]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent_io.c
Merge branch 'for-chris' of git://git.jan-o-sch.net/btrfs-unstable into integration
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
24
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
27
28 #define LEAK_DEBUG 0
29 #if LEAK_DEBUG
30 static DEFINE_SPINLOCK(leak_lock);
31 #endif
32
33 #define BUFFER_LRU_MAX 64
34
35 struct tree_entry {
36 u64 start;
37 u64 end;
38 struct rb_node rb_node;
39 };
40
41 struct extent_page_data {
42 struct bio *bio;
43 struct extent_io_tree *tree;
44 get_extent_t *get_extent;
45
46 /* tells writepage not to lock the state bits for this range
47 * it still does the unlocking
48 */
49 unsigned int extent_locked:1;
50
51 /* tells the submit_bio code to use a WRITE_SYNC */
52 unsigned int sync_io:1;
53 };
54
55 int __init extent_io_init(void)
56 {
57 extent_state_cache = kmem_cache_create("extent_state",
58 sizeof(struct extent_state), 0,
59 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
60 if (!extent_state_cache)
61 return -ENOMEM;
62
63 extent_buffer_cache = kmem_cache_create("extent_buffers",
64 sizeof(struct extent_buffer), 0,
65 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
66 if (!extent_buffer_cache)
67 goto free_state_cache;
68 return 0;
69
70 free_state_cache:
71 kmem_cache_destroy(extent_state_cache);
72 return -ENOMEM;
73 }
74
75 void extent_io_exit(void)
76 {
77 struct extent_state *state;
78 struct extent_buffer *eb;
79
80 while (!list_empty(&states)) {
81 state = list_entry(states.next, struct extent_state, leak_list);
82 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
83 "state %lu in tree %p refs %d\n",
84 (unsigned long long)state->start,
85 (unsigned long long)state->end,
86 state->state, state->tree, atomic_read(&state->refs));
87 list_del(&state->leak_list);
88 kmem_cache_free(extent_state_cache, state);
89
90 }
91
92 while (!list_empty(&buffers)) {
93 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
94 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
95 "refs %d\n", (unsigned long long)eb->start,
96 eb->len, atomic_read(&eb->refs));
97 list_del(&eb->leak_list);
98 kmem_cache_free(extent_buffer_cache, eb);
99 }
100 if (extent_state_cache)
101 kmem_cache_destroy(extent_state_cache);
102 if (extent_buffer_cache)
103 kmem_cache_destroy(extent_buffer_cache);
104 }
105
106 void extent_io_tree_init(struct extent_io_tree *tree,
107 struct address_space *mapping)
108 {
109 tree->state = RB_ROOT;
110 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
111 tree->ops = NULL;
112 tree->dirty_bytes = 0;
113 spin_lock_init(&tree->lock);
114 spin_lock_init(&tree->buffer_lock);
115 tree->mapping = mapping;
116 }
117
118 static struct extent_state *alloc_extent_state(gfp_t mask)
119 {
120 struct extent_state *state;
121 #if LEAK_DEBUG
122 unsigned long flags;
123 #endif
124
125 state = kmem_cache_alloc(extent_state_cache, mask);
126 if (!state)
127 return state;
128 state->state = 0;
129 state->private = 0;
130 state->tree = NULL;
131 #if LEAK_DEBUG
132 spin_lock_irqsave(&leak_lock, flags);
133 list_add(&state->leak_list, &states);
134 spin_unlock_irqrestore(&leak_lock, flags);
135 #endif
136 atomic_set(&state->refs, 1);
137 init_waitqueue_head(&state->wq);
138 return state;
139 }
140
141 void free_extent_state(struct extent_state *state)
142 {
143 if (!state)
144 return;
145 if (atomic_dec_and_test(&state->refs)) {
146 #if LEAK_DEBUG
147 unsigned long flags;
148 #endif
149 WARN_ON(state->tree);
150 #if LEAK_DEBUG
151 spin_lock_irqsave(&leak_lock, flags);
152 list_del(&state->leak_list);
153 spin_unlock_irqrestore(&leak_lock, flags);
154 #endif
155 kmem_cache_free(extent_state_cache, state);
156 }
157 }
158
159 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
160 struct rb_node *node)
161 {
162 struct rb_node **p = &root->rb_node;
163 struct rb_node *parent = NULL;
164 struct tree_entry *entry;
165
166 while (*p) {
167 parent = *p;
168 entry = rb_entry(parent, struct tree_entry, rb_node);
169
170 if (offset < entry->start)
171 p = &(*p)->rb_left;
172 else if (offset > entry->end)
173 p = &(*p)->rb_right;
174 else
175 return parent;
176 }
177
178 entry = rb_entry(node, struct tree_entry, rb_node);
179 rb_link_node(node, parent, p);
180 rb_insert_color(node, root);
181 return NULL;
182 }
183
184 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
185 struct rb_node **prev_ret,
186 struct rb_node **next_ret)
187 {
188 struct rb_root *root = &tree->state;
189 struct rb_node *n = root->rb_node;
190 struct rb_node *prev = NULL;
191 struct rb_node *orig_prev = NULL;
192 struct tree_entry *entry;
193 struct tree_entry *prev_entry = NULL;
194
195 while (n) {
196 entry = rb_entry(n, struct tree_entry, rb_node);
197 prev = n;
198 prev_entry = entry;
199
200 if (offset < entry->start)
201 n = n->rb_left;
202 else if (offset > entry->end)
203 n = n->rb_right;
204 else
205 return n;
206 }
207
208 if (prev_ret) {
209 orig_prev = prev;
210 while (prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213 }
214 *prev_ret = prev;
215 prev = orig_prev;
216 }
217
218 if (next_ret) {
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while (prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 }
224 *next_ret = prev;
225 }
226 return NULL;
227 }
228
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230 u64 offset)
231 {
232 struct rb_node *prev = NULL;
233 struct rb_node *ret;
234
235 ret = __etree_search(tree, offset, &prev, NULL);
236 if (!ret)
237 return prev;
238 return ret;
239 }
240
241 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
242 struct extent_state *other)
243 {
244 if (tree->ops && tree->ops->merge_extent_hook)
245 tree->ops->merge_extent_hook(tree->mapping->host, new,
246 other);
247 }
248
249 /*
250 * utility function to look for merge candidates inside a given range.
251 * Any extents with matching state are merged together into a single
252 * extent in the tree. Extents with EXTENT_IO in their state field
253 * are not merged because the end_io handlers need to be able to do
254 * operations on them without sleeping (or doing allocations/splits).
255 *
256 * This should be called with the tree lock held.
257 */
258 static void merge_state(struct extent_io_tree *tree,
259 struct extent_state *state)
260 {
261 struct extent_state *other;
262 struct rb_node *other_node;
263
264 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
265 return;
266
267 other_node = rb_prev(&state->rb_node);
268 if (other_node) {
269 other = rb_entry(other_node, struct extent_state, rb_node);
270 if (other->end == state->start - 1 &&
271 other->state == state->state) {
272 merge_cb(tree, state, other);
273 state->start = other->start;
274 other->tree = NULL;
275 rb_erase(&other->rb_node, &tree->state);
276 free_extent_state(other);
277 }
278 }
279 other_node = rb_next(&state->rb_node);
280 if (other_node) {
281 other = rb_entry(other_node, struct extent_state, rb_node);
282 if (other->start == state->end + 1 &&
283 other->state == state->state) {
284 merge_cb(tree, state, other);
285 state->end = other->end;
286 other->tree = NULL;
287 rb_erase(&other->rb_node, &tree->state);
288 free_extent_state(other);
289 }
290 }
291 }
292
293 static void set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
295 {
296 if (tree->ops && tree->ops->set_bit_hook)
297 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
298 }
299
300 static void clear_state_cb(struct extent_io_tree *tree,
301 struct extent_state *state, int *bits)
302 {
303 if (tree->ops && tree->ops->clear_bit_hook)
304 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
305 }
306
307 static void set_state_bits(struct extent_io_tree *tree,
308 struct extent_state *state, int *bits);
309
310 /*
311 * insert an extent_state struct into the tree. 'bits' are set on the
312 * struct before it is inserted.
313 *
314 * This may return -EEXIST if the extent is already there, in which case the
315 * state struct is freed.
316 *
317 * The tree lock is not taken internally. This is a utility function and
318 * probably isn't what you want to call (see set/clear_extent_bit).
319 */
320 static int insert_state(struct extent_io_tree *tree,
321 struct extent_state *state, u64 start, u64 end,
322 int *bits)
323 {
324 struct rb_node *node;
325
326 if (end < start) {
327 printk(KERN_ERR "btrfs end < start %llu %llu\n",
328 (unsigned long long)end,
329 (unsigned long long)start);
330 WARN_ON(1);
331 }
332 state->start = start;
333 state->end = end;
334
335 set_state_bits(tree, state, bits);
336
337 node = tree_insert(&tree->state, end, &state->rb_node);
338 if (node) {
339 struct extent_state *found;
340 found = rb_entry(node, struct extent_state, rb_node);
341 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
342 "%llu %llu\n", (unsigned long long)found->start,
343 (unsigned long long)found->end,
344 (unsigned long long)start, (unsigned long long)end);
345 return -EEXIST;
346 }
347 state->tree = tree;
348 merge_state(tree, state);
349 return 0;
350 }
351
352 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
353 u64 split)
354 {
355 if (tree->ops && tree->ops->split_extent_hook)
356 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
357 }
358
359 /*
360 * split a given extent state struct in two, inserting the preallocated
361 * struct 'prealloc' as the newly created second half. 'split' indicates an
362 * offset inside 'orig' where it should be split.
363 *
364 * Before calling,
365 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
366 * are two extent state structs in the tree:
367 * prealloc: [orig->start, split - 1]
368 * orig: [ split, orig->end ]
369 *
370 * The tree locks are not taken by this function. They need to be held
371 * by the caller.
372 */
373 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
374 struct extent_state *prealloc, u64 split)
375 {
376 struct rb_node *node;
377
378 split_cb(tree, orig, split);
379
380 prealloc->start = orig->start;
381 prealloc->end = split - 1;
382 prealloc->state = orig->state;
383 orig->start = split;
384
385 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
386 if (node) {
387 free_extent_state(prealloc);
388 return -EEXIST;
389 }
390 prealloc->tree = tree;
391 return 0;
392 }
393
394 /*
395 * utility function to clear some bits in an extent state struct.
396 * it will optionally wake up any one waiting on this state (wake == 1), or
397 * forcibly remove the state from the tree (delete == 1).
398 *
399 * If no bits are set on the state struct after clearing things, the
400 * struct is freed and removed from the tree
401 */
402 static int clear_state_bit(struct extent_io_tree *tree,
403 struct extent_state *state,
404 int *bits, int wake)
405 {
406 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
407 int ret = state->state & bits_to_clear;
408
409 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
410 u64 range = state->end - state->start + 1;
411 WARN_ON(range > tree->dirty_bytes);
412 tree->dirty_bytes -= range;
413 }
414 clear_state_cb(tree, state, bits);
415 state->state &= ~bits_to_clear;
416 if (wake)
417 wake_up(&state->wq);
418 if (state->state == 0) {
419 if (state->tree) {
420 rb_erase(&state->rb_node, &tree->state);
421 state->tree = NULL;
422 free_extent_state(state);
423 } else {
424 WARN_ON(1);
425 }
426 } else {
427 merge_state(tree, state);
428 }
429 return ret;
430 }
431
432 static struct extent_state *
433 alloc_extent_state_atomic(struct extent_state *prealloc)
434 {
435 if (!prealloc)
436 prealloc = alloc_extent_state(GFP_ATOMIC);
437
438 return prealloc;
439 }
440
441 /*
442 * clear some bits on a range in the tree. This may require splitting
443 * or inserting elements in the tree, so the gfp mask is used to
444 * indicate which allocations or sleeping are allowed.
445 *
446 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
447 * the given range from the tree regardless of state (ie for truncate).
448 *
449 * the range [start, end] is inclusive.
450 *
451 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
452 * bits were already set, or zero if none of the bits were already set.
453 */
454 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
455 int bits, int wake, int delete,
456 struct extent_state **cached_state,
457 gfp_t mask)
458 {
459 struct extent_state *state;
460 struct extent_state *cached;
461 struct extent_state *prealloc = NULL;
462 struct rb_node *next_node;
463 struct rb_node *node;
464 u64 last_end;
465 int err;
466 int set = 0;
467 int clear = 0;
468
469 if (delete)
470 bits |= ~EXTENT_CTLBITS;
471 bits |= EXTENT_FIRST_DELALLOC;
472
473 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
474 clear = 1;
475 again:
476 if (!prealloc && (mask & __GFP_WAIT)) {
477 prealloc = alloc_extent_state(mask);
478 if (!prealloc)
479 return -ENOMEM;
480 }
481
482 spin_lock(&tree->lock);
483 if (cached_state) {
484 cached = *cached_state;
485
486 if (clear) {
487 *cached_state = NULL;
488 cached_state = NULL;
489 }
490
491 if (cached && cached->tree && cached->start <= start &&
492 cached->end > start) {
493 if (clear)
494 atomic_dec(&cached->refs);
495 state = cached;
496 goto hit_next;
497 }
498 if (clear)
499 free_extent_state(cached);
500 }
501 /*
502 * this search will find the extents that end after
503 * our range starts
504 */
505 node = tree_search(tree, start);
506 if (!node)
507 goto out;
508 state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513 last_end = state->end;
514
515 /*
516 * | ---- desired range ---- |
517 * | state | or
518 * | ------------- state -------------- |
519 *
520 * We need to split the extent we found, and may flip
521 * bits on second half.
522 *
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
526 *
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
529 */
530
531 if (state->start < start) {
532 prealloc = alloc_extent_state_atomic(prealloc);
533 BUG_ON(!prealloc);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
536 prealloc = NULL;
537 if (err)
538 goto out;
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
542 goto out;
543 start = last_end + 1;
544 }
545 goto search_again;
546 }
547 /*
548 * | ---- desired range ---- |
549 * | state |
550 * We need to split the extent, and clear the bit
551 * on the first half
552 */
553 if (state->start <= end && state->end > end) {
554 prealloc = alloc_extent_state_atomic(prealloc);
555 BUG_ON(!prealloc);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
558 if (wake)
559 wake_up(&state->wq);
560
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
562
563 prealloc = NULL;
564 goto out;
565 }
566
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
569 else
570 next_node = NULL;
571
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
578 rb_node);
579 if (state->start == start)
580 goto hit_next;
581 }
582 goto search_again;
583
584 out:
585 spin_unlock(&tree->lock);
586 if (prealloc)
587 free_extent_state(prealloc);
588
589 return set;
590
591 search_again:
592 if (start > end)
593 goto out;
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
596 cond_resched();
597 goto again;
598 }
599
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
604 {
605 DEFINE_WAIT(wait);
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
608 schedule();
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
611 return 0;
612 }
613
614 /*
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
618 */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621 struct extent_state *state;
622 struct rb_node *node;
623
624 spin_lock(&tree->lock);
625 again:
626 while (1) {
627 /*
628 * this search will find all the extents that end after
629 * our range starts
630 */
631 node = tree_search(tree, start);
632 if (!node)
633 break;
634
635 state = rb_entry(node, struct extent_state, rb_node);
636
637 if (state->start > end)
638 goto out;
639
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
645 goto again;
646 }
647 start = state->end + 1;
648
649 if (start > end)
650 break;
651
652 cond_resched_lock(&tree->lock);
653 }
654 out:
655 spin_unlock(&tree->lock);
656 return 0;
657 }
658
659 static void set_state_bits(struct extent_io_tree *tree,
660 struct extent_state *state,
661 int *bits)
662 {
663 int bits_to_set = *bits & ~EXTENT_CTLBITS;
664
665 set_state_cb(tree, state, bits);
666 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
667 u64 range = state->end - state->start + 1;
668 tree->dirty_bytes += range;
669 }
670 state->state |= bits_to_set;
671 }
672
673 static void cache_state(struct extent_state *state,
674 struct extent_state **cached_ptr)
675 {
676 if (cached_ptr && !(*cached_ptr)) {
677 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
678 *cached_ptr = state;
679 atomic_inc(&state->refs);
680 }
681 }
682 }
683
684 static void uncache_state(struct extent_state **cached_ptr)
685 {
686 if (cached_ptr && (*cached_ptr)) {
687 struct extent_state *state = *cached_ptr;
688 *cached_ptr = NULL;
689 free_extent_state(state);
690 }
691 }
692
693 /*
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
696 *
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
700 *
701 * [start, end] is inclusive This takes the tree lock.
702 */
703
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state, gfp_t mask)
707 {
708 struct extent_state *state;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 int err = 0;
712 u64 last_start;
713 u64 last_end;
714
715 bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
719 BUG_ON(!prealloc);
720 }
721
722 spin_lock(&tree->lock);
723 if (cached_state && *cached_state) {
724 state = *cached_state;
725 if (state->start <= start && state->end > start &&
726 state->tree) {
727 node = &state->rb_node;
728 goto hit_next;
729 }
730 }
731 /*
732 * this search will find all the extents that end after
733 * our range starts.
734 */
735 node = tree_search(tree, start);
736 if (!node) {
737 prealloc = alloc_extent_state_atomic(prealloc);
738 BUG_ON(!prealloc);
739 err = insert_state(tree, prealloc, start, end, &bits);
740 prealloc = NULL;
741 BUG_ON(err == -EEXIST);
742 goto out;
743 }
744 state = rb_entry(node, struct extent_state, rb_node);
745 hit_next:
746 last_start = state->start;
747 last_end = state->end;
748
749 /*
750 * | ---- desired range ---- |
751 * | state |
752 *
753 * Just lock what we found and keep going
754 */
755 if (state->start == start && state->end <= end) {
756 struct rb_node *next_node;
757 if (state->state & exclusive_bits) {
758 *failed_start = state->start;
759 err = -EEXIST;
760 goto out;
761 }
762
763 set_state_bits(tree, state, &bits);
764
765 cache_state(state, cached_state);
766 merge_state(tree, state);
767 if (last_end == (u64)-1)
768 goto out;
769
770 start = last_end + 1;
771 next_node = rb_next(&state->rb_node);
772 if (next_node && start < end && prealloc && !need_resched()) {
773 state = rb_entry(next_node, struct extent_state,
774 rb_node);
775 if (state->start == start)
776 goto hit_next;
777 }
778 goto search_again;
779 }
780
781 /*
782 * | ---- desired range ---- |
783 * | state |
784 * or
785 * | ------------- state -------------- |
786 *
787 * We need to split the extent we found, and may flip bits on
788 * second half.
789 *
790 * If the extent we found extends past our
791 * range, we just split and search again. It'll get split
792 * again the next time though.
793 *
794 * If the extent we found is inside our range, we set the
795 * desired bit on it.
796 */
797 if (state->start < start) {
798 if (state->state & exclusive_bits) {
799 *failed_start = start;
800 err = -EEXIST;
801 goto out;
802 }
803
804 prealloc = alloc_extent_state_atomic(prealloc);
805 BUG_ON(!prealloc);
806 err = split_state(tree, state, prealloc, start);
807 BUG_ON(err == -EEXIST);
808 prealloc = NULL;
809 if (err)
810 goto out;
811 if (state->end <= end) {
812 set_state_bits(tree, state, &bits);
813 cache_state(state, cached_state);
814 merge_state(tree, state);
815 if (last_end == (u64)-1)
816 goto out;
817 start = last_end + 1;
818 }
819 goto search_again;
820 }
821 /*
822 * | ---- desired range ---- |
823 * | state | or | state |
824 *
825 * There's a hole, we need to insert something in it and
826 * ignore the extent we found.
827 */
828 if (state->start > start) {
829 u64 this_end;
830 if (end < last_start)
831 this_end = end;
832 else
833 this_end = last_start - 1;
834
835 prealloc = alloc_extent_state_atomic(prealloc);
836 BUG_ON(!prealloc);
837
838 /*
839 * Avoid to free 'prealloc' if it can be merged with
840 * the later extent.
841 */
842 err = insert_state(tree, prealloc, start, this_end,
843 &bits);
844 BUG_ON(err == -EEXIST);
845 if (err) {
846 free_extent_state(prealloc);
847 prealloc = NULL;
848 goto out;
849 }
850 cache_state(prealloc, cached_state);
851 prealloc = NULL;
852 start = this_end + 1;
853 goto search_again;
854 }
855 /*
856 * | ---- desired range ---- |
857 * | state |
858 * We need to split the extent, and set the bit
859 * on the first half
860 */
861 if (state->start <= end && state->end > end) {
862 if (state->state & exclusive_bits) {
863 *failed_start = start;
864 err = -EEXIST;
865 goto out;
866 }
867
868 prealloc = alloc_extent_state_atomic(prealloc);
869 BUG_ON(!prealloc);
870 err = split_state(tree, state, prealloc, end + 1);
871 BUG_ON(err == -EEXIST);
872
873 set_state_bits(tree, prealloc, &bits);
874 cache_state(prealloc, cached_state);
875 merge_state(tree, prealloc);
876 prealloc = NULL;
877 goto out;
878 }
879
880 goto search_again;
881
882 out:
883 spin_unlock(&tree->lock);
884 if (prealloc)
885 free_extent_state(prealloc);
886
887 return err;
888
889 search_again:
890 if (start > end)
891 goto out;
892 spin_unlock(&tree->lock);
893 if (mask & __GFP_WAIT)
894 cond_resched();
895 goto again;
896 }
897
898 /**
899 * convert_extent - convert all bits in a given range from one bit to another
900 * @tree: the io tree to search
901 * @start: the start offset in bytes
902 * @end: the end offset in bytes (inclusive)
903 * @bits: the bits to set in this range
904 * @clear_bits: the bits to clear in this range
905 * @mask: the allocation mask
906 *
907 * This will go through and set bits for the given range. If any states exist
908 * already in this range they are set with the given bit and cleared of the
909 * clear_bits. This is only meant to be used by things that are mergeable, ie
910 * converting from say DELALLOC to DIRTY. This is not meant to be used with
911 * boundary bits like LOCK.
912 */
913 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
914 int bits, int clear_bits, gfp_t mask)
915 {
916 struct extent_state *state;
917 struct extent_state *prealloc = NULL;
918 struct rb_node *node;
919 int err = 0;
920 u64 last_start;
921 u64 last_end;
922
923 again:
924 if (!prealloc && (mask & __GFP_WAIT)) {
925 prealloc = alloc_extent_state(mask);
926 if (!prealloc)
927 return -ENOMEM;
928 }
929
930 spin_lock(&tree->lock);
931 /*
932 * this search will find all the extents that end after
933 * our range starts.
934 */
935 node = tree_search(tree, start);
936 if (!node) {
937 prealloc = alloc_extent_state_atomic(prealloc);
938 if (!prealloc) {
939 err = -ENOMEM;
940 goto out;
941 }
942 err = insert_state(tree, prealloc, start, end, &bits);
943 prealloc = NULL;
944 BUG_ON(err == -EEXIST);
945 goto out;
946 }
947 state = rb_entry(node, struct extent_state, rb_node);
948 hit_next:
949 last_start = state->start;
950 last_end = state->end;
951
952 /*
953 * | ---- desired range ---- |
954 * | state |
955 *
956 * Just lock what we found and keep going
957 */
958 if (state->start == start && state->end <= end) {
959 struct rb_node *next_node;
960
961 set_state_bits(tree, state, &bits);
962 clear_state_bit(tree, state, &clear_bits, 0);
963
964 merge_state(tree, state);
965 if (last_end == (u64)-1)
966 goto out;
967
968 start = last_end + 1;
969 next_node = rb_next(&state->rb_node);
970 if (next_node && start < end && prealloc && !need_resched()) {
971 state = rb_entry(next_node, struct extent_state,
972 rb_node);
973 if (state->start == start)
974 goto hit_next;
975 }
976 goto search_again;
977 }
978
979 /*
980 * | ---- desired range ---- |
981 * | state |
982 * or
983 * | ------------- state -------------- |
984 *
985 * We need to split the extent we found, and may flip bits on
986 * second half.
987 *
988 * If the extent we found extends past our
989 * range, we just split and search again. It'll get split
990 * again the next time though.
991 *
992 * If the extent we found is inside our range, we set the
993 * desired bit on it.
994 */
995 if (state->start < start) {
996 prealloc = alloc_extent_state_atomic(prealloc);
997 if (!prealloc) {
998 err = -ENOMEM;
999 goto out;
1000 }
1001 err = split_state(tree, state, prealloc, start);
1002 BUG_ON(err == -EEXIST);
1003 prealloc = NULL;
1004 if (err)
1005 goto out;
1006 if (state->end <= end) {
1007 set_state_bits(tree, state, &bits);
1008 clear_state_bit(tree, state, &clear_bits, 0);
1009 merge_state(tree, state);
1010 if (last_end == (u64)-1)
1011 goto out;
1012 start = last_end + 1;
1013 }
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state | or | state |
1019 *
1020 * There's a hole, we need to insert something in it and
1021 * ignore the extent we found.
1022 */
1023 if (state->start > start) {
1024 u64 this_end;
1025 if (end < last_start)
1026 this_end = end;
1027 else
1028 this_end = last_start - 1;
1029
1030 prealloc = alloc_extent_state_atomic(prealloc);
1031 if (!prealloc) {
1032 err = -ENOMEM;
1033 goto out;
1034 }
1035
1036 /*
1037 * Avoid to free 'prealloc' if it can be merged with
1038 * the later extent.
1039 */
1040 err = insert_state(tree, prealloc, start, this_end,
1041 &bits);
1042 BUG_ON(err == -EEXIST);
1043 if (err) {
1044 free_extent_state(prealloc);
1045 prealloc = NULL;
1046 goto out;
1047 }
1048 prealloc = NULL;
1049 start = this_end + 1;
1050 goto search_again;
1051 }
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * We need to split the extent, and set the bit
1056 * on the first half
1057 */
1058 if (state->start <= end && state->end > end) {
1059 prealloc = alloc_extent_state_atomic(prealloc);
1060 if (!prealloc) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064
1065 err = split_state(tree, state, prealloc, end + 1);
1066 BUG_ON(err == -EEXIST);
1067
1068 set_state_bits(tree, prealloc, &bits);
1069 clear_state_bit(tree, prealloc, &clear_bits, 0);
1070
1071 merge_state(tree, prealloc);
1072 prealloc = NULL;
1073 goto out;
1074 }
1075
1076 goto search_again;
1077
1078 out:
1079 spin_unlock(&tree->lock);
1080 if (prealloc)
1081 free_extent_state(prealloc);
1082
1083 return err;
1084
1085 search_again:
1086 if (start > end)
1087 goto out;
1088 spin_unlock(&tree->lock);
1089 if (mask & __GFP_WAIT)
1090 cond_resched();
1091 goto again;
1092 }
1093
1094 /* wrappers around set/clear extent bit */
1095 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1096 gfp_t mask)
1097 {
1098 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1099 NULL, mask);
1100 }
1101
1102 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1103 int bits, gfp_t mask)
1104 {
1105 return set_extent_bit(tree, start, end, bits, 0, NULL,
1106 NULL, mask);
1107 }
1108
1109 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1110 int bits, gfp_t mask)
1111 {
1112 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1113 }
1114
1115 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1116 struct extent_state **cached_state, gfp_t mask)
1117 {
1118 return set_extent_bit(tree, start, end,
1119 EXTENT_DELALLOC | EXTENT_UPTODATE,
1120 0, NULL, cached_state, mask);
1121 }
1122
1123 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1124 gfp_t mask)
1125 {
1126 return clear_extent_bit(tree, start, end,
1127 EXTENT_DIRTY | EXTENT_DELALLOC |
1128 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1129 }
1130
1131 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1132 gfp_t mask)
1133 {
1134 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1135 NULL, mask);
1136 }
1137
1138 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1139 struct extent_state **cached_state, gfp_t mask)
1140 {
1141 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1142 NULL, cached_state, mask);
1143 }
1144
1145 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1146 u64 end, struct extent_state **cached_state,
1147 gfp_t mask)
1148 {
1149 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1150 cached_state, mask);
1151 }
1152
1153 /*
1154 * either insert or lock state struct between start and end use mask to tell
1155 * us if waiting is desired.
1156 */
1157 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1158 int bits, struct extent_state **cached_state, gfp_t mask)
1159 {
1160 int err;
1161 u64 failed_start;
1162 while (1) {
1163 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1164 EXTENT_LOCKED, &failed_start,
1165 cached_state, mask);
1166 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1167 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1168 start = failed_start;
1169 } else {
1170 break;
1171 }
1172 WARN_ON(start > end);
1173 }
1174 return err;
1175 }
1176
1177 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1178 {
1179 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1180 }
1181
1182 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1183 gfp_t mask)
1184 {
1185 int err;
1186 u64 failed_start;
1187
1188 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1189 &failed_start, NULL, mask);
1190 if (err == -EEXIST) {
1191 if (failed_start > start)
1192 clear_extent_bit(tree, start, failed_start - 1,
1193 EXTENT_LOCKED, 1, 0, NULL, mask);
1194 return 0;
1195 }
1196 return 1;
1197 }
1198
1199 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1200 struct extent_state **cached, gfp_t mask)
1201 {
1202 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1203 mask);
1204 }
1205
1206 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1207 {
1208 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1209 mask);
1210 }
1211
1212 /*
1213 * helper function to set both pages and extents in the tree writeback
1214 */
1215 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1216 {
1217 unsigned long index = start >> PAGE_CACHE_SHIFT;
1218 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1219 struct page *page;
1220
1221 while (index <= end_index) {
1222 page = find_get_page(tree->mapping, index);
1223 BUG_ON(!page);
1224 set_page_writeback(page);
1225 page_cache_release(page);
1226 index++;
1227 }
1228 return 0;
1229 }
1230
1231 /* find the first state struct with 'bits' set after 'start', and
1232 * return it. tree->lock must be held. NULL will returned if
1233 * nothing was found after 'start'
1234 */
1235 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1236 u64 start, int bits)
1237 {
1238 struct rb_node *node;
1239 struct extent_state *state;
1240
1241 /*
1242 * this search will find all the extents that end after
1243 * our range starts.
1244 */
1245 node = tree_search(tree, start);
1246 if (!node)
1247 goto out;
1248
1249 while (1) {
1250 state = rb_entry(node, struct extent_state, rb_node);
1251 if (state->end >= start && (state->state & bits))
1252 return state;
1253
1254 node = rb_next(node);
1255 if (!node)
1256 break;
1257 }
1258 out:
1259 return NULL;
1260 }
1261
1262 /*
1263 * find the first offset in the io tree with 'bits' set. zero is
1264 * returned if we find something, and *start_ret and *end_ret are
1265 * set to reflect the state struct that was found.
1266 *
1267 * If nothing was found, 1 is returned, < 0 on error
1268 */
1269 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1270 u64 *start_ret, u64 *end_ret, int bits)
1271 {
1272 struct extent_state *state;
1273 int ret = 1;
1274
1275 spin_lock(&tree->lock);
1276 state = find_first_extent_bit_state(tree, start, bits);
1277 if (state) {
1278 *start_ret = state->start;
1279 *end_ret = state->end;
1280 ret = 0;
1281 }
1282 spin_unlock(&tree->lock);
1283 return ret;
1284 }
1285
1286 /*
1287 * find a contiguous range of bytes in the file marked as delalloc, not
1288 * more than 'max_bytes'. start and end are used to return the range,
1289 *
1290 * 1 is returned if we find something, 0 if nothing was in the tree
1291 */
1292 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1293 u64 *start, u64 *end, u64 max_bytes,
1294 struct extent_state **cached_state)
1295 {
1296 struct rb_node *node;
1297 struct extent_state *state;
1298 u64 cur_start = *start;
1299 u64 found = 0;
1300 u64 total_bytes = 0;
1301
1302 spin_lock(&tree->lock);
1303
1304 /*
1305 * this search will find all the extents that end after
1306 * our range starts.
1307 */
1308 node = tree_search(tree, cur_start);
1309 if (!node) {
1310 if (!found)
1311 *end = (u64)-1;
1312 goto out;
1313 }
1314
1315 while (1) {
1316 state = rb_entry(node, struct extent_state, rb_node);
1317 if (found && (state->start != cur_start ||
1318 (state->state & EXTENT_BOUNDARY))) {
1319 goto out;
1320 }
1321 if (!(state->state & EXTENT_DELALLOC)) {
1322 if (!found)
1323 *end = state->end;
1324 goto out;
1325 }
1326 if (!found) {
1327 *start = state->start;
1328 *cached_state = state;
1329 atomic_inc(&state->refs);
1330 }
1331 found++;
1332 *end = state->end;
1333 cur_start = state->end + 1;
1334 node = rb_next(node);
1335 if (!node)
1336 break;
1337 total_bytes += state->end - state->start + 1;
1338 if (total_bytes >= max_bytes)
1339 break;
1340 }
1341 out:
1342 spin_unlock(&tree->lock);
1343 return found;
1344 }
1345
1346 static noinline int __unlock_for_delalloc(struct inode *inode,
1347 struct page *locked_page,
1348 u64 start, u64 end)
1349 {
1350 int ret;
1351 struct page *pages[16];
1352 unsigned long index = start >> PAGE_CACHE_SHIFT;
1353 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1354 unsigned long nr_pages = end_index - index + 1;
1355 int i;
1356
1357 if (index == locked_page->index && end_index == index)
1358 return 0;
1359
1360 while (nr_pages > 0) {
1361 ret = find_get_pages_contig(inode->i_mapping, index,
1362 min_t(unsigned long, nr_pages,
1363 ARRAY_SIZE(pages)), pages);
1364 for (i = 0; i < ret; i++) {
1365 if (pages[i] != locked_page)
1366 unlock_page(pages[i]);
1367 page_cache_release(pages[i]);
1368 }
1369 nr_pages -= ret;
1370 index += ret;
1371 cond_resched();
1372 }
1373 return 0;
1374 }
1375
1376 static noinline int lock_delalloc_pages(struct inode *inode,
1377 struct page *locked_page,
1378 u64 delalloc_start,
1379 u64 delalloc_end)
1380 {
1381 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1382 unsigned long start_index = index;
1383 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1384 unsigned long pages_locked = 0;
1385 struct page *pages[16];
1386 unsigned long nrpages;
1387 int ret;
1388 int i;
1389
1390 /* the caller is responsible for locking the start index */
1391 if (index == locked_page->index && index == end_index)
1392 return 0;
1393
1394 /* skip the page at the start index */
1395 nrpages = end_index - index + 1;
1396 while (nrpages > 0) {
1397 ret = find_get_pages_contig(inode->i_mapping, index,
1398 min_t(unsigned long,
1399 nrpages, ARRAY_SIZE(pages)), pages);
1400 if (ret == 0) {
1401 ret = -EAGAIN;
1402 goto done;
1403 }
1404 /* now we have an array of pages, lock them all */
1405 for (i = 0; i < ret; i++) {
1406 /*
1407 * the caller is taking responsibility for
1408 * locked_page
1409 */
1410 if (pages[i] != locked_page) {
1411 lock_page(pages[i]);
1412 if (!PageDirty(pages[i]) ||
1413 pages[i]->mapping != inode->i_mapping) {
1414 ret = -EAGAIN;
1415 unlock_page(pages[i]);
1416 page_cache_release(pages[i]);
1417 goto done;
1418 }
1419 }
1420 page_cache_release(pages[i]);
1421 pages_locked++;
1422 }
1423 nrpages -= ret;
1424 index += ret;
1425 cond_resched();
1426 }
1427 ret = 0;
1428 done:
1429 if (ret && pages_locked) {
1430 __unlock_for_delalloc(inode, locked_page,
1431 delalloc_start,
1432 ((u64)(start_index + pages_locked - 1)) <<
1433 PAGE_CACHE_SHIFT);
1434 }
1435 return ret;
1436 }
1437
1438 /*
1439 * find a contiguous range of bytes in the file marked as delalloc, not
1440 * more than 'max_bytes'. start and end are used to return the range,
1441 *
1442 * 1 is returned if we find something, 0 if nothing was in the tree
1443 */
1444 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1445 struct extent_io_tree *tree,
1446 struct page *locked_page,
1447 u64 *start, u64 *end,
1448 u64 max_bytes)
1449 {
1450 u64 delalloc_start;
1451 u64 delalloc_end;
1452 u64 found;
1453 struct extent_state *cached_state = NULL;
1454 int ret;
1455 int loops = 0;
1456
1457 again:
1458 /* step one, find a bunch of delalloc bytes starting at start */
1459 delalloc_start = *start;
1460 delalloc_end = 0;
1461 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1462 max_bytes, &cached_state);
1463 if (!found || delalloc_end <= *start) {
1464 *start = delalloc_start;
1465 *end = delalloc_end;
1466 free_extent_state(cached_state);
1467 return found;
1468 }
1469
1470 /*
1471 * start comes from the offset of locked_page. We have to lock
1472 * pages in order, so we can't process delalloc bytes before
1473 * locked_page
1474 */
1475 if (delalloc_start < *start)
1476 delalloc_start = *start;
1477
1478 /*
1479 * make sure to limit the number of pages we try to lock down
1480 * if we're looping.
1481 */
1482 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1483 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1484
1485 /* step two, lock all the pages after the page that has start */
1486 ret = lock_delalloc_pages(inode, locked_page,
1487 delalloc_start, delalloc_end);
1488 if (ret == -EAGAIN) {
1489 /* some of the pages are gone, lets avoid looping by
1490 * shortening the size of the delalloc range we're searching
1491 */
1492 free_extent_state(cached_state);
1493 if (!loops) {
1494 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1495 max_bytes = PAGE_CACHE_SIZE - offset;
1496 loops = 1;
1497 goto again;
1498 } else {
1499 found = 0;
1500 goto out_failed;
1501 }
1502 }
1503 BUG_ON(ret);
1504
1505 /* step three, lock the state bits for the whole range */
1506 lock_extent_bits(tree, delalloc_start, delalloc_end,
1507 0, &cached_state, GFP_NOFS);
1508
1509 /* then test to make sure it is all still delalloc */
1510 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1511 EXTENT_DELALLOC, 1, cached_state);
1512 if (!ret) {
1513 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1514 &cached_state, GFP_NOFS);
1515 __unlock_for_delalloc(inode, locked_page,
1516 delalloc_start, delalloc_end);
1517 cond_resched();
1518 goto again;
1519 }
1520 free_extent_state(cached_state);
1521 *start = delalloc_start;
1522 *end = delalloc_end;
1523 out_failed:
1524 return found;
1525 }
1526
1527 int extent_clear_unlock_delalloc(struct inode *inode,
1528 struct extent_io_tree *tree,
1529 u64 start, u64 end, struct page *locked_page,
1530 unsigned long op)
1531 {
1532 int ret;
1533 struct page *pages[16];
1534 unsigned long index = start >> PAGE_CACHE_SHIFT;
1535 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1536 unsigned long nr_pages = end_index - index + 1;
1537 int i;
1538 int clear_bits = 0;
1539
1540 if (op & EXTENT_CLEAR_UNLOCK)
1541 clear_bits |= EXTENT_LOCKED;
1542 if (op & EXTENT_CLEAR_DIRTY)
1543 clear_bits |= EXTENT_DIRTY;
1544
1545 if (op & EXTENT_CLEAR_DELALLOC)
1546 clear_bits |= EXTENT_DELALLOC;
1547
1548 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1549 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1550 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1551 EXTENT_SET_PRIVATE2)))
1552 return 0;
1553
1554 while (nr_pages > 0) {
1555 ret = find_get_pages_contig(inode->i_mapping, index,
1556 min_t(unsigned long,
1557 nr_pages, ARRAY_SIZE(pages)), pages);
1558 for (i = 0; i < ret; i++) {
1559
1560 if (op & EXTENT_SET_PRIVATE2)
1561 SetPagePrivate2(pages[i]);
1562
1563 if (pages[i] == locked_page) {
1564 page_cache_release(pages[i]);
1565 continue;
1566 }
1567 if (op & EXTENT_CLEAR_DIRTY)
1568 clear_page_dirty_for_io(pages[i]);
1569 if (op & EXTENT_SET_WRITEBACK)
1570 set_page_writeback(pages[i]);
1571 if (op & EXTENT_END_WRITEBACK)
1572 end_page_writeback(pages[i]);
1573 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1574 unlock_page(pages[i]);
1575 page_cache_release(pages[i]);
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
1581 return 0;
1582 }
1583
1584 /*
1585 * count the number of bytes in the tree that have a given bit(s)
1586 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1587 * cached. The total number found is returned.
1588 */
1589 u64 count_range_bits(struct extent_io_tree *tree,
1590 u64 *start, u64 search_end, u64 max_bytes,
1591 unsigned long bits, int contig)
1592 {
1593 struct rb_node *node;
1594 struct extent_state *state;
1595 u64 cur_start = *start;
1596 u64 total_bytes = 0;
1597 u64 last = 0;
1598 int found = 0;
1599
1600 if (search_end <= cur_start) {
1601 WARN_ON(1);
1602 return 0;
1603 }
1604
1605 spin_lock(&tree->lock);
1606 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1607 total_bytes = tree->dirty_bytes;
1608 goto out;
1609 }
1610 /*
1611 * this search will find all the extents that end after
1612 * our range starts.
1613 */
1614 node = tree_search(tree, cur_start);
1615 if (!node)
1616 goto out;
1617
1618 while (1) {
1619 state = rb_entry(node, struct extent_state, rb_node);
1620 if (state->start > search_end)
1621 break;
1622 if (contig && found && state->start > last + 1)
1623 break;
1624 if (state->end >= cur_start && (state->state & bits) == bits) {
1625 total_bytes += min(search_end, state->end) + 1 -
1626 max(cur_start, state->start);
1627 if (total_bytes >= max_bytes)
1628 break;
1629 if (!found) {
1630 *start = max(cur_start, state->start);
1631 found = 1;
1632 }
1633 last = state->end;
1634 } else if (contig && found) {
1635 break;
1636 }
1637 node = rb_next(node);
1638 if (!node)
1639 break;
1640 }
1641 out:
1642 spin_unlock(&tree->lock);
1643 return total_bytes;
1644 }
1645
1646 /*
1647 * set the private field for a given byte offset in the tree. If there isn't
1648 * an extent_state there already, this does nothing.
1649 */
1650 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1651 {
1652 struct rb_node *node;
1653 struct extent_state *state;
1654 int ret = 0;
1655
1656 spin_lock(&tree->lock);
1657 /*
1658 * this search will find all the extents that end after
1659 * our range starts.
1660 */
1661 node = tree_search(tree, start);
1662 if (!node) {
1663 ret = -ENOENT;
1664 goto out;
1665 }
1666 state = rb_entry(node, struct extent_state, rb_node);
1667 if (state->start != start) {
1668 ret = -ENOENT;
1669 goto out;
1670 }
1671 state->private = private;
1672 out:
1673 spin_unlock(&tree->lock);
1674 return ret;
1675 }
1676
1677 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1678 {
1679 struct rb_node *node;
1680 struct extent_state *state;
1681 int ret = 0;
1682
1683 spin_lock(&tree->lock);
1684 /*
1685 * this search will find all the extents that end after
1686 * our range starts.
1687 */
1688 node = tree_search(tree, start);
1689 if (!node) {
1690 ret = -ENOENT;
1691 goto out;
1692 }
1693 state = rb_entry(node, struct extent_state, rb_node);
1694 if (state->start != start) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698 *private = state->private;
1699 out:
1700 spin_unlock(&tree->lock);
1701 return ret;
1702 }
1703
1704 /*
1705 * searches a range in the state tree for a given mask.
1706 * If 'filled' == 1, this returns 1 only if every extent in the tree
1707 * has the bits set. Otherwise, 1 is returned if any bit in the
1708 * range is found set.
1709 */
1710 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1711 int bits, int filled, struct extent_state *cached)
1712 {
1713 struct extent_state *state = NULL;
1714 struct rb_node *node;
1715 int bitset = 0;
1716
1717 spin_lock(&tree->lock);
1718 if (cached && cached->tree && cached->start <= start &&
1719 cached->end > start)
1720 node = &cached->rb_node;
1721 else
1722 node = tree_search(tree, start);
1723 while (node && start <= end) {
1724 state = rb_entry(node, struct extent_state, rb_node);
1725
1726 if (filled && state->start > start) {
1727 bitset = 0;
1728 break;
1729 }
1730
1731 if (state->start > end)
1732 break;
1733
1734 if (state->state & bits) {
1735 bitset = 1;
1736 if (!filled)
1737 break;
1738 } else if (filled) {
1739 bitset = 0;
1740 break;
1741 }
1742
1743 if (state->end == (u64)-1)
1744 break;
1745
1746 start = state->end + 1;
1747 if (start > end)
1748 break;
1749 node = rb_next(node);
1750 if (!node) {
1751 if (filled)
1752 bitset = 0;
1753 break;
1754 }
1755 }
1756 spin_unlock(&tree->lock);
1757 return bitset;
1758 }
1759
1760 /*
1761 * helper function to set a given page up to date if all the
1762 * extents in the tree for that page are up to date
1763 */
1764 static int check_page_uptodate(struct extent_io_tree *tree,
1765 struct page *page)
1766 {
1767 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1768 u64 end = start + PAGE_CACHE_SIZE - 1;
1769 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1770 SetPageUptodate(page);
1771 return 0;
1772 }
1773
1774 /*
1775 * helper function to unlock a page if all the extents in the tree
1776 * for that page are unlocked
1777 */
1778 static int check_page_locked(struct extent_io_tree *tree,
1779 struct page *page)
1780 {
1781 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1782 u64 end = start + PAGE_CACHE_SIZE - 1;
1783 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1784 unlock_page(page);
1785 return 0;
1786 }
1787
1788 /*
1789 * helper function to end page writeback if all the extents
1790 * in the tree for that page are done with writeback
1791 */
1792 static int check_page_writeback(struct extent_io_tree *tree,
1793 struct page *page)
1794 {
1795 end_page_writeback(page);
1796 return 0;
1797 }
1798
1799 /*
1800 * When IO fails, either with EIO or csum verification fails, we
1801 * try other mirrors that might have a good copy of the data. This
1802 * io_failure_record is used to record state as we go through all the
1803 * mirrors. If another mirror has good data, the page is set up to date
1804 * and things continue. If a good mirror can't be found, the original
1805 * bio end_io callback is called to indicate things have failed.
1806 */
1807 struct io_failure_record {
1808 struct page *page;
1809 u64 start;
1810 u64 len;
1811 u64 logical;
1812 unsigned long bio_flags;
1813 int this_mirror;
1814 int failed_mirror;
1815 int in_validation;
1816 };
1817
1818 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1819 int did_repair)
1820 {
1821 int ret;
1822 int err = 0;
1823 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1824
1825 set_state_private(failure_tree, rec->start, 0);
1826 ret = clear_extent_bits(failure_tree, rec->start,
1827 rec->start + rec->len - 1,
1828 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1829 if (ret)
1830 err = ret;
1831
1832 if (did_repair) {
1833 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1834 rec->start + rec->len - 1,
1835 EXTENT_DAMAGED, GFP_NOFS);
1836 if (ret && !err)
1837 err = ret;
1838 }
1839
1840 kfree(rec);
1841 return err;
1842 }
1843
1844 static void repair_io_failure_callback(struct bio *bio, int err)
1845 {
1846 complete(bio->bi_private);
1847 }
1848
1849 /*
1850 * this bypasses the standard btrfs submit functions deliberately, as
1851 * the standard behavior is to write all copies in a raid setup. here we only
1852 * want to write the one bad copy. so we do the mapping for ourselves and issue
1853 * submit_bio directly.
1854 * to avoid any synchonization issues, wait for the data after writing, which
1855 * actually prevents the read that triggered the error from finishing.
1856 * currently, there can be no more than two copies of every data bit. thus,
1857 * exactly one rewrite is required.
1858 */
1859 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1860 u64 length, u64 logical, struct page *page,
1861 int mirror_num)
1862 {
1863 struct bio *bio;
1864 struct btrfs_device *dev;
1865 DECLARE_COMPLETION_ONSTACK(compl);
1866 u64 map_length = 0;
1867 u64 sector;
1868 struct btrfs_bio *bbio = NULL;
1869 int ret;
1870
1871 BUG_ON(!mirror_num);
1872
1873 bio = bio_alloc(GFP_NOFS, 1);
1874 if (!bio)
1875 return -EIO;
1876 bio->bi_private = &compl;
1877 bio->bi_end_io = repair_io_failure_callback;
1878 bio->bi_size = 0;
1879 map_length = length;
1880
1881 ret = btrfs_map_block(map_tree, WRITE, logical,
1882 &map_length, &bbio, mirror_num);
1883 if (ret) {
1884 bio_put(bio);
1885 return -EIO;
1886 }
1887 BUG_ON(mirror_num != bbio->mirror_num);
1888 sector = bbio->stripes[mirror_num-1].physical >> 9;
1889 bio->bi_sector = sector;
1890 dev = bbio->stripes[mirror_num-1].dev;
1891 kfree(bbio);
1892 if (!dev || !dev->bdev || !dev->writeable) {
1893 bio_put(bio);
1894 return -EIO;
1895 }
1896 bio->bi_bdev = dev->bdev;
1897 bio_add_page(bio, page, length, start-page_offset(page));
1898 submit_bio(WRITE_SYNC, bio);
1899 wait_for_completion(&compl);
1900
1901 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1902 /* try to remap that extent elsewhere? */
1903 bio_put(bio);
1904 return -EIO;
1905 }
1906
1907 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1908 "sector %llu)\n", page->mapping->host->i_ino, start,
1909 dev->name, sector);
1910
1911 bio_put(bio);
1912 return 0;
1913 }
1914
1915 /*
1916 * each time an IO finishes, we do a fast check in the IO failure tree
1917 * to see if we need to process or clean up an io_failure_record
1918 */
1919 static int clean_io_failure(u64 start, struct page *page)
1920 {
1921 u64 private;
1922 u64 private_failure;
1923 struct io_failure_record *failrec;
1924 struct btrfs_mapping_tree *map_tree;
1925 struct extent_state *state;
1926 int num_copies;
1927 int did_repair = 0;
1928 int ret;
1929 struct inode *inode = page->mapping->host;
1930
1931 private = 0;
1932 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1933 (u64)-1, 1, EXTENT_DIRTY, 0);
1934 if (!ret)
1935 return 0;
1936
1937 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1938 &private_failure);
1939 if (ret)
1940 return 0;
1941
1942 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1943 BUG_ON(!failrec->this_mirror);
1944
1945 if (failrec->in_validation) {
1946 /* there was no real error, just free the record */
1947 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1948 failrec->start);
1949 did_repair = 1;
1950 goto out;
1951 }
1952
1953 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1954 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1955 failrec->start,
1956 EXTENT_LOCKED);
1957 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1958
1959 if (state && state->start == failrec->start) {
1960 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1961 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1962 failrec->len);
1963 if (num_copies > 1) {
1964 ret = repair_io_failure(map_tree, start, failrec->len,
1965 failrec->logical, page,
1966 failrec->failed_mirror);
1967 did_repair = !ret;
1968 }
1969 }
1970
1971 out:
1972 if (!ret)
1973 ret = free_io_failure(inode, failrec, did_repair);
1974
1975 return ret;
1976 }
1977
1978 /*
1979 * this is a generic handler for readpage errors (default
1980 * readpage_io_failed_hook). if other copies exist, read those and write back
1981 * good data to the failed position. does not investigate in remapping the
1982 * failed extent elsewhere, hoping the device will be smart enough to do this as
1983 * needed
1984 */
1985
1986 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1987 u64 start, u64 end, int failed_mirror,
1988 struct extent_state *state)
1989 {
1990 struct io_failure_record *failrec = NULL;
1991 u64 private;
1992 struct extent_map *em;
1993 struct inode *inode = page->mapping->host;
1994 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1995 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1996 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1997 struct bio *bio;
1998 int num_copies;
1999 int ret;
2000 int read_mode;
2001 u64 logical;
2002
2003 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2004
2005 ret = get_state_private(failure_tree, start, &private);
2006 if (ret) {
2007 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2008 if (!failrec)
2009 return -ENOMEM;
2010 failrec->start = start;
2011 failrec->len = end - start + 1;
2012 failrec->this_mirror = 0;
2013 failrec->bio_flags = 0;
2014 failrec->in_validation = 0;
2015
2016 read_lock(&em_tree->lock);
2017 em = lookup_extent_mapping(em_tree, start, failrec->len);
2018 if (!em) {
2019 read_unlock(&em_tree->lock);
2020 kfree(failrec);
2021 return -EIO;
2022 }
2023
2024 if (em->start > start || em->start + em->len < start) {
2025 free_extent_map(em);
2026 em = NULL;
2027 }
2028 read_unlock(&em_tree->lock);
2029
2030 if (!em || IS_ERR(em)) {
2031 kfree(failrec);
2032 return -EIO;
2033 }
2034 logical = start - em->start;
2035 logical = em->block_start + logical;
2036 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2037 logical = em->block_start;
2038 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2039 extent_set_compress_type(&failrec->bio_flags,
2040 em->compress_type);
2041 }
2042 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2043 "len=%llu\n", logical, start, failrec->len);
2044 failrec->logical = logical;
2045 free_extent_map(em);
2046
2047 /* set the bits in the private failure tree */
2048 ret = set_extent_bits(failure_tree, start, end,
2049 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2050 if (ret >= 0)
2051 ret = set_state_private(failure_tree, start,
2052 (u64)(unsigned long)failrec);
2053 /* set the bits in the inode's tree */
2054 if (ret >= 0)
2055 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2056 GFP_NOFS);
2057 if (ret < 0) {
2058 kfree(failrec);
2059 return ret;
2060 }
2061 } else {
2062 failrec = (struct io_failure_record *)(unsigned long)private;
2063 pr_debug("bio_readpage_error: (found) logical=%llu, "
2064 "start=%llu, len=%llu, validation=%d\n",
2065 failrec->logical, failrec->start, failrec->len,
2066 failrec->in_validation);
2067 /*
2068 * when data can be on disk more than twice, add to failrec here
2069 * (e.g. with a list for failed_mirror) to make
2070 * clean_io_failure() clean all those errors at once.
2071 */
2072 }
2073 num_copies = btrfs_num_copies(
2074 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2075 failrec->logical, failrec->len);
2076 if (num_copies == 1) {
2077 /*
2078 * we only have a single copy of the data, so don't bother with
2079 * all the retry and error correction code that follows. no
2080 * matter what the error is, it is very likely to persist.
2081 */
2082 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2083 "state=%p, num_copies=%d, next_mirror %d, "
2084 "failed_mirror %d\n", state, num_copies,
2085 failrec->this_mirror, failed_mirror);
2086 free_io_failure(inode, failrec, 0);
2087 return -EIO;
2088 }
2089
2090 if (!state) {
2091 spin_lock(&tree->lock);
2092 state = find_first_extent_bit_state(tree, failrec->start,
2093 EXTENT_LOCKED);
2094 if (state && state->start != failrec->start)
2095 state = NULL;
2096 spin_unlock(&tree->lock);
2097 }
2098
2099 /*
2100 * there are two premises:
2101 * a) deliver good data to the caller
2102 * b) correct the bad sectors on disk
2103 */
2104 if (failed_bio->bi_vcnt > 1) {
2105 /*
2106 * to fulfill b), we need to know the exact failing sectors, as
2107 * we don't want to rewrite any more than the failed ones. thus,
2108 * we need separate read requests for the failed bio
2109 *
2110 * if the following BUG_ON triggers, our validation request got
2111 * merged. we need separate requests for our algorithm to work.
2112 */
2113 BUG_ON(failrec->in_validation);
2114 failrec->in_validation = 1;
2115 failrec->this_mirror = failed_mirror;
2116 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2117 } else {
2118 /*
2119 * we're ready to fulfill a) and b) alongside. get a good copy
2120 * of the failed sector and if we succeed, we have setup
2121 * everything for repair_io_failure to do the rest for us.
2122 */
2123 if (failrec->in_validation) {
2124 BUG_ON(failrec->this_mirror != failed_mirror);
2125 failrec->in_validation = 0;
2126 failrec->this_mirror = 0;
2127 }
2128 failrec->failed_mirror = failed_mirror;
2129 failrec->this_mirror++;
2130 if (failrec->this_mirror == failed_mirror)
2131 failrec->this_mirror++;
2132 read_mode = READ_SYNC;
2133 }
2134
2135 if (!state || failrec->this_mirror > num_copies) {
2136 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2137 "next_mirror %d, failed_mirror %d\n", state,
2138 num_copies, failrec->this_mirror, failed_mirror);
2139 free_io_failure(inode, failrec, 0);
2140 return -EIO;
2141 }
2142
2143 bio = bio_alloc(GFP_NOFS, 1);
2144 bio->bi_private = state;
2145 bio->bi_end_io = failed_bio->bi_end_io;
2146 bio->bi_sector = failrec->logical >> 9;
2147 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2148 bio->bi_size = 0;
2149
2150 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2151
2152 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2153 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2154 failrec->this_mirror, num_copies, failrec->in_validation);
2155
2156 tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2157 failrec->bio_flags, 0);
2158 return 0;
2159 }
2160
2161 /* lots and lots of room for performance fixes in the end_bio funcs */
2162
2163 /*
2164 * after a writepage IO is done, we need to:
2165 * clear the uptodate bits on error
2166 * clear the writeback bits in the extent tree for this IO
2167 * end_page_writeback if the page has no more pending IO
2168 *
2169 * Scheduling is not allowed, so the extent state tree is expected
2170 * to have one and only one object corresponding to this IO.
2171 */
2172 static void end_bio_extent_writepage(struct bio *bio, int err)
2173 {
2174 int uptodate = err == 0;
2175 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2176 struct extent_io_tree *tree;
2177 u64 start;
2178 u64 end;
2179 int whole_page;
2180 int ret;
2181
2182 do {
2183 struct page *page = bvec->bv_page;
2184 tree = &BTRFS_I(page->mapping->host)->io_tree;
2185
2186 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2187 bvec->bv_offset;
2188 end = start + bvec->bv_len - 1;
2189
2190 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2191 whole_page = 1;
2192 else
2193 whole_page = 0;
2194
2195 if (--bvec >= bio->bi_io_vec)
2196 prefetchw(&bvec->bv_page->flags);
2197 if (tree->ops && tree->ops->writepage_end_io_hook) {
2198 ret = tree->ops->writepage_end_io_hook(page, start,
2199 end, NULL, uptodate);
2200 if (ret)
2201 uptodate = 0;
2202 }
2203
2204 if (!uptodate && tree->ops &&
2205 tree->ops->writepage_io_failed_hook) {
2206 ret = tree->ops->writepage_io_failed_hook(bio, page,
2207 start, end, NULL);
2208 if (ret == 0) {
2209 uptodate = (err == 0);
2210 continue;
2211 }
2212 }
2213
2214 if (!uptodate) {
2215 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2216 ClearPageUptodate(page);
2217 SetPageError(page);
2218 }
2219
2220 if (whole_page)
2221 end_page_writeback(page);
2222 else
2223 check_page_writeback(tree, page);
2224 } while (bvec >= bio->bi_io_vec);
2225
2226 bio_put(bio);
2227 }
2228
2229 /*
2230 * after a readpage IO is done, we need to:
2231 * clear the uptodate bits on error
2232 * set the uptodate bits if things worked
2233 * set the page up to date if all extents in the tree are uptodate
2234 * clear the lock bit in the extent tree
2235 * unlock the page if there are no other extents locked for it
2236 *
2237 * Scheduling is not allowed, so the extent state tree is expected
2238 * to have one and only one object corresponding to this IO.
2239 */
2240 static void end_bio_extent_readpage(struct bio *bio, int err)
2241 {
2242 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2243 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2244 struct bio_vec *bvec = bio->bi_io_vec;
2245 struct extent_io_tree *tree;
2246 u64 start;
2247 u64 end;
2248 int whole_page;
2249 int ret;
2250
2251 if (err)
2252 uptodate = 0;
2253
2254 do {
2255 struct page *page = bvec->bv_page;
2256 struct extent_state *cached = NULL;
2257 struct extent_state *state;
2258
2259 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2260 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2261 (long int)bio->bi_bdev);
2262 tree = &BTRFS_I(page->mapping->host)->io_tree;
2263
2264 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2265 bvec->bv_offset;
2266 end = start + bvec->bv_len - 1;
2267
2268 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2269 whole_page = 1;
2270 else
2271 whole_page = 0;
2272
2273 if (++bvec <= bvec_end)
2274 prefetchw(&bvec->bv_page->flags);
2275
2276 spin_lock(&tree->lock);
2277 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2278 if (state && state->start == start) {
2279 /*
2280 * take a reference on the state, unlock will drop
2281 * the ref
2282 */
2283 cache_state(state, &cached);
2284 }
2285 spin_unlock(&tree->lock);
2286
2287 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2288 ret = tree->ops->readpage_end_io_hook(page, start, end,
2289 state);
2290 if (ret)
2291 uptodate = 0;
2292 else
2293 clean_io_failure(start, page);
2294 }
2295 if (!uptodate) {
2296 int failed_mirror;
2297 failed_mirror = (int)(unsigned long)bio->bi_bdev;
2298 /*
2299 * The generic bio_readpage_error handles errors the
2300 * following way: If possible, new read requests are
2301 * created and submitted and will end up in
2302 * end_bio_extent_readpage as well (if we're lucky, not
2303 * in the !uptodate case). In that case it returns 0 and
2304 * we just go on with the next page in our bio. If it
2305 * can't handle the error it will return -EIO and we
2306 * remain responsible for that page.
2307 */
2308 ret = bio_readpage_error(bio, page, start, end,
2309 failed_mirror, NULL);
2310 if (ret == 0) {
2311 error_handled:
2312 uptodate =
2313 test_bit(BIO_UPTODATE, &bio->bi_flags);
2314 if (err)
2315 uptodate = 0;
2316 uncache_state(&cached);
2317 continue;
2318 }
2319 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2320 ret = tree->ops->readpage_io_failed_hook(
2321 bio, page, start, end,
2322 failed_mirror, state);
2323 if (ret == 0)
2324 goto error_handled;
2325 }
2326 }
2327
2328 if (uptodate) {
2329 set_extent_uptodate(tree, start, end, &cached,
2330 GFP_ATOMIC);
2331 }
2332 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2333
2334 if (whole_page) {
2335 if (uptodate) {
2336 SetPageUptodate(page);
2337 } else {
2338 ClearPageUptodate(page);
2339 SetPageError(page);
2340 }
2341 unlock_page(page);
2342 } else {
2343 if (uptodate) {
2344 check_page_uptodate(tree, page);
2345 } else {
2346 ClearPageUptodate(page);
2347 SetPageError(page);
2348 }
2349 check_page_locked(tree, page);
2350 }
2351 } while (bvec <= bvec_end);
2352
2353 bio_put(bio);
2354 }
2355
2356 struct bio *
2357 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2358 gfp_t gfp_flags)
2359 {
2360 struct bio *bio;
2361
2362 bio = bio_alloc(gfp_flags, nr_vecs);
2363
2364 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2365 while (!bio && (nr_vecs /= 2))
2366 bio = bio_alloc(gfp_flags, nr_vecs);
2367 }
2368
2369 if (bio) {
2370 bio->bi_size = 0;
2371 bio->bi_bdev = bdev;
2372 bio->bi_sector = first_sector;
2373 }
2374 return bio;
2375 }
2376
2377 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2378 unsigned long bio_flags)
2379 {
2380 int ret = 0;
2381 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2382 struct page *page = bvec->bv_page;
2383 struct extent_io_tree *tree = bio->bi_private;
2384 u64 start;
2385
2386 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2387
2388 bio->bi_private = NULL;
2389
2390 bio_get(bio);
2391
2392 if (tree->ops && tree->ops->submit_bio_hook)
2393 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2394 mirror_num, bio_flags, start);
2395 else
2396 submit_bio(rw, bio);
2397
2398 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2399 ret = -EOPNOTSUPP;
2400 bio_put(bio);
2401 return ret;
2402 }
2403
2404 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2405 struct page *page, sector_t sector,
2406 size_t size, unsigned long offset,
2407 struct block_device *bdev,
2408 struct bio **bio_ret,
2409 unsigned long max_pages,
2410 bio_end_io_t end_io_func,
2411 int mirror_num,
2412 unsigned long prev_bio_flags,
2413 unsigned long bio_flags)
2414 {
2415 int ret = 0;
2416 struct bio *bio;
2417 int nr;
2418 int contig = 0;
2419 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2420 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2421 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2422
2423 if (bio_ret && *bio_ret) {
2424 bio = *bio_ret;
2425 if (old_compressed)
2426 contig = bio->bi_sector == sector;
2427 else
2428 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2429 sector;
2430
2431 if (prev_bio_flags != bio_flags || !contig ||
2432 (tree->ops && tree->ops->merge_bio_hook &&
2433 tree->ops->merge_bio_hook(page, offset, page_size, bio,
2434 bio_flags)) ||
2435 bio_add_page(bio, page, page_size, offset) < page_size) {
2436 ret = submit_one_bio(rw, bio, mirror_num,
2437 prev_bio_flags);
2438 bio = NULL;
2439 } else {
2440 return 0;
2441 }
2442 }
2443 if (this_compressed)
2444 nr = BIO_MAX_PAGES;
2445 else
2446 nr = bio_get_nr_vecs(bdev);
2447
2448 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2449 if (!bio)
2450 return -ENOMEM;
2451
2452 bio_add_page(bio, page, page_size, offset);
2453 bio->bi_end_io = end_io_func;
2454 bio->bi_private = tree;
2455
2456 if (bio_ret)
2457 *bio_ret = bio;
2458 else
2459 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2460
2461 return ret;
2462 }
2463
2464 void set_page_extent_mapped(struct page *page)
2465 {
2466 if (!PagePrivate(page)) {
2467 SetPagePrivate(page);
2468 page_cache_get(page);
2469 set_page_private(page, EXTENT_PAGE_PRIVATE);
2470 }
2471 }
2472
2473 static void set_page_extent_head(struct page *page, unsigned long len)
2474 {
2475 WARN_ON(!PagePrivate(page));
2476 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2477 }
2478
2479 /*
2480 * basic readpage implementation. Locked extent state structs are inserted
2481 * into the tree that are removed when the IO is done (by the end_io
2482 * handlers)
2483 */
2484 static int __extent_read_full_page(struct extent_io_tree *tree,
2485 struct page *page,
2486 get_extent_t *get_extent,
2487 struct bio **bio, int mirror_num,
2488 unsigned long *bio_flags)
2489 {
2490 struct inode *inode = page->mapping->host;
2491 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2492 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2493 u64 end;
2494 u64 cur = start;
2495 u64 extent_offset;
2496 u64 last_byte = i_size_read(inode);
2497 u64 block_start;
2498 u64 cur_end;
2499 sector_t sector;
2500 struct extent_map *em;
2501 struct block_device *bdev;
2502 struct btrfs_ordered_extent *ordered;
2503 int ret;
2504 int nr = 0;
2505 size_t pg_offset = 0;
2506 size_t iosize;
2507 size_t disk_io_size;
2508 size_t blocksize = inode->i_sb->s_blocksize;
2509 unsigned long this_bio_flag = 0;
2510
2511 set_page_extent_mapped(page);
2512
2513 if (!PageUptodate(page)) {
2514 if (cleancache_get_page(page) == 0) {
2515 BUG_ON(blocksize != PAGE_SIZE);
2516 goto out;
2517 }
2518 }
2519
2520 end = page_end;
2521 while (1) {
2522 lock_extent(tree, start, end, GFP_NOFS);
2523 ordered = btrfs_lookup_ordered_extent(inode, start);
2524 if (!ordered)
2525 break;
2526 unlock_extent(tree, start, end, GFP_NOFS);
2527 btrfs_start_ordered_extent(inode, ordered, 1);
2528 btrfs_put_ordered_extent(ordered);
2529 }
2530
2531 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2532 char *userpage;
2533 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2534
2535 if (zero_offset) {
2536 iosize = PAGE_CACHE_SIZE - zero_offset;
2537 userpage = kmap_atomic(page, KM_USER0);
2538 memset(userpage + zero_offset, 0, iosize);
2539 flush_dcache_page(page);
2540 kunmap_atomic(userpage, KM_USER0);
2541 }
2542 }
2543 while (cur <= end) {
2544 if (cur >= last_byte) {
2545 char *userpage;
2546 struct extent_state *cached = NULL;
2547
2548 iosize = PAGE_CACHE_SIZE - pg_offset;
2549 userpage = kmap_atomic(page, KM_USER0);
2550 memset(userpage + pg_offset, 0, iosize);
2551 flush_dcache_page(page);
2552 kunmap_atomic(userpage, KM_USER0);
2553 set_extent_uptodate(tree, cur, cur + iosize - 1,
2554 &cached, GFP_NOFS);
2555 unlock_extent_cached(tree, cur, cur + iosize - 1,
2556 &cached, GFP_NOFS);
2557 break;
2558 }
2559 em = get_extent(inode, page, pg_offset, cur,
2560 end - cur + 1, 0);
2561 if (IS_ERR_OR_NULL(em)) {
2562 SetPageError(page);
2563 unlock_extent(tree, cur, end, GFP_NOFS);
2564 break;
2565 }
2566 extent_offset = cur - em->start;
2567 BUG_ON(extent_map_end(em) <= cur);
2568 BUG_ON(end < cur);
2569
2570 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2571 this_bio_flag = EXTENT_BIO_COMPRESSED;
2572 extent_set_compress_type(&this_bio_flag,
2573 em->compress_type);
2574 }
2575
2576 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2577 cur_end = min(extent_map_end(em) - 1, end);
2578 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2579 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2580 disk_io_size = em->block_len;
2581 sector = em->block_start >> 9;
2582 } else {
2583 sector = (em->block_start + extent_offset) >> 9;
2584 disk_io_size = iosize;
2585 }
2586 bdev = em->bdev;
2587 block_start = em->block_start;
2588 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2589 block_start = EXTENT_MAP_HOLE;
2590 free_extent_map(em);
2591 em = NULL;
2592
2593 /* we've found a hole, just zero and go on */
2594 if (block_start == EXTENT_MAP_HOLE) {
2595 char *userpage;
2596 struct extent_state *cached = NULL;
2597
2598 userpage = kmap_atomic(page, KM_USER0);
2599 memset(userpage + pg_offset, 0, iosize);
2600 flush_dcache_page(page);
2601 kunmap_atomic(userpage, KM_USER0);
2602
2603 set_extent_uptodate(tree, cur, cur + iosize - 1,
2604 &cached, GFP_NOFS);
2605 unlock_extent_cached(tree, cur, cur + iosize - 1,
2606 &cached, GFP_NOFS);
2607 cur = cur + iosize;
2608 pg_offset += iosize;
2609 continue;
2610 }
2611 /* the get_extent function already copied into the page */
2612 if (test_range_bit(tree, cur, cur_end,
2613 EXTENT_UPTODATE, 1, NULL)) {
2614 check_page_uptodate(tree, page);
2615 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2616 cur = cur + iosize;
2617 pg_offset += iosize;
2618 continue;
2619 }
2620 /* we have an inline extent but it didn't get marked up
2621 * to date. Error out
2622 */
2623 if (block_start == EXTENT_MAP_INLINE) {
2624 SetPageError(page);
2625 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2626 cur = cur + iosize;
2627 pg_offset += iosize;
2628 continue;
2629 }
2630
2631 ret = 0;
2632 if (tree->ops && tree->ops->readpage_io_hook) {
2633 ret = tree->ops->readpage_io_hook(page, cur,
2634 cur + iosize - 1);
2635 }
2636 if (!ret) {
2637 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2638 pnr -= page->index;
2639 ret = submit_extent_page(READ, tree, page,
2640 sector, disk_io_size, pg_offset,
2641 bdev, bio, pnr,
2642 end_bio_extent_readpage, mirror_num,
2643 *bio_flags,
2644 this_bio_flag);
2645 nr++;
2646 *bio_flags = this_bio_flag;
2647 }
2648 if (ret)
2649 SetPageError(page);
2650 cur = cur + iosize;
2651 pg_offset += iosize;
2652 }
2653 out:
2654 if (!nr) {
2655 if (!PageError(page))
2656 SetPageUptodate(page);
2657 unlock_page(page);
2658 }
2659 return 0;
2660 }
2661
2662 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2663 get_extent_t *get_extent, int mirror_num)
2664 {
2665 struct bio *bio = NULL;
2666 unsigned long bio_flags = 0;
2667 int ret;
2668
2669 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2670 &bio_flags);
2671 if (bio)
2672 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2673 return ret;
2674 }
2675
2676 static noinline void update_nr_written(struct page *page,
2677 struct writeback_control *wbc,
2678 unsigned long nr_written)
2679 {
2680 wbc->nr_to_write -= nr_written;
2681 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2682 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2683 page->mapping->writeback_index = page->index + nr_written;
2684 }
2685
2686 /*
2687 * the writepage semantics are similar to regular writepage. extent
2688 * records are inserted to lock ranges in the tree, and as dirty areas
2689 * are found, they are marked writeback. Then the lock bits are removed
2690 * and the end_io handler clears the writeback ranges
2691 */
2692 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2693 void *data)
2694 {
2695 struct inode *inode = page->mapping->host;
2696 struct extent_page_data *epd = data;
2697 struct extent_io_tree *tree = epd->tree;
2698 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2699 u64 delalloc_start;
2700 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2701 u64 end;
2702 u64 cur = start;
2703 u64 extent_offset;
2704 u64 last_byte = i_size_read(inode);
2705 u64 block_start;
2706 u64 iosize;
2707 sector_t sector;
2708 struct extent_state *cached_state = NULL;
2709 struct extent_map *em;
2710 struct block_device *bdev;
2711 int ret;
2712 int nr = 0;
2713 size_t pg_offset = 0;
2714 size_t blocksize;
2715 loff_t i_size = i_size_read(inode);
2716 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2717 u64 nr_delalloc;
2718 u64 delalloc_end;
2719 int page_started;
2720 int compressed;
2721 int write_flags;
2722 unsigned long nr_written = 0;
2723 bool fill_delalloc = true;
2724
2725 if (wbc->sync_mode == WB_SYNC_ALL)
2726 write_flags = WRITE_SYNC;
2727 else
2728 write_flags = WRITE;
2729
2730 trace___extent_writepage(page, inode, wbc);
2731
2732 WARN_ON(!PageLocked(page));
2733
2734 ClearPageError(page);
2735
2736 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2737 if (page->index > end_index ||
2738 (page->index == end_index && !pg_offset)) {
2739 page->mapping->a_ops->invalidatepage(page, 0);
2740 unlock_page(page);
2741 return 0;
2742 }
2743
2744 if (page->index == end_index) {
2745 char *userpage;
2746
2747 userpage = kmap_atomic(page, KM_USER0);
2748 memset(userpage + pg_offset, 0,
2749 PAGE_CACHE_SIZE - pg_offset);
2750 kunmap_atomic(userpage, KM_USER0);
2751 flush_dcache_page(page);
2752 }
2753 pg_offset = 0;
2754
2755 set_page_extent_mapped(page);
2756
2757 if (!tree->ops || !tree->ops->fill_delalloc)
2758 fill_delalloc = false;
2759
2760 delalloc_start = start;
2761 delalloc_end = 0;
2762 page_started = 0;
2763 if (!epd->extent_locked && fill_delalloc) {
2764 u64 delalloc_to_write = 0;
2765 /*
2766 * make sure the wbc mapping index is at least updated
2767 * to this page.
2768 */
2769 update_nr_written(page, wbc, 0);
2770
2771 while (delalloc_end < page_end) {
2772 nr_delalloc = find_lock_delalloc_range(inode, tree,
2773 page,
2774 &delalloc_start,
2775 &delalloc_end,
2776 128 * 1024 * 1024);
2777 if (nr_delalloc == 0) {
2778 delalloc_start = delalloc_end + 1;
2779 continue;
2780 }
2781 tree->ops->fill_delalloc(inode, page, delalloc_start,
2782 delalloc_end, &page_started,
2783 &nr_written);
2784 /*
2785 * delalloc_end is already one less than the total
2786 * length, so we don't subtract one from
2787 * PAGE_CACHE_SIZE
2788 */
2789 delalloc_to_write += (delalloc_end - delalloc_start +
2790 PAGE_CACHE_SIZE) >>
2791 PAGE_CACHE_SHIFT;
2792 delalloc_start = delalloc_end + 1;
2793 }
2794 if (wbc->nr_to_write < delalloc_to_write) {
2795 int thresh = 8192;
2796
2797 if (delalloc_to_write < thresh * 2)
2798 thresh = delalloc_to_write;
2799 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2800 thresh);
2801 }
2802
2803 /* did the fill delalloc function already unlock and start
2804 * the IO?
2805 */
2806 if (page_started) {
2807 ret = 0;
2808 /*
2809 * we've unlocked the page, so we can't update
2810 * the mapping's writeback index, just update
2811 * nr_to_write.
2812 */
2813 wbc->nr_to_write -= nr_written;
2814 goto done_unlocked;
2815 }
2816 }
2817 if (tree->ops && tree->ops->writepage_start_hook) {
2818 ret = tree->ops->writepage_start_hook(page, start,
2819 page_end);
2820 if (ret == -EAGAIN) {
2821 redirty_page_for_writepage(wbc, page);
2822 update_nr_written(page, wbc, nr_written);
2823 unlock_page(page);
2824 ret = 0;
2825 goto done_unlocked;
2826 }
2827 }
2828
2829 /*
2830 * we don't want to touch the inode after unlocking the page,
2831 * so we update the mapping writeback index now
2832 */
2833 update_nr_written(page, wbc, nr_written + 1);
2834
2835 end = page_end;
2836 if (last_byte <= start) {
2837 if (tree->ops && tree->ops->writepage_end_io_hook)
2838 tree->ops->writepage_end_io_hook(page, start,
2839 page_end, NULL, 1);
2840 goto done;
2841 }
2842
2843 blocksize = inode->i_sb->s_blocksize;
2844
2845 while (cur <= end) {
2846 if (cur >= last_byte) {
2847 if (tree->ops && tree->ops->writepage_end_io_hook)
2848 tree->ops->writepage_end_io_hook(page, cur,
2849 page_end, NULL, 1);
2850 break;
2851 }
2852 em = epd->get_extent(inode, page, pg_offset, cur,
2853 end - cur + 1, 1);
2854 if (IS_ERR_OR_NULL(em)) {
2855 SetPageError(page);
2856 break;
2857 }
2858
2859 extent_offset = cur - em->start;
2860 BUG_ON(extent_map_end(em) <= cur);
2861 BUG_ON(end < cur);
2862 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2863 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2864 sector = (em->block_start + extent_offset) >> 9;
2865 bdev = em->bdev;
2866 block_start = em->block_start;
2867 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2868 free_extent_map(em);
2869 em = NULL;
2870
2871 /*
2872 * compressed and inline extents are written through other
2873 * paths in the FS
2874 */
2875 if (compressed || block_start == EXTENT_MAP_HOLE ||
2876 block_start == EXTENT_MAP_INLINE) {
2877 /*
2878 * end_io notification does not happen here for
2879 * compressed extents
2880 */
2881 if (!compressed && tree->ops &&
2882 tree->ops->writepage_end_io_hook)
2883 tree->ops->writepage_end_io_hook(page, cur,
2884 cur + iosize - 1,
2885 NULL, 1);
2886 else if (compressed) {
2887 /* we don't want to end_page_writeback on
2888 * a compressed extent. this happens
2889 * elsewhere
2890 */
2891 nr++;
2892 }
2893
2894 cur += iosize;
2895 pg_offset += iosize;
2896 continue;
2897 }
2898 /* leave this out until we have a page_mkwrite call */
2899 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2900 EXTENT_DIRTY, 0, NULL)) {
2901 cur = cur + iosize;
2902 pg_offset += iosize;
2903 continue;
2904 }
2905
2906 if (tree->ops && tree->ops->writepage_io_hook) {
2907 ret = tree->ops->writepage_io_hook(page, cur,
2908 cur + iosize - 1);
2909 } else {
2910 ret = 0;
2911 }
2912 if (ret) {
2913 SetPageError(page);
2914 } else {
2915 unsigned long max_nr = end_index + 1;
2916
2917 set_range_writeback(tree, cur, cur + iosize - 1);
2918 if (!PageWriteback(page)) {
2919 printk(KERN_ERR "btrfs warning page %lu not "
2920 "writeback, cur %llu end %llu\n",
2921 page->index, (unsigned long long)cur,
2922 (unsigned long long)end);
2923 }
2924
2925 ret = submit_extent_page(write_flags, tree, page,
2926 sector, iosize, pg_offset,
2927 bdev, &epd->bio, max_nr,
2928 end_bio_extent_writepage,
2929 0, 0, 0);
2930 if (ret)
2931 SetPageError(page);
2932 }
2933 cur = cur + iosize;
2934 pg_offset += iosize;
2935 nr++;
2936 }
2937 done:
2938 if (nr == 0) {
2939 /* make sure the mapping tag for page dirty gets cleared */
2940 set_page_writeback(page);
2941 end_page_writeback(page);
2942 }
2943 unlock_page(page);
2944
2945 done_unlocked:
2946
2947 /* drop our reference on any cached states */
2948 free_extent_state(cached_state);
2949 return 0;
2950 }
2951
2952 /**
2953 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2954 * @mapping: address space structure to write
2955 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2956 * @writepage: function called for each page
2957 * @data: data passed to writepage function
2958 *
2959 * If a page is already under I/O, write_cache_pages() skips it, even
2960 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2961 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2962 * and msync() need to guarantee that all the data which was dirty at the time
2963 * the call was made get new I/O started against them. If wbc->sync_mode is
2964 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2965 * existing IO to complete.
2966 */
2967 static int extent_write_cache_pages(struct extent_io_tree *tree,
2968 struct address_space *mapping,
2969 struct writeback_control *wbc,
2970 writepage_t writepage, void *data,
2971 void (*flush_fn)(void *))
2972 {
2973 int ret = 0;
2974 int done = 0;
2975 int nr_to_write_done = 0;
2976 struct pagevec pvec;
2977 int nr_pages;
2978 pgoff_t index;
2979 pgoff_t end; /* Inclusive */
2980 int scanned = 0;
2981 int tag;
2982
2983 pagevec_init(&pvec, 0);
2984 if (wbc->range_cyclic) {
2985 index = mapping->writeback_index; /* Start from prev offset */
2986 end = -1;
2987 } else {
2988 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2989 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2990 scanned = 1;
2991 }
2992 if (wbc->sync_mode == WB_SYNC_ALL)
2993 tag = PAGECACHE_TAG_TOWRITE;
2994 else
2995 tag = PAGECACHE_TAG_DIRTY;
2996 retry:
2997 if (wbc->sync_mode == WB_SYNC_ALL)
2998 tag_pages_for_writeback(mapping, index, end);
2999 while (!done && !nr_to_write_done && (index <= end) &&
3000 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3001 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3002 unsigned i;
3003
3004 scanned = 1;
3005 for (i = 0; i < nr_pages; i++) {
3006 struct page *page = pvec.pages[i];
3007
3008 /*
3009 * At this point we hold neither mapping->tree_lock nor
3010 * lock on the page itself: the page may be truncated or
3011 * invalidated (changing page->mapping to NULL), or even
3012 * swizzled back from swapper_space to tmpfs file
3013 * mapping
3014 */
3015 if (tree->ops &&
3016 tree->ops->write_cache_pages_lock_hook) {
3017 tree->ops->write_cache_pages_lock_hook(page,
3018 data, flush_fn);
3019 } else {
3020 if (!trylock_page(page)) {
3021 flush_fn(data);
3022 lock_page(page);
3023 }
3024 }
3025
3026 if (unlikely(page->mapping != mapping)) {
3027 unlock_page(page);
3028 continue;
3029 }
3030
3031 if (!wbc->range_cyclic && page->index > end) {
3032 done = 1;
3033 unlock_page(page);
3034 continue;
3035 }
3036
3037 if (wbc->sync_mode != WB_SYNC_NONE) {
3038 if (PageWriteback(page))
3039 flush_fn(data);
3040 wait_on_page_writeback(page);
3041 }
3042
3043 if (PageWriteback(page) ||
3044 !clear_page_dirty_for_io(page)) {
3045 unlock_page(page);
3046 continue;
3047 }
3048
3049 ret = (*writepage)(page, wbc, data);
3050
3051 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3052 unlock_page(page);
3053 ret = 0;
3054 }
3055 if (ret)
3056 done = 1;
3057
3058 /*
3059 * the filesystem may choose to bump up nr_to_write.
3060 * We have to make sure to honor the new nr_to_write
3061 * at any time
3062 */
3063 nr_to_write_done = wbc->nr_to_write <= 0;
3064 }
3065 pagevec_release(&pvec);
3066 cond_resched();
3067 }
3068 if (!scanned && !done) {
3069 /*
3070 * We hit the last page and there is more work to be done: wrap
3071 * back to the start of the file
3072 */
3073 scanned = 1;
3074 index = 0;
3075 goto retry;
3076 }
3077 return ret;
3078 }
3079
3080 static void flush_epd_write_bio(struct extent_page_data *epd)
3081 {
3082 if (epd->bio) {
3083 if (epd->sync_io)
3084 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3085 else
3086 submit_one_bio(WRITE, epd->bio, 0, 0);
3087 epd->bio = NULL;
3088 }
3089 }
3090
3091 static noinline void flush_write_bio(void *data)
3092 {
3093 struct extent_page_data *epd = data;
3094 flush_epd_write_bio(epd);
3095 }
3096
3097 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3098 get_extent_t *get_extent,
3099 struct writeback_control *wbc)
3100 {
3101 int ret;
3102 struct extent_page_data epd = {
3103 .bio = NULL,
3104 .tree = tree,
3105 .get_extent = get_extent,
3106 .extent_locked = 0,
3107 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3108 };
3109
3110 ret = __extent_writepage(page, wbc, &epd);
3111
3112 flush_epd_write_bio(&epd);
3113 return ret;
3114 }
3115
3116 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3117 u64 start, u64 end, get_extent_t *get_extent,
3118 int mode)
3119 {
3120 int ret = 0;
3121 struct address_space *mapping = inode->i_mapping;
3122 struct page *page;
3123 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3124 PAGE_CACHE_SHIFT;
3125
3126 struct extent_page_data epd = {
3127 .bio = NULL,
3128 .tree = tree,
3129 .get_extent = get_extent,
3130 .extent_locked = 1,
3131 .sync_io = mode == WB_SYNC_ALL,
3132 };
3133 struct writeback_control wbc_writepages = {
3134 .sync_mode = mode,
3135 .nr_to_write = nr_pages * 2,
3136 .range_start = start,
3137 .range_end = end + 1,
3138 };
3139
3140 while (start <= end) {
3141 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3142 if (clear_page_dirty_for_io(page))
3143 ret = __extent_writepage(page, &wbc_writepages, &epd);
3144 else {
3145 if (tree->ops && tree->ops->writepage_end_io_hook)
3146 tree->ops->writepage_end_io_hook(page, start,
3147 start + PAGE_CACHE_SIZE - 1,
3148 NULL, 1);
3149 unlock_page(page);
3150 }
3151 page_cache_release(page);
3152 start += PAGE_CACHE_SIZE;
3153 }
3154
3155 flush_epd_write_bio(&epd);
3156 return ret;
3157 }
3158
3159 int extent_writepages(struct extent_io_tree *tree,
3160 struct address_space *mapping,
3161 get_extent_t *get_extent,
3162 struct writeback_control *wbc)
3163 {
3164 int ret = 0;
3165 struct extent_page_data epd = {
3166 .bio = NULL,
3167 .tree = tree,
3168 .get_extent = get_extent,
3169 .extent_locked = 0,
3170 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3171 };
3172
3173 ret = extent_write_cache_pages(tree, mapping, wbc,
3174 __extent_writepage, &epd,
3175 flush_write_bio);
3176 flush_epd_write_bio(&epd);
3177 return ret;
3178 }
3179
3180 int extent_readpages(struct extent_io_tree *tree,
3181 struct address_space *mapping,
3182 struct list_head *pages, unsigned nr_pages,
3183 get_extent_t get_extent)
3184 {
3185 struct bio *bio = NULL;
3186 unsigned page_idx;
3187 unsigned long bio_flags = 0;
3188
3189 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3190 struct page *page = list_entry(pages->prev, struct page, lru);
3191
3192 prefetchw(&page->flags);
3193 list_del(&page->lru);
3194 if (!add_to_page_cache_lru(page, mapping,
3195 page->index, GFP_NOFS)) {
3196 __extent_read_full_page(tree, page, get_extent,
3197 &bio, 0, &bio_flags);
3198 }
3199 page_cache_release(page);
3200 }
3201 BUG_ON(!list_empty(pages));
3202 if (bio)
3203 submit_one_bio(READ, bio, 0, bio_flags);
3204 return 0;
3205 }
3206
3207 /*
3208 * basic invalidatepage code, this waits on any locked or writeback
3209 * ranges corresponding to the page, and then deletes any extent state
3210 * records from the tree
3211 */
3212 int extent_invalidatepage(struct extent_io_tree *tree,
3213 struct page *page, unsigned long offset)
3214 {
3215 struct extent_state *cached_state = NULL;
3216 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3217 u64 end = start + PAGE_CACHE_SIZE - 1;
3218 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3219
3220 start += (offset + blocksize - 1) & ~(blocksize - 1);
3221 if (start > end)
3222 return 0;
3223
3224 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3225 wait_on_page_writeback(page);
3226 clear_extent_bit(tree, start, end,
3227 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3228 EXTENT_DO_ACCOUNTING,
3229 1, 1, &cached_state, GFP_NOFS);
3230 return 0;
3231 }
3232
3233 /*
3234 * a helper for releasepage, this tests for areas of the page that
3235 * are locked or under IO and drops the related state bits if it is safe
3236 * to drop the page.
3237 */
3238 int try_release_extent_state(struct extent_map_tree *map,
3239 struct extent_io_tree *tree, struct page *page,
3240 gfp_t mask)
3241 {
3242 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3243 u64 end = start + PAGE_CACHE_SIZE - 1;
3244 int ret = 1;
3245
3246 if (test_range_bit(tree, start, end,
3247 EXTENT_IOBITS, 0, NULL))
3248 ret = 0;
3249 else {
3250 if ((mask & GFP_NOFS) == GFP_NOFS)
3251 mask = GFP_NOFS;
3252 /*
3253 * at this point we can safely clear everything except the
3254 * locked bit and the nodatasum bit
3255 */
3256 ret = clear_extent_bit(tree, start, end,
3257 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3258 0, 0, NULL, mask);
3259
3260 /* if clear_extent_bit failed for enomem reasons,
3261 * we can't allow the release to continue.
3262 */
3263 if (ret < 0)
3264 ret = 0;
3265 else
3266 ret = 1;
3267 }
3268 return ret;
3269 }
3270
3271 /*
3272 * a helper for releasepage. As long as there are no locked extents
3273 * in the range corresponding to the page, both state records and extent
3274 * map records are removed
3275 */
3276 int try_release_extent_mapping(struct extent_map_tree *map,
3277 struct extent_io_tree *tree, struct page *page,
3278 gfp_t mask)
3279 {
3280 struct extent_map *em;
3281 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3282 u64 end = start + PAGE_CACHE_SIZE - 1;
3283
3284 if ((mask & __GFP_WAIT) &&
3285 page->mapping->host->i_size > 16 * 1024 * 1024) {
3286 u64 len;
3287 while (start <= end) {
3288 len = end - start + 1;
3289 write_lock(&map->lock);
3290 em = lookup_extent_mapping(map, start, len);
3291 if (IS_ERR_OR_NULL(em)) {
3292 write_unlock(&map->lock);
3293 break;
3294 }
3295 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3296 em->start != start) {
3297 write_unlock(&map->lock);
3298 free_extent_map(em);
3299 break;
3300 }
3301 if (!test_range_bit(tree, em->start,
3302 extent_map_end(em) - 1,
3303 EXTENT_LOCKED | EXTENT_WRITEBACK,
3304 0, NULL)) {
3305 remove_extent_mapping(map, em);
3306 /* once for the rb tree */
3307 free_extent_map(em);
3308 }
3309 start = extent_map_end(em);
3310 write_unlock(&map->lock);
3311
3312 /* once for us */
3313 free_extent_map(em);
3314 }
3315 }
3316 return try_release_extent_state(map, tree, page, mask);
3317 }
3318
3319 /*
3320 * helper function for fiemap, which doesn't want to see any holes.
3321 * This maps until we find something past 'last'
3322 */
3323 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3324 u64 offset,
3325 u64 last,
3326 get_extent_t *get_extent)
3327 {
3328 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3329 struct extent_map *em;
3330 u64 len;
3331
3332 if (offset >= last)
3333 return NULL;
3334
3335 while(1) {
3336 len = last - offset;
3337 if (len == 0)
3338 break;
3339 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3340 em = get_extent(inode, NULL, 0, offset, len, 0);
3341 if (IS_ERR_OR_NULL(em))
3342 return em;
3343
3344 /* if this isn't a hole return it */
3345 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3346 em->block_start != EXTENT_MAP_HOLE) {
3347 return em;
3348 }
3349
3350 /* this is a hole, advance to the next extent */
3351 offset = extent_map_end(em);
3352 free_extent_map(em);
3353 if (offset >= last)
3354 break;
3355 }
3356 return NULL;
3357 }
3358
3359 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3360 __u64 start, __u64 len, get_extent_t *get_extent)
3361 {
3362 int ret = 0;
3363 u64 off = start;
3364 u64 max = start + len;
3365 u32 flags = 0;
3366 u32 found_type;
3367 u64 last;
3368 u64 last_for_get_extent = 0;
3369 u64 disko = 0;
3370 u64 isize = i_size_read(inode);
3371 struct btrfs_key found_key;
3372 struct extent_map *em = NULL;
3373 struct extent_state *cached_state = NULL;
3374 struct btrfs_path *path;
3375 struct btrfs_file_extent_item *item;
3376 int end = 0;
3377 u64 em_start = 0;
3378 u64 em_len = 0;
3379 u64 em_end = 0;
3380 unsigned long emflags;
3381
3382 if (len == 0)
3383 return -EINVAL;
3384
3385 path = btrfs_alloc_path();
3386 if (!path)
3387 return -ENOMEM;
3388 path->leave_spinning = 1;
3389
3390 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3391 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3392
3393 /*
3394 * lookup the last file extent. We're not using i_size here
3395 * because there might be preallocation past i_size
3396 */
3397 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3398 path, btrfs_ino(inode), -1, 0);
3399 if (ret < 0) {
3400 btrfs_free_path(path);
3401 return ret;
3402 }
3403 WARN_ON(!ret);
3404 path->slots[0]--;
3405 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3406 struct btrfs_file_extent_item);
3407 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3408 found_type = btrfs_key_type(&found_key);
3409
3410 /* No extents, but there might be delalloc bits */
3411 if (found_key.objectid != btrfs_ino(inode) ||
3412 found_type != BTRFS_EXTENT_DATA_KEY) {
3413 /* have to trust i_size as the end */
3414 last = (u64)-1;
3415 last_for_get_extent = isize;
3416 } else {
3417 /*
3418 * remember the start of the last extent. There are a
3419 * bunch of different factors that go into the length of the
3420 * extent, so its much less complex to remember where it started
3421 */
3422 last = found_key.offset;
3423 last_for_get_extent = last + 1;
3424 }
3425 btrfs_free_path(path);
3426
3427 /*
3428 * we might have some extents allocated but more delalloc past those
3429 * extents. so, we trust isize unless the start of the last extent is
3430 * beyond isize
3431 */
3432 if (last < isize) {
3433 last = (u64)-1;
3434 last_for_get_extent = isize;
3435 }
3436
3437 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3438 &cached_state, GFP_NOFS);
3439
3440 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3441 get_extent);
3442 if (!em)
3443 goto out;
3444 if (IS_ERR(em)) {
3445 ret = PTR_ERR(em);
3446 goto out;
3447 }
3448
3449 while (!end) {
3450 u64 offset_in_extent;
3451
3452 /* break if the extent we found is outside the range */
3453 if (em->start >= max || extent_map_end(em) < off)
3454 break;
3455
3456 /*
3457 * get_extent may return an extent that starts before our
3458 * requested range. We have to make sure the ranges
3459 * we return to fiemap always move forward and don't
3460 * overlap, so adjust the offsets here
3461 */
3462 em_start = max(em->start, off);
3463
3464 /*
3465 * record the offset from the start of the extent
3466 * for adjusting the disk offset below
3467 */
3468 offset_in_extent = em_start - em->start;
3469 em_end = extent_map_end(em);
3470 em_len = em_end - em_start;
3471 emflags = em->flags;
3472 disko = 0;
3473 flags = 0;
3474
3475 /*
3476 * bump off for our next call to get_extent
3477 */
3478 off = extent_map_end(em);
3479 if (off >= max)
3480 end = 1;
3481
3482 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3483 end = 1;
3484 flags |= FIEMAP_EXTENT_LAST;
3485 } else if (em->block_start == EXTENT_MAP_INLINE) {
3486 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3487 FIEMAP_EXTENT_NOT_ALIGNED);
3488 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3489 flags |= (FIEMAP_EXTENT_DELALLOC |
3490 FIEMAP_EXTENT_UNKNOWN);
3491 } else {
3492 disko = em->block_start + offset_in_extent;
3493 }
3494 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3495 flags |= FIEMAP_EXTENT_ENCODED;
3496
3497 free_extent_map(em);
3498 em = NULL;
3499 if ((em_start >= last) || em_len == (u64)-1 ||
3500 (last == (u64)-1 && isize <= em_end)) {
3501 flags |= FIEMAP_EXTENT_LAST;
3502 end = 1;
3503 }
3504
3505 /* now scan forward to see if this is really the last extent. */
3506 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3507 get_extent);
3508 if (IS_ERR(em)) {
3509 ret = PTR_ERR(em);
3510 goto out;
3511 }
3512 if (!em) {
3513 flags |= FIEMAP_EXTENT_LAST;
3514 end = 1;
3515 }
3516 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3517 em_len, flags);
3518 if (ret)
3519 goto out_free;
3520 }
3521 out_free:
3522 free_extent_map(em);
3523 out:
3524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3525 &cached_state, GFP_NOFS);
3526 return ret;
3527 }
3528
3529 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3530 unsigned long i)
3531 {
3532 struct page *p;
3533 struct address_space *mapping;
3534
3535 if (i == 0)
3536 return eb->first_page;
3537 i += eb->start >> PAGE_CACHE_SHIFT;
3538 mapping = eb->first_page->mapping;
3539 if (!mapping)
3540 return NULL;
3541
3542 /*
3543 * extent_buffer_page is only called after pinning the page
3544 * by increasing the reference count. So we know the page must
3545 * be in the radix tree.
3546 */
3547 rcu_read_lock();
3548 p = radix_tree_lookup(&mapping->page_tree, i);
3549 rcu_read_unlock();
3550
3551 return p;
3552 }
3553
3554 inline unsigned long num_extent_pages(u64 start, u64 len)
3555 {
3556 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3557 (start >> PAGE_CACHE_SHIFT);
3558 }
3559
3560 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3561 u64 start,
3562 unsigned long len,
3563 gfp_t mask)
3564 {
3565 struct extent_buffer *eb = NULL;
3566 #if LEAK_DEBUG
3567 unsigned long flags;
3568 #endif
3569
3570 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3571 if (eb == NULL)
3572 return NULL;
3573 eb->start = start;
3574 eb->len = len;
3575 rwlock_init(&eb->lock);
3576 atomic_set(&eb->write_locks, 0);
3577 atomic_set(&eb->read_locks, 0);
3578 atomic_set(&eb->blocking_readers, 0);
3579 atomic_set(&eb->blocking_writers, 0);
3580 atomic_set(&eb->spinning_readers, 0);
3581 atomic_set(&eb->spinning_writers, 0);
3582 eb->lock_nested = 0;
3583 init_waitqueue_head(&eb->write_lock_wq);
3584 init_waitqueue_head(&eb->read_lock_wq);
3585
3586 #if LEAK_DEBUG
3587 spin_lock_irqsave(&leak_lock, flags);
3588 list_add(&eb->leak_list, &buffers);
3589 spin_unlock_irqrestore(&leak_lock, flags);
3590 #endif
3591 atomic_set(&eb->refs, 1);
3592
3593 return eb;
3594 }
3595
3596 static void __free_extent_buffer(struct extent_buffer *eb)
3597 {
3598 #if LEAK_DEBUG
3599 unsigned long flags;
3600 spin_lock_irqsave(&leak_lock, flags);
3601 list_del(&eb->leak_list);
3602 spin_unlock_irqrestore(&leak_lock, flags);
3603 #endif
3604 kmem_cache_free(extent_buffer_cache, eb);
3605 }
3606
3607 /*
3608 * Helper for releasing extent buffer page.
3609 */
3610 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3611 unsigned long start_idx)
3612 {
3613 unsigned long index;
3614 struct page *page;
3615
3616 if (!eb->first_page)
3617 return;
3618
3619 index = num_extent_pages(eb->start, eb->len);
3620 if (start_idx >= index)
3621 return;
3622
3623 do {
3624 index--;
3625 page = extent_buffer_page(eb, index);
3626 if (page)
3627 page_cache_release(page);
3628 } while (index != start_idx);
3629 }
3630
3631 /*
3632 * Helper for releasing the extent buffer.
3633 */
3634 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3635 {
3636 btrfs_release_extent_buffer_page(eb, 0);
3637 __free_extent_buffer(eb);
3638 }
3639
3640 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3641 u64 start, unsigned long len,
3642 struct page *page0)
3643 {
3644 unsigned long num_pages = num_extent_pages(start, len);
3645 unsigned long i;
3646 unsigned long index = start >> PAGE_CACHE_SHIFT;
3647 struct extent_buffer *eb;
3648 struct extent_buffer *exists = NULL;
3649 struct page *p;
3650 struct address_space *mapping = tree->mapping;
3651 int uptodate = 1;
3652 int ret;
3653
3654 rcu_read_lock();
3655 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3656 if (eb && atomic_inc_not_zero(&eb->refs)) {
3657 rcu_read_unlock();
3658 mark_page_accessed(eb->first_page);
3659 return eb;
3660 }
3661 rcu_read_unlock();
3662
3663 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3664 if (!eb)
3665 return NULL;
3666
3667 if (page0) {
3668 eb->first_page = page0;
3669 i = 1;
3670 index++;
3671 page_cache_get(page0);
3672 mark_page_accessed(page0);
3673 set_page_extent_mapped(page0);
3674 set_page_extent_head(page0, len);
3675 uptodate = PageUptodate(page0);
3676 } else {
3677 i = 0;
3678 }
3679 for (; i < num_pages; i++, index++) {
3680 p = find_or_create_page(mapping, index, GFP_NOFS);
3681 if (!p) {
3682 WARN_ON(1);
3683 goto free_eb;
3684 }
3685 set_page_extent_mapped(p);
3686 mark_page_accessed(p);
3687 if (i == 0) {
3688 eb->first_page = p;
3689 set_page_extent_head(p, len);
3690 } else {
3691 set_page_private(p, EXTENT_PAGE_PRIVATE);
3692 }
3693 if (!PageUptodate(p))
3694 uptodate = 0;
3695
3696 /*
3697 * see below about how we avoid a nasty race with release page
3698 * and why we unlock later
3699 */
3700 if (i != 0)
3701 unlock_page(p);
3702 }
3703 if (uptodate)
3704 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3705
3706 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3707 if (ret)
3708 goto free_eb;
3709
3710 spin_lock(&tree->buffer_lock);
3711 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3712 if (ret == -EEXIST) {
3713 exists = radix_tree_lookup(&tree->buffer,
3714 start >> PAGE_CACHE_SHIFT);
3715 /* add one reference for the caller */
3716 atomic_inc(&exists->refs);
3717 spin_unlock(&tree->buffer_lock);
3718 radix_tree_preload_end();
3719 goto free_eb;
3720 }
3721 /* add one reference for the tree */
3722 atomic_inc(&eb->refs);
3723 spin_unlock(&tree->buffer_lock);
3724 radix_tree_preload_end();
3725
3726 /*
3727 * there is a race where release page may have
3728 * tried to find this extent buffer in the radix
3729 * but failed. It will tell the VM it is safe to
3730 * reclaim the, and it will clear the page private bit.
3731 * We must make sure to set the page private bit properly
3732 * after the extent buffer is in the radix tree so
3733 * it doesn't get lost
3734 */
3735 set_page_extent_mapped(eb->first_page);
3736 set_page_extent_head(eb->first_page, eb->len);
3737 if (!page0)
3738 unlock_page(eb->first_page);
3739 return eb;
3740
3741 free_eb:
3742 if (eb->first_page && !page0)
3743 unlock_page(eb->first_page);
3744
3745 if (!atomic_dec_and_test(&eb->refs))
3746 return exists;
3747 btrfs_release_extent_buffer(eb);
3748 return exists;
3749 }
3750
3751 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3752 u64 start, unsigned long len)
3753 {
3754 struct extent_buffer *eb;
3755
3756 rcu_read_lock();
3757 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3758 if (eb && atomic_inc_not_zero(&eb->refs)) {
3759 rcu_read_unlock();
3760 mark_page_accessed(eb->first_page);
3761 return eb;
3762 }
3763 rcu_read_unlock();
3764
3765 return NULL;
3766 }
3767
3768 void free_extent_buffer(struct extent_buffer *eb)
3769 {
3770 if (!eb)
3771 return;
3772
3773 if (!atomic_dec_and_test(&eb->refs))
3774 return;
3775
3776 WARN_ON(1);
3777 }
3778
3779 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3780 struct extent_buffer *eb)
3781 {
3782 unsigned long i;
3783 unsigned long num_pages;
3784 struct page *page;
3785
3786 num_pages = num_extent_pages(eb->start, eb->len);
3787
3788 for (i = 0; i < num_pages; i++) {
3789 page = extent_buffer_page(eb, i);
3790 if (!PageDirty(page))
3791 continue;
3792
3793 lock_page(page);
3794 WARN_ON(!PagePrivate(page));
3795
3796 set_page_extent_mapped(page);
3797 if (i == 0)
3798 set_page_extent_head(page, eb->len);
3799
3800 clear_page_dirty_for_io(page);
3801 spin_lock_irq(&page->mapping->tree_lock);
3802 if (!PageDirty(page)) {
3803 radix_tree_tag_clear(&page->mapping->page_tree,
3804 page_index(page),
3805 PAGECACHE_TAG_DIRTY);
3806 }
3807 spin_unlock_irq(&page->mapping->tree_lock);
3808 ClearPageError(page);
3809 unlock_page(page);
3810 }
3811 return 0;
3812 }
3813
3814 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3815 struct extent_buffer *eb)
3816 {
3817 unsigned long i;
3818 unsigned long num_pages;
3819 int was_dirty = 0;
3820
3821 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3822 num_pages = num_extent_pages(eb->start, eb->len);
3823 for (i = 0; i < num_pages; i++)
3824 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3825 return was_dirty;
3826 }
3827
3828 static int __eb_straddles_pages(u64 start, u64 len)
3829 {
3830 if (len < PAGE_CACHE_SIZE)
3831 return 1;
3832 if (start & (PAGE_CACHE_SIZE - 1))
3833 return 1;
3834 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3835 return 1;
3836 return 0;
3837 }
3838
3839 static int eb_straddles_pages(struct extent_buffer *eb)
3840 {
3841 return __eb_straddles_pages(eb->start, eb->len);
3842 }
3843
3844 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3845 struct extent_buffer *eb,
3846 struct extent_state **cached_state)
3847 {
3848 unsigned long i;
3849 struct page *page;
3850 unsigned long num_pages;
3851
3852 num_pages = num_extent_pages(eb->start, eb->len);
3853 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3854
3855 if (eb_straddles_pages(eb)) {
3856 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3857 cached_state, GFP_NOFS);
3858 }
3859 for (i = 0; i < num_pages; i++) {
3860 page = extent_buffer_page(eb, i);
3861 if (page)
3862 ClearPageUptodate(page);
3863 }
3864 return 0;
3865 }
3866
3867 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3868 struct extent_buffer *eb)
3869 {
3870 unsigned long i;
3871 struct page *page;
3872 unsigned long num_pages;
3873
3874 num_pages = num_extent_pages(eb->start, eb->len);
3875
3876 if (eb_straddles_pages(eb)) {
3877 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3878 NULL, GFP_NOFS);
3879 }
3880 for (i = 0; i < num_pages; i++) {
3881 page = extent_buffer_page(eb, i);
3882 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3883 ((i == num_pages - 1) &&
3884 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3885 check_page_uptodate(tree, page);
3886 continue;
3887 }
3888 SetPageUptodate(page);
3889 }
3890 return 0;
3891 }
3892
3893 int extent_range_uptodate(struct extent_io_tree *tree,
3894 u64 start, u64 end)
3895 {
3896 struct page *page;
3897 int ret;
3898 int pg_uptodate = 1;
3899 int uptodate;
3900 unsigned long index;
3901
3902 if (__eb_straddles_pages(start, end - start + 1)) {
3903 ret = test_range_bit(tree, start, end,
3904 EXTENT_UPTODATE, 1, NULL);
3905 if (ret)
3906 return 1;
3907 }
3908 while (start <= end) {
3909 index = start >> PAGE_CACHE_SHIFT;
3910 page = find_get_page(tree->mapping, index);
3911 uptodate = PageUptodate(page);
3912 page_cache_release(page);
3913 if (!uptodate) {
3914 pg_uptodate = 0;
3915 break;
3916 }
3917 start += PAGE_CACHE_SIZE;
3918 }
3919 return pg_uptodate;
3920 }
3921
3922 int extent_buffer_uptodate(struct extent_io_tree *tree,
3923 struct extent_buffer *eb,
3924 struct extent_state *cached_state)
3925 {
3926 int ret = 0;
3927 unsigned long num_pages;
3928 unsigned long i;
3929 struct page *page;
3930 int pg_uptodate = 1;
3931
3932 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3933 return 1;
3934
3935 if (eb_straddles_pages(eb)) {
3936 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3937 EXTENT_UPTODATE, 1, cached_state);
3938 if (ret)
3939 return ret;
3940 }
3941
3942 num_pages = num_extent_pages(eb->start, eb->len);
3943 for (i = 0; i < num_pages; i++) {
3944 page = extent_buffer_page(eb, i);
3945 if (!PageUptodate(page)) {
3946 pg_uptodate = 0;
3947 break;
3948 }
3949 }
3950 return pg_uptodate;
3951 }
3952
3953 int read_extent_buffer_pages(struct extent_io_tree *tree,
3954 struct extent_buffer *eb, u64 start, int wait,
3955 get_extent_t *get_extent, int mirror_num)
3956 {
3957 unsigned long i;
3958 unsigned long start_i;
3959 struct page *page;
3960 int err;
3961 int ret = 0;
3962 int locked_pages = 0;
3963 int all_uptodate = 1;
3964 int inc_all_pages = 0;
3965 unsigned long num_pages;
3966 struct bio *bio = NULL;
3967 unsigned long bio_flags = 0;
3968
3969 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3970 return 0;
3971
3972 if (eb_straddles_pages(eb)) {
3973 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3974 EXTENT_UPTODATE, 1, NULL)) {
3975 return 0;
3976 }
3977 }
3978
3979 if (start) {
3980 WARN_ON(start < eb->start);
3981 start_i = (start >> PAGE_CACHE_SHIFT) -
3982 (eb->start >> PAGE_CACHE_SHIFT);
3983 } else {
3984 start_i = 0;
3985 }
3986
3987 num_pages = num_extent_pages(eb->start, eb->len);
3988 for (i = start_i; i < num_pages; i++) {
3989 page = extent_buffer_page(eb, i);
3990 if (wait == WAIT_NONE) {
3991 if (!trylock_page(page))
3992 goto unlock_exit;
3993 } else {
3994 lock_page(page);
3995 }
3996 locked_pages++;
3997 if (!PageUptodate(page))
3998 all_uptodate = 0;
3999 }
4000 if (all_uptodate) {
4001 if (start_i == 0)
4002 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4003 goto unlock_exit;
4004 }
4005
4006 for (i = start_i; i < num_pages; i++) {
4007 page = extent_buffer_page(eb, i);
4008
4009 WARN_ON(!PagePrivate(page));
4010
4011 set_page_extent_mapped(page);
4012 if (i == 0)
4013 set_page_extent_head(page, eb->len);
4014
4015 if (inc_all_pages)
4016 page_cache_get(page);
4017 if (!PageUptodate(page)) {
4018 if (start_i == 0)
4019 inc_all_pages = 1;
4020 ClearPageError(page);
4021 err = __extent_read_full_page(tree, page,
4022 get_extent, &bio,
4023 mirror_num, &bio_flags);
4024 if (err)
4025 ret = err;
4026 } else {
4027 unlock_page(page);
4028 }
4029 }
4030
4031 if (bio)
4032 submit_one_bio(READ, bio, mirror_num, bio_flags);
4033
4034 if (ret || wait != WAIT_COMPLETE)
4035 return ret;
4036
4037 for (i = start_i; i < num_pages; i++) {
4038 page = extent_buffer_page(eb, i);
4039 wait_on_page_locked(page);
4040 if (!PageUptodate(page))
4041 ret = -EIO;
4042 }
4043
4044 if (!ret)
4045 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4046 return ret;
4047
4048 unlock_exit:
4049 i = start_i;
4050 while (locked_pages > 0) {
4051 page = extent_buffer_page(eb, i);
4052 i++;
4053 unlock_page(page);
4054 locked_pages--;
4055 }
4056 return ret;
4057 }
4058
4059 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4060 unsigned long start,
4061 unsigned long len)
4062 {
4063 size_t cur;
4064 size_t offset;
4065 struct page *page;
4066 char *kaddr;
4067 char *dst = (char *)dstv;
4068 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4069 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4070
4071 WARN_ON(start > eb->len);
4072 WARN_ON(start + len > eb->start + eb->len);
4073
4074 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4075
4076 while (len > 0) {
4077 page = extent_buffer_page(eb, i);
4078
4079 cur = min(len, (PAGE_CACHE_SIZE - offset));
4080 kaddr = page_address(page);
4081 memcpy(dst, kaddr + offset, cur);
4082
4083 dst += cur;
4084 len -= cur;
4085 offset = 0;
4086 i++;
4087 }
4088 }
4089
4090 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4091 unsigned long min_len, char **map,
4092 unsigned long *map_start,
4093 unsigned long *map_len)
4094 {
4095 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4096 char *kaddr;
4097 struct page *p;
4098 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4099 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4100 unsigned long end_i = (start_offset + start + min_len - 1) >>
4101 PAGE_CACHE_SHIFT;
4102
4103 if (i != end_i)
4104 return -EINVAL;
4105
4106 if (i == 0) {
4107 offset = start_offset;
4108 *map_start = 0;
4109 } else {
4110 offset = 0;
4111 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4112 }
4113
4114 if (start + min_len > eb->len) {
4115 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4116 "wanted %lu %lu\n", (unsigned long long)eb->start,
4117 eb->len, start, min_len);
4118 WARN_ON(1);
4119 return -EINVAL;
4120 }
4121
4122 p = extent_buffer_page(eb, i);
4123 kaddr = page_address(p);
4124 *map = kaddr + offset;
4125 *map_len = PAGE_CACHE_SIZE - offset;
4126 return 0;
4127 }
4128
4129 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4130 unsigned long start,
4131 unsigned long len)
4132 {
4133 size_t cur;
4134 size_t offset;
4135 struct page *page;
4136 char *kaddr;
4137 char *ptr = (char *)ptrv;
4138 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4139 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4140 int ret = 0;
4141
4142 WARN_ON(start > eb->len);
4143 WARN_ON(start + len > eb->start + eb->len);
4144
4145 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4146
4147 while (len > 0) {
4148 page = extent_buffer_page(eb, i);
4149
4150 cur = min(len, (PAGE_CACHE_SIZE - offset));
4151
4152 kaddr = page_address(page);
4153 ret = memcmp(ptr, kaddr + offset, cur);
4154 if (ret)
4155 break;
4156
4157 ptr += cur;
4158 len -= cur;
4159 offset = 0;
4160 i++;
4161 }
4162 return ret;
4163 }
4164
4165 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4166 unsigned long start, unsigned long len)
4167 {
4168 size_t cur;
4169 size_t offset;
4170 struct page *page;
4171 char *kaddr;
4172 char *src = (char *)srcv;
4173 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4174 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4175
4176 WARN_ON(start > eb->len);
4177 WARN_ON(start + len > eb->start + eb->len);
4178
4179 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4180
4181 while (len > 0) {
4182 page = extent_buffer_page(eb, i);
4183 WARN_ON(!PageUptodate(page));
4184
4185 cur = min(len, PAGE_CACHE_SIZE - offset);
4186 kaddr = page_address(page);
4187 memcpy(kaddr + offset, src, cur);
4188
4189 src += cur;
4190 len -= cur;
4191 offset = 0;
4192 i++;
4193 }
4194 }
4195
4196 void memset_extent_buffer(struct extent_buffer *eb, char c,
4197 unsigned long start, unsigned long len)
4198 {
4199 size_t cur;
4200 size_t offset;
4201 struct page *page;
4202 char *kaddr;
4203 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4204 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4205
4206 WARN_ON(start > eb->len);
4207 WARN_ON(start + len > eb->start + eb->len);
4208
4209 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4210
4211 while (len > 0) {
4212 page = extent_buffer_page(eb, i);
4213 WARN_ON(!PageUptodate(page));
4214
4215 cur = min(len, PAGE_CACHE_SIZE - offset);
4216 kaddr = page_address(page);
4217 memset(kaddr + offset, c, cur);
4218
4219 len -= cur;
4220 offset = 0;
4221 i++;
4222 }
4223 }
4224
4225 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4226 unsigned long dst_offset, unsigned long src_offset,
4227 unsigned long len)
4228 {
4229 u64 dst_len = dst->len;
4230 size_t cur;
4231 size_t offset;
4232 struct page *page;
4233 char *kaddr;
4234 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4235 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4236
4237 WARN_ON(src->len != dst_len);
4238
4239 offset = (start_offset + dst_offset) &
4240 ((unsigned long)PAGE_CACHE_SIZE - 1);
4241
4242 while (len > 0) {
4243 page = extent_buffer_page(dst, i);
4244 WARN_ON(!PageUptodate(page));
4245
4246 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4247
4248 kaddr = page_address(page);
4249 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4250
4251 src_offset += cur;
4252 len -= cur;
4253 offset = 0;
4254 i++;
4255 }
4256 }
4257
4258 static void move_pages(struct page *dst_page, struct page *src_page,
4259 unsigned long dst_off, unsigned long src_off,
4260 unsigned long len)
4261 {
4262 char *dst_kaddr = page_address(dst_page);
4263 if (dst_page == src_page) {
4264 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4265 } else {
4266 char *src_kaddr = page_address(src_page);
4267 char *p = dst_kaddr + dst_off + len;
4268 char *s = src_kaddr + src_off + len;
4269
4270 while (len--)
4271 *--p = *--s;
4272 }
4273 }
4274
4275 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4276 {
4277 unsigned long distance = (src > dst) ? src - dst : dst - src;
4278 return distance < len;
4279 }
4280
4281 static void copy_pages(struct page *dst_page, struct page *src_page,
4282 unsigned long dst_off, unsigned long src_off,
4283 unsigned long len)
4284 {
4285 char *dst_kaddr = page_address(dst_page);
4286 char *src_kaddr;
4287
4288 if (dst_page != src_page) {
4289 src_kaddr = page_address(src_page);
4290 } else {
4291 src_kaddr = dst_kaddr;
4292 BUG_ON(areas_overlap(src_off, dst_off, len));
4293 }
4294
4295 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4296 }
4297
4298 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4299 unsigned long src_offset, unsigned long len)
4300 {
4301 size_t cur;
4302 size_t dst_off_in_page;
4303 size_t src_off_in_page;
4304 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4305 unsigned long dst_i;
4306 unsigned long src_i;
4307
4308 if (src_offset + len > dst->len) {
4309 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4310 "len %lu dst len %lu\n", src_offset, len, dst->len);
4311 BUG_ON(1);
4312 }
4313 if (dst_offset + len > dst->len) {
4314 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4315 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4316 BUG_ON(1);
4317 }
4318
4319 while (len > 0) {
4320 dst_off_in_page = (start_offset + dst_offset) &
4321 ((unsigned long)PAGE_CACHE_SIZE - 1);
4322 src_off_in_page = (start_offset + src_offset) &
4323 ((unsigned long)PAGE_CACHE_SIZE - 1);
4324
4325 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4326 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4327
4328 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4329 src_off_in_page));
4330 cur = min_t(unsigned long, cur,
4331 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4332
4333 copy_pages(extent_buffer_page(dst, dst_i),
4334 extent_buffer_page(dst, src_i),
4335 dst_off_in_page, src_off_in_page, cur);
4336
4337 src_offset += cur;
4338 dst_offset += cur;
4339 len -= cur;
4340 }
4341 }
4342
4343 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4344 unsigned long src_offset, unsigned long len)
4345 {
4346 size_t cur;
4347 size_t dst_off_in_page;
4348 size_t src_off_in_page;
4349 unsigned long dst_end = dst_offset + len - 1;
4350 unsigned long src_end = src_offset + len - 1;
4351 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4352 unsigned long dst_i;
4353 unsigned long src_i;
4354
4355 if (src_offset + len > dst->len) {
4356 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4357 "len %lu len %lu\n", src_offset, len, dst->len);
4358 BUG_ON(1);
4359 }
4360 if (dst_offset + len > dst->len) {
4361 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4362 "len %lu len %lu\n", dst_offset, len, dst->len);
4363 BUG_ON(1);
4364 }
4365 if (!areas_overlap(src_offset, dst_offset, len)) {
4366 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4367 return;
4368 }
4369 while (len > 0) {
4370 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4371 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4372
4373 dst_off_in_page = (start_offset + dst_end) &
4374 ((unsigned long)PAGE_CACHE_SIZE - 1);
4375 src_off_in_page = (start_offset + src_end) &
4376 ((unsigned long)PAGE_CACHE_SIZE - 1);
4377
4378 cur = min_t(unsigned long, len, src_off_in_page + 1);
4379 cur = min(cur, dst_off_in_page + 1);
4380 move_pages(extent_buffer_page(dst, dst_i),
4381 extent_buffer_page(dst, src_i),
4382 dst_off_in_page - cur + 1,
4383 src_off_in_page - cur + 1, cur);
4384
4385 dst_end -= cur;
4386 src_end -= cur;
4387 len -= cur;
4388 }
4389 }
4390
4391 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4392 {
4393 struct extent_buffer *eb =
4394 container_of(head, struct extent_buffer, rcu_head);
4395
4396 btrfs_release_extent_buffer(eb);
4397 }
4398
4399 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4400 {
4401 u64 start = page_offset(page);
4402 struct extent_buffer *eb;
4403 int ret = 1;
4404
4405 spin_lock(&tree->buffer_lock);
4406 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4407 if (!eb) {
4408 spin_unlock(&tree->buffer_lock);
4409 return ret;
4410 }
4411
4412 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4413 ret = 0;
4414 goto out;
4415 }
4416
4417 /*
4418 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4419 * Or go back.
4420 */
4421 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4422 ret = 0;
4423 goto out;
4424 }
4425
4426 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4427 out:
4428 spin_unlock(&tree->buffer_lock);
4429
4430 /* at this point we can safely release the extent buffer */
4431 if (atomic_read(&eb->refs) == 0)
4432 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4433 return ret;
4434 }