]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent_io.c
Btrfs: fix missing hole after hole punching and fsync when using NO_HOLES
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/slab.h>
4 #include <linux/bio.h>
5 #include <linux/mm.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 #include "backref.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 refcount_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
93 }
94 #else
95 #define btrfs_leak_debug_add(new, head) do {} while (0)
96 #define btrfs_leak_debug_del(entry) do {} while (0)
97 #define btrfs_leak_debug_check() do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
99 #endif
100
101 #define BUFFER_LRU_MAX 64
102
103 struct tree_entry {
104 u64 start;
105 u64 end;
106 struct rb_node rb_node;
107 };
108
109 struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
113
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121 };
122
123 static void add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126 {
127 int ret;
128
129 if (!changeset)
130 return;
131 if (set && (state->state & bits) == bits)
132 return;
133 if (!set && (state->state & bits) == 0)
134 return;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 /* ENOMEM */
139 BUG_ON(ret < 0);
140 }
141
142 static noinline void flush_write_bio(void *data);
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
145 {
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
149 }
150
151 int __init extent_io_init(void)
152 {
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
157 return -ENOMEM;
158
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176 free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180 free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184 free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188 }
189
190 void extent_io_exit(void)
191 {
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203 }
204
205 void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207 {
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213 }
214
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235 }
236
237 void free_extent_state(struct extent_state *state)
238 {
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247 }
248
249 static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255 {
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279 do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283 }
284
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290 {
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335 }
336
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342 {
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350 }
351
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354 {
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360 {
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364
365 /*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374 static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376 {
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407 }
408
409 static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411 {
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415
416 static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418 {
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422
423 static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427 /*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437 static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442 {
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463 }
464
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467 {
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471
472 /*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488 {
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505 }
506
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514 }
515
516 /*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527 {
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530
531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
536 clear_state_cb(tree, state, bits);
537 add_extent_changeset(state, bits_to_clear, changeset, 0);
538 state->state &= ~bits_to_clear;
539 if (wake)
540 wake_up(&state->wq);
541 if (state->state == 0) {
542 next = next_state(state);
543 if (extent_state_in_tree(state)) {
544 rb_erase(&state->rb_node, &tree->state);
545 RB_CLEAR_NODE(&state->rb_node);
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
552 next = next_state(state);
553 }
554 return next;
555 }
556
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
559 {
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564 }
565
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567 {
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
570 }
571
572 /*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
582 * This takes the tree lock, and returns 0 on success and < 0 on error.
583 */
584 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
588 {
589 struct extent_state *state;
590 struct extent_state *cached;
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
593 u64 last_end;
594 int err;
595 int clear = 0;
596
597 btrfs_debug_check_extent_io_range(tree, start, end);
598
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
608 again:
609 if (!prealloc && gfpflags_allow_blocking(mask)) {
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
617 prealloc = alloc_extent_state(mask);
618 }
619
620 spin_lock(&tree->lock);
621 if (cached_state) {
622 cached = *cached_state;
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
631 if (clear)
632 refcount_dec(&cached->refs);
633 state = cached;
634 goto hit_next;
635 }
636 if (clear)
637 free_extent_state(cached);
638 }
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
643 node = tree_search(tree, start);
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
647 hit_next:
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
651 last_end = state->end;
652
653 /* the state doesn't have the wanted bits, go ahead */
654 if (!(state->state & bits)) {
655 state = next_state(state);
656 goto next;
657 }
658
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
678 err = split_state(tree, state, prealloc, start);
679 if (err)
680 extent_io_tree_panic(tree, err);
681
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
688 goto next;
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
701 err = split_state(tree, state, prealloc, end + 1);
702 if (err)
703 extent_io_tree_panic(tree, err);
704
705 if (wake)
706 wake_up(&state->wq);
707
708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
709
710 prealloc = NULL;
711 goto out;
712 }
713
714 state = clear_state_bit(tree, state, &bits, wake, changeset);
715 next:
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
719 if (start <= end && state && !need_resched())
720 goto hit_next;
721
722 search_again:
723 if (start > end)
724 goto out;
725 spin_unlock(&tree->lock);
726 if (gfpflags_allow_blocking(mask))
727 cond_resched();
728 goto again;
729
730 out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
737 }
738
739 static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
741 __releases(tree->lock)
742 __acquires(tree->lock)
743 {
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746 spin_unlock(&tree->lock);
747 schedule();
748 spin_lock(&tree->lock);
749 finish_wait(&state->wq, &wait);
750 }
751
752 /*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
759 {
760 struct extent_state *state;
761 struct rb_node *node;
762
763 btrfs_debug_check_extent_io_range(tree, start, end);
764
765 spin_lock(&tree->lock);
766 again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
772 node = tree_search(tree, start);
773 process_node:
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
784 refcount_inc(&state->refs);
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
798 }
799 out:
800 spin_unlock(&tree->lock);
801 }
802
803 static void set_state_bits(struct extent_io_tree *tree,
804 struct extent_state *state,
805 unsigned *bits, struct extent_changeset *changeset)
806 {
807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
808
809 set_state_cb(tree, state, bits);
810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
814 add_extent_changeset(state, bits_to_set, changeset, 1);
815 state->state |= bits_to_set;
816 }
817
818 static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
820 unsigned flags)
821 {
822 if (cached_ptr && !(*cached_ptr)) {
823 if (!flags || (state->state & flags)) {
824 *cached_ptr = state;
825 refcount_inc(&state->refs);
826 }
827 }
828 }
829
830 static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832 {
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835 }
836
837 /*
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
840 *
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
844 *
845 * [start, end] is inclusive This takes the tree lock.
846 */
847
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850 unsigned bits, unsigned exclusive_bits,
851 u64 *failed_start, struct extent_state **cached_state,
852 gfp_t mask, struct extent_changeset *changeset)
853 {
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
857 struct rb_node **p;
858 struct rb_node *parent;
859 int err = 0;
860 u64 last_start;
861 u64 last_end;
862
863 btrfs_debug_check_extent_io_range(tree, start, end);
864
865 bits |= EXTENT_FIRST_DELALLOC;
866 again:
867 if (!prealloc && gfpflags_allow_blocking(mask)) {
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
875 prealloc = alloc_extent_state(mask);
876 }
877
878 spin_lock(&tree->lock);
879 if (cached_state && *cached_state) {
880 state = *cached_state;
881 if (state->start <= start && state->end > start &&
882 extent_state_in_tree(state)) {
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
891 node = tree_search_for_insert(tree, start, &p, &parent);
892 if (!node) {
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
895 err = insert_state(tree, prealloc, start, end,
896 &p, &parent, &bits, changeset);
897 if (err)
898 extent_io_tree_panic(tree, err);
899
900 cache_state(prealloc, cached_state);
901 prealloc = NULL;
902 goto out;
903 }
904 state = rb_entry(node, struct extent_state, rb_node);
905 hit_next:
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
916 if (state->state & exclusive_bits) {
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
921
922 set_state_bits(tree, state, &bits, changeset);
923 cache_state(state, cached_state);
924 merge_state(tree, state);
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
952 if (state->state & exclusive_bits) {
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
960 err = split_state(tree, state, prealloc, start);
961 if (err)
962 extent_io_tree_panic(tree, err);
963
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
968 set_state_bits(tree, state, &bits, changeset);
969 cache_state(state, cached_state);
970 merge_state(tree, state);
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
993 this_end = last_start - 1;
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
1002 err = insert_state(tree, prealloc, start, this_end,
1003 NULL, NULL, &bits, changeset);
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1019 if (state->state & exclusive_bits) {
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
1027 err = split_state(tree, state, prealloc, end + 1);
1028 if (err)
1029 extent_io_tree_panic(tree, err);
1030
1031 set_state_bits(tree, prealloc, &bits, changeset);
1032 cache_state(prealloc, cached_state);
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
1038 search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
1045
1046 out:
1047 spin_unlock(&tree->lock);
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
1053 }
1054
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056 unsigned bits, u64 * failed_start,
1057 struct extent_state **cached_state, gfp_t mask)
1058 {
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060 cached_state, mask, NULL);
1061 }
1062
1063
1064 /**
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
1072 * @cached_state: state that we're going to cache
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
1079 *
1080 * All allocations are done with GFP_NOFS.
1081 */
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083 unsigned bits, unsigned clear_bits,
1084 struct extent_state **cached_state)
1085 {
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
1089 struct rb_node **p;
1090 struct rb_node *parent;
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
1094 bool first_iteration = true;
1095
1096 btrfs_debug_check_extent_io_range(tree, start, end);
1097
1098 again:
1099 if (!prealloc) {
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
1107 prealloc = alloc_extent_state(GFP_NOFS);
1108 if (!prealloc && !first_iteration)
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
1116 extent_state_in_tree(state)) {
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
1126 node = tree_search_for_insert(tree, start, &p, &parent);
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
1133 err = insert_state(tree, prealloc, start, end,
1134 &p, &parent, &bits, NULL);
1135 if (err)
1136 extent_io_tree_panic(tree, err);
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142 hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
1153 set_state_bits(tree, state, &bits, NULL);
1154 cache_state(state, cached_state);
1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
1187 err = split_state(tree, state, prealloc, start);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
1194 set_state_bits(tree, state, &bits, NULL);
1195 cache_state(state, cached_state);
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
1232 NULL, NULL, &bits, NULL);
1233 if (err)
1234 extent_io_tree_panic(tree, err);
1235 cache_state(prealloc, cached_state);
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
1252
1253 err = split_state(tree, state, prealloc, end + 1);
1254 if (err)
1255 extent_io_tree_panic(tree, err);
1256
1257 set_state_bits(tree, prealloc, &bits, NULL);
1258 cache_state(prealloc, cached_state);
1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
1264 search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
1268 cond_resched();
1269 first_iteration = false;
1270 goto again;
1271
1272 out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
1278 }
1279
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282 unsigned bits, struct extent_changeset *changeset)
1283 {
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1293 changeset);
1294 }
1295
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299 {
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302 }
1303
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, struct extent_changeset *changeset)
1306 {
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1314 changeset);
1315 }
1316
1317 /*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state)
1323 {
1324 int err;
1325 u64 failed_start;
1326
1327 while (1) {
1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329 EXTENT_LOCKED, &failed_start,
1330 cached_state, GFP_NOFS, NULL);
1331 if (err == -EEXIST) {
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
1334 } else
1335 break;
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339 }
1340
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1342 {
1343 int err;
1344 u64 failed_start;
1345
1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347 &failed_start, NULL, GFP_NOFS, NULL);
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1352 return 0;
1353 }
1354 return 1;
1355 }
1356
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1358 {
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
1367 put_page(page);
1368 index++;
1369 }
1370 }
1371
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 __set_page_dirty_nobuffers(page);
1382 account_page_redirty(page);
1383 put_page(page);
1384 index++;
1385 }
1386 }
1387
1388 /*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393 tree->ops->set_range_writeback(tree->private_data, start, end);
1394 }
1395
1396 /* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402 u64 start, unsigned bits)
1403 {
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
1412 if (!node)
1413 goto out;
1414
1415 while (1) {
1416 state = rb_entry(node, struct extent_state, rb_node);
1417 if (state->end >= start && (state->state & bits))
1418 return state;
1419
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424 out:
1425 return NULL;
1426 }
1427
1428 /*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
1433 * If nothing was found, 1 is returned. If found something, return 0.
1434 */
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436 u64 *start_ret, u64 *end_ret, unsigned bits,
1437 struct extent_state **cached_state)
1438 {
1439 struct extent_state *state;
1440 struct rb_node *n;
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
1463 state = find_first_extent_bit_state(tree, start, bits);
1464 got_it:
1465 if (state) {
1466 cache_state_if_flags(state, cached_state, 0);
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
1471 out:
1472 spin_unlock(&tree->lock);
1473 return ret;
1474 }
1475
1476 /*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
1485 {
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
1492 spin_lock(&tree->lock);
1493
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
1498 node = tree_search(tree, cur_start);
1499 if (!node) {
1500 if (!found)
1501 *end = (u64)-1;
1502 goto out;
1503 }
1504
1505 while (1) {
1506 state = rb_entry(node, struct extent_state, rb_node);
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
1516 if (!found) {
1517 *start = state->start;
1518 *cached_state = state;
1519 refcount_inc(&state->refs);
1520 }
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
1525 total_bytes += state->end - state->start + 1;
1526 if (total_bytes >= max_bytes)
1527 break;
1528 if (!node)
1529 break;
1530 }
1531 out:
1532 spin_unlock(&tree->lock);
1533 return found;
1534 }
1535
1536 static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
1544 {
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
1547
1548 ASSERT(locked_page);
1549 if (index == locked_page->index && end_index == index)
1550 return;
1551
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
1554 }
1555
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560 {
1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
1562 unsigned long index_ret = index;
1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1564 int ret;
1565
1566 ASSERT(locked_page);
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
1575 return ret;
1576 }
1577
1578 /*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
1588 {
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
1592 struct extent_state *cached_state = NULL;
1593 int ret;
1594 int loops = 0;
1595
1596 again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601 max_bytes, &cached_state);
1602 if (!found || delalloc_end <= *start) {
1603 *start = delalloc_start;
1604 *end = delalloc_end;
1605 free_extent_state(cached_state);
1606 return 0;
1607 }
1608
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
1614 if (delalloc_start < *start)
1615 delalloc_start = *start;
1616
1617 /*
1618 * make sure to limit the number of pages we try to lock down
1619 */
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
1622
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
1630 free_extent_state(cached_state);
1631 cached_state = NULL;
1632 if (!loops) {
1633 max_bytes = PAGE_SIZE;
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1642
1643 /* step three, lock the state bits for the whole range */
1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648 EXTENT_DELALLOC, 1, cached_state);
1649 if (!ret) {
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
1657 free_extent_state(cached_state);
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660 out_failed:
1661 return found;
1662 }
1663
1664 static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
1668 {
1669 unsigned long nr_pages = end_index - start_index + 1;
1670 unsigned long pages_locked = 0;
1671 pgoff_t index = start_index;
1672 struct page *pages[16];
1673 unsigned ret;
1674 int err = 0;
1675 int i;
1676
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683 mapping_set_error(mapping, -EIO);
1684
1685 while (nr_pages > 0) {
1686 ret = find_get_pages_contig(mapping, index,
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698
1699 for (i = 0; i < ret; i++) {
1700 if (page_ops & PAGE_SET_PRIVATE2)
1701 SetPagePrivate2(pages[i]);
1702
1703 if (pages[i] == locked_page) {
1704 put_page(pages[i]);
1705 pages_locked++;
1706 continue;
1707 }
1708 if (page_ops & PAGE_CLEAR_DIRTY)
1709 clear_page_dirty_for_io(pages[i]);
1710 if (page_ops & PAGE_SET_WRITEBACK)
1711 set_page_writeback(pages[i]);
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
1714 if (page_ops & PAGE_END_WRITEBACK)
1715 end_page_writeback(pages[i]);
1716 if (page_ops & PAGE_UNLOCK)
1717 unlock_page(pages[i]);
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
1728 put_page(pages[i]);
1729 pages_locked++;
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
1735 out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
1739 }
1740
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745 {
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1751 page_ops, NULL);
1752 }
1753
1754 /*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
1761 unsigned bits, int contig)
1762 {
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
1767 u64 last = 0;
1768 int found = 0;
1769
1770 if (WARN_ON(search_end <= cur_start))
1771 return 0;
1772
1773 spin_lock(&tree->lock);
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
1782 node = tree_search(tree, cur_start);
1783 if (!node)
1784 goto out;
1785
1786 while (1) {
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
1798 *start = max(cur_start, state->start);
1799 found = 1;
1800 }
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809 out:
1810 spin_unlock(&tree->lock);
1811 return total_bytes;
1812 }
1813
1814 /*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819 struct io_failure_record *failrec)
1820 {
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
1825 spin_lock(&tree->lock);
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
1830 node = tree_search(tree, start);
1831 if (!node) {
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 state->failrec = failrec;
1841 out:
1842 spin_unlock(&tree->lock);
1843 return ret;
1844 }
1845
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record **failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 *failrec = state->failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 /*
1875 * searches a range in the state tree for a given mask.
1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881 unsigned bits, int filled, struct extent_state *cached)
1882 {
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
1886
1887 spin_lock(&tree->lock);
1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889 cached->end > start)
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
1926 spin_unlock(&tree->lock);
1927 return bitset;
1928 }
1929
1930 /*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1935 {
1936 u64 start = page_offset(page);
1937 u64 end = start + PAGE_SIZE - 1;
1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939 SetPageUptodate(page);
1940 }
1941
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
1945 {
1946 int ret;
1947 int err = 0;
1948
1949 set_state_failrec(failure_tree, rec->start, NULL);
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
1952 EXTENT_LOCKED | EXTENT_DIRTY);
1953 if (ret)
1954 err = ret;
1955
1956 ret = clear_extent_bits(io_tree, rec->start,
1957 rec->start + rec->len - 1,
1958 EXTENT_DAMAGED);
1959 if (ret && !err)
1960 err = ret;
1961
1962 kfree(rec);
1963 return err;
1964 }
1965
1966 /*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
1971 * to avoid any synchronization issues, wait for the data after writing, which
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
1979 {
1980 struct bio *bio;
1981 struct btrfs_device *dev;
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1988 BUG_ON(!mirror_num);
1989
1990 bio = btrfs_io_bio_alloc(1);
1991 bio->bi_iter.bi_size = 0;
1992 map_length = length;
1993
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
2024 }
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027 bio->bi_iter.bi_sector = sector;
2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029 btrfs_put_bbio(bbio);
2030 if (!dev || !dev->bdev || !dev->writeable) {
2031 btrfs_bio_counter_dec(fs_info);
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 bio_set_dev(bio, dev->bdev);
2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2037 bio_add_page(bio, page, length, pg_offset);
2038
2039 if (btrfsic_submit_bio_wait(bio)) {
2040 /* try to remap that extent elsewhere? */
2041 btrfs_bio_counter_dec(fs_info);
2042 bio_put(bio);
2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2044 return -EIO;
2045 }
2046
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2049 ino, start,
2050 rcu_str_deref(dev->name), sector);
2051 btrfs_bio_counter_dec(fs_info);
2052 bio_put(bio);
2053 return 0;
2054 }
2055
2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
2058 {
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2061 int ret = 0;
2062
2063 if (sb_rdonly(fs_info->sb))
2064 return -EROFS;
2065
2066 for (i = 0; i < num_pages; i++) {
2067 struct page *p = eb->pages[i];
2068
2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2070 start - page_offset(p), mirror_num);
2071 if (ret)
2072 break;
2073 start += PAGE_SIZE;
2074 }
2075
2076 return ret;
2077 }
2078
2079 /*
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2082 */
2083 int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
2087 {
2088 u64 private;
2089 struct io_failure_record *failrec;
2090 struct extent_state *state;
2091 int num_copies;
2092 int ret;
2093
2094 private = 0;
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096 EXTENT_DIRTY, 0);
2097 if (!ret)
2098 return 0;
2099
2100 ret = get_state_failrec(failure_tree, start, &failrec);
2101 if (ret)
2102 return 0;
2103
2104 BUG_ON(!failrec->this_mirror);
2105
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2110 failrec->start);
2111 goto out;
2112 }
2113 if (sb_rdonly(fs_info->sb))
2114 goto out;
2115
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
2118 failrec->start,
2119 EXTENT_LOCKED);
2120 spin_unlock(&io_tree->lock);
2121
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125 failrec->len);
2126 if (num_copies > 1) {
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
2130 }
2131 }
2132
2133 out:
2134 free_io_failure(failure_tree, io_tree, failrec);
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2144 */
2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2146 {
2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2150
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2152 return;
2153
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156 while (state) {
2157 if (state->start > end)
2158 break;
2159
2160 ASSERT(state->end <= end);
2161
2162 next = next_state(state);
2163
2164 failrec = state->failrec;
2165 free_extent_state(state);
2166 kfree(failrec);
2167
2168 state = next;
2169 }
2170 spin_unlock(&failure_tree->lock);
2171 }
2172
2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2174 struct io_failure_record **failrec_ret)
2175 {
2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177 struct io_failure_record *failrec;
2178 struct extent_map *em;
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2182 int ret;
2183 u64 logical;
2184
2185 ret = get_state_failrec(failure_tree, start, &failrec);
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2190
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
2205 if (em->start > start || em->start + em->len <= start) {
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
2210 if (!em) {
2211 kfree(failrec);
2212 return -EIO;
2213 }
2214
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2223
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2227
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
2233 EXTENT_LOCKED | EXTENT_DIRTY);
2234 if (ret >= 0)
2235 ret = set_state_failrec(failure_tree, start, failrec);
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258 }
2259
2260 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261 struct io_failure_record *failrec, int failed_mirror)
2262 {
2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2264 int num_copies;
2265
2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
2276 return false;
2277 }
2278
2279 /*
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2283 */
2284 if (failed_bio->bi_vcnt > 1) {
2285 /*
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2289 *
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2292 */
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
2311 }
2312
2313 if (failrec->this_mirror > num_copies) {
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
2317 return false;
2318 }
2319
2320 return true;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2328 {
2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
2334 bio = btrfs_io_bio_alloc(1);
2335 bio->bi_end_io = endio_func;
2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
2337 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2338 bio->bi_iter.bi_size = 0;
2339 bio->bi_private = data;
2340
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2349 csum_size);
2350 }
2351
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355 }
2356
2357 /*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368 {
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2373 struct bio *bio;
2374 int read_mode = 0;
2375 blk_status_t status;
2376 int ret;
2377
2378 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2379
2380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2381 if (ret)
2382 return ret;
2383
2384 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2385 failed_mirror)) {
2386 free_io_failure(failure_tree, tree, failrec);
2387 return -EIO;
2388 }
2389
2390 if (failed_bio->bi_vcnt > 1)
2391 read_mode |= REQ_FAILFAST_DEV;
2392
2393 phy_offset >>= inode->i_sb->s_blocksize_bits;
2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2395 start - page_offset(page),
2396 (int)phy_offset, failed_bio->bi_end_io,
2397 NULL);
2398 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2399
2400 btrfs_debug(btrfs_sb(inode->i_sb),
2401 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2402 read_mode, failrec->this_mirror, failrec->in_validation);
2403
2404 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2405 failrec->bio_flags, 0);
2406 if (status) {
2407 free_io_failure(failure_tree, tree, failrec);
2408 bio_put(bio);
2409 ret = blk_status_to_errno(status);
2410 }
2411
2412 return ret;
2413 }
2414
2415 /* lots and lots of room for performance fixes in the end_bio funcs */
2416
2417 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2418 {
2419 int uptodate = (err == 0);
2420 struct extent_io_tree *tree;
2421 int ret = 0;
2422
2423 tree = &BTRFS_I(page->mapping->host)->io_tree;
2424
2425 if (tree->ops && tree->ops->writepage_end_io_hook)
2426 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2427 uptodate);
2428
2429 if (!uptodate) {
2430 ClearPageUptodate(page);
2431 SetPageError(page);
2432 ret = err < 0 ? err : -EIO;
2433 mapping_set_error(page->mapping, ret);
2434 }
2435 }
2436
2437 /*
2438 * after a writepage IO is done, we need to:
2439 * clear the uptodate bits on error
2440 * clear the writeback bits in the extent tree for this IO
2441 * end_page_writeback if the page has no more pending IO
2442 *
2443 * Scheduling is not allowed, so the extent state tree is expected
2444 * to have one and only one object corresponding to this IO.
2445 */
2446 static void end_bio_extent_writepage(struct bio *bio)
2447 {
2448 int error = blk_status_to_errno(bio->bi_status);
2449 struct bio_vec *bvec;
2450 u64 start;
2451 u64 end;
2452 int i;
2453
2454 ASSERT(!bio_flagged(bio, BIO_CLONED));
2455 bio_for_each_segment_all(bvec, bio, i) {
2456 struct page *page = bvec->bv_page;
2457 struct inode *inode = page->mapping->host;
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2459
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2467 btrfs_err(fs_info,
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2470 else
2471 btrfs_info(fs_info,
2472 "incomplete page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 }
2475
2476 start = page_offset(page);
2477 end = start + bvec->bv_offset + bvec->bv_len - 1;
2478
2479 end_extent_writepage(page, error, start, end);
2480 end_page_writeback(page);
2481 }
2482
2483 bio_put(bio);
2484 }
2485
2486 static void
2487 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2488 int uptodate)
2489 {
2490 struct extent_state *cached = NULL;
2491 u64 end = start + len - 1;
2492
2493 if (uptodate && tree->track_uptodate)
2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2496 }
2497
2498 /*
2499 * after a readpage IO is done, we need to:
2500 * clear the uptodate bits on error
2501 * set the uptodate bits if things worked
2502 * set the page up to date if all extents in the tree are uptodate
2503 * clear the lock bit in the extent tree
2504 * unlock the page if there are no other extents locked for it
2505 *
2506 * Scheduling is not allowed, so the extent state tree is expected
2507 * to have one and only one object corresponding to this IO.
2508 */
2509 static void end_bio_extent_readpage(struct bio *bio)
2510 {
2511 struct bio_vec *bvec;
2512 int uptodate = !bio->bi_status;
2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2514 struct extent_io_tree *tree, *failure_tree;
2515 u64 offset = 0;
2516 u64 start;
2517 u64 end;
2518 u64 len;
2519 u64 extent_start = 0;
2520 u64 extent_len = 0;
2521 int mirror;
2522 int ret;
2523 int i;
2524
2525 ASSERT(!bio_flagged(bio, BIO_CLONED));
2526 bio_for_each_segment_all(bvec, bio, i) {
2527 struct page *page = bvec->bv_page;
2528 struct inode *inode = page->mapping->host;
2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530
2531 btrfs_debug(fs_info,
2532 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2533 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2534 io_bio->mirror_num);
2535 tree = &BTRFS_I(inode)->io_tree;
2536 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2537
2538 /* We always issue full-page reads, but if some block
2539 * in a page fails to read, blk_update_request() will
2540 * advance bv_offset and adjust bv_len to compensate.
2541 * Print a warning for nonzero offsets, and an error
2542 * if they don't add up to a full page. */
2543 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2544 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2545 btrfs_err(fs_info,
2546 "partial page read in btrfs with offset %u and length %u",
2547 bvec->bv_offset, bvec->bv_len);
2548 else
2549 btrfs_info(fs_info,
2550 "incomplete page read in btrfs with offset %u and length %u",
2551 bvec->bv_offset, bvec->bv_len);
2552 }
2553
2554 start = page_offset(page);
2555 end = start + bvec->bv_offset + bvec->bv_len - 1;
2556 len = bvec->bv_len;
2557
2558 mirror = io_bio->mirror_num;
2559 if (likely(uptodate && tree->ops)) {
2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2561 page, start, end,
2562 mirror);
2563 if (ret)
2564 uptodate = 0;
2565 else
2566 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2567 failure_tree, tree, start,
2568 page,
2569 btrfs_ino(BTRFS_I(inode)), 0);
2570 }
2571
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
2575 if (tree->ops) {
2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 if (ret == -EAGAIN) {
2578 /*
2579 * Data inode's readpage_io_failed_hook() always
2580 * returns -EAGAIN.
2581 *
2582 * The generic bio_readpage_error handles errors
2583 * the following way: If possible, new read
2584 * requests are created and submitted and will
2585 * end up in end_bio_extent_readpage as well (if
2586 * we're lucky, not in the !uptodate case). In
2587 * that case it returns 0 and we just go on with
2588 * the next page in our bio. If it can't handle
2589 * the error it will return -EIO and we remain
2590 * responsible for that page.
2591 */
2592 ret = bio_readpage_error(bio, offset, page,
2593 start, end, mirror);
2594 if (ret == 0) {
2595 uptodate = !bio->bi_status;
2596 offset += len;
2597 continue;
2598 }
2599 }
2600
2601 /*
2602 * metadata's readpage_io_failed_hook() always returns
2603 * -EIO and fixes nothing. -EIO is also returned if
2604 * data inode error could not be fixed.
2605 */
2606 ASSERT(ret == -EIO);
2607 }
2608 readpage_ok:
2609 if (likely(uptodate)) {
2610 loff_t i_size = i_size_read(inode);
2611 pgoff_t end_index = i_size >> PAGE_SHIFT;
2612 unsigned off;
2613
2614 /* Zero out the end if this page straddles i_size */
2615 off = i_size & (PAGE_SIZE-1);
2616 if (page->index == end_index && off)
2617 zero_user_segment(page, off, PAGE_SIZE);
2618 SetPageUptodate(page);
2619 } else {
2620 ClearPageUptodate(page);
2621 SetPageError(page);
2622 }
2623 unlock_page(page);
2624 offset += len;
2625
2626 if (unlikely(!uptodate)) {
2627 if (extent_len) {
2628 endio_readpage_release_extent(tree,
2629 extent_start,
2630 extent_len, 1);
2631 extent_start = 0;
2632 extent_len = 0;
2633 }
2634 endio_readpage_release_extent(tree, start,
2635 end - start + 1, 0);
2636 } else if (!extent_len) {
2637 extent_start = start;
2638 extent_len = end + 1 - start;
2639 } else if (extent_start + extent_len == start) {
2640 extent_len += end + 1 - start;
2641 } else {
2642 endio_readpage_release_extent(tree, extent_start,
2643 extent_len, uptodate);
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 }
2647 }
2648
2649 if (extent_len)
2650 endio_readpage_release_extent(tree, extent_start, extent_len,
2651 uptodate);
2652 if (io_bio->end_io)
2653 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2654 bio_put(bio);
2655 }
2656
2657 /*
2658 * Initialize the members up to but not including 'bio'. Use after allocating a
2659 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2660 * 'bio' because use of __GFP_ZERO is not supported.
2661 */
2662 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2663 {
2664 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2665 }
2666
2667 /*
2668 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2669 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2670 * for the appropriate container_of magic
2671 */
2672 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2673 {
2674 struct bio *bio;
2675
2676 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2677 bio_set_dev(bio, bdev);
2678 bio->bi_iter.bi_sector = first_byte >> 9;
2679 btrfs_io_bio_init(btrfs_io_bio(bio));
2680 return bio;
2681 }
2682
2683 struct bio *btrfs_bio_clone(struct bio *bio)
2684 {
2685 struct btrfs_io_bio *btrfs_bio;
2686 struct bio *new;
2687
2688 /* Bio allocation backed by a bioset does not fail */
2689 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2690 btrfs_bio = btrfs_io_bio(new);
2691 btrfs_io_bio_init(btrfs_bio);
2692 btrfs_bio->iter = bio->bi_iter;
2693 return new;
2694 }
2695
2696 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2697 {
2698 struct bio *bio;
2699
2700 /* Bio allocation backed by a bioset does not fail */
2701 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2702 btrfs_io_bio_init(btrfs_io_bio(bio));
2703 return bio;
2704 }
2705
2706 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2707 {
2708 struct bio *bio;
2709 struct btrfs_io_bio *btrfs_bio;
2710
2711 /* this will never fail when it's backed by a bioset */
2712 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2713 ASSERT(bio);
2714
2715 btrfs_bio = btrfs_io_bio(bio);
2716 btrfs_io_bio_init(btrfs_bio);
2717
2718 bio_trim(bio, offset >> 9, size >> 9);
2719 btrfs_bio->iter = bio->bi_iter;
2720 return bio;
2721 }
2722
2723 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2724 unsigned long bio_flags)
2725 {
2726 blk_status_t ret = 0;
2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2728 struct page *page = bvec->bv_page;
2729 struct extent_io_tree *tree = bio->bi_private;
2730 u64 start;
2731
2732 start = page_offset(page) + bvec->bv_offset;
2733
2734 bio->bi_private = NULL;
2735 bio_get(bio);
2736
2737 if (tree->ops)
2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2739 mirror_num, bio_flags, start);
2740 else
2741 btrfsic_submit_bio(bio);
2742
2743 bio_put(bio);
2744 return blk_status_to_errno(ret);
2745 }
2746
2747 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2748 unsigned long offset, size_t size, struct bio *bio,
2749 unsigned long bio_flags)
2750 {
2751 int ret = 0;
2752 if (tree->ops)
2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2754 bio_flags);
2755 return ret;
2756
2757 }
2758
2759 /*
2760 * @opf: bio REQ_OP_* and REQ_* flags as one value
2761 */
2762 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2763 struct writeback_control *wbc,
2764 struct page *page, u64 offset,
2765 size_t size, unsigned long pg_offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
2768 bio_end_io_t end_io_func,
2769 int mirror_num,
2770 unsigned long prev_bio_flags,
2771 unsigned long bio_flags,
2772 bool force_bio_submit)
2773 {
2774 int ret = 0;
2775 struct bio *bio;
2776 int contig = 0;
2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2778 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2779 sector_t sector = offset >> 9;
2780
2781 if (bio_ret && *bio_ret) {
2782 bio = *bio_ret;
2783 if (old_compressed)
2784 contig = bio->bi_iter.bi_sector == sector;
2785 else
2786 contig = bio_end_sector(bio) == sector;
2787
2788 if (prev_bio_flags != bio_flags || !contig ||
2789 force_bio_submit ||
2790 merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 if (ret < 0) {
2794 *bio_ret = NULL;
2795 return ret;
2796 }
2797 bio = NULL;
2798 } else {
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
2801 return 0;
2802 }
2803 }
2804
2805 bio = btrfs_bio_alloc(bdev, offset);
2806 bio_add_page(bio, page, page_size, pg_offset);
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
2809 bio->bi_write_hint = page->mapping->host->i_write_hint;
2810 bio->bi_opf = opf;
2811 if (wbc) {
2812 wbc_init_bio(wbc, bio);
2813 wbc_account_io(wbc, page, page_size);
2814 }
2815
2816 if (bio_ret)
2817 *bio_ret = bio;
2818 else
2819 ret = submit_one_bio(bio, mirror_num, bio_flags);
2820
2821 return ret;
2822 }
2823
2824 static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 struct page *page)
2826 {
2827 if (!PagePrivate(page)) {
2828 SetPagePrivate(page);
2829 get_page(page);
2830 set_page_private(page, (unsigned long)eb);
2831 } else {
2832 WARN_ON(page->private != (unsigned long)eb);
2833 }
2834 }
2835
2836 void set_page_extent_mapped(struct page *page)
2837 {
2838 if (!PagePrivate(page)) {
2839 SetPagePrivate(page);
2840 get_page(page);
2841 set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 }
2843 }
2844
2845 static struct extent_map *
2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 u64 start, u64 len, get_extent_t *get_extent,
2848 struct extent_map **em_cached)
2849 {
2850 struct extent_map *em;
2851
2852 if (em_cached && *em_cached) {
2853 em = *em_cached;
2854 if (extent_map_in_tree(em) && start >= em->start &&
2855 start < extent_map_end(em)) {
2856 refcount_inc(&em->refs);
2857 return em;
2858 }
2859
2860 free_extent_map(em);
2861 *em_cached = NULL;
2862 }
2863
2864 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2865 if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 BUG_ON(*em_cached);
2867 refcount_inc(&em->refs);
2868 *em_cached = em;
2869 }
2870 return em;
2871 }
2872 /*
2873 * basic readpage implementation. Locked extent state structs are inserted
2874 * into the tree that are removed when the IO is done (by the end_io
2875 * handlers)
2876 * XXX JDM: This needs looking at to ensure proper page locking
2877 * return 0 on success, otherwise return error
2878 */
2879 static int __do_readpage(struct extent_io_tree *tree,
2880 struct page *page,
2881 get_extent_t *get_extent,
2882 struct extent_map **em_cached,
2883 struct bio **bio, int mirror_num,
2884 unsigned long *bio_flags, unsigned int read_flags,
2885 u64 *prev_em_start)
2886 {
2887 struct inode *inode = page->mapping->host;
2888 u64 start = page_offset(page);
2889 u64 page_end = start + PAGE_SIZE - 1;
2890 u64 end;
2891 u64 cur = start;
2892 u64 extent_offset;
2893 u64 last_byte = i_size_read(inode);
2894 u64 block_start;
2895 u64 cur_end;
2896 struct extent_map *em;
2897 struct block_device *bdev;
2898 int ret = 0;
2899 int nr = 0;
2900 size_t pg_offset = 0;
2901 size_t iosize;
2902 size_t disk_io_size;
2903 size_t blocksize = inode->i_sb->s_blocksize;
2904 unsigned long this_bio_flag = 0;
2905
2906 set_page_extent_mapped(page);
2907
2908 end = page_end;
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
2912 unlock_extent(tree, start, end);
2913 goto out;
2914 }
2915 }
2916
2917 if (page->index == last_byte >> PAGE_SHIFT) {
2918 char *userpage;
2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2920
2921 if (zero_offset) {
2922 iosize = PAGE_SIZE - zero_offset;
2923 userpage = kmap_atomic(page);
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
2926 kunmap_atomic(userpage);
2927 }
2928 }
2929 while (cur <= end) {
2930 bool force_bio_submit = false;
2931 u64 offset;
2932
2933 if (cur >= last_byte) {
2934 char *userpage;
2935 struct extent_state *cached = NULL;
2936
2937 iosize = PAGE_SIZE - pg_offset;
2938 userpage = kmap_atomic(page);
2939 memset(userpage + pg_offset, 0, iosize);
2940 flush_dcache_page(page);
2941 kunmap_atomic(userpage);
2942 set_extent_uptodate(tree, cur, cur + iosize - 1,
2943 &cached, GFP_NOFS);
2944 unlock_extent_cached(tree, cur,
2945 cur + iosize - 1,
2946 &cached, GFP_NOFS);
2947 break;
2948 }
2949 em = __get_extent_map(inode, page, pg_offset, cur,
2950 end - cur + 1, get_extent, em_cached);
2951 if (IS_ERR_OR_NULL(em)) {
2952 SetPageError(page);
2953 unlock_extent(tree, cur, end);
2954 break;
2955 }
2956 extent_offset = cur - em->start;
2957 BUG_ON(extent_map_end(em) <= cur);
2958 BUG_ON(end < cur);
2959
2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2961 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2962 extent_set_compress_type(&this_bio_flag,
2963 em->compress_type);
2964 }
2965
2966 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2967 cur_end = min(extent_map_end(em) - 1, end);
2968 iosize = ALIGN(iosize, blocksize);
2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2970 disk_io_size = em->block_len;
2971 offset = em->block_start;
2972 } else {
2973 offset = em->block_start + extent_offset;
2974 disk_io_size = iosize;
2975 }
2976 bdev = em->bdev;
2977 block_start = em->block_start;
2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2979 block_start = EXTENT_MAP_HOLE;
2980
2981 /*
2982 * If we have a file range that points to a compressed extent
2983 * and it's followed by a consecutive file range that points to
2984 * to the same compressed extent (possibly with a different
2985 * offset and/or length, so it either points to the whole extent
2986 * or only part of it), we must make sure we do not submit a
2987 * single bio to populate the pages for the 2 ranges because
2988 * this makes the compressed extent read zero out the pages
2989 * belonging to the 2nd range. Imagine the following scenario:
2990 *
2991 * File layout
2992 * [0 - 8K] [8K - 24K]
2993 * | |
2994 * | |
2995 * points to extent X, points to extent X,
2996 * offset 4K, length of 8K offset 0, length 16K
2997 *
2998 * [extent X, compressed length = 4K uncompressed length = 16K]
2999 *
3000 * If the bio to read the compressed extent covers both ranges,
3001 * it will decompress extent X into the pages belonging to the
3002 * first range and then it will stop, zeroing out the remaining
3003 * pages that belong to the other range that points to extent X.
3004 * So here we make sure we submit 2 bios, one for the first
3005 * range and another one for the third range. Both will target
3006 * the same physical extent from disk, but we can't currently
3007 * make the compressed bio endio callback populate the pages
3008 * for both ranges because each compressed bio is tightly
3009 * coupled with a single extent map, and each range can have
3010 * an extent map with a different offset value relative to the
3011 * uncompressed data of our extent and different lengths. This
3012 * is a corner case so we prioritize correctness over
3013 * non-optimal behavior (submitting 2 bios for the same extent).
3014 */
3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3016 prev_em_start && *prev_em_start != (u64)-1 &&
3017 *prev_em_start != em->start)
3018 force_bio_submit = true;
3019
3020 if (prev_em_start)
3021 *prev_em_start = em->start;
3022
3023 free_extent_map(em);
3024 em = NULL;
3025
3026 /* we've found a hole, just zero and go on */
3027 if (block_start == EXTENT_MAP_HOLE) {
3028 char *userpage;
3029 struct extent_state *cached = NULL;
3030
3031 userpage = kmap_atomic(page);
3032 memset(userpage + pg_offset, 0, iosize);
3033 flush_dcache_page(page);
3034 kunmap_atomic(userpage);
3035
3036 set_extent_uptodate(tree, cur, cur + iosize - 1,
3037 &cached, GFP_NOFS);
3038 unlock_extent_cached(tree, cur,
3039 cur + iosize - 1,
3040 &cached, GFP_NOFS);
3041 cur = cur + iosize;
3042 pg_offset += iosize;
3043 continue;
3044 }
3045 /* the get_extent function already copied into the page */
3046 if (test_range_bit(tree, cur, cur_end,
3047 EXTENT_UPTODATE, 1, NULL)) {
3048 check_page_uptodate(tree, page);
3049 unlock_extent(tree, cur, cur + iosize - 1);
3050 cur = cur + iosize;
3051 pg_offset += iosize;
3052 continue;
3053 }
3054 /* we have an inline extent but it didn't get marked up
3055 * to date. Error out
3056 */
3057 if (block_start == EXTENT_MAP_INLINE) {
3058 SetPageError(page);
3059 unlock_extent(tree, cur, cur + iosize - 1);
3060 cur = cur + iosize;
3061 pg_offset += iosize;
3062 continue;
3063 }
3064
3065 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3066 page, offset, disk_io_size,
3067 pg_offset, bdev, bio,
3068 end_bio_extent_readpage, mirror_num,
3069 *bio_flags,
3070 this_bio_flag,
3071 force_bio_submit);
3072 if (!ret) {
3073 nr++;
3074 *bio_flags = this_bio_flag;
3075 } else {
3076 SetPageError(page);
3077 unlock_extent(tree, cur, cur + iosize - 1);
3078 goto out;
3079 }
3080 cur = cur + iosize;
3081 pg_offset += iosize;
3082 }
3083 out:
3084 if (!nr) {
3085 if (!PageError(page))
3086 SetPageUptodate(page);
3087 unlock_page(page);
3088 }
3089 return ret;
3090 }
3091
3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093 struct page *pages[], int nr_pages,
3094 u64 start, u64 end,
3095 get_extent_t *get_extent,
3096 struct extent_map **em_cached,
3097 struct bio **bio, int mirror_num,
3098 unsigned long *bio_flags,
3099 u64 *prev_em_start)
3100 {
3101 struct inode *inode;
3102 struct btrfs_ordered_extent *ordered;
3103 int index;
3104
3105 inode = pages[0]->mapping->host;
3106 while (1) {
3107 lock_extent(tree, start, end);
3108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3109 end - start + 1);
3110 if (!ordered)
3111 break;
3112 unlock_extent(tree, start, end);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3115 }
3116
3117 for (index = 0; index < nr_pages; index++) {
3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3119 mirror_num, bio_flags, 0, prev_em_start);
3120 put_page(pages[index]);
3121 }
3122 }
3123
3124 static void __extent_readpages(struct extent_io_tree *tree,
3125 struct page *pages[],
3126 int nr_pages, get_extent_t *get_extent,
3127 struct extent_map **em_cached,
3128 struct bio **bio, int mirror_num,
3129 unsigned long *bio_flags,
3130 u64 *prev_em_start)
3131 {
3132 u64 start = 0;
3133 u64 end = 0;
3134 u64 page_start;
3135 int index;
3136 int first_index = 0;
3137
3138 for (index = 0; index < nr_pages; index++) {
3139 page_start = page_offset(pages[index]);
3140 if (!end) {
3141 start = page_start;
3142 end = start + PAGE_SIZE - 1;
3143 first_index = index;
3144 } else if (end + 1 == page_start) {
3145 end += PAGE_SIZE;
3146 } else {
3147 __do_contiguous_readpages(tree, &pages[first_index],
3148 index - first_index, start,
3149 end, get_extent, em_cached,
3150 bio, mirror_num, bio_flags,
3151 prev_em_start);
3152 start = page_start;
3153 end = start + PAGE_SIZE - 1;
3154 first_index = index;
3155 }
3156 }
3157
3158 if (end)
3159 __do_contiguous_readpages(tree, &pages[first_index],
3160 index - first_index, start,
3161 end, get_extent, em_cached, bio,
3162 mirror_num, bio_flags,
3163 prev_em_start);
3164 }
3165
3166 static int __extent_read_full_page(struct extent_io_tree *tree,
3167 struct page *page,
3168 get_extent_t *get_extent,
3169 struct bio **bio, int mirror_num,
3170 unsigned long *bio_flags,
3171 unsigned int read_flags)
3172 {
3173 struct inode *inode = page->mapping->host;
3174 struct btrfs_ordered_extent *ordered;
3175 u64 start = page_offset(page);
3176 u64 end = start + PAGE_SIZE - 1;
3177 int ret;
3178
3179 while (1) {
3180 lock_extent(tree, start, end);
3181 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3182 PAGE_SIZE);
3183 if (!ordered)
3184 break;
3185 unlock_extent(tree, start, end);
3186 btrfs_start_ordered_extent(inode, ordered, 1);
3187 btrfs_put_ordered_extent(ordered);
3188 }
3189
3190 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3191 bio_flags, read_flags, NULL);
3192 return ret;
3193 }
3194
3195 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3196 get_extent_t *get_extent, int mirror_num)
3197 {
3198 struct bio *bio = NULL;
3199 unsigned long bio_flags = 0;
3200 int ret;
3201
3202 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3203 &bio_flags, 0);
3204 if (bio)
3205 ret = submit_one_bio(bio, mirror_num, bio_flags);
3206 return ret;
3207 }
3208
3209 static void update_nr_written(struct writeback_control *wbc,
3210 unsigned long nr_written)
3211 {
3212 wbc->nr_to_write -= nr_written;
3213 }
3214
3215 /*
3216 * helper for __extent_writepage, doing all of the delayed allocation setup.
3217 *
3218 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3219 * to write the page (copy into inline extent). In this case the IO has
3220 * been started and the page is already unlocked.
3221 *
3222 * This returns 0 if all went well (page still locked)
3223 * This returns < 0 if there were errors (page still locked)
3224 */
3225 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3226 struct page *page, struct writeback_control *wbc,
3227 struct extent_page_data *epd,
3228 u64 delalloc_start,
3229 unsigned long *nr_written)
3230 {
3231 struct extent_io_tree *tree = epd->tree;
3232 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3233 u64 nr_delalloc;
3234 u64 delalloc_to_write = 0;
3235 u64 delalloc_end = 0;
3236 int ret;
3237 int page_started = 0;
3238
3239 if (epd->extent_locked)
3240 return 0;
3241
3242 while (delalloc_end < page_end) {
3243 nr_delalloc = find_lock_delalloc_range(inode, tree,
3244 page,
3245 &delalloc_start,
3246 &delalloc_end,
3247 BTRFS_MAX_EXTENT_SIZE);
3248 if (nr_delalloc == 0) {
3249 delalloc_start = delalloc_end + 1;
3250 continue;
3251 }
3252 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3253 delalloc_end, &page_started, nr_written, wbc);
3254 /* File system has been set read-only */
3255 if (ret) {
3256 SetPageError(page);
3257 /*
3258 * btrfs_run_delalloc_range should return < 0 for error
3259 * but just in case, we use > 0 here meaning the IO is
3260 * started, so we don't want to return > 0 unless
3261 * things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
3271 PAGE_SIZE) >> PAGE_SHIFT;
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298 done:
3299 return ret;
3300 }
3301
3302 /*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 unsigned int write_flags, int *nr_ret)
3317 {
3318 struct extent_io_tree *tree = epd->tree;
3319 u64 start = page_offset(page);
3320 u64 page_end = start + PAGE_SIZE - 1;
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
3324 u64 block_start;
3325 u64 iosize;
3326 struct extent_map *em;
3327 struct block_device *bdev;
3328 size_t pg_offset = 0;
3329 size_t blocksize;
3330 int ret = 0;
3331 int nr = 0;
3332 bool compressed;
3333
3334 if (tree->ops && tree->ops->writepage_start_hook) {
3335 ret = tree->ops->writepage_start_hook(page, start,
3336 page_end);
3337 if (ret) {
3338 /* Fixup worker will requeue */
3339 if (ret == -EBUSY)
3340 wbc->pages_skipped++;
3341 else
3342 redirty_page_for_writepage(wbc, page);
3343
3344 update_nr_written(wbc, nr_written);
3345 unlock_page(page);
3346 return 1;
3347 }
3348 }
3349
3350 /*
3351 * we don't want to touch the inode after unlocking the page,
3352 * so we update the mapping writeback index now
3353 */
3354 update_nr_written(wbc, nr_written + 1);
3355
3356 end = page_end;
3357 if (i_size <= start) {
3358 if (tree->ops && tree->ops->writepage_end_io_hook)
3359 tree->ops->writepage_end_io_hook(page, start,
3360 page_end, NULL, 1);
3361 goto done;
3362 }
3363
3364 blocksize = inode->i_sb->s_blocksize;
3365
3366 while (cur <= end) {
3367 u64 em_end;
3368 u64 offset;
3369
3370 if (cur >= i_size) {
3371 if (tree->ops && tree->ops->writepage_end_io_hook)
3372 tree->ops->writepage_end_io_hook(page, cur,
3373 page_end, NULL, 1);
3374 break;
3375 }
3376 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3377 end - cur + 1, 1);
3378 if (IS_ERR_OR_NULL(em)) {
3379 SetPageError(page);
3380 ret = PTR_ERR_OR_ZERO(em);
3381 break;
3382 }
3383
3384 extent_offset = cur - em->start;
3385 em_end = extent_map_end(em);
3386 BUG_ON(em_end <= cur);
3387 BUG_ON(end < cur);
3388 iosize = min(em_end - cur, end - cur + 1);
3389 iosize = ALIGN(iosize, blocksize);
3390 offset = em->block_start + extent_offset;
3391 bdev = em->bdev;
3392 block_start = em->block_start;
3393 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3394 free_extent_map(em);
3395 em = NULL;
3396
3397 /*
3398 * compressed and inline extents are written through other
3399 * paths in the FS
3400 */
3401 if (compressed || block_start == EXTENT_MAP_HOLE ||
3402 block_start == EXTENT_MAP_INLINE) {
3403 /*
3404 * end_io notification does not happen here for
3405 * compressed extents
3406 */
3407 if (!compressed && tree->ops &&
3408 tree->ops->writepage_end_io_hook)
3409 tree->ops->writepage_end_io_hook(page, cur,
3410 cur + iosize - 1,
3411 NULL, 1);
3412 else if (compressed) {
3413 /* we don't want to end_page_writeback on
3414 * a compressed extent. this happens
3415 * elsewhere
3416 */
3417 nr++;
3418 }
3419
3420 cur += iosize;
3421 pg_offset += iosize;
3422 continue;
3423 }
3424
3425 set_range_writeback(tree, cur, cur + iosize - 1);
3426 if (!PageWriteback(page)) {
3427 btrfs_err(BTRFS_I(inode)->root->fs_info,
3428 "page %lu not writeback, cur %llu end %llu",
3429 page->index, cur, end);
3430 }
3431
3432 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3433 page, offset, iosize, pg_offset,
3434 bdev, &epd->bio,
3435 end_bio_extent_writepage,
3436 0, 0, 0, false);
3437 if (ret) {
3438 SetPageError(page);
3439 if (PageWriteback(page))
3440 end_page_writeback(page);
3441 }
3442
3443 cur = cur + iosize;
3444 pg_offset += iosize;
3445 nr++;
3446 }
3447 done:
3448 *nr_ret = nr;
3449 return ret;
3450 }
3451
3452 /*
3453 * the writepage semantics are similar to regular writepage. extent
3454 * records are inserted to lock ranges in the tree, and as dirty areas
3455 * are found, they are marked writeback. Then the lock bits are removed
3456 * and the end_io handler clears the writeback ranges
3457 */
3458 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3459 void *data)
3460 {
3461 struct inode *inode = page->mapping->host;
3462 struct extent_page_data *epd = data;
3463 u64 start = page_offset(page);
3464 u64 page_end = start + PAGE_SIZE - 1;
3465 int ret;
3466 int nr = 0;
3467 size_t pg_offset = 0;
3468 loff_t i_size = i_size_read(inode);
3469 unsigned long end_index = i_size >> PAGE_SHIFT;
3470 unsigned int write_flags = 0;
3471 unsigned long nr_written = 0;
3472
3473 write_flags = wbc_to_write_flags(wbc);
3474
3475 trace___extent_writepage(page, inode, wbc);
3476
3477 WARN_ON(!PageLocked(page));
3478
3479 ClearPageError(page);
3480
3481 pg_offset = i_size & (PAGE_SIZE - 1);
3482 if (page->index > end_index ||
3483 (page->index == end_index && !pg_offset)) {
3484 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3485 unlock_page(page);
3486 return 0;
3487 }
3488
3489 if (page->index == end_index) {
3490 char *userpage;
3491
3492 userpage = kmap_atomic(page);
3493 memset(userpage + pg_offset, 0,
3494 PAGE_SIZE - pg_offset);
3495 kunmap_atomic(userpage);
3496 flush_dcache_page(page);
3497 }
3498
3499 pg_offset = 0;
3500
3501 set_page_extent_mapped(page);
3502
3503 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3504 if (ret == 1)
3505 goto done_unlocked;
3506 if (ret)
3507 goto done;
3508
3509 ret = __extent_writepage_io(inode, page, wbc, epd,
3510 i_size, nr_written, write_flags, &nr);
3511 if (ret == 1)
3512 goto done_unlocked;
3513
3514 done:
3515 if (nr == 0) {
3516 /* make sure the mapping tag for page dirty gets cleared */
3517 set_page_writeback(page);
3518 end_page_writeback(page);
3519 }
3520 if (PageError(page)) {
3521 ret = ret < 0 ? ret : -EIO;
3522 end_extent_writepage(page, ret, start, page_end);
3523 }
3524 unlock_page(page);
3525 return ret;
3526
3527 done_unlocked:
3528 return 0;
3529 }
3530
3531 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3532 {
3533 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3534 TASK_UNINTERRUPTIBLE);
3535 }
3536
3537 static noinline_for_stack int
3538 lock_extent_buffer_for_io(struct extent_buffer *eb,
3539 struct btrfs_fs_info *fs_info,
3540 struct extent_page_data *epd)
3541 {
3542 unsigned long i, num_pages;
3543 int flush = 0;
3544 int ret = 0;
3545
3546 if (!btrfs_try_tree_write_lock(eb)) {
3547 flush = 1;
3548 flush_write_bio(epd);
3549 btrfs_tree_lock(eb);
3550 }
3551
3552 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3553 btrfs_tree_unlock(eb);
3554 if (!epd->sync_io)
3555 return 0;
3556 if (!flush) {
3557 flush_write_bio(epd);
3558 flush = 1;
3559 }
3560 while (1) {
3561 wait_on_extent_buffer_writeback(eb);
3562 btrfs_tree_lock(eb);
3563 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3564 break;
3565 btrfs_tree_unlock(eb);
3566 }
3567 }
3568
3569 /*
3570 * We need to do this to prevent races in people who check if the eb is
3571 * under IO since we can end up having no IO bits set for a short period
3572 * of time.
3573 */
3574 spin_lock(&eb->refs_lock);
3575 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3576 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3577 spin_unlock(&eb->refs_lock);
3578 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3579 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3580 -eb->len,
3581 fs_info->dirty_metadata_batch);
3582 ret = 1;
3583 } else {
3584 spin_unlock(&eb->refs_lock);
3585 }
3586
3587 btrfs_tree_unlock(eb);
3588
3589 if (!ret)
3590 return ret;
3591
3592 num_pages = num_extent_pages(eb->start, eb->len);
3593 for (i = 0; i < num_pages; i++) {
3594 struct page *p = eb->pages[i];
3595
3596 if (!trylock_page(p)) {
3597 if (!flush) {
3598 flush_write_bio(epd);
3599 flush = 1;
3600 }
3601 lock_page(p);
3602 }
3603 }
3604
3605 return ret;
3606 }
3607
3608 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3609 {
3610 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3611 smp_mb__after_atomic();
3612 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3613 }
3614
3615 static void set_btree_ioerr(struct page *page)
3616 {
3617 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3618
3619 SetPageError(page);
3620 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3621 return;
3622
3623 /*
3624 * If writeback for a btree extent that doesn't belong to a log tree
3625 * failed, increment the counter transaction->eb_write_errors.
3626 * We do this because while the transaction is running and before it's
3627 * committing (when we call filemap_fdata[write|wait]_range against
3628 * the btree inode), we might have
3629 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3630 * returns an error or an error happens during writeback, when we're
3631 * committing the transaction we wouldn't know about it, since the pages
3632 * can be no longer dirty nor marked anymore for writeback (if a
3633 * subsequent modification to the extent buffer didn't happen before the
3634 * transaction commit), which makes filemap_fdata[write|wait]_range not
3635 * able to find the pages tagged with SetPageError at transaction
3636 * commit time. So if this happens we must abort the transaction,
3637 * otherwise we commit a super block with btree roots that point to
3638 * btree nodes/leafs whose content on disk is invalid - either garbage
3639 * or the content of some node/leaf from a past generation that got
3640 * cowed or deleted and is no longer valid.
3641 *
3642 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3643 * not be enough - we need to distinguish between log tree extents vs
3644 * non-log tree extents, and the next filemap_fdatawait_range() call
3645 * will catch and clear such errors in the mapping - and that call might
3646 * be from a log sync and not from a transaction commit. Also, checking
3647 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3648 * not done and would not be reliable - the eb might have been released
3649 * from memory and reading it back again means that flag would not be
3650 * set (since it's a runtime flag, not persisted on disk).
3651 *
3652 * Using the flags below in the btree inode also makes us achieve the
3653 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3654 * writeback for all dirty pages and before filemap_fdatawait_range()
3655 * is called, the writeback for all dirty pages had already finished
3656 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3657 * filemap_fdatawait_range() would return success, as it could not know
3658 * that writeback errors happened (the pages were no longer tagged for
3659 * writeback).
3660 */
3661 switch (eb->log_index) {
3662 case -1:
3663 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3664 break;
3665 case 0:
3666 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3667 break;
3668 case 1:
3669 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3670 break;
3671 default:
3672 BUG(); /* unexpected, logic error */
3673 }
3674 }
3675
3676 static void end_bio_extent_buffer_writepage(struct bio *bio)
3677 {
3678 struct bio_vec *bvec;
3679 struct extent_buffer *eb;
3680 int i, done;
3681
3682 ASSERT(!bio_flagged(bio, BIO_CLONED));
3683 bio_for_each_segment_all(bvec, bio, i) {
3684 struct page *page = bvec->bv_page;
3685
3686 eb = (struct extent_buffer *)page->private;
3687 BUG_ON(!eb);
3688 done = atomic_dec_and_test(&eb->io_pages);
3689
3690 if (bio->bi_status ||
3691 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3692 ClearPageUptodate(page);
3693 set_btree_ioerr(page);
3694 }
3695
3696 end_page_writeback(page);
3697
3698 if (!done)
3699 continue;
3700
3701 end_extent_buffer_writeback(eb);
3702 }
3703
3704 bio_put(bio);
3705 }
3706
3707 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3708 struct btrfs_fs_info *fs_info,
3709 struct writeback_control *wbc,
3710 struct extent_page_data *epd)
3711 {
3712 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3713 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3714 u64 offset = eb->start;
3715 u32 nritems;
3716 unsigned long i, num_pages;
3717 unsigned long start, end;
3718 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3719 int ret = 0;
3720
3721 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3722 num_pages = num_extent_pages(eb->start, eb->len);
3723 atomic_set(&eb->io_pages, num_pages);
3724
3725 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3726 nritems = btrfs_header_nritems(eb);
3727 if (btrfs_header_level(eb) > 0) {
3728 end = btrfs_node_key_ptr_offset(nritems);
3729
3730 memzero_extent_buffer(eb, end, eb->len - end);
3731 } else {
3732 /*
3733 * leaf:
3734 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3735 */
3736 start = btrfs_item_nr_offset(nritems);
3737 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3738 memzero_extent_buffer(eb, start, end - start);
3739 }
3740
3741 for (i = 0; i < num_pages; i++) {
3742 struct page *p = eb->pages[i];
3743
3744 clear_page_dirty_for_io(p);
3745 set_page_writeback(p);
3746 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3747 p, offset, PAGE_SIZE, 0, bdev,
3748 &epd->bio,
3749 end_bio_extent_buffer_writepage,
3750 0, 0, 0, false);
3751 if (ret) {
3752 set_btree_ioerr(p);
3753 if (PageWriteback(p))
3754 end_page_writeback(p);
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3757 ret = -EIO;
3758 break;
3759 }
3760 offset += PAGE_SIZE;
3761 update_nr_written(wbc, 1);
3762 unlock_page(p);
3763 }
3764
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
3767 struct page *p = eb->pages[i];
3768 clear_page_dirty_for_io(p);
3769 unlock_page(p);
3770 }
3771 }
3772
3773 return ret;
3774 }
3775
3776 int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3778 {
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3783 .bio = NULL,
3784 .tree = tree,
3785 .extent_locked = 0,
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787 };
3788 int ret = 0;
3789 int done = 0;
3790 int nr_to_write_done = 0;
3791 struct pagevec pvec;
3792 int nr_pages;
3793 pgoff_t index;
3794 pgoff_t end; /* Inclusive */
3795 int scanned = 0;
3796 int tag;
3797
3798 pagevec_init(&pvec);
3799 if (wbc->range_cyclic) {
3800 index = mapping->writeback_index; /* Start from prev offset */
3801 end = -1;
3802 } else {
3803 index = wbc->range_start >> PAGE_SHIFT;
3804 end = wbc->range_end >> PAGE_SHIFT;
3805 scanned = 1;
3806 }
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag = PAGECACHE_TAG_TOWRITE;
3809 else
3810 tag = PAGECACHE_TAG_DIRTY;
3811 retry:
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag_pages_for_writeback(mapping, index, end);
3814 while (!done && !nr_to_write_done && (index <= end) &&
3815 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3816 tag))) {
3817 unsigned i;
3818
3819 scanned = 1;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pvec.pages[i];
3822
3823 if (!PagePrivate(page))
3824 continue;
3825
3826 spin_lock(&mapping->private_lock);
3827 if (!PagePrivate(page)) {
3828 spin_unlock(&mapping->private_lock);
3829 continue;
3830 }
3831
3832 eb = (struct extent_buffer *)page->private;
3833
3834 /*
3835 * Shouldn't happen and normally this would be a BUG_ON
3836 * but no sense in crashing the users box for something
3837 * we can survive anyway.
3838 */
3839 if (WARN_ON(!eb)) {
3840 spin_unlock(&mapping->private_lock);
3841 continue;
3842 }
3843
3844 if (eb == prev_eb) {
3845 spin_unlock(&mapping->private_lock);
3846 continue;
3847 }
3848
3849 ret = atomic_inc_not_zero(&eb->refs);
3850 spin_unlock(&mapping->private_lock);
3851 if (!ret)
3852 continue;
3853
3854 prev_eb = eb;
3855 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3856 if (!ret) {
3857 free_extent_buffer(eb);
3858 continue;
3859 }
3860
3861 ret = write_one_eb(eb, fs_info, wbc, &epd);
3862 if (ret) {
3863 done = 1;
3864 free_extent_buffer(eb);
3865 break;
3866 }
3867 free_extent_buffer(eb);
3868
3869 /*
3870 * the filesystem may choose to bump up nr_to_write.
3871 * We have to make sure to honor the new nr_to_write
3872 * at any time
3873 */
3874 nr_to_write_done = wbc->nr_to_write <= 0;
3875 }
3876 pagevec_release(&pvec);
3877 cond_resched();
3878 }
3879 if (!scanned && !done) {
3880 /*
3881 * We hit the last page and there is more work to be done: wrap
3882 * back to the start of the file
3883 */
3884 scanned = 1;
3885 index = 0;
3886 goto retry;
3887 }
3888 flush_write_bio(&epd);
3889 return ret;
3890 }
3891
3892 /**
3893 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3894 * @mapping: address space structure to write
3895 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3896 * @writepage: function called for each page
3897 * @data: data passed to writepage function
3898 *
3899 * If a page is already under I/O, write_cache_pages() skips it, even
3900 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3901 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3902 * and msync() need to guarantee that all the data which was dirty at the time
3903 * the call was made get new I/O started against them. If wbc->sync_mode is
3904 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3905 * existing IO to complete.
3906 */
3907 static int extent_write_cache_pages(struct address_space *mapping,
3908 struct writeback_control *wbc,
3909 writepage_t writepage, void *data,
3910 void (*flush_fn)(void *))
3911 {
3912 struct inode *inode = mapping->host;
3913 int ret = 0;
3914 int done = 0;
3915 int nr_to_write_done = 0;
3916 struct pagevec pvec;
3917 int nr_pages;
3918 pgoff_t index;
3919 pgoff_t end; /* Inclusive */
3920 pgoff_t done_index;
3921 int range_whole = 0;
3922 int scanned = 0;
3923 int tag;
3924
3925 /*
3926 * We have to hold onto the inode so that ordered extents can do their
3927 * work when the IO finishes. The alternative to this is failing to add
3928 * an ordered extent if the igrab() fails there and that is a huge pain
3929 * to deal with, so instead just hold onto the inode throughout the
3930 * writepages operation. If it fails here we are freeing up the inode
3931 * anyway and we'd rather not waste our time writing out stuff that is
3932 * going to be truncated anyway.
3933 */
3934 if (!igrab(inode))
3935 return 0;
3936
3937 pagevec_init(&pvec);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
3944 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945 range_whole = 1;
3946 scanned = 1;
3947 }
3948 if (wbc->sync_mode == WB_SYNC_ALL)
3949 tag = PAGECACHE_TAG_TOWRITE;
3950 else
3951 tag = PAGECACHE_TAG_DIRTY;
3952 retry:
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag_pages_for_writeback(mapping, index, end);
3955 done_index = index;
3956 while (!done && !nr_to_write_done && (index <= end) &&
3957 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958 &index, end, tag))) {
3959 unsigned i;
3960
3961 scanned = 1;
3962 for (i = 0; i < nr_pages; i++) {
3963 struct page *page = pvec.pages[i];
3964
3965 done_index = page->index + 1;
3966 /*
3967 * At this point we hold neither mapping->tree_lock nor
3968 * lock on the page itself: the page may be truncated or
3969 * invalidated (changing page->mapping to NULL), or even
3970 * swizzled back from swapper_space to tmpfs file
3971 * mapping
3972 */
3973 if (!trylock_page(page)) {
3974 flush_fn(data);
3975 lock_page(page);
3976 }
3977
3978 if (unlikely(page->mapping != mapping)) {
3979 unlock_page(page);
3980 continue;
3981 }
3982
3983 if (wbc->sync_mode != WB_SYNC_NONE) {
3984 if (PageWriteback(page))
3985 flush_fn(data);
3986 wait_on_page_writeback(page);
3987 }
3988
3989 if (PageWriteback(page) ||
3990 !clear_page_dirty_for_io(page)) {
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 ret = (*writepage)(page, wbc, data);
3996
3997 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998 unlock_page(page);
3999 ret = 0;
4000 }
4001 if (ret < 0) {
4002 done = 1;
4003 break;
4004 }
4005
4006 /*
4007 * the filesystem may choose to bump up nr_to_write.
4008 * We have to make sure to honor the new nr_to_write
4009 * at any time
4010 */
4011 nr_to_write_done = wbc->nr_to_write <= 0;
4012 }
4013 pagevec_release(&pvec);
4014 cond_resched();
4015 }
4016 if (!scanned && !done) {
4017 /*
4018 * We hit the last page and there is more work to be done: wrap
4019 * back to the start of the file
4020 */
4021 scanned = 1;
4022 index = 0;
4023 goto retry;
4024 }
4025
4026 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4027 mapping->writeback_index = done_index;
4028
4029 btrfs_add_delayed_iput(inode);
4030 return ret;
4031 }
4032
4033 static void flush_epd_write_bio(struct extent_page_data *epd)
4034 {
4035 if (epd->bio) {
4036 int ret;
4037
4038 ret = submit_one_bio(epd->bio, 0, 0);
4039 BUG_ON(ret < 0); /* -ENOMEM */
4040 epd->bio = NULL;
4041 }
4042 }
4043
4044 static noinline void flush_write_bio(void *data)
4045 {
4046 struct extent_page_data *epd = data;
4047 flush_epd_write_bio(epd);
4048 }
4049
4050 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4051 get_extent_t *get_extent,
4052 struct writeback_control *wbc)
4053 {
4054 int ret;
4055 struct extent_page_data epd = {
4056 .bio = NULL,
4057 .tree = tree,
4058 .get_extent = get_extent,
4059 .extent_locked = 0,
4060 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4061 };
4062
4063 ret = __extent_writepage(page, wbc, &epd);
4064
4065 flush_epd_write_bio(&epd);
4066 return ret;
4067 }
4068
4069 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4070 u64 start, u64 end, get_extent_t *get_extent,
4071 int mode)
4072 {
4073 int ret = 0;
4074 struct address_space *mapping = inode->i_mapping;
4075 struct page *page;
4076 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4077 PAGE_SHIFT;
4078
4079 struct extent_page_data epd = {
4080 .bio = NULL,
4081 .tree = tree,
4082 .get_extent = get_extent,
4083 .extent_locked = 1,
4084 .sync_io = mode == WB_SYNC_ALL,
4085 };
4086 struct writeback_control wbc_writepages = {
4087 .sync_mode = mode,
4088 .nr_to_write = nr_pages * 2,
4089 .range_start = start,
4090 .range_end = end + 1,
4091 };
4092
4093 while (start <= end) {
4094 page = find_get_page(mapping, start >> PAGE_SHIFT);
4095 if (clear_page_dirty_for_io(page))
4096 ret = __extent_writepage(page, &wbc_writepages, &epd);
4097 else {
4098 if (tree->ops && tree->ops->writepage_end_io_hook)
4099 tree->ops->writepage_end_io_hook(page, start,
4100 start + PAGE_SIZE - 1,
4101 NULL, 1);
4102 unlock_page(page);
4103 }
4104 put_page(page);
4105 start += PAGE_SIZE;
4106 }
4107
4108 flush_epd_write_bio(&epd);
4109 return ret;
4110 }
4111
4112 int extent_writepages(struct extent_io_tree *tree,
4113 struct address_space *mapping,
4114 get_extent_t *get_extent,
4115 struct writeback_control *wbc)
4116 {
4117 int ret = 0;
4118 struct extent_page_data epd = {
4119 .bio = NULL,
4120 .tree = tree,
4121 .get_extent = get_extent,
4122 .extent_locked = 0,
4123 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4124 };
4125
4126 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4127 flush_write_bio);
4128 flush_epd_write_bio(&epd);
4129 return ret;
4130 }
4131
4132 int extent_readpages(struct extent_io_tree *tree,
4133 struct address_space *mapping,
4134 struct list_head *pages, unsigned nr_pages,
4135 get_extent_t get_extent)
4136 {
4137 struct bio *bio = NULL;
4138 unsigned page_idx;
4139 unsigned long bio_flags = 0;
4140 struct page *pagepool[16];
4141 struct page *page;
4142 struct extent_map *em_cached = NULL;
4143 int nr = 0;
4144 u64 prev_em_start = (u64)-1;
4145
4146 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4147 page = list_entry(pages->prev, struct page, lru);
4148
4149 prefetchw(&page->flags);
4150 list_del(&page->lru);
4151 if (add_to_page_cache_lru(page, mapping,
4152 page->index,
4153 readahead_gfp_mask(mapping))) {
4154 put_page(page);
4155 continue;
4156 }
4157
4158 pagepool[nr++] = page;
4159 if (nr < ARRAY_SIZE(pagepool))
4160 continue;
4161 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4162 &bio, 0, &bio_flags, &prev_em_start);
4163 nr = 0;
4164 }
4165 if (nr)
4166 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4167 &bio, 0, &bio_flags, &prev_em_start);
4168
4169 if (em_cached)
4170 free_extent_map(em_cached);
4171
4172 BUG_ON(!list_empty(pages));
4173 if (bio)
4174 return submit_one_bio(bio, 0, bio_flags);
4175 return 0;
4176 }
4177
4178 /*
4179 * basic invalidatepage code, this waits on any locked or writeback
4180 * ranges corresponding to the page, and then deletes any extent state
4181 * records from the tree
4182 */
4183 int extent_invalidatepage(struct extent_io_tree *tree,
4184 struct page *page, unsigned long offset)
4185 {
4186 struct extent_state *cached_state = NULL;
4187 u64 start = page_offset(page);
4188 u64 end = start + PAGE_SIZE - 1;
4189 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4190
4191 start += ALIGN(offset, blocksize);
4192 if (start > end)
4193 return 0;
4194
4195 lock_extent_bits(tree, start, end, &cached_state);
4196 wait_on_page_writeback(page);
4197 clear_extent_bit(tree, start, end,
4198 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4199 EXTENT_DO_ACCOUNTING,
4200 1, 1, &cached_state, GFP_NOFS);
4201 return 0;
4202 }
4203
4204 /*
4205 * a helper for releasepage, this tests for areas of the page that
4206 * are locked or under IO and drops the related state bits if it is safe
4207 * to drop the page.
4208 */
4209 static int try_release_extent_state(struct extent_map_tree *map,
4210 struct extent_io_tree *tree,
4211 struct page *page, gfp_t mask)
4212 {
4213 u64 start = page_offset(page);
4214 u64 end = start + PAGE_SIZE - 1;
4215 int ret = 1;
4216
4217 if (test_range_bit(tree, start, end,
4218 EXTENT_IOBITS, 0, NULL))
4219 ret = 0;
4220 else {
4221 /*
4222 * at this point we can safely clear everything except the
4223 * locked bit and the nodatasum bit
4224 */
4225 ret = clear_extent_bit(tree, start, end,
4226 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4227 0, 0, NULL, mask);
4228
4229 /* if clear_extent_bit failed for enomem reasons,
4230 * we can't allow the release to continue.
4231 */
4232 if (ret < 0)
4233 ret = 0;
4234 else
4235 ret = 1;
4236 }
4237 return ret;
4238 }
4239
4240 /*
4241 * a helper for releasepage. As long as there are no locked extents
4242 * in the range corresponding to the page, both state records and extent
4243 * map records are removed
4244 */
4245 int try_release_extent_mapping(struct extent_map_tree *map,
4246 struct extent_io_tree *tree, struct page *page,
4247 gfp_t mask)
4248 {
4249 struct extent_map *em;
4250 u64 start = page_offset(page);
4251 u64 end = start + PAGE_SIZE - 1;
4252 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4253
4254 if (gfpflags_allow_blocking(mask) &&
4255 page->mapping->host->i_size > SZ_16M) {
4256 u64 len;
4257 while (start <= end) {
4258 len = end - start + 1;
4259 write_lock(&map->lock);
4260 em = lookup_extent_mapping(map, start, len);
4261 if (!em) {
4262 write_unlock(&map->lock);
4263 break;
4264 }
4265 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4266 em->start != start) {
4267 write_unlock(&map->lock);
4268 free_extent_map(em);
4269 break;
4270 }
4271 if (!test_range_bit(tree, em->start,
4272 extent_map_end(em) - 1,
4273 EXTENT_LOCKED | EXTENT_WRITEBACK,
4274 0, NULL)) {
4275 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4276 &btrfs_inode->runtime_flags);
4277 remove_extent_mapping(map, em);
4278 /* once for the rb tree */
4279 free_extent_map(em);
4280 }
4281 start = extent_map_end(em);
4282 write_unlock(&map->lock);
4283
4284 /* once for us */
4285 free_extent_map(em);
4286 }
4287 }
4288 return try_release_extent_state(map, tree, page, mask);
4289 }
4290
4291 /*
4292 * helper function for fiemap, which doesn't want to see any holes.
4293 * This maps until we find something past 'last'
4294 */
4295 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4296 u64 offset,
4297 u64 last,
4298 get_extent_t *get_extent)
4299 {
4300 u64 sectorsize = btrfs_inode_sectorsize(inode);
4301 struct extent_map *em;
4302 u64 len;
4303
4304 if (offset >= last)
4305 return NULL;
4306
4307 while (1) {
4308 len = last - offset;
4309 if (len == 0)
4310 break;
4311 len = ALIGN(len, sectorsize);
4312 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4313 if (IS_ERR_OR_NULL(em))
4314 return em;
4315
4316 /* if this isn't a hole return it */
4317 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4318 em->block_start != EXTENT_MAP_HOLE) {
4319 return em;
4320 }
4321
4322 /* this is a hole, advance to the next extent */
4323 offset = extent_map_end(em);
4324 free_extent_map(em);
4325 if (offset >= last)
4326 break;
4327 }
4328 return NULL;
4329 }
4330
4331 /*
4332 * To cache previous fiemap extent
4333 *
4334 * Will be used for merging fiemap extent
4335 */
4336 struct fiemap_cache {
4337 u64 offset;
4338 u64 phys;
4339 u64 len;
4340 u32 flags;
4341 bool cached;
4342 };
4343
4344 /*
4345 * Helper to submit fiemap extent.
4346 *
4347 * Will try to merge current fiemap extent specified by @offset, @phys,
4348 * @len and @flags with cached one.
4349 * And only when we fails to merge, cached one will be submitted as
4350 * fiemap extent.
4351 *
4352 * Return value is the same as fiemap_fill_next_extent().
4353 */
4354 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4355 struct fiemap_cache *cache,
4356 u64 offset, u64 phys, u64 len, u32 flags)
4357 {
4358 int ret = 0;
4359
4360 if (!cache->cached)
4361 goto assign;
4362
4363 /*
4364 * Sanity check, extent_fiemap() should have ensured that new
4365 * fiemap extent won't overlap with cahced one.
4366 * Not recoverable.
4367 *
4368 * NOTE: Physical address can overlap, due to compression
4369 */
4370 if (cache->offset + cache->len > offset) {
4371 WARN_ON(1);
4372 return -EINVAL;
4373 }
4374
4375 /*
4376 * Only merges fiemap extents if
4377 * 1) Their logical addresses are continuous
4378 *
4379 * 2) Their physical addresses are continuous
4380 * So truly compressed (physical size smaller than logical size)
4381 * extents won't get merged with each other
4382 *
4383 * 3) Share same flags except FIEMAP_EXTENT_LAST
4384 * So regular extent won't get merged with prealloc extent
4385 */
4386 if (cache->offset + cache->len == offset &&
4387 cache->phys + cache->len == phys &&
4388 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4389 (flags & ~FIEMAP_EXTENT_LAST)) {
4390 cache->len += len;
4391 cache->flags |= flags;
4392 goto try_submit_last;
4393 }
4394
4395 /* Not mergeable, need to submit cached one */
4396 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4397 cache->len, cache->flags);
4398 cache->cached = false;
4399 if (ret)
4400 return ret;
4401 assign:
4402 cache->cached = true;
4403 cache->offset = offset;
4404 cache->phys = phys;
4405 cache->len = len;
4406 cache->flags = flags;
4407 try_submit_last:
4408 if (cache->flags & FIEMAP_EXTENT_LAST) {
4409 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4410 cache->phys, cache->len, cache->flags);
4411 cache->cached = false;
4412 }
4413 return ret;
4414 }
4415
4416 /*
4417 * Emit last fiemap cache
4418 *
4419 * The last fiemap cache may still be cached in the following case:
4420 * 0 4k 8k
4421 * |<- Fiemap range ->|
4422 * |<------------ First extent ----------->|
4423 *
4424 * In this case, the first extent range will be cached but not emitted.
4425 * So we must emit it before ending extent_fiemap().
4426 */
4427 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4428 struct fiemap_extent_info *fieinfo,
4429 struct fiemap_cache *cache)
4430 {
4431 int ret;
4432
4433 if (!cache->cached)
4434 return 0;
4435
4436 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4437 cache->len, cache->flags);
4438 cache->cached = false;
4439 if (ret > 0)
4440 ret = 0;
4441 return ret;
4442 }
4443
4444 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4445 __u64 start, __u64 len, get_extent_t *get_extent)
4446 {
4447 int ret = 0;
4448 u64 off = start;
4449 u64 max = start + len;
4450 u32 flags = 0;
4451 u32 found_type;
4452 u64 last;
4453 u64 last_for_get_extent = 0;
4454 u64 disko = 0;
4455 u64 isize = i_size_read(inode);
4456 struct btrfs_key found_key;
4457 struct extent_map *em = NULL;
4458 struct extent_state *cached_state = NULL;
4459 struct btrfs_path *path;
4460 struct btrfs_root *root = BTRFS_I(inode)->root;
4461 struct fiemap_cache cache = { 0 };
4462 int end = 0;
4463 u64 em_start = 0;
4464 u64 em_len = 0;
4465 u64 em_end = 0;
4466
4467 if (len == 0)
4468 return -EINVAL;
4469
4470 path = btrfs_alloc_path();
4471 if (!path)
4472 return -ENOMEM;
4473 path->leave_spinning = 1;
4474
4475 start = round_down(start, btrfs_inode_sectorsize(inode));
4476 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4477
4478 /*
4479 * lookup the last file extent. We're not using i_size here
4480 * because there might be preallocation past i_size
4481 */
4482 ret = btrfs_lookup_file_extent(NULL, root, path,
4483 btrfs_ino(BTRFS_I(inode)), -1, 0);
4484 if (ret < 0) {
4485 btrfs_free_path(path);
4486 return ret;
4487 } else {
4488 WARN_ON(!ret);
4489 if (ret == 1)
4490 ret = 0;
4491 }
4492
4493 path->slots[0]--;
4494 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4495 found_type = found_key.type;
4496
4497 /* No extents, but there might be delalloc bits */
4498 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4499 found_type != BTRFS_EXTENT_DATA_KEY) {
4500 /* have to trust i_size as the end */
4501 last = (u64)-1;
4502 last_for_get_extent = isize;
4503 } else {
4504 /*
4505 * remember the start of the last extent. There are a
4506 * bunch of different factors that go into the length of the
4507 * extent, so its much less complex to remember where it started
4508 */
4509 last = found_key.offset;
4510 last_for_get_extent = last + 1;
4511 }
4512 btrfs_release_path(path);
4513
4514 /*
4515 * we might have some extents allocated but more delalloc past those
4516 * extents. so, we trust isize unless the start of the last extent is
4517 * beyond isize
4518 */
4519 if (last < isize) {
4520 last = (u64)-1;
4521 last_for_get_extent = isize;
4522 }
4523
4524 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4525 &cached_state);
4526
4527 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4528 get_extent);
4529 if (!em)
4530 goto out;
4531 if (IS_ERR(em)) {
4532 ret = PTR_ERR(em);
4533 goto out;
4534 }
4535
4536 while (!end) {
4537 u64 offset_in_extent = 0;
4538
4539 /* break if the extent we found is outside the range */
4540 if (em->start >= max || extent_map_end(em) < off)
4541 break;
4542
4543 /*
4544 * get_extent may return an extent that starts before our
4545 * requested range. We have to make sure the ranges
4546 * we return to fiemap always move forward and don't
4547 * overlap, so adjust the offsets here
4548 */
4549 em_start = max(em->start, off);
4550
4551 /*
4552 * record the offset from the start of the extent
4553 * for adjusting the disk offset below. Only do this if the
4554 * extent isn't compressed since our in ram offset may be past
4555 * what we have actually allocated on disk.
4556 */
4557 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4558 offset_in_extent = em_start - em->start;
4559 em_end = extent_map_end(em);
4560 em_len = em_end - em_start;
4561 disko = 0;
4562 flags = 0;
4563
4564 /*
4565 * bump off for our next call to get_extent
4566 */
4567 off = extent_map_end(em);
4568 if (off >= max)
4569 end = 1;
4570
4571 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4572 end = 1;
4573 flags |= FIEMAP_EXTENT_LAST;
4574 } else if (em->block_start == EXTENT_MAP_INLINE) {
4575 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4576 FIEMAP_EXTENT_NOT_ALIGNED);
4577 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4578 flags |= (FIEMAP_EXTENT_DELALLOC |
4579 FIEMAP_EXTENT_UNKNOWN);
4580 } else if (fieinfo->fi_extents_max) {
4581 u64 bytenr = em->block_start -
4582 (em->start - em->orig_start);
4583
4584 disko = em->block_start + offset_in_extent;
4585
4586 /*
4587 * As btrfs supports shared space, this information
4588 * can be exported to userspace tools via
4589 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4590 * then we're just getting a count and we can skip the
4591 * lookup stuff.
4592 */
4593 ret = btrfs_check_shared(root,
4594 btrfs_ino(BTRFS_I(inode)),
4595 bytenr);
4596 if (ret < 0)
4597 goto out_free;
4598 if (ret)
4599 flags |= FIEMAP_EXTENT_SHARED;
4600 ret = 0;
4601 }
4602 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4603 flags |= FIEMAP_EXTENT_ENCODED;
4604 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4605 flags |= FIEMAP_EXTENT_UNWRITTEN;
4606
4607 free_extent_map(em);
4608 em = NULL;
4609 if ((em_start >= last) || em_len == (u64)-1 ||
4610 (last == (u64)-1 && isize <= em_end)) {
4611 flags |= FIEMAP_EXTENT_LAST;
4612 end = 1;
4613 }
4614
4615 /* now scan forward to see if this is really the last extent. */
4616 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4617 get_extent);
4618 if (IS_ERR(em)) {
4619 ret = PTR_ERR(em);
4620 goto out;
4621 }
4622 if (!em) {
4623 flags |= FIEMAP_EXTENT_LAST;
4624 end = 1;
4625 }
4626 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4627 em_len, flags);
4628 if (ret) {
4629 if (ret == 1)
4630 ret = 0;
4631 goto out_free;
4632 }
4633 }
4634 out_free:
4635 if (!ret)
4636 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4637 free_extent_map(em);
4638 out:
4639 btrfs_free_path(path);
4640 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4641 &cached_state, GFP_NOFS);
4642 return ret;
4643 }
4644
4645 static void __free_extent_buffer(struct extent_buffer *eb)
4646 {
4647 btrfs_leak_debug_del(&eb->leak_list);
4648 kmem_cache_free(extent_buffer_cache, eb);
4649 }
4650
4651 int extent_buffer_under_io(struct extent_buffer *eb)
4652 {
4653 return (atomic_read(&eb->io_pages) ||
4654 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4655 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4656 }
4657
4658 /*
4659 * Helper for releasing extent buffer page.
4660 */
4661 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4662 {
4663 unsigned long index;
4664 struct page *page;
4665 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4666
4667 BUG_ON(extent_buffer_under_io(eb));
4668
4669 index = num_extent_pages(eb->start, eb->len);
4670 if (index == 0)
4671 return;
4672
4673 do {
4674 index--;
4675 page = eb->pages[index];
4676 if (!page)
4677 continue;
4678 if (mapped)
4679 spin_lock(&page->mapping->private_lock);
4680 /*
4681 * We do this since we'll remove the pages after we've
4682 * removed the eb from the radix tree, so we could race
4683 * and have this page now attached to the new eb. So
4684 * only clear page_private if it's still connected to
4685 * this eb.
4686 */
4687 if (PagePrivate(page) &&
4688 page->private == (unsigned long)eb) {
4689 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4690 BUG_ON(PageDirty(page));
4691 BUG_ON(PageWriteback(page));
4692 /*
4693 * We need to make sure we haven't be attached
4694 * to a new eb.
4695 */
4696 ClearPagePrivate(page);
4697 set_page_private(page, 0);
4698 /* One for the page private */
4699 put_page(page);
4700 }
4701
4702 if (mapped)
4703 spin_unlock(&page->mapping->private_lock);
4704
4705 /* One for when we allocated the page */
4706 put_page(page);
4707 } while (index != 0);
4708 }
4709
4710 /*
4711 * Helper for releasing the extent buffer.
4712 */
4713 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4714 {
4715 btrfs_release_extent_buffer_page(eb);
4716 __free_extent_buffer(eb);
4717 }
4718
4719 static struct extent_buffer *
4720 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4721 unsigned long len)
4722 {
4723 struct extent_buffer *eb = NULL;
4724
4725 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4726 eb->start = start;
4727 eb->len = len;
4728 eb->fs_info = fs_info;
4729 eb->bflags = 0;
4730 rwlock_init(&eb->lock);
4731 atomic_set(&eb->write_locks, 0);
4732 atomic_set(&eb->read_locks, 0);
4733 atomic_set(&eb->blocking_readers, 0);
4734 atomic_set(&eb->blocking_writers, 0);
4735 atomic_set(&eb->spinning_readers, 0);
4736 atomic_set(&eb->spinning_writers, 0);
4737 eb->lock_nested = 0;
4738 init_waitqueue_head(&eb->write_lock_wq);
4739 init_waitqueue_head(&eb->read_lock_wq);
4740
4741 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4742
4743 spin_lock_init(&eb->refs_lock);
4744 atomic_set(&eb->refs, 1);
4745 atomic_set(&eb->io_pages, 0);
4746
4747 /*
4748 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4749 */
4750 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4751 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4752 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4753
4754 return eb;
4755 }
4756
4757 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4758 {
4759 unsigned long i;
4760 struct page *p;
4761 struct extent_buffer *new;
4762 unsigned long num_pages = num_extent_pages(src->start, src->len);
4763
4764 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4765 if (new == NULL)
4766 return NULL;
4767
4768 for (i = 0; i < num_pages; i++) {
4769 p = alloc_page(GFP_NOFS);
4770 if (!p) {
4771 btrfs_release_extent_buffer(new);
4772 return NULL;
4773 }
4774 attach_extent_buffer_page(new, p);
4775 WARN_ON(PageDirty(p));
4776 SetPageUptodate(p);
4777 new->pages[i] = p;
4778 copy_page(page_address(p), page_address(src->pages[i]));
4779 }
4780
4781 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4782 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4783
4784 return new;
4785 }
4786
4787 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4788 u64 start, unsigned long len)
4789 {
4790 struct extent_buffer *eb;
4791 unsigned long num_pages;
4792 unsigned long i;
4793
4794 num_pages = num_extent_pages(start, len);
4795
4796 eb = __alloc_extent_buffer(fs_info, start, len);
4797 if (!eb)
4798 return NULL;
4799
4800 for (i = 0; i < num_pages; i++) {
4801 eb->pages[i] = alloc_page(GFP_NOFS);
4802 if (!eb->pages[i])
4803 goto err;
4804 }
4805 set_extent_buffer_uptodate(eb);
4806 btrfs_set_header_nritems(eb, 0);
4807 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4808
4809 return eb;
4810 err:
4811 for (; i > 0; i--)
4812 __free_page(eb->pages[i - 1]);
4813 __free_extent_buffer(eb);
4814 return NULL;
4815 }
4816
4817 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4818 u64 start)
4819 {
4820 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4821 }
4822
4823 static void check_buffer_tree_ref(struct extent_buffer *eb)
4824 {
4825 int refs;
4826 /* the ref bit is tricky. We have to make sure it is set
4827 * if we have the buffer dirty. Otherwise the
4828 * code to free a buffer can end up dropping a dirty
4829 * page
4830 *
4831 * Once the ref bit is set, it won't go away while the
4832 * buffer is dirty or in writeback, and it also won't
4833 * go away while we have the reference count on the
4834 * eb bumped.
4835 *
4836 * We can't just set the ref bit without bumping the
4837 * ref on the eb because free_extent_buffer might
4838 * see the ref bit and try to clear it. If this happens
4839 * free_extent_buffer might end up dropping our original
4840 * ref by mistake and freeing the page before we are able
4841 * to add one more ref.
4842 *
4843 * So bump the ref count first, then set the bit. If someone
4844 * beat us to it, drop the ref we added.
4845 */
4846 refs = atomic_read(&eb->refs);
4847 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4848 return;
4849
4850 spin_lock(&eb->refs_lock);
4851 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4852 atomic_inc(&eb->refs);
4853 spin_unlock(&eb->refs_lock);
4854 }
4855
4856 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4857 struct page *accessed)
4858 {
4859 unsigned long num_pages, i;
4860
4861 check_buffer_tree_ref(eb);
4862
4863 num_pages = num_extent_pages(eb->start, eb->len);
4864 for (i = 0; i < num_pages; i++) {
4865 struct page *p = eb->pages[i];
4866
4867 if (p != accessed)
4868 mark_page_accessed(p);
4869 }
4870 }
4871
4872 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4873 u64 start)
4874 {
4875 struct extent_buffer *eb;
4876
4877 rcu_read_lock();
4878 eb = radix_tree_lookup(&fs_info->buffer_radix,
4879 start >> PAGE_SHIFT);
4880 if (eb && atomic_inc_not_zero(&eb->refs)) {
4881 rcu_read_unlock();
4882 /*
4883 * Lock our eb's refs_lock to avoid races with
4884 * free_extent_buffer. When we get our eb it might be flagged
4885 * with EXTENT_BUFFER_STALE and another task running
4886 * free_extent_buffer might have seen that flag set,
4887 * eb->refs == 2, that the buffer isn't under IO (dirty and
4888 * writeback flags not set) and it's still in the tree (flag
4889 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4890 * of decrementing the extent buffer's reference count twice.
4891 * So here we could race and increment the eb's reference count,
4892 * clear its stale flag, mark it as dirty and drop our reference
4893 * before the other task finishes executing free_extent_buffer,
4894 * which would later result in an attempt to free an extent
4895 * buffer that is dirty.
4896 */
4897 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4898 spin_lock(&eb->refs_lock);
4899 spin_unlock(&eb->refs_lock);
4900 }
4901 mark_extent_buffer_accessed(eb, NULL);
4902 return eb;
4903 }
4904 rcu_read_unlock();
4905
4906 return NULL;
4907 }
4908
4909 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4910 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4911 u64 start)
4912 {
4913 struct extent_buffer *eb, *exists = NULL;
4914 int ret;
4915
4916 eb = find_extent_buffer(fs_info, start);
4917 if (eb)
4918 return eb;
4919 eb = alloc_dummy_extent_buffer(fs_info, start);
4920 if (!eb)
4921 return ERR_PTR(-ENOMEM);
4922 eb->fs_info = fs_info;
4923 again:
4924 ret = radix_tree_preload(GFP_NOFS);
4925 if (ret) {
4926 exists = ERR_PTR(ret);
4927 goto free_eb;
4928 }
4929 spin_lock(&fs_info->buffer_lock);
4930 ret = radix_tree_insert(&fs_info->buffer_radix,
4931 start >> PAGE_SHIFT, eb);
4932 spin_unlock(&fs_info->buffer_lock);
4933 radix_tree_preload_end();
4934 if (ret == -EEXIST) {
4935 exists = find_extent_buffer(fs_info, start);
4936 if (exists)
4937 goto free_eb;
4938 else
4939 goto again;
4940 }
4941 check_buffer_tree_ref(eb);
4942 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4943
4944 /*
4945 * We will free dummy extent buffer's if they come into
4946 * free_extent_buffer with a ref count of 2, but if we are using this we
4947 * want the buffers to stay in memory until we're done with them, so
4948 * bump the ref count again.
4949 */
4950 atomic_inc(&eb->refs);
4951 return eb;
4952 free_eb:
4953 btrfs_release_extent_buffer(eb);
4954 return exists;
4955 }
4956 #endif
4957
4958 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4959 u64 start)
4960 {
4961 unsigned long len = fs_info->nodesize;
4962 unsigned long num_pages = num_extent_pages(start, len);
4963 unsigned long i;
4964 unsigned long index = start >> PAGE_SHIFT;
4965 struct extent_buffer *eb;
4966 struct extent_buffer *exists = NULL;
4967 struct page *p;
4968 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4969 int uptodate = 1;
4970 int ret;
4971
4972 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4973 btrfs_err(fs_info, "bad tree block start %llu", start);
4974 return ERR_PTR(-EINVAL);
4975 }
4976
4977 eb = find_extent_buffer(fs_info, start);
4978 if (eb)
4979 return eb;
4980
4981 eb = __alloc_extent_buffer(fs_info, start, len);
4982 if (!eb)
4983 return ERR_PTR(-ENOMEM);
4984
4985 for (i = 0; i < num_pages; i++, index++) {
4986 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4987 if (!p) {
4988 exists = ERR_PTR(-ENOMEM);
4989 goto free_eb;
4990 }
4991
4992 spin_lock(&mapping->private_lock);
4993 if (PagePrivate(p)) {
4994 /*
4995 * We could have already allocated an eb for this page
4996 * and attached one so lets see if we can get a ref on
4997 * the existing eb, and if we can we know it's good and
4998 * we can just return that one, else we know we can just
4999 * overwrite page->private.
5000 */
5001 exists = (struct extent_buffer *)p->private;
5002 if (atomic_inc_not_zero(&exists->refs)) {
5003 spin_unlock(&mapping->private_lock);
5004 unlock_page(p);
5005 put_page(p);
5006 mark_extent_buffer_accessed(exists, p);
5007 goto free_eb;
5008 }
5009 exists = NULL;
5010
5011 /*
5012 * Do this so attach doesn't complain and we need to
5013 * drop the ref the old guy had.
5014 */
5015 ClearPagePrivate(p);
5016 WARN_ON(PageDirty(p));
5017 put_page(p);
5018 }
5019 attach_extent_buffer_page(eb, p);
5020 spin_unlock(&mapping->private_lock);
5021 WARN_ON(PageDirty(p));
5022 eb->pages[i] = p;
5023 if (!PageUptodate(p))
5024 uptodate = 0;
5025
5026 /*
5027 * see below about how we avoid a nasty race with release page
5028 * and why we unlock later
5029 */
5030 }
5031 if (uptodate)
5032 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5033 again:
5034 ret = radix_tree_preload(GFP_NOFS);
5035 if (ret) {
5036 exists = ERR_PTR(ret);
5037 goto free_eb;
5038 }
5039
5040 spin_lock(&fs_info->buffer_lock);
5041 ret = radix_tree_insert(&fs_info->buffer_radix,
5042 start >> PAGE_SHIFT, eb);
5043 spin_unlock(&fs_info->buffer_lock);
5044 radix_tree_preload_end();
5045 if (ret == -EEXIST) {
5046 exists = find_extent_buffer(fs_info, start);
5047 if (exists)
5048 goto free_eb;
5049 else
5050 goto again;
5051 }
5052 /* add one reference for the tree */
5053 check_buffer_tree_ref(eb);
5054 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5055
5056 /*
5057 * there is a race where release page may have
5058 * tried to find this extent buffer in the radix
5059 * but failed. It will tell the VM it is safe to
5060 * reclaim the, and it will clear the page private bit.
5061 * We must make sure to set the page private bit properly
5062 * after the extent buffer is in the radix tree so
5063 * it doesn't get lost
5064 */
5065 SetPageChecked(eb->pages[0]);
5066 for (i = 1; i < num_pages; i++) {
5067 p = eb->pages[i];
5068 ClearPageChecked(p);
5069 unlock_page(p);
5070 }
5071 unlock_page(eb->pages[0]);
5072 return eb;
5073
5074 free_eb:
5075 WARN_ON(!atomic_dec_and_test(&eb->refs));
5076 for (i = 0; i < num_pages; i++) {
5077 if (eb->pages[i])
5078 unlock_page(eb->pages[i]);
5079 }
5080
5081 btrfs_release_extent_buffer(eb);
5082 return exists;
5083 }
5084
5085 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5086 {
5087 struct extent_buffer *eb =
5088 container_of(head, struct extent_buffer, rcu_head);
5089
5090 __free_extent_buffer(eb);
5091 }
5092
5093 /* Expects to have eb->eb_lock already held */
5094 static int release_extent_buffer(struct extent_buffer *eb)
5095 {
5096 WARN_ON(atomic_read(&eb->refs) == 0);
5097 if (atomic_dec_and_test(&eb->refs)) {
5098 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5099 struct btrfs_fs_info *fs_info = eb->fs_info;
5100
5101 spin_unlock(&eb->refs_lock);
5102
5103 spin_lock(&fs_info->buffer_lock);
5104 radix_tree_delete(&fs_info->buffer_radix,
5105 eb->start >> PAGE_SHIFT);
5106 spin_unlock(&fs_info->buffer_lock);
5107 } else {
5108 spin_unlock(&eb->refs_lock);
5109 }
5110
5111 /* Should be safe to release our pages at this point */
5112 btrfs_release_extent_buffer_page(eb);
5113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5115 __free_extent_buffer(eb);
5116 return 1;
5117 }
5118 #endif
5119 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5120 return 1;
5121 }
5122 spin_unlock(&eb->refs_lock);
5123
5124 return 0;
5125 }
5126
5127 void free_extent_buffer(struct extent_buffer *eb)
5128 {
5129 int refs;
5130 int old;
5131 if (!eb)
5132 return;
5133
5134 while (1) {
5135 refs = atomic_read(&eb->refs);
5136 if (refs <= 3)
5137 break;
5138 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5139 if (old == refs)
5140 return;
5141 }
5142
5143 spin_lock(&eb->refs_lock);
5144 if (atomic_read(&eb->refs) == 2 &&
5145 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5146 atomic_dec(&eb->refs);
5147
5148 if (atomic_read(&eb->refs) == 2 &&
5149 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5150 !extent_buffer_under_io(eb) &&
5151 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5152 atomic_dec(&eb->refs);
5153
5154 /*
5155 * I know this is terrible, but it's temporary until we stop tracking
5156 * the uptodate bits and such for the extent buffers.
5157 */
5158 release_extent_buffer(eb);
5159 }
5160
5161 void free_extent_buffer_stale(struct extent_buffer *eb)
5162 {
5163 if (!eb)
5164 return;
5165
5166 spin_lock(&eb->refs_lock);
5167 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5168
5169 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5170 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5171 atomic_dec(&eb->refs);
5172 release_extent_buffer(eb);
5173 }
5174
5175 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5176 {
5177 unsigned long i;
5178 unsigned long num_pages;
5179 struct page *page;
5180
5181 num_pages = num_extent_pages(eb->start, eb->len);
5182
5183 for (i = 0; i < num_pages; i++) {
5184 page = eb->pages[i];
5185 if (!PageDirty(page))
5186 continue;
5187
5188 lock_page(page);
5189 WARN_ON(!PagePrivate(page));
5190
5191 clear_page_dirty_for_io(page);
5192 spin_lock_irq(&page->mapping->tree_lock);
5193 if (!PageDirty(page)) {
5194 radix_tree_tag_clear(&page->mapping->page_tree,
5195 page_index(page),
5196 PAGECACHE_TAG_DIRTY);
5197 }
5198 spin_unlock_irq(&page->mapping->tree_lock);
5199 ClearPageError(page);
5200 unlock_page(page);
5201 }
5202 WARN_ON(atomic_read(&eb->refs) == 0);
5203 }
5204
5205 int set_extent_buffer_dirty(struct extent_buffer *eb)
5206 {
5207 unsigned long i;
5208 unsigned long num_pages;
5209 int was_dirty = 0;
5210
5211 check_buffer_tree_ref(eb);
5212
5213 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5214
5215 num_pages = num_extent_pages(eb->start, eb->len);
5216 WARN_ON(atomic_read(&eb->refs) == 0);
5217 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5218
5219 for (i = 0; i < num_pages; i++)
5220 set_page_dirty(eb->pages[i]);
5221 return was_dirty;
5222 }
5223
5224 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5225 {
5226 unsigned long i;
5227 struct page *page;
5228 unsigned long num_pages;
5229
5230 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5231 num_pages = num_extent_pages(eb->start, eb->len);
5232 for (i = 0; i < num_pages; i++) {
5233 page = eb->pages[i];
5234 if (page)
5235 ClearPageUptodate(page);
5236 }
5237 }
5238
5239 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5240 {
5241 unsigned long i;
5242 struct page *page;
5243 unsigned long num_pages;
5244
5245 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5246 num_pages = num_extent_pages(eb->start, eb->len);
5247 for (i = 0; i < num_pages; i++) {
5248 page = eb->pages[i];
5249 SetPageUptodate(page);
5250 }
5251 }
5252
5253 int extent_buffer_uptodate(struct extent_buffer *eb)
5254 {
5255 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5256 }
5257
5258 int read_extent_buffer_pages(struct extent_io_tree *tree,
5259 struct extent_buffer *eb, int wait,
5260 get_extent_t *get_extent, int mirror_num)
5261 {
5262 unsigned long i;
5263 struct page *page;
5264 int err;
5265 int ret = 0;
5266 int locked_pages = 0;
5267 int all_uptodate = 1;
5268 unsigned long num_pages;
5269 unsigned long num_reads = 0;
5270 struct bio *bio = NULL;
5271 unsigned long bio_flags = 0;
5272
5273 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5274 return 0;
5275
5276 num_pages = num_extent_pages(eb->start, eb->len);
5277 for (i = 0; i < num_pages; i++) {
5278 page = eb->pages[i];
5279 if (wait == WAIT_NONE) {
5280 if (!trylock_page(page))
5281 goto unlock_exit;
5282 } else {
5283 lock_page(page);
5284 }
5285 locked_pages++;
5286 }
5287 /*
5288 * We need to firstly lock all pages to make sure that
5289 * the uptodate bit of our pages won't be affected by
5290 * clear_extent_buffer_uptodate().
5291 */
5292 for (i = 0; i < num_pages; i++) {
5293 page = eb->pages[i];
5294 if (!PageUptodate(page)) {
5295 num_reads++;
5296 all_uptodate = 0;
5297 }
5298 }
5299
5300 if (all_uptodate) {
5301 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5302 goto unlock_exit;
5303 }
5304
5305 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5306 eb->read_mirror = 0;
5307 atomic_set(&eb->io_pages, num_reads);
5308 for (i = 0; i < num_pages; i++) {
5309 page = eb->pages[i];
5310
5311 if (!PageUptodate(page)) {
5312 if (ret) {
5313 atomic_dec(&eb->io_pages);
5314 unlock_page(page);
5315 continue;
5316 }
5317
5318 ClearPageError(page);
5319 err = __extent_read_full_page(tree, page,
5320 get_extent, &bio,
5321 mirror_num, &bio_flags,
5322 REQ_META);
5323 if (err) {
5324 ret = err;
5325 /*
5326 * We use &bio in above __extent_read_full_page,
5327 * so we ensure that if it returns error, the
5328 * current page fails to add itself to bio and
5329 * it's been unlocked.
5330 *
5331 * We must dec io_pages by ourselves.
5332 */
5333 atomic_dec(&eb->io_pages);
5334 }
5335 } else {
5336 unlock_page(page);
5337 }
5338 }
5339
5340 if (bio) {
5341 err = submit_one_bio(bio, mirror_num, bio_flags);
5342 if (err)
5343 return err;
5344 }
5345
5346 if (ret || wait != WAIT_COMPLETE)
5347 return ret;
5348
5349 for (i = 0; i < num_pages; i++) {
5350 page = eb->pages[i];
5351 wait_on_page_locked(page);
5352 if (!PageUptodate(page))
5353 ret = -EIO;
5354 }
5355
5356 return ret;
5357
5358 unlock_exit:
5359 while (locked_pages > 0) {
5360 locked_pages--;
5361 page = eb->pages[locked_pages];
5362 unlock_page(page);
5363 }
5364 return ret;
5365 }
5366
5367 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5368 unsigned long start, unsigned long len)
5369 {
5370 size_t cur;
5371 size_t offset;
5372 struct page *page;
5373 char *kaddr;
5374 char *dst = (char *)dstv;
5375 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5376 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5377
5378 if (start + len > eb->len) {
5379 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5380 eb->start, eb->len, start, len);
5381 memset(dst, 0, len);
5382 return;
5383 }
5384
5385 offset = (start_offset + start) & (PAGE_SIZE - 1);
5386
5387 while (len > 0) {
5388 page = eb->pages[i];
5389
5390 cur = min(len, (PAGE_SIZE - offset));
5391 kaddr = page_address(page);
5392 memcpy(dst, kaddr + offset, cur);
5393
5394 dst += cur;
5395 len -= cur;
5396 offset = 0;
5397 i++;
5398 }
5399 }
5400
5401 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5402 void __user *dstv,
5403 unsigned long start, unsigned long len)
5404 {
5405 size_t cur;
5406 size_t offset;
5407 struct page *page;
5408 char *kaddr;
5409 char __user *dst = (char __user *)dstv;
5410 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5411 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5412 int ret = 0;
5413
5414 WARN_ON(start > eb->len);
5415 WARN_ON(start + len > eb->start + eb->len);
5416
5417 offset = (start_offset + start) & (PAGE_SIZE - 1);
5418
5419 while (len > 0) {
5420 page = eb->pages[i];
5421
5422 cur = min(len, (PAGE_SIZE - offset));
5423 kaddr = page_address(page);
5424 if (copy_to_user(dst, kaddr + offset, cur)) {
5425 ret = -EFAULT;
5426 break;
5427 }
5428
5429 dst += cur;
5430 len -= cur;
5431 offset = 0;
5432 i++;
5433 }
5434
5435 return ret;
5436 }
5437
5438 /*
5439 * return 0 if the item is found within a page.
5440 * return 1 if the item spans two pages.
5441 * return -EINVAL otherwise.
5442 */
5443 int map_private_extent_buffer(const struct extent_buffer *eb,
5444 unsigned long start, unsigned long min_len,
5445 char **map, unsigned long *map_start,
5446 unsigned long *map_len)
5447 {
5448 size_t offset = start & (PAGE_SIZE - 1);
5449 char *kaddr;
5450 struct page *p;
5451 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5452 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5453 unsigned long end_i = (start_offset + start + min_len - 1) >>
5454 PAGE_SHIFT;
5455
5456 if (start + min_len > eb->len) {
5457 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5458 eb->start, eb->len, start, min_len);
5459 return -EINVAL;
5460 }
5461
5462 if (i != end_i)
5463 return 1;
5464
5465 if (i == 0) {
5466 offset = start_offset;
5467 *map_start = 0;
5468 } else {
5469 offset = 0;
5470 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5471 }
5472
5473 p = eb->pages[i];
5474 kaddr = page_address(p);
5475 *map = kaddr + offset;
5476 *map_len = PAGE_SIZE - offset;
5477 return 0;
5478 }
5479
5480 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5481 unsigned long start, unsigned long len)
5482 {
5483 size_t cur;
5484 size_t offset;
5485 struct page *page;
5486 char *kaddr;
5487 char *ptr = (char *)ptrv;
5488 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5489 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5490 int ret = 0;
5491
5492 WARN_ON(start > eb->len);
5493 WARN_ON(start + len > eb->start + eb->len);
5494
5495 offset = (start_offset + start) & (PAGE_SIZE - 1);
5496
5497 while (len > 0) {
5498 page = eb->pages[i];
5499
5500 cur = min(len, (PAGE_SIZE - offset));
5501
5502 kaddr = page_address(page);
5503 ret = memcmp(ptr, kaddr + offset, cur);
5504 if (ret)
5505 break;
5506
5507 ptr += cur;
5508 len -= cur;
5509 offset = 0;
5510 i++;
5511 }
5512 return ret;
5513 }
5514
5515 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5516 const void *srcv)
5517 {
5518 char *kaddr;
5519
5520 WARN_ON(!PageUptodate(eb->pages[0]));
5521 kaddr = page_address(eb->pages[0]);
5522 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5523 BTRFS_FSID_SIZE);
5524 }
5525
5526 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5527 {
5528 char *kaddr;
5529
5530 WARN_ON(!PageUptodate(eb->pages[0]));
5531 kaddr = page_address(eb->pages[0]);
5532 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5533 BTRFS_FSID_SIZE);
5534 }
5535
5536 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5537 unsigned long start, unsigned long len)
5538 {
5539 size_t cur;
5540 size_t offset;
5541 struct page *page;
5542 char *kaddr;
5543 char *src = (char *)srcv;
5544 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5545 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5546
5547 WARN_ON(start > eb->len);
5548 WARN_ON(start + len > eb->start + eb->len);
5549
5550 offset = (start_offset + start) & (PAGE_SIZE - 1);
5551
5552 while (len > 0) {
5553 page = eb->pages[i];
5554 WARN_ON(!PageUptodate(page));
5555
5556 cur = min(len, PAGE_SIZE - offset);
5557 kaddr = page_address(page);
5558 memcpy(kaddr + offset, src, cur);
5559
5560 src += cur;
5561 len -= cur;
5562 offset = 0;
5563 i++;
5564 }
5565 }
5566
5567 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5568 unsigned long len)
5569 {
5570 size_t cur;
5571 size_t offset;
5572 struct page *page;
5573 char *kaddr;
5574 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5575 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5576
5577 WARN_ON(start > eb->len);
5578 WARN_ON(start + len > eb->start + eb->len);
5579
5580 offset = (start_offset + start) & (PAGE_SIZE - 1);
5581
5582 while (len > 0) {
5583 page = eb->pages[i];
5584 WARN_ON(!PageUptodate(page));
5585
5586 cur = min(len, PAGE_SIZE - offset);
5587 kaddr = page_address(page);
5588 memset(kaddr + offset, 0, cur);
5589
5590 len -= cur;
5591 offset = 0;
5592 i++;
5593 }
5594 }
5595
5596 void copy_extent_buffer_full(struct extent_buffer *dst,
5597 struct extent_buffer *src)
5598 {
5599 int i;
5600 unsigned num_pages;
5601
5602 ASSERT(dst->len == src->len);
5603
5604 num_pages = num_extent_pages(dst->start, dst->len);
5605 for (i = 0; i < num_pages; i++)
5606 copy_page(page_address(dst->pages[i]),
5607 page_address(src->pages[i]));
5608 }
5609
5610 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5611 unsigned long dst_offset, unsigned long src_offset,
5612 unsigned long len)
5613 {
5614 u64 dst_len = dst->len;
5615 size_t cur;
5616 size_t offset;
5617 struct page *page;
5618 char *kaddr;
5619 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5620 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5621
5622 WARN_ON(src->len != dst_len);
5623
5624 offset = (start_offset + dst_offset) &
5625 (PAGE_SIZE - 1);
5626
5627 while (len > 0) {
5628 page = dst->pages[i];
5629 WARN_ON(!PageUptodate(page));
5630
5631 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5632
5633 kaddr = page_address(page);
5634 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5635
5636 src_offset += cur;
5637 len -= cur;
5638 offset = 0;
5639 i++;
5640 }
5641 }
5642
5643 void le_bitmap_set(u8 *map, unsigned int start, int len)
5644 {
5645 u8 *p = map + BIT_BYTE(start);
5646 const unsigned int size = start + len;
5647 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5649
5650 while (len - bits_to_set >= 0) {
5651 *p |= mask_to_set;
5652 len -= bits_to_set;
5653 bits_to_set = BITS_PER_BYTE;
5654 mask_to_set = ~0;
5655 p++;
5656 }
5657 if (len) {
5658 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5659 *p |= mask_to_set;
5660 }
5661 }
5662
5663 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5664 {
5665 u8 *p = map + BIT_BYTE(start);
5666 const unsigned int size = start + len;
5667 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5668 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5669
5670 while (len - bits_to_clear >= 0) {
5671 *p &= ~mask_to_clear;
5672 len -= bits_to_clear;
5673 bits_to_clear = BITS_PER_BYTE;
5674 mask_to_clear = ~0;
5675 p++;
5676 }
5677 if (len) {
5678 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5679 *p &= ~mask_to_clear;
5680 }
5681 }
5682
5683 /*
5684 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5685 * given bit number
5686 * @eb: the extent buffer
5687 * @start: offset of the bitmap item in the extent buffer
5688 * @nr: bit number
5689 * @page_index: return index of the page in the extent buffer that contains the
5690 * given bit number
5691 * @page_offset: return offset into the page given by page_index
5692 *
5693 * This helper hides the ugliness of finding the byte in an extent buffer which
5694 * contains a given bit.
5695 */
5696 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5697 unsigned long start, unsigned long nr,
5698 unsigned long *page_index,
5699 size_t *page_offset)
5700 {
5701 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5702 size_t byte_offset = BIT_BYTE(nr);
5703 size_t offset;
5704
5705 /*
5706 * The byte we want is the offset of the extent buffer + the offset of
5707 * the bitmap item in the extent buffer + the offset of the byte in the
5708 * bitmap item.
5709 */
5710 offset = start_offset + start + byte_offset;
5711
5712 *page_index = offset >> PAGE_SHIFT;
5713 *page_offset = offset & (PAGE_SIZE - 1);
5714 }
5715
5716 /**
5717 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5718 * @eb: the extent buffer
5719 * @start: offset of the bitmap item in the extent buffer
5720 * @nr: bit number to test
5721 */
5722 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5723 unsigned long nr)
5724 {
5725 u8 *kaddr;
5726 struct page *page;
5727 unsigned long i;
5728 size_t offset;
5729
5730 eb_bitmap_offset(eb, start, nr, &i, &offset);
5731 page = eb->pages[i];
5732 WARN_ON(!PageUptodate(page));
5733 kaddr = page_address(page);
5734 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5735 }
5736
5737 /**
5738 * extent_buffer_bitmap_set - set an area of a bitmap
5739 * @eb: the extent buffer
5740 * @start: offset of the bitmap item in the extent buffer
5741 * @pos: bit number of the first bit
5742 * @len: number of bits to set
5743 */
5744 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5745 unsigned long pos, unsigned long len)
5746 {
5747 u8 *kaddr;
5748 struct page *page;
5749 unsigned long i;
5750 size_t offset;
5751 const unsigned int size = pos + len;
5752 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5753 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5754
5755 eb_bitmap_offset(eb, start, pos, &i, &offset);
5756 page = eb->pages[i];
5757 WARN_ON(!PageUptodate(page));
5758 kaddr = page_address(page);
5759
5760 while (len >= bits_to_set) {
5761 kaddr[offset] |= mask_to_set;
5762 len -= bits_to_set;
5763 bits_to_set = BITS_PER_BYTE;
5764 mask_to_set = ~0;
5765 if (++offset >= PAGE_SIZE && len > 0) {
5766 offset = 0;
5767 page = eb->pages[++i];
5768 WARN_ON(!PageUptodate(page));
5769 kaddr = page_address(page);
5770 }
5771 }
5772 if (len) {
5773 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5774 kaddr[offset] |= mask_to_set;
5775 }
5776 }
5777
5778
5779 /**
5780 * extent_buffer_bitmap_clear - clear an area of a bitmap
5781 * @eb: the extent buffer
5782 * @start: offset of the bitmap item in the extent buffer
5783 * @pos: bit number of the first bit
5784 * @len: number of bits to clear
5785 */
5786 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5787 unsigned long pos, unsigned long len)
5788 {
5789 u8 *kaddr;
5790 struct page *page;
5791 unsigned long i;
5792 size_t offset;
5793 const unsigned int size = pos + len;
5794 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5795 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5796
5797 eb_bitmap_offset(eb, start, pos, &i, &offset);
5798 page = eb->pages[i];
5799 WARN_ON(!PageUptodate(page));
5800 kaddr = page_address(page);
5801
5802 while (len >= bits_to_clear) {
5803 kaddr[offset] &= ~mask_to_clear;
5804 len -= bits_to_clear;
5805 bits_to_clear = BITS_PER_BYTE;
5806 mask_to_clear = ~0;
5807 if (++offset >= PAGE_SIZE && len > 0) {
5808 offset = 0;
5809 page = eb->pages[++i];
5810 WARN_ON(!PageUptodate(page));
5811 kaddr = page_address(page);
5812 }
5813 }
5814 if (len) {
5815 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5816 kaddr[offset] &= ~mask_to_clear;
5817 }
5818 }
5819
5820 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5821 {
5822 unsigned long distance = (src > dst) ? src - dst : dst - src;
5823 return distance < len;
5824 }
5825
5826 static void copy_pages(struct page *dst_page, struct page *src_page,
5827 unsigned long dst_off, unsigned long src_off,
5828 unsigned long len)
5829 {
5830 char *dst_kaddr = page_address(dst_page);
5831 char *src_kaddr;
5832 int must_memmove = 0;
5833
5834 if (dst_page != src_page) {
5835 src_kaddr = page_address(src_page);
5836 } else {
5837 src_kaddr = dst_kaddr;
5838 if (areas_overlap(src_off, dst_off, len))
5839 must_memmove = 1;
5840 }
5841
5842 if (must_memmove)
5843 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5844 else
5845 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5846 }
5847
5848 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5849 unsigned long src_offset, unsigned long len)
5850 {
5851 struct btrfs_fs_info *fs_info = dst->fs_info;
5852 size_t cur;
5853 size_t dst_off_in_page;
5854 size_t src_off_in_page;
5855 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5856 unsigned long dst_i;
5857 unsigned long src_i;
5858
5859 if (src_offset + len > dst->len) {
5860 btrfs_err(fs_info,
5861 "memmove bogus src_offset %lu move len %lu dst len %lu",
5862 src_offset, len, dst->len);
5863 BUG_ON(1);
5864 }
5865 if (dst_offset + len > dst->len) {
5866 btrfs_err(fs_info,
5867 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5868 dst_offset, len, dst->len);
5869 BUG_ON(1);
5870 }
5871
5872 while (len > 0) {
5873 dst_off_in_page = (start_offset + dst_offset) &
5874 (PAGE_SIZE - 1);
5875 src_off_in_page = (start_offset + src_offset) &
5876 (PAGE_SIZE - 1);
5877
5878 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5879 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5880
5881 cur = min(len, (unsigned long)(PAGE_SIZE -
5882 src_off_in_page));
5883 cur = min_t(unsigned long, cur,
5884 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5885
5886 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5887 dst_off_in_page, src_off_in_page, cur);
5888
5889 src_offset += cur;
5890 dst_offset += cur;
5891 len -= cur;
5892 }
5893 }
5894
5895 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5896 unsigned long src_offset, unsigned long len)
5897 {
5898 struct btrfs_fs_info *fs_info = dst->fs_info;
5899 size_t cur;
5900 size_t dst_off_in_page;
5901 size_t src_off_in_page;
5902 unsigned long dst_end = dst_offset + len - 1;
5903 unsigned long src_end = src_offset + len - 1;
5904 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5905 unsigned long dst_i;
5906 unsigned long src_i;
5907
5908 if (src_offset + len > dst->len) {
5909 btrfs_err(fs_info,
5910 "memmove bogus src_offset %lu move len %lu len %lu",
5911 src_offset, len, dst->len);
5912 BUG_ON(1);
5913 }
5914 if (dst_offset + len > dst->len) {
5915 btrfs_err(fs_info,
5916 "memmove bogus dst_offset %lu move len %lu len %lu",
5917 dst_offset, len, dst->len);
5918 BUG_ON(1);
5919 }
5920 if (dst_offset < src_offset) {
5921 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5922 return;
5923 }
5924 while (len > 0) {
5925 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5926 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5927
5928 dst_off_in_page = (start_offset + dst_end) &
5929 (PAGE_SIZE - 1);
5930 src_off_in_page = (start_offset + src_end) &
5931 (PAGE_SIZE - 1);
5932
5933 cur = min_t(unsigned long, len, src_off_in_page + 1);
5934 cur = min(cur, dst_off_in_page + 1);
5935 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5936 dst_off_in_page - cur + 1,
5937 src_off_in_page - cur + 1, cur);
5938
5939 dst_end -= cur;
5940 src_end -= cur;
5941 len -= cur;
5942 }
5943 }
5944
5945 int try_release_extent_buffer(struct page *page)
5946 {
5947 struct extent_buffer *eb;
5948
5949 /*
5950 * We need to make sure nobody is attaching this page to an eb right
5951 * now.
5952 */
5953 spin_lock(&page->mapping->private_lock);
5954 if (!PagePrivate(page)) {
5955 spin_unlock(&page->mapping->private_lock);
5956 return 1;
5957 }
5958
5959 eb = (struct extent_buffer *)page->private;
5960 BUG_ON(!eb);
5961
5962 /*
5963 * This is a little awful but should be ok, we need to make sure that
5964 * the eb doesn't disappear out from under us while we're looking at
5965 * this page.
5966 */
5967 spin_lock(&eb->refs_lock);
5968 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5969 spin_unlock(&eb->refs_lock);
5970 spin_unlock(&page->mapping->private_lock);
5971 return 0;
5972 }
5973 spin_unlock(&page->mapping->private_lock);
5974
5975 /*
5976 * If tree ref isn't set then we know the ref on this eb is a real ref,
5977 * so just return, this page will likely be freed soon anyway.
5978 */
5979 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5980 spin_unlock(&eb->refs_lock);
5981 return 0;
5982 }
5983
5984 return release_extent_buffer(eb);
5985 }