]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/btrfs/extent_io.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
110 #endif
111
112 #define BUFFER_LRU_MAX 64
113
114 struct tree_entry {
115 u64 start;
116 u64 end;
117 struct rb_node rb_node;
118 };
119
120 struct extent_page_data {
121 struct bio *bio;
122 struct extent_io_tree *tree;
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
125 */
126 unsigned int extent_locked:1;
127
128 /* tells the submit_bio code to use REQ_SYNC */
129 unsigned int sync_io:1;
130 };
131
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133 struct extent_changeset *changeset,
134 int set)
135 {
136 int ret;
137
138 if (!changeset)
139 return 0;
140 if (set && (state->state & bits) == bits)
141 return 0;
142 if (!set && (state->state & bits) == 0)
143 return 0;
144 changeset->bytes_changed += state->end - state->start + 1;
145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
146 GFP_ATOMIC);
147 return ret;
148 }
149
150 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
151 unsigned long bio_flags)
152 {
153 blk_status_t ret = 0;
154 struct bio_vec *bvec = bio_last_bvec_all(bio);
155 struct bio_vec bv;
156 struct extent_io_tree *tree = bio->bi_private;
157 u64 start;
158
159 mp_bvec_last_segment(bvec, &bv);
160 start = page_offset(bv.bv_page) + bv.bv_offset;
161
162 bio->bi_private = NULL;
163
164 if (tree->ops)
165 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
166 mirror_num, bio_flags, start);
167 else
168 btrfsic_submit_bio(bio);
169
170 return blk_status_to_errno(ret);
171 }
172
173 static void flush_write_bio(struct extent_page_data *epd)
174 {
175 if (epd->bio) {
176 int ret;
177
178 ret = submit_one_bio(epd->bio, 0, 0);
179 BUG_ON(ret < 0); /* -ENOMEM */
180 epd->bio = NULL;
181 }
182 }
183
184 int __init extent_io_init(void)
185 {
186 extent_state_cache = kmem_cache_create("btrfs_extent_state",
187 sizeof(struct extent_state), 0,
188 SLAB_MEM_SPREAD, NULL);
189 if (!extent_state_cache)
190 return -ENOMEM;
191
192 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
193 sizeof(struct extent_buffer), 0,
194 SLAB_MEM_SPREAD, NULL);
195 if (!extent_buffer_cache)
196 goto free_state_cache;
197
198 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
199 offsetof(struct btrfs_io_bio, bio),
200 BIOSET_NEED_BVECS))
201 goto free_buffer_cache;
202
203 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
204 goto free_bioset;
205
206 return 0;
207
208 free_bioset:
209 bioset_exit(&btrfs_bioset);
210
211 free_buffer_cache:
212 kmem_cache_destroy(extent_buffer_cache);
213 extent_buffer_cache = NULL;
214
215 free_state_cache:
216 kmem_cache_destroy(extent_state_cache);
217 extent_state_cache = NULL;
218 return -ENOMEM;
219 }
220
221 void __cold extent_io_exit(void)
222 {
223 btrfs_leak_debug_check();
224
225 /*
226 * Make sure all delayed rcu free are flushed before we
227 * destroy caches.
228 */
229 rcu_barrier();
230 kmem_cache_destroy(extent_state_cache);
231 kmem_cache_destroy(extent_buffer_cache);
232 bioset_exit(&btrfs_bioset);
233 }
234
235 void extent_io_tree_init(struct extent_io_tree *tree,
236 void *private_data)
237 {
238 tree->state = RB_ROOT;
239 tree->ops = NULL;
240 tree->dirty_bytes = 0;
241 spin_lock_init(&tree->lock);
242 tree->private_data = private_data;
243 }
244
245 static struct extent_state *alloc_extent_state(gfp_t mask)
246 {
247 struct extent_state *state;
248
249 /*
250 * The given mask might be not appropriate for the slab allocator,
251 * drop the unsupported bits
252 */
253 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
254 state = kmem_cache_alloc(extent_state_cache, mask);
255 if (!state)
256 return state;
257 state->state = 0;
258 state->failrec = NULL;
259 RB_CLEAR_NODE(&state->rb_node);
260 btrfs_leak_debug_add(&state->leak_list, &states);
261 refcount_set(&state->refs, 1);
262 init_waitqueue_head(&state->wq);
263 trace_alloc_extent_state(state, mask, _RET_IP_);
264 return state;
265 }
266
267 void free_extent_state(struct extent_state *state)
268 {
269 if (!state)
270 return;
271 if (refcount_dec_and_test(&state->refs)) {
272 WARN_ON(extent_state_in_tree(state));
273 btrfs_leak_debug_del(&state->leak_list);
274 trace_free_extent_state(state, _RET_IP_);
275 kmem_cache_free(extent_state_cache, state);
276 }
277 }
278
279 static struct rb_node *tree_insert(struct rb_root *root,
280 struct rb_node *search_start,
281 u64 offset,
282 struct rb_node *node,
283 struct rb_node ***p_in,
284 struct rb_node **parent_in)
285 {
286 struct rb_node **p;
287 struct rb_node *parent = NULL;
288 struct tree_entry *entry;
289
290 if (p_in && parent_in) {
291 p = *p_in;
292 parent = *parent_in;
293 goto do_insert;
294 }
295
296 p = search_start ? &search_start : &root->rb_node;
297 while (*p) {
298 parent = *p;
299 entry = rb_entry(parent, struct tree_entry, rb_node);
300
301 if (offset < entry->start)
302 p = &(*p)->rb_left;
303 else if (offset > entry->end)
304 p = &(*p)->rb_right;
305 else
306 return parent;
307 }
308
309 do_insert:
310 rb_link_node(node, parent, p);
311 rb_insert_color(node, root);
312 return NULL;
313 }
314
315 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
316 struct rb_node **next_ret,
317 struct rb_node **prev_ret,
318 struct rb_node ***p_ret,
319 struct rb_node **parent_ret)
320 {
321 struct rb_root *root = &tree->state;
322 struct rb_node **n = &root->rb_node;
323 struct rb_node *prev = NULL;
324 struct rb_node *orig_prev = NULL;
325 struct tree_entry *entry;
326 struct tree_entry *prev_entry = NULL;
327
328 while (*n) {
329 prev = *n;
330 entry = rb_entry(prev, struct tree_entry, rb_node);
331 prev_entry = entry;
332
333 if (offset < entry->start)
334 n = &(*n)->rb_left;
335 else if (offset > entry->end)
336 n = &(*n)->rb_right;
337 else
338 return *n;
339 }
340
341 if (p_ret)
342 *p_ret = n;
343 if (parent_ret)
344 *parent_ret = prev;
345
346 if (next_ret) {
347 orig_prev = prev;
348 while (prev && offset > prev_entry->end) {
349 prev = rb_next(prev);
350 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
351 }
352 *next_ret = prev;
353 prev = orig_prev;
354 }
355
356 if (prev_ret) {
357 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
358 while (prev && offset < prev_entry->start) {
359 prev = rb_prev(prev);
360 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
361 }
362 *prev_ret = prev;
363 }
364 return NULL;
365 }
366
367 static inline struct rb_node *
368 tree_search_for_insert(struct extent_io_tree *tree,
369 u64 offset,
370 struct rb_node ***p_ret,
371 struct rb_node **parent_ret)
372 {
373 struct rb_node *next= NULL;
374 struct rb_node *ret;
375
376 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
377 if (!ret)
378 return next;
379 return ret;
380 }
381
382 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
383 u64 offset)
384 {
385 return tree_search_for_insert(tree, offset, NULL, NULL);
386 }
387
388 /*
389 * utility function to look for merge candidates inside a given range.
390 * Any extents with matching state are merged together into a single
391 * extent in the tree. Extents with EXTENT_IO in their state field
392 * are not merged because the end_io handlers need to be able to do
393 * operations on them without sleeping (or doing allocations/splits).
394 *
395 * This should be called with the tree lock held.
396 */
397 static void merge_state(struct extent_io_tree *tree,
398 struct extent_state *state)
399 {
400 struct extent_state *other;
401 struct rb_node *other_node;
402
403 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
404 return;
405
406 other_node = rb_prev(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->end == state->start - 1 &&
410 other->state == state->state) {
411 if (tree->private_data &&
412 is_data_inode(tree->private_data))
413 btrfs_merge_delalloc_extent(tree->private_data,
414 state, other);
415 state->start = other->start;
416 rb_erase(&other->rb_node, &tree->state);
417 RB_CLEAR_NODE(&other->rb_node);
418 free_extent_state(other);
419 }
420 }
421 other_node = rb_next(&state->rb_node);
422 if (other_node) {
423 other = rb_entry(other_node, struct extent_state, rb_node);
424 if (other->start == state->end + 1 &&
425 other->state == state->state) {
426 if (tree->private_data &&
427 is_data_inode(tree->private_data))
428 btrfs_merge_delalloc_extent(tree->private_data,
429 state, other);
430 state->end = other->end;
431 rb_erase(&other->rb_node, &tree->state);
432 RB_CLEAR_NODE(&other->rb_node);
433 free_extent_state(other);
434 }
435 }
436 }
437
438 static void set_state_bits(struct extent_io_tree *tree,
439 struct extent_state *state, unsigned *bits,
440 struct extent_changeset *changeset);
441
442 /*
443 * insert an extent_state struct into the tree. 'bits' are set on the
444 * struct before it is inserted.
445 *
446 * This may return -EEXIST if the extent is already there, in which case the
447 * state struct is freed.
448 *
449 * The tree lock is not taken internally. This is a utility function and
450 * probably isn't what you want to call (see set/clear_extent_bit).
451 */
452 static int insert_state(struct extent_io_tree *tree,
453 struct extent_state *state, u64 start, u64 end,
454 struct rb_node ***p,
455 struct rb_node **parent,
456 unsigned *bits, struct extent_changeset *changeset)
457 {
458 struct rb_node *node;
459
460 if (end < start)
461 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
462 end, start);
463 state->start = start;
464 state->end = end;
465
466 set_state_bits(tree, state, bits, changeset);
467
468 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
469 if (node) {
470 struct extent_state *found;
471 found = rb_entry(node, struct extent_state, rb_node);
472 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
473 found->start, found->end, start, end);
474 return -EEXIST;
475 }
476 merge_state(tree, state);
477 return 0;
478 }
479
480 /*
481 * split a given extent state struct in two, inserting the preallocated
482 * struct 'prealloc' as the newly created second half. 'split' indicates an
483 * offset inside 'orig' where it should be split.
484 *
485 * Before calling,
486 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
487 * are two extent state structs in the tree:
488 * prealloc: [orig->start, split - 1]
489 * orig: [ split, orig->end ]
490 *
491 * The tree locks are not taken by this function. They need to be held
492 * by the caller.
493 */
494 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
495 struct extent_state *prealloc, u64 split)
496 {
497 struct rb_node *node;
498
499 if (tree->private_data && is_data_inode(tree->private_data))
500 btrfs_split_delalloc_extent(tree->private_data, orig, split);
501
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
509 if (node) {
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514 }
515
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523 }
524
525 /*
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up anyone waiting on this state (wake == 1).
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
536 {
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539 int ret;
540
541 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
542 u64 range = state->end - state->start + 1;
543 WARN_ON(range > tree->dirty_bytes);
544 tree->dirty_bytes -= range;
545 }
546
547 if (tree->private_data && is_data_inode(tree->private_data))
548 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
549
550 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
551 BUG_ON(ret < 0);
552 state->state &= ~bits_to_clear;
553 if (wake)
554 wake_up(&state->wq);
555 if (state->state == 0) {
556 next = next_state(state);
557 if (extent_state_in_tree(state)) {
558 rb_erase(&state->rb_node, &tree->state);
559 RB_CLEAR_NODE(&state->rb_node);
560 free_extent_state(state);
561 } else {
562 WARN_ON(1);
563 }
564 } else {
565 merge_state(tree, state);
566 next = next_state(state);
567 }
568 return next;
569 }
570
571 static struct extent_state *
572 alloc_extent_state_atomic(struct extent_state *prealloc)
573 {
574 if (!prealloc)
575 prealloc = alloc_extent_state(GFP_ATOMIC);
576
577 return prealloc;
578 }
579
580 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
581 {
582 struct inode *inode = tree->private_data;
583
584 btrfs_panic(btrfs_sb(inode->i_sb), err,
585 "locking error: extent tree was modified by another thread while locked");
586 }
587
588 /*
589 * clear some bits on a range in the tree. This may require splitting
590 * or inserting elements in the tree, so the gfp mask is used to
591 * indicate which allocations or sleeping are allowed.
592 *
593 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
594 * the given range from the tree regardless of state (ie for truncate).
595 *
596 * the range [start, end] is inclusive.
597 *
598 * This takes the tree lock, and returns 0 on success and < 0 on error.
599 */
600 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
601 unsigned bits, int wake, int delete,
602 struct extent_state **cached_state,
603 gfp_t mask, struct extent_changeset *changeset)
604 {
605 struct extent_state *state;
606 struct extent_state *cached;
607 struct extent_state *prealloc = NULL;
608 struct rb_node *node;
609 u64 last_end;
610 int err;
611 int clear = 0;
612
613 btrfs_debug_check_extent_io_range(tree, start, end);
614
615 if (bits & EXTENT_DELALLOC)
616 bits |= EXTENT_NORESERVE;
617
618 if (delete)
619 bits |= ~EXTENT_CTLBITS;
620
621 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
622 clear = 1;
623 again:
624 if (!prealloc && gfpflags_allow_blocking(mask)) {
625 /*
626 * Don't care for allocation failure here because we might end
627 * up not needing the pre-allocated extent state at all, which
628 * is the case if we only have in the tree extent states that
629 * cover our input range and don't cover too any other range.
630 * If we end up needing a new extent state we allocate it later.
631 */
632 prealloc = alloc_extent_state(mask);
633 }
634
635 spin_lock(&tree->lock);
636 if (cached_state) {
637 cached = *cached_state;
638
639 if (clear) {
640 *cached_state = NULL;
641 cached_state = NULL;
642 }
643
644 if (cached && extent_state_in_tree(cached) &&
645 cached->start <= start && cached->end > start) {
646 if (clear)
647 refcount_dec(&cached->refs);
648 state = cached;
649 goto hit_next;
650 }
651 if (clear)
652 free_extent_state(cached);
653 }
654 /*
655 * this search will find the extents that end after
656 * our range starts
657 */
658 node = tree_search(tree, start);
659 if (!node)
660 goto out;
661 state = rb_entry(node, struct extent_state, rb_node);
662 hit_next:
663 if (state->start > end)
664 goto out;
665 WARN_ON(state->end < start);
666 last_end = state->end;
667
668 /* the state doesn't have the wanted bits, go ahead */
669 if (!(state->state & bits)) {
670 state = next_state(state);
671 goto next;
672 }
673
674 /*
675 * | ---- desired range ---- |
676 * | state | or
677 * | ------------- state -------------- |
678 *
679 * We need to split the extent we found, and may flip
680 * bits on second half.
681 *
682 * If the extent we found extends past our range, we
683 * just split and search again. It'll get split again
684 * the next time though.
685 *
686 * If the extent we found is inside our range, we clear
687 * the desired bit on it.
688 */
689
690 if (state->start < start) {
691 prealloc = alloc_extent_state_atomic(prealloc);
692 BUG_ON(!prealloc);
693 err = split_state(tree, state, prealloc, start);
694 if (err)
695 extent_io_tree_panic(tree, err);
696
697 prealloc = NULL;
698 if (err)
699 goto out;
700 if (state->end <= end) {
701 state = clear_state_bit(tree, state, &bits, wake,
702 changeset);
703 goto next;
704 }
705 goto search_again;
706 }
707 /*
708 * | ---- desired range ---- |
709 * | state |
710 * We need to split the extent, and clear the bit
711 * on the first half
712 */
713 if (state->start <= end && state->end > end) {
714 prealloc = alloc_extent_state_atomic(prealloc);
715 BUG_ON(!prealloc);
716 err = split_state(tree, state, prealloc, end + 1);
717 if (err)
718 extent_io_tree_panic(tree, err);
719
720 if (wake)
721 wake_up(&state->wq);
722
723 clear_state_bit(tree, prealloc, &bits, wake, changeset);
724
725 prealloc = NULL;
726 goto out;
727 }
728
729 state = clear_state_bit(tree, state, &bits, wake, changeset);
730 next:
731 if (last_end == (u64)-1)
732 goto out;
733 start = last_end + 1;
734 if (start <= end && state && !need_resched())
735 goto hit_next;
736
737 search_again:
738 if (start > end)
739 goto out;
740 spin_unlock(&tree->lock);
741 if (gfpflags_allow_blocking(mask))
742 cond_resched();
743 goto again;
744
745 out:
746 spin_unlock(&tree->lock);
747 if (prealloc)
748 free_extent_state(prealloc);
749
750 return 0;
751
752 }
753
754 static void wait_on_state(struct extent_io_tree *tree,
755 struct extent_state *state)
756 __releases(tree->lock)
757 __acquires(tree->lock)
758 {
759 DEFINE_WAIT(wait);
760 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
761 spin_unlock(&tree->lock);
762 schedule();
763 spin_lock(&tree->lock);
764 finish_wait(&state->wq, &wait);
765 }
766
767 /*
768 * waits for one or more bits to clear on a range in the state tree.
769 * The range [start, end] is inclusive.
770 * The tree lock is taken by this function
771 */
772 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
773 unsigned long bits)
774 {
775 struct extent_state *state;
776 struct rb_node *node;
777
778 btrfs_debug_check_extent_io_range(tree, start, end);
779
780 spin_lock(&tree->lock);
781 again:
782 while (1) {
783 /*
784 * this search will find all the extents that end after
785 * our range starts
786 */
787 node = tree_search(tree, start);
788 process_node:
789 if (!node)
790 break;
791
792 state = rb_entry(node, struct extent_state, rb_node);
793
794 if (state->start > end)
795 goto out;
796
797 if (state->state & bits) {
798 start = state->start;
799 refcount_inc(&state->refs);
800 wait_on_state(tree, state);
801 free_extent_state(state);
802 goto again;
803 }
804 start = state->end + 1;
805
806 if (start > end)
807 break;
808
809 if (!cond_resched_lock(&tree->lock)) {
810 node = rb_next(node);
811 goto process_node;
812 }
813 }
814 out:
815 spin_unlock(&tree->lock);
816 }
817
818 static void set_state_bits(struct extent_io_tree *tree,
819 struct extent_state *state,
820 unsigned *bits, struct extent_changeset *changeset)
821 {
822 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
823 int ret;
824
825 if (tree->private_data && is_data_inode(tree->private_data))
826 btrfs_set_delalloc_extent(tree->private_data, state, bits);
827
828 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
829 u64 range = state->end - state->start + 1;
830 tree->dirty_bytes += range;
831 }
832 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
833 BUG_ON(ret < 0);
834 state->state |= bits_to_set;
835 }
836
837 static void cache_state_if_flags(struct extent_state *state,
838 struct extent_state **cached_ptr,
839 unsigned flags)
840 {
841 if (cached_ptr && !(*cached_ptr)) {
842 if (!flags || (state->state & flags)) {
843 *cached_ptr = state;
844 refcount_inc(&state->refs);
845 }
846 }
847 }
848
849 static void cache_state(struct extent_state *state,
850 struct extent_state **cached_ptr)
851 {
852 return cache_state_if_flags(state, cached_ptr,
853 EXTENT_IOBITS | EXTENT_BOUNDARY);
854 }
855
856 /*
857 * set some bits on a range in the tree. This may require allocations or
858 * sleeping, so the gfp mask is used to indicate what is allowed.
859 *
860 * If any of the exclusive bits are set, this will fail with -EEXIST if some
861 * part of the range already has the desired bits set. The start of the
862 * existing range is returned in failed_start in this case.
863 *
864 * [start, end] is inclusive This takes the tree lock.
865 */
866
867 static int __must_check
868 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
869 unsigned bits, unsigned exclusive_bits,
870 u64 *failed_start, struct extent_state **cached_state,
871 gfp_t mask, struct extent_changeset *changeset)
872 {
873 struct extent_state *state;
874 struct extent_state *prealloc = NULL;
875 struct rb_node *node;
876 struct rb_node **p;
877 struct rb_node *parent;
878 int err = 0;
879 u64 last_start;
880 u64 last_end;
881
882 btrfs_debug_check_extent_io_range(tree, start, end);
883
884 again:
885 if (!prealloc && gfpflags_allow_blocking(mask)) {
886 /*
887 * Don't care for allocation failure here because we might end
888 * up not needing the pre-allocated extent state at all, which
889 * is the case if we only have in the tree extent states that
890 * cover our input range and don't cover too any other range.
891 * If we end up needing a new extent state we allocate it later.
892 */
893 prealloc = alloc_extent_state(mask);
894 }
895
896 spin_lock(&tree->lock);
897 if (cached_state && *cached_state) {
898 state = *cached_state;
899 if (state->start <= start && state->end > start &&
900 extent_state_in_tree(state)) {
901 node = &state->rb_node;
902 goto hit_next;
903 }
904 }
905 /*
906 * this search will find all the extents that end after
907 * our range starts.
908 */
909 node = tree_search_for_insert(tree, start, &p, &parent);
910 if (!node) {
911 prealloc = alloc_extent_state_atomic(prealloc);
912 BUG_ON(!prealloc);
913 err = insert_state(tree, prealloc, start, end,
914 &p, &parent, &bits, changeset);
915 if (err)
916 extent_io_tree_panic(tree, err);
917
918 cache_state(prealloc, cached_state);
919 prealloc = NULL;
920 goto out;
921 }
922 state = rb_entry(node, struct extent_state, rb_node);
923 hit_next:
924 last_start = state->start;
925 last_end = state->end;
926
927 /*
928 * | ---- desired range ---- |
929 * | state |
930 *
931 * Just lock what we found and keep going
932 */
933 if (state->start == start && state->end <= end) {
934 if (state->state & exclusive_bits) {
935 *failed_start = state->start;
936 err = -EEXIST;
937 goto out;
938 }
939
940 set_state_bits(tree, state, &bits, changeset);
941 cache_state(state, cached_state);
942 merge_state(tree, state);
943 if (last_end == (u64)-1)
944 goto out;
945 start = last_end + 1;
946 state = next_state(state);
947 if (start < end && state && state->start == start &&
948 !need_resched())
949 goto hit_next;
950 goto search_again;
951 }
952
953 /*
954 * | ---- desired range ---- |
955 * | state |
956 * or
957 * | ------------- state -------------- |
958 *
959 * We need to split the extent we found, and may flip bits on
960 * second half.
961 *
962 * If the extent we found extends past our
963 * range, we just split and search again. It'll get split
964 * again the next time though.
965 *
966 * If the extent we found is inside our range, we set the
967 * desired bit on it.
968 */
969 if (state->start < start) {
970 if (state->state & exclusive_bits) {
971 *failed_start = start;
972 err = -EEXIST;
973 goto out;
974 }
975
976 prealloc = alloc_extent_state_atomic(prealloc);
977 BUG_ON(!prealloc);
978 err = split_state(tree, state, prealloc, start);
979 if (err)
980 extent_io_tree_panic(tree, err);
981
982 prealloc = NULL;
983 if (err)
984 goto out;
985 if (state->end <= end) {
986 set_state_bits(tree, state, &bits, changeset);
987 cache_state(state, cached_state);
988 merge_state(tree, state);
989 if (last_end == (u64)-1)
990 goto out;
991 start = last_end + 1;
992 state = next_state(state);
993 if (start < end && state && state->start == start &&
994 !need_resched())
995 goto hit_next;
996 }
997 goto search_again;
998 }
999 /*
1000 * | ---- desired range ---- |
1001 * | state | or | state |
1002 *
1003 * There's a hole, we need to insert something in it and
1004 * ignore the extent we found.
1005 */
1006 if (state->start > start) {
1007 u64 this_end;
1008 if (end < last_start)
1009 this_end = end;
1010 else
1011 this_end = last_start - 1;
1012
1013 prealloc = alloc_extent_state_atomic(prealloc);
1014 BUG_ON(!prealloc);
1015
1016 /*
1017 * Avoid to free 'prealloc' if it can be merged with
1018 * the later extent.
1019 */
1020 err = insert_state(tree, prealloc, start, this_end,
1021 NULL, NULL, &bits, changeset);
1022 if (err)
1023 extent_io_tree_panic(tree, err);
1024
1025 cache_state(prealloc, cached_state);
1026 prealloc = NULL;
1027 start = this_end + 1;
1028 goto search_again;
1029 }
1030 /*
1031 * | ---- desired range ---- |
1032 * | state |
1033 * We need to split the extent, and set the bit
1034 * on the first half
1035 */
1036 if (state->start <= end && state->end > end) {
1037 if (state->state & exclusive_bits) {
1038 *failed_start = start;
1039 err = -EEXIST;
1040 goto out;
1041 }
1042
1043 prealloc = alloc_extent_state_atomic(prealloc);
1044 BUG_ON(!prealloc);
1045 err = split_state(tree, state, prealloc, end + 1);
1046 if (err)
1047 extent_io_tree_panic(tree, err);
1048
1049 set_state_bits(tree, prealloc, &bits, changeset);
1050 cache_state(prealloc, cached_state);
1051 merge_state(tree, prealloc);
1052 prealloc = NULL;
1053 goto out;
1054 }
1055
1056 search_again:
1057 if (start > end)
1058 goto out;
1059 spin_unlock(&tree->lock);
1060 if (gfpflags_allow_blocking(mask))
1061 cond_resched();
1062 goto again;
1063
1064 out:
1065 spin_unlock(&tree->lock);
1066 if (prealloc)
1067 free_extent_state(prealloc);
1068
1069 return err;
1070
1071 }
1072
1073 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1074 unsigned bits, u64 * failed_start,
1075 struct extent_state **cached_state, gfp_t mask)
1076 {
1077 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1078 cached_state, mask, NULL);
1079 }
1080
1081
1082 /**
1083 * convert_extent_bit - convert all bits in a given range from one bit to
1084 * another
1085 * @tree: the io tree to search
1086 * @start: the start offset in bytes
1087 * @end: the end offset in bytes (inclusive)
1088 * @bits: the bits to set in this range
1089 * @clear_bits: the bits to clear in this range
1090 * @cached_state: state that we're going to cache
1091 *
1092 * This will go through and set bits for the given range. If any states exist
1093 * already in this range they are set with the given bit and cleared of the
1094 * clear_bits. This is only meant to be used by things that are mergeable, ie
1095 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1096 * boundary bits like LOCK.
1097 *
1098 * All allocations are done with GFP_NOFS.
1099 */
1100 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1101 unsigned bits, unsigned clear_bits,
1102 struct extent_state **cached_state)
1103 {
1104 struct extent_state *state;
1105 struct extent_state *prealloc = NULL;
1106 struct rb_node *node;
1107 struct rb_node **p;
1108 struct rb_node *parent;
1109 int err = 0;
1110 u64 last_start;
1111 u64 last_end;
1112 bool first_iteration = true;
1113
1114 btrfs_debug_check_extent_io_range(tree, start, end);
1115
1116 again:
1117 if (!prealloc) {
1118 /*
1119 * Best effort, don't worry if extent state allocation fails
1120 * here for the first iteration. We might have a cached state
1121 * that matches exactly the target range, in which case no
1122 * extent state allocations are needed. We'll only know this
1123 * after locking the tree.
1124 */
1125 prealloc = alloc_extent_state(GFP_NOFS);
1126 if (!prealloc && !first_iteration)
1127 return -ENOMEM;
1128 }
1129
1130 spin_lock(&tree->lock);
1131 if (cached_state && *cached_state) {
1132 state = *cached_state;
1133 if (state->start <= start && state->end > start &&
1134 extent_state_in_tree(state)) {
1135 node = &state->rb_node;
1136 goto hit_next;
1137 }
1138 }
1139
1140 /*
1141 * this search will find all the extents that end after
1142 * our range starts.
1143 */
1144 node = tree_search_for_insert(tree, start, &p, &parent);
1145 if (!node) {
1146 prealloc = alloc_extent_state_atomic(prealloc);
1147 if (!prealloc) {
1148 err = -ENOMEM;
1149 goto out;
1150 }
1151 err = insert_state(tree, prealloc, start, end,
1152 &p, &parent, &bits, NULL);
1153 if (err)
1154 extent_io_tree_panic(tree, err);
1155 cache_state(prealloc, cached_state);
1156 prealloc = NULL;
1157 goto out;
1158 }
1159 state = rb_entry(node, struct extent_state, rb_node);
1160 hit_next:
1161 last_start = state->start;
1162 last_end = state->end;
1163
1164 /*
1165 * | ---- desired range ---- |
1166 * | state |
1167 *
1168 * Just lock what we found and keep going
1169 */
1170 if (state->start == start && state->end <= end) {
1171 set_state_bits(tree, state, &bits, NULL);
1172 cache_state(state, cached_state);
1173 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1174 if (last_end == (u64)-1)
1175 goto out;
1176 start = last_end + 1;
1177 if (start < end && state && state->start == start &&
1178 !need_resched())
1179 goto hit_next;
1180 goto search_again;
1181 }
1182
1183 /*
1184 * | ---- desired range ---- |
1185 * | state |
1186 * or
1187 * | ------------- state -------------- |
1188 *
1189 * We need to split the extent we found, and may flip bits on
1190 * second half.
1191 *
1192 * If the extent we found extends past our
1193 * range, we just split and search again. It'll get split
1194 * again the next time though.
1195 *
1196 * If the extent we found is inside our range, we set the
1197 * desired bit on it.
1198 */
1199 if (state->start < start) {
1200 prealloc = alloc_extent_state_atomic(prealloc);
1201 if (!prealloc) {
1202 err = -ENOMEM;
1203 goto out;
1204 }
1205 err = split_state(tree, state, prealloc, start);
1206 if (err)
1207 extent_io_tree_panic(tree, err);
1208 prealloc = NULL;
1209 if (err)
1210 goto out;
1211 if (state->end <= end) {
1212 set_state_bits(tree, state, &bits, NULL);
1213 cache_state(state, cached_state);
1214 state = clear_state_bit(tree, state, &clear_bits, 0,
1215 NULL);
1216 if (last_end == (u64)-1)
1217 goto out;
1218 start = last_end + 1;
1219 if (start < end && state && state->start == start &&
1220 !need_resched())
1221 goto hit_next;
1222 }
1223 goto search_again;
1224 }
1225 /*
1226 * | ---- desired range ---- |
1227 * | state | or | state |
1228 *
1229 * There's a hole, we need to insert something in it and
1230 * ignore the extent we found.
1231 */
1232 if (state->start > start) {
1233 u64 this_end;
1234 if (end < last_start)
1235 this_end = end;
1236 else
1237 this_end = last_start - 1;
1238
1239 prealloc = alloc_extent_state_atomic(prealloc);
1240 if (!prealloc) {
1241 err = -ENOMEM;
1242 goto out;
1243 }
1244
1245 /*
1246 * Avoid to free 'prealloc' if it can be merged with
1247 * the later extent.
1248 */
1249 err = insert_state(tree, prealloc, start, this_end,
1250 NULL, NULL, &bits, NULL);
1251 if (err)
1252 extent_io_tree_panic(tree, err);
1253 cache_state(prealloc, cached_state);
1254 prealloc = NULL;
1255 start = this_end + 1;
1256 goto search_again;
1257 }
1258 /*
1259 * | ---- desired range ---- |
1260 * | state |
1261 * We need to split the extent, and set the bit
1262 * on the first half
1263 */
1264 if (state->start <= end && state->end > end) {
1265 prealloc = alloc_extent_state_atomic(prealloc);
1266 if (!prealloc) {
1267 err = -ENOMEM;
1268 goto out;
1269 }
1270
1271 err = split_state(tree, state, prealloc, end + 1);
1272 if (err)
1273 extent_io_tree_panic(tree, err);
1274
1275 set_state_bits(tree, prealloc, &bits, NULL);
1276 cache_state(prealloc, cached_state);
1277 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1278 prealloc = NULL;
1279 goto out;
1280 }
1281
1282 search_again:
1283 if (start > end)
1284 goto out;
1285 spin_unlock(&tree->lock);
1286 cond_resched();
1287 first_iteration = false;
1288 goto again;
1289
1290 out:
1291 spin_unlock(&tree->lock);
1292 if (prealloc)
1293 free_extent_state(prealloc);
1294
1295 return err;
1296 }
1297
1298 /* wrappers around set/clear extent bit */
1299 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1300 unsigned bits, struct extent_changeset *changeset)
1301 {
1302 /*
1303 * We don't support EXTENT_LOCKED yet, as current changeset will
1304 * record any bits changed, so for EXTENT_LOCKED case, it will
1305 * either fail with -EEXIST or changeset will record the whole
1306 * range.
1307 */
1308 BUG_ON(bits & EXTENT_LOCKED);
1309
1310 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1311 changeset);
1312 }
1313
1314 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1315 unsigned bits, int wake, int delete,
1316 struct extent_state **cached)
1317 {
1318 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1319 cached, GFP_NOFS, NULL);
1320 }
1321
1322 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 unsigned bits, struct extent_changeset *changeset)
1324 {
1325 /*
1326 * Don't support EXTENT_LOCKED case, same reason as
1327 * set_record_extent_bits().
1328 */
1329 BUG_ON(bits & EXTENT_LOCKED);
1330
1331 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1332 changeset);
1333 }
1334
1335 /*
1336 * either insert or lock state struct between start and end use mask to tell
1337 * us if waiting is desired.
1338 */
1339 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1340 struct extent_state **cached_state)
1341 {
1342 int err;
1343 u64 failed_start;
1344
1345 while (1) {
1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1347 EXTENT_LOCKED, &failed_start,
1348 cached_state, GFP_NOFS, NULL);
1349 if (err == -EEXIST) {
1350 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1351 start = failed_start;
1352 } else
1353 break;
1354 WARN_ON(start > end);
1355 }
1356 return err;
1357 }
1358
1359 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1360 {
1361 int err;
1362 u64 failed_start;
1363
1364 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1365 &failed_start, NULL, GFP_NOFS, NULL);
1366 if (err == -EEXIST) {
1367 if (failed_start > start)
1368 clear_extent_bit(tree, start, failed_start - 1,
1369 EXTENT_LOCKED, 1, 0, NULL);
1370 return 0;
1371 }
1372 return 1;
1373 }
1374
1375 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1376 {
1377 unsigned long index = start >> PAGE_SHIFT;
1378 unsigned long end_index = end >> PAGE_SHIFT;
1379 struct page *page;
1380
1381 while (index <= end_index) {
1382 page = find_get_page(inode->i_mapping, index);
1383 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1384 clear_page_dirty_for_io(page);
1385 put_page(page);
1386 index++;
1387 }
1388 }
1389
1390 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1391 {
1392 unsigned long index = start >> PAGE_SHIFT;
1393 unsigned long end_index = end >> PAGE_SHIFT;
1394 struct page *page;
1395
1396 while (index <= end_index) {
1397 page = find_get_page(inode->i_mapping, index);
1398 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1399 __set_page_dirty_nobuffers(page);
1400 account_page_redirty(page);
1401 put_page(page);
1402 index++;
1403 }
1404 }
1405
1406 /* find the first state struct with 'bits' set after 'start', and
1407 * return it. tree->lock must be held. NULL will returned if
1408 * nothing was found after 'start'
1409 */
1410 static struct extent_state *
1411 find_first_extent_bit_state(struct extent_io_tree *tree,
1412 u64 start, unsigned bits)
1413 {
1414 struct rb_node *node;
1415 struct extent_state *state;
1416
1417 /*
1418 * this search will find all the extents that end after
1419 * our range starts.
1420 */
1421 node = tree_search(tree, start);
1422 if (!node)
1423 goto out;
1424
1425 while (1) {
1426 state = rb_entry(node, struct extent_state, rb_node);
1427 if (state->end >= start && (state->state & bits))
1428 return state;
1429
1430 node = rb_next(node);
1431 if (!node)
1432 break;
1433 }
1434 out:
1435 return NULL;
1436 }
1437
1438 /*
1439 * find the first offset in the io tree with 'bits' set. zero is
1440 * returned if we find something, and *start_ret and *end_ret are
1441 * set to reflect the state struct that was found.
1442 *
1443 * If nothing was found, 1 is returned. If found something, return 0.
1444 */
1445 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1446 u64 *start_ret, u64 *end_ret, unsigned bits,
1447 struct extent_state **cached_state)
1448 {
1449 struct extent_state *state;
1450 int ret = 1;
1451
1452 spin_lock(&tree->lock);
1453 if (cached_state && *cached_state) {
1454 state = *cached_state;
1455 if (state->end == start - 1 && extent_state_in_tree(state)) {
1456 while ((state = next_state(state)) != NULL) {
1457 if (state->state & bits)
1458 goto got_it;
1459 }
1460 free_extent_state(*cached_state);
1461 *cached_state = NULL;
1462 goto out;
1463 }
1464 free_extent_state(*cached_state);
1465 *cached_state = NULL;
1466 }
1467
1468 state = find_first_extent_bit_state(tree, start, bits);
1469 got_it:
1470 if (state) {
1471 cache_state_if_flags(state, cached_state, 0);
1472 *start_ret = state->start;
1473 *end_ret = state->end;
1474 ret = 0;
1475 }
1476 out:
1477 spin_unlock(&tree->lock);
1478 return ret;
1479 }
1480
1481 /*
1482 * find a contiguous range of bytes in the file marked as delalloc, not
1483 * more than 'max_bytes'. start and end are used to return the range,
1484 *
1485 * true is returned if we find something, false if nothing was in the tree
1486 */
1487 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1488 u64 *start, u64 *end, u64 max_bytes,
1489 struct extent_state **cached_state)
1490 {
1491 struct rb_node *node;
1492 struct extent_state *state;
1493 u64 cur_start = *start;
1494 bool found = false;
1495 u64 total_bytes = 0;
1496
1497 spin_lock(&tree->lock);
1498
1499 /*
1500 * this search will find all the extents that end after
1501 * our range starts.
1502 */
1503 node = tree_search(tree, cur_start);
1504 if (!node) {
1505 *end = (u64)-1;
1506 goto out;
1507 }
1508
1509 while (1) {
1510 state = rb_entry(node, struct extent_state, rb_node);
1511 if (found && (state->start != cur_start ||
1512 (state->state & EXTENT_BOUNDARY))) {
1513 goto out;
1514 }
1515 if (!(state->state & EXTENT_DELALLOC)) {
1516 if (!found)
1517 *end = state->end;
1518 goto out;
1519 }
1520 if (!found) {
1521 *start = state->start;
1522 *cached_state = state;
1523 refcount_inc(&state->refs);
1524 }
1525 found = true;
1526 *end = state->end;
1527 cur_start = state->end + 1;
1528 node = rb_next(node);
1529 total_bytes += state->end - state->start + 1;
1530 if (total_bytes >= max_bytes)
1531 break;
1532 if (!node)
1533 break;
1534 }
1535 out:
1536 spin_unlock(&tree->lock);
1537 return found;
1538 }
1539
1540 static int __process_pages_contig(struct address_space *mapping,
1541 struct page *locked_page,
1542 pgoff_t start_index, pgoff_t end_index,
1543 unsigned long page_ops, pgoff_t *index_ret);
1544
1545 static noinline void __unlock_for_delalloc(struct inode *inode,
1546 struct page *locked_page,
1547 u64 start, u64 end)
1548 {
1549 unsigned long index = start >> PAGE_SHIFT;
1550 unsigned long end_index = end >> PAGE_SHIFT;
1551
1552 ASSERT(locked_page);
1553 if (index == locked_page->index && end_index == index)
1554 return;
1555
1556 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557 PAGE_UNLOCK, NULL);
1558 }
1559
1560 static noinline int lock_delalloc_pages(struct inode *inode,
1561 struct page *locked_page,
1562 u64 delalloc_start,
1563 u64 delalloc_end)
1564 {
1565 unsigned long index = delalloc_start >> PAGE_SHIFT;
1566 unsigned long index_ret = index;
1567 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1568 int ret;
1569
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && index == end_index)
1572 return 0;
1573
1574 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575 end_index, PAGE_LOCK, &index_ret);
1576 if (ret == -EAGAIN)
1577 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1578 (u64)index_ret << PAGE_SHIFT);
1579 return ret;
1580 }
1581
1582 /*
1583 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1584 * more than @max_bytes. @Start and @end are used to return the range,
1585 *
1586 * Return: true if we find something
1587 * false if nothing was in the tree
1588 */
1589 EXPORT_FOR_TESTS
1590 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1591 struct extent_io_tree *tree,
1592 struct page *locked_page, u64 *start,
1593 u64 *end)
1594 {
1595 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1596 u64 delalloc_start;
1597 u64 delalloc_end;
1598 bool found;
1599 struct extent_state *cached_state = NULL;
1600 int ret;
1601 int loops = 0;
1602
1603 again:
1604 /* step one, find a bunch of delalloc bytes starting at start */
1605 delalloc_start = *start;
1606 delalloc_end = 0;
1607 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1608 max_bytes, &cached_state);
1609 if (!found || delalloc_end <= *start) {
1610 *start = delalloc_start;
1611 *end = delalloc_end;
1612 free_extent_state(cached_state);
1613 return false;
1614 }
1615
1616 /*
1617 * start comes from the offset of locked_page. We have to lock
1618 * pages in order, so we can't process delalloc bytes before
1619 * locked_page
1620 */
1621 if (delalloc_start < *start)
1622 delalloc_start = *start;
1623
1624 /*
1625 * make sure to limit the number of pages we try to lock down
1626 */
1627 if (delalloc_end + 1 - delalloc_start > max_bytes)
1628 delalloc_end = delalloc_start + max_bytes - 1;
1629
1630 /* step two, lock all the pages after the page that has start */
1631 ret = lock_delalloc_pages(inode, locked_page,
1632 delalloc_start, delalloc_end);
1633 ASSERT(!ret || ret == -EAGAIN);
1634 if (ret == -EAGAIN) {
1635 /* some of the pages are gone, lets avoid looping by
1636 * shortening the size of the delalloc range we're searching
1637 */
1638 free_extent_state(cached_state);
1639 cached_state = NULL;
1640 if (!loops) {
1641 max_bytes = PAGE_SIZE;
1642 loops = 1;
1643 goto again;
1644 } else {
1645 found = false;
1646 goto out_failed;
1647 }
1648 }
1649
1650 /* step three, lock the state bits for the whole range */
1651 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1652
1653 /* then test to make sure it is all still delalloc */
1654 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1655 EXTENT_DELALLOC, 1, cached_state);
1656 if (!ret) {
1657 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1658 &cached_state);
1659 __unlock_for_delalloc(inode, locked_page,
1660 delalloc_start, delalloc_end);
1661 cond_resched();
1662 goto again;
1663 }
1664 free_extent_state(cached_state);
1665 *start = delalloc_start;
1666 *end = delalloc_end;
1667 out_failed:
1668 return found;
1669 }
1670
1671 static int __process_pages_contig(struct address_space *mapping,
1672 struct page *locked_page,
1673 pgoff_t start_index, pgoff_t end_index,
1674 unsigned long page_ops, pgoff_t *index_ret)
1675 {
1676 unsigned long nr_pages = end_index - start_index + 1;
1677 unsigned long pages_locked = 0;
1678 pgoff_t index = start_index;
1679 struct page *pages[16];
1680 unsigned ret;
1681 int err = 0;
1682 int i;
1683
1684 if (page_ops & PAGE_LOCK) {
1685 ASSERT(page_ops == PAGE_LOCK);
1686 ASSERT(index_ret && *index_ret == start_index);
1687 }
1688
1689 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1690 mapping_set_error(mapping, -EIO);
1691
1692 while (nr_pages > 0) {
1693 ret = find_get_pages_contig(mapping, index,
1694 min_t(unsigned long,
1695 nr_pages, ARRAY_SIZE(pages)), pages);
1696 if (ret == 0) {
1697 /*
1698 * Only if we're going to lock these pages,
1699 * can we find nothing at @index.
1700 */
1701 ASSERT(page_ops & PAGE_LOCK);
1702 err = -EAGAIN;
1703 goto out;
1704 }
1705
1706 for (i = 0; i < ret; i++) {
1707 if (page_ops & PAGE_SET_PRIVATE2)
1708 SetPagePrivate2(pages[i]);
1709
1710 if (pages[i] == locked_page) {
1711 put_page(pages[i]);
1712 pages_locked++;
1713 continue;
1714 }
1715 if (page_ops & PAGE_CLEAR_DIRTY)
1716 clear_page_dirty_for_io(pages[i]);
1717 if (page_ops & PAGE_SET_WRITEBACK)
1718 set_page_writeback(pages[i]);
1719 if (page_ops & PAGE_SET_ERROR)
1720 SetPageError(pages[i]);
1721 if (page_ops & PAGE_END_WRITEBACK)
1722 end_page_writeback(pages[i]);
1723 if (page_ops & PAGE_UNLOCK)
1724 unlock_page(pages[i]);
1725 if (page_ops & PAGE_LOCK) {
1726 lock_page(pages[i]);
1727 if (!PageDirty(pages[i]) ||
1728 pages[i]->mapping != mapping) {
1729 unlock_page(pages[i]);
1730 put_page(pages[i]);
1731 err = -EAGAIN;
1732 goto out;
1733 }
1734 }
1735 put_page(pages[i]);
1736 pages_locked++;
1737 }
1738 nr_pages -= ret;
1739 index += ret;
1740 cond_resched();
1741 }
1742 out:
1743 if (err && index_ret)
1744 *index_ret = start_index + pages_locked - 1;
1745 return err;
1746 }
1747
1748 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1749 u64 delalloc_end, struct page *locked_page,
1750 unsigned clear_bits,
1751 unsigned long page_ops)
1752 {
1753 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1754 NULL);
1755
1756 __process_pages_contig(inode->i_mapping, locked_page,
1757 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1758 page_ops, NULL);
1759 }
1760
1761 /*
1762 * count the number of bytes in the tree that have a given bit(s)
1763 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1764 * cached. The total number found is returned.
1765 */
1766 u64 count_range_bits(struct extent_io_tree *tree,
1767 u64 *start, u64 search_end, u64 max_bytes,
1768 unsigned bits, int contig)
1769 {
1770 struct rb_node *node;
1771 struct extent_state *state;
1772 u64 cur_start = *start;
1773 u64 total_bytes = 0;
1774 u64 last = 0;
1775 int found = 0;
1776
1777 if (WARN_ON(search_end <= cur_start))
1778 return 0;
1779
1780 spin_lock(&tree->lock);
1781 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1782 total_bytes = tree->dirty_bytes;
1783 goto out;
1784 }
1785 /*
1786 * this search will find all the extents that end after
1787 * our range starts.
1788 */
1789 node = tree_search(tree, cur_start);
1790 if (!node)
1791 goto out;
1792
1793 while (1) {
1794 state = rb_entry(node, struct extent_state, rb_node);
1795 if (state->start > search_end)
1796 break;
1797 if (contig && found && state->start > last + 1)
1798 break;
1799 if (state->end >= cur_start && (state->state & bits) == bits) {
1800 total_bytes += min(search_end, state->end) + 1 -
1801 max(cur_start, state->start);
1802 if (total_bytes >= max_bytes)
1803 break;
1804 if (!found) {
1805 *start = max(cur_start, state->start);
1806 found = 1;
1807 }
1808 last = state->end;
1809 } else if (contig && found) {
1810 break;
1811 }
1812 node = rb_next(node);
1813 if (!node)
1814 break;
1815 }
1816 out:
1817 spin_unlock(&tree->lock);
1818 return total_bytes;
1819 }
1820
1821 /*
1822 * set the private field for a given byte offset in the tree. If there isn't
1823 * an extent_state there already, this does nothing.
1824 */
1825 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1826 struct io_failure_record *failrec)
1827 {
1828 struct rb_node *node;
1829 struct extent_state *state;
1830 int ret = 0;
1831
1832 spin_lock(&tree->lock);
1833 /*
1834 * this search will find all the extents that end after
1835 * our range starts.
1836 */
1837 node = tree_search(tree, start);
1838 if (!node) {
1839 ret = -ENOENT;
1840 goto out;
1841 }
1842 state = rb_entry(node, struct extent_state, rb_node);
1843 if (state->start != start) {
1844 ret = -ENOENT;
1845 goto out;
1846 }
1847 state->failrec = failrec;
1848 out:
1849 spin_unlock(&tree->lock);
1850 return ret;
1851 }
1852
1853 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1854 struct io_failure_record **failrec)
1855 {
1856 struct rb_node *node;
1857 struct extent_state *state;
1858 int ret = 0;
1859
1860 spin_lock(&tree->lock);
1861 /*
1862 * this search will find all the extents that end after
1863 * our range starts.
1864 */
1865 node = tree_search(tree, start);
1866 if (!node) {
1867 ret = -ENOENT;
1868 goto out;
1869 }
1870 state = rb_entry(node, struct extent_state, rb_node);
1871 if (state->start != start) {
1872 ret = -ENOENT;
1873 goto out;
1874 }
1875 *failrec = state->failrec;
1876 out:
1877 spin_unlock(&tree->lock);
1878 return ret;
1879 }
1880
1881 /*
1882 * searches a range in the state tree for a given mask.
1883 * If 'filled' == 1, this returns 1 only if every extent in the tree
1884 * has the bits set. Otherwise, 1 is returned if any bit in the
1885 * range is found set.
1886 */
1887 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1888 unsigned bits, int filled, struct extent_state *cached)
1889 {
1890 struct extent_state *state = NULL;
1891 struct rb_node *node;
1892 int bitset = 0;
1893
1894 spin_lock(&tree->lock);
1895 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1896 cached->end > start)
1897 node = &cached->rb_node;
1898 else
1899 node = tree_search(tree, start);
1900 while (node && start <= end) {
1901 state = rb_entry(node, struct extent_state, rb_node);
1902
1903 if (filled && state->start > start) {
1904 bitset = 0;
1905 break;
1906 }
1907
1908 if (state->start > end)
1909 break;
1910
1911 if (state->state & bits) {
1912 bitset = 1;
1913 if (!filled)
1914 break;
1915 } else if (filled) {
1916 bitset = 0;
1917 break;
1918 }
1919
1920 if (state->end == (u64)-1)
1921 break;
1922
1923 start = state->end + 1;
1924 if (start > end)
1925 break;
1926 node = rb_next(node);
1927 if (!node) {
1928 if (filled)
1929 bitset = 0;
1930 break;
1931 }
1932 }
1933 spin_unlock(&tree->lock);
1934 return bitset;
1935 }
1936
1937 /*
1938 * helper function to set a given page up to date if all the
1939 * extents in the tree for that page are up to date
1940 */
1941 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1942 {
1943 u64 start = page_offset(page);
1944 u64 end = start + PAGE_SIZE - 1;
1945 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1946 SetPageUptodate(page);
1947 }
1948
1949 int free_io_failure(struct extent_io_tree *failure_tree,
1950 struct extent_io_tree *io_tree,
1951 struct io_failure_record *rec)
1952 {
1953 int ret;
1954 int err = 0;
1955
1956 set_state_failrec(failure_tree, rec->start, NULL);
1957 ret = clear_extent_bits(failure_tree, rec->start,
1958 rec->start + rec->len - 1,
1959 EXTENT_LOCKED | EXTENT_DIRTY);
1960 if (ret)
1961 err = ret;
1962
1963 ret = clear_extent_bits(io_tree, rec->start,
1964 rec->start + rec->len - 1,
1965 EXTENT_DAMAGED);
1966 if (ret && !err)
1967 err = ret;
1968
1969 kfree(rec);
1970 return err;
1971 }
1972
1973 /*
1974 * this bypasses the standard btrfs submit functions deliberately, as
1975 * the standard behavior is to write all copies in a raid setup. here we only
1976 * want to write the one bad copy. so we do the mapping for ourselves and issue
1977 * submit_bio directly.
1978 * to avoid any synchronization issues, wait for the data after writing, which
1979 * actually prevents the read that triggered the error from finishing.
1980 * currently, there can be no more than two copies of every data bit. thus,
1981 * exactly one rewrite is required.
1982 */
1983 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1984 u64 length, u64 logical, struct page *page,
1985 unsigned int pg_offset, int mirror_num)
1986 {
1987 struct bio *bio;
1988 struct btrfs_device *dev;
1989 u64 map_length = 0;
1990 u64 sector;
1991 struct btrfs_bio *bbio = NULL;
1992 int ret;
1993
1994 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1995 BUG_ON(!mirror_num);
1996
1997 bio = btrfs_io_bio_alloc(1);
1998 bio->bi_iter.bi_size = 0;
1999 map_length = length;
2000
2001 /*
2002 * Avoid races with device replace and make sure our bbio has devices
2003 * associated to its stripes that don't go away while we are doing the
2004 * read repair operation.
2005 */
2006 btrfs_bio_counter_inc_blocked(fs_info);
2007 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2008 /*
2009 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2010 * to update all raid stripes, but here we just want to correct
2011 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2012 * stripe's dev and sector.
2013 */
2014 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2015 &map_length, &bbio, 0);
2016 if (ret) {
2017 btrfs_bio_counter_dec(fs_info);
2018 bio_put(bio);
2019 return -EIO;
2020 }
2021 ASSERT(bbio->mirror_num == 1);
2022 } else {
2023 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2024 &map_length, &bbio, mirror_num);
2025 if (ret) {
2026 btrfs_bio_counter_dec(fs_info);
2027 bio_put(bio);
2028 return -EIO;
2029 }
2030 BUG_ON(mirror_num != bbio->mirror_num);
2031 }
2032
2033 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2034 bio->bi_iter.bi_sector = sector;
2035 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2036 btrfs_put_bbio(bbio);
2037 if (!dev || !dev->bdev ||
2038 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2039 btrfs_bio_counter_dec(fs_info);
2040 bio_put(bio);
2041 return -EIO;
2042 }
2043 bio_set_dev(bio, dev->bdev);
2044 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2045 bio_add_page(bio, page, length, pg_offset);
2046
2047 if (btrfsic_submit_bio_wait(bio)) {
2048 /* try to remap that extent elsewhere? */
2049 btrfs_bio_counter_dec(fs_info);
2050 bio_put(bio);
2051 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2052 return -EIO;
2053 }
2054
2055 btrfs_info_rl_in_rcu(fs_info,
2056 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2057 ino, start,
2058 rcu_str_deref(dev->name), sector);
2059 btrfs_bio_counter_dec(fs_info);
2060 bio_put(bio);
2061 return 0;
2062 }
2063
2064 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2065 struct extent_buffer *eb, int mirror_num)
2066 {
2067 u64 start = eb->start;
2068 int i, num_pages = num_extent_pages(eb);
2069 int ret = 0;
2070
2071 if (sb_rdonly(fs_info->sb))
2072 return -EROFS;
2073
2074 for (i = 0; i < num_pages; i++) {
2075 struct page *p = eb->pages[i];
2076
2077 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2078 start - page_offset(p), mirror_num);
2079 if (ret)
2080 break;
2081 start += PAGE_SIZE;
2082 }
2083
2084 return ret;
2085 }
2086
2087 /*
2088 * each time an IO finishes, we do a fast check in the IO failure tree
2089 * to see if we need to process or clean up an io_failure_record
2090 */
2091 int clean_io_failure(struct btrfs_fs_info *fs_info,
2092 struct extent_io_tree *failure_tree,
2093 struct extent_io_tree *io_tree, u64 start,
2094 struct page *page, u64 ino, unsigned int pg_offset)
2095 {
2096 u64 private;
2097 struct io_failure_record *failrec;
2098 struct extent_state *state;
2099 int num_copies;
2100 int ret;
2101
2102 private = 0;
2103 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2104 EXTENT_DIRTY, 0);
2105 if (!ret)
2106 return 0;
2107
2108 ret = get_state_failrec(failure_tree, start, &failrec);
2109 if (ret)
2110 return 0;
2111
2112 BUG_ON(!failrec->this_mirror);
2113
2114 if (failrec->in_validation) {
2115 /* there was no real error, just free the record */
2116 btrfs_debug(fs_info,
2117 "clean_io_failure: freeing dummy error at %llu",
2118 failrec->start);
2119 goto out;
2120 }
2121 if (sb_rdonly(fs_info->sb))
2122 goto out;
2123
2124 spin_lock(&io_tree->lock);
2125 state = find_first_extent_bit_state(io_tree,
2126 failrec->start,
2127 EXTENT_LOCKED);
2128 spin_unlock(&io_tree->lock);
2129
2130 if (state && state->start <= failrec->start &&
2131 state->end >= failrec->start + failrec->len - 1) {
2132 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2133 failrec->len);
2134 if (num_copies > 1) {
2135 repair_io_failure(fs_info, ino, start, failrec->len,
2136 failrec->logical, page, pg_offset,
2137 failrec->failed_mirror);
2138 }
2139 }
2140
2141 out:
2142 free_io_failure(failure_tree, io_tree, failrec);
2143
2144 return 0;
2145 }
2146
2147 /*
2148 * Can be called when
2149 * - hold extent lock
2150 * - under ordered extent
2151 * - the inode is freeing
2152 */
2153 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2154 {
2155 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2156 struct io_failure_record *failrec;
2157 struct extent_state *state, *next;
2158
2159 if (RB_EMPTY_ROOT(&failure_tree->state))
2160 return;
2161
2162 spin_lock(&failure_tree->lock);
2163 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2164 while (state) {
2165 if (state->start > end)
2166 break;
2167
2168 ASSERT(state->end <= end);
2169
2170 next = next_state(state);
2171
2172 failrec = state->failrec;
2173 free_extent_state(state);
2174 kfree(failrec);
2175
2176 state = next;
2177 }
2178 spin_unlock(&failure_tree->lock);
2179 }
2180
2181 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2182 struct io_failure_record **failrec_ret)
2183 {
2184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2185 struct io_failure_record *failrec;
2186 struct extent_map *em;
2187 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2188 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2189 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2190 int ret;
2191 u64 logical;
2192
2193 ret = get_state_failrec(failure_tree, start, &failrec);
2194 if (ret) {
2195 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2196 if (!failrec)
2197 return -ENOMEM;
2198
2199 failrec->start = start;
2200 failrec->len = end - start + 1;
2201 failrec->this_mirror = 0;
2202 failrec->bio_flags = 0;
2203 failrec->in_validation = 0;
2204
2205 read_lock(&em_tree->lock);
2206 em = lookup_extent_mapping(em_tree, start, failrec->len);
2207 if (!em) {
2208 read_unlock(&em_tree->lock);
2209 kfree(failrec);
2210 return -EIO;
2211 }
2212
2213 if (em->start > start || em->start + em->len <= start) {
2214 free_extent_map(em);
2215 em = NULL;
2216 }
2217 read_unlock(&em_tree->lock);
2218 if (!em) {
2219 kfree(failrec);
2220 return -EIO;
2221 }
2222
2223 logical = start - em->start;
2224 logical = em->block_start + logical;
2225 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2226 logical = em->block_start;
2227 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2228 extent_set_compress_type(&failrec->bio_flags,
2229 em->compress_type);
2230 }
2231
2232 btrfs_debug(fs_info,
2233 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2234 logical, start, failrec->len);
2235
2236 failrec->logical = logical;
2237 free_extent_map(em);
2238
2239 /* set the bits in the private failure tree */
2240 ret = set_extent_bits(failure_tree, start, end,
2241 EXTENT_LOCKED | EXTENT_DIRTY);
2242 if (ret >= 0)
2243 ret = set_state_failrec(failure_tree, start, failrec);
2244 /* set the bits in the inode's tree */
2245 if (ret >= 0)
2246 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2247 if (ret < 0) {
2248 kfree(failrec);
2249 return ret;
2250 }
2251 } else {
2252 btrfs_debug(fs_info,
2253 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2254 failrec->logical, failrec->start, failrec->len,
2255 failrec->in_validation);
2256 /*
2257 * when data can be on disk more than twice, add to failrec here
2258 * (e.g. with a list for failed_mirror) to make
2259 * clean_io_failure() clean all those errors at once.
2260 */
2261 }
2262
2263 *failrec_ret = failrec;
2264
2265 return 0;
2266 }
2267
2268 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2269 struct io_failure_record *failrec, int failed_mirror)
2270 {
2271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2272 int num_copies;
2273
2274 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2275 if (num_copies == 1) {
2276 /*
2277 * we only have a single copy of the data, so don't bother with
2278 * all the retry and error correction code that follows. no
2279 * matter what the error is, it is very likely to persist.
2280 */
2281 btrfs_debug(fs_info,
2282 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2283 num_copies, failrec->this_mirror, failed_mirror);
2284 return false;
2285 }
2286
2287 /*
2288 * there are two premises:
2289 * a) deliver good data to the caller
2290 * b) correct the bad sectors on disk
2291 */
2292 if (failed_bio_pages > 1) {
2293 /*
2294 * to fulfill b), we need to know the exact failing sectors, as
2295 * we don't want to rewrite any more than the failed ones. thus,
2296 * we need separate read requests for the failed bio
2297 *
2298 * if the following BUG_ON triggers, our validation request got
2299 * merged. we need separate requests for our algorithm to work.
2300 */
2301 BUG_ON(failrec->in_validation);
2302 failrec->in_validation = 1;
2303 failrec->this_mirror = failed_mirror;
2304 } else {
2305 /*
2306 * we're ready to fulfill a) and b) alongside. get a good copy
2307 * of the failed sector and if we succeed, we have setup
2308 * everything for repair_io_failure to do the rest for us.
2309 */
2310 if (failrec->in_validation) {
2311 BUG_ON(failrec->this_mirror != failed_mirror);
2312 failrec->in_validation = 0;
2313 failrec->this_mirror = 0;
2314 }
2315 failrec->failed_mirror = failed_mirror;
2316 failrec->this_mirror++;
2317 if (failrec->this_mirror == failed_mirror)
2318 failrec->this_mirror++;
2319 }
2320
2321 if (failrec->this_mirror > num_copies) {
2322 btrfs_debug(fs_info,
2323 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2324 num_copies, failrec->this_mirror, failed_mirror);
2325 return false;
2326 }
2327
2328 return true;
2329 }
2330
2331
2332 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2333 struct io_failure_record *failrec,
2334 struct page *page, int pg_offset, int icsum,
2335 bio_end_io_t *endio_func, void *data)
2336 {
2337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2338 struct bio *bio;
2339 struct btrfs_io_bio *btrfs_failed_bio;
2340 struct btrfs_io_bio *btrfs_bio;
2341
2342 bio = btrfs_io_bio_alloc(1);
2343 bio->bi_end_io = endio_func;
2344 bio->bi_iter.bi_sector = failrec->logical >> 9;
2345 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2346 bio->bi_iter.bi_size = 0;
2347 bio->bi_private = data;
2348
2349 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2350 if (btrfs_failed_bio->csum) {
2351 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2352
2353 btrfs_bio = btrfs_io_bio(bio);
2354 btrfs_bio->csum = btrfs_bio->csum_inline;
2355 icsum *= csum_size;
2356 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2357 csum_size);
2358 }
2359
2360 bio_add_page(bio, page, failrec->len, pg_offset);
2361
2362 return bio;
2363 }
2364
2365 /*
2366 * This is a generic handler for readpage errors. If other copies exist, read
2367 * those and write back good data to the failed position. Does not investigate
2368 * in remapping the failed extent elsewhere, hoping the device will be smart
2369 * enough to do this as needed
2370 */
2371 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2372 struct page *page, u64 start, u64 end,
2373 int failed_mirror)
2374 {
2375 struct io_failure_record *failrec;
2376 struct inode *inode = page->mapping->host;
2377 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2378 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2379 struct bio *bio;
2380 int read_mode = 0;
2381 blk_status_t status;
2382 int ret;
2383 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2384
2385 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2386
2387 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2388 if (ret)
2389 return ret;
2390
2391 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2392 failed_mirror)) {
2393 free_io_failure(failure_tree, tree, failrec);
2394 return -EIO;
2395 }
2396
2397 if (failed_bio_pages > 1)
2398 read_mode |= REQ_FAILFAST_DEV;
2399
2400 phy_offset >>= inode->i_sb->s_blocksize_bits;
2401 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2402 start - page_offset(page),
2403 (int)phy_offset, failed_bio->bi_end_io,
2404 NULL);
2405 bio->bi_opf = REQ_OP_READ | read_mode;
2406
2407 btrfs_debug(btrfs_sb(inode->i_sb),
2408 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2409 read_mode, failrec->this_mirror, failrec->in_validation);
2410
2411 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2412 failrec->bio_flags, 0);
2413 if (status) {
2414 free_io_failure(failure_tree, tree, failrec);
2415 bio_put(bio);
2416 ret = blk_status_to_errno(status);
2417 }
2418
2419 return ret;
2420 }
2421
2422 /* lots and lots of room for performance fixes in the end_bio funcs */
2423
2424 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2425 {
2426 int uptodate = (err == 0);
2427 int ret = 0;
2428
2429 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2430
2431 if (!uptodate) {
2432 ClearPageUptodate(page);
2433 SetPageError(page);
2434 ret = err < 0 ? err : -EIO;
2435 mapping_set_error(page->mapping, ret);
2436 }
2437 }
2438
2439 /*
2440 * after a writepage IO is done, we need to:
2441 * clear the uptodate bits on error
2442 * clear the writeback bits in the extent tree for this IO
2443 * end_page_writeback if the page has no more pending IO
2444 *
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2447 */
2448 static void end_bio_extent_writepage(struct bio *bio)
2449 {
2450 int error = blk_status_to_errno(bio->bi_status);
2451 struct bio_vec *bvec;
2452 u64 start;
2453 u64 end;
2454 int i;
2455 struct bvec_iter_all iter_all;
2456
2457 ASSERT(!bio_flagged(bio, BIO_CLONED));
2458 bio_for_each_segment_all(bvec, bio, i, iter_all) {
2459 struct page *page = bvec->bv_page;
2460 struct inode *inode = page->mapping->host;
2461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2462
2463 /* We always issue full-page reads, but if some block
2464 * in a page fails to read, blk_update_request() will
2465 * advance bv_offset and adjust bv_len to compensate.
2466 * Print a warning for nonzero offsets, and an error
2467 * if they don't add up to a full page. */
2468 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2469 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2470 btrfs_err(fs_info,
2471 "partial page write in btrfs with offset %u and length %u",
2472 bvec->bv_offset, bvec->bv_len);
2473 else
2474 btrfs_info(fs_info,
2475 "incomplete page write in btrfs with offset %u and length %u",
2476 bvec->bv_offset, bvec->bv_len);
2477 }
2478
2479 start = page_offset(page);
2480 end = start + bvec->bv_offset + bvec->bv_len - 1;
2481
2482 end_extent_writepage(page, error, start, end);
2483 end_page_writeback(page);
2484 }
2485
2486 bio_put(bio);
2487 }
2488
2489 static void
2490 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491 int uptodate)
2492 {
2493 struct extent_state *cached = NULL;
2494 u64 end = start + len - 1;
2495
2496 if (uptodate && tree->track_uptodate)
2497 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2498 unlock_extent_cached_atomic(tree, start, end, &cached);
2499 }
2500
2501 /*
2502 * after a readpage IO is done, we need to:
2503 * clear the uptodate bits on error
2504 * set the uptodate bits if things worked
2505 * set the page up to date if all extents in the tree are uptodate
2506 * clear the lock bit in the extent tree
2507 * unlock the page if there are no other extents locked for it
2508 *
2509 * Scheduling is not allowed, so the extent state tree is expected
2510 * to have one and only one object corresponding to this IO.
2511 */
2512 static void end_bio_extent_readpage(struct bio *bio)
2513 {
2514 struct bio_vec *bvec;
2515 int uptodate = !bio->bi_status;
2516 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2517 struct extent_io_tree *tree, *failure_tree;
2518 u64 offset = 0;
2519 u64 start;
2520 u64 end;
2521 u64 len;
2522 u64 extent_start = 0;
2523 u64 extent_len = 0;
2524 int mirror;
2525 int ret;
2526 int i;
2527 struct bvec_iter_all iter_all;
2528
2529 ASSERT(!bio_flagged(bio, BIO_CLONED));
2530 bio_for_each_segment_all(bvec, bio, i, iter_all) {
2531 struct page *page = bvec->bv_page;
2532 struct inode *inode = page->mapping->host;
2533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2534 bool data_inode = btrfs_ino(BTRFS_I(inode))
2535 != BTRFS_BTREE_INODE_OBJECTID;
2536
2537 btrfs_debug(fs_info,
2538 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2540 io_bio->mirror_num);
2541 tree = &BTRFS_I(inode)->io_tree;
2542 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543
2544 /* We always issue full-page reads, but if some block
2545 * in a page fails to read, blk_update_request() will
2546 * advance bv_offset and adjust bv_len to compensate.
2547 * Print a warning for nonzero offsets, and an error
2548 * if they don't add up to a full page. */
2549 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551 btrfs_err(fs_info,
2552 "partial page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 else
2555 btrfs_info(fs_info,
2556 "incomplete page read in btrfs with offset %u and length %u",
2557 bvec->bv_offset, bvec->bv_len);
2558 }
2559
2560 start = page_offset(page);
2561 end = start + bvec->bv_offset + bvec->bv_len - 1;
2562 len = bvec->bv_len;
2563
2564 mirror = io_bio->mirror_num;
2565 if (likely(uptodate)) {
2566 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567 page, start, end,
2568 mirror);
2569 if (ret)
2570 uptodate = 0;
2571 else
2572 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573 failure_tree, tree, start,
2574 page,
2575 btrfs_ino(BTRFS_I(inode)), 0);
2576 }
2577
2578 if (likely(uptodate))
2579 goto readpage_ok;
2580
2581 if (data_inode) {
2582
2583 /*
2584 * The generic bio_readpage_error handles errors the
2585 * following way: If possible, new read requests are
2586 * created and submitted and will end up in
2587 * end_bio_extent_readpage as well (if we're lucky,
2588 * not in the !uptodate case). In that case it returns
2589 * 0 and we just go on with the next page in our bio.
2590 * If it can't handle the error it will return -EIO and
2591 * we remain responsible for that page.
2592 */
2593 ret = bio_readpage_error(bio, offset, page, start, end,
2594 mirror);
2595 if (ret == 0) {
2596 uptodate = !bio->bi_status;
2597 offset += len;
2598 continue;
2599 }
2600 } else {
2601 struct extent_buffer *eb;
2602
2603 eb = (struct extent_buffer *)page->private;
2604 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2605 eb->read_mirror = mirror;
2606 atomic_dec(&eb->io_pages);
2607 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2608 &eb->bflags))
2609 btree_readahead_hook(eb, -EIO);
2610
2611 ret = -EIO;
2612 }
2613 readpage_ok:
2614 if (likely(uptodate)) {
2615 loff_t i_size = i_size_read(inode);
2616 pgoff_t end_index = i_size >> PAGE_SHIFT;
2617 unsigned off;
2618
2619 /* Zero out the end if this page straddles i_size */
2620 off = offset_in_page(i_size);
2621 if (page->index == end_index && off)
2622 zero_user_segment(page, off, PAGE_SIZE);
2623 SetPageUptodate(page);
2624 } else {
2625 ClearPageUptodate(page);
2626 SetPageError(page);
2627 }
2628 unlock_page(page);
2629 offset += len;
2630
2631 if (unlikely(!uptodate)) {
2632 if (extent_len) {
2633 endio_readpage_release_extent(tree,
2634 extent_start,
2635 extent_len, 1);
2636 extent_start = 0;
2637 extent_len = 0;
2638 }
2639 endio_readpage_release_extent(tree, start,
2640 end - start + 1, 0);
2641 } else if (!extent_len) {
2642 extent_start = start;
2643 extent_len = end + 1 - start;
2644 } else if (extent_start + extent_len == start) {
2645 extent_len += end + 1 - start;
2646 } else {
2647 endio_readpage_release_extent(tree, extent_start,
2648 extent_len, uptodate);
2649 extent_start = start;
2650 extent_len = end + 1 - start;
2651 }
2652 }
2653
2654 if (extent_len)
2655 endio_readpage_release_extent(tree, extent_start, extent_len,
2656 uptodate);
2657 btrfs_io_bio_free_csum(io_bio);
2658 bio_put(bio);
2659 }
2660
2661 /*
2662 * Initialize the members up to but not including 'bio'. Use after allocating a
2663 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2664 * 'bio' because use of __GFP_ZERO is not supported.
2665 */
2666 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2667 {
2668 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2669 }
2670
2671 /*
2672 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2673 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2674 * for the appropriate container_of magic
2675 */
2676 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2677 {
2678 struct bio *bio;
2679
2680 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2681 bio_set_dev(bio, bdev);
2682 bio->bi_iter.bi_sector = first_byte >> 9;
2683 btrfs_io_bio_init(btrfs_io_bio(bio));
2684 return bio;
2685 }
2686
2687 struct bio *btrfs_bio_clone(struct bio *bio)
2688 {
2689 struct btrfs_io_bio *btrfs_bio;
2690 struct bio *new;
2691
2692 /* Bio allocation backed by a bioset does not fail */
2693 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2694 btrfs_bio = btrfs_io_bio(new);
2695 btrfs_io_bio_init(btrfs_bio);
2696 btrfs_bio->iter = bio->bi_iter;
2697 return new;
2698 }
2699
2700 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2701 {
2702 struct bio *bio;
2703
2704 /* Bio allocation backed by a bioset does not fail */
2705 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2706 btrfs_io_bio_init(btrfs_io_bio(bio));
2707 return bio;
2708 }
2709
2710 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2711 {
2712 struct bio *bio;
2713 struct btrfs_io_bio *btrfs_bio;
2714
2715 /* this will never fail when it's backed by a bioset */
2716 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2717 ASSERT(bio);
2718
2719 btrfs_bio = btrfs_io_bio(bio);
2720 btrfs_io_bio_init(btrfs_bio);
2721
2722 bio_trim(bio, offset >> 9, size >> 9);
2723 btrfs_bio->iter = bio->bi_iter;
2724 return bio;
2725 }
2726
2727 /*
2728 * @opf: bio REQ_OP_* and REQ_* flags as one value
2729 * @tree: tree so we can call our merge_bio hook
2730 * @wbc: optional writeback control for io accounting
2731 * @page: page to add to the bio
2732 * @pg_offset: offset of the new bio or to check whether we are adding
2733 * a contiguous page to the previous one
2734 * @size: portion of page that we want to write
2735 * @offset: starting offset in the page
2736 * @bdev: attach newly created bios to this bdev
2737 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2738 * @end_io_func: end_io callback for new bio
2739 * @mirror_num: desired mirror to read/write
2740 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2741 * @bio_flags: flags of the current bio to see if we can merge them
2742 */
2743 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2744 struct writeback_control *wbc,
2745 struct page *page, u64 offset,
2746 size_t size, unsigned long pg_offset,
2747 struct block_device *bdev,
2748 struct bio **bio_ret,
2749 bio_end_io_t end_io_func,
2750 int mirror_num,
2751 unsigned long prev_bio_flags,
2752 unsigned long bio_flags,
2753 bool force_bio_submit)
2754 {
2755 int ret = 0;
2756 struct bio *bio;
2757 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2758 sector_t sector = offset >> 9;
2759
2760 ASSERT(bio_ret);
2761
2762 if (*bio_ret) {
2763 bool contig;
2764 bool can_merge = true;
2765
2766 bio = *bio_ret;
2767 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2768 contig = bio->bi_iter.bi_sector == sector;
2769 else
2770 contig = bio_end_sector(bio) == sector;
2771
2772 ASSERT(tree->ops);
2773 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2774 can_merge = false;
2775
2776 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2777 force_bio_submit ||
2778 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2779 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2780 if (ret < 0) {
2781 *bio_ret = NULL;
2782 return ret;
2783 }
2784 bio = NULL;
2785 } else {
2786 if (wbc)
2787 wbc_account_io(wbc, page, page_size);
2788 return 0;
2789 }
2790 }
2791
2792 bio = btrfs_bio_alloc(bdev, offset);
2793 bio_add_page(bio, page, page_size, pg_offset);
2794 bio->bi_end_io = end_io_func;
2795 bio->bi_private = tree;
2796 bio->bi_write_hint = page->mapping->host->i_write_hint;
2797 bio->bi_opf = opf;
2798 if (wbc) {
2799 wbc_init_bio(wbc, bio);
2800 wbc_account_io(wbc, page, page_size);
2801 }
2802
2803 *bio_ret = bio;
2804
2805 return ret;
2806 }
2807
2808 static void attach_extent_buffer_page(struct extent_buffer *eb,
2809 struct page *page)
2810 {
2811 if (!PagePrivate(page)) {
2812 SetPagePrivate(page);
2813 get_page(page);
2814 set_page_private(page, (unsigned long)eb);
2815 } else {
2816 WARN_ON(page->private != (unsigned long)eb);
2817 }
2818 }
2819
2820 void set_page_extent_mapped(struct page *page)
2821 {
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
2824 get_page(page);
2825 set_page_private(page, EXTENT_PAGE_PRIVATE);
2826 }
2827 }
2828
2829 static struct extent_map *
2830 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2831 u64 start, u64 len, get_extent_t *get_extent,
2832 struct extent_map **em_cached)
2833 {
2834 struct extent_map *em;
2835
2836 if (em_cached && *em_cached) {
2837 em = *em_cached;
2838 if (extent_map_in_tree(em) && start >= em->start &&
2839 start < extent_map_end(em)) {
2840 refcount_inc(&em->refs);
2841 return em;
2842 }
2843
2844 free_extent_map(em);
2845 *em_cached = NULL;
2846 }
2847
2848 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2849 if (em_cached && !IS_ERR_OR_NULL(em)) {
2850 BUG_ON(*em_cached);
2851 refcount_inc(&em->refs);
2852 *em_cached = em;
2853 }
2854 return em;
2855 }
2856 /*
2857 * basic readpage implementation. Locked extent state structs are inserted
2858 * into the tree that are removed when the IO is done (by the end_io
2859 * handlers)
2860 * XXX JDM: This needs looking at to ensure proper page locking
2861 * return 0 on success, otherwise return error
2862 */
2863 static int __do_readpage(struct extent_io_tree *tree,
2864 struct page *page,
2865 get_extent_t *get_extent,
2866 struct extent_map **em_cached,
2867 struct bio **bio, int mirror_num,
2868 unsigned long *bio_flags, unsigned int read_flags,
2869 u64 *prev_em_start)
2870 {
2871 struct inode *inode = page->mapping->host;
2872 u64 start = page_offset(page);
2873 const u64 end = start + PAGE_SIZE - 1;
2874 u64 cur = start;
2875 u64 extent_offset;
2876 u64 last_byte = i_size_read(inode);
2877 u64 block_start;
2878 u64 cur_end;
2879 struct extent_map *em;
2880 struct block_device *bdev;
2881 int ret = 0;
2882 int nr = 0;
2883 size_t pg_offset = 0;
2884 size_t iosize;
2885 size_t disk_io_size;
2886 size_t blocksize = inode->i_sb->s_blocksize;
2887 unsigned long this_bio_flag = 0;
2888
2889 set_page_extent_mapped(page);
2890
2891 if (!PageUptodate(page)) {
2892 if (cleancache_get_page(page) == 0) {
2893 BUG_ON(blocksize != PAGE_SIZE);
2894 unlock_extent(tree, start, end);
2895 goto out;
2896 }
2897 }
2898
2899 if (page->index == last_byte >> PAGE_SHIFT) {
2900 char *userpage;
2901 size_t zero_offset = offset_in_page(last_byte);
2902
2903 if (zero_offset) {
2904 iosize = PAGE_SIZE - zero_offset;
2905 userpage = kmap_atomic(page);
2906 memset(userpage + zero_offset, 0, iosize);
2907 flush_dcache_page(page);
2908 kunmap_atomic(userpage);
2909 }
2910 }
2911 while (cur <= end) {
2912 bool force_bio_submit = false;
2913 u64 offset;
2914
2915 if (cur >= last_byte) {
2916 char *userpage;
2917 struct extent_state *cached = NULL;
2918
2919 iosize = PAGE_SIZE - pg_offset;
2920 userpage = kmap_atomic(page);
2921 memset(userpage + pg_offset, 0, iosize);
2922 flush_dcache_page(page);
2923 kunmap_atomic(userpage);
2924 set_extent_uptodate(tree, cur, cur + iosize - 1,
2925 &cached, GFP_NOFS);
2926 unlock_extent_cached(tree, cur,
2927 cur + iosize - 1, &cached);
2928 break;
2929 }
2930 em = __get_extent_map(inode, page, pg_offset, cur,
2931 end - cur + 1, get_extent, em_cached);
2932 if (IS_ERR_OR_NULL(em)) {
2933 SetPageError(page);
2934 unlock_extent(tree, cur, end);
2935 break;
2936 }
2937 extent_offset = cur - em->start;
2938 BUG_ON(extent_map_end(em) <= cur);
2939 BUG_ON(end < cur);
2940
2941 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2942 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2943 extent_set_compress_type(&this_bio_flag,
2944 em->compress_type);
2945 }
2946
2947 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2948 cur_end = min(extent_map_end(em) - 1, end);
2949 iosize = ALIGN(iosize, blocksize);
2950 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2951 disk_io_size = em->block_len;
2952 offset = em->block_start;
2953 } else {
2954 offset = em->block_start + extent_offset;
2955 disk_io_size = iosize;
2956 }
2957 bdev = em->bdev;
2958 block_start = em->block_start;
2959 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2960 block_start = EXTENT_MAP_HOLE;
2961
2962 /*
2963 * If we have a file range that points to a compressed extent
2964 * and it's followed by a consecutive file range that points to
2965 * to the same compressed extent (possibly with a different
2966 * offset and/or length, so it either points to the whole extent
2967 * or only part of it), we must make sure we do not submit a
2968 * single bio to populate the pages for the 2 ranges because
2969 * this makes the compressed extent read zero out the pages
2970 * belonging to the 2nd range. Imagine the following scenario:
2971 *
2972 * File layout
2973 * [0 - 8K] [8K - 24K]
2974 * | |
2975 * | |
2976 * points to extent X, points to extent X,
2977 * offset 4K, length of 8K offset 0, length 16K
2978 *
2979 * [extent X, compressed length = 4K uncompressed length = 16K]
2980 *
2981 * If the bio to read the compressed extent covers both ranges,
2982 * it will decompress extent X into the pages belonging to the
2983 * first range and then it will stop, zeroing out the remaining
2984 * pages that belong to the other range that points to extent X.
2985 * So here we make sure we submit 2 bios, one for the first
2986 * range and another one for the third range. Both will target
2987 * the same physical extent from disk, but we can't currently
2988 * make the compressed bio endio callback populate the pages
2989 * for both ranges because each compressed bio is tightly
2990 * coupled with a single extent map, and each range can have
2991 * an extent map with a different offset value relative to the
2992 * uncompressed data of our extent and different lengths. This
2993 * is a corner case so we prioritize correctness over
2994 * non-optimal behavior (submitting 2 bios for the same extent).
2995 */
2996 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2997 prev_em_start && *prev_em_start != (u64)-1 &&
2998 *prev_em_start != em->start)
2999 force_bio_submit = true;
3000
3001 if (prev_em_start)
3002 *prev_em_start = em->start;
3003
3004 free_extent_map(em);
3005 em = NULL;
3006
3007 /* we've found a hole, just zero and go on */
3008 if (block_start == EXTENT_MAP_HOLE) {
3009 char *userpage;
3010 struct extent_state *cached = NULL;
3011
3012 userpage = kmap_atomic(page);
3013 memset(userpage + pg_offset, 0, iosize);
3014 flush_dcache_page(page);
3015 kunmap_atomic(userpage);
3016
3017 set_extent_uptodate(tree, cur, cur + iosize - 1,
3018 &cached, GFP_NOFS);
3019 unlock_extent_cached(tree, cur,
3020 cur + iosize - 1, &cached);
3021 cur = cur + iosize;
3022 pg_offset += iosize;
3023 continue;
3024 }
3025 /* the get_extent function already copied into the page */
3026 if (test_range_bit(tree, cur, cur_end,
3027 EXTENT_UPTODATE, 1, NULL)) {
3028 check_page_uptodate(tree, page);
3029 unlock_extent(tree, cur, cur + iosize - 1);
3030 cur = cur + iosize;
3031 pg_offset += iosize;
3032 continue;
3033 }
3034 /* we have an inline extent but it didn't get marked up
3035 * to date. Error out
3036 */
3037 if (block_start == EXTENT_MAP_INLINE) {
3038 SetPageError(page);
3039 unlock_extent(tree, cur, cur + iosize - 1);
3040 cur = cur + iosize;
3041 pg_offset += iosize;
3042 continue;
3043 }
3044
3045 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3046 page, offset, disk_io_size,
3047 pg_offset, bdev, bio,
3048 end_bio_extent_readpage, mirror_num,
3049 *bio_flags,
3050 this_bio_flag,
3051 force_bio_submit);
3052 if (!ret) {
3053 nr++;
3054 *bio_flags = this_bio_flag;
3055 } else {
3056 SetPageError(page);
3057 unlock_extent(tree, cur, cur + iosize - 1);
3058 goto out;
3059 }
3060 cur = cur + iosize;
3061 pg_offset += iosize;
3062 }
3063 out:
3064 if (!nr) {
3065 if (!PageError(page))
3066 SetPageUptodate(page);
3067 unlock_page(page);
3068 }
3069 return ret;
3070 }
3071
3072 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3073 struct page *pages[], int nr_pages,
3074 u64 start, u64 end,
3075 struct extent_map **em_cached,
3076 struct bio **bio,
3077 unsigned long *bio_flags,
3078 u64 *prev_em_start)
3079 {
3080 struct inode *inode;
3081 struct btrfs_ordered_extent *ordered;
3082 int index;
3083
3084 inode = pages[0]->mapping->host;
3085 while (1) {
3086 lock_extent(tree, start, end);
3087 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3088 end - start + 1);
3089 if (!ordered)
3090 break;
3091 unlock_extent(tree, start, end);
3092 btrfs_start_ordered_extent(inode, ordered, 1);
3093 btrfs_put_ordered_extent(ordered);
3094 }
3095
3096 for (index = 0; index < nr_pages; index++) {
3097 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3098 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3099 put_page(pages[index]);
3100 }
3101 }
3102
3103 static void __extent_readpages(struct extent_io_tree *tree,
3104 struct page *pages[],
3105 int nr_pages,
3106 struct extent_map **em_cached,
3107 struct bio **bio, unsigned long *bio_flags,
3108 u64 *prev_em_start)
3109 {
3110 u64 start = 0;
3111 u64 end = 0;
3112 u64 page_start;
3113 int index;
3114 int first_index = 0;
3115
3116 for (index = 0; index < nr_pages; index++) {
3117 page_start = page_offset(pages[index]);
3118 if (!end) {
3119 start = page_start;
3120 end = start + PAGE_SIZE - 1;
3121 first_index = index;
3122 } else if (end + 1 == page_start) {
3123 end += PAGE_SIZE;
3124 } else {
3125 __do_contiguous_readpages(tree, &pages[first_index],
3126 index - first_index, start,
3127 end, em_cached,
3128 bio, bio_flags,
3129 prev_em_start);
3130 start = page_start;
3131 end = start + PAGE_SIZE - 1;
3132 first_index = index;
3133 }
3134 }
3135
3136 if (end)
3137 __do_contiguous_readpages(tree, &pages[first_index],
3138 index - first_index, start,
3139 end, em_cached, bio,
3140 bio_flags, prev_em_start);
3141 }
3142
3143 static int __extent_read_full_page(struct extent_io_tree *tree,
3144 struct page *page,
3145 get_extent_t *get_extent,
3146 struct bio **bio, int mirror_num,
3147 unsigned long *bio_flags,
3148 unsigned int read_flags)
3149 {
3150 struct inode *inode = page->mapping->host;
3151 struct btrfs_ordered_extent *ordered;
3152 u64 start = page_offset(page);
3153 u64 end = start + PAGE_SIZE - 1;
3154 int ret;
3155
3156 while (1) {
3157 lock_extent(tree, start, end);
3158 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3159 PAGE_SIZE);
3160 if (!ordered)
3161 break;
3162 unlock_extent(tree, start, end);
3163 btrfs_start_ordered_extent(inode, ordered, 1);
3164 btrfs_put_ordered_extent(ordered);
3165 }
3166
3167 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3168 bio_flags, read_flags, NULL);
3169 return ret;
3170 }
3171
3172 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3173 get_extent_t *get_extent, int mirror_num)
3174 {
3175 struct bio *bio = NULL;
3176 unsigned long bio_flags = 0;
3177 int ret;
3178
3179 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3180 &bio_flags, 0);
3181 if (bio)
3182 ret = submit_one_bio(bio, mirror_num, bio_flags);
3183 return ret;
3184 }
3185
3186 static void update_nr_written(struct writeback_control *wbc,
3187 unsigned long nr_written)
3188 {
3189 wbc->nr_to_write -= nr_written;
3190 }
3191
3192 /*
3193 * helper for __extent_writepage, doing all of the delayed allocation setup.
3194 *
3195 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3196 * to write the page (copy into inline extent). In this case the IO has
3197 * been started and the page is already unlocked.
3198 *
3199 * This returns 0 if all went well (page still locked)
3200 * This returns < 0 if there were errors (page still locked)
3201 */
3202 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3203 struct page *page, struct writeback_control *wbc,
3204 u64 delalloc_start, unsigned long *nr_written)
3205 {
3206 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3207 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3208 bool found;
3209 u64 delalloc_to_write = 0;
3210 u64 delalloc_end = 0;
3211 int ret;
3212 int page_started = 0;
3213
3214
3215 while (delalloc_end < page_end) {
3216 found = find_lock_delalloc_range(inode, tree,
3217 page,
3218 &delalloc_start,
3219 &delalloc_end);
3220 if (!found) {
3221 delalloc_start = delalloc_end + 1;
3222 continue;
3223 }
3224 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3225 delalloc_end, &page_started, nr_written, wbc);
3226 /* File system has been set read-only */
3227 if (ret) {
3228 SetPageError(page);
3229 /*
3230 * btrfs_run_delalloc_range should return < 0 for error
3231 * but just in case, we use > 0 here meaning the IO is
3232 * started, so we don't want to return > 0 unless
3233 * things are going well.
3234 */
3235 ret = ret < 0 ? ret : -EIO;
3236 goto done;
3237 }
3238 /*
3239 * delalloc_end is already one less than the total length, so
3240 * we don't subtract one from PAGE_SIZE
3241 */
3242 delalloc_to_write += (delalloc_end - delalloc_start +
3243 PAGE_SIZE) >> PAGE_SHIFT;
3244 delalloc_start = delalloc_end + 1;
3245 }
3246 if (wbc->nr_to_write < delalloc_to_write) {
3247 int thresh = 8192;
3248
3249 if (delalloc_to_write < thresh * 2)
3250 thresh = delalloc_to_write;
3251 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3252 thresh);
3253 }
3254
3255 /* did the fill delalloc function already unlock and start
3256 * the IO?
3257 */
3258 if (page_started) {
3259 /*
3260 * we've unlocked the page, so we can't update
3261 * the mapping's writeback index, just update
3262 * nr_to_write.
3263 */
3264 wbc->nr_to_write -= *nr_written;
3265 return 1;
3266 }
3267
3268 ret = 0;
3269
3270 done:
3271 return ret;
3272 }
3273
3274 /*
3275 * helper for __extent_writepage. This calls the writepage start hooks,
3276 * and does the loop to map the page into extents and bios.
3277 *
3278 * We return 1 if the IO is started and the page is unlocked,
3279 * 0 if all went well (page still locked)
3280 * < 0 if there were errors (page still locked)
3281 */
3282 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3283 struct page *page,
3284 struct writeback_control *wbc,
3285 struct extent_page_data *epd,
3286 loff_t i_size,
3287 unsigned long nr_written,
3288 unsigned int write_flags, int *nr_ret)
3289 {
3290 struct extent_io_tree *tree = epd->tree;
3291 u64 start = page_offset(page);
3292 u64 page_end = start + PAGE_SIZE - 1;
3293 u64 end;
3294 u64 cur = start;
3295 u64 extent_offset;
3296 u64 block_start;
3297 u64 iosize;
3298 struct extent_map *em;
3299 struct block_device *bdev;
3300 size_t pg_offset = 0;
3301 size_t blocksize;
3302 int ret = 0;
3303 int nr = 0;
3304 bool compressed;
3305
3306 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3307 if (ret) {
3308 /* Fixup worker will requeue */
3309 if (ret == -EBUSY)
3310 wbc->pages_skipped++;
3311 else
3312 redirty_page_for_writepage(wbc, page);
3313
3314 update_nr_written(wbc, nr_written);
3315 unlock_page(page);
3316 return 1;
3317 }
3318
3319 /*
3320 * we don't want to touch the inode after unlocking the page,
3321 * so we update the mapping writeback index now
3322 */
3323 update_nr_written(wbc, nr_written + 1);
3324
3325 end = page_end;
3326 if (i_size <= start) {
3327 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3328 goto done;
3329 }
3330
3331 blocksize = inode->i_sb->s_blocksize;
3332
3333 while (cur <= end) {
3334 u64 em_end;
3335 u64 offset;
3336
3337 if (cur >= i_size) {
3338 btrfs_writepage_endio_finish_ordered(page, cur,
3339 page_end, 1);
3340 break;
3341 }
3342 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3343 end - cur + 1, 1);
3344 if (IS_ERR_OR_NULL(em)) {
3345 SetPageError(page);
3346 ret = PTR_ERR_OR_ZERO(em);
3347 break;
3348 }
3349
3350 extent_offset = cur - em->start;
3351 em_end = extent_map_end(em);
3352 BUG_ON(em_end <= cur);
3353 BUG_ON(end < cur);
3354 iosize = min(em_end - cur, end - cur + 1);
3355 iosize = ALIGN(iosize, blocksize);
3356 offset = em->block_start + extent_offset;
3357 bdev = em->bdev;
3358 block_start = em->block_start;
3359 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3360 free_extent_map(em);
3361 em = NULL;
3362
3363 /*
3364 * compressed and inline extents are written through other
3365 * paths in the FS
3366 */
3367 if (compressed || block_start == EXTENT_MAP_HOLE ||
3368 block_start == EXTENT_MAP_INLINE) {
3369 /*
3370 * end_io notification does not happen here for
3371 * compressed extents
3372 */
3373 if (!compressed)
3374 btrfs_writepage_endio_finish_ordered(page, cur,
3375 cur + iosize - 1,
3376 1);
3377 else if (compressed) {
3378 /* we don't want to end_page_writeback on
3379 * a compressed extent. this happens
3380 * elsewhere
3381 */
3382 nr++;
3383 }
3384
3385 cur += iosize;
3386 pg_offset += iosize;
3387 continue;
3388 }
3389
3390 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3391 if (!PageWriteback(page)) {
3392 btrfs_err(BTRFS_I(inode)->root->fs_info,
3393 "page %lu not writeback, cur %llu end %llu",
3394 page->index, cur, end);
3395 }
3396
3397 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3398 page, offset, iosize, pg_offset,
3399 bdev, &epd->bio,
3400 end_bio_extent_writepage,
3401 0, 0, 0, false);
3402 if (ret) {
3403 SetPageError(page);
3404 if (PageWriteback(page))
3405 end_page_writeback(page);
3406 }
3407
3408 cur = cur + iosize;
3409 pg_offset += iosize;
3410 nr++;
3411 }
3412 done:
3413 *nr_ret = nr;
3414 return ret;
3415 }
3416
3417 /*
3418 * the writepage semantics are similar to regular writepage. extent
3419 * records are inserted to lock ranges in the tree, and as dirty areas
3420 * are found, they are marked writeback. Then the lock bits are removed
3421 * and the end_io handler clears the writeback ranges
3422 */
3423 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3424 struct extent_page_data *epd)
3425 {
3426 struct inode *inode = page->mapping->host;
3427 u64 start = page_offset(page);
3428 u64 page_end = start + PAGE_SIZE - 1;
3429 int ret;
3430 int nr = 0;
3431 size_t pg_offset = 0;
3432 loff_t i_size = i_size_read(inode);
3433 unsigned long end_index = i_size >> PAGE_SHIFT;
3434 unsigned int write_flags = 0;
3435 unsigned long nr_written = 0;
3436
3437 write_flags = wbc_to_write_flags(wbc);
3438
3439 trace___extent_writepage(page, inode, wbc);
3440
3441 WARN_ON(!PageLocked(page));
3442
3443 ClearPageError(page);
3444
3445 pg_offset = offset_in_page(i_size);
3446 if (page->index > end_index ||
3447 (page->index == end_index && !pg_offset)) {
3448 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3449 unlock_page(page);
3450 return 0;
3451 }
3452
3453 if (page->index == end_index) {
3454 char *userpage;
3455
3456 userpage = kmap_atomic(page);
3457 memset(userpage + pg_offset, 0,
3458 PAGE_SIZE - pg_offset);
3459 kunmap_atomic(userpage);
3460 flush_dcache_page(page);
3461 }
3462
3463 pg_offset = 0;
3464
3465 set_page_extent_mapped(page);
3466
3467 if (!epd->extent_locked) {
3468 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3469 if (ret == 1)
3470 goto done_unlocked;
3471 if (ret)
3472 goto done;
3473 }
3474
3475 ret = __extent_writepage_io(inode, page, wbc, epd,
3476 i_size, nr_written, write_flags, &nr);
3477 if (ret == 1)
3478 goto done_unlocked;
3479
3480 done:
3481 if (nr == 0) {
3482 /* make sure the mapping tag for page dirty gets cleared */
3483 set_page_writeback(page);
3484 end_page_writeback(page);
3485 }
3486 if (PageError(page)) {
3487 ret = ret < 0 ? ret : -EIO;
3488 end_extent_writepage(page, ret, start, page_end);
3489 }
3490 unlock_page(page);
3491 return ret;
3492
3493 done_unlocked:
3494 return 0;
3495 }
3496
3497 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3498 {
3499 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3500 TASK_UNINTERRUPTIBLE);
3501 }
3502
3503 static noinline_for_stack int
3504 lock_extent_buffer_for_io(struct extent_buffer *eb,
3505 struct btrfs_fs_info *fs_info,
3506 struct extent_page_data *epd)
3507 {
3508 int i, num_pages;
3509 int flush = 0;
3510 int ret = 0;
3511
3512 if (!btrfs_try_tree_write_lock(eb)) {
3513 flush = 1;
3514 flush_write_bio(epd);
3515 btrfs_tree_lock(eb);
3516 }
3517
3518 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3519 btrfs_tree_unlock(eb);
3520 if (!epd->sync_io)
3521 return 0;
3522 if (!flush) {
3523 flush_write_bio(epd);
3524 flush = 1;
3525 }
3526 while (1) {
3527 wait_on_extent_buffer_writeback(eb);
3528 btrfs_tree_lock(eb);
3529 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3530 break;
3531 btrfs_tree_unlock(eb);
3532 }
3533 }
3534
3535 /*
3536 * We need to do this to prevent races in people who check if the eb is
3537 * under IO since we can end up having no IO bits set for a short period
3538 * of time.
3539 */
3540 spin_lock(&eb->refs_lock);
3541 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3542 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3543 spin_unlock(&eb->refs_lock);
3544 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3545 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3546 -eb->len,
3547 fs_info->dirty_metadata_batch);
3548 ret = 1;
3549 } else {
3550 spin_unlock(&eb->refs_lock);
3551 }
3552
3553 btrfs_tree_unlock(eb);
3554
3555 if (!ret)
3556 return ret;
3557
3558 num_pages = num_extent_pages(eb);
3559 for (i = 0; i < num_pages; i++) {
3560 struct page *p = eb->pages[i];
3561
3562 if (!trylock_page(p)) {
3563 if (!flush) {
3564 flush_write_bio(epd);
3565 flush = 1;
3566 }
3567 lock_page(p);
3568 }
3569 }
3570
3571 return ret;
3572 }
3573
3574 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3575 {
3576 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3577 smp_mb__after_atomic();
3578 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3579 }
3580
3581 static void set_btree_ioerr(struct page *page)
3582 {
3583 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3584
3585 SetPageError(page);
3586 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3587 return;
3588
3589 /*
3590 * If writeback for a btree extent that doesn't belong to a log tree
3591 * failed, increment the counter transaction->eb_write_errors.
3592 * We do this because while the transaction is running and before it's
3593 * committing (when we call filemap_fdata[write|wait]_range against
3594 * the btree inode), we might have
3595 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3596 * returns an error or an error happens during writeback, when we're
3597 * committing the transaction we wouldn't know about it, since the pages
3598 * can be no longer dirty nor marked anymore for writeback (if a
3599 * subsequent modification to the extent buffer didn't happen before the
3600 * transaction commit), which makes filemap_fdata[write|wait]_range not
3601 * able to find the pages tagged with SetPageError at transaction
3602 * commit time. So if this happens we must abort the transaction,
3603 * otherwise we commit a super block with btree roots that point to
3604 * btree nodes/leafs whose content on disk is invalid - either garbage
3605 * or the content of some node/leaf from a past generation that got
3606 * cowed or deleted and is no longer valid.
3607 *
3608 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3609 * not be enough - we need to distinguish between log tree extents vs
3610 * non-log tree extents, and the next filemap_fdatawait_range() call
3611 * will catch and clear such errors in the mapping - and that call might
3612 * be from a log sync and not from a transaction commit. Also, checking
3613 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3614 * not done and would not be reliable - the eb might have been released
3615 * from memory and reading it back again means that flag would not be
3616 * set (since it's a runtime flag, not persisted on disk).
3617 *
3618 * Using the flags below in the btree inode also makes us achieve the
3619 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3620 * writeback for all dirty pages and before filemap_fdatawait_range()
3621 * is called, the writeback for all dirty pages had already finished
3622 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3623 * filemap_fdatawait_range() would return success, as it could not know
3624 * that writeback errors happened (the pages were no longer tagged for
3625 * writeback).
3626 */
3627 switch (eb->log_index) {
3628 case -1:
3629 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3630 break;
3631 case 0:
3632 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3633 break;
3634 case 1:
3635 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3636 break;
3637 default:
3638 BUG(); /* unexpected, logic error */
3639 }
3640 }
3641
3642 static void end_bio_extent_buffer_writepage(struct bio *bio)
3643 {
3644 struct bio_vec *bvec;
3645 struct extent_buffer *eb;
3646 int i, done;
3647 struct bvec_iter_all iter_all;
3648
3649 ASSERT(!bio_flagged(bio, BIO_CLONED));
3650 bio_for_each_segment_all(bvec, bio, i, iter_all) {
3651 struct page *page = bvec->bv_page;
3652
3653 eb = (struct extent_buffer *)page->private;
3654 BUG_ON(!eb);
3655 done = atomic_dec_and_test(&eb->io_pages);
3656
3657 if (bio->bi_status ||
3658 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3659 ClearPageUptodate(page);
3660 set_btree_ioerr(page);
3661 }
3662
3663 end_page_writeback(page);
3664
3665 if (!done)
3666 continue;
3667
3668 end_extent_buffer_writeback(eb);
3669 }
3670
3671 bio_put(bio);
3672 }
3673
3674 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3675 struct btrfs_fs_info *fs_info,
3676 struct writeback_control *wbc,
3677 struct extent_page_data *epd)
3678 {
3679 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3680 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3681 u64 offset = eb->start;
3682 u32 nritems;
3683 int i, num_pages;
3684 unsigned long start, end;
3685 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3686 int ret = 0;
3687
3688 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3689 num_pages = num_extent_pages(eb);
3690 atomic_set(&eb->io_pages, num_pages);
3691
3692 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3693 nritems = btrfs_header_nritems(eb);
3694 if (btrfs_header_level(eb) > 0) {
3695 end = btrfs_node_key_ptr_offset(nritems);
3696
3697 memzero_extent_buffer(eb, end, eb->len - end);
3698 } else {
3699 /*
3700 * leaf:
3701 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3702 */
3703 start = btrfs_item_nr_offset(nritems);
3704 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3705 memzero_extent_buffer(eb, start, end - start);
3706 }
3707
3708 for (i = 0; i < num_pages; i++) {
3709 struct page *p = eb->pages[i];
3710
3711 clear_page_dirty_for_io(p);
3712 set_page_writeback(p);
3713 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3714 p, offset, PAGE_SIZE, 0, bdev,
3715 &epd->bio,
3716 end_bio_extent_buffer_writepage,
3717 0, 0, 0, false);
3718 if (ret) {
3719 set_btree_ioerr(p);
3720 if (PageWriteback(p))
3721 end_page_writeback(p);
3722 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3723 end_extent_buffer_writeback(eb);
3724 ret = -EIO;
3725 break;
3726 }
3727 offset += PAGE_SIZE;
3728 update_nr_written(wbc, 1);
3729 unlock_page(p);
3730 }
3731
3732 if (unlikely(ret)) {
3733 for (; i < num_pages; i++) {
3734 struct page *p = eb->pages[i];
3735 clear_page_dirty_for_io(p);
3736 unlock_page(p);
3737 }
3738 }
3739
3740 return ret;
3741 }
3742
3743 int btree_write_cache_pages(struct address_space *mapping,
3744 struct writeback_control *wbc)
3745 {
3746 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3747 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3748 struct extent_buffer *eb, *prev_eb = NULL;
3749 struct extent_page_data epd = {
3750 .bio = NULL,
3751 .tree = tree,
3752 .extent_locked = 0,
3753 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3754 };
3755 int ret = 0;
3756 int done = 0;
3757 int nr_to_write_done = 0;
3758 struct pagevec pvec;
3759 int nr_pages;
3760 pgoff_t index;
3761 pgoff_t end; /* Inclusive */
3762 int scanned = 0;
3763 xa_mark_t tag;
3764
3765 pagevec_init(&pvec);
3766 if (wbc->range_cyclic) {
3767 index = mapping->writeback_index; /* Start from prev offset */
3768 end = -1;
3769 } else {
3770 index = wbc->range_start >> PAGE_SHIFT;
3771 end = wbc->range_end >> PAGE_SHIFT;
3772 scanned = 1;
3773 }
3774 if (wbc->sync_mode == WB_SYNC_ALL)
3775 tag = PAGECACHE_TAG_TOWRITE;
3776 else
3777 tag = PAGECACHE_TAG_DIRTY;
3778 retry:
3779 if (wbc->sync_mode == WB_SYNC_ALL)
3780 tag_pages_for_writeback(mapping, index, end);
3781 while (!done && !nr_to_write_done && (index <= end) &&
3782 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3783 tag))) {
3784 unsigned i;
3785
3786 scanned = 1;
3787 for (i = 0; i < nr_pages; i++) {
3788 struct page *page = pvec.pages[i];
3789
3790 if (!PagePrivate(page))
3791 continue;
3792
3793 spin_lock(&mapping->private_lock);
3794 if (!PagePrivate(page)) {
3795 spin_unlock(&mapping->private_lock);
3796 continue;
3797 }
3798
3799 eb = (struct extent_buffer *)page->private;
3800
3801 /*
3802 * Shouldn't happen and normally this would be a BUG_ON
3803 * but no sense in crashing the users box for something
3804 * we can survive anyway.
3805 */
3806 if (WARN_ON(!eb)) {
3807 spin_unlock(&mapping->private_lock);
3808 continue;
3809 }
3810
3811 if (eb == prev_eb) {
3812 spin_unlock(&mapping->private_lock);
3813 continue;
3814 }
3815
3816 ret = atomic_inc_not_zero(&eb->refs);
3817 spin_unlock(&mapping->private_lock);
3818 if (!ret)
3819 continue;
3820
3821 prev_eb = eb;
3822 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3823 if (!ret) {
3824 free_extent_buffer(eb);
3825 continue;
3826 }
3827
3828 ret = write_one_eb(eb, fs_info, wbc, &epd);
3829 if (ret) {
3830 done = 1;
3831 free_extent_buffer(eb);
3832 break;
3833 }
3834 free_extent_buffer(eb);
3835
3836 /*
3837 * the filesystem may choose to bump up nr_to_write.
3838 * We have to make sure to honor the new nr_to_write
3839 * at any time
3840 */
3841 nr_to_write_done = wbc->nr_to_write <= 0;
3842 }
3843 pagevec_release(&pvec);
3844 cond_resched();
3845 }
3846 if (!scanned && !done) {
3847 /*
3848 * We hit the last page and there is more work to be done: wrap
3849 * back to the start of the file
3850 */
3851 scanned = 1;
3852 index = 0;
3853 goto retry;
3854 }
3855 flush_write_bio(&epd);
3856 return ret;
3857 }
3858
3859 /**
3860 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3861 * @mapping: address space structure to write
3862 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3863 * @data: data passed to __extent_writepage function
3864 *
3865 * If a page is already under I/O, write_cache_pages() skips it, even
3866 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3867 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3868 * and msync() need to guarantee that all the data which was dirty at the time
3869 * the call was made get new I/O started against them. If wbc->sync_mode is
3870 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3871 * existing IO to complete.
3872 */
3873 static int extent_write_cache_pages(struct address_space *mapping,
3874 struct writeback_control *wbc,
3875 struct extent_page_data *epd)
3876 {
3877 struct inode *inode = mapping->host;
3878 int ret = 0;
3879 int done = 0;
3880 int nr_to_write_done = 0;
3881 struct pagevec pvec;
3882 int nr_pages;
3883 pgoff_t index;
3884 pgoff_t end; /* Inclusive */
3885 pgoff_t done_index;
3886 int range_whole = 0;
3887 int scanned = 0;
3888 xa_mark_t tag;
3889
3890 /*
3891 * We have to hold onto the inode so that ordered extents can do their
3892 * work when the IO finishes. The alternative to this is failing to add
3893 * an ordered extent if the igrab() fails there and that is a huge pain
3894 * to deal with, so instead just hold onto the inode throughout the
3895 * writepages operation. If it fails here we are freeing up the inode
3896 * anyway and we'd rather not waste our time writing out stuff that is
3897 * going to be truncated anyway.
3898 */
3899 if (!igrab(inode))
3900 return 0;
3901
3902 pagevec_init(&pvec);
3903 if (wbc->range_cyclic) {
3904 index = mapping->writeback_index; /* Start from prev offset */
3905 end = -1;
3906 } else {
3907 index = wbc->range_start >> PAGE_SHIFT;
3908 end = wbc->range_end >> PAGE_SHIFT;
3909 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3910 range_whole = 1;
3911 scanned = 1;
3912 }
3913
3914 /*
3915 * We do the tagged writepage as long as the snapshot flush bit is set
3916 * and we are the first one who do the filemap_flush() on this inode.
3917 *
3918 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3919 * not race in and drop the bit.
3920 */
3921 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3922 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3923 &BTRFS_I(inode)->runtime_flags))
3924 wbc->tagged_writepages = 1;
3925
3926 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3927 tag = PAGECACHE_TAG_TOWRITE;
3928 else
3929 tag = PAGECACHE_TAG_DIRTY;
3930 retry:
3931 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3932 tag_pages_for_writeback(mapping, index, end);
3933 done_index = index;
3934 while (!done && !nr_to_write_done && (index <= end) &&
3935 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3936 &index, end, tag))) {
3937 unsigned i;
3938
3939 scanned = 1;
3940 for (i = 0; i < nr_pages; i++) {
3941 struct page *page = pvec.pages[i];
3942
3943 done_index = page->index;
3944 /*
3945 * At this point we hold neither the i_pages lock nor
3946 * the page lock: the page may be truncated or
3947 * invalidated (changing page->mapping to NULL),
3948 * or even swizzled back from swapper_space to
3949 * tmpfs file mapping
3950 */
3951 if (!trylock_page(page)) {
3952 flush_write_bio(epd);
3953 lock_page(page);
3954 }
3955
3956 if (unlikely(page->mapping != mapping)) {
3957 unlock_page(page);
3958 continue;
3959 }
3960
3961 if (wbc->sync_mode != WB_SYNC_NONE) {
3962 if (PageWriteback(page))
3963 flush_write_bio(epd);
3964 wait_on_page_writeback(page);
3965 }
3966
3967 if (PageWriteback(page) ||
3968 !clear_page_dirty_for_io(page)) {
3969 unlock_page(page);
3970 continue;
3971 }
3972
3973 ret = __extent_writepage(page, wbc, epd);
3974
3975 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3976 unlock_page(page);
3977 ret = 0;
3978 }
3979 if (ret < 0) {
3980 /*
3981 * done_index is set past this page,
3982 * so media errors will not choke
3983 * background writeout for the entire
3984 * file. This has consequences for
3985 * range_cyclic semantics (ie. it may
3986 * not be suitable for data integrity
3987 * writeout).
3988 */
3989 done_index = page->index + 1;
3990 done = 1;
3991 break;
3992 }
3993
3994 /*
3995 * the filesystem may choose to bump up nr_to_write.
3996 * We have to make sure to honor the new nr_to_write
3997 * at any time
3998 */
3999 nr_to_write_done = wbc->nr_to_write <= 0;
4000 }
4001 pagevec_release(&pvec);
4002 cond_resched();
4003 }
4004 if (!scanned && !done) {
4005 /*
4006 * We hit the last page and there is more work to be done: wrap
4007 * back to the start of the file
4008 */
4009 scanned = 1;
4010 index = 0;
4011 goto retry;
4012 }
4013
4014 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4015 mapping->writeback_index = done_index;
4016
4017 btrfs_add_delayed_iput(inode);
4018 return ret;
4019 }
4020
4021 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4022 {
4023 int ret;
4024 struct extent_page_data epd = {
4025 .bio = NULL,
4026 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4027 .extent_locked = 0,
4028 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4029 };
4030
4031 ret = __extent_writepage(page, wbc, &epd);
4032
4033 flush_write_bio(&epd);
4034 return ret;
4035 }
4036
4037 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4038 int mode)
4039 {
4040 int ret = 0;
4041 struct address_space *mapping = inode->i_mapping;
4042 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4043 struct page *page;
4044 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4045 PAGE_SHIFT;
4046
4047 struct extent_page_data epd = {
4048 .bio = NULL,
4049 .tree = tree,
4050 .extent_locked = 1,
4051 .sync_io = mode == WB_SYNC_ALL,
4052 };
4053 struct writeback_control wbc_writepages = {
4054 .sync_mode = mode,
4055 .nr_to_write = nr_pages * 2,
4056 .range_start = start,
4057 .range_end = end + 1,
4058 };
4059
4060 while (start <= end) {
4061 page = find_get_page(mapping, start >> PAGE_SHIFT);
4062 if (clear_page_dirty_for_io(page))
4063 ret = __extent_writepage(page, &wbc_writepages, &epd);
4064 else {
4065 btrfs_writepage_endio_finish_ordered(page, start,
4066 start + PAGE_SIZE - 1, 1);
4067 unlock_page(page);
4068 }
4069 put_page(page);
4070 start += PAGE_SIZE;
4071 }
4072
4073 flush_write_bio(&epd);
4074 return ret;
4075 }
4076
4077 int extent_writepages(struct address_space *mapping,
4078 struct writeback_control *wbc)
4079 {
4080 int ret = 0;
4081 struct extent_page_data epd = {
4082 .bio = NULL,
4083 .tree = &BTRFS_I(mapping->host)->io_tree,
4084 .extent_locked = 0,
4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086 };
4087
4088 ret = extent_write_cache_pages(mapping, wbc, &epd);
4089 flush_write_bio(&epd);
4090 return ret;
4091 }
4092
4093 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4094 unsigned nr_pages)
4095 {
4096 struct bio *bio = NULL;
4097 unsigned long bio_flags = 0;
4098 struct page *pagepool[16];
4099 struct extent_map *em_cached = NULL;
4100 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4101 int nr = 0;
4102 u64 prev_em_start = (u64)-1;
4103
4104 while (!list_empty(pages)) {
4105 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4106 struct page *page = lru_to_page(pages);
4107
4108 prefetchw(&page->flags);
4109 list_del(&page->lru);
4110 if (add_to_page_cache_lru(page, mapping, page->index,
4111 readahead_gfp_mask(mapping))) {
4112 put_page(page);
4113 continue;
4114 }
4115
4116 pagepool[nr++] = page;
4117 }
4118
4119 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4120 &bio_flags, &prev_em_start);
4121 }
4122
4123 if (em_cached)
4124 free_extent_map(em_cached);
4125
4126 if (bio)
4127 return submit_one_bio(bio, 0, bio_flags);
4128 return 0;
4129 }
4130
4131 /*
4132 * basic invalidatepage code, this waits on any locked or writeback
4133 * ranges corresponding to the page, and then deletes any extent state
4134 * records from the tree
4135 */
4136 int extent_invalidatepage(struct extent_io_tree *tree,
4137 struct page *page, unsigned long offset)
4138 {
4139 struct extent_state *cached_state = NULL;
4140 u64 start = page_offset(page);
4141 u64 end = start + PAGE_SIZE - 1;
4142 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4143
4144 start += ALIGN(offset, blocksize);
4145 if (start > end)
4146 return 0;
4147
4148 lock_extent_bits(tree, start, end, &cached_state);
4149 wait_on_page_writeback(page);
4150 clear_extent_bit(tree, start, end,
4151 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4152 EXTENT_DO_ACCOUNTING,
4153 1, 1, &cached_state);
4154 return 0;
4155 }
4156
4157 /*
4158 * a helper for releasepage, this tests for areas of the page that
4159 * are locked or under IO and drops the related state bits if it is safe
4160 * to drop the page.
4161 */
4162 static int try_release_extent_state(struct extent_io_tree *tree,
4163 struct page *page, gfp_t mask)
4164 {
4165 u64 start = page_offset(page);
4166 u64 end = start + PAGE_SIZE - 1;
4167 int ret = 1;
4168
4169 if (test_range_bit(tree, start, end,
4170 EXTENT_IOBITS, 0, NULL))
4171 ret = 0;
4172 else {
4173 /*
4174 * at this point we can safely clear everything except the
4175 * locked bit and the nodatasum bit
4176 */
4177 ret = __clear_extent_bit(tree, start, end,
4178 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4179 0, 0, NULL, mask, NULL);
4180
4181 /* if clear_extent_bit failed for enomem reasons,
4182 * we can't allow the release to continue.
4183 */
4184 if (ret < 0)
4185 ret = 0;
4186 else
4187 ret = 1;
4188 }
4189 return ret;
4190 }
4191
4192 /*
4193 * a helper for releasepage. As long as there are no locked extents
4194 * in the range corresponding to the page, both state records and extent
4195 * map records are removed
4196 */
4197 int try_release_extent_mapping(struct page *page, gfp_t mask)
4198 {
4199 struct extent_map *em;
4200 u64 start = page_offset(page);
4201 u64 end = start + PAGE_SIZE - 1;
4202 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4203 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4204 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4205
4206 if (gfpflags_allow_blocking(mask) &&
4207 page->mapping->host->i_size > SZ_16M) {
4208 u64 len;
4209 while (start <= end) {
4210 len = end - start + 1;
4211 write_lock(&map->lock);
4212 em = lookup_extent_mapping(map, start, len);
4213 if (!em) {
4214 write_unlock(&map->lock);
4215 break;
4216 }
4217 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4218 em->start != start) {
4219 write_unlock(&map->lock);
4220 free_extent_map(em);
4221 break;
4222 }
4223 if (!test_range_bit(tree, em->start,
4224 extent_map_end(em) - 1,
4225 EXTENT_LOCKED | EXTENT_WRITEBACK,
4226 0, NULL)) {
4227 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4228 &btrfs_inode->runtime_flags);
4229 remove_extent_mapping(map, em);
4230 /* once for the rb tree */
4231 free_extent_map(em);
4232 }
4233 start = extent_map_end(em);
4234 write_unlock(&map->lock);
4235
4236 /* once for us */
4237 free_extent_map(em);
4238 }
4239 }
4240 return try_release_extent_state(tree, page, mask);
4241 }
4242
4243 /*
4244 * helper function for fiemap, which doesn't want to see any holes.
4245 * This maps until we find something past 'last'
4246 */
4247 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4248 u64 offset, u64 last)
4249 {
4250 u64 sectorsize = btrfs_inode_sectorsize(inode);
4251 struct extent_map *em;
4252 u64 len;
4253
4254 if (offset >= last)
4255 return NULL;
4256
4257 while (1) {
4258 len = last - offset;
4259 if (len == 0)
4260 break;
4261 len = ALIGN(len, sectorsize);
4262 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4263 if (IS_ERR_OR_NULL(em))
4264 return em;
4265
4266 /* if this isn't a hole return it */
4267 if (em->block_start != EXTENT_MAP_HOLE)
4268 return em;
4269
4270 /* this is a hole, advance to the next extent */
4271 offset = extent_map_end(em);
4272 free_extent_map(em);
4273 if (offset >= last)
4274 break;
4275 }
4276 return NULL;
4277 }
4278
4279 /*
4280 * To cache previous fiemap extent
4281 *
4282 * Will be used for merging fiemap extent
4283 */
4284 struct fiemap_cache {
4285 u64 offset;
4286 u64 phys;
4287 u64 len;
4288 u32 flags;
4289 bool cached;
4290 };
4291
4292 /*
4293 * Helper to submit fiemap extent.
4294 *
4295 * Will try to merge current fiemap extent specified by @offset, @phys,
4296 * @len and @flags with cached one.
4297 * And only when we fails to merge, cached one will be submitted as
4298 * fiemap extent.
4299 *
4300 * Return value is the same as fiemap_fill_next_extent().
4301 */
4302 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4303 struct fiemap_cache *cache,
4304 u64 offset, u64 phys, u64 len, u32 flags)
4305 {
4306 int ret = 0;
4307
4308 if (!cache->cached)
4309 goto assign;
4310
4311 /*
4312 * Sanity check, extent_fiemap() should have ensured that new
4313 * fiemap extent won't overlap with cached one.
4314 * Not recoverable.
4315 *
4316 * NOTE: Physical address can overlap, due to compression
4317 */
4318 if (cache->offset + cache->len > offset) {
4319 WARN_ON(1);
4320 return -EINVAL;
4321 }
4322
4323 /*
4324 * Only merges fiemap extents if
4325 * 1) Their logical addresses are continuous
4326 *
4327 * 2) Their physical addresses are continuous
4328 * So truly compressed (physical size smaller than logical size)
4329 * extents won't get merged with each other
4330 *
4331 * 3) Share same flags except FIEMAP_EXTENT_LAST
4332 * So regular extent won't get merged with prealloc extent
4333 */
4334 if (cache->offset + cache->len == offset &&
4335 cache->phys + cache->len == phys &&
4336 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4337 (flags & ~FIEMAP_EXTENT_LAST)) {
4338 cache->len += len;
4339 cache->flags |= flags;
4340 goto try_submit_last;
4341 }
4342
4343 /* Not mergeable, need to submit cached one */
4344 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4345 cache->len, cache->flags);
4346 cache->cached = false;
4347 if (ret)
4348 return ret;
4349 assign:
4350 cache->cached = true;
4351 cache->offset = offset;
4352 cache->phys = phys;
4353 cache->len = len;
4354 cache->flags = flags;
4355 try_submit_last:
4356 if (cache->flags & FIEMAP_EXTENT_LAST) {
4357 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4358 cache->phys, cache->len, cache->flags);
4359 cache->cached = false;
4360 }
4361 return ret;
4362 }
4363
4364 /*
4365 * Emit last fiemap cache
4366 *
4367 * The last fiemap cache may still be cached in the following case:
4368 * 0 4k 8k
4369 * |<- Fiemap range ->|
4370 * |<------------ First extent ----------->|
4371 *
4372 * In this case, the first extent range will be cached but not emitted.
4373 * So we must emit it before ending extent_fiemap().
4374 */
4375 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4376 struct fiemap_extent_info *fieinfo,
4377 struct fiemap_cache *cache)
4378 {
4379 int ret;
4380
4381 if (!cache->cached)
4382 return 0;
4383
4384 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4385 cache->len, cache->flags);
4386 cache->cached = false;
4387 if (ret > 0)
4388 ret = 0;
4389 return ret;
4390 }
4391
4392 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4393 __u64 start, __u64 len)
4394 {
4395 int ret = 0;
4396 u64 off = start;
4397 u64 max = start + len;
4398 u32 flags = 0;
4399 u32 found_type;
4400 u64 last;
4401 u64 last_for_get_extent = 0;
4402 u64 disko = 0;
4403 u64 isize = i_size_read(inode);
4404 struct btrfs_key found_key;
4405 struct extent_map *em = NULL;
4406 struct extent_state *cached_state = NULL;
4407 struct btrfs_path *path;
4408 struct btrfs_root *root = BTRFS_I(inode)->root;
4409 struct fiemap_cache cache = { 0 };
4410 int end = 0;
4411 u64 em_start = 0;
4412 u64 em_len = 0;
4413 u64 em_end = 0;
4414
4415 if (len == 0)
4416 return -EINVAL;
4417
4418 path = btrfs_alloc_path();
4419 if (!path)
4420 return -ENOMEM;
4421 path->leave_spinning = 1;
4422
4423 start = round_down(start, btrfs_inode_sectorsize(inode));
4424 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4425
4426 /*
4427 * lookup the last file extent. We're not using i_size here
4428 * because there might be preallocation past i_size
4429 */
4430 ret = btrfs_lookup_file_extent(NULL, root, path,
4431 btrfs_ino(BTRFS_I(inode)), -1, 0);
4432 if (ret < 0) {
4433 btrfs_free_path(path);
4434 return ret;
4435 } else {
4436 WARN_ON(!ret);
4437 if (ret == 1)
4438 ret = 0;
4439 }
4440
4441 path->slots[0]--;
4442 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4443 found_type = found_key.type;
4444
4445 /* No extents, but there might be delalloc bits */
4446 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4447 found_type != BTRFS_EXTENT_DATA_KEY) {
4448 /* have to trust i_size as the end */
4449 last = (u64)-1;
4450 last_for_get_extent = isize;
4451 } else {
4452 /*
4453 * remember the start of the last extent. There are a
4454 * bunch of different factors that go into the length of the
4455 * extent, so its much less complex to remember where it started
4456 */
4457 last = found_key.offset;
4458 last_for_get_extent = last + 1;
4459 }
4460 btrfs_release_path(path);
4461
4462 /*
4463 * we might have some extents allocated but more delalloc past those
4464 * extents. so, we trust isize unless the start of the last extent is
4465 * beyond isize
4466 */
4467 if (last < isize) {
4468 last = (u64)-1;
4469 last_for_get_extent = isize;
4470 }
4471
4472 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4473 &cached_state);
4474
4475 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4476 if (!em)
4477 goto out;
4478 if (IS_ERR(em)) {
4479 ret = PTR_ERR(em);
4480 goto out;
4481 }
4482
4483 while (!end) {
4484 u64 offset_in_extent = 0;
4485
4486 /* break if the extent we found is outside the range */
4487 if (em->start >= max || extent_map_end(em) < off)
4488 break;
4489
4490 /*
4491 * get_extent may return an extent that starts before our
4492 * requested range. We have to make sure the ranges
4493 * we return to fiemap always move forward and don't
4494 * overlap, so adjust the offsets here
4495 */
4496 em_start = max(em->start, off);
4497
4498 /*
4499 * record the offset from the start of the extent
4500 * for adjusting the disk offset below. Only do this if the
4501 * extent isn't compressed since our in ram offset may be past
4502 * what we have actually allocated on disk.
4503 */
4504 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4505 offset_in_extent = em_start - em->start;
4506 em_end = extent_map_end(em);
4507 em_len = em_end - em_start;
4508 flags = 0;
4509 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4510 disko = em->block_start + offset_in_extent;
4511 else
4512 disko = 0;
4513
4514 /*
4515 * bump off for our next call to get_extent
4516 */
4517 off = extent_map_end(em);
4518 if (off >= max)
4519 end = 1;
4520
4521 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4522 end = 1;
4523 flags |= FIEMAP_EXTENT_LAST;
4524 } else if (em->block_start == EXTENT_MAP_INLINE) {
4525 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4526 FIEMAP_EXTENT_NOT_ALIGNED);
4527 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4528 flags |= (FIEMAP_EXTENT_DELALLOC |
4529 FIEMAP_EXTENT_UNKNOWN);
4530 } else if (fieinfo->fi_extents_max) {
4531 u64 bytenr = em->block_start -
4532 (em->start - em->orig_start);
4533
4534 /*
4535 * As btrfs supports shared space, this information
4536 * can be exported to userspace tools via
4537 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4538 * then we're just getting a count and we can skip the
4539 * lookup stuff.
4540 */
4541 ret = btrfs_check_shared(root,
4542 btrfs_ino(BTRFS_I(inode)),
4543 bytenr);
4544 if (ret < 0)
4545 goto out_free;
4546 if (ret)
4547 flags |= FIEMAP_EXTENT_SHARED;
4548 ret = 0;
4549 }
4550 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4551 flags |= FIEMAP_EXTENT_ENCODED;
4552 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4553 flags |= FIEMAP_EXTENT_UNWRITTEN;
4554
4555 free_extent_map(em);
4556 em = NULL;
4557 if ((em_start >= last) || em_len == (u64)-1 ||
4558 (last == (u64)-1 && isize <= em_end)) {
4559 flags |= FIEMAP_EXTENT_LAST;
4560 end = 1;
4561 }
4562
4563 /* now scan forward to see if this is really the last extent. */
4564 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4565 if (IS_ERR(em)) {
4566 ret = PTR_ERR(em);
4567 goto out;
4568 }
4569 if (!em) {
4570 flags |= FIEMAP_EXTENT_LAST;
4571 end = 1;
4572 }
4573 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4574 em_len, flags);
4575 if (ret) {
4576 if (ret == 1)
4577 ret = 0;
4578 goto out_free;
4579 }
4580 }
4581 out_free:
4582 if (!ret)
4583 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4584 free_extent_map(em);
4585 out:
4586 btrfs_free_path(path);
4587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4588 &cached_state);
4589 return ret;
4590 }
4591
4592 static void __free_extent_buffer(struct extent_buffer *eb)
4593 {
4594 btrfs_leak_debug_del(&eb->leak_list);
4595 kmem_cache_free(extent_buffer_cache, eb);
4596 }
4597
4598 int extent_buffer_under_io(struct extent_buffer *eb)
4599 {
4600 return (atomic_read(&eb->io_pages) ||
4601 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4602 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4603 }
4604
4605 /*
4606 * Release all pages attached to the extent buffer.
4607 */
4608 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4609 {
4610 int i;
4611 int num_pages;
4612 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4613
4614 BUG_ON(extent_buffer_under_io(eb));
4615
4616 num_pages = num_extent_pages(eb);
4617 for (i = 0; i < num_pages; i++) {
4618 struct page *page = eb->pages[i];
4619
4620 if (!page)
4621 continue;
4622 if (mapped)
4623 spin_lock(&page->mapping->private_lock);
4624 /*
4625 * We do this since we'll remove the pages after we've
4626 * removed the eb from the radix tree, so we could race
4627 * and have this page now attached to the new eb. So
4628 * only clear page_private if it's still connected to
4629 * this eb.
4630 */
4631 if (PagePrivate(page) &&
4632 page->private == (unsigned long)eb) {
4633 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634 BUG_ON(PageDirty(page));
4635 BUG_ON(PageWriteback(page));
4636 /*
4637 * We need to make sure we haven't be attached
4638 * to a new eb.
4639 */
4640 ClearPagePrivate(page);
4641 set_page_private(page, 0);
4642 /* One for the page private */
4643 put_page(page);
4644 }
4645
4646 if (mapped)
4647 spin_unlock(&page->mapping->private_lock);
4648
4649 /* One for when we allocated the page */
4650 put_page(page);
4651 }
4652 }
4653
4654 /*
4655 * Helper for releasing the extent buffer.
4656 */
4657 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658 {
4659 btrfs_release_extent_buffer_pages(eb);
4660 __free_extent_buffer(eb);
4661 }
4662
4663 static struct extent_buffer *
4664 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665 unsigned long len)
4666 {
4667 struct extent_buffer *eb = NULL;
4668
4669 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670 eb->start = start;
4671 eb->len = len;
4672 eb->fs_info = fs_info;
4673 eb->bflags = 0;
4674 rwlock_init(&eb->lock);
4675 atomic_set(&eb->write_locks, 0);
4676 atomic_set(&eb->read_locks, 0);
4677 atomic_set(&eb->blocking_readers, 0);
4678 atomic_set(&eb->blocking_writers, 0);
4679 atomic_set(&eb->spinning_readers, 0);
4680 atomic_set(&eb->spinning_writers, 0);
4681 eb->lock_nested = 0;
4682 init_waitqueue_head(&eb->write_lock_wq);
4683 init_waitqueue_head(&eb->read_lock_wq);
4684
4685 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686
4687 spin_lock_init(&eb->refs_lock);
4688 atomic_set(&eb->refs, 1);
4689 atomic_set(&eb->io_pages, 0);
4690
4691 /*
4692 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693 */
4694 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4696 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697
4698 return eb;
4699 }
4700
4701 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702 {
4703 int i;
4704 struct page *p;
4705 struct extent_buffer *new;
4706 int num_pages = num_extent_pages(src);
4707
4708 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709 if (new == NULL)
4710 return NULL;
4711
4712 for (i = 0; i < num_pages; i++) {
4713 p = alloc_page(GFP_NOFS);
4714 if (!p) {
4715 btrfs_release_extent_buffer(new);
4716 return NULL;
4717 }
4718 attach_extent_buffer_page(new, p);
4719 WARN_ON(PageDirty(p));
4720 SetPageUptodate(p);
4721 new->pages[i] = p;
4722 copy_page(page_address(p), page_address(src->pages[i]));
4723 }
4724
4725 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4727
4728 return new;
4729 }
4730
4731 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 u64 start, unsigned long len)
4733 {
4734 struct extent_buffer *eb;
4735 int num_pages;
4736 int i;
4737
4738 eb = __alloc_extent_buffer(fs_info, start, len);
4739 if (!eb)
4740 return NULL;
4741
4742 num_pages = num_extent_pages(eb);
4743 for (i = 0; i < num_pages; i++) {
4744 eb->pages[i] = alloc_page(GFP_NOFS);
4745 if (!eb->pages[i])
4746 goto err;
4747 }
4748 set_extent_buffer_uptodate(eb);
4749 btrfs_set_header_nritems(eb, 0);
4750 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4751
4752 return eb;
4753 err:
4754 for (; i > 0; i--)
4755 __free_page(eb->pages[i - 1]);
4756 __free_extent_buffer(eb);
4757 return NULL;
4758 }
4759
4760 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4761 u64 start)
4762 {
4763 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4764 }
4765
4766 static void check_buffer_tree_ref(struct extent_buffer *eb)
4767 {
4768 int refs;
4769 /* the ref bit is tricky. We have to make sure it is set
4770 * if we have the buffer dirty. Otherwise the
4771 * code to free a buffer can end up dropping a dirty
4772 * page
4773 *
4774 * Once the ref bit is set, it won't go away while the
4775 * buffer is dirty or in writeback, and it also won't
4776 * go away while we have the reference count on the
4777 * eb bumped.
4778 *
4779 * We can't just set the ref bit without bumping the
4780 * ref on the eb because free_extent_buffer might
4781 * see the ref bit and try to clear it. If this happens
4782 * free_extent_buffer might end up dropping our original
4783 * ref by mistake and freeing the page before we are able
4784 * to add one more ref.
4785 *
4786 * So bump the ref count first, then set the bit. If someone
4787 * beat us to it, drop the ref we added.
4788 */
4789 refs = atomic_read(&eb->refs);
4790 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4791 return;
4792
4793 spin_lock(&eb->refs_lock);
4794 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4795 atomic_inc(&eb->refs);
4796 spin_unlock(&eb->refs_lock);
4797 }
4798
4799 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4800 struct page *accessed)
4801 {
4802 int num_pages, i;
4803
4804 check_buffer_tree_ref(eb);
4805
4806 num_pages = num_extent_pages(eb);
4807 for (i = 0; i < num_pages; i++) {
4808 struct page *p = eb->pages[i];
4809
4810 if (p != accessed)
4811 mark_page_accessed(p);
4812 }
4813 }
4814
4815 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4816 u64 start)
4817 {
4818 struct extent_buffer *eb;
4819
4820 rcu_read_lock();
4821 eb = radix_tree_lookup(&fs_info->buffer_radix,
4822 start >> PAGE_SHIFT);
4823 if (eb && atomic_inc_not_zero(&eb->refs)) {
4824 rcu_read_unlock();
4825 /*
4826 * Lock our eb's refs_lock to avoid races with
4827 * free_extent_buffer. When we get our eb it might be flagged
4828 * with EXTENT_BUFFER_STALE and another task running
4829 * free_extent_buffer might have seen that flag set,
4830 * eb->refs == 2, that the buffer isn't under IO (dirty and
4831 * writeback flags not set) and it's still in the tree (flag
4832 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4833 * of decrementing the extent buffer's reference count twice.
4834 * So here we could race and increment the eb's reference count,
4835 * clear its stale flag, mark it as dirty and drop our reference
4836 * before the other task finishes executing free_extent_buffer,
4837 * which would later result in an attempt to free an extent
4838 * buffer that is dirty.
4839 */
4840 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4841 spin_lock(&eb->refs_lock);
4842 spin_unlock(&eb->refs_lock);
4843 }
4844 mark_extent_buffer_accessed(eb, NULL);
4845 return eb;
4846 }
4847 rcu_read_unlock();
4848
4849 return NULL;
4850 }
4851
4852 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4853 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4854 u64 start)
4855 {
4856 struct extent_buffer *eb, *exists = NULL;
4857 int ret;
4858
4859 eb = find_extent_buffer(fs_info, start);
4860 if (eb)
4861 return eb;
4862 eb = alloc_dummy_extent_buffer(fs_info, start);
4863 if (!eb)
4864 return NULL;
4865 eb->fs_info = fs_info;
4866 again:
4867 ret = radix_tree_preload(GFP_NOFS);
4868 if (ret)
4869 goto free_eb;
4870 spin_lock(&fs_info->buffer_lock);
4871 ret = radix_tree_insert(&fs_info->buffer_radix,
4872 start >> PAGE_SHIFT, eb);
4873 spin_unlock(&fs_info->buffer_lock);
4874 radix_tree_preload_end();
4875 if (ret == -EEXIST) {
4876 exists = find_extent_buffer(fs_info, start);
4877 if (exists)
4878 goto free_eb;
4879 else
4880 goto again;
4881 }
4882 check_buffer_tree_ref(eb);
4883 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4884
4885 return eb;
4886 free_eb:
4887 btrfs_release_extent_buffer(eb);
4888 return exists;
4889 }
4890 #endif
4891
4892 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4893 u64 start)
4894 {
4895 unsigned long len = fs_info->nodesize;
4896 int num_pages;
4897 int i;
4898 unsigned long index = start >> PAGE_SHIFT;
4899 struct extent_buffer *eb;
4900 struct extent_buffer *exists = NULL;
4901 struct page *p;
4902 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4903 int uptodate = 1;
4904 int ret;
4905
4906 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4907 btrfs_err(fs_info, "bad tree block start %llu", start);
4908 return ERR_PTR(-EINVAL);
4909 }
4910
4911 eb = find_extent_buffer(fs_info, start);
4912 if (eb)
4913 return eb;
4914
4915 eb = __alloc_extent_buffer(fs_info, start, len);
4916 if (!eb)
4917 return ERR_PTR(-ENOMEM);
4918
4919 num_pages = num_extent_pages(eb);
4920 for (i = 0; i < num_pages; i++, index++) {
4921 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4922 if (!p) {
4923 exists = ERR_PTR(-ENOMEM);
4924 goto free_eb;
4925 }
4926
4927 spin_lock(&mapping->private_lock);
4928 if (PagePrivate(p)) {
4929 /*
4930 * We could have already allocated an eb for this page
4931 * and attached one so lets see if we can get a ref on
4932 * the existing eb, and if we can we know it's good and
4933 * we can just return that one, else we know we can just
4934 * overwrite page->private.
4935 */
4936 exists = (struct extent_buffer *)p->private;
4937 if (atomic_inc_not_zero(&exists->refs)) {
4938 spin_unlock(&mapping->private_lock);
4939 unlock_page(p);
4940 put_page(p);
4941 mark_extent_buffer_accessed(exists, p);
4942 goto free_eb;
4943 }
4944 exists = NULL;
4945
4946 /*
4947 * Do this so attach doesn't complain and we need to
4948 * drop the ref the old guy had.
4949 */
4950 ClearPagePrivate(p);
4951 WARN_ON(PageDirty(p));
4952 put_page(p);
4953 }
4954 attach_extent_buffer_page(eb, p);
4955 spin_unlock(&mapping->private_lock);
4956 WARN_ON(PageDirty(p));
4957 eb->pages[i] = p;
4958 if (!PageUptodate(p))
4959 uptodate = 0;
4960
4961 /*
4962 * We can't unlock the pages just yet since the extent buffer
4963 * hasn't been properly inserted in the radix tree, this
4964 * opens a race with btree_releasepage which can free a page
4965 * while we are still filling in all pages for the buffer and
4966 * we could crash.
4967 */
4968 }
4969 if (uptodate)
4970 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4971 again:
4972 ret = radix_tree_preload(GFP_NOFS);
4973 if (ret) {
4974 exists = ERR_PTR(ret);
4975 goto free_eb;
4976 }
4977
4978 spin_lock(&fs_info->buffer_lock);
4979 ret = radix_tree_insert(&fs_info->buffer_radix,
4980 start >> PAGE_SHIFT, eb);
4981 spin_unlock(&fs_info->buffer_lock);
4982 radix_tree_preload_end();
4983 if (ret == -EEXIST) {
4984 exists = find_extent_buffer(fs_info, start);
4985 if (exists)
4986 goto free_eb;
4987 else
4988 goto again;
4989 }
4990 /* add one reference for the tree */
4991 check_buffer_tree_ref(eb);
4992 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4993
4994 /*
4995 * Now it's safe to unlock the pages because any calls to
4996 * btree_releasepage will correctly detect that a page belongs to a
4997 * live buffer and won't free them prematurely.
4998 */
4999 for (i = 0; i < num_pages; i++)
5000 unlock_page(eb->pages[i]);
5001 return eb;
5002
5003 free_eb:
5004 WARN_ON(!atomic_dec_and_test(&eb->refs));
5005 for (i = 0; i < num_pages; i++) {
5006 if (eb->pages[i])
5007 unlock_page(eb->pages[i]);
5008 }
5009
5010 btrfs_release_extent_buffer(eb);
5011 return exists;
5012 }
5013
5014 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5015 {
5016 struct extent_buffer *eb =
5017 container_of(head, struct extent_buffer, rcu_head);
5018
5019 __free_extent_buffer(eb);
5020 }
5021
5022 static int release_extent_buffer(struct extent_buffer *eb)
5023 {
5024 lockdep_assert_held(&eb->refs_lock);
5025
5026 WARN_ON(atomic_read(&eb->refs) == 0);
5027 if (atomic_dec_and_test(&eb->refs)) {
5028 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5029 struct btrfs_fs_info *fs_info = eb->fs_info;
5030
5031 spin_unlock(&eb->refs_lock);
5032
5033 spin_lock(&fs_info->buffer_lock);
5034 radix_tree_delete(&fs_info->buffer_radix,
5035 eb->start >> PAGE_SHIFT);
5036 spin_unlock(&fs_info->buffer_lock);
5037 } else {
5038 spin_unlock(&eb->refs_lock);
5039 }
5040
5041 /* Should be safe to release our pages at this point */
5042 btrfs_release_extent_buffer_pages(eb);
5043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5044 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5045 __free_extent_buffer(eb);
5046 return 1;
5047 }
5048 #endif
5049 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5050 return 1;
5051 }
5052 spin_unlock(&eb->refs_lock);
5053
5054 return 0;
5055 }
5056
5057 void free_extent_buffer(struct extent_buffer *eb)
5058 {
5059 int refs;
5060 int old;
5061 if (!eb)
5062 return;
5063
5064 while (1) {
5065 refs = atomic_read(&eb->refs);
5066 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5067 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5068 refs == 1))
5069 break;
5070 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5071 if (old == refs)
5072 return;
5073 }
5074
5075 spin_lock(&eb->refs_lock);
5076 if (atomic_read(&eb->refs) == 2 &&
5077 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5078 !extent_buffer_under_io(eb) &&
5079 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5080 atomic_dec(&eb->refs);
5081
5082 /*
5083 * I know this is terrible, but it's temporary until we stop tracking
5084 * the uptodate bits and such for the extent buffers.
5085 */
5086 release_extent_buffer(eb);
5087 }
5088
5089 void free_extent_buffer_stale(struct extent_buffer *eb)
5090 {
5091 if (!eb)
5092 return;
5093
5094 spin_lock(&eb->refs_lock);
5095 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5096
5097 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5098 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5099 atomic_dec(&eb->refs);
5100 release_extent_buffer(eb);
5101 }
5102
5103 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5104 {
5105 int i;
5106 int num_pages;
5107 struct page *page;
5108
5109 num_pages = num_extent_pages(eb);
5110
5111 for (i = 0; i < num_pages; i++) {
5112 page = eb->pages[i];
5113 if (!PageDirty(page))
5114 continue;
5115
5116 lock_page(page);
5117 WARN_ON(!PagePrivate(page));
5118
5119 clear_page_dirty_for_io(page);
5120 xa_lock_irq(&page->mapping->i_pages);
5121 if (!PageDirty(page))
5122 __xa_clear_mark(&page->mapping->i_pages,
5123 page_index(page), PAGECACHE_TAG_DIRTY);
5124 xa_unlock_irq(&page->mapping->i_pages);
5125 ClearPageError(page);
5126 unlock_page(page);
5127 }
5128 WARN_ON(atomic_read(&eb->refs) == 0);
5129 }
5130
5131 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5132 {
5133 int i;
5134 int num_pages;
5135 bool was_dirty;
5136
5137 check_buffer_tree_ref(eb);
5138
5139 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5140
5141 num_pages = num_extent_pages(eb);
5142 WARN_ON(atomic_read(&eb->refs) == 0);
5143 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5144
5145 if (!was_dirty)
5146 for (i = 0; i < num_pages; i++)
5147 set_page_dirty(eb->pages[i]);
5148
5149 #ifdef CONFIG_BTRFS_DEBUG
5150 for (i = 0; i < num_pages; i++)
5151 ASSERT(PageDirty(eb->pages[i]));
5152 #endif
5153
5154 return was_dirty;
5155 }
5156
5157 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5158 {
5159 int i;
5160 struct page *page;
5161 int num_pages;
5162
5163 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5164 num_pages = num_extent_pages(eb);
5165 for (i = 0; i < num_pages; i++) {
5166 page = eb->pages[i];
5167 if (page)
5168 ClearPageUptodate(page);
5169 }
5170 }
5171
5172 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5173 {
5174 int i;
5175 struct page *page;
5176 int num_pages;
5177
5178 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5179 num_pages = num_extent_pages(eb);
5180 for (i = 0; i < num_pages; i++) {
5181 page = eb->pages[i];
5182 SetPageUptodate(page);
5183 }
5184 }
5185
5186 int read_extent_buffer_pages(struct extent_io_tree *tree,
5187 struct extent_buffer *eb, int wait, int mirror_num)
5188 {
5189 int i;
5190 struct page *page;
5191 int err;
5192 int ret = 0;
5193 int locked_pages = 0;
5194 int all_uptodate = 1;
5195 int num_pages;
5196 unsigned long num_reads = 0;
5197 struct bio *bio = NULL;
5198 unsigned long bio_flags = 0;
5199
5200 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5201 return 0;
5202
5203 num_pages = num_extent_pages(eb);
5204 for (i = 0; i < num_pages; i++) {
5205 page = eb->pages[i];
5206 if (wait == WAIT_NONE) {
5207 if (!trylock_page(page))
5208 goto unlock_exit;
5209 } else {
5210 lock_page(page);
5211 }
5212 locked_pages++;
5213 }
5214 /*
5215 * We need to firstly lock all pages to make sure that
5216 * the uptodate bit of our pages won't be affected by
5217 * clear_extent_buffer_uptodate().
5218 */
5219 for (i = 0; i < num_pages; i++) {
5220 page = eb->pages[i];
5221 if (!PageUptodate(page)) {
5222 num_reads++;
5223 all_uptodate = 0;
5224 }
5225 }
5226
5227 if (all_uptodate) {
5228 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5229 goto unlock_exit;
5230 }
5231
5232 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5233 eb->read_mirror = 0;
5234 atomic_set(&eb->io_pages, num_reads);
5235 for (i = 0; i < num_pages; i++) {
5236 page = eb->pages[i];
5237
5238 if (!PageUptodate(page)) {
5239 if (ret) {
5240 atomic_dec(&eb->io_pages);
5241 unlock_page(page);
5242 continue;
5243 }
5244
5245 ClearPageError(page);
5246 err = __extent_read_full_page(tree, page,
5247 btree_get_extent, &bio,
5248 mirror_num, &bio_flags,
5249 REQ_META);
5250 if (err) {
5251 ret = err;
5252 /*
5253 * We use &bio in above __extent_read_full_page,
5254 * so we ensure that if it returns error, the
5255 * current page fails to add itself to bio and
5256 * it's been unlocked.
5257 *
5258 * We must dec io_pages by ourselves.
5259 */
5260 atomic_dec(&eb->io_pages);
5261 }
5262 } else {
5263 unlock_page(page);
5264 }
5265 }
5266
5267 if (bio) {
5268 err = submit_one_bio(bio, mirror_num, bio_flags);
5269 if (err)
5270 return err;
5271 }
5272
5273 if (ret || wait != WAIT_COMPLETE)
5274 return ret;
5275
5276 for (i = 0; i < num_pages; i++) {
5277 page = eb->pages[i];
5278 wait_on_page_locked(page);
5279 if (!PageUptodate(page))
5280 ret = -EIO;
5281 }
5282
5283 return ret;
5284
5285 unlock_exit:
5286 while (locked_pages > 0) {
5287 locked_pages--;
5288 page = eb->pages[locked_pages];
5289 unlock_page(page);
5290 }
5291 return ret;
5292 }
5293
5294 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5295 unsigned long start, unsigned long len)
5296 {
5297 size_t cur;
5298 size_t offset;
5299 struct page *page;
5300 char *kaddr;
5301 char *dst = (char *)dstv;
5302 size_t start_offset = offset_in_page(eb->start);
5303 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5304
5305 if (start + len > eb->len) {
5306 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5307 eb->start, eb->len, start, len);
5308 memset(dst, 0, len);
5309 return;
5310 }
5311
5312 offset = offset_in_page(start_offset + start);
5313
5314 while (len > 0) {
5315 page = eb->pages[i];
5316
5317 cur = min(len, (PAGE_SIZE - offset));
5318 kaddr = page_address(page);
5319 memcpy(dst, kaddr + offset, cur);
5320
5321 dst += cur;
5322 len -= cur;
5323 offset = 0;
5324 i++;
5325 }
5326 }
5327
5328 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5329 void __user *dstv,
5330 unsigned long start, unsigned long len)
5331 {
5332 size_t cur;
5333 size_t offset;
5334 struct page *page;
5335 char *kaddr;
5336 char __user *dst = (char __user *)dstv;
5337 size_t start_offset = offset_in_page(eb->start);
5338 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5339 int ret = 0;
5340
5341 WARN_ON(start > eb->len);
5342 WARN_ON(start + len > eb->start + eb->len);
5343
5344 offset = offset_in_page(start_offset + start);
5345
5346 while (len > 0) {
5347 page = eb->pages[i];
5348
5349 cur = min(len, (PAGE_SIZE - offset));
5350 kaddr = page_address(page);
5351 if (copy_to_user(dst, kaddr + offset, cur)) {
5352 ret = -EFAULT;
5353 break;
5354 }
5355
5356 dst += cur;
5357 len -= cur;
5358 offset = 0;
5359 i++;
5360 }
5361
5362 return ret;
5363 }
5364
5365 /*
5366 * return 0 if the item is found within a page.
5367 * return 1 if the item spans two pages.
5368 * return -EINVAL otherwise.
5369 */
5370 int map_private_extent_buffer(const struct extent_buffer *eb,
5371 unsigned long start, unsigned long min_len,
5372 char **map, unsigned long *map_start,
5373 unsigned long *map_len)
5374 {
5375 size_t offset;
5376 char *kaddr;
5377 struct page *p;
5378 size_t start_offset = offset_in_page(eb->start);
5379 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5380 unsigned long end_i = (start_offset + start + min_len - 1) >>
5381 PAGE_SHIFT;
5382
5383 if (start + min_len > eb->len) {
5384 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5385 eb->start, eb->len, start, min_len);
5386 return -EINVAL;
5387 }
5388
5389 if (i != end_i)
5390 return 1;
5391
5392 if (i == 0) {
5393 offset = start_offset;
5394 *map_start = 0;
5395 } else {
5396 offset = 0;
5397 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5398 }
5399
5400 p = eb->pages[i];
5401 kaddr = page_address(p);
5402 *map = kaddr + offset;
5403 *map_len = PAGE_SIZE - offset;
5404 return 0;
5405 }
5406
5407 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5408 unsigned long start, unsigned long len)
5409 {
5410 size_t cur;
5411 size_t offset;
5412 struct page *page;
5413 char *kaddr;
5414 char *ptr = (char *)ptrv;
5415 size_t start_offset = offset_in_page(eb->start);
5416 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5417 int ret = 0;
5418
5419 WARN_ON(start > eb->len);
5420 WARN_ON(start + len > eb->start + eb->len);
5421
5422 offset = offset_in_page(start_offset + start);
5423
5424 while (len > 0) {
5425 page = eb->pages[i];
5426
5427 cur = min(len, (PAGE_SIZE - offset));
5428
5429 kaddr = page_address(page);
5430 ret = memcmp(ptr, kaddr + offset, cur);
5431 if (ret)
5432 break;
5433
5434 ptr += cur;
5435 len -= cur;
5436 offset = 0;
5437 i++;
5438 }
5439 return ret;
5440 }
5441
5442 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5443 const void *srcv)
5444 {
5445 char *kaddr;
5446
5447 WARN_ON(!PageUptodate(eb->pages[0]));
5448 kaddr = page_address(eb->pages[0]);
5449 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5450 BTRFS_FSID_SIZE);
5451 }
5452
5453 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5454 {
5455 char *kaddr;
5456
5457 WARN_ON(!PageUptodate(eb->pages[0]));
5458 kaddr = page_address(eb->pages[0]);
5459 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5460 BTRFS_FSID_SIZE);
5461 }
5462
5463 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5464 unsigned long start, unsigned long len)
5465 {
5466 size_t cur;
5467 size_t offset;
5468 struct page *page;
5469 char *kaddr;
5470 char *src = (char *)srcv;
5471 size_t start_offset = offset_in_page(eb->start);
5472 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5473
5474 WARN_ON(start > eb->len);
5475 WARN_ON(start + len > eb->start + eb->len);
5476
5477 offset = offset_in_page(start_offset + start);
5478
5479 while (len > 0) {
5480 page = eb->pages[i];
5481 WARN_ON(!PageUptodate(page));
5482
5483 cur = min(len, PAGE_SIZE - offset);
5484 kaddr = page_address(page);
5485 memcpy(kaddr + offset, src, cur);
5486
5487 src += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 }
5493
5494 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5495 unsigned long len)
5496 {
5497 size_t cur;
5498 size_t offset;
5499 struct page *page;
5500 char *kaddr;
5501 size_t start_offset = offset_in_page(eb->start);
5502 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5503
5504 WARN_ON(start > eb->len);
5505 WARN_ON(start + len > eb->start + eb->len);
5506
5507 offset = offset_in_page(start_offset + start);
5508
5509 while (len > 0) {
5510 page = eb->pages[i];
5511 WARN_ON(!PageUptodate(page));
5512
5513 cur = min(len, PAGE_SIZE - offset);
5514 kaddr = page_address(page);
5515 memset(kaddr + offset, 0, cur);
5516
5517 len -= cur;
5518 offset = 0;
5519 i++;
5520 }
5521 }
5522
5523 void copy_extent_buffer_full(struct extent_buffer *dst,
5524 struct extent_buffer *src)
5525 {
5526 int i;
5527 int num_pages;
5528
5529 ASSERT(dst->len == src->len);
5530
5531 num_pages = num_extent_pages(dst);
5532 for (i = 0; i < num_pages; i++)
5533 copy_page(page_address(dst->pages[i]),
5534 page_address(src->pages[i]));
5535 }
5536
5537 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5538 unsigned long dst_offset, unsigned long src_offset,
5539 unsigned long len)
5540 {
5541 u64 dst_len = dst->len;
5542 size_t cur;
5543 size_t offset;
5544 struct page *page;
5545 char *kaddr;
5546 size_t start_offset = offset_in_page(dst->start);
5547 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5548
5549 WARN_ON(src->len != dst_len);
5550
5551 offset = offset_in_page(start_offset + dst_offset);
5552
5553 while (len > 0) {
5554 page = dst->pages[i];
5555 WARN_ON(!PageUptodate(page));
5556
5557 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5558
5559 kaddr = page_address(page);
5560 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5561
5562 src_offset += cur;
5563 len -= cur;
5564 offset = 0;
5565 i++;
5566 }
5567 }
5568
5569 /*
5570 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5571 * given bit number
5572 * @eb: the extent buffer
5573 * @start: offset of the bitmap item in the extent buffer
5574 * @nr: bit number
5575 * @page_index: return index of the page in the extent buffer that contains the
5576 * given bit number
5577 * @page_offset: return offset into the page given by page_index
5578 *
5579 * This helper hides the ugliness of finding the byte in an extent buffer which
5580 * contains a given bit.
5581 */
5582 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5583 unsigned long start, unsigned long nr,
5584 unsigned long *page_index,
5585 size_t *page_offset)
5586 {
5587 size_t start_offset = offset_in_page(eb->start);
5588 size_t byte_offset = BIT_BYTE(nr);
5589 size_t offset;
5590
5591 /*
5592 * The byte we want is the offset of the extent buffer + the offset of
5593 * the bitmap item in the extent buffer + the offset of the byte in the
5594 * bitmap item.
5595 */
5596 offset = start_offset + start + byte_offset;
5597
5598 *page_index = offset >> PAGE_SHIFT;
5599 *page_offset = offset_in_page(offset);
5600 }
5601
5602 /**
5603 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5604 * @eb: the extent buffer
5605 * @start: offset of the bitmap item in the extent buffer
5606 * @nr: bit number to test
5607 */
5608 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5609 unsigned long nr)
5610 {
5611 u8 *kaddr;
5612 struct page *page;
5613 unsigned long i;
5614 size_t offset;
5615
5616 eb_bitmap_offset(eb, start, nr, &i, &offset);
5617 page = eb->pages[i];
5618 WARN_ON(!PageUptodate(page));
5619 kaddr = page_address(page);
5620 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5621 }
5622
5623 /**
5624 * extent_buffer_bitmap_set - set an area of a bitmap
5625 * @eb: the extent buffer
5626 * @start: offset of the bitmap item in the extent buffer
5627 * @pos: bit number of the first bit
5628 * @len: number of bits to set
5629 */
5630 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5631 unsigned long pos, unsigned long len)
5632 {
5633 u8 *kaddr;
5634 struct page *page;
5635 unsigned long i;
5636 size_t offset;
5637 const unsigned int size = pos + len;
5638 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5639 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5640
5641 eb_bitmap_offset(eb, start, pos, &i, &offset);
5642 page = eb->pages[i];
5643 WARN_ON(!PageUptodate(page));
5644 kaddr = page_address(page);
5645
5646 while (len >= bits_to_set) {
5647 kaddr[offset] |= mask_to_set;
5648 len -= bits_to_set;
5649 bits_to_set = BITS_PER_BYTE;
5650 mask_to_set = ~0;
5651 if (++offset >= PAGE_SIZE && len > 0) {
5652 offset = 0;
5653 page = eb->pages[++i];
5654 WARN_ON(!PageUptodate(page));
5655 kaddr = page_address(page);
5656 }
5657 }
5658 if (len) {
5659 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5660 kaddr[offset] |= mask_to_set;
5661 }
5662 }
5663
5664
5665 /**
5666 * extent_buffer_bitmap_clear - clear an area of a bitmap
5667 * @eb: the extent buffer
5668 * @start: offset of the bitmap item in the extent buffer
5669 * @pos: bit number of the first bit
5670 * @len: number of bits to clear
5671 */
5672 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5673 unsigned long pos, unsigned long len)
5674 {
5675 u8 *kaddr;
5676 struct page *page;
5677 unsigned long i;
5678 size_t offset;
5679 const unsigned int size = pos + len;
5680 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5681 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5682
5683 eb_bitmap_offset(eb, start, pos, &i, &offset);
5684 page = eb->pages[i];
5685 WARN_ON(!PageUptodate(page));
5686 kaddr = page_address(page);
5687
5688 while (len >= bits_to_clear) {
5689 kaddr[offset] &= ~mask_to_clear;
5690 len -= bits_to_clear;
5691 bits_to_clear = BITS_PER_BYTE;
5692 mask_to_clear = ~0;
5693 if (++offset >= PAGE_SIZE && len > 0) {
5694 offset = 0;
5695 page = eb->pages[++i];
5696 WARN_ON(!PageUptodate(page));
5697 kaddr = page_address(page);
5698 }
5699 }
5700 if (len) {
5701 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5702 kaddr[offset] &= ~mask_to_clear;
5703 }
5704 }
5705
5706 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5707 {
5708 unsigned long distance = (src > dst) ? src - dst : dst - src;
5709 return distance < len;
5710 }
5711
5712 static void copy_pages(struct page *dst_page, struct page *src_page,
5713 unsigned long dst_off, unsigned long src_off,
5714 unsigned long len)
5715 {
5716 char *dst_kaddr = page_address(dst_page);
5717 char *src_kaddr;
5718 int must_memmove = 0;
5719
5720 if (dst_page != src_page) {
5721 src_kaddr = page_address(src_page);
5722 } else {
5723 src_kaddr = dst_kaddr;
5724 if (areas_overlap(src_off, dst_off, len))
5725 must_memmove = 1;
5726 }
5727
5728 if (must_memmove)
5729 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5730 else
5731 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5732 }
5733
5734 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5735 unsigned long src_offset, unsigned long len)
5736 {
5737 struct btrfs_fs_info *fs_info = dst->fs_info;
5738 size_t cur;
5739 size_t dst_off_in_page;
5740 size_t src_off_in_page;
5741 size_t start_offset = offset_in_page(dst->start);
5742 unsigned long dst_i;
5743 unsigned long src_i;
5744
5745 if (src_offset + len > dst->len) {
5746 btrfs_err(fs_info,
5747 "memmove bogus src_offset %lu move len %lu dst len %lu",
5748 src_offset, len, dst->len);
5749 BUG_ON(1);
5750 }
5751 if (dst_offset + len > dst->len) {
5752 btrfs_err(fs_info,
5753 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5754 dst_offset, len, dst->len);
5755 BUG_ON(1);
5756 }
5757
5758 while (len > 0) {
5759 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5760 src_off_in_page = offset_in_page(start_offset + src_offset);
5761
5762 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5763 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5764
5765 cur = min(len, (unsigned long)(PAGE_SIZE -
5766 src_off_in_page));
5767 cur = min_t(unsigned long, cur,
5768 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5769
5770 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5771 dst_off_in_page, src_off_in_page, cur);
5772
5773 src_offset += cur;
5774 dst_offset += cur;
5775 len -= cur;
5776 }
5777 }
5778
5779 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5780 unsigned long src_offset, unsigned long len)
5781 {
5782 struct btrfs_fs_info *fs_info = dst->fs_info;
5783 size_t cur;
5784 size_t dst_off_in_page;
5785 size_t src_off_in_page;
5786 unsigned long dst_end = dst_offset + len - 1;
5787 unsigned long src_end = src_offset + len - 1;
5788 size_t start_offset = offset_in_page(dst->start);
5789 unsigned long dst_i;
5790 unsigned long src_i;
5791
5792 if (src_offset + len > dst->len) {
5793 btrfs_err(fs_info,
5794 "memmove bogus src_offset %lu move len %lu len %lu",
5795 src_offset, len, dst->len);
5796 BUG_ON(1);
5797 }
5798 if (dst_offset + len > dst->len) {
5799 btrfs_err(fs_info,
5800 "memmove bogus dst_offset %lu move len %lu len %lu",
5801 dst_offset, len, dst->len);
5802 BUG_ON(1);
5803 }
5804 if (dst_offset < src_offset) {
5805 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5806 return;
5807 }
5808 while (len > 0) {
5809 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5810 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5811
5812 dst_off_in_page = offset_in_page(start_offset + dst_end);
5813 src_off_in_page = offset_in_page(start_offset + src_end);
5814
5815 cur = min_t(unsigned long, len, src_off_in_page + 1);
5816 cur = min(cur, dst_off_in_page + 1);
5817 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5818 dst_off_in_page - cur + 1,
5819 src_off_in_page - cur + 1, cur);
5820
5821 dst_end -= cur;
5822 src_end -= cur;
5823 len -= cur;
5824 }
5825 }
5826
5827 int try_release_extent_buffer(struct page *page)
5828 {
5829 struct extent_buffer *eb;
5830
5831 /*
5832 * We need to make sure nobody is attaching this page to an eb right
5833 * now.
5834 */
5835 spin_lock(&page->mapping->private_lock);
5836 if (!PagePrivate(page)) {
5837 spin_unlock(&page->mapping->private_lock);
5838 return 1;
5839 }
5840
5841 eb = (struct extent_buffer *)page->private;
5842 BUG_ON(!eb);
5843
5844 /*
5845 * This is a little awful but should be ok, we need to make sure that
5846 * the eb doesn't disappear out from under us while we're looking at
5847 * this page.
5848 */
5849 spin_lock(&eb->refs_lock);
5850 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5851 spin_unlock(&eb->refs_lock);
5852 spin_unlock(&page->mapping->private_lock);
5853 return 0;
5854 }
5855 spin_unlock(&page->mapping->private_lock);
5856
5857 /*
5858 * If tree ref isn't set then we know the ref on this eb is a real ref,
5859 * so just return, this page will likely be freed soon anyway.
5860 */
5861 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5862 spin_unlock(&eb->refs_lock);
5863 return 0;
5864 }
5865
5866 return release_extent_buffer(eb);
5867 }