7147 GFP_NOFS);
7148 if (!cache->free_space_ctl) {
7149 kfree(cache);
7150 return -ENOMEM;
7151 }
7152
7153 cache->key.objectid = chunk_offset;
7154 cache->key.offset = size;
7155 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7156 cache->sectorsize = root->sectorsize;
7157 cache->fs_info = root->fs_info;
7158
7159 atomic_set(&cache->count, 1);
7160 spin_lock_init(&cache->lock);
7161 INIT_LIST_HEAD(&cache->list);
7162 INIT_LIST_HEAD(&cache->cluster_list);
7163
7164 btrfs_init_free_space_ctl(cache);
7165
7166 btrfs_set_block_group_used(&cache->item, bytes_used);
7167 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7168 cache->flags = type;
7169 btrfs_set_block_group_flags(&cache->item, type);
7170
7171 cache->last_byte_to_unpin = (u64)-1;
7172 cache->cached = BTRFS_CACHE_FINISHED;
7173 exclude_super_stripes(root, cache);
7174
7175 add_new_free_space(cache, root->fs_info, chunk_offset,
7176 chunk_offset + size);
7177
7178 free_excluded_extents(root, cache);
7179
7180 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7181 &cache->space_info);
7182 BUG_ON(ret);
7183
7184 spin_lock(&cache->space_info->lock);
7185 cache->space_info->bytes_readonly += cache->bytes_super;
7186 spin_unlock(&cache->space_info->lock);
7187
7188 __link_block_group(cache->space_info, cache);
7189
7190 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7191 BUG_ON(ret);
7192
7193 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7194 sizeof(cache->item));
7195 BUG_ON(ret);
7196
7197 set_avail_alloc_bits(extent_root->fs_info, type);
7198
7199 return 0;
7200 }
7201
7202 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7203 struct btrfs_root *root, u64 group_start)
7204 {
7205 struct btrfs_path *path;
7206 struct btrfs_block_group_cache *block_group;
7207 struct btrfs_free_cluster *cluster;
7208 struct btrfs_root *tree_root = root->fs_info->tree_root;
7209 struct btrfs_key key;
7210 struct inode *inode;
7211 int ret;
7212 int factor;
7213
7214 root = root->fs_info->extent_root;
7215
7216 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7217 BUG_ON(!block_group);
7218 BUG_ON(!block_group->ro);
7219
7220 /*
7221 * Free the reserved super bytes from this block group before
7222 * remove it.
7223 */
7224 free_excluded_extents(root, block_group);
7225
7226 memcpy(&key, &block_group->key, sizeof(key));
7227 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7228 BTRFS_BLOCK_GROUP_RAID1 |
7229 BTRFS_BLOCK_GROUP_RAID10))
7230 factor = 2;
7231 else
7232 factor = 1;
7233
7234 /* make sure this block group isn't part of an allocation cluster */
7235 cluster = &root->fs_info->data_alloc_cluster;
7236 spin_lock(&cluster->refill_lock);
7237 btrfs_return_cluster_to_free_space(block_group, cluster);
7238 spin_unlock(&cluster->refill_lock);
7239
7240 /*
7241 * make sure this block group isn't part of a metadata
7242 * allocation cluster
7243 */
7244 cluster = &root->fs_info->meta_alloc_cluster;
7245 spin_lock(&cluster->refill_lock);
7246 btrfs_return_cluster_to_free_space(block_group, cluster);
7247 spin_unlock(&cluster->refill_lock);
7248
7249 path = btrfs_alloc_path();
7250 if (!path) {
7251 ret = -ENOMEM;
7252 goto out;
7253 }
7254
7255 inode = lookup_free_space_inode(root, block_group, path);
7256 if (!IS_ERR(inode)) {
7257 ret = btrfs_orphan_add(trans, inode);
7258 BUG_ON(ret);
7259 clear_nlink(inode);
7260 /* One for the block groups ref */
7261 spin_lock(&block_group->lock);
7262 if (block_group->iref) {
7263 block_group->iref = 0;
7264 block_group->inode = NULL;
7265 spin_unlock(&block_group->lock);
7266 iput(inode);
7267 } else {
7268 spin_unlock(&block_group->lock);
7269 }
7270 /* One for our lookup ref */
7271 iput(inode);
7272 }
7273
7274 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7275 key.offset = block_group->key.objectid;
7276 key.type = 0;
7277
7278 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7279 if (ret < 0)
7280 goto out;
7281 if (ret > 0)
7282 btrfs_release_path(path);
7283 if (ret == 0) {
7284 ret = btrfs_del_item(trans, tree_root, path);
7285 if (ret)
7286 goto out;
7287 btrfs_release_path(path);
7288 }
7289
7290 spin_lock(&root->fs_info->block_group_cache_lock);
7291 rb_erase(&block_group->cache_node,
7292 &root->fs_info->block_group_cache_tree);
7293 spin_unlock(&root->fs_info->block_group_cache_lock);
7294
7295 down_write(&block_group->space_info->groups_sem);
7296 /*
7297 * we must use list_del_init so people can check to see if they
7298 * are still on the list after taking the semaphore
7299 */
7300 list_del_init(&block_group->list);
7301 up_write(&block_group->space_info->groups_sem);
7302
7303 if (block_group->cached == BTRFS_CACHE_STARTED)
7304 wait_block_group_cache_done(block_group);
7305
7306 btrfs_remove_free_space_cache(block_group);
7307
7308 spin_lock(&block_group->space_info->lock);
7309 block_group->space_info->total_bytes -= block_group->key.offset;
7310 block_group->space_info->bytes_readonly -= block_group->key.offset;
7311 block_group->space_info->disk_total -= block_group->key.offset * factor;
7312 spin_unlock(&block_group->space_info->lock);
7313
7314 memcpy(&key, &block_group->key, sizeof(key));
7315
7316 btrfs_clear_space_info_full(root->fs_info);
7317
7318 btrfs_put_block_group(block_group);
7319 btrfs_put_block_group(block_group);
7320
7321 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7322 if (ret > 0)
7323 ret = -EIO;
7324 if (ret < 0)
7325 goto out;
7326
7327 ret = btrfs_del_item(trans, root, path);
7328 out:
7329 btrfs_free_path(path);
7330 return ret;
7331 }
7332
7333 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7334 {
7335 struct btrfs_space_info *space_info;
7336 struct btrfs_super_block *disk_super;
7337 u64 features;
7338 u64 flags;
7339 int mixed = 0;
7340 int ret;
7341
7342 disk_super = &fs_info->super_copy;
7343 if (!btrfs_super_root(disk_super))
7344 return 1;
7345
7346 features = btrfs_super_incompat_flags(disk_super);
7347 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7348 mixed = 1;
7349
7350 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7351 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7352 if (ret)
7353 goto out;
7354
7355 if (mixed) {
7356 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7357 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7358 } else {
7359 flags = BTRFS_BLOCK_GROUP_METADATA;
7360 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7361 if (ret)
7362 goto out;
7363
7364 flags = BTRFS_BLOCK_GROUP_DATA;
7365 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7366 }
7367 out:
7368 return ret;
7369 }
7370
7371 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7372 {
7373 return unpin_extent_range(root, start, end);
7374 }
7375
7376 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7377 u64 num_bytes, u64 *actual_bytes)
7378 {
7379 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7380 }
7381
7382 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7383 {
7384 struct btrfs_fs_info *fs_info = root->fs_info;
7385 struct btrfs_block_group_cache *cache = NULL;
7386 u64 group_trimmed;
7387 u64 start;
7388 u64 end;
7389 u64 trimmed = 0;
7390 int ret = 0;
7391
7392 cache = btrfs_lookup_block_group(fs_info, range->start);
7393
7394 while (cache) {
7395 if (cache->key.objectid >= (range->start + range->len)) {
7396 btrfs_put_block_group(cache);
7397 break;
7398 }
7399
7400 start = max(range->start, cache->key.objectid);
7401 end = min(range->start + range->len,
7402 cache->key.objectid + cache->key.offset);
7403
7404 if (end - start >= range->minlen) {
7405 if (!block_group_cache_done(cache)) {
7406 ret = cache_block_group(cache, NULL, root, 0);
7407 if (!ret)
7408 wait_block_group_cache_done(cache);
7409 }
7410 ret = btrfs_trim_block_group(cache,
7411 &group_trimmed,
7412 start,
7413 end,
7414 range->minlen);
7415
7416 trimmed += group_trimmed;
7417 if (ret) {
7418 btrfs_put_block_group(cache);
7419 break;
7420 }
7421 }
7422
7423 cache = next_block_group(fs_info->tree_root, cache);
7424 }
7425
7426 range->len = trimmed;
7427 return ret;
7428 }