]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: qgroup: Introduce per-root swapped blocks infrastructure
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
110 #endif
111
112 #define BUFFER_LRU_MAX 64
113
114 struct tree_entry {
115 u64 start;
116 u64 end;
117 struct rb_node rb_node;
118 };
119
120 struct extent_page_data {
121 struct bio *bio;
122 struct extent_io_tree *tree;
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
125 */
126 unsigned int extent_locked:1;
127
128 /* tells the submit_bio code to use REQ_SYNC */
129 unsigned int sync_io:1;
130 };
131
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133 struct extent_changeset *changeset,
134 int set)
135 {
136 int ret;
137
138 if (!changeset)
139 return 0;
140 if (set && (state->state & bits) == bits)
141 return 0;
142 if (!set && (state->state & bits) == 0)
143 return 0;
144 changeset->bytes_changed += state->end - state->start + 1;
145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
146 GFP_ATOMIC);
147 return ret;
148 }
149
150 static void flush_write_bio(struct extent_page_data *epd);
151
152 int __init extent_io_init(void)
153 {
154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 sizeof(struct extent_state), 0,
156 SLAB_MEM_SPREAD, NULL);
157 if (!extent_state_cache)
158 return -ENOMEM;
159
160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 sizeof(struct extent_buffer), 0,
162 SLAB_MEM_SPREAD, NULL);
163 if (!extent_buffer_cache)
164 goto free_state_cache;
165
166 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio),
168 BIOSET_NEED_BVECS))
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176 free_bioset:
177 bioset_exit(&btrfs_bioset);
178
179 free_buffer_cache:
180 kmem_cache_destroy(extent_buffer_cache);
181 extent_buffer_cache = NULL;
182
183 free_state_cache:
184 kmem_cache_destroy(extent_state_cache);
185 extent_state_cache = NULL;
186 return -ENOMEM;
187 }
188
189 void __cold extent_io_exit(void)
190 {
191 btrfs_leak_debug_check();
192
193 /*
194 * Make sure all delayed rcu free are flushed before we
195 * destroy caches.
196 */
197 rcu_barrier();
198 kmem_cache_destroy(extent_state_cache);
199 kmem_cache_destroy(extent_buffer_cache);
200 bioset_exit(&btrfs_bioset);
201 }
202
203 void extent_io_tree_init(struct extent_io_tree *tree,
204 void *private_data)
205 {
206 tree->state = RB_ROOT;
207 tree->ops = NULL;
208 tree->dirty_bytes = 0;
209 spin_lock_init(&tree->lock);
210 tree->private_data = private_data;
211 }
212
213 static struct extent_state *alloc_extent_state(gfp_t mask)
214 {
215 struct extent_state *state;
216
217 /*
218 * The given mask might be not appropriate for the slab allocator,
219 * drop the unsupported bits
220 */
221 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
222 state = kmem_cache_alloc(extent_state_cache, mask);
223 if (!state)
224 return state;
225 state->state = 0;
226 state->failrec = NULL;
227 RB_CLEAR_NODE(&state->rb_node);
228 btrfs_leak_debug_add(&state->leak_list, &states);
229 refcount_set(&state->refs, 1);
230 init_waitqueue_head(&state->wq);
231 trace_alloc_extent_state(state, mask, _RET_IP_);
232 return state;
233 }
234
235 void free_extent_state(struct extent_state *state)
236 {
237 if (!state)
238 return;
239 if (refcount_dec_and_test(&state->refs)) {
240 WARN_ON(extent_state_in_tree(state));
241 btrfs_leak_debug_del(&state->leak_list);
242 trace_free_extent_state(state, _RET_IP_);
243 kmem_cache_free(extent_state_cache, state);
244 }
245 }
246
247 static struct rb_node *tree_insert(struct rb_root *root,
248 struct rb_node *search_start,
249 u64 offset,
250 struct rb_node *node,
251 struct rb_node ***p_in,
252 struct rb_node **parent_in)
253 {
254 struct rb_node **p;
255 struct rb_node *parent = NULL;
256 struct tree_entry *entry;
257
258 if (p_in && parent_in) {
259 p = *p_in;
260 parent = *parent_in;
261 goto do_insert;
262 }
263
264 p = search_start ? &search_start : &root->rb_node;
265 while (*p) {
266 parent = *p;
267 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269 if (offset < entry->start)
270 p = &(*p)->rb_left;
271 else if (offset > entry->end)
272 p = &(*p)->rb_right;
273 else
274 return parent;
275 }
276
277 do_insert:
278 rb_link_node(node, parent, p);
279 rb_insert_color(node, root);
280 return NULL;
281 }
282
283 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
284 struct rb_node **prev_ret,
285 struct rb_node **next_ret,
286 struct rb_node ***p_ret,
287 struct rb_node **parent_ret)
288 {
289 struct rb_root *root = &tree->state;
290 struct rb_node **n = &root->rb_node;
291 struct rb_node *prev = NULL;
292 struct rb_node *orig_prev = NULL;
293 struct tree_entry *entry;
294 struct tree_entry *prev_entry = NULL;
295
296 while (*n) {
297 prev = *n;
298 entry = rb_entry(prev, struct tree_entry, rb_node);
299 prev_entry = entry;
300
301 if (offset < entry->start)
302 n = &(*n)->rb_left;
303 else if (offset > entry->end)
304 n = &(*n)->rb_right;
305 else
306 return *n;
307 }
308
309 if (p_ret)
310 *p_ret = n;
311 if (parent_ret)
312 *parent_ret = prev;
313
314 if (prev_ret) {
315 orig_prev = prev;
316 while (prev && offset > prev_entry->end) {
317 prev = rb_next(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *prev_ret = prev;
321 prev = orig_prev;
322 }
323
324 if (next_ret) {
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 while (prev && offset < prev_entry->start) {
327 prev = rb_prev(prev);
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 }
330 *next_ret = prev;
331 }
332 return NULL;
333 }
334
335 static inline struct rb_node *
336 tree_search_for_insert(struct extent_io_tree *tree,
337 u64 offset,
338 struct rb_node ***p_ret,
339 struct rb_node **parent_ret)
340 {
341 struct rb_node *prev = NULL;
342 struct rb_node *ret;
343
344 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
345 if (!ret)
346 return prev;
347 return ret;
348 }
349
350 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351 u64 offset)
352 {
353 return tree_search_for_insert(tree, offset, NULL, NULL);
354 }
355
356 /*
357 * utility function to look for merge candidates inside a given range.
358 * Any extents with matching state are merged together into a single
359 * extent in the tree. Extents with EXTENT_IO in their state field
360 * are not merged because the end_io handlers need to be able to do
361 * operations on them without sleeping (or doing allocations/splits).
362 *
363 * This should be called with the tree lock held.
364 */
365 static void merge_state(struct extent_io_tree *tree,
366 struct extent_state *state)
367 {
368 struct extent_state *other;
369 struct rb_node *other_node;
370
371 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
372 return;
373
374 other_node = rb_prev(&state->rb_node);
375 if (other_node) {
376 other = rb_entry(other_node, struct extent_state, rb_node);
377 if (other->end == state->start - 1 &&
378 other->state == state->state) {
379 if (tree->private_data &&
380 is_data_inode(tree->private_data))
381 btrfs_merge_delalloc_extent(tree->private_data,
382 state, other);
383 state->start = other->start;
384 rb_erase(&other->rb_node, &tree->state);
385 RB_CLEAR_NODE(&other->rb_node);
386 free_extent_state(other);
387 }
388 }
389 other_node = rb_next(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->start == state->end + 1 &&
393 other->state == state->state) {
394 if (tree->private_data &&
395 is_data_inode(tree->private_data))
396 btrfs_merge_delalloc_extent(tree->private_data,
397 state, other);
398 state->end = other->end;
399 rb_erase(&other->rb_node, &tree->state);
400 RB_CLEAR_NODE(&other->rb_node);
401 free_extent_state(other);
402 }
403 }
404 }
405
406 static void set_state_bits(struct extent_io_tree *tree,
407 struct extent_state *state, unsigned *bits,
408 struct extent_changeset *changeset);
409
410 /*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420 static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
422 struct rb_node ***p,
423 struct rb_node **parent,
424 unsigned *bits, struct extent_changeset *changeset)
425 {
426 struct rb_node *node;
427
428 if (end < start)
429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430 end, start);
431 state->start = start;
432 state->end = end;
433
434 set_state_bits(tree, state, bits, changeset);
435
436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
440 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
441 found->start, found->end, start, end);
442 return -EEXIST;
443 }
444 merge_state(tree, state);
445 return 0;
446 }
447
448 /*
449 * split a given extent state struct in two, inserting the preallocated
450 * struct 'prealloc' as the newly created second half. 'split' indicates an
451 * offset inside 'orig' where it should be split.
452 *
453 * Before calling,
454 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
455 * are two extent state structs in the tree:
456 * prealloc: [orig->start, split - 1]
457 * orig: [ split, orig->end ]
458 *
459 * The tree locks are not taken by this function. They need to be held
460 * by the caller.
461 */
462 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463 struct extent_state *prealloc, u64 split)
464 {
465 struct rb_node *node;
466
467 if (tree->private_data && is_data_inode(tree->private_data))
468 btrfs_split_delalloc_extent(tree->private_data, orig, split);
469
470 prealloc->start = orig->start;
471 prealloc->end = split - 1;
472 prealloc->state = orig->state;
473 orig->start = split;
474
475 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476 &prealloc->rb_node, NULL, NULL);
477 if (node) {
478 free_extent_state(prealloc);
479 return -EEXIST;
480 }
481 return 0;
482 }
483
484 static struct extent_state *next_state(struct extent_state *state)
485 {
486 struct rb_node *next = rb_next(&state->rb_node);
487 if (next)
488 return rb_entry(next, struct extent_state, rb_node);
489 else
490 return NULL;
491 }
492
493 /*
494 * utility function to clear some bits in an extent state struct.
495 * it will optionally wake up anyone waiting on this state (wake == 1).
496 *
497 * If no bits are set on the state struct after clearing things, the
498 * struct is freed and removed from the tree
499 */
500 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501 struct extent_state *state,
502 unsigned *bits, int wake,
503 struct extent_changeset *changeset)
504 {
505 struct extent_state *next;
506 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
507 int ret;
508
509 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
510 u64 range = state->end - state->start + 1;
511 WARN_ON(range > tree->dirty_bytes);
512 tree->dirty_bytes -= range;
513 }
514
515 if (tree->private_data && is_data_inode(tree->private_data))
516 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517
518 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519 BUG_ON(ret < 0);
520 state->state &= ~bits_to_clear;
521 if (wake)
522 wake_up(&state->wq);
523 if (state->state == 0) {
524 next = next_state(state);
525 if (extent_state_in_tree(state)) {
526 rb_erase(&state->rb_node, &tree->state);
527 RB_CLEAR_NODE(&state->rb_node);
528 free_extent_state(state);
529 } else {
530 WARN_ON(1);
531 }
532 } else {
533 merge_state(tree, state);
534 next = next_state(state);
535 }
536 return next;
537 }
538
539 static struct extent_state *
540 alloc_extent_state_atomic(struct extent_state *prealloc)
541 {
542 if (!prealloc)
543 prealloc = alloc_extent_state(GFP_ATOMIC);
544
545 return prealloc;
546 }
547
548 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
549 {
550 struct inode *inode = tree->private_data;
551
552 btrfs_panic(btrfs_sb(inode->i_sb), err,
553 "locking error: extent tree was modified by another thread while locked");
554 }
555
556 /*
557 * clear some bits on a range in the tree. This may require splitting
558 * or inserting elements in the tree, so the gfp mask is used to
559 * indicate which allocations or sleeping are allowed.
560 *
561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562 * the given range from the tree regardless of state (ie for truncate).
563 *
564 * the range [start, end] is inclusive.
565 *
566 * This takes the tree lock, and returns 0 on success and < 0 on error.
567 */
568 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
569 unsigned bits, int wake, int delete,
570 struct extent_state **cached_state,
571 gfp_t mask, struct extent_changeset *changeset)
572 {
573 struct extent_state *state;
574 struct extent_state *cached;
575 struct extent_state *prealloc = NULL;
576 struct rb_node *node;
577 u64 last_end;
578 int err;
579 int clear = 0;
580
581 btrfs_debug_check_extent_io_range(tree, start, end);
582
583 if (bits & EXTENT_DELALLOC)
584 bits |= EXTENT_NORESERVE;
585
586 if (delete)
587 bits |= ~EXTENT_CTLBITS;
588 bits |= EXTENT_FIRST_DELALLOC;
589
590 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591 clear = 1;
592 again:
593 if (!prealloc && gfpflags_allow_blocking(mask)) {
594 /*
595 * Don't care for allocation failure here because we might end
596 * up not needing the pre-allocated extent state at all, which
597 * is the case if we only have in the tree extent states that
598 * cover our input range and don't cover too any other range.
599 * If we end up needing a new extent state we allocate it later.
600 */
601 prealloc = alloc_extent_state(mask);
602 }
603
604 spin_lock(&tree->lock);
605 if (cached_state) {
606 cached = *cached_state;
607
608 if (clear) {
609 *cached_state = NULL;
610 cached_state = NULL;
611 }
612
613 if (cached && extent_state_in_tree(cached) &&
614 cached->start <= start && cached->end > start) {
615 if (clear)
616 refcount_dec(&cached->refs);
617 state = cached;
618 goto hit_next;
619 }
620 if (clear)
621 free_extent_state(cached);
622 }
623 /*
624 * this search will find the extents that end after
625 * our range starts
626 */
627 node = tree_search(tree, start);
628 if (!node)
629 goto out;
630 state = rb_entry(node, struct extent_state, rb_node);
631 hit_next:
632 if (state->start > end)
633 goto out;
634 WARN_ON(state->end < start);
635 last_end = state->end;
636
637 /* the state doesn't have the wanted bits, go ahead */
638 if (!(state->state & bits)) {
639 state = next_state(state);
640 goto next;
641 }
642
643 /*
644 * | ---- desired range ---- |
645 * | state | or
646 * | ------------- state -------------- |
647 *
648 * We need to split the extent we found, and may flip
649 * bits on second half.
650 *
651 * If the extent we found extends past our range, we
652 * just split and search again. It'll get split again
653 * the next time though.
654 *
655 * If the extent we found is inside our range, we clear
656 * the desired bit on it.
657 */
658
659 if (state->start < start) {
660 prealloc = alloc_extent_state_atomic(prealloc);
661 BUG_ON(!prealloc);
662 err = split_state(tree, state, prealloc, start);
663 if (err)
664 extent_io_tree_panic(tree, err);
665
666 prealloc = NULL;
667 if (err)
668 goto out;
669 if (state->end <= end) {
670 state = clear_state_bit(tree, state, &bits, wake,
671 changeset);
672 goto next;
673 }
674 goto search_again;
675 }
676 /*
677 * | ---- desired range ---- |
678 * | state |
679 * We need to split the extent, and clear the bit
680 * on the first half
681 */
682 if (state->start <= end && state->end > end) {
683 prealloc = alloc_extent_state_atomic(prealloc);
684 BUG_ON(!prealloc);
685 err = split_state(tree, state, prealloc, end + 1);
686 if (err)
687 extent_io_tree_panic(tree, err);
688
689 if (wake)
690 wake_up(&state->wq);
691
692 clear_state_bit(tree, prealloc, &bits, wake, changeset);
693
694 prealloc = NULL;
695 goto out;
696 }
697
698 state = clear_state_bit(tree, state, &bits, wake, changeset);
699 next:
700 if (last_end == (u64)-1)
701 goto out;
702 start = last_end + 1;
703 if (start <= end && state && !need_resched())
704 goto hit_next;
705
706 search_again:
707 if (start > end)
708 goto out;
709 spin_unlock(&tree->lock);
710 if (gfpflags_allow_blocking(mask))
711 cond_resched();
712 goto again;
713
714 out:
715 spin_unlock(&tree->lock);
716 if (prealloc)
717 free_extent_state(prealloc);
718
719 return 0;
720
721 }
722
723 static void wait_on_state(struct extent_io_tree *tree,
724 struct extent_state *state)
725 __releases(tree->lock)
726 __acquires(tree->lock)
727 {
728 DEFINE_WAIT(wait);
729 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
730 spin_unlock(&tree->lock);
731 schedule();
732 spin_lock(&tree->lock);
733 finish_wait(&state->wq, &wait);
734 }
735
736 /*
737 * waits for one or more bits to clear on a range in the state tree.
738 * The range [start, end] is inclusive.
739 * The tree lock is taken by this function
740 */
741 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
742 unsigned long bits)
743 {
744 struct extent_state *state;
745 struct rb_node *node;
746
747 btrfs_debug_check_extent_io_range(tree, start, end);
748
749 spin_lock(&tree->lock);
750 again:
751 while (1) {
752 /*
753 * this search will find all the extents that end after
754 * our range starts
755 */
756 node = tree_search(tree, start);
757 process_node:
758 if (!node)
759 break;
760
761 state = rb_entry(node, struct extent_state, rb_node);
762
763 if (state->start > end)
764 goto out;
765
766 if (state->state & bits) {
767 start = state->start;
768 refcount_inc(&state->refs);
769 wait_on_state(tree, state);
770 free_extent_state(state);
771 goto again;
772 }
773 start = state->end + 1;
774
775 if (start > end)
776 break;
777
778 if (!cond_resched_lock(&tree->lock)) {
779 node = rb_next(node);
780 goto process_node;
781 }
782 }
783 out:
784 spin_unlock(&tree->lock);
785 }
786
787 static void set_state_bits(struct extent_io_tree *tree,
788 struct extent_state *state,
789 unsigned *bits, struct extent_changeset *changeset)
790 {
791 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
792 int ret;
793
794 if (tree->private_data && is_data_inode(tree->private_data))
795 btrfs_set_delalloc_extent(tree->private_data, state, bits);
796
797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
800 }
801 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
802 BUG_ON(ret < 0);
803 state->state |= bits_to_set;
804 }
805
806 static void cache_state_if_flags(struct extent_state *state,
807 struct extent_state **cached_ptr,
808 unsigned flags)
809 {
810 if (cached_ptr && !(*cached_ptr)) {
811 if (!flags || (state->state & flags)) {
812 *cached_ptr = state;
813 refcount_inc(&state->refs);
814 }
815 }
816 }
817
818 static void cache_state(struct extent_state *state,
819 struct extent_state **cached_ptr)
820 {
821 return cache_state_if_flags(state, cached_ptr,
822 EXTENT_IOBITS | EXTENT_BOUNDARY);
823 }
824
825 /*
826 * set some bits on a range in the tree. This may require allocations or
827 * sleeping, so the gfp mask is used to indicate what is allowed.
828 *
829 * If any of the exclusive bits are set, this will fail with -EEXIST if some
830 * part of the range already has the desired bits set. The start of the
831 * existing range is returned in failed_start in this case.
832 *
833 * [start, end] is inclusive This takes the tree lock.
834 */
835
836 static int __must_check
837 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
838 unsigned bits, unsigned exclusive_bits,
839 u64 *failed_start, struct extent_state **cached_state,
840 gfp_t mask, struct extent_changeset *changeset)
841 {
842 struct extent_state *state;
843 struct extent_state *prealloc = NULL;
844 struct rb_node *node;
845 struct rb_node **p;
846 struct rb_node *parent;
847 int err = 0;
848 u64 last_start;
849 u64 last_end;
850
851 btrfs_debug_check_extent_io_range(tree, start, end);
852
853 bits |= EXTENT_FIRST_DELALLOC;
854 again:
855 if (!prealloc && gfpflags_allow_blocking(mask)) {
856 /*
857 * Don't care for allocation failure here because we might end
858 * up not needing the pre-allocated extent state at all, which
859 * is the case if we only have in the tree extent states that
860 * cover our input range and don't cover too any other range.
861 * If we end up needing a new extent state we allocate it later.
862 */
863 prealloc = alloc_extent_state(mask);
864 }
865
866 spin_lock(&tree->lock);
867 if (cached_state && *cached_state) {
868 state = *cached_state;
869 if (state->start <= start && state->end > start &&
870 extent_state_in_tree(state)) {
871 node = &state->rb_node;
872 goto hit_next;
873 }
874 }
875 /*
876 * this search will find all the extents that end after
877 * our range starts.
878 */
879 node = tree_search_for_insert(tree, start, &p, &parent);
880 if (!node) {
881 prealloc = alloc_extent_state_atomic(prealloc);
882 BUG_ON(!prealloc);
883 err = insert_state(tree, prealloc, start, end,
884 &p, &parent, &bits, changeset);
885 if (err)
886 extent_io_tree_panic(tree, err);
887
888 cache_state(prealloc, cached_state);
889 prealloc = NULL;
890 goto out;
891 }
892 state = rb_entry(node, struct extent_state, rb_node);
893 hit_next:
894 last_start = state->start;
895 last_end = state->end;
896
897 /*
898 * | ---- desired range ---- |
899 * | state |
900 *
901 * Just lock what we found and keep going
902 */
903 if (state->start == start && state->end <= end) {
904 if (state->state & exclusive_bits) {
905 *failed_start = state->start;
906 err = -EEXIST;
907 goto out;
908 }
909
910 set_state_bits(tree, state, &bits, changeset);
911 cache_state(state, cached_state);
912 merge_state(tree, state);
913 if (last_end == (u64)-1)
914 goto out;
915 start = last_end + 1;
916 state = next_state(state);
917 if (start < end && state && state->start == start &&
918 !need_resched())
919 goto hit_next;
920 goto search_again;
921 }
922
923 /*
924 * | ---- desired range ---- |
925 * | state |
926 * or
927 * | ------------- state -------------- |
928 *
929 * We need to split the extent we found, and may flip bits on
930 * second half.
931 *
932 * If the extent we found extends past our
933 * range, we just split and search again. It'll get split
934 * again the next time though.
935 *
936 * If the extent we found is inside our range, we set the
937 * desired bit on it.
938 */
939 if (state->start < start) {
940 if (state->state & exclusive_bits) {
941 *failed_start = start;
942 err = -EEXIST;
943 goto out;
944 }
945
946 prealloc = alloc_extent_state_atomic(prealloc);
947 BUG_ON(!prealloc);
948 err = split_state(tree, state, prealloc, start);
949 if (err)
950 extent_io_tree_panic(tree, err);
951
952 prealloc = NULL;
953 if (err)
954 goto out;
955 if (state->end <= end) {
956 set_state_bits(tree, state, &bits, changeset);
957 cache_state(state, cached_state);
958 merge_state(tree, state);
959 if (last_end == (u64)-1)
960 goto out;
961 start = last_end + 1;
962 state = next_state(state);
963 if (start < end && state && state->start == start &&
964 !need_resched())
965 goto hit_next;
966 }
967 goto search_again;
968 }
969 /*
970 * | ---- desired range ---- |
971 * | state | or | state |
972 *
973 * There's a hole, we need to insert something in it and
974 * ignore the extent we found.
975 */
976 if (state->start > start) {
977 u64 this_end;
978 if (end < last_start)
979 this_end = end;
980 else
981 this_end = last_start - 1;
982
983 prealloc = alloc_extent_state_atomic(prealloc);
984 BUG_ON(!prealloc);
985
986 /*
987 * Avoid to free 'prealloc' if it can be merged with
988 * the later extent.
989 */
990 err = insert_state(tree, prealloc, start, this_end,
991 NULL, NULL, &bits, changeset);
992 if (err)
993 extent_io_tree_panic(tree, err);
994
995 cache_state(prealloc, cached_state);
996 prealloc = NULL;
997 start = this_end + 1;
998 goto search_again;
999 }
1000 /*
1001 * | ---- desired range ---- |
1002 * | state |
1003 * We need to split the extent, and set the bit
1004 * on the first half
1005 */
1006 if (state->start <= end && state->end > end) {
1007 if (state->state & exclusive_bits) {
1008 *failed_start = start;
1009 err = -EEXIST;
1010 goto out;
1011 }
1012
1013 prealloc = alloc_extent_state_atomic(prealloc);
1014 BUG_ON(!prealloc);
1015 err = split_state(tree, state, prealloc, end + 1);
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1018
1019 set_state_bits(tree, prealloc, &bits, changeset);
1020 cache_state(prealloc, cached_state);
1021 merge_state(tree, prealloc);
1022 prealloc = NULL;
1023 goto out;
1024 }
1025
1026 search_again:
1027 if (start > end)
1028 goto out;
1029 spin_unlock(&tree->lock);
1030 if (gfpflags_allow_blocking(mask))
1031 cond_resched();
1032 goto again;
1033
1034 out:
1035 spin_unlock(&tree->lock);
1036 if (prealloc)
1037 free_extent_state(prealloc);
1038
1039 return err;
1040
1041 }
1042
1043 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1044 unsigned bits, u64 * failed_start,
1045 struct extent_state **cached_state, gfp_t mask)
1046 {
1047 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1048 cached_state, mask, NULL);
1049 }
1050
1051
1052 /**
1053 * convert_extent_bit - convert all bits in a given range from one bit to
1054 * another
1055 * @tree: the io tree to search
1056 * @start: the start offset in bytes
1057 * @end: the end offset in bytes (inclusive)
1058 * @bits: the bits to set in this range
1059 * @clear_bits: the bits to clear in this range
1060 * @cached_state: state that we're going to cache
1061 *
1062 * This will go through and set bits for the given range. If any states exist
1063 * already in this range they are set with the given bit and cleared of the
1064 * clear_bits. This is only meant to be used by things that are mergeable, ie
1065 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1066 * boundary bits like LOCK.
1067 *
1068 * All allocations are done with GFP_NOFS.
1069 */
1070 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1071 unsigned bits, unsigned clear_bits,
1072 struct extent_state **cached_state)
1073 {
1074 struct extent_state *state;
1075 struct extent_state *prealloc = NULL;
1076 struct rb_node *node;
1077 struct rb_node **p;
1078 struct rb_node *parent;
1079 int err = 0;
1080 u64 last_start;
1081 u64 last_end;
1082 bool first_iteration = true;
1083
1084 btrfs_debug_check_extent_io_range(tree, start, end);
1085
1086 again:
1087 if (!prealloc) {
1088 /*
1089 * Best effort, don't worry if extent state allocation fails
1090 * here for the first iteration. We might have a cached state
1091 * that matches exactly the target range, in which case no
1092 * extent state allocations are needed. We'll only know this
1093 * after locking the tree.
1094 */
1095 prealloc = alloc_extent_state(GFP_NOFS);
1096 if (!prealloc && !first_iteration)
1097 return -ENOMEM;
1098 }
1099
1100 spin_lock(&tree->lock);
1101 if (cached_state && *cached_state) {
1102 state = *cached_state;
1103 if (state->start <= start && state->end > start &&
1104 extent_state_in_tree(state)) {
1105 node = &state->rb_node;
1106 goto hit_next;
1107 }
1108 }
1109
1110 /*
1111 * this search will find all the extents that end after
1112 * our range starts.
1113 */
1114 node = tree_search_for_insert(tree, start, &p, &parent);
1115 if (!node) {
1116 prealloc = alloc_extent_state_atomic(prealloc);
1117 if (!prealloc) {
1118 err = -ENOMEM;
1119 goto out;
1120 }
1121 err = insert_state(tree, prealloc, start, end,
1122 &p, &parent, &bits, NULL);
1123 if (err)
1124 extent_io_tree_panic(tree, err);
1125 cache_state(prealloc, cached_state);
1126 prealloc = NULL;
1127 goto out;
1128 }
1129 state = rb_entry(node, struct extent_state, rb_node);
1130 hit_next:
1131 last_start = state->start;
1132 last_end = state->end;
1133
1134 /*
1135 * | ---- desired range ---- |
1136 * | state |
1137 *
1138 * Just lock what we found and keep going
1139 */
1140 if (state->start == start && state->end <= end) {
1141 set_state_bits(tree, state, &bits, NULL);
1142 cache_state(state, cached_state);
1143 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1144 if (last_end == (u64)-1)
1145 goto out;
1146 start = last_end + 1;
1147 if (start < end && state && state->start == start &&
1148 !need_resched())
1149 goto hit_next;
1150 goto search_again;
1151 }
1152
1153 /*
1154 * | ---- desired range ---- |
1155 * | state |
1156 * or
1157 * | ------------- state -------------- |
1158 *
1159 * We need to split the extent we found, and may flip bits on
1160 * second half.
1161 *
1162 * If the extent we found extends past our
1163 * range, we just split and search again. It'll get split
1164 * again the next time though.
1165 *
1166 * If the extent we found is inside our range, we set the
1167 * desired bit on it.
1168 */
1169 if (state->start < start) {
1170 prealloc = alloc_extent_state_atomic(prealloc);
1171 if (!prealloc) {
1172 err = -ENOMEM;
1173 goto out;
1174 }
1175 err = split_state(tree, state, prealloc, start);
1176 if (err)
1177 extent_io_tree_panic(tree, err);
1178 prealloc = NULL;
1179 if (err)
1180 goto out;
1181 if (state->end <= end) {
1182 set_state_bits(tree, state, &bits, NULL);
1183 cache_state(state, cached_state);
1184 state = clear_state_bit(tree, state, &clear_bits, 0,
1185 NULL);
1186 if (last_end == (u64)-1)
1187 goto out;
1188 start = last_end + 1;
1189 if (start < end && state && state->start == start &&
1190 !need_resched())
1191 goto hit_next;
1192 }
1193 goto search_again;
1194 }
1195 /*
1196 * | ---- desired range ---- |
1197 * | state | or | state |
1198 *
1199 * There's a hole, we need to insert something in it and
1200 * ignore the extent we found.
1201 */
1202 if (state->start > start) {
1203 u64 this_end;
1204 if (end < last_start)
1205 this_end = end;
1206 else
1207 this_end = last_start - 1;
1208
1209 prealloc = alloc_extent_state_atomic(prealloc);
1210 if (!prealloc) {
1211 err = -ENOMEM;
1212 goto out;
1213 }
1214
1215 /*
1216 * Avoid to free 'prealloc' if it can be merged with
1217 * the later extent.
1218 */
1219 err = insert_state(tree, prealloc, start, this_end,
1220 NULL, NULL, &bits, NULL);
1221 if (err)
1222 extent_io_tree_panic(tree, err);
1223 cache_state(prealloc, cached_state);
1224 prealloc = NULL;
1225 start = this_end + 1;
1226 goto search_again;
1227 }
1228 /*
1229 * | ---- desired range ---- |
1230 * | state |
1231 * We need to split the extent, and set the bit
1232 * on the first half
1233 */
1234 if (state->start <= end && state->end > end) {
1235 prealloc = alloc_extent_state_atomic(prealloc);
1236 if (!prealloc) {
1237 err = -ENOMEM;
1238 goto out;
1239 }
1240
1241 err = split_state(tree, state, prealloc, end + 1);
1242 if (err)
1243 extent_io_tree_panic(tree, err);
1244
1245 set_state_bits(tree, prealloc, &bits, NULL);
1246 cache_state(prealloc, cached_state);
1247 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1248 prealloc = NULL;
1249 goto out;
1250 }
1251
1252 search_again:
1253 if (start > end)
1254 goto out;
1255 spin_unlock(&tree->lock);
1256 cond_resched();
1257 first_iteration = false;
1258 goto again;
1259
1260 out:
1261 spin_unlock(&tree->lock);
1262 if (prealloc)
1263 free_extent_state(prealloc);
1264
1265 return err;
1266 }
1267
1268 /* wrappers around set/clear extent bit */
1269 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1270 unsigned bits, struct extent_changeset *changeset)
1271 {
1272 /*
1273 * We don't support EXTENT_LOCKED yet, as current changeset will
1274 * record any bits changed, so for EXTENT_LOCKED case, it will
1275 * either fail with -EEXIST or changeset will record the whole
1276 * range.
1277 */
1278 BUG_ON(bits & EXTENT_LOCKED);
1279
1280 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1281 changeset);
1282 }
1283
1284 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285 unsigned bits, int wake, int delete,
1286 struct extent_state **cached)
1287 {
1288 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1289 cached, GFP_NOFS, NULL);
1290 }
1291
1292 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1293 unsigned bits, struct extent_changeset *changeset)
1294 {
1295 /*
1296 * Don't support EXTENT_LOCKED case, same reason as
1297 * set_record_extent_bits().
1298 */
1299 BUG_ON(bits & EXTENT_LOCKED);
1300
1301 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1302 changeset);
1303 }
1304
1305 /*
1306 * either insert or lock state struct between start and end use mask to tell
1307 * us if waiting is desired.
1308 */
1309 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1310 struct extent_state **cached_state)
1311 {
1312 int err;
1313 u64 failed_start;
1314
1315 while (1) {
1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1317 EXTENT_LOCKED, &failed_start,
1318 cached_state, GFP_NOFS, NULL);
1319 if (err == -EEXIST) {
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
1322 } else
1323 break;
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327 }
1328
1329 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331 int err;
1332 u64 failed_start;
1333
1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1335 &failed_start, NULL, GFP_NOFS, NULL);
1336 if (err == -EEXIST) {
1337 if (failed_start > start)
1338 clear_extent_bit(tree, start, failed_start - 1,
1339 EXTENT_LOCKED, 1, 0, NULL);
1340 return 0;
1341 }
1342 return 1;
1343 }
1344
1345 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1346 {
1347 unsigned long index = start >> PAGE_SHIFT;
1348 unsigned long end_index = end >> PAGE_SHIFT;
1349 struct page *page;
1350
1351 while (index <= end_index) {
1352 page = find_get_page(inode->i_mapping, index);
1353 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354 clear_page_dirty_for_io(page);
1355 put_page(page);
1356 index++;
1357 }
1358 }
1359
1360 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362 unsigned long index = start >> PAGE_SHIFT;
1363 unsigned long end_index = end >> PAGE_SHIFT;
1364 struct page *page;
1365
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 __set_page_dirty_nobuffers(page);
1370 account_page_redirty(page);
1371 put_page(page);
1372 index++;
1373 }
1374 }
1375
1376 /* find the first state struct with 'bits' set after 'start', and
1377 * return it. tree->lock must be held. NULL will returned if
1378 * nothing was found after 'start'
1379 */
1380 static struct extent_state *
1381 find_first_extent_bit_state(struct extent_io_tree *tree,
1382 u64 start, unsigned bits)
1383 {
1384 struct rb_node *node;
1385 struct extent_state *state;
1386
1387 /*
1388 * this search will find all the extents that end after
1389 * our range starts.
1390 */
1391 node = tree_search(tree, start);
1392 if (!node)
1393 goto out;
1394
1395 while (1) {
1396 state = rb_entry(node, struct extent_state, rb_node);
1397 if (state->end >= start && (state->state & bits))
1398 return state;
1399
1400 node = rb_next(node);
1401 if (!node)
1402 break;
1403 }
1404 out:
1405 return NULL;
1406 }
1407
1408 /*
1409 * find the first offset in the io tree with 'bits' set. zero is
1410 * returned if we find something, and *start_ret and *end_ret are
1411 * set to reflect the state struct that was found.
1412 *
1413 * If nothing was found, 1 is returned. If found something, return 0.
1414 */
1415 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1416 u64 *start_ret, u64 *end_ret, unsigned bits,
1417 struct extent_state **cached_state)
1418 {
1419 struct extent_state *state;
1420 int ret = 1;
1421
1422 spin_lock(&tree->lock);
1423 if (cached_state && *cached_state) {
1424 state = *cached_state;
1425 if (state->end == start - 1 && extent_state_in_tree(state)) {
1426 while ((state = next_state(state)) != NULL) {
1427 if (state->state & bits)
1428 goto got_it;
1429 }
1430 free_extent_state(*cached_state);
1431 *cached_state = NULL;
1432 goto out;
1433 }
1434 free_extent_state(*cached_state);
1435 *cached_state = NULL;
1436 }
1437
1438 state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440 if (state) {
1441 cache_state_if_flags(state, cached_state, 0);
1442 *start_ret = state->start;
1443 *end_ret = state->end;
1444 ret = 0;
1445 }
1446 out:
1447 spin_unlock(&tree->lock);
1448 return ret;
1449 }
1450
1451 /*
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1454 *
1455 * true is returned if we find something, false if nothing was in the tree
1456 */
1457 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1458 u64 *start, u64 *end, u64 max_bytes,
1459 struct extent_state **cached_state)
1460 {
1461 struct rb_node *node;
1462 struct extent_state *state;
1463 u64 cur_start = *start;
1464 bool found = false;
1465 u64 total_bytes = 0;
1466
1467 spin_lock(&tree->lock);
1468
1469 /*
1470 * this search will find all the extents that end after
1471 * our range starts.
1472 */
1473 node = tree_search(tree, cur_start);
1474 if (!node) {
1475 *end = (u64)-1;
1476 goto out;
1477 }
1478
1479 while (1) {
1480 state = rb_entry(node, struct extent_state, rb_node);
1481 if (found && (state->start != cur_start ||
1482 (state->state & EXTENT_BOUNDARY))) {
1483 goto out;
1484 }
1485 if (!(state->state & EXTENT_DELALLOC)) {
1486 if (!found)
1487 *end = state->end;
1488 goto out;
1489 }
1490 if (!found) {
1491 *start = state->start;
1492 *cached_state = state;
1493 refcount_inc(&state->refs);
1494 }
1495 found = true;
1496 *end = state->end;
1497 cur_start = state->end + 1;
1498 node = rb_next(node);
1499 total_bytes += state->end - state->start + 1;
1500 if (total_bytes >= max_bytes)
1501 break;
1502 if (!node)
1503 break;
1504 }
1505 out:
1506 spin_unlock(&tree->lock);
1507 return found;
1508 }
1509
1510 static int __process_pages_contig(struct address_space *mapping,
1511 struct page *locked_page,
1512 pgoff_t start_index, pgoff_t end_index,
1513 unsigned long page_ops, pgoff_t *index_ret);
1514
1515 static noinline void __unlock_for_delalloc(struct inode *inode,
1516 struct page *locked_page,
1517 u64 start, u64 end)
1518 {
1519 unsigned long index = start >> PAGE_SHIFT;
1520 unsigned long end_index = end >> PAGE_SHIFT;
1521
1522 ASSERT(locked_page);
1523 if (index == locked_page->index && end_index == index)
1524 return;
1525
1526 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1527 PAGE_UNLOCK, NULL);
1528 }
1529
1530 static noinline int lock_delalloc_pages(struct inode *inode,
1531 struct page *locked_page,
1532 u64 delalloc_start,
1533 u64 delalloc_end)
1534 {
1535 unsigned long index = delalloc_start >> PAGE_SHIFT;
1536 unsigned long index_ret = index;
1537 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1538 int ret;
1539
1540 ASSERT(locked_page);
1541 if (index == locked_page->index && index == end_index)
1542 return 0;
1543
1544 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1545 end_index, PAGE_LOCK, &index_ret);
1546 if (ret == -EAGAIN)
1547 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1548 (u64)index_ret << PAGE_SHIFT);
1549 return ret;
1550 }
1551
1552 /*
1553 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1554 * more than @max_bytes. @Start and @end are used to return the range,
1555 *
1556 * Return: true if we find something
1557 * false if nothing was in the tree
1558 */
1559 EXPORT_FOR_TESTS
1560 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1561 struct extent_io_tree *tree,
1562 struct page *locked_page, u64 *start,
1563 u64 *end)
1564 {
1565 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1566 u64 delalloc_start;
1567 u64 delalloc_end;
1568 bool found;
1569 struct extent_state *cached_state = NULL;
1570 int ret;
1571 int loops = 0;
1572
1573 again:
1574 /* step one, find a bunch of delalloc bytes starting at start */
1575 delalloc_start = *start;
1576 delalloc_end = 0;
1577 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1578 max_bytes, &cached_state);
1579 if (!found || delalloc_end <= *start) {
1580 *start = delalloc_start;
1581 *end = delalloc_end;
1582 free_extent_state(cached_state);
1583 return false;
1584 }
1585
1586 /*
1587 * start comes from the offset of locked_page. We have to lock
1588 * pages in order, so we can't process delalloc bytes before
1589 * locked_page
1590 */
1591 if (delalloc_start < *start)
1592 delalloc_start = *start;
1593
1594 /*
1595 * make sure to limit the number of pages we try to lock down
1596 */
1597 if (delalloc_end + 1 - delalloc_start > max_bytes)
1598 delalloc_end = delalloc_start + max_bytes - 1;
1599
1600 /* step two, lock all the pages after the page that has start */
1601 ret = lock_delalloc_pages(inode, locked_page,
1602 delalloc_start, delalloc_end);
1603 ASSERT(!ret || ret == -EAGAIN);
1604 if (ret == -EAGAIN) {
1605 /* some of the pages are gone, lets avoid looping by
1606 * shortening the size of the delalloc range we're searching
1607 */
1608 free_extent_state(cached_state);
1609 cached_state = NULL;
1610 if (!loops) {
1611 max_bytes = PAGE_SIZE;
1612 loops = 1;
1613 goto again;
1614 } else {
1615 found = false;
1616 goto out_failed;
1617 }
1618 }
1619
1620 /* step three, lock the state bits for the whole range */
1621 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1622
1623 /* then test to make sure it is all still delalloc */
1624 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1625 EXTENT_DELALLOC, 1, cached_state);
1626 if (!ret) {
1627 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1628 &cached_state);
1629 __unlock_for_delalloc(inode, locked_page,
1630 delalloc_start, delalloc_end);
1631 cond_resched();
1632 goto again;
1633 }
1634 free_extent_state(cached_state);
1635 *start = delalloc_start;
1636 *end = delalloc_end;
1637 out_failed:
1638 return found;
1639 }
1640
1641 static int __process_pages_contig(struct address_space *mapping,
1642 struct page *locked_page,
1643 pgoff_t start_index, pgoff_t end_index,
1644 unsigned long page_ops, pgoff_t *index_ret)
1645 {
1646 unsigned long nr_pages = end_index - start_index + 1;
1647 unsigned long pages_locked = 0;
1648 pgoff_t index = start_index;
1649 struct page *pages[16];
1650 unsigned ret;
1651 int err = 0;
1652 int i;
1653
1654 if (page_ops & PAGE_LOCK) {
1655 ASSERT(page_ops == PAGE_LOCK);
1656 ASSERT(index_ret && *index_ret == start_index);
1657 }
1658
1659 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1660 mapping_set_error(mapping, -EIO);
1661
1662 while (nr_pages > 0) {
1663 ret = find_get_pages_contig(mapping, index,
1664 min_t(unsigned long,
1665 nr_pages, ARRAY_SIZE(pages)), pages);
1666 if (ret == 0) {
1667 /*
1668 * Only if we're going to lock these pages,
1669 * can we find nothing at @index.
1670 */
1671 ASSERT(page_ops & PAGE_LOCK);
1672 err = -EAGAIN;
1673 goto out;
1674 }
1675
1676 for (i = 0; i < ret; i++) {
1677 if (page_ops & PAGE_SET_PRIVATE2)
1678 SetPagePrivate2(pages[i]);
1679
1680 if (pages[i] == locked_page) {
1681 put_page(pages[i]);
1682 pages_locked++;
1683 continue;
1684 }
1685 if (page_ops & PAGE_CLEAR_DIRTY)
1686 clear_page_dirty_for_io(pages[i]);
1687 if (page_ops & PAGE_SET_WRITEBACK)
1688 set_page_writeback(pages[i]);
1689 if (page_ops & PAGE_SET_ERROR)
1690 SetPageError(pages[i]);
1691 if (page_ops & PAGE_END_WRITEBACK)
1692 end_page_writeback(pages[i]);
1693 if (page_ops & PAGE_UNLOCK)
1694 unlock_page(pages[i]);
1695 if (page_ops & PAGE_LOCK) {
1696 lock_page(pages[i]);
1697 if (!PageDirty(pages[i]) ||
1698 pages[i]->mapping != mapping) {
1699 unlock_page(pages[i]);
1700 put_page(pages[i]);
1701 err = -EAGAIN;
1702 goto out;
1703 }
1704 }
1705 put_page(pages[i]);
1706 pages_locked++;
1707 }
1708 nr_pages -= ret;
1709 index += ret;
1710 cond_resched();
1711 }
1712 out:
1713 if (err && index_ret)
1714 *index_ret = start_index + pages_locked - 1;
1715 return err;
1716 }
1717
1718 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1719 u64 delalloc_end, struct page *locked_page,
1720 unsigned clear_bits,
1721 unsigned long page_ops)
1722 {
1723 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1724 NULL);
1725
1726 __process_pages_contig(inode->i_mapping, locked_page,
1727 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1728 page_ops, NULL);
1729 }
1730
1731 /*
1732 * count the number of bytes in the tree that have a given bit(s)
1733 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1734 * cached. The total number found is returned.
1735 */
1736 u64 count_range_bits(struct extent_io_tree *tree,
1737 u64 *start, u64 search_end, u64 max_bytes,
1738 unsigned bits, int contig)
1739 {
1740 struct rb_node *node;
1741 struct extent_state *state;
1742 u64 cur_start = *start;
1743 u64 total_bytes = 0;
1744 u64 last = 0;
1745 int found = 0;
1746
1747 if (WARN_ON(search_end <= cur_start))
1748 return 0;
1749
1750 spin_lock(&tree->lock);
1751 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1752 total_bytes = tree->dirty_bytes;
1753 goto out;
1754 }
1755 /*
1756 * this search will find all the extents that end after
1757 * our range starts.
1758 */
1759 node = tree_search(tree, cur_start);
1760 if (!node)
1761 goto out;
1762
1763 while (1) {
1764 state = rb_entry(node, struct extent_state, rb_node);
1765 if (state->start > search_end)
1766 break;
1767 if (contig && found && state->start > last + 1)
1768 break;
1769 if (state->end >= cur_start && (state->state & bits) == bits) {
1770 total_bytes += min(search_end, state->end) + 1 -
1771 max(cur_start, state->start);
1772 if (total_bytes >= max_bytes)
1773 break;
1774 if (!found) {
1775 *start = max(cur_start, state->start);
1776 found = 1;
1777 }
1778 last = state->end;
1779 } else if (contig && found) {
1780 break;
1781 }
1782 node = rb_next(node);
1783 if (!node)
1784 break;
1785 }
1786 out:
1787 spin_unlock(&tree->lock);
1788 return total_bytes;
1789 }
1790
1791 /*
1792 * set the private field for a given byte offset in the tree. If there isn't
1793 * an extent_state there already, this does nothing.
1794 */
1795 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1796 struct io_failure_record *failrec)
1797 {
1798 struct rb_node *node;
1799 struct extent_state *state;
1800 int ret = 0;
1801
1802 spin_lock(&tree->lock);
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
1807 node = tree_search(tree, start);
1808 if (!node) {
1809 ret = -ENOENT;
1810 goto out;
1811 }
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start != start) {
1814 ret = -ENOENT;
1815 goto out;
1816 }
1817 state->failrec = failrec;
1818 out:
1819 spin_unlock(&tree->lock);
1820 return ret;
1821 }
1822
1823 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1824 struct io_failure_record **failrec)
1825 {
1826 struct rb_node *node;
1827 struct extent_state *state;
1828 int ret = 0;
1829
1830 spin_lock(&tree->lock);
1831 /*
1832 * this search will find all the extents that end after
1833 * our range starts.
1834 */
1835 node = tree_search(tree, start);
1836 if (!node) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 state = rb_entry(node, struct extent_state, rb_node);
1841 if (state->start != start) {
1842 ret = -ENOENT;
1843 goto out;
1844 }
1845 *failrec = state->failrec;
1846 out:
1847 spin_unlock(&tree->lock);
1848 return ret;
1849 }
1850
1851 /*
1852 * searches a range in the state tree for a given mask.
1853 * If 'filled' == 1, this returns 1 only if every extent in the tree
1854 * has the bits set. Otherwise, 1 is returned if any bit in the
1855 * range is found set.
1856 */
1857 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1858 unsigned bits, int filled, struct extent_state *cached)
1859 {
1860 struct extent_state *state = NULL;
1861 struct rb_node *node;
1862 int bitset = 0;
1863
1864 spin_lock(&tree->lock);
1865 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1866 cached->end > start)
1867 node = &cached->rb_node;
1868 else
1869 node = tree_search(tree, start);
1870 while (node && start <= end) {
1871 state = rb_entry(node, struct extent_state, rb_node);
1872
1873 if (filled && state->start > start) {
1874 bitset = 0;
1875 break;
1876 }
1877
1878 if (state->start > end)
1879 break;
1880
1881 if (state->state & bits) {
1882 bitset = 1;
1883 if (!filled)
1884 break;
1885 } else if (filled) {
1886 bitset = 0;
1887 break;
1888 }
1889
1890 if (state->end == (u64)-1)
1891 break;
1892
1893 start = state->end + 1;
1894 if (start > end)
1895 break;
1896 node = rb_next(node);
1897 if (!node) {
1898 if (filled)
1899 bitset = 0;
1900 break;
1901 }
1902 }
1903 spin_unlock(&tree->lock);
1904 return bitset;
1905 }
1906
1907 /*
1908 * helper function to set a given page up to date if all the
1909 * extents in the tree for that page are up to date
1910 */
1911 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1912 {
1913 u64 start = page_offset(page);
1914 u64 end = start + PAGE_SIZE - 1;
1915 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1916 SetPageUptodate(page);
1917 }
1918
1919 int free_io_failure(struct extent_io_tree *failure_tree,
1920 struct extent_io_tree *io_tree,
1921 struct io_failure_record *rec)
1922 {
1923 int ret;
1924 int err = 0;
1925
1926 set_state_failrec(failure_tree, rec->start, NULL);
1927 ret = clear_extent_bits(failure_tree, rec->start,
1928 rec->start + rec->len - 1,
1929 EXTENT_LOCKED | EXTENT_DIRTY);
1930 if (ret)
1931 err = ret;
1932
1933 ret = clear_extent_bits(io_tree, rec->start,
1934 rec->start + rec->len - 1,
1935 EXTENT_DAMAGED);
1936 if (ret && !err)
1937 err = ret;
1938
1939 kfree(rec);
1940 return err;
1941 }
1942
1943 /*
1944 * this bypasses the standard btrfs submit functions deliberately, as
1945 * the standard behavior is to write all copies in a raid setup. here we only
1946 * want to write the one bad copy. so we do the mapping for ourselves and issue
1947 * submit_bio directly.
1948 * to avoid any synchronization issues, wait for the data after writing, which
1949 * actually prevents the read that triggered the error from finishing.
1950 * currently, there can be no more than two copies of every data bit. thus,
1951 * exactly one rewrite is required.
1952 */
1953 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1954 u64 length, u64 logical, struct page *page,
1955 unsigned int pg_offset, int mirror_num)
1956 {
1957 struct bio *bio;
1958 struct btrfs_device *dev;
1959 u64 map_length = 0;
1960 u64 sector;
1961 struct btrfs_bio *bbio = NULL;
1962 int ret;
1963
1964 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1965 BUG_ON(!mirror_num);
1966
1967 bio = btrfs_io_bio_alloc(1);
1968 bio->bi_iter.bi_size = 0;
1969 map_length = length;
1970
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are doing the
1974 * read repair operation.
1975 */
1976 btrfs_bio_counter_inc_blocked(fs_info);
1977 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1978 /*
1979 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1980 * to update all raid stripes, but here we just want to correct
1981 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1982 * stripe's dev and sector.
1983 */
1984 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1985 &map_length, &bbio, 0);
1986 if (ret) {
1987 btrfs_bio_counter_dec(fs_info);
1988 bio_put(bio);
1989 return -EIO;
1990 }
1991 ASSERT(bbio->mirror_num == 1);
1992 } else {
1993 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1994 &map_length, &bbio, mirror_num);
1995 if (ret) {
1996 btrfs_bio_counter_dec(fs_info);
1997 bio_put(bio);
1998 return -EIO;
1999 }
2000 BUG_ON(mirror_num != bbio->mirror_num);
2001 }
2002
2003 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2004 bio->bi_iter.bi_sector = sector;
2005 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2006 btrfs_put_bbio(bbio);
2007 if (!dev || !dev->bdev ||
2008 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2009 btrfs_bio_counter_dec(fs_info);
2010 bio_put(bio);
2011 return -EIO;
2012 }
2013 bio_set_dev(bio, dev->bdev);
2014 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2015 bio_add_page(bio, page, length, pg_offset);
2016
2017 if (btrfsic_submit_bio_wait(bio)) {
2018 /* try to remap that extent elsewhere? */
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2022 return -EIO;
2023 }
2024
2025 btrfs_info_rl_in_rcu(fs_info,
2026 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2027 ino, start,
2028 rcu_str_deref(dev->name), sector);
2029 btrfs_bio_counter_dec(fs_info);
2030 bio_put(bio);
2031 return 0;
2032 }
2033
2034 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2035 struct extent_buffer *eb, int mirror_num)
2036 {
2037 u64 start = eb->start;
2038 int i, num_pages = num_extent_pages(eb);
2039 int ret = 0;
2040
2041 if (sb_rdonly(fs_info->sb))
2042 return -EROFS;
2043
2044 for (i = 0; i < num_pages; i++) {
2045 struct page *p = eb->pages[i];
2046
2047 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2048 start - page_offset(p), mirror_num);
2049 if (ret)
2050 break;
2051 start += PAGE_SIZE;
2052 }
2053
2054 return ret;
2055 }
2056
2057 /*
2058 * each time an IO finishes, we do a fast check in the IO failure tree
2059 * to see if we need to process or clean up an io_failure_record
2060 */
2061 int clean_io_failure(struct btrfs_fs_info *fs_info,
2062 struct extent_io_tree *failure_tree,
2063 struct extent_io_tree *io_tree, u64 start,
2064 struct page *page, u64 ino, unsigned int pg_offset)
2065 {
2066 u64 private;
2067 struct io_failure_record *failrec;
2068 struct extent_state *state;
2069 int num_copies;
2070 int ret;
2071
2072 private = 0;
2073 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2074 EXTENT_DIRTY, 0);
2075 if (!ret)
2076 return 0;
2077
2078 ret = get_state_failrec(failure_tree, start, &failrec);
2079 if (ret)
2080 return 0;
2081
2082 BUG_ON(!failrec->this_mirror);
2083
2084 if (failrec->in_validation) {
2085 /* there was no real error, just free the record */
2086 btrfs_debug(fs_info,
2087 "clean_io_failure: freeing dummy error at %llu",
2088 failrec->start);
2089 goto out;
2090 }
2091 if (sb_rdonly(fs_info->sb))
2092 goto out;
2093
2094 spin_lock(&io_tree->lock);
2095 state = find_first_extent_bit_state(io_tree,
2096 failrec->start,
2097 EXTENT_LOCKED);
2098 spin_unlock(&io_tree->lock);
2099
2100 if (state && state->start <= failrec->start &&
2101 state->end >= failrec->start + failrec->len - 1) {
2102 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 failrec->len);
2104 if (num_copies > 1) {
2105 repair_io_failure(fs_info, ino, start, failrec->len,
2106 failrec->logical, page, pg_offset,
2107 failrec->failed_mirror);
2108 }
2109 }
2110
2111 out:
2112 free_io_failure(failure_tree, io_tree, failrec);
2113
2114 return 0;
2115 }
2116
2117 /*
2118 * Can be called when
2119 * - hold extent lock
2120 * - under ordered extent
2121 * - the inode is freeing
2122 */
2123 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2124 {
2125 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2126 struct io_failure_record *failrec;
2127 struct extent_state *state, *next;
2128
2129 if (RB_EMPTY_ROOT(&failure_tree->state))
2130 return;
2131
2132 spin_lock(&failure_tree->lock);
2133 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2134 while (state) {
2135 if (state->start > end)
2136 break;
2137
2138 ASSERT(state->end <= end);
2139
2140 next = next_state(state);
2141
2142 failrec = state->failrec;
2143 free_extent_state(state);
2144 kfree(failrec);
2145
2146 state = next;
2147 }
2148 spin_unlock(&failure_tree->lock);
2149 }
2150
2151 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2152 struct io_failure_record **failrec_ret)
2153 {
2154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2155 struct io_failure_record *failrec;
2156 struct extent_map *em;
2157 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2158 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2159 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2160 int ret;
2161 u64 logical;
2162
2163 ret = get_state_failrec(failure_tree, start, &failrec);
2164 if (ret) {
2165 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2166 if (!failrec)
2167 return -ENOMEM;
2168
2169 failrec->start = start;
2170 failrec->len = end - start + 1;
2171 failrec->this_mirror = 0;
2172 failrec->bio_flags = 0;
2173 failrec->in_validation = 0;
2174
2175 read_lock(&em_tree->lock);
2176 em = lookup_extent_mapping(em_tree, start, failrec->len);
2177 if (!em) {
2178 read_unlock(&em_tree->lock);
2179 kfree(failrec);
2180 return -EIO;
2181 }
2182
2183 if (em->start > start || em->start + em->len <= start) {
2184 free_extent_map(em);
2185 em = NULL;
2186 }
2187 read_unlock(&em_tree->lock);
2188 if (!em) {
2189 kfree(failrec);
2190 return -EIO;
2191 }
2192
2193 logical = start - em->start;
2194 logical = em->block_start + logical;
2195 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2196 logical = em->block_start;
2197 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2198 extent_set_compress_type(&failrec->bio_flags,
2199 em->compress_type);
2200 }
2201
2202 btrfs_debug(fs_info,
2203 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2204 logical, start, failrec->len);
2205
2206 failrec->logical = logical;
2207 free_extent_map(em);
2208
2209 /* set the bits in the private failure tree */
2210 ret = set_extent_bits(failure_tree, start, end,
2211 EXTENT_LOCKED | EXTENT_DIRTY);
2212 if (ret >= 0)
2213 ret = set_state_failrec(failure_tree, start, failrec);
2214 /* set the bits in the inode's tree */
2215 if (ret >= 0)
2216 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2217 if (ret < 0) {
2218 kfree(failrec);
2219 return ret;
2220 }
2221 } else {
2222 btrfs_debug(fs_info,
2223 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2224 failrec->logical, failrec->start, failrec->len,
2225 failrec->in_validation);
2226 /*
2227 * when data can be on disk more than twice, add to failrec here
2228 * (e.g. with a list for failed_mirror) to make
2229 * clean_io_failure() clean all those errors at once.
2230 */
2231 }
2232
2233 *failrec_ret = failrec;
2234
2235 return 0;
2236 }
2237
2238 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2239 struct io_failure_record *failrec, int failed_mirror)
2240 {
2241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2242 int num_copies;
2243
2244 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2245 if (num_copies == 1) {
2246 /*
2247 * we only have a single copy of the data, so don't bother with
2248 * all the retry and error correction code that follows. no
2249 * matter what the error is, it is very likely to persist.
2250 */
2251 btrfs_debug(fs_info,
2252 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2253 num_copies, failrec->this_mirror, failed_mirror);
2254 return false;
2255 }
2256
2257 /*
2258 * there are two premises:
2259 * a) deliver good data to the caller
2260 * b) correct the bad sectors on disk
2261 */
2262 if (failed_bio_pages > 1) {
2263 /*
2264 * to fulfill b), we need to know the exact failing sectors, as
2265 * we don't want to rewrite any more than the failed ones. thus,
2266 * we need separate read requests for the failed bio
2267 *
2268 * if the following BUG_ON triggers, our validation request got
2269 * merged. we need separate requests for our algorithm to work.
2270 */
2271 BUG_ON(failrec->in_validation);
2272 failrec->in_validation = 1;
2273 failrec->this_mirror = failed_mirror;
2274 } else {
2275 /*
2276 * we're ready to fulfill a) and b) alongside. get a good copy
2277 * of the failed sector and if we succeed, we have setup
2278 * everything for repair_io_failure to do the rest for us.
2279 */
2280 if (failrec->in_validation) {
2281 BUG_ON(failrec->this_mirror != failed_mirror);
2282 failrec->in_validation = 0;
2283 failrec->this_mirror = 0;
2284 }
2285 failrec->failed_mirror = failed_mirror;
2286 failrec->this_mirror++;
2287 if (failrec->this_mirror == failed_mirror)
2288 failrec->this_mirror++;
2289 }
2290
2291 if (failrec->this_mirror > num_copies) {
2292 btrfs_debug(fs_info,
2293 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2294 num_copies, failrec->this_mirror, failed_mirror);
2295 return false;
2296 }
2297
2298 return true;
2299 }
2300
2301
2302 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2303 struct io_failure_record *failrec,
2304 struct page *page, int pg_offset, int icsum,
2305 bio_end_io_t *endio_func, void *data)
2306 {
2307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2308 struct bio *bio;
2309 struct btrfs_io_bio *btrfs_failed_bio;
2310 struct btrfs_io_bio *btrfs_bio;
2311
2312 bio = btrfs_io_bio_alloc(1);
2313 bio->bi_end_io = endio_func;
2314 bio->bi_iter.bi_sector = failrec->logical >> 9;
2315 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2316 bio->bi_iter.bi_size = 0;
2317 bio->bi_private = data;
2318
2319 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320 if (btrfs_failed_bio->csum) {
2321 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2322
2323 btrfs_bio = btrfs_io_bio(bio);
2324 btrfs_bio->csum = btrfs_bio->csum_inline;
2325 icsum *= csum_size;
2326 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2327 csum_size);
2328 }
2329
2330 bio_add_page(bio, page, failrec->len, pg_offset);
2331
2332 return bio;
2333 }
2334
2335 /*
2336 * This is a generic handler for readpage errors. If other copies exist, read
2337 * those and write back good data to the failed position. Does not investigate
2338 * in remapping the failed extent elsewhere, hoping the device will be smart
2339 * enough to do this as needed
2340 */
2341 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2342 struct page *page, u64 start, u64 end,
2343 int failed_mirror)
2344 {
2345 struct io_failure_record *failrec;
2346 struct inode *inode = page->mapping->host;
2347 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2348 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2349 struct bio *bio;
2350 int read_mode = 0;
2351 blk_status_t status;
2352 int ret;
2353 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2354
2355 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2356
2357 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2358 if (ret)
2359 return ret;
2360
2361 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2362 failed_mirror)) {
2363 free_io_failure(failure_tree, tree, failrec);
2364 return -EIO;
2365 }
2366
2367 if (failed_bio_pages > 1)
2368 read_mode |= REQ_FAILFAST_DEV;
2369
2370 phy_offset >>= inode->i_sb->s_blocksize_bits;
2371 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2372 start - page_offset(page),
2373 (int)phy_offset, failed_bio->bi_end_io,
2374 NULL);
2375 bio->bi_opf = REQ_OP_READ | read_mode;
2376
2377 btrfs_debug(btrfs_sb(inode->i_sb),
2378 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2379 read_mode, failrec->this_mirror, failrec->in_validation);
2380
2381 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2382 failrec->bio_flags, 0);
2383 if (status) {
2384 free_io_failure(failure_tree, tree, failrec);
2385 bio_put(bio);
2386 ret = blk_status_to_errno(status);
2387 }
2388
2389 return ret;
2390 }
2391
2392 /* lots and lots of room for performance fixes in the end_bio funcs */
2393
2394 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2395 {
2396 int uptodate = (err == 0);
2397 int ret = 0;
2398
2399 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2400
2401 if (!uptodate) {
2402 ClearPageUptodate(page);
2403 SetPageError(page);
2404 ret = err < 0 ? err : -EIO;
2405 mapping_set_error(page->mapping, ret);
2406 }
2407 }
2408
2409 /*
2410 * after a writepage IO is done, we need to:
2411 * clear the uptodate bits on error
2412 * clear the writeback bits in the extent tree for this IO
2413 * end_page_writeback if the page has no more pending IO
2414 *
2415 * Scheduling is not allowed, so the extent state tree is expected
2416 * to have one and only one object corresponding to this IO.
2417 */
2418 static void end_bio_extent_writepage(struct bio *bio)
2419 {
2420 int error = blk_status_to_errno(bio->bi_status);
2421 struct bio_vec *bvec;
2422 u64 start;
2423 u64 end;
2424 int i;
2425
2426 ASSERT(!bio_flagged(bio, BIO_CLONED));
2427 bio_for_each_segment_all(bvec, bio, i) {
2428 struct page *page = bvec->bv_page;
2429 struct inode *inode = page->mapping->host;
2430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2431
2432 /* We always issue full-page reads, but if some block
2433 * in a page fails to read, blk_update_request() will
2434 * advance bv_offset and adjust bv_len to compensate.
2435 * Print a warning for nonzero offsets, and an error
2436 * if they don't add up to a full page. */
2437 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2438 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2439 btrfs_err(fs_info,
2440 "partial page write in btrfs with offset %u and length %u",
2441 bvec->bv_offset, bvec->bv_len);
2442 else
2443 btrfs_info(fs_info,
2444 "incomplete page write in btrfs with offset %u and length %u",
2445 bvec->bv_offset, bvec->bv_len);
2446 }
2447
2448 start = page_offset(page);
2449 end = start + bvec->bv_offset + bvec->bv_len - 1;
2450
2451 end_extent_writepage(page, error, start, end);
2452 end_page_writeback(page);
2453 }
2454
2455 bio_put(bio);
2456 }
2457
2458 static void
2459 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2460 int uptodate)
2461 {
2462 struct extent_state *cached = NULL;
2463 u64 end = start + len - 1;
2464
2465 if (uptodate && tree->track_uptodate)
2466 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2467 unlock_extent_cached_atomic(tree, start, end, &cached);
2468 }
2469
2470 /*
2471 * after a readpage IO is done, we need to:
2472 * clear the uptodate bits on error
2473 * set the uptodate bits if things worked
2474 * set the page up to date if all extents in the tree are uptodate
2475 * clear the lock bit in the extent tree
2476 * unlock the page if there are no other extents locked for it
2477 *
2478 * Scheduling is not allowed, so the extent state tree is expected
2479 * to have one and only one object corresponding to this IO.
2480 */
2481 static void end_bio_extent_readpage(struct bio *bio)
2482 {
2483 struct bio_vec *bvec;
2484 int uptodate = !bio->bi_status;
2485 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2486 struct extent_io_tree *tree, *failure_tree;
2487 u64 offset = 0;
2488 u64 start;
2489 u64 end;
2490 u64 len;
2491 u64 extent_start = 0;
2492 u64 extent_len = 0;
2493 int mirror;
2494 int ret;
2495 int i;
2496
2497 ASSERT(!bio_flagged(bio, BIO_CLONED));
2498 bio_for_each_segment_all(bvec, bio, i) {
2499 struct page *page = bvec->bv_page;
2500 struct inode *inode = page->mapping->host;
2501 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2502 bool data_inode = btrfs_ino(BTRFS_I(inode))
2503 != BTRFS_BTREE_INODE_OBJECTID;
2504
2505 btrfs_debug(fs_info,
2506 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2507 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2508 io_bio->mirror_num);
2509 tree = &BTRFS_I(inode)->io_tree;
2510 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2511
2512 /* We always issue full-page reads, but if some block
2513 * in a page fails to read, blk_update_request() will
2514 * advance bv_offset and adjust bv_len to compensate.
2515 * Print a warning for nonzero offsets, and an error
2516 * if they don't add up to a full page. */
2517 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2518 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2519 btrfs_err(fs_info,
2520 "partial page read in btrfs with offset %u and length %u",
2521 bvec->bv_offset, bvec->bv_len);
2522 else
2523 btrfs_info(fs_info,
2524 "incomplete page read in btrfs with offset %u and length %u",
2525 bvec->bv_offset, bvec->bv_len);
2526 }
2527
2528 start = page_offset(page);
2529 end = start + bvec->bv_offset + bvec->bv_len - 1;
2530 len = bvec->bv_len;
2531
2532 mirror = io_bio->mirror_num;
2533 if (likely(uptodate)) {
2534 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2535 page, start, end,
2536 mirror);
2537 if (ret)
2538 uptodate = 0;
2539 else
2540 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2541 failure_tree, tree, start,
2542 page,
2543 btrfs_ino(BTRFS_I(inode)), 0);
2544 }
2545
2546 if (likely(uptodate))
2547 goto readpage_ok;
2548
2549 if (data_inode) {
2550
2551 /*
2552 * The generic bio_readpage_error handles errors the
2553 * following way: If possible, new read requests are
2554 * created and submitted and will end up in
2555 * end_bio_extent_readpage as well (if we're lucky,
2556 * not in the !uptodate case). In that case it returns
2557 * 0 and we just go on with the next page in our bio.
2558 * If it can't handle the error it will return -EIO and
2559 * we remain responsible for that page.
2560 */
2561 ret = bio_readpage_error(bio, offset, page, start, end,
2562 mirror);
2563 if (ret == 0) {
2564 uptodate = !bio->bi_status;
2565 offset += len;
2566 continue;
2567 }
2568 } else {
2569 struct extent_buffer *eb;
2570
2571 eb = (struct extent_buffer *)page->private;
2572 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2573 eb->read_mirror = mirror;
2574 atomic_dec(&eb->io_pages);
2575 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2576 &eb->bflags))
2577 btree_readahead_hook(eb, -EIO);
2578
2579 ret = -EIO;
2580 }
2581 readpage_ok:
2582 if (likely(uptodate)) {
2583 loff_t i_size = i_size_read(inode);
2584 pgoff_t end_index = i_size >> PAGE_SHIFT;
2585 unsigned off;
2586
2587 /* Zero out the end if this page straddles i_size */
2588 off = offset_in_page(i_size);
2589 if (page->index == end_index && off)
2590 zero_user_segment(page, off, PAGE_SIZE);
2591 SetPageUptodate(page);
2592 } else {
2593 ClearPageUptodate(page);
2594 SetPageError(page);
2595 }
2596 unlock_page(page);
2597 offset += len;
2598
2599 if (unlikely(!uptodate)) {
2600 if (extent_len) {
2601 endio_readpage_release_extent(tree,
2602 extent_start,
2603 extent_len, 1);
2604 extent_start = 0;
2605 extent_len = 0;
2606 }
2607 endio_readpage_release_extent(tree, start,
2608 end - start + 1, 0);
2609 } else if (!extent_len) {
2610 extent_start = start;
2611 extent_len = end + 1 - start;
2612 } else if (extent_start + extent_len == start) {
2613 extent_len += end + 1 - start;
2614 } else {
2615 endio_readpage_release_extent(tree, extent_start,
2616 extent_len, uptodate);
2617 extent_start = start;
2618 extent_len = end + 1 - start;
2619 }
2620 }
2621
2622 if (extent_len)
2623 endio_readpage_release_extent(tree, extent_start, extent_len,
2624 uptodate);
2625 btrfs_io_bio_free_csum(io_bio);
2626 bio_put(bio);
2627 }
2628
2629 /*
2630 * Initialize the members up to but not including 'bio'. Use after allocating a
2631 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2632 * 'bio' because use of __GFP_ZERO is not supported.
2633 */
2634 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2635 {
2636 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2637 }
2638
2639 /*
2640 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2641 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2642 * for the appropriate container_of magic
2643 */
2644 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2645 {
2646 struct bio *bio;
2647
2648 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2649 bio_set_dev(bio, bdev);
2650 bio->bi_iter.bi_sector = first_byte >> 9;
2651 btrfs_io_bio_init(btrfs_io_bio(bio));
2652 return bio;
2653 }
2654
2655 struct bio *btrfs_bio_clone(struct bio *bio)
2656 {
2657 struct btrfs_io_bio *btrfs_bio;
2658 struct bio *new;
2659
2660 /* Bio allocation backed by a bioset does not fail */
2661 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2662 btrfs_bio = btrfs_io_bio(new);
2663 btrfs_io_bio_init(btrfs_bio);
2664 btrfs_bio->iter = bio->bi_iter;
2665 return new;
2666 }
2667
2668 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2669 {
2670 struct bio *bio;
2671
2672 /* Bio allocation backed by a bioset does not fail */
2673 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2674 btrfs_io_bio_init(btrfs_io_bio(bio));
2675 return bio;
2676 }
2677
2678 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2679 {
2680 struct bio *bio;
2681 struct btrfs_io_bio *btrfs_bio;
2682
2683 /* this will never fail when it's backed by a bioset */
2684 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2685 ASSERT(bio);
2686
2687 btrfs_bio = btrfs_io_bio(bio);
2688 btrfs_io_bio_init(btrfs_bio);
2689
2690 bio_trim(bio, offset >> 9, size >> 9);
2691 btrfs_bio->iter = bio->bi_iter;
2692 return bio;
2693 }
2694
2695 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2696 unsigned long bio_flags)
2697 {
2698 blk_status_t ret = 0;
2699 struct bio_vec *bvec = bio_last_bvec_all(bio);
2700 struct page *page = bvec->bv_page;
2701 struct extent_io_tree *tree = bio->bi_private;
2702 u64 start;
2703
2704 start = page_offset(page) + bvec->bv_offset;
2705
2706 bio->bi_private = NULL;
2707
2708 if (tree->ops)
2709 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2710 mirror_num, bio_flags, start);
2711 else
2712 btrfsic_submit_bio(bio);
2713
2714 return blk_status_to_errno(ret);
2715 }
2716
2717 /*
2718 * @opf: bio REQ_OP_* and REQ_* flags as one value
2719 * @tree: tree so we can call our merge_bio hook
2720 * @wbc: optional writeback control for io accounting
2721 * @page: page to add to the bio
2722 * @pg_offset: offset of the new bio or to check whether we are adding
2723 * a contiguous page to the previous one
2724 * @size: portion of page that we want to write
2725 * @offset: starting offset in the page
2726 * @bdev: attach newly created bios to this bdev
2727 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2728 * @end_io_func: end_io callback for new bio
2729 * @mirror_num: desired mirror to read/write
2730 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2731 * @bio_flags: flags of the current bio to see if we can merge them
2732 */
2733 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2734 struct writeback_control *wbc,
2735 struct page *page, u64 offset,
2736 size_t size, unsigned long pg_offset,
2737 struct block_device *bdev,
2738 struct bio **bio_ret,
2739 bio_end_io_t end_io_func,
2740 int mirror_num,
2741 unsigned long prev_bio_flags,
2742 unsigned long bio_flags,
2743 bool force_bio_submit)
2744 {
2745 int ret = 0;
2746 struct bio *bio;
2747 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2748 sector_t sector = offset >> 9;
2749
2750 ASSERT(bio_ret);
2751
2752 if (*bio_ret) {
2753 bool contig;
2754 bool can_merge = true;
2755
2756 bio = *bio_ret;
2757 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2758 contig = bio->bi_iter.bi_sector == sector;
2759 else
2760 contig = bio_end_sector(bio) == sector;
2761
2762 ASSERT(tree->ops);
2763 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2764 can_merge = false;
2765
2766 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2767 force_bio_submit ||
2768 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2769 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2770 if (ret < 0) {
2771 *bio_ret = NULL;
2772 return ret;
2773 }
2774 bio = NULL;
2775 } else {
2776 if (wbc)
2777 wbc_account_io(wbc, page, page_size);
2778 return 0;
2779 }
2780 }
2781
2782 bio = btrfs_bio_alloc(bdev, offset);
2783 bio_add_page(bio, page, page_size, pg_offset);
2784 bio->bi_end_io = end_io_func;
2785 bio->bi_private = tree;
2786 bio->bi_write_hint = page->mapping->host->i_write_hint;
2787 bio->bi_opf = opf;
2788 if (wbc) {
2789 wbc_init_bio(wbc, bio);
2790 wbc_account_io(wbc, page, page_size);
2791 }
2792
2793 *bio_ret = bio;
2794
2795 return ret;
2796 }
2797
2798 static void attach_extent_buffer_page(struct extent_buffer *eb,
2799 struct page *page)
2800 {
2801 if (!PagePrivate(page)) {
2802 SetPagePrivate(page);
2803 get_page(page);
2804 set_page_private(page, (unsigned long)eb);
2805 } else {
2806 WARN_ON(page->private != (unsigned long)eb);
2807 }
2808 }
2809
2810 void set_page_extent_mapped(struct page *page)
2811 {
2812 if (!PagePrivate(page)) {
2813 SetPagePrivate(page);
2814 get_page(page);
2815 set_page_private(page, EXTENT_PAGE_PRIVATE);
2816 }
2817 }
2818
2819 static struct extent_map *
2820 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2821 u64 start, u64 len, get_extent_t *get_extent,
2822 struct extent_map **em_cached)
2823 {
2824 struct extent_map *em;
2825
2826 if (em_cached && *em_cached) {
2827 em = *em_cached;
2828 if (extent_map_in_tree(em) && start >= em->start &&
2829 start < extent_map_end(em)) {
2830 refcount_inc(&em->refs);
2831 return em;
2832 }
2833
2834 free_extent_map(em);
2835 *em_cached = NULL;
2836 }
2837
2838 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2839 if (em_cached && !IS_ERR_OR_NULL(em)) {
2840 BUG_ON(*em_cached);
2841 refcount_inc(&em->refs);
2842 *em_cached = em;
2843 }
2844 return em;
2845 }
2846 /*
2847 * basic readpage implementation. Locked extent state structs are inserted
2848 * into the tree that are removed when the IO is done (by the end_io
2849 * handlers)
2850 * XXX JDM: This needs looking at to ensure proper page locking
2851 * return 0 on success, otherwise return error
2852 */
2853 static int __do_readpage(struct extent_io_tree *tree,
2854 struct page *page,
2855 get_extent_t *get_extent,
2856 struct extent_map **em_cached,
2857 struct bio **bio, int mirror_num,
2858 unsigned long *bio_flags, unsigned int read_flags,
2859 u64 *prev_em_start)
2860 {
2861 struct inode *inode = page->mapping->host;
2862 u64 start = page_offset(page);
2863 const u64 end = start + PAGE_SIZE - 1;
2864 u64 cur = start;
2865 u64 extent_offset;
2866 u64 last_byte = i_size_read(inode);
2867 u64 block_start;
2868 u64 cur_end;
2869 struct extent_map *em;
2870 struct block_device *bdev;
2871 int ret = 0;
2872 int nr = 0;
2873 size_t pg_offset = 0;
2874 size_t iosize;
2875 size_t disk_io_size;
2876 size_t blocksize = inode->i_sb->s_blocksize;
2877 unsigned long this_bio_flag = 0;
2878
2879 set_page_extent_mapped(page);
2880
2881 if (!PageUptodate(page)) {
2882 if (cleancache_get_page(page) == 0) {
2883 BUG_ON(blocksize != PAGE_SIZE);
2884 unlock_extent(tree, start, end);
2885 goto out;
2886 }
2887 }
2888
2889 if (page->index == last_byte >> PAGE_SHIFT) {
2890 char *userpage;
2891 size_t zero_offset = offset_in_page(last_byte);
2892
2893 if (zero_offset) {
2894 iosize = PAGE_SIZE - zero_offset;
2895 userpage = kmap_atomic(page);
2896 memset(userpage + zero_offset, 0, iosize);
2897 flush_dcache_page(page);
2898 kunmap_atomic(userpage);
2899 }
2900 }
2901 while (cur <= end) {
2902 bool force_bio_submit = false;
2903 u64 offset;
2904
2905 if (cur >= last_byte) {
2906 char *userpage;
2907 struct extent_state *cached = NULL;
2908
2909 iosize = PAGE_SIZE - pg_offset;
2910 userpage = kmap_atomic(page);
2911 memset(userpage + pg_offset, 0, iosize);
2912 flush_dcache_page(page);
2913 kunmap_atomic(userpage);
2914 set_extent_uptodate(tree, cur, cur + iosize - 1,
2915 &cached, GFP_NOFS);
2916 unlock_extent_cached(tree, cur,
2917 cur + iosize - 1, &cached);
2918 break;
2919 }
2920 em = __get_extent_map(inode, page, pg_offset, cur,
2921 end - cur + 1, get_extent, em_cached);
2922 if (IS_ERR_OR_NULL(em)) {
2923 SetPageError(page);
2924 unlock_extent(tree, cur, end);
2925 break;
2926 }
2927 extent_offset = cur - em->start;
2928 BUG_ON(extent_map_end(em) <= cur);
2929 BUG_ON(end < cur);
2930
2931 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2932 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2933 extent_set_compress_type(&this_bio_flag,
2934 em->compress_type);
2935 }
2936
2937 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2938 cur_end = min(extent_map_end(em) - 1, end);
2939 iosize = ALIGN(iosize, blocksize);
2940 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2941 disk_io_size = em->block_len;
2942 offset = em->block_start;
2943 } else {
2944 offset = em->block_start + extent_offset;
2945 disk_io_size = iosize;
2946 }
2947 bdev = em->bdev;
2948 block_start = em->block_start;
2949 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2950 block_start = EXTENT_MAP_HOLE;
2951
2952 /*
2953 * If we have a file range that points to a compressed extent
2954 * and it's followed by a consecutive file range that points to
2955 * to the same compressed extent (possibly with a different
2956 * offset and/or length, so it either points to the whole extent
2957 * or only part of it), we must make sure we do not submit a
2958 * single bio to populate the pages for the 2 ranges because
2959 * this makes the compressed extent read zero out the pages
2960 * belonging to the 2nd range. Imagine the following scenario:
2961 *
2962 * File layout
2963 * [0 - 8K] [8K - 24K]
2964 * | |
2965 * | |
2966 * points to extent X, points to extent X,
2967 * offset 4K, length of 8K offset 0, length 16K
2968 *
2969 * [extent X, compressed length = 4K uncompressed length = 16K]
2970 *
2971 * If the bio to read the compressed extent covers both ranges,
2972 * it will decompress extent X into the pages belonging to the
2973 * first range and then it will stop, zeroing out the remaining
2974 * pages that belong to the other range that points to extent X.
2975 * So here we make sure we submit 2 bios, one for the first
2976 * range and another one for the third range. Both will target
2977 * the same physical extent from disk, but we can't currently
2978 * make the compressed bio endio callback populate the pages
2979 * for both ranges because each compressed bio is tightly
2980 * coupled with a single extent map, and each range can have
2981 * an extent map with a different offset value relative to the
2982 * uncompressed data of our extent and different lengths. This
2983 * is a corner case so we prioritize correctness over
2984 * non-optimal behavior (submitting 2 bios for the same extent).
2985 */
2986 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2987 prev_em_start && *prev_em_start != (u64)-1 &&
2988 *prev_em_start != em->orig_start)
2989 force_bio_submit = true;
2990
2991 if (prev_em_start)
2992 *prev_em_start = em->orig_start;
2993
2994 free_extent_map(em);
2995 em = NULL;
2996
2997 /* we've found a hole, just zero and go on */
2998 if (block_start == EXTENT_MAP_HOLE) {
2999 char *userpage;
3000 struct extent_state *cached = NULL;
3001
3002 userpage = kmap_atomic(page);
3003 memset(userpage + pg_offset, 0, iosize);
3004 flush_dcache_page(page);
3005 kunmap_atomic(userpage);
3006
3007 set_extent_uptodate(tree, cur, cur + iosize - 1,
3008 &cached, GFP_NOFS);
3009 unlock_extent_cached(tree, cur,
3010 cur + iosize - 1, &cached);
3011 cur = cur + iosize;
3012 pg_offset += iosize;
3013 continue;
3014 }
3015 /* the get_extent function already copied into the page */
3016 if (test_range_bit(tree, cur, cur_end,
3017 EXTENT_UPTODATE, 1, NULL)) {
3018 check_page_uptodate(tree, page);
3019 unlock_extent(tree, cur, cur + iosize - 1);
3020 cur = cur + iosize;
3021 pg_offset += iosize;
3022 continue;
3023 }
3024 /* we have an inline extent but it didn't get marked up
3025 * to date. Error out
3026 */
3027 if (block_start == EXTENT_MAP_INLINE) {
3028 SetPageError(page);
3029 unlock_extent(tree, cur, cur + iosize - 1);
3030 cur = cur + iosize;
3031 pg_offset += iosize;
3032 continue;
3033 }
3034
3035 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3036 page, offset, disk_io_size,
3037 pg_offset, bdev, bio,
3038 end_bio_extent_readpage, mirror_num,
3039 *bio_flags,
3040 this_bio_flag,
3041 force_bio_submit);
3042 if (!ret) {
3043 nr++;
3044 *bio_flags = this_bio_flag;
3045 } else {
3046 SetPageError(page);
3047 unlock_extent(tree, cur, cur + iosize - 1);
3048 goto out;
3049 }
3050 cur = cur + iosize;
3051 pg_offset += iosize;
3052 }
3053 out:
3054 if (!nr) {
3055 if (!PageError(page))
3056 SetPageUptodate(page);
3057 unlock_page(page);
3058 }
3059 return ret;
3060 }
3061
3062 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3063 struct page *pages[], int nr_pages,
3064 u64 start, u64 end,
3065 struct extent_map **em_cached,
3066 struct bio **bio,
3067 unsigned long *bio_flags,
3068 u64 *prev_em_start)
3069 {
3070 struct inode *inode;
3071 struct btrfs_ordered_extent *ordered;
3072 int index;
3073
3074 inode = pages[0]->mapping->host;
3075 while (1) {
3076 lock_extent(tree, start, end);
3077 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3078 end - start + 1);
3079 if (!ordered)
3080 break;
3081 unlock_extent(tree, start, end);
3082 btrfs_start_ordered_extent(inode, ordered, 1);
3083 btrfs_put_ordered_extent(ordered);
3084 }
3085
3086 for (index = 0; index < nr_pages; index++) {
3087 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3088 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3089 put_page(pages[index]);
3090 }
3091 }
3092
3093 static void __extent_readpages(struct extent_io_tree *tree,
3094 struct page *pages[],
3095 int nr_pages,
3096 struct extent_map **em_cached,
3097 struct bio **bio, unsigned long *bio_flags,
3098 u64 *prev_em_start)
3099 {
3100 u64 start = 0;
3101 u64 end = 0;
3102 u64 page_start;
3103 int index;
3104 int first_index = 0;
3105
3106 for (index = 0; index < nr_pages; index++) {
3107 page_start = page_offset(pages[index]);
3108 if (!end) {
3109 start = page_start;
3110 end = start + PAGE_SIZE - 1;
3111 first_index = index;
3112 } else if (end + 1 == page_start) {
3113 end += PAGE_SIZE;
3114 } else {
3115 __do_contiguous_readpages(tree, &pages[first_index],
3116 index - first_index, start,
3117 end, em_cached,
3118 bio, bio_flags,
3119 prev_em_start);
3120 start = page_start;
3121 end = start + PAGE_SIZE - 1;
3122 first_index = index;
3123 }
3124 }
3125
3126 if (end)
3127 __do_contiguous_readpages(tree, &pages[first_index],
3128 index - first_index, start,
3129 end, em_cached, bio,
3130 bio_flags, prev_em_start);
3131 }
3132
3133 static int __extent_read_full_page(struct extent_io_tree *tree,
3134 struct page *page,
3135 get_extent_t *get_extent,
3136 struct bio **bio, int mirror_num,
3137 unsigned long *bio_flags,
3138 unsigned int read_flags)
3139 {
3140 struct inode *inode = page->mapping->host;
3141 struct btrfs_ordered_extent *ordered;
3142 u64 start = page_offset(page);
3143 u64 end = start + PAGE_SIZE - 1;
3144 int ret;
3145
3146 while (1) {
3147 lock_extent(tree, start, end);
3148 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3149 PAGE_SIZE);
3150 if (!ordered)
3151 break;
3152 unlock_extent(tree, start, end);
3153 btrfs_start_ordered_extent(inode, ordered, 1);
3154 btrfs_put_ordered_extent(ordered);
3155 }
3156
3157 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3158 bio_flags, read_flags, NULL);
3159 return ret;
3160 }
3161
3162 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3163 get_extent_t *get_extent, int mirror_num)
3164 {
3165 struct bio *bio = NULL;
3166 unsigned long bio_flags = 0;
3167 int ret;
3168
3169 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3170 &bio_flags, 0);
3171 if (bio)
3172 ret = submit_one_bio(bio, mirror_num, bio_flags);
3173 return ret;
3174 }
3175
3176 static void update_nr_written(struct writeback_control *wbc,
3177 unsigned long nr_written)
3178 {
3179 wbc->nr_to_write -= nr_written;
3180 }
3181
3182 /*
3183 * helper for __extent_writepage, doing all of the delayed allocation setup.
3184 *
3185 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3186 * to write the page (copy into inline extent). In this case the IO has
3187 * been started and the page is already unlocked.
3188 *
3189 * This returns 0 if all went well (page still locked)
3190 * This returns < 0 if there were errors (page still locked)
3191 */
3192 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3193 struct page *page, struct writeback_control *wbc,
3194 u64 delalloc_start, unsigned long *nr_written)
3195 {
3196 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3197 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3198 bool found;
3199 u64 delalloc_to_write = 0;
3200 u64 delalloc_end = 0;
3201 int ret;
3202 int page_started = 0;
3203
3204
3205 while (delalloc_end < page_end) {
3206 found = find_lock_delalloc_range(inode, tree,
3207 page,
3208 &delalloc_start,
3209 &delalloc_end);
3210 if (!found) {
3211 delalloc_start = delalloc_end + 1;
3212 continue;
3213 }
3214 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3215 delalloc_end, &page_started, nr_written, wbc);
3216 /* File system has been set read-only */
3217 if (ret) {
3218 SetPageError(page);
3219 /*
3220 * btrfs_run_delalloc_range should return < 0 for error
3221 * but just in case, we use > 0 here meaning the IO is
3222 * started, so we don't want to return > 0 unless
3223 * things are going well.
3224 */
3225 ret = ret < 0 ? ret : -EIO;
3226 goto done;
3227 }
3228 /*
3229 * delalloc_end is already one less than the total length, so
3230 * we don't subtract one from PAGE_SIZE
3231 */
3232 delalloc_to_write += (delalloc_end - delalloc_start +
3233 PAGE_SIZE) >> PAGE_SHIFT;
3234 delalloc_start = delalloc_end + 1;
3235 }
3236 if (wbc->nr_to_write < delalloc_to_write) {
3237 int thresh = 8192;
3238
3239 if (delalloc_to_write < thresh * 2)
3240 thresh = delalloc_to_write;
3241 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3242 thresh);
3243 }
3244
3245 /* did the fill delalloc function already unlock and start
3246 * the IO?
3247 */
3248 if (page_started) {
3249 /*
3250 * we've unlocked the page, so we can't update
3251 * the mapping's writeback index, just update
3252 * nr_to_write.
3253 */
3254 wbc->nr_to_write -= *nr_written;
3255 return 1;
3256 }
3257
3258 ret = 0;
3259
3260 done:
3261 return ret;
3262 }
3263
3264 /*
3265 * helper for __extent_writepage. This calls the writepage start hooks,
3266 * and does the loop to map the page into extents and bios.
3267 *
3268 * We return 1 if the IO is started and the page is unlocked,
3269 * 0 if all went well (page still locked)
3270 * < 0 if there were errors (page still locked)
3271 */
3272 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3273 struct page *page,
3274 struct writeback_control *wbc,
3275 struct extent_page_data *epd,
3276 loff_t i_size,
3277 unsigned long nr_written,
3278 unsigned int write_flags, int *nr_ret)
3279 {
3280 struct extent_io_tree *tree = epd->tree;
3281 u64 start = page_offset(page);
3282 u64 page_end = start + PAGE_SIZE - 1;
3283 u64 end;
3284 u64 cur = start;
3285 u64 extent_offset;
3286 u64 block_start;
3287 u64 iosize;
3288 struct extent_map *em;
3289 struct block_device *bdev;
3290 size_t pg_offset = 0;
3291 size_t blocksize;
3292 int ret = 0;
3293 int nr = 0;
3294 bool compressed;
3295
3296 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3297 if (ret) {
3298 /* Fixup worker will requeue */
3299 if (ret == -EBUSY)
3300 wbc->pages_skipped++;
3301 else
3302 redirty_page_for_writepage(wbc, page);
3303
3304 update_nr_written(wbc, nr_written);
3305 unlock_page(page);
3306 return 1;
3307 }
3308
3309 /*
3310 * we don't want to touch the inode after unlocking the page,
3311 * so we update the mapping writeback index now
3312 */
3313 update_nr_written(wbc, nr_written + 1);
3314
3315 end = page_end;
3316 if (i_size <= start) {
3317 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3318 goto done;
3319 }
3320
3321 blocksize = inode->i_sb->s_blocksize;
3322
3323 while (cur <= end) {
3324 u64 em_end;
3325 u64 offset;
3326
3327 if (cur >= i_size) {
3328 btrfs_writepage_endio_finish_ordered(page, cur,
3329 page_end, 1);
3330 break;
3331 }
3332 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3333 end - cur + 1, 1);
3334 if (IS_ERR_OR_NULL(em)) {
3335 SetPageError(page);
3336 ret = PTR_ERR_OR_ZERO(em);
3337 break;
3338 }
3339
3340 extent_offset = cur - em->start;
3341 em_end = extent_map_end(em);
3342 BUG_ON(em_end <= cur);
3343 BUG_ON(end < cur);
3344 iosize = min(em_end - cur, end - cur + 1);
3345 iosize = ALIGN(iosize, blocksize);
3346 offset = em->block_start + extent_offset;
3347 bdev = em->bdev;
3348 block_start = em->block_start;
3349 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3350 free_extent_map(em);
3351 em = NULL;
3352
3353 /*
3354 * compressed and inline extents are written through other
3355 * paths in the FS
3356 */
3357 if (compressed || block_start == EXTENT_MAP_HOLE ||
3358 block_start == EXTENT_MAP_INLINE) {
3359 /*
3360 * end_io notification does not happen here for
3361 * compressed extents
3362 */
3363 if (!compressed)
3364 btrfs_writepage_endio_finish_ordered(page, cur,
3365 cur + iosize - 1,
3366 1);
3367 else if (compressed) {
3368 /* we don't want to end_page_writeback on
3369 * a compressed extent. this happens
3370 * elsewhere
3371 */
3372 nr++;
3373 }
3374
3375 cur += iosize;
3376 pg_offset += iosize;
3377 continue;
3378 }
3379
3380 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3381 if (!PageWriteback(page)) {
3382 btrfs_err(BTRFS_I(inode)->root->fs_info,
3383 "page %lu not writeback, cur %llu end %llu",
3384 page->index, cur, end);
3385 }
3386
3387 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3388 page, offset, iosize, pg_offset,
3389 bdev, &epd->bio,
3390 end_bio_extent_writepage,
3391 0, 0, 0, false);
3392 if (ret) {
3393 SetPageError(page);
3394 if (PageWriteback(page))
3395 end_page_writeback(page);
3396 }
3397
3398 cur = cur + iosize;
3399 pg_offset += iosize;
3400 nr++;
3401 }
3402 done:
3403 *nr_ret = nr;
3404 return ret;
3405 }
3406
3407 /*
3408 * the writepage semantics are similar to regular writepage. extent
3409 * records are inserted to lock ranges in the tree, and as dirty areas
3410 * are found, they are marked writeback. Then the lock bits are removed
3411 * and the end_io handler clears the writeback ranges
3412 */
3413 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3414 struct extent_page_data *epd)
3415 {
3416 struct inode *inode = page->mapping->host;
3417 u64 start = page_offset(page);
3418 u64 page_end = start + PAGE_SIZE - 1;
3419 int ret;
3420 int nr = 0;
3421 size_t pg_offset = 0;
3422 loff_t i_size = i_size_read(inode);
3423 unsigned long end_index = i_size >> PAGE_SHIFT;
3424 unsigned int write_flags = 0;
3425 unsigned long nr_written = 0;
3426
3427 write_flags = wbc_to_write_flags(wbc);
3428
3429 trace___extent_writepage(page, inode, wbc);
3430
3431 WARN_ON(!PageLocked(page));
3432
3433 ClearPageError(page);
3434
3435 pg_offset = offset_in_page(i_size);
3436 if (page->index > end_index ||
3437 (page->index == end_index && !pg_offset)) {
3438 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3439 unlock_page(page);
3440 return 0;
3441 }
3442
3443 if (page->index == end_index) {
3444 char *userpage;
3445
3446 userpage = kmap_atomic(page);
3447 memset(userpage + pg_offset, 0,
3448 PAGE_SIZE - pg_offset);
3449 kunmap_atomic(userpage);
3450 flush_dcache_page(page);
3451 }
3452
3453 pg_offset = 0;
3454
3455 set_page_extent_mapped(page);
3456
3457 if (!epd->extent_locked) {
3458 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3459 if (ret == 1)
3460 goto done_unlocked;
3461 if (ret)
3462 goto done;
3463 }
3464
3465 ret = __extent_writepage_io(inode, page, wbc, epd,
3466 i_size, nr_written, write_flags, &nr);
3467 if (ret == 1)
3468 goto done_unlocked;
3469
3470 done:
3471 if (nr == 0) {
3472 /* make sure the mapping tag for page dirty gets cleared */
3473 set_page_writeback(page);
3474 end_page_writeback(page);
3475 }
3476 if (PageError(page)) {
3477 ret = ret < 0 ? ret : -EIO;
3478 end_extent_writepage(page, ret, start, page_end);
3479 }
3480 unlock_page(page);
3481 return ret;
3482
3483 done_unlocked:
3484 return 0;
3485 }
3486
3487 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3488 {
3489 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3490 TASK_UNINTERRUPTIBLE);
3491 }
3492
3493 static noinline_for_stack int
3494 lock_extent_buffer_for_io(struct extent_buffer *eb,
3495 struct btrfs_fs_info *fs_info,
3496 struct extent_page_data *epd)
3497 {
3498 int i, num_pages;
3499 int flush = 0;
3500 int ret = 0;
3501
3502 if (!btrfs_try_tree_write_lock(eb)) {
3503 flush = 1;
3504 flush_write_bio(epd);
3505 btrfs_tree_lock(eb);
3506 }
3507
3508 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3509 btrfs_tree_unlock(eb);
3510 if (!epd->sync_io)
3511 return 0;
3512 if (!flush) {
3513 flush_write_bio(epd);
3514 flush = 1;
3515 }
3516 while (1) {
3517 wait_on_extent_buffer_writeback(eb);
3518 btrfs_tree_lock(eb);
3519 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3520 break;
3521 btrfs_tree_unlock(eb);
3522 }
3523 }
3524
3525 /*
3526 * We need to do this to prevent races in people who check if the eb is
3527 * under IO since we can end up having no IO bits set for a short period
3528 * of time.
3529 */
3530 spin_lock(&eb->refs_lock);
3531 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3532 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3533 spin_unlock(&eb->refs_lock);
3534 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3535 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3536 -eb->len,
3537 fs_info->dirty_metadata_batch);
3538 ret = 1;
3539 } else {
3540 spin_unlock(&eb->refs_lock);
3541 }
3542
3543 btrfs_tree_unlock(eb);
3544
3545 if (!ret)
3546 return ret;
3547
3548 num_pages = num_extent_pages(eb);
3549 for (i = 0; i < num_pages; i++) {
3550 struct page *p = eb->pages[i];
3551
3552 if (!trylock_page(p)) {
3553 if (!flush) {
3554 flush_write_bio(epd);
3555 flush = 1;
3556 }
3557 lock_page(p);
3558 }
3559 }
3560
3561 return ret;
3562 }
3563
3564 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3565 {
3566 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3567 smp_mb__after_atomic();
3568 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3569 }
3570
3571 static void set_btree_ioerr(struct page *page)
3572 {
3573 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3574
3575 SetPageError(page);
3576 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3577 return;
3578
3579 /*
3580 * If writeback for a btree extent that doesn't belong to a log tree
3581 * failed, increment the counter transaction->eb_write_errors.
3582 * We do this because while the transaction is running and before it's
3583 * committing (when we call filemap_fdata[write|wait]_range against
3584 * the btree inode), we might have
3585 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3586 * returns an error or an error happens during writeback, when we're
3587 * committing the transaction we wouldn't know about it, since the pages
3588 * can be no longer dirty nor marked anymore for writeback (if a
3589 * subsequent modification to the extent buffer didn't happen before the
3590 * transaction commit), which makes filemap_fdata[write|wait]_range not
3591 * able to find the pages tagged with SetPageError at transaction
3592 * commit time. So if this happens we must abort the transaction,
3593 * otherwise we commit a super block with btree roots that point to
3594 * btree nodes/leafs whose content on disk is invalid - either garbage
3595 * or the content of some node/leaf from a past generation that got
3596 * cowed or deleted and is no longer valid.
3597 *
3598 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3599 * not be enough - we need to distinguish between log tree extents vs
3600 * non-log tree extents, and the next filemap_fdatawait_range() call
3601 * will catch and clear such errors in the mapping - and that call might
3602 * be from a log sync and not from a transaction commit. Also, checking
3603 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3604 * not done and would not be reliable - the eb might have been released
3605 * from memory and reading it back again means that flag would not be
3606 * set (since it's a runtime flag, not persisted on disk).
3607 *
3608 * Using the flags below in the btree inode also makes us achieve the
3609 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3610 * writeback for all dirty pages and before filemap_fdatawait_range()
3611 * is called, the writeback for all dirty pages had already finished
3612 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3613 * filemap_fdatawait_range() would return success, as it could not know
3614 * that writeback errors happened (the pages were no longer tagged for
3615 * writeback).
3616 */
3617 switch (eb->log_index) {
3618 case -1:
3619 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3620 break;
3621 case 0:
3622 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3623 break;
3624 case 1:
3625 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3626 break;
3627 default:
3628 BUG(); /* unexpected, logic error */
3629 }
3630 }
3631
3632 static void end_bio_extent_buffer_writepage(struct bio *bio)
3633 {
3634 struct bio_vec *bvec;
3635 struct extent_buffer *eb;
3636 int i, done;
3637
3638 ASSERT(!bio_flagged(bio, BIO_CLONED));
3639 bio_for_each_segment_all(bvec, bio, i) {
3640 struct page *page = bvec->bv_page;
3641
3642 eb = (struct extent_buffer *)page->private;
3643 BUG_ON(!eb);
3644 done = atomic_dec_and_test(&eb->io_pages);
3645
3646 if (bio->bi_status ||
3647 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3648 ClearPageUptodate(page);
3649 set_btree_ioerr(page);
3650 }
3651
3652 end_page_writeback(page);
3653
3654 if (!done)
3655 continue;
3656
3657 end_extent_buffer_writeback(eb);
3658 }
3659
3660 bio_put(bio);
3661 }
3662
3663 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3664 struct btrfs_fs_info *fs_info,
3665 struct writeback_control *wbc,
3666 struct extent_page_data *epd)
3667 {
3668 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3669 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3670 u64 offset = eb->start;
3671 u32 nritems;
3672 int i, num_pages;
3673 unsigned long start, end;
3674 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3675 int ret = 0;
3676
3677 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3678 num_pages = num_extent_pages(eb);
3679 atomic_set(&eb->io_pages, num_pages);
3680
3681 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3682 nritems = btrfs_header_nritems(eb);
3683 if (btrfs_header_level(eb) > 0) {
3684 end = btrfs_node_key_ptr_offset(nritems);
3685
3686 memzero_extent_buffer(eb, end, eb->len - end);
3687 } else {
3688 /*
3689 * leaf:
3690 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3691 */
3692 start = btrfs_item_nr_offset(nritems);
3693 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3694 memzero_extent_buffer(eb, start, end - start);
3695 }
3696
3697 for (i = 0; i < num_pages; i++) {
3698 struct page *p = eb->pages[i];
3699
3700 clear_page_dirty_for_io(p);
3701 set_page_writeback(p);
3702 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3703 p, offset, PAGE_SIZE, 0, bdev,
3704 &epd->bio,
3705 end_bio_extent_buffer_writepage,
3706 0, 0, 0, false);
3707 if (ret) {
3708 set_btree_ioerr(p);
3709 if (PageWriteback(p))
3710 end_page_writeback(p);
3711 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3712 end_extent_buffer_writeback(eb);
3713 ret = -EIO;
3714 break;
3715 }
3716 offset += PAGE_SIZE;
3717 update_nr_written(wbc, 1);
3718 unlock_page(p);
3719 }
3720
3721 if (unlikely(ret)) {
3722 for (; i < num_pages; i++) {
3723 struct page *p = eb->pages[i];
3724 clear_page_dirty_for_io(p);
3725 unlock_page(p);
3726 }
3727 }
3728
3729 return ret;
3730 }
3731
3732 int btree_write_cache_pages(struct address_space *mapping,
3733 struct writeback_control *wbc)
3734 {
3735 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3736 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3737 struct extent_buffer *eb, *prev_eb = NULL;
3738 struct extent_page_data epd = {
3739 .bio = NULL,
3740 .tree = tree,
3741 .extent_locked = 0,
3742 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3743 };
3744 int ret = 0;
3745 int done = 0;
3746 int nr_to_write_done = 0;
3747 struct pagevec pvec;
3748 int nr_pages;
3749 pgoff_t index;
3750 pgoff_t end; /* Inclusive */
3751 int scanned = 0;
3752 xa_mark_t tag;
3753
3754 pagevec_init(&pvec);
3755 if (wbc->range_cyclic) {
3756 index = mapping->writeback_index; /* Start from prev offset */
3757 end = -1;
3758 } else {
3759 index = wbc->range_start >> PAGE_SHIFT;
3760 end = wbc->range_end >> PAGE_SHIFT;
3761 scanned = 1;
3762 }
3763 if (wbc->sync_mode == WB_SYNC_ALL)
3764 tag = PAGECACHE_TAG_TOWRITE;
3765 else
3766 tag = PAGECACHE_TAG_DIRTY;
3767 retry:
3768 if (wbc->sync_mode == WB_SYNC_ALL)
3769 tag_pages_for_writeback(mapping, index, end);
3770 while (!done && !nr_to_write_done && (index <= end) &&
3771 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3772 tag))) {
3773 unsigned i;
3774
3775 scanned = 1;
3776 for (i = 0; i < nr_pages; i++) {
3777 struct page *page = pvec.pages[i];
3778
3779 if (!PagePrivate(page))
3780 continue;
3781
3782 spin_lock(&mapping->private_lock);
3783 if (!PagePrivate(page)) {
3784 spin_unlock(&mapping->private_lock);
3785 continue;
3786 }
3787
3788 eb = (struct extent_buffer *)page->private;
3789
3790 /*
3791 * Shouldn't happen and normally this would be a BUG_ON
3792 * but no sense in crashing the users box for something
3793 * we can survive anyway.
3794 */
3795 if (WARN_ON(!eb)) {
3796 spin_unlock(&mapping->private_lock);
3797 continue;
3798 }
3799
3800 if (eb == prev_eb) {
3801 spin_unlock(&mapping->private_lock);
3802 continue;
3803 }
3804
3805 ret = atomic_inc_not_zero(&eb->refs);
3806 spin_unlock(&mapping->private_lock);
3807 if (!ret)
3808 continue;
3809
3810 prev_eb = eb;
3811 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3812 if (!ret) {
3813 free_extent_buffer(eb);
3814 continue;
3815 }
3816
3817 ret = write_one_eb(eb, fs_info, wbc, &epd);
3818 if (ret) {
3819 done = 1;
3820 free_extent_buffer(eb);
3821 break;
3822 }
3823 free_extent_buffer(eb);
3824
3825 /*
3826 * the filesystem may choose to bump up nr_to_write.
3827 * We have to make sure to honor the new nr_to_write
3828 * at any time
3829 */
3830 nr_to_write_done = wbc->nr_to_write <= 0;
3831 }
3832 pagevec_release(&pvec);
3833 cond_resched();
3834 }
3835 if (!scanned && !done) {
3836 /*
3837 * We hit the last page and there is more work to be done: wrap
3838 * back to the start of the file
3839 */
3840 scanned = 1;
3841 index = 0;
3842 goto retry;
3843 }
3844 flush_write_bio(&epd);
3845 return ret;
3846 }
3847
3848 /**
3849 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3850 * @mapping: address space structure to write
3851 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3852 * @data: data passed to __extent_writepage function
3853 *
3854 * If a page is already under I/O, write_cache_pages() skips it, even
3855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3857 * and msync() need to guarantee that all the data which was dirty at the time
3858 * the call was made get new I/O started against them. If wbc->sync_mode is
3859 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3860 * existing IO to complete.
3861 */
3862 static int extent_write_cache_pages(struct address_space *mapping,
3863 struct writeback_control *wbc,
3864 struct extent_page_data *epd)
3865 {
3866 struct inode *inode = mapping->host;
3867 int ret = 0;
3868 int done = 0;
3869 int nr_to_write_done = 0;
3870 struct pagevec pvec;
3871 int nr_pages;
3872 pgoff_t index;
3873 pgoff_t end; /* Inclusive */
3874 pgoff_t done_index;
3875 int range_whole = 0;
3876 int scanned = 0;
3877 xa_mark_t tag;
3878
3879 /*
3880 * We have to hold onto the inode so that ordered extents can do their
3881 * work when the IO finishes. The alternative to this is failing to add
3882 * an ordered extent if the igrab() fails there and that is a huge pain
3883 * to deal with, so instead just hold onto the inode throughout the
3884 * writepages operation. If it fails here we are freeing up the inode
3885 * anyway and we'd rather not waste our time writing out stuff that is
3886 * going to be truncated anyway.
3887 */
3888 if (!igrab(inode))
3889 return 0;
3890
3891 pagevec_init(&pvec);
3892 if (wbc->range_cyclic) {
3893 index = mapping->writeback_index; /* Start from prev offset */
3894 end = -1;
3895 } else {
3896 index = wbc->range_start >> PAGE_SHIFT;
3897 end = wbc->range_end >> PAGE_SHIFT;
3898 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3899 range_whole = 1;
3900 scanned = 1;
3901 }
3902
3903 /*
3904 * We do the tagged writepage as long as the snapshot flush bit is set
3905 * and we are the first one who do the filemap_flush() on this inode.
3906 *
3907 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3908 * not race in and drop the bit.
3909 */
3910 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3911 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3912 &BTRFS_I(inode)->runtime_flags))
3913 wbc->tagged_writepages = 1;
3914
3915 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3916 tag = PAGECACHE_TAG_TOWRITE;
3917 else
3918 tag = PAGECACHE_TAG_DIRTY;
3919 retry:
3920 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3921 tag_pages_for_writeback(mapping, index, end);
3922 done_index = index;
3923 while (!done && !nr_to_write_done && (index <= end) &&
3924 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3925 &index, end, tag))) {
3926 unsigned i;
3927
3928 scanned = 1;
3929 for (i = 0; i < nr_pages; i++) {
3930 struct page *page = pvec.pages[i];
3931
3932 done_index = page->index;
3933 /*
3934 * At this point we hold neither the i_pages lock nor
3935 * the page lock: the page may be truncated or
3936 * invalidated (changing page->mapping to NULL),
3937 * or even swizzled back from swapper_space to
3938 * tmpfs file mapping
3939 */
3940 if (!trylock_page(page)) {
3941 flush_write_bio(epd);
3942 lock_page(page);
3943 }
3944
3945 if (unlikely(page->mapping != mapping)) {
3946 unlock_page(page);
3947 continue;
3948 }
3949
3950 if (wbc->sync_mode != WB_SYNC_NONE) {
3951 if (PageWriteback(page))
3952 flush_write_bio(epd);
3953 wait_on_page_writeback(page);
3954 }
3955
3956 if (PageWriteback(page) ||
3957 !clear_page_dirty_for_io(page)) {
3958 unlock_page(page);
3959 continue;
3960 }
3961
3962 ret = __extent_writepage(page, wbc, epd);
3963
3964 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3965 unlock_page(page);
3966 ret = 0;
3967 }
3968 if (ret < 0) {
3969 /*
3970 * done_index is set past this page,
3971 * so media errors will not choke
3972 * background writeout for the entire
3973 * file. This has consequences for
3974 * range_cyclic semantics (ie. it may
3975 * not be suitable for data integrity
3976 * writeout).
3977 */
3978 done_index = page->index + 1;
3979 done = 1;
3980 break;
3981 }
3982
3983 /*
3984 * the filesystem may choose to bump up nr_to_write.
3985 * We have to make sure to honor the new nr_to_write
3986 * at any time
3987 */
3988 nr_to_write_done = wbc->nr_to_write <= 0;
3989 }
3990 pagevec_release(&pvec);
3991 cond_resched();
3992 }
3993 if (!scanned && !done) {
3994 /*
3995 * We hit the last page and there is more work to be done: wrap
3996 * back to the start of the file
3997 */
3998 scanned = 1;
3999 index = 0;
4000 goto retry;
4001 }
4002
4003 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4004 mapping->writeback_index = done_index;
4005
4006 btrfs_add_delayed_iput(inode);
4007 return ret;
4008 }
4009
4010 static void flush_write_bio(struct extent_page_data *epd)
4011 {
4012 if (epd->bio) {
4013 int ret;
4014
4015 ret = submit_one_bio(epd->bio, 0, 0);
4016 BUG_ON(ret < 0); /* -ENOMEM */
4017 epd->bio = NULL;
4018 }
4019 }
4020
4021 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4022 {
4023 int ret;
4024 struct extent_page_data epd = {
4025 .bio = NULL,
4026 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4027 .extent_locked = 0,
4028 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4029 };
4030
4031 ret = __extent_writepage(page, wbc, &epd);
4032
4033 flush_write_bio(&epd);
4034 return ret;
4035 }
4036
4037 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4038 int mode)
4039 {
4040 int ret = 0;
4041 struct address_space *mapping = inode->i_mapping;
4042 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4043 struct page *page;
4044 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4045 PAGE_SHIFT;
4046
4047 struct extent_page_data epd = {
4048 .bio = NULL,
4049 .tree = tree,
4050 .extent_locked = 1,
4051 .sync_io = mode == WB_SYNC_ALL,
4052 };
4053 struct writeback_control wbc_writepages = {
4054 .sync_mode = mode,
4055 .nr_to_write = nr_pages * 2,
4056 .range_start = start,
4057 .range_end = end + 1,
4058 };
4059
4060 while (start <= end) {
4061 page = find_get_page(mapping, start >> PAGE_SHIFT);
4062 if (clear_page_dirty_for_io(page))
4063 ret = __extent_writepage(page, &wbc_writepages, &epd);
4064 else {
4065 btrfs_writepage_endio_finish_ordered(page, start,
4066 start + PAGE_SIZE - 1, 1);
4067 unlock_page(page);
4068 }
4069 put_page(page);
4070 start += PAGE_SIZE;
4071 }
4072
4073 flush_write_bio(&epd);
4074 return ret;
4075 }
4076
4077 int extent_writepages(struct address_space *mapping,
4078 struct writeback_control *wbc)
4079 {
4080 int ret = 0;
4081 struct extent_page_data epd = {
4082 .bio = NULL,
4083 .tree = &BTRFS_I(mapping->host)->io_tree,
4084 .extent_locked = 0,
4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086 };
4087
4088 ret = extent_write_cache_pages(mapping, wbc, &epd);
4089 flush_write_bio(&epd);
4090 return ret;
4091 }
4092
4093 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4094 unsigned nr_pages)
4095 {
4096 struct bio *bio = NULL;
4097 unsigned long bio_flags = 0;
4098 struct page *pagepool[16];
4099 struct extent_map *em_cached = NULL;
4100 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4101 int nr = 0;
4102 u64 prev_em_start = (u64)-1;
4103
4104 while (!list_empty(pages)) {
4105 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4106 struct page *page = lru_to_page(pages);
4107
4108 prefetchw(&page->flags);
4109 list_del(&page->lru);
4110 if (add_to_page_cache_lru(page, mapping, page->index,
4111 readahead_gfp_mask(mapping))) {
4112 put_page(page);
4113 continue;
4114 }
4115
4116 pagepool[nr++] = page;
4117 }
4118
4119 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4120 &bio_flags, &prev_em_start);
4121 }
4122
4123 if (em_cached)
4124 free_extent_map(em_cached);
4125
4126 if (bio)
4127 return submit_one_bio(bio, 0, bio_flags);
4128 return 0;
4129 }
4130
4131 /*
4132 * basic invalidatepage code, this waits on any locked or writeback
4133 * ranges corresponding to the page, and then deletes any extent state
4134 * records from the tree
4135 */
4136 int extent_invalidatepage(struct extent_io_tree *tree,
4137 struct page *page, unsigned long offset)
4138 {
4139 struct extent_state *cached_state = NULL;
4140 u64 start = page_offset(page);
4141 u64 end = start + PAGE_SIZE - 1;
4142 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4143
4144 start += ALIGN(offset, blocksize);
4145 if (start > end)
4146 return 0;
4147
4148 lock_extent_bits(tree, start, end, &cached_state);
4149 wait_on_page_writeback(page);
4150 clear_extent_bit(tree, start, end,
4151 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4152 EXTENT_DO_ACCOUNTING,
4153 1, 1, &cached_state);
4154 return 0;
4155 }
4156
4157 /*
4158 * a helper for releasepage, this tests for areas of the page that
4159 * are locked or under IO and drops the related state bits if it is safe
4160 * to drop the page.
4161 */
4162 static int try_release_extent_state(struct extent_io_tree *tree,
4163 struct page *page, gfp_t mask)
4164 {
4165 u64 start = page_offset(page);
4166 u64 end = start + PAGE_SIZE - 1;
4167 int ret = 1;
4168
4169 if (test_range_bit(tree, start, end,
4170 EXTENT_IOBITS, 0, NULL))
4171 ret = 0;
4172 else {
4173 /*
4174 * at this point we can safely clear everything except the
4175 * locked bit and the nodatasum bit
4176 */
4177 ret = __clear_extent_bit(tree, start, end,
4178 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4179 0, 0, NULL, mask, NULL);
4180
4181 /* if clear_extent_bit failed for enomem reasons,
4182 * we can't allow the release to continue.
4183 */
4184 if (ret < 0)
4185 ret = 0;
4186 else
4187 ret = 1;
4188 }
4189 return ret;
4190 }
4191
4192 /*
4193 * a helper for releasepage. As long as there are no locked extents
4194 * in the range corresponding to the page, both state records and extent
4195 * map records are removed
4196 */
4197 int try_release_extent_mapping(struct page *page, gfp_t mask)
4198 {
4199 struct extent_map *em;
4200 u64 start = page_offset(page);
4201 u64 end = start + PAGE_SIZE - 1;
4202 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4203 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4204 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4205
4206 if (gfpflags_allow_blocking(mask) &&
4207 page->mapping->host->i_size > SZ_16M) {
4208 u64 len;
4209 while (start <= end) {
4210 len = end - start + 1;
4211 write_lock(&map->lock);
4212 em = lookup_extent_mapping(map, start, len);
4213 if (!em) {
4214 write_unlock(&map->lock);
4215 break;
4216 }
4217 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4218 em->start != start) {
4219 write_unlock(&map->lock);
4220 free_extent_map(em);
4221 break;
4222 }
4223 if (!test_range_bit(tree, em->start,
4224 extent_map_end(em) - 1,
4225 EXTENT_LOCKED | EXTENT_WRITEBACK,
4226 0, NULL)) {
4227 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4228 &btrfs_inode->runtime_flags);
4229 remove_extent_mapping(map, em);
4230 /* once for the rb tree */
4231 free_extent_map(em);
4232 }
4233 start = extent_map_end(em);
4234 write_unlock(&map->lock);
4235
4236 /* once for us */
4237 free_extent_map(em);
4238 }
4239 }
4240 return try_release_extent_state(tree, page, mask);
4241 }
4242
4243 /*
4244 * helper function for fiemap, which doesn't want to see any holes.
4245 * This maps until we find something past 'last'
4246 */
4247 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4248 u64 offset, u64 last)
4249 {
4250 u64 sectorsize = btrfs_inode_sectorsize(inode);
4251 struct extent_map *em;
4252 u64 len;
4253
4254 if (offset >= last)
4255 return NULL;
4256
4257 while (1) {
4258 len = last - offset;
4259 if (len == 0)
4260 break;
4261 len = ALIGN(len, sectorsize);
4262 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4263 if (IS_ERR_OR_NULL(em))
4264 return em;
4265
4266 /* if this isn't a hole return it */
4267 if (em->block_start != EXTENT_MAP_HOLE)
4268 return em;
4269
4270 /* this is a hole, advance to the next extent */
4271 offset = extent_map_end(em);
4272 free_extent_map(em);
4273 if (offset >= last)
4274 break;
4275 }
4276 return NULL;
4277 }
4278
4279 /*
4280 * To cache previous fiemap extent
4281 *
4282 * Will be used for merging fiemap extent
4283 */
4284 struct fiemap_cache {
4285 u64 offset;
4286 u64 phys;
4287 u64 len;
4288 u32 flags;
4289 bool cached;
4290 };
4291
4292 /*
4293 * Helper to submit fiemap extent.
4294 *
4295 * Will try to merge current fiemap extent specified by @offset, @phys,
4296 * @len and @flags with cached one.
4297 * And only when we fails to merge, cached one will be submitted as
4298 * fiemap extent.
4299 *
4300 * Return value is the same as fiemap_fill_next_extent().
4301 */
4302 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4303 struct fiemap_cache *cache,
4304 u64 offset, u64 phys, u64 len, u32 flags)
4305 {
4306 int ret = 0;
4307
4308 if (!cache->cached)
4309 goto assign;
4310
4311 /*
4312 * Sanity check, extent_fiemap() should have ensured that new
4313 * fiemap extent won't overlap with cached one.
4314 * Not recoverable.
4315 *
4316 * NOTE: Physical address can overlap, due to compression
4317 */
4318 if (cache->offset + cache->len > offset) {
4319 WARN_ON(1);
4320 return -EINVAL;
4321 }
4322
4323 /*
4324 * Only merges fiemap extents if
4325 * 1) Their logical addresses are continuous
4326 *
4327 * 2) Their physical addresses are continuous
4328 * So truly compressed (physical size smaller than logical size)
4329 * extents won't get merged with each other
4330 *
4331 * 3) Share same flags except FIEMAP_EXTENT_LAST
4332 * So regular extent won't get merged with prealloc extent
4333 */
4334 if (cache->offset + cache->len == offset &&
4335 cache->phys + cache->len == phys &&
4336 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4337 (flags & ~FIEMAP_EXTENT_LAST)) {
4338 cache->len += len;
4339 cache->flags |= flags;
4340 goto try_submit_last;
4341 }
4342
4343 /* Not mergeable, need to submit cached one */
4344 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4345 cache->len, cache->flags);
4346 cache->cached = false;
4347 if (ret)
4348 return ret;
4349 assign:
4350 cache->cached = true;
4351 cache->offset = offset;
4352 cache->phys = phys;
4353 cache->len = len;
4354 cache->flags = flags;
4355 try_submit_last:
4356 if (cache->flags & FIEMAP_EXTENT_LAST) {
4357 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4358 cache->phys, cache->len, cache->flags);
4359 cache->cached = false;
4360 }
4361 return ret;
4362 }
4363
4364 /*
4365 * Emit last fiemap cache
4366 *
4367 * The last fiemap cache may still be cached in the following case:
4368 * 0 4k 8k
4369 * |<- Fiemap range ->|
4370 * |<------------ First extent ----------->|
4371 *
4372 * In this case, the first extent range will be cached but not emitted.
4373 * So we must emit it before ending extent_fiemap().
4374 */
4375 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4376 struct fiemap_extent_info *fieinfo,
4377 struct fiemap_cache *cache)
4378 {
4379 int ret;
4380
4381 if (!cache->cached)
4382 return 0;
4383
4384 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4385 cache->len, cache->flags);
4386 cache->cached = false;
4387 if (ret > 0)
4388 ret = 0;
4389 return ret;
4390 }
4391
4392 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4393 __u64 start, __u64 len)
4394 {
4395 int ret = 0;
4396 u64 off = start;
4397 u64 max = start + len;
4398 u32 flags = 0;
4399 u32 found_type;
4400 u64 last;
4401 u64 last_for_get_extent = 0;
4402 u64 disko = 0;
4403 u64 isize = i_size_read(inode);
4404 struct btrfs_key found_key;
4405 struct extent_map *em = NULL;
4406 struct extent_state *cached_state = NULL;
4407 struct btrfs_path *path;
4408 struct btrfs_root *root = BTRFS_I(inode)->root;
4409 struct fiemap_cache cache = { 0 };
4410 int end = 0;
4411 u64 em_start = 0;
4412 u64 em_len = 0;
4413 u64 em_end = 0;
4414
4415 if (len == 0)
4416 return -EINVAL;
4417
4418 path = btrfs_alloc_path();
4419 if (!path)
4420 return -ENOMEM;
4421 path->leave_spinning = 1;
4422
4423 start = round_down(start, btrfs_inode_sectorsize(inode));
4424 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4425
4426 /*
4427 * lookup the last file extent. We're not using i_size here
4428 * because there might be preallocation past i_size
4429 */
4430 ret = btrfs_lookup_file_extent(NULL, root, path,
4431 btrfs_ino(BTRFS_I(inode)), -1, 0);
4432 if (ret < 0) {
4433 btrfs_free_path(path);
4434 return ret;
4435 } else {
4436 WARN_ON(!ret);
4437 if (ret == 1)
4438 ret = 0;
4439 }
4440
4441 path->slots[0]--;
4442 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4443 found_type = found_key.type;
4444
4445 /* No extents, but there might be delalloc bits */
4446 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4447 found_type != BTRFS_EXTENT_DATA_KEY) {
4448 /* have to trust i_size as the end */
4449 last = (u64)-1;
4450 last_for_get_extent = isize;
4451 } else {
4452 /*
4453 * remember the start of the last extent. There are a
4454 * bunch of different factors that go into the length of the
4455 * extent, so its much less complex to remember where it started
4456 */
4457 last = found_key.offset;
4458 last_for_get_extent = last + 1;
4459 }
4460 btrfs_release_path(path);
4461
4462 /*
4463 * we might have some extents allocated but more delalloc past those
4464 * extents. so, we trust isize unless the start of the last extent is
4465 * beyond isize
4466 */
4467 if (last < isize) {
4468 last = (u64)-1;
4469 last_for_get_extent = isize;
4470 }
4471
4472 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4473 &cached_state);
4474
4475 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4476 if (!em)
4477 goto out;
4478 if (IS_ERR(em)) {
4479 ret = PTR_ERR(em);
4480 goto out;
4481 }
4482
4483 while (!end) {
4484 u64 offset_in_extent = 0;
4485
4486 /* break if the extent we found is outside the range */
4487 if (em->start >= max || extent_map_end(em) < off)
4488 break;
4489
4490 /*
4491 * get_extent may return an extent that starts before our
4492 * requested range. We have to make sure the ranges
4493 * we return to fiemap always move forward and don't
4494 * overlap, so adjust the offsets here
4495 */
4496 em_start = max(em->start, off);
4497
4498 /*
4499 * record the offset from the start of the extent
4500 * for adjusting the disk offset below. Only do this if the
4501 * extent isn't compressed since our in ram offset may be past
4502 * what we have actually allocated on disk.
4503 */
4504 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4505 offset_in_extent = em_start - em->start;
4506 em_end = extent_map_end(em);
4507 em_len = em_end - em_start;
4508 flags = 0;
4509 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4510 disko = em->block_start + offset_in_extent;
4511 else
4512 disko = 0;
4513
4514 /*
4515 * bump off for our next call to get_extent
4516 */
4517 off = extent_map_end(em);
4518 if (off >= max)
4519 end = 1;
4520
4521 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4522 end = 1;
4523 flags |= FIEMAP_EXTENT_LAST;
4524 } else if (em->block_start == EXTENT_MAP_INLINE) {
4525 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4526 FIEMAP_EXTENT_NOT_ALIGNED);
4527 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4528 flags |= (FIEMAP_EXTENT_DELALLOC |
4529 FIEMAP_EXTENT_UNKNOWN);
4530 } else if (fieinfo->fi_extents_max) {
4531 u64 bytenr = em->block_start -
4532 (em->start - em->orig_start);
4533
4534 /*
4535 * As btrfs supports shared space, this information
4536 * can be exported to userspace tools via
4537 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4538 * then we're just getting a count and we can skip the
4539 * lookup stuff.
4540 */
4541 ret = btrfs_check_shared(root,
4542 btrfs_ino(BTRFS_I(inode)),
4543 bytenr);
4544 if (ret < 0)
4545 goto out_free;
4546 if (ret)
4547 flags |= FIEMAP_EXTENT_SHARED;
4548 ret = 0;
4549 }
4550 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4551 flags |= FIEMAP_EXTENT_ENCODED;
4552 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4553 flags |= FIEMAP_EXTENT_UNWRITTEN;
4554
4555 free_extent_map(em);
4556 em = NULL;
4557 if ((em_start >= last) || em_len == (u64)-1 ||
4558 (last == (u64)-1 && isize <= em_end)) {
4559 flags |= FIEMAP_EXTENT_LAST;
4560 end = 1;
4561 }
4562
4563 /* now scan forward to see if this is really the last extent. */
4564 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4565 if (IS_ERR(em)) {
4566 ret = PTR_ERR(em);
4567 goto out;
4568 }
4569 if (!em) {
4570 flags |= FIEMAP_EXTENT_LAST;
4571 end = 1;
4572 }
4573 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4574 em_len, flags);
4575 if (ret) {
4576 if (ret == 1)
4577 ret = 0;
4578 goto out_free;
4579 }
4580 }
4581 out_free:
4582 if (!ret)
4583 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4584 free_extent_map(em);
4585 out:
4586 btrfs_free_path(path);
4587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4588 &cached_state);
4589 return ret;
4590 }
4591
4592 static void __free_extent_buffer(struct extent_buffer *eb)
4593 {
4594 btrfs_leak_debug_del(&eb->leak_list);
4595 kmem_cache_free(extent_buffer_cache, eb);
4596 }
4597
4598 int extent_buffer_under_io(struct extent_buffer *eb)
4599 {
4600 return (atomic_read(&eb->io_pages) ||
4601 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4602 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4603 }
4604
4605 /*
4606 * Release all pages attached to the extent buffer.
4607 */
4608 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4609 {
4610 int i;
4611 int num_pages;
4612 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4613
4614 BUG_ON(extent_buffer_under_io(eb));
4615
4616 num_pages = num_extent_pages(eb);
4617 for (i = 0; i < num_pages; i++) {
4618 struct page *page = eb->pages[i];
4619
4620 if (!page)
4621 continue;
4622 if (mapped)
4623 spin_lock(&page->mapping->private_lock);
4624 /*
4625 * We do this since we'll remove the pages after we've
4626 * removed the eb from the radix tree, so we could race
4627 * and have this page now attached to the new eb. So
4628 * only clear page_private if it's still connected to
4629 * this eb.
4630 */
4631 if (PagePrivate(page) &&
4632 page->private == (unsigned long)eb) {
4633 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634 BUG_ON(PageDirty(page));
4635 BUG_ON(PageWriteback(page));
4636 /*
4637 * We need to make sure we haven't be attached
4638 * to a new eb.
4639 */
4640 ClearPagePrivate(page);
4641 set_page_private(page, 0);
4642 /* One for the page private */
4643 put_page(page);
4644 }
4645
4646 if (mapped)
4647 spin_unlock(&page->mapping->private_lock);
4648
4649 /* One for when we allocated the page */
4650 put_page(page);
4651 }
4652 }
4653
4654 /*
4655 * Helper for releasing the extent buffer.
4656 */
4657 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658 {
4659 btrfs_release_extent_buffer_pages(eb);
4660 __free_extent_buffer(eb);
4661 }
4662
4663 static struct extent_buffer *
4664 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665 unsigned long len)
4666 {
4667 struct extent_buffer *eb = NULL;
4668
4669 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670 eb->start = start;
4671 eb->len = len;
4672 eb->fs_info = fs_info;
4673 eb->bflags = 0;
4674 rwlock_init(&eb->lock);
4675 atomic_set(&eb->write_locks, 0);
4676 atomic_set(&eb->read_locks, 0);
4677 atomic_set(&eb->blocking_readers, 0);
4678 atomic_set(&eb->blocking_writers, 0);
4679 atomic_set(&eb->spinning_readers, 0);
4680 atomic_set(&eb->spinning_writers, 0);
4681 eb->lock_nested = 0;
4682 init_waitqueue_head(&eb->write_lock_wq);
4683 init_waitqueue_head(&eb->read_lock_wq);
4684
4685 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686
4687 spin_lock_init(&eb->refs_lock);
4688 atomic_set(&eb->refs, 1);
4689 atomic_set(&eb->io_pages, 0);
4690
4691 /*
4692 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693 */
4694 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4696 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697
4698 return eb;
4699 }
4700
4701 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702 {
4703 int i;
4704 struct page *p;
4705 struct extent_buffer *new;
4706 int num_pages = num_extent_pages(src);
4707
4708 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709 if (new == NULL)
4710 return NULL;
4711
4712 for (i = 0; i < num_pages; i++) {
4713 p = alloc_page(GFP_NOFS);
4714 if (!p) {
4715 btrfs_release_extent_buffer(new);
4716 return NULL;
4717 }
4718 attach_extent_buffer_page(new, p);
4719 WARN_ON(PageDirty(p));
4720 SetPageUptodate(p);
4721 new->pages[i] = p;
4722 copy_page(page_address(p), page_address(src->pages[i]));
4723 }
4724
4725 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4727
4728 return new;
4729 }
4730
4731 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 u64 start, unsigned long len)
4733 {
4734 struct extent_buffer *eb;
4735 int num_pages;
4736 int i;
4737
4738 eb = __alloc_extent_buffer(fs_info, start, len);
4739 if (!eb)
4740 return NULL;
4741
4742 num_pages = num_extent_pages(eb);
4743 for (i = 0; i < num_pages; i++) {
4744 eb->pages[i] = alloc_page(GFP_NOFS);
4745 if (!eb->pages[i])
4746 goto err;
4747 }
4748 set_extent_buffer_uptodate(eb);
4749 btrfs_set_header_nritems(eb, 0);
4750 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4751
4752 return eb;
4753 err:
4754 for (; i > 0; i--)
4755 __free_page(eb->pages[i - 1]);
4756 __free_extent_buffer(eb);
4757 return NULL;
4758 }
4759
4760 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4761 u64 start)
4762 {
4763 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4764 }
4765
4766 static void check_buffer_tree_ref(struct extent_buffer *eb)
4767 {
4768 int refs;
4769 /* the ref bit is tricky. We have to make sure it is set
4770 * if we have the buffer dirty. Otherwise the
4771 * code to free a buffer can end up dropping a dirty
4772 * page
4773 *
4774 * Once the ref bit is set, it won't go away while the
4775 * buffer is dirty or in writeback, and it also won't
4776 * go away while we have the reference count on the
4777 * eb bumped.
4778 *
4779 * We can't just set the ref bit without bumping the
4780 * ref on the eb because free_extent_buffer might
4781 * see the ref bit and try to clear it. If this happens
4782 * free_extent_buffer might end up dropping our original
4783 * ref by mistake and freeing the page before we are able
4784 * to add one more ref.
4785 *
4786 * So bump the ref count first, then set the bit. If someone
4787 * beat us to it, drop the ref we added.
4788 */
4789 refs = atomic_read(&eb->refs);
4790 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4791 return;
4792
4793 spin_lock(&eb->refs_lock);
4794 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4795 atomic_inc(&eb->refs);
4796 spin_unlock(&eb->refs_lock);
4797 }
4798
4799 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4800 struct page *accessed)
4801 {
4802 int num_pages, i;
4803
4804 check_buffer_tree_ref(eb);
4805
4806 num_pages = num_extent_pages(eb);
4807 for (i = 0; i < num_pages; i++) {
4808 struct page *p = eb->pages[i];
4809
4810 if (p != accessed)
4811 mark_page_accessed(p);
4812 }
4813 }
4814
4815 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4816 u64 start)
4817 {
4818 struct extent_buffer *eb;
4819
4820 rcu_read_lock();
4821 eb = radix_tree_lookup(&fs_info->buffer_radix,
4822 start >> PAGE_SHIFT);
4823 if (eb && atomic_inc_not_zero(&eb->refs)) {
4824 rcu_read_unlock();
4825 /*
4826 * Lock our eb's refs_lock to avoid races with
4827 * free_extent_buffer. When we get our eb it might be flagged
4828 * with EXTENT_BUFFER_STALE and another task running
4829 * free_extent_buffer might have seen that flag set,
4830 * eb->refs == 2, that the buffer isn't under IO (dirty and
4831 * writeback flags not set) and it's still in the tree (flag
4832 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4833 * of decrementing the extent buffer's reference count twice.
4834 * So here we could race and increment the eb's reference count,
4835 * clear its stale flag, mark it as dirty and drop our reference
4836 * before the other task finishes executing free_extent_buffer,
4837 * which would later result in an attempt to free an extent
4838 * buffer that is dirty.
4839 */
4840 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4841 spin_lock(&eb->refs_lock);
4842 spin_unlock(&eb->refs_lock);
4843 }
4844 mark_extent_buffer_accessed(eb, NULL);
4845 return eb;
4846 }
4847 rcu_read_unlock();
4848
4849 return NULL;
4850 }
4851
4852 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4853 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4854 u64 start)
4855 {
4856 struct extent_buffer *eb, *exists = NULL;
4857 int ret;
4858
4859 eb = find_extent_buffer(fs_info, start);
4860 if (eb)
4861 return eb;
4862 eb = alloc_dummy_extent_buffer(fs_info, start);
4863 if (!eb)
4864 return NULL;
4865 eb->fs_info = fs_info;
4866 again:
4867 ret = radix_tree_preload(GFP_NOFS);
4868 if (ret)
4869 goto free_eb;
4870 spin_lock(&fs_info->buffer_lock);
4871 ret = radix_tree_insert(&fs_info->buffer_radix,
4872 start >> PAGE_SHIFT, eb);
4873 spin_unlock(&fs_info->buffer_lock);
4874 radix_tree_preload_end();
4875 if (ret == -EEXIST) {
4876 exists = find_extent_buffer(fs_info, start);
4877 if (exists)
4878 goto free_eb;
4879 else
4880 goto again;
4881 }
4882 check_buffer_tree_ref(eb);
4883 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4884
4885 return eb;
4886 free_eb:
4887 btrfs_release_extent_buffer(eb);
4888 return exists;
4889 }
4890 #endif
4891
4892 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4893 u64 start)
4894 {
4895 unsigned long len = fs_info->nodesize;
4896 int num_pages;
4897 int i;
4898 unsigned long index = start >> PAGE_SHIFT;
4899 struct extent_buffer *eb;
4900 struct extent_buffer *exists = NULL;
4901 struct page *p;
4902 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4903 int uptodate = 1;
4904 int ret;
4905
4906 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4907 btrfs_err(fs_info, "bad tree block start %llu", start);
4908 return ERR_PTR(-EINVAL);
4909 }
4910
4911 eb = find_extent_buffer(fs_info, start);
4912 if (eb)
4913 return eb;
4914
4915 eb = __alloc_extent_buffer(fs_info, start, len);
4916 if (!eb)
4917 return ERR_PTR(-ENOMEM);
4918
4919 num_pages = num_extent_pages(eb);
4920 for (i = 0; i < num_pages; i++, index++) {
4921 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4922 if (!p) {
4923 exists = ERR_PTR(-ENOMEM);
4924 goto free_eb;
4925 }
4926
4927 spin_lock(&mapping->private_lock);
4928 if (PagePrivate(p)) {
4929 /*
4930 * We could have already allocated an eb for this page
4931 * and attached one so lets see if we can get a ref on
4932 * the existing eb, and if we can we know it's good and
4933 * we can just return that one, else we know we can just
4934 * overwrite page->private.
4935 */
4936 exists = (struct extent_buffer *)p->private;
4937 if (atomic_inc_not_zero(&exists->refs)) {
4938 spin_unlock(&mapping->private_lock);
4939 unlock_page(p);
4940 put_page(p);
4941 mark_extent_buffer_accessed(exists, p);
4942 goto free_eb;
4943 }
4944 exists = NULL;
4945
4946 /*
4947 * Do this so attach doesn't complain and we need to
4948 * drop the ref the old guy had.
4949 */
4950 ClearPagePrivate(p);
4951 WARN_ON(PageDirty(p));
4952 put_page(p);
4953 }
4954 attach_extent_buffer_page(eb, p);
4955 spin_unlock(&mapping->private_lock);
4956 WARN_ON(PageDirty(p));
4957 eb->pages[i] = p;
4958 if (!PageUptodate(p))
4959 uptodate = 0;
4960
4961 /*
4962 * We can't unlock the pages just yet since the extent buffer
4963 * hasn't been properly inserted in the radix tree, this
4964 * opens a race with btree_releasepage which can free a page
4965 * while we are still filling in all pages for the buffer and
4966 * we could crash.
4967 */
4968 }
4969 if (uptodate)
4970 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4971 again:
4972 ret = radix_tree_preload(GFP_NOFS);
4973 if (ret) {
4974 exists = ERR_PTR(ret);
4975 goto free_eb;
4976 }
4977
4978 spin_lock(&fs_info->buffer_lock);
4979 ret = radix_tree_insert(&fs_info->buffer_radix,
4980 start >> PAGE_SHIFT, eb);
4981 spin_unlock(&fs_info->buffer_lock);
4982 radix_tree_preload_end();
4983 if (ret == -EEXIST) {
4984 exists = find_extent_buffer(fs_info, start);
4985 if (exists)
4986 goto free_eb;
4987 else
4988 goto again;
4989 }
4990 /* add one reference for the tree */
4991 check_buffer_tree_ref(eb);
4992 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4993
4994 /*
4995 * Now it's safe to unlock the pages because any calls to
4996 * btree_releasepage will correctly detect that a page belongs to a
4997 * live buffer and won't free them prematurely.
4998 */
4999 for (i = 0; i < num_pages; i++)
5000 unlock_page(eb->pages[i]);
5001 return eb;
5002
5003 free_eb:
5004 WARN_ON(!atomic_dec_and_test(&eb->refs));
5005 for (i = 0; i < num_pages; i++) {
5006 if (eb->pages[i])
5007 unlock_page(eb->pages[i]);
5008 }
5009
5010 btrfs_release_extent_buffer(eb);
5011 return exists;
5012 }
5013
5014 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5015 {
5016 struct extent_buffer *eb =
5017 container_of(head, struct extent_buffer, rcu_head);
5018
5019 __free_extent_buffer(eb);
5020 }
5021
5022 static int release_extent_buffer(struct extent_buffer *eb)
5023 {
5024 lockdep_assert_held(&eb->refs_lock);
5025
5026 WARN_ON(atomic_read(&eb->refs) == 0);
5027 if (atomic_dec_and_test(&eb->refs)) {
5028 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5029 struct btrfs_fs_info *fs_info = eb->fs_info;
5030
5031 spin_unlock(&eb->refs_lock);
5032
5033 spin_lock(&fs_info->buffer_lock);
5034 radix_tree_delete(&fs_info->buffer_radix,
5035 eb->start >> PAGE_SHIFT);
5036 spin_unlock(&fs_info->buffer_lock);
5037 } else {
5038 spin_unlock(&eb->refs_lock);
5039 }
5040
5041 /* Should be safe to release our pages at this point */
5042 btrfs_release_extent_buffer_pages(eb);
5043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5044 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5045 __free_extent_buffer(eb);
5046 return 1;
5047 }
5048 #endif
5049 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5050 return 1;
5051 }
5052 spin_unlock(&eb->refs_lock);
5053
5054 return 0;
5055 }
5056
5057 void free_extent_buffer(struct extent_buffer *eb)
5058 {
5059 int refs;
5060 int old;
5061 if (!eb)
5062 return;
5063
5064 while (1) {
5065 refs = atomic_read(&eb->refs);
5066 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5067 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5068 refs == 1))
5069 break;
5070 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5071 if (old == refs)
5072 return;
5073 }
5074
5075 spin_lock(&eb->refs_lock);
5076 if (atomic_read(&eb->refs) == 2 &&
5077 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5078 !extent_buffer_under_io(eb) &&
5079 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5080 atomic_dec(&eb->refs);
5081
5082 /*
5083 * I know this is terrible, but it's temporary until we stop tracking
5084 * the uptodate bits and such for the extent buffers.
5085 */
5086 release_extent_buffer(eb);
5087 }
5088
5089 void free_extent_buffer_stale(struct extent_buffer *eb)
5090 {
5091 if (!eb)
5092 return;
5093
5094 spin_lock(&eb->refs_lock);
5095 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5096
5097 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5098 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5099 atomic_dec(&eb->refs);
5100 release_extent_buffer(eb);
5101 }
5102
5103 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5104 {
5105 int i;
5106 int num_pages;
5107 struct page *page;
5108
5109 num_pages = num_extent_pages(eb);
5110
5111 for (i = 0; i < num_pages; i++) {
5112 page = eb->pages[i];
5113 if (!PageDirty(page))
5114 continue;
5115
5116 lock_page(page);
5117 WARN_ON(!PagePrivate(page));
5118
5119 clear_page_dirty_for_io(page);
5120 xa_lock_irq(&page->mapping->i_pages);
5121 if (!PageDirty(page))
5122 __xa_clear_mark(&page->mapping->i_pages,
5123 page_index(page), PAGECACHE_TAG_DIRTY);
5124 xa_unlock_irq(&page->mapping->i_pages);
5125 ClearPageError(page);
5126 unlock_page(page);
5127 }
5128 WARN_ON(atomic_read(&eb->refs) == 0);
5129 }
5130
5131 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5132 {
5133 int i;
5134 int num_pages;
5135 bool was_dirty;
5136
5137 check_buffer_tree_ref(eb);
5138
5139 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5140
5141 num_pages = num_extent_pages(eb);
5142 WARN_ON(atomic_read(&eb->refs) == 0);
5143 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5144
5145 if (!was_dirty)
5146 for (i = 0; i < num_pages; i++)
5147 set_page_dirty(eb->pages[i]);
5148
5149 #ifdef CONFIG_BTRFS_DEBUG
5150 for (i = 0; i < num_pages; i++)
5151 ASSERT(PageDirty(eb->pages[i]));
5152 #endif
5153
5154 return was_dirty;
5155 }
5156
5157 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5158 {
5159 int i;
5160 struct page *page;
5161 int num_pages;
5162
5163 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5164 num_pages = num_extent_pages(eb);
5165 for (i = 0; i < num_pages; i++) {
5166 page = eb->pages[i];
5167 if (page)
5168 ClearPageUptodate(page);
5169 }
5170 }
5171
5172 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5173 {
5174 int i;
5175 struct page *page;
5176 int num_pages;
5177
5178 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5179 num_pages = num_extent_pages(eb);
5180 for (i = 0; i < num_pages; i++) {
5181 page = eb->pages[i];
5182 SetPageUptodate(page);
5183 }
5184 }
5185
5186 int read_extent_buffer_pages(struct extent_io_tree *tree,
5187 struct extent_buffer *eb, int wait, int mirror_num)
5188 {
5189 int i;
5190 struct page *page;
5191 int err;
5192 int ret = 0;
5193 int locked_pages = 0;
5194 int all_uptodate = 1;
5195 int num_pages;
5196 unsigned long num_reads = 0;
5197 struct bio *bio = NULL;
5198 unsigned long bio_flags = 0;
5199
5200 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5201 return 0;
5202
5203 num_pages = num_extent_pages(eb);
5204 for (i = 0; i < num_pages; i++) {
5205 page = eb->pages[i];
5206 if (wait == WAIT_NONE) {
5207 if (!trylock_page(page))
5208 goto unlock_exit;
5209 } else {
5210 lock_page(page);
5211 }
5212 locked_pages++;
5213 }
5214 /*
5215 * We need to firstly lock all pages to make sure that
5216 * the uptodate bit of our pages won't be affected by
5217 * clear_extent_buffer_uptodate().
5218 */
5219 for (i = 0; i < num_pages; i++) {
5220 page = eb->pages[i];
5221 if (!PageUptodate(page)) {
5222 num_reads++;
5223 all_uptodate = 0;
5224 }
5225 }
5226
5227 if (all_uptodate) {
5228 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5229 goto unlock_exit;
5230 }
5231
5232 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5233 eb->read_mirror = 0;
5234 atomic_set(&eb->io_pages, num_reads);
5235 for (i = 0; i < num_pages; i++) {
5236 page = eb->pages[i];
5237
5238 if (!PageUptodate(page)) {
5239 if (ret) {
5240 atomic_dec(&eb->io_pages);
5241 unlock_page(page);
5242 continue;
5243 }
5244
5245 ClearPageError(page);
5246 err = __extent_read_full_page(tree, page,
5247 btree_get_extent, &bio,
5248 mirror_num, &bio_flags,
5249 REQ_META);
5250 if (err) {
5251 ret = err;
5252 /*
5253 * We use &bio in above __extent_read_full_page,
5254 * so we ensure that if it returns error, the
5255 * current page fails to add itself to bio and
5256 * it's been unlocked.
5257 *
5258 * We must dec io_pages by ourselves.
5259 */
5260 atomic_dec(&eb->io_pages);
5261 }
5262 } else {
5263 unlock_page(page);
5264 }
5265 }
5266
5267 if (bio) {
5268 err = submit_one_bio(bio, mirror_num, bio_flags);
5269 if (err)
5270 return err;
5271 }
5272
5273 if (ret || wait != WAIT_COMPLETE)
5274 return ret;
5275
5276 for (i = 0; i < num_pages; i++) {
5277 page = eb->pages[i];
5278 wait_on_page_locked(page);
5279 if (!PageUptodate(page))
5280 ret = -EIO;
5281 }
5282
5283 return ret;
5284
5285 unlock_exit:
5286 while (locked_pages > 0) {
5287 locked_pages--;
5288 page = eb->pages[locked_pages];
5289 unlock_page(page);
5290 }
5291 return ret;
5292 }
5293
5294 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5295 unsigned long start, unsigned long len)
5296 {
5297 size_t cur;
5298 size_t offset;
5299 struct page *page;
5300 char *kaddr;
5301 char *dst = (char *)dstv;
5302 size_t start_offset = offset_in_page(eb->start);
5303 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5304
5305 if (start + len > eb->len) {
5306 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5307 eb->start, eb->len, start, len);
5308 memset(dst, 0, len);
5309 return;
5310 }
5311
5312 offset = offset_in_page(start_offset + start);
5313
5314 while (len > 0) {
5315 page = eb->pages[i];
5316
5317 cur = min(len, (PAGE_SIZE - offset));
5318 kaddr = page_address(page);
5319 memcpy(dst, kaddr + offset, cur);
5320
5321 dst += cur;
5322 len -= cur;
5323 offset = 0;
5324 i++;
5325 }
5326 }
5327
5328 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5329 void __user *dstv,
5330 unsigned long start, unsigned long len)
5331 {
5332 size_t cur;
5333 size_t offset;
5334 struct page *page;
5335 char *kaddr;
5336 char __user *dst = (char __user *)dstv;
5337 size_t start_offset = offset_in_page(eb->start);
5338 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5339 int ret = 0;
5340
5341 WARN_ON(start > eb->len);
5342 WARN_ON(start + len > eb->start + eb->len);
5343
5344 offset = offset_in_page(start_offset + start);
5345
5346 while (len > 0) {
5347 page = eb->pages[i];
5348
5349 cur = min(len, (PAGE_SIZE - offset));
5350 kaddr = page_address(page);
5351 if (copy_to_user(dst, kaddr + offset, cur)) {
5352 ret = -EFAULT;
5353 break;
5354 }
5355
5356 dst += cur;
5357 len -= cur;
5358 offset = 0;
5359 i++;
5360 }
5361
5362 return ret;
5363 }
5364
5365 /*
5366 * return 0 if the item is found within a page.
5367 * return 1 if the item spans two pages.
5368 * return -EINVAL otherwise.
5369 */
5370 int map_private_extent_buffer(const struct extent_buffer *eb,
5371 unsigned long start, unsigned long min_len,
5372 char **map, unsigned long *map_start,
5373 unsigned long *map_len)
5374 {
5375 size_t offset;
5376 char *kaddr;
5377 struct page *p;
5378 size_t start_offset = offset_in_page(eb->start);
5379 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5380 unsigned long end_i = (start_offset + start + min_len - 1) >>
5381 PAGE_SHIFT;
5382
5383 if (start + min_len > eb->len) {
5384 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5385 eb->start, eb->len, start, min_len);
5386 return -EINVAL;
5387 }
5388
5389 if (i != end_i)
5390 return 1;
5391
5392 if (i == 0) {
5393 offset = start_offset;
5394 *map_start = 0;
5395 } else {
5396 offset = 0;
5397 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5398 }
5399
5400 p = eb->pages[i];
5401 kaddr = page_address(p);
5402 *map = kaddr + offset;
5403 *map_len = PAGE_SIZE - offset;
5404 return 0;
5405 }
5406
5407 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5408 unsigned long start, unsigned long len)
5409 {
5410 size_t cur;
5411 size_t offset;
5412 struct page *page;
5413 char *kaddr;
5414 char *ptr = (char *)ptrv;
5415 size_t start_offset = offset_in_page(eb->start);
5416 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5417 int ret = 0;
5418
5419 WARN_ON(start > eb->len);
5420 WARN_ON(start + len > eb->start + eb->len);
5421
5422 offset = offset_in_page(start_offset + start);
5423
5424 while (len > 0) {
5425 page = eb->pages[i];
5426
5427 cur = min(len, (PAGE_SIZE - offset));
5428
5429 kaddr = page_address(page);
5430 ret = memcmp(ptr, kaddr + offset, cur);
5431 if (ret)
5432 break;
5433
5434 ptr += cur;
5435 len -= cur;
5436 offset = 0;
5437 i++;
5438 }
5439 return ret;
5440 }
5441
5442 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5443 const void *srcv)
5444 {
5445 char *kaddr;
5446
5447 WARN_ON(!PageUptodate(eb->pages[0]));
5448 kaddr = page_address(eb->pages[0]);
5449 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5450 BTRFS_FSID_SIZE);
5451 }
5452
5453 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5454 {
5455 char *kaddr;
5456
5457 WARN_ON(!PageUptodate(eb->pages[0]));
5458 kaddr = page_address(eb->pages[0]);
5459 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5460 BTRFS_FSID_SIZE);
5461 }
5462
5463 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5464 unsigned long start, unsigned long len)
5465 {
5466 size_t cur;
5467 size_t offset;
5468 struct page *page;
5469 char *kaddr;
5470 char *src = (char *)srcv;
5471 size_t start_offset = offset_in_page(eb->start);
5472 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5473
5474 WARN_ON(start > eb->len);
5475 WARN_ON(start + len > eb->start + eb->len);
5476
5477 offset = offset_in_page(start_offset + start);
5478
5479 while (len > 0) {
5480 page = eb->pages[i];
5481 WARN_ON(!PageUptodate(page));
5482
5483 cur = min(len, PAGE_SIZE - offset);
5484 kaddr = page_address(page);
5485 memcpy(kaddr + offset, src, cur);
5486
5487 src += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 }
5493
5494 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5495 unsigned long len)
5496 {
5497 size_t cur;
5498 size_t offset;
5499 struct page *page;
5500 char *kaddr;
5501 size_t start_offset = offset_in_page(eb->start);
5502 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5503
5504 WARN_ON(start > eb->len);
5505 WARN_ON(start + len > eb->start + eb->len);
5506
5507 offset = offset_in_page(start_offset + start);
5508
5509 while (len > 0) {
5510 page = eb->pages[i];
5511 WARN_ON(!PageUptodate(page));
5512
5513 cur = min(len, PAGE_SIZE - offset);
5514 kaddr = page_address(page);
5515 memset(kaddr + offset, 0, cur);
5516
5517 len -= cur;
5518 offset = 0;
5519 i++;
5520 }
5521 }
5522
5523 void copy_extent_buffer_full(struct extent_buffer *dst,
5524 struct extent_buffer *src)
5525 {
5526 int i;
5527 int num_pages;
5528
5529 ASSERT(dst->len == src->len);
5530
5531 num_pages = num_extent_pages(dst);
5532 for (i = 0; i < num_pages; i++)
5533 copy_page(page_address(dst->pages[i]),
5534 page_address(src->pages[i]));
5535 }
5536
5537 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5538 unsigned long dst_offset, unsigned long src_offset,
5539 unsigned long len)
5540 {
5541 u64 dst_len = dst->len;
5542 size_t cur;
5543 size_t offset;
5544 struct page *page;
5545 char *kaddr;
5546 size_t start_offset = offset_in_page(dst->start);
5547 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5548
5549 WARN_ON(src->len != dst_len);
5550
5551 offset = offset_in_page(start_offset + dst_offset);
5552
5553 while (len > 0) {
5554 page = dst->pages[i];
5555 WARN_ON(!PageUptodate(page));
5556
5557 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5558
5559 kaddr = page_address(page);
5560 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5561
5562 src_offset += cur;
5563 len -= cur;
5564 offset = 0;
5565 i++;
5566 }
5567 }
5568
5569 /*
5570 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5571 * given bit number
5572 * @eb: the extent buffer
5573 * @start: offset of the bitmap item in the extent buffer
5574 * @nr: bit number
5575 * @page_index: return index of the page in the extent buffer that contains the
5576 * given bit number
5577 * @page_offset: return offset into the page given by page_index
5578 *
5579 * This helper hides the ugliness of finding the byte in an extent buffer which
5580 * contains a given bit.
5581 */
5582 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5583 unsigned long start, unsigned long nr,
5584 unsigned long *page_index,
5585 size_t *page_offset)
5586 {
5587 size_t start_offset = offset_in_page(eb->start);
5588 size_t byte_offset = BIT_BYTE(nr);
5589 size_t offset;
5590
5591 /*
5592 * The byte we want is the offset of the extent buffer + the offset of
5593 * the bitmap item in the extent buffer + the offset of the byte in the
5594 * bitmap item.
5595 */
5596 offset = start_offset + start + byte_offset;
5597
5598 *page_index = offset >> PAGE_SHIFT;
5599 *page_offset = offset_in_page(offset);
5600 }
5601
5602 /**
5603 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5604 * @eb: the extent buffer
5605 * @start: offset of the bitmap item in the extent buffer
5606 * @nr: bit number to test
5607 */
5608 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5609 unsigned long nr)
5610 {
5611 u8 *kaddr;
5612 struct page *page;
5613 unsigned long i;
5614 size_t offset;
5615
5616 eb_bitmap_offset(eb, start, nr, &i, &offset);
5617 page = eb->pages[i];
5618 WARN_ON(!PageUptodate(page));
5619 kaddr = page_address(page);
5620 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5621 }
5622
5623 /**
5624 * extent_buffer_bitmap_set - set an area of a bitmap
5625 * @eb: the extent buffer
5626 * @start: offset of the bitmap item in the extent buffer
5627 * @pos: bit number of the first bit
5628 * @len: number of bits to set
5629 */
5630 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5631 unsigned long pos, unsigned long len)
5632 {
5633 u8 *kaddr;
5634 struct page *page;
5635 unsigned long i;
5636 size_t offset;
5637 const unsigned int size = pos + len;
5638 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5639 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5640
5641 eb_bitmap_offset(eb, start, pos, &i, &offset);
5642 page = eb->pages[i];
5643 WARN_ON(!PageUptodate(page));
5644 kaddr = page_address(page);
5645
5646 while (len >= bits_to_set) {
5647 kaddr[offset] |= mask_to_set;
5648 len -= bits_to_set;
5649 bits_to_set = BITS_PER_BYTE;
5650 mask_to_set = ~0;
5651 if (++offset >= PAGE_SIZE && len > 0) {
5652 offset = 0;
5653 page = eb->pages[++i];
5654 WARN_ON(!PageUptodate(page));
5655 kaddr = page_address(page);
5656 }
5657 }
5658 if (len) {
5659 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5660 kaddr[offset] |= mask_to_set;
5661 }
5662 }
5663
5664
5665 /**
5666 * extent_buffer_bitmap_clear - clear an area of a bitmap
5667 * @eb: the extent buffer
5668 * @start: offset of the bitmap item in the extent buffer
5669 * @pos: bit number of the first bit
5670 * @len: number of bits to clear
5671 */
5672 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5673 unsigned long pos, unsigned long len)
5674 {
5675 u8 *kaddr;
5676 struct page *page;
5677 unsigned long i;
5678 size_t offset;
5679 const unsigned int size = pos + len;
5680 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5681 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5682
5683 eb_bitmap_offset(eb, start, pos, &i, &offset);
5684 page = eb->pages[i];
5685 WARN_ON(!PageUptodate(page));
5686 kaddr = page_address(page);
5687
5688 while (len >= bits_to_clear) {
5689 kaddr[offset] &= ~mask_to_clear;
5690 len -= bits_to_clear;
5691 bits_to_clear = BITS_PER_BYTE;
5692 mask_to_clear = ~0;
5693 if (++offset >= PAGE_SIZE && len > 0) {
5694 offset = 0;
5695 page = eb->pages[++i];
5696 WARN_ON(!PageUptodate(page));
5697 kaddr = page_address(page);
5698 }
5699 }
5700 if (len) {
5701 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5702 kaddr[offset] &= ~mask_to_clear;
5703 }
5704 }
5705
5706 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5707 {
5708 unsigned long distance = (src > dst) ? src - dst : dst - src;
5709 return distance < len;
5710 }
5711
5712 static void copy_pages(struct page *dst_page, struct page *src_page,
5713 unsigned long dst_off, unsigned long src_off,
5714 unsigned long len)
5715 {
5716 char *dst_kaddr = page_address(dst_page);
5717 char *src_kaddr;
5718 int must_memmove = 0;
5719
5720 if (dst_page != src_page) {
5721 src_kaddr = page_address(src_page);
5722 } else {
5723 src_kaddr = dst_kaddr;
5724 if (areas_overlap(src_off, dst_off, len))
5725 must_memmove = 1;
5726 }
5727
5728 if (must_memmove)
5729 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5730 else
5731 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5732 }
5733
5734 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5735 unsigned long src_offset, unsigned long len)
5736 {
5737 struct btrfs_fs_info *fs_info = dst->fs_info;
5738 size_t cur;
5739 size_t dst_off_in_page;
5740 size_t src_off_in_page;
5741 size_t start_offset = offset_in_page(dst->start);
5742 unsigned long dst_i;
5743 unsigned long src_i;
5744
5745 if (src_offset + len > dst->len) {
5746 btrfs_err(fs_info,
5747 "memmove bogus src_offset %lu move len %lu dst len %lu",
5748 src_offset, len, dst->len);
5749 BUG_ON(1);
5750 }
5751 if (dst_offset + len > dst->len) {
5752 btrfs_err(fs_info,
5753 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5754 dst_offset, len, dst->len);
5755 BUG_ON(1);
5756 }
5757
5758 while (len > 0) {
5759 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5760 src_off_in_page = offset_in_page(start_offset + src_offset);
5761
5762 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5763 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5764
5765 cur = min(len, (unsigned long)(PAGE_SIZE -
5766 src_off_in_page));
5767 cur = min_t(unsigned long, cur,
5768 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5769
5770 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5771 dst_off_in_page, src_off_in_page, cur);
5772
5773 src_offset += cur;
5774 dst_offset += cur;
5775 len -= cur;
5776 }
5777 }
5778
5779 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5780 unsigned long src_offset, unsigned long len)
5781 {
5782 struct btrfs_fs_info *fs_info = dst->fs_info;
5783 size_t cur;
5784 size_t dst_off_in_page;
5785 size_t src_off_in_page;
5786 unsigned long dst_end = dst_offset + len - 1;
5787 unsigned long src_end = src_offset + len - 1;
5788 size_t start_offset = offset_in_page(dst->start);
5789 unsigned long dst_i;
5790 unsigned long src_i;
5791
5792 if (src_offset + len > dst->len) {
5793 btrfs_err(fs_info,
5794 "memmove bogus src_offset %lu move len %lu len %lu",
5795 src_offset, len, dst->len);
5796 BUG_ON(1);
5797 }
5798 if (dst_offset + len > dst->len) {
5799 btrfs_err(fs_info,
5800 "memmove bogus dst_offset %lu move len %lu len %lu",
5801 dst_offset, len, dst->len);
5802 BUG_ON(1);
5803 }
5804 if (dst_offset < src_offset) {
5805 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5806 return;
5807 }
5808 while (len > 0) {
5809 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5810 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5811
5812 dst_off_in_page = offset_in_page(start_offset + dst_end);
5813 src_off_in_page = offset_in_page(start_offset + src_end);
5814
5815 cur = min_t(unsigned long, len, src_off_in_page + 1);
5816 cur = min(cur, dst_off_in_page + 1);
5817 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5818 dst_off_in_page - cur + 1,
5819 src_off_in_page - cur + 1, cur);
5820
5821 dst_end -= cur;
5822 src_end -= cur;
5823 len -= cur;
5824 }
5825 }
5826
5827 int try_release_extent_buffer(struct page *page)
5828 {
5829 struct extent_buffer *eb;
5830
5831 /*
5832 * We need to make sure nobody is attaching this page to an eb right
5833 * now.
5834 */
5835 spin_lock(&page->mapping->private_lock);
5836 if (!PagePrivate(page)) {
5837 spin_unlock(&page->mapping->private_lock);
5838 return 1;
5839 }
5840
5841 eb = (struct extent_buffer *)page->private;
5842 BUG_ON(!eb);
5843
5844 /*
5845 * This is a little awful but should be ok, we need to make sure that
5846 * the eb doesn't disappear out from under us while we're looking at
5847 * this page.
5848 */
5849 spin_lock(&eb->refs_lock);
5850 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5851 spin_unlock(&eb->refs_lock);
5852 spin_unlock(&page->mapping->private_lock);
5853 return 0;
5854 }
5855 spin_unlock(&page->mapping->private_lock);
5856
5857 /*
5858 * If tree ref isn't set then we know the ref on this eb is a real ref,
5859 * so just return, this page will likely be freed soon anyway.
5860 */
5861 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5862 spin_unlock(&eb->refs_lock);
5863 return 0;
5864 }
5865
5866 return release_extent_buffer(eb);
5867 }