]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/btrfs/extent_io.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-kernels.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/slab.h>
4 #include <linux/bio.h>
5 #include <linux/mm.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 #include "backref.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 refcount_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
93 }
94 #else
95 #define btrfs_leak_debug_add(new, head) do {} while (0)
96 #define btrfs_leak_debug_del(entry) do {} while (0)
97 #define btrfs_leak_debug_check() do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
99 #endif
100
101 #define BUFFER_LRU_MAX 64
102
103 struct tree_entry {
104 u64 start;
105 u64 end;
106 struct rb_node rb_node;
107 };
108
109 struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
113 unsigned long bio_flags;
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
118 unsigned int extent_locked:1;
119
120 /* tells the submit_bio code to use REQ_SYNC */
121 unsigned int sync_io:1;
122 };
123
124 static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127 {
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
134 if (!set && (state->state & bits) == 0)
135 return;
136 changeset->bytes_changed += state->end - state->start + 1;
137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141 }
142
143 static noinline void flush_write_bio(void *data);
144 static inline struct btrfs_fs_info *
145 tree_fs_info(struct extent_io_tree *tree)
146 {
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
150 }
151
152 int __init extent_io_init(void)
153 {
154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 sizeof(struct extent_state), 0,
156 SLAB_MEM_SPREAD, NULL);
157 if (!extent_state_cache)
158 return -ENOMEM;
159
160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 sizeof(struct extent_buffer), 0,
162 SLAB_MEM_SPREAD, NULL);
163 if (!extent_buffer_cache)
164 goto free_state_cache;
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio),
168 BIOSET_NEED_BVECS);
169 if (!btrfs_bioset)
170 goto free_buffer_cache;
171
172 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
173 goto free_bioset;
174
175 return 0;
176
177 free_bioset:
178 bioset_free(btrfs_bioset);
179 btrfs_bioset = NULL;
180
181 free_buffer_cache:
182 kmem_cache_destroy(extent_buffer_cache);
183 extent_buffer_cache = NULL;
184
185 free_state_cache:
186 kmem_cache_destroy(extent_state_cache);
187 extent_state_cache = NULL;
188 return -ENOMEM;
189 }
190
191 void extent_io_exit(void)
192 {
193 btrfs_leak_debug_check();
194
195 /*
196 * Make sure all delayed rcu free are flushed before we
197 * destroy caches.
198 */
199 rcu_barrier();
200 kmem_cache_destroy(extent_state_cache);
201 kmem_cache_destroy(extent_buffer_cache);
202 if (btrfs_bioset)
203 bioset_free(btrfs_bioset);
204 }
205
206 void extent_io_tree_init(struct extent_io_tree *tree,
207 void *private_data)
208 {
209 tree->state = RB_ROOT;
210 tree->ops = NULL;
211 tree->dirty_bytes = 0;
212 spin_lock_init(&tree->lock);
213 tree->private_data = private_data;
214 }
215
216 static struct extent_state *alloc_extent_state(gfp_t mask)
217 {
218 struct extent_state *state;
219
220 /*
221 * The given mask might be not appropriate for the slab allocator,
222 * drop the unsupported bits
223 */
224 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
225 state = kmem_cache_alloc(extent_state_cache, mask);
226 if (!state)
227 return state;
228 state->state = 0;
229 state->failrec = NULL;
230 RB_CLEAR_NODE(&state->rb_node);
231 btrfs_leak_debug_add(&state->leak_list, &states);
232 refcount_set(&state->refs, 1);
233 init_waitqueue_head(&state->wq);
234 trace_alloc_extent_state(state, mask, _RET_IP_);
235 return state;
236 }
237
238 void free_extent_state(struct extent_state *state)
239 {
240 if (!state)
241 return;
242 if (refcount_dec_and_test(&state->refs)) {
243 WARN_ON(extent_state_in_tree(state));
244 btrfs_leak_debug_del(&state->leak_list);
245 trace_free_extent_state(state, _RET_IP_);
246 kmem_cache_free(extent_state_cache, state);
247 }
248 }
249
250 static struct rb_node *tree_insert(struct rb_root *root,
251 struct rb_node *search_start,
252 u64 offset,
253 struct rb_node *node,
254 struct rb_node ***p_in,
255 struct rb_node **parent_in)
256 {
257 struct rb_node **p;
258 struct rb_node *parent = NULL;
259 struct tree_entry *entry;
260
261 if (p_in && parent_in) {
262 p = *p_in;
263 parent = *parent_in;
264 goto do_insert;
265 }
266
267 p = search_start ? &search_start : &root->rb_node;
268 while (*p) {
269 parent = *p;
270 entry = rb_entry(parent, struct tree_entry, rb_node);
271
272 if (offset < entry->start)
273 p = &(*p)->rb_left;
274 else if (offset > entry->end)
275 p = &(*p)->rb_right;
276 else
277 return parent;
278 }
279
280 do_insert:
281 rb_link_node(node, parent, p);
282 rb_insert_color(node, root);
283 return NULL;
284 }
285
286 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
287 struct rb_node **prev_ret,
288 struct rb_node **next_ret,
289 struct rb_node ***p_ret,
290 struct rb_node **parent_ret)
291 {
292 struct rb_root *root = &tree->state;
293 struct rb_node **n = &root->rb_node;
294 struct rb_node *prev = NULL;
295 struct rb_node *orig_prev = NULL;
296 struct tree_entry *entry;
297 struct tree_entry *prev_entry = NULL;
298
299 while (*n) {
300 prev = *n;
301 entry = rb_entry(prev, struct tree_entry, rb_node);
302 prev_entry = entry;
303
304 if (offset < entry->start)
305 n = &(*n)->rb_left;
306 else if (offset > entry->end)
307 n = &(*n)->rb_right;
308 else
309 return *n;
310 }
311
312 if (p_ret)
313 *p_ret = n;
314 if (parent_ret)
315 *parent_ret = prev;
316
317 if (prev_ret) {
318 orig_prev = prev;
319 while (prev && offset > prev_entry->end) {
320 prev = rb_next(prev);
321 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
322 }
323 *prev_ret = prev;
324 prev = orig_prev;
325 }
326
327 if (next_ret) {
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 while (prev && offset < prev_entry->start) {
330 prev = rb_prev(prev);
331 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
332 }
333 *next_ret = prev;
334 }
335 return NULL;
336 }
337
338 static inline struct rb_node *
339 tree_search_for_insert(struct extent_io_tree *tree,
340 u64 offset,
341 struct rb_node ***p_ret,
342 struct rb_node **parent_ret)
343 {
344 struct rb_node *prev = NULL;
345 struct rb_node *ret;
346
347 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
348 if (!ret)
349 return prev;
350 return ret;
351 }
352
353 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
354 u64 offset)
355 {
356 return tree_search_for_insert(tree, offset, NULL, NULL);
357 }
358
359 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
360 struct extent_state *other)
361 {
362 if (tree->ops && tree->ops->merge_extent_hook)
363 tree->ops->merge_extent_hook(tree->private_data, new, other);
364 }
365
366 /*
367 * utility function to look for merge candidates inside a given range.
368 * Any extents with matching state are merged together into a single
369 * extent in the tree. Extents with EXTENT_IO in their state field
370 * are not merged because the end_io handlers need to be able to do
371 * operations on them without sleeping (or doing allocations/splits).
372 *
373 * This should be called with the tree lock held.
374 */
375 static void merge_state(struct extent_io_tree *tree,
376 struct extent_state *state)
377 {
378 struct extent_state *other;
379 struct rb_node *other_node;
380
381 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
382 return;
383
384 other_node = rb_prev(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->end == state->start - 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->start = other->start;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
394 }
395 }
396 other_node = rb_next(&state->rb_node);
397 if (other_node) {
398 other = rb_entry(other_node, struct extent_state, rb_node);
399 if (other->start == state->end + 1 &&
400 other->state == state->state) {
401 merge_cb(tree, state, other);
402 state->end = other->end;
403 rb_erase(&other->rb_node, &tree->state);
404 RB_CLEAR_NODE(&other->rb_node);
405 free_extent_state(other);
406 }
407 }
408 }
409
410 static void set_state_cb(struct extent_io_tree *tree,
411 struct extent_state *state, unsigned *bits)
412 {
413 if (tree->ops && tree->ops->set_bit_hook)
414 tree->ops->set_bit_hook(tree->private_data, state, bits);
415 }
416
417 static void clear_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
419 {
420 if (tree->ops && tree->ops->clear_bit_hook)
421 tree->ops->clear_bit_hook(tree->private_data, state, bits);
422 }
423
424 static void set_state_bits(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits,
426 struct extent_changeset *changeset);
427
428 /*
429 * insert an extent_state struct into the tree. 'bits' are set on the
430 * struct before it is inserted.
431 *
432 * This may return -EEXIST if the extent is already there, in which case the
433 * state struct is freed.
434 *
435 * The tree lock is not taken internally. This is a utility function and
436 * probably isn't what you want to call (see set/clear_extent_bit).
437 */
438 static int insert_state(struct extent_io_tree *tree,
439 struct extent_state *state, u64 start, u64 end,
440 struct rb_node ***p,
441 struct rb_node **parent,
442 unsigned *bits, struct extent_changeset *changeset)
443 {
444 struct rb_node *node;
445
446 if (end < start)
447 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
448 end, start);
449 state->start = start;
450 state->end = end;
451
452 set_state_bits(tree, state, bits, changeset);
453
454 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
455 if (node) {
456 struct extent_state *found;
457 found = rb_entry(node, struct extent_state, rb_node);
458 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
459 found->start, found->end, start, end);
460 return -EEXIST;
461 }
462 merge_state(tree, state);
463 return 0;
464 }
465
466 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
467 u64 split)
468 {
469 if (tree->ops && tree->ops->split_extent_hook)
470 tree->ops->split_extent_hook(tree->private_data, orig, split);
471 }
472
473 /*
474 * split a given extent state struct in two, inserting the preallocated
475 * struct 'prealloc' as the newly created second half. 'split' indicates an
476 * offset inside 'orig' where it should be split.
477 *
478 * Before calling,
479 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
480 * are two extent state structs in the tree:
481 * prealloc: [orig->start, split - 1]
482 * orig: [ split, orig->end ]
483 *
484 * The tree locks are not taken by this function. They need to be held
485 * by the caller.
486 */
487 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
488 struct extent_state *prealloc, u64 split)
489 {
490 struct rb_node *node;
491
492 split_cb(tree, orig, split);
493
494 prealloc->start = orig->start;
495 prealloc->end = split - 1;
496 prealloc->state = orig->state;
497 orig->start = split;
498
499 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
500 &prealloc->rb_node, NULL, NULL);
501 if (node) {
502 free_extent_state(prealloc);
503 return -EEXIST;
504 }
505 return 0;
506 }
507
508 static struct extent_state *next_state(struct extent_state *state)
509 {
510 struct rb_node *next = rb_next(&state->rb_node);
511 if (next)
512 return rb_entry(next, struct extent_state, rb_node);
513 else
514 return NULL;
515 }
516
517 /*
518 * utility function to clear some bits in an extent state struct.
519 * it will optionally wake up any one waiting on this state (wake == 1).
520 *
521 * If no bits are set on the state struct after clearing things, the
522 * struct is freed and removed from the tree
523 */
524 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
525 struct extent_state *state,
526 unsigned *bits, int wake,
527 struct extent_changeset *changeset)
528 {
529 struct extent_state *next;
530 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
531
532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 u64 range = state->end - state->start + 1;
534 WARN_ON(range > tree->dirty_bytes);
535 tree->dirty_bytes -= range;
536 }
537 clear_state_cb(tree, state, bits);
538 add_extent_changeset(state, bits_to_clear, changeset, 0);
539 state->state &= ~bits_to_clear;
540 if (wake)
541 wake_up(&state->wq);
542 if (state->state == 0) {
543 next = next_state(state);
544 if (extent_state_in_tree(state)) {
545 rb_erase(&state->rb_node, &tree->state);
546 RB_CLEAR_NODE(&state->rb_node);
547 free_extent_state(state);
548 } else {
549 WARN_ON(1);
550 }
551 } else {
552 merge_state(tree, state);
553 next = next_state(state);
554 }
555 return next;
556 }
557
558 static struct extent_state *
559 alloc_extent_state_atomic(struct extent_state *prealloc)
560 {
561 if (!prealloc)
562 prealloc = alloc_extent_state(GFP_ATOMIC);
563
564 return prealloc;
565 }
566
567 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
568 {
569 btrfs_panic(tree_fs_info(tree), err,
570 "Locking error: Extent tree was modified by another thread while locked.");
571 }
572
573 /*
574 * clear some bits on a range in the tree. This may require splitting
575 * or inserting elements in the tree, so the gfp mask is used to
576 * indicate which allocations or sleeping are allowed.
577 *
578 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
579 * the given range from the tree regardless of state (ie for truncate).
580 *
581 * the range [start, end] is inclusive.
582 *
583 * This takes the tree lock, and returns 0 on success and < 0 on error.
584 */
585 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
586 unsigned bits, int wake, int delete,
587 struct extent_state **cached_state,
588 gfp_t mask, struct extent_changeset *changeset)
589 {
590 struct extent_state *state;
591 struct extent_state *cached;
592 struct extent_state *prealloc = NULL;
593 struct rb_node *node;
594 u64 last_end;
595 int err;
596 int clear = 0;
597
598 btrfs_debug_check_extent_io_range(tree, start, end);
599
600 if (bits & EXTENT_DELALLOC)
601 bits |= EXTENT_NORESERVE;
602
603 if (delete)
604 bits |= ~EXTENT_CTLBITS;
605 bits |= EXTENT_FIRST_DELALLOC;
606
607 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
608 clear = 1;
609 again:
610 if (!prealloc && gfpflags_allow_blocking(mask)) {
611 /*
612 * Don't care for allocation failure here because we might end
613 * up not needing the pre-allocated extent state at all, which
614 * is the case if we only have in the tree extent states that
615 * cover our input range and don't cover too any other range.
616 * If we end up needing a new extent state we allocate it later.
617 */
618 prealloc = alloc_extent_state(mask);
619 }
620
621 spin_lock(&tree->lock);
622 if (cached_state) {
623 cached = *cached_state;
624
625 if (clear) {
626 *cached_state = NULL;
627 cached_state = NULL;
628 }
629
630 if (cached && extent_state_in_tree(cached) &&
631 cached->start <= start && cached->end > start) {
632 if (clear)
633 refcount_dec(&cached->refs);
634 state = cached;
635 goto hit_next;
636 }
637 if (clear)
638 free_extent_state(cached);
639 }
640 /*
641 * this search will find the extents that end after
642 * our range starts
643 */
644 node = tree_search(tree, start);
645 if (!node)
646 goto out;
647 state = rb_entry(node, struct extent_state, rb_node);
648 hit_next:
649 if (state->start > end)
650 goto out;
651 WARN_ON(state->end < start);
652 last_end = state->end;
653
654 /* the state doesn't have the wanted bits, go ahead */
655 if (!(state->state & bits)) {
656 state = next_state(state);
657 goto next;
658 }
659
660 /*
661 * | ---- desired range ---- |
662 * | state | or
663 * | ------------- state -------------- |
664 *
665 * We need to split the extent we found, and may flip
666 * bits on second half.
667 *
668 * If the extent we found extends past our range, we
669 * just split and search again. It'll get split again
670 * the next time though.
671 *
672 * If the extent we found is inside our range, we clear
673 * the desired bit on it.
674 */
675
676 if (state->start < start) {
677 prealloc = alloc_extent_state_atomic(prealloc);
678 BUG_ON(!prealloc);
679 err = split_state(tree, state, prealloc, start);
680 if (err)
681 extent_io_tree_panic(tree, err);
682
683 prealloc = NULL;
684 if (err)
685 goto out;
686 if (state->end <= end) {
687 state = clear_state_bit(tree, state, &bits, wake,
688 changeset);
689 goto next;
690 }
691 goto search_again;
692 }
693 /*
694 * | ---- desired range ---- |
695 * | state |
696 * We need to split the extent, and clear the bit
697 * on the first half
698 */
699 if (state->start <= end && state->end > end) {
700 prealloc = alloc_extent_state_atomic(prealloc);
701 BUG_ON(!prealloc);
702 err = split_state(tree, state, prealloc, end + 1);
703 if (err)
704 extent_io_tree_panic(tree, err);
705
706 if (wake)
707 wake_up(&state->wq);
708
709 clear_state_bit(tree, prealloc, &bits, wake, changeset);
710
711 prealloc = NULL;
712 goto out;
713 }
714
715 state = clear_state_bit(tree, state, &bits, wake, changeset);
716 next:
717 if (last_end == (u64)-1)
718 goto out;
719 start = last_end + 1;
720 if (start <= end && state && !need_resched())
721 goto hit_next;
722
723 search_again:
724 if (start > end)
725 goto out;
726 spin_unlock(&tree->lock);
727 if (gfpflags_allow_blocking(mask))
728 cond_resched();
729 goto again;
730
731 out:
732 spin_unlock(&tree->lock);
733 if (prealloc)
734 free_extent_state(prealloc);
735
736 return 0;
737
738 }
739
740 static void wait_on_state(struct extent_io_tree *tree,
741 struct extent_state *state)
742 __releases(tree->lock)
743 __acquires(tree->lock)
744 {
745 DEFINE_WAIT(wait);
746 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
747 spin_unlock(&tree->lock);
748 schedule();
749 spin_lock(&tree->lock);
750 finish_wait(&state->wq, &wait);
751 }
752
753 /*
754 * waits for one or more bits to clear on a range in the state tree.
755 * The range [start, end] is inclusive.
756 * The tree lock is taken by this function
757 */
758 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
759 unsigned long bits)
760 {
761 struct extent_state *state;
762 struct rb_node *node;
763
764 btrfs_debug_check_extent_io_range(tree, start, end);
765
766 spin_lock(&tree->lock);
767 again:
768 while (1) {
769 /*
770 * this search will find all the extents that end after
771 * our range starts
772 */
773 node = tree_search(tree, start);
774 process_node:
775 if (!node)
776 break;
777
778 state = rb_entry(node, struct extent_state, rb_node);
779
780 if (state->start > end)
781 goto out;
782
783 if (state->state & bits) {
784 start = state->start;
785 refcount_inc(&state->refs);
786 wait_on_state(tree, state);
787 free_extent_state(state);
788 goto again;
789 }
790 start = state->end + 1;
791
792 if (start > end)
793 break;
794
795 if (!cond_resched_lock(&tree->lock)) {
796 node = rb_next(node);
797 goto process_node;
798 }
799 }
800 out:
801 spin_unlock(&tree->lock);
802 }
803
804 static void set_state_bits(struct extent_io_tree *tree,
805 struct extent_state *state,
806 unsigned *bits, struct extent_changeset *changeset)
807 {
808 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
809
810 set_state_cb(tree, state, bits);
811 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
812 u64 range = state->end - state->start + 1;
813 tree->dirty_bytes += range;
814 }
815 add_extent_changeset(state, bits_to_set, changeset, 1);
816 state->state |= bits_to_set;
817 }
818
819 static void cache_state_if_flags(struct extent_state *state,
820 struct extent_state **cached_ptr,
821 unsigned flags)
822 {
823 if (cached_ptr && !(*cached_ptr)) {
824 if (!flags || (state->state & flags)) {
825 *cached_ptr = state;
826 refcount_inc(&state->refs);
827 }
828 }
829 }
830
831 static void cache_state(struct extent_state *state,
832 struct extent_state **cached_ptr)
833 {
834 return cache_state_if_flags(state, cached_ptr,
835 EXTENT_IOBITS | EXTENT_BOUNDARY);
836 }
837
838 /*
839 * set some bits on a range in the tree. This may require allocations or
840 * sleeping, so the gfp mask is used to indicate what is allowed.
841 *
842 * If any of the exclusive bits are set, this will fail with -EEXIST if some
843 * part of the range already has the desired bits set. The start of the
844 * existing range is returned in failed_start in this case.
845 *
846 * [start, end] is inclusive This takes the tree lock.
847 */
848
849 static int __must_check
850 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
851 unsigned bits, unsigned exclusive_bits,
852 u64 *failed_start, struct extent_state **cached_state,
853 gfp_t mask, struct extent_changeset *changeset)
854 {
855 struct extent_state *state;
856 struct extent_state *prealloc = NULL;
857 struct rb_node *node;
858 struct rb_node **p;
859 struct rb_node *parent;
860 int err = 0;
861 u64 last_start;
862 u64 last_end;
863
864 btrfs_debug_check_extent_io_range(tree, start, end);
865
866 bits |= EXTENT_FIRST_DELALLOC;
867 again:
868 if (!prealloc && gfpflags_allow_blocking(mask)) {
869 /*
870 * Don't care for allocation failure here because we might end
871 * up not needing the pre-allocated extent state at all, which
872 * is the case if we only have in the tree extent states that
873 * cover our input range and don't cover too any other range.
874 * If we end up needing a new extent state we allocate it later.
875 */
876 prealloc = alloc_extent_state(mask);
877 }
878
879 spin_lock(&tree->lock);
880 if (cached_state && *cached_state) {
881 state = *cached_state;
882 if (state->start <= start && state->end > start &&
883 extent_state_in_tree(state)) {
884 node = &state->rb_node;
885 goto hit_next;
886 }
887 }
888 /*
889 * this search will find all the extents that end after
890 * our range starts.
891 */
892 node = tree_search_for_insert(tree, start, &p, &parent);
893 if (!node) {
894 prealloc = alloc_extent_state_atomic(prealloc);
895 BUG_ON(!prealloc);
896 err = insert_state(tree, prealloc, start, end,
897 &p, &parent, &bits, changeset);
898 if (err)
899 extent_io_tree_panic(tree, err);
900
901 cache_state(prealloc, cached_state);
902 prealloc = NULL;
903 goto out;
904 }
905 state = rb_entry(node, struct extent_state, rb_node);
906 hit_next:
907 last_start = state->start;
908 last_end = state->end;
909
910 /*
911 * | ---- desired range ---- |
912 * | state |
913 *
914 * Just lock what we found and keep going
915 */
916 if (state->start == start && state->end <= end) {
917 if (state->state & exclusive_bits) {
918 *failed_start = state->start;
919 err = -EEXIST;
920 goto out;
921 }
922
923 set_state_bits(tree, state, &bits, changeset);
924 cache_state(state, cached_state);
925 merge_state(tree, state);
926 if (last_end == (u64)-1)
927 goto out;
928 start = last_end + 1;
929 state = next_state(state);
930 if (start < end && state && state->start == start &&
931 !need_resched())
932 goto hit_next;
933 goto search_again;
934 }
935
936 /*
937 * | ---- desired range ---- |
938 * | state |
939 * or
940 * | ------------- state -------------- |
941 *
942 * We need to split the extent we found, and may flip bits on
943 * second half.
944 *
945 * If the extent we found extends past our
946 * range, we just split and search again. It'll get split
947 * again the next time though.
948 *
949 * If the extent we found is inside our range, we set the
950 * desired bit on it.
951 */
952 if (state->start < start) {
953 if (state->state & exclusive_bits) {
954 *failed_start = start;
955 err = -EEXIST;
956 goto out;
957 }
958
959 prealloc = alloc_extent_state_atomic(prealloc);
960 BUG_ON(!prealloc);
961 err = split_state(tree, state, prealloc, start);
962 if (err)
963 extent_io_tree_panic(tree, err);
964
965 prealloc = NULL;
966 if (err)
967 goto out;
968 if (state->end <= end) {
969 set_state_bits(tree, state, &bits, changeset);
970 cache_state(state, cached_state);
971 merge_state(tree, state);
972 if (last_end == (u64)-1)
973 goto out;
974 start = last_end + 1;
975 state = next_state(state);
976 if (start < end && state && state->start == start &&
977 !need_resched())
978 goto hit_next;
979 }
980 goto search_again;
981 }
982 /*
983 * | ---- desired range ---- |
984 * | state | or | state |
985 *
986 * There's a hole, we need to insert something in it and
987 * ignore the extent we found.
988 */
989 if (state->start > start) {
990 u64 this_end;
991 if (end < last_start)
992 this_end = end;
993 else
994 this_end = last_start - 1;
995
996 prealloc = alloc_extent_state_atomic(prealloc);
997 BUG_ON(!prealloc);
998
999 /*
1000 * Avoid to free 'prealloc' if it can be merged with
1001 * the later extent.
1002 */
1003 err = insert_state(tree, prealloc, start, this_end,
1004 NULL, NULL, &bits, changeset);
1005 if (err)
1006 extent_io_tree_panic(tree, err);
1007
1008 cache_state(prealloc, cached_state);
1009 prealloc = NULL;
1010 start = this_end + 1;
1011 goto search_again;
1012 }
1013 /*
1014 * | ---- desired range ---- |
1015 * | state |
1016 * We need to split the extent, and set the bit
1017 * on the first half
1018 */
1019 if (state->start <= end && state->end > end) {
1020 if (state->state & exclusive_bits) {
1021 *failed_start = start;
1022 err = -EEXIST;
1023 goto out;
1024 }
1025
1026 prealloc = alloc_extent_state_atomic(prealloc);
1027 BUG_ON(!prealloc);
1028 err = split_state(tree, state, prealloc, end + 1);
1029 if (err)
1030 extent_io_tree_panic(tree, err);
1031
1032 set_state_bits(tree, prealloc, &bits, changeset);
1033 cache_state(prealloc, cached_state);
1034 merge_state(tree, prealloc);
1035 prealloc = NULL;
1036 goto out;
1037 }
1038
1039 search_again:
1040 if (start > end)
1041 goto out;
1042 spin_unlock(&tree->lock);
1043 if (gfpflags_allow_blocking(mask))
1044 cond_resched();
1045 goto again;
1046
1047 out:
1048 spin_unlock(&tree->lock);
1049 if (prealloc)
1050 free_extent_state(prealloc);
1051
1052 return err;
1053
1054 }
1055
1056 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1057 unsigned bits, u64 * failed_start,
1058 struct extent_state **cached_state, gfp_t mask)
1059 {
1060 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1061 cached_state, mask, NULL);
1062 }
1063
1064
1065 /**
1066 * convert_extent_bit - convert all bits in a given range from one bit to
1067 * another
1068 * @tree: the io tree to search
1069 * @start: the start offset in bytes
1070 * @end: the end offset in bytes (inclusive)
1071 * @bits: the bits to set in this range
1072 * @clear_bits: the bits to clear in this range
1073 * @cached_state: state that we're going to cache
1074 *
1075 * This will go through and set bits for the given range. If any states exist
1076 * already in this range they are set with the given bit and cleared of the
1077 * clear_bits. This is only meant to be used by things that are mergeable, ie
1078 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1079 * boundary bits like LOCK.
1080 *
1081 * All allocations are done with GFP_NOFS.
1082 */
1083 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1084 unsigned bits, unsigned clear_bits,
1085 struct extent_state **cached_state)
1086 {
1087 struct extent_state *state;
1088 struct extent_state *prealloc = NULL;
1089 struct rb_node *node;
1090 struct rb_node **p;
1091 struct rb_node *parent;
1092 int err = 0;
1093 u64 last_start;
1094 u64 last_end;
1095 bool first_iteration = true;
1096
1097 btrfs_debug_check_extent_io_range(tree, start, end);
1098
1099 again:
1100 if (!prealloc) {
1101 /*
1102 * Best effort, don't worry if extent state allocation fails
1103 * here for the first iteration. We might have a cached state
1104 * that matches exactly the target range, in which case no
1105 * extent state allocations are needed. We'll only know this
1106 * after locking the tree.
1107 */
1108 prealloc = alloc_extent_state(GFP_NOFS);
1109 if (!prealloc && !first_iteration)
1110 return -ENOMEM;
1111 }
1112
1113 spin_lock(&tree->lock);
1114 if (cached_state && *cached_state) {
1115 state = *cached_state;
1116 if (state->start <= start && state->end > start &&
1117 extent_state_in_tree(state)) {
1118 node = &state->rb_node;
1119 goto hit_next;
1120 }
1121 }
1122
1123 /*
1124 * this search will find all the extents that end after
1125 * our range starts.
1126 */
1127 node = tree_search_for_insert(tree, start, &p, &parent);
1128 if (!node) {
1129 prealloc = alloc_extent_state_atomic(prealloc);
1130 if (!prealloc) {
1131 err = -ENOMEM;
1132 goto out;
1133 }
1134 err = insert_state(tree, prealloc, start, end,
1135 &p, &parent, &bits, NULL);
1136 if (err)
1137 extent_io_tree_panic(tree, err);
1138 cache_state(prealloc, cached_state);
1139 prealloc = NULL;
1140 goto out;
1141 }
1142 state = rb_entry(node, struct extent_state, rb_node);
1143 hit_next:
1144 last_start = state->start;
1145 last_end = state->end;
1146
1147 /*
1148 * | ---- desired range ---- |
1149 * | state |
1150 *
1151 * Just lock what we found and keep going
1152 */
1153 if (state->start == start && state->end <= end) {
1154 set_state_bits(tree, state, &bits, NULL);
1155 cache_state(state, cached_state);
1156 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1157 if (last_end == (u64)-1)
1158 goto out;
1159 start = last_end + 1;
1160 if (start < end && state && state->start == start &&
1161 !need_resched())
1162 goto hit_next;
1163 goto search_again;
1164 }
1165
1166 /*
1167 * | ---- desired range ---- |
1168 * | state |
1169 * or
1170 * | ------------- state -------------- |
1171 *
1172 * We need to split the extent we found, and may flip bits on
1173 * second half.
1174 *
1175 * If the extent we found extends past our
1176 * range, we just split and search again. It'll get split
1177 * again the next time though.
1178 *
1179 * If the extent we found is inside our range, we set the
1180 * desired bit on it.
1181 */
1182 if (state->start < start) {
1183 prealloc = alloc_extent_state_atomic(prealloc);
1184 if (!prealloc) {
1185 err = -ENOMEM;
1186 goto out;
1187 }
1188 err = split_state(tree, state, prealloc, start);
1189 if (err)
1190 extent_io_tree_panic(tree, err);
1191 prealloc = NULL;
1192 if (err)
1193 goto out;
1194 if (state->end <= end) {
1195 set_state_bits(tree, state, &bits, NULL);
1196 cache_state(state, cached_state);
1197 state = clear_state_bit(tree, state, &clear_bits, 0,
1198 NULL);
1199 if (last_end == (u64)-1)
1200 goto out;
1201 start = last_end + 1;
1202 if (start < end && state && state->start == start &&
1203 !need_resched())
1204 goto hit_next;
1205 }
1206 goto search_again;
1207 }
1208 /*
1209 * | ---- desired range ---- |
1210 * | state | or | state |
1211 *
1212 * There's a hole, we need to insert something in it and
1213 * ignore the extent we found.
1214 */
1215 if (state->start > start) {
1216 u64 this_end;
1217 if (end < last_start)
1218 this_end = end;
1219 else
1220 this_end = last_start - 1;
1221
1222 prealloc = alloc_extent_state_atomic(prealloc);
1223 if (!prealloc) {
1224 err = -ENOMEM;
1225 goto out;
1226 }
1227
1228 /*
1229 * Avoid to free 'prealloc' if it can be merged with
1230 * the later extent.
1231 */
1232 err = insert_state(tree, prealloc, start, this_end,
1233 NULL, NULL, &bits, NULL);
1234 if (err)
1235 extent_io_tree_panic(tree, err);
1236 cache_state(prealloc, cached_state);
1237 prealloc = NULL;
1238 start = this_end + 1;
1239 goto search_again;
1240 }
1241 /*
1242 * | ---- desired range ---- |
1243 * | state |
1244 * We need to split the extent, and set the bit
1245 * on the first half
1246 */
1247 if (state->start <= end && state->end > end) {
1248 prealloc = alloc_extent_state_atomic(prealloc);
1249 if (!prealloc) {
1250 err = -ENOMEM;
1251 goto out;
1252 }
1253
1254 err = split_state(tree, state, prealloc, end + 1);
1255 if (err)
1256 extent_io_tree_panic(tree, err);
1257
1258 set_state_bits(tree, prealloc, &bits, NULL);
1259 cache_state(prealloc, cached_state);
1260 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1261 prealloc = NULL;
1262 goto out;
1263 }
1264
1265 search_again:
1266 if (start > end)
1267 goto out;
1268 spin_unlock(&tree->lock);
1269 cond_resched();
1270 first_iteration = false;
1271 goto again;
1272
1273 out:
1274 spin_unlock(&tree->lock);
1275 if (prealloc)
1276 free_extent_state(prealloc);
1277
1278 return err;
1279 }
1280
1281 /* wrappers around set/clear extent bit */
1282 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1283 unsigned bits, struct extent_changeset *changeset)
1284 {
1285 /*
1286 * We don't support EXTENT_LOCKED yet, as current changeset will
1287 * record any bits changed, so for EXTENT_LOCKED case, it will
1288 * either fail with -EEXIST or changeset will record the whole
1289 * range.
1290 */
1291 BUG_ON(bits & EXTENT_LOCKED);
1292
1293 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1294 changeset);
1295 }
1296
1297 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1298 unsigned bits, int wake, int delete,
1299 struct extent_state **cached, gfp_t mask)
1300 {
1301 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1302 cached, mask, NULL);
1303 }
1304
1305 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1306 unsigned bits, struct extent_changeset *changeset)
1307 {
1308 /*
1309 * Don't support EXTENT_LOCKED case, same reason as
1310 * set_record_extent_bits().
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1315 changeset);
1316 }
1317
1318 /*
1319 * either insert or lock state struct between start and end use mask to tell
1320 * us if waiting is desired.
1321 */
1322 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 struct extent_state **cached_state)
1324 {
1325 int err;
1326 u64 failed_start;
1327
1328 while (1) {
1329 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1330 EXTENT_LOCKED, &failed_start,
1331 cached_state, GFP_NOFS, NULL);
1332 if (err == -EEXIST) {
1333 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1334 start = failed_start;
1335 } else
1336 break;
1337 WARN_ON(start > end);
1338 }
1339 return err;
1340 }
1341
1342 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1343 {
1344 int err;
1345 u64 failed_start;
1346
1347 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348 &failed_start, NULL, GFP_NOFS, NULL);
1349 if (err == -EEXIST) {
1350 if (failed_start > start)
1351 clear_extent_bit(tree, start, failed_start - 1,
1352 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1353 return 0;
1354 }
1355 return 1;
1356 }
1357
1358 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359 {
1360 unsigned long index = start >> PAGE_SHIFT;
1361 unsigned long end_index = end >> PAGE_SHIFT;
1362 struct page *page;
1363
1364 while (index <= end_index) {
1365 page = find_get_page(inode->i_mapping, index);
1366 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1367 clear_page_dirty_for_io(page);
1368 put_page(page);
1369 index++;
1370 }
1371 }
1372
1373 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374 {
1375 unsigned long index = start >> PAGE_SHIFT;
1376 unsigned long end_index = end >> PAGE_SHIFT;
1377 struct page *page;
1378
1379 while (index <= end_index) {
1380 page = find_get_page(inode->i_mapping, index);
1381 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1382 __set_page_dirty_nobuffers(page);
1383 account_page_redirty(page);
1384 put_page(page);
1385 index++;
1386 }
1387 }
1388
1389 /*
1390 * helper function to set both pages and extents in the tree writeback
1391 */
1392 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393 {
1394 tree->ops->set_range_writeback(tree->private_data, start, end);
1395 }
1396
1397 /* find the first state struct with 'bits' set after 'start', and
1398 * return it. tree->lock must be held. NULL will returned if
1399 * nothing was found after 'start'
1400 */
1401 static struct extent_state *
1402 find_first_extent_bit_state(struct extent_io_tree *tree,
1403 u64 start, unsigned bits)
1404 {
1405 struct rb_node *node;
1406 struct extent_state *state;
1407
1408 /*
1409 * this search will find all the extents that end after
1410 * our range starts.
1411 */
1412 node = tree_search(tree, start);
1413 if (!node)
1414 goto out;
1415
1416 while (1) {
1417 state = rb_entry(node, struct extent_state, rb_node);
1418 if (state->end >= start && (state->state & bits))
1419 return state;
1420
1421 node = rb_next(node);
1422 if (!node)
1423 break;
1424 }
1425 out:
1426 return NULL;
1427 }
1428
1429 /*
1430 * find the first offset in the io tree with 'bits' set. zero is
1431 * returned if we find something, and *start_ret and *end_ret are
1432 * set to reflect the state struct that was found.
1433 *
1434 * If nothing was found, 1 is returned. If found something, return 0.
1435 */
1436 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1437 u64 *start_ret, u64 *end_ret, unsigned bits,
1438 struct extent_state **cached_state)
1439 {
1440 struct extent_state *state;
1441 struct rb_node *n;
1442 int ret = 1;
1443
1444 spin_lock(&tree->lock);
1445 if (cached_state && *cached_state) {
1446 state = *cached_state;
1447 if (state->end == start - 1 && extent_state_in_tree(state)) {
1448 n = rb_next(&state->rb_node);
1449 while (n) {
1450 state = rb_entry(n, struct extent_state,
1451 rb_node);
1452 if (state->state & bits)
1453 goto got_it;
1454 n = rb_next(n);
1455 }
1456 free_extent_state(*cached_state);
1457 *cached_state = NULL;
1458 goto out;
1459 }
1460 free_extent_state(*cached_state);
1461 *cached_state = NULL;
1462 }
1463
1464 state = find_first_extent_bit_state(tree, start, bits);
1465 got_it:
1466 if (state) {
1467 cache_state_if_flags(state, cached_state, 0);
1468 *start_ret = state->start;
1469 *end_ret = state->end;
1470 ret = 0;
1471 }
1472 out:
1473 spin_unlock(&tree->lock);
1474 return ret;
1475 }
1476
1477 /*
1478 * find a contiguous range of bytes in the file marked as delalloc, not
1479 * more than 'max_bytes'. start and end are used to return the range,
1480 *
1481 * 1 is returned if we find something, 0 if nothing was in the tree
1482 */
1483 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1484 u64 *start, u64 *end, u64 max_bytes,
1485 struct extent_state **cached_state)
1486 {
1487 struct rb_node *node;
1488 struct extent_state *state;
1489 u64 cur_start = *start;
1490 u64 found = 0;
1491 u64 total_bytes = 0;
1492
1493 spin_lock(&tree->lock);
1494
1495 /*
1496 * this search will find all the extents that end after
1497 * our range starts.
1498 */
1499 node = tree_search(tree, cur_start);
1500 if (!node) {
1501 if (!found)
1502 *end = (u64)-1;
1503 goto out;
1504 }
1505
1506 while (1) {
1507 state = rb_entry(node, struct extent_state, rb_node);
1508 if (found && (state->start != cur_start ||
1509 (state->state & EXTENT_BOUNDARY))) {
1510 goto out;
1511 }
1512 if (!(state->state & EXTENT_DELALLOC)) {
1513 if (!found)
1514 *end = state->end;
1515 goto out;
1516 }
1517 if (!found) {
1518 *start = state->start;
1519 *cached_state = state;
1520 refcount_inc(&state->refs);
1521 }
1522 found++;
1523 *end = state->end;
1524 cur_start = state->end + 1;
1525 node = rb_next(node);
1526 total_bytes += state->end - state->start + 1;
1527 if (total_bytes >= max_bytes)
1528 break;
1529 if (!node)
1530 break;
1531 }
1532 out:
1533 spin_unlock(&tree->lock);
1534 return found;
1535 }
1536
1537 static int __process_pages_contig(struct address_space *mapping,
1538 struct page *locked_page,
1539 pgoff_t start_index, pgoff_t end_index,
1540 unsigned long page_ops, pgoff_t *index_ret);
1541
1542 static noinline void __unlock_for_delalloc(struct inode *inode,
1543 struct page *locked_page,
1544 u64 start, u64 end)
1545 {
1546 unsigned long index = start >> PAGE_SHIFT;
1547 unsigned long end_index = end >> PAGE_SHIFT;
1548
1549 ASSERT(locked_page);
1550 if (index == locked_page->index && end_index == index)
1551 return;
1552
1553 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1554 PAGE_UNLOCK, NULL);
1555 }
1556
1557 static noinline int lock_delalloc_pages(struct inode *inode,
1558 struct page *locked_page,
1559 u64 delalloc_start,
1560 u64 delalloc_end)
1561 {
1562 unsigned long index = delalloc_start >> PAGE_SHIFT;
1563 unsigned long index_ret = index;
1564 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1565 int ret;
1566
1567 ASSERT(locked_page);
1568 if (index == locked_page->index && index == end_index)
1569 return 0;
1570
1571 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1572 end_index, PAGE_LOCK, &index_ret);
1573 if (ret == -EAGAIN)
1574 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1575 (u64)index_ret << PAGE_SHIFT);
1576 return ret;
1577 }
1578
1579 /*
1580 * find a contiguous range of bytes in the file marked as delalloc, not
1581 * more than 'max_bytes'. start and end are used to return the range,
1582 *
1583 * 1 is returned if we find something, 0 if nothing was in the tree
1584 */
1585 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1586 struct extent_io_tree *tree,
1587 struct page *locked_page, u64 *start,
1588 u64 *end, u64 max_bytes)
1589 {
1590 u64 delalloc_start;
1591 u64 delalloc_end;
1592 u64 found;
1593 struct extent_state *cached_state = NULL;
1594 int ret;
1595 int loops = 0;
1596
1597 again:
1598 /* step one, find a bunch of delalloc bytes starting at start */
1599 delalloc_start = *start;
1600 delalloc_end = 0;
1601 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1602 max_bytes, &cached_state);
1603 if (!found || delalloc_end <= *start) {
1604 *start = delalloc_start;
1605 *end = delalloc_end;
1606 free_extent_state(cached_state);
1607 return 0;
1608 }
1609
1610 /*
1611 * start comes from the offset of locked_page. We have to lock
1612 * pages in order, so we can't process delalloc bytes before
1613 * locked_page
1614 */
1615 if (delalloc_start < *start)
1616 delalloc_start = *start;
1617
1618 /*
1619 * make sure to limit the number of pages we try to lock down
1620 */
1621 if (delalloc_end + 1 - delalloc_start > max_bytes)
1622 delalloc_end = delalloc_start + max_bytes - 1;
1623
1624 /* step two, lock all the pages after the page that has start */
1625 ret = lock_delalloc_pages(inode, locked_page,
1626 delalloc_start, delalloc_end);
1627 if (ret == -EAGAIN) {
1628 /* some of the pages are gone, lets avoid looping by
1629 * shortening the size of the delalloc range we're searching
1630 */
1631 free_extent_state(cached_state);
1632 cached_state = NULL;
1633 if (!loops) {
1634 max_bytes = PAGE_SIZE;
1635 loops = 1;
1636 goto again;
1637 } else {
1638 found = 0;
1639 goto out_failed;
1640 }
1641 }
1642 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643
1644 /* step three, lock the state bits for the whole range */
1645 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646
1647 /* then test to make sure it is all still delalloc */
1648 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1649 EXTENT_DELALLOC, 1, cached_state);
1650 if (!ret) {
1651 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1652 &cached_state, GFP_NOFS);
1653 __unlock_for_delalloc(inode, locked_page,
1654 delalloc_start, delalloc_end);
1655 cond_resched();
1656 goto again;
1657 }
1658 free_extent_state(cached_state);
1659 *start = delalloc_start;
1660 *end = delalloc_end;
1661 out_failed:
1662 return found;
1663 }
1664
1665 static int __process_pages_contig(struct address_space *mapping,
1666 struct page *locked_page,
1667 pgoff_t start_index, pgoff_t end_index,
1668 unsigned long page_ops, pgoff_t *index_ret)
1669 {
1670 unsigned long nr_pages = end_index - start_index + 1;
1671 unsigned long pages_locked = 0;
1672 pgoff_t index = start_index;
1673 struct page *pages[16];
1674 unsigned ret;
1675 int err = 0;
1676 int i;
1677
1678 if (page_ops & PAGE_LOCK) {
1679 ASSERT(page_ops == PAGE_LOCK);
1680 ASSERT(index_ret && *index_ret == start_index);
1681 }
1682
1683 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1684 mapping_set_error(mapping, -EIO);
1685
1686 while (nr_pages > 0) {
1687 ret = find_get_pages_contig(mapping, index,
1688 min_t(unsigned long,
1689 nr_pages, ARRAY_SIZE(pages)), pages);
1690 if (ret == 0) {
1691 /*
1692 * Only if we're going to lock these pages,
1693 * can we find nothing at @index.
1694 */
1695 ASSERT(page_ops & PAGE_LOCK);
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699
1700 for (i = 0; i < ret; i++) {
1701 if (page_ops & PAGE_SET_PRIVATE2)
1702 SetPagePrivate2(pages[i]);
1703
1704 if (pages[i] == locked_page) {
1705 put_page(pages[i]);
1706 pages_locked++;
1707 continue;
1708 }
1709 if (page_ops & PAGE_CLEAR_DIRTY)
1710 clear_page_dirty_for_io(pages[i]);
1711 if (page_ops & PAGE_SET_WRITEBACK)
1712 set_page_writeback(pages[i]);
1713 if (page_ops & PAGE_SET_ERROR)
1714 SetPageError(pages[i]);
1715 if (page_ops & PAGE_END_WRITEBACK)
1716 end_page_writeback(pages[i]);
1717 if (page_ops & PAGE_UNLOCK)
1718 unlock_page(pages[i]);
1719 if (page_ops & PAGE_LOCK) {
1720 lock_page(pages[i]);
1721 if (!PageDirty(pages[i]) ||
1722 pages[i]->mapping != mapping) {
1723 unlock_page(pages[i]);
1724 put_page(pages[i]);
1725 err = -EAGAIN;
1726 goto out;
1727 }
1728 }
1729 put_page(pages[i]);
1730 pages_locked++;
1731 }
1732 nr_pages -= ret;
1733 index += ret;
1734 cond_resched();
1735 }
1736 out:
1737 if (err && index_ret)
1738 *index_ret = start_index + pages_locked - 1;
1739 return err;
1740 }
1741
1742 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1743 u64 delalloc_end, struct page *locked_page,
1744 unsigned clear_bits,
1745 unsigned long page_ops)
1746 {
1747 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1748 NULL, GFP_NOFS);
1749
1750 __process_pages_contig(inode->i_mapping, locked_page,
1751 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1752 page_ops, NULL);
1753 }
1754
1755 /*
1756 * count the number of bytes in the tree that have a given bit(s)
1757 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1758 * cached. The total number found is returned.
1759 */
1760 u64 count_range_bits(struct extent_io_tree *tree,
1761 u64 *start, u64 search_end, u64 max_bytes,
1762 unsigned bits, int contig)
1763 {
1764 struct rb_node *node;
1765 struct extent_state *state;
1766 u64 cur_start = *start;
1767 u64 total_bytes = 0;
1768 u64 last = 0;
1769 int found = 0;
1770
1771 if (WARN_ON(search_end <= cur_start))
1772 return 0;
1773
1774 spin_lock(&tree->lock);
1775 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1776 total_bytes = tree->dirty_bytes;
1777 goto out;
1778 }
1779 /*
1780 * this search will find all the extents that end after
1781 * our range starts.
1782 */
1783 node = tree_search(tree, cur_start);
1784 if (!node)
1785 goto out;
1786
1787 while (1) {
1788 state = rb_entry(node, struct extent_state, rb_node);
1789 if (state->start > search_end)
1790 break;
1791 if (contig && found && state->start > last + 1)
1792 break;
1793 if (state->end >= cur_start && (state->state & bits) == bits) {
1794 total_bytes += min(search_end, state->end) + 1 -
1795 max(cur_start, state->start);
1796 if (total_bytes >= max_bytes)
1797 break;
1798 if (!found) {
1799 *start = max(cur_start, state->start);
1800 found = 1;
1801 }
1802 last = state->end;
1803 } else if (contig && found) {
1804 break;
1805 }
1806 node = rb_next(node);
1807 if (!node)
1808 break;
1809 }
1810 out:
1811 spin_unlock(&tree->lock);
1812 return total_bytes;
1813 }
1814
1815 /*
1816 * set the private field for a given byte offset in the tree. If there isn't
1817 * an extent_state there already, this does nothing.
1818 */
1819 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1820 struct io_failure_record *failrec)
1821 {
1822 struct rb_node *node;
1823 struct extent_state *state;
1824 int ret = 0;
1825
1826 spin_lock(&tree->lock);
1827 /*
1828 * this search will find all the extents that end after
1829 * our range starts.
1830 */
1831 node = tree_search(tree, start);
1832 if (!node) {
1833 ret = -ENOENT;
1834 goto out;
1835 }
1836 state = rb_entry(node, struct extent_state, rb_node);
1837 if (state->start != start) {
1838 ret = -ENOENT;
1839 goto out;
1840 }
1841 state->failrec = failrec;
1842 out:
1843 spin_unlock(&tree->lock);
1844 return ret;
1845 }
1846
1847 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1848 struct io_failure_record **failrec)
1849 {
1850 struct rb_node *node;
1851 struct extent_state *state;
1852 int ret = 0;
1853
1854 spin_lock(&tree->lock);
1855 /*
1856 * this search will find all the extents that end after
1857 * our range starts.
1858 */
1859 node = tree_search(tree, start);
1860 if (!node) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state = rb_entry(node, struct extent_state, rb_node);
1865 if (state->start != start) {
1866 ret = -ENOENT;
1867 goto out;
1868 }
1869 *failrec = state->failrec;
1870 out:
1871 spin_unlock(&tree->lock);
1872 return ret;
1873 }
1874
1875 /*
1876 * searches a range in the state tree for a given mask.
1877 * If 'filled' == 1, this returns 1 only if every extent in the tree
1878 * has the bits set. Otherwise, 1 is returned if any bit in the
1879 * range is found set.
1880 */
1881 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1882 unsigned bits, int filled, struct extent_state *cached)
1883 {
1884 struct extent_state *state = NULL;
1885 struct rb_node *node;
1886 int bitset = 0;
1887
1888 spin_lock(&tree->lock);
1889 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1890 cached->end > start)
1891 node = &cached->rb_node;
1892 else
1893 node = tree_search(tree, start);
1894 while (node && start <= end) {
1895 state = rb_entry(node, struct extent_state, rb_node);
1896
1897 if (filled && state->start > start) {
1898 bitset = 0;
1899 break;
1900 }
1901
1902 if (state->start > end)
1903 break;
1904
1905 if (state->state & bits) {
1906 bitset = 1;
1907 if (!filled)
1908 break;
1909 } else if (filled) {
1910 bitset = 0;
1911 break;
1912 }
1913
1914 if (state->end == (u64)-1)
1915 break;
1916
1917 start = state->end + 1;
1918 if (start > end)
1919 break;
1920 node = rb_next(node);
1921 if (!node) {
1922 if (filled)
1923 bitset = 0;
1924 break;
1925 }
1926 }
1927 spin_unlock(&tree->lock);
1928 return bitset;
1929 }
1930
1931 /*
1932 * helper function to set a given page up to date if all the
1933 * extents in the tree for that page are up to date
1934 */
1935 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1936 {
1937 u64 start = page_offset(page);
1938 u64 end = start + PAGE_SIZE - 1;
1939 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1940 SetPageUptodate(page);
1941 }
1942
1943 int free_io_failure(struct extent_io_tree *failure_tree,
1944 struct extent_io_tree *io_tree,
1945 struct io_failure_record *rec)
1946 {
1947 int ret;
1948 int err = 0;
1949
1950 set_state_failrec(failure_tree, rec->start, NULL);
1951 ret = clear_extent_bits(failure_tree, rec->start,
1952 rec->start + rec->len - 1,
1953 EXTENT_LOCKED | EXTENT_DIRTY);
1954 if (ret)
1955 err = ret;
1956
1957 ret = clear_extent_bits(io_tree, rec->start,
1958 rec->start + rec->len - 1,
1959 EXTENT_DAMAGED);
1960 if (ret && !err)
1961 err = ret;
1962
1963 kfree(rec);
1964 return err;
1965 }
1966
1967 /*
1968 * this bypasses the standard btrfs submit functions deliberately, as
1969 * the standard behavior is to write all copies in a raid setup. here we only
1970 * want to write the one bad copy. so we do the mapping for ourselves and issue
1971 * submit_bio directly.
1972 * to avoid any synchronization issues, wait for the data after writing, which
1973 * actually prevents the read that triggered the error from finishing.
1974 * currently, there can be no more than two copies of every data bit. thus,
1975 * exactly one rewrite is required.
1976 */
1977 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1978 u64 length, u64 logical, struct page *page,
1979 unsigned int pg_offset, int mirror_num)
1980 {
1981 struct bio *bio;
1982 struct btrfs_device *dev;
1983 u64 map_length = 0;
1984 u64 sector;
1985 struct btrfs_bio *bbio = NULL;
1986 int ret;
1987
1988 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1989 BUG_ON(!mirror_num);
1990
1991 bio = btrfs_io_bio_alloc(1);
1992 bio->bi_iter.bi_size = 0;
1993 map_length = length;
1994
1995 /*
1996 * Avoid races with device replace and make sure our bbio has devices
1997 * associated to its stripes that don't go away while we are doing the
1998 * read repair operation.
1999 */
2000 btrfs_bio_counter_inc_blocked(fs_info);
2001 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2002 /*
2003 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004 * to update all raid stripes, but here we just want to correct
2005 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006 * stripe's dev and sector.
2007 */
2008 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2009 &map_length, &bbio, 0);
2010 if (ret) {
2011 btrfs_bio_counter_dec(fs_info);
2012 bio_put(bio);
2013 return -EIO;
2014 }
2015 ASSERT(bbio->mirror_num == 1);
2016 } else {
2017 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2018 &map_length, &bbio, mirror_num);
2019 if (ret) {
2020 btrfs_bio_counter_dec(fs_info);
2021 bio_put(bio);
2022 return -EIO;
2023 }
2024 BUG_ON(mirror_num != bbio->mirror_num);
2025 }
2026
2027 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2028 bio->bi_iter.bi_sector = sector;
2029 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2030 btrfs_put_bbio(bbio);
2031 if (!dev || !dev->bdev || !dev->writeable) {
2032 btrfs_bio_counter_dec(fs_info);
2033 bio_put(bio);
2034 return -EIO;
2035 }
2036 bio_set_dev(bio, dev->bdev);
2037 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2038 bio_add_page(bio, page, length, pg_offset);
2039
2040 if (btrfsic_submit_bio_wait(bio)) {
2041 /* try to remap that extent elsewhere? */
2042 btrfs_bio_counter_dec(fs_info);
2043 bio_put(bio);
2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2045 return -EIO;
2046 }
2047
2048 btrfs_info_rl_in_rcu(fs_info,
2049 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2050 ino, start,
2051 rcu_str_deref(dev->name), sector);
2052 btrfs_bio_counter_dec(fs_info);
2053 bio_put(bio);
2054 return 0;
2055 }
2056
2057 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 struct extent_buffer *eb, int mirror_num)
2059 {
2060 u64 start = eb->start;
2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2062 int ret = 0;
2063
2064 if (sb_rdonly(fs_info->sb))
2065 return -EROFS;
2066
2067 for (i = 0; i < num_pages; i++) {
2068 struct page *p = eb->pages[i];
2069
2070 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2071 start - page_offset(p), mirror_num);
2072 if (ret)
2073 break;
2074 start += PAGE_SIZE;
2075 }
2076
2077 return ret;
2078 }
2079
2080 /*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
2084 int clean_io_failure(struct btrfs_fs_info *fs_info,
2085 struct extent_io_tree *failure_tree,
2086 struct extent_io_tree *io_tree, u64 start,
2087 struct page *page, u64 ino, unsigned int pg_offset)
2088 {
2089 u64 private;
2090 struct io_failure_record *failrec;
2091 struct extent_state *state;
2092 int num_copies;
2093 int ret;
2094
2095 private = 0;
2096 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2097 EXTENT_DIRTY, 0);
2098 if (!ret)
2099 return 0;
2100
2101 ret = get_state_failrec(failure_tree, start, &failrec);
2102 if (ret)
2103 return 0;
2104
2105 BUG_ON(!failrec->this_mirror);
2106
2107 if (failrec->in_validation) {
2108 /* there was no real error, just free the record */
2109 btrfs_debug(fs_info,
2110 "clean_io_failure: freeing dummy error at %llu",
2111 failrec->start);
2112 goto out;
2113 }
2114 if (sb_rdonly(fs_info->sb))
2115 goto out;
2116
2117 spin_lock(&io_tree->lock);
2118 state = find_first_extent_bit_state(io_tree,
2119 failrec->start,
2120 EXTENT_LOCKED);
2121 spin_unlock(&io_tree->lock);
2122
2123 if (state && state->start <= failrec->start &&
2124 state->end >= failrec->start + failrec->len - 1) {
2125 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 failrec->len);
2127 if (num_copies > 1) {
2128 repair_io_failure(fs_info, ino, start, failrec->len,
2129 failrec->logical, page, pg_offset,
2130 failrec->failed_mirror);
2131 }
2132 }
2133
2134 out:
2135 free_io_failure(failure_tree, io_tree, failrec);
2136
2137 return 0;
2138 }
2139
2140 /*
2141 * Can be called when
2142 * - hold extent lock
2143 * - under ordered extent
2144 * - the inode is freeing
2145 */
2146 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2147 {
2148 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2149 struct io_failure_record *failrec;
2150 struct extent_state *state, *next;
2151
2152 if (RB_EMPTY_ROOT(&failure_tree->state))
2153 return;
2154
2155 spin_lock(&failure_tree->lock);
2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 while (state) {
2158 if (state->start > end)
2159 break;
2160
2161 ASSERT(state->end <= end);
2162
2163 next = next_state(state);
2164
2165 failrec = state->failrec;
2166 free_extent_state(state);
2167 kfree(failrec);
2168
2169 state = next;
2170 }
2171 spin_unlock(&failure_tree->lock);
2172 }
2173
2174 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2175 struct io_failure_record **failrec_ret)
2176 {
2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2178 struct io_failure_record *failrec;
2179 struct extent_map *em;
2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2183 int ret;
2184 u64 logical;
2185
2186 ret = get_state_failrec(failure_tree, start, &failrec);
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2191
2192 failrec->start = start;
2193 failrec->len = end - start + 1;
2194 failrec->this_mirror = 0;
2195 failrec->bio_flags = 0;
2196 failrec->in_validation = 0;
2197
2198 read_lock(&em_tree->lock);
2199 em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 if (!em) {
2201 read_unlock(&em_tree->lock);
2202 kfree(failrec);
2203 return -EIO;
2204 }
2205
2206 if (em->start > start || em->start + em->len <= start) {
2207 free_extent_map(em);
2208 em = NULL;
2209 }
2210 read_unlock(&em_tree->lock);
2211 if (!em) {
2212 kfree(failrec);
2213 return -EIO;
2214 }
2215
2216 logical = start - em->start;
2217 logical = em->block_start + logical;
2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 logical = em->block_start;
2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 extent_set_compress_type(&failrec->bio_flags,
2222 em->compress_type);
2223 }
2224
2225 btrfs_debug(fs_info,
2226 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 logical, start, failrec->len);
2228
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
2234 EXTENT_LOCKED | EXTENT_DIRTY);
2235 if (ret >= 0)
2236 ret = set_state_failrec(failure_tree, start, failrec);
2237 /* set the bits in the inode's tree */
2238 if (ret >= 0)
2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2240 if (ret < 0) {
2241 kfree(failrec);
2242 return ret;
2243 }
2244 } else {
2245 btrfs_debug(fs_info,
2246 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 failrec->logical, failrec->start, failrec->len,
2248 failrec->in_validation);
2249 /*
2250 * when data can be on disk more than twice, add to failrec here
2251 * (e.g. with a list for failed_mirror) to make
2252 * clean_io_failure() clean all those errors at once.
2253 */
2254 }
2255
2256 *failrec_ret = failrec;
2257
2258 return 0;
2259 }
2260
2261 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2262 struct io_failure_record *failrec, int failed_mirror)
2263 {
2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265 int num_copies;
2266
2267 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2268 if (num_copies == 1) {
2269 /*
2270 * we only have a single copy of the data, so don't bother with
2271 * all the retry and error correction code that follows. no
2272 * matter what the error is, it is very likely to persist.
2273 */
2274 btrfs_debug(fs_info,
2275 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 num_copies, failrec->this_mirror, failed_mirror);
2277 return false;
2278 }
2279
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
2312 }
2313
2314 if (failrec->this_mirror > num_copies) {
2315 btrfs_debug(fs_info,
2316 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 num_copies, failrec->this_mirror, failed_mirror);
2318 return false;
2319 }
2320
2321 return true;
2322 }
2323
2324
2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 struct io_failure_record *failrec,
2327 struct page *page, int pg_offset, int icsum,
2328 bio_end_io_t *endio_func, void *data)
2329 {
2330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2331 struct bio *bio;
2332 struct btrfs_io_bio *btrfs_failed_bio;
2333 struct btrfs_io_bio *btrfs_bio;
2334
2335 bio = btrfs_io_bio_alloc(1);
2336 bio->bi_end_io = endio_func;
2337 bio->bi_iter.bi_sector = failrec->logical >> 9;
2338 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2339 bio->bi_iter.bi_size = 0;
2340 bio->bi_private = data;
2341
2342 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2343 if (btrfs_failed_bio->csum) {
2344 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345
2346 btrfs_bio = btrfs_io_bio(bio);
2347 btrfs_bio->csum = btrfs_bio->csum_inline;
2348 icsum *= csum_size;
2349 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2350 csum_size);
2351 }
2352
2353 bio_add_page(bio, page, failrec->len, pg_offset);
2354
2355 return bio;
2356 }
2357
2358 /*
2359 * this is a generic handler for readpage errors (default
2360 * readpage_io_failed_hook). if other copies exist, read those and write back
2361 * good data to the failed position. does not investigate in remapping the
2362 * failed extent elsewhere, hoping the device will be smart enough to do this as
2363 * needed
2364 */
2365
2366 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 struct page *page, u64 start, u64 end,
2368 int failed_mirror)
2369 {
2370 struct io_failure_record *failrec;
2371 struct inode *inode = page->mapping->host;
2372 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2373 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2374 struct bio *bio;
2375 int read_mode = 0;
2376 blk_status_t status;
2377 int ret;
2378
2379 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2380
2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 if (ret)
2383 return ret;
2384
2385 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2386 failed_mirror)) {
2387 free_io_failure(failure_tree, tree, failrec);
2388 return -EIO;
2389 }
2390
2391 if (failed_bio->bi_vcnt > 1)
2392 read_mode |= REQ_FAILFAST_DEV;
2393
2394 phy_offset >>= inode->i_sb->s_blocksize_bits;
2395 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2396 start - page_offset(page),
2397 (int)phy_offset, failed_bio->bi_end_io,
2398 NULL);
2399 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2400
2401 btrfs_debug(btrfs_sb(inode->i_sb),
2402 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2403 read_mode, failrec->this_mirror, failrec->in_validation);
2404
2405 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2406 failrec->bio_flags, 0);
2407 if (status) {
2408 free_io_failure(failure_tree, tree, failrec);
2409 bio_put(bio);
2410 ret = blk_status_to_errno(status);
2411 }
2412
2413 return ret;
2414 }
2415
2416 /* lots and lots of room for performance fixes in the end_bio funcs */
2417
2418 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2419 {
2420 int uptodate = (err == 0);
2421 struct extent_io_tree *tree;
2422 int ret = 0;
2423
2424 tree = &BTRFS_I(page->mapping->host)->io_tree;
2425
2426 if (tree->ops && tree->ops->writepage_end_io_hook)
2427 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2428 uptodate);
2429
2430 if (!uptodate) {
2431 ClearPageUptodate(page);
2432 SetPageError(page);
2433 ret = err < 0 ? err : -EIO;
2434 mapping_set_error(page->mapping, ret);
2435 }
2436 }
2437
2438 /*
2439 * after a writepage IO is done, we need to:
2440 * clear the uptodate bits on error
2441 * clear the writeback bits in the extent tree for this IO
2442 * end_page_writeback if the page has no more pending IO
2443 *
2444 * Scheduling is not allowed, so the extent state tree is expected
2445 * to have one and only one object corresponding to this IO.
2446 */
2447 static void end_bio_extent_writepage(struct bio *bio)
2448 {
2449 int error = blk_status_to_errno(bio->bi_status);
2450 struct bio_vec *bvec;
2451 u64 start;
2452 u64 end;
2453 int i;
2454
2455 ASSERT(!bio_flagged(bio, BIO_CLONED));
2456 bio_for_each_segment_all(bvec, bio, i) {
2457 struct page *page = bvec->bv_page;
2458 struct inode *inode = page->mapping->host;
2459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2460
2461 /* We always issue full-page reads, but if some block
2462 * in a page fails to read, blk_update_request() will
2463 * advance bv_offset and adjust bv_len to compensate.
2464 * Print a warning for nonzero offsets, and an error
2465 * if they don't add up to a full page. */
2466 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2467 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2468 btrfs_err(fs_info,
2469 "partial page write in btrfs with offset %u and length %u",
2470 bvec->bv_offset, bvec->bv_len);
2471 else
2472 btrfs_info(fs_info,
2473 "incomplete page write in btrfs with offset %u and length %u",
2474 bvec->bv_offset, bvec->bv_len);
2475 }
2476
2477 start = page_offset(page);
2478 end = start + bvec->bv_offset + bvec->bv_len - 1;
2479
2480 end_extent_writepage(page, error, start, end);
2481 end_page_writeback(page);
2482 }
2483
2484 bio_put(bio);
2485 }
2486
2487 static void
2488 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2489 int uptodate)
2490 {
2491 struct extent_state *cached = NULL;
2492 u64 end = start + len - 1;
2493
2494 if (uptodate && tree->track_uptodate)
2495 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2496 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2497 }
2498
2499 /*
2500 * after a readpage IO is done, we need to:
2501 * clear the uptodate bits on error
2502 * set the uptodate bits if things worked
2503 * set the page up to date if all extents in the tree are uptodate
2504 * clear the lock bit in the extent tree
2505 * unlock the page if there are no other extents locked for it
2506 *
2507 * Scheduling is not allowed, so the extent state tree is expected
2508 * to have one and only one object corresponding to this IO.
2509 */
2510 static void end_bio_extent_readpage(struct bio *bio)
2511 {
2512 struct bio_vec *bvec;
2513 int uptodate = !bio->bi_status;
2514 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2515 struct extent_io_tree *tree, *failure_tree;
2516 u64 offset = 0;
2517 u64 start;
2518 u64 end;
2519 u64 len;
2520 u64 extent_start = 0;
2521 u64 extent_len = 0;
2522 int mirror;
2523 int ret;
2524 int i;
2525
2526 ASSERT(!bio_flagged(bio, BIO_CLONED));
2527 bio_for_each_segment_all(bvec, bio, i) {
2528 struct page *page = bvec->bv_page;
2529 struct inode *inode = page->mapping->host;
2530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2531
2532 btrfs_debug(fs_info,
2533 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2534 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2535 io_bio->mirror_num);
2536 tree = &BTRFS_I(inode)->io_tree;
2537 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2538
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 btrfs_err(fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
2548 bvec->bv_offset, bvec->bv_len);
2549 else
2550 btrfs_info(fs_info,
2551 "incomplete page read in btrfs with offset %u and length %u",
2552 bvec->bv_offset, bvec->bv_len);
2553 }
2554
2555 start = page_offset(page);
2556 end = start + bvec->bv_offset + bvec->bv_len - 1;
2557 len = bvec->bv_len;
2558
2559 mirror = io_bio->mirror_num;
2560 if (likely(uptodate && tree->ops)) {
2561 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2562 page, start, end,
2563 mirror);
2564 if (ret)
2565 uptodate = 0;
2566 else
2567 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2568 failure_tree, tree, start,
2569 page,
2570 btrfs_ino(BTRFS_I(inode)), 0);
2571 }
2572
2573 if (likely(uptodate))
2574 goto readpage_ok;
2575
2576 if (tree->ops) {
2577 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2578 if (ret == -EAGAIN) {
2579 /*
2580 * Data inode's readpage_io_failed_hook() always
2581 * returns -EAGAIN.
2582 *
2583 * The generic bio_readpage_error handles errors
2584 * the following way: If possible, new read
2585 * requests are created and submitted and will
2586 * end up in end_bio_extent_readpage as well (if
2587 * we're lucky, not in the !uptodate case). In
2588 * that case it returns 0 and we just go on with
2589 * the next page in our bio. If it can't handle
2590 * the error it will return -EIO and we remain
2591 * responsible for that page.
2592 */
2593 ret = bio_readpage_error(bio, offset, page,
2594 start, end, mirror);
2595 if (ret == 0) {
2596 uptodate = !bio->bi_status;
2597 offset += len;
2598 continue;
2599 }
2600 }
2601
2602 /*
2603 * metadata's readpage_io_failed_hook() always returns
2604 * -EIO and fixes nothing. -EIO is also returned if
2605 * data inode error could not be fixed.
2606 */
2607 ASSERT(ret == -EIO);
2608 }
2609 readpage_ok:
2610 if (likely(uptodate)) {
2611 loff_t i_size = i_size_read(inode);
2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
2613 unsigned off;
2614
2615 /* Zero out the end if this page straddles i_size */
2616 off = i_size & (PAGE_SIZE-1);
2617 if (page->index == end_index && off)
2618 zero_user_segment(page, off, PAGE_SIZE);
2619 SetPageUptodate(page);
2620 } else {
2621 ClearPageUptodate(page);
2622 SetPageError(page);
2623 }
2624 unlock_page(page);
2625 offset += len;
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2648 }
2649
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
2653 if (io_bio->end_io)
2654 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2655 bio_put(bio);
2656 }
2657
2658 /*
2659 * Initialize the members up to but not including 'bio'. Use after allocating a
2660 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2661 * 'bio' because use of __GFP_ZERO is not supported.
2662 */
2663 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2664 {
2665 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2666 }
2667
2668 /*
2669 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2670 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2671 * for the appropriate container_of magic
2672 */
2673 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2674 {
2675 struct bio *bio;
2676
2677 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2678 bio_set_dev(bio, bdev);
2679 bio->bi_iter.bi_sector = first_byte >> 9;
2680 btrfs_io_bio_init(btrfs_io_bio(bio));
2681 return bio;
2682 }
2683
2684 struct bio *btrfs_bio_clone(struct bio *bio)
2685 {
2686 struct btrfs_io_bio *btrfs_bio;
2687 struct bio *new;
2688
2689 /* Bio allocation backed by a bioset does not fail */
2690 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2691 btrfs_bio = btrfs_io_bio(new);
2692 btrfs_io_bio_init(btrfs_bio);
2693 btrfs_bio->iter = bio->bi_iter;
2694 return new;
2695 }
2696
2697 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2698 {
2699 struct bio *bio;
2700
2701 /* Bio allocation backed by a bioset does not fail */
2702 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2703 btrfs_io_bio_init(btrfs_io_bio(bio));
2704 return bio;
2705 }
2706
2707 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2708 {
2709 struct bio *bio;
2710 struct btrfs_io_bio *btrfs_bio;
2711
2712 /* this will never fail when it's backed by a bioset */
2713 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2714 ASSERT(bio);
2715
2716 btrfs_bio = btrfs_io_bio(bio);
2717 btrfs_io_bio_init(btrfs_bio);
2718
2719 bio_trim(bio, offset >> 9, size >> 9);
2720 btrfs_bio->iter = bio->bi_iter;
2721 return bio;
2722 }
2723
2724 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2725 unsigned long bio_flags)
2726 {
2727 blk_status_t ret = 0;
2728 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2729 struct page *page = bvec->bv_page;
2730 struct extent_io_tree *tree = bio->bi_private;
2731 u64 start;
2732
2733 start = page_offset(page) + bvec->bv_offset;
2734
2735 bio->bi_private = NULL;
2736 bio_get(bio);
2737
2738 if (tree->ops)
2739 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2740 mirror_num, bio_flags, start);
2741 else
2742 btrfsic_submit_bio(bio);
2743
2744 bio_put(bio);
2745 return blk_status_to_errno(ret);
2746 }
2747
2748 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2749 unsigned long offset, size_t size, struct bio *bio,
2750 unsigned long bio_flags)
2751 {
2752 int ret = 0;
2753 if (tree->ops)
2754 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2755 bio_flags);
2756 return ret;
2757
2758 }
2759
2760 /*
2761 * @opf: bio REQ_OP_* and REQ_* flags as one value
2762 */
2763 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2764 struct writeback_control *wbc,
2765 struct page *page, sector_t sector,
2766 size_t size, unsigned long offset,
2767 struct block_device *bdev,
2768 struct bio **bio_ret,
2769 bio_end_io_t end_io_func,
2770 int mirror_num,
2771 unsigned long prev_bio_flags,
2772 unsigned long bio_flags,
2773 bool force_bio_submit)
2774 {
2775 int ret = 0;
2776 struct bio *bio;
2777 int contig = 0;
2778 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780
2781 if (bio_ret && *bio_ret) {
2782 bio = *bio_ret;
2783 if (old_compressed)
2784 contig = bio->bi_iter.bi_sector == sector;
2785 else
2786 contig = bio_end_sector(bio) == sector;
2787
2788 if (prev_bio_flags != bio_flags || !contig ||
2789 force_bio_submit ||
2790 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 if (ret < 0) {
2794 *bio_ret = NULL;
2795 return ret;
2796 }
2797 bio = NULL;
2798 } else {
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
2801 return 0;
2802 }
2803 }
2804
2805 bio = btrfs_bio_alloc(bdev, (u64)sector << 9);
2806 bio_add_page(bio, page, page_size, offset);
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
2809 bio->bi_write_hint = page->mapping->host->i_write_hint;
2810 bio->bi_opf = opf;
2811 if (wbc) {
2812 wbc_init_bio(wbc, bio);
2813 wbc_account_io(wbc, page, page_size);
2814 }
2815
2816 if (bio_ret)
2817 *bio_ret = bio;
2818 else
2819 ret = submit_one_bio(bio, mirror_num, bio_flags);
2820
2821 return ret;
2822 }
2823
2824 static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 struct page *page)
2826 {
2827 if (!PagePrivate(page)) {
2828 SetPagePrivate(page);
2829 get_page(page);
2830 set_page_private(page, (unsigned long)eb);
2831 } else {
2832 WARN_ON(page->private != (unsigned long)eb);
2833 }
2834 }
2835
2836 void set_page_extent_mapped(struct page *page)
2837 {
2838 if (!PagePrivate(page)) {
2839 SetPagePrivate(page);
2840 get_page(page);
2841 set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 }
2843 }
2844
2845 static struct extent_map *
2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 u64 start, u64 len, get_extent_t *get_extent,
2848 struct extent_map **em_cached)
2849 {
2850 struct extent_map *em;
2851
2852 if (em_cached && *em_cached) {
2853 em = *em_cached;
2854 if (extent_map_in_tree(em) && start >= em->start &&
2855 start < extent_map_end(em)) {
2856 refcount_inc(&em->refs);
2857 return em;
2858 }
2859
2860 free_extent_map(em);
2861 *em_cached = NULL;
2862 }
2863
2864 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2865 if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 BUG_ON(*em_cached);
2867 refcount_inc(&em->refs);
2868 *em_cached = em;
2869 }
2870 return em;
2871 }
2872 /*
2873 * basic readpage implementation. Locked extent state structs are inserted
2874 * into the tree that are removed when the IO is done (by the end_io
2875 * handlers)
2876 * XXX JDM: This needs looking at to ensure proper page locking
2877 * return 0 on success, otherwise return error
2878 */
2879 static int __do_readpage(struct extent_io_tree *tree,
2880 struct page *page,
2881 get_extent_t *get_extent,
2882 struct extent_map **em_cached,
2883 struct bio **bio, int mirror_num,
2884 unsigned long *bio_flags, unsigned int read_flags,
2885 u64 *prev_em_start)
2886 {
2887 struct inode *inode = page->mapping->host;
2888 u64 start = page_offset(page);
2889 u64 page_end = start + PAGE_SIZE - 1;
2890 u64 end;
2891 u64 cur = start;
2892 u64 extent_offset;
2893 u64 last_byte = i_size_read(inode);
2894 u64 block_start;
2895 u64 cur_end;
2896 sector_t sector;
2897 struct extent_map *em;
2898 struct block_device *bdev;
2899 int ret = 0;
2900 int nr = 0;
2901 size_t pg_offset = 0;
2902 size_t iosize;
2903 size_t disk_io_size;
2904 size_t blocksize = inode->i_sb->s_blocksize;
2905 unsigned long this_bio_flag = 0;
2906
2907 set_page_extent_mapped(page);
2908
2909 end = page_end;
2910 if (!PageUptodate(page)) {
2911 if (cleancache_get_page(page) == 0) {
2912 BUG_ON(blocksize != PAGE_SIZE);
2913 unlock_extent(tree, start, end);
2914 goto out;
2915 }
2916 }
2917
2918 if (page->index == last_byte >> PAGE_SHIFT) {
2919 char *userpage;
2920 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2921
2922 if (zero_offset) {
2923 iosize = PAGE_SIZE - zero_offset;
2924 userpage = kmap_atomic(page);
2925 memset(userpage + zero_offset, 0, iosize);
2926 flush_dcache_page(page);
2927 kunmap_atomic(userpage);
2928 }
2929 }
2930 while (cur <= end) {
2931 bool force_bio_submit = false;
2932
2933 if (cur >= last_byte) {
2934 char *userpage;
2935 struct extent_state *cached = NULL;
2936
2937 iosize = PAGE_SIZE - pg_offset;
2938 userpage = kmap_atomic(page);
2939 memset(userpage + pg_offset, 0, iosize);
2940 flush_dcache_page(page);
2941 kunmap_atomic(userpage);
2942 set_extent_uptodate(tree, cur, cur + iosize - 1,
2943 &cached, GFP_NOFS);
2944 unlock_extent_cached(tree, cur,
2945 cur + iosize - 1,
2946 &cached, GFP_NOFS);
2947 break;
2948 }
2949 em = __get_extent_map(inode, page, pg_offset, cur,
2950 end - cur + 1, get_extent, em_cached);
2951 if (IS_ERR_OR_NULL(em)) {
2952 SetPageError(page);
2953 unlock_extent(tree, cur, end);
2954 break;
2955 }
2956 extent_offset = cur - em->start;
2957 BUG_ON(extent_map_end(em) <= cur);
2958 BUG_ON(end < cur);
2959
2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2961 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2962 extent_set_compress_type(&this_bio_flag,
2963 em->compress_type);
2964 }
2965
2966 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2967 cur_end = min(extent_map_end(em) - 1, end);
2968 iosize = ALIGN(iosize, blocksize);
2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2970 disk_io_size = em->block_len;
2971 sector = em->block_start >> 9;
2972 } else {
2973 sector = (em->block_start + extent_offset) >> 9;
2974 disk_io_size = iosize;
2975 }
2976 bdev = em->bdev;
2977 block_start = em->block_start;
2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2979 block_start = EXTENT_MAP_HOLE;
2980
2981 /*
2982 * If we have a file range that points to a compressed extent
2983 * and it's followed by a consecutive file range that points to
2984 * to the same compressed extent (possibly with a different
2985 * offset and/or length, so it either points to the whole extent
2986 * or only part of it), we must make sure we do not submit a
2987 * single bio to populate the pages for the 2 ranges because
2988 * this makes the compressed extent read zero out the pages
2989 * belonging to the 2nd range. Imagine the following scenario:
2990 *
2991 * File layout
2992 * [0 - 8K] [8K - 24K]
2993 * | |
2994 * | |
2995 * points to extent X, points to extent X,
2996 * offset 4K, length of 8K offset 0, length 16K
2997 *
2998 * [extent X, compressed length = 4K uncompressed length = 16K]
2999 *
3000 * If the bio to read the compressed extent covers both ranges,
3001 * it will decompress extent X into the pages belonging to the
3002 * first range and then it will stop, zeroing out the remaining
3003 * pages that belong to the other range that points to extent X.
3004 * So here we make sure we submit 2 bios, one for the first
3005 * range and another one for the third range. Both will target
3006 * the same physical extent from disk, but we can't currently
3007 * make the compressed bio endio callback populate the pages
3008 * for both ranges because each compressed bio is tightly
3009 * coupled with a single extent map, and each range can have
3010 * an extent map with a different offset value relative to the
3011 * uncompressed data of our extent and different lengths. This
3012 * is a corner case so we prioritize correctness over
3013 * non-optimal behavior (submitting 2 bios for the same extent).
3014 */
3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3016 prev_em_start && *prev_em_start != (u64)-1 &&
3017 *prev_em_start != em->orig_start)
3018 force_bio_submit = true;
3019
3020 if (prev_em_start)
3021 *prev_em_start = em->orig_start;
3022
3023 free_extent_map(em);
3024 em = NULL;
3025
3026 /* we've found a hole, just zero and go on */
3027 if (block_start == EXTENT_MAP_HOLE) {
3028 char *userpage;
3029 struct extent_state *cached = NULL;
3030
3031 userpage = kmap_atomic(page);
3032 memset(userpage + pg_offset, 0, iosize);
3033 flush_dcache_page(page);
3034 kunmap_atomic(userpage);
3035
3036 set_extent_uptodate(tree, cur, cur + iosize - 1,
3037 &cached, GFP_NOFS);
3038 unlock_extent_cached(tree, cur,
3039 cur + iosize - 1,
3040 &cached, GFP_NOFS);
3041 cur = cur + iosize;
3042 pg_offset += iosize;
3043 continue;
3044 }
3045 /* the get_extent function already copied into the page */
3046 if (test_range_bit(tree, cur, cur_end,
3047 EXTENT_UPTODATE, 1, NULL)) {
3048 check_page_uptodate(tree, page);
3049 unlock_extent(tree, cur, cur + iosize - 1);
3050 cur = cur + iosize;
3051 pg_offset += iosize;
3052 continue;
3053 }
3054 /* we have an inline extent but it didn't get marked up
3055 * to date. Error out
3056 */
3057 if (block_start == EXTENT_MAP_INLINE) {
3058 SetPageError(page);
3059 unlock_extent(tree, cur, cur + iosize - 1);
3060 cur = cur + iosize;
3061 pg_offset += iosize;
3062 continue;
3063 }
3064
3065 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3066 page, sector, disk_io_size, pg_offset,
3067 bdev, bio,
3068 end_bio_extent_readpage, mirror_num,
3069 *bio_flags,
3070 this_bio_flag,
3071 force_bio_submit);
3072 if (!ret) {
3073 nr++;
3074 *bio_flags = this_bio_flag;
3075 } else {
3076 SetPageError(page);
3077 unlock_extent(tree, cur, cur + iosize - 1);
3078 goto out;
3079 }
3080 cur = cur + iosize;
3081 pg_offset += iosize;
3082 }
3083 out:
3084 if (!nr) {
3085 if (!PageError(page))
3086 SetPageUptodate(page);
3087 unlock_page(page);
3088 }
3089 return ret;
3090 }
3091
3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093 struct page *pages[], int nr_pages,
3094 u64 start, u64 end,
3095 get_extent_t *get_extent,
3096 struct extent_map **em_cached,
3097 struct bio **bio, int mirror_num,
3098 unsigned long *bio_flags,
3099 u64 *prev_em_start)
3100 {
3101 struct inode *inode;
3102 struct btrfs_ordered_extent *ordered;
3103 int index;
3104
3105 inode = pages[0]->mapping->host;
3106 while (1) {
3107 lock_extent(tree, start, end);
3108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3109 end - start + 1);
3110 if (!ordered)
3111 break;
3112 unlock_extent(tree, start, end);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3115 }
3116
3117 for (index = 0; index < nr_pages; index++) {
3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3119 mirror_num, bio_flags, 0, prev_em_start);
3120 put_page(pages[index]);
3121 }
3122 }
3123
3124 static void __extent_readpages(struct extent_io_tree *tree,
3125 struct page *pages[],
3126 int nr_pages, get_extent_t *get_extent,
3127 struct extent_map **em_cached,
3128 struct bio **bio, int mirror_num,
3129 unsigned long *bio_flags,
3130 u64 *prev_em_start)
3131 {
3132 u64 start = 0;
3133 u64 end = 0;
3134 u64 page_start;
3135 int index;
3136 int first_index = 0;
3137
3138 for (index = 0; index < nr_pages; index++) {
3139 page_start = page_offset(pages[index]);
3140 if (!end) {
3141 start = page_start;
3142 end = start + PAGE_SIZE - 1;
3143 first_index = index;
3144 } else if (end + 1 == page_start) {
3145 end += PAGE_SIZE;
3146 } else {
3147 __do_contiguous_readpages(tree, &pages[first_index],
3148 index - first_index, start,
3149 end, get_extent, em_cached,
3150 bio, mirror_num, bio_flags,
3151 prev_em_start);
3152 start = page_start;
3153 end = start + PAGE_SIZE - 1;
3154 first_index = index;
3155 }
3156 }
3157
3158 if (end)
3159 __do_contiguous_readpages(tree, &pages[first_index],
3160 index - first_index, start,
3161 end, get_extent, em_cached, bio,
3162 mirror_num, bio_flags,
3163 prev_em_start);
3164 }
3165
3166 static int __extent_read_full_page(struct extent_io_tree *tree,
3167 struct page *page,
3168 get_extent_t *get_extent,
3169 struct bio **bio, int mirror_num,
3170 unsigned long *bio_flags,
3171 unsigned int read_flags)
3172 {
3173 struct inode *inode = page->mapping->host;
3174 struct btrfs_ordered_extent *ordered;
3175 u64 start = page_offset(page);
3176 u64 end = start + PAGE_SIZE - 1;
3177 int ret;
3178
3179 while (1) {
3180 lock_extent(tree, start, end);
3181 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3182 PAGE_SIZE);
3183 if (!ordered)
3184 break;
3185 unlock_extent(tree, start, end);
3186 btrfs_start_ordered_extent(inode, ordered, 1);
3187 btrfs_put_ordered_extent(ordered);
3188 }
3189
3190 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3191 bio_flags, read_flags, NULL);
3192 return ret;
3193 }
3194
3195 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3196 get_extent_t *get_extent, int mirror_num)
3197 {
3198 struct bio *bio = NULL;
3199 unsigned long bio_flags = 0;
3200 int ret;
3201
3202 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3203 &bio_flags, 0);
3204 if (bio)
3205 ret = submit_one_bio(bio, mirror_num, bio_flags);
3206 return ret;
3207 }
3208
3209 static void update_nr_written(struct writeback_control *wbc,
3210 unsigned long nr_written)
3211 {
3212 wbc->nr_to_write -= nr_written;
3213 }
3214
3215 /*
3216 * helper for __extent_writepage, doing all of the delayed allocation setup.
3217 *
3218 * This returns 1 if our fill_delalloc function did all the work required
3219 * to write the page (copy into inline extent). In this case the IO has
3220 * been started and the page is already unlocked.
3221 *
3222 * This returns 0 if all went well (page still locked)
3223 * This returns < 0 if there were errors (page still locked)
3224 */
3225 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3226 struct page *page, struct writeback_control *wbc,
3227 struct extent_page_data *epd,
3228 u64 delalloc_start,
3229 unsigned long *nr_written)
3230 {
3231 struct extent_io_tree *tree = epd->tree;
3232 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3233 u64 nr_delalloc;
3234 u64 delalloc_to_write = 0;
3235 u64 delalloc_end = 0;
3236 int ret;
3237 int page_started = 0;
3238
3239 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3240 return 0;
3241
3242 while (delalloc_end < page_end) {
3243 nr_delalloc = find_lock_delalloc_range(inode, tree,
3244 page,
3245 &delalloc_start,
3246 &delalloc_end,
3247 BTRFS_MAX_EXTENT_SIZE);
3248 if (nr_delalloc == 0) {
3249 delalloc_start = delalloc_end + 1;
3250 continue;
3251 }
3252 ret = tree->ops->fill_delalloc(inode, page,
3253 delalloc_start,
3254 delalloc_end,
3255 &page_started,
3256 nr_written);
3257 /* File system has been set read-only */
3258 if (ret) {
3259 SetPageError(page);
3260 /* fill_delalloc should be return < 0 for error
3261 * but just in case, we use > 0 here meaning the
3262 * IO is started, so we don't want to return > 0
3263 * unless things are going well.
3264 */
3265 ret = ret < 0 ? ret : -EIO;
3266 goto done;
3267 }
3268 /*
3269 * delalloc_end is already one less than the total length, so
3270 * we don't subtract one from PAGE_SIZE
3271 */
3272 delalloc_to_write += (delalloc_end - delalloc_start +
3273 PAGE_SIZE) >> PAGE_SHIFT;
3274 delalloc_start = delalloc_end + 1;
3275 }
3276 if (wbc->nr_to_write < delalloc_to_write) {
3277 int thresh = 8192;
3278
3279 if (delalloc_to_write < thresh * 2)
3280 thresh = delalloc_to_write;
3281 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3282 thresh);
3283 }
3284
3285 /* did the fill delalloc function already unlock and start
3286 * the IO?
3287 */
3288 if (page_started) {
3289 /*
3290 * we've unlocked the page, so we can't update
3291 * the mapping's writeback index, just update
3292 * nr_to_write.
3293 */
3294 wbc->nr_to_write -= *nr_written;
3295 return 1;
3296 }
3297
3298 ret = 0;
3299
3300 done:
3301 return ret;
3302 }
3303
3304 /*
3305 * helper for __extent_writepage. This calls the writepage start hooks,
3306 * and does the loop to map the page into extents and bios.
3307 *
3308 * We return 1 if the IO is started and the page is unlocked,
3309 * 0 if all went well (page still locked)
3310 * < 0 if there were errors (page still locked)
3311 */
3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3313 struct page *page,
3314 struct writeback_control *wbc,
3315 struct extent_page_data *epd,
3316 loff_t i_size,
3317 unsigned long nr_written,
3318 unsigned int write_flags, int *nr_ret)
3319 {
3320 struct extent_io_tree *tree = epd->tree;
3321 u64 start = page_offset(page);
3322 u64 page_end = start + PAGE_SIZE - 1;
3323 u64 end;
3324 u64 cur = start;
3325 u64 extent_offset;
3326 u64 block_start;
3327 u64 iosize;
3328 sector_t sector;
3329 struct extent_map *em;
3330 struct block_device *bdev;
3331 size_t pg_offset = 0;
3332 size_t blocksize;
3333 int ret = 0;
3334 int nr = 0;
3335 bool compressed;
3336
3337 if (tree->ops && tree->ops->writepage_start_hook) {
3338 ret = tree->ops->writepage_start_hook(page, start,
3339 page_end);
3340 if (ret) {
3341 /* Fixup worker will requeue */
3342 if (ret == -EBUSY)
3343 wbc->pages_skipped++;
3344 else
3345 redirty_page_for_writepage(wbc, page);
3346
3347 update_nr_written(wbc, nr_written);
3348 unlock_page(page);
3349 return 1;
3350 }
3351 }
3352
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3357 update_nr_written(wbc, nr_written + 1);
3358
3359 end = page_end;
3360 if (i_size <= start) {
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
3364 goto done;
3365 }
3366
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
3370 u64 em_end;
3371
3372 if (cur >= i_size) {
3373 if (tree->ops && tree->ops->writepage_end_io_hook)
3374 tree->ops->writepage_end_io_hook(page, cur,
3375 page_end, NULL, 1);
3376 break;
3377 }
3378 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3379 end - cur + 1, 1);
3380 if (IS_ERR_OR_NULL(em)) {
3381 SetPageError(page);
3382 ret = PTR_ERR_OR_ZERO(em);
3383 break;
3384 }
3385
3386 extent_offset = cur - em->start;
3387 em_end = extent_map_end(em);
3388 BUG_ON(em_end <= cur);
3389 BUG_ON(end < cur);
3390 iosize = min(em_end - cur, end - cur + 1);
3391 iosize = ALIGN(iosize, blocksize);
3392 sector = (em->block_start + extent_offset) >> 9;
3393 bdev = em->bdev;
3394 block_start = em->block_start;
3395 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3396 free_extent_map(em);
3397 em = NULL;
3398
3399 /*
3400 * compressed and inline extents are written through other
3401 * paths in the FS
3402 */
3403 if (compressed || block_start == EXTENT_MAP_HOLE ||
3404 block_start == EXTENT_MAP_INLINE) {
3405 /*
3406 * end_io notification does not happen here for
3407 * compressed extents
3408 */
3409 if (!compressed && tree->ops &&
3410 tree->ops->writepage_end_io_hook)
3411 tree->ops->writepage_end_io_hook(page, cur,
3412 cur + iosize - 1,
3413 NULL, 1);
3414 else if (compressed) {
3415 /* we don't want to end_page_writeback on
3416 * a compressed extent. this happens
3417 * elsewhere
3418 */
3419 nr++;
3420 }
3421
3422 cur += iosize;
3423 pg_offset += iosize;
3424 continue;
3425 }
3426
3427 set_range_writeback(tree, cur, cur + iosize - 1);
3428 if (!PageWriteback(page)) {
3429 btrfs_err(BTRFS_I(inode)->root->fs_info,
3430 "page %lu not writeback, cur %llu end %llu",
3431 page->index, cur, end);
3432 }
3433
3434 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3435 page, sector, iosize, pg_offset,
3436 bdev, &epd->bio,
3437 end_bio_extent_writepage,
3438 0, 0, 0, false);
3439 if (ret) {
3440 SetPageError(page);
3441 if (PageWriteback(page))
3442 end_page_writeback(page);
3443 }
3444
3445 cur = cur + iosize;
3446 pg_offset += iosize;
3447 nr++;
3448 }
3449 done:
3450 *nr_ret = nr;
3451 return ret;
3452 }
3453
3454 /*
3455 * the writepage semantics are similar to regular writepage. extent
3456 * records are inserted to lock ranges in the tree, and as dirty areas
3457 * are found, they are marked writeback. Then the lock bits are removed
3458 * and the end_io handler clears the writeback ranges
3459 */
3460 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3461 void *data)
3462 {
3463 struct inode *inode = page->mapping->host;
3464 struct extent_page_data *epd = data;
3465 u64 start = page_offset(page);
3466 u64 page_end = start + PAGE_SIZE - 1;
3467 int ret;
3468 int nr = 0;
3469 size_t pg_offset = 0;
3470 loff_t i_size = i_size_read(inode);
3471 unsigned long end_index = i_size >> PAGE_SHIFT;
3472 unsigned int write_flags = 0;
3473 unsigned long nr_written = 0;
3474
3475 write_flags = wbc_to_write_flags(wbc);
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
3483 pg_offset = i_size & (PAGE_SIZE - 1);
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
3496 PAGE_SIZE - pg_offset);
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
3516 done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
3526 unlock_page(page);
3527 return ret;
3528
3529 done_unlocked:
3530 return 0;
3531 }
3532
3533 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534 {
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
3537 }
3538
3539 static noinline_for_stack int
3540 lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
3543 {
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
3567 btrfs_tree_unlock(eb);
3568 }
3569 }
3570
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579 spin_unlock(&eb->refs_lock);
3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
3584 ret = 1;
3585 } else {
3586 spin_unlock(&eb->refs_lock);
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
3596 struct page *p = eb->pages[i];
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608 }
3609
3610 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611 {
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613 smp_mb__after_atomic();
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615 }
3616
3617 static void set_btree_ioerr(struct page *page)
3618 {
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620
3621 SetPageError(page);
3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 return;
3624
3625 /*
3626 * If writeback for a btree extent that doesn't belong to a log tree
3627 * failed, increment the counter transaction->eb_write_errors.
3628 * We do this because while the transaction is running and before it's
3629 * committing (when we call filemap_fdata[write|wait]_range against
3630 * the btree inode), we might have
3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 * returns an error or an error happens during writeback, when we're
3633 * committing the transaction we wouldn't know about it, since the pages
3634 * can be no longer dirty nor marked anymore for writeback (if a
3635 * subsequent modification to the extent buffer didn't happen before the
3636 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 * able to find the pages tagged with SetPageError at transaction
3638 * commit time. So if this happens we must abort the transaction,
3639 * otherwise we commit a super block with btree roots that point to
3640 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 * or the content of some node/leaf from a past generation that got
3642 * cowed or deleted and is no longer valid.
3643 *
3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 * not be enough - we need to distinguish between log tree extents vs
3646 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 * will catch and clear such errors in the mapping - and that call might
3648 * be from a log sync and not from a transaction commit. Also, checking
3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 * not done and would not be reliable - the eb might have been released
3651 * from memory and reading it back again means that flag would not be
3652 * set (since it's a runtime flag, not persisted on disk).
3653 *
3654 * Using the flags below in the btree inode also makes us achieve the
3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 * is called, the writeback for all dirty pages had already finished
3658 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 * filemap_fdatawait_range() would return success, as it could not know
3660 * that writeback errors happened (the pages were no longer tagged for
3661 * writeback).
3662 */
3663 switch (eb->log_index) {
3664 case -1:
3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666 break;
3667 case 0:
3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669 break;
3670 case 1:
3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672 break;
3673 default:
3674 BUG(); /* unexpected, logic error */
3675 }
3676 }
3677
3678 static void end_bio_extent_buffer_writepage(struct bio *bio)
3679 {
3680 struct bio_vec *bvec;
3681 struct extent_buffer *eb;
3682 int i, done;
3683
3684 ASSERT(!bio_flagged(bio, BIO_CLONED));
3685 bio_for_each_segment_all(bvec, bio, i) {
3686 struct page *page = bvec->bv_page;
3687
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
3692 if (bio->bi_status ||
3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694 ClearPageUptodate(page);
3695 set_btree_ioerr(page);
3696 }
3697
3698 end_page_writeback(page);
3699
3700 if (!done)
3701 continue;
3702
3703 end_extent_buffer_writeback(eb);
3704 }
3705
3706 bio_put(bio);
3707 }
3708
3709 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710 struct btrfs_fs_info *fs_info,
3711 struct writeback_control *wbc,
3712 struct extent_page_data *epd)
3713 {
3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716 u64 offset = eb->start;
3717 u32 nritems;
3718 unsigned long i, num_pages;
3719 unsigned long bio_flags = 0;
3720 unsigned long start, end;
3721 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3722 int ret = 0;
3723
3724 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3725 num_pages = num_extent_pages(eb->start, eb->len);
3726 atomic_set(&eb->io_pages, num_pages);
3727 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3728 bio_flags = EXTENT_BIO_TREE_LOG;
3729
3730 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3731 nritems = btrfs_header_nritems(eb);
3732 if (btrfs_header_level(eb) > 0) {
3733 end = btrfs_node_key_ptr_offset(nritems);
3734
3735 memzero_extent_buffer(eb, end, eb->len - end);
3736 } else {
3737 /*
3738 * leaf:
3739 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3740 */
3741 start = btrfs_item_nr_offset(nritems);
3742 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3743 memzero_extent_buffer(eb, start, end - start);
3744 }
3745
3746 for (i = 0; i < num_pages; i++) {
3747 struct page *p = eb->pages[i];
3748
3749 clear_page_dirty_for_io(p);
3750 set_page_writeback(p);
3751 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3752 p, offset >> 9, PAGE_SIZE, 0, bdev,
3753 &epd->bio,
3754 end_bio_extent_buffer_writepage,
3755 0, epd->bio_flags, bio_flags, false);
3756 epd->bio_flags = bio_flags;
3757 if (ret) {
3758 set_btree_ioerr(p);
3759 if (PageWriteback(p))
3760 end_page_writeback(p);
3761 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3762 end_extent_buffer_writeback(eb);
3763 ret = -EIO;
3764 break;
3765 }
3766 offset += PAGE_SIZE;
3767 update_nr_written(wbc, 1);
3768 unlock_page(p);
3769 }
3770
3771 if (unlikely(ret)) {
3772 for (; i < num_pages; i++) {
3773 struct page *p = eb->pages[i];
3774 clear_page_dirty_for_io(p);
3775 unlock_page(p);
3776 }
3777 }
3778
3779 return ret;
3780 }
3781
3782 int btree_write_cache_pages(struct address_space *mapping,
3783 struct writeback_control *wbc)
3784 {
3785 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3786 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3787 struct extent_buffer *eb, *prev_eb = NULL;
3788 struct extent_page_data epd = {
3789 .bio = NULL,
3790 .tree = tree,
3791 .extent_locked = 0,
3792 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3793 .bio_flags = 0,
3794 };
3795 int ret = 0;
3796 int done = 0;
3797 int nr_to_write_done = 0;
3798 struct pagevec pvec;
3799 int nr_pages;
3800 pgoff_t index;
3801 pgoff_t end; /* Inclusive */
3802 int scanned = 0;
3803 int tag;
3804
3805 pagevec_init(&pvec, 0);
3806 if (wbc->range_cyclic) {
3807 index = mapping->writeback_index; /* Start from prev offset */
3808 end = -1;
3809 } else {
3810 index = wbc->range_start >> PAGE_SHIFT;
3811 end = wbc->range_end >> PAGE_SHIFT;
3812 scanned = 1;
3813 }
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag = PAGECACHE_TAG_TOWRITE;
3816 else
3817 tag = PAGECACHE_TAG_DIRTY;
3818 retry:
3819 if (wbc->sync_mode == WB_SYNC_ALL)
3820 tag_pages_for_writeback(mapping, index, end);
3821 while (!done && !nr_to_write_done && (index <= end) &&
3822 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3823 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3824 unsigned i;
3825
3826 scanned = 1;
3827 for (i = 0; i < nr_pages; i++) {
3828 struct page *page = pvec.pages[i];
3829
3830 if (!PagePrivate(page))
3831 continue;
3832
3833 if (!wbc->range_cyclic && page->index > end) {
3834 done = 1;
3835 break;
3836 }
3837
3838 spin_lock(&mapping->private_lock);
3839 if (!PagePrivate(page)) {
3840 spin_unlock(&mapping->private_lock);
3841 continue;
3842 }
3843
3844 eb = (struct extent_buffer *)page->private;
3845
3846 /*
3847 * Shouldn't happen and normally this would be a BUG_ON
3848 * but no sense in crashing the users box for something
3849 * we can survive anyway.
3850 */
3851 if (WARN_ON(!eb)) {
3852 spin_unlock(&mapping->private_lock);
3853 continue;
3854 }
3855
3856 if (eb == prev_eb) {
3857 spin_unlock(&mapping->private_lock);
3858 continue;
3859 }
3860
3861 ret = atomic_inc_not_zero(&eb->refs);
3862 spin_unlock(&mapping->private_lock);
3863 if (!ret)
3864 continue;
3865
3866 prev_eb = eb;
3867 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3868 if (!ret) {
3869 free_extent_buffer(eb);
3870 continue;
3871 }
3872
3873 ret = write_one_eb(eb, fs_info, wbc, &epd);
3874 if (ret) {
3875 done = 1;
3876 free_extent_buffer(eb);
3877 break;
3878 }
3879 free_extent_buffer(eb);
3880
3881 /*
3882 * the filesystem may choose to bump up nr_to_write.
3883 * We have to make sure to honor the new nr_to_write
3884 * at any time
3885 */
3886 nr_to_write_done = wbc->nr_to_write <= 0;
3887 }
3888 pagevec_release(&pvec);
3889 cond_resched();
3890 }
3891 if (!scanned && !done) {
3892 /*
3893 * We hit the last page and there is more work to be done: wrap
3894 * back to the start of the file
3895 */
3896 scanned = 1;
3897 index = 0;
3898 goto retry;
3899 }
3900 flush_write_bio(&epd);
3901 return ret;
3902 }
3903
3904 /**
3905 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3906 * @mapping: address space structure to write
3907 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3908 * @writepage: function called for each page
3909 * @data: data passed to writepage function
3910 *
3911 * If a page is already under I/O, write_cache_pages() skips it, even
3912 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3913 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3914 * and msync() need to guarantee that all the data which was dirty at the time
3915 * the call was made get new I/O started against them. If wbc->sync_mode is
3916 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3917 * existing IO to complete.
3918 */
3919 static int extent_write_cache_pages(struct address_space *mapping,
3920 struct writeback_control *wbc,
3921 writepage_t writepage, void *data,
3922 void (*flush_fn)(void *))
3923 {
3924 struct inode *inode = mapping->host;
3925 int ret = 0;
3926 int done = 0;
3927 int nr_to_write_done = 0;
3928 struct pagevec pvec;
3929 int nr_pages;
3930 pgoff_t index;
3931 pgoff_t end; /* Inclusive */
3932 pgoff_t done_index;
3933 int range_whole = 0;
3934 int scanned = 0;
3935 int tag;
3936
3937 /*
3938 * We have to hold onto the inode so that ordered extents can do their
3939 * work when the IO finishes. The alternative to this is failing to add
3940 * an ordered extent if the igrab() fails there and that is a huge pain
3941 * to deal with, so instead just hold onto the inode throughout the
3942 * writepages operation. If it fails here we are freeing up the inode
3943 * anyway and we'd rather not waste our time writing out stuff that is
3944 * going to be truncated anyway.
3945 */
3946 if (!igrab(inode))
3947 return 0;
3948
3949 pagevec_init(&pvec, 0);
3950 if (wbc->range_cyclic) {
3951 index = mapping->writeback_index; /* Start from prev offset */
3952 end = -1;
3953 } else {
3954 index = wbc->range_start >> PAGE_SHIFT;
3955 end = wbc->range_end >> PAGE_SHIFT;
3956 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3957 range_whole = 1;
3958 scanned = 1;
3959 }
3960 if (wbc->sync_mode == WB_SYNC_ALL)
3961 tag = PAGECACHE_TAG_TOWRITE;
3962 else
3963 tag = PAGECACHE_TAG_DIRTY;
3964 retry:
3965 if (wbc->sync_mode == WB_SYNC_ALL)
3966 tag_pages_for_writeback(mapping, index, end);
3967 done_index = index;
3968 while (!done && !nr_to_write_done && (index <= end) &&
3969 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3970 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3971 unsigned i;
3972
3973 scanned = 1;
3974 for (i = 0; i < nr_pages; i++) {
3975 struct page *page = pvec.pages[i];
3976
3977 done_index = page->index;
3978 /*
3979 * At this point we hold neither mapping->tree_lock nor
3980 * lock on the page itself: the page may be truncated or
3981 * invalidated (changing page->mapping to NULL), or even
3982 * swizzled back from swapper_space to tmpfs file
3983 * mapping
3984 */
3985 if (!trylock_page(page)) {
3986 flush_fn(data);
3987 lock_page(page);
3988 }
3989
3990 if (unlikely(page->mapping != mapping)) {
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 if (!wbc->range_cyclic && page->index > end) {
3996 done = 1;
3997 unlock_page(page);
3998 continue;
3999 }
4000
4001 if (wbc->sync_mode != WB_SYNC_NONE) {
4002 if (PageWriteback(page))
4003 flush_fn(data);
4004 wait_on_page_writeback(page);
4005 }
4006
4007 if (PageWriteback(page) ||
4008 !clear_page_dirty_for_io(page)) {
4009 unlock_page(page);
4010 continue;
4011 }
4012
4013 ret = (*writepage)(page, wbc, data);
4014
4015 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4016 unlock_page(page);
4017 ret = 0;
4018 }
4019 if (ret < 0) {
4020 /*
4021 * done_index is set past this page,
4022 * so media errors will not choke
4023 * background writeout for the entire
4024 * file. This has consequences for
4025 * range_cyclic semantics (ie. it may
4026 * not be suitable for data integrity
4027 * writeout).
4028 */
4029 done_index = page->index + 1;
4030 done = 1;
4031 break;
4032 }
4033
4034 /*
4035 * the filesystem may choose to bump up nr_to_write.
4036 * We have to make sure to honor the new nr_to_write
4037 * at any time
4038 */
4039 nr_to_write_done = wbc->nr_to_write <= 0;
4040 }
4041 pagevec_release(&pvec);
4042 cond_resched();
4043 }
4044 if (!scanned && !done) {
4045 /*
4046 * We hit the last page and there is more work to be done: wrap
4047 * back to the start of the file
4048 */
4049 scanned = 1;
4050 index = 0;
4051 goto retry;
4052 }
4053
4054 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4055 mapping->writeback_index = done_index;
4056
4057 btrfs_add_delayed_iput(inode);
4058 return ret;
4059 }
4060
4061 static void flush_epd_write_bio(struct extent_page_data *epd)
4062 {
4063 if (epd->bio) {
4064 int ret;
4065
4066 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4067 BUG_ON(ret < 0); /* -ENOMEM */
4068 epd->bio = NULL;
4069 }
4070 }
4071
4072 static noinline void flush_write_bio(void *data)
4073 {
4074 struct extent_page_data *epd = data;
4075 flush_epd_write_bio(epd);
4076 }
4077
4078 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4079 get_extent_t *get_extent,
4080 struct writeback_control *wbc)
4081 {
4082 int ret;
4083 struct extent_page_data epd = {
4084 .bio = NULL,
4085 .tree = tree,
4086 .get_extent = get_extent,
4087 .extent_locked = 0,
4088 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4089 .bio_flags = 0,
4090 };
4091
4092 ret = __extent_writepage(page, wbc, &epd);
4093
4094 flush_epd_write_bio(&epd);
4095 return ret;
4096 }
4097
4098 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4099 u64 start, u64 end, get_extent_t *get_extent,
4100 int mode)
4101 {
4102 int ret = 0;
4103 struct address_space *mapping = inode->i_mapping;
4104 struct page *page;
4105 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4106 PAGE_SHIFT;
4107
4108 struct extent_page_data epd = {
4109 .bio = NULL,
4110 .tree = tree,
4111 .get_extent = get_extent,
4112 .extent_locked = 1,
4113 .sync_io = mode == WB_SYNC_ALL,
4114 .bio_flags = 0,
4115 };
4116 struct writeback_control wbc_writepages = {
4117 .sync_mode = mode,
4118 .nr_to_write = nr_pages * 2,
4119 .range_start = start,
4120 .range_end = end + 1,
4121 };
4122
4123 while (start <= end) {
4124 page = find_get_page(mapping, start >> PAGE_SHIFT);
4125 if (clear_page_dirty_for_io(page))
4126 ret = __extent_writepage(page, &wbc_writepages, &epd);
4127 else {
4128 if (tree->ops && tree->ops->writepage_end_io_hook)
4129 tree->ops->writepage_end_io_hook(page, start,
4130 start + PAGE_SIZE - 1,
4131 NULL, 1);
4132 unlock_page(page);
4133 }
4134 put_page(page);
4135 start += PAGE_SIZE;
4136 }
4137
4138 flush_epd_write_bio(&epd);
4139 return ret;
4140 }
4141
4142 int extent_writepages(struct extent_io_tree *tree,
4143 struct address_space *mapping,
4144 get_extent_t *get_extent,
4145 struct writeback_control *wbc)
4146 {
4147 int ret = 0;
4148 struct extent_page_data epd = {
4149 .bio = NULL,
4150 .tree = tree,
4151 .get_extent = get_extent,
4152 .extent_locked = 0,
4153 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4154 .bio_flags = 0,
4155 };
4156
4157 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4158 flush_write_bio);
4159 flush_epd_write_bio(&epd);
4160 return ret;
4161 }
4162
4163 int extent_readpages(struct extent_io_tree *tree,
4164 struct address_space *mapping,
4165 struct list_head *pages, unsigned nr_pages,
4166 get_extent_t get_extent)
4167 {
4168 struct bio *bio = NULL;
4169 unsigned page_idx;
4170 unsigned long bio_flags = 0;
4171 struct page *pagepool[16];
4172 struct page *page;
4173 struct extent_map *em_cached = NULL;
4174 int nr = 0;
4175 u64 prev_em_start = (u64)-1;
4176
4177 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4178 page = list_entry(pages->prev, struct page, lru);
4179
4180 prefetchw(&page->flags);
4181 list_del(&page->lru);
4182 if (add_to_page_cache_lru(page, mapping,
4183 page->index,
4184 readahead_gfp_mask(mapping))) {
4185 put_page(page);
4186 continue;
4187 }
4188
4189 pagepool[nr++] = page;
4190 if (nr < ARRAY_SIZE(pagepool))
4191 continue;
4192 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4193 &bio, 0, &bio_flags, &prev_em_start);
4194 nr = 0;
4195 }
4196 if (nr)
4197 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4198 &bio, 0, &bio_flags, &prev_em_start);
4199
4200 if (em_cached)
4201 free_extent_map(em_cached);
4202
4203 BUG_ON(!list_empty(pages));
4204 if (bio)
4205 return submit_one_bio(bio, 0, bio_flags);
4206 return 0;
4207 }
4208
4209 /*
4210 * basic invalidatepage code, this waits on any locked or writeback
4211 * ranges corresponding to the page, and then deletes any extent state
4212 * records from the tree
4213 */
4214 int extent_invalidatepage(struct extent_io_tree *tree,
4215 struct page *page, unsigned long offset)
4216 {
4217 struct extent_state *cached_state = NULL;
4218 u64 start = page_offset(page);
4219 u64 end = start + PAGE_SIZE - 1;
4220 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4221
4222 start += ALIGN(offset, blocksize);
4223 if (start > end)
4224 return 0;
4225
4226 lock_extent_bits(tree, start, end, &cached_state);
4227 wait_on_page_writeback(page);
4228 clear_extent_bit(tree, start, end,
4229 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4230 EXTENT_DO_ACCOUNTING,
4231 1, 1, &cached_state, GFP_NOFS);
4232 return 0;
4233 }
4234
4235 /*
4236 * a helper for releasepage, this tests for areas of the page that
4237 * are locked or under IO and drops the related state bits if it is safe
4238 * to drop the page.
4239 */
4240 static int try_release_extent_state(struct extent_map_tree *map,
4241 struct extent_io_tree *tree,
4242 struct page *page, gfp_t mask)
4243 {
4244 u64 start = page_offset(page);
4245 u64 end = start + PAGE_SIZE - 1;
4246 int ret = 1;
4247
4248 if (test_range_bit(tree, start, end,
4249 EXTENT_IOBITS, 0, NULL))
4250 ret = 0;
4251 else {
4252 /*
4253 * at this point we can safely clear everything except the
4254 * locked bit and the nodatasum bit
4255 */
4256 ret = clear_extent_bit(tree, start, end,
4257 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4258 0, 0, NULL, mask);
4259
4260 /* if clear_extent_bit failed for enomem reasons,
4261 * we can't allow the release to continue.
4262 */
4263 if (ret < 0)
4264 ret = 0;
4265 else
4266 ret = 1;
4267 }
4268 return ret;
4269 }
4270
4271 /*
4272 * a helper for releasepage. As long as there are no locked extents
4273 * in the range corresponding to the page, both state records and extent
4274 * map records are removed
4275 */
4276 int try_release_extent_mapping(struct extent_map_tree *map,
4277 struct extent_io_tree *tree, struct page *page,
4278 gfp_t mask)
4279 {
4280 struct extent_map *em;
4281 u64 start = page_offset(page);
4282 u64 end = start + PAGE_SIZE - 1;
4283
4284 if (gfpflags_allow_blocking(mask) &&
4285 page->mapping->host->i_size > SZ_16M) {
4286 u64 len;
4287 while (start <= end) {
4288 len = end - start + 1;
4289 write_lock(&map->lock);
4290 em = lookup_extent_mapping(map, start, len);
4291 if (!em) {
4292 write_unlock(&map->lock);
4293 break;
4294 }
4295 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4296 em->start != start) {
4297 write_unlock(&map->lock);
4298 free_extent_map(em);
4299 break;
4300 }
4301 if (!test_range_bit(tree, em->start,
4302 extent_map_end(em) - 1,
4303 EXTENT_LOCKED | EXTENT_WRITEBACK,
4304 0, NULL)) {
4305 remove_extent_mapping(map, em);
4306 /* once for the rb tree */
4307 free_extent_map(em);
4308 }
4309 start = extent_map_end(em);
4310 write_unlock(&map->lock);
4311
4312 /* once for us */
4313 free_extent_map(em);
4314 }
4315 }
4316 return try_release_extent_state(map, tree, page, mask);
4317 }
4318
4319 /*
4320 * helper function for fiemap, which doesn't want to see any holes.
4321 * This maps until we find something past 'last'
4322 */
4323 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4324 u64 offset,
4325 u64 last,
4326 get_extent_t *get_extent)
4327 {
4328 u64 sectorsize = btrfs_inode_sectorsize(inode);
4329 struct extent_map *em;
4330 u64 len;
4331
4332 if (offset >= last)
4333 return NULL;
4334
4335 while (1) {
4336 len = last - offset;
4337 if (len == 0)
4338 break;
4339 len = ALIGN(len, sectorsize);
4340 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4341 if (IS_ERR_OR_NULL(em))
4342 return em;
4343
4344 /* if this isn't a hole return it */
4345 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4346 em->block_start != EXTENT_MAP_HOLE) {
4347 return em;
4348 }
4349
4350 /* this is a hole, advance to the next extent */
4351 offset = extent_map_end(em);
4352 free_extent_map(em);
4353 if (offset >= last)
4354 break;
4355 }
4356 return NULL;
4357 }
4358
4359 /*
4360 * To cache previous fiemap extent
4361 *
4362 * Will be used for merging fiemap extent
4363 */
4364 struct fiemap_cache {
4365 u64 offset;
4366 u64 phys;
4367 u64 len;
4368 u32 flags;
4369 bool cached;
4370 };
4371
4372 /*
4373 * Helper to submit fiemap extent.
4374 *
4375 * Will try to merge current fiemap extent specified by @offset, @phys,
4376 * @len and @flags with cached one.
4377 * And only when we fails to merge, cached one will be submitted as
4378 * fiemap extent.
4379 *
4380 * Return value is the same as fiemap_fill_next_extent().
4381 */
4382 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4383 struct fiemap_cache *cache,
4384 u64 offset, u64 phys, u64 len, u32 flags)
4385 {
4386 int ret = 0;
4387
4388 if (!cache->cached)
4389 goto assign;
4390
4391 /*
4392 * Sanity check, extent_fiemap() should have ensured that new
4393 * fiemap extent won't overlap with cahced one.
4394 * Not recoverable.
4395 *
4396 * NOTE: Physical address can overlap, due to compression
4397 */
4398 if (cache->offset + cache->len > offset) {
4399 WARN_ON(1);
4400 return -EINVAL;
4401 }
4402
4403 /*
4404 * Only merges fiemap extents if
4405 * 1) Their logical addresses are continuous
4406 *
4407 * 2) Their physical addresses are continuous
4408 * So truly compressed (physical size smaller than logical size)
4409 * extents won't get merged with each other
4410 *
4411 * 3) Share same flags except FIEMAP_EXTENT_LAST
4412 * So regular extent won't get merged with prealloc extent
4413 */
4414 if (cache->offset + cache->len == offset &&
4415 cache->phys + cache->len == phys &&
4416 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4417 (flags & ~FIEMAP_EXTENT_LAST)) {
4418 cache->len += len;
4419 cache->flags |= flags;
4420 goto try_submit_last;
4421 }
4422
4423 /* Not mergeable, need to submit cached one */
4424 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4425 cache->len, cache->flags);
4426 cache->cached = false;
4427 if (ret)
4428 return ret;
4429 assign:
4430 cache->cached = true;
4431 cache->offset = offset;
4432 cache->phys = phys;
4433 cache->len = len;
4434 cache->flags = flags;
4435 try_submit_last:
4436 if (cache->flags & FIEMAP_EXTENT_LAST) {
4437 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4438 cache->phys, cache->len, cache->flags);
4439 cache->cached = false;
4440 }
4441 return ret;
4442 }
4443
4444 /*
4445 * Emit last fiemap cache
4446 *
4447 * The last fiemap cache may still be cached in the following case:
4448 * 0 4k 8k
4449 * |<- Fiemap range ->|
4450 * |<------------ First extent ----------->|
4451 *
4452 * In this case, the first extent range will be cached but not emitted.
4453 * So we must emit it before ending extent_fiemap().
4454 */
4455 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4456 struct fiemap_extent_info *fieinfo,
4457 struct fiemap_cache *cache)
4458 {
4459 int ret;
4460
4461 if (!cache->cached)
4462 return 0;
4463
4464 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4465 cache->len, cache->flags);
4466 cache->cached = false;
4467 if (ret > 0)
4468 ret = 0;
4469 return ret;
4470 }
4471
4472 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4473 __u64 start, __u64 len, get_extent_t *get_extent)
4474 {
4475 int ret = 0;
4476 u64 off = start;
4477 u64 max = start + len;
4478 u32 flags = 0;
4479 u32 found_type;
4480 u64 last;
4481 u64 last_for_get_extent = 0;
4482 u64 disko = 0;
4483 u64 isize = i_size_read(inode);
4484 struct btrfs_key found_key;
4485 struct extent_map *em = NULL;
4486 struct extent_state *cached_state = NULL;
4487 struct btrfs_path *path;
4488 struct btrfs_root *root = BTRFS_I(inode)->root;
4489 struct fiemap_cache cache = { 0 };
4490 int end = 0;
4491 u64 em_start = 0;
4492 u64 em_len = 0;
4493 u64 em_end = 0;
4494
4495 if (len == 0)
4496 return -EINVAL;
4497
4498 path = btrfs_alloc_path();
4499 if (!path)
4500 return -ENOMEM;
4501 path->leave_spinning = 1;
4502
4503 start = round_down(start, btrfs_inode_sectorsize(inode));
4504 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4505
4506 /*
4507 * lookup the last file extent. We're not using i_size here
4508 * because there might be preallocation past i_size
4509 */
4510 ret = btrfs_lookup_file_extent(NULL, root, path,
4511 btrfs_ino(BTRFS_I(inode)), -1, 0);
4512 if (ret < 0) {
4513 btrfs_free_path(path);
4514 return ret;
4515 } else {
4516 WARN_ON(!ret);
4517 if (ret == 1)
4518 ret = 0;
4519 }
4520
4521 path->slots[0]--;
4522 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4523 found_type = found_key.type;
4524
4525 /* No extents, but there might be delalloc bits */
4526 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4527 found_type != BTRFS_EXTENT_DATA_KEY) {
4528 /* have to trust i_size as the end */
4529 last = (u64)-1;
4530 last_for_get_extent = isize;
4531 } else {
4532 /*
4533 * remember the start of the last extent. There are a
4534 * bunch of different factors that go into the length of the
4535 * extent, so its much less complex to remember where it started
4536 */
4537 last = found_key.offset;
4538 last_for_get_extent = last + 1;
4539 }
4540 btrfs_release_path(path);
4541
4542 /*
4543 * we might have some extents allocated but more delalloc past those
4544 * extents. so, we trust isize unless the start of the last extent is
4545 * beyond isize
4546 */
4547 if (last < isize) {
4548 last = (u64)-1;
4549 last_for_get_extent = isize;
4550 }
4551
4552 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4553 &cached_state);
4554
4555 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4556 get_extent);
4557 if (!em)
4558 goto out;
4559 if (IS_ERR(em)) {
4560 ret = PTR_ERR(em);
4561 goto out;
4562 }
4563
4564 while (!end) {
4565 u64 offset_in_extent = 0;
4566
4567 /* break if the extent we found is outside the range */
4568 if (em->start >= max || extent_map_end(em) < off)
4569 break;
4570
4571 /*
4572 * get_extent may return an extent that starts before our
4573 * requested range. We have to make sure the ranges
4574 * we return to fiemap always move forward and don't
4575 * overlap, so adjust the offsets here
4576 */
4577 em_start = max(em->start, off);
4578
4579 /*
4580 * record the offset from the start of the extent
4581 * for adjusting the disk offset below. Only do this if the
4582 * extent isn't compressed since our in ram offset may be past
4583 * what we have actually allocated on disk.
4584 */
4585 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4586 offset_in_extent = em_start - em->start;
4587 em_end = extent_map_end(em);
4588 em_len = em_end - em_start;
4589 disko = 0;
4590 flags = 0;
4591
4592 /*
4593 * bump off for our next call to get_extent
4594 */
4595 off = extent_map_end(em);
4596 if (off >= max)
4597 end = 1;
4598
4599 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4600 end = 1;
4601 flags |= FIEMAP_EXTENT_LAST;
4602 } else if (em->block_start == EXTENT_MAP_INLINE) {
4603 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4604 FIEMAP_EXTENT_NOT_ALIGNED);
4605 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4606 flags |= (FIEMAP_EXTENT_DELALLOC |
4607 FIEMAP_EXTENT_UNKNOWN);
4608 } else if (fieinfo->fi_extents_max) {
4609 u64 bytenr = em->block_start -
4610 (em->start - em->orig_start);
4611
4612 disko = em->block_start + offset_in_extent;
4613
4614 /*
4615 * As btrfs supports shared space, this information
4616 * can be exported to userspace tools via
4617 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4618 * then we're just getting a count and we can skip the
4619 * lookup stuff.
4620 */
4621 ret = btrfs_check_shared(root,
4622 btrfs_ino(BTRFS_I(inode)),
4623 bytenr);
4624 if (ret < 0)
4625 goto out_free;
4626 if (ret)
4627 flags |= FIEMAP_EXTENT_SHARED;
4628 ret = 0;
4629 }
4630 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4631 flags |= FIEMAP_EXTENT_ENCODED;
4632 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4633 flags |= FIEMAP_EXTENT_UNWRITTEN;
4634
4635 free_extent_map(em);
4636 em = NULL;
4637 if ((em_start >= last) || em_len == (u64)-1 ||
4638 (last == (u64)-1 && isize <= em_end)) {
4639 flags |= FIEMAP_EXTENT_LAST;
4640 end = 1;
4641 }
4642
4643 /* now scan forward to see if this is really the last extent. */
4644 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4645 get_extent);
4646 if (IS_ERR(em)) {
4647 ret = PTR_ERR(em);
4648 goto out;
4649 }
4650 if (!em) {
4651 flags |= FIEMAP_EXTENT_LAST;
4652 end = 1;
4653 }
4654 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4655 em_len, flags);
4656 if (ret) {
4657 if (ret == 1)
4658 ret = 0;
4659 goto out_free;
4660 }
4661 }
4662 out_free:
4663 if (!ret)
4664 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4665 free_extent_map(em);
4666 out:
4667 btrfs_free_path(path);
4668 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4669 &cached_state, GFP_NOFS);
4670 return ret;
4671 }
4672
4673 static void __free_extent_buffer(struct extent_buffer *eb)
4674 {
4675 btrfs_leak_debug_del(&eb->leak_list);
4676 kmem_cache_free(extent_buffer_cache, eb);
4677 }
4678
4679 int extent_buffer_under_io(struct extent_buffer *eb)
4680 {
4681 return (atomic_read(&eb->io_pages) ||
4682 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4683 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4684 }
4685
4686 /*
4687 * Helper for releasing extent buffer page.
4688 */
4689 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4690 {
4691 unsigned long index;
4692 struct page *page;
4693 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4694
4695 BUG_ON(extent_buffer_under_io(eb));
4696
4697 index = num_extent_pages(eb->start, eb->len);
4698 if (index == 0)
4699 return;
4700
4701 do {
4702 index--;
4703 page = eb->pages[index];
4704 if (!page)
4705 continue;
4706 if (mapped)
4707 spin_lock(&page->mapping->private_lock);
4708 /*
4709 * We do this since we'll remove the pages after we've
4710 * removed the eb from the radix tree, so we could race
4711 * and have this page now attached to the new eb. So
4712 * only clear page_private if it's still connected to
4713 * this eb.
4714 */
4715 if (PagePrivate(page) &&
4716 page->private == (unsigned long)eb) {
4717 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4718 BUG_ON(PageDirty(page));
4719 BUG_ON(PageWriteback(page));
4720 /*
4721 * We need to make sure we haven't be attached
4722 * to a new eb.
4723 */
4724 ClearPagePrivate(page);
4725 set_page_private(page, 0);
4726 /* One for the page private */
4727 put_page(page);
4728 }
4729
4730 if (mapped)
4731 spin_unlock(&page->mapping->private_lock);
4732
4733 /* One for when we allocated the page */
4734 put_page(page);
4735 } while (index != 0);
4736 }
4737
4738 /*
4739 * Helper for releasing the extent buffer.
4740 */
4741 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4742 {
4743 btrfs_release_extent_buffer_page(eb);
4744 __free_extent_buffer(eb);
4745 }
4746
4747 static struct extent_buffer *
4748 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4749 unsigned long len)
4750 {
4751 struct extent_buffer *eb = NULL;
4752
4753 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4754 eb->start = start;
4755 eb->len = len;
4756 eb->fs_info = fs_info;
4757 eb->bflags = 0;
4758 rwlock_init(&eb->lock);
4759 atomic_set(&eb->write_locks, 0);
4760 atomic_set(&eb->read_locks, 0);
4761 atomic_set(&eb->blocking_readers, 0);
4762 atomic_set(&eb->blocking_writers, 0);
4763 atomic_set(&eb->spinning_readers, 0);
4764 atomic_set(&eb->spinning_writers, 0);
4765 eb->lock_nested = 0;
4766 init_waitqueue_head(&eb->write_lock_wq);
4767 init_waitqueue_head(&eb->read_lock_wq);
4768
4769 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4770
4771 spin_lock_init(&eb->refs_lock);
4772 atomic_set(&eb->refs, 1);
4773 atomic_set(&eb->io_pages, 0);
4774
4775 /*
4776 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4777 */
4778 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4779 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4780 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4781
4782 return eb;
4783 }
4784
4785 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4786 {
4787 unsigned long i;
4788 struct page *p;
4789 struct extent_buffer *new;
4790 unsigned long num_pages = num_extent_pages(src->start, src->len);
4791
4792 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4793 if (new == NULL)
4794 return NULL;
4795
4796 for (i = 0; i < num_pages; i++) {
4797 p = alloc_page(GFP_NOFS);
4798 if (!p) {
4799 btrfs_release_extent_buffer(new);
4800 return NULL;
4801 }
4802 attach_extent_buffer_page(new, p);
4803 WARN_ON(PageDirty(p));
4804 SetPageUptodate(p);
4805 new->pages[i] = p;
4806 copy_page(page_address(p), page_address(src->pages[i]));
4807 }
4808
4809 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4810 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4811
4812 return new;
4813 }
4814
4815 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4816 u64 start, unsigned long len)
4817 {
4818 struct extent_buffer *eb;
4819 unsigned long num_pages;
4820 unsigned long i;
4821
4822 num_pages = num_extent_pages(start, len);
4823
4824 eb = __alloc_extent_buffer(fs_info, start, len);
4825 if (!eb)
4826 return NULL;
4827
4828 for (i = 0; i < num_pages; i++) {
4829 eb->pages[i] = alloc_page(GFP_NOFS);
4830 if (!eb->pages[i])
4831 goto err;
4832 }
4833 set_extent_buffer_uptodate(eb);
4834 btrfs_set_header_nritems(eb, 0);
4835 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4836
4837 return eb;
4838 err:
4839 for (; i > 0; i--)
4840 __free_page(eb->pages[i - 1]);
4841 __free_extent_buffer(eb);
4842 return NULL;
4843 }
4844
4845 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4846 u64 start)
4847 {
4848 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4849 }
4850
4851 static void check_buffer_tree_ref(struct extent_buffer *eb)
4852 {
4853 int refs;
4854 /* the ref bit is tricky. We have to make sure it is set
4855 * if we have the buffer dirty. Otherwise the
4856 * code to free a buffer can end up dropping a dirty
4857 * page
4858 *
4859 * Once the ref bit is set, it won't go away while the
4860 * buffer is dirty or in writeback, and it also won't
4861 * go away while we have the reference count on the
4862 * eb bumped.
4863 *
4864 * We can't just set the ref bit without bumping the
4865 * ref on the eb because free_extent_buffer might
4866 * see the ref bit and try to clear it. If this happens
4867 * free_extent_buffer might end up dropping our original
4868 * ref by mistake and freeing the page before we are able
4869 * to add one more ref.
4870 *
4871 * So bump the ref count first, then set the bit. If someone
4872 * beat us to it, drop the ref we added.
4873 */
4874 refs = atomic_read(&eb->refs);
4875 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4876 return;
4877
4878 spin_lock(&eb->refs_lock);
4879 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4880 atomic_inc(&eb->refs);
4881 spin_unlock(&eb->refs_lock);
4882 }
4883
4884 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4885 struct page *accessed)
4886 {
4887 unsigned long num_pages, i;
4888
4889 check_buffer_tree_ref(eb);
4890
4891 num_pages = num_extent_pages(eb->start, eb->len);
4892 for (i = 0; i < num_pages; i++) {
4893 struct page *p = eb->pages[i];
4894
4895 if (p != accessed)
4896 mark_page_accessed(p);
4897 }
4898 }
4899
4900 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4901 u64 start)
4902 {
4903 struct extent_buffer *eb;
4904
4905 rcu_read_lock();
4906 eb = radix_tree_lookup(&fs_info->buffer_radix,
4907 start >> PAGE_SHIFT);
4908 if (eb && atomic_inc_not_zero(&eb->refs)) {
4909 rcu_read_unlock();
4910 /*
4911 * Lock our eb's refs_lock to avoid races with
4912 * free_extent_buffer. When we get our eb it might be flagged
4913 * with EXTENT_BUFFER_STALE and another task running
4914 * free_extent_buffer might have seen that flag set,
4915 * eb->refs == 2, that the buffer isn't under IO (dirty and
4916 * writeback flags not set) and it's still in the tree (flag
4917 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4918 * of decrementing the extent buffer's reference count twice.
4919 * So here we could race and increment the eb's reference count,
4920 * clear its stale flag, mark it as dirty and drop our reference
4921 * before the other task finishes executing free_extent_buffer,
4922 * which would later result in an attempt to free an extent
4923 * buffer that is dirty.
4924 */
4925 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4926 spin_lock(&eb->refs_lock);
4927 spin_unlock(&eb->refs_lock);
4928 }
4929 mark_extent_buffer_accessed(eb, NULL);
4930 return eb;
4931 }
4932 rcu_read_unlock();
4933
4934 return NULL;
4935 }
4936
4937 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4938 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4939 u64 start)
4940 {
4941 struct extent_buffer *eb, *exists = NULL;
4942 int ret;
4943
4944 eb = find_extent_buffer(fs_info, start);
4945 if (eb)
4946 return eb;
4947 eb = alloc_dummy_extent_buffer(fs_info, start);
4948 if (!eb)
4949 return NULL;
4950 eb->fs_info = fs_info;
4951 again:
4952 ret = radix_tree_preload(GFP_NOFS);
4953 if (ret)
4954 goto free_eb;
4955 spin_lock(&fs_info->buffer_lock);
4956 ret = radix_tree_insert(&fs_info->buffer_radix,
4957 start >> PAGE_SHIFT, eb);
4958 spin_unlock(&fs_info->buffer_lock);
4959 radix_tree_preload_end();
4960 if (ret == -EEXIST) {
4961 exists = find_extent_buffer(fs_info, start);
4962 if (exists)
4963 goto free_eb;
4964 else
4965 goto again;
4966 }
4967 check_buffer_tree_ref(eb);
4968 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4969
4970 /*
4971 * We will free dummy extent buffer's if they come into
4972 * free_extent_buffer with a ref count of 2, but if we are using this we
4973 * want the buffers to stay in memory until we're done with them, so
4974 * bump the ref count again.
4975 */
4976 atomic_inc(&eb->refs);
4977 return eb;
4978 free_eb:
4979 btrfs_release_extent_buffer(eb);
4980 return exists;
4981 }
4982 #endif
4983
4984 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4985 u64 start)
4986 {
4987 unsigned long len = fs_info->nodesize;
4988 unsigned long num_pages = num_extent_pages(start, len);
4989 unsigned long i;
4990 unsigned long index = start >> PAGE_SHIFT;
4991 struct extent_buffer *eb;
4992 struct extent_buffer *exists = NULL;
4993 struct page *p;
4994 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4995 int uptodate = 1;
4996 int ret;
4997
4998 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4999 btrfs_err(fs_info, "bad tree block start %llu", start);
5000 return ERR_PTR(-EINVAL);
5001 }
5002
5003 eb = find_extent_buffer(fs_info, start);
5004 if (eb)
5005 return eb;
5006
5007 eb = __alloc_extent_buffer(fs_info, start, len);
5008 if (!eb)
5009 return ERR_PTR(-ENOMEM);
5010
5011 for (i = 0; i < num_pages; i++, index++) {
5012 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5013 if (!p) {
5014 exists = ERR_PTR(-ENOMEM);
5015 goto free_eb;
5016 }
5017
5018 spin_lock(&mapping->private_lock);
5019 if (PagePrivate(p)) {
5020 /*
5021 * We could have already allocated an eb for this page
5022 * and attached one so lets see if we can get a ref on
5023 * the existing eb, and if we can we know it's good and
5024 * we can just return that one, else we know we can just
5025 * overwrite page->private.
5026 */
5027 exists = (struct extent_buffer *)p->private;
5028 if (atomic_inc_not_zero(&exists->refs)) {
5029 spin_unlock(&mapping->private_lock);
5030 unlock_page(p);
5031 put_page(p);
5032 mark_extent_buffer_accessed(exists, p);
5033 goto free_eb;
5034 }
5035 exists = NULL;
5036
5037 /*
5038 * Do this so attach doesn't complain and we need to
5039 * drop the ref the old guy had.
5040 */
5041 ClearPagePrivate(p);
5042 WARN_ON(PageDirty(p));
5043 put_page(p);
5044 }
5045 attach_extent_buffer_page(eb, p);
5046 spin_unlock(&mapping->private_lock);
5047 WARN_ON(PageDirty(p));
5048 eb->pages[i] = p;
5049 if (!PageUptodate(p))
5050 uptodate = 0;
5051
5052 /*
5053 * see below about how we avoid a nasty race with release page
5054 * and why we unlock later
5055 */
5056 }
5057 if (uptodate)
5058 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5059 again:
5060 ret = radix_tree_preload(GFP_NOFS);
5061 if (ret) {
5062 exists = ERR_PTR(ret);
5063 goto free_eb;
5064 }
5065
5066 spin_lock(&fs_info->buffer_lock);
5067 ret = radix_tree_insert(&fs_info->buffer_radix,
5068 start >> PAGE_SHIFT, eb);
5069 spin_unlock(&fs_info->buffer_lock);
5070 radix_tree_preload_end();
5071 if (ret == -EEXIST) {
5072 exists = find_extent_buffer(fs_info, start);
5073 if (exists)
5074 goto free_eb;
5075 else
5076 goto again;
5077 }
5078 /* add one reference for the tree */
5079 check_buffer_tree_ref(eb);
5080 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5081
5082 /*
5083 * there is a race where release page may have
5084 * tried to find this extent buffer in the radix
5085 * but failed. It will tell the VM it is safe to
5086 * reclaim the, and it will clear the page private bit.
5087 * We must make sure to set the page private bit properly
5088 * after the extent buffer is in the radix tree so
5089 * it doesn't get lost
5090 */
5091 SetPageChecked(eb->pages[0]);
5092 for (i = 1; i < num_pages; i++) {
5093 p = eb->pages[i];
5094 ClearPageChecked(p);
5095 unlock_page(p);
5096 }
5097 unlock_page(eb->pages[0]);
5098 return eb;
5099
5100 free_eb:
5101 WARN_ON(!atomic_dec_and_test(&eb->refs));
5102 for (i = 0; i < num_pages; i++) {
5103 if (eb->pages[i])
5104 unlock_page(eb->pages[i]);
5105 }
5106
5107 btrfs_release_extent_buffer(eb);
5108 return exists;
5109 }
5110
5111 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5112 {
5113 struct extent_buffer *eb =
5114 container_of(head, struct extent_buffer, rcu_head);
5115
5116 __free_extent_buffer(eb);
5117 }
5118
5119 /* Expects to have eb->eb_lock already held */
5120 static int release_extent_buffer(struct extent_buffer *eb)
5121 {
5122 WARN_ON(atomic_read(&eb->refs) == 0);
5123 if (atomic_dec_and_test(&eb->refs)) {
5124 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5125 struct btrfs_fs_info *fs_info = eb->fs_info;
5126
5127 spin_unlock(&eb->refs_lock);
5128
5129 spin_lock(&fs_info->buffer_lock);
5130 radix_tree_delete(&fs_info->buffer_radix,
5131 eb->start >> PAGE_SHIFT);
5132 spin_unlock(&fs_info->buffer_lock);
5133 } else {
5134 spin_unlock(&eb->refs_lock);
5135 }
5136
5137 /* Should be safe to release our pages at this point */
5138 btrfs_release_extent_buffer_page(eb);
5139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5140 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5141 __free_extent_buffer(eb);
5142 return 1;
5143 }
5144 #endif
5145 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5146 return 1;
5147 }
5148 spin_unlock(&eb->refs_lock);
5149
5150 return 0;
5151 }
5152
5153 void free_extent_buffer(struct extent_buffer *eb)
5154 {
5155 int refs;
5156 int old;
5157 if (!eb)
5158 return;
5159
5160 while (1) {
5161 refs = atomic_read(&eb->refs);
5162 if (refs <= 3)
5163 break;
5164 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5165 if (old == refs)
5166 return;
5167 }
5168
5169 spin_lock(&eb->refs_lock);
5170 if (atomic_read(&eb->refs) == 2 &&
5171 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5172 atomic_dec(&eb->refs);
5173
5174 if (atomic_read(&eb->refs) == 2 &&
5175 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5176 !extent_buffer_under_io(eb) &&
5177 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5178 atomic_dec(&eb->refs);
5179
5180 /*
5181 * I know this is terrible, but it's temporary until we stop tracking
5182 * the uptodate bits and such for the extent buffers.
5183 */
5184 release_extent_buffer(eb);
5185 }
5186
5187 void free_extent_buffer_stale(struct extent_buffer *eb)
5188 {
5189 if (!eb)
5190 return;
5191
5192 spin_lock(&eb->refs_lock);
5193 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5194
5195 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5196 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5197 atomic_dec(&eb->refs);
5198 release_extent_buffer(eb);
5199 }
5200
5201 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5202 {
5203 unsigned long i;
5204 unsigned long num_pages;
5205 struct page *page;
5206
5207 num_pages = num_extent_pages(eb->start, eb->len);
5208
5209 for (i = 0; i < num_pages; i++) {
5210 page = eb->pages[i];
5211 if (!PageDirty(page))
5212 continue;
5213
5214 lock_page(page);
5215 WARN_ON(!PagePrivate(page));
5216
5217 clear_page_dirty_for_io(page);
5218 spin_lock_irq(&page->mapping->tree_lock);
5219 if (!PageDirty(page)) {
5220 radix_tree_tag_clear(&page->mapping->page_tree,
5221 page_index(page),
5222 PAGECACHE_TAG_DIRTY);
5223 }
5224 spin_unlock_irq(&page->mapping->tree_lock);
5225 ClearPageError(page);
5226 unlock_page(page);
5227 }
5228 WARN_ON(atomic_read(&eb->refs) == 0);
5229 }
5230
5231 int set_extent_buffer_dirty(struct extent_buffer *eb)
5232 {
5233 unsigned long i;
5234 unsigned long num_pages;
5235 int was_dirty = 0;
5236
5237 check_buffer_tree_ref(eb);
5238
5239 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5240
5241 num_pages = num_extent_pages(eb->start, eb->len);
5242 WARN_ON(atomic_read(&eb->refs) == 0);
5243 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5244
5245 for (i = 0; i < num_pages; i++)
5246 set_page_dirty(eb->pages[i]);
5247 return was_dirty;
5248 }
5249
5250 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5251 {
5252 unsigned long i;
5253 struct page *page;
5254 unsigned long num_pages;
5255
5256 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5257 num_pages = num_extent_pages(eb->start, eb->len);
5258 for (i = 0; i < num_pages; i++) {
5259 page = eb->pages[i];
5260 if (page)
5261 ClearPageUptodate(page);
5262 }
5263 }
5264
5265 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5266 {
5267 unsigned long i;
5268 struct page *page;
5269 unsigned long num_pages;
5270
5271 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5272 num_pages = num_extent_pages(eb->start, eb->len);
5273 for (i = 0; i < num_pages; i++) {
5274 page = eb->pages[i];
5275 SetPageUptodate(page);
5276 }
5277 }
5278
5279 int extent_buffer_uptodate(struct extent_buffer *eb)
5280 {
5281 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282 }
5283
5284 int read_extent_buffer_pages(struct extent_io_tree *tree,
5285 struct extent_buffer *eb, int wait,
5286 get_extent_t *get_extent, int mirror_num)
5287 {
5288 unsigned long i;
5289 struct page *page;
5290 int err;
5291 int ret = 0;
5292 int locked_pages = 0;
5293 int all_uptodate = 1;
5294 unsigned long num_pages;
5295 unsigned long num_reads = 0;
5296 struct bio *bio = NULL;
5297 unsigned long bio_flags = 0;
5298
5299 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5300 return 0;
5301
5302 num_pages = num_extent_pages(eb->start, eb->len);
5303 for (i = 0; i < num_pages; i++) {
5304 page = eb->pages[i];
5305 if (wait == WAIT_NONE) {
5306 if (!trylock_page(page))
5307 goto unlock_exit;
5308 } else {
5309 lock_page(page);
5310 }
5311 locked_pages++;
5312 }
5313 /*
5314 * We need to firstly lock all pages to make sure that
5315 * the uptodate bit of our pages won't be affected by
5316 * clear_extent_buffer_uptodate().
5317 */
5318 for (i = 0; i < num_pages; i++) {
5319 page = eb->pages[i];
5320 if (!PageUptodate(page)) {
5321 num_reads++;
5322 all_uptodate = 0;
5323 }
5324 }
5325
5326 if (all_uptodate) {
5327 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5328 goto unlock_exit;
5329 }
5330
5331 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5332 eb->read_mirror = 0;
5333 atomic_set(&eb->io_pages, num_reads);
5334 for (i = 0; i < num_pages; i++) {
5335 page = eb->pages[i];
5336
5337 if (!PageUptodate(page)) {
5338 if (ret) {
5339 atomic_dec(&eb->io_pages);
5340 unlock_page(page);
5341 continue;
5342 }
5343
5344 ClearPageError(page);
5345 err = __extent_read_full_page(tree, page,
5346 get_extent, &bio,
5347 mirror_num, &bio_flags,
5348 REQ_META);
5349 if (err) {
5350 ret = err;
5351 /*
5352 * We use &bio in above __extent_read_full_page,
5353 * so we ensure that if it returns error, the
5354 * current page fails to add itself to bio and
5355 * it's been unlocked.
5356 *
5357 * We must dec io_pages by ourselves.
5358 */
5359 atomic_dec(&eb->io_pages);
5360 }
5361 } else {
5362 unlock_page(page);
5363 }
5364 }
5365
5366 if (bio) {
5367 err = submit_one_bio(bio, mirror_num, bio_flags);
5368 if (err)
5369 return err;
5370 }
5371
5372 if (ret || wait != WAIT_COMPLETE)
5373 return ret;
5374
5375 for (i = 0; i < num_pages; i++) {
5376 page = eb->pages[i];
5377 wait_on_page_locked(page);
5378 if (!PageUptodate(page))
5379 ret = -EIO;
5380 }
5381
5382 return ret;
5383
5384 unlock_exit:
5385 while (locked_pages > 0) {
5386 locked_pages--;
5387 page = eb->pages[locked_pages];
5388 unlock_page(page);
5389 }
5390 return ret;
5391 }
5392
5393 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5394 unsigned long start, unsigned long len)
5395 {
5396 size_t cur;
5397 size_t offset;
5398 struct page *page;
5399 char *kaddr;
5400 char *dst = (char *)dstv;
5401 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5402 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5403
5404 if (start + len > eb->len) {
5405 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5406 eb->start, eb->len, start, len);
5407 memset(dst, 0, len);
5408 return;
5409 }
5410
5411 offset = (start_offset + start) & (PAGE_SIZE - 1);
5412
5413 while (len > 0) {
5414 page = eb->pages[i];
5415
5416 cur = min(len, (PAGE_SIZE - offset));
5417 kaddr = page_address(page);
5418 memcpy(dst, kaddr + offset, cur);
5419
5420 dst += cur;
5421 len -= cur;
5422 offset = 0;
5423 i++;
5424 }
5425 }
5426
5427 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5428 void __user *dstv,
5429 unsigned long start, unsigned long len)
5430 {
5431 size_t cur;
5432 size_t offset;
5433 struct page *page;
5434 char *kaddr;
5435 char __user *dst = (char __user *)dstv;
5436 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5437 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5438 int ret = 0;
5439
5440 WARN_ON(start > eb->len);
5441 WARN_ON(start + len > eb->start + eb->len);
5442
5443 offset = (start_offset + start) & (PAGE_SIZE - 1);
5444
5445 while (len > 0) {
5446 page = eb->pages[i];
5447
5448 cur = min(len, (PAGE_SIZE - offset));
5449 kaddr = page_address(page);
5450 if (copy_to_user(dst, kaddr + offset, cur)) {
5451 ret = -EFAULT;
5452 break;
5453 }
5454
5455 dst += cur;
5456 len -= cur;
5457 offset = 0;
5458 i++;
5459 }
5460
5461 return ret;
5462 }
5463
5464 /*
5465 * return 0 if the item is found within a page.
5466 * return 1 if the item spans two pages.
5467 * return -EINVAL otherwise.
5468 */
5469 int map_private_extent_buffer(const struct extent_buffer *eb,
5470 unsigned long start, unsigned long min_len,
5471 char **map, unsigned long *map_start,
5472 unsigned long *map_len)
5473 {
5474 size_t offset = start & (PAGE_SIZE - 1);
5475 char *kaddr;
5476 struct page *p;
5477 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5478 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5479 unsigned long end_i = (start_offset + start + min_len - 1) >>
5480 PAGE_SHIFT;
5481
5482 if (start + min_len > eb->len) {
5483 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5484 eb->start, eb->len, start, min_len);
5485 return -EINVAL;
5486 }
5487
5488 if (i != end_i)
5489 return 1;
5490
5491 if (i == 0) {
5492 offset = start_offset;
5493 *map_start = 0;
5494 } else {
5495 offset = 0;
5496 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5497 }
5498
5499 p = eb->pages[i];
5500 kaddr = page_address(p);
5501 *map = kaddr + offset;
5502 *map_len = PAGE_SIZE - offset;
5503 return 0;
5504 }
5505
5506 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5507 unsigned long start, unsigned long len)
5508 {
5509 size_t cur;
5510 size_t offset;
5511 struct page *page;
5512 char *kaddr;
5513 char *ptr = (char *)ptrv;
5514 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5516 int ret = 0;
5517
5518 WARN_ON(start > eb->len);
5519 WARN_ON(start + len > eb->start + eb->len);
5520
5521 offset = (start_offset + start) & (PAGE_SIZE - 1);
5522
5523 while (len > 0) {
5524 page = eb->pages[i];
5525
5526 cur = min(len, (PAGE_SIZE - offset));
5527
5528 kaddr = page_address(page);
5529 ret = memcmp(ptr, kaddr + offset, cur);
5530 if (ret)
5531 break;
5532
5533 ptr += cur;
5534 len -= cur;
5535 offset = 0;
5536 i++;
5537 }
5538 return ret;
5539 }
5540
5541 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5542 const void *srcv)
5543 {
5544 char *kaddr;
5545
5546 WARN_ON(!PageUptodate(eb->pages[0]));
5547 kaddr = page_address(eb->pages[0]);
5548 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5549 BTRFS_FSID_SIZE);
5550 }
5551
5552 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5553 {
5554 char *kaddr;
5555
5556 WARN_ON(!PageUptodate(eb->pages[0]));
5557 kaddr = page_address(eb->pages[0]);
5558 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5559 BTRFS_FSID_SIZE);
5560 }
5561
5562 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5563 unsigned long start, unsigned long len)
5564 {
5565 size_t cur;
5566 size_t offset;
5567 struct page *page;
5568 char *kaddr;
5569 char *src = (char *)srcv;
5570 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5571 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5572
5573 WARN_ON(start > eb->len);
5574 WARN_ON(start + len > eb->start + eb->len);
5575
5576 offset = (start_offset + start) & (PAGE_SIZE - 1);
5577
5578 while (len > 0) {
5579 page = eb->pages[i];
5580 WARN_ON(!PageUptodate(page));
5581
5582 cur = min(len, PAGE_SIZE - offset);
5583 kaddr = page_address(page);
5584 memcpy(kaddr + offset, src, cur);
5585
5586 src += cur;
5587 len -= cur;
5588 offset = 0;
5589 i++;
5590 }
5591 }
5592
5593 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5594 unsigned long len)
5595 {
5596 size_t cur;
5597 size_t offset;
5598 struct page *page;
5599 char *kaddr;
5600 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5601 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5602
5603 WARN_ON(start > eb->len);
5604 WARN_ON(start + len > eb->start + eb->len);
5605
5606 offset = (start_offset + start) & (PAGE_SIZE - 1);
5607
5608 while (len > 0) {
5609 page = eb->pages[i];
5610 WARN_ON(!PageUptodate(page));
5611
5612 cur = min(len, PAGE_SIZE - offset);
5613 kaddr = page_address(page);
5614 memset(kaddr + offset, 0, cur);
5615
5616 len -= cur;
5617 offset = 0;
5618 i++;
5619 }
5620 }
5621
5622 void copy_extent_buffer_full(struct extent_buffer *dst,
5623 struct extent_buffer *src)
5624 {
5625 int i;
5626 unsigned num_pages;
5627
5628 ASSERT(dst->len == src->len);
5629
5630 num_pages = num_extent_pages(dst->start, dst->len);
5631 for (i = 0; i < num_pages; i++)
5632 copy_page(page_address(dst->pages[i]),
5633 page_address(src->pages[i]));
5634 }
5635
5636 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5637 unsigned long dst_offset, unsigned long src_offset,
5638 unsigned long len)
5639 {
5640 u64 dst_len = dst->len;
5641 size_t cur;
5642 size_t offset;
5643 struct page *page;
5644 char *kaddr;
5645 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5646 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5647
5648 WARN_ON(src->len != dst_len);
5649
5650 offset = (start_offset + dst_offset) &
5651 (PAGE_SIZE - 1);
5652
5653 while (len > 0) {
5654 page = dst->pages[i];
5655 WARN_ON(!PageUptodate(page));
5656
5657 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5658
5659 kaddr = page_address(page);
5660 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5661
5662 src_offset += cur;
5663 len -= cur;
5664 offset = 0;
5665 i++;
5666 }
5667 }
5668
5669 void le_bitmap_set(u8 *map, unsigned int start, int len)
5670 {
5671 u8 *p = map + BIT_BYTE(start);
5672 const unsigned int size = start + len;
5673 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5674 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5675
5676 while (len - bits_to_set >= 0) {
5677 *p |= mask_to_set;
5678 len -= bits_to_set;
5679 bits_to_set = BITS_PER_BYTE;
5680 mask_to_set = ~0;
5681 p++;
5682 }
5683 if (len) {
5684 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5685 *p |= mask_to_set;
5686 }
5687 }
5688
5689 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5690 {
5691 u8 *p = map + BIT_BYTE(start);
5692 const unsigned int size = start + len;
5693 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5694 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5695
5696 while (len - bits_to_clear >= 0) {
5697 *p &= ~mask_to_clear;
5698 len -= bits_to_clear;
5699 bits_to_clear = BITS_PER_BYTE;
5700 mask_to_clear = ~0;
5701 p++;
5702 }
5703 if (len) {
5704 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5705 *p &= ~mask_to_clear;
5706 }
5707 }
5708
5709 /*
5710 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5711 * given bit number
5712 * @eb: the extent buffer
5713 * @start: offset of the bitmap item in the extent buffer
5714 * @nr: bit number
5715 * @page_index: return index of the page in the extent buffer that contains the
5716 * given bit number
5717 * @page_offset: return offset into the page given by page_index
5718 *
5719 * This helper hides the ugliness of finding the byte in an extent buffer which
5720 * contains a given bit.
5721 */
5722 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5723 unsigned long start, unsigned long nr,
5724 unsigned long *page_index,
5725 size_t *page_offset)
5726 {
5727 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5728 size_t byte_offset = BIT_BYTE(nr);
5729 size_t offset;
5730
5731 /*
5732 * The byte we want is the offset of the extent buffer + the offset of
5733 * the bitmap item in the extent buffer + the offset of the byte in the
5734 * bitmap item.
5735 */
5736 offset = start_offset + start + byte_offset;
5737
5738 *page_index = offset >> PAGE_SHIFT;
5739 *page_offset = offset & (PAGE_SIZE - 1);
5740 }
5741
5742 /**
5743 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5744 * @eb: the extent buffer
5745 * @start: offset of the bitmap item in the extent buffer
5746 * @nr: bit number to test
5747 */
5748 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5749 unsigned long nr)
5750 {
5751 u8 *kaddr;
5752 struct page *page;
5753 unsigned long i;
5754 size_t offset;
5755
5756 eb_bitmap_offset(eb, start, nr, &i, &offset);
5757 page = eb->pages[i];
5758 WARN_ON(!PageUptodate(page));
5759 kaddr = page_address(page);
5760 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5761 }
5762
5763 /**
5764 * extent_buffer_bitmap_set - set an area of a bitmap
5765 * @eb: the extent buffer
5766 * @start: offset of the bitmap item in the extent buffer
5767 * @pos: bit number of the first bit
5768 * @len: number of bits to set
5769 */
5770 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5771 unsigned long pos, unsigned long len)
5772 {
5773 u8 *kaddr;
5774 struct page *page;
5775 unsigned long i;
5776 size_t offset;
5777 const unsigned int size = pos + len;
5778 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5779 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5780
5781 eb_bitmap_offset(eb, start, pos, &i, &offset);
5782 page = eb->pages[i];
5783 WARN_ON(!PageUptodate(page));
5784 kaddr = page_address(page);
5785
5786 while (len >= bits_to_set) {
5787 kaddr[offset] |= mask_to_set;
5788 len -= bits_to_set;
5789 bits_to_set = BITS_PER_BYTE;
5790 mask_to_set = ~0;
5791 if (++offset >= PAGE_SIZE && len > 0) {
5792 offset = 0;
5793 page = eb->pages[++i];
5794 WARN_ON(!PageUptodate(page));
5795 kaddr = page_address(page);
5796 }
5797 }
5798 if (len) {
5799 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5800 kaddr[offset] |= mask_to_set;
5801 }
5802 }
5803
5804
5805 /**
5806 * extent_buffer_bitmap_clear - clear an area of a bitmap
5807 * @eb: the extent buffer
5808 * @start: offset of the bitmap item in the extent buffer
5809 * @pos: bit number of the first bit
5810 * @len: number of bits to clear
5811 */
5812 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5813 unsigned long pos, unsigned long len)
5814 {
5815 u8 *kaddr;
5816 struct page *page;
5817 unsigned long i;
5818 size_t offset;
5819 const unsigned int size = pos + len;
5820 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5821 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5822
5823 eb_bitmap_offset(eb, start, pos, &i, &offset);
5824 page = eb->pages[i];
5825 WARN_ON(!PageUptodate(page));
5826 kaddr = page_address(page);
5827
5828 while (len >= bits_to_clear) {
5829 kaddr[offset] &= ~mask_to_clear;
5830 len -= bits_to_clear;
5831 bits_to_clear = BITS_PER_BYTE;
5832 mask_to_clear = ~0;
5833 if (++offset >= PAGE_SIZE && len > 0) {
5834 offset = 0;
5835 page = eb->pages[++i];
5836 WARN_ON(!PageUptodate(page));
5837 kaddr = page_address(page);
5838 }
5839 }
5840 if (len) {
5841 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5842 kaddr[offset] &= ~mask_to_clear;
5843 }
5844 }
5845
5846 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5847 {
5848 unsigned long distance = (src > dst) ? src - dst : dst - src;
5849 return distance < len;
5850 }
5851
5852 static void copy_pages(struct page *dst_page, struct page *src_page,
5853 unsigned long dst_off, unsigned long src_off,
5854 unsigned long len)
5855 {
5856 char *dst_kaddr = page_address(dst_page);
5857 char *src_kaddr;
5858 int must_memmove = 0;
5859
5860 if (dst_page != src_page) {
5861 src_kaddr = page_address(src_page);
5862 } else {
5863 src_kaddr = dst_kaddr;
5864 if (areas_overlap(src_off, dst_off, len))
5865 must_memmove = 1;
5866 }
5867
5868 if (must_memmove)
5869 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5870 else
5871 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5872 }
5873
5874 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5875 unsigned long src_offset, unsigned long len)
5876 {
5877 struct btrfs_fs_info *fs_info = dst->fs_info;
5878 size_t cur;
5879 size_t dst_off_in_page;
5880 size_t src_off_in_page;
5881 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5882 unsigned long dst_i;
5883 unsigned long src_i;
5884
5885 if (src_offset + len > dst->len) {
5886 btrfs_err(fs_info,
5887 "memmove bogus src_offset %lu move len %lu dst len %lu",
5888 src_offset, len, dst->len);
5889 BUG_ON(1);
5890 }
5891 if (dst_offset + len > dst->len) {
5892 btrfs_err(fs_info,
5893 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5894 dst_offset, len, dst->len);
5895 BUG_ON(1);
5896 }
5897
5898 while (len > 0) {
5899 dst_off_in_page = (start_offset + dst_offset) &
5900 (PAGE_SIZE - 1);
5901 src_off_in_page = (start_offset + src_offset) &
5902 (PAGE_SIZE - 1);
5903
5904 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5905 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5906
5907 cur = min(len, (unsigned long)(PAGE_SIZE -
5908 src_off_in_page));
5909 cur = min_t(unsigned long, cur,
5910 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5911
5912 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5913 dst_off_in_page, src_off_in_page, cur);
5914
5915 src_offset += cur;
5916 dst_offset += cur;
5917 len -= cur;
5918 }
5919 }
5920
5921 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5922 unsigned long src_offset, unsigned long len)
5923 {
5924 struct btrfs_fs_info *fs_info = dst->fs_info;
5925 size_t cur;
5926 size_t dst_off_in_page;
5927 size_t src_off_in_page;
5928 unsigned long dst_end = dst_offset + len - 1;
5929 unsigned long src_end = src_offset + len - 1;
5930 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5931 unsigned long dst_i;
5932 unsigned long src_i;
5933
5934 if (src_offset + len > dst->len) {
5935 btrfs_err(fs_info,
5936 "memmove bogus src_offset %lu move len %lu len %lu",
5937 src_offset, len, dst->len);
5938 BUG_ON(1);
5939 }
5940 if (dst_offset + len > dst->len) {
5941 btrfs_err(fs_info,
5942 "memmove bogus dst_offset %lu move len %lu len %lu",
5943 dst_offset, len, dst->len);
5944 BUG_ON(1);
5945 }
5946 if (dst_offset < src_offset) {
5947 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5948 return;
5949 }
5950 while (len > 0) {
5951 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5952 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5953
5954 dst_off_in_page = (start_offset + dst_end) &
5955 (PAGE_SIZE - 1);
5956 src_off_in_page = (start_offset + src_end) &
5957 (PAGE_SIZE - 1);
5958
5959 cur = min_t(unsigned long, len, src_off_in_page + 1);
5960 cur = min(cur, dst_off_in_page + 1);
5961 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5962 dst_off_in_page - cur + 1,
5963 src_off_in_page - cur + 1, cur);
5964
5965 dst_end -= cur;
5966 src_end -= cur;
5967 len -= cur;
5968 }
5969 }
5970
5971 int try_release_extent_buffer(struct page *page)
5972 {
5973 struct extent_buffer *eb;
5974
5975 /*
5976 * We need to make sure nobody is attaching this page to an eb right
5977 * now.
5978 */
5979 spin_lock(&page->mapping->private_lock);
5980 if (!PagePrivate(page)) {
5981 spin_unlock(&page->mapping->private_lock);
5982 return 1;
5983 }
5984
5985 eb = (struct extent_buffer *)page->private;
5986 BUG_ON(!eb);
5987
5988 /*
5989 * This is a little awful but should be ok, we need to make sure that
5990 * the eb doesn't disappear out from under us while we're looking at
5991 * this page.
5992 */
5993 spin_lock(&eb->refs_lock);
5994 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5995 spin_unlock(&eb->refs_lock);
5996 spin_unlock(&page->mapping->private_lock);
5997 return 0;
5998 }
5999 spin_unlock(&page->mapping->private_lock);
6000
6001 /*
6002 * If tree ref isn't set then we know the ref on this eb is a real ref,
6003 * so just return, this page will likely be freed soon anyway.
6004 */
6005 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6006 spin_unlock(&eb->refs_lock);
6007 return 0;
6008 }
6009
6010 return release_extent_buffer(eb);
6011 }