]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent_io.c
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260 {
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284 do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295 {
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347 {
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359 {
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365 {
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369 }
370
371 /*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380 static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382 {
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417 {
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424 {
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433 /*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443 static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448 {
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 "%llu %llu\n",
465 found->start, found->end, start, end);
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 u64 split)
474 {
475 if (tree->ops && tree->ops->split_extent_hook)
476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495 {
496 struct rb_node *node;
497
498 split_cb(tree, orig, split);
499
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
507 if (node) {
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521 }
522
523 /*
524 * utility function to clear some bits in an extent state struct.
525 * it will optionally wake up any one waiting on this state (wake == 1).
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
534 {
535 struct extent_state *next;
536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
543 clear_state_cb(tree, state, bits);
544 add_extent_changeset(state, bits_to_clear, changeset, 0);
545 state->state &= ~bits_to_clear;
546 if (wake)
547 wake_up(&state->wq);
548 if (state->state == 0) {
549 next = next_state(state);
550 if (extent_state_in_tree(state)) {
551 rb_erase(&state->rb_node, &tree->state);
552 RB_CLEAR_NODE(&state->rb_node);
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
559 next = next_state(state);
560 }
561 return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578 }
579
580 /*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
590 * This takes the tree lock, and returns 0 on success and < 0 on error.
591 */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
596 {
597 struct extent_state *state;
598 struct extent_state *cached;
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
601 u64 last_end;
602 int err;
603 int clear = 0;
604
605 btrfs_debug_check_extent_io_range(tree, start, end);
606
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
616 again:
617 if (!prealloc && gfpflags_allow_blocking(mask)) {
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
625 prealloc = alloc_extent_state(mask);
626 }
627
628 spin_lock(&tree->lock);
629 if (cached_state) {
630 cached = *cached_state;
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
639 if (clear)
640 atomic_dec(&cached->refs);
641 state = cached;
642 goto hit_next;
643 }
644 if (clear)
645 free_extent_state(cached);
646 }
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
651 node = tree_search(tree, start);
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
659 last_end = state->end;
660
661 /* the state doesn't have the wanted bits, go ahead */
662 if (!(state->state & bits)) {
663 state = next_state(state);
664 goto next;
665 }
666
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
686 err = split_state(tree, state, prealloc, start);
687 if (err)
688 extent_io_tree_panic(tree, err);
689
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
696 goto next;
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
709 err = split_state(tree, state, prealloc, end + 1);
710 if (err)
711 extent_io_tree_panic(tree, err);
712
713 if (wake)
714 wake_up(&state->wq);
715
716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718 prealloc = NULL;
719 goto out;
720 }
721
722 state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
727 if (start <= end && state && !need_resched())
728 goto hit_next;
729 goto search_again;
730
731 out:
732 spin_unlock(&tree->lock);
733 if (prealloc)
734 free_extent_state(prealloc);
735
736 return 0;
737
738 search_again:
739 if (start > end)
740 goto out;
741 spin_unlock(&tree->lock);
742 if (gfpflags_allow_blocking(mask))
743 cond_resched();
744 goto again;
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
749 __releases(tree->lock)
750 __acquires(tree->lock)
751 {
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 spin_unlock(&tree->lock);
755 schedule();
756 spin_lock(&tree->lock);
757 finish_wait(&state->wq, &wait);
758 }
759
760 /*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
767 {
768 struct extent_state *state;
769 struct rb_node *node;
770
771 btrfs_debug_check_extent_io_range(tree, start, end);
772
773 spin_lock(&tree->lock);
774 again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
780 node = tree_search(tree, start);
781 process_node:
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
806 }
807 out:
808 spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812 struct extent_state *state,
813 unsigned *bits, struct extent_changeset *changeset)
814 {
815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817 set_state_cb(tree, state, bits);
818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
822 add_extent_changeset(state, bits_to_set, changeset, 1);
823 state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
828 unsigned flags)
829 {
830 if (cached_ptr && !(*cached_ptr)) {
831 if (!flags || (state->state & flags)) {
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836 }
837
838 static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840 {
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
848 *
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
852 *
853 * [start, end] is inclusive This takes the tree lock.
854 */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 unsigned bits, unsigned exclusive_bits,
859 u64 *failed_start, struct extent_state **cached_state,
860 gfp_t mask, struct extent_changeset *changeset)
861 {
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
865 struct rb_node **p;
866 struct rb_node *parent;
867 int err = 0;
868 u64 last_start;
869 u64 last_end;
870
871 btrfs_debug_check_extent_io_range(tree, start, end);
872
873 bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 if (!prealloc && gfpflags_allow_blocking(mask)) {
876 prealloc = alloc_extent_state(mask);
877 BUG_ON(!prealloc);
878 }
879
880 spin_lock(&tree->lock);
881 if (cached_state && *cached_state) {
882 state = *cached_state;
883 if (state->start <= start && state->end > start &&
884 extent_state_in_tree(state)) {
885 node = &state->rb_node;
886 goto hit_next;
887 }
888 }
889 /*
890 * this search will find all the extents that end after
891 * our range starts.
892 */
893 node = tree_search_for_insert(tree, start, &p, &parent);
894 if (!node) {
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
897 err = insert_state(tree, prealloc, start, end,
898 &p, &parent, &bits, changeset);
899 if (err)
900 extent_io_tree_panic(tree, err);
901
902 cache_state(prealloc, cached_state);
903 prealloc = NULL;
904 goto out;
905 }
906 state = rb_entry(node, struct extent_state, rb_node);
907 hit_next:
908 last_start = state->start;
909 last_end = state->end;
910
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 *
915 * Just lock what we found and keep going
916 */
917 if (state->start == start && state->end <= end) {
918 if (state->state & exclusive_bits) {
919 *failed_start = state->start;
920 err = -EEXIST;
921 goto out;
922 }
923
924 set_state_bits(tree, state, &bits, changeset);
925 cache_state(state, cached_state);
926 merge_state(tree, state);
927 if (last_end == (u64)-1)
928 goto out;
929 start = last_end + 1;
930 state = next_state(state);
931 if (start < end && state && state->start == start &&
932 !need_resched())
933 goto hit_next;
934 goto search_again;
935 }
936
937 /*
938 * | ---- desired range ---- |
939 * | state |
940 * or
941 * | ------------- state -------------- |
942 *
943 * We need to split the extent we found, and may flip bits on
944 * second half.
945 *
946 * If the extent we found extends past our
947 * range, we just split and search again. It'll get split
948 * again the next time though.
949 *
950 * If the extent we found is inside our range, we set the
951 * desired bit on it.
952 */
953 if (state->start < start) {
954 if (state->state & exclusive_bits) {
955 *failed_start = start;
956 err = -EEXIST;
957 goto out;
958 }
959
960 prealloc = alloc_extent_state_atomic(prealloc);
961 BUG_ON(!prealloc);
962 err = split_state(tree, state, prealloc, start);
963 if (err)
964 extent_io_tree_panic(tree, err);
965
966 prealloc = NULL;
967 if (err)
968 goto out;
969 if (state->end <= end) {
970 set_state_bits(tree, state, &bits, changeset);
971 cache_state(state, cached_state);
972 merge_state(tree, state);
973 if (last_end == (u64)-1)
974 goto out;
975 start = last_end + 1;
976 state = next_state(state);
977 if (start < end && state && state->start == start &&
978 !need_resched())
979 goto hit_next;
980 }
981 goto search_again;
982 }
983 /*
984 * | ---- desired range ---- |
985 * | state | or | state |
986 *
987 * There's a hole, we need to insert something in it and
988 * ignore the extent we found.
989 */
990 if (state->start > start) {
991 u64 this_end;
992 if (end < last_start)
993 this_end = end;
994 else
995 this_end = last_start - 1;
996
997 prealloc = alloc_extent_state_atomic(prealloc);
998 BUG_ON(!prealloc);
999
1000 /*
1001 * Avoid to free 'prealloc' if it can be merged with
1002 * the later extent.
1003 */
1004 err = insert_state(tree, prealloc, start, this_end,
1005 NULL, NULL, &bits, changeset);
1006 if (err)
1007 extent_io_tree_panic(tree, err);
1008
1009 cache_state(prealloc, cached_state);
1010 prealloc = NULL;
1011 start = this_end + 1;
1012 goto search_again;
1013 }
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * We need to split the extent, and set the bit
1018 * on the first half
1019 */
1020 if (state->start <= end && state->end > end) {
1021 if (state->state & exclusive_bits) {
1022 *failed_start = start;
1023 err = -EEXIST;
1024 goto out;
1025 }
1026
1027 prealloc = alloc_extent_state_atomic(prealloc);
1028 BUG_ON(!prealloc);
1029 err = split_state(tree, state, prealloc, end + 1);
1030 if (err)
1031 extent_io_tree_panic(tree, err);
1032
1033 set_state_bits(tree, prealloc, &bits, changeset);
1034 cache_state(prealloc, cached_state);
1035 merge_state(tree, prealloc);
1036 prealloc = NULL;
1037 goto out;
1038 }
1039
1040 goto search_again;
1041
1042 out:
1043 spin_unlock(&tree->lock);
1044 if (prealloc)
1045 free_extent_state(prealloc);
1046
1047 return err;
1048
1049 search_again:
1050 if (start > end)
1051 goto out;
1052 spin_unlock(&tree->lock);
1053 if (gfpflags_allow_blocking(mask))
1054 cond_resched();
1055 goto again;
1056 }
1057
1058 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1059 unsigned bits, u64 * failed_start,
1060 struct extent_state **cached_state, gfp_t mask)
1061 {
1062 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1063 cached_state, mask, NULL);
1064 }
1065
1066
1067 /**
1068 * convert_extent_bit - convert all bits in a given range from one bit to
1069 * another
1070 * @tree: the io tree to search
1071 * @start: the start offset in bytes
1072 * @end: the end offset in bytes (inclusive)
1073 * @bits: the bits to set in this range
1074 * @clear_bits: the bits to clear in this range
1075 * @cached_state: state that we're going to cache
1076 * @mask: the allocation mask
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 */
1084 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1085 unsigned bits, unsigned clear_bits,
1086 struct extent_state **cached_state, gfp_t mask)
1087 {
1088 struct extent_state *state;
1089 struct extent_state *prealloc = NULL;
1090 struct rb_node *node;
1091 struct rb_node **p;
1092 struct rb_node *parent;
1093 int err = 0;
1094 u64 last_start;
1095 u64 last_end;
1096 bool first_iteration = true;
1097
1098 btrfs_debug_check_extent_io_range(tree, start, end);
1099
1100 again:
1101 if (!prealloc && gfpflags_allow_blocking(mask)) {
1102 /*
1103 * Best effort, don't worry if extent state allocation fails
1104 * here for the first iteration. We might have a cached state
1105 * that matches exactly the target range, in which case no
1106 * extent state allocations are needed. We'll only know this
1107 * after locking the tree.
1108 */
1109 prealloc = alloc_extent_state(mask);
1110 if (!prealloc && !first_iteration)
1111 return -ENOMEM;
1112 }
1113
1114 spin_lock(&tree->lock);
1115 if (cached_state && *cached_state) {
1116 state = *cached_state;
1117 if (state->start <= start && state->end > start &&
1118 extent_state_in_tree(state)) {
1119 node = &state->rb_node;
1120 goto hit_next;
1121 }
1122 }
1123
1124 /*
1125 * this search will find all the extents that end after
1126 * our range starts.
1127 */
1128 node = tree_search_for_insert(tree, start, &p, &parent);
1129 if (!node) {
1130 prealloc = alloc_extent_state_atomic(prealloc);
1131 if (!prealloc) {
1132 err = -ENOMEM;
1133 goto out;
1134 }
1135 err = insert_state(tree, prealloc, start, end,
1136 &p, &parent, &bits, NULL);
1137 if (err)
1138 extent_io_tree_panic(tree, err);
1139 cache_state(prealloc, cached_state);
1140 prealloc = NULL;
1141 goto out;
1142 }
1143 state = rb_entry(node, struct extent_state, rb_node);
1144 hit_next:
1145 last_start = state->start;
1146 last_end = state->end;
1147
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 *
1152 * Just lock what we found and keep going
1153 */
1154 if (state->start == start && state->end <= end) {
1155 set_state_bits(tree, state, &bits, NULL);
1156 cache_state(state, cached_state);
1157 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1158 if (last_end == (u64)-1)
1159 goto out;
1160 start = last_end + 1;
1161 if (start < end && state && state->start == start &&
1162 !need_resched())
1163 goto hit_next;
1164 goto search_again;
1165 }
1166
1167 /*
1168 * | ---- desired range ---- |
1169 * | state |
1170 * or
1171 * | ------------- state -------------- |
1172 *
1173 * We need to split the extent we found, and may flip bits on
1174 * second half.
1175 *
1176 * If the extent we found extends past our
1177 * range, we just split and search again. It'll get split
1178 * again the next time though.
1179 *
1180 * If the extent we found is inside our range, we set the
1181 * desired bit on it.
1182 */
1183 if (state->start < start) {
1184 prealloc = alloc_extent_state_atomic(prealloc);
1185 if (!prealloc) {
1186 err = -ENOMEM;
1187 goto out;
1188 }
1189 err = split_state(tree, state, prealloc, start);
1190 if (err)
1191 extent_io_tree_panic(tree, err);
1192 prealloc = NULL;
1193 if (err)
1194 goto out;
1195 if (state->end <= end) {
1196 set_state_bits(tree, state, &bits, NULL);
1197 cache_state(state, cached_state);
1198 state = clear_state_bit(tree, state, &clear_bits, 0,
1199 NULL);
1200 if (last_end == (u64)-1)
1201 goto out;
1202 start = last_end + 1;
1203 if (start < end && state && state->start == start &&
1204 !need_resched())
1205 goto hit_next;
1206 }
1207 goto search_again;
1208 }
1209 /*
1210 * | ---- desired range ---- |
1211 * | state | or | state |
1212 *
1213 * There's a hole, we need to insert something in it and
1214 * ignore the extent we found.
1215 */
1216 if (state->start > start) {
1217 u64 this_end;
1218 if (end < last_start)
1219 this_end = end;
1220 else
1221 this_end = last_start - 1;
1222
1223 prealloc = alloc_extent_state_atomic(prealloc);
1224 if (!prealloc) {
1225 err = -ENOMEM;
1226 goto out;
1227 }
1228
1229 /*
1230 * Avoid to free 'prealloc' if it can be merged with
1231 * the later extent.
1232 */
1233 err = insert_state(tree, prealloc, start, this_end,
1234 NULL, NULL, &bits, NULL);
1235 if (err)
1236 extent_io_tree_panic(tree, err);
1237 cache_state(prealloc, cached_state);
1238 prealloc = NULL;
1239 start = this_end + 1;
1240 goto search_again;
1241 }
1242 /*
1243 * | ---- desired range ---- |
1244 * | state |
1245 * We need to split the extent, and set the bit
1246 * on the first half
1247 */
1248 if (state->start <= end && state->end > end) {
1249 prealloc = alloc_extent_state_atomic(prealloc);
1250 if (!prealloc) {
1251 err = -ENOMEM;
1252 goto out;
1253 }
1254
1255 err = split_state(tree, state, prealloc, end + 1);
1256 if (err)
1257 extent_io_tree_panic(tree, err);
1258
1259 set_state_bits(tree, prealloc, &bits, NULL);
1260 cache_state(prealloc, cached_state);
1261 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1262 prealloc = NULL;
1263 goto out;
1264 }
1265
1266 goto search_again;
1267
1268 out:
1269 spin_unlock(&tree->lock);
1270 if (prealloc)
1271 free_extent_state(prealloc);
1272
1273 return err;
1274
1275 search_again:
1276 if (start > end)
1277 goto out;
1278 spin_unlock(&tree->lock);
1279 if (gfpflags_allow_blocking(mask))
1280 cond_resched();
1281 first_iteration = false;
1282 goto again;
1283 }
1284
1285 /* wrappers around set/clear extent bit */
1286 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287 unsigned bits, gfp_t mask,
1288 struct extent_changeset *changeset)
1289 {
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299 changeset);
1300 }
1301
1302 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305 {
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308 }
1309
1310 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned bits, gfp_t mask,
1312 struct extent_changeset *changeset)
1313 {
1314 /*
1315 * Don't support EXTENT_LOCKED case, same reason as
1316 * set_record_extent_bits().
1317 */
1318 BUG_ON(bits & EXTENT_LOCKED);
1319
1320 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1321 changeset);
1322 }
1323
1324 /*
1325 * either insert or lock state struct between start and end use mask to tell
1326 * us if waiting is desired.
1327 */
1328 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1329 struct extent_state **cached_state)
1330 {
1331 int err;
1332 u64 failed_start;
1333
1334 while (1) {
1335 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1336 EXTENT_LOCKED, &failed_start,
1337 cached_state, GFP_NOFS, NULL);
1338 if (err == -EEXIST) {
1339 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1340 start = failed_start;
1341 } else
1342 break;
1343 WARN_ON(start > end);
1344 }
1345 return err;
1346 }
1347
1348 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1349 {
1350 int err;
1351 u64 failed_start;
1352
1353 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1354 &failed_start, NULL, GFP_NOFS, NULL);
1355 if (err == -EEXIST) {
1356 if (failed_start > start)
1357 clear_extent_bit(tree, start, failed_start - 1,
1358 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1359 return 0;
1360 }
1361 return 1;
1362 }
1363
1364 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1365 {
1366 unsigned long index = start >> PAGE_SHIFT;
1367 unsigned long end_index = end >> PAGE_SHIFT;
1368 struct page *page;
1369
1370 while (index <= end_index) {
1371 page = find_get_page(inode->i_mapping, index);
1372 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1373 clear_page_dirty_for_io(page);
1374 put_page(page);
1375 index++;
1376 }
1377 }
1378
1379 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380 {
1381 unsigned long index = start >> PAGE_SHIFT;
1382 unsigned long end_index = end >> PAGE_SHIFT;
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 __set_page_dirty_nobuffers(page);
1389 account_page_redirty(page);
1390 put_page(page);
1391 index++;
1392 }
1393 }
1394
1395 /*
1396 * helper function to set both pages and extents in the tree writeback
1397 */
1398 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1399 {
1400 unsigned long index = start >> PAGE_SHIFT;
1401 unsigned long end_index = end >> PAGE_SHIFT;
1402 struct page *page;
1403
1404 while (index <= end_index) {
1405 page = find_get_page(tree->mapping, index);
1406 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1407 set_page_writeback(page);
1408 put_page(page);
1409 index++;
1410 }
1411 }
1412
1413 /* find the first state struct with 'bits' set after 'start', and
1414 * return it. tree->lock must be held. NULL will returned if
1415 * nothing was found after 'start'
1416 */
1417 static struct extent_state *
1418 find_first_extent_bit_state(struct extent_io_tree *tree,
1419 u64 start, unsigned bits)
1420 {
1421 struct rb_node *node;
1422 struct extent_state *state;
1423
1424 /*
1425 * this search will find all the extents that end after
1426 * our range starts.
1427 */
1428 node = tree_search(tree, start);
1429 if (!node)
1430 goto out;
1431
1432 while (1) {
1433 state = rb_entry(node, struct extent_state, rb_node);
1434 if (state->end >= start && (state->state & bits))
1435 return state;
1436
1437 node = rb_next(node);
1438 if (!node)
1439 break;
1440 }
1441 out:
1442 return NULL;
1443 }
1444
1445 /*
1446 * find the first offset in the io tree with 'bits' set. zero is
1447 * returned if we find something, and *start_ret and *end_ret are
1448 * set to reflect the state struct that was found.
1449 *
1450 * If nothing was found, 1 is returned. If found something, return 0.
1451 */
1452 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1453 u64 *start_ret, u64 *end_ret, unsigned bits,
1454 struct extent_state **cached_state)
1455 {
1456 struct extent_state *state;
1457 struct rb_node *n;
1458 int ret = 1;
1459
1460 spin_lock(&tree->lock);
1461 if (cached_state && *cached_state) {
1462 state = *cached_state;
1463 if (state->end == start - 1 && extent_state_in_tree(state)) {
1464 n = rb_next(&state->rb_node);
1465 while (n) {
1466 state = rb_entry(n, struct extent_state,
1467 rb_node);
1468 if (state->state & bits)
1469 goto got_it;
1470 n = rb_next(n);
1471 }
1472 free_extent_state(*cached_state);
1473 *cached_state = NULL;
1474 goto out;
1475 }
1476 free_extent_state(*cached_state);
1477 *cached_state = NULL;
1478 }
1479
1480 state = find_first_extent_bit_state(tree, start, bits);
1481 got_it:
1482 if (state) {
1483 cache_state_if_flags(state, cached_state, 0);
1484 *start_ret = state->start;
1485 *end_ret = state->end;
1486 ret = 0;
1487 }
1488 out:
1489 spin_unlock(&tree->lock);
1490 return ret;
1491 }
1492
1493 /*
1494 * find a contiguous range of bytes in the file marked as delalloc, not
1495 * more than 'max_bytes'. start and end are used to return the range,
1496 *
1497 * 1 is returned if we find something, 0 if nothing was in the tree
1498 */
1499 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1500 u64 *start, u64 *end, u64 max_bytes,
1501 struct extent_state **cached_state)
1502 {
1503 struct rb_node *node;
1504 struct extent_state *state;
1505 u64 cur_start = *start;
1506 u64 found = 0;
1507 u64 total_bytes = 0;
1508
1509 spin_lock(&tree->lock);
1510
1511 /*
1512 * this search will find all the extents that end after
1513 * our range starts.
1514 */
1515 node = tree_search(tree, cur_start);
1516 if (!node) {
1517 if (!found)
1518 *end = (u64)-1;
1519 goto out;
1520 }
1521
1522 while (1) {
1523 state = rb_entry(node, struct extent_state, rb_node);
1524 if (found && (state->start != cur_start ||
1525 (state->state & EXTENT_BOUNDARY))) {
1526 goto out;
1527 }
1528 if (!(state->state & EXTENT_DELALLOC)) {
1529 if (!found)
1530 *end = state->end;
1531 goto out;
1532 }
1533 if (!found) {
1534 *start = state->start;
1535 *cached_state = state;
1536 atomic_inc(&state->refs);
1537 }
1538 found++;
1539 *end = state->end;
1540 cur_start = state->end + 1;
1541 node = rb_next(node);
1542 total_bytes += state->end - state->start + 1;
1543 if (total_bytes >= max_bytes)
1544 break;
1545 if (!node)
1546 break;
1547 }
1548 out:
1549 spin_unlock(&tree->lock);
1550 return found;
1551 }
1552
1553 static noinline void __unlock_for_delalloc(struct inode *inode,
1554 struct page *locked_page,
1555 u64 start, u64 end)
1556 {
1557 int ret;
1558 struct page *pages[16];
1559 unsigned long index = start >> PAGE_SHIFT;
1560 unsigned long end_index = end >> PAGE_SHIFT;
1561 unsigned long nr_pages = end_index - index + 1;
1562 int i;
1563
1564 if (index == locked_page->index && end_index == index)
1565 return;
1566
1567 while (nr_pages > 0) {
1568 ret = find_get_pages_contig(inode->i_mapping, index,
1569 min_t(unsigned long, nr_pages,
1570 ARRAY_SIZE(pages)), pages);
1571 for (i = 0; i < ret; i++) {
1572 if (pages[i] != locked_page)
1573 unlock_page(pages[i]);
1574 put_page(pages[i]);
1575 }
1576 nr_pages -= ret;
1577 index += ret;
1578 cond_resched();
1579 }
1580 }
1581
1582 static noinline int lock_delalloc_pages(struct inode *inode,
1583 struct page *locked_page,
1584 u64 delalloc_start,
1585 u64 delalloc_end)
1586 {
1587 unsigned long index = delalloc_start >> PAGE_SHIFT;
1588 unsigned long start_index = index;
1589 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1590 unsigned long pages_locked = 0;
1591 struct page *pages[16];
1592 unsigned long nrpages;
1593 int ret;
1594 int i;
1595
1596 /* the caller is responsible for locking the start index */
1597 if (index == locked_page->index && index == end_index)
1598 return 0;
1599
1600 /* skip the page at the start index */
1601 nrpages = end_index - index + 1;
1602 while (nrpages > 0) {
1603 ret = find_get_pages_contig(inode->i_mapping, index,
1604 min_t(unsigned long,
1605 nrpages, ARRAY_SIZE(pages)), pages);
1606 if (ret == 0) {
1607 ret = -EAGAIN;
1608 goto done;
1609 }
1610 /* now we have an array of pages, lock them all */
1611 for (i = 0; i < ret; i++) {
1612 /*
1613 * the caller is taking responsibility for
1614 * locked_page
1615 */
1616 if (pages[i] != locked_page) {
1617 lock_page(pages[i]);
1618 if (!PageDirty(pages[i]) ||
1619 pages[i]->mapping != inode->i_mapping) {
1620 ret = -EAGAIN;
1621 unlock_page(pages[i]);
1622 put_page(pages[i]);
1623 goto done;
1624 }
1625 }
1626 put_page(pages[i]);
1627 pages_locked++;
1628 }
1629 nrpages -= ret;
1630 index += ret;
1631 cond_resched();
1632 }
1633 ret = 0;
1634 done:
1635 if (ret && pages_locked) {
1636 __unlock_for_delalloc(inode, locked_page,
1637 delalloc_start,
1638 ((u64)(start_index + pages_locked - 1)) <<
1639 PAGE_SHIFT);
1640 }
1641 return ret;
1642 }
1643
1644 /*
1645 * find a contiguous range of bytes in the file marked as delalloc, not
1646 * more than 'max_bytes'. start and end are used to return the range,
1647 *
1648 * 1 is returned if we find something, 0 if nothing was in the tree
1649 */
1650 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1651 struct extent_io_tree *tree,
1652 struct page *locked_page, u64 *start,
1653 u64 *end, u64 max_bytes)
1654 {
1655 u64 delalloc_start;
1656 u64 delalloc_end;
1657 u64 found;
1658 struct extent_state *cached_state = NULL;
1659 int ret;
1660 int loops = 0;
1661
1662 again:
1663 /* step one, find a bunch of delalloc bytes starting at start */
1664 delalloc_start = *start;
1665 delalloc_end = 0;
1666 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1667 max_bytes, &cached_state);
1668 if (!found || delalloc_end <= *start) {
1669 *start = delalloc_start;
1670 *end = delalloc_end;
1671 free_extent_state(cached_state);
1672 return 0;
1673 }
1674
1675 /*
1676 * start comes from the offset of locked_page. We have to lock
1677 * pages in order, so we can't process delalloc bytes before
1678 * locked_page
1679 */
1680 if (delalloc_start < *start)
1681 delalloc_start = *start;
1682
1683 /*
1684 * make sure to limit the number of pages we try to lock down
1685 */
1686 if (delalloc_end + 1 - delalloc_start > max_bytes)
1687 delalloc_end = delalloc_start + max_bytes - 1;
1688
1689 /* step two, lock all the pages after the page that has start */
1690 ret = lock_delalloc_pages(inode, locked_page,
1691 delalloc_start, delalloc_end);
1692 if (ret == -EAGAIN) {
1693 /* some of the pages are gone, lets avoid looping by
1694 * shortening the size of the delalloc range we're searching
1695 */
1696 free_extent_state(cached_state);
1697 cached_state = NULL;
1698 if (!loops) {
1699 max_bytes = PAGE_SIZE;
1700 loops = 1;
1701 goto again;
1702 } else {
1703 found = 0;
1704 goto out_failed;
1705 }
1706 }
1707 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1708
1709 /* step three, lock the state bits for the whole range */
1710 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1711
1712 /* then test to make sure it is all still delalloc */
1713 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1714 EXTENT_DELALLOC, 1, cached_state);
1715 if (!ret) {
1716 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1717 &cached_state, GFP_NOFS);
1718 __unlock_for_delalloc(inode, locked_page,
1719 delalloc_start, delalloc_end);
1720 cond_resched();
1721 goto again;
1722 }
1723 free_extent_state(cached_state);
1724 *start = delalloc_start;
1725 *end = delalloc_end;
1726 out_failed:
1727 return found;
1728 }
1729
1730 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1731 struct page *locked_page,
1732 unsigned clear_bits,
1733 unsigned long page_ops)
1734 {
1735 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1736 int ret;
1737 struct page *pages[16];
1738 unsigned long index = start >> PAGE_SHIFT;
1739 unsigned long end_index = end >> PAGE_SHIFT;
1740 unsigned long nr_pages = end_index - index + 1;
1741 int i;
1742
1743 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1744 if (page_ops == 0)
1745 return;
1746
1747 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1748 mapping_set_error(inode->i_mapping, -EIO);
1749
1750 while (nr_pages > 0) {
1751 ret = find_get_pages_contig(inode->i_mapping, index,
1752 min_t(unsigned long,
1753 nr_pages, ARRAY_SIZE(pages)), pages);
1754 for (i = 0; i < ret; i++) {
1755
1756 if (page_ops & PAGE_SET_PRIVATE2)
1757 SetPagePrivate2(pages[i]);
1758
1759 if (pages[i] == locked_page) {
1760 put_page(pages[i]);
1761 continue;
1762 }
1763 if (page_ops & PAGE_CLEAR_DIRTY)
1764 clear_page_dirty_for_io(pages[i]);
1765 if (page_ops & PAGE_SET_WRITEBACK)
1766 set_page_writeback(pages[i]);
1767 if (page_ops & PAGE_SET_ERROR)
1768 SetPageError(pages[i]);
1769 if (page_ops & PAGE_END_WRITEBACK)
1770 end_page_writeback(pages[i]);
1771 if (page_ops & PAGE_UNLOCK)
1772 unlock_page(pages[i]);
1773 put_page(pages[i]);
1774 }
1775 nr_pages -= ret;
1776 index += ret;
1777 cond_resched();
1778 }
1779 }
1780
1781 /*
1782 * count the number of bytes in the tree that have a given bit(s)
1783 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1784 * cached. The total number found is returned.
1785 */
1786 u64 count_range_bits(struct extent_io_tree *tree,
1787 u64 *start, u64 search_end, u64 max_bytes,
1788 unsigned bits, int contig)
1789 {
1790 struct rb_node *node;
1791 struct extent_state *state;
1792 u64 cur_start = *start;
1793 u64 total_bytes = 0;
1794 u64 last = 0;
1795 int found = 0;
1796
1797 if (WARN_ON(search_end <= cur_start))
1798 return 0;
1799
1800 spin_lock(&tree->lock);
1801 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1802 total_bytes = tree->dirty_bytes;
1803 goto out;
1804 }
1805 /*
1806 * this search will find all the extents that end after
1807 * our range starts.
1808 */
1809 node = tree_search(tree, cur_start);
1810 if (!node)
1811 goto out;
1812
1813 while (1) {
1814 state = rb_entry(node, struct extent_state, rb_node);
1815 if (state->start > search_end)
1816 break;
1817 if (contig && found && state->start > last + 1)
1818 break;
1819 if (state->end >= cur_start && (state->state & bits) == bits) {
1820 total_bytes += min(search_end, state->end) + 1 -
1821 max(cur_start, state->start);
1822 if (total_bytes >= max_bytes)
1823 break;
1824 if (!found) {
1825 *start = max(cur_start, state->start);
1826 found = 1;
1827 }
1828 last = state->end;
1829 } else if (contig && found) {
1830 break;
1831 }
1832 node = rb_next(node);
1833 if (!node)
1834 break;
1835 }
1836 out:
1837 spin_unlock(&tree->lock);
1838 return total_bytes;
1839 }
1840
1841 /*
1842 * set the private field for a given byte offset in the tree. If there isn't
1843 * an extent_state there already, this does nothing.
1844 */
1845 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1846 struct io_failure_record *failrec)
1847 {
1848 struct rb_node *node;
1849 struct extent_state *state;
1850 int ret = 0;
1851
1852 spin_lock(&tree->lock);
1853 /*
1854 * this search will find all the extents that end after
1855 * our range starts.
1856 */
1857 node = tree_search(tree, start);
1858 if (!node) {
1859 ret = -ENOENT;
1860 goto out;
1861 }
1862 state = rb_entry(node, struct extent_state, rb_node);
1863 if (state->start != start) {
1864 ret = -ENOENT;
1865 goto out;
1866 }
1867 state->failrec = failrec;
1868 out:
1869 spin_unlock(&tree->lock);
1870 return ret;
1871 }
1872
1873 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1874 struct io_failure_record **failrec)
1875 {
1876 struct rb_node *node;
1877 struct extent_state *state;
1878 int ret = 0;
1879
1880 spin_lock(&tree->lock);
1881 /*
1882 * this search will find all the extents that end after
1883 * our range starts.
1884 */
1885 node = tree_search(tree, start);
1886 if (!node) {
1887 ret = -ENOENT;
1888 goto out;
1889 }
1890 state = rb_entry(node, struct extent_state, rb_node);
1891 if (state->start != start) {
1892 ret = -ENOENT;
1893 goto out;
1894 }
1895 *failrec = state->failrec;
1896 out:
1897 spin_unlock(&tree->lock);
1898 return ret;
1899 }
1900
1901 /*
1902 * searches a range in the state tree for a given mask.
1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
1904 * has the bits set. Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908 unsigned bits, int filled, struct extent_state *cached)
1909 {
1910 struct extent_state *state = NULL;
1911 struct rb_node *node;
1912 int bitset = 0;
1913
1914 spin_lock(&tree->lock);
1915 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916 cached->end > start)
1917 node = &cached->rb_node;
1918 else
1919 node = tree_search(tree, start);
1920 while (node && start <= end) {
1921 state = rb_entry(node, struct extent_state, rb_node);
1922
1923 if (filled && state->start > start) {
1924 bitset = 0;
1925 break;
1926 }
1927
1928 if (state->start > end)
1929 break;
1930
1931 if (state->state & bits) {
1932 bitset = 1;
1933 if (!filled)
1934 break;
1935 } else if (filled) {
1936 bitset = 0;
1937 break;
1938 }
1939
1940 if (state->end == (u64)-1)
1941 break;
1942
1943 start = state->end + 1;
1944 if (start > end)
1945 break;
1946 node = rb_next(node);
1947 if (!node) {
1948 if (filled)
1949 bitset = 0;
1950 break;
1951 }
1952 }
1953 spin_unlock(&tree->lock);
1954 return bitset;
1955 }
1956
1957 /*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
1961 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962 {
1963 u64 start = page_offset(page);
1964 u64 end = start + PAGE_SIZE - 1;
1965 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966 SetPageUptodate(page);
1967 }
1968
1969 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970 {
1971 int ret;
1972 int err = 0;
1973 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975 set_state_failrec(failure_tree, rec->start, NULL);
1976 ret = clear_extent_bits(failure_tree, rec->start,
1977 rec->start + rec->len - 1,
1978 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979 if (ret)
1980 err = ret;
1981
1982 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983 rec->start + rec->len - 1,
1984 EXTENT_DAMAGED, GFP_NOFS);
1985 if (ret && !err)
1986 err = ret;
1987
1988 kfree(rec);
1989 return err;
1990 }
1991
1992 /*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
1997 * to avoid any synchronization issues, wait for the data after writing, which
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
2002 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003 struct page *page, unsigned int pg_offset, int mirror_num)
2004 {
2005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006 struct bio *bio;
2007 struct btrfs_device *dev;
2008 u64 map_length = 0;
2009 u64 sector;
2010 struct btrfs_bio *bbio = NULL;
2011 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012 int ret;
2013
2014 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015 BUG_ON(!mirror_num);
2016
2017 /* we can't repair anything in raid56 yet */
2018 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019 return 0;
2020
2021 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022 if (!bio)
2023 return -EIO;
2024 bio->bi_iter.bi_size = 0;
2025 map_length = length;
2026
2027 ret = btrfs_map_block(fs_info, WRITE, logical,
2028 &map_length, &bbio, mirror_num);
2029 if (ret) {
2030 bio_put(bio);
2031 return -EIO;
2032 }
2033 BUG_ON(mirror_num != bbio->mirror_num);
2034 sector = bbio->stripes[mirror_num-1].physical >> 9;
2035 bio->bi_iter.bi_sector = sector;
2036 dev = bbio->stripes[mirror_num-1].dev;
2037 btrfs_put_bbio(bbio);
2038 if (!dev || !dev->bdev || !dev->writeable) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 bio->bi_bdev = dev->bdev;
2043 bio_add_page(bio, page, length, pg_offset);
2044
2045 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046 /* try to remap that extent elsewhere? */
2047 bio_put(bio);
2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 return -EIO;
2050 }
2051
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 btrfs_ino(inode), start,
2055 rcu_str_deref(dev->name), sector);
2056 bio_put(bio);
2057 return 0;
2058 }
2059
2060 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061 int mirror_num)
2062 {
2063 u64 start = eb->start;
2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065 int ret = 0;
2066
2067 if (root->fs_info->sb->s_flags & MS_RDONLY)
2068 return -EROFS;
2069
2070 for (i = 0; i < num_pages; i++) {
2071 struct page *p = eb->pages[i];
2072
2073 ret = repair_io_failure(root->fs_info->btree_inode, start,
2074 PAGE_SIZE, start, p,
2075 start - page_offset(p), mirror_num);
2076 if (ret)
2077 break;
2078 start += PAGE_SIZE;
2079 }
2080
2081 return ret;
2082 }
2083
2084 /*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089 unsigned int pg_offset)
2090 {
2091 u64 private;
2092 struct io_failure_record *failrec;
2093 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094 struct extent_state *state;
2095 int num_copies;
2096 int ret;
2097
2098 private = 0;
2099 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2100 (u64)-1, 1, EXTENT_DIRTY, 0);
2101 if (!ret)
2102 return 0;
2103
2104 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2105 &failrec);
2106 if (ret)
2107 return 0;
2108
2109 BUG_ON(!failrec->this_mirror);
2110
2111 if (failrec->in_validation) {
2112 /* there was no real error, just free the record */
2113 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2114 failrec->start);
2115 goto out;
2116 }
2117 if (fs_info->sb->s_flags & MS_RDONLY)
2118 goto out;
2119
2120 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2121 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2122 failrec->start,
2123 EXTENT_LOCKED);
2124 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2125
2126 if (state && state->start <= failrec->start &&
2127 state->end >= failrec->start + failrec->len - 1) {
2128 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2129 failrec->len);
2130 if (num_copies > 1) {
2131 repair_io_failure(inode, start, failrec->len,
2132 failrec->logical, page,
2133 pg_offset, failrec->failed_mirror);
2134 }
2135 }
2136
2137 out:
2138 free_io_failure(inode, failrec);
2139
2140 return 0;
2141 }
2142
2143 /*
2144 * Can be called when
2145 * - hold extent lock
2146 * - under ordered extent
2147 * - the inode is freeing
2148 */
2149 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2150 {
2151 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2152 struct io_failure_record *failrec;
2153 struct extent_state *state, *next;
2154
2155 if (RB_EMPTY_ROOT(&failure_tree->state))
2156 return;
2157
2158 spin_lock(&failure_tree->lock);
2159 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2160 while (state) {
2161 if (state->start > end)
2162 break;
2163
2164 ASSERT(state->end <= end);
2165
2166 next = next_state(state);
2167
2168 failrec = state->failrec;
2169 free_extent_state(state);
2170 kfree(failrec);
2171
2172 state = next;
2173 }
2174 spin_unlock(&failure_tree->lock);
2175 }
2176
2177 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2178 struct io_failure_record **failrec_ret)
2179 {
2180 struct io_failure_record *failrec;
2181 struct extent_map *em;
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185 int ret;
2186 u64 logical;
2187
2188 ret = get_state_failrec(failure_tree, start, &failrec);
2189 if (ret) {
2190 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191 if (!failrec)
2192 return -ENOMEM;
2193
2194 failrec->start = start;
2195 failrec->len = end - start + 1;
2196 failrec->this_mirror = 0;
2197 failrec->bio_flags = 0;
2198 failrec->in_validation = 0;
2199
2200 read_lock(&em_tree->lock);
2201 em = lookup_extent_mapping(em_tree, start, failrec->len);
2202 if (!em) {
2203 read_unlock(&em_tree->lock);
2204 kfree(failrec);
2205 return -EIO;
2206 }
2207
2208 if (em->start > start || em->start + em->len <= start) {
2209 free_extent_map(em);
2210 em = NULL;
2211 }
2212 read_unlock(&em_tree->lock);
2213 if (!em) {
2214 kfree(failrec);
2215 return -EIO;
2216 }
2217
2218 logical = start - em->start;
2219 logical = em->block_start + logical;
2220 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221 logical = em->block_start;
2222 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223 extent_set_compress_type(&failrec->bio_flags,
2224 em->compress_type);
2225 }
2226
2227 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2228 logical, start, failrec->len);
2229
2230 failrec->logical = logical;
2231 free_extent_map(em);
2232
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
2235 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236 if (ret >= 0)
2237 ret = set_state_failrec(failure_tree, start, failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 GFP_NOFS);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2247 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260 }
2261
2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 struct io_failure_record *failrec, int failed_mirror)
2264 {
2265 int num_copies;
2266
2267 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268 failrec->logical, failrec->len);
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
2275 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276 num_copies, failrec->this_mirror, failed_mirror);
2277 return 0;
2278 }
2279
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
2312 }
2313
2314 if (failrec->this_mirror > num_copies) {
2315 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316 num_copies, failrec->this_mirror, failed_mirror);
2317 return 0;
2318 }
2319
2320 return 1;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2328 {
2329 struct bio *bio;
2330 struct btrfs_io_bio *btrfs_failed_bio;
2331 struct btrfs_io_bio *btrfs_bio;
2332
2333 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334 if (!bio)
2335 return NULL;
2336
2337 bio->bi_end_io = endio_func;
2338 bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340 bio->bi_iter.bi_size = 0;
2341 bio->bi_private = data;
2342
2343 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 if (btrfs_failed_bio->csum) {
2345 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348 btrfs_bio = btrfs_io_bio(bio);
2349 btrfs_bio->csum = btrfs_bio->csum_inline;
2350 icsum *= csum_size;
2351 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352 csum_size);
2353 }
2354
2355 bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357 return bio;
2358 }
2359
2360 /*
2361 * this is a generic handler for readpage errors (default
2362 * readpage_io_failed_hook). if other copies exist, read those and write back
2363 * good data to the failed position. does not investigate in remapping the
2364 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 * needed
2366 */
2367
2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369 struct page *page, u64 start, u64 end,
2370 int failed_mirror)
2371 {
2372 struct io_failure_record *failrec;
2373 struct inode *inode = page->mapping->host;
2374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375 struct bio *bio;
2376 int read_mode;
2377 int ret;
2378
2379 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 if (ret)
2383 return ret;
2384
2385 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386 if (!ret) {
2387 free_io_failure(inode, failrec);
2388 return -EIO;
2389 }
2390
2391 if (failed_bio->bi_vcnt > 1)
2392 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393 else
2394 read_mode = READ_SYNC;
2395
2396 phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 start - page_offset(page),
2399 (int)phy_offset, failed_bio->bi_end_io,
2400 NULL);
2401 if (!bio) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
2405
2406 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407 read_mode, failrec->this_mirror, failrec->in_validation);
2408
2409 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410 failrec->this_mirror,
2411 failrec->bio_flags, 0);
2412 if (ret) {
2413 free_io_failure(inode, failrec);
2414 bio_put(bio);
2415 }
2416
2417 return ret;
2418 }
2419
2420 /* lots and lots of room for performance fixes in the end_bio funcs */
2421
2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423 {
2424 int uptodate = (err == 0);
2425 struct extent_io_tree *tree;
2426 int ret = 0;
2427
2428 tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430 if (tree->ops && tree->ops->writepage_end_io_hook) {
2431 ret = tree->ops->writepage_end_io_hook(page, start,
2432 end, NULL, uptodate);
2433 if (ret)
2434 uptodate = 0;
2435 }
2436
2437 if (!uptodate) {
2438 ClearPageUptodate(page);
2439 SetPageError(page);
2440 ret = ret < 0 ? ret : -EIO;
2441 mapping_set_error(page->mapping, ret);
2442 }
2443 }
2444
2445 /*
2446 * after a writepage IO is done, we need to:
2447 * clear the uptodate bits on error
2448 * clear the writeback bits in the extent tree for this IO
2449 * end_page_writeback if the page has no more pending IO
2450 *
2451 * Scheduling is not allowed, so the extent state tree is expected
2452 * to have one and only one object corresponding to this IO.
2453 */
2454 static void end_bio_extent_writepage(struct bio *bio)
2455 {
2456 struct bio_vec *bvec;
2457 u64 start;
2458 u64 end;
2459 int i;
2460
2461 bio_for_each_segment_all(bvec, bio, i) {
2462 struct page *page = bvec->bv_page;
2463
2464 /* We always issue full-page reads, but if some block
2465 * in a page fails to read, blk_update_request() will
2466 * advance bv_offset and adjust bv_len to compensate.
2467 * Print a warning for nonzero offsets, and an error
2468 * if they don't add up to a full page. */
2469 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472 "partial page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 else
2475 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476 "incomplete page write in btrfs with offset %u and "
2477 "length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 }
2480
2481 start = page_offset(page);
2482 end = start + bvec->bv_offset + bvec->bv_len - 1;
2483
2484 end_extent_writepage(page, bio->bi_error, start, end);
2485 end_page_writeback(page);
2486 }
2487
2488 bio_put(bio);
2489 }
2490
2491 static void
2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 int uptodate)
2494 {
2495 struct extent_state *cached = NULL;
2496 u64 end = start + len - 1;
2497
2498 if (uptodate && tree->track_uptodate)
2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501 }
2502
2503 /*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
2514 static void end_bio_extent_readpage(struct bio *bio)
2515 {
2516 struct bio_vec *bvec;
2517 int uptodate = !bio->bi_error;
2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519 struct extent_io_tree *tree;
2520 u64 offset = 0;
2521 u64 start;
2522 u64 end;
2523 u64 len;
2524 u64 extent_start = 0;
2525 u64 extent_len = 0;
2526 int mirror;
2527 int ret;
2528 int i;
2529
2530 bio_for_each_segment_all(bvec, bio, i) {
2531 struct page *page = bvec->bv_page;
2532 struct inode *inode = page->mapping->host;
2533
2534 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536 bio->bi_error, io_bio->mirror_num);
2537 tree = &BTRFS_I(inode)->io_tree;
2538
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
2548 bvec->bv_offset, bvec->bv_len);
2549 else
2550 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551 "incomplete page read in btrfs with offset %u and "
2552 "length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 }
2555
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 len = bvec->bv_len;
2559
2560 mirror = io_bio->mirror_num;
2561 if (likely(uptodate && tree->ops &&
2562 tree->ops->readpage_end_io_hook)) {
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 page, start, end,
2565 mirror);
2566 if (ret)
2567 uptodate = 0;
2568 else
2569 clean_io_failure(inode, start, page, 0);
2570 }
2571
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
2575 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 if (!ret && !bio->bi_error)
2578 uptodate = 1;
2579 } else {
2580 /*
2581 * The generic bio_readpage_error handles errors the
2582 * following way: If possible, new read requests are
2583 * created and submitted and will end up in
2584 * end_bio_extent_readpage as well (if we're lucky, not
2585 * in the !uptodate case). In that case it returns 0 and
2586 * we just go on with the next page in our bio. If it
2587 * can't handle the error it will return -EIO and we
2588 * remain responsible for that page.
2589 */
2590 ret = bio_readpage_error(bio, offset, page, start, end,
2591 mirror);
2592 if (ret == 0) {
2593 uptodate = !bio->bi_error;
2594 offset += len;
2595 continue;
2596 }
2597 }
2598 readpage_ok:
2599 if (likely(uptodate)) {
2600 loff_t i_size = i_size_read(inode);
2601 pgoff_t end_index = i_size >> PAGE_SHIFT;
2602 unsigned off;
2603
2604 /* Zero out the end if this page straddles i_size */
2605 off = i_size & (PAGE_SIZE-1);
2606 if (page->index == end_index && off)
2607 zero_user_segment(page, off, PAGE_SIZE);
2608 SetPageUptodate(page);
2609 } else {
2610 ClearPageUptodate(page);
2611 SetPageError(page);
2612 }
2613 unlock_page(page);
2614 offset += len;
2615
2616 if (unlikely(!uptodate)) {
2617 if (extent_len) {
2618 endio_readpage_release_extent(tree,
2619 extent_start,
2620 extent_len, 1);
2621 extent_start = 0;
2622 extent_len = 0;
2623 }
2624 endio_readpage_release_extent(tree, start,
2625 end - start + 1, 0);
2626 } else if (!extent_len) {
2627 extent_start = start;
2628 extent_len = end + 1 - start;
2629 } else if (extent_start + extent_len == start) {
2630 extent_len += end + 1 - start;
2631 } else {
2632 endio_readpage_release_extent(tree, extent_start,
2633 extent_len, uptodate);
2634 extent_start = start;
2635 extent_len = end + 1 - start;
2636 }
2637 }
2638
2639 if (extent_len)
2640 endio_readpage_release_extent(tree, extent_start, extent_len,
2641 uptodate);
2642 if (io_bio->end_io)
2643 io_bio->end_io(io_bio, bio->bi_error);
2644 bio_put(bio);
2645 }
2646
2647 /*
2648 * this allocates from the btrfs_bioset. We're returning a bio right now
2649 * but you can call btrfs_io_bio for the appropriate container_of magic
2650 */
2651 struct bio *
2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653 gfp_t gfp_flags)
2654 {
2655 struct btrfs_io_bio *btrfs_bio;
2656 struct bio *bio;
2657
2658 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659
2660 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661 while (!bio && (nr_vecs /= 2)) {
2662 bio = bio_alloc_bioset(gfp_flags,
2663 nr_vecs, btrfs_bioset);
2664 }
2665 }
2666
2667 if (bio) {
2668 bio->bi_bdev = bdev;
2669 bio->bi_iter.bi_sector = first_sector;
2670 btrfs_bio = btrfs_io_bio(bio);
2671 btrfs_bio->csum = NULL;
2672 btrfs_bio->csum_allocated = NULL;
2673 btrfs_bio->end_io = NULL;
2674 }
2675 return bio;
2676 }
2677
2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679 {
2680 struct btrfs_io_bio *btrfs_bio;
2681 struct bio *new;
2682
2683 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684 if (new) {
2685 btrfs_bio = btrfs_io_bio(new);
2686 btrfs_bio->csum = NULL;
2687 btrfs_bio->csum_allocated = NULL;
2688 btrfs_bio->end_io = NULL;
2689
2690 #ifdef CONFIG_BLK_CGROUP
2691 /* FIXME, put this into bio_clone_bioset */
2692 if (bio->bi_css)
2693 bio_associate_blkcg(new, bio->bi_css);
2694 #endif
2695 }
2696 return new;
2697 }
2698
2699 /* this also allocates from the btrfs_bioset */
2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701 {
2702 struct btrfs_io_bio *btrfs_bio;
2703 struct bio *bio;
2704
2705 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706 if (bio) {
2707 btrfs_bio = btrfs_io_bio(bio);
2708 btrfs_bio->csum = NULL;
2709 btrfs_bio->csum_allocated = NULL;
2710 btrfs_bio->end_io = NULL;
2711 }
2712 return bio;
2713 }
2714
2715
2716 static int __must_check submit_one_bio(int rw, struct bio *bio,
2717 int mirror_num, unsigned long bio_flags)
2718 {
2719 int ret = 0;
2720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721 struct page *page = bvec->bv_page;
2722 struct extent_io_tree *tree = bio->bi_private;
2723 u64 start;
2724
2725 start = page_offset(page) + bvec->bv_offset;
2726
2727 bio->bi_private = NULL;
2728
2729 bio_get(bio);
2730
2731 if (tree->ops && tree->ops->submit_bio_hook)
2732 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733 mirror_num, bio_flags, start);
2734 else
2735 btrfsic_submit_bio(rw, bio);
2736
2737 bio_put(bio);
2738 return ret;
2739 }
2740
2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742 unsigned long offset, size_t size, struct bio *bio,
2743 unsigned long bio_flags)
2744 {
2745 int ret = 0;
2746 if (tree->ops && tree->ops->merge_bio_hook)
2747 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748 bio_flags);
2749 BUG_ON(ret < 0);
2750 return ret;
2751
2752 }
2753
2754 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755 struct writeback_control *wbc,
2756 struct page *page, sector_t sector,
2757 size_t size, unsigned long offset,
2758 struct block_device *bdev,
2759 struct bio **bio_ret,
2760 unsigned long max_pages,
2761 bio_end_io_t end_io_func,
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
2766 {
2767 int ret = 0;
2768 struct bio *bio;
2769 int contig = 0;
2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
2775 if (old_compressed)
2776 contig = bio->bi_iter.bi_sector == sector;
2777 else
2778 contig = bio_end_sector(bio) == sector;
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
2781 force_bio_submit ||
2782 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783 bio_add_page(bio, page, page_size, offset) < page_size) {
2784 ret = submit_one_bio(rw, bio, mirror_num,
2785 prev_bio_flags);
2786 if (ret < 0) {
2787 *bio_ret = NULL;
2788 return ret;
2789 }
2790 bio = NULL;
2791 } else {
2792 if (wbc)
2793 wbc_account_io(wbc, page, page_size);
2794 return 0;
2795 }
2796 }
2797
2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 GFP_NOFS | __GFP_HIGH);
2800 if (!bio)
2801 return -ENOMEM;
2802
2803 bio_add_page(bio, page, page_size, offset);
2804 bio->bi_end_io = end_io_func;
2805 bio->bi_private = tree;
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
2810
2811 if (bio_ret)
2812 *bio_ret = bio;
2813 else
2814 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815
2816 return ret;
2817 }
2818
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
2821 {
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
2824 get_page(page);
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
2828 }
2829 }
2830
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
2835 get_page(page);
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
2838 }
2839
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844 {
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
2849 if (extent_map_in_tree(em) && start >= em->start &&
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
2859 em = get_extent(inode, page, pg_offset, start, len, 0);
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
2862 atomic_inc(&em->refs);
2863 *em_cached = em;
2864 }
2865 return em;
2866 }
2867 /*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
2871 * XXX JDM: This needs looking at to ensure proper page locking
2872 */
2873 static int __do_readpage(struct extent_io_tree *tree,
2874 struct page *page,
2875 get_extent_t *get_extent,
2876 struct extent_map **em_cached,
2877 struct bio **bio, int mirror_num,
2878 unsigned long *bio_flags, int rw,
2879 u64 *prev_em_start)
2880 {
2881 struct inode *inode = page->mapping->host;
2882 u64 start = page_offset(page);
2883 u64 page_end = start + PAGE_SIZE - 1;
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret;
2894 int nr = 0;
2895 size_t pg_offset = 0;
2896 size_t iosize;
2897 size_t disk_io_size;
2898 size_t blocksize = inode->i_sb->s_blocksize;
2899 unsigned long this_bio_flag = 0;
2900
2901 set_page_extent_mapped(page);
2902
2903 end = page_end;
2904 if (!PageUptodate(page)) {
2905 if (cleancache_get_page(page) == 0) {
2906 BUG_ON(blocksize != PAGE_SIZE);
2907 unlock_extent(tree, start, end);
2908 goto out;
2909 }
2910 }
2911
2912 if (page->index == last_byte >> PAGE_SHIFT) {
2913 char *userpage;
2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916 if (zero_offset) {
2917 iosize = PAGE_SIZE - zero_offset;
2918 userpage = kmap_atomic(page);
2919 memset(userpage + zero_offset, 0, iosize);
2920 flush_dcache_page(page);
2921 kunmap_atomic(userpage);
2922 }
2923 }
2924 while (cur <= end) {
2925 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926 bool force_bio_submit = false;
2927
2928 if (cur >= last_byte) {
2929 char *userpage;
2930 struct extent_state *cached = NULL;
2931
2932 iosize = PAGE_SIZE - pg_offset;
2933 userpage = kmap_atomic(page);
2934 memset(userpage + pg_offset, 0, iosize);
2935 flush_dcache_page(page);
2936 kunmap_atomic(userpage);
2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 &cached, GFP_NOFS);
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
2942 break;
2943 }
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
2946 if (IS_ERR_OR_NULL(em)) {
2947 SetPageError(page);
2948 unlock_extent(tree, cur, end);
2949 break;
2950 }
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
2960
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
2963 iosize = ALIGN(iosize, blocksize);
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
2971 bdev = em->bdev;
2972 block_start = em->block_start;
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
3024 struct extent_state *cached = NULL;
3025
3026 userpage = kmap_atomic(page);
3027 memset(userpage + pg_offset, 0, iosize);
3028 flush_dcache_page(page);
3029 kunmap_atomic(userpage);
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 &cached, GFP_NOFS);
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
3036 cur = cur + iosize;
3037 pg_offset += iosize;
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
3043 check_page_uptodate(tree, page);
3044 unlock_extent(tree, cur, cur + iosize - 1);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
3054 unlock_extent(tree, cur, cur + iosize - 1);
3055 cur = cur + iosize;
3056 pg_offset += iosize;
3057 continue;
3058 }
3059
3060 pnr -= page->index;
3061 ret = submit_extent_page(rw, tree, NULL, page,
3062 sector, disk_io_size, pg_offset,
3063 bdev, bio, pnr,
3064 end_bio_extent_readpage, mirror_num,
3065 *bio_flags,
3066 this_bio_flag,
3067 force_bio_submit);
3068 if (!ret) {
3069 nr++;
3070 *bio_flags = this_bio_flag;
3071 } else {
3072 SetPageError(page);
3073 unlock_extent(tree, cur, cur + iosize - 1);
3074 }
3075 cur = cur + iosize;
3076 pg_offset += iosize;
3077 }
3078 out:
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
3084 return 0;
3085 }
3086
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
3091 struct extent_map **em_cached,
3092 struct bio **bio, int mirror_num,
3093 unsigned long *bio_flags, int rw,
3094 u64 *prev_em_start)
3095 {
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
3103 ordered = btrfs_lookup_ordered_range(inode, start,
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 mirror_num, bio_flags, rw, prev_em_start);
3115 put_page(pages[index]);
3116 }
3117 }
3118
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
3122 struct extent_map **em_cached,
3123 struct bio **bio, int mirror_num,
3124 unsigned long *bio_flags, int rw,
3125 u64 *prev_em_start)
3126 {
3127 u64 start = 0;
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
3131 int first_index = 0;
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
3137 end = start + PAGE_SIZE - 1;
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
3140 end += PAGE_SIZE;
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
3146 rw, prev_em_start);
3147 start = page_start;
3148 end = start + PAGE_SIZE - 1;
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
3156 end, get_extent, em_cached, bio,
3157 mirror_num, bio_flags, rw,
3158 prev_em_start);
3159 }
3160
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags, int rw)
3166 {
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
3170 u64 end = start + PAGE_SIZE - 1;
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
3175 ordered = btrfs_lookup_ordered_range(inode, start,
3176 PAGE_SIZE);
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 bio_flags, rw, NULL);
3186 return ret;
3187 }
3188
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 get_extent_t *get_extent, int mirror_num)
3191 {
3192 struct bio *bio = NULL;
3193 unsigned long bio_flags = 0;
3194 int ret;
3195
3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197 &bio_flags, READ);
3198 if (bio)
3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200 return ret;
3201 }
3202
3203 static noinline void update_nr_written(struct page *page,
3204 struct writeback_control *wbc,
3205 unsigned long nr_written)
3206 {
3207 wbc->nr_to_write -= nr_written;
3208 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3209 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3210 page->mapping->writeback_index = page->index + nr_written;
3211 }
3212
3213 /*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228 {
3229 struct extent_io_tree *tree = epd->tree;
3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
3245 BTRFS_MAX_EXTENT_SIZE);
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
3267 * delalloc_end is already one less than the total
3268 * length, so we don't subtract one from
3269 * PAGE_CACHE_SIZE
3270 */
3271 delalloc_to_write += (delalloc_end - delalloc_start +
3272 PAGE_SIZE) >>
3273 PAGE_SHIFT;
3274 delalloc_start = delalloc_end + 1;
3275 }
3276 if (wbc->nr_to_write < delalloc_to_write) {
3277 int thresh = 8192;
3278
3279 if (delalloc_to_write < thresh * 2)
3280 thresh = delalloc_to_write;
3281 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3282 thresh);
3283 }
3284
3285 /* did the fill delalloc function already unlock and start
3286 * the IO?
3287 */
3288 if (page_started) {
3289 /*
3290 * we've unlocked the page, so we can't update
3291 * the mapping's writeback index, just update
3292 * nr_to_write.
3293 */
3294 wbc->nr_to_write -= *nr_written;
3295 return 1;
3296 }
3297
3298 ret = 0;
3299
3300 done:
3301 return ret;
3302 }
3303
3304 /*
3305 * helper for __extent_writepage. This calls the writepage start hooks,
3306 * and does the loop to map the page into extents and bios.
3307 *
3308 * We return 1 if the IO is started and the page is unlocked,
3309 * 0 if all went well (page still locked)
3310 * < 0 if there were errors (page still locked)
3311 */
3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3313 struct page *page,
3314 struct writeback_control *wbc,
3315 struct extent_page_data *epd,
3316 loff_t i_size,
3317 unsigned long nr_written,
3318 int write_flags, int *nr_ret)
3319 {
3320 struct extent_io_tree *tree = epd->tree;
3321 u64 start = page_offset(page);
3322 u64 page_end = start + PAGE_SIZE - 1;
3323 u64 end;
3324 u64 cur = start;
3325 u64 extent_offset;
3326 u64 block_start;
3327 u64 iosize;
3328 sector_t sector;
3329 struct extent_state *cached_state = NULL;
3330 struct extent_map *em;
3331 struct block_device *bdev;
3332 size_t pg_offset = 0;
3333 size_t blocksize;
3334 int ret = 0;
3335 int nr = 0;
3336 bool compressed;
3337
3338 if (tree->ops && tree->ops->writepage_start_hook) {
3339 ret = tree->ops->writepage_start_hook(page, start,
3340 page_end);
3341 if (ret) {
3342 /* Fixup worker will requeue */
3343 if (ret == -EBUSY)
3344 wbc->pages_skipped++;
3345 else
3346 redirty_page_for_writepage(wbc, page);
3347
3348 update_nr_written(page, wbc, nr_written);
3349 unlock_page(page);
3350 ret = 1;
3351 goto done_unlocked;
3352 }
3353 }
3354
3355 /*
3356 * we don't want to touch the inode after unlocking the page,
3357 * so we update the mapping writeback index now
3358 */
3359 update_nr_written(page, wbc, nr_written + 1);
3360
3361 end = page_end;
3362 if (i_size <= start) {
3363 if (tree->ops && tree->ops->writepage_end_io_hook)
3364 tree->ops->writepage_end_io_hook(page, start,
3365 page_end, NULL, 1);
3366 goto done;
3367 }
3368
3369 blocksize = inode->i_sb->s_blocksize;
3370
3371 while (cur <= end) {
3372 u64 em_end;
3373 if (cur >= i_size) {
3374 if (tree->ops && tree->ops->writepage_end_io_hook)
3375 tree->ops->writepage_end_io_hook(page, cur,
3376 page_end, NULL, 1);
3377 break;
3378 }
3379 em = epd->get_extent(inode, page, pg_offset, cur,
3380 end - cur + 1, 1);
3381 if (IS_ERR_OR_NULL(em)) {
3382 SetPageError(page);
3383 ret = PTR_ERR_OR_ZERO(em);
3384 break;
3385 }
3386
3387 extent_offset = cur - em->start;
3388 em_end = extent_map_end(em);
3389 BUG_ON(em_end <= cur);
3390 BUG_ON(end < cur);
3391 iosize = min(em_end - cur, end - cur + 1);
3392 iosize = ALIGN(iosize, blocksize);
3393 sector = (em->block_start + extent_offset) >> 9;
3394 bdev = em->bdev;
3395 block_start = em->block_start;
3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397 free_extent_map(em);
3398 em = NULL;
3399
3400 /*
3401 * compressed and inline extents are written through other
3402 * paths in the FS
3403 */
3404 if (compressed || block_start == EXTENT_MAP_HOLE ||
3405 block_start == EXTENT_MAP_INLINE) {
3406 /*
3407 * end_io notification does not happen here for
3408 * compressed extents
3409 */
3410 if (!compressed && tree->ops &&
3411 tree->ops->writepage_end_io_hook)
3412 tree->ops->writepage_end_io_hook(page, cur,
3413 cur + iosize - 1,
3414 NULL, 1);
3415 else if (compressed) {
3416 /* we don't want to end_page_writeback on
3417 * a compressed extent. this happens
3418 * elsewhere
3419 */
3420 nr++;
3421 }
3422
3423 cur += iosize;
3424 pg_offset += iosize;
3425 continue;
3426 }
3427
3428 if (tree->ops && tree->ops->writepage_io_hook) {
3429 ret = tree->ops->writepage_io_hook(page, cur,
3430 cur + iosize - 1);
3431 } else {
3432 ret = 0;
3433 }
3434 if (ret) {
3435 SetPageError(page);
3436 } else {
3437 unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
3438
3439 set_range_writeback(tree, cur, cur + iosize - 1);
3440 if (!PageWriteback(page)) {
3441 btrfs_err(BTRFS_I(inode)->root->fs_info,
3442 "page %lu not writeback, cur %llu end %llu",
3443 page->index, cur, end);
3444 }
3445
3446 ret = submit_extent_page(write_flags, tree, wbc, page,
3447 sector, iosize, pg_offset,
3448 bdev, &epd->bio, max_nr,
3449 end_bio_extent_writepage,
3450 0, 0, 0, false);
3451 if (ret)
3452 SetPageError(page);
3453 }
3454 cur = cur + iosize;
3455 pg_offset += iosize;
3456 nr++;
3457 }
3458 done:
3459 *nr_ret = nr;
3460
3461 done_unlocked:
3462
3463 /* drop our reference on any cached states */
3464 free_extent_state(cached_state);
3465 return ret;
3466 }
3467
3468 /*
3469 * the writepage semantics are similar to regular writepage. extent
3470 * records are inserted to lock ranges in the tree, and as dirty areas
3471 * are found, they are marked writeback. Then the lock bits are removed
3472 * and the end_io handler clears the writeback ranges
3473 */
3474 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3475 void *data)
3476 {
3477 struct inode *inode = page->mapping->host;
3478 struct extent_page_data *epd = data;
3479 u64 start = page_offset(page);
3480 u64 page_end = start + PAGE_SIZE - 1;
3481 int ret;
3482 int nr = 0;
3483 size_t pg_offset = 0;
3484 loff_t i_size = i_size_read(inode);
3485 unsigned long end_index = i_size >> PAGE_SHIFT;
3486 int write_flags;
3487 unsigned long nr_written = 0;
3488
3489 if (wbc->sync_mode == WB_SYNC_ALL)
3490 write_flags = WRITE_SYNC;
3491 else
3492 write_flags = WRITE;
3493
3494 trace___extent_writepage(page, inode, wbc);
3495
3496 WARN_ON(!PageLocked(page));
3497
3498 ClearPageError(page);
3499
3500 pg_offset = i_size & (PAGE_SIZE - 1);
3501 if (page->index > end_index ||
3502 (page->index == end_index && !pg_offset)) {
3503 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3504 unlock_page(page);
3505 return 0;
3506 }
3507
3508 if (page->index == end_index) {
3509 char *userpage;
3510
3511 userpage = kmap_atomic(page);
3512 memset(userpage + pg_offset, 0,
3513 PAGE_SIZE - pg_offset);
3514 kunmap_atomic(userpage);
3515 flush_dcache_page(page);
3516 }
3517
3518 pg_offset = 0;
3519
3520 set_page_extent_mapped(page);
3521
3522 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3523 if (ret == 1)
3524 goto done_unlocked;
3525 if (ret)
3526 goto done;
3527
3528 ret = __extent_writepage_io(inode, page, wbc, epd,
3529 i_size, nr_written, write_flags, &nr);
3530 if (ret == 1)
3531 goto done_unlocked;
3532
3533 done:
3534 if (nr == 0) {
3535 /* make sure the mapping tag for page dirty gets cleared */
3536 set_page_writeback(page);
3537 end_page_writeback(page);
3538 }
3539 if (PageError(page)) {
3540 ret = ret < 0 ? ret : -EIO;
3541 end_extent_writepage(page, ret, start, page_end);
3542 }
3543 unlock_page(page);
3544 return ret;
3545
3546 done_unlocked:
3547 return 0;
3548 }
3549
3550 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3551 {
3552 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3553 TASK_UNINTERRUPTIBLE);
3554 }
3555
3556 static noinline_for_stack int
3557 lock_extent_buffer_for_io(struct extent_buffer *eb,
3558 struct btrfs_fs_info *fs_info,
3559 struct extent_page_data *epd)
3560 {
3561 unsigned long i, num_pages;
3562 int flush = 0;
3563 int ret = 0;
3564
3565 if (!btrfs_try_tree_write_lock(eb)) {
3566 flush = 1;
3567 flush_write_bio(epd);
3568 btrfs_tree_lock(eb);
3569 }
3570
3571 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3572 btrfs_tree_unlock(eb);
3573 if (!epd->sync_io)
3574 return 0;
3575 if (!flush) {
3576 flush_write_bio(epd);
3577 flush = 1;
3578 }
3579 while (1) {
3580 wait_on_extent_buffer_writeback(eb);
3581 btrfs_tree_lock(eb);
3582 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3583 break;
3584 btrfs_tree_unlock(eb);
3585 }
3586 }
3587
3588 /*
3589 * We need to do this to prevent races in people who check if the eb is
3590 * under IO since we can end up having no IO bits set for a short period
3591 * of time.
3592 */
3593 spin_lock(&eb->refs_lock);
3594 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3595 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3596 spin_unlock(&eb->refs_lock);
3597 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3598 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3599 -eb->len,
3600 fs_info->dirty_metadata_batch);
3601 ret = 1;
3602 } else {
3603 spin_unlock(&eb->refs_lock);
3604 }
3605
3606 btrfs_tree_unlock(eb);
3607
3608 if (!ret)
3609 return ret;
3610
3611 num_pages = num_extent_pages(eb->start, eb->len);
3612 for (i = 0; i < num_pages; i++) {
3613 struct page *p = eb->pages[i];
3614
3615 if (!trylock_page(p)) {
3616 if (!flush) {
3617 flush_write_bio(epd);
3618 flush = 1;
3619 }
3620 lock_page(p);
3621 }
3622 }
3623
3624 return ret;
3625 }
3626
3627 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3628 {
3629 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3630 smp_mb__after_atomic();
3631 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3632 }
3633
3634 static void set_btree_ioerr(struct page *page)
3635 {
3636 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3637 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3638
3639 SetPageError(page);
3640 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3641 return;
3642
3643 /*
3644 * If writeback for a btree extent that doesn't belong to a log tree
3645 * failed, increment the counter transaction->eb_write_errors.
3646 * We do this because while the transaction is running and before it's
3647 * committing (when we call filemap_fdata[write|wait]_range against
3648 * the btree inode), we might have
3649 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3650 * returns an error or an error happens during writeback, when we're
3651 * committing the transaction we wouldn't know about it, since the pages
3652 * can be no longer dirty nor marked anymore for writeback (if a
3653 * subsequent modification to the extent buffer didn't happen before the
3654 * transaction commit), which makes filemap_fdata[write|wait]_range not
3655 * able to find the pages tagged with SetPageError at transaction
3656 * commit time. So if this happens we must abort the transaction,
3657 * otherwise we commit a super block with btree roots that point to
3658 * btree nodes/leafs whose content on disk is invalid - either garbage
3659 * or the content of some node/leaf from a past generation that got
3660 * cowed or deleted and is no longer valid.
3661 *
3662 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3663 * not be enough - we need to distinguish between log tree extents vs
3664 * non-log tree extents, and the next filemap_fdatawait_range() call
3665 * will catch and clear such errors in the mapping - and that call might
3666 * be from a log sync and not from a transaction commit. Also, checking
3667 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3668 * not done and would not be reliable - the eb might have been released
3669 * from memory and reading it back again means that flag would not be
3670 * set (since it's a runtime flag, not persisted on disk).
3671 *
3672 * Using the flags below in the btree inode also makes us achieve the
3673 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3674 * writeback for all dirty pages and before filemap_fdatawait_range()
3675 * is called, the writeback for all dirty pages had already finished
3676 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3677 * filemap_fdatawait_range() would return success, as it could not know
3678 * that writeback errors happened (the pages were no longer tagged for
3679 * writeback).
3680 */
3681 switch (eb->log_index) {
3682 case -1:
3683 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3684 break;
3685 case 0:
3686 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3687 break;
3688 case 1:
3689 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3690 break;
3691 default:
3692 BUG(); /* unexpected, logic error */
3693 }
3694 }
3695
3696 static void end_bio_extent_buffer_writepage(struct bio *bio)
3697 {
3698 struct bio_vec *bvec;
3699 struct extent_buffer *eb;
3700 int i, done;
3701
3702 bio_for_each_segment_all(bvec, bio, i) {
3703 struct page *page = bvec->bv_page;
3704
3705 eb = (struct extent_buffer *)page->private;
3706 BUG_ON(!eb);
3707 done = atomic_dec_and_test(&eb->io_pages);
3708
3709 if (bio->bi_error ||
3710 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3711 ClearPageUptodate(page);
3712 set_btree_ioerr(page);
3713 }
3714
3715 end_page_writeback(page);
3716
3717 if (!done)
3718 continue;
3719
3720 end_extent_buffer_writeback(eb);
3721 }
3722
3723 bio_put(bio);
3724 }
3725
3726 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3727 struct btrfs_fs_info *fs_info,
3728 struct writeback_control *wbc,
3729 struct extent_page_data *epd)
3730 {
3731 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3732 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3733 u64 offset = eb->start;
3734 unsigned long i, num_pages;
3735 unsigned long bio_flags = 0;
3736 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3737 int ret = 0;
3738
3739 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3740 num_pages = num_extent_pages(eb->start, eb->len);
3741 atomic_set(&eb->io_pages, num_pages);
3742 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3743 bio_flags = EXTENT_BIO_TREE_LOG;
3744
3745 for (i = 0; i < num_pages; i++) {
3746 struct page *p = eb->pages[i];
3747
3748 clear_page_dirty_for_io(p);
3749 set_page_writeback(p);
3750 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3751 PAGE_SIZE, 0, bdev, &epd->bio,
3752 -1, end_bio_extent_buffer_writepage,
3753 0, epd->bio_flags, bio_flags, false);
3754 epd->bio_flags = bio_flags;
3755 if (ret) {
3756 set_btree_ioerr(p);
3757 end_page_writeback(p);
3758 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3759 end_extent_buffer_writeback(eb);
3760 ret = -EIO;
3761 break;
3762 }
3763 offset += PAGE_SIZE;
3764 update_nr_written(p, wbc, 1);
3765 unlock_page(p);
3766 }
3767
3768 if (unlikely(ret)) {
3769 for (; i < num_pages; i++) {
3770 struct page *p = eb->pages[i];
3771 clear_page_dirty_for_io(p);
3772 unlock_page(p);
3773 }
3774 }
3775
3776 return ret;
3777 }
3778
3779 int btree_write_cache_pages(struct address_space *mapping,
3780 struct writeback_control *wbc)
3781 {
3782 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3783 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3784 struct extent_buffer *eb, *prev_eb = NULL;
3785 struct extent_page_data epd = {
3786 .bio = NULL,
3787 .tree = tree,
3788 .extent_locked = 0,
3789 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3790 .bio_flags = 0,
3791 };
3792 int ret = 0;
3793 int done = 0;
3794 int nr_to_write_done = 0;
3795 struct pagevec pvec;
3796 int nr_pages;
3797 pgoff_t index;
3798 pgoff_t end; /* Inclusive */
3799 int scanned = 0;
3800 int tag;
3801
3802 pagevec_init(&pvec, 0);
3803 if (wbc->range_cyclic) {
3804 index = mapping->writeback_index; /* Start from prev offset */
3805 end = -1;
3806 } else {
3807 index = wbc->range_start >> PAGE_SHIFT;
3808 end = wbc->range_end >> PAGE_SHIFT;
3809 scanned = 1;
3810 }
3811 if (wbc->sync_mode == WB_SYNC_ALL)
3812 tag = PAGECACHE_TAG_TOWRITE;
3813 else
3814 tag = PAGECACHE_TAG_DIRTY;
3815 retry:
3816 if (wbc->sync_mode == WB_SYNC_ALL)
3817 tag_pages_for_writeback(mapping, index, end);
3818 while (!done && !nr_to_write_done && (index <= end) &&
3819 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3820 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3821 unsigned i;
3822
3823 scanned = 1;
3824 for (i = 0; i < nr_pages; i++) {
3825 struct page *page = pvec.pages[i];
3826
3827 if (!PagePrivate(page))
3828 continue;
3829
3830 if (!wbc->range_cyclic && page->index > end) {
3831 done = 1;
3832 break;
3833 }
3834
3835 spin_lock(&mapping->private_lock);
3836 if (!PagePrivate(page)) {
3837 spin_unlock(&mapping->private_lock);
3838 continue;
3839 }
3840
3841 eb = (struct extent_buffer *)page->private;
3842
3843 /*
3844 * Shouldn't happen and normally this would be a BUG_ON
3845 * but no sense in crashing the users box for something
3846 * we can survive anyway.
3847 */
3848 if (WARN_ON(!eb)) {
3849 spin_unlock(&mapping->private_lock);
3850 continue;
3851 }
3852
3853 if (eb == prev_eb) {
3854 spin_unlock(&mapping->private_lock);
3855 continue;
3856 }
3857
3858 ret = atomic_inc_not_zero(&eb->refs);
3859 spin_unlock(&mapping->private_lock);
3860 if (!ret)
3861 continue;
3862
3863 prev_eb = eb;
3864 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3865 if (!ret) {
3866 free_extent_buffer(eb);
3867 continue;
3868 }
3869
3870 ret = write_one_eb(eb, fs_info, wbc, &epd);
3871 if (ret) {
3872 done = 1;
3873 free_extent_buffer(eb);
3874 break;
3875 }
3876 free_extent_buffer(eb);
3877
3878 /*
3879 * the filesystem may choose to bump up nr_to_write.
3880 * We have to make sure to honor the new nr_to_write
3881 * at any time
3882 */
3883 nr_to_write_done = wbc->nr_to_write <= 0;
3884 }
3885 pagevec_release(&pvec);
3886 cond_resched();
3887 }
3888 if (!scanned && !done) {
3889 /*
3890 * We hit the last page and there is more work to be done: wrap
3891 * back to the start of the file
3892 */
3893 scanned = 1;
3894 index = 0;
3895 goto retry;
3896 }
3897 flush_write_bio(&epd);
3898 return ret;
3899 }
3900
3901 /**
3902 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3903 * @mapping: address space structure to write
3904 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3905 * @writepage: function called for each page
3906 * @data: data passed to writepage function
3907 *
3908 * If a page is already under I/O, write_cache_pages() skips it, even
3909 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3910 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3911 * and msync() need to guarantee that all the data which was dirty at the time
3912 * the call was made get new I/O started against them. If wbc->sync_mode is
3913 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3914 * existing IO to complete.
3915 */
3916 static int extent_write_cache_pages(struct extent_io_tree *tree,
3917 struct address_space *mapping,
3918 struct writeback_control *wbc,
3919 writepage_t writepage, void *data,
3920 void (*flush_fn)(void *))
3921 {
3922 struct inode *inode = mapping->host;
3923 int ret = 0;
3924 int done = 0;
3925 int err = 0;
3926 int nr_to_write_done = 0;
3927 struct pagevec pvec;
3928 int nr_pages;
3929 pgoff_t index;
3930 pgoff_t end; /* Inclusive */
3931 int scanned = 0;
3932 int tag;
3933
3934 /*
3935 * We have to hold onto the inode so that ordered extents can do their
3936 * work when the IO finishes. The alternative to this is failing to add
3937 * an ordered extent if the igrab() fails there and that is a huge pain
3938 * to deal with, so instead just hold onto the inode throughout the
3939 * writepages operation. If it fails here we are freeing up the inode
3940 * anyway and we'd rather not waste our time writing out stuff that is
3941 * going to be truncated anyway.
3942 */
3943 if (!igrab(inode))
3944 return 0;
3945
3946 pagevec_init(&pvec, 0);
3947 if (wbc->range_cyclic) {
3948 index = mapping->writeback_index; /* Start from prev offset */
3949 end = -1;
3950 } else {
3951 index = wbc->range_start >> PAGE_SHIFT;
3952 end = wbc->range_end >> PAGE_SHIFT;
3953 scanned = 1;
3954 }
3955 if (wbc->sync_mode == WB_SYNC_ALL)
3956 tag = PAGECACHE_TAG_TOWRITE;
3957 else
3958 tag = PAGECACHE_TAG_DIRTY;
3959 retry:
3960 if (wbc->sync_mode == WB_SYNC_ALL)
3961 tag_pages_for_writeback(mapping, index, end);
3962 while (!done && !nr_to_write_done && (index <= end) &&
3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3965 unsigned i;
3966
3967 scanned = 1;
3968 for (i = 0; i < nr_pages; i++) {
3969 struct page *page = pvec.pages[i];
3970
3971 /*
3972 * At this point we hold neither mapping->tree_lock nor
3973 * lock on the page itself: the page may be truncated or
3974 * invalidated (changing page->mapping to NULL), or even
3975 * swizzled back from swapper_space to tmpfs file
3976 * mapping
3977 */
3978 if (!trylock_page(page)) {
3979 flush_fn(data);
3980 lock_page(page);
3981 }
3982
3983 if (unlikely(page->mapping != mapping)) {
3984 unlock_page(page);
3985 continue;
3986 }
3987
3988 if (!wbc->range_cyclic && page->index > end) {
3989 done = 1;
3990 unlock_page(page);
3991 continue;
3992 }
3993
3994 if (wbc->sync_mode != WB_SYNC_NONE) {
3995 if (PageWriteback(page))
3996 flush_fn(data);
3997 wait_on_page_writeback(page);
3998 }
3999
4000 if (PageWriteback(page) ||
4001 !clear_page_dirty_for_io(page)) {
4002 unlock_page(page);
4003 continue;
4004 }
4005
4006 ret = (*writepage)(page, wbc, data);
4007
4008 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4009 unlock_page(page);
4010 ret = 0;
4011 }
4012 if (!err && ret < 0)
4013 err = ret;
4014
4015 /*
4016 * the filesystem may choose to bump up nr_to_write.
4017 * We have to make sure to honor the new nr_to_write
4018 * at any time
4019 */
4020 nr_to_write_done = wbc->nr_to_write <= 0;
4021 }
4022 pagevec_release(&pvec);
4023 cond_resched();
4024 }
4025 if (!scanned && !done && !err) {
4026 /*
4027 * We hit the last page and there is more work to be done: wrap
4028 * back to the start of the file
4029 */
4030 scanned = 1;
4031 index = 0;
4032 goto retry;
4033 }
4034 btrfs_add_delayed_iput(inode);
4035 return err;
4036 }
4037
4038 static void flush_epd_write_bio(struct extent_page_data *epd)
4039 {
4040 if (epd->bio) {
4041 int rw = WRITE;
4042 int ret;
4043
4044 if (epd->sync_io)
4045 rw = WRITE_SYNC;
4046
4047 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4048 BUG_ON(ret < 0); /* -ENOMEM */
4049 epd->bio = NULL;
4050 }
4051 }
4052
4053 static noinline void flush_write_bio(void *data)
4054 {
4055 struct extent_page_data *epd = data;
4056 flush_epd_write_bio(epd);
4057 }
4058
4059 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4060 get_extent_t *get_extent,
4061 struct writeback_control *wbc)
4062 {
4063 int ret;
4064 struct extent_page_data epd = {
4065 .bio = NULL,
4066 .tree = tree,
4067 .get_extent = get_extent,
4068 .extent_locked = 0,
4069 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4070 .bio_flags = 0,
4071 };
4072
4073 ret = __extent_writepage(page, wbc, &epd);
4074
4075 flush_epd_write_bio(&epd);
4076 return ret;
4077 }
4078
4079 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4080 u64 start, u64 end, get_extent_t *get_extent,
4081 int mode)
4082 {
4083 int ret = 0;
4084 struct address_space *mapping = inode->i_mapping;
4085 struct page *page;
4086 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4087 PAGE_SHIFT;
4088
4089 struct extent_page_data epd = {
4090 .bio = NULL,
4091 .tree = tree,
4092 .get_extent = get_extent,
4093 .extent_locked = 1,
4094 .sync_io = mode == WB_SYNC_ALL,
4095 .bio_flags = 0,
4096 };
4097 struct writeback_control wbc_writepages = {
4098 .sync_mode = mode,
4099 .nr_to_write = nr_pages * 2,
4100 .range_start = start,
4101 .range_end = end + 1,
4102 };
4103
4104 while (start <= end) {
4105 page = find_get_page(mapping, start >> PAGE_SHIFT);
4106 if (clear_page_dirty_for_io(page))
4107 ret = __extent_writepage(page, &wbc_writepages, &epd);
4108 else {
4109 if (tree->ops && tree->ops->writepage_end_io_hook)
4110 tree->ops->writepage_end_io_hook(page, start,
4111 start + PAGE_SIZE - 1,
4112 NULL, 1);
4113 unlock_page(page);
4114 }
4115 put_page(page);
4116 start += PAGE_SIZE;
4117 }
4118
4119 flush_epd_write_bio(&epd);
4120 return ret;
4121 }
4122
4123 int extent_writepages(struct extent_io_tree *tree,
4124 struct address_space *mapping,
4125 get_extent_t *get_extent,
4126 struct writeback_control *wbc)
4127 {
4128 int ret = 0;
4129 struct extent_page_data epd = {
4130 .bio = NULL,
4131 .tree = tree,
4132 .get_extent = get_extent,
4133 .extent_locked = 0,
4134 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4135 .bio_flags = 0,
4136 };
4137
4138 ret = extent_write_cache_pages(tree, mapping, wbc,
4139 __extent_writepage, &epd,
4140 flush_write_bio);
4141 flush_epd_write_bio(&epd);
4142 return ret;
4143 }
4144
4145 int extent_readpages(struct extent_io_tree *tree,
4146 struct address_space *mapping,
4147 struct list_head *pages, unsigned nr_pages,
4148 get_extent_t get_extent)
4149 {
4150 struct bio *bio = NULL;
4151 unsigned page_idx;
4152 unsigned long bio_flags = 0;
4153 struct page *pagepool[16];
4154 struct page *page;
4155 struct extent_map *em_cached = NULL;
4156 int nr = 0;
4157 u64 prev_em_start = (u64)-1;
4158
4159 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4160 page = list_entry(pages->prev, struct page, lru);
4161
4162 prefetchw(&page->flags);
4163 list_del(&page->lru);
4164 if (add_to_page_cache_lru(page, mapping,
4165 page->index, GFP_NOFS)) {
4166 put_page(page);
4167 continue;
4168 }
4169
4170 pagepool[nr++] = page;
4171 if (nr < ARRAY_SIZE(pagepool))
4172 continue;
4173 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4174 &bio, 0, &bio_flags, READ, &prev_em_start);
4175 nr = 0;
4176 }
4177 if (nr)
4178 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4179 &bio, 0, &bio_flags, READ, &prev_em_start);
4180
4181 if (em_cached)
4182 free_extent_map(em_cached);
4183
4184 BUG_ON(!list_empty(pages));
4185 if (bio)
4186 return submit_one_bio(READ, bio, 0, bio_flags);
4187 return 0;
4188 }
4189
4190 /*
4191 * basic invalidatepage code, this waits on any locked or writeback
4192 * ranges corresponding to the page, and then deletes any extent state
4193 * records from the tree
4194 */
4195 int extent_invalidatepage(struct extent_io_tree *tree,
4196 struct page *page, unsigned long offset)
4197 {
4198 struct extent_state *cached_state = NULL;
4199 u64 start = page_offset(page);
4200 u64 end = start + PAGE_SIZE - 1;
4201 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4202
4203 start += ALIGN(offset, blocksize);
4204 if (start > end)
4205 return 0;
4206
4207 lock_extent_bits(tree, start, end, &cached_state);
4208 wait_on_page_writeback(page);
4209 clear_extent_bit(tree, start, end,
4210 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4211 EXTENT_DO_ACCOUNTING,
4212 1, 1, &cached_state, GFP_NOFS);
4213 return 0;
4214 }
4215
4216 /*
4217 * a helper for releasepage, this tests for areas of the page that
4218 * are locked or under IO and drops the related state bits if it is safe
4219 * to drop the page.
4220 */
4221 static int try_release_extent_state(struct extent_map_tree *map,
4222 struct extent_io_tree *tree,
4223 struct page *page, gfp_t mask)
4224 {
4225 u64 start = page_offset(page);
4226 u64 end = start + PAGE_SIZE - 1;
4227 int ret = 1;
4228
4229 if (test_range_bit(tree, start, end,
4230 EXTENT_IOBITS, 0, NULL))
4231 ret = 0;
4232 else {
4233 if ((mask & GFP_NOFS) == GFP_NOFS)
4234 mask = GFP_NOFS;
4235 /*
4236 * at this point we can safely clear everything except the
4237 * locked bit and the nodatasum bit
4238 */
4239 ret = clear_extent_bit(tree, start, end,
4240 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4241 0, 0, NULL, mask);
4242
4243 /* if clear_extent_bit failed for enomem reasons,
4244 * we can't allow the release to continue.
4245 */
4246 if (ret < 0)
4247 ret = 0;
4248 else
4249 ret = 1;
4250 }
4251 return ret;
4252 }
4253
4254 /*
4255 * a helper for releasepage. As long as there are no locked extents
4256 * in the range corresponding to the page, both state records and extent
4257 * map records are removed
4258 */
4259 int try_release_extent_mapping(struct extent_map_tree *map,
4260 struct extent_io_tree *tree, struct page *page,
4261 gfp_t mask)
4262 {
4263 struct extent_map *em;
4264 u64 start = page_offset(page);
4265 u64 end = start + PAGE_SIZE - 1;
4266
4267 if (gfpflags_allow_blocking(mask) &&
4268 page->mapping->host->i_size > SZ_16M) {
4269 u64 len;
4270 while (start <= end) {
4271 len = end - start + 1;
4272 write_lock(&map->lock);
4273 em = lookup_extent_mapping(map, start, len);
4274 if (!em) {
4275 write_unlock(&map->lock);
4276 break;
4277 }
4278 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4279 em->start != start) {
4280 write_unlock(&map->lock);
4281 free_extent_map(em);
4282 break;
4283 }
4284 if (!test_range_bit(tree, em->start,
4285 extent_map_end(em) - 1,
4286 EXTENT_LOCKED | EXTENT_WRITEBACK,
4287 0, NULL)) {
4288 remove_extent_mapping(map, em);
4289 /* once for the rb tree */
4290 free_extent_map(em);
4291 }
4292 start = extent_map_end(em);
4293 write_unlock(&map->lock);
4294
4295 /* once for us */
4296 free_extent_map(em);
4297 }
4298 }
4299 return try_release_extent_state(map, tree, page, mask);
4300 }
4301
4302 /*
4303 * helper function for fiemap, which doesn't want to see any holes.
4304 * This maps until we find something past 'last'
4305 */
4306 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4307 u64 offset,
4308 u64 last,
4309 get_extent_t *get_extent)
4310 {
4311 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4312 struct extent_map *em;
4313 u64 len;
4314
4315 if (offset >= last)
4316 return NULL;
4317
4318 while (1) {
4319 len = last - offset;
4320 if (len == 0)
4321 break;
4322 len = ALIGN(len, sectorsize);
4323 em = get_extent(inode, NULL, 0, offset, len, 0);
4324 if (IS_ERR_OR_NULL(em))
4325 return em;
4326
4327 /* if this isn't a hole return it */
4328 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4329 em->block_start != EXTENT_MAP_HOLE) {
4330 return em;
4331 }
4332
4333 /* this is a hole, advance to the next extent */
4334 offset = extent_map_end(em);
4335 free_extent_map(em);
4336 if (offset >= last)
4337 break;
4338 }
4339 return NULL;
4340 }
4341
4342 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4343 __u64 start, __u64 len, get_extent_t *get_extent)
4344 {
4345 int ret = 0;
4346 u64 off = start;
4347 u64 max = start + len;
4348 u32 flags = 0;
4349 u32 found_type;
4350 u64 last;
4351 u64 last_for_get_extent = 0;
4352 u64 disko = 0;
4353 u64 isize = i_size_read(inode);
4354 struct btrfs_key found_key;
4355 struct extent_map *em = NULL;
4356 struct extent_state *cached_state = NULL;
4357 struct btrfs_path *path;
4358 struct btrfs_root *root = BTRFS_I(inode)->root;
4359 int end = 0;
4360 u64 em_start = 0;
4361 u64 em_len = 0;
4362 u64 em_end = 0;
4363
4364 if (len == 0)
4365 return -EINVAL;
4366
4367 path = btrfs_alloc_path();
4368 if (!path)
4369 return -ENOMEM;
4370 path->leave_spinning = 1;
4371
4372 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4373 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4374
4375 /*
4376 * lookup the last file extent. We're not using i_size here
4377 * because there might be preallocation past i_size
4378 */
4379 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4380 0);
4381 if (ret < 0) {
4382 btrfs_free_path(path);
4383 return ret;
4384 }
4385 WARN_ON(!ret);
4386 path->slots[0]--;
4387 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4388 found_type = found_key.type;
4389
4390 /* No extents, but there might be delalloc bits */
4391 if (found_key.objectid != btrfs_ino(inode) ||
4392 found_type != BTRFS_EXTENT_DATA_KEY) {
4393 /* have to trust i_size as the end */
4394 last = (u64)-1;
4395 last_for_get_extent = isize;
4396 } else {
4397 /*
4398 * remember the start of the last extent. There are a
4399 * bunch of different factors that go into the length of the
4400 * extent, so its much less complex to remember where it started
4401 */
4402 last = found_key.offset;
4403 last_for_get_extent = last + 1;
4404 }
4405 btrfs_release_path(path);
4406
4407 /*
4408 * we might have some extents allocated but more delalloc past those
4409 * extents. so, we trust isize unless the start of the last extent is
4410 * beyond isize
4411 */
4412 if (last < isize) {
4413 last = (u64)-1;
4414 last_for_get_extent = isize;
4415 }
4416
4417 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4418 &cached_state);
4419
4420 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4421 get_extent);
4422 if (!em)
4423 goto out;
4424 if (IS_ERR(em)) {
4425 ret = PTR_ERR(em);
4426 goto out;
4427 }
4428
4429 while (!end) {
4430 u64 offset_in_extent = 0;
4431
4432 /* break if the extent we found is outside the range */
4433 if (em->start >= max || extent_map_end(em) < off)
4434 break;
4435
4436 /*
4437 * get_extent may return an extent that starts before our
4438 * requested range. We have to make sure the ranges
4439 * we return to fiemap always move forward and don't
4440 * overlap, so adjust the offsets here
4441 */
4442 em_start = max(em->start, off);
4443
4444 /*
4445 * record the offset from the start of the extent
4446 * for adjusting the disk offset below. Only do this if the
4447 * extent isn't compressed since our in ram offset may be past
4448 * what we have actually allocated on disk.
4449 */
4450 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4451 offset_in_extent = em_start - em->start;
4452 em_end = extent_map_end(em);
4453 em_len = em_end - em_start;
4454 disko = 0;
4455 flags = 0;
4456
4457 /*
4458 * bump off for our next call to get_extent
4459 */
4460 off = extent_map_end(em);
4461 if (off >= max)
4462 end = 1;
4463
4464 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4465 end = 1;
4466 flags |= FIEMAP_EXTENT_LAST;
4467 } else if (em->block_start == EXTENT_MAP_INLINE) {
4468 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4469 FIEMAP_EXTENT_NOT_ALIGNED);
4470 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4471 flags |= (FIEMAP_EXTENT_DELALLOC |
4472 FIEMAP_EXTENT_UNKNOWN);
4473 } else if (fieinfo->fi_extents_max) {
4474 u64 bytenr = em->block_start -
4475 (em->start - em->orig_start);
4476
4477 disko = em->block_start + offset_in_extent;
4478
4479 /*
4480 * As btrfs supports shared space, this information
4481 * can be exported to userspace tools via
4482 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4483 * then we're just getting a count and we can skip the
4484 * lookup stuff.
4485 */
4486 ret = btrfs_check_shared(NULL, root->fs_info,
4487 root->objectid,
4488 btrfs_ino(inode), bytenr);
4489 if (ret < 0)
4490 goto out_free;
4491 if (ret)
4492 flags |= FIEMAP_EXTENT_SHARED;
4493 ret = 0;
4494 }
4495 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4496 flags |= FIEMAP_EXTENT_ENCODED;
4497 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4498 flags |= FIEMAP_EXTENT_UNWRITTEN;
4499
4500 free_extent_map(em);
4501 em = NULL;
4502 if ((em_start >= last) || em_len == (u64)-1 ||
4503 (last == (u64)-1 && isize <= em_end)) {
4504 flags |= FIEMAP_EXTENT_LAST;
4505 end = 1;
4506 }
4507
4508 /* now scan forward to see if this is really the last extent. */
4509 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4510 get_extent);
4511 if (IS_ERR(em)) {
4512 ret = PTR_ERR(em);
4513 goto out;
4514 }
4515 if (!em) {
4516 flags |= FIEMAP_EXTENT_LAST;
4517 end = 1;
4518 }
4519 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4520 em_len, flags);
4521 if (ret) {
4522 if (ret == 1)
4523 ret = 0;
4524 goto out_free;
4525 }
4526 }
4527 out_free:
4528 free_extent_map(em);
4529 out:
4530 btrfs_free_path(path);
4531 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4532 &cached_state, GFP_NOFS);
4533 return ret;
4534 }
4535
4536 static void __free_extent_buffer(struct extent_buffer *eb)
4537 {
4538 btrfs_leak_debug_del(&eb->leak_list);
4539 kmem_cache_free(extent_buffer_cache, eb);
4540 }
4541
4542 int extent_buffer_under_io(struct extent_buffer *eb)
4543 {
4544 return (atomic_read(&eb->io_pages) ||
4545 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4546 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4547 }
4548
4549 /*
4550 * Helper for releasing extent buffer page.
4551 */
4552 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4553 {
4554 unsigned long index;
4555 struct page *page;
4556 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4557
4558 BUG_ON(extent_buffer_under_io(eb));
4559
4560 index = num_extent_pages(eb->start, eb->len);
4561 if (index == 0)
4562 return;
4563
4564 do {
4565 index--;
4566 page = eb->pages[index];
4567 if (!page)
4568 continue;
4569 if (mapped)
4570 spin_lock(&page->mapping->private_lock);
4571 /*
4572 * We do this since we'll remove the pages after we've
4573 * removed the eb from the radix tree, so we could race
4574 * and have this page now attached to the new eb. So
4575 * only clear page_private if it's still connected to
4576 * this eb.
4577 */
4578 if (PagePrivate(page) &&
4579 page->private == (unsigned long)eb) {
4580 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4581 BUG_ON(PageDirty(page));
4582 BUG_ON(PageWriteback(page));
4583 /*
4584 * We need to make sure we haven't be attached
4585 * to a new eb.
4586 */
4587 ClearPagePrivate(page);
4588 set_page_private(page, 0);
4589 /* One for the page private */
4590 put_page(page);
4591 }
4592
4593 if (mapped)
4594 spin_unlock(&page->mapping->private_lock);
4595
4596 /* One for when we alloced the page */
4597 put_page(page);
4598 } while (index != 0);
4599 }
4600
4601 /*
4602 * Helper for releasing the extent buffer.
4603 */
4604 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4605 {
4606 btrfs_release_extent_buffer_page(eb);
4607 __free_extent_buffer(eb);
4608 }
4609
4610 static struct extent_buffer *
4611 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4612 unsigned long len)
4613 {
4614 struct extent_buffer *eb = NULL;
4615
4616 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4617 eb->start = start;
4618 eb->len = len;
4619 eb->fs_info = fs_info;
4620 eb->bflags = 0;
4621 rwlock_init(&eb->lock);
4622 atomic_set(&eb->write_locks, 0);
4623 atomic_set(&eb->read_locks, 0);
4624 atomic_set(&eb->blocking_readers, 0);
4625 atomic_set(&eb->blocking_writers, 0);
4626 atomic_set(&eb->spinning_readers, 0);
4627 atomic_set(&eb->spinning_writers, 0);
4628 eb->lock_nested = 0;
4629 init_waitqueue_head(&eb->write_lock_wq);
4630 init_waitqueue_head(&eb->read_lock_wq);
4631
4632 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4633
4634 spin_lock_init(&eb->refs_lock);
4635 atomic_set(&eb->refs, 1);
4636 atomic_set(&eb->io_pages, 0);
4637
4638 /*
4639 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4640 */
4641 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4642 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4643 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4644
4645 return eb;
4646 }
4647
4648 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4649 {
4650 unsigned long i;
4651 struct page *p;
4652 struct extent_buffer *new;
4653 unsigned long num_pages = num_extent_pages(src->start, src->len);
4654
4655 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4656 if (new == NULL)
4657 return NULL;
4658
4659 for (i = 0; i < num_pages; i++) {
4660 p = alloc_page(GFP_NOFS);
4661 if (!p) {
4662 btrfs_release_extent_buffer(new);
4663 return NULL;
4664 }
4665 attach_extent_buffer_page(new, p);
4666 WARN_ON(PageDirty(p));
4667 SetPageUptodate(p);
4668 new->pages[i] = p;
4669 }
4670
4671 copy_extent_buffer(new, src, 0, 0, src->len);
4672 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4673 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4674
4675 return new;
4676 }
4677
4678 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4679 u64 start, unsigned long len)
4680 {
4681 struct extent_buffer *eb;
4682 unsigned long num_pages;
4683 unsigned long i;
4684
4685 num_pages = num_extent_pages(start, len);
4686
4687 eb = __alloc_extent_buffer(fs_info, start, len);
4688 if (!eb)
4689 return NULL;
4690
4691 for (i = 0; i < num_pages; i++) {
4692 eb->pages[i] = alloc_page(GFP_NOFS);
4693 if (!eb->pages[i])
4694 goto err;
4695 }
4696 set_extent_buffer_uptodate(eb);
4697 btrfs_set_header_nritems(eb, 0);
4698 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4699
4700 return eb;
4701 err:
4702 for (; i > 0; i--)
4703 __free_page(eb->pages[i - 1]);
4704 __free_extent_buffer(eb);
4705 return NULL;
4706 }
4707
4708 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4709 u64 start)
4710 {
4711 unsigned long len;
4712
4713 if (!fs_info) {
4714 /*
4715 * Called only from tests that don't always have a fs_info
4716 * available, but we know that nodesize is 4096
4717 */
4718 len = 4096;
4719 } else {
4720 len = fs_info->tree_root->nodesize;
4721 }
4722
4723 return __alloc_dummy_extent_buffer(fs_info, start, len);
4724 }
4725
4726 static void check_buffer_tree_ref(struct extent_buffer *eb)
4727 {
4728 int refs;
4729 /* the ref bit is tricky. We have to make sure it is set
4730 * if we have the buffer dirty. Otherwise the
4731 * code to free a buffer can end up dropping a dirty
4732 * page
4733 *
4734 * Once the ref bit is set, it won't go away while the
4735 * buffer is dirty or in writeback, and it also won't
4736 * go away while we have the reference count on the
4737 * eb bumped.
4738 *
4739 * We can't just set the ref bit without bumping the
4740 * ref on the eb because free_extent_buffer might
4741 * see the ref bit and try to clear it. If this happens
4742 * free_extent_buffer might end up dropping our original
4743 * ref by mistake and freeing the page before we are able
4744 * to add one more ref.
4745 *
4746 * So bump the ref count first, then set the bit. If someone
4747 * beat us to it, drop the ref we added.
4748 */
4749 refs = atomic_read(&eb->refs);
4750 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4751 return;
4752
4753 spin_lock(&eb->refs_lock);
4754 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4755 atomic_inc(&eb->refs);
4756 spin_unlock(&eb->refs_lock);
4757 }
4758
4759 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4760 struct page *accessed)
4761 {
4762 unsigned long num_pages, i;
4763
4764 check_buffer_tree_ref(eb);
4765
4766 num_pages = num_extent_pages(eb->start, eb->len);
4767 for (i = 0; i < num_pages; i++) {
4768 struct page *p = eb->pages[i];
4769
4770 if (p != accessed)
4771 mark_page_accessed(p);
4772 }
4773 }
4774
4775 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4776 u64 start)
4777 {
4778 struct extent_buffer *eb;
4779
4780 rcu_read_lock();
4781 eb = radix_tree_lookup(&fs_info->buffer_radix,
4782 start >> PAGE_SHIFT);
4783 if (eb && atomic_inc_not_zero(&eb->refs)) {
4784 rcu_read_unlock();
4785 /*
4786 * Lock our eb's refs_lock to avoid races with
4787 * free_extent_buffer. When we get our eb it might be flagged
4788 * with EXTENT_BUFFER_STALE and another task running
4789 * free_extent_buffer might have seen that flag set,
4790 * eb->refs == 2, that the buffer isn't under IO (dirty and
4791 * writeback flags not set) and it's still in the tree (flag
4792 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4793 * of decrementing the extent buffer's reference count twice.
4794 * So here we could race and increment the eb's reference count,
4795 * clear its stale flag, mark it as dirty and drop our reference
4796 * before the other task finishes executing free_extent_buffer,
4797 * which would later result in an attempt to free an extent
4798 * buffer that is dirty.
4799 */
4800 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4801 spin_lock(&eb->refs_lock);
4802 spin_unlock(&eb->refs_lock);
4803 }
4804 mark_extent_buffer_accessed(eb, NULL);
4805 return eb;
4806 }
4807 rcu_read_unlock();
4808
4809 return NULL;
4810 }
4811
4812 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4813 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4814 u64 start)
4815 {
4816 struct extent_buffer *eb, *exists = NULL;
4817 int ret;
4818
4819 eb = find_extent_buffer(fs_info, start);
4820 if (eb)
4821 return eb;
4822 eb = alloc_dummy_extent_buffer(fs_info, start);
4823 if (!eb)
4824 return NULL;
4825 eb->fs_info = fs_info;
4826 again:
4827 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4828 if (ret)
4829 goto free_eb;
4830 spin_lock(&fs_info->buffer_lock);
4831 ret = radix_tree_insert(&fs_info->buffer_radix,
4832 start >> PAGE_SHIFT, eb);
4833 spin_unlock(&fs_info->buffer_lock);
4834 radix_tree_preload_end();
4835 if (ret == -EEXIST) {
4836 exists = find_extent_buffer(fs_info, start);
4837 if (exists)
4838 goto free_eb;
4839 else
4840 goto again;
4841 }
4842 check_buffer_tree_ref(eb);
4843 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4844
4845 /*
4846 * We will free dummy extent buffer's if they come into
4847 * free_extent_buffer with a ref count of 2, but if we are using this we
4848 * want the buffers to stay in memory until we're done with them, so
4849 * bump the ref count again.
4850 */
4851 atomic_inc(&eb->refs);
4852 return eb;
4853 free_eb:
4854 btrfs_release_extent_buffer(eb);
4855 return exists;
4856 }
4857 #endif
4858
4859 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4860 u64 start)
4861 {
4862 unsigned long len = fs_info->tree_root->nodesize;
4863 unsigned long num_pages = num_extent_pages(start, len);
4864 unsigned long i;
4865 unsigned long index = start >> PAGE_SHIFT;
4866 struct extent_buffer *eb;
4867 struct extent_buffer *exists = NULL;
4868 struct page *p;
4869 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4870 int uptodate = 1;
4871 int ret;
4872
4873 eb = find_extent_buffer(fs_info, start);
4874 if (eb)
4875 return eb;
4876
4877 eb = __alloc_extent_buffer(fs_info, start, len);
4878 if (!eb)
4879 return NULL;
4880
4881 for (i = 0; i < num_pages; i++, index++) {
4882 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4883 if (!p)
4884 goto free_eb;
4885
4886 spin_lock(&mapping->private_lock);
4887 if (PagePrivate(p)) {
4888 /*
4889 * We could have already allocated an eb for this page
4890 * and attached one so lets see if we can get a ref on
4891 * the existing eb, and if we can we know it's good and
4892 * we can just return that one, else we know we can just
4893 * overwrite page->private.
4894 */
4895 exists = (struct extent_buffer *)p->private;
4896 if (atomic_inc_not_zero(&exists->refs)) {
4897 spin_unlock(&mapping->private_lock);
4898 unlock_page(p);
4899 put_page(p);
4900 mark_extent_buffer_accessed(exists, p);
4901 goto free_eb;
4902 }
4903 exists = NULL;
4904
4905 /*
4906 * Do this so attach doesn't complain and we need to
4907 * drop the ref the old guy had.
4908 */
4909 ClearPagePrivate(p);
4910 WARN_ON(PageDirty(p));
4911 put_page(p);
4912 }
4913 attach_extent_buffer_page(eb, p);
4914 spin_unlock(&mapping->private_lock);
4915 WARN_ON(PageDirty(p));
4916 eb->pages[i] = p;
4917 if (!PageUptodate(p))
4918 uptodate = 0;
4919
4920 /*
4921 * see below about how we avoid a nasty race with release page
4922 * and why we unlock later
4923 */
4924 }
4925 if (uptodate)
4926 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4927 again:
4928 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4929 if (ret)
4930 goto free_eb;
4931
4932 spin_lock(&fs_info->buffer_lock);
4933 ret = radix_tree_insert(&fs_info->buffer_radix,
4934 start >> PAGE_SHIFT, eb);
4935 spin_unlock(&fs_info->buffer_lock);
4936 radix_tree_preload_end();
4937 if (ret == -EEXIST) {
4938 exists = find_extent_buffer(fs_info, start);
4939 if (exists)
4940 goto free_eb;
4941 else
4942 goto again;
4943 }
4944 /* add one reference for the tree */
4945 check_buffer_tree_ref(eb);
4946 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4947
4948 /*
4949 * there is a race where release page may have
4950 * tried to find this extent buffer in the radix
4951 * but failed. It will tell the VM it is safe to
4952 * reclaim the, and it will clear the page private bit.
4953 * We must make sure to set the page private bit properly
4954 * after the extent buffer is in the radix tree so
4955 * it doesn't get lost
4956 */
4957 SetPageChecked(eb->pages[0]);
4958 for (i = 1; i < num_pages; i++) {
4959 p = eb->pages[i];
4960 ClearPageChecked(p);
4961 unlock_page(p);
4962 }
4963 unlock_page(eb->pages[0]);
4964 return eb;
4965
4966 free_eb:
4967 WARN_ON(!atomic_dec_and_test(&eb->refs));
4968 for (i = 0; i < num_pages; i++) {
4969 if (eb->pages[i])
4970 unlock_page(eb->pages[i]);
4971 }
4972
4973 btrfs_release_extent_buffer(eb);
4974 return exists;
4975 }
4976
4977 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4978 {
4979 struct extent_buffer *eb =
4980 container_of(head, struct extent_buffer, rcu_head);
4981
4982 __free_extent_buffer(eb);
4983 }
4984
4985 /* Expects to have eb->eb_lock already held */
4986 static int release_extent_buffer(struct extent_buffer *eb)
4987 {
4988 WARN_ON(atomic_read(&eb->refs) == 0);
4989 if (atomic_dec_and_test(&eb->refs)) {
4990 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4991 struct btrfs_fs_info *fs_info = eb->fs_info;
4992
4993 spin_unlock(&eb->refs_lock);
4994
4995 spin_lock(&fs_info->buffer_lock);
4996 radix_tree_delete(&fs_info->buffer_radix,
4997 eb->start >> PAGE_SHIFT);
4998 spin_unlock(&fs_info->buffer_lock);
4999 } else {
5000 spin_unlock(&eb->refs_lock);
5001 }
5002
5003 /* Should be safe to release our pages at this point */
5004 btrfs_release_extent_buffer_page(eb);
5005 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5006 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5007 __free_extent_buffer(eb);
5008 return 1;
5009 }
5010 #endif
5011 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5012 return 1;
5013 }
5014 spin_unlock(&eb->refs_lock);
5015
5016 return 0;
5017 }
5018
5019 void free_extent_buffer(struct extent_buffer *eb)
5020 {
5021 int refs;
5022 int old;
5023 if (!eb)
5024 return;
5025
5026 while (1) {
5027 refs = atomic_read(&eb->refs);
5028 if (refs <= 3)
5029 break;
5030 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5031 if (old == refs)
5032 return;
5033 }
5034
5035 spin_lock(&eb->refs_lock);
5036 if (atomic_read(&eb->refs) == 2 &&
5037 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5038 atomic_dec(&eb->refs);
5039
5040 if (atomic_read(&eb->refs) == 2 &&
5041 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5042 !extent_buffer_under_io(eb) &&
5043 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5044 atomic_dec(&eb->refs);
5045
5046 /*
5047 * I know this is terrible, but it's temporary until we stop tracking
5048 * the uptodate bits and such for the extent buffers.
5049 */
5050 release_extent_buffer(eb);
5051 }
5052
5053 void free_extent_buffer_stale(struct extent_buffer *eb)
5054 {
5055 if (!eb)
5056 return;
5057
5058 spin_lock(&eb->refs_lock);
5059 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5060
5061 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5062 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5063 atomic_dec(&eb->refs);
5064 release_extent_buffer(eb);
5065 }
5066
5067 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5068 {
5069 unsigned long i;
5070 unsigned long num_pages;
5071 struct page *page;
5072
5073 num_pages = num_extent_pages(eb->start, eb->len);
5074
5075 for (i = 0; i < num_pages; i++) {
5076 page = eb->pages[i];
5077 if (!PageDirty(page))
5078 continue;
5079
5080 lock_page(page);
5081 WARN_ON(!PagePrivate(page));
5082
5083 clear_page_dirty_for_io(page);
5084 spin_lock_irq(&page->mapping->tree_lock);
5085 if (!PageDirty(page)) {
5086 radix_tree_tag_clear(&page->mapping->page_tree,
5087 page_index(page),
5088 PAGECACHE_TAG_DIRTY);
5089 }
5090 spin_unlock_irq(&page->mapping->tree_lock);
5091 ClearPageError(page);
5092 unlock_page(page);
5093 }
5094 WARN_ON(atomic_read(&eb->refs) == 0);
5095 }
5096
5097 int set_extent_buffer_dirty(struct extent_buffer *eb)
5098 {
5099 unsigned long i;
5100 unsigned long num_pages;
5101 int was_dirty = 0;
5102
5103 check_buffer_tree_ref(eb);
5104
5105 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5106
5107 num_pages = num_extent_pages(eb->start, eb->len);
5108 WARN_ON(atomic_read(&eb->refs) == 0);
5109 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5110
5111 for (i = 0; i < num_pages; i++)
5112 set_page_dirty(eb->pages[i]);
5113 return was_dirty;
5114 }
5115
5116 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5117 {
5118 unsigned long i;
5119 struct page *page;
5120 unsigned long num_pages;
5121
5122 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5123 num_pages = num_extent_pages(eb->start, eb->len);
5124 for (i = 0; i < num_pages; i++) {
5125 page = eb->pages[i];
5126 if (page)
5127 ClearPageUptodate(page);
5128 }
5129 }
5130
5131 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5132 {
5133 unsigned long i;
5134 struct page *page;
5135 unsigned long num_pages;
5136
5137 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5138 num_pages = num_extent_pages(eb->start, eb->len);
5139 for (i = 0; i < num_pages; i++) {
5140 page = eb->pages[i];
5141 SetPageUptodate(page);
5142 }
5143 }
5144
5145 int extent_buffer_uptodate(struct extent_buffer *eb)
5146 {
5147 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5148 }
5149
5150 int read_extent_buffer_pages(struct extent_io_tree *tree,
5151 struct extent_buffer *eb, u64 start, int wait,
5152 get_extent_t *get_extent, int mirror_num)
5153 {
5154 unsigned long i;
5155 unsigned long start_i;
5156 struct page *page;
5157 int err;
5158 int ret = 0;
5159 int locked_pages = 0;
5160 int all_uptodate = 1;
5161 unsigned long num_pages;
5162 unsigned long num_reads = 0;
5163 struct bio *bio = NULL;
5164 unsigned long bio_flags = 0;
5165
5166 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5167 return 0;
5168
5169 if (start) {
5170 WARN_ON(start < eb->start);
5171 start_i = (start >> PAGE_SHIFT) -
5172 (eb->start >> PAGE_SHIFT);
5173 } else {
5174 start_i = 0;
5175 }
5176
5177 num_pages = num_extent_pages(eb->start, eb->len);
5178 for (i = start_i; i < num_pages; i++) {
5179 page = eb->pages[i];
5180 if (wait == WAIT_NONE) {
5181 if (!trylock_page(page))
5182 goto unlock_exit;
5183 } else {
5184 lock_page(page);
5185 }
5186 locked_pages++;
5187 if (!PageUptodate(page)) {
5188 num_reads++;
5189 all_uptodate = 0;
5190 }
5191 }
5192 if (all_uptodate) {
5193 if (start_i == 0)
5194 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5195 goto unlock_exit;
5196 }
5197
5198 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5199 eb->read_mirror = 0;
5200 atomic_set(&eb->io_pages, num_reads);
5201 for (i = start_i; i < num_pages; i++) {
5202 page = eb->pages[i];
5203 if (!PageUptodate(page)) {
5204 ClearPageError(page);
5205 err = __extent_read_full_page(tree, page,
5206 get_extent, &bio,
5207 mirror_num, &bio_flags,
5208 READ | REQ_META);
5209 if (err)
5210 ret = err;
5211 } else {
5212 unlock_page(page);
5213 }
5214 }
5215
5216 if (bio) {
5217 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5218 bio_flags);
5219 if (err)
5220 return err;
5221 }
5222
5223 if (ret || wait != WAIT_COMPLETE)
5224 return ret;
5225
5226 for (i = start_i; i < num_pages; i++) {
5227 page = eb->pages[i];
5228 wait_on_page_locked(page);
5229 if (!PageUptodate(page))
5230 ret = -EIO;
5231 }
5232
5233 return ret;
5234
5235 unlock_exit:
5236 i = start_i;
5237 while (locked_pages > 0) {
5238 page = eb->pages[i];
5239 i++;
5240 unlock_page(page);
5241 locked_pages--;
5242 }
5243 return ret;
5244 }
5245
5246 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5247 unsigned long start,
5248 unsigned long len)
5249 {
5250 size_t cur;
5251 size_t offset;
5252 struct page *page;
5253 char *kaddr;
5254 char *dst = (char *)dstv;
5255 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5256 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5257
5258 WARN_ON(start > eb->len);
5259 WARN_ON(start + len > eb->start + eb->len);
5260
5261 offset = (start_offset + start) & (PAGE_SIZE - 1);
5262
5263 while (len > 0) {
5264 page = eb->pages[i];
5265
5266 cur = min(len, (PAGE_SIZE - offset));
5267 kaddr = page_address(page);
5268 memcpy(dst, kaddr + offset, cur);
5269
5270 dst += cur;
5271 len -= cur;
5272 offset = 0;
5273 i++;
5274 }
5275 }
5276
5277 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5278 unsigned long start,
5279 unsigned long len)
5280 {
5281 size_t cur;
5282 size_t offset;
5283 struct page *page;
5284 char *kaddr;
5285 char __user *dst = (char __user *)dstv;
5286 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5287 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5288 int ret = 0;
5289
5290 WARN_ON(start > eb->len);
5291 WARN_ON(start + len > eb->start + eb->len);
5292
5293 offset = (start_offset + start) & (PAGE_SIZE - 1);
5294
5295 while (len > 0) {
5296 page = eb->pages[i];
5297
5298 cur = min(len, (PAGE_SIZE - offset));
5299 kaddr = page_address(page);
5300 if (copy_to_user(dst, kaddr + offset, cur)) {
5301 ret = -EFAULT;
5302 break;
5303 }
5304
5305 dst += cur;
5306 len -= cur;
5307 offset = 0;
5308 i++;
5309 }
5310
5311 return ret;
5312 }
5313
5314 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5315 unsigned long min_len, char **map,
5316 unsigned long *map_start,
5317 unsigned long *map_len)
5318 {
5319 size_t offset = start & (PAGE_SIZE - 1);
5320 char *kaddr;
5321 struct page *p;
5322 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5323 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5324 unsigned long end_i = (start_offset + start + min_len - 1) >>
5325 PAGE_SHIFT;
5326
5327 if (i != end_i)
5328 return -EINVAL;
5329
5330 if (i == 0) {
5331 offset = start_offset;
5332 *map_start = 0;
5333 } else {
5334 offset = 0;
5335 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5336 }
5337
5338 if (start + min_len > eb->len) {
5339 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5340 "wanted %lu %lu\n",
5341 eb->start, eb->len, start, min_len);
5342 return -EINVAL;
5343 }
5344
5345 p = eb->pages[i];
5346 kaddr = page_address(p);
5347 *map = kaddr + offset;
5348 *map_len = PAGE_SIZE - offset;
5349 return 0;
5350 }
5351
5352 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5353 unsigned long start,
5354 unsigned long len)
5355 {
5356 size_t cur;
5357 size_t offset;
5358 struct page *page;
5359 char *kaddr;
5360 char *ptr = (char *)ptrv;
5361 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5362 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5363 int ret = 0;
5364
5365 WARN_ON(start > eb->len);
5366 WARN_ON(start + len > eb->start + eb->len);
5367
5368 offset = (start_offset + start) & (PAGE_SIZE - 1);
5369
5370 while (len > 0) {
5371 page = eb->pages[i];
5372
5373 cur = min(len, (PAGE_SIZE - offset));
5374
5375 kaddr = page_address(page);
5376 ret = memcmp(ptr, kaddr + offset, cur);
5377 if (ret)
5378 break;
5379
5380 ptr += cur;
5381 len -= cur;
5382 offset = 0;
5383 i++;
5384 }
5385 return ret;
5386 }
5387
5388 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5389 unsigned long start, unsigned long len)
5390 {
5391 size_t cur;
5392 size_t offset;
5393 struct page *page;
5394 char *kaddr;
5395 char *src = (char *)srcv;
5396 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5397 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5398
5399 WARN_ON(start > eb->len);
5400 WARN_ON(start + len > eb->start + eb->len);
5401
5402 offset = (start_offset + start) & (PAGE_SIZE - 1);
5403
5404 while (len > 0) {
5405 page = eb->pages[i];
5406 WARN_ON(!PageUptodate(page));
5407
5408 cur = min(len, PAGE_SIZE - offset);
5409 kaddr = page_address(page);
5410 memcpy(kaddr + offset, src, cur);
5411
5412 src += cur;
5413 len -= cur;
5414 offset = 0;
5415 i++;
5416 }
5417 }
5418
5419 void memset_extent_buffer(struct extent_buffer *eb, char c,
5420 unsigned long start, unsigned long len)
5421 {
5422 size_t cur;
5423 size_t offset;
5424 struct page *page;
5425 char *kaddr;
5426 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5427 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5428
5429 WARN_ON(start > eb->len);
5430 WARN_ON(start + len > eb->start + eb->len);
5431
5432 offset = (start_offset + start) & (PAGE_SIZE - 1);
5433
5434 while (len > 0) {
5435 page = eb->pages[i];
5436 WARN_ON(!PageUptodate(page));
5437
5438 cur = min(len, PAGE_SIZE - offset);
5439 kaddr = page_address(page);
5440 memset(kaddr + offset, c, cur);
5441
5442 len -= cur;
5443 offset = 0;
5444 i++;
5445 }
5446 }
5447
5448 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5449 unsigned long dst_offset, unsigned long src_offset,
5450 unsigned long len)
5451 {
5452 u64 dst_len = dst->len;
5453 size_t cur;
5454 size_t offset;
5455 struct page *page;
5456 char *kaddr;
5457 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5458 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5459
5460 WARN_ON(src->len != dst_len);
5461
5462 offset = (start_offset + dst_offset) &
5463 (PAGE_SIZE - 1);
5464
5465 while (len > 0) {
5466 page = dst->pages[i];
5467 WARN_ON(!PageUptodate(page));
5468
5469 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5470
5471 kaddr = page_address(page);
5472 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5473
5474 src_offset += cur;
5475 len -= cur;
5476 offset = 0;
5477 i++;
5478 }
5479 }
5480
5481 /*
5482 * The extent buffer bitmap operations are done with byte granularity because
5483 * bitmap items are not guaranteed to be aligned to a word and therefore a
5484 * single word in a bitmap may straddle two pages in the extent buffer.
5485 */
5486 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5487 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5488 #define BITMAP_FIRST_BYTE_MASK(start) \
5489 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5490 #define BITMAP_LAST_BYTE_MASK(nbits) \
5491 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5492
5493 /*
5494 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5495 * given bit number
5496 * @eb: the extent buffer
5497 * @start: offset of the bitmap item in the extent buffer
5498 * @nr: bit number
5499 * @page_index: return index of the page in the extent buffer that contains the
5500 * given bit number
5501 * @page_offset: return offset into the page given by page_index
5502 *
5503 * This helper hides the ugliness of finding the byte in an extent buffer which
5504 * contains a given bit.
5505 */
5506 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5507 unsigned long start, unsigned long nr,
5508 unsigned long *page_index,
5509 size_t *page_offset)
5510 {
5511 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5512 size_t byte_offset = BIT_BYTE(nr);
5513 size_t offset;
5514
5515 /*
5516 * The byte we want is the offset of the extent buffer + the offset of
5517 * the bitmap item in the extent buffer + the offset of the byte in the
5518 * bitmap item.
5519 */
5520 offset = start_offset + start + byte_offset;
5521
5522 *page_index = offset >> PAGE_SHIFT;
5523 *page_offset = offset & (PAGE_SIZE - 1);
5524 }
5525
5526 /**
5527 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5528 * @eb: the extent buffer
5529 * @start: offset of the bitmap item in the extent buffer
5530 * @nr: bit number to test
5531 */
5532 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5533 unsigned long nr)
5534 {
5535 char *kaddr;
5536 struct page *page;
5537 unsigned long i;
5538 size_t offset;
5539
5540 eb_bitmap_offset(eb, start, nr, &i, &offset);
5541 page = eb->pages[i];
5542 WARN_ON(!PageUptodate(page));
5543 kaddr = page_address(page);
5544 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5545 }
5546
5547 /**
5548 * extent_buffer_bitmap_set - set an area of a bitmap
5549 * @eb: the extent buffer
5550 * @start: offset of the bitmap item in the extent buffer
5551 * @pos: bit number of the first bit
5552 * @len: number of bits to set
5553 */
5554 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5555 unsigned long pos, unsigned long len)
5556 {
5557 char *kaddr;
5558 struct page *page;
5559 unsigned long i;
5560 size_t offset;
5561 const unsigned int size = pos + len;
5562 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5563 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5564
5565 eb_bitmap_offset(eb, start, pos, &i, &offset);
5566 page = eb->pages[i];
5567 WARN_ON(!PageUptodate(page));
5568 kaddr = page_address(page);
5569
5570 while (len >= bits_to_set) {
5571 kaddr[offset] |= mask_to_set;
5572 len -= bits_to_set;
5573 bits_to_set = BITS_PER_BYTE;
5574 mask_to_set = ~0U;
5575 if (++offset >= PAGE_SIZE && len > 0) {
5576 offset = 0;
5577 page = eb->pages[++i];
5578 WARN_ON(!PageUptodate(page));
5579 kaddr = page_address(page);
5580 }
5581 }
5582 if (len) {
5583 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5584 kaddr[offset] |= mask_to_set;
5585 }
5586 }
5587
5588
5589 /**
5590 * extent_buffer_bitmap_clear - clear an area of a bitmap
5591 * @eb: the extent buffer
5592 * @start: offset of the bitmap item in the extent buffer
5593 * @pos: bit number of the first bit
5594 * @len: number of bits to clear
5595 */
5596 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5597 unsigned long pos, unsigned long len)
5598 {
5599 char *kaddr;
5600 struct page *page;
5601 unsigned long i;
5602 size_t offset;
5603 const unsigned int size = pos + len;
5604 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5605 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5606
5607 eb_bitmap_offset(eb, start, pos, &i, &offset);
5608 page = eb->pages[i];
5609 WARN_ON(!PageUptodate(page));
5610 kaddr = page_address(page);
5611
5612 while (len >= bits_to_clear) {
5613 kaddr[offset] &= ~mask_to_clear;
5614 len -= bits_to_clear;
5615 bits_to_clear = BITS_PER_BYTE;
5616 mask_to_clear = ~0U;
5617 if (++offset >= PAGE_SIZE && len > 0) {
5618 offset = 0;
5619 page = eb->pages[++i];
5620 WARN_ON(!PageUptodate(page));
5621 kaddr = page_address(page);
5622 }
5623 }
5624 if (len) {
5625 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5626 kaddr[offset] &= ~mask_to_clear;
5627 }
5628 }
5629
5630 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5631 {
5632 unsigned long distance = (src > dst) ? src - dst : dst - src;
5633 return distance < len;
5634 }
5635
5636 static void copy_pages(struct page *dst_page, struct page *src_page,
5637 unsigned long dst_off, unsigned long src_off,
5638 unsigned long len)
5639 {
5640 char *dst_kaddr = page_address(dst_page);
5641 char *src_kaddr;
5642 int must_memmove = 0;
5643
5644 if (dst_page != src_page) {
5645 src_kaddr = page_address(src_page);
5646 } else {
5647 src_kaddr = dst_kaddr;
5648 if (areas_overlap(src_off, dst_off, len))
5649 must_memmove = 1;
5650 }
5651
5652 if (must_memmove)
5653 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5654 else
5655 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5656 }
5657
5658 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5659 unsigned long src_offset, unsigned long len)
5660 {
5661 size_t cur;
5662 size_t dst_off_in_page;
5663 size_t src_off_in_page;
5664 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5665 unsigned long dst_i;
5666 unsigned long src_i;
5667
5668 if (src_offset + len > dst->len) {
5669 btrfs_err(dst->fs_info,
5670 "memmove bogus src_offset %lu move "
5671 "len %lu dst len %lu", src_offset, len, dst->len);
5672 BUG_ON(1);
5673 }
5674 if (dst_offset + len > dst->len) {
5675 btrfs_err(dst->fs_info,
5676 "memmove bogus dst_offset %lu move "
5677 "len %lu dst len %lu", dst_offset, len, dst->len);
5678 BUG_ON(1);
5679 }
5680
5681 while (len > 0) {
5682 dst_off_in_page = (start_offset + dst_offset) &
5683 (PAGE_SIZE - 1);
5684 src_off_in_page = (start_offset + src_offset) &
5685 (PAGE_SIZE - 1);
5686
5687 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5688 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5689
5690 cur = min(len, (unsigned long)(PAGE_SIZE -
5691 src_off_in_page));
5692 cur = min_t(unsigned long, cur,
5693 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5694
5695 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5696 dst_off_in_page, src_off_in_page, cur);
5697
5698 src_offset += cur;
5699 dst_offset += cur;
5700 len -= cur;
5701 }
5702 }
5703
5704 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5705 unsigned long src_offset, unsigned long len)
5706 {
5707 size_t cur;
5708 size_t dst_off_in_page;
5709 size_t src_off_in_page;
5710 unsigned long dst_end = dst_offset + len - 1;
5711 unsigned long src_end = src_offset + len - 1;
5712 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5713 unsigned long dst_i;
5714 unsigned long src_i;
5715
5716 if (src_offset + len > dst->len) {
5717 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5718 "len %lu len %lu", src_offset, len, dst->len);
5719 BUG_ON(1);
5720 }
5721 if (dst_offset + len > dst->len) {
5722 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5723 "len %lu len %lu", dst_offset, len, dst->len);
5724 BUG_ON(1);
5725 }
5726 if (dst_offset < src_offset) {
5727 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5728 return;
5729 }
5730 while (len > 0) {
5731 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5732 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5733
5734 dst_off_in_page = (start_offset + dst_end) &
5735 (PAGE_SIZE - 1);
5736 src_off_in_page = (start_offset + src_end) &
5737 (PAGE_SIZE - 1);
5738
5739 cur = min_t(unsigned long, len, src_off_in_page + 1);
5740 cur = min(cur, dst_off_in_page + 1);
5741 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5742 dst_off_in_page - cur + 1,
5743 src_off_in_page - cur + 1, cur);
5744
5745 dst_end -= cur;
5746 src_end -= cur;
5747 len -= cur;
5748 }
5749 }
5750
5751 int try_release_extent_buffer(struct page *page)
5752 {
5753 struct extent_buffer *eb;
5754
5755 /*
5756 * We need to make sure noboody is attaching this page to an eb right
5757 * now.
5758 */
5759 spin_lock(&page->mapping->private_lock);
5760 if (!PagePrivate(page)) {
5761 spin_unlock(&page->mapping->private_lock);
5762 return 1;
5763 }
5764
5765 eb = (struct extent_buffer *)page->private;
5766 BUG_ON(!eb);
5767
5768 /*
5769 * This is a little awful but should be ok, we need to make sure that
5770 * the eb doesn't disappear out from under us while we're looking at
5771 * this page.
5772 */
5773 spin_lock(&eb->refs_lock);
5774 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5775 spin_unlock(&eb->refs_lock);
5776 spin_unlock(&page->mapping->private_lock);
5777 return 0;
5778 }
5779 spin_unlock(&page->mapping->private_lock);
5780
5781 /*
5782 * If tree ref isn't set then we know the ref on this eb is a real ref,
5783 * so just return, this page will likely be freed soon anyway.
5784 */
5785 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5786 spin_unlock(&eb->refs_lock);
5787 return 0;
5788 }
5789
5790 return release_extent_buffer(eb);
5791 }