]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent_io.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(&changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 /*
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
232 */
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
234 state = kmem_cache_alloc(extent_state_cache, mask);
235 if (!state)
236 return state;
237 state->state = 0;
238 state->failrec = NULL;
239 RB_CLEAR_NODE(&state->rb_node);
240 btrfs_leak_debug_add(&state->leak_list, &states);
241 atomic_set(&state->refs, 1);
242 init_waitqueue_head(&state->wq);
243 trace_alloc_extent_state(state, mask, _RET_IP_);
244 return state;
245 }
246
247 void free_extent_state(struct extent_state *state)
248 {
249 if (!state)
250 return;
251 if (atomic_dec_and_test(&state->refs)) {
252 WARN_ON(extent_state_in_tree(state));
253 btrfs_leak_debug_del(&state->leak_list);
254 trace_free_extent_state(state, _RET_IP_);
255 kmem_cache_free(extent_state_cache, state);
256 }
257 }
258
259 static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
261 u64 offset,
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
265 {
266 struct rb_node **p;
267 struct rb_node *parent = NULL;
268 struct tree_entry *entry;
269
270 if (p_in && parent_in) {
271 p = *p_in;
272 parent = *parent_in;
273 goto do_insert;
274 }
275
276 p = search_start ? &search_start : &root->rb_node;
277 while (*p) {
278 parent = *p;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
280
281 if (offset < entry->start)
282 p = &(*p)->rb_left;
283 else if (offset > entry->end)
284 p = &(*p)->rb_right;
285 else
286 return parent;
287 }
288
289 do_insert:
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
292 return NULL;
293 }
294
295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
300 {
301 struct rb_root *root = &tree->state;
302 struct rb_node **n = &root->rb_node;
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
307
308 while (*n) {
309 prev = *n;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
311 prev_entry = entry;
312
313 if (offset < entry->start)
314 n = &(*n)->rb_left;
315 else if (offset > entry->end)
316 n = &(*n)->rb_right;
317 else
318 return *n;
319 }
320
321 if (p_ret)
322 *p_ret = n;
323 if (parent_ret)
324 *parent_ret = prev;
325
326 if (prev_ret) {
327 orig_prev = prev;
328 while (prev && offset > prev_entry->end) {
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *prev_ret = prev;
333 prev = orig_prev;
334 }
335
336 if (next_ret) {
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 while (prev && offset < prev_entry->start) {
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 }
342 *next_ret = prev;
343 }
344 return NULL;
345 }
346
347 static inline struct rb_node *
348 tree_search_for_insert(struct extent_io_tree *tree,
349 u64 offset,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
352 {
353 struct rb_node *prev = NULL;
354 struct rb_node *ret;
355
356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
357 if (!ret)
358 return prev;
359 return ret;
360 }
361
362 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 u64 offset)
364 {
365 return tree_search_for_insert(tree, offset, NULL, NULL);
366 }
367
368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
370 {
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
373 other);
374 }
375
376 /*
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
382 *
383 * This should be called with the tree lock held.
384 */
385 static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
387 {
388 struct extent_state *other;
389 struct rb_node *other_node;
390
391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
392 return;
393
394 other_node = rb_prev(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
399 merge_cb(tree, state, other);
400 state->start = other->start;
401 rb_erase(&other->rb_node, &tree->state);
402 RB_CLEAR_NODE(&other->rb_node);
403 free_extent_state(other);
404 }
405 }
406 other_node = rb_next(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
411 merge_cb(tree, state, other);
412 state->end = other->end;
413 rb_erase(&other->rb_node, &tree->state);
414 RB_CLEAR_NODE(&other->rb_node);
415 free_extent_state(other);
416 }
417 }
418 }
419
420 static void set_state_cb(struct extent_io_tree *tree,
421 struct extent_state *state, unsigned *bits)
422 {
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
425 }
426
427 static void clear_state_cb(struct extent_io_tree *tree,
428 struct extent_state *state, unsigned *bits)
429 {
430 if (tree->ops && tree->ops->clear_bit_hook)
431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 state, bits);
433 }
434
435 static void set_state_bits(struct extent_io_tree *tree,
436 struct extent_state *state, unsigned *bits,
437 struct extent_changeset *changeset);
438
439 /*
440 * insert an extent_state struct into the tree. 'bits' are set on the
441 * struct before it is inserted.
442 *
443 * This may return -EEXIST if the extent is already there, in which case the
444 * state struct is freed.
445 *
446 * The tree lock is not taken internally. This is a utility function and
447 * probably isn't what you want to call (see set/clear_extent_bit).
448 */
449 static int insert_state(struct extent_io_tree *tree,
450 struct extent_state *state, u64 start, u64 end,
451 struct rb_node ***p,
452 struct rb_node **parent,
453 unsigned *bits, struct extent_changeset *changeset)
454 {
455 struct rb_node *node;
456
457 if (end < start)
458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
459 end, start);
460 state->start = start;
461 state->end = end;
462
463 set_state_bits(tree, state, bits, changeset);
464
465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
466 if (node) {
467 struct extent_state *found;
468 found = rb_entry(node, struct extent_state, rb_node);
469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
470 found->start, found->end, start, end);
471 return -EEXIST;
472 }
473 merge_state(tree, state);
474 return 0;
475 }
476
477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
478 u64 split)
479 {
480 if (tree->ops && tree->ops->split_extent_hook)
481 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 }
483
484 /*
485 * split a given extent state struct in two, inserting the preallocated
486 * struct 'prealloc' as the newly created second half. 'split' indicates an
487 * offset inside 'orig' where it should be split.
488 *
489 * Before calling,
490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
491 * are two extent state structs in the tree:
492 * prealloc: [orig->start, split - 1]
493 * orig: [ split, orig->end ]
494 *
495 * The tree locks are not taken by this function. They need to be held
496 * by the caller.
497 */
498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 struct extent_state *prealloc, u64 split)
500 {
501 struct rb_node *node;
502
503 split_cb(tree, orig, split);
504
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
508 orig->start = split;
509
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
512 if (node) {
513 free_extent_state(prealloc);
514 return -EEXIST;
515 }
516 return 0;
517 }
518
519 static struct extent_state *next_state(struct extent_state *state)
520 {
521 struct rb_node *next = rb_next(&state->rb_node);
522 if (next)
523 return rb_entry(next, struct extent_state, rb_node);
524 else
525 return NULL;
526 }
527
528 /*
529 * utility function to clear some bits in an extent state struct.
530 * it will optionally wake up any one waiting on this state (wake == 1).
531 *
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
534 */
535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
539 {
540 struct extent_state *next;
541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
542
543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
544 u64 range = state->end - state->start + 1;
545 WARN_ON(range > tree->dirty_bytes);
546 tree->dirty_bytes -= range;
547 }
548 clear_state_cb(tree, state, bits);
549 add_extent_changeset(state, bits_to_clear, changeset, 0);
550 state->state &= ~bits_to_clear;
551 if (wake)
552 wake_up(&state->wq);
553 if (state->state == 0) {
554 next = next_state(state);
555 if (extent_state_in_tree(state)) {
556 rb_erase(&state->rb_node, &tree->state);
557 RB_CLEAR_NODE(&state->rb_node);
558 free_extent_state(state);
559 } else {
560 WARN_ON(1);
561 }
562 } else {
563 merge_state(tree, state);
564 next = next_state(state);
565 }
566 return next;
567 }
568
569 static struct extent_state *
570 alloc_extent_state_atomic(struct extent_state *prealloc)
571 {
572 if (!prealloc)
573 prealloc = alloc_extent_state(GFP_ATOMIC);
574
575 return prealloc;
576 }
577
578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
579 {
580 btrfs_panic(tree_fs_info(tree), err,
581 "Locking error: Extent tree was modified by another thread while locked.");
582 }
583
584 /*
585 * clear some bits on a range in the tree. This may require splitting
586 * or inserting elements in the tree, so the gfp mask is used to
587 * indicate which allocations or sleeping are allowed.
588 *
589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590 * the given range from the tree regardless of state (ie for truncate).
591 *
592 * the range [start, end] is inclusive.
593 *
594 * This takes the tree lock, and returns 0 on success and < 0 on error.
595 */
596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 unsigned bits, int wake, int delete,
598 struct extent_state **cached_state,
599 gfp_t mask, struct extent_changeset *changeset)
600 {
601 struct extent_state *state;
602 struct extent_state *cached;
603 struct extent_state *prealloc = NULL;
604 struct rb_node *node;
605 u64 last_end;
606 int err;
607 int clear = 0;
608
609 btrfs_debug_check_extent_io_range(tree, start, end);
610
611 if (bits & EXTENT_DELALLOC)
612 bits |= EXTENT_NORESERVE;
613
614 if (delete)
615 bits |= ~EXTENT_CTLBITS;
616 bits |= EXTENT_FIRST_DELALLOC;
617
618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 clear = 1;
620 again:
621 if (!prealloc && gfpflags_allow_blocking(mask)) {
622 /*
623 * Don't care for allocation failure here because we might end
624 * up not needing the pre-allocated extent state at all, which
625 * is the case if we only have in the tree extent states that
626 * cover our input range and don't cover too any other range.
627 * If we end up needing a new extent state we allocate it later.
628 */
629 prealloc = alloc_extent_state(mask);
630 }
631
632 spin_lock(&tree->lock);
633 if (cached_state) {
634 cached = *cached_state;
635
636 if (clear) {
637 *cached_state = NULL;
638 cached_state = NULL;
639 }
640
641 if (cached && extent_state_in_tree(cached) &&
642 cached->start <= start && cached->end > start) {
643 if (clear)
644 atomic_dec(&cached->refs);
645 state = cached;
646 goto hit_next;
647 }
648 if (clear)
649 free_extent_state(cached);
650 }
651 /*
652 * this search will find the extents that end after
653 * our range starts
654 */
655 node = tree_search(tree, start);
656 if (!node)
657 goto out;
658 state = rb_entry(node, struct extent_state, rb_node);
659 hit_next:
660 if (state->start > end)
661 goto out;
662 WARN_ON(state->end < start);
663 last_end = state->end;
664
665 /* the state doesn't have the wanted bits, go ahead */
666 if (!(state->state & bits)) {
667 state = next_state(state);
668 goto next;
669 }
670
671 /*
672 * | ---- desired range ---- |
673 * | state | or
674 * | ------------- state -------------- |
675 *
676 * We need to split the extent we found, and may flip
677 * bits on second half.
678 *
679 * If the extent we found extends past our range, we
680 * just split and search again. It'll get split again
681 * the next time though.
682 *
683 * If the extent we found is inside our range, we clear
684 * the desired bit on it.
685 */
686
687 if (state->start < start) {
688 prealloc = alloc_extent_state_atomic(prealloc);
689 BUG_ON(!prealloc);
690 err = split_state(tree, state, prealloc, start);
691 if (err)
692 extent_io_tree_panic(tree, err);
693
694 prealloc = NULL;
695 if (err)
696 goto out;
697 if (state->end <= end) {
698 state = clear_state_bit(tree, state, &bits, wake,
699 changeset);
700 goto next;
701 }
702 goto search_again;
703 }
704 /*
705 * | ---- desired range ---- |
706 * | state |
707 * We need to split the extent, and clear the bit
708 * on the first half
709 */
710 if (state->start <= end && state->end > end) {
711 prealloc = alloc_extent_state_atomic(prealloc);
712 BUG_ON(!prealloc);
713 err = split_state(tree, state, prealloc, end + 1);
714 if (err)
715 extent_io_tree_panic(tree, err);
716
717 if (wake)
718 wake_up(&state->wq);
719
720 clear_state_bit(tree, prealloc, &bits, wake, changeset);
721
722 prealloc = NULL;
723 goto out;
724 }
725
726 state = clear_state_bit(tree, state, &bits, wake, changeset);
727 next:
728 if (last_end == (u64)-1)
729 goto out;
730 start = last_end + 1;
731 if (start <= end && state && !need_resched())
732 goto hit_next;
733
734 search_again:
735 if (start > end)
736 goto out;
737 spin_unlock(&tree->lock);
738 if (gfpflags_allow_blocking(mask))
739 cond_resched();
740 goto again;
741
742 out:
743 spin_unlock(&tree->lock);
744 if (prealloc)
745 free_extent_state(prealloc);
746
747 return 0;
748
749 }
750
751 static void wait_on_state(struct extent_io_tree *tree,
752 struct extent_state *state)
753 __releases(tree->lock)
754 __acquires(tree->lock)
755 {
756 DEFINE_WAIT(wait);
757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
758 spin_unlock(&tree->lock);
759 schedule();
760 spin_lock(&tree->lock);
761 finish_wait(&state->wq, &wait);
762 }
763
764 /*
765 * waits for one or more bits to clear on a range in the state tree.
766 * The range [start, end] is inclusive.
767 * The tree lock is taken by this function
768 */
769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 unsigned long bits)
771 {
772 struct extent_state *state;
773 struct rb_node *node;
774
775 btrfs_debug_check_extent_io_range(tree, start, end);
776
777 spin_lock(&tree->lock);
778 again:
779 while (1) {
780 /*
781 * this search will find all the extents that end after
782 * our range starts
783 */
784 node = tree_search(tree, start);
785 process_node:
786 if (!node)
787 break;
788
789 state = rb_entry(node, struct extent_state, rb_node);
790
791 if (state->start > end)
792 goto out;
793
794 if (state->state & bits) {
795 start = state->start;
796 atomic_inc(&state->refs);
797 wait_on_state(tree, state);
798 free_extent_state(state);
799 goto again;
800 }
801 start = state->end + 1;
802
803 if (start > end)
804 break;
805
806 if (!cond_resched_lock(&tree->lock)) {
807 node = rb_next(node);
808 goto process_node;
809 }
810 }
811 out:
812 spin_unlock(&tree->lock);
813 }
814
815 static void set_state_bits(struct extent_io_tree *tree,
816 struct extent_state *state,
817 unsigned *bits, struct extent_changeset *changeset)
818 {
819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
820
821 set_state_cb(tree, state, bits);
822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
823 u64 range = state->end - state->start + 1;
824 tree->dirty_bytes += range;
825 }
826 add_extent_changeset(state, bits_to_set, changeset, 1);
827 state->state |= bits_to_set;
828 }
829
830 static void cache_state_if_flags(struct extent_state *state,
831 struct extent_state **cached_ptr,
832 unsigned flags)
833 {
834 if (cached_ptr && !(*cached_ptr)) {
835 if (!flags || (state->state & flags)) {
836 *cached_ptr = state;
837 atomic_inc(&state->refs);
838 }
839 }
840 }
841
842 static void cache_state(struct extent_state *state,
843 struct extent_state **cached_ptr)
844 {
845 return cache_state_if_flags(state, cached_ptr,
846 EXTENT_IOBITS | EXTENT_BOUNDARY);
847 }
848
849 /*
850 * set some bits on a range in the tree. This may require allocations or
851 * sleeping, so the gfp mask is used to indicate what is allowed.
852 *
853 * If any of the exclusive bits are set, this will fail with -EEXIST if some
854 * part of the range already has the desired bits set. The start of the
855 * existing range is returned in failed_start in this case.
856 *
857 * [start, end] is inclusive This takes the tree lock.
858 */
859
860 static int __must_check
861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
862 unsigned bits, unsigned exclusive_bits,
863 u64 *failed_start, struct extent_state **cached_state,
864 gfp_t mask, struct extent_changeset *changeset)
865 {
866 struct extent_state *state;
867 struct extent_state *prealloc = NULL;
868 struct rb_node *node;
869 struct rb_node **p;
870 struct rb_node *parent;
871 int err = 0;
872 u64 last_start;
873 u64 last_end;
874
875 btrfs_debug_check_extent_io_range(tree, start, end);
876
877 bits |= EXTENT_FIRST_DELALLOC;
878 again:
879 if (!prealloc && gfpflags_allow_blocking(mask)) {
880 /*
881 * Don't care for allocation failure here because we might end
882 * up not needing the pre-allocated extent state at all, which
883 * is the case if we only have in the tree extent states that
884 * cover our input range and don't cover too any other range.
885 * If we end up needing a new extent state we allocate it later.
886 */
887 prealloc = alloc_extent_state(mask);
888 }
889
890 spin_lock(&tree->lock);
891 if (cached_state && *cached_state) {
892 state = *cached_state;
893 if (state->start <= start && state->end > start &&
894 extent_state_in_tree(state)) {
895 node = &state->rb_node;
896 goto hit_next;
897 }
898 }
899 /*
900 * this search will find all the extents that end after
901 * our range starts.
902 */
903 node = tree_search_for_insert(tree, start, &p, &parent);
904 if (!node) {
905 prealloc = alloc_extent_state_atomic(prealloc);
906 BUG_ON(!prealloc);
907 err = insert_state(tree, prealloc, start, end,
908 &p, &parent, &bits, changeset);
909 if (err)
910 extent_io_tree_panic(tree, err);
911
912 cache_state(prealloc, cached_state);
913 prealloc = NULL;
914 goto out;
915 }
916 state = rb_entry(node, struct extent_state, rb_node);
917 hit_next:
918 last_start = state->start;
919 last_end = state->end;
920
921 /*
922 * | ---- desired range ---- |
923 * | state |
924 *
925 * Just lock what we found and keep going
926 */
927 if (state->start == start && state->end <= end) {
928 if (state->state & exclusive_bits) {
929 *failed_start = state->start;
930 err = -EEXIST;
931 goto out;
932 }
933
934 set_state_bits(tree, state, &bits, changeset);
935 cache_state(state, cached_state);
936 merge_state(tree, state);
937 if (last_end == (u64)-1)
938 goto out;
939 start = last_end + 1;
940 state = next_state(state);
941 if (start < end && state && state->start == start &&
942 !need_resched())
943 goto hit_next;
944 goto search_again;
945 }
946
947 /*
948 * | ---- desired range ---- |
949 * | state |
950 * or
951 * | ------------- state -------------- |
952 *
953 * We need to split the extent we found, and may flip bits on
954 * second half.
955 *
956 * If the extent we found extends past our
957 * range, we just split and search again. It'll get split
958 * again the next time though.
959 *
960 * If the extent we found is inside our range, we set the
961 * desired bit on it.
962 */
963 if (state->start < start) {
964 if (state->state & exclusive_bits) {
965 *failed_start = start;
966 err = -EEXIST;
967 goto out;
968 }
969
970 prealloc = alloc_extent_state_atomic(prealloc);
971 BUG_ON(!prealloc);
972 err = split_state(tree, state, prealloc, start);
973 if (err)
974 extent_io_tree_panic(tree, err);
975
976 prealloc = NULL;
977 if (err)
978 goto out;
979 if (state->end <= end) {
980 set_state_bits(tree, state, &bits, changeset);
981 cache_state(state, cached_state);
982 merge_state(tree, state);
983 if (last_end == (u64)-1)
984 goto out;
985 start = last_end + 1;
986 state = next_state(state);
987 if (start < end && state && state->start == start &&
988 !need_resched())
989 goto hit_next;
990 }
991 goto search_again;
992 }
993 /*
994 * | ---- desired range ---- |
995 * | state | or | state |
996 *
997 * There's a hole, we need to insert something in it and
998 * ignore the extent we found.
999 */
1000 if (state->start > start) {
1001 u64 this_end;
1002 if (end < last_start)
1003 this_end = end;
1004 else
1005 this_end = last_start - 1;
1006
1007 prealloc = alloc_extent_state_atomic(prealloc);
1008 BUG_ON(!prealloc);
1009
1010 /*
1011 * Avoid to free 'prealloc' if it can be merged with
1012 * the later extent.
1013 */
1014 err = insert_state(tree, prealloc, start, this_end,
1015 NULL, NULL, &bits, changeset);
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1018
1019 cache_state(prealloc, cached_state);
1020 prealloc = NULL;
1021 start = this_end + 1;
1022 goto search_again;
1023 }
1024 /*
1025 * | ---- desired range ---- |
1026 * | state |
1027 * We need to split the extent, and set the bit
1028 * on the first half
1029 */
1030 if (state->start <= end && state->end > end) {
1031 if (state->state & exclusive_bits) {
1032 *failed_start = start;
1033 err = -EEXIST;
1034 goto out;
1035 }
1036
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 BUG_ON(!prealloc);
1039 err = split_state(tree, state, prealloc, end + 1);
1040 if (err)
1041 extent_io_tree_panic(tree, err);
1042
1043 set_state_bits(tree, prealloc, &bits, changeset);
1044 cache_state(prealloc, cached_state);
1045 merge_state(tree, prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049
1050 search_again:
1051 if (start > end)
1052 goto out;
1053 spin_unlock(&tree->lock);
1054 if (gfpflags_allow_blocking(mask))
1055 cond_resched();
1056 goto again;
1057
1058 out:
1059 spin_unlock(&tree->lock);
1060 if (prealloc)
1061 free_extent_state(prealloc);
1062
1063 return err;
1064
1065 }
1066
1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1068 unsigned bits, u64 * failed_start,
1069 struct extent_state **cached_state, gfp_t mask)
1070 {
1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1072 cached_state, mask, NULL);
1073 }
1074
1075
1076 /**
1077 * convert_extent_bit - convert all bits in a given range from one bit to
1078 * another
1079 * @tree: the io tree to search
1080 * @start: the start offset in bytes
1081 * @end: the end offset in bytes (inclusive)
1082 * @bits: the bits to set in this range
1083 * @clear_bits: the bits to clear in this range
1084 * @cached_state: state that we're going to cache
1085 *
1086 * This will go through and set bits for the given range. If any states exist
1087 * already in this range they are set with the given bit and cleared of the
1088 * clear_bits. This is only meant to be used by things that are mergeable, ie
1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1090 * boundary bits like LOCK.
1091 *
1092 * All allocations are done with GFP_NOFS.
1093 */
1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1095 unsigned bits, unsigned clear_bits,
1096 struct extent_state **cached_state)
1097 {
1098 struct extent_state *state;
1099 struct extent_state *prealloc = NULL;
1100 struct rb_node *node;
1101 struct rb_node **p;
1102 struct rb_node *parent;
1103 int err = 0;
1104 u64 last_start;
1105 u64 last_end;
1106 bool first_iteration = true;
1107
1108 btrfs_debug_check_extent_io_range(tree, start, end);
1109
1110 again:
1111 if (!prealloc) {
1112 /*
1113 * Best effort, don't worry if extent state allocation fails
1114 * here for the first iteration. We might have a cached state
1115 * that matches exactly the target range, in which case no
1116 * extent state allocations are needed. We'll only know this
1117 * after locking the tree.
1118 */
1119 prealloc = alloc_extent_state(GFP_NOFS);
1120 if (!prealloc && !first_iteration)
1121 return -ENOMEM;
1122 }
1123
1124 spin_lock(&tree->lock);
1125 if (cached_state && *cached_state) {
1126 state = *cached_state;
1127 if (state->start <= start && state->end > start &&
1128 extent_state_in_tree(state)) {
1129 node = &state->rb_node;
1130 goto hit_next;
1131 }
1132 }
1133
1134 /*
1135 * this search will find all the extents that end after
1136 * our range starts.
1137 */
1138 node = tree_search_for_insert(tree, start, &p, &parent);
1139 if (!node) {
1140 prealloc = alloc_extent_state_atomic(prealloc);
1141 if (!prealloc) {
1142 err = -ENOMEM;
1143 goto out;
1144 }
1145 err = insert_state(tree, prealloc, start, end,
1146 &p, &parent, &bits, NULL);
1147 if (err)
1148 extent_io_tree_panic(tree, err);
1149 cache_state(prealloc, cached_state);
1150 prealloc = NULL;
1151 goto out;
1152 }
1153 state = rb_entry(node, struct extent_state, rb_node);
1154 hit_next:
1155 last_start = state->start;
1156 last_end = state->end;
1157
1158 /*
1159 * | ---- desired range ---- |
1160 * | state |
1161 *
1162 * Just lock what we found and keep going
1163 */
1164 if (state->start == start && state->end <= end) {
1165 set_state_bits(tree, state, &bits, NULL);
1166 cache_state(state, cached_state);
1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1168 if (last_end == (u64)-1)
1169 goto out;
1170 start = last_end + 1;
1171 if (start < end && state && state->start == start &&
1172 !need_resched())
1173 goto hit_next;
1174 goto search_again;
1175 }
1176
1177 /*
1178 * | ---- desired range ---- |
1179 * | state |
1180 * or
1181 * | ------------- state -------------- |
1182 *
1183 * We need to split the extent we found, and may flip bits on
1184 * second half.
1185 *
1186 * If the extent we found extends past our
1187 * range, we just split and search again. It'll get split
1188 * again the next time though.
1189 *
1190 * If the extent we found is inside our range, we set the
1191 * desired bit on it.
1192 */
1193 if (state->start < start) {
1194 prealloc = alloc_extent_state_atomic(prealloc);
1195 if (!prealloc) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
1199 err = split_state(tree, state, prealloc, start);
1200 if (err)
1201 extent_io_tree_panic(tree, err);
1202 prealloc = NULL;
1203 if (err)
1204 goto out;
1205 if (state->end <= end) {
1206 set_state_bits(tree, state, &bits, NULL);
1207 cache_state(state, cached_state);
1208 state = clear_state_bit(tree, state, &clear_bits, 0,
1209 NULL);
1210 if (last_end == (u64)-1)
1211 goto out;
1212 start = last_end + 1;
1213 if (start < end && state && state->start == start &&
1214 !need_resched())
1215 goto hit_next;
1216 }
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state | or | state |
1222 *
1223 * There's a hole, we need to insert something in it and
1224 * ignore the extent we found.
1225 */
1226 if (state->start > start) {
1227 u64 this_end;
1228 if (end < last_start)
1229 this_end = end;
1230 else
1231 this_end = last_start - 1;
1232
1233 prealloc = alloc_extent_state_atomic(prealloc);
1234 if (!prealloc) {
1235 err = -ENOMEM;
1236 goto out;
1237 }
1238
1239 /*
1240 * Avoid to free 'prealloc' if it can be merged with
1241 * the later extent.
1242 */
1243 err = insert_state(tree, prealloc, start, this_end,
1244 NULL, NULL, &bits, NULL);
1245 if (err)
1246 extent_io_tree_panic(tree, err);
1247 cache_state(prealloc, cached_state);
1248 prealloc = NULL;
1249 start = this_end + 1;
1250 goto search_again;
1251 }
1252 /*
1253 * | ---- desired range ---- |
1254 * | state |
1255 * We need to split the extent, and set the bit
1256 * on the first half
1257 */
1258 if (state->start <= end && state->end > end) {
1259 prealloc = alloc_extent_state_atomic(prealloc);
1260 if (!prealloc) {
1261 err = -ENOMEM;
1262 goto out;
1263 }
1264
1265 err = split_state(tree, state, prealloc, end + 1);
1266 if (err)
1267 extent_io_tree_panic(tree, err);
1268
1269 set_state_bits(tree, prealloc, &bits, NULL);
1270 cache_state(prealloc, cached_state);
1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1272 prealloc = NULL;
1273 goto out;
1274 }
1275
1276 search_again:
1277 if (start > end)
1278 goto out;
1279 spin_unlock(&tree->lock);
1280 cond_resched();
1281 first_iteration = false;
1282 goto again;
1283
1284 out:
1285 spin_unlock(&tree->lock);
1286 if (prealloc)
1287 free_extent_state(prealloc);
1288
1289 return err;
1290 }
1291
1292 /* wrappers around set/clear extent bit */
1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1294 unsigned bits, struct extent_changeset *changeset)
1295 {
1296 /*
1297 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 * either fail with -EEXIST or changeset will record the whole
1300 * range.
1301 */
1302 BUG_ON(bits & EXTENT_LOCKED);
1303
1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1305 changeset);
1306 }
1307
1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, int wake, int delete,
1310 struct extent_state **cached, gfp_t mask)
1311 {
1312 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 cached, mask, NULL);
1314 }
1315
1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 unsigned bits, struct extent_changeset *changeset)
1318 {
1319 /*
1320 * Don't support EXTENT_LOCKED case, same reason as
1321 * set_record_extent_bits().
1322 */
1323 BUG_ON(bits & EXTENT_LOCKED);
1324
1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1326 changeset);
1327 }
1328
1329 /*
1330 * either insert or lock state struct between start and end use mask to tell
1331 * us if waiting is desired.
1332 */
1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1334 struct extent_state **cached_state)
1335 {
1336 int err;
1337 u64 failed_start;
1338
1339 while (1) {
1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1341 EXTENT_LOCKED, &failed_start,
1342 cached_state, GFP_NOFS, NULL);
1343 if (err == -EEXIST) {
1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 start = failed_start;
1346 } else
1347 break;
1348 WARN_ON(start > end);
1349 }
1350 return err;
1351 }
1352
1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 {
1355 int err;
1356 u64 failed_start;
1357
1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1359 &failed_start, NULL, GFP_NOFS, NULL);
1360 if (err == -EEXIST) {
1361 if (failed_start > start)
1362 clear_extent_bit(tree, start, failed_start - 1,
1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1364 return 0;
1365 }
1366 return 1;
1367 }
1368
1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371 unsigned long index = start >> PAGE_SHIFT;
1372 unsigned long end_index = end >> PAGE_SHIFT;
1373 struct page *page;
1374
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 clear_page_dirty_for_io(page);
1379 put_page(page);
1380 index++;
1381 }
1382 }
1383
1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1385 {
1386 unsigned long index = start >> PAGE_SHIFT;
1387 unsigned long end_index = end >> PAGE_SHIFT;
1388 struct page *page;
1389
1390 while (index <= end_index) {
1391 page = find_get_page(inode->i_mapping, index);
1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1393 __set_page_dirty_nobuffers(page);
1394 account_page_redirty(page);
1395 put_page(page);
1396 index++;
1397 }
1398 }
1399
1400 /*
1401 * helper function to set both pages and extents in the tree writeback
1402 */
1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1404 {
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
1407 struct page *page;
1408
1409 while (index <= end_index) {
1410 page = find_get_page(tree->mapping, index);
1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 set_page_writeback(page);
1413 put_page(page);
1414 index++;
1415 }
1416 }
1417
1418 /* find the first state struct with 'bits' set after 'start', and
1419 * return it. tree->lock must be held. NULL will returned if
1420 * nothing was found after 'start'
1421 */
1422 static struct extent_state *
1423 find_first_extent_bit_state(struct extent_io_tree *tree,
1424 u64 start, unsigned bits)
1425 {
1426 struct rb_node *node;
1427 struct extent_state *state;
1428
1429 /*
1430 * this search will find all the extents that end after
1431 * our range starts.
1432 */
1433 node = tree_search(tree, start);
1434 if (!node)
1435 goto out;
1436
1437 while (1) {
1438 state = rb_entry(node, struct extent_state, rb_node);
1439 if (state->end >= start && (state->state & bits))
1440 return state;
1441
1442 node = rb_next(node);
1443 if (!node)
1444 break;
1445 }
1446 out:
1447 return NULL;
1448 }
1449
1450 /*
1451 * find the first offset in the io tree with 'bits' set. zero is
1452 * returned if we find something, and *start_ret and *end_ret are
1453 * set to reflect the state struct that was found.
1454 *
1455 * If nothing was found, 1 is returned. If found something, return 0.
1456 */
1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1458 u64 *start_ret, u64 *end_ret, unsigned bits,
1459 struct extent_state **cached_state)
1460 {
1461 struct extent_state *state;
1462 struct rb_node *n;
1463 int ret = 1;
1464
1465 spin_lock(&tree->lock);
1466 if (cached_state && *cached_state) {
1467 state = *cached_state;
1468 if (state->end == start - 1 && extent_state_in_tree(state)) {
1469 n = rb_next(&state->rb_node);
1470 while (n) {
1471 state = rb_entry(n, struct extent_state,
1472 rb_node);
1473 if (state->state & bits)
1474 goto got_it;
1475 n = rb_next(n);
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 goto out;
1480 }
1481 free_extent_state(*cached_state);
1482 *cached_state = NULL;
1483 }
1484
1485 state = find_first_extent_bit_state(tree, start, bits);
1486 got_it:
1487 if (state) {
1488 cache_state_if_flags(state, cached_state, 0);
1489 *start_ret = state->start;
1490 *end_ret = state->end;
1491 ret = 0;
1492 }
1493 out:
1494 spin_unlock(&tree->lock);
1495 return ret;
1496 }
1497
1498 /*
1499 * find a contiguous range of bytes in the file marked as delalloc, not
1500 * more than 'max_bytes'. start and end are used to return the range,
1501 *
1502 * 1 is returned if we find something, 0 if nothing was in the tree
1503 */
1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1505 u64 *start, u64 *end, u64 max_bytes,
1506 struct extent_state **cached_state)
1507 {
1508 struct rb_node *node;
1509 struct extent_state *state;
1510 u64 cur_start = *start;
1511 u64 found = 0;
1512 u64 total_bytes = 0;
1513
1514 spin_lock(&tree->lock);
1515
1516 /*
1517 * this search will find all the extents that end after
1518 * our range starts.
1519 */
1520 node = tree_search(tree, cur_start);
1521 if (!node) {
1522 if (!found)
1523 *end = (u64)-1;
1524 goto out;
1525 }
1526
1527 while (1) {
1528 state = rb_entry(node, struct extent_state, rb_node);
1529 if (found && (state->start != cur_start ||
1530 (state->state & EXTENT_BOUNDARY))) {
1531 goto out;
1532 }
1533 if (!(state->state & EXTENT_DELALLOC)) {
1534 if (!found)
1535 *end = state->end;
1536 goto out;
1537 }
1538 if (!found) {
1539 *start = state->start;
1540 *cached_state = state;
1541 atomic_inc(&state->refs);
1542 }
1543 found++;
1544 *end = state->end;
1545 cur_start = state->end + 1;
1546 node = rb_next(node);
1547 total_bytes += state->end - state->start + 1;
1548 if (total_bytes >= max_bytes)
1549 break;
1550 if (!node)
1551 break;
1552 }
1553 out:
1554 spin_unlock(&tree->lock);
1555 return found;
1556 }
1557
1558 static int __process_pages_contig(struct address_space *mapping,
1559 struct page *locked_page,
1560 pgoff_t start_index, pgoff_t end_index,
1561 unsigned long page_ops, pgoff_t *index_ret);
1562
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
1566 {
1567 unsigned long index = start >> PAGE_SHIFT;
1568 unsigned long end_index = end >> PAGE_SHIFT;
1569
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && end_index == index)
1572 return;
1573
1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 PAGE_UNLOCK, NULL);
1576 }
1577
1578 static noinline int lock_delalloc_pages(struct inode *inode,
1579 struct page *locked_page,
1580 u64 delalloc_start,
1581 u64 delalloc_end)
1582 {
1583 unsigned long index = delalloc_start >> PAGE_SHIFT;
1584 unsigned long index_ret = index;
1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1586 int ret;
1587
1588 ASSERT(locked_page);
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1591
1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 end_index, PAGE_LOCK, &index_ret);
1594 if (ret == -EAGAIN)
1595 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 (u64)index_ret << PAGE_SHIFT);
1597 return ret;
1598 }
1599
1600 /*
1601 * find a contiguous range of bytes in the file marked as delalloc, not
1602 * more than 'max_bytes'. start and end are used to return the range,
1603 *
1604 * 1 is returned if we find something, 0 if nothing was in the tree
1605 */
1606 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 struct extent_io_tree *tree,
1608 struct page *locked_page, u64 *start,
1609 u64 *end, u64 max_bytes)
1610 {
1611 u64 delalloc_start;
1612 u64 delalloc_end;
1613 u64 found;
1614 struct extent_state *cached_state = NULL;
1615 int ret;
1616 int loops = 0;
1617
1618 again:
1619 /* step one, find a bunch of delalloc bytes starting at start */
1620 delalloc_start = *start;
1621 delalloc_end = 0;
1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1623 max_bytes, &cached_state);
1624 if (!found || delalloc_end <= *start) {
1625 *start = delalloc_start;
1626 *end = delalloc_end;
1627 free_extent_state(cached_state);
1628 return 0;
1629 }
1630
1631 /*
1632 * start comes from the offset of locked_page. We have to lock
1633 * pages in order, so we can't process delalloc bytes before
1634 * locked_page
1635 */
1636 if (delalloc_start < *start)
1637 delalloc_start = *start;
1638
1639 /*
1640 * make sure to limit the number of pages we try to lock down
1641 */
1642 if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 delalloc_end = delalloc_start + max_bytes - 1;
1644
1645 /* step two, lock all the pages after the page that has start */
1646 ret = lock_delalloc_pages(inode, locked_page,
1647 delalloc_start, delalloc_end);
1648 if (ret == -EAGAIN) {
1649 /* some of the pages are gone, lets avoid looping by
1650 * shortening the size of the delalloc range we're searching
1651 */
1652 free_extent_state(cached_state);
1653 cached_state = NULL;
1654 if (!loops) {
1655 max_bytes = PAGE_SIZE;
1656 loops = 1;
1657 goto again;
1658 } else {
1659 found = 0;
1660 goto out_failed;
1661 }
1662 }
1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1664
1665 /* step three, lock the state bits for the whole range */
1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1667
1668 /* then test to make sure it is all still delalloc */
1669 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1670 EXTENT_DELALLOC, 1, cached_state);
1671 if (!ret) {
1672 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 &cached_state, GFP_NOFS);
1674 __unlock_for_delalloc(inode, locked_page,
1675 delalloc_start, delalloc_end);
1676 cond_resched();
1677 goto again;
1678 }
1679 free_extent_state(cached_state);
1680 *start = delalloc_start;
1681 *end = delalloc_end;
1682 out_failed:
1683 return found;
1684 }
1685
1686 static int __process_pages_contig(struct address_space *mapping,
1687 struct page *locked_page,
1688 pgoff_t start_index, pgoff_t end_index,
1689 unsigned long page_ops, pgoff_t *index_ret)
1690 {
1691 unsigned long nr_pages = end_index - start_index + 1;
1692 unsigned long pages_locked = 0;
1693 pgoff_t index = start_index;
1694 struct page *pages[16];
1695 unsigned ret;
1696 int err = 0;
1697 int i;
1698
1699 if (page_ops & PAGE_LOCK) {
1700 ASSERT(page_ops == PAGE_LOCK);
1701 ASSERT(index_ret && *index_ret == start_index);
1702 }
1703
1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1705 mapping_set_error(mapping, -EIO);
1706
1707 while (nr_pages > 0) {
1708 ret = find_get_pages_contig(mapping, index,
1709 min_t(unsigned long,
1710 nr_pages, ARRAY_SIZE(pages)), pages);
1711 if (ret == 0) {
1712 /*
1713 * Only if we're going to lock these pages,
1714 * can we find nothing at @index.
1715 */
1716 ASSERT(page_ops & PAGE_LOCK);
1717 return ret;
1718 }
1719
1720 for (i = 0; i < ret; i++) {
1721 if (page_ops & PAGE_SET_PRIVATE2)
1722 SetPagePrivate2(pages[i]);
1723
1724 if (pages[i] == locked_page) {
1725 put_page(pages[i]);
1726 pages_locked++;
1727 continue;
1728 }
1729 if (page_ops & PAGE_CLEAR_DIRTY)
1730 clear_page_dirty_for_io(pages[i]);
1731 if (page_ops & PAGE_SET_WRITEBACK)
1732 set_page_writeback(pages[i]);
1733 if (page_ops & PAGE_SET_ERROR)
1734 SetPageError(pages[i]);
1735 if (page_ops & PAGE_END_WRITEBACK)
1736 end_page_writeback(pages[i]);
1737 if (page_ops & PAGE_UNLOCK)
1738 unlock_page(pages[i]);
1739 if (page_ops & PAGE_LOCK) {
1740 lock_page(pages[i]);
1741 if (!PageDirty(pages[i]) ||
1742 pages[i]->mapping != mapping) {
1743 unlock_page(pages[i]);
1744 put_page(pages[i]);
1745 err = -EAGAIN;
1746 goto out;
1747 }
1748 }
1749 put_page(pages[i]);
1750 pages_locked++;
1751 }
1752 nr_pages -= ret;
1753 index += ret;
1754 cond_resched();
1755 }
1756 out:
1757 if (err && index_ret)
1758 *index_ret = start_index + pages_locked - 1;
1759 return err;
1760 }
1761
1762 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1763 u64 delalloc_end, struct page *locked_page,
1764 unsigned clear_bits,
1765 unsigned long page_ops)
1766 {
1767 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1768 NULL, GFP_NOFS);
1769
1770 __process_pages_contig(inode->i_mapping, locked_page,
1771 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1772 page_ops, NULL);
1773 }
1774
1775 /*
1776 * count the number of bytes in the tree that have a given bit(s)
1777 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1778 * cached. The total number found is returned.
1779 */
1780 u64 count_range_bits(struct extent_io_tree *tree,
1781 u64 *start, u64 search_end, u64 max_bytes,
1782 unsigned bits, int contig)
1783 {
1784 struct rb_node *node;
1785 struct extent_state *state;
1786 u64 cur_start = *start;
1787 u64 total_bytes = 0;
1788 u64 last = 0;
1789 int found = 0;
1790
1791 if (WARN_ON(search_end <= cur_start))
1792 return 0;
1793
1794 spin_lock(&tree->lock);
1795 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796 total_bytes = tree->dirty_bytes;
1797 goto out;
1798 }
1799 /*
1800 * this search will find all the extents that end after
1801 * our range starts.
1802 */
1803 node = tree_search(tree, cur_start);
1804 if (!node)
1805 goto out;
1806
1807 while (1) {
1808 state = rb_entry(node, struct extent_state, rb_node);
1809 if (state->start > search_end)
1810 break;
1811 if (contig && found && state->start > last + 1)
1812 break;
1813 if (state->end >= cur_start && (state->state & bits) == bits) {
1814 total_bytes += min(search_end, state->end) + 1 -
1815 max(cur_start, state->start);
1816 if (total_bytes >= max_bytes)
1817 break;
1818 if (!found) {
1819 *start = max(cur_start, state->start);
1820 found = 1;
1821 }
1822 last = state->end;
1823 } else if (contig && found) {
1824 break;
1825 }
1826 node = rb_next(node);
1827 if (!node)
1828 break;
1829 }
1830 out:
1831 spin_unlock(&tree->lock);
1832 return total_bytes;
1833 }
1834
1835 /*
1836 * set the private field for a given byte offset in the tree. If there isn't
1837 * an extent_state there already, this does nothing.
1838 */
1839 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1840 struct io_failure_record *failrec)
1841 {
1842 struct rb_node *node;
1843 struct extent_state *state;
1844 int ret = 0;
1845
1846 spin_lock(&tree->lock);
1847 /*
1848 * this search will find all the extents that end after
1849 * our range starts.
1850 */
1851 node = tree_search(tree, start);
1852 if (!node) {
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state->failrec = failrec;
1862 out:
1863 spin_unlock(&tree->lock);
1864 return ret;
1865 }
1866
1867 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1868 struct io_failure_record **failrec)
1869 {
1870 struct rb_node *node;
1871 struct extent_state *state;
1872 int ret = 0;
1873
1874 spin_lock(&tree->lock);
1875 /*
1876 * this search will find all the extents that end after
1877 * our range starts.
1878 */
1879 node = tree_search(tree, start);
1880 if (!node) {
1881 ret = -ENOENT;
1882 goto out;
1883 }
1884 state = rb_entry(node, struct extent_state, rb_node);
1885 if (state->start != start) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 *failrec = state->failrec;
1890 out:
1891 spin_unlock(&tree->lock);
1892 return ret;
1893 }
1894
1895 /*
1896 * searches a range in the state tree for a given mask.
1897 * If 'filled' == 1, this returns 1 only if every extent in the tree
1898 * has the bits set. Otherwise, 1 is returned if any bit in the
1899 * range is found set.
1900 */
1901 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1902 unsigned bits, int filled, struct extent_state *cached)
1903 {
1904 struct extent_state *state = NULL;
1905 struct rb_node *node;
1906 int bitset = 0;
1907
1908 spin_lock(&tree->lock);
1909 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1910 cached->end > start)
1911 node = &cached->rb_node;
1912 else
1913 node = tree_search(tree, start);
1914 while (node && start <= end) {
1915 state = rb_entry(node, struct extent_state, rb_node);
1916
1917 if (filled && state->start > start) {
1918 bitset = 0;
1919 break;
1920 }
1921
1922 if (state->start > end)
1923 break;
1924
1925 if (state->state & bits) {
1926 bitset = 1;
1927 if (!filled)
1928 break;
1929 } else if (filled) {
1930 bitset = 0;
1931 break;
1932 }
1933
1934 if (state->end == (u64)-1)
1935 break;
1936
1937 start = state->end + 1;
1938 if (start > end)
1939 break;
1940 node = rb_next(node);
1941 if (!node) {
1942 if (filled)
1943 bitset = 0;
1944 break;
1945 }
1946 }
1947 spin_unlock(&tree->lock);
1948 return bitset;
1949 }
1950
1951 /*
1952 * helper function to set a given page up to date if all the
1953 * extents in the tree for that page are up to date
1954 */
1955 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1956 {
1957 u64 start = page_offset(page);
1958 u64 end = start + PAGE_SIZE - 1;
1959 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1960 SetPageUptodate(page);
1961 }
1962
1963 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1964 {
1965 int ret;
1966 int err = 0;
1967 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1968
1969 set_state_failrec(failure_tree, rec->start, NULL);
1970 ret = clear_extent_bits(failure_tree, rec->start,
1971 rec->start + rec->len - 1,
1972 EXTENT_LOCKED | EXTENT_DIRTY);
1973 if (ret)
1974 err = ret;
1975
1976 ret = clear_extent_bits(&inode->io_tree, rec->start,
1977 rec->start + rec->len - 1,
1978 EXTENT_DAMAGED);
1979 if (ret && !err)
1980 err = ret;
1981
1982 kfree(rec);
1983 return err;
1984 }
1985
1986 /*
1987 * this bypasses the standard btrfs submit functions deliberately, as
1988 * the standard behavior is to write all copies in a raid setup. here we only
1989 * want to write the one bad copy. so we do the mapping for ourselves and issue
1990 * submit_bio directly.
1991 * to avoid any synchronization issues, wait for the data after writing, which
1992 * actually prevents the read that triggered the error from finishing.
1993 * currently, there can be no more than two copies of every data bit. thus,
1994 * exactly one rewrite is required.
1995 */
1996 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1997 u64 logical, struct page *page,
1998 unsigned int pg_offset, int mirror_num)
1999 {
2000 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2001 struct bio *bio;
2002 struct btrfs_device *dev;
2003 u64 map_length = 0;
2004 u64 sector;
2005 struct btrfs_bio *bbio = NULL;
2006 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2007 int ret;
2008
2009 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2010 BUG_ON(!mirror_num);
2011
2012 /* we can't repair anything in raid56 yet */
2013 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2014 return 0;
2015
2016 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2017 if (!bio)
2018 return -EIO;
2019 bio->bi_iter.bi_size = 0;
2020 map_length = length;
2021
2022 /*
2023 * Avoid races with device replace and make sure our bbio has devices
2024 * associated to its stripes that don't go away while we are doing the
2025 * read repair operation.
2026 */
2027 btrfs_bio_counter_inc_blocked(fs_info);
2028 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2029 &map_length, &bbio, mirror_num);
2030 if (ret) {
2031 btrfs_bio_counter_dec(fs_info);
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 BUG_ON(mirror_num != bbio->mirror_num);
2036 sector = bbio->stripes[mirror_num-1].physical >> 9;
2037 bio->bi_iter.bi_sector = sector;
2038 dev = bbio->stripes[mirror_num-1].dev;
2039 btrfs_put_bbio(bbio);
2040 if (!dev || !dev->bdev || !dev->writeable) {
2041 btrfs_bio_counter_dec(fs_info);
2042 bio_put(bio);
2043 return -EIO;
2044 }
2045 bio->bi_bdev = dev->bdev;
2046 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2047 bio_add_page(bio, page, length, pg_offset);
2048
2049 if (btrfsic_submit_bio_wait(bio)) {
2050 /* try to remap that extent elsewhere? */
2051 btrfs_bio_counter_dec(fs_info);
2052 bio_put(bio);
2053 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054 return -EIO;
2055 }
2056
2057 btrfs_info_rl_in_rcu(fs_info,
2058 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2059 btrfs_ino(inode), start,
2060 rcu_str_deref(dev->name), sector);
2061 btrfs_bio_counter_dec(fs_info);
2062 bio_put(bio);
2063 return 0;
2064 }
2065
2066 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2067 struct extent_buffer *eb, int mirror_num)
2068 {
2069 u64 start = eb->start;
2070 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2071 int ret = 0;
2072
2073 if (fs_info->sb->s_flags & MS_RDONLY)
2074 return -EROFS;
2075
2076 for (i = 0; i < num_pages; i++) {
2077 struct page *p = eb->pages[i];
2078
2079 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2080 PAGE_SIZE, start, p,
2081 start - page_offset(p), mirror_num);
2082 if (ret)
2083 break;
2084 start += PAGE_SIZE;
2085 }
2086
2087 return ret;
2088 }
2089
2090 /*
2091 * each time an IO finishes, we do a fast check in the IO failure tree
2092 * to see if we need to process or clean up an io_failure_record
2093 */
2094 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2095 unsigned int pg_offset)
2096 {
2097 u64 private;
2098 struct io_failure_record *failrec;
2099 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2100 struct extent_state *state;
2101 int num_copies;
2102 int ret;
2103
2104 private = 0;
2105 ret = count_range_bits(&inode->io_failure_tree, &private,
2106 (u64)-1, 1, EXTENT_DIRTY, 0);
2107 if (!ret)
2108 return 0;
2109
2110 ret = get_state_failrec(&inode->io_failure_tree, start,
2111 &failrec);
2112 if (ret)
2113 return 0;
2114
2115 BUG_ON(!failrec->this_mirror);
2116
2117 if (failrec->in_validation) {
2118 /* there was no real error, just free the record */
2119 btrfs_debug(fs_info,
2120 "clean_io_failure: freeing dummy error at %llu",
2121 failrec->start);
2122 goto out;
2123 }
2124 if (fs_info->sb->s_flags & MS_RDONLY)
2125 goto out;
2126
2127 spin_lock(&inode->io_tree.lock);
2128 state = find_first_extent_bit_state(&inode->io_tree,
2129 failrec->start,
2130 EXTENT_LOCKED);
2131 spin_unlock(&inode->io_tree.lock);
2132
2133 if (state && state->start <= failrec->start &&
2134 state->end >= failrec->start + failrec->len - 1) {
2135 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2136 failrec->len);
2137 if (num_copies > 1) {
2138 repair_io_failure(inode, start, failrec->len,
2139 failrec->logical, page,
2140 pg_offset, failrec->failed_mirror);
2141 }
2142 }
2143
2144 out:
2145 free_io_failure(inode, failrec);
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * Can be called when
2152 * - hold extent lock
2153 * - under ordered extent
2154 * - the inode is freeing
2155 */
2156 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2157 {
2158 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2159 struct io_failure_record *failrec;
2160 struct extent_state *state, *next;
2161
2162 if (RB_EMPTY_ROOT(&failure_tree->state))
2163 return;
2164
2165 spin_lock(&failure_tree->lock);
2166 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2167 while (state) {
2168 if (state->start > end)
2169 break;
2170
2171 ASSERT(state->end <= end);
2172
2173 next = next_state(state);
2174
2175 failrec = state->failrec;
2176 free_extent_state(state);
2177 kfree(failrec);
2178
2179 state = next;
2180 }
2181 spin_unlock(&failure_tree->lock);
2182 }
2183
2184 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2185 struct io_failure_record **failrec_ret)
2186 {
2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2188 struct io_failure_record *failrec;
2189 struct extent_map *em;
2190 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2191 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2193 int ret;
2194 u64 logical;
2195
2196 ret = get_state_failrec(failure_tree, start, &failrec);
2197 if (ret) {
2198 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2199 if (!failrec)
2200 return -ENOMEM;
2201
2202 failrec->start = start;
2203 failrec->len = end - start + 1;
2204 failrec->this_mirror = 0;
2205 failrec->bio_flags = 0;
2206 failrec->in_validation = 0;
2207
2208 read_lock(&em_tree->lock);
2209 em = lookup_extent_mapping(em_tree, start, failrec->len);
2210 if (!em) {
2211 read_unlock(&em_tree->lock);
2212 kfree(failrec);
2213 return -EIO;
2214 }
2215
2216 if (em->start > start || em->start + em->len <= start) {
2217 free_extent_map(em);
2218 em = NULL;
2219 }
2220 read_unlock(&em_tree->lock);
2221 if (!em) {
2222 kfree(failrec);
2223 return -EIO;
2224 }
2225
2226 logical = start - em->start;
2227 logical = em->block_start + logical;
2228 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2229 logical = em->block_start;
2230 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2231 extent_set_compress_type(&failrec->bio_flags,
2232 em->compress_type);
2233 }
2234
2235 btrfs_debug(fs_info,
2236 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2237 logical, start, failrec->len);
2238
2239 failrec->logical = logical;
2240 free_extent_map(em);
2241
2242 /* set the bits in the private failure tree */
2243 ret = set_extent_bits(failure_tree, start, end,
2244 EXTENT_LOCKED | EXTENT_DIRTY);
2245 if (ret >= 0)
2246 ret = set_state_failrec(failure_tree, start, failrec);
2247 /* set the bits in the inode's tree */
2248 if (ret >= 0)
2249 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2250 if (ret < 0) {
2251 kfree(failrec);
2252 return ret;
2253 }
2254 } else {
2255 btrfs_debug(fs_info,
2256 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2257 failrec->logical, failrec->start, failrec->len,
2258 failrec->in_validation);
2259 /*
2260 * when data can be on disk more than twice, add to failrec here
2261 * (e.g. with a list for failed_mirror) to make
2262 * clean_io_failure() clean all those errors at once.
2263 */
2264 }
2265
2266 *failrec_ret = failrec;
2267
2268 return 0;
2269 }
2270
2271 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2272 struct io_failure_record *failrec, int failed_mirror)
2273 {
2274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2275 int num_copies;
2276
2277 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2278 if (num_copies == 1) {
2279 /*
2280 * we only have a single copy of the data, so don't bother with
2281 * all the retry and error correction code that follows. no
2282 * matter what the error is, it is very likely to persist.
2283 */
2284 btrfs_debug(fs_info,
2285 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2286 num_copies, failrec->this_mirror, failed_mirror);
2287 return 0;
2288 }
2289
2290 /*
2291 * there are two premises:
2292 * a) deliver good data to the caller
2293 * b) correct the bad sectors on disk
2294 */
2295 if (failed_bio->bi_vcnt > 1) {
2296 /*
2297 * to fulfill b), we need to know the exact failing sectors, as
2298 * we don't want to rewrite any more than the failed ones. thus,
2299 * we need separate read requests for the failed bio
2300 *
2301 * if the following BUG_ON triggers, our validation request got
2302 * merged. we need separate requests for our algorithm to work.
2303 */
2304 BUG_ON(failrec->in_validation);
2305 failrec->in_validation = 1;
2306 failrec->this_mirror = failed_mirror;
2307 } else {
2308 /*
2309 * we're ready to fulfill a) and b) alongside. get a good copy
2310 * of the failed sector and if we succeed, we have setup
2311 * everything for repair_io_failure to do the rest for us.
2312 */
2313 if (failrec->in_validation) {
2314 BUG_ON(failrec->this_mirror != failed_mirror);
2315 failrec->in_validation = 0;
2316 failrec->this_mirror = 0;
2317 }
2318 failrec->failed_mirror = failed_mirror;
2319 failrec->this_mirror++;
2320 if (failrec->this_mirror == failed_mirror)
2321 failrec->this_mirror++;
2322 }
2323
2324 if (failrec->this_mirror > num_copies) {
2325 btrfs_debug(fs_info,
2326 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2327 num_copies, failrec->this_mirror, failed_mirror);
2328 return 0;
2329 }
2330
2331 return 1;
2332 }
2333
2334
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
2338 bio_end_io_t *endio_func, void *data)
2339 {
2340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2341 struct bio *bio;
2342 struct btrfs_io_bio *btrfs_failed_bio;
2343 struct btrfs_io_bio *btrfs_bio;
2344
2345 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2346 if (!bio)
2347 return NULL;
2348
2349 bio->bi_end_io = endio_func;
2350 bio->bi_iter.bi_sector = failrec->logical >> 9;
2351 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2352 bio->bi_iter.bi_size = 0;
2353 bio->bi_private = data;
2354
2355 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2356 if (btrfs_failed_bio->csum) {
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2363 csum_size);
2364 }
2365
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369 }
2370
2371 /*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382 {
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode = 0;
2388 int ret;
2389
2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(BTRFS_I(inode), failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode |= REQ_FAILFAST_DEV;
2404
2405 phy_offset >>= inode->i_sb->s_blocksize_bits;
2406 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2407 start - page_offset(page),
2408 (int)phy_offset, failed_bio->bi_end_io,
2409 NULL);
2410 if (!bio) {
2411 free_io_failure(BTRFS_I(inode), failrec);
2412 return -EIO;
2413 }
2414 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2415
2416 btrfs_debug(btrfs_sb(inode->i_sb),
2417 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2418 read_mode, failrec->this_mirror, failrec->in_validation);
2419
2420 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2421 failrec->bio_flags, 0);
2422 if (ret) {
2423 free_io_failure(BTRFS_I(inode), failrec);
2424 bio_put(bio);
2425 }
2426
2427 return ret;
2428 }
2429
2430 /* lots and lots of room for performance fixes in the end_bio funcs */
2431
2432 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2433 {
2434 int uptodate = (err == 0);
2435 struct extent_io_tree *tree;
2436 int ret = 0;
2437
2438 tree = &BTRFS_I(page->mapping->host)->io_tree;
2439
2440 if (tree->ops && tree->ops->writepage_end_io_hook)
2441 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2442 uptodate);
2443
2444 if (!uptodate) {
2445 ClearPageUptodate(page);
2446 SetPageError(page);
2447 ret = ret < 0 ? ret : -EIO;
2448 mapping_set_error(page->mapping, ret);
2449 }
2450 }
2451
2452 /*
2453 * after a writepage IO is done, we need to:
2454 * clear the uptodate bits on error
2455 * clear the writeback bits in the extent tree for this IO
2456 * end_page_writeback if the page has no more pending IO
2457 *
2458 * Scheduling is not allowed, so the extent state tree is expected
2459 * to have one and only one object corresponding to this IO.
2460 */
2461 static void end_bio_extent_writepage(struct bio *bio)
2462 {
2463 struct bio_vec *bvec;
2464 u64 start;
2465 u64 end;
2466 int i;
2467
2468 bio_for_each_segment_all(bvec, bio, i) {
2469 struct page *page = bvec->bv_page;
2470 struct inode *inode = page->mapping->host;
2471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2472
2473 /* We always issue full-page reads, but if some block
2474 * in a page fails to read, blk_update_request() will
2475 * advance bv_offset and adjust bv_len to compensate.
2476 * Print a warning for nonzero offsets, and an error
2477 * if they don't add up to a full page. */
2478 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2479 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2480 btrfs_err(fs_info,
2481 "partial page write in btrfs with offset %u and length %u",
2482 bvec->bv_offset, bvec->bv_len);
2483 else
2484 btrfs_info(fs_info,
2485 "incomplete page write in btrfs with offset %u and length %u",
2486 bvec->bv_offset, bvec->bv_len);
2487 }
2488
2489 start = page_offset(page);
2490 end = start + bvec->bv_offset + bvec->bv_len - 1;
2491
2492 end_extent_writepage(page, bio->bi_error, start, end);
2493 end_page_writeback(page);
2494 }
2495
2496 bio_put(bio);
2497 }
2498
2499 static void
2500 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2501 int uptodate)
2502 {
2503 struct extent_state *cached = NULL;
2504 u64 end = start + len - 1;
2505
2506 if (uptodate && tree->track_uptodate)
2507 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2508 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2509 }
2510
2511 /*
2512 * after a readpage IO is done, we need to:
2513 * clear the uptodate bits on error
2514 * set the uptodate bits if things worked
2515 * set the page up to date if all extents in the tree are uptodate
2516 * clear the lock bit in the extent tree
2517 * unlock the page if there are no other extents locked for it
2518 *
2519 * Scheduling is not allowed, so the extent state tree is expected
2520 * to have one and only one object corresponding to this IO.
2521 */
2522 static void end_bio_extent_readpage(struct bio *bio)
2523 {
2524 struct bio_vec *bvec;
2525 int uptodate = !bio->bi_error;
2526 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2527 struct extent_io_tree *tree;
2528 u64 offset = 0;
2529 u64 start;
2530 u64 end;
2531 u64 len;
2532 u64 extent_start = 0;
2533 u64 extent_len = 0;
2534 int mirror;
2535 int ret;
2536 int i;
2537
2538 bio_for_each_segment_all(bvec, bio, i) {
2539 struct page *page = bvec->bv_page;
2540 struct inode *inode = page->mapping->host;
2541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2542
2543 btrfs_debug(fs_info,
2544 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2545 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2546 io_bio->mirror_num);
2547 tree = &BTRFS_I(inode)->io_tree;
2548
2549 /* We always issue full-page reads, but if some block
2550 * in a page fails to read, blk_update_request() will
2551 * advance bv_offset and adjust bv_len to compensate.
2552 * Print a warning for nonzero offsets, and an error
2553 * if they don't add up to a full page. */
2554 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2555 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2556 btrfs_err(fs_info,
2557 "partial page read in btrfs with offset %u and length %u",
2558 bvec->bv_offset, bvec->bv_len);
2559 else
2560 btrfs_info(fs_info,
2561 "incomplete page read in btrfs with offset %u and length %u",
2562 bvec->bv_offset, bvec->bv_len);
2563 }
2564
2565 start = page_offset(page);
2566 end = start + bvec->bv_offset + bvec->bv_len - 1;
2567 len = bvec->bv_len;
2568
2569 mirror = io_bio->mirror_num;
2570 if (likely(uptodate && tree->ops)) {
2571 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2572 page, start, end,
2573 mirror);
2574 if (ret)
2575 uptodate = 0;
2576 else
2577 clean_io_failure(BTRFS_I(inode), start,
2578 page, 0);
2579 }
2580
2581 if (likely(uptodate))
2582 goto readpage_ok;
2583
2584 if (tree->ops) {
2585 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2586 if (!ret && !bio->bi_error)
2587 uptodate = 1;
2588 } else {
2589 /*
2590 * The generic bio_readpage_error handles errors the
2591 * following way: If possible, new read requests are
2592 * created and submitted and will end up in
2593 * end_bio_extent_readpage as well (if we're lucky, not
2594 * in the !uptodate case). In that case it returns 0 and
2595 * we just go on with the next page in our bio. If it
2596 * can't handle the error it will return -EIO and we
2597 * remain responsible for that page.
2598 */
2599 ret = bio_readpage_error(bio, offset, page, start, end,
2600 mirror);
2601 if (ret == 0) {
2602 uptodate = !bio->bi_error;
2603 offset += len;
2604 continue;
2605 }
2606 }
2607 readpage_ok:
2608 if (likely(uptodate)) {
2609 loff_t i_size = i_size_read(inode);
2610 pgoff_t end_index = i_size >> PAGE_SHIFT;
2611 unsigned off;
2612
2613 /* Zero out the end if this page straddles i_size */
2614 off = i_size & (PAGE_SIZE-1);
2615 if (page->index == end_index && off)
2616 zero_user_segment(page, off, PAGE_SIZE);
2617 SetPageUptodate(page);
2618 } else {
2619 ClearPageUptodate(page);
2620 SetPageError(page);
2621 }
2622 unlock_page(page);
2623 offset += len;
2624
2625 if (unlikely(!uptodate)) {
2626 if (extent_len) {
2627 endio_readpage_release_extent(tree,
2628 extent_start,
2629 extent_len, 1);
2630 extent_start = 0;
2631 extent_len = 0;
2632 }
2633 endio_readpage_release_extent(tree, start,
2634 end - start + 1, 0);
2635 } else if (!extent_len) {
2636 extent_start = start;
2637 extent_len = end + 1 - start;
2638 } else if (extent_start + extent_len == start) {
2639 extent_len += end + 1 - start;
2640 } else {
2641 endio_readpage_release_extent(tree, extent_start,
2642 extent_len, uptodate);
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 }
2646 }
2647
2648 if (extent_len)
2649 endio_readpage_release_extent(tree, extent_start, extent_len,
2650 uptodate);
2651 if (io_bio->end_io)
2652 io_bio->end_io(io_bio, bio->bi_error);
2653 bio_put(bio);
2654 }
2655
2656 /*
2657 * this allocates from the btrfs_bioset. We're returning a bio right now
2658 * but you can call btrfs_io_bio for the appropriate container_of magic
2659 */
2660 struct bio *
2661 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2662 gfp_t gfp_flags)
2663 {
2664 struct btrfs_io_bio *btrfs_bio;
2665 struct bio *bio;
2666
2667 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2668
2669 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2670 while (!bio && (nr_vecs /= 2)) {
2671 bio = bio_alloc_bioset(gfp_flags,
2672 nr_vecs, btrfs_bioset);
2673 }
2674 }
2675
2676 if (bio) {
2677 bio->bi_bdev = bdev;
2678 bio->bi_iter.bi_sector = first_sector;
2679 btrfs_bio = btrfs_io_bio(bio);
2680 btrfs_bio->csum = NULL;
2681 btrfs_bio->csum_allocated = NULL;
2682 btrfs_bio->end_io = NULL;
2683 }
2684 return bio;
2685 }
2686
2687 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2688 {
2689 struct btrfs_io_bio *btrfs_bio;
2690 struct bio *new;
2691
2692 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2693 if (new) {
2694 btrfs_bio = btrfs_io_bio(new);
2695 btrfs_bio->csum = NULL;
2696 btrfs_bio->csum_allocated = NULL;
2697 btrfs_bio->end_io = NULL;
2698 }
2699 return new;
2700 }
2701
2702 /* this also allocates from the btrfs_bioset */
2703 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2704 {
2705 struct btrfs_io_bio *btrfs_bio;
2706 struct bio *bio;
2707
2708 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2709 if (bio) {
2710 btrfs_bio = btrfs_io_bio(bio);
2711 btrfs_bio->csum = NULL;
2712 btrfs_bio->csum_allocated = NULL;
2713 btrfs_bio->end_io = NULL;
2714 }
2715 return bio;
2716 }
2717
2718
2719 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2720 unsigned long bio_flags)
2721 {
2722 int ret = 0;
2723 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2724 struct page *page = bvec->bv_page;
2725 struct extent_io_tree *tree = bio->bi_private;
2726 u64 start;
2727
2728 start = page_offset(page) + bvec->bv_offset;
2729
2730 bio->bi_private = NULL;
2731 bio_get(bio);
2732
2733 if (tree->ops)
2734 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2735 mirror_num, bio_flags, start);
2736 else
2737 btrfsic_submit_bio(bio);
2738
2739 bio_put(bio);
2740 return ret;
2741 }
2742
2743 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2744 unsigned long offset, size_t size, struct bio *bio,
2745 unsigned long bio_flags)
2746 {
2747 int ret = 0;
2748 if (tree->ops)
2749 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2750 bio_flags);
2751 return ret;
2752
2753 }
2754
2755 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2756 struct writeback_control *wbc,
2757 struct page *page, sector_t sector,
2758 size_t size, unsigned long offset,
2759 struct block_device *bdev,
2760 struct bio **bio_ret,
2761 bio_end_io_t end_io_func,
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
2766 {
2767 int ret = 0;
2768 struct bio *bio;
2769 int contig = 0;
2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
2775 if (old_compressed)
2776 contig = bio->bi_iter.bi_sector == sector;
2777 else
2778 contig = bio_end_sector(bio) == sector;
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
2781 force_bio_submit ||
2782 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2783 bio_add_page(bio, page, page_size, offset) < page_size) {
2784 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2785 if (ret < 0) {
2786 *bio_ret = NULL;
2787 return ret;
2788 }
2789 bio = NULL;
2790 } else {
2791 if (wbc)
2792 wbc_account_io(wbc, page, page_size);
2793 return 0;
2794 }
2795 }
2796
2797 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2798 GFP_NOFS | __GFP_HIGH);
2799 if (!bio)
2800 return -ENOMEM;
2801
2802 bio_add_page(bio, page, page_size, offset);
2803 bio->bi_end_io = end_io_func;
2804 bio->bi_private = tree;
2805 bio_set_op_attrs(bio, op, op_flags);
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
2810
2811 if (bio_ret)
2812 *bio_ret = bio;
2813 else
2814 ret = submit_one_bio(bio, mirror_num, bio_flags);
2815
2816 return ret;
2817 }
2818
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
2821 {
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
2824 get_page(page);
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
2828 }
2829 }
2830
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
2835 get_page(page);
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
2838 }
2839
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844 {
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
2849 if (extent_map_in_tree(em) && start >= em->start &&
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
2859 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
2862 atomic_inc(&em->refs);
2863 *em_cached = em;
2864 }
2865 return em;
2866 }
2867 /*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
2871 * XXX JDM: This needs looking at to ensure proper page locking
2872 * return 0 on success, otherwise return error
2873 */
2874 static int __do_readpage(struct extent_io_tree *tree,
2875 struct page *page,
2876 get_extent_t *get_extent,
2877 struct extent_map **em_cached,
2878 struct bio **bio, int mirror_num,
2879 unsigned long *bio_flags, int read_flags,
2880 u64 *prev_em_start)
2881 {
2882 struct inode *inode = page->mapping->host;
2883 u64 start = page_offset(page);
2884 u64 page_end = start + PAGE_SIZE - 1;
2885 u64 end;
2886 u64 cur = start;
2887 u64 extent_offset;
2888 u64 last_byte = i_size_read(inode);
2889 u64 block_start;
2890 u64 cur_end;
2891 sector_t sector;
2892 struct extent_map *em;
2893 struct block_device *bdev;
2894 int ret = 0;
2895 int nr = 0;
2896 size_t pg_offset = 0;
2897 size_t iosize;
2898 size_t disk_io_size;
2899 size_t blocksize = inode->i_sb->s_blocksize;
2900 unsigned long this_bio_flag = 0;
2901
2902 set_page_extent_mapped(page);
2903
2904 end = page_end;
2905 if (!PageUptodate(page)) {
2906 if (cleancache_get_page(page) == 0) {
2907 BUG_ON(blocksize != PAGE_SIZE);
2908 unlock_extent(tree, start, end);
2909 goto out;
2910 }
2911 }
2912
2913 if (page->index == last_byte >> PAGE_SHIFT) {
2914 char *userpage;
2915 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2916
2917 if (zero_offset) {
2918 iosize = PAGE_SIZE - zero_offset;
2919 userpage = kmap_atomic(page);
2920 memset(userpage + zero_offset, 0, iosize);
2921 flush_dcache_page(page);
2922 kunmap_atomic(userpage);
2923 }
2924 }
2925 while (cur <= end) {
2926 bool force_bio_submit = false;
2927
2928 if (cur >= last_byte) {
2929 char *userpage;
2930 struct extent_state *cached = NULL;
2931
2932 iosize = PAGE_SIZE - pg_offset;
2933 userpage = kmap_atomic(page);
2934 memset(userpage + pg_offset, 0, iosize);
2935 flush_dcache_page(page);
2936 kunmap_atomic(userpage);
2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 &cached, GFP_NOFS);
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
2942 break;
2943 }
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
2946 if (IS_ERR_OR_NULL(em)) {
2947 SetPageError(page);
2948 unlock_extent(tree, cur, end);
2949 break;
2950 }
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
2960
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
2963 iosize = ALIGN(iosize, blocksize);
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
2971 bdev = em->bdev;
2972 block_start = em->block_start;
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
3024 struct extent_state *cached = NULL;
3025
3026 userpage = kmap_atomic(page);
3027 memset(userpage + pg_offset, 0, iosize);
3028 flush_dcache_page(page);
3029 kunmap_atomic(userpage);
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 &cached, GFP_NOFS);
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
3036 cur = cur + iosize;
3037 pg_offset += iosize;
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
3043 check_page_uptodate(tree, page);
3044 unlock_extent(tree, cur, cur + iosize - 1);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
3054 unlock_extent(tree, cur, cur + iosize - 1);
3055 cur = cur + iosize;
3056 pg_offset += iosize;
3057 continue;
3058 }
3059
3060 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3061 page, sector, disk_io_size, pg_offset,
3062 bdev, bio,
3063 end_bio_extent_readpage, mirror_num,
3064 *bio_flags,
3065 this_bio_flag,
3066 force_bio_submit);
3067 if (!ret) {
3068 nr++;
3069 *bio_flags = this_bio_flag;
3070 } else {
3071 SetPageError(page);
3072 unlock_extent(tree, cur, cur + iosize - 1);
3073 goto out;
3074 }
3075 cur = cur + iosize;
3076 pg_offset += iosize;
3077 }
3078 out:
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
3084 return ret;
3085 }
3086
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
3091 struct extent_map **em_cached,
3092 struct bio **bio, int mirror_num,
3093 unsigned long *bio_flags,
3094 u64 *prev_em_start)
3095 {
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
3103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 mirror_num, bio_flags, 0, prev_em_start);
3115 put_page(pages[index]);
3116 }
3117 }
3118
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
3122 struct extent_map **em_cached,
3123 struct bio **bio, int mirror_num,
3124 unsigned long *bio_flags,
3125 u64 *prev_em_start)
3126 {
3127 u64 start = 0;
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
3131 int first_index = 0;
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
3137 end = start + PAGE_SIZE - 1;
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
3140 end += PAGE_SIZE;
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
3146 prev_em_start);
3147 start = page_start;
3148 end = start + PAGE_SIZE - 1;
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
3156 end, get_extent, em_cached, bio,
3157 mirror_num, bio_flags,
3158 prev_em_start);
3159 }
3160
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags, int read_flags)
3166 {
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
3170 u64 end = start + PAGE_SIZE - 1;
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
3175 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3176 PAGE_SIZE);
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 bio_flags, read_flags, NULL);
3186 return ret;
3187 }
3188
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 get_extent_t *get_extent, int mirror_num)
3191 {
3192 struct bio *bio = NULL;
3193 unsigned long bio_flags = 0;
3194 int ret;
3195
3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197 &bio_flags, 0);
3198 if (bio)
3199 ret = submit_one_bio(bio, mirror_num, bio_flags);
3200 return ret;
3201 }
3202
3203 static void update_nr_written(struct writeback_control *wbc,
3204 unsigned long nr_written)
3205 {
3206 wbc->nr_to_write -= nr_written;
3207 }
3208
3209 /*
3210 * helper for __extent_writepage, doing all of the delayed allocation setup.
3211 *
3212 * This returns 1 if our fill_delalloc function did all the work required
3213 * to write the page (copy into inline extent). In this case the IO has
3214 * been started and the page is already unlocked.
3215 *
3216 * This returns 0 if all went well (page still locked)
3217 * This returns < 0 if there were errors (page still locked)
3218 */
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 struct page *page, struct writeback_control *wbc,
3221 struct extent_page_data *epd,
3222 u64 delalloc_start,
3223 unsigned long *nr_written)
3224 {
3225 struct extent_io_tree *tree = epd->tree;
3226 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3227 u64 nr_delalloc;
3228 u64 delalloc_to_write = 0;
3229 u64 delalloc_end = 0;
3230 int ret;
3231 int page_started = 0;
3232
3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 return 0;
3235
3236 while (delalloc_end < page_end) {
3237 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 page,
3239 &delalloc_start,
3240 &delalloc_end,
3241 BTRFS_MAX_EXTENT_SIZE);
3242 if (nr_delalloc == 0) {
3243 delalloc_start = delalloc_end + 1;
3244 continue;
3245 }
3246 ret = tree->ops->fill_delalloc(inode, page,
3247 delalloc_start,
3248 delalloc_end,
3249 &page_started,
3250 nr_written);
3251 /* File system has been set read-only */
3252 if (ret) {
3253 SetPageError(page);
3254 /* fill_delalloc should be return < 0 for error
3255 * but just in case, we use > 0 here meaning the
3256 * IO is started, so we don't want to return > 0
3257 * unless things are going well.
3258 */
3259 ret = ret < 0 ? ret : -EIO;
3260 goto done;
3261 }
3262 /*
3263 * delalloc_end is already one less than the total length, so
3264 * we don't subtract one from PAGE_SIZE
3265 */
3266 delalloc_to_write += (delalloc_end - delalloc_start +
3267 PAGE_SIZE) >> PAGE_SHIFT;
3268 delalloc_start = delalloc_end + 1;
3269 }
3270 if (wbc->nr_to_write < delalloc_to_write) {
3271 int thresh = 8192;
3272
3273 if (delalloc_to_write < thresh * 2)
3274 thresh = delalloc_to_write;
3275 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 thresh);
3277 }
3278
3279 /* did the fill delalloc function already unlock and start
3280 * the IO?
3281 */
3282 if (page_started) {
3283 /*
3284 * we've unlocked the page, so we can't update
3285 * the mapping's writeback index, just update
3286 * nr_to_write.
3287 */
3288 wbc->nr_to_write -= *nr_written;
3289 return 1;
3290 }
3291
3292 ret = 0;
3293
3294 done:
3295 return ret;
3296 }
3297
3298 /*
3299 * helper for __extent_writepage. This calls the writepage start hooks,
3300 * and does the loop to map the page into extents and bios.
3301 *
3302 * We return 1 if the IO is started and the page is unlocked,
3303 * 0 if all went well (page still locked)
3304 * < 0 if there were errors (page still locked)
3305 */
3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 struct page *page,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd,
3310 loff_t i_size,
3311 unsigned long nr_written,
3312 int write_flags, int *nr_ret)
3313 {
3314 struct extent_io_tree *tree = epd->tree;
3315 u64 start = page_offset(page);
3316 u64 page_end = start + PAGE_SIZE - 1;
3317 u64 end;
3318 u64 cur = start;
3319 u64 extent_offset;
3320 u64 block_start;
3321 u64 iosize;
3322 sector_t sector;
3323 struct extent_map *em;
3324 struct block_device *bdev;
3325 size_t pg_offset = 0;
3326 size_t blocksize;
3327 int ret = 0;
3328 int nr = 0;
3329 bool compressed;
3330
3331 if (tree->ops && tree->ops->writepage_start_hook) {
3332 ret = tree->ops->writepage_start_hook(page, start,
3333 page_end);
3334 if (ret) {
3335 /* Fixup worker will requeue */
3336 if (ret == -EBUSY)
3337 wbc->pages_skipped++;
3338 else
3339 redirty_page_for_writepage(wbc, page);
3340
3341 update_nr_written(wbc, nr_written);
3342 unlock_page(page);
3343 return 1;
3344 }
3345 }
3346
3347 /*
3348 * we don't want to touch the inode after unlocking the page,
3349 * so we update the mapping writeback index now
3350 */
3351 update_nr_written(wbc, nr_written + 1);
3352
3353 end = page_end;
3354 if (i_size <= start) {
3355 if (tree->ops && tree->ops->writepage_end_io_hook)
3356 tree->ops->writepage_end_io_hook(page, start,
3357 page_end, NULL, 1);
3358 goto done;
3359 }
3360
3361 blocksize = inode->i_sb->s_blocksize;
3362
3363 while (cur <= end) {
3364 u64 em_end;
3365
3366 if (cur >= i_size) {
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, cur,
3369 page_end, NULL, 1);
3370 break;
3371 }
3372 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3373 end - cur + 1, 1);
3374 if (IS_ERR_OR_NULL(em)) {
3375 SetPageError(page);
3376 ret = PTR_ERR_OR_ZERO(em);
3377 break;
3378 }
3379
3380 extent_offset = cur - em->start;
3381 em_end = extent_map_end(em);
3382 BUG_ON(em_end <= cur);
3383 BUG_ON(end < cur);
3384 iosize = min(em_end - cur, end - cur + 1);
3385 iosize = ALIGN(iosize, blocksize);
3386 sector = (em->block_start + extent_offset) >> 9;
3387 bdev = em->bdev;
3388 block_start = em->block_start;
3389 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3390 free_extent_map(em);
3391 em = NULL;
3392
3393 /*
3394 * compressed and inline extents are written through other
3395 * paths in the FS
3396 */
3397 if (compressed || block_start == EXTENT_MAP_HOLE ||
3398 block_start == EXTENT_MAP_INLINE) {
3399 /*
3400 * end_io notification does not happen here for
3401 * compressed extents
3402 */
3403 if (!compressed && tree->ops &&
3404 tree->ops->writepage_end_io_hook)
3405 tree->ops->writepage_end_io_hook(page, cur,
3406 cur + iosize - 1,
3407 NULL, 1);
3408 else if (compressed) {
3409 /* we don't want to end_page_writeback on
3410 * a compressed extent. this happens
3411 * elsewhere
3412 */
3413 nr++;
3414 }
3415
3416 cur += iosize;
3417 pg_offset += iosize;
3418 continue;
3419 }
3420
3421 set_range_writeback(tree, cur, cur + iosize - 1);
3422 if (!PageWriteback(page)) {
3423 btrfs_err(BTRFS_I(inode)->root->fs_info,
3424 "page %lu not writeback, cur %llu end %llu",
3425 page->index, cur, end);
3426 }
3427
3428 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3429 page, sector, iosize, pg_offset,
3430 bdev, &epd->bio,
3431 end_bio_extent_writepage,
3432 0, 0, 0, false);
3433 if (ret) {
3434 SetPageError(page);
3435 if (PageWriteback(page))
3436 end_page_writeback(page);
3437 }
3438
3439 cur = cur + iosize;
3440 pg_offset += iosize;
3441 nr++;
3442 }
3443 done:
3444 *nr_ret = nr;
3445 return ret;
3446 }
3447
3448 /*
3449 * the writepage semantics are similar to regular writepage. extent
3450 * records are inserted to lock ranges in the tree, and as dirty areas
3451 * are found, they are marked writeback. Then the lock bits are removed
3452 * and the end_io handler clears the writeback ranges
3453 */
3454 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3455 void *data)
3456 {
3457 struct inode *inode = page->mapping->host;
3458 struct extent_page_data *epd = data;
3459 u64 start = page_offset(page);
3460 u64 page_end = start + PAGE_SIZE - 1;
3461 int ret;
3462 int nr = 0;
3463 size_t pg_offset = 0;
3464 loff_t i_size = i_size_read(inode);
3465 unsigned long end_index = i_size >> PAGE_SHIFT;
3466 int write_flags = 0;
3467 unsigned long nr_written = 0;
3468
3469 if (wbc->sync_mode == WB_SYNC_ALL)
3470 write_flags = REQ_SYNC;
3471
3472 trace___extent_writepage(page, inode, wbc);
3473
3474 WARN_ON(!PageLocked(page));
3475
3476 ClearPageError(page);
3477
3478 pg_offset = i_size & (PAGE_SIZE - 1);
3479 if (page->index > end_index ||
3480 (page->index == end_index && !pg_offset)) {
3481 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3482 unlock_page(page);
3483 return 0;
3484 }
3485
3486 if (page->index == end_index) {
3487 char *userpage;
3488
3489 userpage = kmap_atomic(page);
3490 memset(userpage + pg_offset, 0,
3491 PAGE_SIZE - pg_offset);
3492 kunmap_atomic(userpage);
3493 flush_dcache_page(page);
3494 }
3495
3496 pg_offset = 0;
3497
3498 set_page_extent_mapped(page);
3499
3500 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3501 if (ret == 1)
3502 goto done_unlocked;
3503 if (ret)
3504 goto done;
3505
3506 ret = __extent_writepage_io(inode, page, wbc, epd,
3507 i_size, nr_written, write_flags, &nr);
3508 if (ret == 1)
3509 goto done_unlocked;
3510
3511 done:
3512 if (nr == 0) {
3513 /* make sure the mapping tag for page dirty gets cleared */
3514 set_page_writeback(page);
3515 end_page_writeback(page);
3516 }
3517 if (PageError(page)) {
3518 ret = ret < 0 ? ret : -EIO;
3519 end_extent_writepage(page, ret, start, page_end);
3520 }
3521 unlock_page(page);
3522 return ret;
3523
3524 done_unlocked:
3525 return 0;
3526 }
3527
3528 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3529 {
3530 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3531 TASK_UNINTERRUPTIBLE);
3532 }
3533
3534 static noinline_for_stack int
3535 lock_extent_buffer_for_io(struct extent_buffer *eb,
3536 struct btrfs_fs_info *fs_info,
3537 struct extent_page_data *epd)
3538 {
3539 unsigned long i, num_pages;
3540 int flush = 0;
3541 int ret = 0;
3542
3543 if (!btrfs_try_tree_write_lock(eb)) {
3544 flush = 1;
3545 flush_write_bio(epd);
3546 btrfs_tree_lock(eb);
3547 }
3548
3549 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3550 btrfs_tree_unlock(eb);
3551 if (!epd->sync_io)
3552 return 0;
3553 if (!flush) {
3554 flush_write_bio(epd);
3555 flush = 1;
3556 }
3557 while (1) {
3558 wait_on_extent_buffer_writeback(eb);
3559 btrfs_tree_lock(eb);
3560 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3561 break;
3562 btrfs_tree_unlock(eb);
3563 }
3564 }
3565
3566 /*
3567 * We need to do this to prevent races in people who check if the eb is
3568 * under IO since we can end up having no IO bits set for a short period
3569 * of time.
3570 */
3571 spin_lock(&eb->refs_lock);
3572 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3573 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3574 spin_unlock(&eb->refs_lock);
3575 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3576 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3577 -eb->len,
3578 fs_info->dirty_metadata_batch);
3579 ret = 1;
3580 } else {
3581 spin_unlock(&eb->refs_lock);
3582 }
3583
3584 btrfs_tree_unlock(eb);
3585
3586 if (!ret)
3587 return ret;
3588
3589 num_pages = num_extent_pages(eb->start, eb->len);
3590 for (i = 0; i < num_pages; i++) {
3591 struct page *p = eb->pages[i];
3592
3593 if (!trylock_page(p)) {
3594 if (!flush) {
3595 flush_write_bio(epd);
3596 flush = 1;
3597 }
3598 lock_page(p);
3599 }
3600 }
3601
3602 return ret;
3603 }
3604
3605 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3606 {
3607 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3608 smp_mb__after_atomic();
3609 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3610 }
3611
3612 static void set_btree_ioerr(struct page *page)
3613 {
3614 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3615
3616 SetPageError(page);
3617 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3618 return;
3619
3620 /*
3621 * If writeback for a btree extent that doesn't belong to a log tree
3622 * failed, increment the counter transaction->eb_write_errors.
3623 * We do this because while the transaction is running and before it's
3624 * committing (when we call filemap_fdata[write|wait]_range against
3625 * the btree inode), we might have
3626 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3627 * returns an error or an error happens during writeback, when we're
3628 * committing the transaction we wouldn't know about it, since the pages
3629 * can be no longer dirty nor marked anymore for writeback (if a
3630 * subsequent modification to the extent buffer didn't happen before the
3631 * transaction commit), which makes filemap_fdata[write|wait]_range not
3632 * able to find the pages tagged with SetPageError at transaction
3633 * commit time. So if this happens we must abort the transaction,
3634 * otherwise we commit a super block with btree roots that point to
3635 * btree nodes/leafs whose content on disk is invalid - either garbage
3636 * or the content of some node/leaf from a past generation that got
3637 * cowed or deleted and is no longer valid.
3638 *
3639 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3640 * not be enough - we need to distinguish between log tree extents vs
3641 * non-log tree extents, and the next filemap_fdatawait_range() call
3642 * will catch and clear such errors in the mapping - and that call might
3643 * be from a log sync and not from a transaction commit. Also, checking
3644 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3645 * not done and would not be reliable - the eb might have been released
3646 * from memory and reading it back again means that flag would not be
3647 * set (since it's a runtime flag, not persisted on disk).
3648 *
3649 * Using the flags below in the btree inode also makes us achieve the
3650 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3651 * writeback for all dirty pages and before filemap_fdatawait_range()
3652 * is called, the writeback for all dirty pages had already finished
3653 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3654 * filemap_fdatawait_range() would return success, as it could not know
3655 * that writeback errors happened (the pages were no longer tagged for
3656 * writeback).
3657 */
3658 switch (eb->log_index) {
3659 case -1:
3660 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3661 break;
3662 case 0:
3663 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3664 break;
3665 case 1:
3666 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3667 break;
3668 default:
3669 BUG(); /* unexpected, logic error */
3670 }
3671 }
3672
3673 static void end_bio_extent_buffer_writepage(struct bio *bio)
3674 {
3675 struct bio_vec *bvec;
3676 struct extent_buffer *eb;
3677 int i, done;
3678
3679 bio_for_each_segment_all(bvec, bio, i) {
3680 struct page *page = bvec->bv_page;
3681
3682 eb = (struct extent_buffer *)page->private;
3683 BUG_ON(!eb);
3684 done = atomic_dec_and_test(&eb->io_pages);
3685
3686 if (bio->bi_error ||
3687 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3688 ClearPageUptodate(page);
3689 set_btree_ioerr(page);
3690 }
3691
3692 end_page_writeback(page);
3693
3694 if (!done)
3695 continue;
3696
3697 end_extent_buffer_writeback(eb);
3698 }
3699
3700 bio_put(bio);
3701 }
3702
3703 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3704 struct btrfs_fs_info *fs_info,
3705 struct writeback_control *wbc,
3706 struct extent_page_data *epd)
3707 {
3708 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3709 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3710 u64 offset = eb->start;
3711 u32 nritems;
3712 unsigned long i, num_pages;
3713 unsigned long bio_flags = 0;
3714 unsigned long start, end;
3715 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3716 int ret = 0;
3717
3718 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3719 num_pages = num_extent_pages(eb->start, eb->len);
3720 atomic_set(&eb->io_pages, num_pages);
3721 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3722 bio_flags = EXTENT_BIO_TREE_LOG;
3723
3724 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 nritems = btrfs_header_nritems(eb);
3726 if (btrfs_header_level(eb) > 0) {
3727 end = btrfs_node_key_ptr_offset(nritems);
3728
3729 memzero_extent_buffer(eb, end, eb->len - end);
3730 } else {
3731 /*
3732 * leaf:
3733 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3734 */
3735 start = btrfs_item_nr_offset(nritems);
3736 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3737 memzero_extent_buffer(eb, start, end - start);
3738 }
3739
3740 for (i = 0; i < num_pages; i++) {
3741 struct page *p = eb->pages[i];
3742
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
3745 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746 p, offset >> 9, PAGE_SIZE, 0, bdev,
3747 &epd->bio,
3748 end_bio_extent_buffer_writepage,
3749 0, epd->bio_flags, bio_flags, false);
3750 epd->bio_flags = bio_flags;
3751 if (ret) {
3752 set_btree_ioerr(p);
3753 if (PageWriteback(p))
3754 end_page_writeback(p);
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3757 ret = -EIO;
3758 break;
3759 }
3760 offset += PAGE_SIZE;
3761 update_nr_written(wbc, 1);
3762 unlock_page(p);
3763 }
3764
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
3767 struct page *p = eb->pages[i];
3768 clear_page_dirty_for_io(p);
3769 unlock_page(p);
3770 }
3771 }
3772
3773 return ret;
3774 }
3775
3776 int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3778 {
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3783 .bio = NULL,
3784 .tree = tree,
3785 .extent_locked = 0,
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787 .bio_flags = 0,
3788 };
3789 int ret = 0;
3790 int done = 0;
3791 int nr_to_write_done = 0;
3792 struct pagevec pvec;
3793 int nr_pages;
3794 pgoff_t index;
3795 pgoff_t end; /* Inclusive */
3796 int scanned = 0;
3797 int tag;
3798
3799 pagevec_init(&pvec, 0);
3800 if (wbc->range_cyclic) {
3801 index = mapping->writeback_index; /* Start from prev offset */
3802 end = -1;
3803 } else {
3804 index = wbc->range_start >> PAGE_SHIFT;
3805 end = wbc->range_end >> PAGE_SHIFT;
3806 scanned = 1;
3807 }
3808 if (wbc->sync_mode == WB_SYNC_ALL)
3809 tag = PAGECACHE_TAG_TOWRITE;
3810 else
3811 tag = PAGECACHE_TAG_DIRTY;
3812 retry:
3813 if (wbc->sync_mode == WB_SYNC_ALL)
3814 tag_pages_for_writeback(mapping, index, end);
3815 while (!done && !nr_to_write_done && (index <= end) &&
3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818 unsigned i;
3819
3820 scanned = 1;
3821 for (i = 0; i < nr_pages; i++) {
3822 struct page *page = pvec.pages[i];
3823
3824 if (!PagePrivate(page))
3825 continue;
3826
3827 if (!wbc->range_cyclic && page->index > end) {
3828 done = 1;
3829 break;
3830 }
3831
3832 spin_lock(&mapping->private_lock);
3833 if (!PagePrivate(page)) {
3834 spin_unlock(&mapping->private_lock);
3835 continue;
3836 }
3837
3838 eb = (struct extent_buffer *)page->private;
3839
3840 /*
3841 * Shouldn't happen and normally this would be a BUG_ON
3842 * but no sense in crashing the users box for something
3843 * we can survive anyway.
3844 */
3845 if (WARN_ON(!eb)) {
3846 spin_unlock(&mapping->private_lock);
3847 continue;
3848 }
3849
3850 if (eb == prev_eb) {
3851 spin_unlock(&mapping->private_lock);
3852 continue;
3853 }
3854
3855 ret = atomic_inc_not_zero(&eb->refs);
3856 spin_unlock(&mapping->private_lock);
3857 if (!ret)
3858 continue;
3859
3860 prev_eb = eb;
3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862 if (!ret) {
3863 free_extent_buffer(eb);
3864 continue;
3865 }
3866
3867 ret = write_one_eb(eb, fs_info, wbc, &epd);
3868 if (ret) {
3869 done = 1;
3870 free_extent_buffer(eb);
3871 break;
3872 }
3873 free_extent_buffer(eb);
3874
3875 /*
3876 * the filesystem may choose to bump up nr_to_write.
3877 * We have to make sure to honor the new nr_to_write
3878 * at any time
3879 */
3880 nr_to_write_done = wbc->nr_to_write <= 0;
3881 }
3882 pagevec_release(&pvec);
3883 cond_resched();
3884 }
3885 if (!scanned && !done) {
3886 /*
3887 * We hit the last page and there is more work to be done: wrap
3888 * back to the start of the file
3889 */
3890 scanned = 1;
3891 index = 0;
3892 goto retry;
3893 }
3894 flush_write_bio(&epd);
3895 return ret;
3896 }
3897
3898 /**
3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3900 * @mapping: address space structure to write
3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902 * @writepage: function called for each page
3903 * @data: data passed to writepage function
3904 *
3905 * If a page is already under I/O, write_cache_pages() skips it, even
3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3908 * and msync() need to guarantee that all the data which was dirty at the time
3909 * the call was made get new I/O started against them. If wbc->sync_mode is
3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911 * existing IO to complete.
3912 */
3913 static int extent_write_cache_pages(struct address_space *mapping,
3914 struct writeback_control *wbc,
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
3917 {
3918 struct inode *inode = mapping->host;
3919 int ret = 0;
3920 int done = 0;
3921 int nr_to_write_done = 0;
3922 struct pagevec pvec;
3923 int nr_pages;
3924 pgoff_t index;
3925 pgoff_t end; /* Inclusive */
3926 pgoff_t done_index;
3927 int range_whole = 0;
3928 int scanned = 0;
3929 int tag;
3930
3931 /*
3932 * We have to hold onto the inode so that ordered extents can do their
3933 * work when the IO finishes. The alternative to this is failing to add
3934 * an ordered extent if the igrab() fails there and that is a huge pain
3935 * to deal with, so instead just hold onto the inode throughout the
3936 * writepages operation. If it fails here we are freeing up the inode
3937 * anyway and we'd rather not waste our time writing out stuff that is
3938 * going to be truncated anyway.
3939 */
3940 if (!igrab(inode))
3941 return 0;
3942
3943 pagevec_init(&pvec, 0);
3944 if (wbc->range_cyclic) {
3945 index = mapping->writeback_index; /* Start from prev offset */
3946 end = -1;
3947 } else {
3948 index = wbc->range_start >> PAGE_SHIFT;
3949 end = wbc->range_end >> PAGE_SHIFT;
3950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3951 range_whole = 1;
3952 scanned = 1;
3953 }
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag = PAGECACHE_TAG_TOWRITE;
3956 else
3957 tag = PAGECACHE_TAG_DIRTY;
3958 retry:
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag_pages_for_writeback(mapping, index, end);
3961 done_index = index;
3962 while (!done && !nr_to_write_done && (index <= end) &&
3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3965 unsigned i;
3966
3967 scanned = 1;
3968 for (i = 0; i < nr_pages; i++) {
3969 struct page *page = pvec.pages[i];
3970
3971 done_index = page->index;
3972 /*
3973 * At this point we hold neither mapping->tree_lock nor
3974 * lock on the page itself: the page may be truncated or
3975 * invalidated (changing page->mapping to NULL), or even
3976 * swizzled back from swapper_space to tmpfs file
3977 * mapping
3978 */
3979 if (!trylock_page(page)) {
3980 flush_fn(data);
3981 lock_page(page);
3982 }
3983
3984 if (unlikely(page->mapping != mapping)) {
3985 unlock_page(page);
3986 continue;
3987 }
3988
3989 if (!wbc->range_cyclic && page->index > end) {
3990 done = 1;
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 if (wbc->sync_mode != WB_SYNC_NONE) {
3996 if (PageWriteback(page))
3997 flush_fn(data);
3998 wait_on_page_writeback(page);
3999 }
4000
4001 if (PageWriteback(page) ||
4002 !clear_page_dirty_for_io(page)) {
4003 unlock_page(page);
4004 continue;
4005 }
4006
4007 ret = (*writepage)(page, wbc, data);
4008
4009 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4010 unlock_page(page);
4011 ret = 0;
4012 }
4013 if (ret < 0) {
4014 /*
4015 * done_index is set past this page,
4016 * so media errors will not choke
4017 * background writeout for the entire
4018 * file. This has consequences for
4019 * range_cyclic semantics (ie. it may
4020 * not be suitable for data integrity
4021 * writeout).
4022 */
4023 done_index = page->index + 1;
4024 done = 1;
4025 break;
4026 }
4027
4028 /*
4029 * the filesystem may choose to bump up nr_to_write.
4030 * We have to make sure to honor the new nr_to_write
4031 * at any time
4032 */
4033 nr_to_write_done = wbc->nr_to_write <= 0;
4034 }
4035 pagevec_release(&pvec);
4036 cond_resched();
4037 }
4038 if (!scanned && !done) {
4039 /*
4040 * We hit the last page and there is more work to be done: wrap
4041 * back to the start of the file
4042 */
4043 scanned = 1;
4044 index = 0;
4045 goto retry;
4046 }
4047
4048 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049 mapping->writeback_index = done_index;
4050
4051 btrfs_add_delayed_iput(inode);
4052 return ret;
4053 }
4054
4055 static void flush_epd_write_bio(struct extent_page_data *epd)
4056 {
4057 if (epd->bio) {
4058 int ret;
4059
4060 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4061 epd->sync_io ? REQ_SYNC : 0);
4062
4063 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4064 BUG_ON(ret < 0); /* -ENOMEM */
4065 epd->bio = NULL;
4066 }
4067 }
4068
4069 static noinline void flush_write_bio(void *data)
4070 {
4071 struct extent_page_data *epd = data;
4072 flush_epd_write_bio(epd);
4073 }
4074
4075 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076 get_extent_t *get_extent,
4077 struct writeback_control *wbc)
4078 {
4079 int ret;
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .get_extent = get_extent,
4084 .extent_locked = 0,
4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086 .bio_flags = 0,
4087 };
4088
4089 ret = __extent_writepage(page, wbc, &epd);
4090
4091 flush_epd_write_bio(&epd);
4092 return ret;
4093 }
4094
4095 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096 u64 start, u64 end, get_extent_t *get_extent,
4097 int mode)
4098 {
4099 int ret = 0;
4100 struct address_space *mapping = inode->i_mapping;
4101 struct page *page;
4102 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4103 PAGE_SHIFT;
4104
4105 struct extent_page_data epd = {
4106 .bio = NULL,
4107 .tree = tree,
4108 .get_extent = get_extent,
4109 .extent_locked = 1,
4110 .sync_io = mode == WB_SYNC_ALL,
4111 .bio_flags = 0,
4112 };
4113 struct writeback_control wbc_writepages = {
4114 .sync_mode = mode,
4115 .nr_to_write = nr_pages * 2,
4116 .range_start = start,
4117 .range_end = end + 1,
4118 };
4119
4120 while (start <= end) {
4121 page = find_get_page(mapping, start >> PAGE_SHIFT);
4122 if (clear_page_dirty_for_io(page))
4123 ret = __extent_writepage(page, &wbc_writepages, &epd);
4124 else {
4125 if (tree->ops && tree->ops->writepage_end_io_hook)
4126 tree->ops->writepage_end_io_hook(page, start,
4127 start + PAGE_SIZE - 1,
4128 NULL, 1);
4129 unlock_page(page);
4130 }
4131 put_page(page);
4132 start += PAGE_SIZE;
4133 }
4134
4135 flush_epd_write_bio(&epd);
4136 return ret;
4137 }
4138
4139 int extent_writepages(struct extent_io_tree *tree,
4140 struct address_space *mapping,
4141 get_extent_t *get_extent,
4142 struct writeback_control *wbc)
4143 {
4144 int ret = 0;
4145 struct extent_page_data epd = {
4146 .bio = NULL,
4147 .tree = tree,
4148 .get_extent = get_extent,
4149 .extent_locked = 0,
4150 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4151 .bio_flags = 0,
4152 };
4153
4154 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4155 flush_write_bio);
4156 flush_epd_write_bio(&epd);
4157 return ret;
4158 }
4159
4160 int extent_readpages(struct extent_io_tree *tree,
4161 struct address_space *mapping,
4162 struct list_head *pages, unsigned nr_pages,
4163 get_extent_t get_extent)
4164 {
4165 struct bio *bio = NULL;
4166 unsigned page_idx;
4167 unsigned long bio_flags = 0;
4168 struct page *pagepool[16];
4169 struct page *page;
4170 struct extent_map *em_cached = NULL;
4171 int nr = 0;
4172 u64 prev_em_start = (u64)-1;
4173
4174 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4175 page = list_entry(pages->prev, struct page, lru);
4176
4177 prefetchw(&page->flags);
4178 list_del(&page->lru);
4179 if (add_to_page_cache_lru(page, mapping,
4180 page->index,
4181 readahead_gfp_mask(mapping))) {
4182 put_page(page);
4183 continue;
4184 }
4185
4186 pagepool[nr++] = page;
4187 if (nr < ARRAY_SIZE(pagepool))
4188 continue;
4189 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4190 &bio, 0, &bio_flags, &prev_em_start);
4191 nr = 0;
4192 }
4193 if (nr)
4194 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4195 &bio, 0, &bio_flags, &prev_em_start);
4196
4197 if (em_cached)
4198 free_extent_map(em_cached);
4199
4200 BUG_ON(!list_empty(pages));
4201 if (bio)
4202 return submit_one_bio(bio, 0, bio_flags);
4203 return 0;
4204 }
4205
4206 /*
4207 * basic invalidatepage code, this waits on any locked or writeback
4208 * ranges corresponding to the page, and then deletes any extent state
4209 * records from the tree
4210 */
4211 int extent_invalidatepage(struct extent_io_tree *tree,
4212 struct page *page, unsigned long offset)
4213 {
4214 struct extent_state *cached_state = NULL;
4215 u64 start = page_offset(page);
4216 u64 end = start + PAGE_SIZE - 1;
4217 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4218
4219 start += ALIGN(offset, blocksize);
4220 if (start > end)
4221 return 0;
4222
4223 lock_extent_bits(tree, start, end, &cached_state);
4224 wait_on_page_writeback(page);
4225 clear_extent_bit(tree, start, end,
4226 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4227 EXTENT_DO_ACCOUNTING,
4228 1, 1, &cached_state, GFP_NOFS);
4229 return 0;
4230 }
4231
4232 /*
4233 * a helper for releasepage, this tests for areas of the page that
4234 * are locked or under IO and drops the related state bits if it is safe
4235 * to drop the page.
4236 */
4237 static int try_release_extent_state(struct extent_map_tree *map,
4238 struct extent_io_tree *tree,
4239 struct page *page, gfp_t mask)
4240 {
4241 u64 start = page_offset(page);
4242 u64 end = start + PAGE_SIZE - 1;
4243 int ret = 1;
4244
4245 if (test_range_bit(tree, start, end,
4246 EXTENT_IOBITS, 0, NULL))
4247 ret = 0;
4248 else {
4249 /*
4250 * at this point we can safely clear everything except the
4251 * locked bit and the nodatasum bit
4252 */
4253 ret = clear_extent_bit(tree, start, end,
4254 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4255 0, 0, NULL, mask);
4256
4257 /* if clear_extent_bit failed for enomem reasons,
4258 * we can't allow the release to continue.
4259 */
4260 if (ret < 0)
4261 ret = 0;
4262 else
4263 ret = 1;
4264 }
4265 return ret;
4266 }
4267
4268 /*
4269 * a helper for releasepage. As long as there are no locked extents
4270 * in the range corresponding to the page, both state records and extent
4271 * map records are removed
4272 */
4273 int try_release_extent_mapping(struct extent_map_tree *map,
4274 struct extent_io_tree *tree, struct page *page,
4275 gfp_t mask)
4276 {
4277 struct extent_map *em;
4278 u64 start = page_offset(page);
4279 u64 end = start + PAGE_SIZE - 1;
4280
4281 if (gfpflags_allow_blocking(mask) &&
4282 page->mapping->host->i_size > SZ_16M) {
4283 u64 len;
4284 while (start <= end) {
4285 len = end - start + 1;
4286 write_lock(&map->lock);
4287 em = lookup_extent_mapping(map, start, len);
4288 if (!em) {
4289 write_unlock(&map->lock);
4290 break;
4291 }
4292 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4293 em->start != start) {
4294 write_unlock(&map->lock);
4295 free_extent_map(em);
4296 break;
4297 }
4298 if (!test_range_bit(tree, em->start,
4299 extent_map_end(em) - 1,
4300 EXTENT_LOCKED | EXTENT_WRITEBACK,
4301 0, NULL)) {
4302 remove_extent_mapping(map, em);
4303 /* once for the rb tree */
4304 free_extent_map(em);
4305 }
4306 start = extent_map_end(em);
4307 write_unlock(&map->lock);
4308
4309 /* once for us */
4310 free_extent_map(em);
4311 }
4312 }
4313 return try_release_extent_state(map, tree, page, mask);
4314 }
4315
4316 /*
4317 * helper function for fiemap, which doesn't want to see any holes.
4318 * This maps until we find something past 'last'
4319 */
4320 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4321 u64 offset,
4322 u64 last,
4323 get_extent_t *get_extent)
4324 {
4325 u64 sectorsize = btrfs_inode_sectorsize(inode);
4326 struct extent_map *em;
4327 u64 len;
4328
4329 if (offset >= last)
4330 return NULL;
4331
4332 while (1) {
4333 len = last - offset;
4334 if (len == 0)
4335 break;
4336 len = ALIGN(len, sectorsize);
4337 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4338 if (IS_ERR_OR_NULL(em))
4339 return em;
4340
4341 /* if this isn't a hole return it */
4342 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4343 em->block_start != EXTENT_MAP_HOLE) {
4344 return em;
4345 }
4346
4347 /* this is a hole, advance to the next extent */
4348 offset = extent_map_end(em);
4349 free_extent_map(em);
4350 if (offset >= last)
4351 break;
4352 }
4353 return NULL;
4354 }
4355
4356 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4357 __u64 start, __u64 len, get_extent_t *get_extent)
4358 {
4359 int ret = 0;
4360 u64 off = start;
4361 u64 max = start + len;
4362 u32 flags = 0;
4363 u32 found_type;
4364 u64 last;
4365 u64 last_for_get_extent = 0;
4366 u64 disko = 0;
4367 u64 isize = i_size_read(inode);
4368 struct btrfs_key found_key;
4369 struct extent_map *em = NULL;
4370 struct extent_state *cached_state = NULL;
4371 struct btrfs_path *path;
4372 struct btrfs_root *root = BTRFS_I(inode)->root;
4373 int end = 0;
4374 u64 em_start = 0;
4375 u64 em_len = 0;
4376 u64 em_end = 0;
4377
4378 if (len == 0)
4379 return -EINVAL;
4380
4381 path = btrfs_alloc_path();
4382 if (!path)
4383 return -ENOMEM;
4384 path->leave_spinning = 1;
4385
4386 start = round_down(start, btrfs_inode_sectorsize(inode));
4387 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4388
4389 /*
4390 * lookup the last file extent. We're not using i_size here
4391 * because there might be preallocation past i_size
4392 */
4393 ret = btrfs_lookup_file_extent(NULL, root, path,
4394 btrfs_ino(BTRFS_I(inode)), -1, 0);
4395 if (ret < 0) {
4396 btrfs_free_path(path);
4397 return ret;
4398 } else {
4399 WARN_ON(!ret);
4400 if (ret == 1)
4401 ret = 0;
4402 }
4403
4404 path->slots[0]--;
4405 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4406 found_type = found_key.type;
4407
4408 /* No extents, but there might be delalloc bits */
4409 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4410 found_type != BTRFS_EXTENT_DATA_KEY) {
4411 /* have to trust i_size as the end */
4412 last = (u64)-1;
4413 last_for_get_extent = isize;
4414 } else {
4415 /*
4416 * remember the start of the last extent. There are a
4417 * bunch of different factors that go into the length of the
4418 * extent, so its much less complex to remember where it started
4419 */
4420 last = found_key.offset;
4421 last_for_get_extent = last + 1;
4422 }
4423 btrfs_release_path(path);
4424
4425 /*
4426 * we might have some extents allocated but more delalloc past those
4427 * extents. so, we trust isize unless the start of the last extent is
4428 * beyond isize
4429 */
4430 if (last < isize) {
4431 last = (u64)-1;
4432 last_for_get_extent = isize;
4433 }
4434
4435 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4436 &cached_state);
4437
4438 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4439 get_extent);
4440 if (!em)
4441 goto out;
4442 if (IS_ERR(em)) {
4443 ret = PTR_ERR(em);
4444 goto out;
4445 }
4446
4447 while (!end) {
4448 u64 offset_in_extent = 0;
4449
4450 /* break if the extent we found is outside the range */
4451 if (em->start >= max || extent_map_end(em) < off)
4452 break;
4453
4454 /*
4455 * get_extent may return an extent that starts before our
4456 * requested range. We have to make sure the ranges
4457 * we return to fiemap always move forward and don't
4458 * overlap, so adjust the offsets here
4459 */
4460 em_start = max(em->start, off);
4461
4462 /*
4463 * record the offset from the start of the extent
4464 * for adjusting the disk offset below. Only do this if the
4465 * extent isn't compressed since our in ram offset may be past
4466 * what we have actually allocated on disk.
4467 */
4468 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4469 offset_in_extent = em_start - em->start;
4470 em_end = extent_map_end(em);
4471 em_len = em_end - em_start;
4472 disko = 0;
4473 flags = 0;
4474
4475 /*
4476 * bump off for our next call to get_extent
4477 */
4478 off = extent_map_end(em);
4479 if (off >= max)
4480 end = 1;
4481
4482 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4483 end = 1;
4484 flags |= FIEMAP_EXTENT_LAST;
4485 } else if (em->block_start == EXTENT_MAP_INLINE) {
4486 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4487 FIEMAP_EXTENT_NOT_ALIGNED);
4488 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4489 flags |= (FIEMAP_EXTENT_DELALLOC |
4490 FIEMAP_EXTENT_UNKNOWN);
4491 } else if (fieinfo->fi_extents_max) {
4492 struct btrfs_trans_handle *trans;
4493
4494 u64 bytenr = em->block_start -
4495 (em->start - em->orig_start);
4496
4497 disko = em->block_start + offset_in_extent;
4498
4499 /*
4500 * We need a trans handle to get delayed refs
4501 */
4502 trans = btrfs_join_transaction(root);
4503 /*
4504 * It's OK if we can't start a trans we can still check
4505 * from commit_root
4506 */
4507 if (IS_ERR(trans))
4508 trans = NULL;
4509
4510 /*
4511 * As btrfs supports shared space, this information
4512 * can be exported to userspace tools via
4513 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4514 * then we're just getting a count and we can skip the
4515 * lookup stuff.
4516 */
4517 ret = btrfs_check_shared(trans, root->fs_info,
4518 root->objectid,
4519 btrfs_ino(BTRFS_I(inode)), bytenr);
4520 if (trans)
4521 btrfs_end_transaction(trans);
4522 if (ret < 0)
4523 goto out_free;
4524 if (ret)
4525 flags |= FIEMAP_EXTENT_SHARED;
4526 ret = 0;
4527 }
4528 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4529 flags |= FIEMAP_EXTENT_ENCODED;
4530 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4531 flags |= FIEMAP_EXTENT_UNWRITTEN;
4532
4533 free_extent_map(em);
4534 em = NULL;
4535 if ((em_start >= last) || em_len == (u64)-1 ||
4536 (last == (u64)-1 && isize <= em_end)) {
4537 flags |= FIEMAP_EXTENT_LAST;
4538 end = 1;
4539 }
4540
4541 /* now scan forward to see if this is really the last extent. */
4542 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4543 get_extent);
4544 if (IS_ERR(em)) {
4545 ret = PTR_ERR(em);
4546 goto out;
4547 }
4548 if (!em) {
4549 flags |= FIEMAP_EXTENT_LAST;
4550 end = 1;
4551 }
4552 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4553 em_len, flags);
4554 if (ret) {
4555 if (ret == 1)
4556 ret = 0;
4557 goto out_free;
4558 }
4559 }
4560 out_free:
4561 free_extent_map(em);
4562 out:
4563 btrfs_free_path(path);
4564 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4565 &cached_state, GFP_NOFS);
4566 return ret;
4567 }
4568
4569 static void __free_extent_buffer(struct extent_buffer *eb)
4570 {
4571 btrfs_leak_debug_del(&eb->leak_list);
4572 kmem_cache_free(extent_buffer_cache, eb);
4573 }
4574
4575 int extent_buffer_under_io(struct extent_buffer *eb)
4576 {
4577 return (atomic_read(&eb->io_pages) ||
4578 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4579 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4580 }
4581
4582 /*
4583 * Helper for releasing extent buffer page.
4584 */
4585 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4586 {
4587 unsigned long index;
4588 struct page *page;
4589 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4590
4591 BUG_ON(extent_buffer_under_io(eb));
4592
4593 index = num_extent_pages(eb->start, eb->len);
4594 if (index == 0)
4595 return;
4596
4597 do {
4598 index--;
4599 page = eb->pages[index];
4600 if (!page)
4601 continue;
4602 if (mapped)
4603 spin_lock(&page->mapping->private_lock);
4604 /*
4605 * We do this since we'll remove the pages after we've
4606 * removed the eb from the radix tree, so we could race
4607 * and have this page now attached to the new eb. So
4608 * only clear page_private if it's still connected to
4609 * this eb.
4610 */
4611 if (PagePrivate(page) &&
4612 page->private == (unsigned long)eb) {
4613 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4614 BUG_ON(PageDirty(page));
4615 BUG_ON(PageWriteback(page));
4616 /*
4617 * We need to make sure we haven't be attached
4618 * to a new eb.
4619 */
4620 ClearPagePrivate(page);
4621 set_page_private(page, 0);
4622 /* One for the page private */
4623 put_page(page);
4624 }
4625
4626 if (mapped)
4627 spin_unlock(&page->mapping->private_lock);
4628
4629 /* One for when we allocated the page */
4630 put_page(page);
4631 } while (index != 0);
4632 }
4633
4634 /*
4635 * Helper for releasing the extent buffer.
4636 */
4637 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4638 {
4639 btrfs_release_extent_buffer_page(eb);
4640 __free_extent_buffer(eb);
4641 }
4642
4643 static struct extent_buffer *
4644 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4645 unsigned long len)
4646 {
4647 struct extent_buffer *eb = NULL;
4648
4649 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4650 eb->start = start;
4651 eb->len = len;
4652 eb->fs_info = fs_info;
4653 eb->bflags = 0;
4654 rwlock_init(&eb->lock);
4655 atomic_set(&eb->write_locks, 0);
4656 atomic_set(&eb->read_locks, 0);
4657 atomic_set(&eb->blocking_readers, 0);
4658 atomic_set(&eb->blocking_writers, 0);
4659 atomic_set(&eb->spinning_readers, 0);
4660 atomic_set(&eb->spinning_writers, 0);
4661 eb->lock_nested = 0;
4662 init_waitqueue_head(&eb->write_lock_wq);
4663 init_waitqueue_head(&eb->read_lock_wq);
4664
4665 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4666
4667 spin_lock_init(&eb->refs_lock);
4668 atomic_set(&eb->refs, 1);
4669 atomic_set(&eb->io_pages, 0);
4670
4671 /*
4672 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4673 */
4674 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4675 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4676 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4677
4678 return eb;
4679 }
4680
4681 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4682 {
4683 unsigned long i;
4684 struct page *p;
4685 struct extent_buffer *new;
4686 unsigned long num_pages = num_extent_pages(src->start, src->len);
4687
4688 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4689 if (new == NULL)
4690 return NULL;
4691
4692 for (i = 0; i < num_pages; i++) {
4693 p = alloc_page(GFP_NOFS);
4694 if (!p) {
4695 btrfs_release_extent_buffer(new);
4696 return NULL;
4697 }
4698 attach_extent_buffer_page(new, p);
4699 WARN_ON(PageDirty(p));
4700 SetPageUptodate(p);
4701 new->pages[i] = p;
4702 copy_page(page_address(p), page_address(src->pages[i]));
4703 }
4704
4705 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4706 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4707
4708 return new;
4709 }
4710
4711 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4712 u64 start, unsigned long len)
4713 {
4714 struct extent_buffer *eb;
4715 unsigned long num_pages;
4716 unsigned long i;
4717
4718 num_pages = num_extent_pages(start, len);
4719
4720 eb = __alloc_extent_buffer(fs_info, start, len);
4721 if (!eb)
4722 return NULL;
4723
4724 for (i = 0; i < num_pages; i++) {
4725 eb->pages[i] = alloc_page(GFP_NOFS);
4726 if (!eb->pages[i])
4727 goto err;
4728 }
4729 set_extent_buffer_uptodate(eb);
4730 btrfs_set_header_nritems(eb, 0);
4731 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4732
4733 return eb;
4734 err:
4735 for (; i > 0; i--)
4736 __free_page(eb->pages[i - 1]);
4737 __free_extent_buffer(eb);
4738 return NULL;
4739 }
4740
4741 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4742 u64 start)
4743 {
4744 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4745 }
4746
4747 static void check_buffer_tree_ref(struct extent_buffer *eb)
4748 {
4749 int refs;
4750 /* the ref bit is tricky. We have to make sure it is set
4751 * if we have the buffer dirty. Otherwise the
4752 * code to free a buffer can end up dropping a dirty
4753 * page
4754 *
4755 * Once the ref bit is set, it won't go away while the
4756 * buffer is dirty or in writeback, and it also won't
4757 * go away while we have the reference count on the
4758 * eb bumped.
4759 *
4760 * We can't just set the ref bit without bumping the
4761 * ref on the eb because free_extent_buffer might
4762 * see the ref bit and try to clear it. If this happens
4763 * free_extent_buffer might end up dropping our original
4764 * ref by mistake and freeing the page before we are able
4765 * to add one more ref.
4766 *
4767 * So bump the ref count first, then set the bit. If someone
4768 * beat us to it, drop the ref we added.
4769 */
4770 refs = atomic_read(&eb->refs);
4771 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4772 return;
4773
4774 spin_lock(&eb->refs_lock);
4775 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4776 atomic_inc(&eb->refs);
4777 spin_unlock(&eb->refs_lock);
4778 }
4779
4780 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4781 struct page *accessed)
4782 {
4783 unsigned long num_pages, i;
4784
4785 check_buffer_tree_ref(eb);
4786
4787 num_pages = num_extent_pages(eb->start, eb->len);
4788 for (i = 0; i < num_pages; i++) {
4789 struct page *p = eb->pages[i];
4790
4791 if (p != accessed)
4792 mark_page_accessed(p);
4793 }
4794 }
4795
4796 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4797 u64 start)
4798 {
4799 struct extent_buffer *eb;
4800
4801 rcu_read_lock();
4802 eb = radix_tree_lookup(&fs_info->buffer_radix,
4803 start >> PAGE_SHIFT);
4804 if (eb && atomic_inc_not_zero(&eb->refs)) {
4805 rcu_read_unlock();
4806 /*
4807 * Lock our eb's refs_lock to avoid races with
4808 * free_extent_buffer. When we get our eb it might be flagged
4809 * with EXTENT_BUFFER_STALE and another task running
4810 * free_extent_buffer might have seen that flag set,
4811 * eb->refs == 2, that the buffer isn't under IO (dirty and
4812 * writeback flags not set) and it's still in the tree (flag
4813 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4814 * of decrementing the extent buffer's reference count twice.
4815 * So here we could race and increment the eb's reference count,
4816 * clear its stale flag, mark it as dirty and drop our reference
4817 * before the other task finishes executing free_extent_buffer,
4818 * which would later result in an attempt to free an extent
4819 * buffer that is dirty.
4820 */
4821 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4822 spin_lock(&eb->refs_lock);
4823 spin_unlock(&eb->refs_lock);
4824 }
4825 mark_extent_buffer_accessed(eb, NULL);
4826 return eb;
4827 }
4828 rcu_read_unlock();
4829
4830 return NULL;
4831 }
4832
4833 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4834 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4835 u64 start)
4836 {
4837 struct extent_buffer *eb, *exists = NULL;
4838 int ret;
4839
4840 eb = find_extent_buffer(fs_info, start);
4841 if (eb)
4842 return eb;
4843 eb = alloc_dummy_extent_buffer(fs_info, start);
4844 if (!eb)
4845 return NULL;
4846 eb->fs_info = fs_info;
4847 again:
4848 ret = radix_tree_preload(GFP_NOFS);
4849 if (ret)
4850 goto free_eb;
4851 spin_lock(&fs_info->buffer_lock);
4852 ret = radix_tree_insert(&fs_info->buffer_radix,
4853 start >> PAGE_SHIFT, eb);
4854 spin_unlock(&fs_info->buffer_lock);
4855 radix_tree_preload_end();
4856 if (ret == -EEXIST) {
4857 exists = find_extent_buffer(fs_info, start);
4858 if (exists)
4859 goto free_eb;
4860 else
4861 goto again;
4862 }
4863 check_buffer_tree_ref(eb);
4864 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4865
4866 /*
4867 * We will free dummy extent buffer's if they come into
4868 * free_extent_buffer with a ref count of 2, but if we are using this we
4869 * want the buffers to stay in memory until we're done with them, so
4870 * bump the ref count again.
4871 */
4872 atomic_inc(&eb->refs);
4873 return eb;
4874 free_eb:
4875 btrfs_release_extent_buffer(eb);
4876 return exists;
4877 }
4878 #endif
4879
4880 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4881 u64 start)
4882 {
4883 unsigned long len = fs_info->nodesize;
4884 unsigned long num_pages = num_extent_pages(start, len);
4885 unsigned long i;
4886 unsigned long index = start >> PAGE_SHIFT;
4887 struct extent_buffer *eb;
4888 struct extent_buffer *exists = NULL;
4889 struct page *p;
4890 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4891 int uptodate = 1;
4892 int ret;
4893
4894 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4895 btrfs_err(fs_info, "bad tree block start %llu", start);
4896 return ERR_PTR(-EINVAL);
4897 }
4898
4899 eb = find_extent_buffer(fs_info, start);
4900 if (eb)
4901 return eb;
4902
4903 eb = __alloc_extent_buffer(fs_info, start, len);
4904 if (!eb)
4905 return ERR_PTR(-ENOMEM);
4906
4907 for (i = 0; i < num_pages; i++, index++) {
4908 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4909 if (!p) {
4910 exists = ERR_PTR(-ENOMEM);
4911 goto free_eb;
4912 }
4913
4914 spin_lock(&mapping->private_lock);
4915 if (PagePrivate(p)) {
4916 /*
4917 * We could have already allocated an eb for this page
4918 * and attached one so lets see if we can get a ref on
4919 * the existing eb, and if we can we know it's good and
4920 * we can just return that one, else we know we can just
4921 * overwrite page->private.
4922 */
4923 exists = (struct extent_buffer *)p->private;
4924 if (atomic_inc_not_zero(&exists->refs)) {
4925 spin_unlock(&mapping->private_lock);
4926 unlock_page(p);
4927 put_page(p);
4928 mark_extent_buffer_accessed(exists, p);
4929 goto free_eb;
4930 }
4931 exists = NULL;
4932
4933 /*
4934 * Do this so attach doesn't complain and we need to
4935 * drop the ref the old guy had.
4936 */
4937 ClearPagePrivate(p);
4938 WARN_ON(PageDirty(p));
4939 put_page(p);
4940 }
4941 attach_extent_buffer_page(eb, p);
4942 spin_unlock(&mapping->private_lock);
4943 WARN_ON(PageDirty(p));
4944 eb->pages[i] = p;
4945 if (!PageUptodate(p))
4946 uptodate = 0;
4947
4948 /*
4949 * see below about how we avoid a nasty race with release page
4950 * and why we unlock later
4951 */
4952 }
4953 if (uptodate)
4954 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4955 again:
4956 ret = radix_tree_preload(GFP_NOFS);
4957 if (ret) {
4958 exists = ERR_PTR(ret);
4959 goto free_eb;
4960 }
4961
4962 spin_lock(&fs_info->buffer_lock);
4963 ret = radix_tree_insert(&fs_info->buffer_radix,
4964 start >> PAGE_SHIFT, eb);
4965 spin_unlock(&fs_info->buffer_lock);
4966 radix_tree_preload_end();
4967 if (ret == -EEXIST) {
4968 exists = find_extent_buffer(fs_info, start);
4969 if (exists)
4970 goto free_eb;
4971 else
4972 goto again;
4973 }
4974 /* add one reference for the tree */
4975 check_buffer_tree_ref(eb);
4976 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4977
4978 /*
4979 * there is a race where release page may have
4980 * tried to find this extent buffer in the radix
4981 * but failed. It will tell the VM it is safe to
4982 * reclaim the, and it will clear the page private bit.
4983 * We must make sure to set the page private bit properly
4984 * after the extent buffer is in the radix tree so
4985 * it doesn't get lost
4986 */
4987 SetPageChecked(eb->pages[0]);
4988 for (i = 1; i < num_pages; i++) {
4989 p = eb->pages[i];
4990 ClearPageChecked(p);
4991 unlock_page(p);
4992 }
4993 unlock_page(eb->pages[0]);
4994 return eb;
4995
4996 free_eb:
4997 WARN_ON(!atomic_dec_and_test(&eb->refs));
4998 for (i = 0; i < num_pages; i++) {
4999 if (eb->pages[i])
5000 unlock_page(eb->pages[i]);
5001 }
5002
5003 btrfs_release_extent_buffer(eb);
5004 return exists;
5005 }
5006
5007 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5008 {
5009 struct extent_buffer *eb =
5010 container_of(head, struct extent_buffer, rcu_head);
5011
5012 __free_extent_buffer(eb);
5013 }
5014
5015 /* Expects to have eb->eb_lock already held */
5016 static int release_extent_buffer(struct extent_buffer *eb)
5017 {
5018 WARN_ON(atomic_read(&eb->refs) == 0);
5019 if (atomic_dec_and_test(&eb->refs)) {
5020 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5021 struct btrfs_fs_info *fs_info = eb->fs_info;
5022
5023 spin_unlock(&eb->refs_lock);
5024
5025 spin_lock(&fs_info->buffer_lock);
5026 radix_tree_delete(&fs_info->buffer_radix,
5027 eb->start >> PAGE_SHIFT);
5028 spin_unlock(&fs_info->buffer_lock);
5029 } else {
5030 spin_unlock(&eb->refs_lock);
5031 }
5032
5033 /* Should be safe to release our pages at this point */
5034 btrfs_release_extent_buffer_page(eb);
5035 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5036 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5037 __free_extent_buffer(eb);
5038 return 1;
5039 }
5040 #endif
5041 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5042 return 1;
5043 }
5044 spin_unlock(&eb->refs_lock);
5045
5046 return 0;
5047 }
5048
5049 void free_extent_buffer(struct extent_buffer *eb)
5050 {
5051 int refs;
5052 int old;
5053 if (!eb)
5054 return;
5055
5056 while (1) {
5057 refs = atomic_read(&eb->refs);
5058 if (refs <= 3)
5059 break;
5060 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5061 if (old == refs)
5062 return;
5063 }
5064
5065 spin_lock(&eb->refs_lock);
5066 if (atomic_read(&eb->refs) == 2 &&
5067 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5068 atomic_dec(&eb->refs);
5069
5070 if (atomic_read(&eb->refs) == 2 &&
5071 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5072 !extent_buffer_under_io(eb) &&
5073 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5074 atomic_dec(&eb->refs);
5075
5076 /*
5077 * I know this is terrible, but it's temporary until we stop tracking
5078 * the uptodate bits and such for the extent buffers.
5079 */
5080 release_extent_buffer(eb);
5081 }
5082
5083 void free_extent_buffer_stale(struct extent_buffer *eb)
5084 {
5085 if (!eb)
5086 return;
5087
5088 spin_lock(&eb->refs_lock);
5089 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5090
5091 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5092 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5093 atomic_dec(&eb->refs);
5094 release_extent_buffer(eb);
5095 }
5096
5097 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5098 {
5099 unsigned long i;
5100 unsigned long num_pages;
5101 struct page *page;
5102
5103 num_pages = num_extent_pages(eb->start, eb->len);
5104
5105 for (i = 0; i < num_pages; i++) {
5106 page = eb->pages[i];
5107 if (!PageDirty(page))
5108 continue;
5109
5110 lock_page(page);
5111 WARN_ON(!PagePrivate(page));
5112
5113 clear_page_dirty_for_io(page);
5114 spin_lock_irq(&page->mapping->tree_lock);
5115 if (!PageDirty(page)) {
5116 radix_tree_tag_clear(&page->mapping->page_tree,
5117 page_index(page),
5118 PAGECACHE_TAG_DIRTY);
5119 }
5120 spin_unlock_irq(&page->mapping->tree_lock);
5121 ClearPageError(page);
5122 unlock_page(page);
5123 }
5124 WARN_ON(atomic_read(&eb->refs) == 0);
5125 }
5126
5127 int set_extent_buffer_dirty(struct extent_buffer *eb)
5128 {
5129 unsigned long i;
5130 unsigned long num_pages;
5131 int was_dirty = 0;
5132
5133 check_buffer_tree_ref(eb);
5134
5135 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5136
5137 num_pages = num_extent_pages(eb->start, eb->len);
5138 WARN_ON(atomic_read(&eb->refs) == 0);
5139 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5140
5141 for (i = 0; i < num_pages; i++)
5142 set_page_dirty(eb->pages[i]);
5143 return was_dirty;
5144 }
5145
5146 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5147 {
5148 unsigned long i;
5149 struct page *page;
5150 unsigned long num_pages;
5151
5152 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5153 num_pages = num_extent_pages(eb->start, eb->len);
5154 for (i = 0; i < num_pages; i++) {
5155 page = eb->pages[i];
5156 if (page)
5157 ClearPageUptodate(page);
5158 }
5159 }
5160
5161 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5162 {
5163 unsigned long i;
5164 struct page *page;
5165 unsigned long num_pages;
5166
5167 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5168 num_pages = num_extent_pages(eb->start, eb->len);
5169 for (i = 0; i < num_pages; i++) {
5170 page = eb->pages[i];
5171 SetPageUptodate(page);
5172 }
5173 }
5174
5175 int extent_buffer_uptodate(struct extent_buffer *eb)
5176 {
5177 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5178 }
5179
5180 int read_extent_buffer_pages(struct extent_io_tree *tree,
5181 struct extent_buffer *eb, int wait,
5182 get_extent_t *get_extent, int mirror_num)
5183 {
5184 unsigned long i;
5185 struct page *page;
5186 int err;
5187 int ret = 0;
5188 int locked_pages = 0;
5189 int all_uptodate = 1;
5190 unsigned long num_pages;
5191 unsigned long num_reads = 0;
5192 struct bio *bio = NULL;
5193 unsigned long bio_flags = 0;
5194
5195 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5196 return 0;
5197
5198 num_pages = num_extent_pages(eb->start, eb->len);
5199 for (i = 0; i < num_pages; i++) {
5200 page = eb->pages[i];
5201 if (wait == WAIT_NONE) {
5202 if (!trylock_page(page))
5203 goto unlock_exit;
5204 } else {
5205 lock_page(page);
5206 }
5207 locked_pages++;
5208 }
5209 /*
5210 * We need to firstly lock all pages to make sure that
5211 * the uptodate bit of our pages won't be affected by
5212 * clear_extent_buffer_uptodate().
5213 */
5214 for (i = 0; i < num_pages; i++) {
5215 page = eb->pages[i];
5216 if (!PageUptodate(page)) {
5217 num_reads++;
5218 all_uptodate = 0;
5219 }
5220 }
5221
5222 if (all_uptodate) {
5223 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5224 goto unlock_exit;
5225 }
5226
5227 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5228 eb->read_mirror = 0;
5229 atomic_set(&eb->io_pages, num_reads);
5230 for (i = 0; i < num_pages; i++) {
5231 page = eb->pages[i];
5232
5233 if (!PageUptodate(page)) {
5234 if (ret) {
5235 atomic_dec(&eb->io_pages);
5236 unlock_page(page);
5237 continue;
5238 }
5239
5240 ClearPageError(page);
5241 err = __extent_read_full_page(tree, page,
5242 get_extent, &bio,
5243 mirror_num, &bio_flags,
5244 REQ_META);
5245 if (err) {
5246 ret = err;
5247 /*
5248 * We use &bio in above __extent_read_full_page,
5249 * so we ensure that if it returns error, the
5250 * current page fails to add itself to bio and
5251 * it's been unlocked.
5252 *
5253 * We must dec io_pages by ourselves.
5254 */
5255 atomic_dec(&eb->io_pages);
5256 }
5257 } else {
5258 unlock_page(page);
5259 }
5260 }
5261
5262 if (bio) {
5263 err = submit_one_bio(bio, mirror_num, bio_flags);
5264 if (err)
5265 return err;
5266 }
5267
5268 if (ret || wait != WAIT_COMPLETE)
5269 return ret;
5270
5271 for (i = 0; i < num_pages; i++) {
5272 page = eb->pages[i];
5273 wait_on_page_locked(page);
5274 if (!PageUptodate(page))
5275 ret = -EIO;
5276 }
5277
5278 return ret;
5279
5280 unlock_exit:
5281 while (locked_pages > 0) {
5282 locked_pages--;
5283 page = eb->pages[locked_pages];
5284 unlock_page(page);
5285 }
5286 return ret;
5287 }
5288
5289 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5290 unsigned long start,
5291 unsigned long len)
5292 {
5293 size_t cur;
5294 size_t offset;
5295 struct page *page;
5296 char *kaddr;
5297 char *dst = (char *)dstv;
5298 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5300
5301 WARN_ON(start > eb->len);
5302 WARN_ON(start + len > eb->start + eb->len);
5303
5304 offset = (start_offset + start) & (PAGE_SIZE - 1);
5305
5306 while (len > 0) {
5307 page = eb->pages[i];
5308
5309 cur = min(len, (PAGE_SIZE - offset));
5310 kaddr = page_address(page);
5311 memcpy(dst, kaddr + offset, cur);
5312
5313 dst += cur;
5314 len -= cur;
5315 offset = 0;
5316 i++;
5317 }
5318 }
5319
5320 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5321 unsigned long start,
5322 unsigned long len)
5323 {
5324 size_t cur;
5325 size_t offset;
5326 struct page *page;
5327 char *kaddr;
5328 char __user *dst = (char __user *)dstv;
5329 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5330 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5331 int ret = 0;
5332
5333 WARN_ON(start > eb->len);
5334 WARN_ON(start + len > eb->start + eb->len);
5335
5336 offset = (start_offset + start) & (PAGE_SIZE - 1);
5337
5338 while (len > 0) {
5339 page = eb->pages[i];
5340
5341 cur = min(len, (PAGE_SIZE - offset));
5342 kaddr = page_address(page);
5343 if (copy_to_user(dst, kaddr + offset, cur)) {
5344 ret = -EFAULT;
5345 break;
5346 }
5347
5348 dst += cur;
5349 len -= cur;
5350 offset = 0;
5351 i++;
5352 }
5353
5354 return ret;
5355 }
5356
5357 /*
5358 * return 0 if the item is found within a page.
5359 * return 1 if the item spans two pages.
5360 * return -EINVAL otherwise.
5361 */
5362 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5363 unsigned long min_len, char **map,
5364 unsigned long *map_start,
5365 unsigned long *map_len)
5366 {
5367 size_t offset = start & (PAGE_SIZE - 1);
5368 char *kaddr;
5369 struct page *p;
5370 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5371 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5372 unsigned long end_i = (start_offset + start + min_len - 1) >>
5373 PAGE_SHIFT;
5374
5375 if (i != end_i)
5376 return 1;
5377
5378 if (i == 0) {
5379 offset = start_offset;
5380 *map_start = 0;
5381 } else {
5382 offset = 0;
5383 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5384 }
5385
5386 if (start + min_len > eb->len) {
5387 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5388 eb->start, eb->len, start, min_len);
5389 return -EINVAL;
5390 }
5391
5392 p = eb->pages[i];
5393 kaddr = page_address(p);
5394 *map = kaddr + offset;
5395 *map_len = PAGE_SIZE - offset;
5396 return 0;
5397 }
5398
5399 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5400 unsigned long start,
5401 unsigned long len)
5402 {
5403 size_t cur;
5404 size_t offset;
5405 struct page *page;
5406 char *kaddr;
5407 char *ptr = (char *)ptrv;
5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5410 int ret = 0;
5411
5412 WARN_ON(start > eb->len);
5413 WARN_ON(start + len > eb->start + eb->len);
5414
5415 offset = (start_offset + start) & (PAGE_SIZE - 1);
5416
5417 while (len > 0) {
5418 page = eb->pages[i];
5419
5420 cur = min(len, (PAGE_SIZE - offset));
5421
5422 kaddr = page_address(page);
5423 ret = memcmp(ptr, kaddr + offset, cur);
5424 if (ret)
5425 break;
5426
5427 ptr += cur;
5428 len -= cur;
5429 offset = 0;
5430 i++;
5431 }
5432 return ret;
5433 }
5434
5435 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5436 const void *srcv)
5437 {
5438 char *kaddr;
5439
5440 WARN_ON(!PageUptodate(eb->pages[0]));
5441 kaddr = page_address(eb->pages[0]);
5442 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5443 BTRFS_FSID_SIZE);
5444 }
5445
5446 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5447 {
5448 char *kaddr;
5449
5450 WARN_ON(!PageUptodate(eb->pages[0]));
5451 kaddr = page_address(eb->pages[0]);
5452 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5453 BTRFS_FSID_SIZE);
5454 }
5455
5456 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5457 unsigned long start, unsigned long len)
5458 {
5459 size_t cur;
5460 size_t offset;
5461 struct page *page;
5462 char *kaddr;
5463 char *src = (char *)srcv;
5464 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5465 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5466
5467 WARN_ON(start > eb->len);
5468 WARN_ON(start + len > eb->start + eb->len);
5469
5470 offset = (start_offset + start) & (PAGE_SIZE - 1);
5471
5472 while (len > 0) {
5473 page = eb->pages[i];
5474 WARN_ON(!PageUptodate(page));
5475
5476 cur = min(len, PAGE_SIZE - offset);
5477 kaddr = page_address(page);
5478 memcpy(kaddr + offset, src, cur);
5479
5480 src += cur;
5481 len -= cur;
5482 offset = 0;
5483 i++;
5484 }
5485 }
5486
5487 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5488 unsigned long len)
5489 {
5490 size_t cur;
5491 size_t offset;
5492 struct page *page;
5493 char *kaddr;
5494 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5495 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5496
5497 WARN_ON(start > eb->len);
5498 WARN_ON(start + len > eb->start + eb->len);
5499
5500 offset = (start_offset + start) & (PAGE_SIZE - 1);
5501
5502 while (len > 0) {
5503 page = eb->pages[i];
5504 WARN_ON(!PageUptodate(page));
5505
5506 cur = min(len, PAGE_SIZE - offset);
5507 kaddr = page_address(page);
5508 memset(kaddr + offset, 0, cur);
5509
5510 len -= cur;
5511 offset = 0;
5512 i++;
5513 }
5514 }
5515
5516 void copy_extent_buffer_full(struct extent_buffer *dst,
5517 struct extent_buffer *src)
5518 {
5519 int i;
5520 unsigned num_pages;
5521
5522 ASSERT(dst->len == src->len);
5523
5524 num_pages = num_extent_pages(dst->start, dst->len);
5525 for (i = 0; i < num_pages; i++)
5526 copy_page(page_address(dst->pages[i]),
5527 page_address(src->pages[i]));
5528 }
5529
5530 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5531 unsigned long dst_offset, unsigned long src_offset,
5532 unsigned long len)
5533 {
5534 u64 dst_len = dst->len;
5535 size_t cur;
5536 size_t offset;
5537 struct page *page;
5538 char *kaddr;
5539 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5540 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5541
5542 WARN_ON(src->len != dst_len);
5543
5544 offset = (start_offset + dst_offset) &
5545 (PAGE_SIZE - 1);
5546
5547 while (len > 0) {
5548 page = dst->pages[i];
5549 WARN_ON(!PageUptodate(page));
5550
5551 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5552
5553 kaddr = page_address(page);
5554 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5555
5556 src_offset += cur;
5557 len -= cur;
5558 offset = 0;
5559 i++;
5560 }
5561 }
5562
5563 void le_bitmap_set(u8 *map, unsigned int start, int len)
5564 {
5565 u8 *p = map + BIT_BYTE(start);
5566 const unsigned int size = start + len;
5567 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5568 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5569
5570 while (len - bits_to_set >= 0) {
5571 *p |= mask_to_set;
5572 len -= bits_to_set;
5573 bits_to_set = BITS_PER_BYTE;
5574 mask_to_set = ~0;
5575 p++;
5576 }
5577 if (len) {
5578 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5579 *p |= mask_to_set;
5580 }
5581 }
5582
5583 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5584 {
5585 u8 *p = map + BIT_BYTE(start);
5586 const unsigned int size = start + len;
5587 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5589
5590 while (len - bits_to_clear >= 0) {
5591 *p &= ~mask_to_clear;
5592 len -= bits_to_clear;
5593 bits_to_clear = BITS_PER_BYTE;
5594 mask_to_clear = ~0;
5595 p++;
5596 }
5597 if (len) {
5598 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5599 *p &= ~mask_to_clear;
5600 }
5601 }
5602
5603 /*
5604 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5605 * given bit number
5606 * @eb: the extent buffer
5607 * @start: offset of the bitmap item in the extent buffer
5608 * @nr: bit number
5609 * @page_index: return index of the page in the extent buffer that contains the
5610 * given bit number
5611 * @page_offset: return offset into the page given by page_index
5612 *
5613 * This helper hides the ugliness of finding the byte in an extent buffer which
5614 * contains a given bit.
5615 */
5616 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5617 unsigned long start, unsigned long nr,
5618 unsigned long *page_index,
5619 size_t *page_offset)
5620 {
5621 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5622 size_t byte_offset = BIT_BYTE(nr);
5623 size_t offset;
5624
5625 /*
5626 * The byte we want is the offset of the extent buffer + the offset of
5627 * the bitmap item in the extent buffer + the offset of the byte in the
5628 * bitmap item.
5629 */
5630 offset = start_offset + start + byte_offset;
5631
5632 *page_index = offset >> PAGE_SHIFT;
5633 *page_offset = offset & (PAGE_SIZE - 1);
5634 }
5635
5636 /**
5637 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5638 * @eb: the extent buffer
5639 * @start: offset of the bitmap item in the extent buffer
5640 * @nr: bit number to test
5641 */
5642 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5643 unsigned long nr)
5644 {
5645 u8 *kaddr;
5646 struct page *page;
5647 unsigned long i;
5648 size_t offset;
5649
5650 eb_bitmap_offset(eb, start, nr, &i, &offset);
5651 page = eb->pages[i];
5652 WARN_ON(!PageUptodate(page));
5653 kaddr = page_address(page);
5654 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5655 }
5656
5657 /**
5658 * extent_buffer_bitmap_set - set an area of a bitmap
5659 * @eb: the extent buffer
5660 * @start: offset of the bitmap item in the extent buffer
5661 * @pos: bit number of the first bit
5662 * @len: number of bits to set
5663 */
5664 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5665 unsigned long pos, unsigned long len)
5666 {
5667 u8 *kaddr;
5668 struct page *page;
5669 unsigned long i;
5670 size_t offset;
5671 const unsigned int size = pos + len;
5672 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5673 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5674
5675 eb_bitmap_offset(eb, start, pos, &i, &offset);
5676 page = eb->pages[i];
5677 WARN_ON(!PageUptodate(page));
5678 kaddr = page_address(page);
5679
5680 while (len >= bits_to_set) {
5681 kaddr[offset] |= mask_to_set;
5682 len -= bits_to_set;
5683 bits_to_set = BITS_PER_BYTE;
5684 mask_to_set = ~0;
5685 if (++offset >= PAGE_SIZE && len > 0) {
5686 offset = 0;
5687 page = eb->pages[++i];
5688 WARN_ON(!PageUptodate(page));
5689 kaddr = page_address(page);
5690 }
5691 }
5692 if (len) {
5693 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5694 kaddr[offset] |= mask_to_set;
5695 }
5696 }
5697
5698
5699 /**
5700 * extent_buffer_bitmap_clear - clear an area of a bitmap
5701 * @eb: the extent buffer
5702 * @start: offset of the bitmap item in the extent buffer
5703 * @pos: bit number of the first bit
5704 * @len: number of bits to clear
5705 */
5706 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5707 unsigned long pos, unsigned long len)
5708 {
5709 u8 *kaddr;
5710 struct page *page;
5711 unsigned long i;
5712 size_t offset;
5713 const unsigned int size = pos + len;
5714 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5715 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5716
5717 eb_bitmap_offset(eb, start, pos, &i, &offset);
5718 page = eb->pages[i];
5719 WARN_ON(!PageUptodate(page));
5720 kaddr = page_address(page);
5721
5722 while (len >= bits_to_clear) {
5723 kaddr[offset] &= ~mask_to_clear;
5724 len -= bits_to_clear;
5725 bits_to_clear = BITS_PER_BYTE;
5726 mask_to_clear = ~0;
5727 if (++offset >= PAGE_SIZE && len > 0) {
5728 offset = 0;
5729 page = eb->pages[++i];
5730 WARN_ON(!PageUptodate(page));
5731 kaddr = page_address(page);
5732 }
5733 }
5734 if (len) {
5735 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5736 kaddr[offset] &= ~mask_to_clear;
5737 }
5738 }
5739
5740 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5741 {
5742 unsigned long distance = (src > dst) ? src - dst : dst - src;
5743 return distance < len;
5744 }
5745
5746 static void copy_pages(struct page *dst_page, struct page *src_page,
5747 unsigned long dst_off, unsigned long src_off,
5748 unsigned long len)
5749 {
5750 char *dst_kaddr = page_address(dst_page);
5751 char *src_kaddr;
5752 int must_memmove = 0;
5753
5754 if (dst_page != src_page) {
5755 src_kaddr = page_address(src_page);
5756 } else {
5757 src_kaddr = dst_kaddr;
5758 if (areas_overlap(src_off, dst_off, len))
5759 must_memmove = 1;
5760 }
5761
5762 if (must_memmove)
5763 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5764 else
5765 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5766 }
5767
5768 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5769 unsigned long src_offset, unsigned long len)
5770 {
5771 struct btrfs_fs_info *fs_info = dst->fs_info;
5772 size_t cur;
5773 size_t dst_off_in_page;
5774 size_t src_off_in_page;
5775 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5776 unsigned long dst_i;
5777 unsigned long src_i;
5778
5779 if (src_offset + len > dst->len) {
5780 btrfs_err(fs_info,
5781 "memmove bogus src_offset %lu move len %lu dst len %lu",
5782 src_offset, len, dst->len);
5783 BUG_ON(1);
5784 }
5785 if (dst_offset + len > dst->len) {
5786 btrfs_err(fs_info,
5787 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5788 dst_offset, len, dst->len);
5789 BUG_ON(1);
5790 }
5791
5792 while (len > 0) {
5793 dst_off_in_page = (start_offset + dst_offset) &
5794 (PAGE_SIZE - 1);
5795 src_off_in_page = (start_offset + src_offset) &
5796 (PAGE_SIZE - 1);
5797
5798 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5799 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5800
5801 cur = min(len, (unsigned long)(PAGE_SIZE -
5802 src_off_in_page));
5803 cur = min_t(unsigned long, cur,
5804 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5805
5806 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5807 dst_off_in_page, src_off_in_page, cur);
5808
5809 src_offset += cur;
5810 dst_offset += cur;
5811 len -= cur;
5812 }
5813 }
5814
5815 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5816 unsigned long src_offset, unsigned long len)
5817 {
5818 struct btrfs_fs_info *fs_info = dst->fs_info;
5819 size_t cur;
5820 size_t dst_off_in_page;
5821 size_t src_off_in_page;
5822 unsigned long dst_end = dst_offset + len - 1;
5823 unsigned long src_end = src_offset + len - 1;
5824 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5825 unsigned long dst_i;
5826 unsigned long src_i;
5827
5828 if (src_offset + len > dst->len) {
5829 btrfs_err(fs_info,
5830 "memmove bogus src_offset %lu move len %lu len %lu",
5831 src_offset, len, dst->len);
5832 BUG_ON(1);
5833 }
5834 if (dst_offset + len > dst->len) {
5835 btrfs_err(fs_info,
5836 "memmove bogus dst_offset %lu move len %lu len %lu",
5837 dst_offset, len, dst->len);
5838 BUG_ON(1);
5839 }
5840 if (dst_offset < src_offset) {
5841 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5842 return;
5843 }
5844 while (len > 0) {
5845 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5846 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5847
5848 dst_off_in_page = (start_offset + dst_end) &
5849 (PAGE_SIZE - 1);
5850 src_off_in_page = (start_offset + src_end) &
5851 (PAGE_SIZE - 1);
5852
5853 cur = min_t(unsigned long, len, src_off_in_page + 1);
5854 cur = min(cur, dst_off_in_page + 1);
5855 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5856 dst_off_in_page - cur + 1,
5857 src_off_in_page - cur + 1, cur);
5858
5859 dst_end -= cur;
5860 src_end -= cur;
5861 len -= cur;
5862 }
5863 }
5864
5865 int try_release_extent_buffer(struct page *page)
5866 {
5867 struct extent_buffer *eb;
5868
5869 /*
5870 * We need to make sure nobody is attaching this page to an eb right
5871 * now.
5872 */
5873 spin_lock(&page->mapping->private_lock);
5874 if (!PagePrivate(page)) {
5875 spin_unlock(&page->mapping->private_lock);
5876 return 1;
5877 }
5878
5879 eb = (struct extent_buffer *)page->private;
5880 BUG_ON(!eb);
5881
5882 /*
5883 * This is a little awful but should be ok, we need to make sure that
5884 * the eb doesn't disappear out from under us while we're looking at
5885 * this page.
5886 */
5887 spin_lock(&eb->refs_lock);
5888 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5889 spin_unlock(&eb->refs_lock);
5890 spin_unlock(&page->mapping->private_lock);
5891 return 0;
5892 }
5893 spin_unlock(&page->mapping->private_lock);
5894
5895 /*
5896 * If tree ref isn't set then we know the ref on this eb is a real ref,
5897 * so just return, this page will likely be freed soon anyway.
5898 */
5899 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5900 spin_unlock(&eb->refs_lock);
5901 return 0;
5902 }
5903
5904 return release_extent_buffer(eb);
5905 }