]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/extent-tree.c
btrfs: use customized batch size for total_bytes_pinned
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48 enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 int force);
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
91 }
92
93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 {
95 return (cache->flags & bits) == bits;
96 }
97
98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 {
100 atomic_inc(&cache->count);
101 }
102
103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 {
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
119 kfree(cache);
120 }
121 }
122
123 /*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
129 {
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161 }
162
163 /*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167 static struct btrfs_block_group_cache *
168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170 {
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
199 if (ret) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
217 return 0;
218 }
219
220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221 {
222 struct btrfs_fs_info *fs_info = cache->fs_info;
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
232 }
233
234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235 {
236 struct btrfs_fs_info *fs_info = cache->fs_info;
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
246 stripe_len);
247 if (ret)
248 return ret;
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
255 if (ret)
256 return ret;
257
258 while (nr--) {
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
284 }
285
286 kfree(logical);
287 }
288 return 0;
289 }
290
291 static struct btrfs_caching_control *
292 get_caching_control(struct btrfs_block_group_cache *cache)
293 {
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
305 return ctl;
306 }
307
308 static void put_caching_control(struct btrfs_caching_control *ctl)
309 {
310 if (refcount_dec_and_test(&ctl->count))
311 kfree(ctl);
312 }
313
314 #ifdef CONFIG_BTRFS_DEBUG
315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316 {
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332 }
333 #endif
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 u64 start, u64 end)
342 {
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380 {
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret;
391 bool wakeup = true;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398
399 #ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
405 if (btrfs_should_fragment_free_space(block_group))
406 wakeup = false;
407 #endif
408 /*
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
413 */
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
417
418 key.objectid = last;
419 key.offset = 0;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto out;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 if (wakeup)
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
454 }
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
458 goto out;
459 if (ret)
460 break;
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
464 }
465
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 goto next;
475 }
476
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
479 continue;
480 }
481
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
484 break;
485
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
489 key.objectid);
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
492 fs_info->nodesize;
493 else
494 last = key.objectid + key.offset;
495
496 if (total_found > CACHING_CTL_WAKE_UP) {
497 total_found = 0;
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
500 }
501 }
502 path->slots[0]++;
503 }
504 ret = 0;
505
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
510
511 out:
512 btrfs_free_path(path);
513 return ret;
514 }
515
516 static noinline void caching_thread(struct btrfs_work *work)
517 {
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
534
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
539
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
552 }
553 #endif
554
555 caching_ctl->progress = (u64)-1;
556
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
560
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
565 }
566
567 static int cache_block_group(struct btrfs_block_group_cache *cache,
568 int load_cache_only)
569 {
570 DEFINE_WAIT(wait);
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
573 int ret = 0;
574
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 if (!caching_ctl)
577 return -ENOMEM;
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
619 return 0;
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
625
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
636 } else {
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
643 }
644 }
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
648 btrfs_should_fragment_free_space(cache)) {
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
659 }
660 #endif
661 mutex_unlock(&caching_ctl->mutex);
662
663 wake_up(&caching_ctl->wait);
664 if (ret == 1) {
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
667 return 0;
668 }
669 } else {
670 /*
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
684 }
685
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
688 return 0;
689 }
690
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
695
696 btrfs_get_block_group(cache);
697
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699
700 return ret;
701 }
702
703 /*
704 * return the block group that starts at or after bytenr
705 */
706 static struct btrfs_block_group_cache *
707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708 {
709 return block_group_cache_tree_search(info, bytenr, 0);
710 }
711
712 /*
713 * return the block group that contains the given bytenr
714 */
715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
718 {
719 return block_group_cache_tree_search(info, bytenr, 1);
720 }
721
722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
724 {
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
727
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
733 rcu_read_unlock();
734 return found;
735 }
736 }
737 rcu_read_unlock();
738 return NULL;
739 }
740
741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
743 {
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
747 if (metadata) {
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
757 ASSERT(space_info);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
760 }
761
762 /*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775 }
776
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 if (ret < 0)
848 goto out_free;
849
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
858 ret = 0;
859 }
860 }
861
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
879 }
880
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
898
899 btrfs_release_path(path);
900
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
908 goto search_again;
909 }
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921 out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927 out_free:
928 btrfs_free_path(path);
929 return ret;
930 }
931
932 /*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
964 * When a tree block is COWed through a tree, there are four cases:
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
996 *
997 * The extent ref structure for the implicit back refs has fields for:
998 *
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1003 *
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
1006 *
1007 * The extent ref structure for the full back refs has field for:
1008 *
1009 * - number of pointers in the tree leaf
1010 *
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
1013 *
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1016 *
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1018 *
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1021 *
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1023 *
1024 * Btree extents can be referenced by:
1025 *
1026 * - Different subvolumes
1027 *
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1032 *
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1036 */
1037
1038 /*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046 {
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 return type;
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1062 * nodesize.
1063 */
1064 if (offset &&
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 return type;
1067 }
1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1070 return type;
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1073 /*
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1076 * nodesize.
1077 */
1078 if (offset &&
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 return type;
1081 }
1082 } else {
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 return type;
1085 }
1086 }
1087
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 eb->start, type);
1091 WARN_ON(1);
1092
1093 return BTRFS_REF_TYPE_INVALID;
1094 }
1095
1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1100 __le64 lenum;
1101
1102 lenum = cpu_to_le64(root_objectid);
1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 lenum = cpu_to_le64(owner);
1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 lenum = cpu_to_le64(offset);
1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1108
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1110 }
1111
1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1114 {
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1118 }
1119
1120 static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1123 {
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 return 0;
1128 return 1;
1129 }
1130
1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1134 u64 root_objectid,
1135 u64 owner, u64 offset)
1136 {
1137 struct btrfs_root *root = trans->fs_info->extent_root;
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
1140 struct extent_buffer *leaf;
1141 u32 nritems;
1142 int ret;
1143 int recow;
1144 int err = -ENOENT;
1145
1146 key.objectid = bytenr;
1147 if (parent) {
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1150 } else {
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1153 owner, offset);
1154 }
1155 again:
1156 recow = 0;
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 if (ret < 0) {
1159 err = ret;
1160 goto fail;
1161 }
1162
1163 if (parent) {
1164 if (!ret)
1165 return 0;
1166 goto fail;
1167 }
1168
1169 leaf = path->nodes[0];
1170 nritems = btrfs_header_nritems(leaf);
1171 while (1) {
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret < 0)
1175 err = ret;
1176 if (ret)
1177 goto fail;
1178
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1181 recow = 1;
1182 }
1183
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 goto fail;
1188
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1191
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1193 owner, offset)) {
1194 if (recow) {
1195 btrfs_release_path(path);
1196 goto again;
1197 }
1198 err = 0;
1199 break;
1200 }
1201 path->slots[0]++;
1202 }
1203 fail:
1204 return err;
1205 }
1206
1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
1212 {
1213 struct btrfs_root *root = trans->fs_info->extent_root;
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
1216 u32 size;
1217 u32 num_refs;
1218 int ret;
1219
1220 key.objectid = bytenr;
1221 if (parent) {
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1225 } else {
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1228 owner, offset);
1229 size = sizeof(struct btrfs_extent_data_ref);
1230 }
1231
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1234 goto fail;
1235
1236 leaf = path->nodes[0];
1237 if (parent) {
1238 struct btrfs_shared_data_ref *ref;
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_shared_data_ref);
1241 if (ret == 0) {
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 } else {
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1247 }
1248 } else {
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1254 owner, offset))
1255 break;
1256 btrfs_release_path(path);
1257 key.offset++;
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 size);
1260 if (ret && ret != -EEXIST)
1261 goto fail;
1262
1263 leaf = path->nodes[0];
1264 }
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1267 if (ret == 0) {
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1269 root_objectid);
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 } else {
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1277 }
1278 }
1279 btrfs_mark_buffer_dirty(leaf);
1280 ret = 0;
1281 fail:
1282 btrfs_release_path(path);
1283 return ret;
1284 }
1285
1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 struct btrfs_path *path,
1288 int refs_to_drop, int *last_ref)
1289 {
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
1293 struct extent_buffer *leaf;
1294 u32 num_refs = 0;
1295 int ret = 0;
1296
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1311 return -EINVAL;
1312 } else {
1313 BUG();
1314 }
1315
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
1318
1319 if (num_refs == 0) {
1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1321 *last_ref = 1;
1322 } else {
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 btrfs_mark_buffer_dirty(leaf);
1328 }
1329 return ret;
1330 }
1331
1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 struct btrfs_extent_inline_ref *iref)
1334 {
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1339 u32 num_refs = 0;
1340 int type;
1341
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1346 if (iref) {
1347 /*
1348 * If type is invalid, we should have bailed out earlier than
1349 * this call.
1350 */
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 } else {
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 }
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1368 } else {
1369 WARN_ON(1);
1370 }
1371 return num_refs;
1372 }
1373
1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1377 u64 root_objectid)
1378 {
1379 struct btrfs_root *root = trans->fs_info->extent_root;
1380 struct btrfs_key key;
1381 int ret;
1382
1383 key.objectid = bytenr;
1384 if (parent) {
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1387 } else {
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1390 }
1391
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
1395 return ret;
1396 }
1397
1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1401 u64 root_objectid)
1402 {
1403 struct btrfs_key key;
1404 int ret;
1405
1406 key.objectid = bytenr;
1407 if (parent) {
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1410 } else {
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1413 }
1414
1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1416 path, &key, 0);
1417 btrfs_release_path(path);
1418 return ret;
1419 }
1420
1421 static inline int extent_ref_type(u64 parent, u64 owner)
1422 {
1423 int type;
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 else
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1429 } else {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1432 else
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1434 }
1435 return type;
1436 }
1437
1438 static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
1440
1441 {
1442 for (; level < BTRFS_MAX_LEVEL; level++) {
1443 if (!path->nodes[level])
1444 break;
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1447 continue;
1448 if (level == 0)
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 else
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 return 0;
1455 }
1456 return 1;
1457 }
1458
1459 /*
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1462 *
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1465 *
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1468 *
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1471 */
1472 static noinline_for_stack
1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1479 {
1480 struct btrfs_fs_info *fs_info = trans->fs_info;
1481 struct btrfs_root *root = fs_info->extent_root;
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1496 int needed;
1497
1498 key.objectid = bytenr;
1499 key.type = BTRFS_EXTENT_ITEM_KEY;
1500 key.offset = num_bytes;
1501
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
1505 path->keep_locks = 1;
1506 } else
1507 extra_size = -1;
1508
1509 /*
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518 again:
1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 if (ret < 0) {
1521 err = ret;
1522 goto out;
1523 }
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
1541 key.objectid = bytenr;
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1545 goto again;
1546 }
1547 }
1548
1549 if (ret && !insert) {
1550 err = -ENOENT;
1551 goto out;
1552 } else if (WARN_ON(ret)) {
1553 err = -EIO;
1554 goto out;
1555 }
1556
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 if (unlikely(item_size < sizeof(*ei))) {
1560 err = -EINVAL;
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1563 goto out;
1564 }
1565
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1568
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1571
1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 ptr += sizeof(struct btrfs_tree_block_info);
1574 BUG_ON(ptr > end);
1575 }
1576
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1579 else
1580 needed = BTRFS_REF_TYPE_BLOCK;
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
1591 err = -EUCLEAN;
1592 goto out;
1593 }
1594
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654 out:
1655 if (insert) {
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660 }
1661
1662 /*
1663 * helper to add new inline back ref
1664 */
1665 static noinline_for_stack
1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
1672 {
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
1689 btrfs_extend_item(fs_info, path, size);
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
1724 }
1725
1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1731 {
1732 int ret;
1733
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1736 owner, offset, 0);
1737 if (ret != -ENOENT)
1738 return ret;
1739
1740 btrfs_release_path(path);
1741 *ref_ret = NULL;
1742
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 root_objectid);
1746 } else {
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
1749 }
1750 return ret;
1751 }
1752
1753 /*
1754 * helper to update/remove inline back ref
1755 */
1756 static noinline_for_stack
1757 void update_inline_extent_backref(struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
1762 {
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
1773 u64 refs;
1774
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
1783 /*
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1786 */
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 *last_ref = 1;
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
1819 btrfs_truncate_item(fs_info, path, item_size, 1);
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
1822 }
1823
1824 static noinline_for_stack
1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1837 owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(path, iref, refs_to_add,
1841 extent_op, NULL);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855 {
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 root_objectid);
1861 } else {
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1864 refs_to_add);
1865 }
1866 return ret;
1867 }
1868
1869 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data, int *last_ref)
1873 {
1874 int ret = 0;
1875
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 last_ref);
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1882 last_ref);
1883 } else {
1884 *last_ref = 1;
1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1886 }
1887 return ret;
1888 }
1889
1890 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
1893 {
1894 int j, ret = 0;
1895 u64 bytes_left, end;
1896 u64 aligned_start = ALIGN(start, 1 << 9);
1897
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1902 }
1903
1904 *discarded_bytes = 0;
1905
1906 if (!len)
1907 return 0;
1908
1909 end = start + len;
1910 bytes_left = len;
1911
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1917
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 continue;
1922
1923 /*
1924 * Superblock spans beginning of range. Adjust start and
1925 * try again.
1926 */
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1929 if (start > end) {
1930 bytes_left = 0;
1931 break;
1932 }
1933 bytes_left = end - start;
1934 continue;
1935 }
1936
1937 if (size) {
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 GFP_NOFS, 0);
1940 if (!ret)
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1943 return ret;
1944 }
1945
1946 start = sb_end;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 }
1953
1954 if (bytes_left) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1956 GFP_NOFS, 0);
1957 if (!ret)
1958 *discarded_bytes += bytes_left;
1959 }
1960 return ret;
1961 }
1962
1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 u64 num_bytes, u64 *actual_bytes)
1965 {
1966 int ret;
1967 u64 discarded_bytes = 0;
1968 struct btrfs_bio *bbio = NULL;
1969
1970
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1974 */
1975 btrfs_bio_counter_inc_blocked(fs_info);
1976 /* Tell the block device(s) that the sectors can be discarded */
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 &bbio, 0);
1979 /* Error condition is -ENOMEM */
1980 if (!ret) {
1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
1982 int i;
1983
1984
1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1986 u64 bytes;
1987 struct request_queue *req_q;
1988
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 continue;
1992 }
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
1995 continue;
1996
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
1998 stripe->physical,
1999 stripe->length,
2000 &bytes);
2001 if (!ret)
2002 discarded_bytes += bytes;
2003 else if (ret != -EOPNOTSUPP)
2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2005
2006 /*
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2010 */
2011 ret = 0;
2012 }
2013 btrfs_put_bbio(bbio);
2014 }
2015 btrfs_bio_counter_dec(fs_info);
2016
2017 if (actual_bytes)
2018 *actual_bytes = discarded_bytes;
2019
2020
2021 if (ret == -EOPNOTSUPP)
2022 ret = 0;
2023 return ret;
2024 }
2025
2026 /* Can return -ENOMEM */
2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 u64 bytenr, u64 num_bytes, u64 parent,
2030 u64 root_objectid, u64 owner, u64 offset)
2031 {
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 int old_ref_mod, new_ref_mod;
2034 int ret;
2035
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2041
2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2044 num_bytes, parent,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
2047 &old_ref_mod, &new_ref_mod);
2048 } else {
2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2050 num_bytes, parent,
2051 root_objectid, owner, offset,
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
2054 }
2055
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 }
2061
2062 return ret;
2063 }
2064
2065 /*
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2067 *
2068 * @trans: Handle of transaction
2069 *
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2072 *
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079 * be 0
2080 *
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2084 *
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2088 *
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2092 *
2093 * @refs_to_add Number of references to add
2094 *
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2097 *
2098 */
2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_delayed_ref_node *node,
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2104 {
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2111 u64 refs;
2112 int ret;
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
2118 path->reada = READA_FORWARD;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
2125 goto out;
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
2132 leaf = path->nodes[0];
2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
2139
2140 btrfs_mark_buffer_dirty(leaf);
2141 btrfs_release_path(path);
2142
2143 path->reada = READA_FORWARD;
2144 path->leave_spinning = 1;
2145 /* now insert the actual backref */
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
2148 if (ret)
2149 btrfs_abort_transaction(trans, ret);
2150 out:
2151 btrfs_free_path(path);
2152 return ret;
2153 }
2154
2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
2159 {
2160 int ret = 0;
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2163 u64 parent = 0;
2164 u64 ref_root = 0;
2165 u64 flags = 0;
2166
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2170
2171 ref = btrfs_delayed_node_to_data_ref(node);
2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2173
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
2176 ref_root = ref->root;
2177
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2179 if (extent_op)
2180 flags |= extent_op->flags_to_set;
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2183 ref->offset, &ins,
2184 node->ref_mod);
2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 ret = __btrfs_free_extent(trans, node, parent,
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
2193 extent_op);
2194 } else {
2195 BUG();
2196 }
2197 return ret;
2198 }
2199
2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2203 {
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2208 }
2209
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 }
2216 }
2217
2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 struct btrfs_delayed_ref_head *head,
2220 struct btrfs_delayed_extent_op *extent_op)
2221 {
2222 struct btrfs_fs_info *fs_info = trans->fs_info;
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2227 u32 item_size;
2228 int ret;
2229 int err = 0;
2230 int metadata = !extent_op->is_data;
2231
2232 if (trans->aborted)
2233 return 0;
2234
2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2236 metadata = 0;
2237
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
2242 key.objectid = head->bytenr;
2243
2244 if (metadata) {
2245 key.type = BTRFS_METADATA_ITEM_KEY;
2246 key.offset = extent_op->level;
2247 } else {
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
2249 key.offset = head->num_bytes;
2250 }
2251
2252 again:
2253 path->reada = READA_FORWARD;
2254 path->leave_spinning = 1;
2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2256 if (ret < 0) {
2257 err = ret;
2258 goto out;
2259 }
2260 if (ret > 0) {
2261 if (metadata) {
2262 if (path->slots[0] > 0) {
2263 path->slots[0]--;
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 path->slots[0]);
2266 if (key.objectid == head->bytenr &&
2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 key.offset == head->num_bytes)
2269 ret = 0;
2270 }
2271 if (ret > 0) {
2272 btrfs_release_path(path);
2273 metadata = 0;
2274
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2278 goto again;
2279 }
2280 } else {
2281 err = -EIO;
2282 goto out;
2283 }
2284 }
2285
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2288
2289 if (unlikely(item_size < sizeof(*ei))) {
2290 err = -EINVAL;
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2293 goto out;
2294 }
2295
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
2298
2299 btrfs_mark_buffer_dirty(leaf);
2300 out:
2301 btrfs_free_path(path);
2302 return err;
2303 }
2304
2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
2309 {
2310 int ret = 0;
2311 struct btrfs_delayed_tree_ref *ref;
2312 u64 parent = 0;
2313 u64 ref_root = 0;
2314
2315 ref = btrfs_delayed_node_to_tree_ref(node);
2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2317
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
2320 ref_root = ref->root;
2321
2322 if (node->ref_mod != 1) {
2323 btrfs_err(trans->fs_info,
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2326 parent);
2327 return -EIO;
2328 }
2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 BUG_ON(!extent_op || !extent_op->update_flags);
2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 ref->level, 0, 1, extent_op);
2338 } else {
2339 BUG();
2340 }
2341 return ret;
2342 }
2343
2344 /* helper function to actually process a single delayed ref entry */
2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
2349 {
2350 int ret = 0;
2351
2352 if (trans->aborted) {
2353 if (insert_reserved)
2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 node->num_bytes, 1);
2356 return 0;
2357 }
2358
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 ret = run_delayed_tree_ref(trans, node, extent_op,
2362 insert_reserved);
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 ret = run_delayed_data_ref(trans, node, extent_op,
2366 insert_reserved);
2367 else
2368 BUG();
2369 return ret;
2370 }
2371
2372 static inline struct btrfs_delayed_ref_node *
2373 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2374 {
2375 struct btrfs_delayed_ref_node *ref;
2376
2377 if (RB_EMPTY_ROOT(&head->ref_tree))
2378 return NULL;
2379
2380 /*
2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 * This is to prevent a ref count from going down to zero, which deletes
2383 * the extent item from the extent tree, when there still are references
2384 * to add, which would fail because they would not find the extent item.
2385 */
2386 if (!list_empty(&head->ref_add_list))
2387 return list_first_entry(&head->ref_add_list,
2388 struct btrfs_delayed_ref_node, add_list);
2389
2390 ref = rb_entry(rb_first(&head->ref_tree),
2391 struct btrfs_delayed_ref_node, ref_node);
2392 ASSERT(list_empty(&ref->add_list));
2393 return ref;
2394 }
2395
2396 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 struct btrfs_delayed_ref_head *head)
2398 {
2399 spin_lock(&delayed_refs->lock);
2400 head->processing = 0;
2401 delayed_refs->num_heads_ready++;
2402 spin_unlock(&delayed_refs->lock);
2403 btrfs_delayed_ref_unlock(head);
2404 }
2405
2406 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2407 struct btrfs_delayed_ref_head *head)
2408 {
2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2410 int ret;
2411
2412 if (!extent_op)
2413 return 0;
2414 head->extent_op = NULL;
2415 if (head->must_insert_reserved) {
2416 btrfs_free_delayed_extent_op(extent_op);
2417 return 0;
2418 }
2419 spin_unlock(&head->lock);
2420 ret = run_delayed_extent_op(trans, head, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2422 return ret ? ret : 1;
2423 }
2424
2425 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2426 struct btrfs_delayed_ref_head *head)
2427 {
2428
2429 struct btrfs_fs_info *fs_info = trans->fs_info;
2430 struct btrfs_delayed_ref_root *delayed_refs;
2431 int ret;
2432
2433 delayed_refs = &trans->transaction->delayed_refs;
2434
2435 ret = cleanup_extent_op(trans, head);
2436 if (ret < 0) {
2437 unselect_delayed_ref_head(delayed_refs, head);
2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2439 return ret;
2440 } else if (ret) {
2441 return ret;
2442 }
2443
2444 /*
2445 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 * and then re-check to make sure nobody got added.
2447 */
2448 spin_unlock(&head->lock);
2449 spin_lock(&delayed_refs->lock);
2450 spin_lock(&head->lock);
2451 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2452 spin_unlock(&head->lock);
2453 spin_unlock(&delayed_refs->lock);
2454 return 1;
2455 }
2456 delayed_refs->num_heads--;
2457 rb_erase(&head->href_node, &delayed_refs->href_root);
2458 RB_CLEAR_NODE(&head->href_node);
2459 spin_unlock(&head->lock);
2460 spin_unlock(&delayed_refs->lock);
2461 atomic_dec(&delayed_refs->num_entries);
2462
2463 trace_run_delayed_ref_head(fs_info, head, 0);
2464
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
2468
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480
2481 if (head->is_data) {
2482 spin_lock(&delayed_refs->lock);
2483 delayed_refs->pending_csums -= head->num_bytes;
2484 spin_unlock(&delayed_refs->lock);
2485 }
2486 }
2487
2488 if (head->must_insert_reserved) {
2489 btrfs_pin_extent(fs_info, head->bytenr,
2490 head->num_bytes, 1);
2491 if (head->is_data) {
2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2493 head->num_bytes);
2494 }
2495 }
2496
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
2500 btrfs_delayed_ref_unlock(head);
2501 btrfs_put_delayed_ref_head(head);
2502 return 0;
2503 }
2504
2505 /*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2510 unsigned long nr)
2511 {
2512 struct btrfs_fs_info *fs_info = trans->fs_info;
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
2516 struct btrfs_delayed_extent_op *extent_op;
2517 ktime_t start = ktime_get();
2518 int ret;
2519 unsigned long count = 0;
2520 unsigned long actual_count = 0;
2521 int must_insert_reserved = 0;
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
2524 while (1) {
2525 if (!locked_ref) {
2526 if (count >= nr)
2527 break;
2528
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539 spin_unlock(&delayed_refs->lock);
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
2550 }
2551 }
2552
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
2565 spin_lock(&locked_ref->lock);
2566 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2567
2568 ref = select_delayed_ref(locked_ref);
2569
2570 if (ref && ref->seq &&
2571 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2572 spin_unlock(&locked_ref->lock);
2573 unselect_delayed_ref_head(delayed_refs, locked_ref);
2574 locked_ref = NULL;
2575 cond_resched();
2576 count++;
2577 continue;
2578 }
2579
2580 /*
2581 * We're done processing refs in this ref_head, clean everything
2582 * up and move on to the next ref_head.
2583 */
2584 if (!ref) {
2585 ret = cleanup_ref_head(trans, locked_ref);
2586 if (ret > 0 ) {
2587 /* We dropped our lock, we need to loop. */
2588 ret = 0;
2589 continue;
2590 } else if (ret) {
2591 return ret;
2592 }
2593 locked_ref = NULL;
2594 count++;
2595 continue;
2596 }
2597
2598 actual_count++;
2599 ref->in_tree = 0;
2600 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2601 RB_CLEAR_NODE(&ref->ref_node);
2602 if (!list_empty(&ref->add_list))
2603 list_del(&ref->add_list);
2604 /*
2605 * When we play the delayed ref, also correct the ref_mod on
2606 * head
2607 */
2608 switch (ref->action) {
2609 case BTRFS_ADD_DELAYED_REF:
2610 case BTRFS_ADD_DELAYED_EXTENT:
2611 locked_ref->ref_mod -= ref->ref_mod;
2612 break;
2613 case BTRFS_DROP_DELAYED_REF:
2614 locked_ref->ref_mod += ref->ref_mod;
2615 break;
2616 default:
2617 WARN_ON(1);
2618 }
2619 atomic_dec(&delayed_refs->num_entries);
2620
2621 /*
2622 * Record the must-insert_reserved flag before we drop the spin
2623 * lock.
2624 */
2625 must_insert_reserved = locked_ref->must_insert_reserved;
2626 locked_ref->must_insert_reserved = 0;
2627
2628 extent_op = locked_ref->extent_op;
2629 locked_ref->extent_op = NULL;
2630 spin_unlock(&locked_ref->lock);
2631
2632 ret = run_one_delayed_ref(trans, ref, extent_op,
2633 must_insert_reserved);
2634
2635 btrfs_free_delayed_extent_op(extent_op);
2636 if (ret) {
2637 unselect_delayed_ref_head(delayed_refs, locked_ref);
2638 btrfs_put_delayed_ref(ref);
2639 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2640 ret);
2641 return ret;
2642 }
2643
2644 btrfs_put_delayed_ref(ref);
2645 count++;
2646 cond_resched();
2647 }
2648
2649 /*
2650 * We don't want to include ref heads since we can have empty ref heads
2651 * and those will drastically skew our runtime down since we just do
2652 * accounting, no actual extent tree updates.
2653 */
2654 if (actual_count > 0) {
2655 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2656 u64 avg;
2657
2658 /*
2659 * We weigh the current average higher than our current runtime
2660 * to avoid large swings in the average.
2661 */
2662 spin_lock(&delayed_refs->lock);
2663 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2664 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2665 spin_unlock(&delayed_refs->lock);
2666 }
2667 return 0;
2668 }
2669
2670 #ifdef SCRAMBLE_DELAYED_REFS
2671 /*
2672 * Normally delayed refs get processed in ascending bytenr order. This
2673 * correlates in most cases to the order added. To expose dependencies on this
2674 * order, we start to process the tree in the middle instead of the beginning
2675 */
2676 static u64 find_middle(struct rb_root *root)
2677 {
2678 struct rb_node *n = root->rb_node;
2679 struct btrfs_delayed_ref_node *entry;
2680 int alt = 1;
2681 u64 middle;
2682 u64 first = 0, last = 0;
2683
2684 n = rb_first(root);
2685 if (n) {
2686 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2687 first = entry->bytenr;
2688 }
2689 n = rb_last(root);
2690 if (n) {
2691 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2692 last = entry->bytenr;
2693 }
2694 n = root->rb_node;
2695
2696 while (n) {
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 WARN_ON(!entry->in_tree);
2699
2700 middle = entry->bytenr;
2701
2702 if (alt)
2703 n = n->rb_left;
2704 else
2705 n = n->rb_right;
2706
2707 alt = 1 - alt;
2708 }
2709 return middle;
2710 }
2711 #endif
2712
2713 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2714 {
2715 u64 num_bytes;
2716
2717 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2718 sizeof(struct btrfs_extent_inline_ref));
2719 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2720 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2721
2722 /*
2723 * We don't ever fill up leaves all the way so multiply by 2 just to be
2724 * closer to what we're really going to want to use.
2725 */
2726 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2727 }
2728
2729 /*
2730 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2731 * would require to store the csums for that many bytes.
2732 */
2733 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2734 {
2735 u64 csum_size;
2736 u64 num_csums_per_leaf;
2737 u64 num_csums;
2738
2739 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2740 num_csums_per_leaf = div64_u64(csum_size,
2741 (u64)btrfs_super_csum_size(fs_info->super_copy));
2742 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2743 num_csums += num_csums_per_leaf - 1;
2744 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2745 return num_csums;
2746 }
2747
2748 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2749 struct btrfs_fs_info *fs_info)
2750 {
2751 struct btrfs_block_rsv *global_rsv;
2752 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2753 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2754 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2755 u64 num_bytes, num_dirty_bgs_bytes;
2756 int ret = 0;
2757
2758 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2759 num_heads = heads_to_leaves(fs_info, num_heads);
2760 if (num_heads > 1)
2761 num_bytes += (num_heads - 1) * fs_info->nodesize;
2762 num_bytes <<= 1;
2763 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2764 fs_info->nodesize;
2765 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2766 num_dirty_bgs);
2767 global_rsv = &fs_info->global_block_rsv;
2768
2769 /*
2770 * If we can't allocate any more chunks lets make sure we have _lots_ of
2771 * wiggle room since running delayed refs can create more delayed refs.
2772 */
2773 if (global_rsv->space_info->full) {
2774 num_dirty_bgs_bytes <<= 1;
2775 num_bytes <<= 1;
2776 }
2777
2778 spin_lock(&global_rsv->lock);
2779 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2780 ret = 1;
2781 spin_unlock(&global_rsv->lock);
2782 return ret;
2783 }
2784
2785 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2786 struct btrfs_fs_info *fs_info)
2787 {
2788 u64 num_entries =
2789 atomic_read(&trans->transaction->delayed_refs.num_entries);
2790 u64 avg_runtime;
2791 u64 val;
2792
2793 smp_mb();
2794 avg_runtime = fs_info->avg_delayed_ref_runtime;
2795 val = num_entries * avg_runtime;
2796 if (val >= NSEC_PER_SEC)
2797 return 1;
2798 if (val >= NSEC_PER_SEC / 2)
2799 return 2;
2800
2801 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2802 }
2803
2804 struct async_delayed_refs {
2805 struct btrfs_root *root;
2806 u64 transid;
2807 int count;
2808 int error;
2809 int sync;
2810 struct completion wait;
2811 struct btrfs_work work;
2812 };
2813
2814 static inline struct async_delayed_refs *
2815 to_async_delayed_refs(struct btrfs_work *work)
2816 {
2817 return container_of(work, struct async_delayed_refs, work);
2818 }
2819
2820 static void delayed_ref_async_start(struct btrfs_work *work)
2821 {
2822 struct async_delayed_refs *async = to_async_delayed_refs(work);
2823 struct btrfs_trans_handle *trans;
2824 struct btrfs_fs_info *fs_info = async->root->fs_info;
2825 int ret;
2826
2827 /* if the commit is already started, we don't need to wait here */
2828 if (btrfs_transaction_blocked(fs_info))
2829 goto done;
2830
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
2834 goto done;
2835 }
2836
2837 /*
2838 * trans->sync means that when we call end_transaction, we won't
2839 * wait on delayed refs
2840 */
2841 trans->sync = true;
2842
2843 /* Don't bother flushing if we got into a different transaction */
2844 if (trans->transid > async->transid)
2845 goto end;
2846
2847 ret = btrfs_run_delayed_refs(trans, async->count);
2848 if (ret)
2849 async->error = ret;
2850 end:
2851 ret = btrfs_end_transaction(trans);
2852 if (ret && !async->error)
2853 async->error = ret;
2854 done:
2855 if (async->sync)
2856 complete(&async->wait);
2857 else
2858 kfree(async);
2859 }
2860
2861 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2862 unsigned long count, u64 transid, int wait)
2863 {
2864 struct async_delayed_refs *async;
2865 int ret;
2866
2867 async = kmalloc(sizeof(*async), GFP_NOFS);
2868 if (!async)
2869 return -ENOMEM;
2870
2871 async->root = fs_info->tree_root;
2872 async->count = count;
2873 async->error = 0;
2874 async->transid = transid;
2875 if (wait)
2876 async->sync = 1;
2877 else
2878 async->sync = 0;
2879 init_completion(&async->wait);
2880
2881 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2882 delayed_ref_async_start, NULL, NULL);
2883
2884 btrfs_queue_work(fs_info->extent_workers, &async->work);
2885
2886 if (wait) {
2887 wait_for_completion(&async->wait);
2888 ret = async->error;
2889 kfree(async);
2890 return ret;
2891 }
2892 return 0;
2893 }
2894
2895 /*
2896 * this starts processing the delayed reference count updates and
2897 * extent insertions we have queued up so far. count can be
2898 * 0, which means to process everything in the tree at the start
2899 * of the run (but not newly added entries), or it can be some target
2900 * number you'd like to process.
2901 *
2902 * Returns 0 on success or if called with an aborted transaction
2903 * Returns <0 on error and aborts the transaction
2904 */
2905 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2906 unsigned long count)
2907 {
2908 struct btrfs_fs_info *fs_info = trans->fs_info;
2909 struct rb_node *node;
2910 struct btrfs_delayed_ref_root *delayed_refs;
2911 struct btrfs_delayed_ref_head *head;
2912 int ret;
2913 int run_all = count == (unsigned long)-1;
2914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2915
2916 /* We'll clean this up in btrfs_cleanup_transaction */
2917 if (trans->aborted)
2918 return 0;
2919
2920 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2921 return 0;
2922
2923 delayed_refs = &trans->transaction->delayed_refs;
2924 if (count == 0)
2925 count = atomic_read(&delayed_refs->num_entries) * 2;
2926
2927 again:
2928 #ifdef SCRAMBLE_DELAYED_REFS
2929 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2930 #endif
2931 trans->can_flush_pending_bgs = false;
2932 ret = __btrfs_run_delayed_refs(trans, count);
2933 if (ret < 0) {
2934 btrfs_abort_transaction(trans, ret);
2935 return ret;
2936 }
2937
2938 if (run_all) {
2939 if (!list_empty(&trans->new_bgs))
2940 btrfs_create_pending_block_groups(trans);
2941
2942 spin_lock(&delayed_refs->lock);
2943 node = rb_first(&delayed_refs->href_root);
2944 if (!node) {
2945 spin_unlock(&delayed_refs->lock);
2946 goto out;
2947 }
2948 head = rb_entry(node, struct btrfs_delayed_ref_head,
2949 href_node);
2950 refcount_inc(&head->refs);
2951 spin_unlock(&delayed_refs->lock);
2952
2953 /* Mutex was contended, block until it's released and retry. */
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
2956
2957 btrfs_put_delayed_ref_head(head);
2958 cond_resched();
2959 goto again;
2960 }
2961 out:
2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2963 return 0;
2964 }
2965
2966 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 struct btrfs_fs_info *fs_info,
2968 u64 bytenr, u64 num_bytes, u64 flags,
2969 int level, int is_data)
2970 {
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
2974 extent_op = btrfs_alloc_delayed_extent_op();
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
2979 extent_op->update_flags = true;
2980 extent_op->update_key = false;
2981 extent_op->is_data = is_data ? true : false;
2982 extent_op->level = level;
2983
2984 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2985 num_bytes, extent_op);
2986 if (ret)
2987 btrfs_free_delayed_extent_op(extent_op);
2988 return ret;
2989 }
2990
2991 static noinline int check_delayed_ref(struct btrfs_root *root,
2992 struct btrfs_path *path,
2993 u64 objectid, u64 offset, u64 bytenr)
2994 {
2995 struct btrfs_delayed_ref_head *head;
2996 struct btrfs_delayed_ref_node *ref;
2997 struct btrfs_delayed_data_ref *data_ref;
2998 struct btrfs_delayed_ref_root *delayed_refs;
2999 struct btrfs_transaction *cur_trans;
3000 struct rb_node *node;
3001 int ret = 0;
3002
3003 spin_lock(&root->fs_info->trans_lock);
3004 cur_trans = root->fs_info->running_transaction;
3005 if (cur_trans)
3006 refcount_inc(&cur_trans->use_count);
3007 spin_unlock(&root->fs_info->trans_lock);
3008 if (!cur_trans)
3009 return 0;
3010
3011 delayed_refs = &cur_trans->delayed_refs;
3012 spin_lock(&delayed_refs->lock);
3013 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3014 if (!head) {
3015 spin_unlock(&delayed_refs->lock);
3016 btrfs_put_transaction(cur_trans);
3017 return 0;
3018 }
3019
3020 if (!mutex_trylock(&head->mutex)) {
3021 refcount_inc(&head->refs);
3022 spin_unlock(&delayed_refs->lock);
3023
3024 btrfs_release_path(path);
3025
3026 /*
3027 * Mutex was contended, block until it's released and let
3028 * caller try again
3029 */
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
3032 btrfs_put_delayed_ref_head(head);
3033 btrfs_put_transaction(cur_trans);
3034 return -EAGAIN;
3035 }
3036 spin_unlock(&delayed_refs->lock);
3037
3038 spin_lock(&head->lock);
3039 /*
3040 * XXX: We should replace this with a proper search function in the
3041 * future.
3042 */
3043 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3045 /* If it's a shared ref we know a cross reference exists */
3046 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3047 ret = 1;
3048 break;
3049 }
3050
3051 data_ref = btrfs_delayed_node_to_data_ref(ref);
3052
3053 /*
3054 * If our ref doesn't match the one we're currently looking at
3055 * then we have a cross reference.
3056 */
3057 if (data_ref->root != root->root_key.objectid ||
3058 data_ref->objectid != objectid ||
3059 data_ref->offset != offset) {
3060 ret = 1;
3061 break;
3062 }
3063 }
3064 spin_unlock(&head->lock);
3065 mutex_unlock(&head->mutex);
3066 btrfs_put_transaction(cur_trans);
3067 return ret;
3068 }
3069
3070 static noinline int check_committed_ref(struct btrfs_root *root,
3071 struct btrfs_path *path,
3072 u64 objectid, u64 offset, u64 bytenr)
3073 {
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075 struct btrfs_root *extent_root = fs_info->extent_root;
3076 struct extent_buffer *leaf;
3077 struct btrfs_extent_data_ref *ref;
3078 struct btrfs_extent_inline_ref *iref;
3079 struct btrfs_extent_item *ei;
3080 struct btrfs_key key;
3081 u32 item_size;
3082 int type;
3083 int ret;
3084
3085 key.objectid = bytenr;
3086 key.offset = (u64)-1;
3087 key.type = BTRFS_EXTENT_ITEM_KEY;
3088
3089 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3090 if (ret < 0)
3091 goto out;
3092 BUG_ON(ret == 0); /* Corruption */
3093
3094 ret = -ENOENT;
3095 if (path->slots[0] == 0)
3096 goto out;
3097
3098 path->slots[0]--;
3099 leaf = path->nodes[0];
3100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3101
3102 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3103 goto out;
3104
3105 ret = 1;
3106 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
3112
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118
3119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3121 goto out;
3122
3123 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 if (btrfs_extent_refs(leaf, ei) !=
3125 btrfs_extent_data_ref_count(leaf, ref) ||
3126 btrfs_extent_data_ref_root(leaf, ref) !=
3127 root->root_key.objectid ||
3128 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3130 goto out;
3131
3132 ret = 0;
3133 out:
3134 return ret;
3135 }
3136
3137 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3138 u64 bytenr)
3139 {
3140 struct btrfs_path *path;
3141 int ret;
3142 int ret2;
3143
3144 path = btrfs_alloc_path();
3145 if (!path)
3146 return -ENOMEM;
3147
3148 do {
3149 ret = check_committed_ref(root, path, objectid,
3150 offset, bytenr);
3151 if (ret && ret != -ENOENT)
3152 goto out;
3153
3154 ret2 = check_delayed_ref(root, path, objectid,
3155 offset, bytenr);
3156 } while (ret2 == -EAGAIN);
3157
3158 if (ret2 && ret2 != -ENOENT) {
3159 ret = ret2;
3160 goto out;
3161 }
3162
3163 if (ret != -ENOENT || ret2 != -ENOENT)
3164 ret = 0;
3165 out:
3166 btrfs_free_path(path);
3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 WARN_ON(ret > 0);
3169 return ret;
3170 }
3171
3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 struct extent_buffer *buf,
3175 int full_backref, int inc)
3176 {
3177 struct btrfs_fs_info *fs_info = root->fs_info;
3178 u64 bytenr;
3179 u64 num_bytes;
3180 u64 parent;
3181 u64 ref_root;
3182 u32 nritems;
3183 struct btrfs_key key;
3184 struct btrfs_file_extent_item *fi;
3185 int i;
3186 int level;
3187 int ret = 0;
3188 int (*process_func)(struct btrfs_trans_handle *,
3189 struct btrfs_root *,
3190 u64, u64, u64, u64, u64, u64);
3191
3192
3193 if (btrfs_is_testing(fs_info))
3194 return 0;
3195
3196 ref_root = btrfs_header_owner(buf);
3197 nritems = btrfs_header_nritems(buf);
3198 level = btrfs_header_level(buf);
3199
3200 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3201 return 0;
3202
3203 if (inc)
3204 process_func = btrfs_inc_extent_ref;
3205 else
3206 process_func = btrfs_free_extent;
3207
3208 if (full_backref)
3209 parent = buf->start;
3210 else
3211 parent = 0;
3212
3213 for (i = 0; i < nritems; i++) {
3214 if (level == 0) {
3215 btrfs_item_key_to_cpu(buf, &key, i);
3216 if (key.type != BTRFS_EXTENT_DATA_KEY)
3217 continue;
3218 fi = btrfs_item_ptr(buf, i,
3219 struct btrfs_file_extent_item);
3220 if (btrfs_file_extent_type(buf, fi) ==
3221 BTRFS_FILE_EXTENT_INLINE)
3222 continue;
3223 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3224 if (bytenr == 0)
3225 continue;
3226
3227 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3228 key.offset -= btrfs_file_extent_offset(buf, fi);
3229 ret = process_func(trans, root, bytenr, num_bytes,
3230 parent, ref_root, key.objectid,
3231 key.offset);
3232 if (ret)
3233 goto fail;
3234 } else {
3235 bytenr = btrfs_node_blockptr(buf, i);
3236 num_bytes = fs_info->nodesize;
3237 ret = process_func(trans, root, bytenr, num_bytes,
3238 parent, ref_root, level - 1, 0);
3239 if (ret)
3240 goto fail;
3241 }
3242 }
3243 return 0;
3244 fail:
3245 return ret;
3246 }
3247
3248 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3249 struct extent_buffer *buf, int full_backref)
3250 {
3251 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3252 }
3253
3254 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3255 struct extent_buffer *buf, int full_backref)
3256 {
3257 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3258 }
3259
3260 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3261 struct btrfs_fs_info *fs_info,
3262 struct btrfs_path *path,
3263 struct btrfs_block_group_cache *cache)
3264 {
3265 int ret;
3266 struct btrfs_root *extent_root = fs_info->extent_root;
3267 unsigned long bi;
3268 struct extent_buffer *leaf;
3269
3270 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3271 if (ret) {
3272 if (ret > 0)
3273 ret = -ENOENT;
3274 goto fail;
3275 }
3276
3277 leaf = path->nodes[0];
3278 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3279 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3280 btrfs_mark_buffer_dirty(leaf);
3281 fail:
3282 btrfs_release_path(path);
3283 return ret;
3284
3285 }
3286
3287 static struct btrfs_block_group_cache *
3288 next_block_group(struct btrfs_fs_info *fs_info,
3289 struct btrfs_block_group_cache *cache)
3290 {
3291 struct rb_node *node;
3292
3293 spin_lock(&fs_info->block_group_cache_lock);
3294
3295 /* If our block group was removed, we need a full search. */
3296 if (RB_EMPTY_NODE(&cache->cache_node)) {
3297 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3298
3299 spin_unlock(&fs_info->block_group_cache_lock);
3300 btrfs_put_block_group(cache);
3301 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3302 }
3303 node = rb_next(&cache->cache_node);
3304 btrfs_put_block_group(cache);
3305 if (node) {
3306 cache = rb_entry(node, struct btrfs_block_group_cache,
3307 cache_node);
3308 btrfs_get_block_group(cache);
3309 } else
3310 cache = NULL;
3311 spin_unlock(&fs_info->block_group_cache_lock);
3312 return cache;
3313 }
3314
3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path)
3318 {
3319 struct btrfs_fs_info *fs_info = block_group->fs_info;
3320 struct btrfs_root *root = fs_info->tree_root;
3321 struct inode *inode = NULL;
3322 struct extent_changeset *data_reserved = NULL;
3323 u64 alloc_hint = 0;
3324 int dcs = BTRFS_DC_ERROR;
3325 u64 num_pages = 0;
3326 int retries = 0;
3327 int ret = 0;
3328
3329 /*
3330 * If this block group is smaller than 100 megs don't bother caching the
3331 * block group.
3332 */
3333 if (block_group->key.offset < (100 * SZ_1M)) {
3334 spin_lock(&block_group->lock);
3335 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3336 spin_unlock(&block_group->lock);
3337 return 0;
3338 }
3339
3340 if (trans->aborted)
3341 return 0;
3342 again:
3343 inode = lookup_free_space_inode(fs_info, block_group, path);
3344 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3345 ret = PTR_ERR(inode);
3346 btrfs_release_path(path);
3347 goto out;
3348 }
3349
3350 if (IS_ERR(inode)) {
3351 BUG_ON(retries);
3352 retries++;
3353
3354 if (block_group->ro)
3355 goto out_free;
3356
3357 ret = create_free_space_inode(fs_info, trans, block_group,
3358 path);
3359 if (ret)
3360 goto out_free;
3361 goto again;
3362 }
3363
3364 /*
3365 * We want to set the generation to 0, that way if anything goes wrong
3366 * from here on out we know not to trust this cache when we load up next
3367 * time.
3368 */
3369 BTRFS_I(inode)->generation = 0;
3370 ret = btrfs_update_inode(trans, root, inode);
3371 if (ret) {
3372 /*
3373 * So theoretically we could recover from this, simply set the
3374 * super cache generation to 0 so we know to invalidate the
3375 * cache, but then we'd have to keep track of the block groups
3376 * that fail this way so we know we _have_ to reset this cache
3377 * before the next commit or risk reading stale cache. So to
3378 * limit our exposure to horrible edge cases lets just abort the
3379 * transaction, this only happens in really bad situations
3380 * anyway.
3381 */
3382 btrfs_abort_transaction(trans, ret);
3383 goto out_put;
3384 }
3385 WARN_ON(ret);
3386
3387 /* We've already setup this transaction, go ahead and exit */
3388 if (block_group->cache_generation == trans->transid &&
3389 i_size_read(inode)) {
3390 dcs = BTRFS_DC_SETUP;
3391 goto out_put;
3392 }
3393
3394 if (i_size_read(inode) > 0) {
3395 ret = btrfs_check_trunc_cache_free_space(fs_info,
3396 &fs_info->global_block_rsv);
3397 if (ret)
3398 goto out_put;
3399
3400 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3401 if (ret)
3402 goto out_put;
3403 }
3404
3405 spin_lock(&block_group->lock);
3406 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3407 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3408 /*
3409 * don't bother trying to write stuff out _if_
3410 * a) we're not cached,
3411 * b) we're with nospace_cache mount option,
3412 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3413 */
3414 dcs = BTRFS_DC_WRITTEN;
3415 spin_unlock(&block_group->lock);
3416 goto out_put;
3417 }
3418 spin_unlock(&block_group->lock);
3419
3420 /*
3421 * We hit an ENOSPC when setting up the cache in this transaction, just
3422 * skip doing the setup, we've already cleared the cache so we're safe.
3423 */
3424 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3425 ret = -ENOSPC;
3426 goto out_put;
3427 }
3428
3429 /*
3430 * Try to preallocate enough space based on how big the block group is.
3431 * Keep in mind this has to include any pinned space which could end up
3432 * taking up quite a bit since it's not folded into the other space
3433 * cache.
3434 */
3435 num_pages = div_u64(block_group->key.offset, SZ_256M);
3436 if (!num_pages)
3437 num_pages = 1;
3438
3439 num_pages *= 16;
3440 num_pages *= PAGE_SIZE;
3441
3442 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3443 if (ret)
3444 goto out_put;
3445
3446 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3447 num_pages, num_pages,
3448 &alloc_hint);
3449 /*
3450 * Our cache requires contiguous chunks so that we don't modify a bunch
3451 * of metadata or split extents when writing the cache out, which means
3452 * we can enospc if we are heavily fragmented in addition to just normal
3453 * out of space conditions. So if we hit this just skip setting up any
3454 * other block groups for this transaction, maybe we'll unpin enough
3455 * space the next time around.
3456 */
3457 if (!ret)
3458 dcs = BTRFS_DC_SETUP;
3459 else if (ret == -ENOSPC)
3460 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3461
3462 out_put:
3463 iput(inode);
3464 out_free:
3465 btrfs_release_path(path);
3466 out:
3467 spin_lock(&block_group->lock);
3468 if (!ret && dcs == BTRFS_DC_SETUP)
3469 block_group->cache_generation = trans->transid;
3470 block_group->disk_cache_state = dcs;
3471 spin_unlock(&block_group->lock);
3472
3473 extent_changeset_free(data_reserved);
3474 return ret;
3475 }
3476
3477 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3478 struct btrfs_fs_info *fs_info)
3479 {
3480 struct btrfs_block_group_cache *cache, *tmp;
3481 struct btrfs_transaction *cur_trans = trans->transaction;
3482 struct btrfs_path *path;
3483
3484 if (list_empty(&cur_trans->dirty_bgs) ||
3485 !btrfs_test_opt(fs_info, SPACE_CACHE))
3486 return 0;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 /* Could add new block groups, use _safe just in case */
3493 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3494 dirty_list) {
3495 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3496 cache_save_setup(cache, trans, path);
3497 }
3498
3499 btrfs_free_path(path);
3500 return 0;
3501 }
3502
3503 /*
3504 * transaction commit does final block group cache writeback during a
3505 * critical section where nothing is allowed to change the FS. This is
3506 * required in order for the cache to actually match the block group,
3507 * but can introduce a lot of latency into the commit.
3508 *
3509 * So, btrfs_start_dirty_block_groups is here to kick off block group
3510 * cache IO. There's a chance we'll have to redo some of it if the
3511 * block group changes again during the commit, but it greatly reduces
3512 * the commit latency by getting rid of the easy block groups while
3513 * we're still allowing others to join the commit.
3514 */
3515 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3516 {
3517 struct btrfs_fs_info *fs_info = trans->fs_info;
3518 struct btrfs_block_group_cache *cache;
3519 struct btrfs_transaction *cur_trans = trans->transaction;
3520 int ret = 0;
3521 int should_put;
3522 struct btrfs_path *path = NULL;
3523 LIST_HEAD(dirty);
3524 struct list_head *io = &cur_trans->io_bgs;
3525 int num_started = 0;
3526 int loops = 0;
3527
3528 spin_lock(&cur_trans->dirty_bgs_lock);
3529 if (list_empty(&cur_trans->dirty_bgs)) {
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 return 0;
3532 }
3533 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3534 spin_unlock(&cur_trans->dirty_bgs_lock);
3535
3536 again:
3537 /*
3538 * make sure all the block groups on our dirty list actually
3539 * exist
3540 */
3541 btrfs_create_pending_block_groups(trans);
3542
3543 if (!path) {
3544 path = btrfs_alloc_path();
3545 if (!path)
3546 return -ENOMEM;
3547 }
3548
3549 /*
3550 * cache_write_mutex is here only to save us from balance or automatic
3551 * removal of empty block groups deleting this block group while we are
3552 * writing out the cache
3553 */
3554 mutex_lock(&trans->transaction->cache_write_mutex);
3555 while (!list_empty(&dirty)) {
3556 cache = list_first_entry(&dirty,
3557 struct btrfs_block_group_cache,
3558 dirty_list);
3559 /*
3560 * this can happen if something re-dirties a block
3561 * group that is already under IO. Just wait for it to
3562 * finish and then do it all again
3563 */
3564 if (!list_empty(&cache->io_list)) {
3565 list_del_init(&cache->io_list);
3566 btrfs_wait_cache_io(trans, cache, path);
3567 btrfs_put_block_group(cache);
3568 }
3569
3570
3571 /*
3572 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3573 * if it should update the cache_state. Don't delete
3574 * until after we wait.
3575 *
3576 * Since we're not running in the commit critical section
3577 * we need the dirty_bgs_lock to protect from update_block_group
3578 */
3579 spin_lock(&cur_trans->dirty_bgs_lock);
3580 list_del_init(&cache->dirty_list);
3581 spin_unlock(&cur_trans->dirty_bgs_lock);
3582
3583 should_put = 1;
3584
3585 cache_save_setup(cache, trans, path);
3586
3587 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3588 cache->io_ctl.inode = NULL;
3589 ret = btrfs_write_out_cache(fs_info, trans,
3590 cache, path);
3591 if (ret == 0 && cache->io_ctl.inode) {
3592 num_started++;
3593 should_put = 0;
3594
3595 /*
3596 * The cache_write_mutex is protecting the
3597 * io_list, also refer to the definition of
3598 * btrfs_transaction::io_bgs for more details
3599 */
3600 list_add_tail(&cache->io_list, io);
3601 } else {
3602 /*
3603 * if we failed to write the cache, the
3604 * generation will be bad and life goes on
3605 */
3606 ret = 0;
3607 }
3608 }
3609 if (!ret) {
3610 ret = write_one_cache_group(trans, fs_info,
3611 path, cache);
3612 /*
3613 * Our block group might still be attached to the list
3614 * of new block groups in the transaction handle of some
3615 * other task (struct btrfs_trans_handle->new_bgs). This
3616 * means its block group item isn't yet in the extent
3617 * tree. If this happens ignore the error, as we will
3618 * try again later in the critical section of the
3619 * transaction commit.
3620 */
3621 if (ret == -ENOENT) {
3622 ret = 0;
3623 spin_lock(&cur_trans->dirty_bgs_lock);
3624 if (list_empty(&cache->dirty_list)) {
3625 list_add_tail(&cache->dirty_list,
3626 &cur_trans->dirty_bgs);
3627 btrfs_get_block_group(cache);
3628 }
3629 spin_unlock(&cur_trans->dirty_bgs_lock);
3630 } else if (ret) {
3631 btrfs_abort_transaction(trans, ret);
3632 }
3633 }
3634
3635 /* if its not on the io list, we need to put the block group */
3636 if (should_put)
3637 btrfs_put_block_group(cache);
3638
3639 if (ret)
3640 break;
3641
3642 /*
3643 * Avoid blocking other tasks for too long. It might even save
3644 * us from writing caches for block groups that are going to be
3645 * removed.
3646 */
3647 mutex_unlock(&trans->transaction->cache_write_mutex);
3648 mutex_lock(&trans->transaction->cache_write_mutex);
3649 }
3650 mutex_unlock(&trans->transaction->cache_write_mutex);
3651
3652 /*
3653 * go through delayed refs for all the stuff we've just kicked off
3654 * and then loop back (just once)
3655 */
3656 ret = btrfs_run_delayed_refs(trans, 0);
3657 if (!ret && loops == 0) {
3658 loops++;
3659 spin_lock(&cur_trans->dirty_bgs_lock);
3660 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3661 /*
3662 * dirty_bgs_lock protects us from concurrent block group
3663 * deletes too (not just cache_write_mutex).
3664 */
3665 if (!list_empty(&dirty)) {
3666 spin_unlock(&cur_trans->dirty_bgs_lock);
3667 goto again;
3668 }
3669 spin_unlock(&cur_trans->dirty_bgs_lock);
3670 } else if (ret < 0) {
3671 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3672 }
3673
3674 btrfs_free_path(path);
3675 return ret;
3676 }
3677
3678 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3679 struct btrfs_fs_info *fs_info)
3680 {
3681 struct btrfs_block_group_cache *cache;
3682 struct btrfs_transaction *cur_trans = trans->transaction;
3683 int ret = 0;
3684 int should_put;
3685 struct btrfs_path *path;
3686 struct list_head *io = &cur_trans->io_bgs;
3687 int num_started = 0;
3688
3689 path = btrfs_alloc_path();
3690 if (!path)
3691 return -ENOMEM;
3692
3693 /*
3694 * Even though we are in the critical section of the transaction commit,
3695 * we can still have concurrent tasks adding elements to this
3696 * transaction's list of dirty block groups. These tasks correspond to
3697 * endio free space workers started when writeback finishes for a
3698 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3699 * allocate new block groups as a result of COWing nodes of the root
3700 * tree when updating the free space inode. The writeback for the space
3701 * caches is triggered by an earlier call to
3702 * btrfs_start_dirty_block_groups() and iterations of the following
3703 * loop.
3704 * Also we want to do the cache_save_setup first and then run the
3705 * delayed refs to make sure we have the best chance at doing this all
3706 * in one shot.
3707 */
3708 spin_lock(&cur_trans->dirty_bgs_lock);
3709 while (!list_empty(&cur_trans->dirty_bgs)) {
3710 cache = list_first_entry(&cur_trans->dirty_bgs,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
3713
3714 /*
3715 * this can happen if cache_save_setup re-dirties a block
3716 * group that is already under IO. Just wait for it to
3717 * finish and then do it all again
3718 */
3719 if (!list_empty(&cache->io_list)) {
3720 spin_unlock(&cur_trans->dirty_bgs_lock);
3721 list_del_init(&cache->io_list);
3722 btrfs_wait_cache_io(trans, cache, path);
3723 btrfs_put_block_group(cache);
3724 spin_lock(&cur_trans->dirty_bgs_lock);
3725 }
3726
3727 /*
3728 * don't remove from the dirty list until after we've waited
3729 * on any pending IO
3730 */
3731 list_del_init(&cache->dirty_list);
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733 should_put = 1;
3734
3735 cache_save_setup(cache, trans, path);
3736
3737 if (!ret)
3738 ret = btrfs_run_delayed_refs(trans,
3739 (unsigned long) -1);
3740
3741 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
3743 ret = btrfs_write_out_cache(fs_info, trans,
3744 cache, path);
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
3748 list_add_tail(&cache->io_list, io);
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
3757 if (!ret) {
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
3760 /*
3761 * One of the free space endio workers might have
3762 * created a new block group while updating a free space
3763 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3764 * and hasn't released its transaction handle yet, in
3765 * which case the new block group is still attached to
3766 * its transaction handle and its creation has not
3767 * finished yet (no block group item in the extent tree
3768 * yet, etc). If this is the case, wait for all free
3769 * space endio workers to finish and retry. This is a
3770 * a very rare case so no need for a more efficient and
3771 * complex approach.
3772 */
3773 if (ret == -ENOENT) {
3774 wait_event(cur_trans->writer_wait,
3775 atomic_read(&cur_trans->num_writers) == 1);
3776 ret = write_one_cache_group(trans, fs_info,
3777 path, cache);
3778 }
3779 if (ret)
3780 btrfs_abort_transaction(trans, ret);
3781 }
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
3786 spin_lock(&cur_trans->dirty_bgs_lock);
3787 }
3788 spin_unlock(&cur_trans->dirty_bgs_lock);
3789
3790 /*
3791 * Refer to the definition of io_bgs member for details why it's safe
3792 * to use it without any locking
3793 */
3794 while (!list_empty(io)) {
3795 cache = list_first_entry(io, struct btrfs_block_group_cache,
3796 io_list);
3797 list_del_init(&cache->io_list);
3798 btrfs_wait_cache_io(trans, cache, path);
3799 btrfs_put_block_group(cache);
3800 }
3801
3802 btrfs_free_path(path);
3803 return ret;
3804 }
3805
3806 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3807 {
3808 struct btrfs_block_group_cache *block_group;
3809 int readonly = 0;
3810
3811 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3812 if (!block_group || block_group->ro)
3813 readonly = 1;
3814 if (block_group)
3815 btrfs_put_block_group(block_group);
3816 return readonly;
3817 }
3818
3819 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3820 {
3821 struct btrfs_block_group_cache *bg;
3822 bool ret = true;
3823
3824 bg = btrfs_lookup_block_group(fs_info, bytenr);
3825 if (!bg)
3826 return false;
3827
3828 spin_lock(&bg->lock);
3829 if (bg->ro)
3830 ret = false;
3831 else
3832 atomic_inc(&bg->nocow_writers);
3833 spin_unlock(&bg->lock);
3834
3835 /* no put on block group, done by btrfs_dec_nocow_writers */
3836 if (!ret)
3837 btrfs_put_block_group(bg);
3838
3839 return ret;
3840
3841 }
3842
3843 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3844 {
3845 struct btrfs_block_group_cache *bg;
3846
3847 bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 ASSERT(bg);
3849 if (atomic_dec_and_test(&bg->nocow_writers))
3850 wake_up_var(&bg->nocow_writers);
3851 /*
3852 * Once for our lookup and once for the lookup done by a previous call
3853 * to btrfs_inc_nocow_writers()
3854 */
3855 btrfs_put_block_group(bg);
3856 btrfs_put_block_group(bg);
3857 }
3858
3859 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3860 {
3861 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3862 }
3863
3864 static const char *alloc_name(u64 flags)
3865 {
3866 switch (flags) {
3867 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3868 return "mixed";
3869 case BTRFS_BLOCK_GROUP_METADATA:
3870 return "metadata";
3871 case BTRFS_BLOCK_GROUP_DATA:
3872 return "data";
3873 case BTRFS_BLOCK_GROUP_SYSTEM:
3874 return "system";
3875 default:
3876 WARN_ON(1);
3877 return "invalid-combination";
3878 };
3879 }
3880
3881 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3882 {
3883
3884 struct btrfs_space_info *space_info;
3885 int i;
3886 int ret;
3887
3888 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3889 if (!space_info)
3890 return -ENOMEM;
3891
3892 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3893 GFP_KERNEL);
3894 if (ret) {
3895 kfree(space_info);
3896 return ret;
3897 }
3898
3899 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3900 INIT_LIST_HEAD(&space_info->block_groups[i]);
3901 init_rwsem(&space_info->groups_sem);
3902 spin_lock_init(&space_info->lock);
3903 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3904 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3905 init_waitqueue_head(&space_info->wait);
3906 INIT_LIST_HEAD(&space_info->ro_bgs);
3907 INIT_LIST_HEAD(&space_info->tickets);
3908 INIT_LIST_HEAD(&space_info->priority_tickets);
3909
3910 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3911 info->space_info_kobj, "%s",
3912 alloc_name(space_info->flags));
3913 if (ret) {
3914 percpu_counter_destroy(&space_info->total_bytes_pinned);
3915 kfree(space_info);
3916 return ret;
3917 }
3918
3919 list_add_rcu(&space_info->list, &info->space_info);
3920 if (flags & BTRFS_BLOCK_GROUP_DATA)
3921 info->data_sinfo = space_info;
3922
3923 return ret;
3924 }
3925
3926 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3927 u64 total_bytes, u64 bytes_used,
3928 u64 bytes_readonly,
3929 struct btrfs_space_info **space_info)
3930 {
3931 struct btrfs_space_info *found;
3932 int factor;
3933
3934 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3935 BTRFS_BLOCK_GROUP_RAID10))
3936 factor = 2;
3937 else
3938 factor = 1;
3939
3940 found = __find_space_info(info, flags);
3941 ASSERT(found);
3942 spin_lock(&found->lock);
3943 found->total_bytes += total_bytes;
3944 found->disk_total += total_bytes * factor;
3945 found->bytes_used += bytes_used;
3946 found->disk_used += bytes_used * factor;
3947 found->bytes_readonly += bytes_readonly;
3948 if (total_bytes > 0)
3949 found->full = 0;
3950 space_info_add_new_bytes(info, found, total_bytes -
3951 bytes_used - bytes_readonly);
3952 spin_unlock(&found->lock);
3953 *space_info = found;
3954 }
3955
3956 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3957 {
3958 u64 extra_flags = chunk_to_extended(flags) &
3959 BTRFS_EXTENDED_PROFILE_MASK;
3960
3961 write_seqlock(&fs_info->profiles_lock);
3962 if (flags & BTRFS_BLOCK_GROUP_DATA)
3963 fs_info->avail_data_alloc_bits |= extra_flags;
3964 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3965 fs_info->avail_metadata_alloc_bits |= extra_flags;
3966 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3967 fs_info->avail_system_alloc_bits |= extra_flags;
3968 write_sequnlock(&fs_info->profiles_lock);
3969 }
3970
3971 /*
3972 * returns target flags in extended format or 0 if restripe for this
3973 * chunk_type is not in progress
3974 *
3975 * should be called with balance_lock held
3976 */
3977 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3978 {
3979 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3980 u64 target = 0;
3981
3982 if (!bctl)
3983 return 0;
3984
3985 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3986 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3987 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3988 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3989 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3990 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3991 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3992 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3993 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3994 }
3995
3996 return target;
3997 }
3998
3999 /*
4000 * @flags: available profiles in extended format (see ctree.h)
4001 *
4002 * Returns reduced profile in chunk format. If profile changing is in
4003 * progress (either running or paused) picks the target profile (if it's
4004 * already available), otherwise falls back to plain reducing.
4005 */
4006 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4007 {
4008 u64 num_devices = fs_info->fs_devices->rw_devices;
4009 u64 target;
4010 u64 raid_type;
4011 u64 allowed = 0;
4012
4013 /*
4014 * see if restripe for this chunk_type is in progress, if so
4015 * try to reduce to the target profile
4016 */
4017 spin_lock(&fs_info->balance_lock);
4018 target = get_restripe_target(fs_info, flags);
4019 if (target) {
4020 /* pick target profile only if it's already available */
4021 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4022 spin_unlock(&fs_info->balance_lock);
4023 return extended_to_chunk(target);
4024 }
4025 }
4026 spin_unlock(&fs_info->balance_lock);
4027
4028 /* First, mask out the RAID levels which aren't possible */
4029 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4030 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4031 allowed |= btrfs_raid_array[raid_type].bg_flag;
4032 }
4033 allowed &= flags;
4034
4035 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4036 allowed = BTRFS_BLOCK_GROUP_RAID6;
4037 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4038 allowed = BTRFS_BLOCK_GROUP_RAID5;
4039 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4040 allowed = BTRFS_BLOCK_GROUP_RAID10;
4041 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4042 allowed = BTRFS_BLOCK_GROUP_RAID1;
4043 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4044 allowed = BTRFS_BLOCK_GROUP_RAID0;
4045
4046 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4047
4048 return extended_to_chunk(flags | allowed);
4049 }
4050
4051 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4052 {
4053 unsigned seq;
4054 u64 flags;
4055
4056 do {
4057 flags = orig_flags;
4058 seq = read_seqbegin(&fs_info->profiles_lock);
4059
4060 if (flags & BTRFS_BLOCK_GROUP_DATA)
4061 flags |= fs_info->avail_data_alloc_bits;
4062 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4063 flags |= fs_info->avail_system_alloc_bits;
4064 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4065 flags |= fs_info->avail_metadata_alloc_bits;
4066 } while (read_seqretry(&fs_info->profiles_lock, seq));
4067
4068 return btrfs_reduce_alloc_profile(fs_info, flags);
4069 }
4070
4071 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4072 {
4073 struct btrfs_fs_info *fs_info = root->fs_info;
4074 u64 flags;
4075 u64 ret;
4076
4077 if (data)
4078 flags = BTRFS_BLOCK_GROUP_DATA;
4079 else if (root == fs_info->chunk_root)
4080 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4081 else
4082 flags = BTRFS_BLOCK_GROUP_METADATA;
4083
4084 ret = get_alloc_profile(fs_info, flags);
4085 return ret;
4086 }
4087
4088 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4089 {
4090 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4091 }
4092
4093 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4094 {
4095 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4096 }
4097
4098 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4099 {
4100 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4101 }
4102
4103 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4104 bool may_use_included)
4105 {
4106 ASSERT(s_info);
4107 return s_info->bytes_used + s_info->bytes_reserved +
4108 s_info->bytes_pinned + s_info->bytes_readonly +
4109 (may_use_included ? s_info->bytes_may_use : 0);
4110 }
4111
4112 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4113 {
4114 struct btrfs_root *root = inode->root;
4115 struct btrfs_fs_info *fs_info = root->fs_info;
4116 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4117 u64 used;
4118 int ret = 0;
4119 int need_commit = 2;
4120 int have_pinned_space;
4121
4122 /* make sure bytes are sectorsize aligned */
4123 bytes = ALIGN(bytes, fs_info->sectorsize);
4124
4125 if (btrfs_is_free_space_inode(inode)) {
4126 need_commit = 0;
4127 ASSERT(current->journal_info);
4128 }
4129
4130 again:
4131 /* make sure we have enough space to handle the data first */
4132 spin_lock(&data_sinfo->lock);
4133 used = btrfs_space_info_used(data_sinfo, true);
4134
4135 if (used + bytes > data_sinfo->total_bytes) {
4136 struct btrfs_trans_handle *trans;
4137
4138 /*
4139 * if we don't have enough free bytes in this space then we need
4140 * to alloc a new chunk.
4141 */
4142 if (!data_sinfo->full) {
4143 u64 alloc_target;
4144
4145 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4146 spin_unlock(&data_sinfo->lock);
4147
4148 alloc_target = btrfs_data_alloc_profile(fs_info);
4149 /*
4150 * It is ugly that we don't call nolock join
4151 * transaction for the free space inode case here.
4152 * But it is safe because we only do the data space
4153 * reservation for the free space cache in the
4154 * transaction context, the common join transaction
4155 * just increase the counter of the current transaction
4156 * handler, doesn't try to acquire the trans_lock of
4157 * the fs.
4158 */
4159 trans = btrfs_join_transaction(root);
4160 if (IS_ERR(trans))
4161 return PTR_ERR(trans);
4162
4163 ret = do_chunk_alloc(trans, alloc_target,
4164 CHUNK_ALLOC_NO_FORCE);
4165 btrfs_end_transaction(trans);
4166 if (ret < 0) {
4167 if (ret != -ENOSPC)
4168 return ret;
4169 else {
4170 have_pinned_space = 1;
4171 goto commit_trans;
4172 }
4173 }
4174
4175 goto again;
4176 }
4177
4178 /*
4179 * If we don't have enough pinned space to deal with this
4180 * allocation, and no removed chunk in current transaction,
4181 * don't bother committing the transaction.
4182 */
4183 have_pinned_space = __percpu_counter_compare(
4184 &data_sinfo->total_bytes_pinned,
4185 used + bytes - data_sinfo->total_bytes,
4186 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4187 spin_unlock(&data_sinfo->lock);
4188
4189 /* commit the current transaction and try again */
4190 commit_trans:
4191 if (need_commit) {
4192 need_commit--;
4193
4194 if (need_commit > 0) {
4195 btrfs_start_delalloc_roots(fs_info, -1);
4196 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4197 (u64)-1);
4198 }
4199
4200 trans = btrfs_join_transaction(root);
4201 if (IS_ERR(trans))
4202 return PTR_ERR(trans);
4203 if (have_pinned_space >= 0 ||
4204 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4205 &trans->transaction->flags) ||
4206 need_commit > 0) {
4207 ret = btrfs_commit_transaction(trans);
4208 if (ret)
4209 return ret;
4210 /*
4211 * The cleaner kthread might still be doing iput
4212 * operations. Wait for it to finish so that
4213 * more space is released.
4214 */
4215 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4216 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4217 goto again;
4218 } else {
4219 btrfs_end_transaction(trans);
4220 }
4221 }
4222
4223 trace_btrfs_space_reservation(fs_info,
4224 "space_info:enospc",
4225 data_sinfo->flags, bytes, 1);
4226 return -ENOSPC;
4227 }
4228 data_sinfo->bytes_may_use += bytes;
4229 trace_btrfs_space_reservation(fs_info, "space_info",
4230 data_sinfo->flags, bytes, 1);
4231 spin_unlock(&data_sinfo->lock);
4232
4233 return ret;
4234 }
4235
4236 int btrfs_check_data_free_space(struct inode *inode,
4237 struct extent_changeset **reserved, u64 start, u64 len)
4238 {
4239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4240 int ret;
4241
4242 /* align the range */
4243 len = round_up(start + len, fs_info->sectorsize) -
4244 round_down(start, fs_info->sectorsize);
4245 start = round_down(start, fs_info->sectorsize);
4246
4247 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4248 if (ret < 0)
4249 return ret;
4250
4251 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4252 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4253 if (ret < 0)
4254 btrfs_free_reserved_data_space_noquota(inode, start, len);
4255 else
4256 ret = 0;
4257 return ret;
4258 }
4259
4260 /*
4261 * Called if we need to clear a data reservation for this inode
4262 * Normally in a error case.
4263 *
4264 * This one will *NOT* use accurate qgroup reserved space API, just for case
4265 * which we can't sleep and is sure it won't affect qgroup reserved space.
4266 * Like clear_bit_hook().
4267 */
4268 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4269 u64 len)
4270 {
4271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4272 struct btrfs_space_info *data_sinfo;
4273
4274 /* Make sure the range is aligned to sectorsize */
4275 len = round_up(start + len, fs_info->sectorsize) -
4276 round_down(start, fs_info->sectorsize);
4277 start = round_down(start, fs_info->sectorsize);
4278
4279 data_sinfo = fs_info->data_sinfo;
4280 spin_lock(&data_sinfo->lock);
4281 if (WARN_ON(data_sinfo->bytes_may_use < len))
4282 data_sinfo->bytes_may_use = 0;
4283 else
4284 data_sinfo->bytes_may_use -= len;
4285 trace_btrfs_space_reservation(fs_info, "space_info",
4286 data_sinfo->flags, len, 0);
4287 spin_unlock(&data_sinfo->lock);
4288 }
4289
4290 /*
4291 * Called if we need to clear a data reservation for this inode
4292 * Normally in a error case.
4293 *
4294 * This one will handle the per-inode data rsv map for accurate reserved
4295 * space framework.
4296 */
4297 void btrfs_free_reserved_data_space(struct inode *inode,
4298 struct extent_changeset *reserved, u64 start, u64 len)
4299 {
4300 struct btrfs_root *root = BTRFS_I(inode)->root;
4301
4302 /* Make sure the range is aligned to sectorsize */
4303 len = round_up(start + len, root->fs_info->sectorsize) -
4304 round_down(start, root->fs_info->sectorsize);
4305 start = round_down(start, root->fs_info->sectorsize);
4306
4307 btrfs_free_reserved_data_space_noquota(inode, start, len);
4308 btrfs_qgroup_free_data(inode, reserved, start, len);
4309 }
4310
4311 static void force_metadata_allocation(struct btrfs_fs_info *info)
4312 {
4313 struct list_head *head = &info->space_info;
4314 struct btrfs_space_info *found;
4315
4316 rcu_read_lock();
4317 list_for_each_entry_rcu(found, head, list) {
4318 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4319 found->force_alloc = CHUNK_ALLOC_FORCE;
4320 }
4321 rcu_read_unlock();
4322 }
4323
4324 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4325 {
4326 return (global->size << 1);
4327 }
4328
4329 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4330 struct btrfs_space_info *sinfo, int force)
4331 {
4332 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4333 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4334 u64 thresh;
4335
4336 if (force == CHUNK_ALLOC_FORCE)
4337 return 1;
4338
4339 /*
4340 * We need to take into account the global rsv because for all intents
4341 * and purposes it's used space. Don't worry about locking the
4342 * global_rsv, it doesn't change except when the transaction commits.
4343 */
4344 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4345 bytes_used += calc_global_rsv_need_space(global_rsv);
4346
4347 /*
4348 * in limited mode, we want to have some free space up to
4349 * about 1% of the FS size.
4350 */
4351 if (force == CHUNK_ALLOC_LIMITED) {
4352 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4353 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4354
4355 if (sinfo->total_bytes - bytes_used < thresh)
4356 return 1;
4357 }
4358
4359 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4360 return 0;
4361 return 1;
4362 }
4363
4364 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4365 {
4366 u64 num_dev;
4367
4368 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4369 BTRFS_BLOCK_GROUP_RAID0 |
4370 BTRFS_BLOCK_GROUP_RAID5 |
4371 BTRFS_BLOCK_GROUP_RAID6))
4372 num_dev = fs_info->fs_devices->rw_devices;
4373 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4374 num_dev = 2;
4375 else
4376 num_dev = 1; /* DUP or single */
4377
4378 return num_dev;
4379 }
4380
4381 /*
4382 * If @is_allocation is true, reserve space in the system space info necessary
4383 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4384 * removing a chunk.
4385 */
4386 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4387 {
4388 struct btrfs_fs_info *fs_info = trans->fs_info;
4389 struct btrfs_space_info *info;
4390 u64 left;
4391 u64 thresh;
4392 int ret = 0;
4393 u64 num_devs;
4394
4395 /*
4396 * Needed because we can end up allocating a system chunk and for an
4397 * atomic and race free space reservation in the chunk block reserve.
4398 */
4399 lockdep_assert_held(&fs_info->chunk_mutex);
4400
4401 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4402 spin_lock(&info->lock);
4403 left = info->total_bytes - btrfs_space_info_used(info, true);
4404 spin_unlock(&info->lock);
4405
4406 num_devs = get_profile_num_devs(fs_info, type);
4407
4408 /* num_devs device items to update and 1 chunk item to add or remove */
4409 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4410 btrfs_calc_trans_metadata_size(fs_info, 1);
4411
4412 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4413 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4414 left, thresh, type);
4415 dump_space_info(fs_info, info, 0, 0);
4416 }
4417
4418 if (left < thresh) {
4419 u64 flags = btrfs_system_alloc_profile(fs_info);
4420
4421 /*
4422 * Ignore failure to create system chunk. We might end up not
4423 * needing it, as we might not need to COW all nodes/leafs from
4424 * the paths we visit in the chunk tree (they were already COWed
4425 * or created in the current transaction for example).
4426 */
4427 ret = btrfs_alloc_chunk(trans, flags);
4428 }
4429
4430 if (!ret) {
4431 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4432 &fs_info->chunk_block_rsv,
4433 thresh, BTRFS_RESERVE_NO_FLUSH);
4434 if (!ret)
4435 trans->chunk_bytes_reserved += thresh;
4436 }
4437 }
4438
4439 /*
4440 * If force is CHUNK_ALLOC_FORCE:
4441 * - return 1 if it successfully allocates a chunk,
4442 * - return errors including -ENOSPC otherwise.
4443 * If force is NOT CHUNK_ALLOC_FORCE:
4444 * - return 0 if it doesn't need to allocate a new chunk,
4445 * - return 1 if it successfully allocates a chunk,
4446 * - return errors including -ENOSPC otherwise.
4447 */
4448 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4449 int force)
4450 {
4451 struct btrfs_fs_info *fs_info = trans->fs_info;
4452 struct btrfs_space_info *space_info;
4453 int wait_for_alloc = 0;
4454 int ret = 0;
4455
4456 /* Don't re-enter if we're already allocating a chunk */
4457 if (trans->allocating_chunk)
4458 return -ENOSPC;
4459
4460 space_info = __find_space_info(fs_info, flags);
4461 ASSERT(space_info);
4462
4463 again:
4464 spin_lock(&space_info->lock);
4465 if (force < space_info->force_alloc)
4466 force = space_info->force_alloc;
4467 if (space_info->full) {
4468 if (should_alloc_chunk(fs_info, space_info, force))
4469 ret = -ENOSPC;
4470 else
4471 ret = 0;
4472 spin_unlock(&space_info->lock);
4473 return ret;
4474 }
4475
4476 if (!should_alloc_chunk(fs_info, space_info, force)) {
4477 spin_unlock(&space_info->lock);
4478 return 0;
4479 } else if (space_info->chunk_alloc) {
4480 wait_for_alloc = 1;
4481 } else {
4482 space_info->chunk_alloc = 1;
4483 }
4484
4485 spin_unlock(&space_info->lock);
4486
4487 mutex_lock(&fs_info->chunk_mutex);
4488
4489 /*
4490 * The chunk_mutex is held throughout the entirety of a chunk
4491 * allocation, so once we've acquired the chunk_mutex we know that the
4492 * other guy is done and we need to recheck and see if we should
4493 * allocate.
4494 */
4495 if (wait_for_alloc) {
4496 mutex_unlock(&fs_info->chunk_mutex);
4497 wait_for_alloc = 0;
4498 cond_resched();
4499 goto again;
4500 }
4501
4502 trans->allocating_chunk = true;
4503
4504 /*
4505 * If we have mixed data/metadata chunks we want to make sure we keep
4506 * allocating mixed chunks instead of individual chunks.
4507 */
4508 if (btrfs_mixed_space_info(space_info))
4509 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4510
4511 /*
4512 * if we're doing a data chunk, go ahead and make sure that
4513 * we keep a reasonable number of metadata chunks allocated in the
4514 * FS as well.
4515 */
4516 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4517 fs_info->data_chunk_allocations++;
4518 if (!(fs_info->data_chunk_allocations %
4519 fs_info->metadata_ratio))
4520 force_metadata_allocation(fs_info);
4521 }
4522
4523 /*
4524 * Check if we have enough space in SYSTEM chunk because we may need
4525 * to update devices.
4526 */
4527 check_system_chunk(trans, flags);
4528
4529 ret = btrfs_alloc_chunk(trans, flags);
4530 trans->allocating_chunk = false;
4531
4532 spin_lock(&space_info->lock);
4533 if (ret < 0) {
4534 if (ret == -ENOSPC)
4535 space_info->full = 1;
4536 else
4537 goto out;
4538 } else {
4539 ret = 1;
4540 }
4541
4542 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4543 out:
4544 space_info->chunk_alloc = 0;
4545 spin_unlock(&space_info->lock);
4546 mutex_unlock(&fs_info->chunk_mutex);
4547 /*
4548 * When we allocate a new chunk we reserve space in the chunk block
4549 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4550 * add new nodes/leafs to it if we end up needing to do it when
4551 * inserting the chunk item and updating device items as part of the
4552 * second phase of chunk allocation, performed by
4553 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4554 * large number of new block groups to create in our transaction
4555 * handle's new_bgs list to avoid exhausting the chunk block reserve
4556 * in extreme cases - like having a single transaction create many new
4557 * block groups when starting to write out the free space caches of all
4558 * the block groups that were made dirty during the lifetime of the
4559 * transaction.
4560 */
4561 if (trans->can_flush_pending_bgs &&
4562 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4563 btrfs_create_pending_block_groups(trans);
4564 btrfs_trans_release_chunk_metadata(trans);
4565 }
4566 return ret;
4567 }
4568
4569 static int can_overcommit(struct btrfs_fs_info *fs_info,
4570 struct btrfs_space_info *space_info, u64 bytes,
4571 enum btrfs_reserve_flush_enum flush,
4572 bool system_chunk)
4573 {
4574 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4575 u64 profile;
4576 u64 space_size;
4577 u64 avail;
4578 u64 used;
4579
4580 /* Don't overcommit when in mixed mode. */
4581 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4582 return 0;
4583
4584 if (system_chunk)
4585 profile = btrfs_system_alloc_profile(fs_info);
4586 else
4587 profile = btrfs_metadata_alloc_profile(fs_info);
4588
4589 used = btrfs_space_info_used(space_info, false);
4590
4591 /*
4592 * We only want to allow over committing if we have lots of actual space
4593 * free, but if we don't have enough space to handle the global reserve
4594 * space then we could end up having a real enospc problem when trying
4595 * to allocate a chunk or some other such important allocation.
4596 */
4597 spin_lock(&global_rsv->lock);
4598 space_size = calc_global_rsv_need_space(global_rsv);
4599 spin_unlock(&global_rsv->lock);
4600 if (used + space_size >= space_info->total_bytes)
4601 return 0;
4602
4603 used += space_info->bytes_may_use;
4604
4605 avail = atomic64_read(&fs_info->free_chunk_space);
4606
4607 /*
4608 * If we have dup, raid1 or raid10 then only half of the free
4609 * space is actually useable. For raid56, the space info used
4610 * doesn't include the parity drive, so we don't have to
4611 * change the math
4612 */
4613 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4614 BTRFS_BLOCK_GROUP_RAID1 |
4615 BTRFS_BLOCK_GROUP_RAID10))
4616 avail >>= 1;
4617
4618 /*
4619 * If we aren't flushing all things, let us overcommit up to
4620 * 1/2th of the space. If we can flush, don't let us overcommit
4621 * too much, let it overcommit up to 1/8 of the space.
4622 */
4623 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4624 avail >>= 3;
4625 else
4626 avail >>= 1;
4627
4628 if (used + bytes < space_info->total_bytes + avail)
4629 return 1;
4630 return 0;
4631 }
4632
4633 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4634 unsigned long nr_pages, int nr_items)
4635 {
4636 struct super_block *sb = fs_info->sb;
4637
4638 if (down_read_trylock(&sb->s_umount)) {
4639 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4640 up_read(&sb->s_umount);
4641 } else {
4642 /*
4643 * We needn't worry the filesystem going from r/w to r/o though
4644 * we don't acquire ->s_umount mutex, because the filesystem
4645 * should guarantee the delalloc inodes list be empty after
4646 * the filesystem is readonly(all dirty pages are written to
4647 * the disk).
4648 */
4649 btrfs_start_delalloc_roots(fs_info, nr_items);
4650 if (!current->journal_info)
4651 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4652 }
4653 }
4654
4655 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4656 u64 to_reclaim)
4657 {
4658 u64 bytes;
4659 u64 nr;
4660
4661 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4662 nr = div64_u64(to_reclaim, bytes);
4663 if (!nr)
4664 nr = 1;
4665 return nr;
4666 }
4667
4668 #define EXTENT_SIZE_PER_ITEM SZ_256K
4669
4670 /*
4671 * shrink metadata reservation for delalloc
4672 */
4673 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4674 u64 orig, bool wait_ordered)
4675 {
4676 struct btrfs_space_info *space_info;
4677 struct btrfs_trans_handle *trans;
4678 u64 delalloc_bytes;
4679 u64 max_reclaim;
4680 u64 items;
4681 long time_left;
4682 unsigned long nr_pages;
4683 int loops;
4684
4685 /* Calc the number of the pages we need flush for space reservation */
4686 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4687 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4688
4689 trans = (struct btrfs_trans_handle *)current->journal_info;
4690 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4691
4692 delalloc_bytes = percpu_counter_sum_positive(
4693 &fs_info->delalloc_bytes);
4694 if (delalloc_bytes == 0) {
4695 if (trans)
4696 return;
4697 if (wait_ordered)
4698 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4699 return;
4700 }
4701
4702 loops = 0;
4703 while (delalloc_bytes && loops < 3) {
4704 max_reclaim = min(delalloc_bytes, to_reclaim);
4705 nr_pages = max_reclaim >> PAGE_SHIFT;
4706 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4707 /*
4708 * We need to wait for the async pages to actually start before
4709 * we do anything.
4710 */
4711 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4712 if (!max_reclaim)
4713 goto skip_async;
4714
4715 if (max_reclaim <= nr_pages)
4716 max_reclaim = 0;
4717 else
4718 max_reclaim -= nr_pages;
4719
4720 wait_event(fs_info->async_submit_wait,
4721 atomic_read(&fs_info->async_delalloc_pages) <=
4722 (int)max_reclaim);
4723 skip_async:
4724 spin_lock(&space_info->lock);
4725 if (list_empty(&space_info->tickets) &&
4726 list_empty(&space_info->priority_tickets)) {
4727 spin_unlock(&space_info->lock);
4728 break;
4729 }
4730 spin_unlock(&space_info->lock);
4731
4732 loops++;
4733 if (wait_ordered && !trans) {
4734 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4735 } else {
4736 time_left = schedule_timeout_killable(1);
4737 if (time_left)
4738 break;
4739 }
4740 delalloc_bytes = percpu_counter_sum_positive(
4741 &fs_info->delalloc_bytes);
4742 }
4743 }
4744
4745 struct reserve_ticket {
4746 u64 bytes;
4747 int error;
4748 struct list_head list;
4749 wait_queue_head_t wait;
4750 };
4751
4752 /**
4753 * maybe_commit_transaction - possibly commit the transaction if its ok to
4754 * @root - the root we're allocating for
4755 * @bytes - the number of bytes we want to reserve
4756 * @force - force the commit
4757 *
4758 * This will check to make sure that committing the transaction will actually
4759 * get us somewhere and then commit the transaction if it does. Otherwise it
4760 * will return -ENOSPC.
4761 */
4762 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4763 struct btrfs_space_info *space_info)
4764 {
4765 struct reserve_ticket *ticket = NULL;
4766 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4767 struct btrfs_trans_handle *trans;
4768 u64 bytes;
4769
4770 trans = (struct btrfs_trans_handle *)current->journal_info;
4771 if (trans)
4772 return -EAGAIN;
4773
4774 spin_lock(&space_info->lock);
4775 if (!list_empty(&space_info->priority_tickets))
4776 ticket = list_first_entry(&space_info->priority_tickets,
4777 struct reserve_ticket, list);
4778 else if (!list_empty(&space_info->tickets))
4779 ticket = list_first_entry(&space_info->tickets,
4780 struct reserve_ticket, list);
4781 bytes = (ticket) ? ticket->bytes : 0;
4782 spin_unlock(&space_info->lock);
4783
4784 if (!bytes)
4785 return 0;
4786
4787 /* See if there is enough pinned space to make this reservation */
4788 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4789 bytes,
4790 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4791 goto commit;
4792
4793 /*
4794 * See if there is some space in the delayed insertion reservation for
4795 * this reservation.
4796 */
4797 if (space_info != delayed_rsv->space_info)
4798 return -ENOSPC;
4799
4800 spin_lock(&delayed_rsv->lock);
4801 if (delayed_rsv->size > bytes)
4802 bytes = 0;
4803 else
4804 bytes -= delayed_rsv->size;
4805 spin_unlock(&delayed_rsv->lock);
4806
4807 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4808 bytes,
4809 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4810 return -ENOSPC;
4811 }
4812
4813 commit:
4814 trans = btrfs_join_transaction(fs_info->extent_root);
4815 if (IS_ERR(trans))
4816 return -ENOSPC;
4817
4818 return btrfs_commit_transaction(trans);
4819 }
4820
4821 /*
4822 * Try to flush some data based on policy set by @state. This is only advisory
4823 * and may fail for various reasons. The caller is supposed to examine the
4824 * state of @space_info to detect the outcome.
4825 */
4826 static void flush_space(struct btrfs_fs_info *fs_info,
4827 struct btrfs_space_info *space_info, u64 num_bytes,
4828 int state)
4829 {
4830 struct btrfs_root *root = fs_info->extent_root;
4831 struct btrfs_trans_handle *trans;
4832 int nr;
4833 int ret = 0;
4834
4835 switch (state) {
4836 case FLUSH_DELAYED_ITEMS_NR:
4837 case FLUSH_DELAYED_ITEMS:
4838 if (state == FLUSH_DELAYED_ITEMS_NR)
4839 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4840 else
4841 nr = -1;
4842
4843 trans = btrfs_join_transaction(root);
4844 if (IS_ERR(trans)) {
4845 ret = PTR_ERR(trans);
4846 break;
4847 }
4848 ret = btrfs_run_delayed_items_nr(trans, nr);
4849 btrfs_end_transaction(trans);
4850 break;
4851 case FLUSH_DELALLOC:
4852 case FLUSH_DELALLOC_WAIT:
4853 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4854 state == FLUSH_DELALLOC_WAIT);
4855 break;
4856 case ALLOC_CHUNK:
4857 trans = btrfs_join_transaction(root);
4858 if (IS_ERR(trans)) {
4859 ret = PTR_ERR(trans);
4860 break;
4861 }
4862 ret = do_chunk_alloc(trans,
4863 btrfs_metadata_alloc_profile(fs_info),
4864 CHUNK_ALLOC_NO_FORCE);
4865 btrfs_end_transaction(trans);
4866 if (ret > 0 || ret == -ENOSPC)
4867 ret = 0;
4868 break;
4869 case COMMIT_TRANS:
4870 ret = may_commit_transaction(fs_info, space_info);
4871 break;
4872 default:
4873 ret = -ENOSPC;
4874 break;
4875 }
4876
4877 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4878 ret);
4879 return;
4880 }
4881
4882 static inline u64
4883 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4884 struct btrfs_space_info *space_info,
4885 bool system_chunk)
4886 {
4887 struct reserve_ticket *ticket;
4888 u64 used;
4889 u64 expected;
4890 u64 to_reclaim = 0;
4891
4892 list_for_each_entry(ticket, &space_info->tickets, list)
4893 to_reclaim += ticket->bytes;
4894 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4895 to_reclaim += ticket->bytes;
4896 if (to_reclaim)
4897 return to_reclaim;
4898
4899 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4900 if (can_overcommit(fs_info, space_info, to_reclaim,
4901 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4902 return 0;
4903
4904 used = btrfs_space_info_used(space_info, true);
4905
4906 if (can_overcommit(fs_info, space_info, SZ_1M,
4907 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4908 expected = div_factor_fine(space_info->total_bytes, 95);
4909 else
4910 expected = div_factor_fine(space_info->total_bytes, 90);
4911
4912 if (used > expected)
4913 to_reclaim = used - expected;
4914 else
4915 to_reclaim = 0;
4916 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4917 space_info->bytes_reserved);
4918 return to_reclaim;
4919 }
4920
4921 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4922 struct btrfs_space_info *space_info,
4923 u64 used, bool system_chunk)
4924 {
4925 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4926
4927 /* If we're just plain full then async reclaim just slows us down. */
4928 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4929 return 0;
4930
4931 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4932 system_chunk))
4933 return 0;
4934
4935 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4936 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4937 }
4938
4939 static void wake_all_tickets(struct list_head *head)
4940 {
4941 struct reserve_ticket *ticket;
4942
4943 while (!list_empty(head)) {
4944 ticket = list_first_entry(head, struct reserve_ticket, list);
4945 list_del_init(&ticket->list);
4946 ticket->error = -ENOSPC;
4947 wake_up(&ticket->wait);
4948 }
4949 }
4950
4951 /*
4952 * This is for normal flushers, we can wait all goddamned day if we want to. We
4953 * will loop and continuously try to flush as long as we are making progress.
4954 * We count progress as clearing off tickets each time we have to loop.
4955 */
4956 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4957 {
4958 struct btrfs_fs_info *fs_info;
4959 struct btrfs_space_info *space_info;
4960 u64 to_reclaim;
4961 int flush_state;
4962 int commit_cycles = 0;
4963 u64 last_tickets_id;
4964
4965 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4966 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4967
4968 spin_lock(&space_info->lock);
4969 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4970 false);
4971 if (!to_reclaim) {
4972 space_info->flush = 0;
4973 spin_unlock(&space_info->lock);
4974 return;
4975 }
4976 last_tickets_id = space_info->tickets_id;
4977 spin_unlock(&space_info->lock);
4978
4979 flush_state = FLUSH_DELAYED_ITEMS_NR;
4980 do {
4981 flush_space(fs_info, space_info, to_reclaim, flush_state);
4982 spin_lock(&space_info->lock);
4983 if (list_empty(&space_info->tickets)) {
4984 space_info->flush = 0;
4985 spin_unlock(&space_info->lock);
4986 return;
4987 }
4988 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4989 space_info,
4990 false);
4991 if (last_tickets_id == space_info->tickets_id) {
4992 flush_state++;
4993 } else {
4994 last_tickets_id = space_info->tickets_id;
4995 flush_state = FLUSH_DELAYED_ITEMS_NR;
4996 if (commit_cycles)
4997 commit_cycles--;
4998 }
4999
5000 if (flush_state > COMMIT_TRANS) {
5001 commit_cycles++;
5002 if (commit_cycles > 2) {
5003 wake_all_tickets(&space_info->tickets);
5004 space_info->flush = 0;
5005 } else {
5006 flush_state = FLUSH_DELAYED_ITEMS_NR;
5007 }
5008 }
5009 spin_unlock(&space_info->lock);
5010 } while (flush_state <= COMMIT_TRANS);
5011 }
5012
5013 void btrfs_init_async_reclaim_work(struct work_struct *work)
5014 {
5015 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5016 }
5017
5018 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5019 struct btrfs_space_info *space_info,
5020 struct reserve_ticket *ticket)
5021 {
5022 u64 to_reclaim;
5023 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5024
5025 spin_lock(&space_info->lock);
5026 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5027 false);
5028 if (!to_reclaim) {
5029 spin_unlock(&space_info->lock);
5030 return;
5031 }
5032 spin_unlock(&space_info->lock);
5033
5034 do {
5035 flush_space(fs_info, space_info, to_reclaim, flush_state);
5036 flush_state++;
5037 spin_lock(&space_info->lock);
5038 if (ticket->bytes == 0) {
5039 spin_unlock(&space_info->lock);
5040 return;
5041 }
5042 spin_unlock(&space_info->lock);
5043
5044 /*
5045 * Priority flushers can't wait on delalloc without
5046 * deadlocking.
5047 */
5048 if (flush_state == FLUSH_DELALLOC ||
5049 flush_state == FLUSH_DELALLOC_WAIT)
5050 flush_state = ALLOC_CHUNK;
5051 } while (flush_state < COMMIT_TRANS);
5052 }
5053
5054 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5055 struct btrfs_space_info *space_info,
5056 struct reserve_ticket *ticket, u64 orig_bytes)
5057
5058 {
5059 DEFINE_WAIT(wait);
5060 int ret = 0;
5061
5062 spin_lock(&space_info->lock);
5063 while (ticket->bytes > 0 && ticket->error == 0) {
5064 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5065 if (ret) {
5066 ret = -EINTR;
5067 break;
5068 }
5069 spin_unlock(&space_info->lock);
5070
5071 schedule();
5072
5073 finish_wait(&ticket->wait, &wait);
5074 spin_lock(&space_info->lock);
5075 }
5076 if (!ret)
5077 ret = ticket->error;
5078 if (!list_empty(&ticket->list))
5079 list_del_init(&ticket->list);
5080 if (ticket->bytes && ticket->bytes < orig_bytes) {
5081 u64 num_bytes = orig_bytes - ticket->bytes;
5082 space_info->bytes_may_use -= num_bytes;
5083 trace_btrfs_space_reservation(fs_info, "space_info",
5084 space_info->flags, num_bytes, 0);
5085 }
5086 spin_unlock(&space_info->lock);
5087
5088 return ret;
5089 }
5090
5091 /**
5092 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5093 * @root - the root we're allocating for
5094 * @space_info - the space info we want to allocate from
5095 * @orig_bytes - the number of bytes we want
5096 * @flush - whether or not we can flush to make our reservation
5097 *
5098 * This will reserve orig_bytes number of bytes from the space info associated
5099 * with the block_rsv. If there is not enough space it will make an attempt to
5100 * flush out space to make room. It will do this by flushing delalloc if
5101 * possible or committing the transaction. If flush is 0 then no attempts to
5102 * regain reservations will be made and this will fail if there is not enough
5103 * space already.
5104 */
5105 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5106 struct btrfs_space_info *space_info,
5107 u64 orig_bytes,
5108 enum btrfs_reserve_flush_enum flush,
5109 bool system_chunk)
5110 {
5111 struct reserve_ticket ticket;
5112 u64 used;
5113 int ret = 0;
5114
5115 ASSERT(orig_bytes);
5116 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5117
5118 spin_lock(&space_info->lock);
5119 ret = -ENOSPC;
5120 used = btrfs_space_info_used(space_info, true);
5121
5122 /*
5123 * If we have enough space then hooray, make our reservation and carry
5124 * on. If not see if we can overcommit, and if we can, hooray carry on.
5125 * If not things get more complicated.
5126 */
5127 if (used + orig_bytes <= space_info->total_bytes) {
5128 space_info->bytes_may_use += orig_bytes;
5129 trace_btrfs_space_reservation(fs_info, "space_info",
5130 space_info->flags, orig_bytes, 1);
5131 ret = 0;
5132 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5133 system_chunk)) {
5134 space_info->bytes_may_use += orig_bytes;
5135 trace_btrfs_space_reservation(fs_info, "space_info",
5136 space_info->flags, orig_bytes, 1);
5137 ret = 0;
5138 }
5139
5140 /*
5141 * If we couldn't make a reservation then setup our reservation ticket
5142 * and kick the async worker if it's not already running.
5143 *
5144 * If we are a priority flusher then we just need to add our ticket to
5145 * the list and we will do our own flushing further down.
5146 */
5147 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5148 ticket.bytes = orig_bytes;
5149 ticket.error = 0;
5150 init_waitqueue_head(&ticket.wait);
5151 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5152 list_add_tail(&ticket.list, &space_info->tickets);
5153 if (!space_info->flush) {
5154 space_info->flush = 1;
5155 trace_btrfs_trigger_flush(fs_info,
5156 space_info->flags,
5157 orig_bytes, flush,
5158 "enospc");
5159 queue_work(system_unbound_wq,
5160 &fs_info->async_reclaim_work);
5161 }
5162 } else {
5163 list_add_tail(&ticket.list,
5164 &space_info->priority_tickets);
5165 }
5166 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5167 used += orig_bytes;
5168 /*
5169 * We will do the space reservation dance during log replay,
5170 * which means we won't have fs_info->fs_root set, so don't do
5171 * the async reclaim as we will panic.
5172 */
5173 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5174 need_do_async_reclaim(fs_info, space_info,
5175 used, system_chunk) &&
5176 !work_busy(&fs_info->async_reclaim_work)) {
5177 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5178 orig_bytes, flush, "preempt");
5179 queue_work(system_unbound_wq,
5180 &fs_info->async_reclaim_work);
5181 }
5182 }
5183 spin_unlock(&space_info->lock);
5184 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5185 return ret;
5186
5187 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5188 return wait_reserve_ticket(fs_info, space_info, &ticket,
5189 orig_bytes);
5190
5191 ret = 0;
5192 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5193 spin_lock(&space_info->lock);
5194 if (ticket.bytes) {
5195 if (ticket.bytes < orig_bytes) {
5196 u64 num_bytes = orig_bytes - ticket.bytes;
5197 space_info->bytes_may_use -= num_bytes;
5198 trace_btrfs_space_reservation(fs_info, "space_info",
5199 space_info->flags,
5200 num_bytes, 0);
5201
5202 }
5203 list_del_init(&ticket.list);
5204 ret = -ENOSPC;
5205 }
5206 spin_unlock(&space_info->lock);
5207 ASSERT(list_empty(&ticket.list));
5208 return ret;
5209 }
5210
5211 /**
5212 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5213 * @root - the root we're allocating for
5214 * @block_rsv - the block_rsv we're allocating for
5215 * @orig_bytes - the number of bytes we want
5216 * @flush - whether or not we can flush to make our reservation
5217 *
5218 * This will reserve orgi_bytes number of bytes from the space info associated
5219 * with the block_rsv. If there is not enough space it will make an attempt to
5220 * flush out space to make room. It will do this by flushing delalloc if
5221 * possible or committing the transaction. If flush is 0 then no attempts to
5222 * regain reservations will be made and this will fail if there is not enough
5223 * space already.
5224 */
5225 static int reserve_metadata_bytes(struct btrfs_root *root,
5226 struct btrfs_block_rsv *block_rsv,
5227 u64 orig_bytes,
5228 enum btrfs_reserve_flush_enum flush)
5229 {
5230 struct btrfs_fs_info *fs_info = root->fs_info;
5231 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5232 int ret;
5233 bool system_chunk = (root == fs_info->chunk_root);
5234
5235 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5236 orig_bytes, flush, system_chunk);
5237 if (ret == -ENOSPC &&
5238 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5239 if (block_rsv != global_rsv &&
5240 !block_rsv_use_bytes(global_rsv, orig_bytes))
5241 ret = 0;
5242 }
5243 if (ret == -ENOSPC) {
5244 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5245 block_rsv->space_info->flags,
5246 orig_bytes, 1);
5247
5248 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5249 dump_space_info(fs_info, block_rsv->space_info,
5250 orig_bytes, 0);
5251 }
5252 return ret;
5253 }
5254
5255 static struct btrfs_block_rsv *get_block_rsv(
5256 const struct btrfs_trans_handle *trans,
5257 const struct btrfs_root *root)
5258 {
5259 struct btrfs_fs_info *fs_info = root->fs_info;
5260 struct btrfs_block_rsv *block_rsv = NULL;
5261
5262 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5263 (root == fs_info->csum_root && trans->adding_csums) ||
5264 (root == fs_info->uuid_root))
5265 block_rsv = trans->block_rsv;
5266
5267 if (!block_rsv)
5268 block_rsv = root->block_rsv;
5269
5270 if (!block_rsv)
5271 block_rsv = &fs_info->empty_block_rsv;
5272
5273 return block_rsv;
5274 }
5275
5276 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5277 u64 num_bytes)
5278 {
5279 int ret = -ENOSPC;
5280 spin_lock(&block_rsv->lock);
5281 if (block_rsv->reserved >= num_bytes) {
5282 block_rsv->reserved -= num_bytes;
5283 if (block_rsv->reserved < block_rsv->size)
5284 block_rsv->full = 0;
5285 ret = 0;
5286 }
5287 spin_unlock(&block_rsv->lock);
5288 return ret;
5289 }
5290
5291 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5292 u64 num_bytes, int update_size)
5293 {
5294 spin_lock(&block_rsv->lock);
5295 block_rsv->reserved += num_bytes;
5296 if (update_size)
5297 block_rsv->size += num_bytes;
5298 else if (block_rsv->reserved >= block_rsv->size)
5299 block_rsv->full = 1;
5300 spin_unlock(&block_rsv->lock);
5301 }
5302
5303 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5304 struct btrfs_block_rsv *dest, u64 num_bytes,
5305 int min_factor)
5306 {
5307 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5308 u64 min_bytes;
5309
5310 if (global_rsv->space_info != dest->space_info)
5311 return -ENOSPC;
5312
5313 spin_lock(&global_rsv->lock);
5314 min_bytes = div_factor(global_rsv->size, min_factor);
5315 if (global_rsv->reserved < min_bytes + num_bytes) {
5316 spin_unlock(&global_rsv->lock);
5317 return -ENOSPC;
5318 }
5319 global_rsv->reserved -= num_bytes;
5320 if (global_rsv->reserved < global_rsv->size)
5321 global_rsv->full = 0;
5322 spin_unlock(&global_rsv->lock);
5323
5324 block_rsv_add_bytes(dest, num_bytes, 1);
5325 return 0;
5326 }
5327
5328 /*
5329 * This is for space we already have accounted in space_info->bytes_may_use, so
5330 * basically when we're returning space from block_rsv's.
5331 */
5332 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5333 struct btrfs_space_info *space_info,
5334 u64 num_bytes)
5335 {
5336 struct reserve_ticket *ticket;
5337 struct list_head *head;
5338 u64 used;
5339 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5340 bool check_overcommit = false;
5341
5342 spin_lock(&space_info->lock);
5343 head = &space_info->priority_tickets;
5344
5345 /*
5346 * If we are over our limit then we need to check and see if we can
5347 * overcommit, and if we can't then we just need to free up our space
5348 * and not satisfy any requests.
5349 */
5350 used = btrfs_space_info_used(space_info, true);
5351 if (used - num_bytes >= space_info->total_bytes)
5352 check_overcommit = true;
5353 again:
5354 while (!list_empty(head) && num_bytes) {
5355 ticket = list_first_entry(head, struct reserve_ticket,
5356 list);
5357 /*
5358 * We use 0 bytes because this space is already reserved, so
5359 * adding the ticket space would be a double count.
5360 */
5361 if (check_overcommit &&
5362 !can_overcommit(fs_info, space_info, 0, flush, false))
5363 break;
5364 if (num_bytes >= ticket->bytes) {
5365 list_del_init(&ticket->list);
5366 num_bytes -= ticket->bytes;
5367 ticket->bytes = 0;
5368 space_info->tickets_id++;
5369 wake_up(&ticket->wait);
5370 } else {
5371 ticket->bytes -= num_bytes;
5372 num_bytes = 0;
5373 }
5374 }
5375
5376 if (num_bytes && head == &space_info->priority_tickets) {
5377 head = &space_info->tickets;
5378 flush = BTRFS_RESERVE_FLUSH_ALL;
5379 goto again;
5380 }
5381 space_info->bytes_may_use -= num_bytes;
5382 trace_btrfs_space_reservation(fs_info, "space_info",
5383 space_info->flags, num_bytes, 0);
5384 spin_unlock(&space_info->lock);
5385 }
5386
5387 /*
5388 * This is for newly allocated space that isn't accounted in
5389 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5390 * we use this helper.
5391 */
5392 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5393 struct btrfs_space_info *space_info,
5394 u64 num_bytes)
5395 {
5396 struct reserve_ticket *ticket;
5397 struct list_head *head = &space_info->priority_tickets;
5398
5399 again:
5400 while (!list_empty(head) && num_bytes) {
5401 ticket = list_first_entry(head, struct reserve_ticket,
5402 list);
5403 if (num_bytes >= ticket->bytes) {
5404 trace_btrfs_space_reservation(fs_info, "space_info",
5405 space_info->flags,
5406 ticket->bytes, 1);
5407 list_del_init(&ticket->list);
5408 num_bytes -= ticket->bytes;
5409 space_info->bytes_may_use += ticket->bytes;
5410 ticket->bytes = 0;
5411 space_info->tickets_id++;
5412 wake_up(&ticket->wait);
5413 } else {
5414 trace_btrfs_space_reservation(fs_info, "space_info",
5415 space_info->flags,
5416 num_bytes, 1);
5417 space_info->bytes_may_use += num_bytes;
5418 ticket->bytes -= num_bytes;
5419 num_bytes = 0;
5420 }
5421 }
5422
5423 if (num_bytes && head == &space_info->priority_tickets) {
5424 head = &space_info->tickets;
5425 goto again;
5426 }
5427 }
5428
5429 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5430 struct btrfs_block_rsv *block_rsv,
5431 struct btrfs_block_rsv *dest, u64 num_bytes,
5432 u64 *qgroup_to_release_ret)
5433 {
5434 struct btrfs_space_info *space_info = block_rsv->space_info;
5435 u64 qgroup_to_release = 0;
5436 u64 ret;
5437
5438 spin_lock(&block_rsv->lock);
5439 if (num_bytes == (u64)-1) {
5440 num_bytes = block_rsv->size;
5441 qgroup_to_release = block_rsv->qgroup_rsv_size;
5442 }
5443 block_rsv->size -= num_bytes;
5444 if (block_rsv->reserved >= block_rsv->size) {
5445 num_bytes = block_rsv->reserved - block_rsv->size;
5446 block_rsv->reserved = block_rsv->size;
5447 block_rsv->full = 1;
5448 } else {
5449 num_bytes = 0;
5450 }
5451 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5452 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5453 block_rsv->qgroup_rsv_size;
5454 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5455 } else {
5456 qgroup_to_release = 0;
5457 }
5458 spin_unlock(&block_rsv->lock);
5459
5460 ret = num_bytes;
5461 if (num_bytes > 0) {
5462 if (dest) {
5463 spin_lock(&dest->lock);
5464 if (!dest->full) {
5465 u64 bytes_to_add;
5466
5467 bytes_to_add = dest->size - dest->reserved;
5468 bytes_to_add = min(num_bytes, bytes_to_add);
5469 dest->reserved += bytes_to_add;
5470 if (dest->reserved >= dest->size)
5471 dest->full = 1;
5472 num_bytes -= bytes_to_add;
5473 }
5474 spin_unlock(&dest->lock);
5475 }
5476 if (num_bytes)
5477 space_info_add_old_bytes(fs_info, space_info,
5478 num_bytes);
5479 }
5480 if (qgroup_to_release_ret)
5481 *qgroup_to_release_ret = qgroup_to_release;
5482 return ret;
5483 }
5484
5485 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5486 struct btrfs_block_rsv *dst, u64 num_bytes,
5487 int update_size)
5488 {
5489 int ret;
5490
5491 ret = block_rsv_use_bytes(src, num_bytes);
5492 if (ret)
5493 return ret;
5494
5495 block_rsv_add_bytes(dst, num_bytes, update_size);
5496 return 0;
5497 }
5498
5499 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5500 {
5501 memset(rsv, 0, sizeof(*rsv));
5502 spin_lock_init(&rsv->lock);
5503 rsv->type = type;
5504 }
5505
5506 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5507 struct btrfs_block_rsv *rsv,
5508 unsigned short type)
5509 {
5510 btrfs_init_block_rsv(rsv, type);
5511 rsv->space_info = __find_space_info(fs_info,
5512 BTRFS_BLOCK_GROUP_METADATA);
5513 }
5514
5515 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5516 unsigned short type)
5517 {
5518 struct btrfs_block_rsv *block_rsv;
5519
5520 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5521 if (!block_rsv)
5522 return NULL;
5523
5524 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5525 return block_rsv;
5526 }
5527
5528 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5529 struct btrfs_block_rsv *rsv)
5530 {
5531 if (!rsv)
5532 return;
5533 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5534 kfree(rsv);
5535 }
5536
5537 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5538 {
5539 kfree(rsv);
5540 }
5541
5542 int btrfs_block_rsv_add(struct btrfs_root *root,
5543 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5544 enum btrfs_reserve_flush_enum flush)
5545 {
5546 int ret;
5547
5548 if (num_bytes == 0)
5549 return 0;
5550
5551 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5552 if (!ret) {
5553 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5554 return 0;
5555 }
5556
5557 return ret;
5558 }
5559
5560 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5561 {
5562 u64 num_bytes = 0;
5563 int ret = -ENOSPC;
5564
5565 if (!block_rsv)
5566 return 0;
5567
5568 spin_lock(&block_rsv->lock);
5569 num_bytes = div_factor(block_rsv->size, min_factor);
5570 if (block_rsv->reserved >= num_bytes)
5571 ret = 0;
5572 spin_unlock(&block_rsv->lock);
5573
5574 return ret;
5575 }
5576
5577 int btrfs_block_rsv_refill(struct btrfs_root *root,
5578 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5579 enum btrfs_reserve_flush_enum flush)
5580 {
5581 u64 num_bytes = 0;
5582 int ret = -ENOSPC;
5583
5584 if (!block_rsv)
5585 return 0;
5586
5587 spin_lock(&block_rsv->lock);
5588 num_bytes = min_reserved;
5589 if (block_rsv->reserved >= num_bytes)
5590 ret = 0;
5591 else
5592 num_bytes -= block_rsv->reserved;
5593 spin_unlock(&block_rsv->lock);
5594
5595 if (!ret)
5596 return 0;
5597
5598 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5599 if (!ret) {
5600 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5601 return 0;
5602 }
5603
5604 return ret;
5605 }
5606
5607 /**
5608 * btrfs_inode_rsv_refill - refill the inode block rsv.
5609 * @inode - the inode we are refilling.
5610 * @flush - the flusing restriction.
5611 *
5612 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5613 * block_rsv->size as the minimum size. We'll either refill the missing amount
5614 * or return if we already have enough space. This will also handle the resreve
5615 * tracepoint for the reserved amount.
5616 */
5617 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5618 enum btrfs_reserve_flush_enum flush)
5619 {
5620 struct btrfs_root *root = inode->root;
5621 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5622 u64 num_bytes = 0;
5623 u64 qgroup_num_bytes = 0;
5624 int ret = -ENOSPC;
5625
5626 spin_lock(&block_rsv->lock);
5627 if (block_rsv->reserved < block_rsv->size)
5628 num_bytes = block_rsv->size - block_rsv->reserved;
5629 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5630 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5631 block_rsv->qgroup_rsv_reserved;
5632 spin_unlock(&block_rsv->lock);
5633
5634 if (num_bytes == 0)
5635 return 0;
5636
5637 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5638 if (ret)
5639 return ret;
5640 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5641 if (!ret) {
5642 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5643 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5644 btrfs_ino(inode), num_bytes, 1);
5645
5646 /* Don't forget to increase qgroup_rsv_reserved */
5647 spin_lock(&block_rsv->lock);
5648 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5649 spin_unlock(&block_rsv->lock);
5650 } else
5651 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5652 return ret;
5653 }
5654
5655 /**
5656 * btrfs_inode_rsv_release - release any excessive reservation.
5657 * @inode - the inode we need to release from.
5658 * @qgroup_free - free or convert qgroup meta.
5659 * Unlike normal operation, qgroup meta reservation needs to know if we are
5660 * freeing qgroup reservation or just converting it into per-trans. Normally
5661 * @qgroup_free is true for error handling, and false for normal release.
5662 *
5663 * This is the same as btrfs_block_rsv_release, except that it handles the
5664 * tracepoint for the reservation.
5665 */
5666 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5667 {
5668 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5669 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5670 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5671 u64 released = 0;
5672 u64 qgroup_to_release = 0;
5673
5674 /*
5675 * Since we statically set the block_rsv->size we just want to say we
5676 * are releasing 0 bytes, and then we'll just get the reservation over
5677 * the size free'd.
5678 */
5679 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5680 &qgroup_to_release);
5681 if (released > 0)
5682 trace_btrfs_space_reservation(fs_info, "delalloc",
5683 btrfs_ino(inode), released, 0);
5684 if (qgroup_free)
5685 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5686 else
5687 btrfs_qgroup_convert_reserved_meta(inode->root,
5688 qgroup_to_release);
5689 }
5690
5691 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5692 struct btrfs_block_rsv *block_rsv,
5693 u64 num_bytes)
5694 {
5695 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5696
5697 if (global_rsv == block_rsv ||
5698 block_rsv->space_info != global_rsv->space_info)
5699 global_rsv = NULL;
5700 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5701 }
5702
5703 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5704 {
5705 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5706 struct btrfs_space_info *sinfo = block_rsv->space_info;
5707 u64 num_bytes;
5708
5709 /*
5710 * The global block rsv is based on the size of the extent tree, the
5711 * checksum tree and the root tree. If the fs is empty we want to set
5712 * it to a minimal amount for safety.
5713 */
5714 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5715 btrfs_root_used(&fs_info->csum_root->root_item) +
5716 btrfs_root_used(&fs_info->tree_root->root_item);
5717 num_bytes = max_t(u64, num_bytes, SZ_16M);
5718
5719 spin_lock(&sinfo->lock);
5720 spin_lock(&block_rsv->lock);
5721
5722 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5723
5724 if (block_rsv->reserved < block_rsv->size) {
5725 num_bytes = btrfs_space_info_used(sinfo, true);
5726 if (sinfo->total_bytes > num_bytes) {
5727 num_bytes = sinfo->total_bytes - num_bytes;
5728 num_bytes = min(num_bytes,
5729 block_rsv->size - block_rsv->reserved);
5730 block_rsv->reserved += num_bytes;
5731 sinfo->bytes_may_use += num_bytes;
5732 trace_btrfs_space_reservation(fs_info, "space_info",
5733 sinfo->flags, num_bytes,
5734 1);
5735 }
5736 } else if (block_rsv->reserved > block_rsv->size) {
5737 num_bytes = block_rsv->reserved - block_rsv->size;
5738 sinfo->bytes_may_use -= num_bytes;
5739 trace_btrfs_space_reservation(fs_info, "space_info",
5740 sinfo->flags, num_bytes, 0);
5741 block_rsv->reserved = block_rsv->size;
5742 }
5743
5744 if (block_rsv->reserved == block_rsv->size)
5745 block_rsv->full = 1;
5746 else
5747 block_rsv->full = 0;
5748
5749 spin_unlock(&block_rsv->lock);
5750 spin_unlock(&sinfo->lock);
5751 }
5752
5753 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5754 {
5755 struct btrfs_space_info *space_info;
5756
5757 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5758 fs_info->chunk_block_rsv.space_info = space_info;
5759
5760 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5761 fs_info->global_block_rsv.space_info = space_info;
5762 fs_info->trans_block_rsv.space_info = space_info;
5763 fs_info->empty_block_rsv.space_info = space_info;
5764 fs_info->delayed_block_rsv.space_info = space_info;
5765
5766 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5767 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5768 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5769 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5770 if (fs_info->quota_root)
5771 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5772 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5773
5774 update_global_block_rsv(fs_info);
5775 }
5776
5777 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5778 {
5779 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5780 (u64)-1, NULL);
5781 WARN_ON(fs_info->trans_block_rsv.size > 0);
5782 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5783 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5784 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5785 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5786 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5787 }
5788
5789
5790 /*
5791 * To be called after all the new block groups attached to the transaction
5792 * handle have been created (btrfs_create_pending_block_groups()).
5793 */
5794 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5795 {
5796 struct btrfs_fs_info *fs_info = trans->fs_info;
5797
5798 if (!trans->chunk_bytes_reserved)
5799 return;
5800
5801 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5802
5803 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5804 trans->chunk_bytes_reserved, NULL);
5805 trans->chunk_bytes_reserved = 0;
5806 }
5807
5808 /*
5809 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5810 * root: the root of the parent directory
5811 * rsv: block reservation
5812 * items: the number of items that we need do reservation
5813 * qgroup_reserved: used to return the reserved size in qgroup
5814 *
5815 * This function is used to reserve the space for snapshot/subvolume
5816 * creation and deletion. Those operations are different with the
5817 * common file/directory operations, they change two fs/file trees
5818 * and root tree, the number of items that the qgroup reserves is
5819 * different with the free space reservation. So we can not use
5820 * the space reservation mechanism in start_transaction().
5821 */
5822 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5823 struct btrfs_block_rsv *rsv,
5824 int items,
5825 bool use_global_rsv)
5826 {
5827 u64 num_bytes;
5828 int ret;
5829 struct btrfs_fs_info *fs_info = root->fs_info;
5830 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5831
5832 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5833 /* One for parent inode, two for dir entries */
5834 num_bytes = 3 * fs_info->nodesize;
5835 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
5836 if (ret)
5837 return ret;
5838 } else {
5839 num_bytes = 0;
5840 }
5841
5842 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5843 rsv->space_info = __find_space_info(fs_info,
5844 BTRFS_BLOCK_GROUP_METADATA);
5845 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5846 BTRFS_RESERVE_FLUSH_ALL);
5847
5848 if (ret == -ENOSPC && use_global_rsv)
5849 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5850
5851 if (ret && num_bytes)
5852 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
5853
5854 return ret;
5855 }
5856
5857 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5858 struct btrfs_block_rsv *rsv)
5859 {
5860 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5861 }
5862
5863 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5864 struct btrfs_inode *inode)
5865 {
5866 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5867 u64 reserve_size = 0;
5868 u64 qgroup_rsv_size = 0;
5869 u64 csum_leaves;
5870 unsigned outstanding_extents;
5871
5872 lockdep_assert_held(&inode->lock);
5873 outstanding_extents = inode->outstanding_extents;
5874 if (outstanding_extents)
5875 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5876 outstanding_extents + 1);
5877 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5878 inode->csum_bytes);
5879 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5880 csum_leaves);
5881 /*
5882 * For qgroup rsv, the calculation is very simple:
5883 * account one nodesize for each outstanding extent
5884 *
5885 * This is overestimating in most cases.
5886 */
5887 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
5888
5889 spin_lock(&block_rsv->lock);
5890 block_rsv->size = reserve_size;
5891 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5892 spin_unlock(&block_rsv->lock);
5893 }
5894
5895 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5896 {
5897 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5898 unsigned nr_extents;
5899 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5900 int ret = 0;
5901 bool delalloc_lock = true;
5902
5903 /* If we are a free space inode we need to not flush since we will be in
5904 * the middle of a transaction commit. We also don't need the delalloc
5905 * mutex since we won't race with anybody. We need this mostly to make
5906 * lockdep shut its filthy mouth.
5907 *
5908 * If we have a transaction open (can happen if we call truncate_block
5909 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5910 */
5911 if (btrfs_is_free_space_inode(inode)) {
5912 flush = BTRFS_RESERVE_NO_FLUSH;
5913 delalloc_lock = false;
5914 } else {
5915 if (current->journal_info)
5916 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5917
5918 if (btrfs_transaction_in_commit(fs_info))
5919 schedule_timeout(1);
5920 }
5921
5922 if (delalloc_lock)
5923 mutex_lock(&inode->delalloc_mutex);
5924
5925 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5926
5927 /* Add our new extents and calculate the new rsv size. */
5928 spin_lock(&inode->lock);
5929 nr_extents = count_max_extents(num_bytes);
5930 btrfs_mod_outstanding_extents(inode, nr_extents);
5931 inode->csum_bytes += num_bytes;
5932 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5933 spin_unlock(&inode->lock);
5934
5935 ret = btrfs_inode_rsv_refill(inode, flush);
5936 if (unlikely(ret))
5937 goto out_fail;
5938
5939 if (delalloc_lock)
5940 mutex_unlock(&inode->delalloc_mutex);
5941 return 0;
5942
5943 out_fail:
5944 spin_lock(&inode->lock);
5945 nr_extents = count_max_extents(num_bytes);
5946 btrfs_mod_outstanding_extents(inode, -nr_extents);
5947 inode->csum_bytes -= num_bytes;
5948 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5949 spin_unlock(&inode->lock);
5950
5951 btrfs_inode_rsv_release(inode, true);
5952 if (delalloc_lock)
5953 mutex_unlock(&inode->delalloc_mutex);
5954 return ret;
5955 }
5956
5957 /**
5958 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5959 * @inode: the inode to release the reservation for.
5960 * @num_bytes: the number of bytes we are releasing.
5961 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5962 *
5963 * This will release the metadata reservation for an inode. This can be called
5964 * once we complete IO for a given set of bytes to release their metadata
5965 * reservations, or on error for the same reason.
5966 */
5967 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5968 bool qgroup_free)
5969 {
5970 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5971
5972 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5973 spin_lock(&inode->lock);
5974 inode->csum_bytes -= num_bytes;
5975 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5976 spin_unlock(&inode->lock);
5977
5978 if (btrfs_is_testing(fs_info))
5979 return;
5980
5981 btrfs_inode_rsv_release(inode, qgroup_free);
5982 }
5983
5984 /**
5985 * btrfs_delalloc_release_extents - release our outstanding_extents
5986 * @inode: the inode to balance the reservation for.
5987 * @num_bytes: the number of bytes we originally reserved with
5988 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5989 *
5990 * When we reserve space we increase outstanding_extents for the extents we may
5991 * add. Once we've set the range as delalloc or created our ordered extents we
5992 * have outstanding_extents to track the real usage, so we use this to free our
5993 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5994 * with btrfs_delalloc_reserve_metadata.
5995 */
5996 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
5997 bool qgroup_free)
5998 {
5999 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6000 unsigned num_extents;
6001
6002 spin_lock(&inode->lock);
6003 num_extents = count_max_extents(num_bytes);
6004 btrfs_mod_outstanding_extents(inode, -num_extents);
6005 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6006 spin_unlock(&inode->lock);
6007
6008 if (btrfs_is_testing(fs_info))
6009 return;
6010
6011 btrfs_inode_rsv_release(inode, qgroup_free);
6012 }
6013
6014 /**
6015 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6016 * delalloc
6017 * @inode: inode we're writing to
6018 * @start: start range we are writing to
6019 * @len: how long the range we are writing to
6020 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6021 * current reservation.
6022 *
6023 * This will do the following things
6024 *
6025 * o reserve space in data space info for num bytes
6026 * and reserve precious corresponding qgroup space
6027 * (Done in check_data_free_space)
6028 *
6029 * o reserve space for metadata space, based on the number of outstanding
6030 * extents and how much csums will be needed
6031 * also reserve metadata space in a per root over-reserve method.
6032 * o add to the inodes->delalloc_bytes
6033 * o add it to the fs_info's delalloc inodes list.
6034 * (Above 3 all done in delalloc_reserve_metadata)
6035 *
6036 * Return 0 for success
6037 * Return <0 for error(-ENOSPC or -EQUOT)
6038 */
6039 int btrfs_delalloc_reserve_space(struct inode *inode,
6040 struct extent_changeset **reserved, u64 start, u64 len)
6041 {
6042 int ret;
6043
6044 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6045 if (ret < 0)
6046 return ret;
6047 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6048 if (ret < 0)
6049 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6050 return ret;
6051 }
6052
6053 /**
6054 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6055 * @inode: inode we're releasing space for
6056 * @start: start position of the space already reserved
6057 * @len: the len of the space already reserved
6058 * @release_bytes: the len of the space we consumed or didn't use
6059 *
6060 * This function will release the metadata space that was not used and will
6061 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6062 * list if there are no delalloc bytes left.
6063 * Also it will handle the qgroup reserved space.
6064 */
6065 void btrfs_delalloc_release_space(struct inode *inode,
6066 struct extent_changeset *reserved,
6067 u64 start, u64 len, bool qgroup_free)
6068 {
6069 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6070 btrfs_free_reserved_data_space(inode, reserved, start, len);
6071 }
6072
6073 static int update_block_group(struct btrfs_trans_handle *trans,
6074 struct btrfs_fs_info *info, u64 bytenr,
6075 u64 num_bytes, int alloc)
6076 {
6077 struct btrfs_block_group_cache *cache = NULL;
6078 u64 total = num_bytes;
6079 u64 old_val;
6080 u64 byte_in_group;
6081 int factor;
6082
6083 /* block accounting for super block */
6084 spin_lock(&info->delalloc_root_lock);
6085 old_val = btrfs_super_bytes_used(info->super_copy);
6086 if (alloc)
6087 old_val += num_bytes;
6088 else
6089 old_val -= num_bytes;
6090 btrfs_set_super_bytes_used(info->super_copy, old_val);
6091 spin_unlock(&info->delalloc_root_lock);
6092
6093 while (total) {
6094 cache = btrfs_lookup_block_group(info, bytenr);
6095 if (!cache)
6096 return -ENOENT;
6097 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6098 BTRFS_BLOCK_GROUP_RAID1 |
6099 BTRFS_BLOCK_GROUP_RAID10))
6100 factor = 2;
6101 else
6102 factor = 1;
6103 /*
6104 * If this block group has free space cache written out, we
6105 * need to make sure to load it if we are removing space. This
6106 * is because we need the unpinning stage to actually add the
6107 * space back to the block group, otherwise we will leak space.
6108 */
6109 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6110 cache_block_group(cache, 1);
6111
6112 byte_in_group = bytenr - cache->key.objectid;
6113 WARN_ON(byte_in_group > cache->key.offset);
6114
6115 spin_lock(&cache->space_info->lock);
6116 spin_lock(&cache->lock);
6117
6118 if (btrfs_test_opt(info, SPACE_CACHE) &&
6119 cache->disk_cache_state < BTRFS_DC_CLEAR)
6120 cache->disk_cache_state = BTRFS_DC_CLEAR;
6121
6122 old_val = btrfs_block_group_used(&cache->item);
6123 num_bytes = min(total, cache->key.offset - byte_in_group);
6124 if (alloc) {
6125 old_val += num_bytes;
6126 btrfs_set_block_group_used(&cache->item, old_val);
6127 cache->reserved -= num_bytes;
6128 cache->space_info->bytes_reserved -= num_bytes;
6129 cache->space_info->bytes_used += num_bytes;
6130 cache->space_info->disk_used += num_bytes * factor;
6131 spin_unlock(&cache->lock);
6132 spin_unlock(&cache->space_info->lock);
6133 } else {
6134 old_val -= num_bytes;
6135 btrfs_set_block_group_used(&cache->item, old_val);
6136 cache->pinned += num_bytes;
6137 cache->space_info->bytes_pinned += num_bytes;
6138 cache->space_info->bytes_used -= num_bytes;
6139 cache->space_info->disk_used -= num_bytes * factor;
6140 spin_unlock(&cache->lock);
6141 spin_unlock(&cache->space_info->lock);
6142
6143 trace_btrfs_space_reservation(info, "pinned",
6144 cache->space_info->flags,
6145 num_bytes, 1);
6146 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6147 num_bytes,
6148 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6149 set_extent_dirty(info->pinned_extents,
6150 bytenr, bytenr + num_bytes - 1,
6151 GFP_NOFS | __GFP_NOFAIL);
6152 }
6153
6154 spin_lock(&trans->transaction->dirty_bgs_lock);
6155 if (list_empty(&cache->dirty_list)) {
6156 list_add_tail(&cache->dirty_list,
6157 &trans->transaction->dirty_bgs);
6158 trans->transaction->num_dirty_bgs++;
6159 btrfs_get_block_group(cache);
6160 }
6161 spin_unlock(&trans->transaction->dirty_bgs_lock);
6162
6163 /*
6164 * No longer have used bytes in this block group, queue it for
6165 * deletion. We do this after adding the block group to the
6166 * dirty list to avoid races between cleaner kthread and space
6167 * cache writeout.
6168 */
6169 if (!alloc && old_val == 0) {
6170 spin_lock(&info->unused_bgs_lock);
6171 if (list_empty(&cache->bg_list)) {
6172 btrfs_get_block_group(cache);
6173 trace_btrfs_add_unused_block_group(cache);
6174 list_add_tail(&cache->bg_list,
6175 &info->unused_bgs);
6176 }
6177 spin_unlock(&info->unused_bgs_lock);
6178 }
6179
6180 btrfs_put_block_group(cache);
6181 total -= num_bytes;
6182 bytenr += num_bytes;
6183 }
6184 return 0;
6185 }
6186
6187 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6188 {
6189 struct btrfs_block_group_cache *cache;
6190 u64 bytenr;
6191
6192 spin_lock(&fs_info->block_group_cache_lock);
6193 bytenr = fs_info->first_logical_byte;
6194 spin_unlock(&fs_info->block_group_cache_lock);
6195
6196 if (bytenr < (u64)-1)
6197 return bytenr;
6198
6199 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6200 if (!cache)
6201 return 0;
6202
6203 bytenr = cache->key.objectid;
6204 btrfs_put_block_group(cache);
6205
6206 return bytenr;
6207 }
6208
6209 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6210 struct btrfs_block_group_cache *cache,
6211 u64 bytenr, u64 num_bytes, int reserved)
6212 {
6213 spin_lock(&cache->space_info->lock);
6214 spin_lock(&cache->lock);
6215 cache->pinned += num_bytes;
6216 cache->space_info->bytes_pinned += num_bytes;
6217 if (reserved) {
6218 cache->reserved -= num_bytes;
6219 cache->space_info->bytes_reserved -= num_bytes;
6220 }
6221 spin_unlock(&cache->lock);
6222 spin_unlock(&cache->space_info->lock);
6223
6224 trace_btrfs_space_reservation(fs_info, "pinned",
6225 cache->space_info->flags, num_bytes, 1);
6226 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6227 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6228 set_extent_dirty(fs_info->pinned_extents, bytenr,
6229 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6230 return 0;
6231 }
6232
6233 /*
6234 * this function must be called within transaction
6235 */
6236 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6237 u64 bytenr, u64 num_bytes, int reserved)
6238 {
6239 struct btrfs_block_group_cache *cache;
6240
6241 cache = btrfs_lookup_block_group(fs_info, bytenr);
6242 BUG_ON(!cache); /* Logic error */
6243
6244 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6245
6246 btrfs_put_block_group(cache);
6247 return 0;
6248 }
6249
6250 /*
6251 * this function must be called within transaction
6252 */
6253 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6254 u64 bytenr, u64 num_bytes)
6255 {
6256 struct btrfs_block_group_cache *cache;
6257 int ret;
6258
6259 cache = btrfs_lookup_block_group(fs_info, bytenr);
6260 if (!cache)
6261 return -EINVAL;
6262
6263 /*
6264 * pull in the free space cache (if any) so that our pin
6265 * removes the free space from the cache. We have load_only set
6266 * to one because the slow code to read in the free extents does check
6267 * the pinned extents.
6268 */
6269 cache_block_group(cache, 1);
6270
6271 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6272
6273 /* remove us from the free space cache (if we're there at all) */
6274 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6275 btrfs_put_block_group(cache);
6276 return ret;
6277 }
6278
6279 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6280 u64 start, u64 num_bytes)
6281 {
6282 int ret;
6283 struct btrfs_block_group_cache *block_group;
6284 struct btrfs_caching_control *caching_ctl;
6285
6286 block_group = btrfs_lookup_block_group(fs_info, start);
6287 if (!block_group)
6288 return -EINVAL;
6289
6290 cache_block_group(block_group, 0);
6291 caching_ctl = get_caching_control(block_group);
6292
6293 if (!caching_ctl) {
6294 /* Logic error */
6295 BUG_ON(!block_group_cache_done(block_group));
6296 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6297 } else {
6298 mutex_lock(&caching_ctl->mutex);
6299
6300 if (start >= caching_ctl->progress) {
6301 ret = add_excluded_extent(fs_info, start, num_bytes);
6302 } else if (start + num_bytes <= caching_ctl->progress) {
6303 ret = btrfs_remove_free_space(block_group,
6304 start, num_bytes);
6305 } else {
6306 num_bytes = caching_ctl->progress - start;
6307 ret = btrfs_remove_free_space(block_group,
6308 start, num_bytes);
6309 if (ret)
6310 goto out_lock;
6311
6312 num_bytes = (start + num_bytes) -
6313 caching_ctl->progress;
6314 start = caching_ctl->progress;
6315 ret = add_excluded_extent(fs_info, start, num_bytes);
6316 }
6317 out_lock:
6318 mutex_unlock(&caching_ctl->mutex);
6319 put_caching_control(caching_ctl);
6320 }
6321 btrfs_put_block_group(block_group);
6322 return ret;
6323 }
6324
6325 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6326 struct extent_buffer *eb)
6327 {
6328 struct btrfs_file_extent_item *item;
6329 struct btrfs_key key;
6330 int found_type;
6331 int i;
6332 int ret = 0;
6333
6334 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6335 return 0;
6336
6337 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6338 btrfs_item_key_to_cpu(eb, &key, i);
6339 if (key.type != BTRFS_EXTENT_DATA_KEY)
6340 continue;
6341 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6342 found_type = btrfs_file_extent_type(eb, item);
6343 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6344 continue;
6345 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6346 continue;
6347 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6348 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6349 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6350 if (ret)
6351 break;
6352 }
6353
6354 return ret;
6355 }
6356
6357 static void
6358 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6359 {
6360 atomic_inc(&bg->reservations);
6361 }
6362
6363 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6364 const u64 start)
6365 {
6366 struct btrfs_block_group_cache *bg;
6367
6368 bg = btrfs_lookup_block_group(fs_info, start);
6369 ASSERT(bg);
6370 if (atomic_dec_and_test(&bg->reservations))
6371 wake_up_var(&bg->reservations);
6372 btrfs_put_block_group(bg);
6373 }
6374
6375 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6376 {
6377 struct btrfs_space_info *space_info = bg->space_info;
6378
6379 ASSERT(bg->ro);
6380
6381 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6382 return;
6383
6384 /*
6385 * Our block group is read only but before we set it to read only,
6386 * some task might have had allocated an extent from it already, but it
6387 * has not yet created a respective ordered extent (and added it to a
6388 * root's list of ordered extents).
6389 * Therefore wait for any task currently allocating extents, since the
6390 * block group's reservations counter is incremented while a read lock
6391 * on the groups' semaphore is held and decremented after releasing
6392 * the read access on that semaphore and creating the ordered extent.
6393 */
6394 down_write(&space_info->groups_sem);
6395 up_write(&space_info->groups_sem);
6396
6397 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6398 }
6399
6400 /**
6401 * btrfs_add_reserved_bytes - update the block_group and space info counters
6402 * @cache: The cache we are manipulating
6403 * @ram_bytes: The number of bytes of file content, and will be same to
6404 * @num_bytes except for the compress path.
6405 * @num_bytes: The number of bytes in question
6406 * @delalloc: The blocks are allocated for the delalloc write
6407 *
6408 * This is called by the allocator when it reserves space. If this is a
6409 * reservation and the block group has become read only we cannot make the
6410 * reservation and return -EAGAIN, otherwise this function always succeeds.
6411 */
6412 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6413 u64 ram_bytes, u64 num_bytes, int delalloc)
6414 {
6415 struct btrfs_space_info *space_info = cache->space_info;
6416 int ret = 0;
6417
6418 spin_lock(&space_info->lock);
6419 spin_lock(&cache->lock);
6420 if (cache->ro) {
6421 ret = -EAGAIN;
6422 } else {
6423 cache->reserved += num_bytes;
6424 space_info->bytes_reserved += num_bytes;
6425
6426 trace_btrfs_space_reservation(cache->fs_info,
6427 "space_info", space_info->flags,
6428 ram_bytes, 0);
6429 space_info->bytes_may_use -= ram_bytes;
6430 if (delalloc)
6431 cache->delalloc_bytes += num_bytes;
6432 }
6433 spin_unlock(&cache->lock);
6434 spin_unlock(&space_info->lock);
6435 return ret;
6436 }
6437
6438 /**
6439 * btrfs_free_reserved_bytes - update the block_group and space info counters
6440 * @cache: The cache we are manipulating
6441 * @num_bytes: The number of bytes in question
6442 * @delalloc: The blocks are allocated for the delalloc write
6443 *
6444 * This is called by somebody who is freeing space that was never actually used
6445 * on disk. For example if you reserve some space for a new leaf in transaction
6446 * A and before transaction A commits you free that leaf, you call this with
6447 * reserve set to 0 in order to clear the reservation.
6448 */
6449
6450 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6451 u64 num_bytes, int delalloc)
6452 {
6453 struct btrfs_space_info *space_info = cache->space_info;
6454 int ret = 0;
6455
6456 spin_lock(&space_info->lock);
6457 spin_lock(&cache->lock);
6458 if (cache->ro)
6459 space_info->bytes_readonly += num_bytes;
6460 cache->reserved -= num_bytes;
6461 space_info->bytes_reserved -= num_bytes;
6462
6463 if (delalloc)
6464 cache->delalloc_bytes -= num_bytes;
6465 spin_unlock(&cache->lock);
6466 spin_unlock(&space_info->lock);
6467 return ret;
6468 }
6469 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6470 {
6471 struct btrfs_caching_control *next;
6472 struct btrfs_caching_control *caching_ctl;
6473 struct btrfs_block_group_cache *cache;
6474
6475 down_write(&fs_info->commit_root_sem);
6476
6477 list_for_each_entry_safe(caching_ctl, next,
6478 &fs_info->caching_block_groups, list) {
6479 cache = caching_ctl->block_group;
6480 if (block_group_cache_done(cache)) {
6481 cache->last_byte_to_unpin = (u64)-1;
6482 list_del_init(&caching_ctl->list);
6483 put_caching_control(caching_ctl);
6484 } else {
6485 cache->last_byte_to_unpin = caching_ctl->progress;
6486 }
6487 }
6488
6489 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6490 fs_info->pinned_extents = &fs_info->freed_extents[1];
6491 else
6492 fs_info->pinned_extents = &fs_info->freed_extents[0];
6493
6494 up_write(&fs_info->commit_root_sem);
6495
6496 update_global_block_rsv(fs_info);
6497 }
6498
6499 /*
6500 * Returns the free cluster for the given space info and sets empty_cluster to
6501 * what it should be based on the mount options.
6502 */
6503 static struct btrfs_free_cluster *
6504 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6505 struct btrfs_space_info *space_info, u64 *empty_cluster)
6506 {
6507 struct btrfs_free_cluster *ret = NULL;
6508
6509 *empty_cluster = 0;
6510 if (btrfs_mixed_space_info(space_info))
6511 return ret;
6512
6513 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6514 ret = &fs_info->meta_alloc_cluster;
6515 if (btrfs_test_opt(fs_info, SSD))
6516 *empty_cluster = SZ_2M;
6517 else
6518 *empty_cluster = SZ_64K;
6519 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6520 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6521 *empty_cluster = SZ_2M;
6522 ret = &fs_info->data_alloc_cluster;
6523 }
6524
6525 return ret;
6526 }
6527
6528 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6529 u64 start, u64 end,
6530 const bool return_free_space)
6531 {
6532 struct btrfs_block_group_cache *cache = NULL;
6533 struct btrfs_space_info *space_info;
6534 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6535 struct btrfs_free_cluster *cluster = NULL;
6536 u64 len;
6537 u64 total_unpinned = 0;
6538 u64 empty_cluster = 0;
6539 bool readonly;
6540
6541 while (start <= end) {
6542 readonly = false;
6543 if (!cache ||
6544 start >= cache->key.objectid + cache->key.offset) {
6545 if (cache)
6546 btrfs_put_block_group(cache);
6547 total_unpinned = 0;
6548 cache = btrfs_lookup_block_group(fs_info, start);
6549 BUG_ON(!cache); /* Logic error */
6550
6551 cluster = fetch_cluster_info(fs_info,
6552 cache->space_info,
6553 &empty_cluster);
6554 empty_cluster <<= 1;
6555 }
6556
6557 len = cache->key.objectid + cache->key.offset - start;
6558 len = min(len, end + 1 - start);
6559
6560 if (start < cache->last_byte_to_unpin) {
6561 len = min(len, cache->last_byte_to_unpin - start);
6562 if (return_free_space)
6563 btrfs_add_free_space(cache, start, len);
6564 }
6565
6566 start += len;
6567 total_unpinned += len;
6568 space_info = cache->space_info;
6569
6570 /*
6571 * If this space cluster has been marked as fragmented and we've
6572 * unpinned enough in this block group to potentially allow a
6573 * cluster to be created inside of it go ahead and clear the
6574 * fragmented check.
6575 */
6576 if (cluster && cluster->fragmented &&
6577 total_unpinned > empty_cluster) {
6578 spin_lock(&cluster->lock);
6579 cluster->fragmented = 0;
6580 spin_unlock(&cluster->lock);
6581 }
6582
6583 spin_lock(&space_info->lock);
6584 spin_lock(&cache->lock);
6585 cache->pinned -= len;
6586 space_info->bytes_pinned -= len;
6587
6588 trace_btrfs_space_reservation(fs_info, "pinned",
6589 space_info->flags, len, 0);
6590 space_info->max_extent_size = 0;
6591 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6592 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6593 if (cache->ro) {
6594 space_info->bytes_readonly += len;
6595 readonly = true;
6596 }
6597 spin_unlock(&cache->lock);
6598 if (!readonly && return_free_space &&
6599 global_rsv->space_info == space_info) {
6600 u64 to_add = len;
6601
6602 spin_lock(&global_rsv->lock);
6603 if (!global_rsv->full) {
6604 to_add = min(len, global_rsv->size -
6605 global_rsv->reserved);
6606 global_rsv->reserved += to_add;
6607 space_info->bytes_may_use += to_add;
6608 if (global_rsv->reserved >= global_rsv->size)
6609 global_rsv->full = 1;
6610 trace_btrfs_space_reservation(fs_info,
6611 "space_info",
6612 space_info->flags,
6613 to_add, 1);
6614 len -= to_add;
6615 }
6616 spin_unlock(&global_rsv->lock);
6617 /* Add to any tickets we may have */
6618 if (len)
6619 space_info_add_new_bytes(fs_info, space_info,
6620 len);
6621 }
6622 spin_unlock(&space_info->lock);
6623 }
6624
6625 if (cache)
6626 btrfs_put_block_group(cache);
6627 return 0;
6628 }
6629
6630 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6631 {
6632 struct btrfs_fs_info *fs_info = trans->fs_info;
6633 struct btrfs_block_group_cache *block_group, *tmp;
6634 struct list_head *deleted_bgs;
6635 struct extent_io_tree *unpin;
6636 u64 start;
6637 u64 end;
6638 int ret;
6639
6640 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6641 unpin = &fs_info->freed_extents[1];
6642 else
6643 unpin = &fs_info->freed_extents[0];
6644
6645 while (!trans->aborted) {
6646 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6647 ret = find_first_extent_bit(unpin, 0, &start, &end,
6648 EXTENT_DIRTY, NULL);
6649 if (ret) {
6650 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6651 break;
6652 }
6653
6654 if (btrfs_test_opt(fs_info, DISCARD))
6655 ret = btrfs_discard_extent(fs_info, start,
6656 end + 1 - start, NULL);
6657
6658 clear_extent_dirty(unpin, start, end);
6659 unpin_extent_range(fs_info, start, end, true);
6660 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6661 cond_resched();
6662 }
6663
6664 /*
6665 * Transaction is finished. We don't need the lock anymore. We
6666 * do need to clean up the block groups in case of a transaction
6667 * abort.
6668 */
6669 deleted_bgs = &trans->transaction->deleted_bgs;
6670 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6671 u64 trimmed = 0;
6672
6673 ret = -EROFS;
6674 if (!trans->aborted)
6675 ret = btrfs_discard_extent(fs_info,
6676 block_group->key.objectid,
6677 block_group->key.offset,
6678 &trimmed);
6679
6680 list_del_init(&block_group->bg_list);
6681 btrfs_put_block_group_trimming(block_group);
6682 btrfs_put_block_group(block_group);
6683
6684 if (ret) {
6685 const char *errstr = btrfs_decode_error(ret);
6686 btrfs_warn(fs_info,
6687 "discard failed while removing blockgroup: errno=%d %s",
6688 ret, errstr);
6689 }
6690 }
6691
6692 return 0;
6693 }
6694
6695 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6696 struct btrfs_delayed_ref_node *node, u64 parent,
6697 u64 root_objectid, u64 owner_objectid,
6698 u64 owner_offset, int refs_to_drop,
6699 struct btrfs_delayed_extent_op *extent_op)
6700 {
6701 struct btrfs_fs_info *info = trans->fs_info;
6702 struct btrfs_key key;
6703 struct btrfs_path *path;
6704 struct btrfs_root *extent_root = info->extent_root;
6705 struct extent_buffer *leaf;
6706 struct btrfs_extent_item *ei;
6707 struct btrfs_extent_inline_ref *iref;
6708 int ret;
6709 int is_data;
6710 int extent_slot = 0;
6711 int found_extent = 0;
6712 int num_to_del = 1;
6713 u32 item_size;
6714 u64 refs;
6715 u64 bytenr = node->bytenr;
6716 u64 num_bytes = node->num_bytes;
6717 int last_ref = 0;
6718 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6719
6720 path = btrfs_alloc_path();
6721 if (!path)
6722 return -ENOMEM;
6723
6724 path->reada = READA_FORWARD;
6725 path->leave_spinning = 1;
6726
6727 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6728 BUG_ON(!is_data && refs_to_drop != 1);
6729
6730 if (is_data)
6731 skinny_metadata = false;
6732
6733 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6734 parent, root_objectid, owner_objectid,
6735 owner_offset);
6736 if (ret == 0) {
6737 extent_slot = path->slots[0];
6738 while (extent_slot >= 0) {
6739 btrfs_item_key_to_cpu(path->nodes[0], &key,
6740 extent_slot);
6741 if (key.objectid != bytenr)
6742 break;
6743 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6744 key.offset == num_bytes) {
6745 found_extent = 1;
6746 break;
6747 }
6748 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6749 key.offset == owner_objectid) {
6750 found_extent = 1;
6751 break;
6752 }
6753 if (path->slots[0] - extent_slot > 5)
6754 break;
6755 extent_slot--;
6756 }
6757
6758 if (!found_extent) {
6759 BUG_ON(iref);
6760 ret = remove_extent_backref(trans, path, NULL,
6761 refs_to_drop,
6762 is_data, &last_ref);
6763 if (ret) {
6764 btrfs_abort_transaction(trans, ret);
6765 goto out;
6766 }
6767 btrfs_release_path(path);
6768 path->leave_spinning = 1;
6769
6770 key.objectid = bytenr;
6771 key.type = BTRFS_EXTENT_ITEM_KEY;
6772 key.offset = num_bytes;
6773
6774 if (!is_data && skinny_metadata) {
6775 key.type = BTRFS_METADATA_ITEM_KEY;
6776 key.offset = owner_objectid;
6777 }
6778
6779 ret = btrfs_search_slot(trans, extent_root,
6780 &key, path, -1, 1);
6781 if (ret > 0 && skinny_metadata && path->slots[0]) {
6782 /*
6783 * Couldn't find our skinny metadata item,
6784 * see if we have ye olde extent item.
6785 */
6786 path->slots[0]--;
6787 btrfs_item_key_to_cpu(path->nodes[0], &key,
6788 path->slots[0]);
6789 if (key.objectid == bytenr &&
6790 key.type == BTRFS_EXTENT_ITEM_KEY &&
6791 key.offset == num_bytes)
6792 ret = 0;
6793 }
6794
6795 if (ret > 0 && skinny_metadata) {
6796 skinny_metadata = false;
6797 key.objectid = bytenr;
6798 key.type = BTRFS_EXTENT_ITEM_KEY;
6799 key.offset = num_bytes;
6800 btrfs_release_path(path);
6801 ret = btrfs_search_slot(trans, extent_root,
6802 &key, path, -1, 1);
6803 }
6804
6805 if (ret) {
6806 btrfs_err(info,
6807 "umm, got %d back from search, was looking for %llu",
6808 ret, bytenr);
6809 if (ret > 0)
6810 btrfs_print_leaf(path->nodes[0]);
6811 }
6812 if (ret < 0) {
6813 btrfs_abort_transaction(trans, ret);
6814 goto out;
6815 }
6816 extent_slot = path->slots[0];
6817 }
6818 } else if (WARN_ON(ret == -ENOENT)) {
6819 btrfs_print_leaf(path->nodes[0]);
6820 btrfs_err(info,
6821 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6822 bytenr, parent, root_objectid, owner_objectid,
6823 owner_offset);
6824 btrfs_abort_transaction(trans, ret);
6825 goto out;
6826 } else {
6827 btrfs_abort_transaction(trans, ret);
6828 goto out;
6829 }
6830
6831 leaf = path->nodes[0];
6832 item_size = btrfs_item_size_nr(leaf, extent_slot);
6833 if (unlikely(item_size < sizeof(*ei))) {
6834 ret = -EINVAL;
6835 btrfs_print_v0_err(info);
6836 btrfs_abort_transaction(trans, ret);
6837 goto out;
6838 }
6839 ei = btrfs_item_ptr(leaf, extent_slot,
6840 struct btrfs_extent_item);
6841 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6842 key.type == BTRFS_EXTENT_ITEM_KEY) {
6843 struct btrfs_tree_block_info *bi;
6844 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6845 bi = (struct btrfs_tree_block_info *)(ei + 1);
6846 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6847 }
6848
6849 refs = btrfs_extent_refs(leaf, ei);
6850 if (refs < refs_to_drop) {
6851 btrfs_err(info,
6852 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6853 refs_to_drop, refs, bytenr);
6854 ret = -EINVAL;
6855 btrfs_abort_transaction(trans, ret);
6856 goto out;
6857 }
6858 refs -= refs_to_drop;
6859
6860 if (refs > 0) {
6861 if (extent_op)
6862 __run_delayed_extent_op(extent_op, leaf, ei);
6863 /*
6864 * In the case of inline back ref, reference count will
6865 * be updated by remove_extent_backref
6866 */
6867 if (iref) {
6868 BUG_ON(!found_extent);
6869 } else {
6870 btrfs_set_extent_refs(leaf, ei, refs);
6871 btrfs_mark_buffer_dirty(leaf);
6872 }
6873 if (found_extent) {
6874 ret = remove_extent_backref(trans, path, iref,
6875 refs_to_drop, is_data,
6876 &last_ref);
6877 if (ret) {
6878 btrfs_abort_transaction(trans, ret);
6879 goto out;
6880 }
6881 }
6882 } else {
6883 if (found_extent) {
6884 BUG_ON(is_data && refs_to_drop !=
6885 extent_data_ref_count(path, iref));
6886 if (iref) {
6887 BUG_ON(path->slots[0] != extent_slot);
6888 } else {
6889 BUG_ON(path->slots[0] != extent_slot + 1);
6890 path->slots[0] = extent_slot;
6891 num_to_del = 2;
6892 }
6893 }
6894
6895 last_ref = 1;
6896 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6897 num_to_del);
6898 if (ret) {
6899 btrfs_abort_transaction(trans, ret);
6900 goto out;
6901 }
6902 btrfs_release_path(path);
6903
6904 if (is_data) {
6905 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
6906 if (ret) {
6907 btrfs_abort_transaction(trans, ret);
6908 goto out;
6909 }
6910 }
6911
6912 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6913 if (ret) {
6914 btrfs_abort_transaction(trans, ret);
6915 goto out;
6916 }
6917
6918 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6919 if (ret) {
6920 btrfs_abort_transaction(trans, ret);
6921 goto out;
6922 }
6923 }
6924 btrfs_release_path(path);
6925
6926 out:
6927 btrfs_free_path(path);
6928 return ret;
6929 }
6930
6931 /*
6932 * when we free an block, it is possible (and likely) that we free the last
6933 * delayed ref for that extent as well. This searches the delayed ref tree for
6934 * a given extent, and if there are no other delayed refs to be processed, it
6935 * removes it from the tree.
6936 */
6937 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6938 u64 bytenr)
6939 {
6940 struct btrfs_delayed_ref_head *head;
6941 struct btrfs_delayed_ref_root *delayed_refs;
6942 int ret = 0;
6943
6944 delayed_refs = &trans->transaction->delayed_refs;
6945 spin_lock(&delayed_refs->lock);
6946 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6947 if (!head)
6948 goto out_delayed_unlock;
6949
6950 spin_lock(&head->lock);
6951 if (!RB_EMPTY_ROOT(&head->ref_tree))
6952 goto out;
6953
6954 if (head->extent_op) {
6955 if (!head->must_insert_reserved)
6956 goto out;
6957 btrfs_free_delayed_extent_op(head->extent_op);
6958 head->extent_op = NULL;
6959 }
6960
6961 /*
6962 * waiting for the lock here would deadlock. If someone else has it
6963 * locked they are already in the process of dropping it anyway
6964 */
6965 if (!mutex_trylock(&head->mutex))
6966 goto out;
6967
6968 /*
6969 * at this point we have a head with no other entries. Go
6970 * ahead and process it.
6971 */
6972 rb_erase(&head->href_node, &delayed_refs->href_root);
6973 RB_CLEAR_NODE(&head->href_node);
6974 atomic_dec(&delayed_refs->num_entries);
6975
6976 /*
6977 * we don't take a ref on the node because we're removing it from the
6978 * tree, so we just steal the ref the tree was holding.
6979 */
6980 delayed_refs->num_heads--;
6981 if (head->processing == 0)
6982 delayed_refs->num_heads_ready--;
6983 head->processing = 0;
6984 spin_unlock(&head->lock);
6985 spin_unlock(&delayed_refs->lock);
6986
6987 BUG_ON(head->extent_op);
6988 if (head->must_insert_reserved)
6989 ret = 1;
6990
6991 mutex_unlock(&head->mutex);
6992 btrfs_put_delayed_ref_head(head);
6993 return ret;
6994 out:
6995 spin_unlock(&head->lock);
6996
6997 out_delayed_unlock:
6998 spin_unlock(&delayed_refs->lock);
6999 return 0;
7000 }
7001
7002 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7003 struct btrfs_root *root,
7004 struct extent_buffer *buf,
7005 u64 parent, int last_ref)
7006 {
7007 struct btrfs_fs_info *fs_info = root->fs_info;
7008 int pin = 1;
7009 int ret;
7010
7011 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7012 int old_ref_mod, new_ref_mod;
7013
7014 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7015 root->root_key.objectid,
7016 btrfs_header_level(buf), 0,
7017 BTRFS_DROP_DELAYED_REF);
7018 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7019 buf->len, parent,
7020 root->root_key.objectid,
7021 btrfs_header_level(buf),
7022 BTRFS_DROP_DELAYED_REF, NULL,
7023 &old_ref_mod, &new_ref_mod);
7024 BUG_ON(ret); /* -ENOMEM */
7025 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7026 }
7027
7028 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7029 struct btrfs_block_group_cache *cache;
7030
7031 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7032 ret = check_ref_cleanup(trans, buf->start);
7033 if (!ret)
7034 goto out;
7035 }
7036
7037 pin = 0;
7038 cache = btrfs_lookup_block_group(fs_info, buf->start);
7039
7040 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7041 pin_down_extent(fs_info, cache, buf->start,
7042 buf->len, 1);
7043 btrfs_put_block_group(cache);
7044 goto out;
7045 }
7046
7047 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7048
7049 btrfs_add_free_space(cache, buf->start, buf->len);
7050 btrfs_free_reserved_bytes(cache, buf->len, 0);
7051 btrfs_put_block_group(cache);
7052 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7053 }
7054 out:
7055 if (pin)
7056 add_pinned_bytes(fs_info, buf->len, true,
7057 root->root_key.objectid);
7058
7059 if (last_ref) {
7060 /*
7061 * Deleting the buffer, clear the corrupt flag since it doesn't
7062 * matter anymore.
7063 */
7064 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7065 }
7066 }
7067
7068 /* Can return -ENOMEM */
7069 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7070 struct btrfs_root *root,
7071 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7072 u64 owner, u64 offset)
7073 {
7074 struct btrfs_fs_info *fs_info = root->fs_info;
7075 int old_ref_mod, new_ref_mod;
7076 int ret;
7077
7078 if (btrfs_is_testing(fs_info))
7079 return 0;
7080
7081 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7082 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7083 root_objectid, owner, offset,
7084 BTRFS_DROP_DELAYED_REF);
7085
7086 /*
7087 * tree log blocks never actually go into the extent allocation
7088 * tree, just update pinning info and exit early.
7089 */
7090 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7091 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7092 /* unlocks the pinned mutex */
7093 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7094 old_ref_mod = new_ref_mod = 0;
7095 ret = 0;
7096 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7097 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7098 num_bytes, parent,
7099 root_objectid, (int)owner,
7100 BTRFS_DROP_DELAYED_REF, NULL,
7101 &old_ref_mod, &new_ref_mod);
7102 } else {
7103 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7104 num_bytes, parent,
7105 root_objectid, owner, offset,
7106 0, BTRFS_DROP_DELAYED_REF,
7107 &old_ref_mod, &new_ref_mod);
7108 }
7109
7110 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7111 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7112
7113 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7114 }
7115
7116 return ret;
7117 }
7118
7119 /*
7120 * when we wait for progress in the block group caching, its because
7121 * our allocation attempt failed at least once. So, we must sleep
7122 * and let some progress happen before we try again.
7123 *
7124 * This function will sleep at least once waiting for new free space to
7125 * show up, and then it will check the block group free space numbers
7126 * for our min num_bytes. Another option is to have it go ahead
7127 * and look in the rbtree for a free extent of a given size, but this
7128 * is a good start.
7129 *
7130 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7131 * any of the information in this block group.
7132 */
7133 static noinline void
7134 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7135 u64 num_bytes)
7136 {
7137 struct btrfs_caching_control *caching_ctl;
7138
7139 caching_ctl = get_caching_control(cache);
7140 if (!caching_ctl)
7141 return;
7142
7143 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7144 (cache->free_space_ctl->free_space >= num_bytes));
7145
7146 put_caching_control(caching_ctl);
7147 }
7148
7149 static noinline int
7150 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7151 {
7152 struct btrfs_caching_control *caching_ctl;
7153 int ret = 0;
7154
7155 caching_ctl = get_caching_control(cache);
7156 if (!caching_ctl)
7157 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7158
7159 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7160 if (cache->cached == BTRFS_CACHE_ERROR)
7161 ret = -EIO;
7162 put_caching_control(caching_ctl);
7163 return ret;
7164 }
7165
7166 enum btrfs_loop_type {
7167 LOOP_CACHING_NOWAIT = 0,
7168 LOOP_CACHING_WAIT = 1,
7169 LOOP_ALLOC_CHUNK = 2,
7170 LOOP_NO_EMPTY_SIZE = 3,
7171 };
7172
7173 static inline void
7174 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7175 int delalloc)
7176 {
7177 if (delalloc)
7178 down_read(&cache->data_rwsem);
7179 }
7180
7181 static inline void
7182 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7183 int delalloc)
7184 {
7185 btrfs_get_block_group(cache);
7186 if (delalloc)
7187 down_read(&cache->data_rwsem);
7188 }
7189
7190 static struct btrfs_block_group_cache *
7191 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7192 struct btrfs_free_cluster *cluster,
7193 int delalloc)
7194 {
7195 struct btrfs_block_group_cache *used_bg = NULL;
7196
7197 spin_lock(&cluster->refill_lock);
7198 while (1) {
7199 used_bg = cluster->block_group;
7200 if (!used_bg)
7201 return NULL;
7202
7203 if (used_bg == block_group)
7204 return used_bg;
7205
7206 btrfs_get_block_group(used_bg);
7207
7208 if (!delalloc)
7209 return used_bg;
7210
7211 if (down_read_trylock(&used_bg->data_rwsem))
7212 return used_bg;
7213
7214 spin_unlock(&cluster->refill_lock);
7215
7216 /* We should only have one-level nested. */
7217 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7218
7219 spin_lock(&cluster->refill_lock);
7220 if (used_bg == cluster->block_group)
7221 return used_bg;
7222
7223 up_read(&used_bg->data_rwsem);
7224 btrfs_put_block_group(used_bg);
7225 }
7226 }
7227
7228 static inline void
7229 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7230 int delalloc)
7231 {
7232 if (delalloc)
7233 up_read(&cache->data_rwsem);
7234 btrfs_put_block_group(cache);
7235 }
7236
7237 /*
7238 * walks the btree of allocated extents and find a hole of a given size.
7239 * The key ins is changed to record the hole:
7240 * ins->objectid == start position
7241 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7242 * ins->offset == the size of the hole.
7243 * Any available blocks before search_start are skipped.
7244 *
7245 * If there is no suitable free space, we will record the max size of
7246 * the free space extent currently.
7247 */
7248 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7249 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7250 u64 hint_byte, struct btrfs_key *ins,
7251 u64 flags, int delalloc)
7252 {
7253 int ret = 0;
7254 struct btrfs_root *root = fs_info->extent_root;
7255 struct btrfs_free_cluster *last_ptr = NULL;
7256 struct btrfs_block_group_cache *block_group = NULL;
7257 u64 search_start = 0;
7258 u64 max_extent_size = 0;
7259 u64 empty_cluster = 0;
7260 struct btrfs_space_info *space_info;
7261 int loop = 0;
7262 int index = btrfs_bg_flags_to_raid_index(flags);
7263 bool failed_cluster_refill = false;
7264 bool failed_alloc = false;
7265 bool use_cluster = true;
7266 bool have_caching_bg = false;
7267 bool orig_have_caching_bg = false;
7268 bool full_search = false;
7269
7270 WARN_ON(num_bytes < fs_info->sectorsize);
7271 ins->type = BTRFS_EXTENT_ITEM_KEY;
7272 ins->objectid = 0;
7273 ins->offset = 0;
7274
7275 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7276
7277 space_info = __find_space_info(fs_info, flags);
7278 if (!space_info) {
7279 btrfs_err(fs_info, "No space info for %llu", flags);
7280 return -ENOSPC;
7281 }
7282
7283 /*
7284 * If our free space is heavily fragmented we may not be able to make
7285 * big contiguous allocations, so instead of doing the expensive search
7286 * for free space, simply return ENOSPC with our max_extent_size so we
7287 * can go ahead and search for a more manageable chunk.
7288 *
7289 * If our max_extent_size is large enough for our allocation simply
7290 * disable clustering since we will likely not be able to find enough
7291 * space to create a cluster and induce latency trying.
7292 */
7293 if (unlikely(space_info->max_extent_size)) {
7294 spin_lock(&space_info->lock);
7295 if (space_info->max_extent_size &&
7296 num_bytes > space_info->max_extent_size) {
7297 ins->offset = space_info->max_extent_size;
7298 spin_unlock(&space_info->lock);
7299 return -ENOSPC;
7300 } else if (space_info->max_extent_size) {
7301 use_cluster = false;
7302 }
7303 spin_unlock(&space_info->lock);
7304 }
7305
7306 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7307 if (last_ptr) {
7308 spin_lock(&last_ptr->lock);
7309 if (last_ptr->block_group)
7310 hint_byte = last_ptr->window_start;
7311 if (last_ptr->fragmented) {
7312 /*
7313 * We still set window_start so we can keep track of the
7314 * last place we found an allocation to try and save
7315 * some time.
7316 */
7317 hint_byte = last_ptr->window_start;
7318 use_cluster = false;
7319 }
7320 spin_unlock(&last_ptr->lock);
7321 }
7322
7323 search_start = max(search_start, first_logical_byte(fs_info, 0));
7324 search_start = max(search_start, hint_byte);
7325 if (search_start == hint_byte) {
7326 block_group = btrfs_lookup_block_group(fs_info, search_start);
7327 /*
7328 * we don't want to use the block group if it doesn't match our
7329 * allocation bits, or if its not cached.
7330 *
7331 * However if we are re-searching with an ideal block group
7332 * picked out then we don't care that the block group is cached.
7333 */
7334 if (block_group && block_group_bits(block_group, flags) &&
7335 block_group->cached != BTRFS_CACHE_NO) {
7336 down_read(&space_info->groups_sem);
7337 if (list_empty(&block_group->list) ||
7338 block_group->ro) {
7339 /*
7340 * someone is removing this block group,
7341 * we can't jump into the have_block_group
7342 * target because our list pointers are not
7343 * valid
7344 */
7345 btrfs_put_block_group(block_group);
7346 up_read(&space_info->groups_sem);
7347 } else {
7348 index = btrfs_bg_flags_to_raid_index(
7349 block_group->flags);
7350 btrfs_lock_block_group(block_group, delalloc);
7351 goto have_block_group;
7352 }
7353 } else if (block_group) {
7354 btrfs_put_block_group(block_group);
7355 }
7356 }
7357 search:
7358 have_caching_bg = false;
7359 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7360 full_search = true;
7361 down_read(&space_info->groups_sem);
7362 list_for_each_entry(block_group, &space_info->block_groups[index],
7363 list) {
7364 u64 offset;
7365 int cached;
7366
7367 /* If the block group is read-only, we can skip it entirely. */
7368 if (unlikely(block_group->ro))
7369 continue;
7370
7371 btrfs_grab_block_group(block_group, delalloc);
7372 search_start = block_group->key.objectid;
7373
7374 /*
7375 * this can happen if we end up cycling through all the
7376 * raid types, but we want to make sure we only allocate
7377 * for the proper type.
7378 */
7379 if (!block_group_bits(block_group, flags)) {
7380 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7381 BTRFS_BLOCK_GROUP_RAID1 |
7382 BTRFS_BLOCK_GROUP_RAID5 |
7383 BTRFS_BLOCK_GROUP_RAID6 |
7384 BTRFS_BLOCK_GROUP_RAID10;
7385
7386 /*
7387 * if they asked for extra copies and this block group
7388 * doesn't provide them, bail. This does allow us to
7389 * fill raid0 from raid1.
7390 */
7391 if ((flags & extra) && !(block_group->flags & extra))
7392 goto loop;
7393 }
7394
7395 have_block_group:
7396 cached = block_group_cache_done(block_group);
7397 if (unlikely(!cached)) {
7398 have_caching_bg = true;
7399 ret = cache_block_group(block_group, 0);
7400 BUG_ON(ret < 0);
7401 ret = 0;
7402 }
7403
7404 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7405 goto loop;
7406
7407 /*
7408 * Ok we want to try and use the cluster allocator, so
7409 * lets look there
7410 */
7411 if (last_ptr && use_cluster) {
7412 struct btrfs_block_group_cache *used_block_group;
7413 unsigned long aligned_cluster;
7414 /*
7415 * the refill lock keeps out other
7416 * people trying to start a new cluster
7417 */
7418 used_block_group = btrfs_lock_cluster(block_group,
7419 last_ptr,
7420 delalloc);
7421 if (!used_block_group)
7422 goto refill_cluster;
7423
7424 if (used_block_group != block_group &&
7425 (used_block_group->ro ||
7426 !block_group_bits(used_block_group, flags)))
7427 goto release_cluster;
7428
7429 offset = btrfs_alloc_from_cluster(used_block_group,
7430 last_ptr,
7431 num_bytes,
7432 used_block_group->key.objectid,
7433 &max_extent_size);
7434 if (offset) {
7435 /* we have a block, we're done */
7436 spin_unlock(&last_ptr->refill_lock);
7437 trace_btrfs_reserve_extent_cluster(
7438 used_block_group,
7439 search_start, num_bytes);
7440 if (used_block_group != block_group) {
7441 btrfs_release_block_group(block_group,
7442 delalloc);
7443 block_group = used_block_group;
7444 }
7445 goto checks;
7446 }
7447
7448 WARN_ON(last_ptr->block_group != used_block_group);
7449 release_cluster:
7450 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7451 * set up a new clusters, so lets just skip it
7452 * and let the allocator find whatever block
7453 * it can find. If we reach this point, we
7454 * will have tried the cluster allocator
7455 * plenty of times and not have found
7456 * anything, so we are likely way too
7457 * fragmented for the clustering stuff to find
7458 * anything.
7459 *
7460 * However, if the cluster is taken from the
7461 * current block group, release the cluster
7462 * first, so that we stand a better chance of
7463 * succeeding in the unclustered
7464 * allocation. */
7465 if (loop >= LOOP_NO_EMPTY_SIZE &&
7466 used_block_group != block_group) {
7467 spin_unlock(&last_ptr->refill_lock);
7468 btrfs_release_block_group(used_block_group,
7469 delalloc);
7470 goto unclustered_alloc;
7471 }
7472
7473 /*
7474 * this cluster didn't work out, free it and
7475 * start over
7476 */
7477 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7478
7479 if (used_block_group != block_group)
7480 btrfs_release_block_group(used_block_group,
7481 delalloc);
7482 refill_cluster:
7483 if (loop >= LOOP_NO_EMPTY_SIZE) {
7484 spin_unlock(&last_ptr->refill_lock);
7485 goto unclustered_alloc;
7486 }
7487
7488 aligned_cluster = max_t(unsigned long,
7489 empty_cluster + empty_size,
7490 block_group->full_stripe_len);
7491
7492 /* allocate a cluster in this block group */
7493 ret = btrfs_find_space_cluster(fs_info, block_group,
7494 last_ptr, search_start,
7495 num_bytes,
7496 aligned_cluster);
7497 if (ret == 0) {
7498 /*
7499 * now pull our allocation out of this
7500 * cluster
7501 */
7502 offset = btrfs_alloc_from_cluster(block_group,
7503 last_ptr,
7504 num_bytes,
7505 search_start,
7506 &max_extent_size);
7507 if (offset) {
7508 /* we found one, proceed */
7509 spin_unlock(&last_ptr->refill_lock);
7510 trace_btrfs_reserve_extent_cluster(
7511 block_group, search_start,
7512 num_bytes);
7513 goto checks;
7514 }
7515 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7516 && !failed_cluster_refill) {
7517 spin_unlock(&last_ptr->refill_lock);
7518
7519 failed_cluster_refill = true;
7520 wait_block_group_cache_progress(block_group,
7521 num_bytes + empty_cluster + empty_size);
7522 goto have_block_group;
7523 }
7524
7525 /*
7526 * at this point we either didn't find a cluster
7527 * or we weren't able to allocate a block from our
7528 * cluster. Free the cluster we've been trying
7529 * to use, and go to the next block group
7530 */
7531 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7532 spin_unlock(&last_ptr->refill_lock);
7533 goto loop;
7534 }
7535
7536 unclustered_alloc:
7537 /*
7538 * We are doing an unclustered alloc, set the fragmented flag so
7539 * we don't bother trying to setup a cluster again until we get
7540 * more space.
7541 */
7542 if (unlikely(last_ptr)) {
7543 spin_lock(&last_ptr->lock);
7544 last_ptr->fragmented = 1;
7545 spin_unlock(&last_ptr->lock);
7546 }
7547 if (cached) {
7548 struct btrfs_free_space_ctl *ctl =
7549 block_group->free_space_ctl;
7550
7551 spin_lock(&ctl->tree_lock);
7552 if (ctl->free_space <
7553 num_bytes + empty_cluster + empty_size) {
7554 if (ctl->free_space > max_extent_size)
7555 max_extent_size = ctl->free_space;
7556 spin_unlock(&ctl->tree_lock);
7557 goto loop;
7558 }
7559 spin_unlock(&ctl->tree_lock);
7560 }
7561
7562 offset = btrfs_find_space_for_alloc(block_group, search_start,
7563 num_bytes, empty_size,
7564 &max_extent_size);
7565 /*
7566 * If we didn't find a chunk, and we haven't failed on this
7567 * block group before, and this block group is in the middle of
7568 * caching and we are ok with waiting, then go ahead and wait
7569 * for progress to be made, and set failed_alloc to true.
7570 *
7571 * If failed_alloc is true then we've already waited on this
7572 * block group once and should move on to the next block group.
7573 */
7574 if (!offset && !failed_alloc && !cached &&
7575 loop > LOOP_CACHING_NOWAIT) {
7576 wait_block_group_cache_progress(block_group,
7577 num_bytes + empty_size);
7578 failed_alloc = true;
7579 goto have_block_group;
7580 } else if (!offset) {
7581 goto loop;
7582 }
7583 checks:
7584 search_start = ALIGN(offset, fs_info->stripesize);
7585
7586 /* move on to the next group */
7587 if (search_start + num_bytes >
7588 block_group->key.objectid + block_group->key.offset) {
7589 btrfs_add_free_space(block_group, offset, num_bytes);
7590 goto loop;
7591 }
7592
7593 if (offset < search_start)
7594 btrfs_add_free_space(block_group, offset,
7595 search_start - offset);
7596 BUG_ON(offset > search_start);
7597
7598 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7599 num_bytes, delalloc);
7600 if (ret == -EAGAIN) {
7601 btrfs_add_free_space(block_group, offset, num_bytes);
7602 goto loop;
7603 }
7604 btrfs_inc_block_group_reservations(block_group);
7605
7606 /* we are all good, lets return */
7607 ins->objectid = search_start;
7608 ins->offset = num_bytes;
7609
7610 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7611 btrfs_release_block_group(block_group, delalloc);
7612 break;
7613 loop:
7614 failed_cluster_refill = false;
7615 failed_alloc = false;
7616 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7617 index);
7618 btrfs_release_block_group(block_group, delalloc);
7619 cond_resched();
7620 }
7621 up_read(&space_info->groups_sem);
7622
7623 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7624 && !orig_have_caching_bg)
7625 orig_have_caching_bg = true;
7626
7627 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7628 goto search;
7629
7630 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7631 goto search;
7632
7633 /*
7634 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7635 * caching kthreads as we move along
7636 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7637 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7638 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7639 * again
7640 */
7641 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7642 index = 0;
7643 if (loop == LOOP_CACHING_NOWAIT) {
7644 /*
7645 * We want to skip the LOOP_CACHING_WAIT step if we
7646 * don't have any uncached bgs and we've already done a
7647 * full search through.
7648 */
7649 if (orig_have_caching_bg || !full_search)
7650 loop = LOOP_CACHING_WAIT;
7651 else
7652 loop = LOOP_ALLOC_CHUNK;
7653 } else {
7654 loop++;
7655 }
7656
7657 if (loop == LOOP_ALLOC_CHUNK) {
7658 struct btrfs_trans_handle *trans;
7659 int exist = 0;
7660
7661 trans = current->journal_info;
7662 if (trans)
7663 exist = 1;
7664 else
7665 trans = btrfs_join_transaction(root);
7666
7667 if (IS_ERR(trans)) {
7668 ret = PTR_ERR(trans);
7669 goto out;
7670 }
7671
7672 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7673
7674 /*
7675 * If we can't allocate a new chunk we've already looped
7676 * through at least once, move on to the NO_EMPTY_SIZE
7677 * case.
7678 */
7679 if (ret == -ENOSPC)
7680 loop = LOOP_NO_EMPTY_SIZE;
7681
7682 /*
7683 * Do not bail out on ENOSPC since we
7684 * can do more things.
7685 */
7686 if (ret < 0 && ret != -ENOSPC)
7687 btrfs_abort_transaction(trans, ret);
7688 else
7689 ret = 0;
7690 if (!exist)
7691 btrfs_end_transaction(trans);
7692 if (ret)
7693 goto out;
7694 }
7695
7696 if (loop == LOOP_NO_EMPTY_SIZE) {
7697 /*
7698 * Don't loop again if we already have no empty_size and
7699 * no empty_cluster.
7700 */
7701 if (empty_size == 0 &&
7702 empty_cluster == 0) {
7703 ret = -ENOSPC;
7704 goto out;
7705 }
7706 empty_size = 0;
7707 empty_cluster = 0;
7708 }
7709
7710 goto search;
7711 } else if (!ins->objectid) {
7712 ret = -ENOSPC;
7713 } else if (ins->objectid) {
7714 if (!use_cluster && last_ptr) {
7715 spin_lock(&last_ptr->lock);
7716 last_ptr->window_start = ins->objectid;
7717 spin_unlock(&last_ptr->lock);
7718 }
7719 ret = 0;
7720 }
7721 out:
7722 if (ret == -ENOSPC) {
7723 spin_lock(&space_info->lock);
7724 space_info->max_extent_size = max_extent_size;
7725 spin_unlock(&space_info->lock);
7726 ins->offset = max_extent_size;
7727 }
7728 return ret;
7729 }
7730
7731 static void dump_space_info(struct btrfs_fs_info *fs_info,
7732 struct btrfs_space_info *info, u64 bytes,
7733 int dump_block_groups)
7734 {
7735 struct btrfs_block_group_cache *cache;
7736 int index = 0;
7737
7738 spin_lock(&info->lock);
7739 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7740 info->flags,
7741 info->total_bytes - btrfs_space_info_used(info, true),
7742 info->full ? "" : "not ");
7743 btrfs_info(fs_info,
7744 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7745 info->total_bytes, info->bytes_used, info->bytes_pinned,
7746 info->bytes_reserved, info->bytes_may_use,
7747 info->bytes_readonly);
7748 spin_unlock(&info->lock);
7749
7750 if (!dump_block_groups)
7751 return;
7752
7753 down_read(&info->groups_sem);
7754 again:
7755 list_for_each_entry(cache, &info->block_groups[index], list) {
7756 spin_lock(&cache->lock);
7757 btrfs_info(fs_info,
7758 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7759 cache->key.objectid, cache->key.offset,
7760 btrfs_block_group_used(&cache->item), cache->pinned,
7761 cache->reserved, cache->ro ? "[readonly]" : "");
7762 btrfs_dump_free_space(cache, bytes);
7763 spin_unlock(&cache->lock);
7764 }
7765 if (++index < BTRFS_NR_RAID_TYPES)
7766 goto again;
7767 up_read(&info->groups_sem);
7768 }
7769
7770 /*
7771 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7772 * hole that is at least as big as @num_bytes.
7773 *
7774 * @root - The root that will contain this extent
7775 *
7776 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7777 * is used for accounting purposes. This value differs
7778 * from @num_bytes only in the case of compressed extents.
7779 *
7780 * @num_bytes - Number of bytes to allocate on-disk.
7781 *
7782 * @min_alloc_size - Indicates the minimum amount of space that the
7783 * allocator should try to satisfy. In some cases
7784 * @num_bytes may be larger than what is required and if
7785 * the filesystem is fragmented then allocation fails.
7786 * However, the presence of @min_alloc_size gives a
7787 * chance to try and satisfy the smaller allocation.
7788 *
7789 * @empty_size - A hint that you plan on doing more COW. This is the
7790 * size in bytes the allocator should try to find free
7791 * next to the block it returns. This is just a hint and
7792 * may be ignored by the allocator.
7793 *
7794 * @hint_byte - Hint to the allocator to start searching above the byte
7795 * address passed. It might be ignored.
7796 *
7797 * @ins - This key is modified to record the found hole. It will
7798 * have the following values:
7799 * ins->objectid == start position
7800 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7801 * ins->offset == the size of the hole.
7802 *
7803 * @is_data - Boolean flag indicating whether an extent is
7804 * allocated for data (true) or metadata (false)
7805 *
7806 * @delalloc - Boolean flag indicating whether this allocation is for
7807 * delalloc or not. If 'true' data_rwsem of block groups
7808 * is going to be acquired.
7809 *
7810 *
7811 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7812 * case -ENOSPC is returned then @ins->offset will contain the size of the
7813 * largest available hole the allocator managed to find.
7814 */
7815 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7816 u64 num_bytes, u64 min_alloc_size,
7817 u64 empty_size, u64 hint_byte,
7818 struct btrfs_key *ins, int is_data, int delalloc)
7819 {
7820 struct btrfs_fs_info *fs_info = root->fs_info;
7821 bool final_tried = num_bytes == min_alloc_size;
7822 u64 flags;
7823 int ret;
7824
7825 flags = get_alloc_profile_by_root(root, is_data);
7826 again:
7827 WARN_ON(num_bytes < fs_info->sectorsize);
7828 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7829 hint_byte, ins, flags, delalloc);
7830 if (!ret && !is_data) {
7831 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7832 } else if (ret == -ENOSPC) {
7833 if (!final_tried && ins->offset) {
7834 num_bytes = min(num_bytes >> 1, ins->offset);
7835 num_bytes = round_down(num_bytes,
7836 fs_info->sectorsize);
7837 num_bytes = max(num_bytes, min_alloc_size);
7838 ram_bytes = num_bytes;
7839 if (num_bytes == min_alloc_size)
7840 final_tried = true;
7841 goto again;
7842 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7843 struct btrfs_space_info *sinfo;
7844
7845 sinfo = __find_space_info(fs_info, flags);
7846 btrfs_err(fs_info,
7847 "allocation failed flags %llu, wanted %llu",
7848 flags, num_bytes);
7849 if (sinfo)
7850 dump_space_info(fs_info, sinfo, num_bytes, 1);
7851 }
7852 }
7853
7854 return ret;
7855 }
7856
7857 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7858 u64 start, u64 len,
7859 int pin, int delalloc)
7860 {
7861 struct btrfs_block_group_cache *cache;
7862 int ret = 0;
7863
7864 cache = btrfs_lookup_block_group(fs_info, start);
7865 if (!cache) {
7866 btrfs_err(fs_info, "Unable to find block group for %llu",
7867 start);
7868 return -ENOSPC;
7869 }
7870
7871 if (pin)
7872 pin_down_extent(fs_info, cache, start, len, 1);
7873 else {
7874 if (btrfs_test_opt(fs_info, DISCARD))
7875 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7876 btrfs_add_free_space(cache, start, len);
7877 btrfs_free_reserved_bytes(cache, len, delalloc);
7878 trace_btrfs_reserved_extent_free(fs_info, start, len);
7879 }
7880
7881 btrfs_put_block_group(cache);
7882 return ret;
7883 }
7884
7885 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7886 u64 start, u64 len, int delalloc)
7887 {
7888 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7889 }
7890
7891 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7892 u64 start, u64 len)
7893 {
7894 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7895 }
7896
7897 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7898 u64 parent, u64 root_objectid,
7899 u64 flags, u64 owner, u64 offset,
7900 struct btrfs_key *ins, int ref_mod)
7901 {
7902 struct btrfs_fs_info *fs_info = trans->fs_info;
7903 int ret;
7904 struct btrfs_extent_item *extent_item;
7905 struct btrfs_extent_inline_ref *iref;
7906 struct btrfs_path *path;
7907 struct extent_buffer *leaf;
7908 int type;
7909 u32 size;
7910
7911 if (parent > 0)
7912 type = BTRFS_SHARED_DATA_REF_KEY;
7913 else
7914 type = BTRFS_EXTENT_DATA_REF_KEY;
7915
7916 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7917
7918 path = btrfs_alloc_path();
7919 if (!path)
7920 return -ENOMEM;
7921
7922 path->leave_spinning = 1;
7923 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7924 ins, size);
7925 if (ret) {
7926 btrfs_free_path(path);
7927 return ret;
7928 }
7929
7930 leaf = path->nodes[0];
7931 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7932 struct btrfs_extent_item);
7933 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7934 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7935 btrfs_set_extent_flags(leaf, extent_item,
7936 flags | BTRFS_EXTENT_FLAG_DATA);
7937
7938 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7939 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7940 if (parent > 0) {
7941 struct btrfs_shared_data_ref *ref;
7942 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7943 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7944 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7945 } else {
7946 struct btrfs_extent_data_ref *ref;
7947 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7948 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7949 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7950 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7951 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7952 }
7953
7954 btrfs_mark_buffer_dirty(path->nodes[0]);
7955 btrfs_free_path(path);
7956
7957 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7958 if (ret)
7959 return ret;
7960
7961 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7962 if (ret) { /* -ENOENT, logic error */
7963 btrfs_err(fs_info, "update block group failed for %llu %llu",
7964 ins->objectid, ins->offset);
7965 BUG();
7966 }
7967 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7968 return ret;
7969 }
7970
7971 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7972 struct btrfs_delayed_ref_node *node,
7973 struct btrfs_delayed_extent_op *extent_op)
7974 {
7975 struct btrfs_fs_info *fs_info = trans->fs_info;
7976 int ret;
7977 struct btrfs_extent_item *extent_item;
7978 struct btrfs_key extent_key;
7979 struct btrfs_tree_block_info *block_info;
7980 struct btrfs_extent_inline_ref *iref;
7981 struct btrfs_path *path;
7982 struct extent_buffer *leaf;
7983 struct btrfs_delayed_tree_ref *ref;
7984 u32 size = sizeof(*extent_item) + sizeof(*iref);
7985 u64 num_bytes;
7986 u64 flags = extent_op->flags_to_set;
7987 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7988
7989 ref = btrfs_delayed_node_to_tree_ref(node);
7990
7991 extent_key.objectid = node->bytenr;
7992 if (skinny_metadata) {
7993 extent_key.offset = ref->level;
7994 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7995 num_bytes = fs_info->nodesize;
7996 } else {
7997 extent_key.offset = node->num_bytes;
7998 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7999 size += sizeof(*block_info);
8000 num_bytes = node->num_bytes;
8001 }
8002
8003 path = btrfs_alloc_path();
8004 if (!path) {
8005 btrfs_free_and_pin_reserved_extent(fs_info,
8006 extent_key.objectid,
8007 fs_info->nodesize);
8008 return -ENOMEM;
8009 }
8010
8011 path->leave_spinning = 1;
8012 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8013 &extent_key, size);
8014 if (ret) {
8015 btrfs_free_path(path);
8016 btrfs_free_and_pin_reserved_extent(fs_info,
8017 extent_key.objectid,
8018 fs_info->nodesize);
8019 return ret;
8020 }
8021
8022 leaf = path->nodes[0];
8023 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8024 struct btrfs_extent_item);
8025 btrfs_set_extent_refs(leaf, extent_item, 1);
8026 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8027 btrfs_set_extent_flags(leaf, extent_item,
8028 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8029
8030 if (skinny_metadata) {
8031 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8032 } else {
8033 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8034 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8035 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8036 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8037 }
8038
8039 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8040 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8041 btrfs_set_extent_inline_ref_type(leaf, iref,
8042 BTRFS_SHARED_BLOCK_REF_KEY);
8043 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8044 } else {
8045 btrfs_set_extent_inline_ref_type(leaf, iref,
8046 BTRFS_TREE_BLOCK_REF_KEY);
8047 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8048 }
8049
8050 btrfs_mark_buffer_dirty(leaf);
8051 btrfs_free_path(path);
8052
8053 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8054 num_bytes);
8055 if (ret)
8056 return ret;
8057
8058 ret = update_block_group(trans, fs_info, extent_key.objectid,
8059 fs_info->nodesize, 1);
8060 if (ret) { /* -ENOENT, logic error */
8061 btrfs_err(fs_info, "update block group failed for %llu %llu",
8062 extent_key.objectid, extent_key.offset);
8063 BUG();
8064 }
8065
8066 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8067 fs_info->nodesize);
8068 return ret;
8069 }
8070
8071 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8072 struct btrfs_root *root, u64 owner,
8073 u64 offset, u64 ram_bytes,
8074 struct btrfs_key *ins)
8075 {
8076 int ret;
8077
8078 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8079
8080 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8081 root->root_key.objectid, owner, offset,
8082 BTRFS_ADD_DELAYED_EXTENT);
8083
8084 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8085 ins->offset, 0,
8086 root->root_key.objectid, owner,
8087 offset, ram_bytes,
8088 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8089 return ret;
8090 }
8091
8092 /*
8093 * this is used by the tree logging recovery code. It records that
8094 * an extent has been allocated and makes sure to clear the free
8095 * space cache bits as well
8096 */
8097 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8098 u64 root_objectid, u64 owner, u64 offset,
8099 struct btrfs_key *ins)
8100 {
8101 struct btrfs_fs_info *fs_info = trans->fs_info;
8102 int ret;
8103 struct btrfs_block_group_cache *block_group;
8104 struct btrfs_space_info *space_info;
8105
8106 /*
8107 * Mixed block groups will exclude before processing the log so we only
8108 * need to do the exclude dance if this fs isn't mixed.
8109 */
8110 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8111 ret = __exclude_logged_extent(fs_info, ins->objectid,
8112 ins->offset);
8113 if (ret)
8114 return ret;
8115 }
8116
8117 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8118 if (!block_group)
8119 return -EINVAL;
8120
8121 space_info = block_group->space_info;
8122 spin_lock(&space_info->lock);
8123 spin_lock(&block_group->lock);
8124 space_info->bytes_reserved += ins->offset;
8125 block_group->reserved += ins->offset;
8126 spin_unlock(&block_group->lock);
8127 spin_unlock(&space_info->lock);
8128
8129 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8130 offset, ins, 1);
8131 btrfs_put_block_group(block_group);
8132 return ret;
8133 }
8134
8135 static struct extent_buffer *
8136 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8137 u64 bytenr, int level, u64 owner)
8138 {
8139 struct btrfs_fs_info *fs_info = root->fs_info;
8140 struct extent_buffer *buf;
8141
8142 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8143 if (IS_ERR(buf))
8144 return buf;
8145
8146 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8147 btrfs_tree_lock(buf);
8148 clean_tree_block(fs_info, buf);
8149 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8150
8151 btrfs_set_lock_blocking(buf);
8152 set_extent_buffer_uptodate(buf);
8153
8154 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8155 btrfs_set_header_level(buf, level);
8156 btrfs_set_header_bytenr(buf, buf->start);
8157 btrfs_set_header_generation(buf, trans->transid);
8158 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8159 btrfs_set_header_owner(buf, owner);
8160 write_extent_buffer_fsid(buf, fs_info->fsid);
8161 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8162 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8163 buf->log_index = root->log_transid % 2;
8164 /*
8165 * we allow two log transactions at a time, use different
8166 * EXENT bit to differentiate dirty pages.
8167 */
8168 if (buf->log_index == 0)
8169 set_extent_dirty(&root->dirty_log_pages, buf->start,
8170 buf->start + buf->len - 1, GFP_NOFS);
8171 else
8172 set_extent_new(&root->dirty_log_pages, buf->start,
8173 buf->start + buf->len - 1);
8174 } else {
8175 buf->log_index = -1;
8176 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8177 buf->start + buf->len - 1, GFP_NOFS);
8178 }
8179 trans->dirty = true;
8180 /* this returns a buffer locked for blocking */
8181 return buf;
8182 }
8183
8184 static struct btrfs_block_rsv *
8185 use_block_rsv(struct btrfs_trans_handle *trans,
8186 struct btrfs_root *root, u32 blocksize)
8187 {
8188 struct btrfs_fs_info *fs_info = root->fs_info;
8189 struct btrfs_block_rsv *block_rsv;
8190 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8191 int ret;
8192 bool global_updated = false;
8193
8194 block_rsv = get_block_rsv(trans, root);
8195
8196 if (unlikely(block_rsv->size == 0))
8197 goto try_reserve;
8198 again:
8199 ret = block_rsv_use_bytes(block_rsv, blocksize);
8200 if (!ret)
8201 return block_rsv;
8202
8203 if (block_rsv->failfast)
8204 return ERR_PTR(ret);
8205
8206 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8207 global_updated = true;
8208 update_global_block_rsv(fs_info);
8209 goto again;
8210 }
8211
8212 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8213 static DEFINE_RATELIMIT_STATE(_rs,
8214 DEFAULT_RATELIMIT_INTERVAL * 10,
8215 /*DEFAULT_RATELIMIT_BURST*/ 1);
8216 if (__ratelimit(&_rs))
8217 WARN(1, KERN_DEBUG
8218 "BTRFS: block rsv returned %d\n", ret);
8219 }
8220 try_reserve:
8221 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8222 BTRFS_RESERVE_NO_FLUSH);
8223 if (!ret)
8224 return block_rsv;
8225 /*
8226 * If we couldn't reserve metadata bytes try and use some from
8227 * the global reserve if its space type is the same as the global
8228 * reservation.
8229 */
8230 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8231 block_rsv->space_info == global_rsv->space_info) {
8232 ret = block_rsv_use_bytes(global_rsv, blocksize);
8233 if (!ret)
8234 return global_rsv;
8235 }
8236 return ERR_PTR(ret);
8237 }
8238
8239 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8240 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8241 {
8242 block_rsv_add_bytes(block_rsv, blocksize, 0);
8243 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8244 }
8245
8246 /*
8247 * finds a free extent and does all the dirty work required for allocation
8248 * returns the tree buffer or an ERR_PTR on error.
8249 */
8250 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8251 struct btrfs_root *root,
8252 u64 parent, u64 root_objectid,
8253 const struct btrfs_disk_key *key,
8254 int level, u64 hint,
8255 u64 empty_size)
8256 {
8257 struct btrfs_fs_info *fs_info = root->fs_info;
8258 struct btrfs_key ins;
8259 struct btrfs_block_rsv *block_rsv;
8260 struct extent_buffer *buf;
8261 struct btrfs_delayed_extent_op *extent_op;
8262 u64 flags = 0;
8263 int ret;
8264 u32 blocksize = fs_info->nodesize;
8265 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8266
8267 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8268 if (btrfs_is_testing(fs_info)) {
8269 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8270 level, root_objectid);
8271 if (!IS_ERR(buf))
8272 root->alloc_bytenr += blocksize;
8273 return buf;
8274 }
8275 #endif
8276
8277 block_rsv = use_block_rsv(trans, root, blocksize);
8278 if (IS_ERR(block_rsv))
8279 return ERR_CAST(block_rsv);
8280
8281 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8282 empty_size, hint, &ins, 0, 0);
8283 if (ret)
8284 goto out_unuse;
8285
8286 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8287 root_objectid);
8288 if (IS_ERR(buf)) {
8289 ret = PTR_ERR(buf);
8290 goto out_free_reserved;
8291 }
8292
8293 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8294 if (parent == 0)
8295 parent = ins.objectid;
8296 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8297 } else
8298 BUG_ON(parent > 0);
8299
8300 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8301 extent_op = btrfs_alloc_delayed_extent_op();
8302 if (!extent_op) {
8303 ret = -ENOMEM;
8304 goto out_free_buf;
8305 }
8306 if (key)
8307 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8308 else
8309 memset(&extent_op->key, 0, sizeof(extent_op->key));
8310 extent_op->flags_to_set = flags;
8311 extent_op->update_key = skinny_metadata ? false : true;
8312 extent_op->update_flags = true;
8313 extent_op->is_data = false;
8314 extent_op->level = level;
8315
8316 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8317 root_objectid, level, 0,
8318 BTRFS_ADD_DELAYED_EXTENT);
8319 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8320 ins.offset, parent,
8321 root_objectid, level,
8322 BTRFS_ADD_DELAYED_EXTENT,
8323 extent_op, NULL, NULL);
8324 if (ret)
8325 goto out_free_delayed;
8326 }
8327 return buf;
8328
8329 out_free_delayed:
8330 btrfs_free_delayed_extent_op(extent_op);
8331 out_free_buf:
8332 free_extent_buffer(buf);
8333 out_free_reserved:
8334 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8335 out_unuse:
8336 unuse_block_rsv(fs_info, block_rsv, blocksize);
8337 return ERR_PTR(ret);
8338 }
8339
8340 struct walk_control {
8341 u64 refs[BTRFS_MAX_LEVEL];
8342 u64 flags[BTRFS_MAX_LEVEL];
8343 struct btrfs_key update_progress;
8344 int stage;
8345 int level;
8346 int shared_level;
8347 int update_ref;
8348 int keep_locks;
8349 int reada_slot;
8350 int reada_count;
8351 int for_reloc;
8352 };
8353
8354 #define DROP_REFERENCE 1
8355 #define UPDATE_BACKREF 2
8356
8357 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8358 struct btrfs_root *root,
8359 struct walk_control *wc,
8360 struct btrfs_path *path)
8361 {
8362 struct btrfs_fs_info *fs_info = root->fs_info;
8363 u64 bytenr;
8364 u64 generation;
8365 u64 refs;
8366 u64 flags;
8367 u32 nritems;
8368 struct btrfs_key key;
8369 struct extent_buffer *eb;
8370 int ret;
8371 int slot;
8372 int nread = 0;
8373
8374 if (path->slots[wc->level] < wc->reada_slot) {
8375 wc->reada_count = wc->reada_count * 2 / 3;
8376 wc->reada_count = max(wc->reada_count, 2);
8377 } else {
8378 wc->reada_count = wc->reada_count * 3 / 2;
8379 wc->reada_count = min_t(int, wc->reada_count,
8380 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8381 }
8382
8383 eb = path->nodes[wc->level];
8384 nritems = btrfs_header_nritems(eb);
8385
8386 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8387 if (nread >= wc->reada_count)
8388 break;
8389
8390 cond_resched();
8391 bytenr = btrfs_node_blockptr(eb, slot);
8392 generation = btrfs_node_ptr_generation(eb, slot);
8393
8394 if (slot == path->slots[wc->level])
8395 goto reada;
8396
8397 if (wc->stage == UPDATE_BACKREF &&
8398 generation <= root->root_key.offset)
8399 continue;
8400
8401 /* We don't lock the tree block, it's OK to be racy here */
8402 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8403 wc->level - 1, 1, &refs,
8404 &flags);
8405 /* We don't care about errors in readahead. */
8406 if (ret < 0)
8407 continue;
8408 BUG_ON(refs == 0);
8409
8410 if (wc->stage == DROP_REFERENCE) {
8411 if (refs == 1)
8412 goto reada;
8413
8414 if (wc->level == 1 &&
8415 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8416 continue;
8417 if (!wc->update_ref ||
8418 generation <= root->root_key.offset)
8419 continue;
8420 btrfs_node_key_to_cpu(eb, &key, slot);
8421 ret = btrfs_comp_cpu_keys(&key,
8422 &wc->update_progress);
8423 if (ret < 0)
8424 continue;
8425 } else {
8426 if (wc->level == 1 &&
8427 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8428 continue;
8429 }
8430 reada:
8431 readahead_tree_block(fs_info, bytenr);
8432 nread++;
8433 }
8434 wc->reada_slot = slot;
8435 }
8436
8437 /*
8438 * helper to process tree block while walking down the tree.
8439 *
8440 * when wc->stage == UPDATE_BACKREF, this function updates
8441 * back refs for pointers in the block.
8442 *
8443 * NOTE: return value 1 means we should stop walking down.
8444 */
8445 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8446 struct btrfs_root *root,
8447 struct btrfs_path *path,
8448 struct walk_control *wc, int lookup_info)
8449 {
8450 struct btrfs_fs_info *fs_info = root->fs_info;
8451 int level = wc->level;
8452 struct extent_buffer *eb = path->nodes[level];
8453 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8454 int ret;
8455
8456 if (wc->stage == UPDATE_BACKREF &&
8457 btrfs_header_owner(eb) != root->root_key.objectid)
8458 return 1;
8459
8460 /*
8461 * when reference count of tree block is 1, it won't increase
8462 * again. once full backref flag is set, we never clear it.
8463 */
8464 if (lookup_info &&
8465 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8466 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8467 BUG_ON(!path->locks[level]);
8468 ret = btrfs_lookup_extent_info(trans, fs_info,
8469 eb->start, level, 1,
8470 &wc->refs[level],
8471 &wc->flags[level]);
8472 BUG_ON(ret == -ENOMEM);
8473 if (ret)
8474 return ret;
8475 BUG_ON(wc->refs[level] == 0);
8476 }
8477
8478 if (wc->stage == DROP_REFERENCE) {
8479 if (wc->refs[level] > 1)
8480 return 1;
8481
8482 if (path->locks[level] && !wc->keep_locks) {
8483 btrfs_tree_unlock_rw(eb, path->locks[level]);
8484 path->locks[level] = 0;
8485 }
8486 return 0;
8487 }
8488
8489 /* wc->stage == UPDATE_BACKREF */
8490 if (!(wc->flags[level] & flag)) {
8491 BUG_ON(!path->locks[level]);
8492 ret = btrfs_inc_ref(trans, root, eb, 1);
8493 BUG_ON(ret); /* -ENOMEM */
8494 ret = btrfs_dec_ref(trans, root, eb, 0);
8495 BUG_ON(ret); /* -ENOMEM */
8496 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8497 eb->len, flag,
8498 btrfs_header_level(eb), 0);
8499 BUG_ON(ret); /* -ENOMEM */
8500 wc->flags[level] |= flag;
8501 }
8502
8503 /*
8504 * the block is shared by multiple trees, so it's not good to
8505 * keep the tree lock
8506 */
8507 if (path->locks[level] && level > 0) {
8508 btrfs_tree_unlock_rw(eb, path->locks[level]);
8509 path->locks[level] = 0;
8510 }
8511 return 0;
8512 }
8513
8514 /*
8515 * helper to process tree block pointer.
8516 *
8517 * when wc->stage == DROP_REFERENCE, this function checks
8518 * reference count of the block pointed to. if the block
8519 * is shared and we need update back refs for the subtree
8520 * rooted at the block, this function changes wc->stage to
8521 * UPDATE_BACKREF. if the block is shared and there is no
8522 * need to update back, this function drops the reference
8523 * to the block.
8524 *
8525 * NOTE: return value 1 means we should stop walking down.
8526 */
8527 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8528 struct btrfs_root *root,
8529 struct btrfs_path *path,
8530 struct walk_control *wc, int *lookup_info)
8531 {
8532 struct btrfs_fs_info *fs_info = root->fs_info;
8533 u64 bytenr;
8534 u64 generation;
8535 u64 parent;
8536 u32 blocksize;
8537 struct btrfs_key key;
8538 struct btrfs_key first_key;
8539 struct extent_buffer *next;
8540 int level = wc->level;
8541 int reada = 0;
8542 int ret = 0;
8543 bool need_account = false;
8544
8545 generation = btrfs_node_ptr_generation(path->nodes[level],
8546 path->slots[level]);
8547 /*
8548 * if the lower level block was created before the snapshot
8549 * was created, we know there is no need to update back refs
8550 * for the subtree
8551 */
8552 if (wc->stage == UPDATE_BACKREF &&
8553 generation <= root->root_key.offset) {
8554 *lookup_info = 1;
8555 return 1;
8556 }
8557
8558 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8559 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8560 path->slots[level]);
8561 blocksize = fs_info->nodesize;
8562
8563 next = find_extent_buffer(fs_info, bytenr);
8564 if (!next) {
8565 next = btrfs_find_create_tree_block(fs_info, bytenr);
8566 if (IS_ERR(next))
8567 return PTR_ERR(next);
8568
8569 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8570 level - 1);
8571 reada = 1;
8572 }
8573 btrfs_tree_lock(next);
8574 btrfs_set_lock_blocking(next);
8575
8576 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8577 &wc->refs[level - 1],
8578 &wc->flags[level - 1]);
8579 if (ret < 0)
8580 goto out_unlock;
8581
8582 if (unlikely(wc->refs[level - 1] == 0)) {
8583 btrfs_err(fs_info, "Missing references.");
8584 ret = -EIO;
8585 goto out_unlock;
8586 }
8587 *lookup_info = 0;
8588
8589 if (wc->stage == DROP_REFERENCE) {
8590 if (wc->refs[level - 1] > 1) {
8591 need_account = true;
8592 if (level == 1 &&
8593 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8594 goto skip;
8595
8596 if (!wc->update_ref ||
8597 generation <= root->root_key.offset)
8598 goto skip;
8599
8600 btrfs_node_key_to_cpu(path->nodes[level], &key,
8601 path->slots[level]);
8602 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8603 if (ret < 0)
8604 goto skip;
8605
8606 wc->stage = UPDATE_BACKREF;
8607 wc->shared_level = level - 1;
8608 }
8609 } else {
8610 if (level == 1 &&
8611 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8612 goto skip;
8613 }
8614
8615 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8616 btrfs_tree_unlock(next);
8617 free_extent_buffer(next);
8618 next = NULL;
8619 *lookup_info = 1;
8620 }
8621
8622 if (!next) {
8623 if (reada && level == 1)
8624 reada_walk_down(trans, root, wc, path);
8625 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8626 &first_key);
8627 if (IS_ERR(next)) {
8628 return PTR_ERR(next);
8629 } else if (!extent_buffer_uptodate(next)) {
8630 free_extent_buffer(next);
8631 return -EIO;
8632 }
8633 btrfs_tree_lock(next);
8634 btrfs_set_lock_blocking(next);
8635 }
8636
8637 level--;
8638 ASSERT(level == btrfs_header_level(next));
8639 if (level != btrfs_header_level(next)) {
8640 btrfs_err(root->fs_info, "mismatched level");
8641 ret = -EIO;
8642 goto out_unlock;
8643 }
8644 path->nodes[level] = next;
8645 path->slots[level] = 0;
8646 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8647 wc->level = level;
8648 if (wc->level == 1)
8649 wc->reada_slot = 0;
8650 return 0;
8651 skip:
8652 wc->refs[level - 1] = 0;
8653 wc->flags[level - 1] = 0;
8654 if (wc->stage == DROP_REFERENCE) {
8655 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8656 parent = path->nodes[level]->start;
8657 } else {
8658 ASSERT(root->root_key.objectid ==
8659 btrfs_header_owner(path->nodes[level]));
8660 if (root->root_key.objectid !=
8661 btrfs_header_owner(path->nodes[level])) {
8662 btrfs_err(root->fs_info,
8663 "mismatched block owner");
8664 ret = -EIO;
8665 goto out_unlock;
8666 }
8667 parent = 0;
8668 }
8669
8670 if (need_account) {
8671 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8672 generation, level - 1);
8673 if (ret) {
8674 btrfs_err_rl(fs_info,
8675 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8676 ret);
8677 }
8678 }
8679 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8680 parent, root->root_key.objectid,
8681 level - 1, 0);
8682 if (ret)
8683 goto out_unlock;
8684 }
8685
8686 *lookup_info = 1;
8687 ret = 1;
8688
8689 out_unlock:
8690 btrfs_tree_unlock(next);
8691 free_extent_buffer(next);
8692
8693 return ret;
8694 }
8695
8696 /*
8697 * helper to process tree block while walking up the tree.
8698 *
8699 * when wc->stage == DROP_REFERENCE, this function drops
8700 * reference count on the block.
8701 *
8702 * when wc->stage == UPDATE_BACKREF, this function changes
8703 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8704 * to UPDATE_BACKREF previously while processing the block.
8705 *
8706 * NOTE: return value 1 means we should stop walking up.
8707 */
8708 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8709 struct btrfs_root *root,
8710 struct btrfs_path *path,
8711 struct walk_control *wc)
8712 {
8713 struct btrfs_fs_info *fs_info = root->fs_info;
8714 int ret;
8715 int level = wc->level;
8716 struct extent_buffer *eb = path->nodes[level];
8717 u64 parent = 0;
8718
8719 if (wc->stage == UPDATE_BACKREF) {
8720 BUG_ON(wc->shared_level < level);
8721 if (level < wc->shared_level)
8722 goto out;
8723
8724 ret = find_next_key(path, level + 1, &wc->update_progress);
8725 if (ret > 0)
8726 wc->update_ref = 0;
8727
8728 wc->stage = DROP_REFERENCE;
8729 wc->shared_level = -1;
8730 path->slots[level] = 0;
8731
8732 /*
8733 * check reference count again if the block isn't locked.
8734 * we should start walking down the tree again if reference
8735 * count is one.
8736 */
8737 if (!path->locks[level]) {
8738 BUG_ON(level == 0);
8739 btrfs_tree_lock(eb);
8740 btrfs_set_lock_blocking(eb);
8741 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8742
8743 ret = btrfs_lookup_extent_info(trans, fs_info,
8744 eb->start, level, 1,
8745 &wc->refs[level],
8746 &wc->flags[level]);
8747 if (ret < 0) {
8748 btrfs_tree_unlock_rw(eb, path->locks[level]);
8749 path->locks[level] = 0;
8750 return ret;
8751 }
8752 BUG_ON(wc->refs[level] == 0);
8753 if (wc->refs[level] == 1) {
8754 btrfs_tree_unlock_rw(eb, path->locks[level]);
8755 path->locks[level] = 0;
8756 return 1;
8757 }
8758 }
8759 }
8760
8761 /* wc->stage == DROP_REFERENCE */
8762 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8763
8764 if (wc->refs[level] == 1) {
8765 if (level == 0) {
8766 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8767 ret = btrfs_dec_ref(trans, root, eb, 1);
8768 else
8769 ret = btrfs_dec_ref(trans, root, eb, 0);
8770 BUG_ON(ret); /* -ENOMEM */
8771 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8772 if (ret) {
8773 btrfs_err_rl(fs_info,
8774 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8775 ret);
8776 }
8777 }
8778 /* make block locked assertion in clean_tree_block happy */
8779 if (!path->locks[level] &&
8780 btrfs_header_generation(eb) == trans->transid) {
8781 btrfs_tree_lock(eb);
8782 btrfs_set_lock_blocking(eb);
8783 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8784 }
8785 clean_tree_block(fs_info, eb);
8786 }
8787
8788 if (eb == root->node) {
8789 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8790 parent = eb->start;
8791 else
8792 BUG_ON(root->root_key.objectid !=
8793 btrfs_header_owner(eb));
8794 } else {
8795 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8796 parent = path->nodes[level + 1]->start;
8797 else
8798 BUG_ON(root->root_key.objectid !=
8799 btrfs_header_owner(path->nodes[level + 1]));
8800 }
8801
8802 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8803 out:
8804 wc->refs[level] = 0;
8805 wc->flags[level] = 0;
8806 return 0;
8807 }
8808
8809 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8810 struct btrfs_root *root,
8811 struct btrfs_path *path,
8812 struct walk_control *wc)
8813 {
8814 int level = wc->level;
8815 int lookup_info = 1;
8816 int ret;
8817
8818 while (level >= 0) {
8819 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8820 if (ret > 0)
8821 break;
8822
8823 if (level == 0)
8824 break;
8825
8826 if (path->slots[level] >=
8827 btrfs_header_nritems(path->nodes[level]))
8828 break;
8829
8830 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8831 if (ret > 0) {
8832 path->slots[level]++;
8833 continue;
8834 } else if (ret < 0)
8835 return ret;
8836 level = wc->level;
8837 }
8838 return 0;
8839 }
8840
8841 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8842 struct btrfs_root *root,
8843 struct btrfs_path *path,
8844 struct walk_control *wc, int max_level)
8845 {
8846 int level = wc->level;
8847 int ret;
8848
8849 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8850 while (level < max_level && path->nodes[level]) {
8851 wc->level = level;
8852 if (path->slots[level] + 1 <
8853 btrfs_header_nritems(path->nodes[level])) {
8854 path->slots[level]++;
8855 return 0;
8856 } else {
8857 ret = walk_up_proc(trans, root, path, wc);
8858 if (ret > 0)
8859 return 0;
8860
8861 if (path->locks[level]) {
8862 btrfs_tree_unlock_rw(path->nodes[level],
8863 path->locks[level]);
8864 path->locks[level] = 0;
8865 }
8866 free_extent_buffer(path->nodes[level]);
8867 path->nodes[level] = NULL;
8868 level++;
8869 }
8870 }
8871 return 1;
8872 }
8873
8874 /*
8875 * drop a subvolume tree.
8876 *
8877 * this function traverses the tree freeing any blocks that only
8878 * referenced by the tree.
8879 *
8880 * when a shared tree block is found. this function decreases its
8881 * reference count by one. if update_ref is true, this function
8882 * also make sure backrefs for the shared block and all lower level
8883 * blocks are properly updated.
8884 *
8885 * If called with for_reloc == 0, may exit early with -EAGAIN
8886 */
8887 int btrfs_drop_snapshot(struct btrfs_root *root,
8888 struct btrfs_block_rsv *block_rsv, int update_ref,
8889 int for_reloc)
8890 {
8891 struct btrfs_fs_info *fs_info = root->fs_info;
8892 struct btrfs_path *path;
8893 struct btrfs_trans_handle *trans;
8894 struct btrfs_root *tree_root = fs_info->tree_root;
8895 struct btrfs_root_item *root_item = &root->root_item;
8896 struct walk_control *wc;
8897 struct btrfs_key key;
8898 int err = 0;
8899 int ret;
8900 int level;
8901 bool root_dropped = false;
8902
8903 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8904
8905 path = btrfs_alloc_path();
8906 if (!path) {
8907 err = -ENOMEM;
8908 goto out;
8909 }
8910
8911 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8912 if (!wc) {
8913 btrfs_free_path(path);
8914 err = -ENOMEM;
8915 goto out;
8916 }
8917
8918 trans = btrfs_start_transaction(tree_root, 0);
8919 if (IS_ERR(trans)) {
8920 err = PTR_ERR(trans);
8921 goto out_free;
8922 }
8923
8924 if (block_rsv)
8925 trans->block_rsv = block_rsv;
8926
8927 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8928 level = btrfs_header_level(root->node);
8929 path->nodes[level] = btrfs_lock_root_node(root);
8930 btrfs_set_lock_blocking(path->nodes[level]);
8931 path->slots[level] = 0;
8932 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8933 memset(&wc->update_progress, 0,
8934 sizeof(wc->update_progress));
8935 } else {
8936 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8937 memcpy(&wc->update_progress, &key,
8938 sizeof(wc->update_progress));
8939
8940 level = root_item->drop_level;
8941 BUG_ON(level == 0);
8942 path->lowest_level = level;
8943 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8944 path->lowest_level = 0;
8945 if (ret < 0) {
8946 err = ret;
8947 goto out_end_trans;
8948 }
8949 WARN_ON(ret > 0);
8950
8951 /*
8952 * unlock our path, this is safe because only this
8953 * function is allowed to delete this snapshot
8954 */
8955 btrfs_unlock_up_safe(path, 0);
8956
8957 level = btrfs_header_level(root->node);
8958 while (1) {
8959 btrfs_tree_lock(path->nodes[level]);
8960 btrfs_set_lock_blocking(path->nodes[level]);
8961 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8962
8963 ret = btrfs_lookup_extent_info(trans, fs_info,
8964 path->nodes[level]->start,
8965 level, 1, &wc->refs[level],
8966 &wc->flags[level]);
8967 if (ret < 0) {
8968 err = ret;
8969 goto out_end_trans;
8970 }
8971 BUG_ON(wc->refs[level] == 0);
8972
8973 if (level == root_item->drop_level)
8974 break;
8975
8976 btrfs_tree_unlock(path->nodes[level]);
8977 path->locks[level] = 0;
8978 WARN_ON(wc->refs[level] != 1);
8979 level--;
8980 }
8981 }
8982
8983 wc->level = level;
8984 wc->shared_level = -1;
8985 wc->stage = DROP_REFERENCE;
8986 wc->update_ref = update_ref;
8987 wc->keep_locks = 0;
8988 wc->for_reloc = for_reloc;
8989 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
8990
8991 while (1) {
8992
8993 ret = walk_down_tree(trans, root, path, wc);
8994 if (ret < 0) {
8995 err = ret;
8996 break;
8997 }
8998
8999 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9000 if (ret < 0) {
9001 err = ret;
9002 break;
9003 }
9004
9005 if (ret > 0) {
9006 BUG_ON(wc->stage != DROP_REFERENCE);
9007 break;
9008 }
9009
9010 if (wc->stage == DROP_REFERENCE) {
9011 level = wc->level;
9012 btrfs_node_key(path->nodes[level],
9013 &root_item->drop_progress,
9014 path->slots[level]);
9015 root_item->drop_level = level;
9016 }
9017
9018 BUG_ON(wc->level == 0);
9019 if (btrfs_should_end_transaction(trans) ||
9020 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9021 ret = btrfs_update_root(trans, tree_root,
9022 &root->root_key,
9023 root_item);
9024 if (ret) {
9025 btrfs_abort_transaction(trans, ret);
9026 err = ret;
9027 goto out_end_trans;
9028 }
9029
9030 btrfs_end_transaction_throttle(trans);
9031 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9032 btrfs_debug(fs_info,
9033 "drop snapshot early exit");
9034 err = -EAGAIN;
9035 goto out_free;
9036 }
9037
9038 trans = btrfs_start_transaction(tree_root, 0);
9039 if (IS_ERR(trans)) {
9040 err = PTR_ERR(trans);
9041 goto out_free;
9042 }
9043 if (block_rsv)
9044 trans->block_rsv = block_rsv;
9045 }
9046 }
9047 btrfs_release_path(path);
9048 if (err)
9049 goto out_end_trans;
9050
9051 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9052 if (ret) {
9053 btrfs_abort_transaction(trans, ret);
9054 err = ret;
9055 goto out_end_trans;
9056 }
9057
9058 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9059 ret = btrfs_find_root(tree_root, &root->root_key, path,
9060 NULL, NULL);
9061 if (ret < 0) {
9062 btrfs_abort_transaction(trans, ret);
9063 err = ret;
9064 goto out_end_trans;
9065 } else if (ret > 0) {
9066 /* if we fail to delete the orphan item this time
9067 * around, it'll get picked up the next time.
9068 *
9069 * The most common failure here is just -ENOENT.
9070 */
9071 btrfs_del_orphan_item(trans, tree_root,
9072 root->root_key.objectid);
9073 }
9074 }
9075
9076 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9077 btrfs_add_dropped_root(trans, root);
9078 } else {
9079 free_extent_buffer(root->node);
9080 free_extent_buffer(root->commit_root);
9081 btrfs_put_fs_root(root);
9082 }
9083 root_dropped = true;
9084 out_end_trans:
9085 btrfs_end_transaction_throttle(trans);
9086 out_free:
9087 kfree(wc);
9088 btrfs_free_path(path);
9089 out:
9090 /*
9091 * So if we need to stop dropping the snapshot for whatever reason we
9092 * need to make sure to add it back to the dead root list so that we
9093 * keep trying to do the work later. This also cleans up roots if we
9094 * don't have it in the radix (like when we recover after a power fail
9095 * or unmount) so we don't leak memory.
9096 */
9097 if (!for_reloc && !root_dropped)
9098 btrfs_add_dead_root(root);
9099 if (err && err != -EAGAIN)
9100 btrfs_handle_fs_error(fs_info, err, NULL);
9101 return err;
9102 }
9103
9104 /*
9105 * drop subtree rooted at tree block 'node'.
9106 *
9107 * NOTE: this function will unlock and release tree block 'node'
9108 * only used by relocation code
9109 */
9110 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9111 struct btrfs_root *root,
9112 struct extent_buffer *node,
9113 struct extent_buffer *parent)
9114 {
9115 struct btrfs_fs_info *fs_info = root->fs_info;
9116 struct btrfs_path *path;
9117 struct walk_control *wc;
9118 int level;
9119 int parent_level;
9120 int ret = 0;
9121 int wret;
9122
9123 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9124
9125 path = btrfs_alloc_path();
9126 if (!path)
9127 return -ENOMEM;
9128
9129 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9130 if (!wc) {
9131 btrfs_free_path(path);
9132 return -ENOMEM;
9133 }
9134
9135 btrfs_assert_tree_locked(parent);
9136 parent_level = btrfs_header_level(parent);
9137 extent_buffer_get(parent);
9138 path->nodes[parent_level] = parent;
9139 path->slots[parent_level] = btrfs_header_nritems(parent);
9140
9141 btrfs_assert_tree_locked(node);
9142 level = btrfs_header_level(node);
9143 path->nodes[level] = node;
9144 path->slots[level] = 0;
9145 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9146
9147 wc->refs[parent_level] = 1;
9148 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9149 wc->level = level;
9150 wc->shared_level = -1;
9151 wc->stage = DROP_REFERENCE;
9152 wc->update_ref = 0;
9153 wc->keep_locks = 1;
9154 wc->for_reloc = 1;
9155 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9156
9157 while (1) {
9158 wret = walk_down_tree(trans, root, path, wc);
9159 if (wret < 0) {
9160 ret = wret;
9161 break;
9162 }
9163
9164 wret = walk_up_tree(trans, root, path, wc, parent_level);
9165 if (wret < 0)
9166 ret = wret;
9167 if (wret != 0)
9168 break;
9169 }
9170
9171 kfree(wc);
9172 btrfs_free_path(path);
9173 return ret;
9174 }
9175
9176 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9177 {
9178 u64 num_devices;
9179 u64 stripped;
9180
9181 /*
9182 * if restripe for this chunk_type is on pick target profile and
9183 * return, otherwise do the usual balance
9184 */
9185 stripped = get_restripe_target(fs_info, flags);
9186 if (stripped)
9187 return extended_to_chunk(stripped);
9188
9189 num_devices = fs_info->fs_devices->rw_devices;
9190
9191 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9192 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9193 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9194
9195 if (num_devices == 1) {
9196 stripped |= BTRFS_BLOCK_GROUP_DUP;
9197 stripped = flags & ~stripped;
9198
9199 /* turn raid0 into single device chunks */
9200 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9201 return stripped;
9202
9203 /* turn mirroring into duplication */
9204 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9205 BTRFS_BLOCK_GROUP_RAID10))
9206 return stripped | BTRFS_BLOCK_GROUP_DUP;
9207 } else {
9208 /* they already had raid on here, just return */
9209 if (flags & stripped)
9210 return flags;
9211
9212 stripped |= BTRFS_BLOCK_GROUP_DUP;
9213 stripped = flags & ~stripped;
9214
9215 /* switch duplicated blocks with raid1 */
9216 if (flags & BTRFS_BLOCK_GROUP_DUP)
9217 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9218
9219 /* this is drive concat, leave it alone */
9220 }
9221
9222 return flags;
9223 }
9224
9225 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9226 {
9227 struct btrfs_space_info *sinfo = cache->space_info;
9228 u64 num_bytes;
9229 u64 min_allocable_bytes;
9230 int ret = -ENOSPC;
9231
9232 /*
9233 * We need some metadata space and system metadata space for
9234 * allocating chunks in some corner cases until we force to set
9235 * it to be readonly.
9236 */
9237 if ((sinfo->flags &
9238 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9239 !force)
9240 min_allocable_bytes = SZ_1M;
9241 else
9242 min_allocable_bytes = 0;
9243
9244 spin_lock(&sinfo->lock);
9245 spin_lock(&cache->lock);
9246
9247 if (cache->ro) {
9248 cache->ro++;
9249 ret = 0;
9250 goto out;
9251 }
9252
9253 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9254 cache->bytes_super - btrfs_block_group_used(&cache->item);
9255
9256 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9257 min_allocable_bytes <= sinfo->total_bytes) {
9258 sinfo->bytes_readonly += num_bytes;
9259 cache->ro++;
9260 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9261 ret = 0;
9262 }
9263 out:
9264 spin_unlock(&cache->lock);
9265 spin_unlock(&sinfo->lock);
9266 return ret;
9267 }
9268
9269 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9270
9271 {
9272 struct btrfs_fs_info *fs_info = cache->fs_info;
9273 struct btrfs_trans_handle *trans;
9274 u64 alloc_flags;
9275 int ret;
9276
9277 again:
9278 trans = btrfs_join_transaction(fs_info->extent_root);
9279 if (IS_ERR(trans))
9280 return PTR_ERR(trans);
9281
9282 /*
9283 * we're not allowed to set block groups readonly after the dirty
9284 * block groups cache has started writing. If it already started,
9285 * back off and let this transaction commit
9286 */
9287 mutex_lock(&fs_info->ro_block_group_mutex);
9288 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9289 u64 transid = trans->transid;
9290
9291 mutex_unlock(&fs_info->ro_block_group_mutex);
9292 btrfs_end_transaction(trans);
9293
9294 ret = btrfs_wait_for_commit(fs_info, transid);
9295 if (ret)
9296 return ret;
9297 goto again;
9298 }
9299
9300 /*
9301 * if we are changing raid levels, try to allocate a corresponding
9302 * block group with the new raid level.
9303 */
9304 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9305 if (alloc_flags != cache->flags) {
9306 ret = do_chunk_alloc(trans, alloc_flags,
9307 CHUNK_ALLOC_FORCE);
9308 /*
9309 * ENOSPC is allowed here, we may have enough space
9310 * already allocated at the new raid level to
9311 * carry on
9312 */
9313 if (ret == -ENOSPC)
9314 ret = 0;
9315 if (ret < 0)
9316 goto out;
9317 }
9318
9319 ret = inc_block_group_ro(cache, 0);
9320 if (!ret)
9321 goto out;
9322 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9323 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9324 if (ret < 0)
9325 goto out;
9326 ret = inc_block_group_ro(cache, 0);
9327 out:
9328 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9329 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9330 mutex_lock(&fs_info->chunk_mutex);
9331 check_system_chunk(trans, alloc_flags);
9332 mutex_unlock(&fs_info->chunk_mutex);
9333 }
9334 mutex_unlock(&fs_info->ro_block_group_mutex);
9335
9336 btrfs_end_transaction(trans);
9337 return ret;
9338 }
9339
9340 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9341 {
9342 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9343
9344 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9345 }
9346
9347 /*
9348 * helper to account the unused space of all the readonly block group in the
9349 * space_info. takes mirrors into account.
9350 */
9351 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9352 {
9353 struct btrfs_block_group_cache *block_group;
9354 u64 free_bytes = 0;
9355 int factor;
9356
9357 /* It's df, we don't care if it's racy */
9358 if (list_empty(&sinfo->ro_bgs))
9359 return 0;
9360
9361 spin_lock(&sinfo->lock);
9362 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9363 spin_lock(&block_group->lock);
9364
9365 if (!block_group->ro) {
9366 spin_unlock(&block_group->lock);
9367 continue;
9368 }
9369
9370 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9371 BTRFS_BLOCK_GROUP_RAID10 |
9372 BTRFS_BLOCK_GROUP_DUP))
9373 factor = 2;
9374 else
9375 factor = 1;
9376
9377 free_bytes += (block_group->key.offset -
9378 btrfs_block_group_used(&block_group->item)) *
9379 factor;
9380
9381 spin_unlock(&block_group->lock);
9382 }
9383 spin_unlock(&sinfo->lock);
9384
9385 return free_bytes;
9386 }
9387
9388 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9389 {
9390 struct btrfs_space_info *sinfo = cache->space_info;
9391 u64 num_bytes;
9392
9393 BUG_ON(!cache->ro);
9394
9395 spin_lock(&sinfo->lock);
9396 spin_lock(&cache->lock);
9397 if (!--cache->ro) {
9398 num_bytes = cache->key.offset - cache->reserved -
9399 cache->pinned - cache->bytes_super -
9400 btrfs_block_group_used(&cache->item);
9401 sinfo->bytes_readonly -= num_bytes;
9402 list_del_init(&cache->ro_list);
9403 }
9404 spin_unlock(&cache->lock);
9405 spin_unlock(&sinfo->lock);
9406 }
9407
9408 /*
9409 * checks to see if its even possible to relocate this block group.
9410 *
9411 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9412 * ok to go ahead and try.
9413 */
9414 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9415 {
9416 struct btrfs_root *root = fs_info->extent_root;
9417 struct btrfs_block_group_cache *block_group;
9418 struct btrfs_space_info *space_info;
9419 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9420 struct btrfs_device *device;
9421 struct btrfs_trans_handle *trans;
9422 u64 min_free;
9423 u64 dev_min = 1;
9424 u64 dev_nr = 0;
9425 u64 target;
9426 int debug;
9427 int index;
9428 int full = 0;
9429 int ret = 0;
9430
9431 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9432
9433 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9434
9435 /* odd, couldn't find the block group, leave it alone */
9436 if (!block_group) {
9437 if (debug)
9438 btrfs_warn(fs_info,
9439 "can't find block group for bytenr %llu",
9440 bytenr);
9441 return -1;
9442 }
9443
9444 min_free = btrfs_block_group_used(&block_group->item);
9445
9446 /* no bytes used, we're good */
9447 if (!min_free)
9448 goto out;
9449
9450 space_info = block_group->space_info;
9451 spin_lock(&space_info->lock);
9452
9453 full = space_info->full;
9454
9455 /*
9456 * if this is the last block group we have in this space, we can't
9457 * relocate it unless we're able to allocate a new chunk below.
9458 *
9459 * Otherwise, we need to make sure we have room in the space to handle
9460 * all of the extents from this block group. If we can, we're good
9461 */
9462 if ((space_info->total_bytes != block_group->key.offset) &&
9463 (btrfs_space_info_used(space_info, false) + min_free <
9464 space_info->total_bytes)) {
9465 spin_unlock(&space_info->lock);
9466 goto out;
9467 }
9468 spin_unlock(&space_info->lock);
9469
9470 /*
9471 * ok we don't have enough space, but maybe we have free space on our
9472 * devices to allocate new chunks for relocation, so loop through our
9473 * alloc devices and guess if we have enough space. if this block
9474 * group is going to be restriped, run checks against the target
9475 * profile instead of the current one.
9476 */
9477 ret = -1;
9478
9479 /*
9480 * index:
9481 * 0: raid10
9482 * 1: raid1
9483 * 2: dup
9484 * 3: raid0
9485 * 4: single
9486 */
9487 target = get_restripe_target(fs_info, block_group->flags);
9488 if (target) {
9489 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9490 } else {
9491 /*
9492 * this is just a balance, so if we were marked as full
9493 * we know there is no space for a new chunk
9494 */
9495 if (full) {
9496 if (debug)
9497 btrfs_warn(fs_info,
9498 "no space to alloc new chunk for block group %llu",
9499 block_group->key.objectid);
9500 goto out;
9501 }
9502
9503 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9504 }
9505
9506 if (index == BTRFS_RAID_RAID10) {
9507 dev_min = 4;
9508 /* Divide by 2 */
9509 min_free >>= 1;
9510 } else if (index == BTRFS_RAID_RAID1) {
9511 dev_min = 2;
9512 } else if (index == BTRFS_RAID_DUP) {
9513 /* Multiply by 2 */
9514 min_free <<= 1;
9515 } else if (index == BTRFS_RAID_RAID0) {
9516 dev_min = fs_devices->rw_devices;
9517 min_free = div64_u64(min_free, dev_min);
9518 }
9519
9520 /* We need to do this so that we can look at pending chunks */
9521 trans = btrfs_join_transaction(root);
9522 if (IS_ERR(trans)) {
9523 ret = PTR_ERR(trans);
9524 goto out;
9525 }
9526
9527 mutex_lock(&fs_info->chunk_mutex);
9528 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9529 u64 dev_offset;
9530
9531 /*
9532 * check to make sure we can actually find a chunk with enough
9533 * space to fit our block group in.
9534 */
9535 if (device->total_bytes > device->bytes_used + min_free &&
9536 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9537 ret = find_free_dev_extent(trans, device, min_free,
9538 &dev_offset, NULL);
9539 if (!ret)
9540 dev_nr++;
9541
9542 if (dev_nr >= dev_min)
9543 break;
9544
9545 ret = -1;
9546 }
9547 }
9548 if (debug && ret == -1)
9549 btrfs_warn(fs_info,
9550 "no space to allocate a new chunk for block group %llu",
9551 block_group->key.objectid);
9552 mutex_unlock(&fs_info->chunk_mutex);
9553 btrfs_end_transaction(trans);
9554 out:
9555 btrfs_put_block_group(block_group);
9556 return ret;
9557 }
9558
9559 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9560 struct btrfs_path *path,
9561 struct btrfs_key *key)
9562 {
9563 struct btrfs_root *root = fs_info->extent_root;
9564 int ret = 0;
9565 struct btrfs_key found_key;
9566 struct extent_buffer *leaf;
9567 int slot;
9568
9569 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9570 if (ret < 0)
9571 goto out;
9572
9573 while (1) {
9574 slot = path->slots[0];
9575 leaf = path->nodes[0];
9576 if (slot >= btrfs_header_nritems(leaf)) {
9577 ret = btrfs_next_leaf(root, path);
9578 if (ret == 0)
9579 continue;
9580 if (ret < 0)
9581 goto out;
9582 break;
9583 }
9584 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9585
9586 if (found_key.objectid >= key->objectid &&
9587 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9588 struct extent_map_tree *em_tree;
9589 struct extent_map *em;
9590
9591 em_tree = &root->fs_info->mapping_tree.map_tree;
9592 read_lock(&em_tree->lock);
9593 em = lookup_extent_mapping(em_tree, found_key.objectid,
9594 found_key.offset);
9595 read_unlock(&em_tree->lock);
9596 if (!em) {
9597 btrfs_err(fs_info,
9598 "logical %llu len %llu found bg but no related chunk",
9599 found_key.objectid, found_key.offset);
9600 ret = -ENOENT;
9601 } else {
9602 ret = 0;
9603 }
9604 free_extent_map(em);
9605 goto out;
9606 }
9607 path->slots[0]++;
9608 }
9609 out:
9610 return ret;
9611 }
9612
9613 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9614 {
9615 struct btrfs_block_group_cache *block_group;
9616 u64 last = 0;
9617
9618 while (1) {
9619 struct inode *inode;
9620
9621 block_group = btrfs_lookup_first_block_group(info, last);
9622 while (block_group) {
9623 spin_lock(&block_group->lock);
9624 if (block_group->iref)
9625 break;
9626 spin_unlock(&block_group->lock);
9627 block_group = next_block_group(info, block_group);
9628 }
9629 if (!block_group) {
9630 if (last == 0)
9631 break;
9632 last = 0;
9633 continue;
9634 }
9635
9636 inode = block_group->inode;
9637 block_group->iref = 0;
9638 block_group->inode = NULL;
9639 spin_unlock(&block_group->lock);
9640 ASSERT(block_group->io_ctl.inode == NULL);
9641 iput(inode);
9642 last = block_group->key.objectid + block_group->key.offset;
9643 btrfs_put_block_group(block_group);
9644 }
9645 }
9646
9647 /*
9648 * Must be called only after stopping all workers, since we could have block
9649 * group caching kthreads running, and therefore they could race with us if we
9650 * freed the block groups before stopping them.
9651 */
9652 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9653 {
9654 struct btrfs_block_group_cache *block_group;
9655 struct btrfs_space_info *space_info;
9656 struct btrfs_caching_control *caching_ctl;
9657 struct rb_node *n;
9658
9659 down_write(&info->commit_root_sem);
9660 while (!list_empty(&info->caching_block_groups)) {
9661 caching_ctl = list_entry(info->caching_block_groups.next,
9662 struct btrfs_caching_control, list);
9663 list_del(&caching_ctl->list);
9664 put_caching_control(caching_ctl);
9665 }
9666 up_write(&info->commit_root_sem);
9667
9668 spin_lock(&info->unused_bgs_lock);
9669 while (!list_empty(&info->unused_bgs)) {
9670 block_group = list_first_entry(&info->unused_bgs,
9671 struct btrfs_block_group_cache,
9672 bg_list);
9673 list_del_init(&block_group->bg_list);
9674 btrfs_put_block_group(block_group);
9675 }
9676 spin_unlock(&info->unused_bgs_lock);
9677
9678 spin_lock(&info->block_group_cache_lock);
9679 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9680 block_group = rb_entry(n, struct btrfs_block_group_cache,
9681 cache_node);
9682 rb_erase(&block_group->cache_node,
9683 &info->block_group_cache_tree);
9684 RB_CLEAR_NODE(&block_group->cache_node);
9685 spin_unlock(&info->block_group_cache_lock);
9686
9687 down_write(&block_group->space_info->groups_sem);
9688 list_del(&block_group->list);
9689 up_write(&block_group->space_info->groups_sem);
9690
9691 /*
9692 * We haven't cached this block group, which means we could
9693 * possibly have excluded extents on this block group.
9694 */
9695 if (block_group->cached == BTRFS_CACHE_NO ||
9696 block_group->cached == BTRFS_CACHE_ERROR)
9697 free_excluded_extents(block_group);
9698
9699 btrfs_remove_free_space_cache(block_group);
9700 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9701 ASSERT(list_empty(&block_group->dirty_list));
9702 ASSERT(list_empty(&block_group->io_list));
9703 ASSERT(list_empty(&block_group->bg_list));
9704 ASSERT(atomic_read(&block_group->count) == 1);
9705 btrfs_put_block_group(block_group);
9706
9707 spin_lock(&info->block_group_cache_lock);
9708 }
9709 spin_unlock(&info->block_group_cache_lock);
9710
9711 /* now that all the block groups are freed, go through and
9712 * free all the space_info structs. This is only called during
9713 * the final stages of unmount, and so we know nobody is
9714 * using them. We call synchronize_rcu() once before we start,
9715 * just to be on the safe side.
9716 */
9717 synchronize_rcu();
9718
9719 release_global_block_rsv(info);
9720
9721 while (!list_empty(&info->space_info)) {
9722 int i;
9723
9724 space_info = list_entry(info->space_info.next,
9725 struct btrfs_space_info,
9726 list);
9727
9728 /*
9729 * Do not hide this behind enospc_debug, this is actually
9730 * important and indicates a real bug if this happens.
9731 */
9732 if (WARN_ON(space_info->bytes_pinned > 0 ||
9733 space_info->bytes_reserved > 0 ||
9734 space_info->bytes_may_use > 0))
9735 dump_space_info(info, space_info, 0, 0);
9736 list_del(&space_info->list);
9737 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9738 struct kobject *kobj;
9739 kobj = space_info->block_group_kobjs[i];
9740 space_info->block_group_kobjs[i] = NULL;
9741 if (kobj) {
9742 kobject_del(kobj);
9743 kobject_put(kobj);
9744 }
9745 }
9746 kobject_del(&space_info->kobj);
9747 kobject_put(&space_info->kobj);
9748 }
9749 return 0;
9750 }
9751
9752 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9753 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9754 {
9755 struct btrfs_space_info *space_info;
9756 struct raid_kobject *rkobj;
9757 LIST_HEAD(list);
9758 int index;
9759 int ret = 0;
9760
9761 spin_lock(&fs_info->pending_raid_kobjs_lock);
9762 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9763 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9764
9765 list_for_each_entry(rkobj, &list, list) {
9766 space_info = __find_space_info(fs_info, rkobj->flags);
9767 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9768
9769 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9770 "%s", get_raid_name(index));
9771 if (ret) {
9772 kobject_put(&rkobj->kobj);
9773 break;
9774 }
9775 }
9776 if (ret)
9777 btrfs_warn(fs_info,
9778 "failed to add kobject for block cache, ignoring");
9779 }
9780
9781 static void link_block_group(struct btrfs_block_group_cache *cache)
9782 {
9783 struct btrfs_space_info *space_info = cache->space_info;
9784 struct btrfs_fs_info *fs_info = cache->fs_info;
9785 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9786 bool first = false;
9787
9788 down_write(&space_info->groups_sem);
9789 if (list_empty(&space_info->block_groups[index]))
9790 first = true;
9791 list_add_tail(&cache->list, &space_info->block_groups[index]);
9792 up_write(&space_info->groups_sem);
9793
9794 if (first) {
9795 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9796 if (!rkobj) {
9797 btrfs_warn(cache->fs_info,
9798 "couldn't alloc memory for raid level kobject");
9799 return;
9800 }
9801 rkobj->flags = cache->flags;
9802 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9803
9804 spin_lock(&fs_info->pending_raid_kobjs_lock);
9805 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9806 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9807 space_info->block_group_kobjs[index] = &rkobj->kobj;
9808 }
9809 }
9810
9811 static struct btrfs_block_group_cache *
9812 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9813 u64 start, u64 size)
9814 {
9815 struct btrfs_block_group_cache *cache;
9816
9817 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9818 if (!cache)
9819 return NULL;
9820
9821 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9822 GFP_NOFS);
9823 if (!cache->free_space_ctl) {
9824 kfree(cache);
9825 return NULL;
9826 }
9827
9828 cache->key.objectid = start;
9829 cache->key.offset = size;
9830 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9831
9832 cache->fs_info = fs_info;
9833 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9834 set_free_space_tree_thresholds(cache);
9835
9836 atomic_set(&cache->count, 1);
9837 spin_lock_init(&cache->lock);
9838 init_rwsem(&cache->data_rwsem);
9839 INIT_LIST_HEAD(&cache->list);
9840 INIT_LIST_HEAD(&cache->cluster_list);
9841 INIT_LIST_HEAD(&cache->bg_list);
9842 INIT_LIST_HEAD(&cache->ro_list);
9843 INIT_LIST_HEAD(&cache->dirty_list);
9844 INIT_LIST_HEAD(&cache->io_list);
9845 btrfs_init_free_space_ctl(cache);
9846 atomic_set(&cache->trimming, 0);
9847 mutex_init(&cache->free_space_lock);
9848 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9849
9850 return cache;
9851 }
9852
9853 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9854 {
9855 struct btrfs_path *path;
9856 int ret;
9857 struct btrfs_block_group_cache *cache;
9858 struct btrfs_space_info *space_info;
9859 struct btrfs_key key;
9860 struct btrfs_key found_key;
9861 struct extent_buffer *leaf;
9862 int need_clear = 0;
9863 u64 cache_gen;
9864 u64 feature;
9865 int mixed;
9866
9867 feature = btrfs_super_incompat_flags(info->super_copy);
9868 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9869
9870 key.objectid = 0;
9871 key.offset = 0;
9872 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9873 path = btrfs_alloc_path();
9874 if (!path)
9875 return -ENOMEM;
9876 path->reada = READA_FORWARD;
9877
9878 cache_gen = btrfs_super_cache_generation(info->super_copy);
9879 if (btrfs_test_opt(info, SPACE_CACHE) &&
9880 btrfs_super_generation(info->super_copy) != cache_gen)
9881 need_clear = 1;
9882 if (btrfs_test_opt(info, CLEAR_CACHE))
9883 need_clear = 1;
9884
9885 while (1) {
9886 ret = find_first_block_group(info, path, &key);
9887 if (ret > 0)
9888 break;
9889 if (ret != 0)
9890 goto error;
9891
9892 leaf = path->nodes[0];
9893 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9894
9895 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9896 found_key.offset);
9897 if (!cache) {
9898 ret = -ENOMEM;
9899 goto error;
9900 }
9901
9902 if (need_clear) {
9903 /*
9904 * When we mount with old space cache, we need to
9905 * set BTRFS_DC_CLEAR and set dirty flag.
9906 *
9907 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9908 * truncate the old free space cache inode and
9909 * setup a new one.
9910 * b) Setting 'dirty flag' makes sure that we flush
9911 * the new space cache info onto disk.
9912 */
9913 if (btrfs_test_opt(info, SPACE_CACHE))
9914 cache->disk_cache_state = BTRFS_DC_CLEAR;
9915 }
9916
9917 read_extent_buffer(leaf, &cache->item,
9918 btrfs_item_ptr_offset(leaf, path->slots[0]),
9919 sizeof(cache->item));
9920 cache->flags = btrfs_block_group_flags(&cache->item);
9921 if (!mixed &&
9922 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9923 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9924 btrfs_err(info,
9925 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9926 cache->key.objectid);
9927 ret = -EINVAL;
9928 goto error;
9929 }
9930
9931 key.objectid = found_key.objectid + found_key.offset;
9932 btrfs_release_path(path);
9933
9934 /*
9935 * We need to exclude the super stripes now so that the space
9936 * info has super bytes accounted for, otherwise we'll think
9937 * we have more space than we actually do.
9938 */
9939 ret = exclude_super_stripes(cache);
9940 if (ret) {
9941 /*
9942 * We may have excluded something, so call this just in
9943 * case.
9944 */
9945 free_excluded_extents(cache);
9946 btrfs_put_block_group(cache);
9947 goto error;
9948 }
9949
9950 /*
9951 * check for two cases, either we are full, and therefore
9952 * don't need to bother with the caching work since we won't
9953 * find any space, or we are empty, and we can just add all
9954 * the space in and be done with it. This saves us _alot_ of
9955 * time, particularly in the full case.
9956 */
9957 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9958 cache->last_byte_to_unpin = (u64)-1;
9959 cache->cached = BTRFS_CACHE_FINISHED;
9960 free_excluded_extents(cache);
9961 } else if (btrfs_block_group_used(&cache->item) == 0) {
9962 cache->last_byte_to_unpin = (u64)-1;
9963 cache->cached = BTRFS_CACHE_FINISHED;
9964 add_new_free_space(cache, found_key.objectid,
9965 found_key.objectid +
9966 found_key.offset);
9967 free_excluded_extents(cache);
9968 }
9969
9970 ret = btrfs_add_block_group_cache(info, cache);
9971 if (ret) {
9972 btrfs_remove_free_space_cache(cache);
9973 btrfs_put_block_group(cache);
9974 goto error;
9975 }
9976
9977 trace_btrfs_add_block_group(info, cache, 0);
9978 update_space_info(info, cache->flags, found_key.offset,
9979 btrfs_block_group_used(&cache->item),
9980 cache->bytes_super, &space_info);
9981
9982 cache->space_info = space_info;
9983
9984 link_block_group(cache);
9985
9986 set_avail_alloc_bits(info, cache->flags);
9987 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
9988 inc_block_group_ro(cache, 1);
9989 } else if (btrfs_block_group_used(&cache->item) == 0) {
9990 spin_lock(&info->unused_bgs_lock);
9991 /* Should always be true but just in case. */
9992 if (list_empty(&cache->bg_list)) {
9993 btrfs_get_block_group(cache);
9994 trace_btrfs_add_unused_block_group(cache);
9995 list_add_tail(&cache->bg_list,
9996 &info->unused_bgs);
9997 }
9998 spin_unlock(&info->unused_bgs_lock);
9999 }
10000 }
10001
10002 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10003 if (!(get_alloc_profile(info, space_info->flags) &
10004 (BTRFS_BLOCK_GROUP_RAID10 |
10005 BTRFS_BLOCK_GROUP_RAID1 |
10006 BTRFS_BLOCK_GROUP_RAID5 |
10007 BTRFS_BLOCK_GROUP_RAID6 |
10008 BTRFS_BLOCK_GROUP_DUP)))
10009 continue;
10010 /*
10011 * avoid allocating from un-mirrored block group if there are
10012 * mirrored block groups.
10013 */
10014 list_for_each_entry(cache,
10015 &space_info->block_groups[BTRFS_RAID_RAID0],
10016 list)
10017 inc_block_group_ro(cache, 1);
10018 list_for_each_entry(cache,
10019 &space_info->block_groups[BTRFS_RAID_SINGLE],
10020 list)
10021 inc_block_group_ro(cache, 1);
10022 }
10023
10024 btrfs_add_raid_kobjects(info);
10025 init_global_block_rsv(info);
10026 ret = 0;
10027 error:
10028 btrfs_free_path(path);
10029 return ret;
10030 }
10031
10032 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10033 {
10034 struct btrfs_fs_info *fs_info = trans->fs_info;
10035 struct btrfs_block_group_cache *block_group, *tmp;
10036 struct btrfs_root *extent_root = fs_info->extent_root;
10037 struct btrfs_block_group_item item;
10038 struct btrfs_key key;
10039 int ret = 0;
10040 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10041
10042 trans->can_flush_pending_bgs = false;
10043 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10044 if (ret)
10045 goto next;
10046
10047 spin_lock(&block_group->lock);
10048 memcpy(&item, &block_group->item, sizeof(item));
10049 memcpy(&key, &block_group->key, sizeof(key));
10050 spin_unlock(&block_group->lock);
10051
10052 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10053 sizeof(item));
10054 if (ret)
10055 btrfs_abort_transaction(trans, ret);
10056 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10057 key.offset);
10058 if (ret)
10059 btrfs_abort_transaction(trans, ret);
10060 add_block_group_free_space(trans, block_group);
10061 /* already aborted the transaction if it failed. */
10062 next:
10063 list_del_init(&block_group->bg_list);
10064 }
10065 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10066 }
10067
10068 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10069 u64 type, u64 chunk_offset, u64 size)
10070 {
10071 struct btrfs_fs_info *fs_info = trans->fs_info;
10072 struct btrfs_block_group_cache *cache;
10073 int ret;
10074
10075 btrfs_set_log_full_commit(fs_info, trans);
10076
10077 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10078 if (!cache)
10079 return -ENOMEM;
10080
10081 btrfs_set_block_group_used(&cache->item, bytes_used);
10082 btrfs_set_block_group_chunk_objectid(&cache->item,
10083 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10084 btrfs_set_block_group_flags(&cache->item, type);
10085
10086 cache->flags = type;
10087 cache->last_byte_to_unpin = (u64)-1;
10088 cache->cached = BTRFS_CACHE_FINISHED;
10089 cache->needs_free_space = 1;
10090 ret = exclude_super_stripes(cache);
10091 if (ret) {
10092 /*
10093 * We may have excluded something, so call this just in
10094 * case.
10095 */
10096 free_excluded_extents(cache);
10097 btrfs_put_block_group(cache);
10098 return ret;
10099 }
10100
10101 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10102
10103 free_excluded_extents(cache);
10104
10105 #ifdef CONFIG_BTRFS_DEBUG
10106 if (btrfs_should_fragment_free_space(cache)) {
10107 u64 new_bytes_used = size - bytes_used;
10108
10109 bytes_used += new_bytes_used >> 1;
10110 fragment_free_space(cache);
10111 }
10112 #endif
10113 /*
10114 * Ensure the corresponding space_info object is created and
10115 * assigned to our block group. We want our bg to be added to the rbtree
10116 * with its ->space_info set.
10117 */
10118 cache->space_info = __find_space_info(fs_info, cache->flags);
10119 ASSERT(cache->space_info);
10120
10121 ret = btrfs_add_block_group_cache(fs_info, cache);
10122 if (ret) {
10123 btrfs_remove_free_space_cache(cache);
10124 btrfs_put_block_group(cache);
10125 return ret;
10126 }
10127
10128 /*
10129 * Now that our block group has its ->space_info set and is inserted in
10130 * the rbtree, update the space info's counters.
10131 */
10132 trace_btrfs_add_block_group(fs_info, cache, 1);
10133 update_space_info(fs_info, cache->flags, size, bytes_used,
10134 cache->bytes_super, &cache->space_info);
10135 update_global_block_rsv(fs_info);
10136
10137 link_block_group(cache);
10138
10139 list_add_tail(&cache->bg_list, &trans->new_bgs);
10140
10141 set_avail_alloc_bits(fs_info, type);
10142 return 0;
10143 }
10144
10145 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10146 {
10147 u64 extra_flags = chunk_to_extended(flags) &
10148 BTRFS_EXTENDED_PROFILE_MASK;
10149
10150 write_seqlock(&fs_info->profiles_lock);
10151 if (flags & BTRFS_BLOCK_GROUP_DATA)
10152 fs_info->avail_data_alloc_bits &= ~extra_flags;
10153 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10154 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10155 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10156 fs_info->avail_system_alloc_bits &= ~extra_flags;
10157 write_sequnlock(&fs_info->profiles_lock);
10158 }
10159
10160 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10161 u64 group_start, struct extent_map *em)
10162 {
10163 struct btrfs_fs_info *fs_info = trans->fs_info;
10164 struct btrfs_root *root = fs_info->extent_root;
10165 struct btrfs_path *path;
10166 struct btrfs_block_group_cache *block_group;
10167 struct btrfs_free_cluster *cluster;
10168 struct btrfs_root *tree_root = fs_info->tree_root;
10169 struct btrfs_key key;
10170 struct inode *inode;
10171 struct kobject *kobj = NULL;
10172 int ret;
10173 int index;
10174 int factor;
10175 struct btrfs_caching_control *caching_ctl = NULL;
10176 bool remove_em;
10177
10178 block_group = btrfs_lookup_block_group(fs_info, group_start);
10179 BUG_ON(!block_group);
10180 BUG_ON(!block_group->ro);
10181
10182 trace_btrfs_remove_block_group(block_group);
10183 /*
10184 * Free the reserved super bytes from this block group before
10185 * remove it.
10186 */
10187 free_excluded_extents(block_group);
10188 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10189 block_group->key.offset);
10190
10191 memcpy(&key, &block_group->key, sizeof(key));
10192 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10193 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10194 BTRFS_BLOCK_GROUP_RAID1 |
10195 BTRFS_BLOCK_GROUP_RAID10))
10196 factor = 2;
10197 else
10198 factor = 1;
10199
10200 /* make sure this block group isn't part of an allocation cluster */
10201 cluster = &fs_info->data_alloc_cluster;
10202 spin_lock(&cluster->refill_lock);
10203 btrfs_return_cluster_to_free_space(block_group, cluster);
10204 spin_unlock(&cluster->refill_lock);
10205
10206 /*
10207 * make sure this block group isn't part of a metadata
10208 * allocation cluster
10209 */
10210 cluster = &fs_info->meta_alloc_cluster;
10211 spin_lock(&cluster->refill_lock);
10212 btrfs_return_cluster_to_free_space(block_group, cluster);
10213 spin_unlock(&cluster->refill_lock);
10214
10215 path = btrfs_alloc_path();
10216 if (!path) {
10217 ret = -ENOMEM;
10218 goto out;
10219 }
10220
10221 /*
10222 * get the inode first so any iput calls done for the io_list
10223 * aren't the final iput (no unlinks allowed now)
10224 */
10225 inode = lookup_free_space_inode(fs_info, block_group, path);
10226
10227 mutex_lock(&trans->transaction->cache_write_mutex);
10228 /*
10229 * make sure our free spache cache IO is done before remove the
10230 * free space inode
10231 */
10232 spin_lock(&trans->transaction->dirty_bgs_lock);
10233 if (!list_empty(&block_group->io_list)) {
10234 list_del_init(&block_group->io_list);
10235
10236 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10237
10238 spin_unlock(&trans->transaction->dirty_bgs_lock);
10239 btrfs_wait_cache_io(trans, block_group, path);
10240 btrfs_put_block_group(block_group);
10241 spin_lock(&trans->transaction->dirty_bgs_lock);
10242 }
10243
10244 if (!list_empty(&block_group->dirty_list)) {
10245 list_del_init(&block_group->dirty_list);
10246 btrfs_put_block_group(block_group);
10247 }
10248 spin_unlock(&trans->transaction->dirty_bgs_lock);
10249 mutex_unlock(&trans->transaction->cache_write_mutex);
10250
10251 if (!IS_ERR(inode)) {
10252 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10253 if (ret) {
10254 btrfs_add_delayed_iput(inode);
10255 goto out;
10256 }
10257 clear_nlink(inode);
10258 /* One for the block groups ref */
10259 spin_lock(&block_group->lock);
10260 if (block_group->iref) {
10261 block_group->iref = 0;
10262 block_group->inode = NULL;
10263 spin_unlock(&block_group->lock);
10264 iput(inode);
10265 } else {
10266 spin_unlock(&block_group->lock);
10267 }
10268 /* One for our lookup ref */
10269 btrfs_add_delayed_iput(inode);
10270 }
10271
10272 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10273 key.offset = block_group->key.objectid;
10274 key.type = 0;
10275
10276 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10277 if (ret < 0)
10278 goto out;
10279 if (ret > 0)
10280 btrfs_release_path(path);
10281 if (ret == 0) {
10282 ret = btrfs_del_item(trans, tree_root, path);
10283 if (ret)
10284 goto out;
10285 btrfs_release_path(path);
10286 }
10287
10288 spin_lock(&fs_info->block_group_cache_lock);
10289 rb_erase(&block_group->cache_node,
10290 &fs_info->block_group_cache_tree);
10291 RB_CLEAR_NODE(&block_group->cache_node);
10292
10293 if (fs_info->first_logical_byte == block_group->key.objectid)
10294 fs_info->first_logical_byte = (u64)-1;
10295 spin_unlock(&fs_info->block_group_cache_lock);
10296
10297 down_write(&block_group->space_info->groups_sem);
10298 /*
10299 * we must use list_del_init so people can check to see if they
10300 * are still on the list after taking the semaphore
10301 */
10302 list_del_init(&block_group->list);
10303 if (list_empty(&block_group->space_info->block_groups[index])) {
10304 kobj = block_group->space_info->block_group_kobjs[index];
10305 block_group->space_info->block_group_kobjs[index] = NULL;
10306 clear_avail_alloc_bits(fs_info, block_group->flags);
10307 }
10308 up_write(&block_group->space_info->groups_sem);
10309 if (kobj) {
10310 kobject_del(kobj);
10311 kobject_put(kobj);
10312 }
10313
10314 if (block_group->has_caching_ctl)
10315 caching_ctl = get_caching_control(block_group);
10316 if (block_group->cached == BTRFS_CACHE_STARTED)
10317 wait_block_group_cache_done(block_group);
10318 if (block_group->has_caching_ctl) {
10319 down_write(&fs_info->commit_root_sem);
10320 if (!caching_ctl) {
10321 struct btrfs_caching_control *ctl;
10322
10323 list_for_each_entry(ctl,
10324 &fs_info->caching_block_groups, list)
10325 if (ctl->block_group == block_group) {
10326 caching_ctl = ctl;
10327 refcount_inc(&caching_ctl->count);
10328 break;
10329 }
10330 }
10331 if (caching_ctl)
10332 list_del_init(&caching_ctl->list);
10333 up_write(&fs_info->commit_root_sem);
10334 if (caching_ctl) {
10335 /* Once for the caching bgs list and once for us. */
10336 put_caching_control(caching_ctl);
10337 put_caching_control(caching_ctl);
10338 }
10339 }
10340
10341 spin_lock(&trans->transaction->dirty_bgs_lock);
10342 if (!list_empty(&block_group->dirty_list)) {
10343 WARN_ON(1);
10344 }
10345 if (!list_empty(&block_group->io_list)) {
10346 WARN_ON(1);
10347 }
10348 spin_unlock(&trans->transaction->dirty_bgs_lock);
10349 btrfs_remove_free_space_cache(block_group);
10350
10351 spin_lock(&block_group->space_info->lock);
10352 list_del_init(&block_group->ro_list);
10353
10354 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10355 WARN_ON(block_group->space_info->total_bytes
10356 < block_group->key.offset);
10357 WARN_ON(block_group->space_info->bytes_readonly
10358 < block_group->key.offset);
10359 WARN_ON(block_group->space_info->disk_total
10360 < block_group->key.offset * factor);
10361 }
10362 block_group->space_info->total_bytes -= block_group->key.offset;
10363 block_group->space_info->bytes_readonly -= block_group->key.offset;
10364 block_group->space_info->disk_total -= block_group->key.offset * factor;
10365
10366 spin_unlock(&block_group->space_info->lock);
10367
10368 memcpy(&key, &block_group->key, sizeof(key));
10369
10370 mutex_lock(&fs_info->chunk_mutex);
10371 if (!list_empty(&em->list)) {
10372 /* We're in the transaction->pending_chunks list. */
10373 free_extent_map(em);
10374 }
10375 spin_lock(&block_group->lock);
10376 block_group->removed = 1;
10377 /*
10378 * At this point trimming can't start on this block group, because we
10379 * removed the block group from the tree fs_info->block_group_cache_tree
10380 * so no one can't find it anymore and even if someone already got this
10381 * block group before we removed it from the rbtree, they have already
10382 * incremented block_group->trimming - if they didn't, they won't find
10383 * any free space entries because we already removed them all when we
10384 * called btrfs_remove_free_space_cache().
10385 *
10386 * And we must not remove the extent map from the fs_info->mapping_tree
10387 * to prevent the same logical address range and physical device space
10388 * ranges from being reused for a new block group. This is because our
10389 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10390 * completely transactionless, so while it is trimming a range the
10391 * currently running transaction might finish and a new one start,
10392 * allowing for new block groups to be created that can reuse the same
10393 * physical device locations unless we take this special care.
10394 *
10395 * There may also be an implicit trim operation if the file system
10396 * is mounted with -odiscard. The same protections must remain
10397 * in place until the extents have been discarded completely when
10398 * the transaction commit has completed.
10399 */
10400 remove_em = (atomic_read(&block_group->trimming) == 0);
10401 /*
10402 * Make sure a trimmer task always sees the em in the pinned_chunks list
10403 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10404 * before checking block_group->removed).
10405 */
10406 if (!remove_em) {
10407 /*
10408 * Our em might be in trans->transaction->pending_chunks which
10409 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10410 * and so is the fs_info->pinned_chunks list.
10411 *
10412 * So at this point we must be holding the chunk_mutex to avoid
10413 * any races with chunk allocation (more specifically at
10414 * volumes.c:contains_pending_extent()), to ensure it always
10415 * sees the em, either in the pending_chunks list or in the
10416 * pinned_chunks list.
10417 */
10418 list_move_tail(&em->list, &fs_info->pinned_chunks);
10419 }
10420 spin_unlock(&block_group->lock);
10421
10422 if (remove_em) {
10423 struct extent_map_tree *em_tree;
10424
10425 em_tree = &fs_info->mapping_tree.map_tree;
10426 write_lock(&em_tree->lock);
10427 /*
10428 * The em might be in the pending_chunks list, so make sure the
10429 * chunk mutex is locked, since remove_extent_mapping() will
10430 * delete us from that list.
10431 */
10432 remove_extent_mapping(em_tree, em);
10433 write_unlock(&em_tree->lock);
10434 /* once for the tree */
10435 free_extent_map(em);
10436 }
10437
10438 mutex_unlock(&fs_info->chunk_mutex);
10439
10440 ret = remove_block_group_free_space(trans, block_group);
10441 if (ret)
10442 goto out;
10443
10444 btrfs_put_block_group(block_group);
10445 btrfs_put_block_group(block_group);
10446
10447 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10448 if (ret > 0)
10449 ret = -EIO;
10450 if (ret < 0)
10451 goto out;
10452
10453 ret = btrfs_del_item(trans, root, path);
10454 out:
10455 btrfs_free_path(path);
10456 return ret;
10457 }
10458
10459 struct btrfs_trans_handle *
10460 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10461 const u64 chunk_offset)
10462 {
10463 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10464 struct extent_map *em;
10465 struct map_lookup *map;
10466 unsigned int num_items;
10467
10468 read_lock(&em_tree->lock);
10469 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10470 read_unlock(&em_tree->lock);
10471 ASSERT(em && em->start == chunk_offset);
10472
10473 /*
10474 * We need to reserve 3 + N units from the metadata space info in order
10475 * to remove a block group (done at btrfs_remove_chunk() and at
10476 * btrfs_remove_block_group()), which are used for:
10477 *
10478 * 1 unit for adding the free space inode's orphan (located in the tree
10479 * of tree roots).
10480 * 1 unit for deleting the block group item (located in the extent
10481 * tree).
10482 * 1 unit for deleting the free space item (located in tree of tree
10483 * roots).
10484 * N units for deleting N device extent items corresponding to each
10485 * stripe (located in the device tree).
10486 *
10487 * In order to remove a block group we also need to reserve units in the
10488 * system space info in order to update the chunk tree (update one or
10489 * more device items and remove one chunk item), but this is done at
10490 * btrfs_remove_chunk() through a call to check_system_chunk().
10491 */
10492 map = em->map_lookup;
10493 num_items = 3 + map->num_stripes;
10494 free_extent_map(em);
10495
10496 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10497 num_items, 1);
10498 }
10499
10500 /*
10501 * Process the unused_bgs list and remove any that don't have any allocated
10502 * space inside of them.
10503 */
10504 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10505 {
10506 struct btrfs_block_group_cache *block_group;
10507 struct btrfs_space_info *space_info;
10508 struct btrfs_trans_handle *trans;
10509 int ret = 0;
10510
10511 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10512 return;
10513
10514 spin_lock(&fs_info->unused_bgs_lock);
10515 while (!list_empty(&fs_info->unused_bgs)) {
10516 u64 start, end;
10517 int trimming;
10518
10519 block_group = list_first_entry(&fs_info->unused_bgs,
10520 struct btrfs_block_group_cache,
10521 bg_list);
10522 list_del_init(&block_group->bg_list);
10523
10524 space_info = block_group->space_info;
10525
10526 if (ret || btrfs_mixed_space_info(space_info)) {
10527 btrfs_put_block_group(block_group);
10528 continue;
10529 }
10530 spin_unlock(&fs_info->unused_bgs_lock);
10531
10532 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10533
10534 /* Don't want to race with allocators so take the groups_sem */
10535 down_write(&space_info->groups_sem);
10536 spin_lock(&block_group->lock);
10537 if (block_group->reserved || block_group->pinned ||
10538 btrfs_block_group_used(&block_group->item) ||
10539 block_group->ro ||
10540 list_is_singular(&block_group->list)) {
10541 /*
10542 * We want to bail if we made new allocations or have
10543 * outstanding allocations in this block group. We do
10544 * the ro check in case balance is currently acting on
10545 * this block group.
10546 */
10547 trace_btrfs_skip_unused_block_group(block_group);
10548 spin_unlock(&block_group->lock);
10549 up_write(&space_info->groups_sem);
10550 goto next;
10551 }
10552 spin_unlock(&block_group->lock);
10553
10554 /* We don't want to force the issue, only flip if it's ok. */
10555 ret = inc_block_group_ro(block_group, 0);
10556 up_write(&space_info->groups_sem);
10557 if (ret < 0) {
10558 ret = 0;
10559 goto next;
10560 }
10561
10562 /*
10563 * Want to do this before we do anything else so we can recover
10564 * properly if we fail to join the transaction.
10565 */
10566 trans = btrfs_start_trans_remove_block_group(fs_info,
10567 block_group->key.objectid);
10568 if (IS_ERR(trans)) {
10569 btrfs_dec_block_group_ro(block_group);
10570 ret = PTR_ERR(trans);
10571 goto next;
10572 }
10573
10574 /*
10575 * We could have pending pinned extents for this block group,
10576 * just delete them, we don't care about them anymore.
10577 */
10578 start = block_group->key.objectid;
10579 end = start + block_group->key.offset - 1;
10580 /*
10581 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10582 * btrfs_finish_extent_commit(). If we are at transaction N,
10583 * another task might be running finish_extent_commit() for the
10584 * previous transaction N - 1, and have seen a range belonging
10585 * to the block group in freed_extents[] before we were able to
10586 * clear the whole block group range from freed_extents[]. This
10587 * means that task can lookup for the block group after we
10588 * unpinned it from freed_extents[] and removed it, leading to
10589 * a BUG_ON() at btrfs_unpin_extent_range().
10590 */
10591 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10592 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10593 EXTENT_DIRTY);
10594 if (ret) {
10595 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10596 btrfs_dec_block_group_ro(block_group);
10597 goto end_trans;
10598 }
10599 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10600 EXTENT_DIRTY);
10601 if (ret) {
10602 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10603 btrfs_dec_block_group_ro(block_group);
10604 goto end_trans;
10605 }
10606 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10607
10608 /* Reset pinned so btrfs_put_block_group doesn't complain */
10609 spin_lock(&space_info->lock);
10610 spin_lock(&block_group->lock);
10611
10612 space_info->bytes_pinned -= block_group->pinned;
10613 space_info->bytes_readonly += block_group->pinned;
10614 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10615 -block_group->pinned,
10616 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10617 block_group->pinned = 0;
10618
10619 spin_unlock(&block_group->lock);
10620 spin_unlock(&space_info->lock);
10621
10622 /* DISCARD can flip during remount */
10623 trimming = btrfs_test_opt(fs_info, DISCARD);
10624
10625 /* Implicit trim during transaction commit. */
10626 if (trimming)
10627 btrfs_get_block_group_trimming(block_group);
10628
10629 /*
10630 * Btrfs_remove_chunk will abort the transaction if things go
10631 * horribly wrong.
10632 */
10633 ret = btrfs_remove_chunk(trans, fs_info,
10634 block_group->key.objectid);
10635
10636 if (ret) {
10637 if (trimming)
10638 btrfs_put_block_group_trimming(block_group);
10639 goto end_trans;
10640 }
10641
10642 /*
10643 * If we're not mounted with -odiscard, we can just forget
10644 * about this block group. Otherwise we'll need to wait
10645 * until transaction commit to do the actual discard.
10646 */
10647 if (trimming) {
10648 spin_lock(&fs_info->unused_bgs_lock);
10649 /*
10650 * A concurrent scrub might have added us to the list
10651 * fs_info->unused_bgs, so use a list_move operation
10652 * to add the block group to the deleted_bgs list.
10653 */
10654 list_move(&block_group->bg_list,
10655 &trans->transaction->deleted_bgs);
10656 spin_unlock(&fs_info->unused_bgs_lock);
10657 btrfs_get_block_group(block_group);
10658 }
10659 end_trans:
10660 btrfs_end_transaction(trans);
10661 next:
10662 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10663 btrfs_put_block_group(block_group);
10664 spin_lock(&fs_info->unused_bgs_lock);
10665 }
10666 spin_unlock(&fs_info->unused_bgs_lock);
10667 }
10668
10669 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10670 {
10671 struct btrfs_super_block *disk_super;
10672 u64 features;
10673 u64 flags;
10674 int mixed = 0;
10675 int ret;
10676
10677 disk_super = fs_info->super_copy;
10678 if (!btrfs_super_root(disk_super))
10679 return -EINVAL;
10680
10681 features = btrfs_super_incompat_flags(disk_super);
10682 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10683 mixed = 1;
10684
10685 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10686 ret = create_space_info(fs_info, flags);
10687 if (ret)
10688 goto out;
10689
10690 if (mixed) {
10691 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10692 ret = create_space_info(fs_info, flags);
10693 } else {
10694 flags = BTRFS_BLOCK_GROUP_METADATA;
10695 ret = create_space_info(fs_info, flags);
10696 if (ret)
10697 goto out;
10698
10699 flags = BTRFS_BLOCK_GROUP_DATA;
10700 ret = create_space_info(fs_info, flags);
10701 }
10702 out:
10703 return ret;
10704 }
10705
10706 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10707 u64 start, u64 end)
10708 {
10709 return unpin_extent_range(fs_info, start, end, false);
10710 }
10711
10712 /*
10713 * It used to be that old block groups would be left around forever.
10714 * Iterating over them would be enough to trim unused space. Since we
10715 * now automatically remove them, we also need to iterate over unallocated
10716 * space.
10717 *
10718 * We don't want a transaction for this since the discard may take a
10719 * substantial amount of time. We don't require that a transaction be
10720 * running, but we do need to take a running transaction into account
10721 * to ensure that we're not discarding chunks that were released in
10722 * the current transaction.
10723 *
10724 * Holding the chunks lock will prevent other threads from allocating
10725 * or releasing chunks, but it won't prevent a running transaction
10726 * from committing and releasing the memory that the pending chunks
10727 * list head uses. For that, we need to take a reference to the
10728 * transaction.
10729 */
10730 static int btrfs_trim_free_extents(struct btrfs_device *device,
10731 u64 minlen, u64 *trimmed)
10732 {
10733 u64 start = 0, len = 0;
10734 int ret;
10735
10736 *trimmed = 0;
10737
10738 /* Not writeable = nothing to do. */
10739 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10740 return 0;
10741
10742 /* No free space = nothing to do. */
10743 if (device->total_bytes <= device->bytes_used)
10744 return 0;
10745
10746 ret = 0;
10747
10748 while (1) {
10749 struct btrfs_fs_info *fs_info = device->fs_info;
10750 struct btrfs_transaction *trans;
10751 u64 bytes;
10752
10753 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10754 if (ret)
10755 return ret;
10756
10757 down_read(&fs_info->commit_root_sem);
10758
10759 spin_lock(&fs_info->trans_lock);
10760 trans = fs_info->running_transaction;
10761 if (trans)
10762 refcount_inc(&trans->use_count);
10763 spin_unlock(&fs_info->trans_lock);
10764
10765 ret = find_free_dev_extent_start(trans, device, minlen, start,
10766 &start, &len);
10767 if (trans)
10768 btrfs_put_transaction(trans);
10769
10770 if (ret) {
10771 up_read(&fs_info->commit_root_sem);
10772 mutex_unlock(&fs_info->chunk_mutex);
10773 if (ret == -ENOSPC)
10774 ret = 0;
10775 break;
10776 }
10777
10778 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10779 up_read(&fs_info->commit_root_sem);
10780 mutex_unlock(&fs_info->chunk_mutex);
10781
10782 if (ret)
10783 break;
10784
10785 start += len;
10786 *trimmed += bytes;
10787
10788 if (fatal_signal_pending(current)) {
10789 ret = -ERESTARTSYS;
10790 break;
10791 }
10792
10793 cond_resched();
10794 }
10795
10796 return ret;
10797 }
10798
10799 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10800 {
10801 struct btrfs_block_group_cache *cache = NULL;
10802 struct btrfs_device *device;
10803 struct list_head *devices;
10804 u64 group_trimmed;
10805 u64 start;
10806 u64 end;
10807 u64 trimmed = 0;
10808 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10809 int ret = 0;
10810
10811 /*
10812 * try to trim all FS space, our block group may start from non-zero.
10813 */
10814 if (range->len == total_bytes)
10815 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10816 else
10817 cache = btrfs_lookup_block_group(fs_info, range->start);
10818
10819 while (cache) {
10820 if (cache->key.objectid >= (range->start + range->len)) {
10821 btrfs_put_block_group(cache);
10822 break;
10823 }
10824
10825 start = max(range->start, cache->key.objectid);
10826 end = min(range->start + range->len,
10827 cache->key.objectid + cache->key.offset);
10828
10829 if (end - start >= range->minlen) {
10830 if (!block_group_cache_done(cache)) {
10831 ret = cache_block_group(cache, 0);
10832 if (ret) {
10833 btrfs_put_block_group(cache);
10834 break;
10835 }
10836 ret = wait_block_group_cache_done(cache);
10837 if (ret) {
10838 btrfs_put_block_group(cache);
10839 break;
10840 }
10841 }
10842 ret = btrfs_trim_block_group(cache,
10843 &group_trimmed,
10844 start,
10845 end,
10846 range->minlen);
10847
10848 trimmed += group_trimmed;
10849 if (ret) {
10850 btrfs_put_block_group(cache);
10851 break;
10852 }
10853 }
10854
10855 cache = next_block_group(fs_info, cache);
10856 }
10857
10858 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10859 devices = &fs_info->fs_devices->alloc_list;
10860 list_for_each_entry(device, devices, dev_alloc_list) {
10861 ret = btrfs_trim_free_extents(device, range->minlen,
10862 &group_trimmed);
10863 if (ret)
10864 break;
10865
10866 trimmed += group_trimmed;
10867 }
10868 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10869
10870 range->len = trimmed;
10871 return ret;
10872 }
10873
10874 /*
10875 * btrfs_{start,end}_write_no_snapshotting() are similar to
10876 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10877 * data into the page cache through nocow before the subvolume is snapshoted,
10878 * but flush the data into disk after the snapshot creation, or to prevent
10879 * operations while snapshotting is ongoing and that cause the snapshot to be
10880 * inconsistent (writes followed by expanding truncates for example).
10881 */
10882 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10883 {
10884 percpu_counter_dec(&root->subv_writers->counter);
10885 cond_wake_up(&root->subv_writers->wait);
10886 }
10887
10888 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
10889 {
10890 if (atomic_read(&root->will_be_snapshotted))
10891 return 0;
10892
10893 percpu_counter_inc(&root->subv_writers->counter);
10894 /*
10895 * Make sure counter is updated before we check for snapshot creation.
10896 */
10897 smp_mb();
10898 if (atomic_read(&root->will_be_snapshotted)) {
10899 btrfs_end_write_no_snapshotting(root);
10900 return 0;
10901 }
10902 return 1;
10903 }
10904
10905 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10906 {
10907 while (true) {
10908 int ret;
10909
10910 ret = btrfs_start_write_no_snapshotting(root);
10911 if (ret)
10912 break;
10913 wait_var_event(&root->will_be_snapshotted,
10914 !atomic_read(&root->will_be_snapshotted));
10915 }
10916 }