]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent_io.c
reset: Restrict RESET_HSDK to ARC_SOC_HSDK or COMPILE_TEST
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 refcount_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
78 eb->start, eb->len, atomic_read(&eb->refs));
79 list_del(&eb->leak_list);
80 kmem_cache_free(extent_buffer_cache, eb);
81 }
82 }
83
84 #define btrfs_debug_check_extent_io_range(tree, start, end) \
85 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
86 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
87 struct extent_io_tree *tree, u64 start, u64 end)
88 {
89 if (tree->ops && tree->ops->check_extent_io_range)
90 tree->ops->check_extent_io_range(tree->private_data, caller,
91 start, end);
92 }
93 #else
94 #define btrfs_leak_debug_add(new, head) do {} while (0)
95 #define btrfs_leak_debug_del(entry) do {} while (0)
96 #define btrfs_leak_debug_check() do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
98 #endif
99
100 #define BUFFER_LRU_MAX 64
101
102 struct tree_entry {
103 u64 start;
104 u64 end;
105 struct rb_node rb_node;
106 };
107
108 struct extent_page_data {
109 struct bio *bio;
110 struct extent_io_tree *tree;
111 get_extent_t *get_extent;
112 unsigned long bio_flags;
113
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121 };
122
123 static void add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126 {
127 int ret;
128
129 if (!changeset)
130 return;
131 if (set && (state->state & bits) == bits)
132 return;
133 if (!set && (state->state & bits) == 0)
134 return;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 /* ENOMEM */
139 BUG_ON(ret < 0);
140 }
141
142 static noinline void flush_write_bio(void *data);
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
145 {
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
149 }
150
151 int __init extent_io_init(void)
152 {
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
157 return -ENOMEM;
158
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176 free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180 free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184 free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188 }
189
190 void extent_io_exit(void)
191 {
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203 }
204
205 void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207 {
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213 }
214
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235 }
236
237 void free_extent_state(struct extent_state *state)
238 {
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247 }
248
249 static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255 {
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279 do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283 }
284
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290 {
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335 }
336
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342 {
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350 }
351
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354 {
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360 {
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364
365 /*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374 static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376 {
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407 }
408
409 static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411 {
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415
416 static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418 {
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422
423 static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427 /*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437 static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442 {
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463 }
464
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467 {
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471
472 /*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488 {
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505 }
506
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514 }
515
516 /*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527 {
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530
531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
536 clear_state_cb(tree, state, bits);
537 add_extent_changeset(state, bits_to_clear, changeset, 0);
538 state->state &= ~bits_to_clear;
539 if (wake)
540 wake_up(&state->wq);
541 if (state->state == 0) {
542 next = next_state(state);
543 if (extent_state_in_tree(state)) {
544 rb_erase(&state->rb_node, &tree->state);
545 RB_CLEAR_NODE(&state->rb_node);
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
552 next = next_state(state);
553 }
554 return next;
555 }
556
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
559 {
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564 }
565
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567 {
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
570 }
571
572 /*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
582 * This takes the tree lock, and returns 0 on success and < 0 on error.
583 */
584 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
588 {
589 struct extent_state *state;
590 struct extent_state *cached;
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
593 u64 last_end;
594 int err;
595 int clear = 0;
596
597 btrfs_debug_check_extent_io_range(tree, start, end);
598
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
608 again:
609 if (!prealloc && gfpflags_allow_blocking(mask)) {
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
617 prealloc = alloc_extent_state(mask);
618 }
619
620 spin_lock(&tree->lock);
621 if (cached_state) {
622 cached = *cached_state;
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
631 if (clear)
632 refcount_dec(&cached->refs);
633 state = cached;
634 goto hit_next;
635 }
636 if (clear)
637 free_extent_state(cached);
638 }
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
643 node = tree_search(tree, start);
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
647 hit_next:
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
651 last_end = state->end;
652
653 /* the state doesn't have the wanted bits, go ahead */
654 if (!(state->state & bits)) {
655 state = next_state(state);
656 goto next;
657 }
658
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
678 err = split_state(tree, state, prealloc, start);
679 if (err)
680 extent_io_tree_panic(tree, err);
681
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
688 goto next;
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
701 err = split_state(tree, state, prealloc, end + 1);
702 if (err)
703 extent_io_tree_panic(tree, err);
704
705 if (wake)
706 wake_up(&state->wq);
707
708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
709
710 prealloc = NULL;
711 goto out;
712 }
713
714 state = clear_state_bit(tree, state, &bits, wake, changeset);
715 next:
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
719 if (start <= end && state && !need_resched())
720 goto hit_next;
721
722 search_again:
723 if (start > end)
724 goto out;
725 spin_unlock(&tree->lock);
726 if (gfpflags_allow_blocking(mask))
727 cond_resched();
728 goto again;
729
730 out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
737 }
738
739 static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
741 __releases(tree->lock)
742 __acquires(tree->lock)
743 {
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746 spin_unlock(&tree->lock);
747 schedule();
748 spin_lock(&tree->lock);
749 finish_wait(&state->wq, &wait);
750 }
751
752 /*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
759 {
760 struct extent_state *state;
761 struct rb_node *node;
762
763 btrfs_debug_check_extent_io_range(tree, start, end);
764
765 spin_lock(&tree->lock);
766 again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
772 node = tree_search(tree, start);
773 process_node:
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
784 refcount_inc(&state->refs);
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
798 }
799 out:
800 spin_unlock(&tree->lock);
801 }
802
803 static void set_state_bits(struct extent_io_tree *tree,
804 struct extent_state *state,
805 unsigned *bits, struct extent_changeset *changeset)
806 {
807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
808
809 set_state_cb(tree, state, bits);
810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
814 add_extent_changeset(state, bits_to_set, changeset, 1);
815 state->state |= bits_to_set;
816 }
817
818 static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
820 unsigned flags)
821 {
822 if (cached_ptr && !(*cached_ptr)) {
823 if (!flags || (state->state & flags)) {
824 *cached_ptr = state;
825 refcount_inc(&state->refs);
826 }
827 }
828 }
829
830 static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832 {
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835 }
836
837 /*
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
840 *
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
844 *
845 * [start, end] is inclusive This takes the tree lock.
846 */
847
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850 unsigned bits, unsigned exclusive_bits,
851 u64 *failed_start, struct extent_state **cached_state,
852 gfp_t mask, struct extent_changeset *changeset)
853 {
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
857 struct rb_node **p;
858 struct rb_node *parent;
859 int err = 0;
860 u64 last_start;
861 u64 last_end;
862
863 btrfs_debug_check_extent_io_range(tree, start, end);
864
865 bits |= EXTENT_FIRST_DELALLOC;
866 again:
867 if (!prealloc && gfpflags_allow_blocking(mask)) {
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
875 prealloc = alloc_extent_state(mask);
876 }
877
878 spin_lock(&tree->lock);
879 if (cached_state && *cached_state) {
880 state = *cached_state;
881 if (state->start <= start && state->end > start &&
882 extent_state_in_tree(state)) {
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
891 node = tree_search_for_insert(tree, start, &p, &parent);
892 if (!node) {
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
895 err = insert_state(tree, prealloc, start, end,
896 &p, &parent, &bits, changeset);
897 if (err)
898 extent_io_tree_panic(tree, err);
899
900 cache_state(prealloc, cached_state);
901 prealloc = NULL;
902 goto out;
903 }
904 state = rb_entry(node, struct extent_state, rb_node);
905 hit_next:
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
916 if (state->state & exclusive_bits) {
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
921
922 set_state_bits(tree, state, &bits, changeset);
923 cache_state(state, cached_state);
924 merge_state(tree, state);
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
952 if (state->state & exclusive_bits) {
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
960 err = split_state(tree, state, prealloc, start);
961 if (err)
962 extent_io_tree_panic(tree, err);
963
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
968 set_state_bits(tree, state, &bits, changeset);
969 cache_state(state, cached_state);
970 merge_state(tree, state);
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
993 this_end = last_start - 1;
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
1002 err = insert_state(tree, prealloc, start, this_end,
1003 NULL, NULL, &bits, changeset);
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1019 if (state->state & exclusive_bits) {
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
1027 err = split_state(tree, state, prealloc, end + 1);
1028 if (err)
1029 extent_io_tree_panic(tree, err);
1030
1031 set_state_bits(tree, prealloc, &bits, changeset);
1032 cache_state(prealloc, cached_state);
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
1038 search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
1045
1046 out:
1047 spin_unlock(&tree->lock);
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
1053 }
1054
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056 unsigned bits, u64 * failed_start,
1057 struct extent_state **cached_state, gfp_t mask)
1058 {
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060 cached_state, mask, NULL);
1061 }
1062
1063
1064 /**
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
1072 * @cached_state: state that we're going to cache
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
1079 *
1080 * All allocations are done with GFP_NOFS.
1081 */
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083 unsigned bits, unsigned clear_bits,
1084 struct extent_state **cached_state)
1085 {
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
1089 struct rb_node **p;
1090 struct rb_node *parent;
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
1094 bool first_iteration = true;
1095
1096 btrfs_debug_check_extent_io_range(tree, start, end);
1097
1098 again:
1099 if (!prealloc) {
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
1107 prealloc = alloc_extent_state(GFP_NOFS);
1108 if (!prealloc && !first_iteration)
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
1116 extent_state_in_tree(state)) {
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
1126 node = tree_search_for_insert(tree, start, &p, &parent);
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
1133 err = insert_state(tree, prealloc, start, end,
1134 &p, &parent, &bits, NULL);
1135 if (err)
1136 extent_io_tree_panic(tree, err);
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142 hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
1153 set_state_bits(tree, state, &bits, NULL);
1154 cache_state(state, cached_state);
1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
1187 err = split_state(tree, state, prealloc, start);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
1194 set_state_bits(tree, state, &bits, NULL);
1195 cache_state(state, cached_state);
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
1232 NULL, NULL, &bits, NULL);
1233 if (err)
1234 extent_io_tree_panic(tree, err);
1235 cache_state(prealloc, cached_state);
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
1252
1253 err = split_state(tree, state, prealloc, end + 1);
1254 if (err)
1255 extent_io_tree_panic(tree, err);
1256
1257 set_state_bits(tree, prealloc, &bits, NULL);
1258 cache_state(prealloc, cached_state);
1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
1264 search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
1268 cond_resched();
1269 first_iteration = false;
1270 goto again;
1271
1272 out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
1278 }
1279
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282 unsigned bits, struct extent_changeset *changeset)
1283 {
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1293 changeset);
1294 }
1295
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299 {
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302 }
1303
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, struct extent_changeset *changeset)
1306 {
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1314 changeset);
1315 }
1316
1317 /*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state)
1323 {
1324 int err;
1325 u64 failed_start;
1326
1327 while (1) {
1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329 EXTENT_LOCKED, &failed_start,
1330 cached_state, GFP_NOFS, NULL);
1331 if (err == -EEXIST) {
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
1334 } else
1335 break;
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339 }
1340
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1342 {
1343 int err;
1344 u64 failed_start;
1345
1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347 &failed_start, NULL, GFP_NOFS, NULL);
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1352 return 0;
1353 }
1354 return 1;
1355 }
1356
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1358 {
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
1367 put_page(page);
1368 index++;
1369 }
1370 }
1371
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 __set_page_dirty_nobuffers(page);
1382 account_page_redirty(page);
1383 put_page(page);
1384 index++;
1385 }
1386 }
1387
1388 /*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393 tree->ops->set_range_writeback(tree->private_data, start, end);
1394 }
1395
1396 /* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402 u64 start, unsigned bits)
1403 {
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
1412 if (!node)
1413 goto out;
1414
1415 while (1) {
1416 state = rb_entry(node, struct extent_state, rb_node);
1417 if (state->end >= start && (state->state & bits))
1418 return state;
1419
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424 out:
1425 return NULL;
1426 }
1427
1428 /*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
1433 * If nothing was found, 1 is returned. If found something, return 0.
1434 */
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436 u64 *start_ret, u64 *end_ret, unsigned bits,
1437 struct extent_state **cached_state)
1438 {
1439 struct extent_state *state;
1440 struct rb_node *n;
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
1463 state = find_first_extent_bit_state(tree, start, bits);
1464 got_it:
1465 if (state) {
1466 cache_state_if_flags(state, cached_state, 0);
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
1471 out:
1472 spin_unlock(&tree->lock);
1473 return ret;
1474 }
1475
1476 /*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
1485 {
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
1492 spin_lock(&tree->lock);
1493
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
1498 node = tree_search(tree, cur_start);
1499 if (!node) {
1500 if (!found)
1501 *end = (u64)-1;
1502 goto out;
1503 }
1504
1505 while (1) {
1506 state = rb_entry(node, struct extent_state, rb_node);
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
1516 if (!found) {
1517 *start = state->start;
1518 *cached_state = state;
1519 refcount_inc(&state->refs);
1520 }
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
1525 total_bytes += state->end - state->start + 1;
1526 if (total_bytes >= max_bytes)
1527 break;
1528 if (!node)
1529 break;
1530 }
1531 out:
1532 spin_unlock(&tree->lock);
1533 return found;
1534 }
1535
1536 static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
1544 {
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
1547
1548 ASSERT(locked_page);
1549 if (index == locked_page->index && end_index == index)
1550 return;
1551
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
1554 }
1555
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560 {
1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
1562 unsigned long index_ret = index;
1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1564 int ret;
1565
1566 ASSERT(locked_page);
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
1575 return ret;
1576 }
1577
1578 /*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
1588 {
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
1592 struct extent_state *cached_state = NULL;
1593 int ret;
1594 int loops = 0;
1595
1596 again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601 max_bytes, &cached_state);
1602 if (!found || delalloc_end <= *start) {
1603 *start = delalloc_start;
1604 *end = delalloc_end;
1605 free_extent_state(cached_state);
1606 return 0;
1607 }
1608
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
1614 if (delalloc_start < *start)
1615 delalloc_start = *start;
1616
1617 /*
1618 * make sure to limit the number of pages we try to lock down
1619 */
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
1622
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
1630 free_extent_state(cached_state);
1631 cached_state = NULL;
1632 if (!loops) {
1633 max_bytes = PAGE_SIZE;
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1642
1643 /* step three, lock the state bits for the whole range */
1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648 EXTENT_DELALLOC, 1, cached_state);
1649 if (!ret) {
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
1657 free_extent_state(cached_state);
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660 out_failed:
1661 return found;
1662 }
1663
1664 static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
1668 {
1669 unsigned long nr_pages = end_index - start_index + 1;
1670 unsigned long pages_locked = 0;
1671 pgoff_t index = start_index;
1672 struct page *pages[16];
1673 unsigned ret;
1674 int err = 0;
1675 int i;
1676
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683 mapping_set_error(mapping, -EIO);
1684
1685 while (nr_pages > 0) {
1686 ret = find_get_pages_contig(mapping, index,
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698
1699 for (i = 0; i < ret; i++) {
1700 if (page_ops & PAGE_SET_PRIVATE2)
1701 SetPagePrivate2(pages[i]);
1702
1703 if (pages[i] == locked_page) {
1704 put_page(pages[i]);
1705 pages_locked++;
1706 continue;
1707 }
1708 if (page_ops & PAGE_CLEAR_DIRTY)
1709 clear_page_dirty_for_io(pages[i]);
1710 if (page_ops & PAGE_SET_WRITEBACK)
1711 set_page_writeback(pages[i]);
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
1714 if (page_ops & PAGE_END_WRITEBACK)
1715 end_page_writeback(pages[i]);
1716 if (page_ops & PAGE_UNLOCK)
1717 unlock_page(pages[i]);
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
1728 put_page(pages[i]);
1729 pages_locked++;
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
1735 out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
1739 }
1740
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745 {
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1751 page_ops, NULL);
1752 }
1753
1754 /*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
1761 unsigned bits, int contig)
1762 {
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
1767 u64 last = 0;
1768 int found = 0;
1769
1770 if (WARN_ON(search_end <= cur_start))
1771 return 0;
1772
1773 spin_lock(&tree->lock);
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
1782 node = tree_search(tree, cur_start);
1783 if (!node)
1784 goto out;
1785
1786 while (1) {
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
1798 *start = max(cur_start, state->start);
1799 found = 1;
1800 }
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809 out:
1810 spin_unlock(&tree->lock);
1811 return total_bytes;
1812 }
1813
1814 /*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819 struct io_failure_record *failrec)
1820 {
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
1825 spin_lock(&tree->lock);
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
1830 node = tree_search(tree, start);
1831 if (!node) {
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 state->failrec = failrec;
1841 out:
1842 spin_unlock(&tree->lock);
1843 return ret;
1844 }
1845
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record **failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 *failrec = state->failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 /*
1875 * searches a range in the state tree for a given mask.
1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881 unsigned bits, int filled, struct extent_state *cached)
1882 {
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
1886
1887 spin_lock(&tree->lock);
1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889 cached->end > start)
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
1926 spin_unlock(&tree->lock);
1927 return bitset;
1928 }
1929
1930 /*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1935 {
1936 u64 start = page_offset(page);
1937 u64 end = start + PAGE_SIZE - 1;
1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939 SetPageUptodate(page);
1940 }
1941
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
1945 {
1946 int ret;
1947 int err = 0;
1948
1949 set_state_failrec(failure_tree, rec->start, NULL);
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
1952 EXTENT_LOCKED | EXTENT_DIRTY);
1953 if (ret)
1954 err = ret;
1955
1956 ret = clear_extent_bits(io_tree, rec->start,
1957 rec->start + rec->len - 1,
1958 EXTENT_DAMAGED);
1959 if (ret && !err)
1960 err = ret;
1961
1962 kfree(rec);
1963 return err;
1964 }
1965
1966 /*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
1971 * to avoid any synchronization issues, wait for the data after writing, which
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
1979 {
1980 struct bio *bio;
1981 struct btrfs_device *dev;
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1988 BUG_ON(!mirror_num);
1989
1990 bio = btrfs_io_bio_alloc(1);
1991 bio->bi_iter.bi_size = 0;
1992 map_length = length;
1993
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
2024 }
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027 bio->bi_iter.bi_sector = sector;
2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029 btrfs_put_bbio(bbio);
2030 if (!dev || !dev->bdev || !dev->writeable) {
2031 btrfs_bio_counter_dec(fs_info);
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 bio_set_dev(bio, dev->bdev);
2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2037 bio_add_page(bio, page, length, pg_offset);
2038
2039 if (btrfsic_submit_bio_wait(bio)) {
2040 /* try to remap that extent elsewhere? */
2041 btrfs_bio_counter_dec(fs_info);
2042 bio_put(bio);
2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2044 return -EIO;
2045 }
2046
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2049 ino, start,
2050 rcu_str_deref(dev->name), sector);
2051 btrfs_bio_counter_dec(fs_info);
2052 bio_put(bio);
2053 return 0;
2054 }
2055
2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
2058 {
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2061 int ret = 0;
2062
2063 if (sb_rdonly(fs_info->sb))
2064 return -EROFS;
2065
2066 for (i = 0; i < num_pages; i++) {
2067 struct page *p = eb->pages[i];
2068
2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2070 start - page_offset(p), mirror_num);
2071 if (ret)
2072 break;
2073 start += PAGE_SIZE;
2074 }
2075
2076 return ret;
2077 }
2078
2079 /*
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2082 */
2083 int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
2087 {
2088 u64 private;
2089 struct io_failure_record *failrec;
2090 struct extent_state *state;
2091 int num_copies;
2092 int ret;
2093
2094 private = 0;
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096 EXTENT_DIRTY, 0);
2097 if (!ret)
2098 return 0;
2099
2100 ret = get_state_failrec(failure_tree, start, &failrec);
2101 if (ret)
2102 return 0;
2103
2104 BUG_ON(!failrec->this_mirror);
2105
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2110 failrec->start);
2111 goto out;
2112 }
2113 if (sb_rdonly(fs_info->sb))
2114 goto out;
2115
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
2118 failrec->start,
2119 EXTENT_LOCKED);
2120 spin_unlock(&io_tree->lock);
2121
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125 failrec->len);
2126 if (num_copies > 1) {
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
2130 }
2131 }
2132
2133 out:
2134 free_io_failure(failure_tree, io_tree, failrec);
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2144 */
2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2146 {
2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2150
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2152 return;
2153
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156 while (state) {
2157 if (state->start > end)
2158 break;
2159
2160 ASSERT(state->end <= end);
2161
2162 next = next_state(state);
2163
2164 failrec = state->failrec;
2165 free_extent_state(state);
2166 kfree(failrec);
2167
2168 state = next;
2169 }
2170 spin_unlock(&failure_tree->lock);
2171 }
2172
2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2174 struct io_failure_record **failrec_ret)
2175 {
2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177 struct io_failure_record *failrec;
2178 struct extent_map *em;
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2182 int ret;
2183 u64 logical;
2184
2185 ret = get_state_failrec(failure_tree, start, &failrec);
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2190
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
2205 if (em->start > start || em->start + em->len <= start) {
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
2210 if (!em) {
2211 kfree(failrec);
2212 return -EIO;
2213 }
2214
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2223
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2227
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
2233 EXTENT_LOCKED | EXTENT_DIRTY);
2234 if (ret >= 0)
2235 ret = set_state_failrec(failure_tree, start, failrec);
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258 }
2259
2260 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261 struct io_failure_record *failrec, int failed_mirror)
2262 {
2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2264 int num_copies;
2265
2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
2276 return false;
2277 }
2278
2279 /*
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2283 */
2284 if (failed_bio->bi_vcnt > 1) {
2285 /*
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2289 *
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2292 */
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
2311 }
2312
2313 if (failrec->this_mirror > num_copies) {
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
2317 return false;
2318 }
2319
2320 return true;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2328 {
2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
2334 bio = btrfs_io_bio_alloc(1);
2335 bio->bi_end_io = endio_func;
2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
2337 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2338 bio->bi_iter.bi_size = 0;
2339 bio->bi_private = data;
2340
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2349 csum_size);
2350 }
2351
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355 }
2356
2357 /*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368 {
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2373 struct bio *bio;
2374 int read_mode = 0;
2375 blk_status_t status;
2376 int ret;
2377
2378 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2379
2380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2381 if (ret)
2382 return ret;
2383
2384 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2385 failed_mirror)) {
2386 free_io_failure(failure_tree, tree, failrec);
2387 return -EIO;
2388 }
2389
2390 if (failed_bio->bi_vcnt > 1)
2391 read_mode |= REQ_FAILFAST_DEV;
2392
2393 phy_offset >>= inode->i_sb->s_blocksize_bits;
2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2395 start - page_offset(page),
2396 (int)phy_offset, failed_bio->bi_end_io,
2397 NULL);
2398 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2399
2400 btrfs_debug(btrfs_sb(inode->i_sb),
2401 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2402 read_mode, failrec->this_mirror, failrec->in_validation);
2403
2404 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2405 failrec->bio_flags, 0);
2406 if (status) {
2407 free_io_failure(failure_tree, tree, failrec);
2408 bio_put(bio);
2409 ret = blk_status_to_errno(status);
2410 }
2411
2412 return ret;
2413 }
2414
2415 /* lots and lots of room for performance fixes in the end_bio funcs */
2416
2417 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2418 {
2419 int uptodate = (err == 0);
2420 struct extent_io_tree *tree;
2421 int ret = 0;
2422
2423 tree = &BTRFS_I(page->mapping->host)->io_tree;
2424
2425 if (tree->ops && tree->ops->writepage_end_io_hook)
2426 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2427 uptodate);
2428
2429 if (!uptodate) {
2430 ClearPageUptodate(page);
2431 SetPageError(page);
2432 ret = err < 0 ? err : -EIO;
2433 mapping_set_error(page->mapping, ret);
2434 }
2435 }
2436
2437 /*
2438 * after a writepage IO is done, we need to:
2439 * clear the uptodate bits on error
2440 * clear the writeback bits in the extent tree for this IO
2441 * end_page_writeback if the page has no more pending IO
2442 *
2443 * Scheduling is not allowed, so the extent state tree is expected
2444 * to have one and only one object corresponding to this IO.
2445 */
2446 static void end_bio_extent_writepage(struct bio *bio)
2447 {
2448 int error = blk_status_to_errno(bio->bi_status);
2449 struct bio_vec *bvec;
2450 u64 start;
2451 u64 end;
2452 int i;
2453
2454 ASSERT(!bio_flagged(bio, BIO_CLONED));
2455 bio_for_each_segment_all(bvec, bio, i) {
2456 struct page *page = bvec->bv_page;
2457 struct inode *inode = page->mapping->host;
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2459
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2467 btrfs_err(fs_info,
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2470 else
2471 btrfs_info(fs_info,
2472 "incomplete page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 }
2475
2476 start = page_offset(page);
2477 end = start + bvec->bv_offset + bvec->bv_len - 1;
2478
2479 end_extent_writepage(page, error, start, end);
2480 end_page_writeback(page);
2481 }
2482
2483 bio_put(bio);
2484 }
2485
2486 static void
2487 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2488 int uptodate)
2489 {
2490 struct extent_state *cached = NULL;
2491 u64 end = start + len - 1;
2492
2493 if (uptodate && tree->track_uptodate)
2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2496 }
2497
2498 /*
2499 * after a readpage IO is done, we need to:
2500 * clear the uptodate bits on error
2501 * set the uptodate bits if things worked
2502 * set the page up to date if all extents in the tree are uptodate
2503 * clear the lock bit in the extent tree
2504 * unlock the page if there are no other extents locked for it
2505 *
2506 * Scheduling is not allowed, so the extent state tree is expected
2507 * to have one and only one object corresponding to this IO.
2508 */
2509 static void end_bio_extent_readpage(struct bio *bio)
2510 {
2511 struct bio_vec *bvec;
2512 int uptodate = !bio->bi_status;
2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2514 struct extent_io_tree *tree, *failure_tree;
2515 u64 offset = 0;
2516 u64 start;
2517 u64 end;
2518 u64 len;
2519 u64 extent_start = 0;
2520 u64 extent_len = 0;
2521 int mirror;
2522 int ret;
2523 int i;
2524
2525 ASSERT(!bio_flagged(bio, BIO_CLONED));
2526 bio_for_each_segment_all(bvec, bio, i) {
2527 struct page *page = bvec->bv_page;
2528 struct inode *inode = page->mapping->host;
2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530
2531 btrfs_debug(fs_info,
2532 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2533 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2534 io_bio->mirror_num);
2535 tree = &BTRFS_I(inode)->io_tree;
2536 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2537
2538 /* We always issue full-page reads, but if some block
2539 * in a page fails to read, blk_update_request() will
2540 * advance bv_offset and adjust bv_len to compensate.
2541 * Print a warning for nonzero offsets, and an error
2542 * if they don't add up to a full page. */
2543 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2544 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2545 btrfs_err(fs_info,
2546 "partial page read in btrfs with offset %u and length %u",
2547 bvec->bv_offset, bvec->bv_len);
2548 else
2549 btrfs_info(fs_info,
2550 "incomplete page read in btrfs with offset %u and length %u",
2551 bvec->bv_offset, bvec->bv_len);
2552 }
2553
2554 start = page_offset(page);
2555 end = start + bvec->bv_offset + bvec->bv_len - 1;
2556 len = bvec->bv_len;
2557
2558 mirror = io_bio->mirror_num;
2559 if (likely(uptodate && tree->ops)) {
2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2561 page, start, end,
2562 mirror);
2563 if (ret)
2564 uptodate = 0;
2565 else
2566 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2567 failure_tree, tree, start,
2568 page,
2569 btrfs_ino(BTRFS_I(inode)), 0);
2570 }
2571
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
2575 if (tree->ops) {
2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 if (ret == -EAGAIN) {
2578 /*
2579 * Data inode's readpage_io_failed_hook() always
2580 * returns -EAGAIN.
2581 *
2582 * The generic bio_readpage_error handles errors
2583 * the following way: If possible, new read
2584 * requests are created and submitted and will
2585 * end up in end_bio_extent_readpage as well (if
2586 * we're lucky, not in the !uptodate case). In
2587 * that case it returns 0 and we just go on with
2588 * the next page in our bio. If it can't handle
2589 * the error it will return -EIO and we remain
2590 * responsible for that page.
2591 */
2592 ret = bio_readpage_error(bio, offset, page,
2593 start, end, mirror);
2594 if (ret == 0) {
2595 uptodate = !bio->bi_status;
2596 offset += len;
2597 continue;
2598 }
2599 }
2600
2601 /*
2602 * metadata's readpage_io_failed_hook() always returns
2603 * -EIO and fixes nothing. -EIO is also returned if
2604 * data inode error could not be fixed.
2605 */
2606 ASSERT(ret == -EIO);
2607 }
2608 readpage_ok:
2609 if (likely(uptodate)) {
2610 loff_t i_size = i_size_read(inode);
2611 pgoff_t end_index = i_size >> PAGE_SHIFT;
2612 unsigned off;
2613
2614 /* Zero out the end if this page straddles i_size */
2615 off = i_size & (PAGE_SIZE-1);
2616 if (page->index == end_index && off)
2617 zero_user_segment(page, off, PAGE_SIZE);
2618 SetPageUptodate(page);
2619 } else {
2620 ClearPageUptodate(page);
2621 SetPageError(page);
2622 }
2623 unlock_page(page);
2624 offset += len;
2625
2626 if (unlikely(!uptodate)) {
2627 if (extent_len) {
2628 endio_readpage_release_extent(tree,
2629 extent_start,
2630 extent_len, 1);
2631 extent_start = 0;
2632 extent_len = 0;
2633 }
2634 endio_readpage_release_extent(tree, start,
2635 end - start + 1, 0);
2636 } else if (!extent_len) {
2637 extent_start = start;
2638 extent_len = end + 1 - start;
2639 } else if (extent_start + extent_len == start) {
2640 extent_len += end + 1 - start;
2641 } else {
2642 endio_readpage_release_extent(tree, extent_start,
2643 extent_len, uptodate);
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 }
2647 }
2648
2649 if (extent_len)
2650 endio_readpage_release_extent(tree, extent_start, extent_len,
2651 uptodate);
2652 if (io_bio->end_io)
2653 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2654 bio_put(bio);
2655 }
2656
2657 /*
2658 * Initialize the members up to but not including 'bio'. Use after allocating a
2659 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2660 * 'bio' because use of __GFP_ZERO is not supported.
2661 */
2662 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2663 {
2664 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2665 }
2666
2667 /*
2668 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2669 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2670 * for the appropriate container_of magic
2671 */
2672 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2673 {
2674 struct bio *bio;
2675
2676 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2677 bio_set_dev(bio, bdev);
2678 bio->bi_iter.bi_sector = first_byte >> 9;
2679 btrfs_io_bio_init(btrfs_io_bio(bio));
2680 return bio;
2681 }
2682
2683 struct bio *btrfs_bio_clone(struct bio *bio)
2684 {
2685 struct btrfs_io_bio *btrfs_bio;
2686 struct bio *new;
2687
2688 /* Bio allocation backed by a bioset does not fail */
2689 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2690 btrfs_bio = btrfs_io_bio(new);
2691 btrfs_io_bio_init(btrfs_bio);
2692 btrfs_bio->iter = bio->bi_iter;
2693 return new;
2694 }
2695
2696 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2697 {
2698 struct bio *bio;
2699
2700 /* Bio allocation backed by a bioset does not fail */
2701 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2702 btrfs_io_bio_init(btrfs_io_bio(bio));
2703 return bio;
2704 }
2705
2706 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2707 {
2708 struct bio *bio;
2709 struct btrfs_io_bio *btrfs_bio;
2710
2711 /* this will never fail when it's backed by a bioset */
2712 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2713 ASSERT(bio);
2714
2715 btrfs_bio = btrfs_io_bio(bio);
2716 btrfs_io_bio_init(btrfs_bio);
2717
2718 bio_trim(bio, offset >> 9, size >> 9);
2719 btrfs_bio->iter = bio->bi_iter;
2720 return bio;
2721 }
2722
2723 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2724 unsigned long bio_flags)
2725 {
2726 blk_status_t ret = 0;
2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2728 struct page *page = bvec->bv_page;
2729 struct extent_io_tree *tree = bio->bi_private;
2730 u64 start;
2731
2732 start = page_offset(page) + bvec->bv_offset;
2733
2734 bio->bi_private = NULL;
2735 bio_get(bio);
2736
2737 if (tree->ops)
2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2739 mirror_num, bio_flags, start);
2740 else
2741 btrfsic_submit_bio(bio);
2742
2743 bio_put(bio);
2744 return blk_status_to_errno(ret);
2745 }
2746
2747 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2748 unsigned long offset, size_t size, struct bio *bio,
2749 unsigned long bio_flags)
2750 {
2751 int ret = 0;
2752 if (tree->ops)
2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2754 bio_flags);
2755 return ret;
2756
2757 }
2758
2759 /*
2760 * @opf: bio REQ_OP_* and REQ_* flags as one value
2761 */
2762 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2763 struct writeback_control *wbc,
2764 struct page *page, sector_t sector,
2765 size_t size, unsigned long offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
2768 bio_end_io_t end_io_func,
2769 int mirror_num,
2770 unsigned long prev_bio_flags,
2771 unsigned long bio_flags,
2772 bool force_bio_submit)
2773 {
2774 int ret = 0;
2775 struct bio *bio;
2776 int contig = 0;
2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2778 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2779
2780 if (bio_ret && *bio_ret) {
2781 bio = *bio_ret;
2782 if (old_compressed)
2783 contig = bio->bi_iter.bi_sector == sector;
2784 else
2785 contig = bio_end_sector(bio) == sector;
2786
2787 if (prev_bio_flags != bio_flags || !contig ||
2788 force_bio_submit ||
2789 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2790 bio_add_page(bio, page, page_size, offset) < page_size) {
2791 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2792 if (ret < 0) {
2793 *bio_ret = NULL;
2794 return ret;
2795 }
2796 bio = NULL;
2797 } else {
2798 if (wbc)
2799 wbc_account_io(wbc, page, page_size);
2800 return 0;
2801 }
2802 }
2803
2804 bio = btrfs_bio_alloc(bdev, sector << 9);
2805 bio_add_page(bio, page, page_size, offset);
2806 bio->bi_end_io = end_io_func;
2807 bio->bi_private = tree;
2808 bio->bi_write_hint = page->mapping->host->i_write_hint;
2809 bio->bi_opf = opf;
2810 if (wbc) {
2811 wbc_init_bio(wbc, bio);
2812 wbc_account_io(wbc, page, page_size);
2813 }
2814
2815 if (bio_ret)
2816 *bio_ret = bio;
2817 else
2818 ret = submit_one_bio(bio, mirror_num, bio_flags);
2819
2820 return ret;
2821 }
2822
2823 static void attach_extent_buffer_page(struct extent_buffer *eb,
2824 struct page *page)
2825 {
2826 if (!PagePrivate(page)) {
2827 SetPagePrivate(page);
2828 get_page(page);
2829 set_page_private(page, (unsigned long)eb);
2830 } else {
2831 WARN_ON(page->private != (unsigned long)eb);
2832 }
2833 }
2834
2835 void set_page_extent_mapped(struct page *page)
2836 {
2837 if (!PagePrivate(page)) {
2838 SetPagePrivate(page);
2839 get_page(page);
2840 set_page_private(page, EXTENT_PAGE_PRIVATE);
2841 }
2842 }
2843
2844 static struct extent_map *
2845 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2846 u64 start, u64 len, get_extent_t *get_extent,
2847 struct extent_map **em_cached)
2848 {
2849 struct extent_map *em;
2850
2851 if (em_cached && *em_cached) {
2852 em = *em_cached;
2853 if (extent_map_in_tree(em) && start >= em->start &&
2854 start < extent_map_end(em)) {
2855 refcount_inc(&em->refs);
2856 return em;
2857 }
2858
2859 free_extent_map(em);
2860 *em_cached = NULL;
2861 }
2862
2863 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2864 if (em_cached && !IS_ERR_OR_NULL(em)) {
2865 BUG_ON(*em_cached);
2866 refcount_inc(&em->refs);
2867 *em_cached = em;
2868 }
2869 return em;
2870 }
2871 /*
2872 * basic readpage implementation. Locked extent state structs are inserted
2873 * into the tree that are removed when the IO is done (by the end_io
2874 * handlers)
2875 * XXX JDM: This needs looking at to ensure proper page locking
2876 * return 0 on success, otherwise return error
2877 */
2878 static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
2881 struct extent_map **em_cached,
2882 struct bio **bio, int mirror_num,
2883 unsigned long *bio_flags, unsigned int read_flags,
2884 u64 *prev_em_start)
2885 {
2886 struct inode *inode = page->mapping->host;
2887 u64 start = page_offset(page);
2888 u64 page_end = start + PAGE_SIZE - 1;
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
2895 sector_t sector;
2896 struct extent_map *em;
2897 struct block_device *bdev;
2898 int ret = 0;
2899 int nr = 0;
2900 size_t pg_offset = 0;
2901 size_t iosize;
2902 size_t disk_io_size;
2903 size_t blocksize = inode->i_sb->s_blocksize;
2904 unsigned long this_bio_flag = 0;
2905
2906 set_page_extent_mapped(page);
2907
2908 end = page_end;
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
2912 unlock_extent(tree, start, end);
2913 goto out;
2914 }
2915 }
2916
2917 if (page->index == last_byte >> PAGE_SHIFT) {
2918 char *userpage;
2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2920
2921 if (zero_offset) {
2922 iosize = PAGE_SIZE - zero_offset;
2923 userpage = kmap_atomic(page);
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
2926 kunmap_atomic(userpage);
2927 }
2928 }
2929 while (cur <= end) {
2930 bool force_bio_submit = false;
2931
2932 if (cur >= last_byte) {
2933 char *userpage;
2934 struct extent_state *cached = NULL;
2935
2936 iosize = PAGE_SIZE - pg_offset;
2937 userpage = kmap_atomic(page);
2938 memset(userpage + pg_offset, 0, iosize);
2939 flush_dcache_page(page);
2940 kunmap_atomic(userpage);
2941 set_extent_uptodate(tree, cur, cur + iosize - 1,
2942 &cached, GFP_NOFS);
2943 unlock_extent_cached(tree, cur,
2944 cur + iosize - 1,
2945 &cached, GFP_NOFS);
2946 break;
2947 }
2948 em = __get_extent_map(inode, page, pg_offset, cur,
2949 end - cur + 1, get_extent, em_cached);
2950 if (IS_ERR_OR_NULL(em)) {
2951 SetPageError(page);
2952 unlock_extent(tree, cur, end);
2953 break;
2954 }
2955 extent_offset = cur - em->start;
2956 BUG_ON(extent_map_end(em) <= cur);
2957 BUG_ON(end < cur);
2958
2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2960 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2961 extent_set_compress_type(&this_bio_flag,
2962 em->compress_type);
2963 }
2964
2965 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 cur_end = min(extent_map_end(em) - 1, end);
2967 iosize = ALIGN(iosize, blocksize);
2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 disk_io_size = em->block_len;
2970 sector = em->block_start >> 9;
2971 } else {
2972 sector = (em->block_start + extent_offset) >> 9;
2973 disk_io_size = iosize;
2974 }
2975 bdev = em->bdev;
2976 block_start = em->block_start;
2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 block_start = EXTENT_MAP_HOLE;
2979
2980 /*
2981 * If we have a file range that points to a compressed extent
2982 * and it's followed by a consecutive file range that points to
2983 * to the same compressed extent (possibly with a different
2984 * offset and/or length, so it either points to the whole extent
2985 * or only part of it), we must make sure we do not submit a
2986 * single bio to populate the pages for the 2 ranges because
2987 * this makes the compressed extent read zero out the pages
2988 * belonging to the 2nd range. Imagine the following scenario:
2989 *
2990 * File layout
2991 * [0 - 8K] [8K - 24K]
2992 * | |
2993 * | |
2994 * points to extent X, points to extent X,
2995 * offset 4K, length of 8K offset 0, length 16K
2996 *
2997 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 *
2999 * If the bio to read the compressed extent covers both ranges,
3000 * it will decompress extent X into the pages belonging to the
3001 * first range and then it will stop, zeroing out the remaining
3002 * pages that belong to the other range that points to extent X.
3003 * So here we make sure we submit 2 bios, one for the first
3004 * range and another one for the third range. Both will target
3005 * the same physical extent from disk, but we can't currently
3006 * make the compressed bio endio callback populate the pages
3007 * for both ranges because each compressed bio is tightly
3008 * coupled with a single extent map, and each range can have
3009 * an extent map with a different offset value relative to the
3010 * uncompressed data of our extent and different lengths. This
3011 * is a corner case so we prioritize correctness over
3012 * non-optimal behavior (submitting 2 bios for the same extent).
3013 */
3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 prev_em_start && *prev_em_start != (u64)-1 &&
3016 *prev_em_start != em->orig_start)
3017 force_bio_submit = true;
3018
3019 if (prev_em_start)
3020 *prev_em_start = em->orig_start;
3021
3022 free_extent_map(em);
3023 em = NULL;
3024
3025 /* we've found a hole, just zero and go on */
3026 if (block_start == EXTENT_MAP_HOLE) {
3027 char *userpage;
3028 struct extent_state *cached = NULL;
3029
3030 userpage = kmap_atomic(page);
3031 memset(userpage + pg_offset, 0, iosize);
3032 flush_dcache_page(page);
3033 kunmap_atomic(userpage);
3034
3035 set_extent_uptodate(tree, cur, cur + iosize - 1,
3036 &cached, GFP_NOFS);
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1,
3039 &cached, GFP_NOFS);
3040 cur = cur + iosize;
3041 pg_offset += iosize;
3042 continue;
3043 }
3044 /* the get_extent function already copied into the page */
3045 if (test_range_bit(tree, cur, cur_end,
3046 EXTENT_UPTODATE, 1, NULL)) {
3047 check_page_uptodate(tree, page);
3048 unlock_extent(tree, cur, cur + iosize - 1);
3049 cur = cur + iosize;
3050 pg_offset += iosize;
3051 continue;
3052 }
3053 /* we have an inline extent but it didn't get marked up
3054 * to date. Error out
3055 */
3056 if (block_start == EXTENT_MAP_INLINE) {
3057 SetPageError(page);
3058 unlock_extent(tree, cur, cur + iosize - 1);
3059 cur = cur + iosize;
3060 pg_offset += iosize;
3061 continue;
3062 }
3063
3064 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3065 page, sector, disk_io_size, pg_offset,
3066 bdev, bio,
3067 end_bio_extent_readpage, mirror_num,
3068 *bio_flags,
3069 this_bio_flag,
3070 force_bio_submit);
3071 if (!ret) {
3072 nr++;
3073 *bio_flags = this_bio_flag;
3074 } else {
3075 SetPageError(page);
3076 unlock_extent(tree, cur, cur + iosize - 1);
3077 goto out;
3078 }
3079 cur = cur + iosize;
3080 pg_offset += iosize;
3081 }
3082 out:
3083 if (!nr) {
3084 if (!PageError(page))
3085 SetPageUptodate(page);
3086 unlock_page(page);
3087 }
3088 return ret;
3089 }
3090
3091 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3092 struct page *pages[], int nr_pages,
3093 u64 start, u64 end,
3094 get_extent_t *get_extent,
3095 struct extent_map **em_cached,
3096 struct bio **bio, int mirror_num,
3097 unsigned long *bio_flags,
3098 u64 *prev_em_start)
3099 {
3100 struct inode *inode;
3101 struct btrfs_ordered_extent *ordered;
3102 int index;
3103
3104 inode = pages[0]->mapping->host;
3105 while (1) {
3106 lock_extent(tree, start, end);
3107 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3108 end - start + 1);
3109 if (!ordered)
3110 break;
3111 unlock_extent(tree, start, end);
3112 btrfs_start_ordered_extent(inode, ordered, 1);
3113 btrfs_put_ordered_extent(ordered);
3114 }
3115
3116 for (index = 0; index < nr_pages; index++) {
3117 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3118 mirror_num, bio_flags, 0, prev_em_start);
3119 put_page(pages[index]);
3120 }
3121 }
3122
3123 static void __extent_readpages(struct extent_io_tree *tree,
3124 struct page *pages[],
3125 int nr_pages, get_extent_t *get_extent,
3126 struct extent_map **em_cached,
3127 struct bio **bio, int mirror_num,
3128 unsigned long *bio_flags,
3129 u64 *prev_em_start)
3130 {
3131 u64 start = 0;
3132 u64 end = 0;
3133 u64 page_start;
3134 int index;
3135 int first_index = 0;
3136
3137 for (index = 0; index < nr_pages; index++) {
3138 page_start = page_offset(pages[index]);
3139 if (!end) {
3140 start = page_start;
3141 end = start + PAGE_SIZE - 1;
3142 first_index = index;
3143 } else if (end + 1 == page_start) {
3144 end += PAGE_SIZE;
3145 } else {
3146 __do_contiguous_readpages(tree, &pages[first_index],
3147 index - first_index, start,
3148 end, get_extent, em_cached,
3149 bio, mirror_num, bio_flags,
3150 prev_em_start);
3151 start = page_start;
3152 end = start + PAGE_SIZE - 1;
3153 first_index = index;
3154 }
3155 }
3156
3157 if (end)
3158 __do_contiguous_readpages(tree, &pages[first_index],
3159 index - first_index, start,
3160 end, get_extent, em_cached, bio,
3161 mirror_num, bio_flags,
3162 prev_em_start);
3163 }
3164
3165 static int __extent_read_full_page(struct extent_io_tree *tree,
3166 struct page *page,
3167 get_extent_t *get_extent,
3168 struct bio **bio, int mirror_num,
3169 unsigned long *bio_flags,
3170 unsigned int read_flags)
3171 {
3172 struct inode *inode = page->mapping->host;
3173 struct btrfs_ordered_extent *ordered;
3174 u64 start = page_offset(page);
3175 u64 end = start + PAGE_SIZE - 1;
3176 int ret;
3177
3178 while (1) {
3179 lock_extent(tree, start, end);
3180 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3181 PAGE_SIZE);
3182 if (!ordered)
3183 break;
3184 unlock_extent(tree, start, end);
3185 btrfs_start_ordered_extent(inode, ordered, 1);
3186 btrfs_put_ordered_extent(ordered);
3187 }
3188
3189 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3190 bio_flags, read_flags, NULL);
3191 return ret;
3192 }
3193
3194 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3195 get_extent_t *get_extent, int mirror_num)
3196 {
3197 struct bio *bio = NULL;
3198 unsigned long bio_flags = 0;
3199 int ret;
3200
3201 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3202 &bio_flags, 0);
3203 if (bio)
3204 ret = submit_one_bio(bio, mirror_num, bio_flags);
3205 return ret;
3206 }
3207
3208 static void update_nr_written(struct writeback_control *wbc,
3209 unsigned long nr_written)
3210 {
3211 wbc->nr_to_write -= nr_written;
3212 }
3213
3214 /*
3215 * helper for __extent_writepage, doing all of the delayed allocation setup.
3216 *
3217 * This returns 1 if our fill_delalloc function did all the work required
3218 * to write the page (copy into inline extent). In this case the IO has
3219 * been started and the page is already unlocked.
3220 *
3221 * This returns 0 if all went well (page still locked)
3222 * This returns < 0 if there were errors (page still locked)
3223 */
3224 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3225 struct page *page, struct writeback_control *wbc,
3226 struct extent_page_data *epd,
3227 u64 delalloc_start,
3228 unsigned long *nr_written)
3229 {
3230 struct extent_io_tree *tree = epd->tree;
3231 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3232 u64 nr_delalloc;
3233 u64 delalloc_to_write = 0;
3234 u64 delalloc_end = 0;
3235 int ret;
3236 int page_started = 0;
3237
3238 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3239 return 0;
3240
3241 while (delalloc_end < page_end) {
3242 nr_delalloc = find_lock_delalloc_range(inode, tree,
3243 page,
3244 &delalloc_start,
3245 &delalloc_end,
3246 BTRFS_MAX_EXTENT_SIZE);
3247 if (nr_delalloc == 0) {
3248 delalloc_start = delalloc_end + 1;
3249 continue;
3250 }
3251 ret = tree->ops->fill_delalloc(inode, page,
3252 delalloc_start,
3253 delalloc_end,
3254 &page_started,
3255 nr_written);
3256 /* File system has been set read-only */
3257 if (ret) {
3258 SetPageError(page);
3259 /* fill_delalloc should be return < 0 for error
3260 * but just in case, we use > 0 here meaning the
3261 * IO is started, so we don't want to return > 0
3262 * unless things are going well.
3263 */
3264 ret = ret < 0 ? ret : -EIO;
3265 goto done;
3266 }
3267 /*
3268 * delalloc_end is already one less than the total length, so
3269 * we don't subtract one from PAGE_SIZE
3270 */
3271 delalloc_to_write += (delalloc_end - delalloc_start +
3272 PAGE_SIZE) >> PAGE_SHIFT;
3273 delalloc_start = delalloc_end + 1;
3274 }
3275 if (wbc->nr_to_write < delalloc_to_write) {
3276 int thresh = 8192;
3277
3278 if (delalloc_to_write < thresh * 2)
3279 thresh = delalloc_to_write;
3280 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3281 thresh);
3282 }
3283
3284 /* did the fill delalloc function already unlock and start
3285 * the IO?
3286 */
3287 if (page_started) {
3288 /*
3289 * we've unlocked the page, so we can't update
3290 * the mapping's writeback index, just update
3291 * nr_to_write.
3292 */
3293 wbc->nr_to_write -= *nr_written;
3294 return 1;
3295 }
3296
3297 ret = 0;
3298
3299 done:
3300 return ret;
3301 }
3302
3303 /*
3304 * helper for __extent_writepage. This calls the writepage start hooks,
3305 * and does the loop to map the page into extents and bios.
3306 *
3307 * We return 1 if the IO is started and the page is unlocked,
3308 * 0 if all went well (page still locked)
3309 * < 0 if there were errors (page still locked)
3310 */
3311 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3312 struct page *page,
3313 struct writeback_control *wbc,
3314 struct extent_page_data *epd,
3315 loff_t i_size,
3316 unsigned long nr_written,
3317 unsigned int write_flags, int *nr_ret)
3318 {
3319 struct extent_io_tree *tree = epd->tree;
3320 u64 start = page_offset(page);
3321 u64 page_end = start + PAGE_SIZE - 1;
3322 u64 end;
3323 u64 cur = start;
3324 u64 extent_offset;
3325 u64 block_start;
3326 u64 iosize;
3327 sector_t sector;
3328 struct extent_map *em;
3329 struct block_device *bdev;
3330 size_t pg_offset = 0;
3331 size_t blocksize;
3332 int ret = 0;
3333 int nr = 0;
3334 bool compressed;
3335
3336 if (tree->ops && tree->ops->writepage_start_hook) {
3337 ret = tree->ops->writepage_start_hook(page, start,
3338 page_end);
3339 if (ret) {
3340 /* Fixup worker will requeue */
3341 if (ret == -EBUSY)
3342 wbc->pages_skipped++;
3343 else
3344 redirty_page_for_writepage(wbc, page);
3345
3346 update_nr_written(wbc, nr_written);
3347 unlock_page(page);
3348 return 1;
3349 }
3350 }
3351
3352 /*
3353 * we don't want to touch the inode after unlocking the page,
3354 * so we update the mapping writeback index now
3355 */
3356 update_nr_written(wbc, nr_written + 1);
3357
3358 end = page_end;
3359 if (i_size <= start) {
3360 if (tree->ops && tree->ops->writepage_end_io_hook)
3361 tree->ops->writepage_end_io_hook(page, start,
3362 page_end, NULL, 1);
3363 goto done;
3364 }
3365
3366 blocksize = inode->i_sb->s_blocksize;
3367
3368 while (cur <= end) {
3369 u64 em_end;
3370
3371 if (cur >= i_size) {
3372 if (tree->ops && tree->ops->writepage_end_io_hook)
3373 tree->ops->writepage_end_io_hook(page, cur,
3374 page_end, NULL, 1);
3375 break;
3376 }
3377 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3378 end - cur + 1, 1);
3379 if (IS_ERR_OR_NULL(em)) {
3380 SetPageError(page);
3381 ret = PTR_ERR_OR_ZERO(em);
3382 break;
3383 }
3384
3385 extent_offset = cur - em->start;
3386 em_end = extent_map_end(em);
3387 BUG_ON(em_end <= cur);
3388 BUG_ON(end < cur);
3389 iosize = min(em_end - cur, end - cur + 1);
3390 iosize = ALIGN(iosize, blocksize);
3391 sector = (em->block_start + extent_offset) >> 9;
3392 bdev = em->bdev;
3393 block_start = em->block_start;
3394 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3395 free_extent_map(em);
3396 em = NULL;
3397
3398 /*
3399 * compressed and inline extents are written through other
3400 * paths in the FS
3401 */
3402 if (compressed || block_start == EXTENT_MAP_HOLE ||
3403 block_start == EXTENT_MAP_INLINE) {
3404 /*
3405 * end_io notification does not happen here for
3406 * compressed extents
3407 */
3408 if (!compressed && tree->ops &&
3409 tree->ops->writepage_end_io_hook)
3410 tree->ops->writepage_end_io_hook(page, cur,
3411 cur + iosize - 1,
3412 NULL, 1);
3413 else if (compressed) {
3414 /* we don't want to end_page_writeback on
3415 * a compressed extent. this happens
3416 * elsewhere
3417 */
3418 nr++;
3419 }
3420
3421 cur += iosize;
3422 pg_offset += iosize;
3423 continue;
3424 }
3425
3426 set_range_writeback(tree, cur, cur + iosize - 1);
3427 if (!PageWriteback(page)) {
3428 btrfs_err(BTRFS_I(inode)->root->fs_info,
3429 "page %lu not writeback, cur %llu end %llu",
3430 page->index, cur, end);
3431 }
3432
3433 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3434 page, sector, iosize, pg_offset,
3435 bdev, &epd->bio,
3436 end_bio_extent_writepage,
3437 0, 0, 0, false);
3438 if (ret) {
3439 SetPageError(page);
3440 if (PageWriteback(page))
3441 end_page_writeback(page);
3442 }
3443
3444 cur = cur + iosize;
3445 pg_offset += iosize;
3446 nr++;
3447 }
3448 done:
3449 *nr_ret = nr;
3450 return ret;
3451 }
3452
3453 /*
3454 * the writepage semantics are similar to regular writepage. extent
3455 * records are inserted to lock ranges in the tree, and as dirty areas
3456 * are found, they are marked writeback. Then the lock bits are removed
3457 * and the end_io handler clears the writeback ranges
3458 */
3459 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3460 void *data)
3461 {
3462 struct inode *inode = page->mapping->host;
3463 struct extent_page_data *epd = data;
3464 u64 start = page_offset(page);
3465 u64 page_end = start + PAGE_SIZE - 1;
3466 int ret;
3467 int nr = 0;
3468 size_t pg_offset = 0;
3469 loff_t i_size = i_size_read(inode);
3470 unsigned long end_index = i_size >> PAGE_SHIFT;
3471 unsigned int write_flags = 0;
3472 unsigned long nr_written = 0;
3473
3474 if (wbc->sync_mode == WB_SYNC_ALL)
3475 write_flags = REQ_SYNC;
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
3483 pg_offset = i_size & (PAGE_SIZE - 1);
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
3496 PAGE_SIZE - pg_offset);
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
3516 done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
3526 unlock_page(page);
3527 return ret;
3528
3529 done_unlocked:
3530 return 0;
3531 }
3532
3533 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534 {
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
3537 }
3538
3539 static noinline_for_stack int
3540 lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
3543 {
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
3567 btrfs_tree_unlock(eb);
3568 }
3569 }
3570
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579 spin_unlock(&eb->refs_lock);
3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
3584 ret = 1;
3585 } else {
3586 spin_unlock(&eb->refs_lock);
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
3596 struct page *p = eb->pages[i];
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608 }
3609
3610 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611 {
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613 smp_mb__after_atomic();
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615 }
3616
3617 static void set_btree_ioerr(struct page *page)
3618 {
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620
3621 SetPageError(page);
3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 return;
3624
3625 /*
3626 * If writeback for a btree extent that doesn't belong to a log tree
3627 * failed, increment the counter transaction->eb_write_errors.
3628 * We do this because while the transaction is running and before it's
3629 * committing (when we call filemap_fdata[write|wait]_range against
3630 * the btree inode), we might have
3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 * returns an error or an error happens during writeback, when we're
3633 * committing the transaction we wouldn't know about it, since the pages
3634 * can be no longer dirty nor marked anymore for writeback (if a
3635 * subsequent modification to the extent buffer didn't happen before the
3636 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 * able to find the pages tagged with SetPageError at transaction
3638 * commit time. So if this happens we must abort the transaction,
3639 * otherwise we commit a super block with btree roots that point to
3640 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 * or the content of some node/leaf from a past generation that got
3642 * cowed or deleted and is no longer valid.
3643 *
3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 * not be enough - we need to distinguish between log tree extents vs
3646 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 * will catch and clear such errors in the mapping - and that call might
3648 * be from a log sync and not from a transaction commit. Also, checking
3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 * not done and would not be reliable - the eb might have been released
3651 * from memory and reading it back again means that flag would not be
3652 * set (since it's a runtime flag, not persisted on disk).
3653 *
3654 * Using the flags below in the btree inode also makes us achieve the
3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 * is called, the writeback for all dirty pages had already finished
3658 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 * filemap_fdatawait_range() would return success, as it could not know
3660 * that writeback errors happened (the pages were no longer tagged for
3661 * writeback).
3662 */
3663 switch (eb->log_index) {
3664 case -1:
3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666 break;
3667 case 0:
3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669 break;
3670 case 1:
3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672 break;
3673 default:
3674 BUG(); /* unexpected, logic error */
3675 }
3676 }
3677
3678 static void end_bio_extent_buffer_writepage(struct bio *bio)
3679 {
3680 struct bio_vec *bvec;
3681 struct extent_buffer *eb;
3682 int i, done;
3683
3684 ASSERT(!bio_flagged(bio, BIO_CLONED));
3685 bio_for_each_segment_all(bvec, bio, i) {
3686 struct page *page = bvec->bv_page;
3687
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
3692 if (bio->bi_status ||
3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694 ClearPageUptodate(page);
3695 set_btree_ioerr(page);
3696 }
3697
3698 end_page_writeback(page);
3699
3700 if (!done)
3701 continue;
3702
3703 end_extent_buffer_writeback(eb);
3704 }
3705
3706 bio_put(bio);
3707 }
3708
3709 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710 struct btrfs_fs_info *fs_info,
3711 struct writeback_control *wbc,
3712 struct extent_page_data *epd)
3713 {
3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716 u64 offset = eb->start;
3717 u32 nritems;
3718 unsigned long i, num_pages;
3719 unsigned long bio_flags = 0;
3720 unsigned long start, end;
3721 unsigned int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3722 int ret = 0;
3723
3724 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3725 num_pages = num_extent_pages(eb->start, eb->len);
3726 atomic_set(&eb->io_pages, num_pages);
3727 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3728 bio_flags = EXTENT_BIO_TREE_LOG;
3729
3730 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3731 nritems = btrfs_header_nritems(eb);
3732 if (btrfs_header_level(eb) > 0) {
3733 end = btrfs_node_key_ptr_offset(nritems);
3734
3735 memzero_extent_buffer(eb, end, eb->len - end);
3736 } else {
3737 /*
3738 * leaf:
3739 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3740 */
3741 start = btrfs_item_nr_offset(nritems);
3742 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3743 memzero_extent_buffer(eb, start, end - start);
3744 }
3745
3746 for (i = 0; i < num_pages; i++) {
3747 struct page *p = eb->pages[i];
3748
3749 clear_page_dirty_for_io(p);
3750 set_page_writeback(p);
3751 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3752 p, offset >> 9, PAGE_SIZE, 0, bdev,
3753 &epd->bio,
3754 end_bio_extent_buffer_writepage,
3755 0, epd->bio_flags, bio_flags, false);
3756 epd->bio_flags = bio_flags;
3757 if (ret) {
3758 set_btree_ioerr(p);
3759 if (PageWriteback(p))
3760 end_page_writeback(p);
3761 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3762 end_extent_buffer_writeback(eb);
3763 ret = -EIO;
3764 break;
3765 }
3766 offset += PAGE_SIZE;
3767 update_nr_written(wbc, 1);
3768 unlock_page(p);
3769 }
3770
3771 if (unlikely(ret)) {
3772 for (; i < num_pages; i++) {
3773 struct page *p = eb->pages[i];
3774 clear_page_dirty_for_io(p);
3775 unlock_page(p);
3776 }
3777 }
3778
3779 return ret;
3780 }
3781
3782 int btree_write_cache_pages(struct address_space *mapping,
3783 struct writeback_control *wbc)
3784 {
3785 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3786 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3787 struct extent_buffer *eb, *prev_eb = NULL;
3788 struct extent_page_data epd = {
3789 .bio = NULL,
3790 .tree = tree,
3791 .extent_locked = 0,
3792 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3793 .bio_flags = 0,
3794 };
3795 int ret = 0;
3796 int done = 0;
3797 int nr_to_write_done = 0;
3798 struct pagevec pvec;
3799 int nr_pages;
3800 pgoff_t index;
3801 pgoff_t end; /* Inclusive */
3802 int scanned = 0;
3803 int tag;
3804
3805 pagevec_init(&pvec, 0);
3806 if (wbc->range_cyclic) {
3807 index = mapping->writeback_index; /* Start from prev offset */
3808 end = -1;
3809 } else {
3810 index = wbc->range_start >> PAGE_SHIFT;
3811 end = wbc->range_end >> PAGE_SHIFT;
3812 scanned = 1;
3813 }
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag = PAGECACHE_TAG_TOWRITE;
3816 else
3817 tag = PAGECACHE_TAG_DIRTY;
3818 retry:
3819 if (wbc->sync_mode == WB_SYNC_ALL)
3820 tag_pages_for_writeback(mapping, index, end);
3821 while (!done && !nr_to_write_done && (index <= end) &&
3822 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3823 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3824 unsigned i;
3825
3826 scanned = 1;
3827 for (i = 0; i < nr_pages; i++) {
3828 struct page *page = pvec.pages[i];
3829
3830 if (!PagePrivate(page))
3831 continue;
3832
3833 if (!wbc->range_cyclic && page->index > end) {
3834 done = 1;
3835 break;
3836 }
3837
3838 spin_lock(&mapping->private_lock);
3839 if (!PagePrivate(page)) {
3840 spin_unlock(&mapping->private_lock);
3841 continue;
3842 }
3843
3844 eb = (struct extent_buffer *)page->private;
3845
3846 /*
3847 * Shouldn't happen and normally this would be a BUG_ON
3848 * but no sense in crashing the users box for something
3849 * we can survive anyway.
3850 */
3851 if (WARN_ON(!eb)) {
3852 spin_unlock(&mapping->private_lock);
3853 continue;
3854 }
3855
3856 if (eb == prev_eb) {
3857 spin_unlock(&mapping->private_lock);
3858 continue;
3859 }
3860
3861 ret = atomic_inc_not_zero(&eb->refs);
3862 spin_unlock(&mapping->private_lock);
3863 if (!ret)
3864 continue;
3865
3866 prev_eb = eb;
3867 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3868 if (!ret) {
3869 free_extent_buffer(eb);
3870 continue;
3871 }
3872
3873 ret = write_one_eb(eb, fs_info, wbc, &epd);
3874 if (ret) {
3875 done = 1;
3876 free_extent_buffer(eb);
3877 break;
3878 }
3879 free_extent_buffer(eb);
3880
3881 /*
3882 * the filesystem may choose to bump up nr_to_write.
3883 * We have to make sure to honor the new nr_to_write
3884 * at any time
3885 */
3886 nr_to_write_done = wbc->nr_to_write <= 0;
3887 }
3888 pagevec_release(&pvec);
3889 cond_resched();
3890 }
3891 if (!scanned && !done) {
3892 /*
3893 * We hit the last page and there is more work to be done: wrap
3894 * back to the start of the file
3895 */
3896 scanned = 1;
3897 index = 0;
3898 goto retry;
3899 }
3900 flush_write_bio(&epd);
3901 return ret;
3902 }
3903
3904 /**
3905 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3906 * @mapping: address space structure to write
3907 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3908 * @writepage: function called for each page
3909 * @data: data passed to writepage function
3910 *
3911 * If a page is already under I/O, write_cache_pages() skips it, even
3912 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3913 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3914 * and msync() need to guarantee that all the data which was dirty at the time
3915 * the call was made get new I/O started against them. If wbc->sync_mode is
3916 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3917 * existing IO to complete.
3918 */
3919 static int extent_write_cache_pages(struct address_space *mapping,
3920 struct writeback_control *wbc,
3921 writepage_t writepage, void *data,
3922 void (*flush_fn)(void *))
3923 {
3924 struct inode *inode = mapping->host;
3925 int ret = 0;
3926 int done = 0;
3927 int nr_to_write_done = 0;
3928 struct pagevec pvec;
3929 int nr_pages;
3930 pgoff_t index;
3931 pgoff_t end; /* Inclusive */
3932 pgoff_t done_index;
3933 int range_whole = 0;
3934 int scanned = 0;
3935 int tag;
3936
3937 /*
3938 * We have to hold onto the inode so that ordered extents can do their
3939 * work when the IO finishes. The alternative to this is failing to add
3940 * an ordered extent if the igrab() fails there and that is a huge pain
3941 * to deal with, so instead just hold onto the inode throughout the
3942 * writepages operation. If it fails here we are freeing up the inode
3943 * anyway and we'd rather not waste our time writing out stuff that is
3944 * going to be truncated anyway.
3945 */
3946 if (!igrab(inode))
3947 return 0;
3948
3949 pagevec_init(&pvec, 0);
3950 if (wbc->range_cyclic) {
3951 index = mapping->writeback_index; /* Start from prev offset */
3952 end = -1;
3953 } else {
3954 index = wbc->range_start >> PAGE_SHIFT;
3955 end = wbc->range_end >> PAGE_SHIFT;
3956 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3957 range_whole = 1;
3958 scanned = 1;
3959 }
3960 if (wbc->sync_mode == WB_SYNC_ALL)
3961 tag = PAGECACHE_TAG_TOWRITE;
3962 else
3963 tag = PAGECACHE_TAG_DIRTY;
3964 retry:
3965 if (wbc->sync_mode == WB_SYNC_ALL)
3966 tag_pages_for_writeback(mapping, index, end);
3967 done_index = index;
3968 while (!done && !nr_to_write_done && (index <= end) &&
3969 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3970 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3971 unsigned i;
3972
3973 scanned = 1;
3974 for (i = 0; i < nr_pages; i++) {
3975 struct page *page = pvec.pages[i];
3976
3977 done_index = page->index;
3978 /*
3979 * At this point we hold neither mapping->tree_lock nor
3980 * lock on the page itself: the page may be truncated or
3981 * invalidated (changing page->mapping to NULL), or even
3982 * swizzled back from swapper_space to tmpfs file
3983 * mapping
3984 */
3985 if (!trylock_page(page)) {
3986 flush_fn(data);
3987 lock_page(page);
3988 }
3989
3990 if (unlikely(page->mapping != mapping)) {
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 if (!wbc->range_cyclic && page->index > end) {
3996 done = 1;
3997 unlock_page(page);
3998 continue;
3999 }
4000
4001 if (wbc->sync_mode != WB_SYNC_NONE) {
4002 if (PageWriteback(page))
4003 flush_fn(data);
4004 wait_on_page_writeback(page);
4005 }
4006
4007 if (PageWriteback(page) ||
4008 !clear_page_dirty_for_io(page)) {
4009 unlock_page(page);
4010 continue;
4011 }
4012
4013 ret = (*writepage)(page, wbc, data);
4014
4015 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4016 unlock_page(page);
4017 ret = 0;
4018 }
4019 if (ret < 0) {
4020 /*
4021 * done_index is set past this page,
4022 * so media errors will not choke
4023 * background writeout for the entire
4024 * file. This has consequences for
4025 * range_cyclic semantics (ie. it may
4026 * not be suitable for data integrity
4027 * writeout).
4028 */
4029 done_index = page->index + 1;
4030 done = 1;
4031 break;
4032 }
4033
4034 /*
4035 * the filesystem may choose to bump up nr_to_write.
4036 * We have to make sure to honor the new nr_to_write
4037 * at any time
4038 */
4039 nr_to_write_done = wbc->nr_to_write <= 0;
4040 }
4041 pagevec_release(&pvec);
4042 cond_resched();
4043 }
4044 if (!scanned && !done) {
4045 /*
4046 * We hit the last page and there is more work to be done: wrap
4047 * back to the start of the file
4048 */
4049 scanned = 1;
4050 index = 0;
4051 goto retry;
4052 }
4053
4054 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4055 mapping->writeback_index = done_index;
4056
4057 btrfs_add_delayed_iput(inode);
4058 return ret;
4059 }
4060
4061 static void flush_epd_write_bio(struct extent_page_data *epd)
4062 {
4063 if (epd->bio) {
4064 int ret;
4065
4066 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4067 epd->sync_io ? REQ_SYNC : 0);
4068
4069 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4070 BUG_ON(ret < 0); /* -ENOMEM */
4071 epd->bio = NULL;
4072 }
4073 }
4074
4075 static noinline void flush_write_bio(void *data)
4076 {
4077 struct extent_page_data *epd = data;
4078 flush_epd_write_bio(epd);
4079 }
4080
4081 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4082 get_extent_t *get_extent,
4083 struct writeback_control *wbc)
4084 {
4085 int ret;
4086 struct extent_page_data epd = {
4087 .bio = NULL,
4088 .tree = tree,
4089 .get_extent = get_extent,
4090 .extent_locked = 0,
4091 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4092 .bio_flags = 0,
4093 };
4094
4095 ret = __extent_writepage(page, wbc, &epd);
4096
4097 flush_epd_write_bio(&epd);
4098 return ret;
4099 }
4100
4101 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4102 u64 start, u64 end, get_extent_t *get_extent,
4103 int mode)
4104 {
4105 int ret = 0;
4106 struct address_space *mapping = inode->i_mapping;
4107 struct page *page;
4108 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4109 PAGE_SHIFT;
4110
4111 struct extent_page_data epd = {
4112 .bio = NULL,
4113 .tree = tree,
4114 .get_extent = get_extent,
4115 .extent_locked = 1,
4116 .sync_io = mode == WB_SYNC_ALL,
4117 .bio_flags = 0,
4118 };
4119 struct writeback_control wbc_writepages = {
4120 .sync_mode = mode,
4121 .nr_to_write = nr_pages * 2,
4122 .range_start = start,
4123 .range_end = end + 1,
4124 };
4125
4126 while (start <= end) {
4127 page = find_get_page(mapping, start >> PAGE_SHIFT);
4128 if (clear_page_dirty_for_io(page))
4129 ret = __extent_writepage(page, &wbc_writepages, &epd);
4130 else {
4131 if (tree->ops && tree->ops->writepage_end_io_hook)
4132 tree->ops->writepage_end_io_hook(page, start,
4133 start + PAGE_SIZE - 1,
4134 NULL, 1);
4135 unlock_page(page);
4136 }
4137 put_page(page);
4138 start += PAGE_SIZE;
4139 }
4140
4141 flush_epd_write_bio(&epd);
4142 return ret;
4143 }
4144
4145 int extent_writepages(struct extent_io_tree *tree,
4146 struct address_space *mapping,
4147 get_extent_t *get_extent,
4148 struct writeback_control *wbc)
4149 {
4150 int ret = 0;
4151 struct extent_page_data epd = {
4152 .bio = NULL,
4153 .tree = tree,
4154 .get_extent = get_extent,
4155 .extent_locked = 0,
4156 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4157 .bio_flags = 0,
4158 };
4159
4160 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4161 flush_write_bio);
4162 flush_epd_write_bio(&epd);
4163 return ret;
4164 }
4165
4166 int extent_readpages(struct extent_io_tree *tree,
4167 struct address_space *mapping,
4168 struct list_head *pages, unsigned nr_pages,
4169 get_extent_t get_extent)
4170 {
4171 struct bio *bio = NULL;
4172 unsigned page_idx;
4173 unsigned long bio_flags = 0;
4174 struct page *pagepool[16];
4175 struct page *page;
4176 struct extent_map *em_cached = NULL;
4177 int nr = 0;
4178 u64 prev_em_start = (u64)-1;
4179
4180 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4181 page = list_entry(pages->prev, struct page, lru);
4182
4183 prefetchw(&page->flags);
4184 list_del(&page->lru);
4185 if (add_to_page_cache_lru(page, mapping,
4186 page->index,
4187 readahead_gfp_mask(mapping))) {
4188 put_page(page);
4189 continue;
4190 }
4191
4192 pagepool[nr++] = page;
4193 if (nr < ARRAY_SIZE(pagepool))
4194 continue;
4195 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4196 &bio, 0, &bio_flags, &prev_em_start);
4197 nr = 0;
4198 }
4199 if (nr)
4200 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4201 &bio, 0, &bio_flags, &prev_em_start);
4202
4203 if (em_cached)
4204 free_extent_map(em_cached);
4205
4206 BUG_ON(!list_empty(pages));
4207 if (bio)
4208 return submit_one_bio(bio, 0, bio_flags);
4209 return 0;
4210 }
4211
4212 /*
4213 * basic invalidatepage code, this waits on any locked or writeback
4214 * ranges corresponding to the page, and then deletes any extent state
4215 * records from the tree
4216 */
4217 int extent_invalidatepage(struct extent_io_tree *tree,
4218 struct page *page, unsigned long offset)
4219 {
4220 struct extent_state *cached_state = NULL;
4221 u64 start = page_offset(page);
4222 u64 end = start + PAGE_SIZE - 1;
4223 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4224
4225 start += ALIGN(offset, blocksize);
4226 if (start > end)
4227 return 0;
4228
4229 lock_extent_bits(tree, start, end, &cached_state);
4230 wait_on_page_writeback(page);
4231 clear_extent_bit(tree, start, end,
4232 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4233 EXTENT_DO_ACCOUNTING,
4234 1, 1, &cached_state, GFP_NOFS);
4235 return 0;
4236 }
4237
4238 /*
4239 * a helper for releasepage, this tests for areas of the page that
4240 * are locked or under IO and drops the related state bits if it is safe
4241 * to drop the page.
4242 */
4243 static int try_release_extent_state(struct extent_map_tree *map,
4244 struct extent_io_tree *tree,
4245 struct page *page, gfp_t mask)
4246 {
4247 u64 start = page_offset(page);
4248 u64 end = start + PAGE_SIZE - 1;
4249 int ret = 1;
4250
4251 if (test_range_bit(tree, start, end,
4252 EXTENT_IOBITS, 0, NULL))
4253 ret = 0;
4254 else {
4255 /*
4256 * at this point we can safely clear everything except the
4257 * locked bit and the nodatasum bit
4258 */
4259 ret = clear_extent_bit(tree, start, end,
4260 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4261 0, 0, NULL, mask);
4262
4263 /* if clear_extent_bit failed for enomem reasons,
4264 * we can't allow the release to continue.
4265 */
4266 if (ret < 0)
4267 ret = 0;
4268 else
4269 ret = 1;
4270 }
4271 return ret;
4272 }
4273
4274 /*
4275 * a helper for releasepage. As long as there are no locked extents
4276 * in the range corresponding to the page, both state records and extent
4277 * map records are removed
4278 */
4279 int try_release_extent_mapping(struct extent_map_tree *map,
4280 struct extent_io_tree *tree, struct page *page,
4281 gfp_t mask)
4282 {
4283 struct extent_map *em;
4284 u64 start = page_offset(page);
4285 u64 end = start + PAGE_SIZE - 1;
4286
4287 if (gfpflags_allow_blocking(mask) &&
4288 page->mapping->host->i_size > SZ_16M) {
4289 u64 len;
4290 while (start <= end) {
4291 len = end - start + 1;
4292 write_lock(&map->lock);
4293 em = lookup_extent_mapping(map, start, len);
4294 if (!em) {
4295 write_unlock(&map->lock);
4296 break;
4297 }
4298 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4299 em->start != start) {
4300 write_unlock(&map->lock);
4301 free_extent_map(em);
4302 break;
4303 }
4304 if (!test_range_bit(tree, em->start,
4305 extent_map_end(em) - 1,
4306 EXTENT_LOCKED | EXTENT_WRITEBACK,
4307 0, NULL)) {
4308 remove_extent_mapping(map, em);
4309 /* once for the rb tree */
4310 free_extent_map(em);
4311 }
4312 start = extent_map_end(em);
4313 write_unlock(&map->lock);
4314
4315 /* once for us */
4316 free_extent_map(em);
4317 }
4318 }
4319 return try_release_extent_state(map, tree, page, mask);
4320 }
4321
4322 /*
4323 * helper function for fiemap, which doesn't want to see any holes.
4324 * This maps until we find something past 'last'
4325 */
4326 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4327 u64 offset,
4328 u64 last,
4329 get_extent_t *get_extent)
4330 {
4331 u64 sectorsize = btrfs_inode_sectorsize(inode);
4332 struct extent_map *em;
4333 u64 len;
4334
4335 if (offset >= last)
4336 return NULL;
4337
4338 while (1) {
4339 len = last - offset;
4340 if (len == 0)
4341 break;
4342 len = ALIGN(len, sectorsize);
4343 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4344 if (IS_ERR_OR_NULL(em))
4345 return em;
4346
4347 /* if this isn't a hole return it */
4348 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4349 em->block_start != EXTENT_MAP_HOLE) {
4350 return em;
4351 }
4352
4353 /* this is a hole, advance to the next extent */
4354 offset = extent_map_end(em);
4355 free_extent_map(em);
4356 if (offset >= last)
4357 break;
4358 }
4359 return NULL;
4360 }
4361
4362 /*
4363 * To cache previous fiemap extent
4364 *
4365 * Will be used for merging fiemap extent
4366 */
4367 struct fiemap_cache {
4368 u64 offset;
4369 u64 phys;
4370 u64 len;
4371 u32 flags;
4372 bool cached;
4373 };
4374
4375 /*
4376 * Helper to submit fiemap extent.
4377 *
4378 * Will try to merge current fiemap extent specified by @offset, @phys,
4379 * @len and @flags with cached one.
4380 * And only when we fails to merge, cached one will be submitted as
4381 * fiemap extent.
4382 *
4383 * Return value is the same as fiemap_fill_next_extent().
4384 */
4385 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4386 struct fiemap_cache *cache,
4387 u64 offset, u64 phys, u64 len, u32 flags)
4388 {
4389 int ret = 0;
4390
4391 if (!cache->cached)
4392 goto assign;
4393
4394 /*
4395 * Sanity check, extent_fiemap() should have ensured that new
4396 * fiemap extent won't overlap with cahced one.
4397 * Not recoverable.
4398 *
4399 * NOTE: Physical address can overlap, due to compression
4400 */
4401 if (cache->offset + cache->len > offset) {
4402 WARN_ON(1);
4403 return -EINVAL;
4404 }
4405
4406 /*
4407 * Only merges fiemap extents if
4408 * 1) Their logical addresses are continuous
4409 *
4410 * 2) Their physical addresses are continuous
4411 * So truly compressed (physical size smaller than logical size)
4412 * extents won't get merged with each other
4413 *
4414 * 3) Share same flags except FIEMAP_EXTENT_LAST
4415 * So regular extent won't get merged with prealloc extent
4416 */
4417 if (cache->offset + cache->len == offset &&
4418 cache->phys + cache->len == phys &&
4419 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4420 (flags & ~FIEMAP_EXTENT_LAST)) {
4421 cache->len += len;
4422 cache->flags |= flags;
4423 goto try_submit_last;
4424 }
4425
4426 /* Not mergeable, need to submit cached one */
4427 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4428 cache->len, cache->flags);
4429 cache->cached = false;
4430 if (ret)
4431 return ret;
4432 assign:
4433 cache->cached = true;
4434 cache->offset = offset;
4435 cache->phys = phys;
4436 cache->len = len;
4437 cache->flags = flags;
4438 try_submit_last:
4439 if (cache->flags & FIEMAP_EXTENT_LAST) {
4440 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4441 cache->phys, cache->len, cache->flags);
4442 cache->cached = false;
4443 }
4444 return ret;
4445 }
4446
4447 /*
4448 * Emit last fiemap cache
4449 *
4450 * The last fiemap cache may still be cached in the following case:
4451 * 0 4k 8k
4452 * |<- Fiemap range ->|
4453 * |<------------ First extent ----------->|
4454 *
4455 * In this case, the first extent range will be cached but not emitted.
4456 * So we must emit it before ending extent_fiemap().
4457 */
4458 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4459 struct fiemap_extent_info *fieinfo,
4460 struct fiemap_cache *cache)
4461 {
4462 int ret;
4463
4464 if (!cache->cached)
4465 return 0;
4466
4467 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4468 cache->len, cache->flags);
4469 cache->cached = false;
4470 if (ret > 0)
4471 ret = 0;
4472 return ret;
4473 }
4474
4475 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4476 __u64 start, __u64 len, get_extent_t *get_extent)
4477 {
4478 int ret = 0;
4479 u64 off = start;
4480 u64 max = start + len;
4481 u32 flags = 0;
4482 u32 found_type;
4483 u64 last;
4484 u64 last_for_get_extent = 0;
4485 u64 disko = 0;
4486 u64 isize = i_size_read(inode);
4487 struct btrfs_key found_key;
4488 struct extent_map *em = NULL;
4489 struct extent_state *cached_state = NULL;
4490 struct btrfs_path *path;
4491 struct btrfs_root *root = BTRFS_I(inode)->root;
4492 struct fiemap_cache cache = { 0 };
4493 int end = 0;
4494 u64 em_start = 0;
4495 u64 em_len = 0;
4496 u64 em_end = 0;
4497
4498 if (len == 0)
4499 return -EINVAL;
4500
4501 path = btrfs_alloc_path();
4502 if (!path)
4503 return -ENOMEM;
4504 path->leave_spinning = 1;
4505
4506 start = round_down(start, btrfs_inode_sectorsize(inode));
4507 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4508
4509 /*
4510 * lookup the last file extent. We're not using i_size here
4511 * because there might be preallocation past i_size
4512 */
4513 ret = btrfs_lookup_file_extent(NULL, root, path,
4514 btrfs_ino(BTRFS_I(inode)), -1, 0);
4515 if (ret < 0) {
4516 btrfs_free_path(path);
4517 return ret;
4518 } else {
4519 WARN_ON(!ret);
4520 if (ret == 1)
4521 ret = 0;
4522 }
4523
4524 path->slots[0]--;
4525 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4526 found_type = found_key.type;
4527
4528 /* No extents, but there might be delalloc bits */
4529 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4530 found_type != BTRFS_EXTENT_DATA_KEY) {
4531 /* have to trust i_size as the end */
4532 last = (u64)-1;
4533 last_for_get_extent = isize;
4534 } else {
4535 /*
4536 * remember the start of the last extent. There are a
4537 * bunch of different factors that go into the length of the
4538 * extent, so its much less complex to remember where it started
4539 */
4540 last = found_key.offset;
4541 last_for_get_extent = last + 1;
4542 }
4543 btrfs_release_path(path);
4544
4545 /*
4546 * we might have some extents allocated but more delalloc past those
4547 * extents. so, we trust isize unless the start of the last extent is
4548 * beyond isize
4549 */
4550 if (last < isize) {
4551 last = (u64)-1;
4552 last_for_get_extent = isize;
4553 }
4554
4555 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4556 &cached_state);
4557
4558 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4559 get_extent);
4560 if (!em)
4561 goto out;
4562 if (IS_ERR(em)) {
4563 ret = PTR_ERR(em);
4564 goto out;
4565 }
4566
4567 while (!end) {
4568 u64 offset_in_extent = 0;
4569
4570 /* break if the extent we found is outside the range */
4571 if (em->start >= max || extent_map_end(em) < off)
4572 break;
4573
4574 /*
4575 * get_extent may return an extent that starts before our
4576 * requested range. We have to make sure the ranges
4577 * we return to fiemap always move forward and don't
4578 * overlap, so adjust the offsets here
4579 */
4580 em_start = max(em->start, off);
4581
4582 /*
4583 * record the offset from the start of the extent
4584 * for adjusting the disk offset below. Only do this if the
4585 * extent isn't compressed since our in ram offset may be past
4586 * what we have actually allocated on disk.
4587 */
4588 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4589 offset_in_extent = em_start - em->start;
4590 em_end = extent_map_end(em);
4591 em_len = em_end - em_start;
4592 disko = 0;
4593 flags = 0;
4594
4595 /*
4596 * bump off for our next call to get_extent
4597 */
4598 off = extent_map_end(em);
4599 if (off >= max)
4600 end = 1;
4601
4602 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4603 end = 1;
4604 flags |= FIEMAP_EXTENT_LAST;
4605 } else if (em->block_start == EXTENT_MAP_INLINE) {
4606 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4607 FIEMAP_EXTENT_NOT_ALIGNED);
4608 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4609 flags |= (FIEMAP_EXTENT_DELALLOC |
4610 FIEMAP_EXTENT_UNKNOWN);
4611 } else if (fieinfo->fi_extents_max) {
4612 u64 bytenr = em->block_start -
4613 (em->start - em->orig_start);
4614
4615 disko = em->block_start + offset_in_extent;
4616
4617 /*
4618 * As btrfs supports shared space, this information
4619 * can be exported to userspace tools via
4620 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4621 * then we're just getting a count and we can skip the
4622 * lookup stuff.
4623 */
4624 ret = btrfs_check_shared(root,
4625 btrfs_ino(BTRFS_I(inode)),
4626 bytenr);
4627 if (ret < 0)
4628 goto out_free;
4629 if (ret)
4630 flags |= FIEMAP_EXTENT_SHARED;
4631 ret = 0;
4632 }
4633 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4634 flags |= FIEMAP_EXTENT_ENCODED;
4635 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4636 flags |= FIEMAP_EXTENT_UNWRITTEN;
4637
4638 free_extent_map(em);
4639 em = NULL;
4640 if ((em_start >= last) || em_len == (u64)-1 ||
4641 (last == (u64)-1 && isize <= em_end)) {
4642 flags |= FIEMAP_EXTENT_LAST;
4643 end = 1;
4644 }
4645
4646 /* now scan forward to see if this is really the last extent. */
4647 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4648 get_extent);
4649 if (IS_ERR(em)) {
4650 ret = PTR_ERR(em);
4651 goto out;
4652 }
4653 if (!em) {
4654 flags |= FIEMAP_EXTENT_LAST;
4655 end = 1;
4656 }
4657 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4658 em_len, flags);
4659 if (ret) {
4660 if (ret == 1)
4661 ret = 0;
4662 goto out_free;
4663 }
4664 }
4665 out_free:
4666 if (!ret)
4667 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4668 free_extent_map(em);
4669 out:
4670 btrfs_free_path(path);
4671 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4672 &cached_state, GFP_NOFS);
4673 return ret;
4674 }
4675
4676 static void __free_extent_buffer(struct extent_buffer *eb)
4677 {
4678 btrfs_leak_debug_del(&eb->leak_list);
4679 kmem_cache_free(extent_buffer_cache, eb);
4680 }
4681
4682 int extent_buffer_under_io(struct extent_buffer *eb)
4683 {
4684 return (atomic_read(&eb->io_pages) ||
4685 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4686 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4687 }
4688
4689 /*
4690 * Helper for releasing extent buffer page.
4691 */
4692 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4693 {
4694 unsigned long index;
4695 struct page *page;
4696 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4697
4698 BUG_ON(extent_buffer_under_io(eb));
4699
4700 index = num_extent_pages(eb->start, eb->len);
4701 if (index == 0)
4702 return;
4703
4704 do {
4705 index--;
4706 page = eb->pages[index];
4707 if (!page)
4708 continue;
4709 if (mapped)
4710 spin_lock(&page->mapping->private_lock);
4711 /*
4712 * We do this since we'll remove the pages after we've
4713 * removed the eb from the radix tree, so we could race
4714 * and have this page now attached to the new eb. So
4715 * only clear page_private if it's still connected to
4716 * this eb.
4717 */
4718 if (PagePrivate(page) &&
4719 page->private == (unsigned long)eb) {
4720 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4721 BUG_ON(PageDirty(page));
4722 BUG_ON(PageWriteback(page));
4723 /*
4724 * We need to make sure we haven't be attached
4725 * to a new eb.
4726 */
4727 ClearPagePrivate(page);
4728 set_page_private(page, 0);
4729 /* One for the page private */
4730 put_page(page);
4731 }
4732
4733 if (mapped)
4734 spin_unlock(&page->mapping->private_lock);
4735
4736 /* One for when we allocated the page */
4737 put_page(page);
4738 } while (index != 0);
4739 }
4740
4741 /*
4742 * Helper for releasing the extent buffer.
4743 */
4744 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4745 {
4746 btrfs_release_extent_buffer_page(eb);
4747 __free_extent_buffer(eb);
4748 }
4749
4750 static struct extent_buffer *
4751 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4752 unsigned long len)
4753 {
4754 struct extent_buffer *eb = NULL;
4755
4756 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4757 eb->start = start;
4758 eb->len = len;
4759 eb->fs_info = fs_info;
4760 eb->bflags = 0;
4761 rwlock_init(&eb->lock);
4762 atomic_set(&eb->write_locks, 0);
4763 atomic_set(&eb->read_locks, 0);
4764 atomic_set(&eb->blocking_readers, 0);
4765 atomic_set(&eb->blocking_writers, 0);
4766 atomic_set(&eb->spinning_readers, 0);
4767 atomic_set(&eb->spinning_writers, 0);
4768 eb->lock_nested = 0;
4769 init_waitqueue_head(&eb->write_lock_wq);
4770 init_waitqueue_head(&eb->read_lock_wq);
4771
4772 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4773
4774 spin_lock_init(&eb->refs_lock);
4775 atomic_set(&eb->refs, 1);
4776 atomic_set(&eb->io_pages, 0);
4777
4778 /*
4779 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4780 */
4781 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4782 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4783 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4784
4785 return eb;
4786 }
4787
4788 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4789 {
4790 unsigned long i;
4791 struct page *p;
4792 struct extent_buffer *new;
4793 unsigned long num_pages = num_extent_pages(src->start, src->len);
4794
4795 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4796 if (new == NULL)
4797 return NULL;
4798
4799 for (i = 0; i < num_pages; i++) {
4800 p = alloc_page(GFP_NOFS);
4801 if (!p) {
4802 btrfs_release_extent_buffer(new);
4803 return NULL;
4804 }
4805 attach_extent_buffer_page(new, p);
4806 WARN_ON(PageDirty(p));
4807 SetPageUptodate(p);
4808 new->pages[i] = p;
4809 copy_page(page_address(p), page_address(src->pages[i]));
4810 }
4811
4812 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4813 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4814
4815 return new;
4816 }
4817
4818 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4819 u64 start, unsigned long len)
4820 {
4821 struct extent_buffer *eb;
4822 unsigned long num_pages;
4823 unsigned long i;
4824
4825 num_pages = num_extent_pages(start, len);
4826
4827 eb = __alloc_extent_buffer(fs_info, start, len);
4828 if (!eb)
4829 return NULL;
4830
4831 for (i = 0; i < num_pages; i++) {
4832 eb->pages[i] = alloc_page(GFP_NOFS);
4833 if (!eb->pages[i])
4834 goto err;
4835 }
4836 set_extent_buffer_uptodate(eb);
4837 btrfs_set_header_nritems(eb, 0);
4838 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4839
4840 return eb;
4841 err:
4842 for (; i > 0; i--)
4843 __free_page(eb->pages[i - 1]);
4844 __free_extent_buffer(eb);
4845 return NULL;
4846 }
4847
4848 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4849 u64 start)
4850 {
4851 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4852 }
4853
4854 static void check_buffer_tree_ref(struct extent_buffer *eb)
4855 {
4856 int refs;
4857 /* the ref bit is tricky. We have to make sure it is set
4858 * if we have the buffer dirty. Otherwise the
4859 * code to free a buffer can end up dropping a dirty
4860 * page
4861 *
4862 * Once the ref bit is set, it won't go away while the
4863 * buffer is dirty or in writeback, and it also won't
4864 * go away while we have the reference count on the
4865 * eb bumped.
4866 *
4867 * We can't just set the ref bit without bumping the
4868 * ref on the eb because free_extent_buffer might
4869 * see the ref bit and try to clear it. If this happens
4870 * free_extent_buffer might end up dropping our original
4871 * ref by mistake and freeing the page before we are able
4872 * to add one more ref.
4873 *
4874 * So bump the ref count first, then set the bit. If someone
4875 * beat us to it, drop the ref we added.
4876 */
4877 refs = atomic_read(&eb->refs);
4878 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4879 return;
4880
4881 spin_lock(&eb->refs_lock);
4882 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4883 atomic_inc(&eb->refs);
4884 spin_unlock(&eb->refs_lock);
4885 }
4886
4887 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4888 struct page *accessed)
4889 {
4890 unsigned long num_pages, i;
4891
4892 check_buffer_tree_ref(eb);
4893
4894 num_pages = num_extent_pages(eb->start, eb->len);
4895 for (i = 0; i < num_pages; i++) {
4896 struct page *p = eb->pages[i];
4897
4898 if (p != accessed)
4899 mark_page_accessed(p);
4900 }
4901 }
4902
4903 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4904 u64 start)
4905 {
4906 struct extent_buffer *eb;
4907
4908 rcu_read_lock();
4909 eb = radix_tree_lookup(&fs_info->buffer_radix,
4910 start >> PAGE_SHIFT);
4911 if (eb && atomic_inc_not_zero(&eb->refs)) {
4912 rcu_read_unlock();
4913 /*
4914 * Lock our eb's refs_lock to avoid races with
4915 * free_extent_buffer. When we get our eb it might be flagged
4916 * with EXTENT_BUFFER_STALE and another task running
4917 * free_extent_buffer might have seen that flag set,
4918 * eb->refs == 2, that the buffer isn't under IO (dirty and
4919 * writeback flags not set) and it's still in the tree (flag
4920 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4921 * of decrementing the extent buffer's reference count twice.
4922 * So here we could race and increment the eb's reference count,
4923 * clear its stale flag, mark it as dirty and drop our reference
4924 * before the other task finishes executing free_extent_buffer,
4925 * which would later result in an attempt to free an extent
4926 * buffer that is dirty.
4927 */
4928 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4929 spin_lock(&eb->refs_lock);
4930 spin_unlock(&eb->refs_lock);
4931 }
4932 mark_extent_buffer_accessed(eb, NULL);
4933 return eb;
4934 }
4935 rcu_read_unlock();
4936
4937 return NULL;
4938 }
4939
4940 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4941 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4942 u64 start)
4943 {
4944 struct extent_buffer *eb, *exists = NULL;
4945 int ret;
4946
4947 eb = find_extent_buffer(fs_info, start);
4948 if (eb)
4949 return eb;
4950 eb = alloc_dummy_extent_buffer(fs_info, start);
4951 if (!eb)
4952 return NULL;
4953 eb->fs_info = fs_info;
4954 again:
4955 ret = radix_tree_preload(GFP_NOFS);
4956 if (ret)
4957 goto free_eb;
4958 spin_lock(&fs_info->buffer_lock);
4959 ret = radix_tree_insert(&fs_info->buffer_radix,
4960 start >> PAGE_SHIFT, eb);
4961 spin_unlock(&fs_info->buffer_lock);
4962 radix_tree_preload_end();
4963 if (ret == -EEXIST) {
4964 exists = find_extent_buffer(fs_info, start);
4965 if (exists)
4966 goto free_eb;
4967 else
4968 goto again;
4969 }
4970 check_buffer_tree_ref(eb);
4971 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4972
4973 /*
4974 * We will free dummy extent buffer's if they come into
4975 * free_extent_buffer with a ref count of 2, but if we are using this we
4976 * want the buffers to stay in memory until we're done with them, so
4977 * bump the ref count again.
4978 */
4979 atomic_inc(&eb->refs);
4980 return eb;
4981 free_eb:
4982 btrfs_release_extent_buffer(eb);
4983 return exists;
4984 }
4985 #endif
4986
4987 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4988 u64 start)
4989 {
4990 unsigned long len = fs_info->nodesize;
4991 unsigned long num_pages = num_extent_pages(start, len);
4992 unsigned long i;
4993 unsigned long index = start >> PAGE_SHIFT;
4994 struct extent_buffer *eb;
4995 struct extent_buffer *exists = NULL;
4996 struct page *p;
4997 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4998 int uptodate = 1;
4999 int ret;
5000
5001 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5002 btrfs_err(fs_info, "bad tree block start %llu", start);
5003 return ERR_PTR(-EINVAL);
5004 }
5005
5006 eb = find_extent_buffer(fs_info, start);
5007 if (eb)
5008 return eb;
5009
5010 eb = __alloc_extent_buffer(fs_info, start, len);
5011 if (!eb)
5012 return ERR_PTR(-ENOMEM);
5013
5014 for (i = 0; i < num_pages; i++, index++) {
5015 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5016 if (!p) {
5017 exists = ERR_PTR(-ENOMEM);
5018 goto free_eb;
5019 }
5020
5021 spin_lock(&mapping->private_lock);
5022 if (PagePrivate(p)) {
5023 /*
5024 * We could have already allocated an eb for this page
5025 * and attached one so lets see if we can get a ref on
5026 * the existing eb, and if we can we know it's good and
5027 * we can just return that one, else we know we can just
5028 * overwrite page->private.
5029 */
5030 exists = (struct extent_buffer *)p->private;
5031 if (atomic_inc_not_zero(&exists->refs)) {
5032 spin_unlock(&mapping->private_lock);
5033 unlock_page(p);
5034 put_page(p);
5035 mark_extent_buffer_accessed(exists, p);
5036 goto free_eb;
5037 }
5038 exists = NULL;
5039
5040 /*
5041 * Do this so attach doesn't complain and we need to
5042 * drop the ref the old guy had.
5043 */
5044 ClearPagePrivate(p);
5045 WARN_ON(PageDirty(p));
5046 put_page(p);
5047 }
5048 attach_extent_buffer_page(eb, p);
5049 spin_unlock(&mapping->private_lock);
5050 WARN_ON(PageDirty(p));
5051 eb->pages[i] = p;
5052 if (!PageUptodate(p))
5053 uptodate = 0;
5054
5055 /*
5056 * see below about how we avoid a nasty race with release page
5057 * and why we unlock later
5058 */
5059 }
5060 if (uptodate)
5061 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5062 again:
5063 ret = radix_tree_preload(GFP_NOFS);
5064 if (ret) {
5065 exists = ERR_PTR(ret);
5066 goto free_eb;
5067 }
5068
5069 spin_lock(&fs_info->buffer_lock);
5070 ret = radix_tree_insert(&fs_info->buffer_radix,
5071 start >> PAGE_SHIFT, eb);
5072 spin_unlock(&fs_info->buffer_lock);
5073 radix_tree_preload_end();
5074 if (ret == -EEXIST) {
5075 exists = find_extent_buffer(fs_info, start);
5076 if (exists)
5077 goto free_eb;
5078 else
5079 goto again;
5080 }
5081 /* add one reference for the tree */
5082 check_buffer_tree_ref(eb);
5083 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5084
5085 /*
5086 * there is a race where release page may have
5087 * tried to find this extent buffer in the radix
5088 * but failed. It will tell the VM it is safe to
5089 * reclaim the, and it will clear the page private bit.
5090 * We must make sure to set the page private bit properly
5091 * after the extent buffer is in the radix tree so
5092 * it doesn't get lost
5093 */
5094 SetPageChecked(eb->pages[0]);
5095 for (i = 1; i < num_pages; i++) {
5096 p = eb->pages[i];
5097 ClearPageChecked(p);
5098 unlock_page(p);
5099 }
5100 unlock_page(eb->pages[0]);
5101 return eb;
5102
5103 free_eb:
5104 WARN_ON(!atomic_dec_and_test(&eb->refs));
5105 for (i = 0; i < num_pages; i++) {
5106 if (eb->pages[i])
5107 unlock_page(eb->pages[i]);
5108 }
5109
5110 btrfs_release_extent_buffer(eb);
5111 return exists;
5112 }
5113
5114 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5115 {
5116 struct extent_buffer *eb =
5117 container_of(head, struct extent_buffer, rcu_head);
5118
5119 __free_extent_buffer(eb);
5120 }
5121
5122 /* Expects to have eb->eb_lock already held */
5123 static int release_extent_buffer(struct extent_buffer *eb)
5124 {
5125 WARN_ON(atomic_read(&eb->refs) == 0);
5126 if (atomic_dec_and_test(&eb->refs)) {
5127 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5128 struct btrfs_fs_info *fs_info = eb->fs_info;
5129
5130 spin_unlock(&eb->refs_lock);
5131
5132 spin_lock(&fs_info->buffer_lock);
5133 radix_tree_delete(&fs_info->buffer_radix,
5134 eb->start >> PAGE_SHIFT);
5135 spin_unlock(&fs_info->buffer_lock);
5136 } else {
5137 spin_unlock(&eb->refs_lock);
5138 }
5139
5140 /* Should be safe to release our pages at this point */
5141 btrfs_release_extent_buffer_page(eb);
5142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5143 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5144 __free_extent_buffer(eb);
5145 return 1;
5146 }
5147 #endif
5148 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5149 return 1;
5150 }
5151 spin_unlock(&eb->refs_lock);
5152
5153 return 0;
5154 }
5155
5156 void free_extent_buffer(struct extent_buffer *eb)
5157 {
5158 int refs;
5159 int old;
5160 if (!eb)
5161 return;
5162
5163 while (1) {
5164 refs = atomic_read(&eb->refs);
5165 if (refs <= 3)
5166 break;
5167 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5168 if (old == refs)
5169 return;
5170 }
5171
5172 spin_lock(&eb->refs_lock);
5173 if (atomic_read(&eb->refs) == 2 &&
5174 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5175 atomic_dec(&eb->refs);
5176
5177 if (atomic_read(&eb->refs) == 2 &&
5178 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5179 !extent_buffer_under_io(eb) &&
5180 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5181 atomic_dec(&eb->refs);
5182
5183 /*
5184 * I know this is terrible, but it's temporary until we stop tracking
5185 * the uptodate bits and such for the extent buffers.
5186 */
5187 release_extent_buffer(eb);
5188 }
5189
5190 void free_extent_buffer_stale(struct extent_buffer *eb)
5191 {
5192 if (!eb)
5193 return;
5194
5195 spin_lock(&eb->refs_lock);
5196 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5197
5198 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5199 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5200 atomic_dec(&eb->refs);
5201 release_extent_buffer(eb);
5202 }
5203
5204 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5205 {
5206 unsigned long i;
5207 unsigned long num_pages;
5208 struct page *page;
5209
5210 num_pages = num_extent_pages(eb->start, eb->len);
5211
5212 for (i = 0; i < num_pages; i++) {
5213 page = eb->pages[i];
5214 if (!PageDirty(page))
5215 continue;
5216
5217 lock_page(page);
5218 WARN_ON(!PagePrivate(page));
5219
5220 clear_page_dirty_for_io(page);
5221 spin_lock_irq(&page->mapping->tree_lock);
5222 if (!PageDirty(page)) {
5223 radix_tree_tag_clear(&page->mapping->page_tree,
5224 page_index(page),
5225 PAGECACHE_TAG_DIRTY);
5226 }
5227 spin_unlock_irq(&page->mapping->tree_lock);
5228 ClearPageError(page);
5229 unlock_page(page);
5230 }
5231 WARN_ON(atomic_read(&eb->refs) == 0);
5232 }
5233
5234 int set_extent_buffer_dirty(struct extent_buffer *eb)
5235 {
5236 unsigned long i;
5237 unsigned long num_pages;
5238 int was_dirty = 0;
5239
5240 check_buffer_tree_ref(eb);
5241
5242 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5243
5244 num_pages = num_extent_pages(eb->start, eb->len);
5245 WARN_ON(atomic_read(&eb->refs) == 0);
5246 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5247
5248 for (i = 0; i < num_pages; i++)
5249 set_page_dirty(eb->pages[i]);
5250 return was_dirty;
5251 }
5252
5253 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5254 {
5255 unsigned long i;
5256 struct page *page;
5257 unsigned long num_pages;
5258
5259 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5260 num_pages = num_extent_pages(eb->start, eb->len);
5261 for (i = 0; i < num_pages; i++) {
5262 page = eb->pages[i];
5263 if (page)
5264 ClearPageUptodate(page);
5265 }
5266 }
5267
5268 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5269 {
5270 unsigned long i;
5271 struct page *page;
5272 unsigned long num_pages;
5273
5274 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5275 num_pages = num_extent_pages(eb->start, eb->len);
5276 for (i = 0; i < num_pages; i++) {
5277 page = eb->pages[i];
5278 SetPageUptodate(page);
5279 }
5280 }
5281
5282 int extent_buffer_uptodate(struct extent_buffer *eb)
5283 {
5284 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5285 }
5286
5287 int read_extent_buffer_pages(struct extent_io_tree *tree,
5288 struct extent_buffer *eb, int wait,
5289 get_extent_t *get_extent, int mirror_num)
5290 {
5291 unsigned long i;
5292 struct page *page;
5293 int err;
5294 int ret = 0;
5295 int locked_pages = 0;
5296 int all_uptodate = 1;
5297 unsigned long num_pages;
5298 unsigned long num_reads = 0;
5299 struct bio *bio = NULL;
5300 unsigned long bio_flags = 0;
5301
5302 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5303 return 0;
5304
5305 num_pages = num_extent_pages(eb->start, eb->len);
5306 for (i = 0; i < num_pages; i++) {
5307 page = eb->pages[i];
5308 if (wait == WAIT_NONE) {
5309 if (!trylock_page(page))
5310 goto unlock_exit;
5311 } else {
5312 lock_page(page);
5313 }
5314 locked_pages++;
5315 }
5316 /*
5317 * We need to firstly lock all pages to make sure that
5318 * the uptodate bit of our pages won't be affected by
5319 * clear_extent_buffer_uptodate().
5320 */
5321 for (i = 0; i < num_pages; i++) {
5322 page = eb->pages[i];
5323 if (!PageUptodate(page)) {
5324 num_reads++;
5325 all_uptodate = 0;
5326 }
5327 }
5328
5329 if (all_uptodate) {
5330 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5331 goto unlock_exit;
5332 }
5333
5334 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5335 eb->read_mirror = 0;
5336 atomic_set(&eb->io_pages, num_reads);
5337 for (i = 0; i < num_pages; i++) {
5338 page = eb->pages[i];
5339
5340 if (!PageUptodate(page)) {
5341 if (ret) {
5342 atomic_dec(&eb->io_pages);
5343 unlock_page(page);
5344 continue;
5345 }
5346
5347 ClearPageError(page);
5348 err = __extent_read_full_page(tree, page,
5349 get_extent, &bio,
5350 mirror_num, &bio_flags,
5351 REQ_META);
5352 if (err) {
5353 ret = err;
5354 /*
5355 * We use &bio in above __extent_read_full_page,
5356 * so we ensure that if it returns error, the
5357 * current page fails to add itself to bio and
5358 * it's been unlocked.
5359 *
5360 * We must dec io_pages by ourselves.
5361 */
5362 atomic_dec(&eb->io_pages);
5363 }
5364 } else {
5365 unlock_page(page);
5366 }
5367 }
5368
5369 if (bio) {
5370 err = submit_one_bio(bio, mirror_num, bio_flags);
5371 if (err)
5372 return err;
5373 }
5374
5375 if (ret || wait != WAIT_COMPLETE)
5376 return ret;
5377
5378 for (i = 0; i < num_pages; i++) {
5379 page = eb->pages[i];
5380 wait_on_page_locked(page);
5381 if (!PageUptodate(page))
5382 ret = -EIO;
5383 }
5384
5385 return ret;
5386
5387 unlock_exit:
5388 while (locked_pages > 0) {
5389 locked_pages--;
5390 page = eb->pages[locked_pages];
5391 unlock_page(page);
5392 }
5393 return ret;
5394 }
5395
5396 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5397 unsigned long start, unsigned long len)
5398 {
5399 size_t cur;
5400 size_t offset;
5401 struct page *page;
5402 char *kaddr;
5403 char *dst = (char *)dstv;
5404 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5405 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5406
5407 if (start + len > eb->len) {
5408 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5409 eb->start, eb->len, start, len);
5410 memset(dst, 0, len);
5411 return;
5412 }
5413
5414 offset = (start_offset + start) & (PAGE_SIZE - 1);
5415
5416 while (len > 0) {
5417 page = eb->pages[i];
5418
5419 cur = min(len, (PAGE_SIZE - offset));
5420 kaddr = page_address(page);
5421 memcpy(dst, kaddr + offset, cur);
5422
5423 dst += cur;
5424 len -= cur;
5425 offset = 0;
5426 i++;
5427 }
5428 }
5429
5430 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5431 void __user *dstv,
5432 unsigned long start, unsigned long len)
5433 {
5434 size_t cur;
5435 size_t offset;
5436 struct page *page;
5437 char *kaddr;
5438 char __user *dst = (char __user *)dstv;
5439 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5440 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5441 int ret = 0;
5442
5443 WARN_ON(start > eb->len);
5444 WARN_ON(start + len > eb->start + eb->len);
5445
5446 offset = (start_offset + start) & (PAGE_SIZE - 1);
5447
5448 while (len > 0) {
5449 page = eb->pages[i];
5450
5451 cur = min(len, (PAGE_SIZE - offset));
5452 kaddr = page_address(page);
5453 if (copy_to_user(dst, kaddr + offset, cur)) {
5454 ret = -EFAULT;
5455 break;
5456 }
5457
5458 dst += cur;
5459 len -= cur;
5460 offset = 0;
5461 i++;
5462 }
5463
5464 return ret;
5465 }
5466
5467 /*
5468 * return 0 if the item is found within a page.
5469 * return 1 if the item spans two pages.
5470 * return -EINVAL otherwise.
5471 */
5472 int map_private_extent_buffer(const struct extent_buffer *eb,
5473 unsigned long start, unsigned long min_len,
5474 char **map, unsigned long *map_start,
5475 unsigned long *map_len)
5476 {
5477 size_t offset = start & (PAGE_SIZE - 1);
5478 char *kaddr;
5479 struct page *p;
5480 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5481 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5482 unsigned long end_i = (start_offset + start + min_len - 1) >>
5483 PAGE_SHIFT;
5484
5485 if (start + min_len > eb->len) {
5486 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5487 eb->start, eb->len, start, min_len);
5488 return -EINVAL;
5489 }
5490
5491 if (i != end_i)
5492 return 1;
5493
5494 if (i == 0) {
5495 offset = start_offset;
5496 *map_start = 0;
5497 } else {
5498 offset = 0;
5499 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5500 }
5501
5502 p = eb->pages[i];
5503 kaddr = page_address(p);
5504 *map = kaddr + offset;
5505 *map_len = PAGE_SIZE - offset;
5506 return 0;
5507 }
5508
5509 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5510 unsigned long start, unsigned long len)
5511 {
5512 size_t cur;
5513 size_t offset;
5514 struct page *page;
5515 char *kaddr;
5516 char *ptr = (char *)ptrv;
5517 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5518 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5519 int ret = 0;
5520
5521 WARN_ON(start > eb->len);
5522 WARN_ON(start + len > eb->start + eb->len);
5523
5524 offset = (start_offset + start) & (PAGE_SIZE - 1);
5525
5526 while (len > 0) {
5527 page = eb->pages[i];
5528
5529 cur = min(len, (PAGE_SIZE - offset));
5530
5531 kaddr = page_address(page);
5532 ret = memcmp(ptr, kaddr + offset, cur);
5533 if (ret)
5534 break;
5535
5536 ptr += cur;
5537 len -= cur;
5538 offset = 0;
5539 i++;
5540 }
5541 return ret;
5542 }
5543
5544 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5545 const void *srcv)
5546 {
5547 char *kaddr;
5548
5549 WARN_ON(!PageUptodate(eb->pages[0]));
5550 kaddr = page_address(eb->pages[0]);
5551 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5552 BTRFS_FSID_SIZE);
5553 }
5554
5555 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5556 {
5557 char *kaddr;
5558
5559 WARN_ON(!PageUptodate(eb->pages[0]));
5560 kaddr = page_address(eb->pages[0]);
5561 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5562 BTRFS_FSID_SIZE);
5563 }
5564
5565 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5566 unsigned long start, unsigned long len)
5567 {
5568 size_t cur;
5569 size_t offset;
5570 struct page *page;
5571 char *kaddr;
5572 char *src = (char *)srcv;
5573 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5574 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5575
5576 WARN_ON(start > eb->len);
5577 WARN_ON(start + len > eb->start + eb->len);
5578
5579 offset = (start_offset + start) & (PAGE_SIZE - 1);
5580
5581 while (len > 0) {
5582 page = eb->pages[i];
5583 WARN_ON(!PageUptodate(page));
5584
5585 cur = min(len, PAGE_SIZE - offset);
5586 kaddr = page_address(page);
5587 memcpy(kaddr + offset, src, cur);
5588
5589 src += cur;
5590 len -= cur;
5591 offset = 0;
5592 i++;
5593 }
5594 }
5595
5596 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5597 unsigned long len)
5598 {
5599 size_t cur;
5600 size_t offset;
5601 struct page *page;
5602 char *kaddr;
5603 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5604 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5605
5606 WARN_ON(start > eb->len);
5607 WARN_ON(start + len > eb->start + eb->len);
5608
5609 offset = (start_offset + start) & (PAGE_SIZE - 1);
5610
5611 while (len > 0) {
5612 page = eb->pages[i];
5613 WARN_ON(!PageUptodate(page));
5614
5615 cur = min(len, PAGE_SIZE - offset);
5616 kaddr = page_address(page);
5617 memset(kaddr + offset, 0, cur);
5618
5619 len -= cur;
5620 offset = 0;
5621 i++;
5622 }
5623 }
5624
5625 void copy_extent_buffer_full(struct extent_buffer *dst,
5626 struct extent_buffer *src)
5627 {
5628 int i;
5629 unsigned num_pages;
5630
5631 ASSERT(dst->len == src->len);
5632
5633 num_pages = num_extent_pages(dst->start, dst->len);
5634 for (i = 0; i < num_pages; i++)
5635 copy_page(page_address(dst->pages[i]),
5636 page_address(src->pages[i]));
5637 }
5638
5639 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5640 unsigned long dst_offset, unsigned long src_offset,
5641 unsigned long len)
5642 {
5643 u64 dst_len = dst->len;
5644 size_t cur;
5645 size_t offset;
5646 struct page *page;
5647 char *kaddr;
5648 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5649 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5650
5651 WARN_ON(src->len != dst_len);
5652
5653 offset = (start_offset + dst_offset) &
5654 (PAGE_SIZE - 1);
5655
5656 while (len > 0) {
5657 page = dst->pages[i];
5658 WARN_ON(!PageUptodate(page));
5659
5660 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5661
5662 kaddr = page_address(page);
5663 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5664
5665 src_offset += cur;
5666 len -= cur;
5667 offset = 0;
5668 i++;
5669 }
5670 }
5671
5672 void le_bitmap_set(u8 *map, unsigned int start, int len)
5673 {
5674 u8 *p = map + BIT_BYTE(start);
5675 const unsigned int size = start + len;
5676 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5677 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5678
5679 while (len - bits_to_set >= 0) {
5680 *p |= mask_to_set;
5681 len -= bits_to_set;
5682 bits_to_set = BITS_PER_BYTE;
5683 mask_to_set = ~0;
5684 p++;
5685 }
5686 if (len) {
5687 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5688 *p |= mask_to_set;
5689 }
5690 }
5691
5692 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5693 {
5694 u8 *p = map + BIT_BYTE(start);
5695 const unsigned int size = start + len;
5696 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5697 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5698
5699 while (len - bits_to_clear >= 0) {
5700 *p &= ~mask_to_clear;
5701 len -= bits_to_clear;
5702 bits_to_clear = BITS_PER_BYTE;
5703 mask_to_clear = ~0;
5704 p++;
5705 }
5706 if (len) {
5707 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5708 *p &= ~mask_to_clear;
5709 }
5710 }
5711
5712 /*
5713 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5714 * given bit number
5715 * @eb: the extent buffer
5716 * @start: offset of the bitmap item in the extent buffer
5717 * @nr: bit number
5718 * @page_index: return index of the page in the extent buffer that contains the
5719 * given bit number
5720 * @page_offset: return offset into the page given by page_index
5721 *
5722 * This helper hides the ugliness of finding the byte in an extent buffer which
5723 * contains a given bit.
5724 */
5725 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5726 unsigned long start, unsigned long nr,
5727 unsigned long *page_index,
5728 size_t *page_offset)
5729 {
5730 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5731 size_t byte_offset = BIT_BYTE(nr);
5732 size_t offset;
5733
5734 /*
5735 * The byte we want is the offset of the extent buffer + the offset of
5736 * the bitmap item in the extent buffer + the offset of the byte in the
5737 * bitmap item.
5738 */
5739 offset = start_offset + start + byte_offset;
5740
5741 *page_index = offset >> PAGE_SHIFT;
5742 *page_offset = offset & (PAGE_SIZE - 1);
5743 }
5744
5745 /**
5746 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5747 * @eb: the extent buffer
5748 * @start: offset of the bitmap item in the extent buffer
5749 * @nr: bit number to test
5750 */
5751 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5752 unsigned long nr)
5753 {
5754 u8 *kaddr;
5755 struct page *page;
5756 unsigned long i;
5757 size_t offset;
5758
5759 eb_bitmap_offset(eb, start, nr, &i, &offset);
5760 page = eb->pages[i];
5761 WARN_ON(!PageUptodate(page));
5762 kaddr = page_address(page);
5763 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5764 }
5765
5766 /**
5767 * extent_buffer_bitmap_set - set an area of a bitmap
5768 * @eb: the extent buffer
5769 * @start: offset of the bitmap item in the extent buffer
5770 * @pos: bit number of the first bit
5771 * @len: number of bits to set
5772 */
5773 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5774 unsigned long pos, unsigned long len)
5775 {
5776 u8 *kaddr;
5777 struct page *page;
5778 unsigned long i;
5779 size_t offset;
5780 const unsigned int size = pos + len;
5781 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5782 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5783
5784 eb_bitmap_offset(eb, start, pos, &i, &offset);
5785 page = eb->pages[i];
5786 WARN_ON(!PageUptodate(page));
5787 kaddr = page_address(page);
5788
5789 while (len >= bits_to_set) {
5790 kaddr[offset] |= mask_to_set;
5791 len -= bits_to_set;
5792 bits_to_set = BITS_PER_BYTE;
5793 mask_to_set = ~0;
5794 if (++offset >= PAGE_SIZE && len > 0) {
5795 offset = 0;
5796 page = eb->pages[++i];
5797 WARN_ON(!PageUptodate(page));
5798 kaddr = page_address(page);
5799 }
5800 }
5801 if (len) {
5802 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5803 kaddr[offset] |= mask_to_set;
5804 }
5805 }
5806
5807
5808 /**
5809 * extent_buffer_bitmap_clear - clear an area of a bitmap
5810 * @eb: the extent buffer
5811 * @start: offset of the bitmap item in the extent buffer
5812 * @pos: bit number of the first bit
5813 * @len: number of bits to clear
5814 */
5815 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5816 unsigned long pos, unsigned long len)
5817 {
5818 u8 *kaddr;
5819 struct page *page;
5820 unsigned long i;
5821 size_t offset;
5822 const unsigned int size = pos + len;
5823 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5824 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5825
5826 eb_bitmap_offset(eb, start, pos, &i, &offset);
5827 page = eb->pages[i];
5828 WARN_ON(!PageUptodate(page));
5829 kaddr = page_address(page);
5830
5831 while (len >= bits_to_clear) {
5832 kaddr[offset] &= ~mask_to_clear;
5833 len -= bits_to_clear;
5834 bits_to_clear = BITS_PER_BYTE;
5835 mask_to_clear = ~0;
5836 if (++offset >= PAGE_SIZE && len > 0) {
5837 offset = 0;
5838 page = eb->pages[++i];
5839 WARN_ON(!PageUptodate(page));
5840 kaddr = page_address(page);
5841 }
5842 }
5843 if (len) {
5844 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5845 kaddr[offset] &= ~mask_to_clear;
5846 }
5847 }
5848
5849 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5850 {
5851 unsigned long distance = (src > dst) ? src - dst : dst - src;
5852 return distance < len;
5853 }
5854
5855 static void copy_pages(struct page *dst_page, struct page *src_page,
5856 unsigned long dst_off, unsigned long src_off,
5857 unsigned long len)
5858 {
5859 char *dst_kaddr = page_address(dst_page);
5860 char *src_kaddr;
5861 int must_memmove = 0;
5862
5863 if (dst_page != src_page) {
5864 src_kaddr = page_address(src_page);
5865 } else {
5866 src_kaddr = dst_kaddr;
5867 if (areas_overlap(src_off, dst_off, len))
5868 must_memmove = 1;
5869 }
5870
5871 if (must_memmove)
5872 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5873 else
5874 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5875 }
5876
5877 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5878 unsigned long src_offset, unsigned long len)
5879 {
5880 struct btrfs_fs_info *fs_info = dst->fs_info;
5881 size_t cur;
5882 size_t dst_off_in_page;
5883 size_t src_off_in_page;
5884 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5885 unsigned long dst_i;
5886 unsigned long src_i;
5887
5888 if (src_offset + len > dst->len) {
5889 btrfs_err(fs_info,
5890 "memmove bogus src_offset %lu move len %lu dst len %lu",
5891 src_offset, len, dst->len);
5892 BUG_ON(1);
5893 }
5894 if (dst_offset + len > dst->len) {
5895 btrfs_err(fs_info,
5896 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5897 dst_offset, len, dst->len);
5898 BUG_ON(1);
5899 }
5900
5901 while (len > 0) {
5902 dst_off_in_page = (start_offset + dst_offset) &
5903 (PAGE_SIZE - 1);
5904 src_off_in_page = (start_offset + src_offset) &
5905 (PAGE_SIZE - 1);
5906
5907 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5908 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5909
5910 cur = min(len, (unsigned long)(PAGE_SIZE -
5911 src_off_in_page));
5912 cur = min_t(unsigned long, cur,
5913 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5914
5915 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5916 dst_off_in_page, src_off_in_page, cur);
5917
5918 src_offset += cur;
5919 dst_offset += cur;
5920 len -= cur;
5921 }
5922 }
5923
5924 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5925 unsigned long src_offset, unsigned long len)
5926 {
5927 struct btrfs_fs_info *fs_info = dst->fs_info;
5928 size_t cur;
5929 size_t dst_off_in_page;
5930 size_t src_off_in_page;
5931 unsigned long dst_end = dst_offset + len - 1;
5932 unsigned long src_end = src_offset + len - 1;
5933 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5934 unsigned long dst_i;
5935 unsigned long src_i;
5936
5937 if (src_offset + len > dst->len) {
5938 btrfs_err(fs_info,
5939 "memmove bogus src_offset %lu move len %lu len %lu",
5940 src_offset, len, dst->len);
5941 BUG_ON(1);
5942 }
5943 if (dst_offset + len > dst->len) {
5944 btrfs_err(fs_info,
5945 "memmove bogus dst_offset %lu move len %lu len %lu",
5946 dst_offset, len, dst->len);
5947 BUG_ON(1);
5948 }
5949 if (dst_offset < src_offset) {
5950 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5951 return;
5952 }
5953 while (len > 0) {
5954 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5955 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5956
5957 dst_off_in_page = (start_offset + dst_end) &
5958 (PAGE_SIZE - 1);
5959 src_off_in_page = (start_offset + src_end) &
5960 (PAGE_SIZE - 1);
5961
5962 cur = min_t(unsigned long, len, src_off_in_page + 1);
5963 cur = min(cur, dst_off_in_page + 1);
5964 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5965 dst_off_in_page - cur + 1,
5966 src_off_in_page - cur + 1, cur);
5967
5968 dst_end -= cur;
5969 src_end -= cur;
5970 len -= cur;
5971 }
5972 }
5973
5974 int try_release_extent_buffer(struct page *page)
5975 {
5976 struct extent_buffer *eb;
5977
5978 /*
5979 * We need to make sure nobody is attaching this page to an eb right
5980 * now.
5981 */
5982 spin_lock(&page->mapping->private_lock);
5983 if (!PagePrivate(page)) {
5984 spin_unlock(&page->mapping->private_lock);
5985 return 1;
5986 }
5987
5988 eb = (struct extent_buffer *)page->private;
5989 BUG_ON(!eb);
5990
5991 /*
5992 * This is a little awful but should be ok, we need to make sure that
5993 * the eb doesn't disappear out from under us while we're looking at
5994 * this page.
5995 */
5996 spin_lock(&eb->refs_lock);
5997 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5998 spin_unlock(&eb->refs_lock);
5999 spin_unlock(&page->mapping->private_lock);
6000 return 0;
6001 }
6002 spin_unlock(&page->mapping->private_lock);
6003
6004 /*
6005 * If tree ref isn't set then we know the ref on this eb is a real ref,
6006 * so just return, this page will likely be freed soon anyway.
6007 */
6008 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6009 spin_unlock(&eb->refs_lock);
6010 return 0;
6011 }
6012
6013 return release_extent_buffer(eb);
6014 }