]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/extent_io.c
sanitize <linux/prefetch.h> usage
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
25
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
30
31 #define BUFFER_LRU_MAX 64
32
33 struct tree_entry {
34 u64 start;
35 u64 end;
36 struct rb_node rb_node;
37 };
38
39 struct extent_page_data {
40 struct bio *bio;
41 struct extent_io_tree *tree;
42 get_extent_t *get_extent;
43
44 /* tells writepage not to lock the state bits for this range
45 * it still does the unlocking
46 */
47 unsigned int extent_locked:1;
48
49 /* tells the submit_bio code to use a WRITE_SYNC */
50 unsigned int sync_io:1;
51 };
52
53 int __init extent_io_init(void)
54 {
55 extent_state_cache = kmem_cache_create("extent_state",
56 sizeof(struct extent_state), 0,
57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 if (!extent_state_cache)
59 return -ENOMEM;
60
61 extent_buffer_cache = kmem_cache_create("extent_buffers",
62 sizeof(struct extent_buffer), 0,
63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 if (!extent_buffer_cache)
65 goto free_state_cache;
66 return 0;
67
68 free_state_cache:
69 kmem_cache_destroy(extent_state_cache);
70 return -ENOMEM;
71 }
72
73 void extent_io_exit(void)
74 {
75 struct extent_state *state;
76 struct extent_buffer *eb;
77
78 while (!list_empty(&states)) {
79 state = list_entry(states.next, struct extent_state, leak_list);
80 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 "state %lu in tree %p refs %d\n",
82 (unsigned long long)state->start,
83 (unsigned long long)state->end,
84 state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
87
88 }
89
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 "refs %d\n", (unsigned long long)eb->start,
94 eb->len, atomic_read(&eb->refs));
95 list_del(&eb->leak_list);
96 kmem_cache_free(extent_buffer_cache, eb);
97 }
98 if (extent_state_cache)
99 kmem_cache_destroy(extent_state_cache);
100 if (extent_buffer_cache)
101 kmem_cache_destroy(extent_buffer_cache);
102 }
103
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 struct address_space *mapping, gfp_t mask)
106 {
107 tree->state = RB_ROOT;
108 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
109 tree->ops = NULL;
110 tree->dirty_bytes = 0;
111 spin_lock_init(&tree->lock);
112 spin_lock_init(&tree->buffer_lock);
113 tree->mapping = mapping;
114 }
115
116 static struct extent_state *alloc_extent_state(gfp_t mask)
117 {
118 struct extent_state *state;
119 #if LEAK_DEBUG
120 unsigned long flags;
121 #endif
122
123 state = kmem_cache_alloc(extent_state_cache, mask);
124 if (!state)
125 return state;
126 state->state = 0;
127 state->private = 0;
128 state->tree = NULL;
129 #if LEAK_DEBUG
130 spin_lock_irqsave(&leak_lock, flags);
131 list_add(&state->leak_list, &states);
132 spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 atomic_set(&state->refs, 1);
135 init_waitqueue_head(&state->wq);
136 return state;
137 }
138
139 void free_extent_state(struct extent_state *state)
140 {
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
154 }
155 }
156
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 struct rb_node *node)
159 {
160 struct rb_node **p = &root->rb_node;
161 struct rb_node *parent = NULL;
162 struct tree_entry *entry;
163
164 while (*p) {
165 parent = *p;
166 entry = rb_entry(parent, struct tree_entry, rb_node);
167
168 if (offset < entry->start)
169 p = &(*p)->rb_left;
170 else if (offset > entry->end)
171 p = &(*p)->rb_right;
172 else
173 return parent;
174 }
175
176 entry = rb_entry(node, struct tree_entry, rb_node);
177 rb_link_node(node, parent, p);
178 rb_insert_color(node, root);
179 return NULL;
180 }
181
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 struct rb_node **prev_ret,
184 struct rb_node **next_ret)
185 {
186 struct rb_root *root = &tree->state;
187 struct rb_node *n = root->rb_node;
188 struct rb_node *prev = NULL;
189 struct rb_node *orig_prev = NULL;
190 struct tree_entry *entry;
191 struct tree_entry *prev_entry = NULL;
192
193 while (n) {
194 entry = rb_entry(n, struct tree_entry, rb_node);
195 prev = n;
196 prev_entry = entry;
197
198 if (offset < entry->start)
199 n = n->rb_left;
200 else if (offset > entry->end)
201 n = n->rb_right;
202 else
203 return n;
204 }
205
206 if (prev_ret) {
207 orig_prev = prev;
208 while (prev && offset > prev_entry->end) {
209 prev = rb_next(prev);
210 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 }
212 *prev_ret = prev;
213 prev = orig_prev;
214 }
215
216 if (next_ret) {
217 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 while (prev && offset < prev_entry->start) {
219 prev = rb_prev(prev);
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 }
222 *next_ret = prev;
223 }
224 return NULL;
225 }
226
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 u64 offset)
229 {
230 struct rb_node *prev = NULL;
231 struct rb_node *ret;
232
233 ret = __etree_search(tree, offset, &prev, NULL);
234 if (!ret)
235 return prev;
236 return ret;
237 }
238
239 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
240 struct extent_state *other)
241 {
242 if (tree->ops && tree->ops->merge_extent_hook)
243 tree->ops->merge_extent_hook(tree->mapping->host, new,
244 other);
245 }
246
247 /*
248 * utility function to look for merge candidates inside a given range.
249 * Any extents with matching state are merged together into a single
250 * extent in the tree. Extents with EXTENT_IO in their state field
251 * are not merged because the end_io handlers need to be able to do
252 * operations on them without sleeping (or doing allocations/splits).
253 *
254 * This should be called with the tree lock held.
255 */
256 static int merge_state(struct extent_io_tree *tree,
257 struct extent_state *state)
258 {
259 struct extent_state *other;
260 struct rb_node *other_node;
261
262 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
263 return 0;
264
265 other_node = rb_prev(&state->rb_node);
266 if (other_node) {
267 other = rb_entry(other_node, struct extent_state, rb_node);
268 if (other->end == state->start - 1 &&
269 other->state == state->state) {
270 merge_cb(tree, state, other);
271 state->start = other->start;
272 other->tree = NULL;
273 rb_erase(&other->rb_node, &tree->state);
274 free_extent_state(other);
275 }
276 }
277 other_node = rb_next(&state->rb_node);
278 if (other_node) {
279 other = rb_entry(other_node, struct extent_state, rb_node);
280 if (other->start == state->end + 1 &&
281 other->state == state->state) {
282 merge_cb(tree, state, other);
283 other->start = state->start;
284 state->tree = NULL;
285 rb_erase(&state->rb_node, &tree->state);
286 free_extent_state(state);
287 state = NULL;
288 }
289 }
290
291 return 0;
292 }
293
294 static int set_state_cb(struct extent_io_tree *tree,
295 struct extent_state *state, int *bits)
296 {
297 if (tree->ops && tree->ops->set_bit_hook) {
298 return tree->ops->set_bit_hook(tree->mapping->host,
299 state, bits);
300 }
301
302 return 0;
303 }
304
305 static void clear_state_cb(struct extent_io_tree *tree,
306 struct extent_state *state, int *bits)
307 {
308 if (tree->ops && tree->ops->clear_bit_hook)
309 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
310 }
311
312 /*
313 * insert an extent_state struct into the tree. 'bits' are set on the
314 * struct before it is inserted.
315 *
316 * This may return -EEXIST if the extent is already there, in which case the
317 * state struct is freed.
318 *
319 * The tree lock is not taken internally. This is a utility function and
320 * probably isn't what you want to call (see set/clear_extent_bit).
321 */
322 static int insert_state(struct extent_io_tree *tree,
323 struct extent_state *state, u64 start, u64 end,
324 int *bits)
325 {
326 struct rb_node *node;
327 int bits_to_set = *bits & ~EXTENT_CTLBITS;
328 int ret;
329
330 if (end < start) {
331 printk(KERN_ERR "btrfs end < start %llu %llu\n",
332 (unsigned long long)end,
333 (unsigned long long)start);
334 WARN_ON(1);
335 }
336 state->start = start;
337 state->end = end;
338 ret = set_state_cb(tree, state, bits);
339 if (ret)
340 return ret;
341
342 if (bits_to_set & EXTENT_DIRTY)
343 tree->dirty_bytes += end - start + 1;
344 state->state |= bits_to_set;
345 node = tree_insert(&tree->state, end, &state->rb_node);
346 if (node) {
347 struct extent_state *found;
348 found = rb_entry(node, struct extent_state, rb_node);
349 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
350 "%llu %llu\n", (unsigned long long)found->start,
351 (unsigned long long)found->end,
352 (unsigned long long)start, (unsigned long long)end);
353 free_extent_state(state);
354 return -EEXIST;
355 }
356 state->tree = tree;
357 merge_state(tree, state);
358 return 0;
359 }
360
361 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
362 u64 split)
363 {
364 if (tree->ops && tree->ops->split_extent_hook)
365 return tree->ops->split_extent_hook(tree->mapping->host,
366 orig, split);
367 return 0;
368 }
369
370 /*
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
374 *
375 * Before calling,
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
380 *
381 * The tree locks are not taken by this function. They need to be held
382 * by the caller.
383 */
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
386 {
387 struct rb_node *node;
388
389 split_cb(tree, orig, split);
390
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
394 orig->start = split;
395
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 if (node) {
398 free_extent_state(prealloc);
399 return -EEXIST;
400 }
401 prealloc->tree = tree;
402 return 0;
403 }
404
405 /*
406 * utility function to clear some bits in an extent state struct.
407 * it will optionally wake up any one waiting on this state (wake == 1), or
408 * forcibly remove the state from the tree (delete == 1).
409 *
410 * If no bits are set on the state struct after clearing things, the
411 * struct is freed and removed from the tree
412 */
413 static int clear_state_bit(struct extent_io_tree *tree,
414 struct extent_state *state,
415 int *bits, int wake)
416 {
417 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
418 int ret = state->state & bits_to_clear;
419
420 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
421 u64 range = state->end - state->start + 1;
422 WARN_ON(range > tree->dirty_bytes);
423 tree->dirty_bytes -= range;
424 }
425 clear_state_cb(tree, state, bits);
426 state->state &= ~bits_to_clear;
427 if (wake)
428 wake_up(&state->wq);
429 if (state->state == 0) {
430 if (state->tree) {
431 rb_erase(&state->rb_node, &tree->state);
432 state->tree = NULL;
433 free_extent_state(state);
434 } else {
435 WARN_ON(1);
436 }
437 } else {
438 merge_state(tree, state);
439 }
440 return ret;
441 }
442
443 /*
444 * clear some bits on a range in the tree. This may require splitting
445 * or inserting elements in the tree, so the gfp mask is used to
446 * indicate which allocations or sleeping are allowed.
447 *
448 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
449 * the given range from the tree regardless of state (ie for truncate).
450 *
451 * the range [start, end] is inclusive.
452 *
453 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
454 * bits were already set, or zero if none of the bits were already set.
455 */
456 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
457 int bits, int wake, int delete,
458 struct extent_state **cached_state,
459 gfp_t mask)
460 {
461 struct extent_state *state;
462 struct extent_state *cached;
463 struct extent_state *prealloc = NULL;
464 struct rb_node *next_node;
465 struct rb_node *node;
466 u64 last_end;
467 int err;
468 int set = 0;
469 int clear = 0;
470
471 if (delete)
472 bits |= ~EXTENT_CTLBITS;
473 bits |= EXTENT_FIRST_DELALLOC;
474
475 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
476 clear = 1;
477 again:
478 if (!prealloc && (mask & __GFP_WAIT)) {
479 prealloc = alloc_extent_state(mask);
480 if (!prealloc)
481 return -ENOMEM;
482 }
483
484 spin_lock(&tree->lock);
485 if (cached_state) {
486 cached = *cached_state;
487
488 if (clear) {
489 *cached_state = NULL;
490 cached_state = NULL;
491 }
492
493 if (cached && cached->tree && cached->start == start) {
494 if (clear)
495 atomic_dec(&cached->refs);
496 state = cached;
497 goto hit_next;
498 }
499 if (clear)
500 free_extent_state(cached);
501 }
502 /*
503 * this search will find the extents that end after
504 * our range starts
505 */
506 node = tree_search(tree, start);
507 if (!node)
508 goto out;
509 state = rb_entry(node, struct extent_state, rb_node);
510 hit_next:
511 if (state->start > end)
512 goto out;
513 WARN_ON(state->end < start);
514 last_end = state->end;
515
516 /*
517 * | ---- desired range ---- |
518 * | state | or
519 * | ------------- state -------------- |
520 *
521 * We need to split the extent we found, and may flip
522 * bits on second half.
523 *
524 * If the extent we found extends past our range, we
525 * just split and search again. It'll get split again
526 * the next time though.
527 *
528 * If the extent we found is inside our range, we clear
529 * the desired bit on it.
530 */
531
532 if (state->start < start) {
533 if (!prealloc)
534 prealloc = alloc_extent_state(GFP_ATOMIC);
535 err = split_state(tree, state, prealloc, start);
536 BUG_ON(err == -EEXIST);
537 prealloc = NULL;
538 if (err)
539 goto out;
540 if (state->end <= end) {
541 set |= clear_state_bit(tree, state, &bits, wake);
542 if (last_end == (u64)-1)
543 goto out;
544 start = last_end + 1;
545 }
546 goto search_again;
547 }
548 /*
549 * | ---- desired range ---- |
550 * | state |
551 * We need to split the extent, and clear the bit
552 * on the first half
553 */
554 if (state->start <= end && state->end > end) {
555 if (!prealloc)
556 prealloc = alloc_extent_state(GFP_ATOMIC);
557 err = split_state(tree, state, prealloc, end + 1);
558 BUG_ON(err == -EEXIST);
559 if (wake)
560 wake_up(&state->wq);
561
562 set |= clear_state_bit(tree, prealloc, &bits, wake);
563
564 prealloc = NULL;
565 goto out;
566 }
567
568 if (state->end < end && prealloc && !need_resched())
569 next_node = rb_next(&state->rb_node);
570 else
571 next_node = NULL;
572
573 set |= clear_state_bit(tree, state, &bits, wake);
574 if (last_end == (u64)-1)
575 goto out;
576 start = last_end + 1;
577 if (start <= end && next_node) {
578 state = rb_entry(next_node, struct extent_state,
579 rb_node);
580 if (state->start == start)
581 goto hit_next;
582 }
583 goto search_again;
584
585 out:
586 spin_unlock(&tree->lock);
587 if (prealloc)
588 free_extent_state(prealloc);
589
590 return set;
591
592 search_again:
593 if (start > end)
594 goto out;
595 spin_unlock(&tree->lock);
596 if (mask & __GFP_WAIT)
597 cond_resched();
598 goto again;
599 }
600
601 static int wait_on_state(struct extent_io_tree *tree,
602 struct extent_state *state)
603 __releases(tree->lock)
604 __acquires(tree->lock)
605 {
606 DEFINE_WAIT(wait);
607 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
608 spin_unlock(&tree->lock);
609 schedule();
610 spin_lock(&tree->lock);
611 finish_wait(&state->wq, &wait);
612 return 0;
613 }
614
615 /*
616 * waits for one or more bits to clear on a range in the state tree.
617 * The range [start, end] is inclusive.
618 * The tree lock is taken by this function
619 */
620 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621 {
622 struct extent_state *state;
623 struct rb_node *node;
624
625 spin_lock(&tree->lock);
626 again:
627 while (1) {
628 /*
629 * this search will find all the extents that end after
630 * our range starts
631 */
632 node = tree_search(tree, start);
633 if (!node)
634 break;
635
636 state = rb_entry(node, struct extent_state, rb_node);
637
638 if (state->start > end)
639 goto out;
640
641 if (state->state & bits) {
642 start = state->start;
643 atomic_inc(&state->refs);
644 wait_on_state(tree, state);
645 free_extent_state(state);
646 goto again;
647 }
648 start = state->end + 1;
649
650 if (start > end)
651 break;
652
653 if (need_resched()) {
654 spin_unlock(&tree->lock);
655 cond_resched();
656 spin_lock(&tree->lock);
657 }
658 }
659 out:
660 spin_unlock(&tree->lock);
661 return 0;
662 }
663
664 static int set_state_bits(struct extent_io_tree *tree,
665 struct extent_state *state,
666 int *bits)
667 {
668 int ret;
669 int bits_to_set = *bits & ~EXTENT_CTLBITS;
670
671 ret = set_state_cb(tree, state, bits);
672 if (ret)
673 return ret;
674 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
675 u64 range = state->end - state->start + 1;
676 tree->dirty_bytes += range;
677 }
678 state->state |= bits_to_set;
679
680 return 0;
681 }
682
683 static void cache_state(struct extent_state *state,
684 struct extent_state **cached_ptr)
685 {
686 if (cached_ptr && !(*cached_ptr)) {
687 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
688 *cached_ptr = state;
689 atomic_inc(&state->refs);
690 }
691 }
692 }
693
694 static void uncache_state(struct extent_state **cached_ptr)
695 {
696 if (cached_ptr && (*cached_ptr)) {
697 struct extent_state *state = *cached_ptr;
698 *cached_ptr = NULL;
699 free_extent_state(state);
700 }
701 }
702
703 /*
704 * set some bits on a range in the tree. This may require allocations or
705 * sleeping, so the gfp mask is used to indicate what is allowed.
706 *
707 * If any of the exclusive bits are set, this will fail with -EEXIST if some
708 * part of the range already has the desired bits set. The start of the
709 * existing range is returned in failed_start in this case.
710 *
711 * [start, end] is inclusive This takes the tree lock.
712 */
713
714 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
715 int bits, int exclusive_bits, u64 *failed_start,
716 struct extent_state **cached_state, gfp_t mask)
717 {
718 struct extent_state *state;
719 struct extent_state *prealloc = NULL;
720 struct rb_node *node;
721 int err = 0;
722 u64 last_start;
723 u64 last_end;
724
725 bits |= EXTENT_FIRST_DELALLOC;
726 again:
727 if (!prealloc && (mask & __GFP_WAIT)) {
728 prealloc = alloc_extent_state(mask);
729 if (!prealloc)
730 return -ENOMEM;
731 }
732
733 spin_lock(&tree->lock);
734 if (cached_state && *cached_state) {
735 state = *cached_state;
736 if (state->start == start && state->tree) {
737 node = &state->rb_node;
738 goto hit_next;
739 }
740 }
741 /*
742 * this search will find all the extents that end after
743 * our range starts.
744 */
745 node = tree_search(tree, start);
746 if (!node) {
747 err = insert_state(tree, prealloc, start, end, &bits);
748 prealloc = NULL;
749 BUG_ON(err == -EEXIST);
750 goto out;
751 }
752 state = rb_entry(node, struct extent_state, rb_node);
753 hit_next:
754 last_start = state->start;
755 last_end = state->end;
756
757 /*
758 * | ---- desired range ---- |
759 * | state |
760 *
761 * Just lock what we found and keep going
762 */
763 if (state->start == start && state->end <= end) {
764 struct rb_node *next_node;
765 if (state->state & exclusive_bits) {
766 *failed_start = state->start;
767 err = -EEXIST;
768 goto out;
769 }
770
771 err = set_state_bits(tree, state, &bits);
772 if (err)
773 goto out;
774
775 cache_state(state, cached_state);
776 merge_state(tree, state);
777 if (last_end == (u64)-1)
778 goto out;
779
780 start = last_end + 1;
781 if (start < end && prealloc && !need_resched()) {
782 next_node = rb_next(node);
783 if (next_node) {
784 state = rb_entry(next_node, struct extent_state,
785 rb_node);
786 if (state->start == start)
787 goto hit_next;
788 }
789 }
790 goto search_again;
791 }
792
793 /*
794 * | ---- desired range ---- |
795 * | state |
796 * or
797 * | ------------- state -------------- |
798 *
799 * We need to split the extent we found, and may flip bits on
800 * second half.
801 *
802 * If the extent we found extends past our
803 * range, we just split and search again. It'll get split
804 * again the next time though.
805 *
806 * If the extent we found is inside our range, we set the
807 * desired bit on it.
808 */
809 if (state->start < start) {
810 if (state->state & exclusive_bits) {
811 *failed_start = start;
812 err = -EEXIST;
813 goto out;
814 }
815 err = split_state(tree, state, prealloc, start);
816 BUG_ON(err == -EEXIST);
817 prealloc = NULL;
818 if (err)
819 goto out;
820 if (state->end <= end) {
821 err = set_state_bits(tree, state, &bits);
822 if (err)
823 goto out;
824 cache_state(state, cached_state);
825 merge_state(tree, state);
826 if (last_end == (u64)-1)
827 goto out;
828 start = last_end + 1;
829 }
830 goto search_again;
831 }
832 /*
833 * | ---- desired range ---- |
834 * | state | or | state |
835 *
836 * There's a hole, we need to insert something in it and
837 * ignore the extent we found.
838 */
839 if (state->start > start) {
840 u64 this_end;
841 if (end < last_start)
842 this_end = end;
843 else
844 this_end = last_start - 1;
845 err = insert_state(tree, prealloc, start, this_end,
846 &bits);
847 BUG_ON(err == -EEXIST);
848 if (err) {
849 prealloc = NULL;
850 goto out;
851 }
852 cache_state(prealloc, cached_state);
853 prealloc = NULL;
854 start = this_end + 1;
855 goto search_again;
856 }
857 /*
858 * | ---- desired range ---- |
859 * | state |
860 * We need to split the extent, and set the bit
861 * on the first half
862 */
863 if (state->start <= end && state->end > end) {
864 if (state->state & exclusive_bits) {
865 *failed_start = start;
866 err = -EEXIST;
867 goto out;
868 }
869 err = split_state(tree, state, prealloc, end + 1);
870 BUG_ON(err == -EEXIST);
871
872 err = set_state_bits(tree, prealloc, &bits);
873 if (err) {
874 prealloc = NULL;
875 goto out;
876 }
877 cache_state(prealloc, cached_state);
878 merge_state(tree, prealloc);
879 prealloc = NULL;
880 goto out;
881 }
882
883 goto search_again;
884
885 out:
886 spin_unlock(&tree->lock);
887 if (prealloc)
888 free_extent_state(prealloc);
889
890 return err;
891
892 search_again:
893 if (start > end)
894 goto out;
895 spin_unlock(&tree->lock);
896 if (mask & __GFP_WAIT)
897 cond_resched();
898 goto again;
899 }
900
901 /* wrappers around set/clear extent bit */
902 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
903 gfp_t mask)
904 {
905 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
906 NULL, mask);
907 }
908
909 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
910 int bits, gfp_t mask)
911 {
912 return set_extent_bit(tree, start, end, bits, 0, NULL,
913 NULL, mask);
914 }
915
916 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
917 int bits, gfp_t mask)
918 {
919 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
920 }
921
922 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
923 struct extent_state **cached_state, gfp_t mask)
924 {
925 return set_extent_bit(tree, start, end,
926 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
927 0, NULL, cached_state, mask);
928 }
929
930 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
931 gfp_t mask)
932 {
933 return clear_extent_bit(tree, start, end,
934 EXTENT_DIRTY | EXTENT_DELALLOC |
935 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
936 }
937
938 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
939 gfp_t mask)
940 {
941 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
942 NULL, mask);
943 }
944
945 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
946 gfp_t mask)
947 {
948 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
949 NULL, mask);
950 }
951
952 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
953 struct extent_state **cached_state, gfp_t mask)
954 {
955 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
956 NULL, cached_state, mask);
957 }
958
959 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
960 u64 end, struct extent_state **cached_state,
961 gfp_t mask)
962 {
963 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
964 cached_state, mask);
965 }
966
967 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
968 {
969 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
970 }
971
972 /*
973 * either insert or lock state struct between start and end use mask to tell
974 * us if waiting is desired.
975 */
976 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
977 int bits, struct extent_state **cached_state, gfp_t mask)
978 {
979 int err;
980 u64 failed_start;
981 while (1) {
982 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
983 EXTENT_LOCKED, &failed_start,
984 cached_state, mask);
985 if (err == -EEXIST && (mask & __GFP_WAIT)) {
986 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
987 start = failed_start;
988 } else {
989 break;
990 }
991 WARN_ON(start > end);
992 }
993 return err;
994 }
995
996 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
997 {
998 return lock_extent_bits(tree, start, end, 0, NULL, mask);
999 }
1000
1001 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1002 gfp_t mask)
1003 {
1004 int err;
1005 u64 failed_start;
1006
1007 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1008 &failed_start, NULL, mask);
1009 if (err == -EEXIST) {
1010 if (failed_start > start)
1011 clear_extent_bit(tree, start, failed_start - 1,
1012 EXTENT_LOCKED, 1, 0, NULL, mask);
1013 return 0;
1014 }
1015 return 1;
1016 }
1017
1018 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1019 struct extent_state **cached, gfp_t mask)
1020 {
1021 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1022 mask);
1023 }
1024
1025 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1026 {
1027 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1028 mask);
1029 }
1030
1031 /*
1032 * helper function to set pages and extents in the tree dirty
1033 */
1034 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1035 {
1036 unsigned long index = start >> PAGE_CACHE_SHIFT;
1037 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1038 struct page *page;
1039
1040 while (index <= end_index) {
1041 page = find_get_page(tree->mapping, index);
1042 BUG_ON(!page);
1043 __set_page_dirty_nobuffers(page);
1044 page_cache_release(page);
1045 index++;
1046 }
1047 return 0;
1048 }
1049
1050 /*
1051 * helper function to set both pages and extents in the tree writeback
1052 */
1053 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1054 {
1055 unsigned long index = start >> PAGE_CACHE_SHIFT;
1056 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1057 struct page *page;
1058
1059 while (index <= end_index) {
1060 page = find_get_page(tree->mapping, index);
1061 BUG_ON(!page);
1062 set_page_writeback(page);
1063 page_cache_release(page);
1064 index++;
1065 }
1066 return 0;
1067 }
1068
1069 /*
1070 * find the first offset in the io tree with 'bits' set. zero is
1071 * returned if we find something, and *start_ret and *end_ret are
1072 * set to reflect the state struct that was found.
1073 *
1074 * If nothing was found, 1 is returned, < 0 on error
1075 */
1076 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1077 u64 *start_ret, u64 *end_ret, int bits)
1078 {
1079 struct rb_node *node;
1080 struct extent_state *state;
1081 int ret = 1;
1082
1083 spin_lock(&tree->lock);
1084 /*
1085 * this search will find all the extents that end after
1086 * our range starts.
1087 */
1088 node = tree_search(tree, start);
1089 if (!node)
1090 goto out;
1091
1092 while (1) {
1093 state = rb_entry(node, struct extent_state, rb_node);
1094 if (state->end >= start && (state->state & bits)) {
1095 *start_ret = state->start;
1096 *end_ret = state->end;
1097 ret = 0;
1098 break;
1099 }
1100 node = rb_next(node);
1101 if (!node)
1102 break;
1103 }
1104 out:
1105 spin_unlock(&tree->lock);
1106 return ret;
1107 }
1108
1109 /* find the first state struct with 'bits' set after 'start', and
1110 * return it. tree->lock must be held. NULL will returned if
1111 * nothing was found after 'start'
1112 */
1113 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1114 u64 start, int bits)
1115 {
1116 struct rb_node *node;
1117 struct extent_state *state;
1118
1119 /*
1120 * this search will find all the extents that end after
1121 * our range starts.
1122 */
1123 node = tree_search(tree, start);
1124 if (!node)
1125 goto out;
1126
1127 while (1) {
1128 state = rb_entry(node, struct extent_state, rb_node);
1129 if (state->end >= start && (state->state & bits))
1130 return state;
1131
1132 node = rb_next(node);
1133 if (!node)
1134 break;
1135 }
1136 out:
1137 return NULL;
1138 }
1139
1140 /*
1141 * find a contiguous range of bytes in the file marked as delalloc, not
1142 * more than 'max_bytes'. start and end are used to return the range,
1143 *
1144 * 1 is returned if we find something, 0 if nothing was in the tree
1145 */
1146 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1147 u64 *start, u64 *end, u64 max_bytes,
1148 struct extent_state **cached_state)
1149 {
1150 struct rb_node *node;
1151 struct extent_state *state;
1152 u64 cur_start = *start;
1153 u64 found = 0;
1154 u64 total_bytes = 0;
1155
1156 spin_lock(&tree->lock);
1157
1158 /*
1159 * this search will find all the extents that end after
1160 * our range starts.
1161 */
1162 node = tree_search(tree, cur_start);
1163 if (!node) {
1164 if (!found)
1165 *end = (u64)-1;
1166 goto out;
1167 }
1168
1169 while (1) {
1170 state = rb_entry(node, struct extent_state, rb_node);
1171 if (found && (state->start != cur_start ||
1172 (state->state & EXTENT_BOUNDARY))) {
1173 goto out;
1174 }
1175 if (!(state->state & EXTENT_DELALLOC)) {
1176 if (!found)
1177 *end = state->end;
1178 goto out;
1179 }
1180 if (!found) {
1181 *start = state->start;
1182 *cached_state = state;
1183 atomic_inc(&state->refs);
1184 }
1185 found++;
1186 *end = state->end;
1187 cur_start = state->end + 1;
1188 node = rb_next(node);
1189 if (!node)
1190 break;
1191 total_bytes += state->end - state->start + 1;
1192 if (total_bytes >= max_bytes)
1193 break;
1194 }
1195 out:
1196 spin_unlock(&tree->lock);
1197 return found;
1198 }
1199
1200 static noinline int __unlock_for_delalloc(struct inode *inode,
1201 struct page *locked_page,
1202 u64 start, u64 end)
1203 {
1204 int ret;
1205 struct page *pages[16];
1206 unsigned long index = start >> PAGE_CACHE_SHIFT;
1207 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1208 unsigned long nr_pages = end_index - index + 1;
1209 int i;
1210
1211 if (index == locked_page->index && end_index == index)
1212 return 0;
1213
1214 while (nr_pages > 0) {
1215 ret = find_get_pages_contig(inode->i_mapping, index,
1216 min_t(unsigned long, nr_pages,
1217 ARRAY_SIZE(pages)), pages);
1218 for (i = 0; i < ret; i++) {
1219 if (pages[i] != locked_page)
1220 unlock_page(pages[i]);
1221 page_cache_release(pages[i]);
1222 }
1223 nr_pages -= ret;
1224 index += ret;
1225 cond_resched();
1226 }
1227 return 0;
1228 }
1229
1230 static noinline int lock_delalloc_pages(struct inode *inode,
1231 struct page *locked_page,
1232 u64 delalloc_start,
1233 u64 delalloc_end)
1234 {
1235 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1236 unsigned long start_index = index;
1237 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1238 unsigned long pages_locked = 0;
1239 struct page *pages[16];
1240 unsigned long nrpages;
1241 int ret;
1242 int i;
1243
1244 /* the caller is responsible for locking the start index */
1245 if (index == locked_page->index && index == end_index)
1246 return 0;
1247
1248 /* skip the page at the start index */
1249 nrpages = end_index - index + 1;
1250 while (nrpages > 0) {
1251 ret = find_get_pages_contig(inode->i_mapping, index,
1252 min_t(unsigned long,
1253 nrpages, ARRAY_SIZE(pages)), pages);
1254 if (ret == 0) {
1255 ret = -EAGAIN;
1256 goto done;
1257 }
1258 /* now we have an array of pages, lock them all */
1259 for (i = 0; i < ret; i++) {
1260 /*
1261 * the caller is taking responsibility for
1262 * locked_page
1263 */
1264 if (pages[i] != locked_page) {
1265 lock_page(pages[i]);
1266 if (!PageDirty(pages[i]) ||
1267 pages[i]->mapping != inode->i_mapping) {
1268 ret = -EAGAIN;
1269 unlock_page(pages[i]);
1270 page_cache_release(pages[i]);
1271 goto done;
1272 }
1273 }
1274 page_cache_release(pages[i]);
1275 pages_locked++;
1276 }
1277 nrpages -= ret;
1278 index += ret;
1279 cond_resched();
1280 }
1281 ret = 0;
1282 done:
1283 if (ret && pages_locked) {
1284 __unlock_for_delalloc(inode, locked_page,
1285 delalloc_start,
1286 ((u64)(start_index + pages_locked - 1)) <<
1287 PAGE_CACHE_SHIFT);
1288 }
1289 return ret;
1290 }
1291
1292 /*
1293 * find a contiguous range of bytes in the file marked as delalloc, not
1294 * more than 'max_bytes'. start and end are used to return the range,
1295 *
1296 * 1 is returned if we find something, 0 if nothing was in the tree
1297 */
1298 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1299 struct extent_io_tree *tree,
1300 struct page *locked_page,
1301 u64 *start, u64 *end,
1302 u64 max_bytes)
1303 {
1304 u64 delalloc_start;
1305 u64 delalloc_end;
1306 u64 found;
1307 struct extent_state *cached_state = NULL;
1308 int ret;
1309 int loops = 0;
1310
1311 again:
1312 /* step one, find a bunch of delalloc bytes starting at start */
1313 delalloc_start = *start;
1314 delalloc_end = 0;
1315 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1316 max_bytes, &cached_state);
1317 if (!found || delalloc_end <= *start) {
1318 *start = delalloc_start;
1319 *end = delalloc_end;
1320 free_extent_state(cached_state);
1321 return found;
1322 }
1323
1324 /*
1325 * start comes from the offset of locked_page. We have to lock
1326 * pages in order, so we can't process delalloc bytes before
1327 * locked_page
1328 */
1329 if (delalloc_start < *start)
1330 delalloc_start = *start;
1331
1332 /*
1333 * make sure to limit the number of pages we try to lock down
1334 * if we're looping.
1335 */
1336 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1337 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1338
1339 /* step two, lock all the pages after the page that has start */
1340 ret = lock_delalloc_pages(inode, locked_page,
1341 delalloc_start, delalloc_end);
1342 if (ret == -EAGAIN) {
1343 /* some of the pages are gone, lets avoid looping by
1344 * shortening the size of the delalloc range we're searching
1345 */
1346 free_extent_state(cached_state);
1347 if (!loops) {
1348 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1349 max_bytes = PAGE_CACHE_SIZE - offset;
1350 loops = 1;
1351 goto again;
1352 } else {
1353 found = 0;
1354 goto out_failed;
1355 }
1356 }
1357 BUG_ON(ret);
1358
1359 /* step three, lock the state bits for the whole range */
1360 lock_extent_bits(tree, delalloc_start, delalloc_end,
1361 0, &cached_state, GFP_NOFS);
1362
1363 /* then test to make sure it is all still delalloc */
1364 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1365 EXTENT_DELALLOC, 1, cached_state);
1366 if (!ret) {
1367 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1368 &cached_state, GFP_NOFS);
1369 __unlock_for_delalloc(inode, locked_page,
1370 delalloc_start, delalloc_end);
1371 cond_resched();
1372 goto again;
1373 }
1374 free_extent_state(cached_state);
1375 *start = delalloc_start;
1376 *end = delalloc_end;
1377 out_failed:
1378 return found;
1379 }
1380
1381 int extent_clear_unlock_delalloc(struct inode *inode,
1382 struct extent_io_tree *tree,
1383 u64 start, u64 end, struct page *locked_page,
1384 unsigned long op)
1385 {
1386 int ret;
1387 struct page *pages[16];
1388 unsigned long index = start >> PAGE_CACHE_SHIFT;
1389 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1390 unsigned long nr_pages = end_index - index + 1;
1391 int i;
1392 int clear_bits = 0;
1393
1394 if (op & EXTENT_CLEAR_UNLOCK)
1395 clear_bits |= EXTENT_LOCKED;
1396 if (op & EXTENT_CLEAR_DIRTY)
1397 clear_bits |= EXTENT_DIRTY;
1398
1399 if (op & EXTENT_CLEAR_DELALLOC)
1400 clear_bits |= EXTENT_DELALLOC;
1401
1402 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1403 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1404 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1405 EXTENT_SET_PRIVATE2)))
1406 return 0;
1407
1408 while (nr_pages > 0) {
1409 ret = find_get_pages_contig(inode->i_mapping, index,
1410 min_t(unsigned long,
1411 nr_pages, ARRAY_SIZE(pages)), pages);
1412 for (i = 0; i < ret; i++) {
1413
1414 if (op & EXTENT_SET_PRIVATE2)
1415 SetPagePrivate2(pages[i]);
1416
1417 if (pages[i] == locked_page) {
1418 page_cache_release(pages[i]);
1419 continue;
1420 }
1421 if (op & EXTENT_CLEAR_DIRTY)
1422 clear_page_dirty_for_io(pages[i]);
1423 if (op & EXTENT_SET_WRITEBACK)
1424 set_page_writeback(pages[i]);
1425 if (op & EXTENT_END_WRITEBACK)
1426 end_page_writeback(pages[i]);
1427 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1428 unlock_page(pages[i]);
1429 page_cache_release(pages[i]);
1430 }
1431 nr_pages -= ret;
1432 index += ret;
1433 cond_resched();
1434 }
1435 return 0;
1436 }
1437
1438 /*
1439 * count the number of bytes in the tree that have a given bit(s)
1440 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1441 * cached. The total number found is returned.
1442 */
1443 u64 count_range_bits(struct extent_io_tree *tree,
1444 u64 *start, u64 search_end, u64 max_bytes,
1445 unsigned long bits, int contig)
1446 {
1447 struct rb_node *node;
1448 struct extent_state *state;
1449 u64 cur_start = *start;
1450 u64 total_bytes = 0;
1451 u64 last = 0;
1452 int found = 0;
1453
1454 if (search_end <= cur_start) {
1455 WARN_ON(1);
1456 return 0;
1457 }
1458
1459 spin_lock(&tree->lock);
1460 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1461 total_bytes = tree->dirty_bytes;
1462 goto out;
1463 }
1464 /*
1465 * this search will find all the extents that end after
1466 * our range starts.
1467 */
1468 node = tree_search(tree, cur_start);
1469 if (!node)
1470 goto out;
1471
1472 while (1) {
1473 state = rb_entry(node, struct extent_state, rb_node);
1474 if (state->start > search_end)
1475 break;
1476 if (contig && found && state->start > last + 1)
1477 break;
1478 if (state->end >= cur_start && (state->state & bits) == bits) {
1479 total_bytes += min(search_end, state->end) + 1 -
1480 max(cur_start, state->start);
1481 if (total_bytes >= max_bytes)
1482 break;
1483 if (!found) {
1484 *start = state->start;
1485 found = 1;
1486 }
1487 last = state->end;
1488 } else if (contig && found) {
1489 break;
1490 }
1491 node = rb_next(node);
1492 if (!node)
1493 break;
1494 }
1495 out:
1496 spin_unlock(&tree->lock);
1497 return total_bytes;
1498 }
1499
1500 /*
1501 * set the private field for a given byte offset in the tree. If there isn't
1502 * an extent_state there already, this does nothing.
1503 */
1504 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1505 {
1506 struct rb_node *node;
1507 struct extent_state *state;
1508 int ret = 0;
1509
1510 spin_lock(&tree->lock);
1511 /*
1512 * this search will find all the extents that end after
1513 * our range starts.
1514 */
1515 node = tree_search(tree, start);
1516 if (!node) {
1517 ret = -ENOENT;
1518 goto out;
1519 }
1520 state = rb_entry(node, struct extent_state, rb_node);
1521 if (state->start != start) {
1522 ret = -ENOENT;
1523 goto out;
1524 }
1525 state->private = private;
1526 out:
1527 spin_unlock(&tree->lock);
1528 return ret;
1529 }
1530
1531 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1532 {
1533 struct rb_node *node;
1534 struct extent_state *state;
1535 int ret = 0;
1536
1537 spin_lock(&tree->lock);
1538 /*
1539 * this search will find all the extents that end after
1540 * our range starts.
1541 */
1542 node = tree_search(tree, start);
1543 if (!node) {
1544 ret = -ENOENT;
1545 goto out;
1546 }
1547 state = rb_entry(node, struct extent_state, rb_node);
1548 if (state->start != start) {
1549 ret = -ENOENT;
1550 goto out;
1551 }
1552 *private = state->private;
1553 out:
1554 spin_unlock(&tree->lock);
1555 return ret;
1556 }
1557
1558 /*
1559 * searches a range in the state tree for a given mask.
1560 * If 'filled' == 1, this returns 1 only if every extent in the tree
1561 * has the bits set. Otherwise, 1 is returned if any bit in the
1562 * range is found set.
1563 */
1564 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1565 int bits, int filled, struct extent_state *cached)
1566 {
1567 struct extent_state *state = NULL;
1568 struct rb_node *node;
1569 int bitset = 0;
1570
1571 spin_lock(&tree->lock);
1572 if (cached && cached->tree && cached->start == start)
1573 node = &cached->rb_node;
1574 else
1575 node = tree_search(tree, start);
1576 while (node && start <= end) {
1577 state = rb_entry(node, struct extent_state, rb_node);
1578
1579 if (filled && state->start > start) {
1580 bitset = 0;
1581 break;
1582 }
1583
1584 if (state->start > end)
1585 break;
1586
1587 if (state->state & bits) {
1588 bitset = 1;
1589 if (!filled)
1590 break;
1591 } else if (filled) {
1592 bitset = 0;
1593 break;
1594 }
1595
1596 if (state->end == (u64)-1)
1597 break;
1598
1599 start = state->end + 1;
1600 if (start > end)
1601 break;
1602 node = rb_next(node);
1603 if (!node) {
1604 if (filled)
1605 bitset = 0;
1606 break;
1607 }
1608 }
1609 spin_unlock(&tree->lock);
1610 return bitset;
1611 }
1612
1613 /*
1614 * helper function to set a given page up to date if all the
1615 * extents in the tree for that page are up to date
1616 */
1617 static int check_page_uptodate(struct extent_io_tree *tree,
1618 struct page *page)
1619 {
1620 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1621 u64 end = start + PAGE_CACHE_SIZE - 1;
1622 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1623 SetPageUptodate(page);
1624 return 0;
1625 }
1626
1627 /*
1628 * helper function to unlock a page if all the extents in the tree
1629 * for that page are unlocked
1630 */
1631 static int check_page_locked(struct extent_io_tree *tree,
1632 struct page *page)
1633 {
1634 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1635 u64 end = start + PAGE_CACHE_SIZE - 1;
1636 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1637 unlock_page(page);
1638 return 0;
1639 }
1640
1641 /*
1642 * helper function to end page writeback if all the extents
1643 * in the tree for that page are done with writeback
1644 */
1645 static int check_page_writeback(struct extent_io_tree *tree,
1646 struct page *page)
1647 {
1648 end_page_writeback(page);
1649 return 0;
1650 }
1651
1652 /* lots and lots of room for performance fixes in the end_bio funcs */
1653
1654 /*
1655 * after a writepage IO is done, we need to:
1656 * clear the uptodate bits on error
1657 * clear the writeback bits in the extent tree for this IO
1658 * end_page_writeback if the page has no more pending IO
1659 *
1660 * Scheduling is not allowed, so the extent state tree is expected
1661 * to have one and only one object corresponding to this IO.
1662 */
1663 static void end_bio_extent_writepage(struct bio *bio, int err)
1664 {
1665 int uptodate = err == 0;
1666 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1667 struct extent_io_tree *tree;
1668 u64 start;
1669 u64 end;
1670 int whole_page;
1671 int ret;
1672
1673 do {
1674 struct page *page = bvec->bv_page;
1675 tree = &BTRFS_I(page->mapping->host)->io_tree;
1676
1677 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1678 bvec->bv_offset;
1679 end = start + bvec->bv_len - 1;
1680
1681 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1682 whole_page = 1;
1683 else
1684 whole_page = 0;
1685
1686 if (--bvec >= bio->bi_io_vec)
1687 prefetchw(&bvec->bv_page->flags);
1688 if (tree->ops && tree->ops->writepage_end_io_hook) {
1689 ret = tree->ops->writepage_end_io_hook(page, start,
1690 end, NULL, uptodate);
1691 if (ret)
1692 uptodate = 0;
1693 }
1694
1695 if (!uptodate && tree->ops &&
1696 tree->ops->writepage_io_failed_hook) {
1697 ret = tree->ops->writepage_io_failed_hook(bio, page,
1698 start, end, NULL);
1699 if (ret == 0) {
1700 uptodate = (err == 0);
1701 continue;
1702 }
1703 }
1704
1705 if (!uptodate) {
1706 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1707 ClearPageUptodate(page);
1708 SetPageError(page);
1709 }
1710
1711 if (whole_page)
1712 end_page_writeback(page);
1713 else
1714 check_page_writeback(tree, page);
1715 } while (bvec >= bio->bi_io_vec);
1716
1717 bio_put(bio);
1718 }
1719
1720 /*
1721 * after a readpage IO is done, we need to:
1722 * clear the uptodate bits on error
1723 * set the uptodate bits if things worked
1724 * set the page up to date if all extents in the tree are uptodate
1725 * clear the lock bit in the extent tree
1726 * unlock the page if there are no other extents locked for it
1727 *
1728 * Scheduling is not allowed, so the extent state tree is expected
1729 * to have one and only one object corresponding to this IO.
1730 */
1731 static void end_bio_extent_readpage(struct bio *bio, int err)
1732 {
1733 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1734 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1735 struct bio_vec *bvec = bio->bi_io_vec;
1736 struct extent_io_tree *tree;
1737 u64 start;
1738 u64 end;
1739 int whole_page;
1740 int ret;
1741
1742 if (err)
1743 uptodate = 0;
1744
1745 do {
1746 struct page *page = bvec->bv_page;
1747 struct extent_state *cached = NULL;
1748 struct extent_state *state;
1749
1750 tree = &BTRFS_I(page->mapping->host)->io_tree;
1751
1752 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1753 bvec->bv_offset;
1754 end = start + bvec->bv_len - 1;
1755
1756 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1757 whole_page = 1;
1758 else
1759 whole_page = 0;
1760
1761 if (++bvec <= bvec_end)
1762 prefetchw(&bvec->bv_page->flags);
1763
1764 spin_lock(&tree->lock);
1765 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
1766 if (state && state->start == start) {
1767 /*
1768 * take a reference on the state, unlock will drop
1769 * the ref
1770 */
1771 cache_state(state, &cached);
1772 }
1773 spin_unlock(&tree->lock);
1774
1775 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1776 ret = tree->ops->readpage_end_io_hook(page, start, end,
1777 state);
1778 if (ret)
1779 uptodate = 0;
1780 }
1781 if (!uptodate && tree->ops &&
1782 tree->ops->readpage_io_failed_hook) {
1783 ret = tree->ops->readpage_io_failed_hook(bio, page,
1784 start, end, NULL);
1785 if (ret == 0) {
1786 uptodate =
1787 test_bit(BIO_UPTODATE, &bio->bi_flags);
1788 if (err)
1789 uptodate = 0;
1790 uncache_state(&cached);
1791 continue;
1792 }
1793 }
1794
1795 if (uptodate) {
1796 set_extent_uptodate(tree, start, end, &cached,
1797 GFP_ATOMIC);
1798 }
1799 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1800
1801 if (whole_page) {
1802 if (uptodate) {
1803 SetPageUptodate(page);
1804 } else {
1805 ClearPageUptodate(page);
1806 SetPageError(page);
1807 }
1808 unlock_page(page);
1809 } else {
1810 if (uptodate) {
1811 check_page_uptodate(tree, page);
1812 } else {
1813 ClearPageUptodate(page);
1814 SetPageError(page);
1815 }
1816 check_page_locked(tree, page);
1817 }
1818 } while (bvec <= bvec_end);
1819
1820 bio_put(bio);
1821 }
1822
1823 /*
1824 * IO done from prepare_write is pretty simple, we just unlock
1825 * the structs in the extent tree when done, and set the uptodate bits
1826 * as appropriate.
1827 */
1828 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1829 {
1830 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1831 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1832 struct extent_io_tree *tree;
1833 u64 start;
1834 u64 end;
1835
1836 do {
1837 struct page *page = bvec->bv_page;
1838 struct extent_state *cached = NULL;
1839 tree = &BTRFS_I(page->mapping->host)->io_tree;
1840
1841 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1842 bvec->bv_offset;
1843 end = start + bvec->bv_len - 1;
1844
1845 if (--bvec >= bio->bi_io_vec)
1846 prefetchw(&bvec->bv_page->flags);
1847
1848 if (uptodate) {
1849 set_extent_uptodate(tree, start, end, &cached,
1850 GFP_ATOMIC);
1851 } else {
1852 ClearPageUptodate(page);
1853 SetPageError(page);
1854 }
1855
1856 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1857
1858 } while (bvec >= bio->bi_io_vec);
1859
1860 bio_put(bio);
1861 }
1862
1863 struct bio *
1864 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1865 gfp_t gfp_flags)
1866 {
1867 struct bio *bio;
1868
1869 bio = bio_alloc(gfp_flags, nr_vecs);
1870
1871 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1872 while (!bio && (nr_vecs /= 2))
1873 bio = bio_alloc(gfp_flags, nr_vecs);
1874 }
1875
1876 if (bio) {
1877 bio->bi_size = 0;
1878 bio->bi_bdev = bdev;
1879 bio->bi_sector = first_sector;
1880 }
1881 return bio;
1882 }
1883
1884 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1885 unsigned long bio_flags)
1886 {
1887 int ret = 0;
1888 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1889 struct page *page = bvec->bv_page;
1890 struct extent_io_tree *tree = bio->bi_private;
1891 u64 start;
1892
1893 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1894
1895 bio->bi_private = NULL;
1896
1897 bio_get(bio);
1898
1899 if (tree->ops && tree->ops->submit_bio_hook)
1900 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1901 mirror_num, bio_flags, start);
1902 else
1903 submit_bio(rw, bio);
1904 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1905 ret = -EOPNOTSUPP;
1906 bio_put(bio);
1907 return ret;
1908 }
1909
1910 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1911 struct page *page, sector_t sector,
1912 size_t size, unsigned long offset,
1913 struct block_device *bdev,
1914 struct bio **bio_ret,
1915 unsigned long max_pages,
1916 bio_end_io_t end_io_func,
1917 int mirror_num,
1918 unsigned long prev_bio_flags,
1919 unsigned long bio_flags)
1920 {
1921 int ret = 0;
1922 struct bio *bio;
1923 int nr;
1924 int contig = 0;
1925 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1926 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1927 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1928
1929 if (bio_ret && *bio_ret) {
1930 bio = *bio_ret;
1931 if (old_compressed)
1932 contig = bio->bi_sector == sector;
1933 else
1934 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1935 sector;
1936
1937 if (prev_bio_flags != bio_flags || !contig ||
1938 (tree->ops && tree->ops->merge_bio_hook &&
1939 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1940 bio_flags)) ||
1941 bio_add_page(bio, page, page_size, offset) < page_size) {
1942 ret = submit_one_bio(rw, bio, mirror_num,
1943 prev_bio_flags);
1944 bio = NULL;
1945 } else {
1946 return 0;
1947 }
1948 }
1949 if (this_compressed)
1950 nr = BIO_MAX_PAGES;
1951 else
1952 nr = bio_get_nr_vecs(bdev);
1953
1954 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1955 if (!bio)
1956 return -ENOMEM;
1957
1958 bio_add_page(bio, page, page_size, offset);
1959 bio->bi_end_io = end_io_func;
1960 bio->bi_private = tree;
1961
1962 if (bio_ret)
1963 *bio_ret = bio;
1964 else
1965 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1966
1967 return ret;
1968 }
1969
1970 void set_page_extent_mapped(struct page *page)
1971 {
1972 if (!PagePrivate(page)) {
1973 SetPagePrivate(page);
1974 page_cache_get(page);
1975 set_page_private(page, EXTENT_PAGE_PRIVATE);
1976 }
1977 }
1978
1979 static void set_page_extent_head(struct page *page, unsigned long len)
1980 {
1981 WARN_ON(!PagePrivate(page));
1982 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1983 }
1984
1985 /*
1986 * basic readpage implementation. Locked extent state structs are inserted
1987 * into the tree that are removed when the IO is done (by the end_io
1988 * handlers)
1989 */
1990 static int __extent_read_full_page(struct extent_io_tree *tree,
1991 struct page *page,
1992 get_extent_t *get_extent,
1993 struct bio **bio, int mirror_num,
1994 unsigned long *bio_flags)
1995 {
1996 struct inode *inode = page->mapping->host;
1997 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1998 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1999 u64 end;
2000 u64 cur = start;
2001 u64 extent_offset;
2002 u64 last_byte = i_size_read(inode);
2003 u64 block_start;
2004 u64 cur_end;
2005 sector_t sector;
2006 struct extent_map *em;
2007 struct block_device *bdev;
2008 struct btrfs_ordered_extent *ordered;
2009 int ret;
2010 int nr = 0;
2011 size_t page_offset = 0;
2012 size_t iosize;
2013 size_t disk_io_size;
2014 size_t blocksize = inode->i_sb->s_blocksize;
2015 unsigned long this_bio_flag = 0;
2016
2017 set_page_extent_mapped(page);
2018
2019 end = page_end;
2020 while (1) {
2021 lock_extent(tree, start, end, GFP_NOFS);
2022 ordered = btrfs_lookup_ordered_extent(inode, start);
2023 if (!ordered)
2024 break;
2025 unlock_extent(tree, start, end, GFP_NOFS);
2026 btrfs_start_ordered_extent(inode, ordered, 1);
2027 btrfs_put_ordered_extent(ordered);
2028 }
2029
2030 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2031 char *userpage;
2032 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2033
2034 if (zero_offset) {
2035 iosize = PAGE_CACHE_SIZE - zero_offset;
2036 userpage = kmap_atomic(page, KM_USER0);
2037 memset(userpage + zero_offset, 0, iosize);
2038 flush_dcache_page(page);
2039 kunmap_atomic(userpage, KM_USER0);
2040 }
2041 }
2042 while (cur <= end) {
2043 if (cur >= last_byte) {
2044 char *userpage;
2045 struct extent_state *cached = NULL;
2046
2047 iosize = PAGE_CACHE_SIZE - page_offset;
2048 userpage = kmap_atomic(page, KM_USER0);
2049 memset(userpage + page_offset, 0, iosize);
2050 flush_dcache_page(page);
2051 kunmap_atomic(userpage, KM_USER0);
2052 set_extent_uptodate(tree, cur, cur + iosize - 1,
2053 &cached, GFP_NOFS);
2054 unlock_extent_cached(tree, cur, cur + iosize - 1,
2055 &cached, GFP_NOFS);
2056 break;
2057 }
2058 em = get_extent(inode, page, page_offset, cur,
2059 end - cur + 1, 0);
2060 if (IS_ERR(em) || !em) {
2061 SetPageError(page);
2062 unlock_extent(tree, cur, end, GFP_NOFS);
2063 break;
2064 }
2065 extent_offset = cur - em->start;
2066 BUG_ON(extent_map_end(em) <= cur);
2067 BUG_ON(end < cur);
2068
2069 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2070 this_bio_flag = EXTENT_BIO_COMPRESSED;
2071 extent_set_compress_type(&this_bio_flag,
2072 em->compress_type);
2073 }
2074
2075 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2076 cur_end = min(extent_map_end(em) - 1, end);
2077 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2078 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2079 disk_io_size = em->block_len;
2080 sector = em->block_start >> 9;
2081 } else {
2082 sector = (em->block_start + extent_offset) >> 9;
2083 disk_io_size = iosize;
2084 }
2085 bdev = em->bdev;
2086 block_start = em->block_start;
2087 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2088 block_start = EXTENT_MAP_HOLE;
2089 free_extent_map(em);
2090 em = NULL;
2091
2092 /* we've found a hole, just zero and go on */
2093 if (block_start == EXTENT_MAP_HOLE) {
2094 char *userpage;
2095 struct extent_state *cached = NULL;
2096
2097 userpage = kmap_atomic(page, KM_USER0);
2098 memset(userpage + page_offset, 0, iosize);
2099 flush_dcache_page(page);
2100 kunmap_atomic(userpage, KM_USER0);
2101
2102 set_extent_uptodate(tree, cur, cur + iosize - 1,
2103 &cached, GFP_NOFS);
2104 unlock_extent_cached(tree, cur, cur + iosize - 1,
2105 &cached, GFP_NOFS);
2106 cur = cur + iosize;
2107 page_offset += iosize;
2108 continue;
2109 }
2110 /* the get_extent function already copied into the page */
2111 if (test_range_bit(tree, cur, cur_end,
2112 EXTENT_UPTODATE, 1, NULL)) {
2113 check_page_uptodate(tree, page);
2114 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2115 cur = cur + iosize;
2116 page_offset += iosize;
2117 continue;
2118 }
2119 /* we have an inline extent but it didn't get marked up
2120 * to date. Error out
2121 */
2122 if (block_start == EXTENT_MAP_INLINE) {
2123 SetPageError(page);
2124 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2125 cur = cur + iosize;
2126 page_offset += iosize;
2127 continue;
2128 }
2129
2130 ret = 0;
2131 if (tree->ops && tree->ops->readpage_io_hook) {
2132 ret = tree->ops->readpage_io_hook(page, cur,
2133 cur + iosize - 1);
2134 }
2135 if (!ret) {
2136 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2137 pnr -= page->index;
2138 ret = submit_extent_page(READ, tree, page,
2139 sector, disk_io_size, page_offset,
2140 bdev, bio, pnr,
2141 end_bio_extent_readpage, mirror_num,
2142 *bio_flags,
2143 this_bio_flag);
2144 nr++;
2145 *bio_flags = this_bio_flag;
2146 }
2147 if (ret)
2148 SetPageError(page);
2149 cur = cur + iosize;
2150 page_offset += iosize;
2151 }
2152 if (!nr) {
2153 if (!PageError(page))
2154 SetPageUptodate(page);
2155 unlock_page(page);
2156 }
2157 return 0;
2158 }
2159
2160 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2161 get_extent_t *get_extent)
2162 {
2163 struct bio *bio = NULL;
2164 unsigned long bio_flags = 0;
2165 int ret;
2166
2167 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2168 &bio_flags);
2169 if (bio)
2170 ret = submit_one_bio(READ, bio, 0, bio_flags);
2171 return ret;
2172 }
2173
2174 static noinline void update_nr_written(struct page *page,
2175 struct writeback_control *wbc,
2176 unsigned long nr_written)
2177 {
2178 wbc->nr_to_write -= nr_written;
2179 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2180 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2181 page->mapping->writeback_index = page->index + nr_written;
2182 }
2183
2184 /*
2185 * the writepage semantics are similar to regular writepage. extent
2186 * records are inserted to lock ranges in the tree, and as dirty areas
2187 * are found, they are marked writeback. Then the lock bits are removed
2188 * and the end_io handler clears the writeback ranges
2189 */
2190 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2191 void *data)
2192 {
2193 struct inode *inode = page->mapping->host;
2194 struct extent_page_data *epd = data;
2195 struct extent_io_tree *tree = epd->tree;
2196 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2197 u64 delalloc_start;
2198 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2199 u64 end;
2200 u64 cur = start;
2201 u64 extent_offset;
2202 u64 last_byte = i_size_read(inode);
2203 u64 block_start;
2204 u64 iosize;
2205 sector_t sector;
2206 struct extent_state *cached_state = NULL;
2207 struct extent_map *em;
2208 struct block_device *bdev;
2209 int ret;
2210 int nr = 0;
2211 size_t pg_offset = 0;
2212 size_t blocksize;
2213 loff_t i_size = i_size_read(inode);
2214 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2215 u64 nr_delalloc;
2216 u64 delalloc_end;
2217 int page_started;
2218 int compressed;
2219 int write_flags;
2220 unsigned long nr_written = 0;
2221
2222 if (wbc->sync_mode == WB_SYNC_ALL)
2223 write_flags = WRITE_SYNC;
2224 else
2225 write_flags = WRITE;
2226
2227 trace___extent_writepage(page, inode, wbc);
2228
2229 WARN_ON(!PageLocked(page));
2230 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2231 if (page->index > end_index ||
2232 (page->index == end_index && !pg_offset)) {
2233 page->mapping->a_ops->invalidatepage(page, 0);
2234 unlock_page(page);
2235 return 0;
2236 }
2237
2238 if (page->index == end_index) {
2239 char *userpage;
2240
2241 userpage = kmap_atomic(page, KM_USER0);
2242 memset(userpage + pg_offset, 0,
2243 PAGE_CACHE_SIZE - pg_offset);
2244 kunmap_atomic(userpage, KM_USER0);
2245 flush_dcache_page(page);
2246 }
2247 pg_offset = 0;
2248
2249 set_page_extent_mapped(page);
2250
2251 delalloc_start = start;
2252 delalloc_end = 0;
2253 page_started = 0;
2254 if (!epd->extent_locked) {
2255 u64 delalloc_to_write = 0;
2256 /*
2257 * make sure the wbc mapping index is at least updated
2258 * to this page.
2259 */
2260 update_nr_written(page, wbc, 0);
2261
2262 while (delalloc_end < page_end) {
2263 nr_delalloc = find_lock_delalloc_range(inode, tree,
2264 page,
2265 &delalloc_start,
2266 &delalloc_end,
2267 128 * 1024 * 1024);
2268 if (nr_delalloc == 0) {
2269 delalloc_start = delalloc_end + 1;
2270 continue;
2271 }
2272 tree->ops->fill_delalloc(inode, page, delalloc_start,
2273 delalloc_end, &page_started,
2274 &nr_written);
2275 /*
2276 * delalloc_end is already one less than the total
2277 * length, so we don't subtract one from
2278 * PAGE_CACHE_SIZE
2279 */
2280 delalloc_to_write += (delalloc_end - delalloc_start +
2281 PAGE_CACHE_SIZE) >>
2282 PAGE_CACHE_SHIFT;
2283 delalloc_start = delalloc_end + 1;
2284 }
2285 if (wbc->nr_to_write < delalloc_to_write) {
2286 int thresh = 8192;
2287
2288 if (delalloc_to_write < thresh * 2)
2289 thresh = delalloc_to_write;
2290 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2291 thresh);
2292 }
2293
2294 /* did the fill delalloc function already unlock and start
2295 * the IO?
2296 */
2297 if (page_started) {
2298 ret = 0;
2299 /*
2300 * we've unlocked the page, so we can't update
2301 * the mapping's writeback index, just update
2302 * nr_to_write.
2303 */
2304 wbc->nr_to_write -= nr_written;
2305 goto done_unlocked;
2306 }
2307 }
2308 if (tree->ops && tree->ops->writepage_start_hook) {
2309 ret = tree->ops->writepage_start_hook(page, start,
2310 page_end);
2311 if (ret == -EAGAIN) {
2312 redirty_page_for_writepage(wbc, page);
2313 update_nr_written(page, wbc, nr_written);
2314 unlock_page(page);
2315 ret = 0;
2316 goto done_unlocked;
2317 }
2318 }
2319
2320 /*
2321 * we don't want to touch the inode after unlocking the page,
2322 * so we update the mapping writeback index now
2323 */
2324 update_nr_written(page, wbc, nr_written + 1);
2325
2326 end = page_end;
2327 if (last_byte <= start) {
2328 if (tree->ops && tree->ops->writepage_end_io_hook)
2329 tree->ops->writepage_end_io_hook(page, start,
2330 page_end, NULL, 1);
2331 goto done;
2332 }
2333
2334 blocksize = inode->i_sb->s_blocksize;
2335
2336 while (cur <= end) {
2337 if (cur >= last_byte) {
2338 if (tree->ops && tree->ops->writepage_end_io_hook)
2339 tree->ops->writepage_end_io_hook(page, cur,
2340 page_end, NULL, 1);
2341 break;
2342 }
2343 em = epd->get_extent(inode, page, pg_offset, cur,
2344 end - cur + 1, 1);
2345 if (IS_ERR(em) || !em) {
2346 SetPageError(page);
2347 break;
2348 }
2349
2350 extent_offset = cur - em->start;
2351 BUG_ON(extent_map_end(em) <= cur);
2352 BUG_ON(end < cur);
2353 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2354 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2355 sector = (em->block_start + extent_offset) >> 9;
2356 bdev = em->bdev;
2357 block_start = em->block_start;
2358 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2359 free_extent_map(em);
2360 em = NULL;
2361
2362 /*
2363 * compressed and inline extents are written through other
2364 * paths in the FS
2365 */
2366 if (compressed || block_start == EXTENT_MAP_HOLE ||
2367 block_start == EXTENT_MAP_INLINE) {
2368 /*
2369 * end_io notification does not happen here for
2370 * compressed extents
2371 */
2372 if (!compressed && tree->ops &&
2373 tree->ops->writepage_end_io_hook)
2374 tree->ops->writepage_end_io_hook(page, cur,
2375 cur + iosize - 1,
2376 NULL, 1);
2377 else if (compressed) {
2378 /* we don't want to end_page_writeback on
2379 * a compressed extent. this happens
2380 * elsewhere
2381 */
2382 nr++;
2383 }
2384
2385 cur += iosize;
2386 pg_offset += iosize;
2387 continue;
2388 }
2389 /* leave this out until we have a page_mkwrite call */
2390 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2391 EXTENT_DIRTY, 0, NULL)) {
2392 cur = cur + iosize;
2393 pg_offset += iosize;
2394 continue;
2395 }
2396
2397 if (tree->ops && tree->ops->writepage_io_hook) {
2398 ret = tree->ops->writepage_io_hook(page, cur,
2399 cur + iosize - 1);
2400 } else {
2401 ret = 0;
2402 }
2403 if (ret) {
2404 SetPageError(page);
2405 } else {
2406 unsigned long max_nr = end_index + 1;
2407
2408 set_range_writeback(tree, cur, cur + iosize - 1);
2409 if (!PageWriteback(page)) {
2410 printk(KERN_ERR "btrfs warning page %lu not "
2411 "writeback, cur %llu end %llu\n",
2412 page->index, (unsigned long long)cur,
2413 (unsigned long long)end);
2414 }
2415
2416 ret = submit_extent_page(write_flags, tree, page,
2417 sector, iosize, pg_offset,
2418 bdev, &epd->bio, max_nr,
2419 end_bio_extent_writepage,
2420 0, 0, 0);
2421 if (ret)
2422 SetPageError(page);
2423 }
2424 cur = cur + iosize;
2425 pg_offset += iosize;
2426 nr++;
2427 }
2428 done:
2429 if (nr == 0) {
2430 /* make sure the mapping tag for page dirty gets cleared */
2431 set_page_writeback(page);
2432 end_page_writeback(page);
2433 }
2434 unlock_page(page);
2435
2436 done_unlocked:
2437
2438 /* drop our reference on any cached states */
2439 free_extent_state(cached_state);
2440 return 0;
2441 }
2442
2443 /**
2444 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2445 * @mapping: address space structure to write
2446 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2447 * @writepage: function called for each page
2448 * @data: data passed to writepage function
2449 *
2450 * If a page is already under I/O, write_cache_pages() skips it, even
2451 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2452 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2453 * and msync() need to guarantee that all the data which was dirty at the time
2454 * the call was made get new I/O started against them. If wbc->sync_mode is
2455 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2456 * existing IO to complete.
2457 */
2458 static int extent_write_cache_pages(struct extent_io_tree *tree,
2459 struct address_space *mapping,
2460 struct writeback_control *wbc,
2461 writepage_t writepage, void *data,
2462 void (*flush_fn)(void *))
2463 {
2464 int ret = 0;
2465 int done = 0;
2466 int nr_to_write_done = 0;
2467 struct pagevec pvec;
2468 int nr_pages;
2469 pgoff_t index;
2470 pgoff_t end; /* Inclusive */
2471 int scanned = 0;
2472
2473 pagevec_init(&pvec, 0);
2474 if (wbc->range_cyclic) {
2475 index = mapping->writeback_index; /* Start from prev offset */
2476 end = -1;
2477 } else {
2478 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2479 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2480 scanned = 1;
2481 }
2482 retry:
2483 while (!done && !nr_to_write_done && (index <= end) &&
2484 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2485 PAGECACHE_TAG_DIRTY, min(end - index,
2486 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2487 unsigned i;
2488
2489 scanned = 1;
2490 for (i = 0; i < nr_pages; i++) {
2491 struct page *page = pvec.pages[i];
2492
2493 /*
2494 * At this point we hold neither mapping->tree_lock nor
2495 * lock on the page itself: the page may be truncated or
2496 * invalidated (changing page->mapping to NULL), or even
2497 * swizzled back from swapper_space to tmpfs file
2498 * mapping
2499 */
2500 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2501 tree->ops->write_cache_pages_lock_hook(page);
2502 else
2503 lock_page(page);
2504
2505 if (unlikely(page->mapping != mapping)) {
2506 unlock_page(page);
2507 continue;
2508 }
2509
2510 if (!wbc->range_cyclic && page->index > end) {
2511 done = 1;
2512 unlock_page(page);
2513 continue;
2514 }
2515
2516 if (wbc->sync_mode != WB_SYNC_NONE) {
2517 if (PageWriteback(page))
2518 flush_fn(data);
2519 wait_on_page_writeback(page);
2520 }
2521
2522 if (PageWriteback(page) ||
2523 !clear_page_dirty_for_io(page)) {
2524 unlock_page(page);
2525 continue;
2526 }
2527
2528 ret = (*writepage)(page, wbc, data);
2529
2530 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2531 unlock_page(page);
2532 ret = 0;
2533 }
2534 if (ret)
2535 done = 1;
2536
2537 /*
2538 * the filesystem may choose to bump up nr_to_write.
2539 * We have to make sure to honor the new nr_to_write
2540 * at any time
2541 */
2542 nr_to_write_done = wbc->nr_to_write <= 0;
2543 }
2544 pagevec_release(&pvec);
2545 cond_resched();
2546 }
2547 if (!scanned && !done) {
2548 /*
2549 * We hit the last page and there is more work to be done: wrap
2550 * back to the start of the file
2551 */
2552 scanned = 1;
2553 index = 0;
2554 goto retry;
2555 }
2556 return ret;
2557 }
2558
2559 static void flush_epd_write_bio(struct extent_page_data *epd)
2560 {
2561 if (epd->bio) {
2562 if (epd->sync_io)
2563 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2564 else
2565 submit_one_bio(WRITE, epd->bio, 0, 0);
2566 epd->bio = NULL;
2567 }
2568 }
2569
2570 static noinline void flush_write_bio(void *data)
2571 {
2572 struct extent_page_data *epd = data;
2573 flush_epd_write_bio(epd);
2574 }
2575
2576 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2577 get_extent_t *get_extent,
2578 struct writeback_control *wbc)
2579 {
2580 int ret;
2581 struct address_space *mapping = page->mapping;
2582 struct extent_page_data epd = {
2583 .bio = NULL,
2584 .tree = tree,
2585 .get_extent = get_extent,
2586 .extent_locked = 0,
2587 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2588 };
2589 struct writeback_control wbc_writepages = {
2590 .sync_mode = wbc->sync_mode,
2591 .older_than_this = NULL,
2592 .nr_to_write = 64,
2593 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2594 .range_end = (loff_t)-1,
2595 };
2596
2597 ret = __extent_writepage(page, wbc, &epd);
2598
2599 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2600 __extent_writepage, &epd, flush_write_bio);
2601 flush_epd_write_bio(&epd);
2602 return ret;
2603 }
2604
2605 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2606 u64 start, u64 end, get_extent_t *get_extent,
2607 int mode)
2608 {
2609 int ret = 0;
2610 struct address_space *mapping = inode->i_mapping;
2611 struct page *page;
2612 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2613 PAGE_CACHE_SHIFT;
2614
2615 struct extent_page_data epd = {
2616 .bio = NULL,
2617 .tree = tree,
2618 .get_extent = get_extent,
2619 .extent_locked = 1,
2620 .sync_io = mode == WB_SYNC_ALL,
2621 };
2622 struct writeback_control wbc_writepages = {
2623 .sync_mode = mode,
2624 .older_than_this = NULL,
2625 .nr_to_write = nr_pages * 2,
2626 .range_start = start,
2627 .range_end = end + 1,
2628 };
2629
2630 while (start <= end) {
2631 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2632 if (clear_page_dirty_for_io(page))
2633 ret = __extent_writepage(page, &wbc_writepages, &epd);
2634 else {
2635 if (tree->ops && tree->ops->writepage_end_io_hook)
2636 tree->ops->writepage_end_io_hook(page, start,
2637 start + PAGE_CACHE_SIZE - 1,
2638 NULL, 1);
2639 unlock_page(page);
2640 }
2641 page_cache_release(page);
2642 start += PAGE_CACHE_SIZE;
2643 }
2644
2645 flush_epd_write_bio(&epd);
2646 return ret;
2647 }
2648
2649 int extent_writepages(struct extent_io_tree *tree,
2650 struct address_space *mapping,
2651 get_extent_t *get_extent,
2652 struct writeback_control *wbc)
2653 {
2654 int ret = 0;
2655 struct extent_page_data epd = {
2656 .bio = NULL,
2657 .tree = tree,
2658 .get_extent = get_extent,
2659 .extent_locked = 0,
2660 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2661 };
2662
2663 ret = extent_write_cache_pages(tree, mapping, wbc,
2664 __extent_writepage, &epd,
2665 flush_write_bio);
2666 flush_epd_write_bio(&epd);
2667 return ret;
2668 }
2669
2670 int extent_readpages(struct extent_io_tree *tree,
2671 struct address_space *mapping,
2672 struct list_head *pages, unsigned nr_pages,
2673 get_extent_t get_extent)
2674 {
2675 struct bio *bio = NULL;
2676 unsigned page_idx;
2677 unsigned long bio_flags = 0;
2678
2679 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2680 struct page *page = list_entry(pages->prev, struct page, lru);
2681
2682 prefetchw(&page->flags);
2683 list_del(&page->lru);
2684 if (!add_to_page_cache_lru(page, mapping,
2685 page->index, GFP_NOFS)) {
2686 __extent_read_full_page(tree, page, get_extent,
2687 &bio, 0, &bio_flags);
2688 }
2689 page_cache_release(page);
2690 }
2691 BUG_ON(!list_empty(pages));
2692 if (bio)
2693 submit_one_bio(READ, bio, 0, bio_flags);
2694 return 0;
2695 }
2696
2697 /*
2698 * basic invalidatepage code, this waits on any locked or writeback
2699 * ranges corresponding to the page, and then deletes any extent state
2700 * records from the tree
2701 */
2702 int extent_invalidatepage(struct extent_io_tree *tree,
2703 struct page *page, unsigned long offset)
2704 {
2705 struct extent_state *cached_state = NULL;
2706 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2707 u64 end = start + PAGE_CACHE_SIZE - 1;
2708 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2709
2710 start += (offset + blocksize - 1) & ~(blocksize - 1);
2711 if (start > end)
2712 return 0;
2713
2714 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2715 wait_on_page_writeback(page);
2716 clear_extent_bit(tree, start, end,
2717 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2718 EXTENT_DO_ACCOUNTING,
2719 1, 1, &cached_state, GFP_NOFS);
2720 return 0;
2721 }
2722
2723 /*
2724 * simple commit_write call, set_range_dirty is used to mark both
2725 * the pages and the extent records as dirty
2726 */
2727 int extent_commit_write(struct extent_io_tree *tree,
2728 struct inode *inode, struct page *page,
2729 unsigned from, unsigned to)
2730 {
2731 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2732
2733 set_page_extent_mapped(page);
2734 set_page_dirty(page);
2735
2736 if (pos > inode->i_size) {
2737 i_size_write(inode, pos);
2738 mark_inode_dirty(inode);
2739 }
2740 return 0;
2741 }
2742
2743 int extent_prepare_write(struct extent_io_tree *tree,
2744 struct inode *inode, struct page *page,
2745 unsigned from, unsigned to, get_extent_t *get_extent)
2746 {
2747 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2748 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2749 u64 block_start;
2750 u64 orig_block_start;
2751 u64 block_end;
2752 u64 cur_end;
2753 struct extent_map *em;
2754 unsigned blocksize = 1 << inode->i_blkbits;
2755 size_t page_offset = 0;
2756 size_t block_off_start;
2757 size_t block_off_end;
2758 int err = 0;
2759 int iocount = 0;
2760 int ret = 0;
2761 int isnew;
2762
2763 set_page_extent_mapped(page);
2764
2765 block_start = (page_start + from) & ~((u64)blocksize - 1);
2766 block_end = (page_start + to - 1) | (blocksize - 1);
2767 orig_block_start = block_start;
2768
2769 lock_extent(tree, page_start, page_end, GFP_NOFS);
2770 while (block_start <= block_end) {
2771 em = get_extent(inode, page, page_offset, block_start,
2772 block_end - block_start + 1, 1);
2773 if (IS_ERR(em) || !em)
2774 goto err;
2775
2776 cur_end = min(block_end, extent_map_end(em) - 1);
2777 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2778 block_off_end = block_off_start + blocksize;
2779 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2780
2781 if (!PageUptodate(page) && isnew &&
2782 (block_off_end > to || block_off_start < from)) {
2783 void *kaddr;
2784
2785 kaddr = kmap_atomic(page, KM_USER0);
2786 if (block_off_end > to)
2787 memset(kaddr + to, 0, block_off_end - to);
2788 if (block_off_start < from)
2789 memset(kaddr + block_off_start, 0,
2790 from - block_off_start);
2791 flush_dcache_page(page);
2792 kunmap_atomic(kaddr, KM_USER0);
2793 }
2794 if ((em->block_start != EXTENT_MAP_HOLE &&
2795 em->block_start != EXTENT_MAP_INLINE) &&
2796 !isnew && !PageUptodate(page) &&
2797 (block_off_end > to || block_off_start < from) &&
2798 !test_range_bit(tree, block_start, cur_end,
2799 EXTENT_UPTODATE, 1, NULL)) {
2800 u64 sector;
2801 u64 extent_offset = block_start - em->start;
2802 size_t iosize;
2803 sector = (em->block_start + extent_offset) >> 9;
2804 iosize = (cur_end - block_start + blocksize) &
2805 ~((u64)blocksize - 1);
2806 /*
2807 * we've already got the extent locked, but we
2808 * need to split the state such that our end_bio
2809 * handler can clear the lock.
2810 */
2811 set_extent_bit(tree, block_start,
2812 block_start + iosize - 1,
2813 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2814 ret = submit_extent_page(READ, tree, page,
2815 sector, iosize, page_offset, em->bdev,
2816 NULL, 1,
2817 end_bio_extent_preparewrite, 0,
2818 0, 0);
2819 if (ret && !err)
2820 err = ret;
2821 iocount++;
2822 block_start = block_start + iosize;
2823 } else {
2824 struct extent_state *cached = NULL;
2825
2826 set_extent_uptodate(tree, block_start, cur_end, &cached,
2827 GFP_NOFS);
2828 unlock_extent_cached(tree, block_start, cur_end,
2829 &cached, GFP_NOFS);
2830 block_start = cur_end + 1;
2831 }
2832 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2833 free_extent_map(em);
2834 }
2835 if (iocount) {
2836 wait_extent_bit(tree, orig_block_start,
2837 block_end, EXTENT_LOCKED);
2838 }
2839 check_page_uptodate(tree, page);
2840 err:
2841 /* FIXME, zero out newly allocated blocks on error */
2842 return err;
2843 }
2844
2845 /*
2846 * a helper for releasepage, this tests for areas of the page that
2847 * are locked or under IO and drops the related state bits if it is safe
2848 * to drop the page.
2849 */
2850 int try_release_extent_state(struct extent_map_tree *map,
2851 struct extent_io_tree *tree, struct page *page,
2852 gfp_t mask)
2853 {
2854 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2855 u64 end = start + PAGE_CACHE_SIZE - 1;
2856 int ret = 1;
2857
2858 if (test_range_bit(tree, start, end,
2859 EXTENT_IOBITS, 0, NULL))
2860 ret = 0;
2861 else {
2862 if ((mask & GFP_NOFS) == GFP_NOFS)
2863 mask = GFP_NOFS;
2864 /*
2865 * at this point we can safely clear everything except the
2866 * locked bit and the nodatasum bit
2867 */
2868 ret = clear_extent_bit(tree, start, end,
2869 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2870 0, 0, NULL, mask);
2871
2872 /* if clear_extent_bit failed for enomem reasons,
2873 * we can't allow the release to continue.
2874 */
2875 if (ret < 0)
2876 ret = 0;
2877 else
2878 ret = 1;
2879 }
2880 return ret;
2881 }
2882
2883 /*
2884 * a helper for releasepage. As long as there are no locked extents
2885 * in the range corresponding to the page, both state records and extent
2886 * map records are removed
2887 */
2888 int try_release_extent_mapping(struct extent_map_tree *map,
2889 struct extent_io_tree *tree, struct page *page,
2890 gfp_t mask)
2891 {
2892 struct extent_map *em;
2893 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2894 u64 end = start + PAGE_CACHE_SIZE - 1;
2895
2896 if ((mask & __GFP_WAIT) &&
2897 page->mapping->host->i_size > 16 * 1024 * 1024) {
2898 u64 len;
2899 while (start <= end) {
2900 len = end - start + 1;
2901 write_lock(&map->lock);
2902 em = lookup_extent_mapping(map, start, len);
2903 if (!em || IS_ERR(em)) {
2904 write_unlock(&map->lock);
2905 break;
2906 }
2907 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2908 em->start != start) {
2909 write_unlock(&map->lock);
2910 free_extent_map(em);
2911 break;
2912 }
2913 if (!test_range_bit(tree, em->start,
2914 extent_map_end(em) - 1,
2915 EXTENT_LOCKED | EXTENT_WRITEBACK,
2916 0, NULL)) {
2917 remove_extent_mapping(map, em);
2918 /* once for the rb tree */
2919 free_extent_map(em);
2920 }
2921 start = extent_map_end(em);
2922 write_unlock(&map->lock);
2923
2924 /* once for us */
2925 free_extent_map(em);
2926 }
2927 }
2928 return try_release_extent_state(map, tree, page, mask);
2929 }
2930
2931 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2932 get_extent_t *get_extent)
2933 {
2934 struct inode *inode = mapping->host;
2935 struct extent_state *cached_state = NULL;
2936 u64 start = iblock << inode->i_blkbits;
2937 sector_t sector = 0;
2938 size_t blksize = (1 << inode->i_blkbits);
2939 struct extent_map *em;
2940
2941 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2942 0, &cached_state, GFP_NOFS);
2943 em = get_extent(inode, NULL, 0, start, blksize, 0);
2944 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2945 start + blksize - 1, &cached_state, GFP_NOFS);
2946 if (!em || IS_ERR(em))
2947 return 0;
2948
2949 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2950 goto out;
2951
2952 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2953 out:
2954 free_extent_map(em);
2955 return sector;
2956 }
2957
2958 /*
2959 * helper function for fiemap, which doesn't want to see any holes.
2960 * This maps until we find something past 'last'
2961 */
2962 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2963 u64 offset,
2964 u64 last,
2965 get_extent_t *get_extent)
2966 {
2967 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2968 struct extent_map *em;
2969 u64 len;
2970
2971 if (offset >= last)
2972 return NULL;
2973
2974 while(1) {
2975 len = last - offset;
2976 if (len == 0)
2977 break;
2978 len = (len + sectorsize - 1) & ~(sectorsize - 1);
2979 em = get_extent(inode, NULL, 0, offset, len, 0);
2980 if (!em || IS_ERR(em))
2981 return em;
2982
2983 /* if this isn't a hole return it */
2984 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2985 em->block_start != EXTENT_MAP_HOLE) {
2986 return em;
2987 }
2988
2989 /* this is a hole, advance to the next extent */
2990 offset = extent_map_end(em);
2991 free_extent_map(em);
2992 if (offset >= last)
2993 break;
2994 }
2995 return NULL;
2996 }
2997
2998 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2999 __u64 start, __u64 len, get_extent_t *get_extent)
3000 {
3001 int ret = 0;
3002 u64 off = start;
3003 u64 max = start + len;
3004 u32 flags = 0;
3005 u32 found_type;
3006 u64 last;
3007 u64 last_for_get_extent = 0;
3008 u64 disko = 0;
3009 u64 isize = i_size_read(inode);
3010 struct btrfs_key found_key;
3011 struct extent_map *em = NULL;
3012 struct extent_state *cached_state = NULL;
3013 struct btrfs_path *path;
3014 struct btrfs_file_extent_item *item;
3015 int end = 0;
3016 u64 em_start = 0;
3017 u64 em_len = 0;
3018 u64 em_end = 0;
3019 unsigned long emflags;
3020
3021 if (len == 0)
3022 return -EINVAL;
3023
3024 path = btrfs_alloc_path();
3025 if (!path)
3026 return -ENOMEM;
3027 path->leave_spinning = 1;
3028
3029 /*
3030 * lookup the last file extent. We're not using i_size here
3031 * because there might be preallocation past i_size
3032 */
3033 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3034 path, inode->i_ino, -1, 0);
3035 if (ret < 0) {
3036 btrfs_free_path(path);
3037 return ret;
3038 }
3039 WARN_ON(!ret);
3040 path->slots[0]--;
3041 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3042 struct btrfs_file_extent_item);
3043 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3044 found_type = btrfs_key_type(&found_key);
3045
3046 /* No extents, but there might be delalloc bits */
3047 if (found_key.objectid != inode->i_ino ||
3048 found_type != BTRFS_EXTENT_DATA_KEY) {
3049 /* have to trust i_size as the end */
3050 last = (u64)-1;
3051 last_for_get_extent = isize;
3052 } else {
3053 /*
3054 * remember the start of the last extent. There are a
3055 * bunch of different factors that go into the length of the
3056 * extent, so its much less complex to remember where it started
3057 */
3058 last = found_key.offset;
3059 last_for_get_extent = last + 1;
3060 }
3061 btrfs_free_path(path);
3062
3063 /*
3064 * we might have some extents allocated but more delalloc past those
3065 * extents. so, we trust isize unless the start of the last extent is
3066 * beyond isize
3067 */
3068 if (last < isize) {
3069 last = (u64)-1;
3070 last_for_get_extent = isize;
3071 }
3072
3073 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3074 &cached_state, GFP_NOFS);
3075
3076 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3077 get_extent);
3078 if (!em)
3079 goto out;
3080 if (IS_ERR(em)) {
3081 ret = PTR_ERR(em);
3082 goto out;
3083 }
3084
3085 while (!end) {
3086 u64 offset_in_extent;
3087
3088 /* break if the extent we found is outside the range */
3089 if (em->start >= max || extent_map_end(em) < off)
3090 break;
3091
3092 /*
3093 * get_extent may return an extent that starts before our
3094 * requested range. We have to make sure the ranges
3095 * we return to fiemap always move forward and don't
3096 * overlap, so adjust the offsets here
3097 */
3098 em_start = max(em->start, off);
3099
3100 /*
3101 * record the offset from the start of the extent
3102 * for adjusting the disk offset below
3103 */
3104 offset_in_extent = em_start - em->start;
3105 em_end = extent_map_end(em);
3106 em_len = em_end - em_start;
3107 emflags = em->flags;
3108 disko = 0;
3109 flags = 0;
3110
3111 /*
3112 * bump off for our next call to get_extent
3113 */
3114 off = extent_map_end(em);
3115 if (off >= max)
3116 end = 1;
3117
3118 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3119 end = 1;
3120 flags |= FIEMAP_EXTENT_LAST;
3121 } else if (em->block_start == EXTENT_MAP_INLINE) {
3122 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3123 FIEMAP_EXTENT_NOT_ALIGNED);
3124 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3125 flags |= (FIEMAP_EXTENT_DELALLOC |
3126 FIEMAP_EXTENT_UNKNOWN);
3127 } else {
3128 disko = em->block_start + offset_in_extent;
3129 }
3130 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3131 flags |= FIEMAP_EXTENT_ENCODED;
3132
3133 free_extent_map(em);
3134 em = NULL;
3135 if ((em_start >= last) || em_len == (u64)-1 ||
3136 (last == (u64)-1 && isize <= em_end)) {
3137 flags |= FIEMAP_EXTENT_LAST;
3138 end = 1;
3139 }
3140
3141 /* now scan forward to see if this is really the last extent. */
3142 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3143 get_extent);
3144 if (IS_ERR(em)) {
3145 ret = PTR_ERR(em);
3146 goto out;
3147 }
3148 if (!em) {
3149 flags |= FIEMAP_EXTENT_LAST;
3150 end = 1;
3151 }
3152 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3153 em_len, flags);
3154 if (ret)
3155 goto out_free;
3156 }
3157 out_free:
3158 free_extent_map(em);
3159 out:
3160 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3161 &cached_state, GFP_NOFS);
3162 return ret;
3163 }
3164
3165 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3166 unsigned long i)
3167 {
3168 struct page *p;
3169 struct address_space *mapping;
3170
3171 if (i == 0)
3172 return eb->first_page;
3173 i += eb->start >> PAGE_CACHE_SHIFT;
3174 mapping = eb->first_page->mapping;
3175 if (!mapping)
3176 return NULL;
3177
3178 /*
3179 * extent_buffer_page is only called after pinning the page
3180 * by increasing the reference count. So we know the page must
3181 * be in the radix tree.
3182 */
3183 rcu_read_lock();
3184 p = radix_tree_lookup(&mapping->page_tree, i);
3185 rcu_read_unlock();
3186
3187 return p;
3188 }
3189
3190 static inline unsigned long num_extent_pages(u64 start, u64 len)
3191 {
3192 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3193 (start >> PAGE_CACHE_SHIFT);
3194 }
3195
3196 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3197 u64 start,
3198 unsigned long len,
3199 gfp_t mask)
3200 {
3201 struct extent_buffer *eb = NULL;
3202 #if LEAK_DEBUG
3203 unsigned long flags;
3204 #endif
3205
3206 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3207 if (eb == NULL)
3208 return NULL;
3209 eb->start = start;
3210 eb->len = len;
3211 spin_lock_init(&eb->lock);
3212 init_waitqueue_head(&eb->lock_wq);
3213
3214 #if LEAK_DEBUG
3215 spin_lock_irqsave(&leak_lock, flags);
3216 list_add(&eb->leak_list, &buffers);
3217 spin_unlock_irqrestore(&leak_lock, flags);
3218 #endif
3219 atomic_set(&eb->refs, 1);
3220
3221 return eb;
3222 }
3223
3224 static void __free_extent_buffer(struct extent_buffer *eb)
3225 {
3226 #if LEAK_DEBUG
3227 unsigned long flags;
3228 spin_lock_irqsave(&leak_lock, flags);
3229 list_del(&eb->leak_list);
3230 spin_unlock_irqrestore(&leak_lock, flags);
3231 #endif
3232 kmem_cache_free(extent_buffer_cache, eb);
3233 }
3234
3235 /*
3236 * Helper for releasing extent buffer page.
3237 */
3238 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3239 unsigned long start_idx)
3240 {
3241 unsigned long index;
3242 struct page *page;
3243
3244 if (!eb->first_page)
3245 return;
3246
3247 index = num_extent_pages(eb->start, eb->len);
3248 if (start_idx >= index)
3249 return;
3250
3251 do {
3252 index--;
3253 page = extent_buffer_page(eb, index);
3254 if (page)
3255 page_cache_release(page);
3256 } while (index != start_idx);
3257 }
3258
3259 /*
3260 * Helper for releasing the extent buffer.
3261 */
3262 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3263 {
3264 btrfs_release_extent_buffer_page(eb, 0);
3265 __free_extent_buffer(eb);
3266 }
3267
3268 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3269 u64 start, unsigned long len,
3270 struct page *page0,
3271 gfp_t mask)
3272 {
3273 unsigned long num_pages = num_extent_pages(start, len);
3274 unsigned long i;
3275 unsigned long index = start >> PAGE_CACHE_SHIFT;
3276 struct extent_buffer *eb;
3277 struct extent_buffer *exists = NULL;
3278 struct page *p;
3279 struct address_space *mapping = tree->mapping;
3280 int uptodate = 1;
3281 int ret;
3282
3283 rcu_read_lock();
3284 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3285 if (eb && atomic_inc_not_zero(&eb->refs)) {
3286 rcu_read_unlock();
3287 mark_page_accessed(eb->first_page);
3288 return eb;
3289 }
3290 rcu_read_unlock();
3291
3292 eb = __alloc_extent_buffer(tree, start, len, mask);
3293 if (!eb)
3294 return NULL;
3295
3296 if (page0) {
3297 eb->first_page = page0;
3298 i = 1;
3299 index++;
3300 page_cache_get(page0);
3301 mark_page_accessed(page0);
3302 set_page_extent_mapped(page0);
3303 set_page_extent_head(page0, len);
3304 uptodate = PageUptodate(page0);
3305 } else {
3306 i = 0;
3307 }
3308 for (; i < num_pages; i++, index++) {
3309 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3310 if (!p) {
3311 WARN_ON(1);
3312 goto free_eb;
3313 }
3314 set_page_extent_mapped(p);
3315 mark_page_accessed(p);
3316 if (i == 0) {
3317 eb->first_page = p;
3318 set_page_extent_head(p, len);
3319 } else {
3320 set_page_private(p, EXTENT_PAGE_PRIVATE);
3321 }
3322 if (!PageUptodate(p))
3323 uptodate = 0;
3324
3325 /*
3326 * see below about how we avoid a nasty race with release page
3327 * and why we unlock later
3328 */
3329 if (i != 0)
3330 unlock_page(p);
3331 }
3332 if (uptodate)
3333 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3334
3335 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3336 if (ret)
3337 goto free_eb;
3338
3339 spin_lock(&tree->buffer_lock);
3340 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3341 if (ret == -EEXIST) {
3342 exists = radix_tree_lookup(&tree->buffer,
3343 start >> PAGE_CACHE_SHIFT);
3344 /* add one reference for the caller */
3345 atomic_inc(&exists->refs);
3346 spin_unlock(&tree->buffer_lock);
3347 radix_tree_preload_end();
3348 goto free_eb;
3349 }
3350 /* add one reference for the tree */
3351 atomic_inc(&eb->refs);
3352 spin_unlock(&tree->buffer_lock);
3353 radix_tree_preload_end();
3354
3355 /*
3356 * there is a race where release page may have
3357 * tried to find this extent buffer in the radix
3358 * but failed. It will tell the VM it is safe to
3359 * reclaim the, and it will clear the page private bit.
3360 * We must make sure to set the page private bit properly
3361 * after the extent buffer is in the radix tree so
3362 * it doesn't get lost
3363 */
3364 set_page_extent_mapped(eb->first_page);
3365 set_page_extent_head(eb->first_page, eb->len);
3366 if (!page0)
3367 unlock_page(eb->first_page);
3368 return eb;
3369
3370 free_eb:
3371 if (eb->first_page && !page0)
3372 unlock_page(eb->first_page);
3373
3374 if (!atomic_dec_and_test(&eb->refs))
3375 return exists;
3376 btrfs_release_extent_buffer(eb);
3377 return exists;
3378 }
3379
3380 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3381 u64 start, unsigned long len,
3382 gfp_t mask)
3383 {
3384 struct extent_buffer *eb;
3385
3386 rcu_read_lock();
3387 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3388 if (eb && atomic_inc_not_zero(&eb->refs)) {
3389 rcu_read_unlock();
3390 mark_page_accessed(eb->first_page);
3391 return eb;
3392 }
3393 rcu_read_unlock();
3394
3395 return NULL;
3396 }
3397
3398 void free_extent_buffer(struct extent_buffer *eb)
3399 {
3400 if (!eb)
3401 return;
3402
3403 if (!atomic_dec_and_test(&eb->refs))
3404 return;
3405
3406 WARN_ON(1);
3407 }
3408
3409 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3410 struct extent_buffer *eb)
3411 {
3412 unsigned long i;
3413 unsigned long num_pages;
3414 struct page *page;
3415
3416 num_pages = num_extent_pages(eb->start, eb->len);
3417
3418 for (i = 0; i < num_pages; i++) {
3419 page = extent_buffer_page(eb, i);
3420 if (!PageDirty(page))
3421 continue;
3422
3423 lock_page(page);
3424 WARN_ON(!PagePrivate(page));
3425
3426 set_page_extent_mapped(page);
3427 if (i == 0)
3428 set_page_extent_head(page, eb->len);
3429
3430 clear_page_dirty_for_io(page);
3431 spin_lock_irq(&page->mapping->tree_lock);
3432 if (!PageDirty(page)) {
3433 radix_tree_tag_clear(&page->mapping->page_tree,
3434 page_index(page),
3435 PAGECACHE_TAG_DIRTY);
3436 }
3437 spin_unlock_irq(&page->mapping->tree_lock);
3438 unlock_page(page);
3439 }
3440 return 0;
3441 }
3442
3443 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3444 struct extent_buffer *eb)
3445 {
3446 return wait_on_extent_writeback(tree, eb->start,
3447 eb->start + eb->len - 1);
3448 }
3449
3450 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3451 struct extent_buffer *eb)
3452 {
3453 unsigned long i;
3454 unsigned long num_pages;
3455 int was_dirty = 0;
3456
3457 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3458 num_pages = num_extent_pages(eb->start, eb->len);
3459 for (i = 0; i < num_pages; i++)
3460 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3461 return was_dirty;
3462 }
3463
3464 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3465 struct extent_buffer *eb,
3466 struct extent_state **cached_state)
3467 {
3468 unsigned long i;
3469 struct page *page;
3470 unsigned long num_pages;
3471
3472 num_pages = num_extent_pages(eb->start, eb->len);
3473 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3474
3475 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3476 cached_state, GFP_NOFS);
3477 for (i = 0; i < num_pages; i++) {
3478 page = extent_buffer_page(eb, i);
3479 if (page)
3480 ClearPageUptodate(page);
3481 }
3482 return 0;
3483 }
3484
3485 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3486 struct extent_buffer *eb)
3487 {
3488 unsigned long i;
3489 struct page *page;
3490 unsigned long num_pages;
3491
3492 num_pages = num_extent_pages(eb->start, eb->len);
3493
3494 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3495 NULL, GFP_NOFS);
3496 for (i = 0; i < num_pages; i++) {
3497 page = extent_buffer_page(eb, i);
3498 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3499 ((i == num_pages - 1) &&
3500 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3501 check_page_uptodate(tree, page);
3502 continue;
3503 }
3504 SetPageUptodate(page);
3505 }
3506 return 0;
3507 }
3508
3509 int extent_range_uptodate(struct extent_io_tree *tree,
3510 u64 start, u64 end)
3511 {
3512 struct page *page;
3513 int ret;
3514 int pg_uptodate = 1;
3515 int uptodate;
3516 unsigned long index;
3517
3518 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3519 if (ret)
3520 return 1;
3521 while (start <= end) {
3522 index = start >> PAGE_CACHE_SHIFT;
3523 page = find_get_page(tree->mapping, index);
3524 uptodate = PageUptodate(page);
3525 page_cache_release(page);
3526 if (!uptodate) {
3527 pg_uptodate = 0;
3528 break;
3529 }
3530 start += PAGE_CACHE_SIZE;
3531 }
3532 return pg_uptodate;
3533 }
3534
3535 int extent_buffer_uptodate(struct extent_io_tree *tree,
3536 struct extent_buffer *eb,
3537 struct extent_state *cached_state)
3538 {
3539 int ret = 0;
3540 unsigned long num_pages;
3541 unsigned long i;
3542 struct page *page;
3543 int pg_uptodate = 1;
3544
3545 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3546 return 1;
3547
3548 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3549 EXTENT_UPTODATE, 1, cached_state);
3550 if (ret)
3551 return ret;
3552
3553 num_pages = num_extent_pages(eb->start, eb->len);
3554 for (i = 0; i < num_pages; i++) {
3555 page = extent_buffer_page(eb, i);
3556 if (!PageUptodate(page)) {
3557 pg_uptodate = 0;
3558 break;
3559 }
3560 }
3561 return pg_uptodate;
3562 }
3563
3564 int read_extent_buffer_pages(struct extent_io_tree *tree,
3565 struct extent_buffer *eb,
3566 u64 start, int wait,
3567 get_extent_t *get_extent, int mirror_num)
3568 {
3569 unsigned long i;
3570 unsigned long start_i;
3571 struct page *page;
3572 int err;
3573 int ret = 0;
3574 int locked_pages = 0;
3575 int all_uptodate = 1;
3576 int inc_all_pages = 0;
3577 unsigned long num_pages;
3578 struct bio *bio = NULL;
3579 unsigned long bio_flags = 0;
3580
3581 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3582 return 0;
3583
3584 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3585 EXTENT_UPTODATE, 1, NULL)) {
3586 return 0;
3587 }
3588
3589 if (start) {
3590 WARN_ON(start < eb->start);
3591 start_i = (start >> PAGE_CACHE_SHIFT) -
3592 (eb->start >> PAGE_CACHE_SHIFT);
3593 } else {
3594 start_i = 0;
3595 }
3596
3597 num_pages = num_extent_pages(eb->start, eb->len);
3598 for (i = start_i; i < num_pages; i++) {
3599 page = extent_buffer_page(eb, i);
3600 if (!wait) {
3601 if (!trylock_page(page))
3602 goto unlock_exit;
3603 } else {
3604 lock_page(page);
3605 }
3606 locked_pages++;
3607 if (!PageUptodate(page))
3608 all_uptodate = 0;
3609 }
3610 if (all_uptodate) {
3611 if (start_i == 0)
3612 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3613 goto unlock_exit;
3614 }
3615
3616 for (i = start_i; i < num_pages; i++) {
3617 page = extent_buffer_page(eb, i);
3618
3619 WARN_ON(!PagePrivate(page));
3620
3621 set_page_extent_mapped(page);
3622 if (i == 0)
3623 set_page_extent_head(page, eb->len);
3624
3625 if (inc_all_pages)
3626 page_cache_get(page);
3627 if (!PageUptodate(page)) {
3628 if (start_i == 0)
3629 inc_all_pages = 1;
3630 ClearPageError(page);
3631 err = __extent_read_full_page(tree, page,
3632 get_extent, &bio,
3633 mirror_num, &bio_flags);
3634 if (err)
3635 ret = err;
3636 } else {
3637 unlock_page(page);
3638 }
3639 }
3640
3641 if (bio)
3642 submit_one_bio(READ, bio, mirror_num, bio_flags);
3643
3644 if (ret || !wait)
3645 return ret;
3646
3647 for (i = start_i; i < num_pages; i++) {
3648 page = extent_buffer_page(eb, i);
3649 wait_on_page_locked(page);
3650 if (!PageUptodate(page))
3651 ret = -EIO;
3652 }
3653
3654 if (!ret)
3655 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3656 return ret;
3657
3658 unlock_exit:
3659 i = start_i;
3660 while (locked_pages > 0) {
3661 page = extent_buffer_page(eb, i);
3662 i++;
3663 unlock_page(page);
3664 locked_pages--;
3665 }
3666 return ret;
3667 }
3668
3669 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3670 unsigned long start,
3671 unsigned long len)
3672 {
3673 size_t cur;
3674 size_t offset;
3675 struct page *page;
3676 char *kaddr;
3677 char *dst = (char *)dstv;
3678 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3679 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3680
3681 WARN_ON(start > eb->len);
3682 WARN_ON(start + len > eb->start + eb->len);
3683
3684 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3685
3686 while (len > 0) {
3687 page = extent_buffer_page(eb, i);
3688
3689 cur = min(len, (PAGE_CACHE_SIZE - offset));
3690 kaddr = kmap_atomic(page, KM_USER1);
3691 memcpy(dst, kaddr + offset, cur);
3692 kunmap_atomic(kaddr, KM_USER1);
3693
3694 dst += cur;
3695 len -= cur;
3696 offset = 0;
3697 i++;
3698 }
3699 }
3700
3701 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3702 unsigned long min_len, char **token, char **map,
3703 unsigned long *map_start,
3704 unsigned long *map_len, int km)
3705 {
3706 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3707 char *kaddr;
3708 struct page *p;
3709 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3710 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3711 unsigned long end_i = (start_offset + start + min_len - 1) >>
3712 PAGE_CACHE_SHIFT;
3713
3714 if (i != end_i)
3715 return -EINVAL;
3716
3717 if (i == 0) {
3718 offset = start_offset;
3719 *map_start = 0;
3720 } else {
3721 offset = 0;
3722 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3723 }
3724
3725 if (start + min_len > eb->len) {
3726 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3727 "wanted %lu %lu\n", (unsigned long long)eb->start,
3728 eb->len, start, min_len);
3729 WARN_ON(1);
3730 return -EINVAL;
3731 }
3732
3733 p = extent_buffer_page(eb, i);
3734 kaddr = kmap_atomic(p, km);
3735 *token = kaddr;
3736 *map = kaddr + offset;
3737 *map_len = PAGE_CACHE_SIZE - offset;
3738 return 0;
3739 }
3740
3741 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3742 unsigned long min_len,
3743 char **token, char **map,
3744 unsigned long *map_start,
3745 unsigned long *map_len, int km)
3746 {
3747 int err;
3748 int save = 0;
3749 if (eb->map_token) {
3750 unmap_extent_buffer(eb, eb->map_token, km);
3751 eb->map_token = NULL;
3752 save = 1;
3753 }
3754 err = map_private_extent_buffer(eb, start, min_len, token, map,
3755 map_start, map_len, km);
3756 if (!err && save) {
3757 eb->map_token = *token;
3758 eb->kaddr = *map;
3759 eb->map_start = *map_start;
3760 eb->map_len = *map_len;
3761 }
3762 return err;
3763 }
3764
3765 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3766 {
3767 kunmap_atomic(token, km);
3768 }
3769
3770 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3771 unsigned long start,
3772 unsigned long len)
3773 {
3774 size_t cur;
3775 size_t offset;
3776 struct page *page;
3777 char *kaddr;
3778 char *ptr = (char *)ptrv;
3779 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3780 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3781 int ret = 0;
3782
3783 WARN_ON(start > eb->len);
3784 WARN_ON(start + len > eb->start + eb->len);
3785
3786 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3787
3788 while (len > 0) {
3789 page = extent_buffer_page(eb, i);
3790
3791 cur = min(len, (PAGE_CACHE_SIZE - offset));
3792
3793 kaddr = kmap_atomic(page, KM_USER0);
3794 ret = memcmp(ptr, kaddr + offset, cur);
3795 kunmap_atomic(kaddr, KM_USER0);
3796 if (ret)
3797 break;
3798
3799 ptr += cur;
3800 len -= cur;
3801 offset = 0;
3802 i++;
3803 }
3804 return ret;
3805 }
3806
3807 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3808 unsigned long start, unsigned long len)
3809 {
3810 size_t cur;
3811 size_t offset;
3812 struct page *page;
3813 char *kaddr;
3814 char *src = (char *)srcv;
3815 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3816 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3817
3818 WARN_ON(start > eb->len);
3819 WARN_ON(start + len > eb->start + eb->len);
3820
3821 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3822
3823 while (len > 0) {
3824 page = extent_buffer_page(eb, i);
3825 WARN_ON(!PageUptodate(page));
3826
3827 cur = min(len, PAGE_CACHE_SIZE - offset);
3828 kaddr = kmap_atomic(page, KM_USER1);
3829 memcpy(kaddr + offset, src, cur);
3830 kunmap_atomic(kaddr, KM_USER1);
3831
3832 src += cur;
3833 len -= cur;
3834 offset = 0;
3835 i++;
3836 }
3837 }
3838
3839 void memset_extent_buffer(struct extent_buffer *eb, char c,
3840 unsigned long start, unsigned long len)
3841 {
3842 size_t cur;
3843 size_t offset;
3844 struct page *page;
3845 char *kaddr;
3846 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3847 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3848
3849 WARN_ON(start > eb->len);
3850 WARN_ON(start + len > eb->start + eb->len);
3851
3852 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3853
3854 while (len > 0) {
3855 page = extent_buffer_page(eb, i);
3856 WARN_ON(!PageUptodate(page));
3857
3858 cur = min(len, PAGE_CACHE_SIZE - offset);
3859 kaddr = kmap_atomic(page, KM_USER0);
3860 memset(kaddr + offset, c, cur);
3861 kunmap_atomic(kaddr, KM_USER0);
3862
3863 len -= cur;
3864 offset = 0;
3865 i++;
3866 }
3867 }
3868
3869 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3870 unsigned long dst_offset, unsigned long src_offset,
3871 unsigned long len)
3872 {
3873 u64 dst_len = dst->len;
3874 size_t cur;
3875 size_t offset;
3876 struct page *page;
3877 char *kaddr;
3878 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3879 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3880
3881 WARN_ON(src->len != dst_len);
3882
3883 offset = (start_offset + dst_offset) &
3884 ((unsigned long)PAGE_CACHE_SIZE - 1);
3885
3886 while (len > 0) {
3887 page = extent_buffer_page(dst, i);
3888 WARN_ON(!PageUptodate(page));
3889
3890 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3891
3892 kaddr = kmap_atomic(page, KM_USER0);
3893 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3894 kunmap_atomic(kaddr, KM_USER0);
3895
3896 src_offset += cur;
3897 len -= cur;
3898 offset = 0;
3899 i++;
3900 }
3901 }
3902
3903 static void move_pages(struct page *dst_page, struct page *src_page,
3904 unsigned long dst_off, unsigned long src_off,
3905 unsigned long len)
3906 {
3907 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3908 if (dst_page == src_page) {
3909 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3910 } else {
3911 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3912 char *p = dst_kaddr + dst_off + len;
3913 char *s = src_kaddr + src_off + len;
3914
3915 while (len--)
3916 *--p = *--s;
3917
3918 kunmap_atomic(src_kaddr, KM_USER1);
3919 }
3920 kunmap_atomic(dst_kaddr, KM_USER0);
3921 }
3922
3923 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3924 {
3925 unsigned long distance = (src > dst) ? src - dst : dst - src;
3926 return distance < len;
3927 }
3928
3929 static void copy_pages(struct page *dst_page, struct page *src_page,
3930 unsigned long dst_off, unsigned long src_off,
3931 unsigned long len)
3932 {
3933 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3934 char *src_kaddr;
3935
3936 if (dst_page != src_page) {
3937 src_kaddr = kmap_atomic(src_page, KM_USER1);
3938 } else {
3939 src_kaddr = dst_kaddr;
3940 BUG_ON(areas_overlap(src_off, dst_off, len));
3941 }
3942
3943 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3944 kunmap_atomic(dst_kaddr, KM_USER0);
3945 if (dst_page != src_page)
3946 kunmap_atomic(src_kaddr, KM_USER1);
3947 }
3948
3949 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3950 unsigned long src_offset, unsigned long len)
3951 {
3952 size_t cur;
3953 size_t dst_off_in_page;
3954 size_t src_off_in_page;
3955 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3956 unsigned long dst_i;
3957 unsigned long src_i;
3958
3959 if (src_offset + len > dst->len) {
3960 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3961 "len %lu dst len %lu\n", src_offset, len, dst->len);
3962 BUG_ON(1);
3963 }
3964 if (dst_offset + len > dst->len) {
3965 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3966 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3967 BUG_ON(1);
3968 }
3969
3970 while (len > 0) {
3971 dst_off_in_page = (start_offset + dst_offset) &
3972 ((unsigned long)PAGE_CACHE_SIZE - 1);
3973 src_off_in_page = (start_offset + src_offset) &
3974 ((unsigned long)PAGE_CACHE_SIZE - 1);
3975
3976 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3977 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3978
3979 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3980 src_off_in_page));
3981 cur = min_t(unsigned long, cur,
3982 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3983
3984 copy_pages(extent_buffer_page(dst, dst_i),
3985 extent_buffer_page(dst, src_i),
3986 dst_off_in_page, src_off_in_page, cur);
3987
3988 src_offset += cur;
3989 dst_offset += cur;
3990 len -= cur;
3991 }
3992 }
3993
3994 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3995 unsigned long src_offset, unsigned long len)
3996 {
3997 size_t cur;
3998 size_t dst_off_in_page;
3999 size_t src_off_in_page;
4000 unsigned long dst_end = dst_offset + len - 1;
4001 unsigned long src_end = src_offset + len - 1;
4002 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4003 unsigned long dst_i;
4004 unsigned long src_i;
4005
4006 if (src_offset + len > dst->len) {
4007 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4008 "len %lu len %lu\n", src_offset, len, dst->len);
4009 BUG_ON(1);
4010 }
4011 if (dst_offset + len > dst->len) {
4012 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4013 "len %lu len %lu\n", dst_offset, len, dst->len);
4014 BUG_ON(1);
4015 }
4016 if (!areas_overlap(src_offset, dst_offset, len)) {
4017 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4018 return;
4019 }
4020 while (len > 0) {
4021 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4022 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4023
4024 dst_off_in_page = (start_offset + dst_end) &
4025 ((unsigned long)PAGE_CACHE_SIZE - 1);
4026 src_off_in_page = (start_offset + src_end) &
4027 ((unsigned long)PAGE_CACHE_SIZE - 1);
4028
4029 cur = min_t(unsigned long, len, src_off_in_page + 1);
4030 cur = min(cur, dst_off_in_page + 1);
4031 move_pages(extent_buffer_page(dst, dst_i),
4032 extent_buffer_page(dst, src_i),
4033 dst_off_in_page - cur + 1,
4034 src_off_in_page - cur + 1, cur);
4035
4036 dst_end -= cur;
4037 src_end -= cur;
4038 len -= cur;
4039 }
4040 }
4041
4042 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4043 {
4044 struct extent_buffer *eb =
4045 container_of(head, struct extent_buffer, rcu_head);
4046
4047 btrfs_release_extent_buffer(eb);
4048 }
4049
4050 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4051 {
4052 u64 start = page_offset(page);
4053 struct extent_buffer *eb;
4054 int ret = 1;
4055
4056 spin_lock(&tree->buffer_lock);
4057 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4058 if (!eb) {
4059 spin_unlock(&tree->buffer_lock);
4060 return ret;
4061 }
4062
4063 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4064 ret = 0;
4065 goto out;
4066 }
4067
4068 /*
4069 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4070 * Or go back.
4071 */
4072 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4073 ret = 0;
4074 goto out;
4075 }
4076
4077 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4078 out:
4079 spin_unlock(&tree->buffer_lock);
4080
4081 /* at this point we can safely release the extent buffer */
4082 if (atomic_read(&eb->refs) == 0)
4083 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4084 return ret;
4085 }